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Abstract

The Internet of Things (IoT) is considered one of the most significant computing trends
of the 21st century so far, causing the number of deployed computing devices to increase
dramatically. However, the frequency and severity of attacks against computer systems is
increasing with attacks such as Stuxnet and Mirai. This thesis is concerned with securing
computing devices by creating bonds between hardware and software to ensure deployed
devices only execute the software they are intended to and vice versa. This prevents
counterfeiting, device tampering and other attacks.

This thesis presents three studies into binding hardware and software. These concern
creating secure dependencies between the hardware and software of computing devices.
Specifically, this thesis considers mutual dependencies created by bidirectional bonds be-
tween hardware and software. The first study defines hardware-software bonds, the prob-
lem space and proposes the first bidirectional scheme for binding hardware and software
together. The scheme is implemented using an FPGA and analysed for security and
performance.

The second case considers the deployment of binding schemes. This is considered in a smart
city environment by first studying and modelling the security architecture of the problem.
Two security models are proposed with associated software provisioning protocols. All the
proposals are formally analysed using Tamarin Prover and implemented for Raspberry Pi
and laptop computer.

The third study combines hardware-software binding with another problem in cyber se-
curity - Secure Application Execution. The two problems are compared and set of re-
quirements for simultaneously achieving both is defined. A binding scheme is proposed
solving the expanded problem and a prototype Secure Execution Processor equipped with
the scheme is presented and analysed.

Finally, the thesis concludes by summarising the research presented and highlighting po-
tential areas for future work in binding hardware and software together.
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Chapter 1

Introduction

Contents

1.1 The Computing Landscape . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

This chapter introduces the thesis by describing the context and need for the research

undertaken. Firstly, the landscape of computer systems and recent trends in computing are

described. Recent attacks are described as well as some consequences of security breaches to

argue the need for better security in computer systems. The chapter finishes by listing the

main research contributions of this work and by describing the structure of the document.

12



1.1 The Computing Landscape

1.1 The Computing Landscape

The number of computing devices in the world is growing at an increasing rate and there

are now more devices connected to the internet than people on the Earth [120, 18]. Com-

puting power continues to increase, and the number of places it is used expands [102].

One area experiencing the biggest expansion is embedded computing [111]. The Internet

of Things (IoT) concept is causing embedded systems to be included into more and more

devices including (but not limited to) cars, aeroplanes, industrial control systems, fridges,

light bulbs and utility meters [66, 87].

The IoT has many advantages; smart meters can help people to save money by monitoring

their energy consumption [103], healthcare processes can be improved using IoT solutions

[92] and connected cars may make the roads safer [50]. Furthermore, as well as practical

value, the IoT has great monetary value with some estimating the market to be worth

$457B or more in 2020 [25, 99].

However, as the deployment of computer systems increases, the number of attacks against

them grows; 2017 saw many high profile attacks in which personal data or national infras-

tructure were targeted [95]. These attacks caused disruption, financial damage and repu-

tation damage to businesses and governments [95]. Overall, the security software company

Symantec observed a 600% increase in attacks against IoT systems in 2017 [114].

However, the consequences of insecure IoT devices can be much significant than damage to

revenue or reputation. In 2014, Genesis Toys released “My Friend Cayla”, a doll containing

an embedded system to allow it to talk to children [40]. In 2015, researchers from Pen Test

Partners discovered the insecurity of the dolls developer options made it possible to change

the dolls behaviour. This allowed the researchers to force the doll to swear at children

(which should not have been possible) or to eavesdrop on conversations held around the

doll [94]. The existence of the latter modification caused the toy to be declared as “illegal

espionage apparatus” and to be banned in Germany [96].

Another recent attack on computing devices is the Stuxnet malware deployed to sabotage

Iranian nuclear power stations. The malware would interfere with plant centrifuges to

cause premature wear and damage the Industrial Control System. By disabling legitimate

code, the malware was able to run the attack code needed to target the centrifuges [69].

13



1.2 Contributions

Thirdly, Mirai is a malware that caused significant disruption to a number of internet

services including Spotify, Twitter and PayPal [115]. It spread by searching for devices

with default login credentials still accepted. Once the malware connected to an open device

it would spread itself to the new device to add another bot to the botnet [26]. The final

result was a botnet capable of performing 620 Gbps Distributed Denial of Service (DDoS)

attacks against targets selected via the command and control system running the malware

[115].

These attacks show that more efforts are needed to secure computing devices and systems.

There are many approaches to securing computer systems, however one approach is to

ensure devices are only running correct, legitimate and trusted software. If this goal were

achieved, the attacks described previously would all be thwarted as malicious code would

not be executable on the devices as it would be neither legitimate nor trusted and it’s

behaviour incorrect for the devices.

One way of ensuring that only the correct software can execute on a device is to bind the

hardware and software of computing devices together. If an application must be bound to a

device to execute and only trustworthy parties may bind software then many attacks, such

as those described, are prevented [67, 110, 10]. This thesis is focussed on the development

and use of schemes for binding hardware and software in computing devices.

1.2 Contributions

The main research contributions of this thesis are:

• Expanding the definition of binding hardware and software to include directionality

(Chapter 3).

• Proposing and implementing the first bidirectional scheme to bind hardware and

software together (Chapter 3).

• Analysing software provisioning in smart city environments and proposing three

models to fit the setting (Chapter 4).

• Proposing, formally analysing and implementing three protocols to provisioning soft-

14



1.3 Thesis Structure

ware in a smart city environment (Chapter 4).

• Combining the problem of binding hardware and software with securing application

execution to better model security threats facing embedded devices (Chapter 5).

• Proposing and implementing a scheme to guarantee secure and platform specific

application execution in embedded devices (Chapter 5).

1.3 Thesis Structure

This thesis is organised in six chapters starting with an introduction to embedded systems

and the need for their security.

Chapter 2 introduces the research topics relevant to this work. The background chapter

does not exhaustively list all relevant work but describes each of the problems, technologies

and techniques used in the later chapters of this document. As such, the chapter defines

the problems as considered in this work and provides the information needed to understand

the tools and technologies used.

Chapter 3 describes the first hardware-software binding scheme proposed in this work.

We argue that previously developed schemes are insufficient and a bidirectional method

of binding hardware and software is needed. A scheme is proposed to meet the elicited

requirements. The viability of the scheme is demonstrated by a proof-of-concept imple-

mentation.

In Chapter 4, we consider how the scheme proposed in Chapter 3 could be used in a

real-world environment. This study focusses on how to install and update software when

hardware-software binding is used. Considering the case study of a smart city, several

models were developed to consider the different software installation models that might

apply. Protocols meeting the elicited requirements were proposed, implemented and for-

mally analysed using Tamarin Prover.

Chapter 5 also builds on Chapter 3 by expanding the problem considered to include en-

suring correct application execution. An analysis of securing application execution led to

a new, transition-based approach to Secure Application Execution (SAE). By combining
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the Chapter 3 scheme with ideas from the SAE literature a new binding scheme was pro-

posed to ensure correct and platform specific application execution. The expanded scheme

was implemented as a soft-core processor devloped and tested on a Field Programmable

Gate Array (FPGA).

Finally, Chapter 6 concludes this thesis by summarising the work presented and describing

potential directions for future work in the area.
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This chapter introduces the relevant background material to this work. Early sections

describe the main technologies associated with the research presented in later chapters of

this thesis. Schemes are proposed for embedded system or smart card (Section 2.1) use,

prototyped using FPGAs (Section 2.2) and including PUFs (Section 2.3). Background

research presented concerns binding hardware and software (Section 2.4), the focus of this

work. However, later chapters include other topics including secure application execution

and formal analysis, described in Sections 2.5 and 2.7. Two recent, significant attacks on

processor technologies, Spectre and Meltdown, are included for completeness in Section 2.6.
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2.1 Embedded Systems and Smart Cards

2.1 Embedded Systems and Smart Cards

Embedded systems and smart cards are the most prevalent types of computing devices

in the world [120, 52]. Both have become a significant part of modern life; and are the

subject of academic and industrial interest. This section defines both types of device and

how they are considered in this document.

2.1.1 Embedded Systems

This thesis proposes multiple schemes for securing embedded systems. Embedded systems

are defined by P. Marwedel as “information processing systems embedded into enclosing

products” [88]. They are included in various settings including: cars, home electronics and

Smart City infrastructure. In many of these, the presence of the computer is not obvious

due to the difference of the form factor from “traditional” computers. This has led to

embedded systems also being called disappearing computers [88]. Other titles given to the

spreading of embedded systems include: ubiquitous computing [122], pervasive computing

[105] and the Internet of Things (IoT) [11, 9].

Regardless of labels, embedded computing is concerned with the deployment of embedded

systems. These are small, low power devices deployed for particular tasks. A general

purpose processor or microcontroller may be included, but the device is deployed for a

specific purpose. Some controllers operate washing machines, others network hardware or

motor vehicles. The common feature is the devices are small, low-powered, and computing

resources are often limited [88].

Embedded systems are complete systems deployed for a purpose, comprised of a number

of elements [107]. Typically, an embedded system features a processor or microcontroller,

this may include specialist hardware such as a cryptographic co-processor or Digital Sig-

nal Processor (DSP). Storage, such as flash memory, Read-Only Memory (ROM) or

Electronically-Erasable Read-Only Memory (EEPROM) is included to store software and

other data needed. Finally, some Input/Output (IO) devices may be attached to the sys-

tem; these could be sensors to record information or actuators for interacting with the

environment. In some cases, network capability is included allowing the device to commu-

nicate with other devices or servers. A diagram of an embedded system and the elements
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Figure 2.1: Embedded systems may be built using a combination of many components.

that may be included is included in Figure 2.1.

The diagram in Figure 2.1 demonstrates many of the possible components that may be

included in an embedded system as considered in this thesis. We assume they will include a

processor, some long-term storage and Input/Output devices such as sensors or actuators.

Some may also include a cryptographic co-processor or digital signal processor. However,

embedded systems in this work will always include a processor, storage and some means

of interacting with the world.

2.1.2 Smart Cards

As well as applying to embedded systems, the schemes proposed in this thesis may ap-

ply to securing smart cards. Smart cards are small computing devices integrated into

standardised forms used to add security to a transaction or communication. They are

equipped with unique IDs, secure storage, security algorithms and tamper-resistance tech-

nologies to prevent forgery or duplication. Devices sometimes described as smart cards

are magnetic stripe cards, these are cards without processors and equipped with magnetic

stripes. However, these cards offer no security and are incapable of processing so are

not considered in the definition of smart cards in this work. The most common forms of

smart cards are the 86mm×54mm form factor of credit and debit cards and the smaller

(25mm×15mm to 12.3mm×8.8mm) mobile phone SIM card forms. Like embedded sys-

tems (Section 2.1.1), smart cards are deployed as application specific devices. Common

uses of smart cards include: payments, transport ticketing, mobile telephony, physical
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access control and identification [90].

Smart card communications, structures and security mechanisms are carefully standard-

ised. While there are many details covered, the sections on application protection and

secure application installation are the details significant to this work. There are several

standards and standardisation bodies involved in smart cards. The main organisations

and bodies are ISO, GlobalPlatform and MULTOS [90].

The International Organisation for Standardisation (ISO) is the main creator of smart

card standards. Four main standards cover smart cards: ISO 7816, ISO 14443, ISO 15693

and ISO 7501 [57, 56, 53, 54]. ISO 7816 covers most details of smart cards including sizes,

interfaces, file structures, executable commands and cryptographic services [57]. Close-

proximity contactless cards are described by ISO 14443, whereas ISO 15693 describes

longer range “vicinity cards” [56, 53]. Smart cards also feature in ISO 7501, although it

primarily concerns machine-readable travel documents and smart cards are only covered in

that context [54]. However, while these cover many important details, the most relevant

standards to this thesis are those from GlobalPlatform and the MULTOS consortium

covering secure mechanisms for installing and managing applications.

GlobalPlatform, like ISO, is another standardisation group producing standards for smart

card behaviour [42]. GlobalPlatform standards are also applied to securing connected

cars and IoT devices [43]. The GlobalPlatform card specification is more application and

security focussed than ISO standards and does not describe form factors or interfaces.

However, it does cover how applications may be securely installed and the architecture

ensuring GlobalPlatform compliant card trustworthiness. Application management is in-

cluded in the GlobalPlatform specification with cryptographic means for ensuring software

installation and verification [42]. This is significant as secure installation and management

of applications is critical to securing computing devices.

Finally, MULTOS is an operating system for multi-application smart cards developed by

the MULTOS consortium [85]. Like GlobalPlatform, MULTOS is designed for security and

enabling multiple applications to be securely installed to a single card. MULTOS has been

included in various devices including smart cards, ID cards, passports and ticketing [83].

Security is a major focus of MULTOS and cryptographic methods are included to secure

communication between MULTOS devices, Issuers and Application Providers. MULTOS
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provides methods for secure software installation and updating [85]. These methods of

securely distributing applications to remote devices can help secure cards against rogue

applications. In MULTOS, security is maintained by certificates issued to each software

before it may be installed [85].

2.2 Field Programmable Gate Arrays

FPGAs are reprogrammable hardware devices configurable for many different purposes

including prototyping, computation and digital audioprocessing. A typical FPGA in-

cludes a two-dimensional array of configurable blocks, similar to a Programmable Array

Logic (PAL) chip, but more complex and with a different development process. PALs re-

quired expert programming based on intimate knowledge of the architecture, FPGAs are

programmed using powerful Computer Aided Design (CAD) software. Instead of a pre-

cise gate-level design, a designer uses Hardware Description Language (HDL) to describe

required behaviour and the tools decide how to produce working circuits [49].

FPGAs are commonly used in prototyping circuit designs. Their re-programmable nature

allows a design to be tested in real silicon without fabrication. However, FPGAs are also

used in cases when a bespoke circuit is needed but a bespoke Integrated Circuit (IC)

is not cost-effective. In these cases an FPGA provides the required functionality while

minimising production cost [49].

Rapid prototyping is the main use of FPGAs in this thesis. In later chapters, two FPGA

implementations are described demonstrating schemes proposed in this work. This ap-

proach allows a scheme to be demonstrated with real circuits rather than in theoretical

models or simulations [49].

Many FPGAs, such as those produced by Xilinx Inc. and used in this work, consist of

an array of programmable blocks programmed to create a circuit. Blocks include two

components: a logical component and a routing component. The logical component re-

ceives block inputs and performs a function on some, all or none of the inputs. In Xilinx

devices, the logical component is a Lookup Table (LUT) indexed by the inputs, allowing

any boolean function. The result of the logic component is then routed to nearby blocks,

as determined by the CAD tool. This logical structure allows for any possible boolean
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Figure 2.2: An FPGA consists of programmable logic elements and IO connections to
other devices.

functions of the block inputs to be programmed into a block. A complicated equation or a

simple one will each require the same number of resources and give the same performance

[49].

In addition to programmable logic blocks, FPGAs contain IO blocks to allow the FPGA

to interface with other components and devices [49]. For example, the Xilinx Spartan-6

FPGA evaluation board used in this thesis includes UART, ethernet and headers for other

I/O devices [124].

A diagram of this typical FPGA structure can be found in Figure 2.2. For clarity, the

wiring between blocks is omitted, however, in many FPGAs, each block has the ability to

connect to any other block in the FPGA [108].

2.3 Physically Unclonable Functions

Physically Uncloneable Functions (PUFs) as considered in recent literature were intro-

duced in 2002 by Gassend et al. as Silicon Physical Random Functions [39]. A PUF can

be considered a hardware biometric or as a fingerprint of an object [79]. Attempts had
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been made to exploit unclonable characteristics of physical devices before 2002 [14]. How-

ever, Gassend et al. were the first to propose silicon circuits with unclonable properties

[39]. Since the work of Gassend et al. however, there have been many PUF designs pro-

posed including: SRAM PUFs [45], Ring Oscillator PUFs [112], Arbiter PUFs [70] and

FPGA specific designs [6, 68, 82]. This work considers PUFs as designs implemented in

silicon integrated circuits.

We consider a PUF to be a circuit where two implementations do not exhibit precisely

the same behaviour. PUFs provide device-specific output based on inputs received, giving

similar (up to a small error rate) responses to repeated challenges and different responses

to different challenges [79]. In 2010, Maes and Verbauwhede defined PUFs as physical

challenge-response procedures [81]. They denoted PUF functionality by: Π : X → Y :

Π(x) = y, where Π is the PUF instance, X and Y the input and output spaces in which

the input x and output y are defined. Maes and Verbauwhede also listed seven properties

defining PUFs. These properties state a PUF must be: Evaluatable, Unique, Repro-

ducible, Unclonable, Unpredictable, One-way and Tamper evident [81]. These properties

from Maes and Verbauwhede in [81] will now be described.

• Evaluatable: with the PUF, Π and an input, x, it should be easy to calculate

y = Π(x). This requires that the PUF must be usable in polynomial time [81].

• Unique: each PUF output, Π(x), should provide some information about the physical

entity that contains Π. Each PUF should produce outputs so that given a number

of them, they should uniquely identify the entity containing Π [81].

• Reproducible: every time a PUF output, y = Π(x) is computed it should be approx-

imately unchanged, subject to a small error rate. PUFs exploit random characteris-

tics that are often susceptible to noise. However, outputs should be approximately

repeatable for the PUF to be useful [81].

• Unclonable: a critical property, it declares that given a PUF, Π, it should be hard

to construct a procedure, Γ 6= Π s.t. ∀x : Γ(x) ≈ Π(x) within a small error rate [81].

Maes and Verbauwhede explicitly emphasise that Γ is a procedure and need not be

a hardware function. This is drawn from their defining two types of cloning: math-

ematical cloning and physical cloning. Mathematical cloning requires an attacker to

create a function, f , copying the behaviour of Π subject to error. Whereas, physical
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cloning involves creating an alternative physical entity containing a PUF, Π′ where

Π′ 6= Π, mimicking Π for all input challenges, subject to error [81].

• Unpredicatable: this requires that given a set Q = (xi, yi = Π(xi)) and an xc, s.t.

xc /∈ Q, the attacker is unable to predict yc s.t. yc = Π(xc). Maes and Verbauwhede

connect this property with mathematical uncloneability as follows. If a PUF is

predictable, it is possible to create a mathematical clone of the PUF and violate the

Unclonablility property of the PUF [81].

• One-way: this property is inherited from traditional cryptographic definitions and

requires that given a y and a Π, it is hard to find an x s.t. Π(x) = y [81]. This

property adds little to the others listed; Maes and Verbauwhede admit to including

it only because early PUF literature considered PUFs as physical one-way functions.

• Tamper evident: finally, this property requires that if the physical entity containing a

PUF, Π, is interfered with, it will transform Π into a Π′ s.t., with a high probability,

∃x ∈ X : Π(x) 6= Π′(x) excluding error, where (X) is the set of all possible inputs, x

[81]. This property is used in many schemes proposed that use PUFs and it relied

upon for security by ensuring any attackers attempting to tamper with the device

will cause a lasting, and noticeable, impact.

In this work, we assume PUFs behave perfectly and have an error rate of 0%. This

means that for a given PUF instance, the same input will always yield the same output.

We also assume outputs of PUF instances are high entropy, perfectly unpredictable and

unclonable. We assume the PUF is one-way and tamper evident and that we are able to

access it efficiently.

2.3.1 PUF Examples

One common PUF design is the SRAM PUF; a simple design using an unmodified SRAM

to provide device-unique outputs. A PUF provides an output, in the case of SRAM PUFs

the device-specific output is the initial state of the chip. This is usable as a PUF because

when an SRAM powers up, the memory cells initialise as either 0s or 1s with bias. The

initial value is not set by design but by variations in the cells from the manufacturing

process. The SRAM PUF is queried by performing a memory lookup and receiving the
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Figure 2.3: An arbiter PUF may include a source, a number of multiplexer switch blocks
and a D flip-flop acting as an arbiter.

result of that lookup. This type of PUF has a limited number of challenge/response pairs,

so it is classified as a “weak PUF”. Note: the term weak does not refer to the security of

the design but the number of distinct responses it can provide [45].

Alternatively, there are “strong PUFs” providing a large (exponential) number of challenge-

response pairs. One strong PUF is the arbiter PUF, these require dedicated circuits to

provide a PUF output by comparing signal transmission delay between wires of equal

length. Theoretically, the wires should exhibit equal delay, however, due to production

variations this is not true in reality. In practice, a single source connected to two wires

is changed from low to high, the signal travels down the wires to the arbiter which re-

turns a 0 or 1 depending on which signal arrived first. One potential arbiter is a D-type

flip-flop with the two wires connected to the data and clock lines. Whichever is set first

will determine if a 0 or 1 is output from the flip-flop. A simple arbiter PUF consists

of 2N multiplexers connected in two lines from source to arbiter. The path used from

source to arbiter is determined by the N -bit input challenge passed bitwise to each pair of

multiplexers, when the bit is 1, the wires are crossed over, otherwise they are unchanged.

A diagram of an arbiter PUF is shown in Figure 2.3. Due to the input provided to the

circuit, an arbiter PUF has 2N challenge-response pairs making it a strong PUF, even

though different challenges are correlated [70, 59].

2.3.1.1 PUF Security

The previous subsection described two different PUF designs to demonstrate examples of

how authors have attempted to implement the theoretical model described at the start of
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this section. One common theme in PUF research however, is the difficulty in creating

designs that successfully meet the Unclonablility and Unpredictability properties. A main

work studying the security of different PUF designs was published in 2012 by Katzenbeisser

et al. [59].

Some recent attacks on PUF designs have made use of machine learning to model the

PUF and violate the Unpredictability and Unclonability of designs. Recent works include

attacks against Bistable Ring PUFs by Ganji et al. in 2016 [38] and Becker’s attack against

XOR Arbiter PUFs in 2015 [15].

Other attacks have used less conventional methods to compromise the properties of PUF

designs. These include the characterisation attack on Arbiter PUFs demonstrated by

Tajik et al. in 2014 that modelled instances using photonic emission analysis [116] and

Helfmeier et al. who used Focussed Ion Beam circuit editing to clone an SRAM PUF [48].

2.3.2 PUF Uses

Due to providing device-specific, random outputs, PUFs are an attractive security prim-

itive to designers. Three main applications of PUFs arising in academic literature are:

authentication, key generation and preventing counterfeiting.

Strong PUFs offer a set of challenge-response pairs, leading several authors to include them

in authentication systems. Like biometrics for humans, a PUF is something a device is

and not merely information it knows. Therefore, due to the Uniqueness property identified

by Maes and Verbauwhede, a PUF can be used to identify devices uniquely. The authen-

tication system would be intialised by the PUF-equipped device registering a number of

challenge-response pairs with the identifier. When the device wishes to identify itself, the

identifier would provide it one or more challenges. The device would respond with the

PUF response and if these match, the identifier can confirm the identity of the device.

If a PUF is Unique, it provides information about the device with each PUF-response.

Furthermore, if the PUF is Unpredictable, Unclonable and one-way the identifier can be

confident no other PUF, function, or entity would be able to correctly respond to the

provided challenges [81]. Examples of PUF-based authentication schemes are found in

[104, 89].
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PUFs can also provide a device-specific sources of randomness for generating key material.

This application mainly relies on the Uniqueness and Reproducibility properties. If a PUF

is Unique, the outputs it produces contain information about the identity of the device

containing the PUF. This ensures keys generated by the device will exist uniquely for

that device. Furthermore, if the outputs are Reproducible, the device need not store

key material - the PUF will reproduce keys when required [81]. Many PUF-based key

generation schemes exist such as those of Paral and Devadas [97] and Liu et al. [75].

However, PUFs are significant in this thesis due to the intrinsic, device-specific randomness

they offer by design. As such, schemes to prevent counterfeiting have been proposed

by authors such as Simpson and Schaumont [110] and Guajardo et al. [45]. In their

schemes, the authors proposed mechanisms by which hardware and software developers

can combine products without exposing their Intellectual Property (IP) to the other party.

PUF provided keys ensure IP elements can be decrypted by the target device only and

no others devices [110, 45]. In these cases, the properties needed of the PUF are it being

Unique, Reproducible, Unclonable and Unpredictable. These ensure the only devices with

access to the protected IP are the devices for which use is authorised.

2.4 Binding Hardware and Software

Binding hardware and software is a little studied area of information security with three

works comprising most of the literature in the area [67, 110, 10]. The major work in

the area is a 2003 patent by Krasinski and Rosner proposing a scheme for binding copy

protection software to devices to prevent copyright infringement [67]. In academia the

most significant papers are by Simpson and Schaumont in 2006 [110] and a later work by

Atallah et al. in 2008 [10].

In this thesis, binding hardware and software concerns combining the two elements to-

gether. The bond ensures a secure dependency between hardware and software that pre-

vents correct operation if the entities are separated. Software cannot be moved, or copied,

from one hardware to another as the removal of the bound hardware will prevent correct

execution. For the bound system to correctly function it requires the presence of both

correct the hardware and the correct software for the hardware [67, 110, 10].
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The bond between hardware and software proposed in previous literature can be divided

into two categories: application binding schemes and algorithm binding schemes. This

section includes algorithm binding for completeness however the research in this thesis

only explores application binding and “Hardware-software binding” and related terms are

used to refer to application binding schemes only.

2.4.1 Application Binding

As stated, binding hardware and software concerns securely combining hardware and

software together. Application binding creates this bond by attaching an application, or

IP, to a specific hardware instance. The schemes proposed by Krasinski and Rosner and

also by Simpson and Schaumont are both application binding schemes [67, 110]. In both

works, the authors use application binding to provide copy protection by ensuring the

bound software cannot be removed from the hardware [67, 110].

Krasinski and Rosner proposed using device specific information to bind copy protection

software, required for accessing secured media, to a particular device. Therefore, instead

of binding the (much larger) media to the device, the authors could bind just the decoding

application to the device. Efforts to move the protected content and thwart the copy

protection are prevented because the decoding software is bound to the device using a

device-specific key [67].

Similarly, Simpson and Schaumont use a PUF (Section 2.3) to bind third-party IP to

the particular FPGA (Section 2.2) that will be hosting it [110]. Their scheme allows

system developers to authenticate IP from developers and for IP developers to restrict their

technology to authenticated parties. Simpson-Schaumont binding relies on encrypting

hardware blocks using device-specific keys derived from PUF outputs. As the key is

device-specific, it is not possible for a malicious party to attack the scheme and discover

the IP. Simpson and Schaumont use a Trusted Third Party (TTP) to share key information

between system and IP developers. Devices enroll keys with the TTP and these are shared

securely with the IP developer who encrypts their product knowing that only the intended

device may decrypt it. One issue with this scheme is it relies on all developers being honest

and not leaking protected IP after decryption. However, a more serious flaw is that, as

the scheme is only designed to protect the IP, it offers no protection for the FPGA system
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against malicious IP or IP added by attackers [110].

2.4.2 Algorithm Binding

Algorithm binding is an alternative method of binding hardware and software. We define

it as hardware-software binding using device specific information to bind the software at

an algorithm level. This differs from the schemes described in the previous subsection;

whereas they take the application and attach it to the device entirely, an algorithm binding

scheme ties correct output of the computation to the particular hardware device. The first,

published, algorithm binding scheme was proposed in 2008 by Atallah et al. [10].

Atallah et al. also proposed a scheme binding software to a hardware instance to prevent

it being transplanted to a different device. The attacks they considered were of software

being ran in a virtual environment replicating the behaviour of correct hardware. The

authors proposed using hardware-software binding for copy protection and also for securing

battlefield applications where rehosting by enemies is a national security threat. Like the

Simpson-Schaumont scheme, the Atallah et al. scheme includes a PUF. However, where

Simpson and Schaumont proposed binding through device specific encryption, Atallah et

al. integrate a PUF result into correct application execution by including a device specific

value into the computation. This ensures applications only produce correct answers if they

have access to the hardware they are intended to be executed on. Due to the properties

of PUFs (Section 2.3), attacks virtualising or emulating hardware are prevented because

the virtual PUF will be unable to produce the correct value for the algorithm [10].

The example application Atallah et al. described binding was an implementation of RSA

encryption1. However, where the encryption was split into two encryptions: one under a

modified key and a second using a PUF output, Ri. The modified key is calculated by

multiplying the original key, e, by the inverse of the PUF output2, R−1i to calculate R′i.

