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Summary

Malicious threats pose a serious problem for everyday activities. The number of
attacks are always increasing and automatic means of analysis have been employed
to deal with this growth. In this scenario, it is difficult to trust the automatic
decision making-criteria because they are often based on the assumption that the
objects used to learn the malicious patterns are similar to the ones in need of
an assessment. This is usually not the case because the strategy perpetrated by
malicious actors is ever-evolving to defeat new defence mechanisms.

For this reason, I have developed Conformal Evaluator, a statistical assessment
framework that provides quality measures to the decisions of an existing classifier.
The goal of the framework is to enrich the information provided by the classifier
with quality measures. With this framework, I assessed the quality of the decision-
making process of 3 algorithms and provided interesting insights.

Using conformal evaluator framework, I developed Transcend, a technique that
aims to identify the start of the performance degradation due to a change in the
testing distribution. Transcend is then successfully applied to 2 algorithms on an
Android binary and a Windows malware multiclass classification settings. This
technique shows that it is possible to identify thresholds below which it is not wise
to trust the outcome of a classification.

To further investigate the link between malicious actors and evolving malicious
strategies I looked into the beginning of an infection. The first step is often that
a malicious software is downloaded and installed by an unaware user. Cyber crim-
inals often target users with online malicious campaigns inducing them to install
malicious software. To tackle this problem, I developed an algorithm that aims
to identify malicious downloads before the actual executable is downloaded. The
system was tested with the traffic generated from a major US university producing
interesting results.
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Chapter 1

Introduction

Malicious software is one of the most pressing problems in the Internet nowadays.
According to different anti-virus firms [66, 99, 48], the total amount of malware
continued to rise in 2018. McAfee has reported that it needs to analyse 1.8M URLs
and 1M files every day. With such numbers, it is clear that new challenges need to
be faced in order to scale up the analyses.

Automatic means of analysis such as machine learning (ML) have become the
preferred tool to deal with this problem as it has proven to be successful in many
applications including malware analysis and malicious URL detection. ML tech-
niques usually build classification models to be able to distinguish between benign
phenomena and malicious ones. The main shortcoming of these applications is that
they implicitly rely on the assumption that the threats do not change over time,
(i.e., the population is static), but it is not the case.

Once a malware has been identified and the defence mechanism updated, its
author typically tries to modify it in order to avoid the detection, thus creating a
new variant. The amount of variation introduced by the new variant depends on
the complexity of the detection mechanism that was able to identify the malware
itself. If the detection mechanism hits the core behaviours of the malware, then
the modification needed by its author to avoid detection will need to be more
substantial, otherwise a shallow modification can trick the defences as well. When
a new variant of the malware is released it is possible to think of it as an evolution
of its previous version.

To deploy malware to a user’s machine, attackers typically rely on different in-
fection mechanisms. A common technique involves tricking the user to download
and install programs that are thought to be benign. The attackers organise these
attacks in malicious campaign that usually share some common roots. The goal
of the defence mechanisms is to identify the unique traits of the campaign to dis-
tinguish its modus operandi. Nowadays, typical campaigns can run between two
weeks to up to a few months before being identified. In such evolving scenarios, it
is clear that the attacker needs a way to change the offending strategy very often.
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1 – Introduction

In this ever-evolving scenario, statistical learning tools such as machine learning
need to be carefully employed to maximise their efficiency as they will be affected
by concept drift sooner or later. Therefore, it is important to understand when it
is time to change the model or modify the employed techniques.

Concept drift is the change in the statistical properties of a certain phenomenon
over a period of time. It affects malware classification tasks: on one hand, malware
evolves over time to bypass new defence mechanisms, while, on the other hand,
malware campaigns evolve likewise as new actors and new forms to exploit technical
and social flaws are identified by the attackers. Regardless the degree of the drift,
it is important to be able to identify this drift to promptly apply remedial actions.
This is because concept drift will cause the performance of a classification model
to degrade as a result of the model built to deal with a specific target population
that eventually changes.

The classification degradation is only observed once the classified threats are
manually verified. At that point, it is too late to apply the correct remedial action
and to stop the threat.

1.1 Research Contributions
These problems are tackled in the literature typically by two approaches. The first
one is machine learning oriented and focuses on statistical techniques. The second
approach focuses on algorithmic techniques specific to the domain of interest in
order to delay the problem, as much as possible. In my research work, I have
tackled the problem using both ways.

Firstly, I proposed a new framework to measure the quality of existing classifiers
named Conformal Evaluator (§ 3). This method is based on two novel quality
metrics algorithm credibility and algorithm confidence (§ 3.2) that quantify the
quality of the predicted outcome.

Secondly, on top of this framework, I developed and proposed the use of a
new algorithm named Transcend (§ 4). The algorithm uses the quality metrics of
conformal evaluator to try to find per class threshold to distinguish between drifted
and non-drifted samples by maximising an objective performance function subject
to constraints.

These two methods, even if used together, can be used separately from each
other. Conformal Evaluator can be used to infer the quality of a classifier alone or
in conjunction with other algorithms to identify concept drift. Likewise, Transcend
can be used to find per class thresholds using different quality metrics.

It must be pointed out that even if the two methods will be demonstrated in
the scope of the systems security, they can be applied to other disciplines, making
them very versatile.

Finally, I proposed a new algorithm to deal with concept drift in the malicious

3



1 – Introduction

URL detection domain (§ 5). This algorithm exploits the history of HTTP requests
generated from a host in a new fashion. This technique was adopted to identify the
drift of the URL used in malware campaign to distribute malware.
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Chapter 2

Machine Learning and Security

This chapter provides the necessary machine learning (ML) information to under-
stand the research part of my dissertation (Part II).

ML algorithms are generally used to identify patterns across data.
Data is usually represented as a list of examples:

(x1, y1), (x2, y2), . . . , (xn, yn) (2.1)

Here, x1, . . . , xn are n observations and y1, . . . , yn are the responses to those
observations and xi is a vector of size p. In a systems security domain for example,
the x1 can represent some measurements of a given binary while y1 can represent
the label malicious or benign.

The matrix X represents the ensemble of the observation x1...n:

X =


x11 x12 . . . x1p
x21 x12 . . . x1p
... ... . . . ...
xn1 xn2 . . . xnp

 (2.2)

and Y is the ensemble of the the responses:

Y =


y1
y2
...
yn

 (2.3)

Eq. 2.3 implies that the response for each observation is a single variable, neverthe-
less the equation can be generalised to accommodate for a multi-variable response.

We assume that there is a relation between the data defined as:

Y = f(X) + ε (2.4)

5



2 – Machine Learning and Security

Where ε represents an error term. Therefore, the goal of machine learning is to
find:

Ŷ = f̂(X) (2.5)

Where f̂ is the best estimation for f , and Ŷ are the estimations for the true Y .
Many algorithms were created for most varied purposes, therefore, in § 2.2.1, I

will explore the ones that are needed to understand Part II of this thesis.
In § 2.1 I explain how to manage the available dataset to run the experiments

properly.

2.1 Training, Validation and Testing Set
Machine learning algorithms are usually used to make future predictions. These
algorithms work by building a prediction model and test it to make sure it is as
accurate as possible once used in operational settings.

The dataset available during the construction of one prediction model is usually
divided into 3 sets with different purposes: training set, validation set and testing
set. The usual separation of the available dataset is: 60% for the train set, 20% for
the validation set and 20% for the test set. This separation is usually accepted as
common criteria but different splits are possible.

One important thing to note is that with more training and validation data,
the variance of the generated model will be reduced while increasing the size of the
test set will decrease the variance on the results. This is a trade-off that needs to
be considered.

Common techniques that divide the data into the different sets are random
sampling and stratified sampling (see [75] and [44] for further details). I will not
go deeper into these techniques because they are beyond the scope of this thesis.

Training Set. The training set is the set of examples used to fit the model
chosen to be the prediction model. It must be chosen carefully to cover the entire
population such that the training algorithm can learn the difference between the
categories. It is crucial because it might bias the decisions made by the algorithm
(as shown in [76]).

Validation Set. The validation set is the set of examples used to predict the
responses with the model created with the training set. The purpose of this set is
to evaluate the performance and tune the algorithm accordingly, i.e., to optimise
the parameter of the prediction model in order to get better performance. Another
use of the validation set is to avoid overfitting of the model to the training data.
Overfitting is a problem caused by ML algorithms that learn the patterns on the

6



2 – Machine Learning and Security

training data too precisely and are not able to generalise on new and unseen in-
stances. Overfitting causes the error obtained on the test data to increase, instead
of decreasing, when more training data is added to the training set.

Testing Set. The testing set is a set of examples used to report the perfor-
mance obtained once the ML algorithm is optimised and ready to be deployed.
The training and validation sets need to be strictly separated from the test set.
This separation is crucial to avoid biased results. On the other hand, building a
prediction model on the same data that is later on used to assess its performance
will generate unrealistic scenarios.

Throughout this thesis, I will refer to training phase to describe the creation and
optimisation of the model using both train and validation sets.

2.1.1 Cross-Validation
Cross-validation (CV) is a re-sampling technique that is used for model validation.
It is used to estimate the test error of a model. It involves holding out a subset of
training samples from the training process and then testing the model created with
this subset. The error of the testing is given by:

err = 1
n

n∑
i=1

(y − ŷ)2 (2.6)

where, n is the number of testing samples in that subset, y is the true value for a
sample and ŷ is the corresponding estimation for that sample.

Cross-validation is often used with its k-fold variant. K-fold cross validation
consists of dividing the dataset in k non-overlapping folds. The model will be
trained with the k − 1 folds and the remaining one will be used to test the model.
This process will be repeated k times; every time choosing a different testing fold.
Finally, the error of the model will be calculated as:

err = 1
k

k∑
i=1

errk (2.7)

where errk is the error of one fold calculated following Eq. 2.6. When k is equal
to N (the number of the examples in the dataset) this technique is called leave one
out (LOO or LOOCV).

CV technique is often used to show that the model created is performing well
not only on a specific configuration of the train/test set. Nevertheless, it should be
carefully used to avoid any unwanted biases (see § 2.4).

7



2 – Machine Learning and Security

2.2 Algorithms
Traditional machine learning algorithms are based on established techniques stud-
ied by the ML community over the years. This section will provide a brief overview
of different ML algorithms available in the literature. Depending on the character-
isation of Y and f we may use different algorithms.

2.2.1 Taxonomy
Nowadays, there is a great variety of machine learning algorithms for many different
data scenarios. Most of them perform very well in particular situations while do
not at all in others. The following categories will describe some of the most known
algorithms based on the goal of the analysis and on the data available.

Regression vs Classification. Depending on the type of the response that we
would like to obtain from a ML algorithm, Y (in Eq. 2.4) can be quantitative or
qualitative (or categorical). Quantitative variables take numerical values such as
1.43, 302, . . . and so on. For example, predicting the height of children based on
the height of their parents is a problem that require a quantitative response. In
such cases, we are talking about regression problems.

On the other hand, when the responses of our ML algorithm can take k differ-
ent classes or categories, the problems are referred as classification problems. For
example, predicting if a binary artefact is a malware or a benignware is a classifi-
cation task as the output of the prediction can take only 2 values (in this case is
a binary classification problem opposed to multiclass classification problem where
the output variable can take 3 or more values).

In this thesis, I will focus my attention on classification problems only.

Supervised vs Unsupervised. Depending on the availability of the response Y
in Eq. 2.4, we can have supervised or unsupervised (or semi-supervised) algorithms.
Of course, it is possible to ignore the responses in a given dataset.

The algorithms that try to associate a response Y to predictors X are called
supervised algorithms.

If the response Y is missing from the dataset (or if we are trying to solve
a different problem) then we are dealing with unsupervised algorithm. In this
type of problems, the goal is to understand the relation between the predictors
of the available instances rather than the relation between the predictors X and
the responses Y . Problems like cluster analysis and outlier detection fall in this
category.

Parametric vs Non-parametric. Depending on the type of assumption that
we are making on the data we can have parametric or non-parametric algorithms.

8



2 – Machine Learning and Security

Parametric algorithms are those that make an assumption on the form of f in
Eq. 2.4. Once the assumption is made, the goal of the algorithm is to find the
parameters of the function f that minimise the prediction error. Examples of these
algorithms are SVM (§ 2.2.2) and linear regression [15].

Non-parametric algorithms do not assume a specific form for the function f .
Instead, they try to estimate f to be as close as possible to the data points. Example
of these algorithms are random forest (§ 2.2.3) and K-Nearest neighbour [18].

2.2.2 Support Vector Machine
The Support Vector Machine (SVM) is a supervised parametric machine learning
algorithm used for classification. It was originally designed to be a binary classifi-
cation algorithm but it was extended for multiclass purposes [108]. It has proven
to be successful in many different applications [74, 25, 73] including systems se-
curity [49, 55] and it has been used in Drebin [9], one of the algorithm used for
my case studies (§ 3.4). SVM is a generalisation of the Support Vector Classifier
that by itself is a generalisation of the maximal margin classifier. Therefore, I will
first describe the maximal margin classifier, then the support vector classifier and
finally the support vector machine. I will give an intuition for the algorithm then
I will go through these algorithms to finally end up explaining the SVM.

Intuition. The SVM algorithm divides the feature space with an hyperplane in
2 subspaces. The hyperplane is a p − 1 dimensional space where p is the number
of dimensions of the features space. During the construction of the model, the
algorithm maximises the distance from each instance to the hyperplane. During the
test phase, it will classify each instance depending on which side of the hyperplane
the instance will lie.

Different shapes of the hyperplane are possible, e.g., linear, polynomial and
sigmoid. The following explanation starts to assume the hyperplane as linear to
generalise the definition later on.

Maximal Margin Classifier. The definition of hyperplane is:

β0 + β1X1 + β2X2 + · · ·+ βpXp = 0 (2.8)

Eq. 2.8 implies that each exampleX = (x1, x2, . . . , xp)T that satisfy the equation
lies on the hyperplane itself.

If Eq. 2.8 is not satisfied, it follows that either:

β0 + β1X1 + β2X2 + · · ·+ βpXp > 0 (2.9)
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or:

β0 + β1X1 + β2X2 + · · ·+ βpXp < 0 (2.10)

i.e., X is located on one side of the hyperplane.
Let’s suppose that we have different training objects x1, x2, . . . , xn each with

its corresponding y1, y2, . . . , yn ∈ −1,+1 (i.e., the points lies on one side of the
hyperplane). If the training data is in fact separable, then there will be infinite
hyperplanes that can separate them. The maximal margin classifier selects the
one that is the farthest from the training observations. The distance is calculated
as the perpendicular distance from the training objects to the hyperplane and the
smallest distance of these distances is called margin. In other words, the hyperplane
to select is the one with the highest margin. In this setting we there will be only
one hyperplane to satisfy this condition. It follows that there will be at least one
sample for each class that lies on the margin on either sides of the hyperplane. These
samples are called support vectors because all the other points of the training set
can move freely without changing the hyperplane (if they don’t cross the margin).
Therefore, the hyperplane depends only on few points of the dataset but if these
samples change, the hyperplane changes as well.

More formally, to find the separating hyperplane we want to maximise M in:

yi(β0 + β1xi1 + β2xi2 + · · ·+ +βpxip) ≥M ∀i = 1, . . . , n (2.11)

subject to ∑p
j=1 β

2
j = 1.

Without going in much details, it turns out that the solution of Eq. 2.11 can be
solved quite efficiently but the details are beyond the scope of this thesis.

The distance from a point to the hyperplane can be seen as a measure of confi-
dence in the prediction when the model is used to classified test points.

Support Vector Classifier. The maximal margin classifier is a lucky case when
it exists an hyperplane that can perfectly separate the training data. In other
cases instead, we are not so lucky and there is no hyperplane that can separate the
data, i.e., the Eq. 2.11 doesn’t have a solution for M > 0. Sometimes instead, a
separation hyperplane exists but we will become too sensitive to single observations.

To cope with these situations, the support vector classifier allows some observa-
tion to be on the wrong side of margin and even on the wrong side of the separation
hyperplane.

More formally, to find the separating hyperplane in this scenario, we want to
maximise M in:

yi(β0 + β1xi1 + β2xi2 + · · ·+ +βpxip) ≥M(1− εi) ∀i = 1, . . . , n (2.12)

10
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subject to ∑p
j=1 β

2
j = 1, where εi are variables that allow individual observations

to be on the wrong side of the separating hyperplane. These variables are subject
to:

εi ≥ 0
n∑
i=1

εi ≤ C (2.13)

where C is tuning parameter aimed to bound the sum of εi. Greater is C greater
will be the amount of violation allowed by individual instances xi. The parameter
C can be seen as a bias-variance trade-off for this technique.

Similarly as before, also in Eq. 2.12, only the samples that are violating the
margin or the samples that are in the wrong side of the hyperplane affect the
equation. This means that the other points can change position in the space without
changing the position of the hyperplane.

Support Vector Machine. The maximal margin classifier and support vector
classifier function properly when the separating hyperplane is linear. To deal with
non-linear separating hyperplane the support vector machine (SVM) is needed.
SVM enlarges the original feature space in specific ways using kernels. Enlarging
the feature space is used to address non-linearity by adding quadratic, cubic or
non-polynomial function of the predictors thus resulting in a non-linearity in the
original features space.

In SVM the feature space is enlarged as function of the predictors. In this way,
the decision boundary will still be linear in the enlarged feature space but it will
result generally non-linear in the original feature space.

It can be shown that Eq. 2.11 and Eq. 2.12 can be rewritten as inner products
of its observation:

K(xi, xi′) = 〈xi, xi′〉 (2.14)

where K is defining a kernel, specifically, Eq. 2.14 is defining a linear kernel. By
modifying Eq. 2.14 it is possible to define other kernels. Polynomial kernels and
radial kernels are the most common but custom ones are possible.

2.2.3 Gradient Boosting
Gradient boosting is a method to reduce the variance error of a model [35]. It is
usually used with decision tree but it can be used with other methods as well.

It has been proven successful in many different applications [87, 4] including
systems security [90, 67] and it has been used in one of the algorithms analysed
in my case studies by Mansour et al. [3] (§ 3.4). The following section explains
the classification tree algorithm and how it is used in conjunction with gradient
boosting.
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Classification Tree. The idea of this algorithm is to divide or split the predictor
space in a number of simple regions. In each of those regions the same rule is
applied, i.e., the same prediction will be given in output inside of each region. The
simple regions are created during the creation of this model (training phase) where
the best variable and split-point will be chosen in a recursive fashion until a certain
criteria is met.

For example, if we consider a simple model with only one predictor, if X is
divided at the point t then the regions X ≤ t and X > t will output respectively
the same prediction.