The modified encryption algorithm is then computed in two stages [10]:

1However, it would apply to RSA decryption too.
2Given p and q, calculating the inverse of Ri is straightforward.
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EncR′i(m) = mR′i mod n

Ence(m) = EncR′i(m)Ri mod n = meR−1
i Ri mod n = me mod n

= c.

This method ensures that only hardware in possession of the correct PUF can successfully

compute the RSA encryption. Therefore, the Atallah et al. scheme creates a secure bond

attaching software to a hardware instance at the algorithm level [10]. However, as with the

application binding schemes, the Atallah et al. scheme only binds software to hardware.

Therefore, it provides no protection to devices from malicious software or from software

modification.

2.4.3 Bond Directionality

A significant concept in binding hardware and software together is “directionality”. In this

work, the term “directionality” defines a goal of a hardware-software bond. There are two

different directionalities of hardware-software bonds: unidirectionality and bidirectionality.

Unidirectional bonds tie one element (hardware or software) to the other element (software

or hardware). The previous schemes by Krasinski-Rosner [67], Simpson and Schaumont

[110] and Atallah et al. [10], described in this section create unidirectional bonds; the

software (or algorithm or IP) is bound to the hardware it is intended for. Unidirectional

binding is illustrated in Figure 2.4 where an arrow indicates where a software installation

is permitted.

The alternative to unidirectional bonds is bidirectional hardware-software binding where

bonds securely connect both elements together. With a bidirectional scheme, a piece of

hardware only executes software bound to it and software only executes on the hardware

it is bound to. The permitted installation combinations of software and hardware when

bidirectional-software binding is used are shown in Figure 2.5.
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Bound SW Other SW

Chosen HW Other HW

(a) Unidirectional Software Binding.

Chosen SW Other SW

Bound HW Other HW

(b) Unidirectional Hardware Binding.

Figure 2.4: Unidirectional binding only restricts one of hardware or software. When only
the software is bound, it is restricted to only the hardware it is bonded to whereas the
hardware is unrestricted and may execute other software. The same applies in reverse when
only the hardware is bound, the hardware is restricted but the software chosen for the
hardware is not. Edges between software and hardware indicate permitted installations.

Bound SW Other SW

Bound HW Other HW

Figure 2.5: Bidirectional binding of hardware and software ensures bound elements cannot
be moved onto other devices or installed with alternative software. Edges indicate an
allowed installation of software onto hardware.
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2.5 Secure Application Execution

Secure Application Execution (SAE) concerns ensuring software runs correctly; following

a legitimate path through the application without illegitimately avoiding any instructions

or functions. A major work in this area is the 2002 paper by Kiriansky et al. who sought to

prevent attacks by only allowing legitimate behaviour. Previous works prevented attacks

exploiting particular vulnerabilities whereas Kiriansky et al. sought to prevent unautho-

rised behaviour rather than attacks [62]. Kiriansky et al. did not formally define SAE,

instead considering broadly defined exploits comprising three features: a vulnerability ex-

ploited, a program address overwritten and some malicious code executed. Their scheme

prevents any attacks from executing malicious code after exploiting any vulnerability to

divert execution [62]. This is the definition of a Secure Application Execution scheme used

in this work.

Similar to Secure Application Execution is Control-Flow Integrity (CFI). While SAE is

a goal, CFI is a security property defined by Abadi et al. in 2005 [1]. Ensuring CFI

guarantees program execution has followed a legitimate control-flow, or path, through the

application. A legitimate execution path starts at the beginning of the application and

runs every instruction in the path in sequence through the application until reaching the

end. A legitimate sequence may not run all instructions or run instructions in series.

Control-flow instructions may be in the sequence diverting execution to reused code or

avoiding code not in the current path. Control-flow instructions are those transfering

execution to remote instructions and include: JUMP, CALL and RETURN instructions and

their conditional variants [1, 2].

This work uses the Kiriansky et al. and Abadi et al. definitions of Secure Application Exe-

cution and Control-Flow Integrity as securing the execution of an application to legitimate

paths through the application, preventing all others [62, 1, 2].

2.5.1 Proposals for Securing Application Execution

Many schemes have been proposed to securely ensure program execution. This section de-

scribes the two main types of SAE schemes: software-based and hardware-based schemes.

The schemes described are designed to prevent unauthorised behaviour by ensuring SAE.
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2.5.1.1 Software-Based Control-Flow Integrity Enforcement

The first software-based scheme is program shepherding, published in 2002, by Kiriansky

et al. Program shepherding protects against threats with three techniques: restricting code

origins, restricting control transfers and un-circumventable sandboxing. These properties

are connected; sandboxing is used to defend the first two techniques securing execution

[62].

Program shepherding is a security framework allowing different security levels to be set

according to a security policy. In their paper, Kiriansky et al. provided a table detail-

ing different program features and security options for each sorted from least to most

restrictive. For example, a non-restrictive policy may allow any indirect call, a maximally

restrictive policy may allow none [62].

Kiriansky et al. implemented their scheme by extending an interpreter to allow real-time

execution monitoring. When tested, their implementation protected against several known

vulnerabilities [62].

Another software-based scheme is inlined CFI enforcement proposed by Abadi et al. in

2005, it is an attack-agnostic method of protecting execution. CFI enforcement limits

execution to the Control-Flow Graph (CFG) determined by the software developer [1, 2].

A CFG is a map showing all possible correct paths when executing the program. CFGs

can be generated from application binaries, several methods have been proposed (e.g.

[23, 117, 61]) but the precise method used is out of the scope of this work.

The CFG considers a program as a set of nodes and transitions. Each transition is the

result of a control-flow instruction and each node represents a basic block. Basic blocks are

groups of one or more instructions, executed in series, in which only the final instruction

may be a control-flow instruction.

Abadi et al. implemented inlined CFI enforcement by labelling each control-flow instruc-

tion and their destinations. A control-flow instruction is only permitted if the attached

label matches the label of the destination. This prevents attacks transferring control flow

to arbitrary locations. The authors implemented their proposal as a tool to rewrite x86

binaries to include the proposed checks. The implementation prevented “jump-to-libc”
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attacks on tested binaries, but not those manipulating the program to improperly launch

other software [1, 2].

2.5.1.2 Hardware-Based CFI Enforcement

Several authors have proposed methods of securing application execution using hardware

rather than software extensions. These provide the same level of CFI but with a reduced

performance penalty as protections are included in device architecture. One significant

hardware-based scheme was proposed by Arora et al. in 2005; using a hardware monitor to

ensure execution security. Like Kiriansky et al., Arora et al. proposed a flexible primitive

tailorable to the granularity of execution security available. They proposed three security

measures of increasing resolution: inter-procedural control-flow, intra-procedural control-

flow and integrity of the instructions executed [8].

Inter-procedural control-flow secures flow between different functions of the application.

Intra-procedural control-flow checks every control-flow transfer in the application, between

basic blocks and function calls. Finally, a running hash computation ensures integrity of

instructions executed. The hash values calculated on groups of instructions are compared

against stored, precomputed values to ensure correct instructions have been executed [8].

Arora et al. simulated an implementation of their of their proposal to test its performance

using SimpleScalar and the PISA architectural simulation toolset [8]. Inter-procedural

control-flow checks are facilitated by tables storing function start and return addresses

and a finite state machine checking call and return validity. A basic block table was added

to check intra-procedural control-flow by tracking control flow within functions. Finally, an

instruction buffer and hash engine verify instruction integrity by computing hash values of

basic blocks during execution. These values are compared with a column in the basic block

table containing expected values. These measures ensure secure application execution at

the three levels of granularity proposed [8].

Another hardware-based control flow integrity architecture is SOFIA, proposed by Clercq

et al. in 2016 [32], publishing an extended paper in 2017 [31]. Like Arora et al., the au-

thors combined CFI and Software Integrity (SI) protections to ensure correct, unmodified

instruction execution.
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SOFIA includes two main components, encryption and Message Authentication Codes

(MACs). To ensure SAE, each instruction is encrypted using a random value, the Program

Counter (PC) value of the previous instruction and the PC of the current instruction. This

ensures each instruction is encrypted according to its position in the application control-

flow, preventing instruction tampering. To ensure SI, as instructions execute they are

combined in a runtime MAC compared to a precalculated value to ensure SI [32, 31].

2.6 Spectre and Meltdown

Spectre and Meltdown are two significant attacks on modern processors, published in 2018,

exploiting optimisation techniques used to improve performance. Both attacks are based

on one class of vulnerability and Meltdown is considered a variant of Spectre [64, 74]. The

difference between the two is Spectre is effective against processors from Intel, AMD and

ARM, whereas Meltdown only effects some Intel devices [64].

To increase performance, modern processors use techniques including branch prediction

and speculative execution. These are used when a branch decision is dependent on a

memory access. For example, in Figure 2.6, x is compared to the array size stored in

memory. In this case, while waiting for the result of the memory access, the processor

predicts the boolean statement will be true and proceeds to execute the branch, this is a

speculative execution. In this speculative execution the processor continues executing and

when the memory access completes, it determines if the current state should be kept (the

branch prediction was correct) or rolled back to the state at the branch (if the prediction

was wrong). In the latter case execution follows the branch previously not taken requiring

any changes from the speculative execution to be undone [64].

If a speculative execution is abandoned, the processor should undo all changes made to

ensure correct execution of the other branch. However, in practice, the authors discovered

processors detectably affecting the cache during speculative execution. This cache effect is

a side channel that authors were able to develop code to exploit and use to leak information

about memory contents [64].

In the example given in Figure 2.6, the attacker first trains the CPU to assume the

conditional statement will most likely return true. Second, the cache is manipulated
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i f ( x < a r r a y s i z e )
y = array2 [ array1 [ x ] ∗ 2 5 6 ] ;

Figure 2.6: Code designed to improve program security is exploited by Spectre. Example
code copied from [64].

to exclude array size. Therefore, when executed, the code will start to perform the

comparison and while waiting for the memory access to complete, it speculatively executes

the if-true condition. The value x and the address of array1 are added and the content of

that location read to discover the secret byte k. This k is used to form a memory access

in array2. When array size is read from memory, the speculative execution is declared

erroneous and the register states are rewound. However, the speculated read of array2

affects the cache by moving the value read into cache space. The attack is completed by

testing the cache to determine the address accessed by the speculative read, the index

accessed with the lowest latency is k [64].

These attacks have prompted the discovery of similar attacks on Intel SGX [21], vir-

tual memory [47] and cryptographic key generation [4]. However, these cache-based side-

channel attacks are considered outside of the scope of this work and have been included

for completeness only.

2.7 Formal Analysis

Formal analysis, also known as symbolic, automatic or mechanical analysis involves using

software tools to analyse protocols. In formally analysing a protocol, a model of the

protocol is used by the tool to reason about the scheme. From the model, analysis tools

perform detailed analysis of the protocol and can find attacks missed by human analysis

[28].

One difference between human and formal analysis is analysis tools usually consider all

cryptographic primitives to be completely secure, this is called the Dolev-Yao model. In

this model, the attacker can intercept all messages but not break any cryptographic func-

tions. Analysis tools search for protocol logic flaws allowing attackers to violate security

properties. This search is carried out differently in different tools. Some tools test common

security features of protocols, others allow the user to define properties [28].
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Many tools exist for protocol analysis including Casper FDR [76], Scyther [27] and Tamarin

[91]. Different tools have different strengths and weaknesses studied by multiple authors

[20, 28, 98]. However, the merits of different tools is not the focus of this research and will

not be discussed in detail.

In this work, Tamarin prover ([91]) is used to analyse protocols. Like Scyther, Tamarin

uses backwards search to explore the protocol space. Protocols are specified with multi-set

rewriting rules and properties by guarded first-order logic. This tool was chosen due to

its accurate modelling of Diffie-Hellman Key Exchange, a featured used in all protocols

proposed. Furthermore, proving properties is greatly aided by the Tamrin interactive

proof mode [91].
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Binding Hardware and Software
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Binding hardware and software can guarantee software executes only on the device it was

intended for. Similarly, hardware-software binding can ensure hardware only executes

software bound to it to prevent execution of unauthorised software. This two-way bond is

an extension on previous work which focusses on unidirectional bonds attaching software to

hardware. This chapter presents a new scheme that creates bidirectional hardware-software

bonds. First, the problem area is examined and requirements for a hardware-software

binding scheme are defined. Later in the chapter, a scheme is proposed and a proof-of-

concept implementation described that demonstrates the scheme on a Xilinx Spartan-6

FPGA.
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3.1 Introduction

This chapter considers securely binding software to individual hardware devices and vice

versa. If a piece of software has been bound to a hardware device, the software will

only run on the hardware it has been loaded onto. Binding software and hardware can

prevent unauthorised firmware tampering, platform counterfeiting or be used to protect

intellectual property.

Intuitively, unauthorised firmware alteration and counterfeiting can be prevented in the

following way. Only the legitimate manufacturer may install or provision software for

execution because only they are able to bind software to their hardware. Conversely,

attackers are unable to use alternative firmware or create counterfeit products using legit-

imate products because software extracted from one device cannot be copied onto another

because it will only operate correctly on hardware it is bound to.

We propose the following setting as a real-world case study for our problem. A manufac-

turer has developed a controller for use in an Industrial Control System (ICS). The ICS

may be a production line or a major part of the functioning of the organisation owning and

operating the system. As the system is of great importance, security of the devices and

their applications is critical. The manufacturing or operational process is the result of a

large investment and so it is very important the precise process remain only in the posses-

sion of the organisation. Furthermore, due to the importance of the process, its integrity

is of great importance. Any device firmware modification will be the result of significant

testing and not done lightly. Therefore, the device firmware must only be modified with

authorisation of the organisation.

Two threats to the security of the ICS components are attackers attempting to counterfeit

the devices or sabotaging the system. Competitors of the organisation may try to copy the

system to use themselves. Developing the ICS required significant investment, a competi-

tor able to counterfeit the system may be able to produce similar results without the same

investment cost. Another threat from attackers is the situation in which they attempt to

sabotage the ICS by modifying device firmwares. This may be to downgrade the software

or to use software from an alternative part of the line to cause problems. In these cases

the attacker may be attempting to damage the organisation by reducing product quality

or system performance.
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However, if the firmware were securely bound to the devices these attacks would be pre-

vented. Firmware taken from one device in the control system would fail to execute on

any other device it was loaded on. Furthermore, and modified software or software created

by an attacker would also fail to execute correctly. Therefore, the ICS integrity would be

ensured while preventing any competitors from duplicating the system with counterfeit

hardware.

3.1.1 Contributions

This chapter makes the following contributions:

• Identifying a new problem setting for binding software with hardware devices con-

sidering a powerful attacker who can access all device storage as well as duplicate

hardware created from the same specification as the original (Section 3.2).

• Proposing a flexible technique to allow an application to be bound to a hardware

instance and thus prevent unauthorised software from executing on the hardware

device (Section 3.4).

• Describing several different security primitives which could be used in the proposed

scheme in order to securely bind a software program to a hardware instance (Sec-

tion 3.4.3).

• Presenting a prototype implementation of the proposed scheme that demonstrates

how it may be used and at what performance cost (Section 3.5).

3.1.2 Structure

This chapter is structured as follows: Section 3.2 contains a more detailed examination

of the problem considered in this paper. Section 3.3 contains a survey of previous work

related to this paper. Section 3.4 contains the solution we are proposing to the problem

considered in this paper. Section 3.5 describes the proof-of-concept implementation of the

proposed solution that has been developed. Section 3.6 concludes the paper and describes

the future work still required in this area.
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3.2 Problem Description

This section expands on the previously described settings to formalise the problem con-

sidered.

3.2.1 Notation

The following notation will be used when describing the problem.

A The attacker attempting to create counterfeit platforms.

x, y Platforms comprised of a hardware and software element.

SW (x) The software personalised to a platform x.

HW (x) The hardware of the platform x.

MEM(x) The memory of platform x. This includes both persistent and non-persistent

storage.

3.2.2 Problem Scenarios

The scenarios considered are listed here.

1. The manufacturer of a platform has a hardware device HW (x) and software which

will be run upon it. The manufacturer wishes to personalise the software for use

on the hardware device HW (x), creating a device-personalised software SW (x),

which is loaded onto the device HW (x). This process creates the platform x, the

amalgamation of HW (x) and SW (x).

2. The platform manufacturer wishes to ensure only they are able to install software

onto their products. The manufacturer is seeking to prevent a legitimate device

HW (x) from executing alternative software to the SW (x) originally loaded onto x.
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3. The manufacturer of a platform wants to ensure there does not exist an attacker

A who can create counterfeit platforms. The attacker will seek to create a coun-

terfeit platform y by purchasing a legitimate platform x, extracting the contents of

MEM(x) and loading them onto HW (y), where HW (y) has been built to the same

specification as HW (x). How A accesses hardware such as HW (y) is outside of the

scope of this work, however HW (y) may be a device in the same product line as x

but a different level of product as in the case study described in Section 3.1.

3.2.3 Attacker Model

The attacker A has the power to:

1. Read and copy the entire memory, MEM(x), of a device.

2. Make use of software, SW (y) taken from legitimate devices. The software A can

access is software extracted from legitimate devices bound to the device it is taken

from.

3. Make use of hardware built to the same specification as the device it wishes to

counterfeit. The attacker can create a hardware for a counterfeit platform y such that

HW (y) is created from the identical specification as HW (x) for a target platform

x. Note, A does not have the ability to exactly copy intrinsic properties of HW (x),

only to create hardware according to the same design. Hardware intrinsic properties

are described in Section 3.3.2.

4. Read and copy any data loaded onto any buses or other channels of x external to

the CPU.

A has achieved its aim if it achieves either of the following:

1. The attacker creates a functioning, duplicate platform y which cannot be differenti-

ated from a legitimate platform x.

2. The attacker installs a software SW ′(x) which can successfully execute on a hardware

HW (x), where SW ′ 6= SW . Where SW is the software loaded onto the device by

the manufacturer.
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3.2.4 Assumptions

It is assumed the application is suitably complex to render recreation non-trivial for an

attacker. If the application was simple, the most practical approach for an attacker would

be to write their own version. It follows that if developing a product equivalent to the

original requires a significant investment from the attacker, this would make an attempted

counterfeiting venture significantly less profitable.

We assume the attacker is unable to read the contents of any registers which are part of

the CPU. The attacker is also unable to directly query any individual parts of the CPU.

The attacker is able to access any of the memory of the device and observe data sent via

buses, however the attacker is not able to see within the processor itself. This assumption

is made because while bus analysis equipment can be purchased for less than $40 [3];

processor decapsulation and analysis requires more expensive, complicated and dangerous

equipment [58].

A diagram of the embedded system being considered, and the elements of it accessible

by the attacker, can be found in Figure 3.1. The grey portion of the figure indicates the

“safe zone” unseen and inaccessible to A. As the grey area only includes the CPU, any

security-sensitive operations or functions will need to be limited to this part of the system.

This model of relying only on the security of the CPU matches that of Clercq et al. who

also argue the need for security schemes to be implemented in hardware only and as a

processor extension [32].

We also assume manufacturing of platforms is carried out in a secure location. The

attacker is not able to choose, access or interfere with the software before it is installed.

The attacker is only able to access software bound to a platform by the manufacturer.

3.2.5 Design Requirements

To prevent the attacker from achieving its goals, a solution to the problem must meet the

following requirements.

1. The proposed technique must grant the ability to securely personalise
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Bus
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Figure 3.1: Hardware block diagram of the typical embedded system considered in this
work. The grey area indicates the “safe zone” impenetrable by attackers.

software to a hardware device. The security of the personalisation shall ensure

only the legitimate manufacturer is able to personalise their software. If only the

manufacturer is able to personalise their software, this technique ensures only they

may provision software to their products. The technique proposed must account for

the fact that tamper resistance storage is not available.

2. The software personalisation must make use of a hardware fingerprint-

ing technique. The proposed technique must allow the software running on the

hardware device to be bound to the specific hardware instance it is personalised

for. Personalising the hardware to a property intrinsic to the device would provide

confidence that software on one device cannot be copied onto another. A property

intrinsic to the hardware instance is required because tamper-resistant storage is not

available.

3. The solution must protect all data that is to be stored in any of the storage

areas present on the device. This requirement is necessary because the attacker

is able to access any of the memory contents. If the data is ever unprotected in

memory, an attacker could gain data unbound to the platform. Because the attacker

can access all device storage, the only “safe zone” it cannot view or access is within

the processor of the device.
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3.3 Related Work

This section describes related work in the areas of preventing counterfeiting, unautho-

rised device modification and hardware intrinsic security. The first half considers different

anti-counterfeiting and device integrity protection techniques in the context of the prob-

lem described in Section 3.2. The second half considers the use of physically unclonable

functions for hardware fingerprinting.

3.3.1 Anti-counterfeiting measures

The piracy and protection of IP has received a large amount of interest as discussed below.

One technique for preventing device counterfeiting is to use a Trusted Platform Module

(TPM) to ensure application integrity, securely store cryptographic keys or provide a

secure boot process [93]. The cryptographic operations and storage of a TPM are attractive

because they exist in a tamper resistant environment protecting data and preventing

counterfeiting [119]. However, TPMs are not suitable for solving the addressed problem

as they are included into systems as companion chips or co-processors. In the model

considered in this chapter, this is unsuitable because the attacker (Section 3.2.3) could

eavesdrop on communications between the TPM and CPU, preventing the TPM from

adding the security required.

A software-based method for protecting IP is to use code obfuscation. Simply put, code

obfuscation is the act of “jumbling up” a program in order to render a program very

difficult to analyse/modify while retaining performance [24, 118, 5].

Code obfuscation could be applied to solving the problem posed in this paper as it would

prevent the application data from being understood by an attacker. However, preventing

attempts to analyse the program is not sufficient for our requirements. The attacker can

copy all data from one platform and load it onto another. An obfuscated program copied

from a legitimate device would operate on any device it was loaded onto as on the device it

was taken from. Code obfuscation protects IP by preventing reverse engineering or third

party modification of the firmware rather than unauthorised replacement of firmware. The

difference between the goal of obfuscation techniques and the requirements in Section 3.2.5
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leads to the conclusion that obfuscation is not suitable. Another concern with using

obfuscation are the claims that secure obfuscation is not possible [12, 7].

Unlike the solutions described, our problem is one of controlling platform manufacturing to

prevent unauthorised firmware modification and product counterfeiting. This problem has

been considered by multiple authors including Kean who, in 2002, introduced the problem

of a company providing licenses for a limited number of uses of a Field Programmable

Gate Array (FPGA) IP core to a customer [60]. Kean’s techniques allow for a different

licensing model by moving from a large up-front fee to licensing per FPGA IP core. The

protocol contained two main steps: providing the bitstream to the customer and loading

the IP core onto the FPGA. The bitstream is encrypted by the company providing the IP

core and then sent to the customer. A trusted programming software would be used by

the customer to decrypt the bitstream and customise it using secrets known only by itself

and the FPGA. The customised bitstream is then loaded to the FPGA [60].

However, this solution is not suitable because while Kean’s scenario is related to that

considered here, it is different. Firstly, Kean considers an IP producer selling uses of

an FPGA bitstream to customers whereas, in this chapter, the entity programming the

platform is the IP developer, not a separate entity. Secondly, this chapter is not merely

interested in how a legitimate IP may be used, a solution is required to also prevent

unauthorised modification to device firmware.

Another method for securing deployed software against attack is to use code signing.

Code signing involves developers deploying applications with signatures to ensure their

authenticity and prevent man-in-the-middle modification of executables. These schemes

leverage the guarantees provided by asymmetric cryptography to secure applications from

unauthorised modification. One parameter which can be determined by system integrators

would be how regularly the signature would be verified against the application [29].

In the setting considered in this chapter, we could choose to check the signature before

execution to minimise attack window. However, this would still allow attacks made against

the system after the signature was verified. More regular checking could minimise these

attack windows, but at a considerable cost due to the effort required to perform asymmetric

cryptographic operations. A more serious subset of attacks that would not be prevented

are those using attacker controlled hardware for execution as attackers are not motivated
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to check signatures and could thus avoid the security provided. We are looking for an

efficient solution that retains security by minimising the available attack windows and

that is not easily circumvented. Therefore code signing is not a suitable solution for the

problem considered in this chapter.

3.3.2 Hardware Intrinsic Security

Hardware intrinsic security encompasses several different areas concerned with trying to

use or protecting against some of the physical properties of hardware devices. Topics

include side channel leakage and random variations in hardware fabrication, however,

only PUFs are described here for brevity.

3.3.2.1 Physically Unclonable Functions

Physically Uncloneable Functions (PUFs) were first introduced in 2002 by Gassend et al.

[39]. A PUF can be considered as a fingerprint for an electronic device.

As described in Section 2.3, a PUF is a circuit which if two copies are constructed, then

they will not have precisely the same behaviour. PUFs have been the subject of a large

amount of study and many different designs of PUFs have been proposed [70, 112, 45, 80].

The security (or lack thereof) of PUFs is a question without a clear answer however some

circuits have been proved to be more effective than others [59].

The potential for using PUFs for preventing counterfeiting was first described by Simpson

and Schaumont in 2006. In their paper they described a technique by which hardware and

software developers could combine their products with confidence that their IP is secured.

PUF challenges and responses for the hardware device are stored with a trusted third

party (TTP); using these and encryption, the hardware and software can authenticate

with each other offline [110]. The work of Simpson and Schaumont was extended in 2007

by Guajardo et al., who simplified original protocol and removed the need for secure

channels, preventing even the TTP from seeing the IP of the software developer [45].

The solutions produced by Simpson and Schaumont, and the later improvement by Gua-
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jardo et al., controls the ability for an IP to be used on a piece of hardware. However their

problem scenario is significantly different from that considered here which results in their

solution being inapplicable to the problem. The authors are solving a problem wherein a

system developer (SYS) wishes to use the IP of an IP Provider (IPP). These parties use

a TTP for authentication to ensure genuine IP is loaded onto a genuine SYS’s product.

However, in our problem the SYS and IPP are the same entity so will not require a TTP

for communication.

PUFs have also been applied to similar IP protecting problems, as by Guajardo et al. in

2008 [46], or by controlling the ability to manufacture a platform, as by Gora et al. in

2009 [44], with later work by van der Leest et al. in 2012 [121]. The paper of Gora et al.

introduced the problem of binding a piece of Software Intellectual Property (SWIP) to a

particular FPGA ensure the SWIP would only function on the intended FPGA [44]. Their

technique consists of two main components: an enrolment phase completed in a trusted

location, before the FPGA is delivered to the end-user and the operational phase when the

device, deployed in the field, makes use of the protected SWIP. Firstly, enrolment consists

of extracting the encryption key from the Ring-Oscillator PUF and using it to encrypt

the SWIP via a custom encryption tool. This encryption tool operates by encrypting

the application using AES and adding to it a security kernel. This security kernel is an

unencrypted piece of software used to decrypt the application at execution time. It is

necessary for the security kernel to be equipped with the challenge which is input to the

PUF via a software interface to produce the decryption key for unlocking the SWIP. The

operational phase is where the device has been deployed and is used, beginning with a

secure boot process, decrypting the SWIP for later use [44].

The proposal by Gora et al. is a solution which effectively meets several of the requirements

defined in Section 3.2.5. A SWIP is successfully bound to a HW device and the technique

takes steps to protect the SWIP while it is stored on the device. However, there are some

areas for improvement on their scheme. Firstly, the attacker described in Section 3.2.3

can access any part of device storage without restrictions on when the attacker can use

its access. Against the scheme of Gora et al. the attacker could wait until the secure boot

has decrypted the SWIP before copying it from the storage.

Another option for securely binding hardware and software was proposed in 2006 by Simp-

son and Schaumont as described in Section 2.4. Their scheme is similar to that of Kean,
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also using a PUF to bind IP to a particular hardware instance. Binding the software to

the hardware instance guarantees it cannot be moved onto other instances and execute

as designed. In the Simpson and Schaumont solution, each software is registered with a

Trusted Third Party who facilitates the exchange of key material between IP providers

and hardware developers. However, like the Kean solution, it is designed to operate with

more entities than we consider, and would therefore not provide an efficient solution. More

seriously however, the scheme provides security guarantees only that IP is not moved from

one device to another. It fails to protect hardware from unauthorised software installed

by attackers and so is not suitable [110].

An alternative hardware-focussed solution was published by Zhang et al. in 2015 [125].