In a more general and formal way we can define this concept. Given the N
examples (x1, y1), (x2, y2), . . . , (xi, yi) with p predictors xi = (xi1, xi2, . . . , xip) the
tree algorithm will produceM regions of space R1, R2, . . . , RM where a the response
is a constant cm. The function is therefore defined as:

f̂(x) =
M∑
m=1

cmI(x ∈ Rm) (2.15)

Here, in a region Rm with Nm observations, we have that:

pmk = 1
Nm

∑
xi∈Rm

I(yi = k) (2.16)

is the proportion of class k in a region Rm. Therefore we can estimate the
classification k̂m as the majority class as:

k̂m = arg maxm pmk (2.17)

Finding the best possible split in generally computationally infeasible, therefore
greedy algorithms are usually used. Following a greedy algorithm, the best possible
split is found for each predictor and recursively the algorithm continues with new
regions created. This is computationally feasible but the details of such operations
are beyond the scope of this thesis. At this point, it is important to define the
stopping criteria for the algorithm, i.e., when the algorithm will stop to split the
newly created regions. Popular choices for this criterion are:

• minimum misclassification error: a number from Eq. 2.16 below which if
reached will stop the split

• minimum error decrease: to stop after the algorithm find difficult to split a
region with meaningful decrease of misclassification rate

• minimum number of examples in the region

• maximum number of splits
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Instead of the misclassification error, other measures of error are possible such
as Gini Index [43] or Cross-entropy [35].

Once the stopping criteria is reached the model is created and it can be used to
predict the label of a new observation.

The Algorithm. The idea is to create the model by sequentially combining pre-
vious weak learners as input and assigning a weight to each of them in order to
obtain the final prediction model that will be used during the testing phase. Weak
learners are prediction models that are only slightly correlated with the true out-
come (while strong learners are well correlated with the true outcome).

This technique is similar to bagging (or bootstrap aggregation), and random
forest because they are ensemble learning techniques that try to combine weak
learners to build a strong learner in order to reduce the variance.

In bagging, different learners are created in parallel from k subsets of the training
samples (using random sampling with replacement) and then averaged to create the
final model.

In random forest, the model is created by combining together different decision
tress. Each of them is created using a subset B of the examples in the dataset
D and only a subset of m predictor from the total predictors p. The goal is to
decorrelate the trees to obtain a strong predictor. A typical value for m is √p but
the best value depends on the data.

2.2.4 Conformal Predictor
Conformal Predictor (CP) [104] is a supervised algorithm used for classification
that gives a prediction with additional information regarding the level of trust on
the prediction itself. CP has been used as the base algorithm in my research to
build Conformal Evaluator (see § 3).

Intuition. The classification choice is based on credibility, a quality measure
which gives valuable insights by telling how much the new object is credited with
each label. The algorithm will output the label associated with the highest cred-
ibility. Along with credibility, CP provides another metric called confidence. It
represents how the chosen label is distinguishable from other labels.

At the core of conformal predictor there is a function that measures the simi-
larity between a group of objects and a single target object called non-conformity
measure (NCM). This is quite a generic definition that allow CP to use many
NCMs such as Random Forest (§ 2.2.3), Support Vector Machine (§ 2.2.2), Neural
Network [13], K-Nearest Neighbour [18] and many others.

In my research work (Part II), I have adapted CP and used it to assess the
quality of malware identification approaches.
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Conformal Predictor. I am now going to explain more formally the conformal
predictor algorithm. Given the infinite examples

(x1, y1), (x2, y2), (x3, y3), . . . (2.18)

The observations x1, x2, x3, . . . belongs to the object space X while the labels
y1, y2, y3, . . . belongs to the label space Y . A pair (xi, yi) represents an example
zi. A sequence z1, z2, z3 we assume to be drawn from an i.i.d. (independent and
identically distributed) population and exchangeable. Being exchangeable refers to
the probability distribution that does not change when the positions in the sequence
change.

Together X and Y make the example space:

Z := X × Y (2.19)

To define the non-conformity measure, I need to introduce the concept of bag.
A bag is a collection of n ∈ N elements where there can be identical elements and
where the order is irrelevant. An extreme case is when the bag (z1, z2, . . . , zn) is
made of elements that are all the same because the definition allows it. I now define
Zn as the set of all possible bags of size n and Z∗ as the set of all bags of Z.

I can now formally introduce the definition of non-conformity measure as:

NCM : Z∗ × Z → R (2.20)

Therefore, considering a bag with a finite number of element n such as z1, z2, . . . , zn
a non-conformity measure it is defined as:

NCMn : Zn × Z → R (2.21)

If a particular NCM is a good measure of non-conformity is subject to the
specific application, but the definition is general enough to allow many different
non-conformity measures.

It is possible now to compute a non-conformity score between a bag and an
element i of the bag as

αi := NCMn((z1, . . . , zi−1, zi+1, . . . , zn), xi) (2.22)

Alone αi is telling how much the chosen NCM find different xi from the bag of
objects.

Non-conformity Measure for Security. In this section, I discuss how the non-
conformity measure concept applies to a security algorithm.

Many algorithms for classification are based on inner machine-learning tech-
niques or scoring algorithm that given a training set of examples Z and a test
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object z∗ will output a prediction score A(Z, z∗). The non-conformity measure is
elicited directly from the scoring function of the algorithm and is one of the basic
blocks of conformal evaluator. It is used to measure the difference between a group
of examples belonging to the same class (e.g., malware belonging to the same fam-
ily) and a new object (i.e., a sample). The higher the measure, the more different is
the object with respect to the group of examples. Hence, if we take for example two
objects, z1 and z2, and a group of objects Z, z1 is more dissimilar than z2 to Z if
A(Z, z1) > A(Z, z2). The real-valued nature of the non-conformity measure allows
for negative values. Whenever we find a measure that increases as the new object
z is similar to Z (i.e., a similarity function), we can easily convert this to a non-
conformity measure by changing its sign. Thus, conformal evaluation is agnostic to
the algorithm, making it versatile and compatible with multiple ML algorithms; it
can be applied on top of any classification or clustering algorithm that uses a score
for prediction, even the one that are not directly based on a known ML algorithm.

To give an example, Rieck et al. in [82] use Support Vector Machine (SVM)
as the core of their classification approach. Whenever a new sample comes in, a
score is computed and the label with the highest score is assigned to the sample.
In this case the score can be converted to a non-conformity measure, allowing for
evaluation of choices through conformal evaluator. For example, in § 3.4.2, we
will use the scoring mechanism of BotFinder [102] as a conformity measure. This
algorithm is a good example of conformity measure because it gives as output a
score that is higher when a new malware sample is more similar to one family. To
convert this algorithm to be used into the Conformal Evaluator, we just need to
change the sign to the score returned by BotFinder.

Some ML algorithms already have built-in quality measures (e.g., the distance
of a sample from the hyperplane in SVM). However, these are algorithm specific
and cannot be directly compared with other algorithms. On the other hand, Tran-
scend unifies such quality measures through uniform treatment of non-conformity
in an algorithm-agnostic manner. Moreover, algorithms that do not inherently have
such quality metrics, (e.g., custom algorithms), benefit even more from conformal
evaluator as it defines the quality measure for them.

P-value. The algorithm now computes αj ∀ i /= j, i.e., all the non-conformity
measurements for the other elements in the bag (when the element is included in
the bag). This operation wants to understand how well the element will fit with
the bag, where it will be included. Once all the αj are computed, it is possible to
calculate a p-value for the observation xi by comparing αi with the other αj with
j /= i as:

|{j = 1, . . . , n : αj ≥ αi}|
n

(2.23)

It can go ideally from 1 to 1/n. It is small when xi is very different from the
other elements (e.g.: an outlier) or it very high when xi is very similar to the other
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elements.
In the context of classification a bag of objects can represent a class k ∈ K

where K is the set of classes in the dataset. The calculation of a p-value for an
observation xi ∈ D respect to all the elements with label k is shown in Algorithm 1.

Algorithm 1: P-value computation for observation xi and label k

Data: D = {z1, . . . , zi−1, zi+1, . . . , zn}
non-conformity measure NCM
observation xi

Result: p-value of xi for label k

1 Set zi = (xi, k)
2 for j ← 1 to n do
3 αj ← NCM(D \ zj, zj)
4 end
5 τ = U(0,1)

6 pki = |{j:αj>αi}|+|{i:αj=αi}|τ
|D|

7 return pki

Calculating the p-value of an observation xi of the training dataset Dtr can be
interesting to evaluate the fit of that observation on its own class of k. Nevertheless
it is known that the observation xi has the label yi because it was chosen from the
training observations. It will be more interesting to evaluate the fit of an element
xi to a class different than its own yi.

A variant of Eq. 2.23 can be defined as follow:

|{j = 1, . . . , n : αj ≥ αj}|+ τ |{j = 1, . . . , n : αj = αj}|
n

(2.24)

Eq. 2.24 represents a smoother p-value [104]. In Eq. 2.23, the τ is a smoothing
factor applied only to those objects that are equal to αi. This is a mathematical
trick used to make the equation differentiable and to smooth down the importance
of objects that are on the decision border, i.e., the objects that have equal αi.
Pragmatically, Eq. 2.23 and Eq. 2.24 are very similar therefore I will refer to p-
value even if a smoothed p-value is used.

The p-value terminology comes from the statistical hypothesis testing. Here,
the null hypothesis H0, represents the support that the an object belongs to a label
k. The alternative hypothesis is that the object does not belong k. Nevertheless,
differently to the hypothesis testing, the H0 is not rejected according to different
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levels of confidence (typically 90%, 95%, 98%, 99%) but its value will be used by
the CP algorithm.

Label Conditional vs Non Label Conditional. In Algorithm 1, line 6, the
p-value is calculated over the size of D. This means that all the element in the
dataset will be considered hence there will be an αi ∀i = 1, . . . , n. This is called
non label-conditional p-value because for all the elements of the dataset there will be
one α calculated for it. There is another variant of p-values called label conditional
where for the p-value for class k only the elements of class k are considered and
only on those there will be a α computation. The label conditional and non label
conditional algorithms are displayed respectively in Algorithm 3 and Algorithm 2.

Algorithm 2: Non label-
conditional p-value
2 for j ← 1 to n do
3 αj ← NCM(D \ zj, zj)
4 end
5 τ = U(0,1)

6 pki = |{j:αj>αi}|+|{i:αj=αi}|τ
|D|

Algorithm 3: Label-
conditional p-value
2 for j ← 1 to nk do
3 αj ← NCM(D \ zj, zj)
4 end
5 τ = U(0,1)

6 pki = |{j:αj>αi}|+|{i:αj=αi}|τ
|Dk|

P-values vs. Probabilities One might question the utility of p-value over prob-
ability of a test object belonging to a particular class. Probabilities are computed
by most learning algorithms as qualitative feedback for a decision. SVM uses Platt’s
scaling to compute probability scores of an object belonging to a class while a ran-
dom forest averages the decision of individual trees to reach a final prediction [16].
In this section, we discuss the shortcomings of using probabilities for decision assess-
ment as shown in § 4.3 and § 4.4. Additionally, we also provide empirical evidence
in favour of p-values as a building block for decision assessment.

P-values offer a significant advantage over probabilities when used for decision
assessment. Let us assume that the test object z∗ has p-values of p1

z∗ , p
2
z∗ · · · pkz∗ and

probability of r1
z∗ , r

2
z∗ · · · rkz∗ of belonging to classes k1, k2 · · · kn (which is the set of

all classes in K). In the case of probabilities, Σir
i
z∗ must sum to 1.0. Now, let’s

consider a 2-class problem. If z∗ does not belong to either of the classes, and the
algorithm computes a low probability score r1

z∗ ∼ 0.0, then r2
z∗ would artificially

tend to 1.0. In other words, if we use probabilities for decision assessment it is
likely that we might reach an incorrect conclusion for previously unseen samples.
P-values on the other hand are not constrained by such limitations. It is possible
for both p1

z∗ and p2
z∗ to be a low value for the case of a previously unseen sample.

This is true also when p-values are built using probability as NCM. To calculate
the probability of a test sample, only information belonging to the test samples are
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used (e.g., distance to the hyperplane in the case SVM or ratio of decisions for one
class in the case of random forest). Instead, a p-value is computed comparing the
scores of all the samples in a class.

I will further elaborate on this in Transcend, § 4, by training an SVM classifier
with objects from a dataset and testing it using objects from a different dataset (see
§ 4.2). During the training process I will calculate a threshold that will applied
during the testing phase to distinguish the classifier decisions with enough trust
on the decision itself. Fig. 4.1 shows the average of F1-score for malicious and
benign classes after the application of the threshold for the objects that fall above
(Fig. 4.1b) and below it (Fig. 4.1d). Fig. 4.1 also shows the number of objects with
enough trust (Fig. 4.1a) and without (Fig. 4.1c). Fig. 4.1b shows that the use of
p-values produces better performance as it identifies more objects to reject than
probabilities (Fig. 4.1a). By testing a different dataset it is correct to be unsure on
the decision of a high number of samples if the dataset tested is drifter compared to
the one used in the training, such as this one. Trusting too many decisions would
degrade the performance of the algorithm (Fig. 4.1d and Fig. 4.1c). I will present
the case studies in § 4, which show how to derive it from the training dataset.

Credibility. The process described in Algorithm 1 refers to an element that is
in the training dataset Dtr. Nevertheless, it is trivial to apply the algorithm to an
observation in the testing dataset Dte, i.e., an observation where the label is not
available.

Conformal predictor iterate the Algorithm 1 over all possible k ∈ K. It will
result in K different p-value pki for an element xi. The output label for the ob-
servation xi is the one corresponding to the highest p-value. In the same way the
credibility is defined as:

credibility = max pki (2.25)

The credibility represents the amount of evidence that the element xi is associ-
ated with the class k. In other words, it measure how well the observation xi fit in
the bag of objects with label k.

Confidence. Another important metric that credibility. It is defined as:

credibility = 1− confidence (2.26)

It represents the amount of evidence that the element xi is associated with
classes different than k. In other words, it represents how well the observation xi
is distinguishable from the other classes.

Credibility and confidence together can create 4 different situations for an ob-
servation xi:
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• Low credibility, low confidence: the worst situation, i.e., the observation is
poorly associated with the predicted label. There are other labels that can
be similarly associated with that observation.

• Low credibility, high confidence: the predicted label is poorly associated with
the observation but there are no other candidate labels that seems to be a
better choice.

• High credibility, low confidence: the observation is highly associated with the
predicted label but there are other candidate labels that seem to be a good
choice for that observation.

• High credibility, high confidence: the best situation, i.e., the observation is
highly associated with the predicted label and there are no other label that
can seem to be a good choice for that observation.

Prediction Set. Another important property of CP is the possibility to output
multiple labels as prediction, i.e., prediction set. Given a significance level ε and
an object xi, CP will output all the labels yi associated to a p-value (computed by
Eq. 2.23 or Eq. 2.24) greater than ε. CP has the property of validity that means
that the probability that the true label not being part of the output set is exactly
ε. This property has been explored by the security community in [21] and it will
be explored in the future works.

2.3 Evaluation Metrics
This section will describe the metrics used to evaluate the efficiency of a predictive
system. There are many metrics that can be used to highlight different functionality
of an algorithm. In this section, I will explain the ones that will be used in Part II
of this thesis.

The metrics described are computed in relation to the class of interest, i.e., the
positive class. In the malware security field, the positive class is usually associated
with the malware class, but a different association is possible. This association
is arbitrary but needs to be defined to avoid confusion during the analysis of the
performance.

Metrics

The performance metrics are computed taking the binary classification scenario as
reference. In this scenario, the positive class is associated with the malware class
while the negative class is associated with the positive class. Therefore there are 4
possible outcomes for a single observation:

19



2 – Machine Learning and Security

Prediction
Prediction positive Prediction negative

Ground
Truth

Condition positive True Positive (tp) False Negative (fn)
Condition negative False Positive (fp) True Negative (tn)

Table 2.1: Possible outcomes for a binary classification.

• True Positive (tp): the ground truth label of the observation is the positive
class and the predicted label is the positive class.

• False Negative (fn): the ground truth label of the observation is the positive
class but the predicted label is the negative class (or one of the other classes
in a multiclass scenario).

• False Positive (fp): the ground truth label of the observation is the negative
class (or one of the other classes in a multiclass scenario) but the predicted
label is the positive class.

• True Negative (tn): the ground truth label of the observation is the negative
class (or one of the other classes in a multiclass scenario) and the predicted
label is the negative class (or one of the other classes in a multiclass scenario,
the same one of the ground truth).

The possible outcomes are summarised in Table 2.1.
From Table 2.1, it is possible to derive several performance metrics. All the

performance metrics are referred to class of interest i.e., the malware class that is
associated with the positive class.

Multiclass case. In a multiclass classification scenario, only the definitions of
false positive and false negative change a little, while the metrics definitions remain
the same. In fact, they change because the negative class will be associated to a
group of classes, i.e., the classes that are not the ones of interest. For example, in
a malware family classification problem, where the goal is to classify a binary in
the correct malware family, to compute the performance of a class A; the positive
class is associated with the class A while the negative class is associated with the
classes B, C and D. Similarly, if we want to compute the performance of the class
B, it is possible to associate the positive class with B and the negative class with
the classes A, C and D.

In a scenario where we have more than one class of interest, it is possible to
compute the performance of each class separately and then combine them together.
To compute each class of interest separately it is possible to simply associate it with
the positive class and compute the performance following the formula accordingly.
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The ones that I am going to use throughout my thesis are precision, recall, false
positive ratio, F1 score, accuracy and ROC curve. This is not a comprehensive list.
Many others are available and preferred in specific circumstances.

Precision. It is calculated as the ratio between the objects correctly identified
(TP) and the total objects assigned with the positive label (prediction positive):

precision = tp

tp+ fp
(2.27)

Recall. Also known as True Positive Ratio (TPR), it is the ratio between the
objects correctly identified (tp) and the total objects that belong to that class
(tp+ fn):

recall = tp

tp+ fn
(2.28)

False Positive Ratio. False Positive Ratio (FPR) represents the number of neg-
ative events wrongly categorized as positive:

fpr = fp

fp+ tn
(2.29)

F1 score. It is a measure that combines the precision and recall in a single value:

F1score = 2 · precision · recall
precision+ recall

(2.30)

Accuracy. It is the proportion of the true classified objects among the total
number of objects:

Accuracy = tp+ tn

tp+ fp+ fn+ tn
(2.31)

ROC curve. The Receiver Operating Characteristic (ROC) curve is a graphical
tool to represent the capability of a system to discriminate 2 classes by varying the
thresholds of acceptance. On the x-axis, the FPR are shown while on the y-axis
the TPR are displayed. In this way, in a binary system a sample does not belong to
a class if the probability is greater than 50% but this threshold can vary. For each
calculation of the threshold a new point (with coordinate FPR, TPR) is calculated.
Varying the thresholds between 0% and 100% will produce a complete ROC curve.