In their paper, the authors also proposed a mechanism for binding hardware IP to a

particular FPGA instance. This allows sellers of IP blocks to protect themselves against

counterfeiting while expanding their business model from expensive, unlimited licenses to

offering single use licenses. Like the Kean proposal, the scheme uses a PUF to identify

individual FPGAs and underpin the binding of IP to device [125]. Operationally, the

scheme is similar to that of Kean [60]. Firstly, hardware devices are enrolled by registering

Challenge-Response pairs (CRPs) and when developers wish to include the protected IP

block in their design, they use registered CRPs to enable IP provisioning [125]. However,

as with the Kean scheme, the Zhang et al. scheme does not provide an effective solution

to the problem described in Section 3.2. In our setting, the parties producing devices and

IP cores are the same, making it an inefficient solution [125]. Furthermore, the security

of the Zhang et al. scheme is also questionable as highlighted by Bossuet and Colombier

in 2016 [17].

One significantly different application of PUFs to binding hardware and software was pro-

posed by Atallah et al. in 2008 [10]. They proposed a means of binding the output of

an application to a single hardware instance and demonstrated their scheme with an im-

plementation of RSA which could be personalised to produce correct outputs only when

executed on a particular hardware instance [10]. This work is interesting but too spe-

cialised for the needs of this chapter. The Atallah et al. scheme successfully binds RSA,

but required specialist knowledge of the algorithm to enable binding. We would prefer

a more general purpose, algorithm agnostic solution and so Atallah et al. binding is not

suitable for the problem considered in this chapter.
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Finally, another approach to including PUFs in securing execution was published by Kle-

ber et al. in 2015 [63]. Their paper presents a Secure Execution PUF-based Processor

(SEPP) using a PUF generated key and AES counter-mode to encrypt instructions stored

in device memory. The SEPP meets many of the requirements of the problem considered

in this chapter, however due to it also offering secure execution guarantees it also incurs a

significant performance overhead. We require a more specialised solution to the problem

to preserve performance while protecting against attackers.

3.4 Proposed Solution

This section provides a description of the scheme solving the problem described in Sec-

tion 3.2.

3.4.1 Design Overview

We consider the software ran on a platform x to comprise a set of instructions Ii, where i is

the memory location storing the instruction Ii. The instructions comprising the program

are assumed to be stored sequentially in memory without gaps. Different portions of code

may be navigated to via control flow instructions (such as jump or call instructions).

However, the code is stored in one unbroken portion of memory.

As stated in Section 3.2.5, we wish to personalise an application for a device. This require-

ment will be met by using a masking technique to conceal the instructions/data wherever

they are stored on the device.

To meet the listed requirements (Section 3.2.5) we require the masking to be specific to

the device. Each instruction will be masked by using a challenge-response function, F ,

yielding different masks for instructions and data based on the input challenge. F will be

defined more precisely in Section 3.4.3. The masking function must also use a property or

properties intrinsic to the device and will be as follows:

I ′i = Ii ⊕ F (Ci).
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I0
I1
I2
I3

In−1
In

Source Application
I ′0 = I0 ⊕ F (C0)
I ′1 = I1 ⊕ F (C1)
I ′2 = I2 ⊕ F (C2)
I ′3 = I3 ⊕ F (C3)

I ′n−1 = In−1 ⊕ F (Cn−1)
I ′n = In ⊕ F (Cn)

Personalised Application

Figure 3.2: The transformation of source memory content into a personalised application

Where I ′i is the masked version of the instruction Ii and Ci is the challenge used in

calculating the mask value. However, requiring challenges for each instruction adds two

additional problems: how much storage will be required for the challenges and how will

the challenges be chosen. To address these problems the following method will be used to

assign challenge values:

Ci = I ′i−1.

This reduces the storage requirement for the masking challenges to one single challenge.

The one challenge still required is C0, the challenge value used to protect the instruction

in the first location (location 0) in memory. There is no storage before the beginning of

the memory and so a value needs to be assigned to C0. C0 could be generated by Random

Number Generator (RNG) or Pseudo-Random Number Generator (PRNG), however, as

it will be stored publicly, it does not need to be securely generated and may be chosen

arbitrarily. A diagram of the transformation applied to the contents of memory when

personalising an application is included in Figure 3.2.

An alternative approach would be to use the memory address as the challenge value,

however this would introduce a security flaw in a multi-application setting. In a multi-

application setting, each application will be loaded from virtual memory address 0 on-

wards. If applications are produced by different developers then each application could

be vulnerable to attacks from the developers of the other applications. The attack would

involve a platform x containing applications from two developers A and B. Developer A
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would buy a legitimate product with both applications, A would then copy their own ap-

plication from the platform. Using the source code for its application, A could recover the

mask values concealing their application, the responses F (0)–F (n) (where n is the length

of As application as stored on x. Developer A could then recover the first n instructions of

the application developed by B as it would have used the same challenges and responses.

However, the proposed choice of challenge avoids the possibility of this type of attack.

3.4.2 Securing Mutable Data

The ability to secure data which must be stored on the platform, but may change, is a

challenge for solutions to our problem.

Unlike when protecting application instructions, cascading previous masked values as chal-

lenges is not practical for data that may change. If the contents of one memory location

were changed, the subsequent value would have to be updated to reflect the change in

its challenge value. After the immediately following value was updated, the next value

would have to be updated to reflect the different challenge stored. Updating values would

continue until the end of the memory used by the application was reached. The large

number of updates would add considerable overhead to storing data in memory.

One potential solution to this problem is to store a challenge value for each mutable

value. This would result in an increased storage overhead for platforms using the proposed

scheme. However, it would prevent changing a stored value from requiring updates to

all following stored values, as previously described. With challenges stored, as well as

the data, it is likely they will require regular updating to prevent data leakage. This

approach would incur a large storage overhead as the amount of data to be stored would

be doubled. Alternatively, mutable data could be split into smaller groups of values

each allocated an extra challenge value. This technique would limit the amount of extra

challenges required although reintroducing a limited version of the chained update problem

described previously. This approach would allow a tradeoff between performance and

memory overheads.

One remaining open question surrounding memory is how to handle dynamic memory

requests/allocations at runtime. A similar technique to protecting other mutable data
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could protect data in allocated memory. Extra challenges would be required for each

dynamically allocated memory location. Any extra challenges required for dynamically

allocated memory would need to be generated and used securely to avoid giving away

information to attackers. Care will be needed to prevent applications accessing memory

locations used to store the extra challenge values.

3.4.3 Choice of Function F

The central element in the technique proposed is the function creating masking values

based on inputted challenges. The security of this element is critical to the security of the

entire technique so it must be chosen carefully. The function used for F must be able to

provide an output value based on an input challenge.

The output of F is required to be unpredictable because if output of F can be predicted

from the input, attackers can recover the data stored. More precisely, the function F

must be both collision and pre-image resistant. This will ensure attackers are unable

to find alternative challenges yielding the same mask values. This must be prevented

as any attacker who could find challenges producing the same mask values as challenges

used could successfully modify the data or program instructions protected by the scheme

violating Requirement 3. As the challenges are known to the attacker, if the function used

is public, it must also use a secret value, not known by the attacker, when calculating the

instruction mask value. This secret ensures only legitimate devices, possessing the secret,

can unmask application instructions and data. If a secret function were chosen for F ,

the unpredictability would stem from the unknown nature of the function. However, this

would be inadvisable as it would result in the platform being protected only by “security

through obscurity”.

There are several different candidates for F . For example, hash functions, block ciphers

or PUFs could all perform as required for F . However, as each of these different options

have significantly different properties they would need to be used in different ways to

ensure the security of the proposed binding technique. Due to the different properties of

the candidates for F , different amounts of extra information will be needed for each. The

changes in required information will impact what secrets are required for each candidate

function. Note that we also assume only public functions will be used for F and that
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attackers will know the choice of F .

The remainder of this subsections will consider how the suggested functions may be used

for F . The first type of function which could be used for F is a hash functions. Using

a hash function does not address all requirements as it does not incorporate properties

intrinsic to the hardware. If a hash function were to be used for F then an extra element

would need to be added to use hardware intrinsicness in protecting the application. This

extra element could be a value representing a hardware fingerprint of the device which

could be mixed with each challenge before hashing. A PUF could be used to provide

the secret, hardware fingerprint value which would be mixed with the input or output of

the hash function. PUFs, as defined in Section 2.3, are Unique and Uncloneable, making

them effective methods of key generation while removing the need for key storage (see

Section 2.3.2).

Block ciphers could also be used for the function F . A secure block cipher would ensure

only an entity knowing the secret key would be able to calculate the mask values used

to conceal the application. However, similarly to using a hash function simply, a block

cipher alone will not meet the requirements as there is no included hardware intrinsic

property/ies. A simple method for incorporating hardware intrinsicness could be to use a

PUF to provide the key used by the block cipher. This would ensure duplicate hardware

constructed from the same specification would not possess the binding key of a different

device.

A drawback to using a block cipher or hash function for F is it would result in a large

number of encryptions/hashes being performed. If each instruction were masked separately

then the cost may be severe. Grouping instructions into basic blocks may be considered

to reduce the number of encryption/hash computations required.

A third type of function which could be used for F is a PUF. PUFs have many properties

which make them useful in solving the problem posed. Firstly they are an element of

hardware which, by definition (see Section 2.3), will be Unique per device. If a PUF is

included in the platform, it will ensure that exactly identical copies of hardware cannot

be made due to the Uncloneable property defined by Maes and Verbauwhede [81]. By

binding the application to the PUF, the software found on a platform will only function

on that particular platform. One challenge of using PUFs is many are noisy and have to
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be combined with fuzzy extractors (or similar) for their output to be usable, significantly

impacting the rate at which outputs of the PUF may be accessed [45, 79].

Of the suggested candidates, only a PUF would incorporate hardware intrinsic behaviour

into the function F directly, however the performance would not be sufficient for an in-

struction level masking. When considering other choices of F there is a need for some

information to remain secret, e.g. encryption keys. If a PUF were chosen, their unclonable

nature ensures neither F nor any other information must remain secret. The definition

of a PUF states that simply knowing the design of the circuit and the input used is not

enough to predict the output. The PUF would be incorporated into the design of the CPU

and so, by our assumptions, it cannot be queried directly by the attacker. Therefore, the

most efficient solution would be to use the PUF to provide device specific information

for a cryptographic function included in the CPU. This would provide the function, F ,

needed to securely bind the application to the device according to the requirements in

Section 3.2.5.

3.4.4 Implementation Considerations

We have proposed a technique to securely bind a piece of software to an individual hard-

ware instance. However, there are several factors which would need to be considered when

implementing this technique on a platform as well as the choice of function F .

Firstly, the masking and unmasking of operations/data would have to only exist in the

CPU to prevent the scheme from being bypassed by an attacker. The unbinding must

be a step in the execution process; the operation/data is unmasked as it is loaded from

memory, into the CPU, before it is executed/used. If the masking is specific to a device

and unmasking is a step in execution then programs copied from one hardware to another

would fail to execute correctly. An attacker will have to remove the binding from a piece

of copied software before it can execute correctly on a different piece of hardware.

Secondly, when choosing the function F it will be important to consider how to use the

function securely and efficiently. For example, if F is chosen to be a block cipher with a

128 bit block size. If the architecture protected uses 32 bit instructions then it will likely

be more efficient to protect four instructions per challenge instead of one. Combining

55



3.4 Proposed Solution

instructions may be required for the security of the scheme too. If 32 bit instructions were

protected individually then each output of F is only one of 232 possibilities. However,

the number of possible outputs of the function increases rapidly if more instructions are

protected simultaneously making the output one of 264, 2128 or more possibilities.

A further consideration implementing the scheme is when and how the masking would

be applied to the software. One approach would be for software to be loaded to the

device already masked. However, this would require the manufacturer to interrogate the

device to learn about the hardware intrinsic properties of that hardware instance. If this

involved using an extra, personalisation, circuit it might introduce a new attack surface, it

might also add a significant delay in the manufacturing process. Alternatively, the device

could add the masking when the software is loaded to it. This technique would prevent

the manufacturer ever knowing the secret information of any particular hardware device

which may prevent insider attacks. However, for the device to personalise itself it may

require additional hardware increasing design complexity and the cost of producing each

device.

3.4.5 Solution Analysis

A technique for preventing the counterfeiting of devices has been proposed in preceding

subsections. This section examines how it meets the three requirements in Section 3.2.5.

1. The proposed technique must grant the ability to securely personalise

software to a hardware device. The proposed technique provides the ability

for a manufacturer to create a device-specific masking to bind software to hardware

devices. F is used to provide device-specific mask values which are mixed with

instructions and data stored in device memory. Several candidate functions were

proposed allowing for different, secure personalisations for different devices. The

suggested functions for F were described in Section 3.4.3 and suggestions for how

they would be used were given. The security of the scheme was considered against

two different attackers and an argument for its security was included in Section 3.4.6.

2. The software personalisation must make use of a hardware fingerprinting

technique. Of the three candidate functions proposed for F , only a PUF provides an
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adequate inclusion of hardware fingerprinting by definition. However, the alternative

functions could include the use of a PUF to provide a hardware fingerprint. This

may be preferred if a PUF cannot be found to satisfy the unclonability requirement.

A key programmed into the silicon of the CPU could be used to provide a device

specific secret, however this would not provide the hardware intrinsicness required.

Methods for including hardware intrinsic features when using block ciphers or hash

functions were suggested when describing the candidates for F in Section 3.4.3.

3. The solution must protect all data that is to be stored in any of the storage

areas present on the device. The proposed technique would be implemented as an

extension to the pipeline of instructions and data loaded into the processor. Adding

the technique as a pipeline stage allows instructions and data to be masked/demasked

as they enter/exit the processor. In this setting there would be no data stored in

memory in an unprotected manner.

3.4.6 Security Evaluation

This subsection will evaluate the security of the solution presented.

The proposed scheme uses an XOR operation to combine instructions with generated

mask values. Due to the use of XOR, this scheme will remain secure only while two of

the three elements involved (In, F (Cn) and I ′n) remain secret. The values of I ′n are stored

in memory and will be available to the attacker. The values of In are the values sought

by the attacker; these are only calculated within the CPU where the attacker cannot view

them. To recover the values of the instructions In, the attacker must find or deduce the

values of F (Cn). The results of the function F on the values Cn are only calculated within

the CPU, therefore, by assumption, the attacker is unable to read them. Therefore, the

security of the scheme is based on the strength of the function F .

The attacker described in Section 3.2.3 has the power to access all of the storage, MEM(x),

of a platform, x. Most of the challenges used with the function, F , are the masked

instructions known to the attacker. The first challenge, C0, is also known to the attacker.

It is therefore required that knowing only the input to F does not allow its output to

be predicted. If the output of F is predictable then, using challenges, Cn, the attacker

can recover instructions, In. If the attacker is unable to calculate the values F (Cn), it is
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unable to either create a correct mask for its own application or unmask the instructions

of an existing application.

An attacker who is the developer of one of multiple applications loaded onto a device x

is now considered. This attacker has access to all the masked instructions I ′n and their

corresponding challenges Cn as well as a subset of the values for In which are the instruc-

tions of its own application. The developer-attacker uses its application and its masked

version recovered from x to recover a set of corresponding Cn and F (Cn) pairs. This poses

a risk of the developer-attacker unmasking a portion of any other applications found on

the device x using the Cn/F (Cn) pairs. Similarly the attacker might be able to use its

knowledge to create the correct masking for any application of its choice. If the CPU were

a 32 bit processor then the maximum application size would be 232 addresses; however it is

unlikely for an embedded application to be so large. If the applications were much smaller

than 232, such as in the embedded setting, the chance of challenges for instructions of one

application overlapping with instructions of another application significantly decreases. If

this scheme were used in the multi-application setting, a maximum application size would

need to be carefully set to minimise the change of significant challenge-space overlap. A

countermeasure against challenge-space overlap would be to mask multiple instructions at

the same time. If two operations were masked at once, the challenge space for a 32 bit

processor would increase to 264, lowering the chance of challenges from applications over-

lapping one another. Overlapping of mask values used for binding software to hardware

can also be decreased by ensuring no two applications on a platform use the same C0.

3.5 Implementation

A prototype implementation has been developed to demonstrate the viability of the scheme

proposed in Section 3.4. The prototype also allows the performance impact of the scheme

to be analysed.

The first half of this section describes the implementation including a system diagram of

how the scheme was included into an example embedded system. Also described are the

three different transitions possible between operations and how they are addressed by the

prototype.
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The second half of this section analyses the prototype implementation, describes the over-

heads of using the proposed scheme and the costs associated with different choices for the

function, F .

3.5.1 Development Platform

The prototype implementation was designed and implemented on a Xilinx Spartan-6

FPGA SP601 evaluation board. VHDL was used to describe the circuits for the Un-

masking Unit and other components in the prototype. The VHDL was synthesised for the

Spartan 6 using the Xilinx ISE design suite. An Apple Macbook Pro was used for running

the ISE design suite and synthesis tools as well as the terminal program PuTTY that read

the serial output data transmitted by the prototype system.

The prototype implementation was developed for the FPGA board to create a real system

operating using the proposed countermeasure. The implementation is similar to a normal

embedded system, it contains a processor, a ROM that stores the application and IO

devices. The IO devices used by the prototype are two LEDs and the serial output

port of the evaluation board. The serial port functionality is used by the prototype

implementation to output to a terminal program running on a laptop computer.

The processor included in the prototype system is the PicoBlazeTM open soft-core pro-

cessor developed by Xilinx and made freely available online [123]. The PicoBlazeTM is

attached to one of the block RAMs in the FPGA that is used as a ROM to store the

program executed by the prototype. Example VHDL code for using the UART serial

interface with a PicoBlazeTM processor is provided with the processor and was used to

connect the serial output to the system. A diagram of the prototype system is included

in Figure 3.3, the Unmasking Unit is the element developed to implement the proposed

scheme.
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Figure 3.3: Diagram of implemented system.

3.5.2 Demonstration Application

An example program was installed onto the prototype system to use the hardware devices

attached to the PicoBlazeTM system (Appendix A). . This enabled the prototype to give

an obvious indicator of it was executing correctly. The example program was written in

PicoBlazeTM Assembly Code and comprises two different stages of execution. Firstly, the

application runs through a set of instructions using the UART serial output to transmit

“Hello World!” to the laptop terminal application. This involved loading the characters

to be outputted into a register and outputting the value in the register to the UART data

transfer component. Serial output from the prototype requires 2608 cycles to transmit one

byte to the laptop, because of this it contains a buffer to store the data to be transmitted.

However, the UART components buffer for data to be outputted over the serial line can

store only a limited amount of data. Therefore, before sending data to be transmitted,

the application checks the UART buffer to ensure it is not full before adding the character

to be output. This check is carried out by calling a simple procedure that reads from the

UART transmit component and waits until the full flag is ‘0’ (indicating that the buffer is

not full). Once the UART buffer is not full the procedure finishes by executing a RETURN

instruction.

The second half of the application ran on the prototype system increments a series of

counters to turn two LEDs on the evaluation board on and off. This part of the application

comprises an infinite loop that repeatedly turns the two LEDs on and off. To ensure the

LED flashing can be observed with the human eye a significant delay is required between

each changing of the status of the LEDs. Three counters are used to create three loops
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with one loop executed inside another loop inside the third loop. Values of the two most

significant bits of the third, outermost counter are assigned to the LEDs resulting in them

following a off-off, off-on, on-off, on-on sequence.

3.5.3 Unmasking Unit

The scheme, as proposed in Section 3.4, was implemented using an Unmasking Unit posi-

tioned between the PicoBlazeTM and the ROM components. For the prototype system the

contents of the ROM were changed outside of execution and the masked values were loaded

as the FPGA was programmed. The Unmasking Unit was developed to relay address, en-

able and instruction values between the PicoBlazeTM and the ROM during execution and

also to forward extra values in the case of the execution of JUMP or CALL instructions. The

Unmasking Unit also calculates the mask (F (Cx)) values and on receipt of the masked I ′x

instructions from the ROM it performs the required XOR operation before passing the

resultant unmasked Ix instructions. The last function of the Unmasking Unit is to pause

execution of the PicoBlazeTM processor when required (this is described and explained in

more detail later in this section). Due to the Unmasking Unit being entirely responsible for

latching/fetching the masked instructions I ′x, the PicoBlazeTM and FPGA RAM modules

did not require any modification before being used in the prototype system (other than

the data being stored in the RAM being changed). A diagram showing the inclusion of

the Unmasking Unit is included in Figure 3.3.

The scheme implemented by the Unmasking Unit behaved as described in Section 3.4. A

function of the contents of the previous memory address is used as a mask value for a

memory location. The function used in the prototype is a simple Linear Feedback Shift

Register (LFSR). The LFSR calculates the mask value F (Cx) by setting the LFSR state

to Cx and then generating three bits for the LFSR according to the taps used. The state

of the LFSR after generating the three bits is used as the value F (Cx) which is XOR’d

with the masked instruction, I ′x, to reveal the instruction to be executed, Ix.

The Unmasking Unit developed comprises three main processes and two much simpler

pieces of logic controlling the enable out and address out ports. During execution of an

application on the prototype system there are three situations the Unmasking Unit may

encounter. Firstly is the case of normal instruction execution: an instruction Ix is currently
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being executed and the next instruction to be executed is the following instruction Ix+1.

In this case the Unmasking Unit will need to have stored the value I ′x such that Ix+1 can

be unmasked using F (I ′x).

The second possible situation for the Unmasking Unit is that instruction Ix is a JUMP

or CALL instruction. PicoBlazeTM assembly code includes conditional and unconditional

branch instructions, however both treated in the same way by the Unmasking Unit. In

this situation the next instruction is either Ix+1 (if the branch is not executed) or it is a

different instruction Iy. To prepare for the possible branch instruction two features of the

PicoBlazeTM are exploited by the Unmasking Unit. The PicoBlazeTM requires two cycles

to execute an instruction, however the RAM can be accessed in only one cycle. To save

power, the PicoBlazeTM only enables the RAM when it is in the second cycle of executing

an operation, this is also when it sends the address of the next instruction to the RAM.

Therefore there is a “spare” cycle available for the Unmasking Unit to use to load extra

data it may require from memory. In the example suggested previously, this extra value

would be I ′y−1 and this would be read from memory in the “spare”, first, cycle of the

execution of Ix. To know the correct address for I ′y−1 another feature of the PicoBlazeTM

is used. Most JUMP and CALL instructions include the address to be jumped to in the

opcode; 0x36031 is the code for JUMP NZ 031, if the ZERO flag is not set then jump to

address 031. The address that may be branched to is therefore known to the Unmasking

Unit allowing it to read the extra data it may need for unmasking the next instruction

before the address of the next instruction required is known.

In the case of a JUMP or CALL instruction the enable and address values from the PicoBlazeTM

are not forwarded to the RAM. During the first half of the execution of an instruction the

enable signal is 0, however the Unmasking Unit must transmit a 1 for the extra memory

access. The address value from the PicoBlazeTM will still be the address of the current

instruction, however the Unmasking Unit will transmit an alternative value for the extra

memory access.

A combinational process is used to handle changes on the instruction in port of the

Unmasking Unit. This process uses the calculated mask value to unmask the instruction

read from the ROM. A sequential process, triggered by the system clock, latches the

instruction in values and calculates the mask values used. The instruction latch process

uses the enable signal to determine if the first or second half of the instruction is being
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instruction handler : process (instruction in)

instruction in
has changed

instruction out :=
instruction in
XOR mask

instruction out
is a JUMP or

CALL instruction

fetchAddress :=
instruction out
argument − 1

end process

true

false

true

false

Figure 3.4: A flowchart of the instruction in handling of the Unmasking Unit.

executed, this is used when deciding if the value read from memory will create the next

mask value or not. Diagrams of the operation of the combination instruction in handler

process and the clocked instruction latch process are found in Figures 3.4 and 3.5.

The third scenario the Unmasking Unit may encounter is when Ix is a RETURN type in-

struction or either a JUMP@ or CALL@ instruction. In these situations the address of the

next instruction Iy is not known until halfway through the execution of Ix when the

PicoBlazeTM requests the next instruction. Before Iy is executed, the Unmasking Unit

will need to calculate the appropriate mask value, F (I ′y−1), which will require a cycle

before I ′y can be read and unmasked. Therefore, the execution of the PicoBlazeTM must

be paused for one cycle to allow the Unmasking Unit to read the necessary data from

memory and calculate the mask value required before loading, unmasking and outputting

the next instruction. Therefore, the Unmasking Unit includes an extra process responsible
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instruction latch : process (clk)

rising edge(clk)

enable in = 0

address in /=
predicted address

predicted address
:= address in + 1

mask :=
F (instruction in)

end process

true

true

false

true

false

false

Figure 3.5: A flowchart of the calculation of the instruction mask values.
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pause process : process (clk)

falling edge(clk)

pb pause = 1

pb pause := 0

RETURN instruc-
tion and ad-

dress in changed

pb pause := 1

end process

true

true

false

true

false

false

Figure 3.6: A flowchart of the operation of the PicoBlazeTM pause process.

for detecting RETURN instructions and pausing the processor when required. A diagram of

the operation of the pause process is included in Figure 3.6.

3.5.4 Performance Analysis

This subsection analyses the performance of the prototype described and examines how

other functions may be used in the scheme and the costs resulting from using different

functions.

As described, the scheme has a performance impact on only one situation faced by the

PicoBlazeTM. Out of the 69 different instructions supported by the PicoBlazeTM processor

only 8 of the instructions require any delay at all before they can be executed. Furthermore,

as it is only RETURN and the JUMP@/CALL@ instructions that are slowed down by the scheme

the impact on execution performance is likely to be minimal. The affected instructions are

likely to be a small subset of the instructions which comprise a program. In a program there
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cannot be more RETURN instructions executed than CALL instructions. It is also reasonable

to assume arithmetic, logic, input/output and loading/storing instructions make up a

larger amount of any applications executed than the RETURN instructions. Considering the

prototype system, the example program is comprised of 65 instructions, including only one

RETURN instruction (although there are 14 CALL instructions). The procedure that is called

is made up of 5 instructions including the CALL and RETURN. The impact of the scheme

was to increase the execution time from 10 cycles to 11, an increase of 10%. However,

the procedure that is called is part of the first half of the application that, including

the block called, is made up of 52 instructions. Allowing for the procedure being called

multiple times, the first half of the application requires 104 instructions to be executed,

completing in 208 cycles. The first part of the application would execute in 222 cycles

with the proposed scheme, therefore the actual performance penalty was only to increase

execution time by 6.7%.

The prototype has been implemented using an LFSR as the function, F . However, the

proposed scheme was designed to be able to use different functions for F , several candidates

were described in Section 3.4.3. As described, the performance impact of using the scheme

in the prototype was small. This was mainly due to exploiting features of the PicoBlazeTM

to prevent processor execution being delayed. If the function required two cycles then the

performance impact of the scheme would be greater as any JUMP instructions would also

cause delays. Currently the scheme has 2 cycles for computation available in the first

situation described in Section 3.5.3, 1 in the second and none in the case of RETURN

instructions. Therefore if the function required 2 cycles to compute the mask value then

there would still be no added delay if the next instruction is the next in memory. The delay

from the PicoBlazeTM executing a JUMP would be 1 cycle, and a RETURN would require the

processor to be paused for 2 cycles.

3.5.5 Security Analysis

The prototype was developed to demonstrate the viability of the proposed scheme, how-

ever, it does not completely meet the security requirements listed in Section 3.2.5.

Firstly, the prototype binds the software to the hardware by using an LFSR for the function

F . This use of an LFSR meets neither the first or second requirements described in
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Section 3.2.5. The first requirement demands the personalisation be secure, however the

attacker is able to emulate the operation of the LFSR and calculate the mask values used

because the prototype does not use any information the attacker would not know.

Requirement 2 requires the software personalisation to use of a hardware fingerprinting

technique. This has not yet been implemented on the prototype and is a topic for future

work. Crefsubsec:binding-choice-of-f stated a PUF would be required to provide hardware-

specific information for implementations of F . Therefore, the prototype implementation

is limited by this being absent. However, Section 3.4.3 also stated how PUF output could

be used to provide key material for block ciphers or other cryptographic algorithms. This

key generation would only be performed at start up; afterwards the key would be used to

unmask application instructions. Therefore, in most cases, the performance and viability

of the scheme is limited by the cryptographic operation/s included in F and not by the

PUF used. If a PUF were only included to provide key material, the prototype still gives

accurate estimates of the performance and efficiency of the proposed scheme. In the case

where a PUF is chosen as the entire masking function, F , once again the prototype allows

the performance of the developed system to be estimated by comparing the cost of the

error correction/fuzzy extraction against the constraints described in Section 3.5.4.