Despite its popularity, the ROC curve have been shown to be a measure that
can be tricked [22, 34]. For this reason a more suitable metric has been proposed:
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precision-recall curve (PRC). PRC is similar to ROC where on the x-axis you will
have the precision and on the y-axis the recall.

Aggregated Metrics

Often a single value that summarise the precision, recall or F1 of the system is
more effective to describe the system rather than having a metric for each class.
To aggregate the values for metrics discussed there are two main ways: macro and
micro average [93].

Macro Average. The first method consists in averaging the single values for
each class of objects that the system is considering. For example, having a sys-
tem with n classes with given precision precision1, precision2, . . . , precisionn, the
overall precision can be computed as:

precision =
n∑
i

precisioni
n

(2.32)

The aggregated performance for the other metrics can be computed with the
same principle.

Micro Average. The second method consists of calculating the metric by recal-
culating the formulas. For example, in a system with n classes, the aggregated
overall precision can be computed as:

precision =
∑n
i tpi∑n

i tpi + fpi
(2.33)

These two methods can be used arbitrarily depending on the goal of the analysis
but they need to be made explicit to avoid confusion. Both of the methods have
drawbacks that need to be considered. The macro-average treats each class equally
regardless of the number of samples in each class. Usually, this average is used when
small classes are equally important as the bigger ones. In this case, if a small class is
performing particularly badly, it will influence the overall performance significantly.
The micro-average instead takes into account the number of samples in each class
therefore bigger classes will influence the overall performance substantially. The
choice of the type of average is dependent on the context and both of them can be
preferred in a particular scenario.

2.4 Security Considerations
Machine learning has become a standard tool for malware research in the academic
security community. It has been used in a wide range of domains including Windows
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malware [20, 100, 65], PDF malware [52, 63], malicious URLs [96, 54], Javascript
malicious code [84, 19], and Android malware [9, 98, 64, 29, 113, 21, 111]. However,
there are several domain-specific issues that have not been addressed properly lead-
ing to show tantalizingly high performances like if malware would be a problem of
the past [76]. Among the most common problems are temporally inconsistent train
and test splits, e.g., k-fold cross-validation. Malware classifiers are strongly affected
by concept drift: as new malware variants and families appear, their performances
decays over time [46]. Therefore, when temporally inconsistent experimental set-
tings allow the classifier to train on what is effectively future malware, it will
artificially inflate the test results [5, 69].

In this section, I highlight specific constraints and considerations that must be
taken into consideration when planning experiments in a systems security domain,
as shown in [76].

Domain-specific in-the-wild malware percentage. Estimating testing dataset
distribution is fundamental for enabling unbiased evaluations of malware classifiers.
This distribution needs to rely on measurement studies performed by industry play-
ers, measurement papers, and tech reports, to provide a realistic estimate for the
correct setting of the targeted scenario. It is not always easy to find such studies
but it is important to foster such studies to promote sound evaluations.

In the Android landscape, malware represents 6%–18.8% of all the apps, accord-
ing to different sources. A key industrial player in the Android landscape reported
the ratio as approximately 6%, whereas the AndRadar measurement study [59]
reports around 8% of Android malware in the wild. The 2017 Google’s Android
security report [33] suggests 6–10% malware, whereas an analysis of the metadata
of the AndroZoo dataset [6] counting almost 6M Android apps regularly updated,
reveals an incidence of 18.8% of malicious apps. Correctly estimating the malware
percentage in the testing dataset is a challenging task and need to be encouraged
further as representative measurement studies [59, 105] and data sharing to ob-
tain realistic experimental settings. This will promote the unbiased evaluation of
machine learning-based malware classification techniques.

Performance bias increases when it increases the discrepancy between the per-
centage of malware in the wild and the percentage of malware tested during the
study. Therefore, it is important that the value of this performance remains in the
same ballpark of the real one. In case the dataset used in the study is not able to
represent correctly the proportion seen in the wild, there are many techniques that
can be adopted for this purpose (e.g., under-sampling, over-sampling) each of them
has its own advantages and drawbacks.

As discussed in [76], the percentage of malware in the testing distribution needs
to be estimated and cannot be changed, if one wants results to be representative
of in-the-wild deployment of the malware classifier.
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Temporal Consistency. It refers to temporally inconsistent evaluations, which
integrates future knowledge about the testing objects into the training phase [5, 69].
This problem is exacerbated by families of closely related malware, where including
even one variant in the training set may allow the algorithm to identify many
variants in the testing.

The problem of temporal consistency between training and testing is known but
so far has not been addressed conclusively in previous studies [5, 69].

The authors of [76] address this problem by enforcing a constraint. All the
objects in the training must be strictly temporally precedent to the testing ones:

time(xi) < time(xj),∀xi ∈ Dtr,∀xj ∈ Dte (2.34)

where xi (resp. xj) is an object in the train set Dtr (resp. testing set Dte). Eq. 2.34
must hold; its violation inflates the results by including future knowledge in the
classifier thus biasing the results.

The time information can have different meanings depending on the context of
the application. In malware analysis scenario, it may represent the first time that
a binary was observed in the wild. In URL analysis, it may represent the server’s
arrival time of the query.

Despite the variety of meaning the time can assume, the train-test temporal
split must be enforced because in a real-world deployment of the algorithm because
it is not possible to have a test set that temporarily proceed the train set.

Concept Drift. Cross-validation can cause positive bias in the model by artifi-
cially inflating the performance of malware classifiers [5, 69, 70]. The bias can be
caused by concept drift in malware combined with the similarities among malware
within the same family. This is because CV is likely to include in the train set at
least one sample of each malware family in the dataset, whereas new families will
be unknown at training time in a real-world deployment. I would like to stress that
I am not claiming that 10-fold CV is wrong, and it is still very important to verify
that the algorithm is not overfitting [12]. Nevertheless, in highly non-stationary
contexts such as malware classification it is not sufficient—instead, CV results are
misleading and positively inflated, because training samples are not temporally
precedent to testing samples. Therefore, knowledge about the future malware (e.g.,
future families) are included in the model [5, 69] and hence the algorithm will able
to recognize variants.

Despite the care that need to be adopted when using CV, its use is widespread
in malware classification research [70, 80, 98, 61, 20, 100, 65, 52, 113, 19]; while
a common mechanism to prevent overfitting [12], it is ill-suited for estimating the
real-world performance of machine learning techniques with non-stationary data
(e.g., malware) that are affected by concept drift and time decay.

Although this characteristic is important, a high performance is expected from
a classifier in a static scenario where new malware fit in the training distribution.
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In such a scenario, it is possible to estimate the performance of your classifier with
CV, whether objects are old or new. Nevertheless, in the presence of concept drift,
the testing distribution will be statistically different than the training distribution
and therefore the CV is going to be misleading to evaluate the performance of the
classifier.

We thus believe that experiments on the performance achieved on the detec-
tion of past malware can be misleading; the community should focus on building
malware classifiers that are robust against time decay.
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Chapter 3

Conformal Evaluator

Malware pose a serious and challenging threat across the Internet. According to
different antivirus firms [66, 99, 48], the number of new unique malware in 2018 was
between 500M and 700M. With such numbers, manual analysis techniques cannot
be employed to scale up and the need for automated approaches has become rapidly
clear. Machine learning has long been acknowledged as a promising technique to
identify and classify malware threats [86, 83, 88]; such a powerful technique is un-
fortunately often seen as a black-box panacea, where little is understood and the
results—especially with high accuracy—are taken without questioning their qual-
ity. For such reasons, results are often biased by the choice of empirical thresholds
or dataset-specific artefacts, hindering the ability to set easy-to-understand error
metrics and thus compare different approaches. This setting, calls for new metrics
that look beyond quantitative measurements (e.g., precision and recall), and help
in scientifically assessing the soundness of the underlying machine learning tasks.
To this end, conformal evaluator was developed: a framework designed for evalu-
ating the quality of a result in terms of statistical metrics such as credibility and
confidence. Credibility tells you how much a sample is credited with one given pre-
diction (e.g., a label), whereas confidence focuses on pointing out how much a given
sample is distinguished from other predictions. Such evaluation metrics give useful
insights, providing a quantifiable per-choice level of assurance and reliability. Core
of conformal evaluator is a non-conformity measure, which, in essence, allows for
measuring the difference between a sample and a set of samples. For this reason,
the framework is general enough to be immediately applied by a large class of al-
gorithms that rely on distances to identify and classify malware, allowing to better
understand and compare machine learning results. To further support this claim,
the outcome of three different algorithms are evaluated under conformal evaluator
settings (§ 3.4). My aim is to show how traditional metrics mislead about the
performance of different algorithms. Instead, conformal evaluator’s metrics enable
to understand the reasons behind the performance of a given algorithm, and reveal
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shortcomings of apparently highly accurate methods. Building on top of such met-
rics, Transcend was proposed: a framework to identify ageing classification models
in vivo during deployment, much before the machine learning model’s performance
starts to degrade. This is a significant departure from conventional approaches that
retrain ageing models retrospectively when poor performance is observed. The ap-
proach uses a statistical comparison of samples seen during deployment with those
used to train the model, thereby building metrics for prediction quality. I will show
how Transcend can be used to identify concept drift based on two separate case
studies (§ 4.2) on Android and Windows malware, raising a red flag before the
model starts making consistently poor decisions due to out-of-date training.

3.1 Methodology
Conformal evaluator (CE) is the evaluation framework built on top of conformal
predictor [104]. Conformal predictor is a machine learning algorithm, usually ap-
plied to classification problems, that gives a prediction (i.e., a label) with precise
levels of trust on the prediction itself. Specifically, given a sequence of examples
z1, z2 . . . zn ∈ Zk, and a new object z∗, conformal predictor enables us to decide
whether z∗ ∈ k or z∗ /∈ k (for k ∈ K).

In this framework, CP algorithm is dissected to provide two statistical metrics
that measure the quality of the results: algorithm confidence and algorithm cred-
ibility. Algorithm credibility gives valuable insights by telling how much the new
object (e.g., a new malware sample) is credited with a given set (e.g., a malware
family), that reflects the quality of the choice taken by the algorithm. If we define,
in a classification setting, k as a class of objects with nk elements and K as the set
of all the classes, by iterating the process through every class in K, the algorithm
confidence measures how distinguished z∗ is with respect to the other classes. Al-
gorithm credibility and algorithm confidence are further explained in § 3.2.1 and
§ 3.2.2.

Core of conformal evaluator, is a non-conformity measure, a real-valued function
A(Zk, z∗), which tells how different an object z∗ is from a set of objects Zk (i.e.,
objects with the same label k). Thanks to the real-valued range of non-conformity
measure, conformal evaluator can be immediately used with well-known machine
learning methods such as support-vector machines, neural networks, decision trees
and Bayesian prediction (see [91]) and in general with any method that makes
use of real-valued numbers (i.e., a similarity function) to distinguish objects. Such
flexibility enables CE framework to assess a wide range of algorithms.

Once a non-conformity measure is extracted from the algorithm under analysis,
conformal evaluator computes a p-value pz∗ which, in essence for a new object z∗,
represents the percentage of objects in the whole dataset that are equally or more
estranged to Zk as z∗. The basic algorithm is shown in Listing 1 where the p-value

28



3 – Conformal Evaluator

is calculated from an element in the same dataset D, therefore to compute the
p-value for a new element we need to provisionally include the element z∗ in D i.e.
D∗ = D ∪ z∗.

P-values are directly involved in the algorithm credibility and confidence.

3.1.1 Relationship with Conformal Predictor
Although conformal evaluator is built on top of conformal predictor (CP), it does
not share the same weaknesses as that of other solutions based on it [26, 36]. Fern
and Dietterich1 also showed how pragmatically CP is unsuited in an open world
scenario (i.e., when new labels are present in the testing set). They suggest to
apply an anomaly detector algorithm before the use of CP to feed it with normal
data. We further highlight the differences between CP and CE that makes CE
better-suited to the concept drift detection task.

They say that CP in unsuited in the Open World scenario (i.e., Unknown Un-
knowns, i.e., when there is an unknown label in the testing set) using traditional
ML classifier, therefore they suggest to use an anomaly detector before the use of
CP in order to feed CP with normal data (i.e., the anomaly are removed). They
do not specifically talk about i.i.d. but it might be an inner cause.

CP relies on a non-conformity measure to compute p-values in a way simi-
lar to CE. For each classification task, CP builds on such p-values to introduce
credibility—the class, in a classification problem, with the highest p-value and
confidence—defined as one minus the class with the second highest p-value (these
metrics are different from CE metrics, see § 3.2). The CP algorithm then outputs
either a single class prediction with the identified credibility and confidence (or a
prediction set).

CE dissects CP metrics and to extract its p-values calculation. The p-values are
used together with the output labels provided by the algorithm under evaluation, to
build CE metrics. CP ignores these labels as it tries to predict them. Conversely,
CE uses this information to provide quality metrics to assess the quality of the
encapsulated algorithm. This change is of paramount importance to derive the
thresholds, computed by Transcend (§ 4), used to accept or reject a prediction and
to assess an algorithm (§ 3.3).

This posterior use of the labels is a key feature that enables CE to detect concept
drift. On the contrary, CP is designed as a predictive Transcend making only use of
prior information. Since labels are important pieces of information, CE uses them
to build its metrics and assessments (see, § 3.2 and § 3.3). The labels used by CE
are the ones of the training samples and not the labels of the testing samples that

1A. Fern and T. Dietterich. “Toward Explainable Uncertainty”. https://intelligence.org/
files/csrbai/fern-slides-1.pdf
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are unavailable at the time of classification.
CP exists in two modes: transductive and inductive [27]. The transductive

mode is based a straightforward comparison of a new examples to the training
ones by relative strangeness. In the inductive mode, a training set is divided into
two parts —proper train and calibration set—, where the proper train set is used
only to assess the strangeness of the remaining (calibration and testing) examples,
but its examples are not assessed by NCM scores themselves. The inductive mode
was originally invented to increase the computational velocity. But it also has an
advantage in the context of “posterior” learning, simulating a division into train
and test sets within the original train set, and therefore being more sensitive to
over-fitted models. On the other hand, we would like to cover the case when
the amount of examples may be relatively small, therefore we would not like to
lose non-conformity score assigned to the examples from the proper training set.
Therefore, we create CE that is a novel mix of transductive and inductive modes:
the training set is divided into two sets, then the first of them gets NCM scores
as in the transductive mode and the second follows the inductive scheme. This
affects the validity of results to a very slight degree, which is negligible in the
context of “posterior” evaluation, where the methods are compared to each other.
Nevertheless, the mathematical property and the fundamental ground of CP ([91])
are intact. For these reasons, the degree of novelty introduced by CE makes it a
different machine learning algorithm, even though, still based on CP.

3.2 Statistical Measures
In this section, I am going to explain the statistical tools that form the base of
conformal evaluator: algorithm credibility and algorithm confidence.

At the heart of conformal evaluation is the non-conformity measure—a real-
valued function A(Z, z), which tells how different an object z is from a set Z. The
set Z is a subset of the data space of objects D (with the same label k). Due
to the real-valued range of non-conformity measure, conformal evaluator can be
readily used with a variety of machine learning methods such as support-vector
machines, neural networks, decision trees and Bayesian prediction [91] and others
that use real-valued numbers (i.e., a similarity function) to distinguish objects.
Such flexibility enables to assess a wide range of algorithms.

As explained in § 2.2.4, conformal evaluation computes a notion of similarity
through p-values. For a set of objects Zk (i.e., objects with same label k), the
p-value pkz∗ for an object z∗ is the proportion of objects in class k that are at least
as dissimilar to other objects in Zk as z∗. There are two standard techniques
to compute the p-values: Non-Label-Conditional employed by decision and alpha
assessments outlined in § 3.3.1 and § 3.3.2; and Label-Conditional employed by the
concept drift detection described in § 2.2.4. The computation of the non-conformity
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measures non-label-conditional is listed in Algorithm 2 while the label-conditional
is listed in Algorithm 3.

P-values compute an algorithm’s credibility and confidence, crucial for decision
assessments (§ 3.3).

3.2.1 Algorithm Credibility
The first evaluation metric to explore is algorithm credibility. It is defined as the
p-value corresponding to the label chosen by the algorithm under analysis. This is
an important difference with respect to CP. CE receives the label provided by the
algorithm under evaluation to assess it. CP instead, it is a predictive algorithm
and it provides to the sample the label associated to the maximum p-value. These
two labels are generally different.

P-values are calculated according to Eq. 2.24. Therefore, algorithm credibility
is defined as:

Acred = pk ; k is the label outcome of the algorithm (3.1)

As stated earlier, the p-value measures the fraction of objects within D, that are
at least as different from a class k as the new object z∗. Therefore a high credibility
value means that z∗ is very similar to the objects of class k.

There may potentially be high p-values for multiple labels indicating multiple
matching labels for the test object which the classification algorithm has ignored.
On the other hand, a low credibility value is an indicator of either z∗ being very
different from the objects in the class chosen by the classifier or the object being
poorly identified. This observation alone can already be considered a good achieve-
ment, however high credibility alone tells us very little with respect to the quality
of the choice, as there may be multiple p-values that are close to the maximum.

Considering a low credibility value instead, this usually shows that z∗ is very
different from k, yet this could also reveal that the object is poorly identified. These
two observations show that credibility alone is not sufficient for reliable decision
assessment. Hence, we introduce another measure to gauge the non-performance
of the classification algorithm—algorithm confidence.

3.2.2 Algorithm Confidence
Algorithm confidence is the second evaluation metric to explore. For a given choice
(e.g., assigning z to a class ki), confidence tells how certain or how committed the
evaluated algorithm is to the choice. Looking at it from a more formal perspective,
it measures how much the new object z∗ ∈ ki is distinguishable from other classes
kj with j /= i.
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The definition of the algorithm confidence is one minus the maximum p-value
among all p-values except the p-value chosen by the algorithm (i.e., algorithm
credibility):

Aconf = 1−max(P \ Acred) (3.2)

where
P = {pk : k ∈ K} (3.3)

Given an object and a set of possible choices, the highest possible value of
confidence is the one associated with the highest p-value. In a conformal predictor
setting, this is considered to be the best choice, thus resulting also in the highest
confidence possible. However, in my setting, where CE rethinks conformal predictor
for evaluation purposes, it may happen that the choice made by the algorithm is
not the best one, reflecting also on the confidence being not optimal (as described
in § 3.1.1). We will see through the experiments section that this sometimes brings
to valuable insights, especially when the methods under assessment take choices
with low values of confidence and credibility.

A low value for algorithm confidence indicates that the given object is similar to
other classes as well. Depending on the algorithm credibility value, this indication
may imply that the decision algorithm is not able to uniquely identify the classes
or, that the new object has features common to two or more classes. On the other
hand a high confidence in general is a sign that the identification method is good
in distinguishing a class from the others.