The third requirement was the solution must protect all of the device data. This has

been met because the only data stored on the prototype is the application data that has

been bound to the implementation. The current version of the Unmasking Unit does

not have the ability to mask/unmask data which is stored/loaded in the device memory.

Therefore, if any data were saved to or read from the memory it would currently be

unprotected. However, the prototype has demonstrated that the proposed technique may

be used for protecting instructions stored in memory and so could be applied to storing

data in memory. The current Unmasking Unit is able to access areas of memory without

disrupting execution of the process (as is used for unmasking instructions after a jump). It

may be possible that the extra loading from memory can be completed without significantly

affecting the execution of the PicoBlazeTM. However, this is a problem to be addressed in

future work.
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3.6 Conclusion

This chapter has presented a novel technique binding applications to the platforms they are

installed onto. The proposed technique can be used to prevent unauthorised modification

of device firmware by ensuring applications cannot be copied from legitimate platforms and

then executed on other devices. Hardware intrinsic properties of the device can be used

in the binding to personalise the software to particular hardware instances. A proof-of-

concept implementation of the scheme has been presented including the proposed scheme

and demonstrating it can be deployed with only a small performance overhead.

The solution proposed securely binds software to a hardware device and protects the data

stored on the platform wherever it is stored. The binding is secure against even powerful

attackers capable of reading any storage outside of the CPU.

Further work on the scheme would be to consider how firmware updating could be per-

formed if this scheme were to be used. Provisioning a different version of the firmware for

every single legitimate device might not be achievable and so a specific update protocol

may be needed.
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Installing and Updating Software with
Hardware-Software Binding
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Chapter 3 considered how to create a secure bond between hardware and software. This

chapter takes that idea and examines the consequences of deploying such a scheme. Specif-

ically, how to provision software and updates when a hardware-software binding scheme

is being used. To study this problem, a smart city case study is used to elicit the provi-

sioning models that apply and the requirements that result from them. Three protocols for

distributing software are presented that meet the requirements stated. A formal analysis

using Tamarin Prover is described proving the security of the proposed protocols. Finally,

an implementation has been developed using a laptop and Raspberry Pi 3 to demonstrate

the proposed protocols in action and their performance.
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4.1 Introduction

As discussed in Chapter 3, binding hardware and software allows the creation of a de-

pendency between hardware and software in a product. However, it makes provisioning

software to remote devices much more challenging because, by definition, it limits creating

software to execute on a device. Therefore we need to work out how to provision software

when hardware-software binding is being used.

To explore provisioning software with hardware-software binding, this chapter attempts

to address the problem of securely provisioning software to devices in a “Smart City”.

“Smart Cities” are a concept of interest to many groups including local and national

governments, political unions and academics [34, 36, 51]. Smart cities are an approach to

urban development that includes smart concepts and technologies to provide more effective

services to the people who live or work in the city.

The UK department for Business Innovation and Skills (BIS) lists the following services

that they wish to enhance in smart cities: Intelligent transport systems, Assisted or in-

dependent living, Water Management, Smart grids or energy networks and Waste Man-

agement [34]. These areas are all part of critical infrastructure so their availability and

security are vital. Frequently, government systems such as healthcare, energy grids, water

grids and other critical infrastructure systems transmit sensitive information that must be

kept confidential. Transport management systems must also be secured because problems

can cause significant delays or even physical harm to people. For example, interfering with

traffic lights could easily cause an accident. With many risks in the smart city setting it is

highly important that the networked devices be secured. In these settings it is also critical

for devices to behave as expected. Protecting devices from software tampering ensures

they behave as designed. However, smart cities comprise many types of devices in a wide

area that require software and software updates to be provisioned in the field instead of

relying on secure manufacturing to prevent software compromise. A further complication

is that the hardware may not be managed by the manufacturer of it but by a third party

contracted by the organisation that owns/manages them.

The smart cities model can be abstracted into a theoretical model that also applies to

other scenarios. A smart city can be considered as a wide network of computing devices

that perform tasks and regularly communicate with a central server/s. In many large
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networks it may be impractical to rely on physical access to devices to change or update

software. However, it is often important to ensure software can only be loaded by au-

thorised parties. Examples of such networks include: industrial control systems, sensor

networks and vehicular networks.

4.1.1 Contributions

The main contributions of this chapter are:

1. Modelling the security of provisioning software to large numbers of remote hardware

devices (Section 4.2).

2. Proposing a set of requirements for securing software provisioning (Section 4.2.3).

3. Discussing the different potential models for managing the security of software pro-

visioning (Section 4.3).

4. Proposing a protocol to solve the problem of provisioning software with hardware-

software binding (Section 4.5).

5. Providing a security verification of the proposed protocol performed using Tamarin

Prover (Section 4.6).

4.1.2 Structure

This chapter is structured as follows. Section 4.2 contains an overview of the problem

considered in this paper. Section 4.3 explores the possible models that could be used for

software provisioning and draws the security requirements for a solution to the problem

considered. Section 4.4 describes the related work in this area. Section 4.5 contains the

solution proposed for securely provisioning software and updates to a network of devices.

Section 4.6 analyses the solution proposed against the requirements set out in Section 4.3.

Section 4.7 concludes the paper and describes the future work required in this area.
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4.2 Problem Description

This work considers how to securely provision software to devices in a wide, smart city

network. This work will consider a simplified problem including just one entity attempting

to install software onto devices in a network belonging to a particular owner. This section

explores the motivations of the entities involved and describes the attacker who seeks

to undermine the security of the system. Finally, this section lists and describes the

requirements for solving the problem posed.

4.2.1 Entities and Motivations

Provisioning software to devices includes four individuals: the Device (D), the Opera-

tor (O), the Manufacturer (M) and City Hall (CH). D wants access to an application

provided by O. O is responsible for operating the Devices and is interested in loading

their application onto them. However, O wants to control the spread of their application.

M is a manufacturer of Devices who wants to create Ds able to securely receive and store

software. CH is the organisation that owns the Devices and has contracted their operation

to O.

The Device (D) is a generic IoT device that runs applications. D may be a set of traffic

lights or a water valve in a treatment system that is loaded with an application from

the operator/manager in order to let traffic/water flow. Alternatively, D could provide

information back to a central computer system that is used to monitor flow through the

network of pipes, wires or roads. D may be deployed in a public area that is considered

to be an insecure environment where attackers have physical access to it.

The Operator (O) is a business or government agency contracted with operating or man-

aging some or all of the infrastructure in the smart city such as the road or water network.

To operate D, O loads it with software to dictate its behaviour and communications. Pro-

ducing the software has required a large investment that O wishes to protect. Furthermore,

as there is a risk to citizen safety if D is interfered with, protecting device software from

tampering benefits O by preventing loss of revenue and any reputation damage caused by

incidents.

72



4.2 Problem Description

The Manufacturer (M), produces hardware devices that are installed in smart cities.

Different companies may need to manage the devices over their lifetimes, therefore they

need to be able to be personalised by different Operators. M wishes to ensure their

devices provide protection to the software installed and to provide guarantees as to the

security of the software provisioning. If malicious parties replace the device software with

their own this may violate citizen privacy or lead to accidents, injuries or lives lost. It

is advantageous for M to produce Ds that guarantee the security of installed software

because it will make them more desirable to city planners.

Finally, City Hall (CH) is the government agency or department that holds overall re-

sponsibility for the smart city. This party is the owner of the Devices and is contracting

O with running some city infrastructure. In practice, CH may be an IT department, a

centralised organisation or an office of the regional or local government. However, for the

context of this work the device owner is called City Hall.

4.2.2 Attacker Model

This chapter considers an Attacker (Att), attempting to interfere with the Devices, with

two main goals. The first goal of Att is to steal the Software (SW ) installed on the Device,

this may be later used to produce duplicate Smart City devices without authorisation.

Secondly, the Attacker wishes to force smart city Devices to execute their own (potentially

malicious) software instead of that installed by O.

As stated previously, Ds in the network may be in public places that Att has physical

access to. This physical access allows Att to read the contents of Ds long term storage

and RAM. However, Att is not able to read from any secure hardware present on D such

as a secure element, TPM or HSM.

Communication between CH, D and M or O uses either wired or wireless connections. Att

has the ability to eavesdrop on communications between these parties and send messages

to any of these parties. Wireless communications can be easily overheard and created by

an attacker so it is reasonable for Att to send and overhear messages to D. Furthermore,

in the wired setting it is also reasonable for Att to hear and send messages as they have

physical access to the device and so could tap any communication cabling.
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4.2.3 Protocol Requirements

Based on the model described in Section 4.2.1 we propose the following requirements for

a secure software provisioning scheme.

R1) Entity Authentication: All parties who receive or send applications must be au-

thenticated to prevent application leakage and installing applications from unknown

developers.

R2) Replay Resistance: Preventing message replays is required to prevent application

leakage via overheard authentication messages.

R3) Perfect Forward Secrecy: Leakage of a session key must not allow attackers to

access, deduce or compromise any sessions keys used in future protocol runs.

R4) Transferred Software Integrity: Guarantees will be provided that ensure the

correct transfer of the application.

R5) Transferred Software Confidentiality: The application must only be transferred

encrypted to prevent leakage.

R6) Secure Software Binding: Software must be securely bound to the device it is

installed on to ensure it cannot be transferred to other devices.

R7) Compulsory Software Personalisation: The Device must only execute software

provisioned be the authorised O.

R8) Secure Masking Agreement: Both the Device and Operator will contribute to

securely establishing keys for application masking.

R9) Secure Key Establishment: Generation and use of session keys will ensure mes-

sage and application confidentiality.

R10) Single Operator: Devices must only accept software from the, at most one, Oper-

ator currently authorised to manage the Device.

R11) Operator Handover: It must be possible for the Operator of the Device to change.

Requirements R1, R2, R4 and R5 are concerned with ensuring software confidentiality and

that D will only accept legitimate software. Requirement R1 ensures O only transfers soft-

ware to legitimate devices and D only accepts software from the authorised O. Similarly,
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Requirement R2 ensures applications cannot be leaked to Att using captured messages

between D and O. Requirement R5 prevents unauthorised installation of the software

onto other Ds by ensuring it is protected when transferred to D. Finally, Requirement R4

allows the Device to check the software has not been tampered with in transit.

Requirements R2, R3 and R9 ensure the security of the software provisioning protocol.

As stated in Section 4.2.2, Att is able to eavesdrop on communication between D and O.

Requirement R2 ensures old versions of software cannot be reinstalled onto D and previous

authentications cannot be reused by Att by replaying old messages. As a critical infras-

tructure component, D has a long lifetime including software updates, Perfect Forward

Secrecy of software provisioning is required to ensure old keys do not leak latest software

versions (Requirement R3). Requirement R9 ensures attackers are unable to predict the

keys used for securing protocol messages and transferred software.

Requirements R6 to R8 protect the software stored on D. Securely binding the software

to D (Requirement R6) ensures it cannot be transplanted from D onto different hardware.

Similarly, Requirement R7 ensures that each device will require software to be specially

loaded onto it, preventing unauthorised parties from installing software onto Devices.

Requirement R8 requires the secret key protecting the software on D be agreed upon by

D and the software provider.

D will have only one manager at a time, therefore only one entity should be able to provide

software to D at any one time (Requirement R10). However, during the lifetime of D,

the Operator may change so it must be possible for control of D to change from one O

to another (Requirement R11). This creates an atomicity constraint as it is necessary for

there to be no crossover period in which a D will accept software from both the outgoing

and incoming O.

4.3 Models for Software Provisioning

Two models are proposed for provisioning software bound to Devices: Device-centric appli-

cation provisioning and Authority-centric application provisioning. The difference between

the two models is which party is responsible for generating the masking-keys and securely

transferring the masked software to D.
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Section 4.2.1 describes the entities in the scenario this paper considers. However, from

this point we merge the Manufacturer and City Hall into one entity: the Authority (A).

The Authority is equivalent to M and CH because A will have the same, or equivalent,

motivation and responsibilities as the entities it replaces. For example, M is interested

in producing Devices that can be securely provided with software; CH also wishes for

D to securely receive software from O. To allow D and O to communicate, they may

be provided with certificates or pre-installed keys by M or CH. Whether M or CH is

responsible for key/certificate provisioning may be determined by practicality/efficiency

reasons or by regulations out of the scope of this work. Abstracting these roles into A will

allow for any possible division of labour between M and CH to be allowed in the model

proposed.

Most requirements listed in Section 4.2.3 are unaffected by the models described in this

section. For example, Requirements R1 to R3, R8 and R9 are all concerned with how

the protocols will operate and the security guarantees which will require approximately

similar solutions in all provisioning models. Requirements R6 and R7 are entirely unaf-

fected by provisioning models as these will be addressed on the device level. However,

Requirements R4, R5, R10 and R11 are affected by the provisioning model chosen and

the considerations needed will be discussed in the appropriate sections.

4.3.1 Device-centric Software Provisioning

This model divides almost all of the effort of provisioning software to Devices between D

and O. In this Device-centric model, A facilitates software provisioning by providing cer-

tificates to the parties but does not take an active part in the protocol. It is assumed that

both O and D can perform public-key cryptography to verify their identities. This model

assumes that O and D trust A; O and D do not have an a priori trust relationship they

are willing to communicate due to mutual trust in A allowing them to establish a trust

relationship for communication and application installation. As a result of attempting to

share information between parties using a trusted entity (the Authority) Device-centric

provisioning resembles the common “Key Distribution Centre” models found in crypto-

graphic literature on key provisioning [37]. This setting is modelled in Figure 4.1; prior

trust is shown with a dashed line and software transfer with a solid arrow.

76



4.3 Models for Software Provisioning

A

O

D

Figure 4.1: Device-centric application provisioning only requires connection between O
and D, however this requires prior trust between D and A and between A and O.

In the Device-centric model, O will need a software provisioning certificate from A. This

will contain at least a public key, information identifying the Devices O has access to and

an expiry time value signed by A. The expiry time value may be a start or finish time for

the certificate depending on whether an O is always authorised for fixed period of time or

for varying time periods. However, correctly managing the issuing of these provisioning

certificates is vital for Requirements R10 and R11. D is only informed of O’s validity by

the presented provisioning certificate so A correctly issuing these certificates is of vital

importance.

For O to load SW onto D it will begin the protocol by contacting D. At the start of

the protocol, O and D will perform a fresh mutual authentication. D then checks the

certificate provided by O. This check will ensure that the certificate is signed by the

Authority responsible for the device as well as checking it has not expired. It is assumed

Devices have an accurate measure of date and time for checking certificate expiry. These

checks will prove to D that O is permitted to provision D with software. Next, O and

D establish a session key for the protocol run to ensure message confidentiality. Once a

session key has been established, a masking key is established. O then masks SW and

transfers it to D.

After receiving the masked software from O, D is solely responsible for verifying the

integrity of the received software and meeting Requirement R4. However, as only O and

D participate in the protocol as provisioning time, the proposal will successfully meet

Requirement R5 based on the assumption of establishing a secure channel.
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4.3.2 Authority-centric Software Provisioning

The alternative to the Device-centric model in Section 4.3.1 is the Authority-centric soft-

ware provisioning model. In this model, O is prevented from directly communicating with

D and instead transfers the application to D via A. However, it allows Requirements R10

and R11 to be addressed more easily as A participates in provisioning directly and can

enforce these requirements.

Authority-centric provisioning requires the same number of a priori trust relationships

as Device-centric provisioning. Both D and O are required to trust A - this trust is

used as foundation for Authority-centric provisioning; A is a man-in-the-middle in all

communications between O and D. Therefore, this model requires O to have more trust

in A than in the Device-centric model as all data between O and D may be observed by

A. However, this model addresses the possibility that O is trusted to provide software

to D but is not permitted to directly modify its software. This may be necessitated

by regulation preventing City Hall from granting complete control to O or simply to

allow easier auditing of Devices. The Authority-centric approach comprises two main

use-cases; the “Application-Relay” and “Application-Broadcast” models. As with Device-

centric provisioning, Authority-centric provisioning parallels parallels a model used in key

management literature - the “Key Translation Centre” approach in which a trusted third

party acts as an intermediary and root of trust between two communicating entities [37].

The first model is the “Application-Relay” model shown in Figure 4.2. This model is

similar to the Device-centric model however it involves O transferring the SW to D via

A instead of directly. In this use case, one D is provided with a software update or

installation from O. Like in the previous model, O will establish communication with A,

the parties will authenticate, establish a session key and the application will be transferred.

Next, A and D will communicate, first authenticating themselves then establishing keys

for communication and masking. Finally, A will mask the application before transferring

it to D.

The second model is the “Application-Broadcast” model depicted in Figure 4.3. This

use case is an extension on the “Application-Relay” model and considers a set of identical

Devices, D1...n, managed by O. When O wishes to install or update software on the Devices

then they establish communication with A and transfer the software to them as in the
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A

O

D

Figure 4.2: The Application-Relay model allows an Authority to monitor application
provisioning from O to D.

A

O

D

D

D

D

D

Figure 4.3: Application-Broadcast model considers the situation in which O is loading a
large number of Devices with a single application.

previous model. However, once A has received the software, it establishes communication

with all of the Devices and transfers it to them. In practice, this setting could apply when

a smart city contains a number of the same model of traffic lights or a different smart city

device. O may need to update the software on the Devices to update the communications

protocol to a different cipher or to expand the data being sent from D to O. In the A-

centric model, software transfers must be performed via A, however if many devices require

the same software update it would be more efficient to allow A to receive the software once

and then update the devices. Once A has received the application they establish sessions

and masking keys with each of D1...n, mask the application for each Device and transfer

each version to each D in D1...n.
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An advantage of the manufacturer-centric model is it is compatible with less powerful de-

vices. Low-end devices have less computational power, sources of randomness and some-

times battery life than a server ran by A that is better equipped to generate strong masking

keys.

One argument against the Authority-centric models proposed is they both require O to

transfer the unmasked application to A. This requires the transferred software to be

carefully protected to ensure Requirement R5, and relies on O trusting A to securely

transfer the software to D. Furthermore, it requires A to be trusted to ensure software

integrity and Requirement R4 when software is issued to D. The latter can check the

software provided, but may have fewer guarantees about the software sent from O to A.

Initially, it may seem as if this requires an unreasonable amount of trust in the Authority.

However, as A is responsible for producing the keys used by D and owns the devices so also

has physical access to them it is always in a position to extract the application. If A would

always be able to access the unmasked application via D then it requires no more trust

to be placed in A to transfer the application to D via them than to use Authority-centric

software provisioning at all.

4.4 Related Work

This section describes existing work related to the problem described, starting with se-

curely binding hardware and software (Section 4.4.1). Later, this section describes two

significant industry approaches in software provisioning: MULTOS (Section 4.4.2) and

GlobalPlatform (Section 4.4.3).

4.4.1 Binding Hardware and Software

Binding hardware and software applies to various problems including: Digital Rights

Management, preventing product counterfeiting and preventing unauthorised firmware

modification [67]. Hardware/Software bindings can either be created bi-directionally or

uni-directionally. Krasinski and Rosner and Atallah et al. consider binding hardware and

software uni-directionally as ensuring a piece of software requires a particular hardware

device to execute [67, 10]. Alternatively, is the bi-directional approach taken in Chapter 3
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that describes binding hardware and software as creating a bond to ensure that both

require the other for execution.

Due to the different bonds formed, the binding schemes described by Krasinski and Rosner,

Atallah et al., and this work approach the problem in different ways. All three schemes

use a device specific item to bind software and hardware, however the use and source of

the items differ. Krasinski and Rosner use a device specific method for generating a key

that is checked whenever the copy protection software they are binding executes, however

they are not clear how the key is used [67]. Atallah et al. use a PUF (see Section 2.3) to

provide response data to bind an instantiation of RSA to a particular hardware device that

ensures it is being executed on the intended hardware [10]. Both of the uni-directional

schemes are limited to checking the software has not been transplanted to a different

device, however the scheme proposed in Chapter 3 also ensures the hardware instance only

executes software bound to it. The scheme in Chapter 3 binds the hardware and software

at an instruction level ensuring neither the hardware or application can be changed.

Due to Requirement R6, a solution is required to prevent software being transferred from

one D to another by Att. Furthermore, Requirement R7 states that D must only exe-

cute software that has been provisioned to it by the authorised O. Therefore, the binding

scheme that provides the level of security required is that described in Chapter 3. However,

that scheme only offers secure binding between hardware and software and has no mecha-

nism for deploying the scheme in the real world. Section 3.6 lists provisioning updates as

future work and assume that installation takes place in a secure environment. Therefore,

it requires extension before it can be applied to the problem described in Section 4.2.

4.4.2 MULTOS

MULTOS is an operating system for multi application devices developed and standardised

by the MULTOS Consortium. Historically, it has been used in smart cards for payment,

ID, passports and transport ticketing [83]. MULTOS does not provide protection for

installed applications, however the specification requires that development of MULTOS

devices be security tested to at least EAL4+ Common Criteria or C.A.S.T. standard [85].

The security of MULTOS is primarily constructed using public key cryptography to pro-

81



4.4 Related Work

vide secure communication channels between Devices, Issuers and Application Providers.

A mechanism for securely provisioning software and firmware updates to devices is in-

cluded in the MULTOS specification. To install or update an application on a MULTOS

device an application provider must work with the device Issuer to produce an Application

Load Unit (ALU) and an Application Load Certificate (ALC). The ALU is a container

object comprising the application, any application personalisation data needed and a hash

of the application signed by the application provider. ALUs can be either public or con-

fidential depending on the security required, confidential ALUs are protected using the

public key installed during the enablement of the MULTOS device [84]. The ALC is an

authorisation certificate generated by the device issuer containing the public key of the

Application Provider and the application header containing the application ID, hash and

storage requirements. Before an application can be installed on a device, the installation

must be authorised with an ALC.

MULTOS software provisioning considers a similar problem to that described in this chap-

ter, however the solution does not address several points of the problem we are interested

in solving. Firstly, MULTOS does not provide any solution to the problem of how to

protect applications installed on a MULTOS device. Instead, the MULTOS specification

requires that installed software is protected on the device but does not define how it is to

be protected. Therefore, it does not meet with Requirements R6 and R7.

Secondly, it does not fit with either of the two models proposed in Section 4.3 as it

considers a model that is a combination of the two proposed in this work. MULTOS

software provisioning is most similar to the Authority-centric model, however the issuer

is not aware of the application being installed on the device. In producing the ALC, the

issuer approves installation of an application matching the provided application header,

but the actual application is unknown. Mass updating of all managed Devices (Figure 4.3)

is not possible in MULTOS; each device must be contacted by the application provider

separately as no broadcast model is supported.

4.4.3 Global Platform

GlobalPlatform is a smart card specification concerned with allowing smart cards to run

applications from multiple providers in a secure manner. The standard has a very wide
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scope and covers system, card and security architectures, life cycle models, secure commu-

nication and card and application management. Both the secure provisioning of applica-

tions and how to protect them in storage are included in the standard so GlobalPlatform

[42] may solve some of the problems considered in this chapter.

In GlobalPlatform, applications are protected using the GlobalPlatform Runtime Envi-

ronment. The Runtime Environment provides an API for applications, secure storage and

secure execution space for applications that separates each applications code and data from

other applications. Finally, the Runtime Environment provides communication between

the card and off-card entities [86].

GlobalPlatform provides a strong mechanism for secure application installation, manage-

ment and control via Security Domains. Security Domains are on-card representatives

of the Card Issuer and the Application Providers and provide secure services such as key

storage, encryption, decryption and signing/verifying digital signatures. Each GlobalPlat-

form device contains at least one Security Domain: the Issuer Security Domain. The Issuer

Security Domain can be responsible for all the security critical tasks listed above or it can

allow Application Providers their own on-device space by authorising Application Provider

Security Domains to perform the listed tasks [42].

Security Domains allow application installation by verifying the Data Authentication Pat-

terns (DAP) that are provided in the Load File Data Blocks used to transfer applications

to GlobalPlatform devices. If a Security Domain has the relevant permissions it is able to

accept applications that are accompanied by a DAP using a shared symmetric or asym-

metric key from the Application Provider. Security Domains can be locked to prevent

their use and their permissions can be limited to ensure the Issuer retains overall control

of the device [42].

With the correct configuration a GlobalPlatform based solution could meet with almost all

of the requirements described in Section 4.2.3 and fit with the models in Section 4.3. The

only requirements that native GlobalPlatform does not meet are Requirements R6 and R7.

Although as GlobalPlatform is hardware agnostic a hardware using the system described

in Chapter 3 could allow the solution to meet all requirements. The hybrid provisioning

required with hardware/software binding could be implemented using a custom protocol

to include masking key establishment as GlobalPlatform permits custom protocols.
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However, while GlobalPlatform could be combined with a hardware/software binding

scheme to address the problem considered in this work, any solution based on Glob-

alPlatform would almost certainly be not optimal. GlobalPlatform is a large, complicated

specification designed to apply to many different scenarios and using it in solving the

problem described would introduce unnecessary complication to the system. A bespoke

solution would offer more simplicity and efficiency than using a large standard such as

GlobalPlatform for a small amount of the functionality offered.

4.5 Proposed Solution

As described in Section 4.4, no solution exists to solving the problem of provisioning

software to devices with hardware/software binding. This section describes a new solution

based on the scheme proposed in Chapter 3.

4.5.1 Overview of Solution

The scheme proposed in Chapter 3 is the only existing scheme providing hardware/software

binding compliant with Requirements R6 and R7. Therefore, it will be used to protect

software installed on the Devices.

As stated in Section 4.4.3, a new protocol is required to provision software to the Devices in

the network. A solution using a bespoke protocol will be more efficient than one based on

a niche configuration of an existing standard and will also be easier to analyse. However,

the different models of software provisioning described in Section 4.3 will require separate

protocols due to the significantly differing roles of A and O. The new protocols for the

different software provisioning models are described in Section 4.5.2 and Section 4.5.3.

The notation used to denote the proposed protocols is listed in Table 4.1.
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Table 4.1: Protocol Notation

nx A nonce with ID x.
mx The payload component of a message with ID x.
gx A Diffie-Hellman key share.
Enck(m) The encryption of the message m using the key k.
O-cert The O-Cert of the Device Operator.
skX The signing key of X.
Sigk(mx) The hash-based signature of message with ID x produced

using the key k.
H(m) The hash digest of a message m.
Mk(App) The software App masked using a key k.
MACk(mx) A Message Authentication Code calculated for a message

with ID x using a key k.

4.5.2 Device-centric Software Provisioning

This section describes the protocol for provisioning software in the Device-centric model

presented in Section 4.3.1. The developed protocol is presented in Table 4.2.

The D-centric protocol is a three message protocol that establishes freshness and au-

thentication by O and D signing freshly generated nonces with the other message data.

These signatures are written as SigskO(mx) with x equal to 1, 2 or 3 where the signature

is calculated over the first, second or third message. This allows the protocol to meet

Requirements R1 and R2.

Keys for the session and masking are established using Diffie-Hellman key agreement.

These are carried out by the exchanging of ga, gb, gc and gd; allowing the mutual agreement

upon the session and masking keys: gab and gcd. This generation and use of session and

masking keys for each protocol run ensures the scheme satisfies Requirements R3, R5, R8

and R9.

Requirements R10 and R11 dictate that only one, authorised O may install software on

D at a time and that it must be possible for one O to cease provisioning SW and another

to start. In the Device-centric protocol this is achieved using the O-cert. The O-cert is a

certificate that is provided to O by A and includes pkO signed by A’s public key as well

as a certificate expiry time and information describing the devices that O is permitted to

manage. Certificate expiry times and only granting one valid O-cert at a time will ensure

the protocol meets Requirements R10 and R11. Alternatively, the O-cert could contain a

start time and always have a fixed lifetime, however specific expiry times allow certificate
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Table 4.2: Device-centric Software Provisioning

Device-centric Protocol

1. O→D O‖D‖n1‖ga‖O-cert‖SigskO(m1)
2. D→O D‖O‖n1‖n2‖gb‖Encgab(gc)‖certD‖SigskD(m2)

3. O→D O‖D‖n2‖Encgab(Mgcd(SW )‖H(SW )‖gd)‖SigskO(m3)

expiry to more easily align with trial periods/Operator contracts. The certificate of D in

the Device-centric protocol is a normal certificate containing the public key of D signed

by A.