As a final remark, before explaining how to use conformal evaluator for eval-
uating malware clustering and classification methods, we would like to highlight
that confidence and credibility are not biased from the number of classes within
a dataset as common measures such as precision and recall are, as Li et al. have
shown in [56]. This means that conformal evaluator findings are more robust to
dataset changes than other evaluation methods.

CE can also provide quality evaluation that allows switching the underlying
ML-based process to a more computationally intensive one on classes with poor
confidence [21]. Our work details the CE metrics used by Dash et al. [21] and
extends it to identify concept drift.

3.3 Assessments
In the previous section, I have introduced conformal evaluator along with its mea-
sures, algorithm confidence and algorithm credibility. In order to fully leverage
their benefits, I have built new analyses around them that, given a dataset and an
algorithm, evaluates the quality of the algorithm by producing two assessments.
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Figure 3.1: Evaluating malware classification/clustering with conformal evaluator.
Decision assessment is derived from the algorithm decision alone and it is used to
evaluate the quality of correct and incorrect algorithm chosen separately. Alpha
assessment is used to assess how good is the similarity function with respect to the
underlying dataset.

The framework is shown in Fig. 3.1. From the similarity-based classification or
clustering algorithm we elicit a non-conformity measure which is then used by con-
formal evaluator. Whether intended at classification or clustering, such algorithms
sometimes use methods as an intermediate step to score the similarity to previous
trained malware profiles. In these instances a non-conformity measure might be
elicited from the intermediate step.

CE framework introduces two novel analyses, which we briefly outline here below
and explain in detail afterwards.

Decision assessment helps in understanding how robust are the choices taken
by the evaluated algorithm. It directly relates to the results given by the similarity-
based classification/clustering algorithm. Alpha assessment gives an indication of
how good the non-conformity measure is in respect to the dataset. It provides more
profound and trustworthy insights on how good (or bad) the algorithm is with re-
spect to the data at hand. It works by assessing how well the non-conformity mea-
sure, hence the measuring method of the similarity-based classification/clustering
algorithm itself, works with the dataset. I call this alpha assessment, as often it
refers to the non-conformity score for object zj as αj.

3.3.1 Decision Assessment
The goal of this analysis is to assess the algorithm decisions in qualitative manner.
To do so, for each new object z∗ (e.g., a malware) conformal evaluator takes the
decision k ∈ K made by the algorithm (i.e., the assigned label), and computes its
algorithm credibility and algorithm confidence.

At this point we can evaluate, for each choice, what is the algorithm credibility
and the algorithm confidence behind any right and wrong choice. Hence, four
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possible scenarios unfold:

• High algorithm confidence, high algorithm credibility: the best situation, the
algorithm is able to correctly identify a sample towards one class and one
class only.

• High algorithm confidence, low algorithm credibility: the algorithm is not able
to correctly associate the sample to any of the class present in the dataset

• Low algorithm confidence, low algorithm credibility: the algorithm gives a
label to the sample but it seems to be more similar to another label

• Low algorithm confidence, high algorithm credibility: according to the algo-
rithm, it seems that the sample is similar to two or more classes.

The measures are then grouped into two sets —correct or wrong— which rep-
resents values for correctly and wrongly classified objects. Subsequently, values are
averaged and their standard deviation is also computed, this is done for every class
k ∈ K, to study whether the algorithm works consistently for all classes or if there
are difficult classes that the algorithm has trouble dealing with. This assessment,
performed during the design phase of the algorithm, will also be used in Transcend
(§ 4) to help to decide the cut-off threshold for a deployed scenario to separate the
samples with enough statistical evidence of correctness.

Comparing the results obtained for correct and wrong choices produces inter-
esting results. For correct choices it would be desirable to have high credibility
and confidence. Conversely, for wrong choices it would be desirable to have low
credibility and high confidence. The divergence from these scenarios helps under-
stand whether the algorithm takes strong decisions, meaning that there is a strong
statistical evidence to confirm its decisions, or, in contrast, if the decisions taken
are easily modified with a minimal modification of the underlying data.

By looking at the outcome of decision assessment, it is possible to understand
whether the choices made by an algorithm are supported with statistical evidence.
Otherwise, it is possible to get an indication where to look for possible errors or
improvements, i.e., which classes are troublesome, and whether further analysis is
needed, e.g. by resorting to the alpha assessment.

3.3.2 Alpha Assessment
In addition to the decision assessment, which evaluates the output of a similarity-
based classification/clustering algorithm, another important step in understanding
the inner workings and subtleties of the algorithm includes analysing the data
distribution of the algorithm under evaluation. Owing mainly to practical rea-
sons, malware similarity-based algorithms are developed around a specific dataset.
Hence there is often the possibility of the algorithm to over-fit its predictions to the
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dataset. Over-fitting results in poor performance when the algorithm analyses new
or unknown datasets [56]. Despite employing techniques to avoid over-fitting, the
best way to answer this question is to try the algorithm against as many datasets
as possible. We show that conformal evaluator can help solve this problem, when
no more than one dataset is available.

The alpha assessment analysis takes into account how appropriate is the similarity-
based algorithm when applied to a dataset. It can detect if the final algorithm
results still suffer from over-fitting issues despite the efforts of minimizing it using
common and well-known techniques (e.g., cross validation).

Furthermore, the assessment enables us to get insights on classes (e.g., mal-
ware families), highlighting how the similarity-based method works against them.
Researchers may gather new insights on the peculiarities of each class, which may
eventually help to improve feature engineering and the algorithm’s performance,
overall.

First, for each object zj ∈ D, where kj is zj’s true class, we compute its p-values
against every possible k ∈ K. We then plot the boxplot [39], containing the p-values
for each decision. By aligning these boxplots and grouping them by class/cluster,
we can see how much an element of class/cluster j resembles that of another one,
allowing for reasoning about the similarity-based algorithm itself.

In § 3.4 three case studies are presented where I have statistically evaluated the
quality behind performances of algorithms within the conformal evaluator frame-
work.

3.4 Case studies
To demonstrate conformal evaluator, in this section I evaluate three malware clas-
sification algorithms, leveraging the assessments defined in § 3.3:

• Algorithm 1: Drebin [9], a detection algorithm for malicious android appli-
cations.

• Algorithm 2: BotFinder [102], an algorithm for botnet classification and
detection.

• Algorithm 3: algorithm used in the Kaggle’s Microsoft Malware Classifica-
tion Challenge [40] achieving position 49th over 377.

The first one, Drebin, detects malicious android applications based on static
analysis of the application’s APK (android package file). The method consists of
extracting various information from the application manifest and decompiled code.
This information consists of the requested permissions, the requested hardware
components, the application intents, the type of application components, various
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Drebin Dataset
Original Dataset Perturbed Dataset

Type Samples Type Samples
Malicious app 5 560 Malicious app 2 702
Benign app 123 453 Benign app 60 000

Table 3.1: Dataset composition used by [9].

Microsoft Malware Classification Challenge Dataset
Malware Samples Malware Samples
Ramnit 1 541 Tracur 751
Lollipop 2 478 Obfuscator.ACY 1 228

Kelihos_ver3 2 942 Gatak 1 013
Vundo 475 Kelihos_ver1 398

Table 3.2: Number of samples for each family used in the Microsoft challenge.

types of API calls, the effective used permissions (from the decompiled code) and
the network addresses. These features are then used to build a model to decide
whether new applications are malicious or not. The detection model is built using
a well-known machine learning algorithm, Support Vector Machine (SVM). In our
conformal evaluator we use the distance to the hyperplane identified by SVM as
non-conformity measure, to assess the results of the detection process. The dataset
used in [9] is a public dataset composed of 123 435 benign applications and 5 560
malicious applications (see Table 3.1).

This algorithm was chosen for several reasons: the large dataset which is publicly
available, Drebin reported performance is very good and the method is described
well enough in the paper to give us the possibility to replicate it. For more details,
please refer to [9].

With respect to BotFinder [102], the algorithm processes network traces to build
family-based malware behaviour profiles. These are later used for classification of
new samples. BotFinder was chosen as second use case, as it is a fairly recent work
and it has been tested in the field with interesting results, moreover extracting
a non-conformity measure was relatively straightforward and, finally, because the
authors were very kind to provide us with the same dataset as the one they used
for their own experiments (on Table 3.3 it is referred as original dataset). Having
the same dataset is indeed crucial in order to have a meaningful comparison. As
for BotFinder algorithm itself, it was re-implement from scratch according to the
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Botfinder Dataset
Original Dataset Perturbed Dataset
Malware Samples Malware Samples
Bifrose 51 Gammima 34
Sasfis 55 Hupigon 14

Blackenergy 62 Swizzor 117
Banbra 98 Tibs 555
Pushdo 46 Windefender 5

Table 3.3: Number of samples for each family. Datasets used by [102].

description outlined in [102] that was detailed enough to allow us to achieve similar
performances.

The algorithm leverages five features, which are extracted from network flows
in the captured botnet communications. These are the average value of the time
intervals between two subsequent flows, the average duration of connections, av-
erage number of source bytes and destination bytes per flow and, finally, the Fast
Fourier Transform to highlight periodic communications. These features are then
combined together to obtain, once a new sample comes in, a score associated to
each family in the dataset. The score, referred to as γM in [102], is the product of
the quality of the matched cluster of a malware family and the quality of the new
sample. The quality is given by a quality rating function based on the mean and
standard deviation of features.