Finally, the inclusion of the application signature ensures that Requirement R4 is met by

the protocol.

4.5.3 Authority-centric Software Provisioning

This section will describe the protocols for provisioning software according to the Au-

thority-centric software provisioning model in Section 4.3.2. The main difference between

the Authority-centric and Device-centric protocols is that the former requires a two stage

process as the application must be transferred to D via A instead of directly from O to

D. Therefore, the Authority-centric approach is longer and less efficient than the De-

vice-centric protocol proposed in Section 4.5.2. The Authority-centric protocols proposed

(Table 4.3) are a two stage protocol consisting of transferring the application from O to

A (messages 1-3) and then from A to D (messages 4-6). This allows for Application Re-

lay as depicted in Figure 4.2 and Application-Broadcast as depicted in Figure 4.3. The

Application-Broadcast would require running the latter half of the protocol (messages 4-6)

multiple times, once for each device.

The second half of the protocol in the A-centric model can be approached in two ways

depending on the relationship between A and D: with public key cryptography to build

trust or using pre-existing trust. In D-centric software provisioning O makes contact with

D to install software. It is assumed that both parties are communicating based on their

mutual trust in the Authority (A) rather than an existing trust relationship. By contrast

in the A-centric model it is plausible that the existing trust relationship between D and

A may include having a pre-shared symmetric key. In such a case D may not be required

to do as many public key cryptographic operations which is advantageous in resource-
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Table 4.3: Authority-centric Software Provisioning (with Public-Key Cryptography)

Authority-centric Provisioning

1. O→A O‖A‖n1‖ga‖O-cert‖SigskO(m1)
2. A→O A‖O‖n1‖n2‖gb‖certA‖SigskA(m2)
3. O→A O‖A‖n2‖Encgab(SW‖H(SW ))‖SigskO(m3)

4. A→D A‖D‖n3‖gc‖SigskA(m4)
5. D→A D‖A‖n3‖n4‖gd‖Encgcd(ge)‖certD‖SigskD(m5)

6. A→D A‖D‖n4‖Encgcd(Mgef (SW )‖H(SW )‖gf )‖SigskA(m6)

Table 4.4: Authority-centric Software Provisioning (with Pre-Shared Keys)

Authority-centric Provisioning with Pre-Shared Keys

1. O→A O‖A‖n1‖ga‖O-cert‖SigskO(m1)
2. A→O A‖O‖n1‖n2‖gb‖certA‖SigskA(m2)
3. O→A O‖A‖n2‖Encgab(SW‖H(SW ))‖SigskO(m3)

4. A→D A‖D‖n3‖gc‖MACPSK(m4)
5. D→A D‖A‖n3‖n4‖gd‖Encgcd(ge)‖MACPSK(m5)

6. A→D A‖D‖n4‖Encgcd(Mgef (SW )‖H(SW )‖gf )‖MACPSK(m6)

constrained settings. Therefore a second A-centric protocol is proposed here that uses a

pre-shared key to replace some signatures with MACs (Table 4.4).

Requirements R1 to R3, R5, R8 and R9 are all achieved in the Authority-centric protocols

in the same manner as described in Section 4.5.2 for the Device-centric protocol. However,

Requirements R10 and R11 do not require a solution in the Authority-centric model as A

is able to trivially ensure them by only accepting software from the currently authorised O

and no others. Finally, Requirement R4 is met using digital signatures (SigskO(mx)) in the

Public-Key scheme and by using MACs (MACPSK(m5)) in the Pre-Shared Key protocol.

4.6 Analysis

Further to the analyses of the proposed protocols in Sections 4.5.2 and 4.5.3 a formal,

mechanical analysis of the protocols has been carried out using Tamarin Prover [91]. This

section describes the protocol models, the analysis carried out and the security results

proven.
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4.6.1 Description of Protocol Models

The protocol analysis was carried out using three models: one for each protocol proposed.

The models represent the protocols as state machines that are progressed through as

messages are sent and received by the Device, Authority and Operator.

A digram of the state machine for analysing the D-centric protocol is included in Figure 4.4.

This model contains two types of transitions between the rules representing the states of

the protocol: messages and entity-states. Both the correct message and entity-state are

required before a rule can be executed. The messages are the outputs of the D1, O1 and

D2 rules that are sent between the Operator and Device and that are also sent to the

attacker.

The entity-states are facts that store the information that a particular entity in the protocol

run is aware of and needs to retain. These states are created as private facts the attacker

is not shown and are used to retain information such as Diffie-Hellman exponents. This

state machine representation of the protocol allows a legitimate execution path to be

represented with the rules evaluated in the order: O1, D1, O2, D2. It also limits attacker

behaviour to only realistic attacks such as trying to forge a session with a legitimate A

for part or all of a protocol run. The attacker can also try to break the scheme security

by eavesdropping a legitimate protocol run. This is reasonable as it ensures the attacker

cannot start the protocol by forging m2; a legitimate Operator would notice that m1 had

not been sent.

Similar state models for the Authority-centric protocols were developed to produce Tamarin

models for the proposed protocols, but are omitted for brevity.

For the requirements listed in Section 4.2.3, those verified by mechanical analysis are tested

by validating lemmas against the protocols represented by rules. The full sets of rules and

lemmas are included in Appendices B to D. One omission from included Tamarin code

is the lemmas used to prove reachability of all protocol states. This choice was made for

reasons of brevity and clarity.
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O1
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Figure 4.4: Modelling Device-centric application provisioning requires a state machine of
four states with five connections.

4.6.2 Scope of Mechanical Analysis

The Tamarin models prove the communication requirements of the protocol. Rules and

lemmas were only included to test Requirements R1 to R5 and R8 to R11. Require-

ments R6 and R7 were not included in the model and it was assumed that installed

software is securely stored.

The method for the analysis was to first prove the protocols satisfy Requirements R1

and R2. Intuitively, some requirements (such as Requirements R8 and R9) rely on fresh

authentication. Therefore, the Tamarin model first proves Requirements R1 and R2 and

then uses those to test if other requirements have been met.

To limit the complexity of the model, it is assumed an entity in the model is either a

Authority, Device or an Operator and they do not switch roles. However, a result of this

is different messages in the protocol will only be created by certain entities, for example,

message 5 is only ever output by a Device.
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4.6.3 Modelling Assumptions Required

To model the proposed protocols several assumptions were made. Some were required

to allow Tamarin Prover to reason about the protocols. However, most assumptions

were chosen to limit model complexity without compromising its value. An example is

preventing entities from switching roles. This is not unreasonable because a traffic light in

a city is not going to change into a different device or become an Authority or Operator

during its lifetime. This assumption did not weaken the security proven by the model but

did simplify the protocol verification.

Other assumptions were made to prevent Diffie-Hellman key-exchange exponent edge cases

that could theoretically lead to attacks. An example of this is assuming all parties will

only generate safe Diffie-Hellman shares. This excludes all shares or share combinations

equal to the generator as these would allow for a trivial break by the attacker. The chance

of these scenarios is negligible so preventing them by assumption is reasonable and allows

the model to prove the security properties without weakening the result.

Another example of a simplifying assumption is to assume all generated nonces are unique.

In practice, an implementation would check that received nonces are fresh so this assump-

tion is reasonable as it removes the need to check nonce freshness in the model.

4.6.4 Results of Analysis

When verifying the protocols met Requirement R10, the model showed that implementa-

tions of this protocol will need to avoid problems with O-Certs expiring between messages.

Sending the O-Cert in the initial message makes sense in terms of practicality: D or A

need not continue to communicate with O if they do not have a valid O-Cert. However, the

Tamarin model highlighted the possibility of a time-of-check, time-of-attack vulnerability.

Preventing this vulnerability requires implementations to check the O-Cert is still valid at

install time and has not expired since receipt.

After including an extra O-Cert validity check, the protocol models met all security require-

ments. Therefore, when implemented correctly, the three protocols described in Section 4.5

will meet the requirements described in Section 4.2.3.
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One limitation of the analysis carried out is it does not consider the consequences of com-

promised devices. The current model assumes the parties are honest but communicating

over a channel controlled by the attacker. This allows the model to cover any combination

of honest cases but it does not consider if individual devices are compromised. The secu-

rity of the key establishment has been proven in the context of the attacker being able to

break some session keys. However, a malicious device can always leak the current key or

even the application being transferred so some requirements will not be able to be met by

the current scheme.

A further limitation to the analysis is that it is only interested in full breaks or application

leaks. If one version of a piece of software is leaked to the attacker, this might be of use to

an attacker in guessing parts of the next version of the code. However, the existing model

has only considered proving the security of the protocol against total software leakage and

does not model partial information leakage.

4.6.5 Further Observations

After modelling and verifying the proposed protocols, one emergent property is a very

strong resemblance to protocols proposed in ISO 9798 [55]. This standard is concerned

with entity authentication; a property required of our proposals and listed in Section 4.2.3.

Requirements R1 to R3 and R9 were highly significant in designing the proposals of this

chapter and this combination of authentication, replay resistance, forward secrecy and

secure key establishment are a feature of many standardised protocols such as those in

published by ISO. These common features are the most significant cause of the observed

resemblance.

However, a further factor which is likely to have contributed to the similarity between this

chapter and ISO 9798 is the 2002 work of Basin et al. [13]. In their paper, the authors

used Tamarin Prover to assess the security of the protocols standardised in ISO 9798. The

results of their study were that they found several issues. The authors proposed fixes for

the protocol which were accepted by ISO and included into the standard [13]. However,

it also means that not only have both our protocols and those of ISO 9798 been designed

with similar requirements but they have also been verified by the same tool which has

likely also contributed to the similarity in the results.
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4.7 Conclusion

This chapter has presented a new problem setting for provisioning software to devices in

smart cities. The new scenario applies to the real world and includes the important issue

of protecting the software installed on the devices.

Two models for distributing software to devices in a smart city are described and protocols

solving the problems have been suggested. The protocols have been proven to be secure

using a formal analysis tool that considers large numbers of possible combinations of

messages when looking for flaws.

Future work in this area would be to expand the analysis to check the security of the scheme

when one or more devices are compromised. The attacker described in Section 4.2.2 has

physical access to the Devices so could potentially mount an attack to gain control over

some Devices. Another area for future work would be examining the performance cost of

the proposed protocols by implementing them using various microcontrollers. This would

provide cost measurements in terms of time and energy required to use the proposed

scheme that would allow for easier comparison with other protocols.
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Securing Application Execution and Bind-
ing Hardware and Software
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Chapter 3 proposed a scheme by which hardware and software can be bound together to

create a secure dependency between them. This bond prevents software from being moved

between devices. However, platform piracy and software modification are just some at-

tacks against IoT devices. Exploiting existing software to force an unauthorised execution

path is another type of attack. This chapter considers the problem of ensuring Platform

Specific Execution while also Securing Application Execution to guarantee correct, unmod-

ified execution of legal, application execution paths and no others. To solve this problem,

an expanded hardware-software binding scheme is proposed. A prototype of the proposed

scheme, implemented as a soft-core processor, is presented to demonstrate the new scheme.

93



5.1 Introduction

5.1 Introduction

Chapters 3 and 4 considered how to prevent counterfeiting and device tampering attacks

against embedded systems. A binding scheme was proposed in Chapter 3 and Chapter 4

extended that work by considering use and deployment. This chapter follows Chapter 3

differently by expanding the problem considered and proposing an extended scheme. As

stated in Chapters 3 and 4, device counterfeiting and firmware modification are serious

threats to IoT devices. However, they are a subset of attacks on IoT devices with others

attempting to gain control of a device by exploiting legitimate applications to run arbitrary

program code or leak sensitive information. One protection against these types of attacks is

including measures to ensure Secure Application Execution (SAE), this prevents arbitrary

code execution and program exploitation by securing application control flow [62].

Related to SAE is the problem of Platform Specific Execution (PSE) or securely binding

hardware and software together. This problem seeks to ensure only applications from

authorised parties can execute. However, the two problems differ in two main ways.

Firstly, SAE ensures the current application is executing correctly, but not the legitimacy

of the author of the code [33]. Conversely, PSE, as defined in Chapter 3, focusses on

ensuring only applications personalised to a device by an authorised party can execute but

does not consider legitimate applications failing to operate correctly. Therefore, securing

IoT devices requires a combination of both problems: ensuring devices correctly execute

legitimate applications and nothing else.

5.1.1 Contributions

The main contributions of this chapter are:

1. Modelling a new problem combining hardware/software binding with Secure Appli-

cation Execution (Section 5.2).

2. Providing a transition based perspective of Secure Application Execution (Sec-

tion 5.2.2).

3. Proposing a set of requirements for securing application control flow and execution

location (Section 5.2.4).
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4. Proposing a scheme to solve the problem considered which combines a prior scheme,

SOFIA [32], to our previous work, Chapter 3, to ensure SAE and PSE (Section 5.4).

5. Implementing the proposed scheme and describing the components of the developed

system (Section 5.5).

6. Analysing the scheme and implementation (Section 5.6).

5.1.2 Chapter Structure

This chapter is structured as follows: Section 5.2 contains an overview of the problem

considered in this chapter. Section 5.3 describes the related work in hardware/software

binding and Secure Application Execution. Section 5.4 contains the solution proposed

for securing application confidentiality and execution. Section 5.5 describes the imple-

mentation of the proposed scheme and includes a breakdown of the main engineering

decisions and constraints. Section 5.6 analyses the proposed scheme and implementation.

Section 5.7 concludes the chapter and describes potential future work in this area.

5.2 Problem Description

This paper considers ensuring secure, unmodified and platform specific execution of ap-

plications. Informally, if an application, App, has finished executing, we guarantee it has

executed correctly and on the specific hardware device it is intended for. In this work,

correct execution is defined as following a legitimate control flow with no operations mod-

ified or omitted from the program as it was installed. The following subsections define

Platform Specific Execution (Section 5.2.1), Secure Application Execution (Section 5.2.2),

the attacker model considered (Section 5.2.3) and the requirements for a proposed solution

(Section 5.2.4).

5.2.1 Platform Specific Execution

Platform Specific Execution (PSE) is the problem of ensuring a Software instance SW

installed on a Device (D) is able to execute on D and on no other device, D′. Usually, an
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SW is deployed to multiple devices or systems. Therefore to achieve PSE, each SW must

be made unique for the D it is executed by.

PSE can be guaranteed by using hardware-software binding to securely personalise a soft-

ware instance, SW , to many devices. With this technique an installed software, SWD is

made reliant on some element or information held or known only by D, the result of this

being that SW loaded onto a different device, D′, will not execute correctly. Therefore

a hardware device is restricted to executing only the SW bound to it and no different

SW ′. This can prevent code injection attacks. Chapters 3 and 4 used Hardware-Software

two-way bonds to prevent counterfeiting, firmware modification and for securing software

in smart cities.

5.2.2 Secure Application Execution

As well as PSE, we are concerned with Secure Application Execution (SAE), which is

defined as ensuring applications only follow correct control flows as defined by the devel-

oper [1]. A correct control flow has been followed if every instruction has been executed

without any being skipped or modified. While instructions not executed due to correctly

executed conditional JUMP instructions have been legitimately skipped, instructions not

executed due to modification or deletion are illegitimately skipped and compromise SAE.

Therefore, achieving SAE comprises two main requirements: ensuring instruction integrity

and ensuring CFI. PSE considers instruction integrity, therefore this subsection will focus

on CFI.

Examples of legitimate and illegitimate execution of an application are found in Figure 5.1.

The figure shows a code snippet with instructions marked with ticks (X) and crosses (×).

A legitimate execution through the snippet would be to execute every instruction marked

with a tick, when instruction 3 was executed, the zero flag was not set and control flow

jumps to instruction 6. If only the instructions marked with crosses were executed, this

would be an illegitimate execution because the conditional JUMP of instruction 3 is entirely

avoided.

In this work, the legitimacy of logical tests based on external data is not included in the

scope of SAE. For example, attacks tampering with sensors/sensor data to ensure one
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1 Op X ×
2 Op X ×
3 Jmp NZ, 6 X
4 Op ×
5 Jmp 8 ×
6 Op X
7 Op X
8 Op X ×
9 Op X ×

Figure 5.1: Legitimate executions follow each instruction in a control path such as the
ticked instructions, illegitimate executions skip instructions such as the path avoiding the
JUMP NZ, 6 that is marked by crosses.

side of an if instruction is always chosen is out of scope. However, skipping a conditional

JUMP operation to force execution of one path of an if statement, as shown in Figure 5.1,

is within the scope of this work. We also include attacks attempting to force control flow

to alternative portions of the application (perhaps ahead of schedule or to code not in the

current flow).

The example of illegitimate execution shown in Figure 5.1 shows one type of instruction

transition being attacked. To ensure SAE, we argue there are three types of instruction

transitions to protect. These are: sequential transitions, instruction-dependent transitions

and instruction-independent transitions. Each of these are described below with examples

of attacks.

Sequential transitions are the simplest and most common instruction transition. They

occur when an instruction at location x is executed and the following instruction to be

executed is at location x + 1. The program counter increases by 1 and no jump occurs.

These are found after arithmetic, logical, I/O or load/store instructions. However, they

also occur after conditional JUMP instructions whenever the logic test fails and the jump

is not executed. The example of illegitimate execution in Figure 5.1 shows the sequential

transition between instructions 2 and 3 changed to prevent instruction 3 executing.

Instruction-dependent transitions happen after unconditional JUMP or CALL instructions, if

the destination of the JUMP is determined by the operand of the instruction. For example,

JUMP x or CALL x causes an instruction-dependent transition by changing the value of

the program counter (the location of the next instruction) to x. The transition from

instruction 5 to instruction 8 in Figure 5.1 is an example of an instruction-dependent

transition. Relative JUMP instructions are also considered as causing instruction-dependent

transitions, as the distance jumped and instruction location can be used to replace the
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instruction with an equivalent, absolute JUMP instruction.

Finally, instruction-independent transitions occur when the next instruction is not iden-

tifiable from the instruction only. The most common causes of instruction-independent

transitions are RETURN and conditional JUMP instructions. A RETURN can transition to

different locations based on where the function was called from, the location of the next

instruction is loaded from the stack and not from the current instruction. This allows

functions to be called from different locations and execution flow to return to where the

function was called from after execution. However, it also introduces a weakness exploited

by attacks such as Return Oriented Programming (ROP) [19]. Conditional JUMP instruc-

tions lead to the immediately proceeding instruction or a remote instruction depending

on the processor state at execution time. Therefore, the instruction alone is insufficient

to identify the location of the next instruction to execute as processor flags, such as the

Zero or Carry flags, are needed. In the legitimate execution in Figure 5.1, the transition

from instruction 3 to instruction 6 is an instruction-independent transition. The JUMP was

chosen because the Zero flag was not set.

If all three types of instruction transitions are secured, it follows that SAE has been

achieved as it is not possible for program flow to deviate from the designed path.

5.2.3 Attacker Model

The attacker considered in this work is a Dolev-Yao attacker [35] able to read and ma-

nipulate data but unable to break cryptographic primitives. They can read and write to

any memory location exterior to the CPU, such as RAM or long-term storage, but they

are unable to modify CPU cache memory or registers directly. The attacker has access

to personalised applications extracted from legitimate devices but does not have access to

the original application binary. This simulates the attacker buying the device protected

with the SAE-PSE scheme and extracting the memory contents.

We assume the device is assumed to have protection mechanisms preventing side-channel

leakage and so the attacker is not able to use side-channel vulnerabilities such as power

analysis [65], acoustic side-channels [41] or cache timing side-channels [64, 74] to attack

the proposed scheme.
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The attackers goal is to achieve any of the following:

1. Skip the execution of an instruction without detection (execution must continue as

if no instruction has been skipped).

2. Modify an instruction on the device that successfully executes.

3. Redirect software control flow to an alternative portion of code from memory. The

code must execute earlier than designed or else appear in the control flow when it

would have not appeared at all.

4. Execute software taken from one device, D, on a device, D′ where D 6= D′.

5. Execute unauthorised software written by the attacker on a device D.

6. Unmask software taken from a device D, in order to discover the original, unmasked,

source binary.

5.2.4 Requirements

The requirements for a solution to the problem considered are:

R1) Software Confidentiality: the software must not be revealed to attackers. When

stored in memory, the software must be encrypted.

R2) Authorised Execution: only applications bound to a device can be executed by

the device.

R3) Immutable Applications: securely personalised software must not be meaning-

fully modifiable by unauthorised parties. Attackers are unable to make targeted

changes to the software.

R4) SAE - Secure Sequential Transitions: sequential transitions where no JUMP,

CALL or RETURN occurs must be secured in the proposed scheme.

R5) SAE - Secure Instruction-dependent Transitions: instruction-dependent tran-

sitions must be protected to ensure that after the transition, the program counter

value can only be the value determined by the instruction.
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R6) SAE - Secure Instruction-independent Transitions: instruction-independent

transitions must result in the program counter being changed to the appropriate

value after a conditional JUMP or the address following the last executed CALL if the

transition is caused by a RETURN.

5.3 Related Work

This section considers previous work in Platform Specific Execution and Secure Applica-

tion Execution and analyses it against the requirements listed in Section 5.2.4.

5.3.1 Platform Specific Execution

Platform Specific Execution is also known as binding hardware and software together and

has been applied to several problems including: counterfeiting prevention, securing device

firmware, protection of smart cities and in Digital Rights Management (DRM) - see [67]

and Chapters 3 and 4. In 2003, Krasinski and Rosner patented a method for binding a piece

of software to a specific hardware instance. Their method created a unidirectional bond

to attach a piece of DRM software to a device to protect digital audio or visual content.

A key is derived from unique or distinctive hardware, software or firmware identifiers to

ensure only the specific hardware instance may access the protected media [67].

Later, in 2008, Atallah et al. published a mechanism for binding software to a specific

hardware instance in a Virtual Machine environment. Like Krasinski and Rosner, Atallah

et al. created a unidirectional bond to attach software to hardware. To prevent distinctive

hardware, software or firmware features being virtualised, Atallah et al. used a Physi-

cally Uncloneable Function (PUF) to confirm the presence of legitimate hardware to the

executing software [10].

Chapter 3 is the first work to propose the need for a bi-directional bond between hardware

and software. It is important to connect both to ensure software executes only on legit-

imate hardware and also that hardware only executes legitimate software, which would

ensure the integrity of deployed products as neither the software nor the hardware could

be inauthentic. A PUF may be used to provide a device-specific secret for use in creating
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M(Op) F

M(Op)prev

S

Op

Figure 5.2: The binding scheme from Chapter 3 uses a secret, S, and the previous, masked
instruction, M(Op)prev, to unmask M(Op) and reveal Op for execution.

the bond (Section 3.4.3). The proposed scheme produces the bond between hardware

and software by masking each instruction using the previous stored instruction as well as

a device-specific secret which ensures the application will execute correctly on no other

device and that applications bound to the device are able to execute correctly. Using

the previous instruction in memory prevents attackers creating alternative, executable

applications by moving instructions. It also prevents the masking from behaving as an

electronic code book, a block cipher mode with known flaws. A diagram of the scheme

from Chapter 3 is included in Figure 5.2.

Requirements R2 and R3 make it necessary for the PSE scheme used in the proposed

solution to be bidirectional. The Krasinski-Rosner and Atallah et al. schemes are therefore

not suitable for inclusion. Our previous scheme provides a two way bond sufficient for the

two requirements, however like the Krasinski-Rosner and Atallah et al. schemes, it offers

no guarantees about application execution. These would need to be included by extension

or modification of the original proposal.

5.3.2 Secure Application Execution

A significant work in SAE is the 2005 paper by Abadi et al. introducing CFI enforcement as

a means of preventing various attacks. Prior to their work, most schemes were developed to

protect against individual attacks, however Abadi et al. proposed a method for protecting

existing code without hardware changes. Their technique uses a Control-Flow Graph

(CFG) drawn from an application binary using static analysis. Security of execution is
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ensured by only allowing control flow transfers included in the CFG [1].

In 2017, Clercq and Verbauwhede surveyed CFI literature and considered the problem

using CFGs and what they labelled as backward and forward edges [33]. This is similar

to our identification of instruction transitions, however Clercq and Verbauwhede focus on

instructions causing control flow transfers and not on sequential transitions. Repeated

sequential transitions are merged into CFG nodes and it is assumed the single entry/exit

nature of basic blocks holds. The authors describe forward edges as control flow trans-

fers caused by jumps and calls and backward edges as those caused by returns [33]. One

disadvantage of considering all jumps and calls equally is it loses the distinction between

jumps to register-determined and instruction-determined locations. This is significant as,

when implementing a scheme, instruction-dependent transitions are simpler to process

than instruction-independent transitions, as described in Chapter 3. Therefore, consider-

ing transitions is important when also considering hardware-software binding and creating

schemes for implementation.

The rest of this section describes some proposed methods relevant to this work for ensuring

CFI.

5.3.2.1 Jump Labelling

Jump labelling is a CFI protection technique proposed by Abadi et al. in 2005 [1]. They

suggested it as a defence, implementable in software, for protecting against various attacks.

The mechanism works by labelling the destinations of control flow instructions with IDs

checked as part of the jump so that if the label at the destination fails to match that at

the jump then program execution is aborted [1].

It was originally proposed for execution in software only [1], however it can be imple-

mented in hardware and was by Christoulakis et al. and Sullivan et al. in later works

[22, 113]. However, the labelling approach has several issues preventing it from meeting

Requirements R4 to R6. Firstly, it does not protect instructions executed after the jump

instructions, it only secures the jump instructions. Secondly, jump labelling relies on the

attacker being unable to interfere with the program in memory, while our attacker can

write to memory (Section 5.2.3). Finally, it is vulnerable to attacks changing a return
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address from the original address to an alternative address. These attacks are described

in more detail in Section 5.4.2.

HAFIX extends on the labelling approach by maintaining a table of labels and marking

them active when a call is made from a function. On the return instruction, the table is

consulted to ensure the label is active. An error occurs whenever an execution attempts

to return to an inactive function. This approach lends itself to hardware implementation

and could be included in the processor pipeline. Overall, the cost of HAFIX is small as

it merely requires a one bit flag for every call instruction in the program [30]. However,

HAFIX does not protect all transitions and does not protect the instruction jumped to,

so it does not meet Requirements R5 and R6.

5.3.2.2 Shadow Call Stacks

A Shadow Control Stack (SCS) is a mechanism used to protect return operations from

being misused by attackers. It is effective against ROP or return-into-libc attacks and

is regularly included with jump/call protections in CFI schemes. Essentially, an SCS is

a second stack storing the return addresses added to the “normal” stack. The SCS is

checked when a return instruction executes to ensure the top of both the SCS and the

“normal” stack are equal. SCS is simple to implement as it only requires extending the

logic of RETURN operations and does not require performing program analysis [33].

As identified by Clercq et al. in 2017, the location of the SCS is critical to the security of the

scheme. A stack in main memory would allow a large call depth but would be vulnerable

to attackers controlling memory. Different approaches suggest using dedicated hardware

buffers or memory only accessible by CALL and RETURN instructions or using memory

divided on a kernel level to store the SCS [33]. Therefore, SCS meets Requirement R6 but

not Requirements R4 and R5.

5.3.2.3 SOFIA

A significant, recent work in the area of SAE is SOFIA, a software and control flow in-

tegrity architecture proposed by Clercq et al. in 2017 [32]. They propose a method for
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securing CFI and describe the performance of an implementation developed. This work

sets five goals for protecting application execution: software integrity, control flow in-

tegrity, tampered code protection, code confidentiality and reverse engineering protection.

These are chosen to ensure applications correctly execute and to minimise attackers ability

to examine the code to look for flaws/vulnerabilities [32].

In essence, SOFIA protects application execution by ensuring attackers are unable to

change any instructions. Furthermore, the architecture creates location-specific protec-

tions for each of the instructions to ensure they cannot be moved to different locations

in memory and be executed in a different order. Integrity checks are included to detect

modified instructions before execution [32].

The instruction protection mechanism in SOFIA is partly in the form of a masking scheme

such as that proposed in Chapter 3. However, instead of chaining instructions, Clercq et

al. have used a nonce and the preceding and current PC values as the information used by

the function to protect instructions [32]. As a result, the instruction masking calculation

is as follows (adapted from [32]):

Opx = Op′x ⊕ Ek1(ω||xprev||x)

Where x is the PC value of the current instruction, xprev is the PC value of the previously

executed instruction, ω is a nonce and Opx and Op′x are the instruction and masked

instruction in location x respectively. Unlike in the scheme proposed in Chapter 3, in the

SOFIA masking function PC values are used based on the order of instruction execution

rather than the order of instruction storage. Note, that ω must be unique for each version

of the each secured application; Clercq et al. do not require it to be stored in a secure

location. Also calculated with the decrypted instructions are blockwise CBC-MAC values

used as an integrity check using a second key k2. The MAC of each block is encrypted

and then stored in the first location of each block and is loaded and compared with

the calculated block MAC as the instructions are decrypted. The combination of these

checks provides an integrity check ensuring attacks on the stored instructions are detected

and control flow specific instruction masking prevents instructions being moved in the

application [32].
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One strength of SOFIA is it considers a powerful attacker with full control of external

storage, I/O and buses [32]. However, one disadvantage of SOFIA is how it handles

reused code accessed from multiple locations. Due to the instruction encryption, each

instruction can only be accessed from one location. To allow code to be accessed from

multiple locations, Clercq et al. mark some blocks as accessible from multiple locations.

These special blocks start with a series of entry points, one for each JUMP or CALL leading

to the block. Each of these entry points are modified instructions allowing the calculated

MAC and instruction decryption values to each be computed from a designated “first”

instruction in the block instead of the actual first instruction in the block [32]. This is

rather inflexible and requires code analysis to be performed to identify all the locations

each function is called from before appropriate entry points can be appended. Therefore,

while SOFIA meets Requirements R1 to R6 it is not a perfect solution as handling reused

code requires extra program analysis and blocks of code adding to each function based on

the number of locations calling the function.

5.4 Proposed Solution

This section describes the proposed solution to the problem posed in Section 5.2. The

solution proposed is based on the hardware-software binding scheme proposed in Chapter 3

and summarised in Section 5.3.1. However, that scheme, hereafter referred to as simple

hardware-software binding or the simple scheme, meets only some of the requirements

from Section 5.2.4. Chapter 3 listed similar requirements to Requirements R1 to R3 when

the scheme was proposed. However, extensions to provide SAE and meet Requirements R4

to R6 are needed. The scheme proposed in this section extends the simple scheme using

ideas from the proposals listed in Section 5.3.2.

5.4.1 Protecting Sequential Transitions

The first type of instruction transition defined in Section 5.2.2 is sequential transitions.

Transitions of this type are incidentally and implicitly protected by the simple scheme

due to the cascading nature of the hardware-software bond. An instruction Op stored in

location x is masked using the data stored in location x−1 (the previous, masked instruc-
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tion) to produce Op′. For efficiency, the authors reduce the memory operations needed for

unmasking by latching data read from memory after the instruction is unmasked. This al-

lows, in the case of sequential transitions, masked data to be used in unmasking the next

instruction without being loaded again. This latching allows simple hardware-software

binding to provide implicit sequential transition security.

Extra memory accesses are only required in the simple binding scheme in the case of control

flow instructions. Therefore, the only helper data available in unmasking an instruction

after a sequential transition is the previously executed instruction. This provides implicit

sequential transition security and consequently, instructions in series execute correctly

and can only be modified by someone who knows the masking key. Therefore, the simple

scheme protects instructions executed in series by guaranteeing sequential transitions.

5.4.2 Protecting Instruction-Dependent Transitions

While the simple hardware-software binding scheme protects sequential transitions be-

tween instructions, it does not secure instruction-dependent transitions. These can be ma-

nipulated by an attacker to execute arbitrary program code and violate Requirement R3,

an example is included in Figure 5.3. Consider the application on the left side of Fig-

ure 5.3, execution starts from the top and executes two arbitrary instructions followed by

a JUMP. The JUMP leads to a short block of code, x, that performs a security check before

outputting sensitive data. The simple scheme only secures the JUMP instruction that sets

the PC value to x, but not the contents of x. Therefore, it is possible for the code to be

shifted in memory to skip the security check before outputting the sensitive data. The

attacker could change the code into that on the right of Figure 5.3 to output the sensi-

tive data without executing the security check. Eventually, the attack may be discovered

when execution reached x−1 and the instruction unmasked incorrectly, however this might

happen long after the leak, or never.

We therefore propose modifying the simple scheme to prevent instructions from being

moved from the locations they were originally installed in. The proposed modification is

to combine simple hardware-software binding with SOFIA from Clercq et al. In SOFIA

(described in Section 5.3.2.3), so that an instruction is masked using secret information, the

PC value of the instruction and the PC value of the previous instruction. This produces a
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Op
Op
Jmp x ...
Op

x : Input r1 , SecurityToken
Check r1
Load r2 , Sens i t iveData
Output r2
Op ...

Op
Op
Jmp x ...
Check r1

x : Load r2 , Sens i t iveData
Output r2
Op
Op
Op ...

Figure 5.3: When protected by only simple hardware-software binding, the code snippet
on the left can be modified to leak sensitive data by moving code into a location reached
by a JUMP operation.

device and memory location specific masking preventing instructions from being moved. If

an instruction at location y were moved to location x it would no longer unmask correctly

because the unmasking would use x and x−1 instead of y and y−1. Using the location in

calculating the instruction masking value prevents instructions from being moved. SOFIA

introduces the need for a tree-like structure at function entry adding a new instruction

for each call to the function. However, as the jump source is protected by the application

binding (Section 5.4.1), preventing instruction movement is the only additional property

needed. The new masking equation will be as follows:

Op′x = F (Opx, Op′x−1, x)

Where x is a memory location or PC value, Opx is the instruction in location x in the

application, Op′x is the masked version of Opx and F is the function used to unmask Op′x.

This extension binds each instruction to the specific device and also the specific memory

location it is to be executed from. This ensures attacks such as demonstrated in Figure 5.3

are no longer possible.

5.4.3 Securing Instruction-Independent Transitions

After combining elements from simple hardware-software binding and the Clercq et al.

scheme, the result is a masking scheme ensuring code immutability and that control flow

instructions lead to the instructions intended. However, there is still a weakness associated

with function code accessed by CALL and RETURN-type operations. The weakness is that
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Op
Op

x : Cal l FUN.
.
.

SecurityCheck.
.
.

Op
y : Ca l l FUN

Op
Op

FUN:
Op
Op
Op
Return

×

1

Figure 5.4: Changing return addresses can be used to skip security critical instructions.

while the scheme ensures that CALL instructions lead to the correct code it does not ensure

CALL and RETURN instructions are executed in correct pairs.

Consider the code example in Figure 5.4. A function is called from two locations, x and

y, and a security check is computed between the calls. As stated in Section 5.2.3, the

attacker can interfere with any memory location including the stack. Therefore, the check

can be avoided by waiting until FUNC is called and then changing the return address on the

stack from x+1 to y+1. This avoids executing the security check and allows unauthorised

access to later parts of the application. This attack is possible in the combined simple-

binding-SOFIA scheme as no instructions are modified.

Therefore, a mechanism is required to ensure the destination of RETURN instructions

matches (+1) the location of the CALL transferring control flow to the function. We pro-

pose an instruction set extension to transform CALL and RETURN into two part instructions.

This change adds CALL-IN and RETURN-OUT to the instruction set. These instructions must

be executed before CALL and after RETURN instructions respectively to prevent attacks as

shown in Figure 5.4. The check will be to store a value provided with the CALL-IN when

it executes and compare it with the value embedded in the RETURN-OUT. Check value mis-

matches will cause an error and stop execution. This ensures RETURN instructions transfer

control flow to after the correct CALL instruction and not to after a different CALL to the

same function. The extra instructions ensure secure execution of re-used functions with

only two extra instructions per function call. The use of these instructions is demonstrated

in Figure 5.5.

However, some attackers may attempt to avoid the RETURN-OUT check by returning to

x + 2 or y + 2. Therefore, the scheme must protect against attackers skipping CALL-IN
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Op
Op
CALL IN x
CALL FUN
RETURN OUT x.

.

.
SecurityCheck.

.

.
Op
CALL IN y
CALL FUN
RETURN OUT y
Op
Op

FUN:
Op
Op
Op
Return

×
y 6=x

X
x=x

1
Figure 5.5: The extra operations added to the instruction set secure the RETURN after
execution of re-used function code.

or RETURN-OUT instructions. This necessitates an extra check to ensure the instruction

executed after a CALL-IN is a CALL and after a RETURN is a RETURN-OUT. This check

must also ensure CALL is only executed after CALL-IN, and that RETURN-OUT may only

follow a RETURN. Furthermore, CALL-IN not followed by CALL or RETURN not followed by

RETURN-OUT also indicates an error. These checks are made using two one-bit processor

flags. These flags are CALL-CHECK and RETURN-CHECK and are set by the executing of

CALL-IN and RETURN and are reset by CALL and RETURN-OUT. These instructions must

always be executed in series, so the check will ensure this by throwing an error if any

instruction is executed while a flag is set other than the instruction to reset the flag.

Similarly, an error must occur when an instruction to reset a flag is called when the flag

is not set.

For example, a CALL-IN instruction executes setting the CALL-CHECK flag and storing the

Sec Value. If the next instruction is an ADD instruction or any other instruction other than

a CALL, an error will occur. However, if the next instruction is a CALL, the CALL-CHECK

flag will be reset and the processor will execute the function. These additional registers

protect the CALL-IN to CALL and RETURN to RETURN-OUT transitions and with the value

checks ensure the security of instruction-independent transitions.

However, it is common for functions to call functions. In these cases, a second stack similar

to the SCS described in Section 5.3.2.2 will be used. The check value is added to a stack

with the execution of the CALL-IN instruction. The check is made when the RETURN-OUT

instruction is executed by comparing the value in the instruction with the top of the Sec

Stack. To aid performance, the check value could be stored in a processor register and
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compared with the instruction check value with no memory access. After the check, the

stack is popped to the register at any time before the next RETURN-OUT instruction. This

may not help when RETURN and RETURN-OUT instructions are executed in a series of pairs,

but may otherwise improve performance.

5.5 Implementation

This section describes the Secure-Execution Processor (SEP), the proof-of-concept imple-

mentation of the scheme proposed in Section 5.4. The details of the prototype are described

in three subsections. Section 5.5.1 discusses design decisions made when developing the

prototype and the hardware used. Section 5.5.2 describes the assembler developed to com-

pile programs for execution on the SEP. Finally, Section 5.5.3 covers the hardware of the

prototype and how it realises the scheme proposed.

5.5.1 Design Decisions

The implementation was developed on a Xilinx Spartan-6 FPGA SP601 evaluation board

[124]. This board contains a Spartan-6 as well as block RAMs, LEDs, push-buttons,

switches, an ethernet port, general-purpose I/O headers and a serial interface. All can be

attached to designs loaded into the FPGA [124]. The prototype used block RAM to store

software and the serial port and LEDs to demonstrate operation. A high-level system

diagram of the prototype is shown in Figure 5.6.

As well as the hardware developed, a basic application was written to execute on the

SEP. This is a simple program written in assembly language to output data to the

connected PC via a UART interface1. Two tasks were carried out by the application:

printing “Hello World!” to the terminal via the UART port and then flashing LEDs based

on counter values. In total, the application (Appendix E) comprised 68 instructions,

including multiple CALL/RETURN pairs and loops using conditional JUMP instructions.

1VHDL code from the PicoBlaze [123] soft-core processor was used to control the UART interface.
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ProcessorBRAM

UART

LEDs

PC Terminal

read enable

address

encrypted block

FPGA

Figure 5.6: The prototype included serial and LED outputs to demonstrate correct exe-
cution.

5.5.1.1 Choice of F

Section 5.4.2 stated the masking function combine the operation, previous masked instruc-

tion and location of the operation. However, this idea requires more precise definition

before implementation. As suggested in Section 3.4.3, the prototype uses a basic block

structure for the application. In the basic block model, an application is split into blocks

containing a fixed number of instructions where each block is executed in entirety or not

at all. Execution of a basic block always starts with the first instruction and always fin-

ishes with the last instruction. JUMPs to or from the middle of a block are forbidden.

This increases the overall size of the application as NOP (no-operation) instructions have

to be added to comply with the model. Obviously, extending program length increases

execution time. However, it allows the unmasking process more time to complete as once

a block is ready there is a period of time based on the block length until the next block is

needed. As a result, the prototype did not need to pause execution at any time to perform

extra load or unmask instructions, unlike the simple hardware-software binding scheme

from Chapter 3.

Basic blocks allow more efficient use of the block cipher by matching basic block size to

the block size of the block cipher used. However, the function F needs to be explicit for

implementation. The function used in the simple binding scheme is not suitable for two

reasons. It is reproduced below with a basic block model translation:
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Op′x = Opx ⊕ F (Op′x−1)

B′x = Bx ⊕B(B′x−1),

where Bx is the basic block at location x and B′x is the masked block. The first reason

this is not suitable is the value x is absent from the computation, this allows attacks

on the scheme as stated in Section 5.4.2. The second reason is that any bits flipped in

B′x will be flipped in the unmasked block, allowing an attacker to change instructions

executed, violating Requirement R3. Therefore a new masking function is needed to

protect instructions from modification. The properties needed of the masking function

are: inclusion of the previous block, inclusion of the block address and prevention of

attackers from making targeted changes to any bits in the unmasked instructions. To

achieve these goals, the following functions for masking and unmasking will be used:

B′x = B′x−1 ⊕ Enck⊕x(Bx)

Bx = Deck⊕x(B′x ⊕B′x−1).

The exclusive-OR before decryption ensures attackers are unable to target a bit or bits

to change in the resulting unmasked instructions. As each masking is now dependent

on the location of the block, this is due to mixing the address into the encryption key,

this does not decrease scheme security as long as the cipher used is secure against related

key attacks. Since the masking key is now dependent on the location of the instruction,

any rearrangement of basic blocks ensures they are not correctly unmasked. With a

strong block cipher, decryption can be considered a pseudorandom function. Therefore an

attacker modifying Bx or B′x−1 cannot make predictable output changes.

This masking function takes influence from SOFIA by Clercq et al. [32]. However, the

difference between schemes is that this, updated, scheme replaces using the PC value

of the previously executed instruction with that of the instruction stored in the memory

location before the current instruction. This will simplify the process of producing bound

executables for devices by minimising how sensitive the assembler must be to the context

of each instruction in the application control-flow.
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Cipher Block Size Key Size

AES 128 128
KATAN 32 80

64 80
PRESENT 64 80

64 128
PRINCE 64 128
RECTANGLE 64 80
SIMON 32 64

64 128
SPECK 32 64

64 128

Table 5.1: Lightweight block ciphers implemented by Maene and Verbauwhede in [78].

5.5.1.2 Cipher Used

As discussed previously, the function used to protect instructions needs to produce pseu-

dorandom outputs unpredictable by an attacker. Block ciphers provide the guarantees

required and so several were considered for use in securing the application. The list of

ciphers considered is included in Table 5.1, all are considered lightweight apart from AES

which is included for reference. However, each cipher has different block sizes, key lengths

and complexities. The ciphers in Table 5.1 were considered because they have single-cycle

implementations developed by Maene and Verbauwhede in 2015 [78], that are publicly

available via Github [77]. The execution of a basic block may only take a small number

of cycles, therefore a single-cycle implementation allows the scheme to be used with less

time overheads. This also avoids complicated use of pauses and unpauses such as those

encountered in Section 3.5.

For the prototype, the PRINCE cipher was used. PRINCE is a lightweight block cipher

developed by Borghoff et al. in 2012 [16]. It features a 64 bit block size, 128 bit key size

and has been the target of multiple competitions with prizes awarded based on attack

strengths [16, 100, 101]. It was designed for efficiency in hardware and was the smallest

implementation in the 64/128 class and fastest overall cipher in Maene and Verbauwhede’s

study [78]. Therefore, due to the high-security, good block size and presence of a published,

good, single-cycle implementation, PRINCE was the best choice for use in F .

5.5.2 Assembler

To assist in preparing applications for the SEP by converting instructions into machine

code, performing necessary encryptions and enforcing the program structure required, an
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assembler was developed. The assembler takes as input a program written in SEP-assembly

and outputs the memory contents to be loaded and executed by the SEP. This section

describes the assembly code, instructions implemented and considerations for ensuring a

legal program is output from the assembler.

For the SEP, a new assembly language dialect was written. The language developed is

based on Picoblaze assembly [123] with most instructions removed - instructions not used

by the example application were not implemented leaving a minimal instruction set. This

instruction set allowed the opcode of an instruction to require only four bits, granting the

SEP a 16-bit instruction set rather than the 18-bit size of PicoBlaze. However, the main

benefit of shrinking the instruction size is instructions fit into block sizes of 2n bits2. This

enables basic blocks to easily match common block cipher block sizes of 64 or 128 bits,

such as that of PRINCE [78]. The complete set of SEP opcodes is listed in Table 5.2.

As stated, SEP instructions are 16 bits wide. This is split between four bit opcodes and

12-bits for the operand/s. There are five types of operand in SEP instructions: register

IDs, data values, IO addresses, memory addresses and security values. Register IDs are

4-bit numbers that select one of the 16 registers available to the SEP Arithmetic and

Logic Unit (ALU). Data values are 8-bit numbers used by the ALU, these can be saved,

AND-ed, added or subtracted into registers. IO addresses are 8-bit ID numbers of Input

or Output devices attached to the SEP, IO addresses select devices to send data to or

receive data from one of the ALU registers. Memory addresses are 12-bit addresses used

with CALL or JUMP instructions to determine the new value for the PC (subject to a flag

check for conditional JUMPs). Finally, security values are 12-bit values used by CALL-IN

and RETURN-OUT instructions.

As well as translating human-readable instructions into SEP machine code, the assem-

bler also enforces the basic block structure required. The assembler also adds the required

CALL-IN and RETURN-OUT instructions and generated the security values. Therefore, trans-

lation and insertion of instructions are the main tasks of the assembler.

To enforce the basic block model there are two main criteria the assembler has to manage.

As stated, a basic block always starts with the first instruction and finishes with the final

instruction. Therefore any control-flow instruction must meet two criteria: always be

2Where n ≥ 4
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Opcode Instruction Operands

0 LOAD sX, sY 2
1 LOAD sX, kk 2
2 AND sX, kk 2
3 INPUT sX, pp 2
4 ADD sX, kk 2
5 SUB sX, kk 2
6 CALL aaa 1
7 CALL-IN ccc 1
8 JUMP aaa 1
9 JUMP NZ, aaa 1
A JUMP C, aaa 1
B RETURN 0
C RETURN-OUT ccc 1
D OUTPUT sX, pp 2

Table 5.2: Only the instructions needed for the test application were implemented and
thus some common instructions are missing.

at the end of a basic block and always point towards the start of a basic block. These

can intersect if one control-flow instruction is the destination of a second control flow

instruction. In this case, the first control-flow instruction must be placed at the end of a

basic block by inserting NOP instructions until this achieved. Then the second control-flow

instruction must be modified to point toward the start of the block containing the first

instruction. In most cases however, both criteria do not intersect and in the example

program most instructions moved needed to be sent to the start of a basic block or the

end.

Assembler program modification can thus be summarised in three points: ensuring JUMP

instructions are only at the end of basic blocks, ensuring JUMP destinations are only at the

start of blocks and adding CALL-IN and RETURN-OUT instructions where needed.

5.5.3 Hardware

This section describes the hardware element of the prototype. The hardware developed is

a softcore processor, specified in VHDL, for synthesis to a Xilinx Spartan-6 FPGA. Use

of an FPGA allows for more rapid prototyping and allows the design to be modified and

shared more easily.

The SEP is comprised of six main components: the unmask unit, the data reader, the

PC update, the PC/Sec stack, the IO handler and the ALU. Each component in the

system completes different tasks and is responsible for updating different signals in the

processor. A simplified model of the processor is shown in Figure 5.7. For clarity, some
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of the helper signals have not been shown such as internal flags identifying the type of

the last instruction in the current block, the zero and carry flags and access to the top of

the stacks given to data reader and PC update. We will now describe the components in

Figure 5.7.

The unmask unit receives data from memory and saves it as either an instruction block

or helper data block. Use of a received block is calculated based on the current PC value

and the state of the execution of the current instruction. The unmask unit also latches

helper data used in sequential transitions. The PRINCE cipher component implemented

by Maene and Verbauwhede [78] is included in the unmask unit. The cipher decrypts the

next block depending on the PC value set during execution of the fourth instruction in the

current block. Unmask unit tasks are time critical and follow the schedule in Figure 5.8.

The data reader sends addresses and enable signals to the memory to request data blocks.

BRAM devices on the SP601 require the address and enable signals to be held for one

cycle before a memory block is returned. The data reader uses an internal instruction

state with the current PC value to time when to set and reset address and read enable

signals. Like the unmask unit, data reader tasks are time critical and must follow the

execution schedule shown in Figure 5.8.

The PC update maintains the current Program Counter value and updates it as each

instruction is executed. The PC is updated based on the internal clock of the processor and

also the current operation executing. Each instruction requires two cycles for execution,

the PC is updated after the first cycle to indicate the location of the next instruction. PC

update is critical to scheme security as it handles processing instruction transitions.

When a CALL instruction is executed, the PC/Sec stack stores the return address and the

last CALL-IN security value. The PC/Sec stack, upon CALL instruction execution, stores

the return address and the last CALL-IN security value. Security values from CALL-IN

instructions are latched by the PC/Sec stack before they are pushed by the CALL instruc-

tion. The PC/Sec Stack displays the top of the stack to the data reader to aid execution

of RETURN instructions. Access to the return address allows RETURN instructions to be

processed similarly to unconditional JUMP instructions as the next address is known to the

data reader.
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Figure 5.7: The Secure-Execution Processor consists of six main elements.

The IO handler sets the read/write strobe signals and the IO port ID values based on the

current operation being executed. When an input or output signal is written or read, the

write/read strobe signal is set high for one cycle. This synchronises SEP IO reads/writes

with the attached input/output devices providing/receiving data.

Finally, the ALU executes arithmetic or logical instructions and maintains the processor

registers and zero/carry flags. The ALU also connects registers with IO devices when

INPUT or OUTPUT instructions are executed. As the instruction set (Table 5.2) does not

include a NOP instruction, loading a register with itself is used instead as this makes no

change to data stored. Specifically, LOAD s0, s0 is added by the assembler to enforce

the basic block model. However, this requires extra ALU logic to maintain program

functionality. Normally, when a LOAD is executed, the carry flag is reset and the zero

flag is only set if the register changed becomes equal to 0. However, this affects JUMP

NZ instructions if a LOAD s0, s0 is inserted before the instruction as flags will set/reset

according to the value of s0, not last instruction before the LOAD s0, s0. Therefore, the

ALU was modified to preserve the zero and carry flags if the two registers provided with

a LOAD instruction are equal. This prevents NOP/LOAD s0, s0 instructions from effecting

program logic.

When executing the application, different transitions between basic blocks have different

requirements for the data needed. For example, if the transition from the current block

to the next is sequential, the only memory load required is loading the next block in

memory. In the sequential case, the helper data for the next block is the current block
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Type of JUMP at end of block
Op Cycle PC Sequential Unconditional Conditional

00
0 00
1 01

01
2 01
3 10 load B′x

10
4 10 load B′j−1

5 11 load B′x load B′j−1 load B′j

11
6 11 load B′x+1 load B′j load B′x+1

7 00 Unmask next block
[x+ 1, j]||00 8 00 Execute next block

Table 5.3: Sequential transitions require less memory accesses than unconditional JUMPs
which require less than conditional JUMPs.

Figure 5.8: The Secure-Execution Processor updates each signal according to a strict
schedule.

which is latched to protect sequential transitions. The most demanding case is when the

final transition is conditional as this requires the next block, the JUMP block and the JUMP

helper data to all be read by the data reader. As only one memory read can be performed

per cycle, the timing of the memory reads for each transition must be met precisely. A

table of the data read actions for each type of transition is found in Table 5.3. Note:

each instruction requires two cycles for execution. Changes to the program signals in a

simulation of the prototype are shown in Figure 5.8.

To enforce the security requirements of the proposed scheme, a “kill switch” was added to

the design of the processor. Each component shown in Figure 5.7 is driven by an internal

clock, which is defined simply by:

int clk = clk&kill switch,

where kill switch is initialised as 1 and set to 0 whenever a security problem occurs.
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We define this security problems as: CALL-IN/RETURN-OUT security value mismatch, CALL

without CALL-IN (and vice versa), RETURN without RETURN-OUT (and vice versa).

5.6 Analysis

This section analyses the scheme proposed and implemented in this work. First, the

proposal in Section 5.4 is checked against the requirements derived in Section 5.2.4. The

second half of this section analyses the implementation described in Section 5.5.

5.6.1 Requirements Analysis

Recall that Section 5.2.4 listed six requirements for the proposed scheme. Requirement R1

is to provide software confidentiality to ensure attackers cannot reproduce the software

and violate the software binding. A function F is used to conceal the instructions mak-

ing up the application executed by the SEP. The F implemented includes PRINCE for

encrypting/decrypting blocks of application instructions and ensuring software confiden-

tiality.

Requirement R2 needs each application to be bound to just one device. Each device is

initialised with a different encryption key, so each masking is unique to a single device. No

other device other than the intended device will be able to unmask the blocks and execute

the program.

Requirement R3 requires the scheme to prevent attackers making meaningful changes to

the application. Section 5.5.1.1 describes the F used in the implementation and how the

use of PRINCE prevents attackers from predicting the consequences of any changes made.

Requirement R4 demands that sequential transitions between instructions be secured.

This is achieved by the block chaining in the unmaking functions. The previous executed

block is used as helper data without being loaded from memory, this ensures the security

of sequential transitions..

Requirement R5 requires that instruction-dependent transitions, such as those following
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JUMP and CALL instructions are secured. This is achieved by including the location of the

block into the masking function, ensuring the block jumped to cannot execute correctly if

it has been modified as each masking is address dependent.

Finally, Requirement R6 states instruction-independent transitions (such as after RETURN

instructions) must be secured. In the proposed scheme this is met by using CALL-IN and

RETURN-OUT instructions with the PC/Sec Stack to store and check the security values.

These instructions must be executed before and after CALL and RETURN instructions, and

the security values must match for execution to continue otherwise the kill switch activates.

Instruction-independent transitions are secured by the proposed scheme.

5.6.2 Implementation Analysis

The prototype implemented the scheme proposed that meets the requirements listed in

Section 5.2.4. This subsection describes the strengths and limitations of the prototype.

The main design decision required when implementing the proposed scheme was to use

the basic block model and PRINCE for encrypting the basic blocks. PRINCE was chosen

due to the low latency and small size of the single-cycle implementation of Maene and

Verbauwhede [78]. The single cycle implementation aided the SEP to meet deadlines

for instruction readiness. However, as shown in Table 5.3, for each possible transition

there were free cycles available while the block was executing. Therefore, the single cycle

implementation is faster than required and a slower implementation could be used if the

timing of conditional JUMP instructions could be met. Multiple unmask operations while

executing the block might be required in this case to avoid the need for pauses. A current

advantage of the implementation over other schemes is the avoidance of delay in the

execution of instructions.

Cipher choice determined the size of basic blocks to 64 bits/four instructions. This limits

the number of NOP instructions needed to be inserted to three before a JUMP. However, in

the case of a CALL instruction finishing a block, four additional instructions are needed,

as we will need a CALL-IN as well as three NOPs. Furthermore, the need for control-flow

instructions to point towards the start of basic blocks requires even more NOP instructions

to be added. Due to the extra instructions added, the test application was expanded
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from containing 68 operations to containing 160 operations after the basic block model

conversion and CALL-IN/RETURN-OUT instruction addition. However, enforcing the basic

block model only extended the application to 108 instructions, the proposed scheme added

52 instructions more than a basic block-only scheme. The example program contained 14

CALL instructions, meaning a minimum of 28 instructions needed to be added, and the

remaining 24 additions were required to fit the basic block model. Therefore, despite the

implementation requiring no pauses in execution, it does still reduce application perfor-

mance. To achieve the extra security requirements, the length of the program (and thus

the number of cycles required to execute) increased substantially.

5.7 Conclusion

In this paper we presented a novel work combining two previously studied problems,

Secure Application Execution and Platform Specific Execution. The proposed scheme

ensures applications executing on a device were put there by the manufacturer and are

executing correctly from start to finish. The scheme presented is a framework that could

be implemented in various ways, one instantiation was implemented to demonstrate the

scheme in practice. A description of the prototype was provided to make clear the steps

followed and the constraints present.

The proposed scheme combines SOFIA, by Clercq et al., and our scheme from Chapter 3.

The extension over Chapter 3 was to also consider secure execution as well as platform-

specific execution. Our proposed used elements from SOFIA, the location-specific masking

operation, but also simplified the protection of reused code; simplifying the scheme and

removing the need to handle certain exceptional cases. This resulted in a scheme reach-

ing wider security goals than previously while retaining the consistent application and

execution from our previous scheme.

Further work in this area would look to different methods for using the CALL-IN/RETURN-OUT

security values. One potential approach could be to remove the need for a “Sec Stack”

and instead use a multiplicative counter if the different Sec Values were prime numbers.

Another extension of this work would expand the prototype to a fuller instruction set

including storing values in memory. With a full instruction set, an in-depth study of the
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performance cost of the scheme could be carried out by compiling real-world applications

and libraries for execution on the SEP.
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This chapter concludes the thesis by summarising the work presented and by considering

areas for future work in the area of binding hardware and software in computing devices.
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6.1 Summary and Conclusions

This work has considered methods for protecting computer systems from software tam-

pering. Primarily, the use case considered has been embedded computing and IoT devices,

however the work would apply equally to computer systems in other domains. The conse-

quences of attacks on computer systems can be severe and so we must continue to develop

security solutions. This thesis has presented three distinct studies that develop, or consider

the deployment of, security solutions.

Primarily, this work concerns protecting systems by binding hardware and software to-

gether. Previous work in this area is limited so initial work explored the problem space

by developing requirements for a binding scheme. From the initial set of requirements,

a solution was developed to meet them. Many potential instantiations of the proposed

binding were suggested, however a simple LFSR-based scheme was implemented to explore

the cost of the scheme, the sources of any delays in execution and the overall efficacy of

the scheme.

As few hardware-software binding schemes have been proposed, there has been very little

study into deploying them. Therefore, in the setting of a smart city, provisioning software

bound to devices was explored and examined. Three models were developed to describe

modes of software distribution. From the three models, requirements and protocols were

developed for provisioning software and generating binding keys in a smart city. The

protocols were analysed using Tamarin Prover and their security proven. Each protocol

was implemented using a laptop and Raspberry Pi 3 to test their performance.

Finally, the initial problem and solution were expanded to also consider a similar, but

distinct problem - securing application execution. A new binding scheme was proposed

to ensure deployed software executes correctly and only the device it is intended for.

The Secure-Execution Processor was developed to demonstrate the new scheme and it

uses it to secure all installed applications. Using high speed cryptographic hardware, the

software executed with no penalty to instruction throughput although enforcing program

compliance with the scheme added significant overheads.
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6.2 Future Work

Binding hardware and software has large scope for future research. The work presented

defined unidirectional and bidirectional schemes but did not exhaustively list possible

schemes. Many more may be developed to bind software and hardware.

This work only considered creating application-level bonds. However, one extension would

be to expand on the work of Atallah et al. (Section 2.4.2) and consider methods of creating

algorithm-level bonds. In their work, Atallah et al. considered the RSA algorithm and

bound it to the hardware by including device specific information into the computation.

Algorithm-binding has more potential to be discovered mixed into schemes like those

presented in this document or by considering distinct approaches.

Future work may also include studying the cost of masking data stored in and loaded

from main memory. The schemes implemented in Chapters 3 and 5 ran applications only

requiring processor registers and with no external memory used. Extending the prototypes

to secure the mutable data stored in main memory would increase understanding of the

costs of using hardware-software binding to protect real-world applications.

Other future work could also study the impact of hardware-software binding by testing

with established benchmark code. This would require expanding the prototype implemen-

tations to secure data in main memory and then expanding the instruction set of the SEP

before installing or cross-compiling several known libraries. With these extensions, the

performance cost of each scheme could be assessed and compared other, similar security

schemes. Expanded implementations could also include different masking functions to test

the cost of different approaches and cryptographic function choices.

Finally, a larger area to be researched is considering how binding hardware and software

may apply in alternative domains to embedded systems, such as distributed computing

or in securing cloud applications. A wide study of potential use cases would focus future

work to domains where ensuring platform specific execution can make the greatest benefit

to application security.
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Simple Binding Scheme Test Applica-
tion Code

CONSTANT LED PORT, 02

CONSTANT UART TX STATUS, 00

CONSTANT UART RX READ, 01

CONSTANT UART TX DATA IN, 01

s t a r t :

OUTPUTK FF, 1

LOAD s0 , s0

LOAD s0 , s0

OUTPUTK 00 , 1

LOAD s0 , s0

LOAD s0 , s0

LOAD s1 , ”H”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

LOAD s1 , ”e”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

LOAD s1 , ” l ”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

LOAD s1 , ” l ”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

LOAD s1 , ”o”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

LOAD s1 , ” ”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

LOAD s1 , ”W”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

LOAD s1 , ”o”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

LOAD s1 , ” r ”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

LOAD s1 , ” l ”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

LOAD s1 , ”d”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

LOAD s1 , ” ! ”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN
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LOAD s1 , ” ”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

LOAD s1 , 0D

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

JUMP l e d S t a r t

waitForUARTFree :

INPUT s0 , UART TX STATUS

AND s0 , 04

JUMP NZ, waitForUARTFree

RETURN

l e d S t a r t : LOAD s0 , 00

loop : OUTPUT s0 , LED PORT

LOAD s2 , FF

x :LOAD s1 , FF

y :SUB s1 , 01

JUMP NZ, y

SUB s2 , 01

JUMP NZ, x

ADD s0 , 01

JUMP C, r e s e t

back : JUMP loop

r e s e t : LOAD s0 , 00

JUMP back
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Tamarin Model for Device-Centric Pro-
visioning

theory DeviceCentr ic

begin

b u i l t i n s : d i f f i e −hellman , symmetric−encrypt ion , s i gn ing , hashing

r u l e Reg i s t e r pk :

[ Fr (∼ltkA ) ]

−−>
[ ! Ltk ($A, ∼ltkA ) , ! Pk($A, pk (∼ltkA ) ) , Out( pk (∼ltkA ) ) ]

r u l e c r e a t e O c e r t :

l e t

ocertnew = <$O, pkO, ∼cid>

in

[ Fr (∼c id ) , ! Pk($O, pkO) ]

−−[ OnlyOnce ( ) , CreateOCert ( ocertnew ) , FirstOCert ( ocertnew ) ]−>
[ ! OCert ( ocertnew ) , Out( ocertnew ) ]

r u l e update O cert :

l e t

o c e r t o l d = <$O1 , pkO1 , ∼cid1>

ocertnew = <$O, pkO, ∼cid>

in

[ Fr (∼c id ) , ! Pk($O, pkO) , ! OCert ( o c e r t o l d ) ]
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−−[ Val idCert ( o c e r t o l d ) , ReCert ($O, $O1 , ∼cid , ∼c id1 )

, OCertExpired ( o c e r t o l d ) , OCertByUpdate ( ocertnew )

, CreateOCert ( ocertnew ) ]−>
[ ! OCert ( ocertnew ) , Out( ocertnew ) ]

r u l e r e v e a l s e s s i o n k e y :

[ ! SessionKey ( seshk , nc1 , nc2 ) ]

−−[ RevealSess ionKey ( seshk ) ]−>
[ Out( seshk ) ]

// F i r s t Message (O−>D)

r u l e O1 :

l e t

a = ∼a

nc1 = ∼nc1

pid = ∼pid

D = $D

O = $O

theOCert = <$O, pk ( ltkO ) , cid>

ga = 'g ' ∧ a

m1 = <'message1 ' , $O, $D, nc1 , ga , theOCert>

m1Sig = s ign (h(m1) , ltkO )

in

[ ! Ltk ($O, ltkO ) , ! OCert ( theOCert ) , Fr ( nc1 ) , Fr ( a ) , Fr ( pid ) ]

−−[ O1( pid ) , OUT O1( pid , m1) , S ta r t ( pid , $O, ' operator ' )

, Neq( ga , 'g ' ) , Val idCert ( theOCert ) , SendFreshNonce (O, D, nc1 )

, Role (O, ' operator ' , pid ) ]−>
[ Out(<m1, m1Sig>) , St O1 ($O, $D, nc1 , a , pid , theOCert ) ]

// Second Message (D−>O)

r u l e D1 :

l e t

b = ∼b

nc2 = ∼nc2
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c = ∼c

D = $D

O = $O

ga = 'g ' ∧ new a

gb = 'g ' ∧ b

seshK = ga ∧ b

recOCert = <$O, pk ( ltkO ) , cid>

m1 = <'message1 ' , $O, $D, nc1 , ga , recOCert>

m1Sig = s ign (h(m1) , ltkO )

m2 = <'message2 ' , $D, $O, nc1 , nc2 , gb , senc ( ' g ' ∧ c , seshK)>

m2Sig = s ign (h(m2) , ltkD )

in

[ ! Ltk ($D, ltkD ) , ! Ltk ($O, ltkO ) , ! OCert ( recOCert ) , Fr ( nc2 )

, Fr (b ) , Fr ( c ) , Fr ( pid ) , In(<m1, m1Sig>) ]

−−[ D1( pid ) , IN D1 ( pid , m1) , S ta r t ( pid , $D, ' device ' )

, SendAuth ($D, $O, nc1 ) , SendFreshNonce (D, O, nc2 )

, Val idCert ( recOCert ) , In d1 nc1 ga ( nc1 , ga , m1) , Neq( ga , 'g ' )

, Neq( seshK , 'g ' ) , OUT D1( pid , m2) , Role (D, ' device ' , pid )

, Estab l i shSes s ionKey (O, D, nc1 , nc2 , seshK ) ]−>
[ Out(<m2, m2Sig>) , ! SessionKey ( seshK , nc1 , nc2 )

, St D1 ($D, $O, nc1 , nc2 , ga ∧ b , c , recOCert , pid ) ]

// Third Message (O−>D)

r u l e O2 :

l e t

a = ∼a

DHd = ∼DHd

nc1 = ∼nc1

pid = ∼pid

SWid = ∼SWid

O = $O

D = $D

theOCert = <$O, pk ( ltkO ) , cid>

App = <'sw ' , SWid>
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gb = 'g ' ∧ b

seshk = gb ∧ ∼a

gc = 'g ' ∧ new c

gd = 'g ' ∧ DHd

gcenc = senc ( gc , seshk )

maskingKey = gc ∧ DHd

MaskedApp = senc (App , maskingKey )

AppHash = h(<App , 'SWHash'>)

m2 = <'message2 ' , $D, $O, nc1 , nc2 , gb , gcenc>

m2Sig = s ign (h(m2) , ltkD )

m3 = <'message3 ' , O, D, nc2 , senc(<MaskedApp , AppHash , gd>, seshk)>

m3Sig = s ign (h(m3) , ltkO )

in

[ ! Ltk ($O, ltkO ) , ! Ltk ($D, ltkD )

, St O1 ($O, $D, nc1 , a , pid , theOCert ) , In(<m2, m2Sig>)

, Fr (DHd) , Fr (SWid) , ! OCert ( theOCert ) ]

−−[ O2( pid ) , IN O2 ( pid , m2) , Prov i s ioned ($D, $O, App , pid )

, SendAuth ($O, $D, nc2 ) , Authentic ($O, $D, nc1 )

, AppInsta l lSend ($O, $D, App , nc1 , nc2 , theOCert )

, Neq( gb , 'g ' ) , Neq( gc , 'g ' ) , Neq( gd , 'g ' ) , OUT O2( pid , m3)

, Role (O, ' operator ' , pid ) , Val idCert(<$O, pk ( ltkO ) , cid >) ]−>
[ Out(<m3, m3Sig>) ]

//SW I n s t a l l a t i o n

r u l e D2 :

l e t

c = ∼c

pid = ∼pid

nc2 = ∼nc2

i i d = ∼i i d

D = $D

O = $O

gd = 'g ' ∧ DHd
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MaskSW = senc (SW, gd ∧ c )

AppHash = h(<SW, 'SWHash'>)

stOCert = <$O, pk ( ltkO ) , cid>

m3 = <'message3 ' , O, D, nc2 , senc(<MaskSW, AppHash , gd>, s e s s i o n k e y )>

m3Sig = s ign (h(m3) , ltkO )

in

[ ! Ltk ($O, ltkO )

, St D1 ($D, $O, nc1 , nc2 , seshk , c , stOCert , pid )

, In(<m3, m3Sig>) , Fr ( i i d ) ]

−−[ D2( pid ) , IN D2 ( pid , m3) , Authentic ($D, $O, nc2 )

, Val idCert ( stOCert ) , Role (D, ' device ' , pid )

, I n s t a l l e d ($D, $O, SW, i i d , nc1 , nc2 , stOCert ) ]−>
[ ]

// R e s t r i c t i o n s

r e s t r i c t i o n OnlyOnce :

”Al l #i #j . OnlyOnce ( )@#i & OnlyOnce ( )@#j ==> #i = #j”

r e s t r i c t i o n Equal i ty :

”Al l x y #i .

Eq(x , y ) @i

==> x = y”

r e s t r i c t i o n I n e q u a l i t y :

”Al l x y #i .

Neq(x , y ) @i

==> not ( x = y ) ”

r e s t r i c t i o n Cer tVa l id i ty :

”Al l c e r t #i .

Val idCert ( c e r t ) @i

==> (Ex #j .

CreateOCert ( c e r t )@#j

& j < i )
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& not (Ex #k .

OCertExpired ( c e r t )@#k

& k < i ) ”

r e s t r i c t i o n FreshAuth :

”Al l A B n #i #j .

SendAuth (A, B, n) @i

& SendAuth (A, B, n) @j

==> #i = #j”

r e s t r i c t i o n FreshNonce :

”Al l A B n #i #j .

SendFreshNonce (A, B, n) @i

& SendFreshNonce (A, B, n) @j

==> #i = #j”

// Source Lemmas

lemma types [ s ou r c e s ] :

” Al l t i d m1 #i .

IN D1 ( t id , m1) @i

==> (Ex #j . KU(m1) @ #j & j < i )

| (Ex tidO #j . OUT O1( tidO , m1) @j & j < i )

& Al l t i d m2 #i .

IN O2 ( t id , m2) @i

==> (Ex #j . KU(m2) @j & j < i )

| (Ex tidD #j . OUT D1( tidD , m2) @j & j < i )

& Al l t i d m3 #i .

IN D2 ( t id , m3) @i

==> (Ex #j . KU(m3) @j & j < i )

| (Ex tidO #j . OUT O2( tidO , m3) @j & j < i ) ”

// Cert Lemmas

lemma CertChain [ reuse , u s e i ndu c t i on ] :

”Al l c e r t #i #j .
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CreateOCert ( c e r t ) @i

& OCertByUpdate ( c e r t ) @j

==> (Ex f i r s t #k .

FirstOCert ( f i r s t ) @k

& k < i

& k < j ) ”

lemma OCertChain2 [ u s e i ndu c t i on ] :

”Al l c e r t #i .

CreateOCert ( c e r t ) @i

==> (Ex #j . OCertByUpdate ( c e r t ) @j )

| (Ex #j . FirstOCert ( c e r t ) @j ) ”

//OCert Ordering

lemma CreateThenExpire [ reuse , u s e i ndu c t i on ] :

”Al l c e r t #i .

OCertExpired ( c e r t ) @i

==> (Ex #j .

CreateOCert ( c e r t ) @#j

& j < i ) ”

// E n t i t y a u t h e n t i c a t i o n

lemma easy auth [ use induct i on , r euse ] :

”Al l A B nc #i .

Authentic (A, B, nc ) @i

==> (Ex #j . SendAuth (B, A, nc ) @j

& j < i ) ”

lemma f r e s h e n t i t y a u t h e n t i c a t i o n [ use induct i on , r euse ] :

”Al l A B nc #i .

Authentic (A, B, nc ) @i

==> (Ex #j . SendAuth (B, A, nc ) @j

& j < i

& not (Ex #i 2 . SendAuth (B, A, nc ) @i2
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& (#i 2 = #i ) ) ) ”

// Post−compromise s e c r e c y and secure key g e n e r a t i o n

lemma pcs key :

”Al l A B n1 n2 key #i #j .

K( key ) @i

& Estab l i shSes s ionKey (A, B, n1 , n2 , key ) @j

==> (Ex #k .

RevealSess ionKey ( key )@#k ) ”

// I n s t a l l a t i o n Replay Res i s tance

lemma r e p l a y r e s i s t i n s t a l l :

”Al l D O SW i i d nc1 nc2 theOCert #i .

I n s t a l l e d (D, O, SW, i i d , nc1 , nc2 , theOCert ) @i

==> Ex #j .

AppInsta l lSend (O, D, SW, nc1 , nc2 , theOCert )@#j

& #j < #i

& Authentic (D, O, nc2 ) @i”

// S i n g l e Operator

lemma s i n g l e o p e r a t o r :

”Al l D O SW i i d nc1 nc2 theOCert #i .

I n s t a l l e d (D, O, SW, i i d , nc1 , nc2 , theOCert ) @i

==> not (Ex #j .

OCertExpired ( theOCert ) @j

& j < i ) ”

end
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Appendix C

Tamarin Model for Authority-Centric
Provisioning

theory OperatorCentricPKI

begin

b u i l t i n s : d i f f i e −hellman , symmetric−encrypt ion , s i gn ing , hashing

f u n c t i o n s : mask/2

r u l e Reg i s t e r pk :

[ Fr (∼ltkA ) ]

−−[ Publ icKeyRegistered ($A, pk (∼ltkA ) ) ]−>
[ ! Ltk ($A, ∼ltkA ) , ! Pk($A, pk (∼ltkA ) ) , Out( pk (∼ltkA ) ) ]

r u l e c r e a t e O c e r t :

l e t

ocertnew = <$O, pkO, ∼cid>

in

[ Fr (∼c id ) , ! Pk($O, pkO) ]

−−[ OnlyOnce ( ) , CreateOCert ( ocertnew ) , FirstOCert ( ocertnew ) ]−>
[ ! OCert ( ocertnew ) , Out( ocertnew ) ]

r u l e update O cert :

l e t

o c e r t o l d = <$O1 , pkO1 , ∼cid1>

ocertnew = <$O, pkO, ∼cid>

in
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[ Fr (∼c id ) , ! Pk($O, pkO) , ! OCert ( o c e r t o l d ) ]

−−[ Val idCert ( o c e r t o l d ) , ReCert ($O, $O1 , ∼cid , ∼c id1 )

, OCertExpired ( o c e r t o l d ) , OCertByUpdate ( ocertnew )

, CreateOCert ( ocertnew ) ]−>
[ ! OCert ( ocertnew ) , Out( ocertnew ) ]

r u l e r e v e a l s e s s i o n k e y :

[ ! SessionKey ( seshk , nc1 , nc2 ) ]

−−[ RevealSess ionKey ( seshk ) ]−>
[ Out( seshk ) ]

// F i r s t Message (O−>A)

r u l e O1 :

l e t

DHa = ∼DHa

nc1 = ∼nc1

pid = ∼pid

A = $A

O = $O

theOCert = <$O, pk ( ltkO ) , cid>

ga = 'g ' ∧ DHa

m1 = <'message1 ' , O, A, nc1 , ga , theOCert>

m1Sig = s ign (h(m1) , ltkO )

in

[ ! Ltk ($O, ltkO ) , ! OCert ( theOCert ) , Fr ( nc1 ) , Fr (DHa) , Fr ( pid ) ]

−−[ O1( pid ) , OUT O1( pid , nc1 , ga , m1, m1Sig )

, Role (O, ' operator ' , pid ) , Neq( ga , 'g ' ) , Val idCert ( theOCert )

, SendFreshNonce (O, A, nc1 ) , HonestDHExp(DHa) , HonestDH( ga , DHa)

]−>
[ Out(<m1, m1Sig>, St O1 (O, A, nc1 , DHa, pid , theOCert ) ]

// Second Message (A−>O)

r u l e A1 :

l e t
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b = ∼b

nc2 = ∼nc2

A = $A

O = $O

ga = 'g ' ∧ new a

gb = 'g ' ∧ b

seshK = ga ∧ b

recOCert = <O, pk ( ltkO ) , cid>

m1 = <'message1 ' , O, A, nc1 , ga , recOCert>

m1Sig = s ign (h(m1) , ltkO )

m2 = <'message2 ' , A, O, nc1 , nc2 , gb>

m2Sig = s ign (h(m2) , ltkA )

in

[ ! Ltk (A, ltkA ) , ! Ltk (O, ltkO ) , ! OCert ( recOCert ) , Fr ( nc2 ) , Fr (b)

, Fr ( pid ) , In(<m1, m1Sig>) ]

−−[ A1( pid ) , IN A1 ( pid , nc1 , ga , m1, m1Sig )

, Role (A, ' author i ty ' , pid ) , SendAuth (A, O, nc1 )

, SendFreshNonce (A, O, nc2 ) , Val idCert ( recOCert ) , HonestDHExp(b)

, HonestDH( gb , b ) , Neq( ga , 'g ' ) , Neq( gb , 'g ' ) , Neq( seshK , 'g ' )

, OUT A1( pid , m2) , Establ i shKey ( seshK )

, Estab l i shSes s ionKey (O, A, nc1 , nc2 , seshK ) ]−>
[ Out(<m2, m2Sig>)

, St A1 (A, O, nc1 , nc2 , ga , b , ga ∧ b , recOCert , pid )

, ! SessionKey ( seshK , nc1 , nc2 ) ]

// Third Message (O−>A)

r u l e O2 :

l e t

DHa = ∼DHa

nc1 = ∼nc1

pid = ∼pid

SWid = ∼SWid

O = $O

A = $A
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D = $D

theOCert = <O, pk ( ltkO ) , cid>

App = <'sw ' , SWid>

AppHash = h(<App , ' swhash '>)

gb = 'g ' ∧ b

seshK = gb ∧ ∼DHa

m2 = <'message2 ' , A, O, nc1 , nc2 , gb>

m2Sig = s ign (h(m2) , ltkA )

m3 = <'message3 ' , O, A, nc2 , senc(<D, App , AppHash>, seshK)>

m3Sig = s ign (h(m3) , ltkO )

in

[ ! Ltk ($O, ltkO ) , ! Ltk ($A, ltkA )

, St O1 (O, A, nc1 , DHa, pid , theOCert ) , In(<m2, m2Sig>, Fr (SWid)

, ! OCert ( theOCert ) ]

−−[ O2( pid ) , IN O2 ( pid , nc2 , m2) , Role (O, ' operator ' , pid )

, SendAuth (O, A, nc2 ) , Authentic (O, A, nc1 )

, AppTransfer (O, A, D, App , nc1 , nc2 , theOCert )

, Neq( gb , 'g ' ∧ DHa) , Neq( gb , 'g ' ) , Neq( seshK , 'g ' )

, Val idCert(<$O, pk ( ltkO ) , cid >, OUT O2( pid , m3) ]−>
[ Out(<m3, m3Sig>) ]

r u l e A2 :

l e t

c = ∼c

pid = ∼pid

nc2 = ∼nc2

nc3 = ∼nc3

t i d = ∼t i d

A = $A

D = $D

O = $O

SWHash = h(<SW, ' swhash '>)

stOCert = <$O, pk ( ltkO ) , cid>

gc = 'g ' ∧ c
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m3 = <'message3 ' , O, A, nc2 , senc(<D, SW, SWHash>, seshk)>

m3Sig = s ign (h(m3) , ltkO )

m4 = <'message4 ' , A, D, nc3 , gc>

m4Sig = s ign (h(m4) , ltkA )

in

[ ! Ltk (O, ltkO ) , ! Ltk (A, ltkA ) , In(<m3, m3Sig>) , Fr ( c ) , Fr ( t i d )

, Fr ( nc3 ) , St A1 (A, O, nc1 , nc2 , ga , b , seshk , stOCert , pid ) ]

−−[ A2( pid ) , IN A2 ( pid , m3) , Role (A, ' author i ty ' , pid )

, Authentic ($A, $O, nc2 ) , Val idCert ( stOCert )

, SWReceived ($A, $O, $D, SW, t id , nc1 , nc2 , stOCert )

, SendFreshNonce (A, D, nc3 ) , HonestDHExp( c ) , HonestDH( gc , c )

, Neq( gc , 'g ' ) , Neq( gc , ga ) , Neq( gc , 'g ' ∧ b ) , OUT A2( pid , m4) ]−>
[ St A2 (A, O, D, nc1 , nc2 , nc3 , seshk , ga , b , c , stOCert , pid , SW)

, Out(<m4, m4Sig>) ]

r u l e D1 :

l e t

DHd = ∼DHd

e = ∼e

nc4 = ∼nc4

pid = ∼pid

A = $A

D = $D

O = $O

gc = 'g ' ∧ c

gd = 'g ' ∧ DHd

ge = 'g ' ∧ e

seshK = gc ∧ DHd

m4 = <'message4 ' , A, D, nc3 , gc>

m4Sig = s ign (h(m4) , ltkA )

m5 = <'message5 ' , D, A, nc3 , nc4 , gd ,

senc (< 'dhexponents ' , ge>, seshK)>

m5Sig = s ign (h(m5) , ltkD )

in
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[ ! Ltk (D, ltkD ) , ! Ltk (A, ltkA ) , In(<m4, m4Sig>, Fr ( nc4 ) , Fr (DHd)

, Fr ( e ) , Fr ( pid ) ]

−−[ D1( pid ) , IN D1 ( pid , nc3 , m4) , Role (D, ' device ' , pid )

, SendAuth (D, A, nc3 ) , SendFreshNonce (D, A, nc4 )

, Estab l i shSes s ionKey (A, D, nc3 , nc4 , seshK )

, Establ ishKey ( seshK ) , HonestDHExp(DHd) , HonestDH( gd , DHd)

, HonestDHExp( e ) , HonestDH( ge , e ) , Neq(DHd, e ) , Neq( gc , 'g ' )

, Neq( gd , 'g ' ) , Neq( ge , 'g ' ) , OUT D1( pid , m5) ]−>
[ St D1 (D, A, nc3 , nc4 , DHd, e , seshK , pid )

, ! SessionKey ( nc3 , nc4 , seshK ) , Out(<m5, m5Sig>) ]

r u l e A3 :

l e t

nc2 = ∼nc2

nc3 = ∼nc3

b = ∼b

c = ∼c

f = ∼f

pid = ∼pid

A = $A

D = $D

O = $O

gd = 'g ' ∧ new d

ge = 'g ' ∧ new e

g f = 'g ' ∧ f

seshKAD = gd ∧ c

maskingKey = ge ∧ f

MaskedSW = mask(SW, maskingKey )

m5 = <'message5 ' , D, A, nc3 , nc4 , gd ,

senc (< 'dhexponents ' , ge>, seshKAD)>

m5Sig = s ign (h(m5) , ltkD )

m6 = <'message6 ' , A, D, nc3 , nc4 ,

senc(<MaskedSW, h(SW) , gf >, seshKAD)>

m6Sig = s ign (h(m6) , ltkA )
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in

[ ! Ltk (A, ltkA ) , ! Ltk (D, ltkD ) , In(<m5, m5Sig>, Fr ( f )

, St A2 (A, O, D, nc1 , nc2 , nc3 , seshKAO , ga , b , c ,

stOCert , pid , SW) ]

−−[ A3( pid ) , IN A3 ( pid , nc4 , m5) , Role (A, ' author i ty ' , pid )

, SendAuth (A, D, nc4 ) , Authentic (A, D, nc3 ) , Val idCert ( stOCert )

, SendAppInsta l l (O, A, D, nc1 , nc2 , nc3 , nc4 , SW, stOCert )

, HonestDHExp( f ) , HonestDH( gf , f ) , Neq( gd , 'g ' , Neq( ge , 'g ' )

, Neq( gf , 'g ' ) , Neq(seshKAD , 'g ' ) , Neq( maskingKey , 'g ' )

, EstablishMaskingKey (A, D, nc3 , nc4 , maskingKey )

, Establ ishKey ( maskingKey ) , OUT A3( pid , m6) ]−>
[ Out(<m6, m6Sig>) , ! MaskingKey ( maskingKey , nc3 , nc4 ) ]

r u l e D2 :

l e t

DHd = ∼DHd

e = ∼e

nc4 = ∼nc4

i i d = ∼i i d

A = $A

D = $D

O = $O

gf = 'g ' ∧ new f

maskingKey = gf ∧ e

MaskedSW = mask(SW, maskingKey )

m6 = <'message6 ' , A, D, nc3 , nc4 ,

senc(<MaskedSW, h(SW) , gf >, seshK)>

m6Sig = s ign (h(m6) , ltkA )

in

[ ! Ltk (A, ltkA ) , St D1 (D, A, nc3 , nc4 , DHd, e , seshK , pid )

, Fr ( i i d ) , In(<m6, m6Sig>) ]

−−[ D2( pid ) , IN D2 ( pid , m6) , Role (D, ' device ' , pid )

, Authentic (D, A, nc4 ) , I n s t a l l e d (D, O, A, SW, nc3 , nc4 , i i d )

, Neq( gf , 'g ' ) , Neq( gf , 'g ' ∧ DHd) , Neq( gf , 'g ' ∧ e )
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, Neq( seshK , 'g ' ) ]−>
[ ]

// R e s t r i c t i o n s

r e s t r i c t i o n OnlyOnce :

”Al l #i #j . OnlyOnce ( )@#i & OnlyOnce ( )@#j ==> #i = #j”

r e s t r i c t i o n Equal i ty :

”Al l x y #i .

Eq(x , y ) @i

==> x = y”

r e s t r i c t i o n I n e q u a l i t y :

”Al l x y #i .

Neq(x , y ) @i

==> not ( x = y ) ”

r e s t r i c t i o n Cer tVa l id i ty :

”Al l c e r t #i .

Val idCert ( c e r t ) @i

==> (Ex #j .

CreateOCert ( c e r t )@#j

& j < i )

& not (Ex #k .

OCertExpired ( c e r t )@#k

& k < i ) ”

r e s t r i c t i o n FreshAuth :

”Al l A B n #i #j .

SendAuth (A, B, n) @i

& SendAuth (A, B, n) @j

==> #i = #j”

r e s t r i c t i o n FreshNonce :
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”Al l A B n #i #j .

SendFreshNonce (A, B, n) @i

& SendFreshNonce (A, B, n) @j

==> #i = #j”

r e s t r i c t i o n FreshKeys :

”Al l key #i #j .

Establ ishKey ( key ) @i

& Establ i shKey ( key ) @j

==> #i = #j”

r e s t r i c t i o n o n e l t k :

”Al l A x y #i #j .

Publ icKeyRegistered (A, x ) @i

& Publ icKeyRegistered (A, y ) @j

==> #i = #j”

r e s t r i c t i o n o n e r o l e :

”Al l A t i d t id2 r o l e r o l e 2 #i #j .

Role (A, ro l e , t i d ) @i

& Role (A, ro l e2 , t i d2 ) @j

==> r o l e = r o l e 2 ”

r e s t r i c t i o n FreshDHShares :

”Al l x #i #j .

HonestDHExp( x ) @i

& HonestDHExp( x ) @j

==> #i = #j”

r e s t r i c t i o n dh sha r e s a r en t nonce s :

”Al l ga a #i .

HonestDH( ga , a ) @i

==> not ( (Ex A B #j . SendFreshNonce (A, B, ga ) @j )

| (Ex A B #j . SendAuth (A, B, ga ) @j )
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| (Ex A B #j . Authentic (A, B, ga ) @j ) ) ”

lemma DHsec [ u se induct i on , r euse ] :

”Al l ga a #i #j .

HonestDH( ga , a ) @i

& KU( ga ) @j

==> not (Ex #k . KU( a )@k) ”

// Cert Lemmas

lemma CertChain [ reuse , u s e i ndu c t i on ] :

”Al l c e r t #i #j .

CreateOCert ( c e r t ) @i

& OCertByUpdate ( c e r t ) @j

==> (Ex f i r s t #k .

FirstOCert ( f i r s t ) @k

& k < i

& k < j ) ”

lemma OCertChain2 [ u s e i ndu c t i on ] :

”Al l c e r t #i .

CreateOCert ( c e r t ) @i

==> (Ex #j . OCertByUpdate ( c e r t ) @j )

| (Ex #j . FirstOCert ( c e r t ) @j )

//OCert Ordering

lemma CreateThenExpire [ reuse , u s e i ndu c t i on ] :

”Al l c e r t #i .

OCertExpired ( c e r t ) @i

==> (Ex #j .

CreateOCert ( c e r t ) @#j

& j < i ) ”

// E n t i t y a u t h e n t i c a t i o n

lemma easy auth [ use induct i on , r euse ] :
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”Al l A B nc #i .

Authentic (A, B, nc ) @i

==> (Ex #j . SendAuth (B, A, nc ) @j

& j < i ) ”

lemma f r e s h e n t i t y a u t h e n t i c a t i o n [ use induct i on , r euse ] :

”Al l A B nc #i .

Authentic (A, B, nc ) @i

==> (Ex #j . SendAuth (B, A, nc ) @j

& j < i

& not (Ex #i 2 . SendAuth (B, A, nc ) @i2

& (#i 2 = #i ) ) ) ”

// Post−compromise s e c r e c y and secure key g e n e r a t i o n

lemma sess ionKeySec [ use induct i on , r euse ] :

”Al l A B n1 n2 key #i #j .

K( key ) @i

& Estab l i shSes s ionKey (A, B, n1 , n2 , key ) @j

==> (Ex #k .

RevealSess ionKey ( key )@#k ) ”

lemma maskingKeySec [ u se induct i on , r euse ] :

”Al l A D n1 n2 key #i .

EstablishMaskingKey (A, D, n1 , n2 , key ) @i

==> not (Ex #j . KU( key ) @j ) ”

// I n s t a l l Replay Res i s tance

lemma s e c u r e i n s t a l l [ u s e i ndu c t i on ] :

”Al l D O A SW i i d nc3 nc4 #i .

I n s t a l l e d (D, O, A, SW, nc3 , nc4 , i i d ) @ #i

==> Authentic (D, A, nc4 ) @i”

lemma s e c u r e a p p t r a n s f e r [ u s e i ndu c t i on ] :

”Al l A D O SW nc1 nc2 theOCert #i .
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AppTransfer (O, A, D, SW, nc1 , nc2 , theOCert ) @i

==> Authentic (O, A, nc1 ) @i”

lemma s o f t w a r e t r a n s f e r c o n f i d e n t i a l i t y [ u s e i ndu c t i on ] :

”Al l A D O SW nc1 nc2 theOCert #i #j .

AppTransfer (O, A, D, SW, nc1 , nc2 , theOCert ) @i

& KU(SW) @j

==> Ex key #k . RevealSess ionKey ( key ) @k & #k < #j”

lemma s o f t w a r e i n s t a l l c o n f i d e n t i a l i t y [ u s e i ndu c t i on ] :

”Al l A D O SW nc1 nc2 i i d #i #j .

I n s t a l l e d (D, O, A, SW, nc1 , nc2 , i i d ) @ #i

& KU(SW) @j

==> Ex key #k . RevealSess ionKey ( key ) @k & #k < #j”

end
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Appendix D

Tamarin Model for Authority-Centric
Provisioning with Pre-Shared Keys

theory OperatorCentricPSK

begin

b u i l t i n s : d i f f i e −hellman , symmetric−encrypt ion , s i gn ing , hashing

f u n c t i o n s : mask/2 , mac/2

//PKI

r u l e Reg i s t e r pk :

[ Fr (∼ltkA ) ]

−−[ Publ icKeyRegistered ($A, pk (∼ltkA ) ) ]−>
[ ! Ltk ($A, ∼ltkA ) , ! Pk($A, pk (∼ltkA ) ) , Out( pk (∼ltkA ) ) ]

r u l e R e g i s t e r p r e s h a r e d k e y :

[ Fr (∼pskAB) ]

−−[ PreSharedKeyEstabl ished ($A, $B , ∼pskAB) ]−>
[ ! Psk ($A, $B , ∼pskAB) ]

r u l e c r e a t e O c e r t :

l e t

ocertnew = <$O, pkO, ∼cid>

in

[ Fr (∼c id ) , ! Pk($O, pkO) ]

−−[ OnlyOnce ( ) , CreateOCert ( ocertnew ) , FirstOCert ( ocertnew ) ]−>
[ ! OCert ( ocertnew ) , Out( ocertnew ) ]
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r u l e update O cert :

l e t

o c e r t o l d = <$O1 , pkO1 , ∼cid1>

ocertnew = <$O, pkO, ∼cid>

in

[ Fr (∼c id ) , ! Pk($O, pkO) , ! OCert ( o c e r t o l d ) ]

−−[ Val idCert ( o c e r t o l d ) , ReCert ($O, $O1 , ∼cid , ∼c id1 )

, OCertExpired ( o c e r t o l d ) , OCertByUpdate ( ocertnew )

, CreateOCert ( ocertnew ) ]−>
[ ! OCert ( ocertnew ) , Out( ocertnew ) ]

r u l e r e v e a l s e s s i o n k e y :

[ ! SessionKey ( seshk , nc1 , nc2 ) ]

−−[ RevealSess ionKey ( seshk ) ]−>
[ Out( seshk ) ]

// F i r s t Message (O−>A)

r u l e O1 :

l e t

DHa = ∼DHa

nc1 = ∼nc1

pid = ∼pid

A = $A

O = $O

theOCert = <$O, pk ( ltkO ) , cid>

ga = 'g ' ∧ DHa

m1 = <'message1 ' , O, A, nc1 , ga , theOCert>

m1Sig = s ign (h(m1) , ltkO )

in

[ ! Ltk ($O, ltkO ) , ! OCert ( theOCert ) , Fr ( nc1 ) , Fr (DHa) , Fr ( pid ) ]

−−[ O1( pid ) , OUT O1( pid , nc1 , ga , m1, m1Sig )

, Role (O, ' operator ' , pid ) , Neq( ga , 'g ' ) , Val idCert ( theOCert )
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, SendFreshNonce (O, A, nc1 ) , HonestDHExp(DHa) , HonestDH( ga , DHa)

]−>
[ Out(<m1, m1Sig>) , St O1 (O, A, nc1 , DHa, pid , theOCert ) ]

// Second Message (A−>O)

r u l e A1 :

l e t

b = ∼b

nc2 = ∼nc2

A = $A

O = $O

ga = 'g ' ∧ new a

gb = 'g ' ∧ b

seshK = ga ∧ b

recOCert = <O, pk ( ltkO ) , cid>

m1 = <'message1 ' , O, A, nc1 , ga , recOCert>

m1Sig = s ign (h(m1) , ltkO )

m2 = <'message2 ' , A, O, nc1 , nc2 , gb>

m2Sig = s ign (h(m2) , ltkA )

in

[ ! Ltk (A, ltkA ) , ! Ltk (O, ltkO ) , ! OCert ( recOCert ) , Fr ( nc2 )

, Fr (b ) , Fr ( pid ) , In(<m1, m1Sig>) ]

−−[ A1( pid ) , IN A1 ( pid , nc1 , ga , m1, m1Sig )

, Role (A, ' author i ty ' , pid ) , SendAuth (A, O, nc1 )

, SendFreshNonce (A, O, nc2 ) , Val idCert ( recOCert ) , HonestDHExp(b)

, HonestDH( gb , b ) , Neq( ga , 'g ' ) , Neq( gb , 'g ' ) , Neq( seshK , 'g ' )

, OUT A1( pid , m2) , Estab l i shSes s ionKey (O, A, nc1 , nc2 , seshK )

, Establ ishKey ( seshK ) ]−>
[ Out(<m2, m2Sig>) , ! SessionKey ( seshK , nc1 , nc2 )

, St A1 (A, O, nc1 , nc2 , ga , b , ga ∧ b , recOCert , pid ) ]

// Third Message (O−>A)

r u l e O2 :

l e t
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DHa = ∼DHa

nc1 = ∼nc1

pid = ∼pid

SWid = ∼SWid

O = $O

A = $A

D = $D

theOCert = <O, pk ( ltkO ) , cid>

App = <'sw ' , SWid>

AppHash = h(<App , ' swhash '>)

gb = 'g ' ∧ b

seshK = gb ∧ ∼DHa

m2 = <'message2 ' , A, O, nc1 , nc2 , gb>

m2Sig = s ign (h(m2) , ltkA )

m3 = <'message3 ' , O, A, nc2 , senc(<D, App , AppHash>, seshK)>

m3Sig = s ign (h(m3) , ltkO )

in

[ ! Ltk ($O, ltkO ) , ! Ltk ($A, ltkA ) , Fr (SWid)

, St O1 (O, A, nc1 , DHa, pid , theOCert )

, In(<m2, m2Sig>) , ! OCert ( theOCert ) ]

−−[ O2( pid ) , IN O2 ( pid , nc2 , m2) , Role (O, ' operator ' , pid )

, SendAuth (O, A, nc2 ) , Authentic (O, A, nc1 )

, AppTransfer (O, A, D, App , nc1 , nc2 , theOCert )

, Neq( gb , 'g ' ∧ DHa) , Neq( gb , 'g ' ) , Neq( seshK , 'g ' )

, Val idCert(<$O, pk ( ltkO ) , cid >) , OUT O2( pid , m3) ]−>
[ Out(<m3, m3Sig>) ]

r u l e A2 :

l e t

c = ∼c

pid = ∼pid

nc2 = ∼nc2

nc3 = ∼nc3

t i d = ∼t i d

151



A = $A

D = $D

O = $O

SWHash = h(<SW, ' swhash '>)

stOCert = <$O, pk ( ltkO ) , cid>

gc = 'g ' ∧ c

m3 = <'message3 ' , O, A, nc2 , senc(<D, SW, SWHash>, seshk)>

m3Sig = s ign (h(m3) , ltkO )

m4 = <'message4 ' , A, D, nc3 , gc>

m4MAC = mac(m4, pskAD)

in

[ ! Ltk (O, ltkO ) , St A1 (A, O, nc1 , nc2 , ga , b , seshk , stOCert , pid )

, In(<m3, m3Sig>) , Fr ( c ) , Fr ( t i d ) , Fr ( nc3 ) , ! Psk (A, D, pskAD) ]

−−[ A2( pid ) , IN A2 ( pid , m3) , Role (A, ' author i ty ' , pid )

, Authentic ($A, $O, nc2 ) , Val idCert ( stOCert )

, SWReceived ($A, $O, $D, SW, t id , nc1 , nc2 , stOCert )

, SendFreshNonce (A, D, nc3 ) , HonestDHExp( c ) , HonestDH( gc , c )

, Neq( gc , 'g ' ) , Neq( gc , ga ) , Neq( gc , 'g ' ∧ b ) , OUT A2( pid , m4) ]−>
[ St A2 (A, O, D, nc1 , nc2 , nc3 , seshk , ga , b , c , stOCert , pid , SW)

, Out(<m4, m4MAC>) ]

r u l e D1 :

l e t

DHd = ∼DHd

e = ∼e

nc4 = ∼nc4

pid = ∼pid

A = $A

D = $D

O = $O

gc = 'g ' ∧ c

gd = 'g ' ∧ DHd

ge = 'g ' ∧ e

seshK = gc ∧ DHd
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m4 = <'message4 ' , A, D, nc3 , gc>

m4MAC = mac(m4, pskAD)

m5 = <'message5 ' , D, A, nc3 , nc4 , gd , senc (< 'dhexponents ' , ge>, seshK)>

m5MAC = mac(m5, pskAD)

in

[ In(<m4, m4MAC>) , Fr ( nc4 ) , Fr (DHd) , Fr ( e ) , Fr ( pid )

, ! Psk (A, D, pskAD) ]

−−[ D1( pid ) , IN D1 ( pid , nc3 , m4) , Role (D, ' device ' , pid )

, SendAuth (D, A, nc3 ) , SendFreshNonce (D, A, nc4 )

, Estab l i shSes s ionKey (A, D, nc3 , nc4 , seshK )

, Establ ishKey ( seshK ) , HonestDHExp(DHd) , HonestDH( gd , DHd)

, HonestDHExp( e ) , HonestDH( ge , e ) , Neq(DHd, e ) , Neq( gc , 'g ' )

, Neq( gd , 'g ' ) , Neq( ge , 'g ' ) , OUT D1( pid , m5) ]−>
[ St D1 (D, A, nc3 , nc4 , DHd, e , seshK , pid )

, ! SessionKey ( nc3 , nc4 , seshK ) , Out(<m5, m5MAC>) ]

r u l e A3 :

l e t

nc2 = ∼nc2

nc3 = ∼nc3

b = ∼b

c = ∼c

f = ∼f

pid = ∼pid

A = $A

D = $D

O = $O

gd = 'g ' ∧ new d

ge = 'g ' ∧ new e

g f = 'g ' ∧ f

seshKAD = gd ∧ c

maskingKey = ge ∧ f

MaskedSW = mask(SW, maskingKey )

m5 = <'message5 ' , D, A, nc3 , nc4 , gd ,
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senc (< 'dhexponents ' , ge>, seshKAD)>

m5MAC = mac(m5, pskAD)

m6 = <'message6 ' , A, D, nc3 , nc4 ,

senc(<MaskedSW, h(SW) , gf >, seshKAD)>

m6MAC = mac(m6, pskAD)

in

[ In(<m5, m5MAC>) , Fr ( f ) , ! Psk (A, D, pskAD)

, St A2 (A, O, D, nc1 , nc2 , nc3 , seshKAO , ga , b , c ,

stOCert , pid , SW) ]

−−[ A3( pid ) , IN A3 ( pid , nc4 , m5) , Role (A, ' author i ty ' , pid )

, SendAuth (A, D, nc4 ) , Authentic (A, D, nc3 )

, SendAppInsta l l (O, A, D, nc1 , nc2 , nc3 , nc4 , SW, stOCert )

, Val idCert ( stOCert ) , HonestDHExp( f ) , HonestDH( gf , f )

, Neq( gd , 'g ' ) , Neq( ge , 'g ' ) , Neq( gf , 'g ' ) , Neq(seshKAD , 'g ' )

, Neq( maskingKey , 'g ' )

, EstablishMaskingKey (A, D, nc3 , nc4 , maskingKey )

, Establ ishKey ( maskingKey ) , OUT A3( pid , m6) ]−>
[ Out(<m6, m6MAC>) , ! MaskingKey ( maskingKey , nc3 , nc4 ) ]

r u l e D2 :

l e t

DHd = ∼DHd

e = ∼e

nc4 = ∼nc4

i i d = ∼i i d

A = $A

D = $D

O = $O

gf = 'g ' ∧ new f

maskingKey = gf ∧ e

MaskedSW = mask(SW, maskingKey )

m6 = <'message6 ' , A, D, nc3 , nc4 ,

senc(<MaskedSW, h(SW) , gf >, seshK)>

m6MAC = mac(m6, pskAD)
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in

[ St D1 (D, A, nc3 , nc4 , DHd, e , seshK , pid ) , Fr ( i i d )

, In(<m6, m6MAC>) , ! Psk (A, D, pskAD) ]

−−[ D2( pid ) , IN D2 ( pid , m6) , Role (D, ' device ' , pid )

, Authentic (D, A, nc4 ) , I n s t a l l e d (D, O, A, SW, nc3 , nc4 , i i d )

, Neq( gf , 'g ' ) , Neq( gf , 'g ' ∧ DHd) , Neq( gf , 'g ' ∧ e )

, Neq( seshK , 'g ')]−>

[ ]

// R e s t r i c t i o n s

r e s t r i c t i o n OnlyOnce :

”Al l #i #j . OnlyOnce ( )@#i & OnlyOnce ( )@#j ==> #i = #j”

r e s t r i c t i o n Equal i ty :

”Al l x y #i .

Eq(x , y ) @i

==> x = y”

r e s t r i c t i o n I n e q u a l i t y :

”Al l x y #i .

Neq(x , y ) @i

==> not ( x = y ) ”

r e s t r i c t i o n Cer tVa l id i ty :

”Al l c e r t #i .

Val idCert ( c e r t ) @i

==> (Ex #j .

CreateOCert ( c e r t )@#j

& j < i )

& not (Ex #k .

OCertExpired ( c e r t )@#k

& k < i ) ”

r e s t r i c t i o n FreshAuth :
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”Al l A B n #i #j .

SendAuth (A, B, n) @i

& SendAuth (A, B, n) @j

==> #i = #j”

r e s t r i c t i o n FreshNonce :

”Al l A B n #i #j .

SendFreshNonce (A, B, n) @i

& SendFreshNonce (A, B, n) @j

==> #i = #j”

r e s t r i c t i o n FreshKeys :

”Al l key #i #j .

Establ ishKey ( key ) @i

& Establ i shKey ( key ) @j

==> #i = #j”

r e s t r i c t i o n o n e l t k :

”Al l A x y #i #j .

Publ icKeyRegistered (A, x ) @i

& Publ icKeyRegistered (A, y ) @j

==> #i = #j”

r e s t r i c t i o n one psk :

”Al l A B k1 k2 #i #j .

PreSharedKeyEstabl ished (A, B, k1 ) @i

& PreSharedKeyEstabl ished (A, B, k2 ) @j

==> #i = #j”

r e s t r i c t i o n o n e p s k d i r e c t i o n :

”Al l A B k #i .

PreSharedKeyEstabl ished (A, B, k ) @i

==> not (Ex k2 #j . PreSharedKeyEstabl ished (B, A, k2 ) @j ) ”
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r e s t r i c t i o n o n e r o l e :

”Al l A t i d t id2 r o l e r o l e 2 #i #j .

Role (A, ro l e , t i d ) @i

& Role (A, ro l e2 , t i d2 ) @j

==> r o l e = r o l e 2 ”

r e s t r i c t i o n FreshDHShares :

”Al l x #i #j .

HonestDHExp( x ) @i

& HonestDHExp( x ) @j

==> #i = #j”

r e s t r i c t i o n dh sha r e s a r en t nonce s :

”Al l ga a #i .

HonestDH( ga , a ) @i

==> not ( (Ex A B #j . SendFreshNonce (A, B, ga ) @j )

| (Ex A B #j . SendAuth (A, B, ga ) @j )

| (Ex A B #j . Authentic (A, B, ga ) @j ) ) ”

// Source Lemmas

lemma DHsec [ u se induct i on , r euse ] :

”Al l ga a #i #j .

HonestDH( ga , a ) @i

& KU( ga ) @j

==> not (Ex #k . KU( a )@k) ”

// Cert Lemmas

lemma CertChain [ reuse , u s e i ndu c t i on ] :

”Al l c e r t #i #j .

CreateOCert ( c e r t ) @i

& OCertByUpdate ( c e r t ) @j

==> (Ex f i r s t #k .

FirstOCert ( f i r s t ) @k

& k < i

157



& k < j ) ”

lemma OCertChain2 [ u s e i ndu c t i on ] :

”Al l c e r t #i .

CreateOCert ( c e r t ) @i

==> (Ex #j . OCertByUpdate ( c e r t ) @j )

| (Ex #j . FirstOCert ( c e r t ) @j ) ”

//OCert Ordering

lemma CreateThenExpire [ reuse , u s e i ndu c t i on ] :

”Al l c e r t #i .

OCertExpired ( c e r t ) @i

==> (Ex #j .

CreateOCert ( c e r t ) @#j

& j < i ) ”

// E n t i t y a u t h e n t i c a t i o n

lemma easy auth [ use induct i on , r euse ] :

”Al l A B nc #i .

Authentic (A, B, nc ) @i

==> (Ex #j . SendAuth (B, A, nc ) @j

& j < i ) ”

lemma f r e s h e n t i t y a u t h e n t i c a t i o n [ use induct i on , r euse ] :

”Al l A B nc #i .

Authentic (A, B, nc ) @i

==> (Ex #j . SendAuth (B, A, nc ) @j

& j < i

& not (Ex #i 2 . SendAuth (B, A, nc ) @i2

& (#i 2 = #i ) ) ) ”

// Post−compromise s e c r e c y and secure key g e n e r a t i o n

lemma sess ionKeySec [ use induct i on , r euse ] :
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”Al l A B n1 n2 key #i #j .

K( key ) @i

& Estab l i shSes s ionKey (A, B, n1 , n2 , key ) @j

==> (Ex #k .

RevealSess ionKey ( key )@#k ) ”

lemma maskingKeySec [ u se induct i on , r euse ] :

”Al l A D n1 n2 key #i .

EstablishMaskingKey (A, D, n1 , n2 , key ) @i

==> not (Ex #j . KU( key ) @j ) ”

// I n s t a l l Replay Res i s tance

lemma s e c u r e i n s t a l l [ u s e i ndu c t i on ] :

”Al l D O A SW i i d nc3 nc4 #i .

I n s t a l l e d (D, O, A, SW, nc3 , nc4 , i i d ) @ #i

==> Authentic (D, A, nc4 ) @i”

lemma s e c u r e a p p t r a n s f e r [ u s e i ndu c t i on ] :

”Al l A D O SW nc1 nc2 theOCert #i .

AppTransfer (O, A, D, SW, nc1 , nc2 , theOCert ) @i

==> Authentic (O, A, nc1 ) @i”

lemma s o f t w a r e t r a n s f e r c o n f i d e n t i a l i t y [ u se induct i on , r euse ] :

”Al l A D O SW nc1 nc2 theOCert #i #j .

AppTransfer (O, A, D, SW, nc1 , nc2 , theOCert ) @i

& KU(SW) @j

==> Ex key #k . RevealSess ionKey ( key ) @k & #k < #j”

lemma s o f t w a r e i n s t a l l c o n f i d e n t i a l i t y [ u s e i ndu c t i on ] :

”Al l A D O SW nc1 nc2 i i d #i #j .

I n s t a l l e d (D, O, A, SW, nc1 , nc2 , i i d ) @ #i

& KU(SW) @j

==> Ex key #k . RevealSess ionKey ( key ) @k & #k < #j”
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end
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Appendix E

Secure-Execution Processor Test Ap-
plication Code

CONSTANT LED PORT, 02

CONSTANT UART TX STATUS, 00

CONSTANT UART TX RESET, 03

CONSTANT UART RX READ, 01

CONSTANT UART TX DATA IN, 01

s t a r t :

LOAD s0 , FF

LOAD s0 , FF

OUTPUT s0 , UART TX RESET

LOAD s0 , 00

LOAD s0 , 00

OUTPUT s0 , UART TX RESET

LOAD s0 , s0

LOAD s0 , s0

LOAD s1 , ”H”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

LOAD s1 , ”e”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

LOAD s1 , ” l ”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

LOAD s1 , ” l ”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

LOAD s1 , ”o”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

LOAD s1 , ” ”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

LOAD s1 , ”W”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

LOAD s1 , ”o”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

LOAD s1 , ” r ”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

LOAD s1 , ” l ”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

LOAD s1 , ”d”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN
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LOAD s1 , ” ! ”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

LOAD s1 , ” ”

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

LOAD s1 , 0D

CALL waitForUARTFree

OUTPUT s1 , UART TX DATA IN

JUMP l e d S t a r t

waitForUARTFree :

INPUT s0 , UART TX STATUS

AND s0 , 04

JUMP NZ waitForUARTFree

RETURN

l e d S t a r t :

LOAD s0 , 00

loop : OUTPUT s0 , LED PORT

LOAD s2 , FF

x : LOAD s1 , FF

y : SUB s1 , 01

JUMP NZ y

SUB s2 , 01

JUMP NZ x

ADD s0 , 01

JUMP C r e s e t

back : JUMP loop

r e s e t : LOAD s0 , 00

JUMP back
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[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity. In

V. Atluri, C. A. Meadows, and A. Juels, editors, Proceedings of the 12th ACM

Conference on Computer and Communications Security, CCS 2005, Alexandria,

VA, USA, November 7-11, 2005, pages 340–353. ACM, 2005.

[2] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity principles,

implementations, and applications. ACM Trans. Inf. Syst. Secur., 13(1):4:1–4:40,

2009.

[3] Adafruit Industries. Bus pirate basic probe set, 2019.
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