The malware sample is labelled as belonging to the family with the highest
score. This score naturally serves as non-conformity measure by inverting its sign
(see § 2.2.4). Before labelling the sample, BotFinder implements a filtering step
that relies on an empirical threshold defined through iterative experiments. The
assessment was performed omitting this step as it is more interesting to evaluate
the scoring function itself.

I am going to apply the selected algorithms to the dataset used in [102] and
a perturbed dataset. BotFinder’s dataset is composed of 5 malware families, each
one having a different number of network traces (see Table 3.3). In addition, 5
new malware families were introduced (referred as perturbed dataset in Table 3.3)
with wide range of numbers of network traces from 5 to 555, and combine them
with BotFinder’s dataset to generate the perturbed dataset totaling 10 families (see
Table 3.3).

The third evaluated algorithm comes from the Microsoft Classification Chal-
lenge [40] on the Kaggle platform [40]. The website is a well-known platform host-
ing a wide range of data science related competitions, from image processing to
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medical related topics to security challenges. The Microsoft Malware Classification
Challenge involves the classification of 9 malware families by leveraging statistical
analysis of the disassembled binaries. In this study only 8 families were included
in the evaluation, as the excluded one has noticeably less samples than the others
(10 to 100 times less).

The algorithm is described in [3]. The authors use the eXtreme Gradient Boost-
ing (XGBoost) as their machine learning classification algorithm [101]. It’s based
on gradient boosting [81] and, like other boosting techniques, it combines different
weak prediction models to create a stronger one (see § 2.2.3). Particularly in their
work, the authors use XGBoost with decision trees.

As non-conformity measure, I select the probability of one sample belonging to
one class, with its sign inverted (since probabilities are conformity scores).

All the datasets, Drebin’s and BotFinder’s and Kaggle’s challenge, consist of
labelled malware samples whose ground truth has been verified.

In a nutshell, our experiments aim to answer the following research question:

RQ: What insights do CE statistical metrics provide? Intuitively, such metrics
provide a quantifiable level of quality of the predictions of a classifier.

3.4.1 Evaluation of Algorithm 1
In this section Drebin is evaluated, described in [9]. The algorithm achieves very
good performance as shown on the confusion matrix on Table 3.4.

Fig. 3.2 shows the decision assessment (described in § 3.3.1) for [9]. Looking
at correct choices, we can see that the average algorithm credibility is around 0.5
and the average algorithm confidence is over 0.9. This is considered a very good
result because when the average confidence for the correct choices is high, it means
that the samples are usually very different from the wrong label, so we can see that
the algorithm takes the right decision with high statistical evidence of correctness.
A value around 0.5 for average algorithm credibility is to be expected if most of
the samples are correctly labelled (due to mathematical properties of conformal
evaluator). For incorrect results, we can see the average algorithm credibility is less
than 0.2 and the average algorithm confidence is very high, greater than 0.9. This
again, is a good result because even when the algorithm chooses a wrong label for
one sample, it is poorly associated with that label meaning that the algorithm has
poor statistical evidence for his choice, hence it is not completely able to tell apart
the right label from the wrong one, meaning that its error margin is very small (see
§ 3.3.1).

A good separation between correctly identified and incorrectly identified sam-
ples, shows that the decision made by the algorithm is most of the time far from
the decision border, where by “decision border” I mean the ideal (or real) border
where decisions switch from “A” to “B”.
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Assigned label
Sample Malicious Benign Recall
Malicious 5 132 428 0.92
Benign 297 123 156 0.99
Precision 0.95 0.99

Table 3.4: Confusion matrix for [9] with original dataset.
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Figure 3.2: Decision assessment for the binary classification case study (Drebin [9])
with the original dataset. Correct predictions are supported by a high average
algorithm credibility and confidence, while incorrect ones have a low and a high al-
gorithm credibility and confidence, respectively. Overall, positive results supported
by a strong statistical evidence.

Looking thoroughly at [9], the reasons for this good result are threefold: the
authors have a rather large dataset as ground truth, binary classification problem
is usually simpler than multiclass classification and the method has strong scientific
foundations and it is well designed.

As you have gathered, Fig. 3.2 gives us more information than pure performance
metrics. It is telling us that, based on the quality of the results obtained, we can be
confident the method is not strongly dependent on hidden choices or dataset specific
tweaks. Later on, we are going to perturb the dataset to empirically confirm this
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Assigned label
Sample Malicious Benign Recall
Malicious 2 678 24 0.99
Benign 1 59 999 0.99
Precision 0.99 0.99

Table 3.5: Confusion matrix for [9] with perturbed dataset.

statement.
Fig. 3.3 shows CE’s alpha assessment of Drebin. We plot this assessment as

a boxplot to show details of the p-value distribution. The plot shows that the
p-value distribution for the wrong predictions (i.e., second and third column) is
concentrated in the lower part of the scale (less than 0.1), with a few outliers;
this means that, on average, the p-value of the class which is not the correct one,
is much lower than the p-value of the correct predictions. Benign samples (third
and fourth columns) seem more stable to data variation as the p-values for benign
and malicious classes are well separated. Conversely, the p-value distribution of
malicious samples (first and second columns) is skewed towards the bottom of the
plot; this implies that the decision boundary is loosely defined, which may affect
the classifier results in the presence of concept drift. A direct evaluation of the
confusion matrix and associated metrics does not provide the ability to see decision
boundaries nor predictions (statistical) quality.

Moreover, based on the results of the alpha assessment for benign samples, we
do not observe any overfitting issues. Particularly, for the benign samples, the p-
values for the two classes are quite different and the p-values to the malicious class
are condensed in the lower part of the scale. In this case, the algorithm decision is
strong and difficult to perturb even by changing the underlying dataset.
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Figure 3.3: Alpha assessment for the binary classification case study (Drebin [9])
with the original dataset. Benign samples are well separated from malicious ones,
especially when the assigned label is benign; this provides a clear statistical support
that positively affects the quality of predictions.

Results with perturbed dataset

To give credit to the results obtained with the decision assessment, I am going to
rerun conformal evaluator with a perturbed dataset to check results consistency
against potential customized threshold or previous dataset specific tweaks. The
perturbed dataset is described on Table 3.1. Half of the malicious applications
come from [110], while the other half were kindly provided by McAfee. The benign
applications are a subset of the original Drebin’s dataset.

In Fig. 3.4, we can see the results of the decision assessment for the perturbed
Drebin’s dataset. The assessment shows a similar behaviour as the original ap-
proach, meaning that the results do not change when the underlying dataset does.
This fact experiment empirically confirms that the decisions made by the algorithm
are consistent across different datasets and hence not influenced by dataset cus-
tomization and, more importantly, that the algorithm does not over-fit data. Even
without an additional dataset, the information provided by the decision assessment
alone (Fig. 3.2) raises the reliability of the drawn conclusions (i.e., Drebin is well
designed algorithm) to an higher level of confidence. The alpha assessment for the
perturbed dataset 3.5 shows that the benign samples are again well distinguished
from the malicious ones, with similar considerations as before.
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Figure 3.4: Decision assessment for [9] with a perturbed dataset. We have again
very good results: correct classifications have a high confidence, while incorrect
classifications have low credibility and high confidence.
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Figure 3.5: Alpha assessment for [9] with the perturbed dataset. Very good results
achieved by the algorithm: the p-values for benign samples are well separated. The
p-values for malicious are once again not really well separated but the p-values
for the benign class are very concentrated in the low part of the scale. White
dots represent the average values, white lines represent the median values, and red
crosses represent outliers.
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3.4.2 Evaluation of Algorithm 2
In this section I am going to evaluate BotFinder, described in [102]. On Table 3.6,
we can see how BotFinder performs according to traditional error metrics such as
recall and precision. Looking at these performance metrics we can see that for
Banbra and Bifrose, the algorithm works quite well, while we cannot say the same
for Blackenergy and Sasfis, which have the lowest recall values.

The decision assessment (Fig. 3.6) helps in understanding whether the algorithm
would work with similar performances with other datasets or not.

The intuition is that if the average algorithm confidence and credibility from
correct and wrong choice are well separated (i.e., different enough, as with Drebin,
§ 3.4.1) then the algorithm performance is most likely to be consistent. Without
a good separation, in a situation where the algorithm has a good performance but
correct and incorrect classifications are not well separated, results will most likely
change if another dataset is used.

The reason behind this is that traditional metrics merely measure the outcome
of a given algorithm without taking into consideration the quality of said outcome.
They do not take into account how good the classification is. Even with high
precision and recall, we could have “lucky” decisions, meaning that the decisions
taken are very close to the wrong ones even though still right. With a slight
variation in the ground truth, the algorithm decision might be biased towards a
wrong category. This means the method is not strong against variations.

Looking at Bifrose family (see Fig. 3.6), the average algorithm credibility and
confidence for correct decision indicates that when the algorithm chooses the correct
label, the sample is very similar to the family (high algorithm credibility) but it
is also similar to other families (low algorithm confidence). This is indeed not a
good sign as a slight change in the data would most likely change the results of the
algorithm as well.

For the same family, the average credibility and confidence for incorrect decision,
shows that algorithm is quite sure about this “wrong” decision (high credibility and
very high confidence). For an incorrect decision, these two facts indicate that we
are in a situation where families overlap, hence the line distinguishing them is very
thin. To improve the algorithm we therefore need to analyse those overlapping
families to understand what to change in order to mark a more sharp border (if
this is even possible). This analysis can be done with the alpha assessment which
is discussed later on.

With respect to Banbra family, the decision assessment shows that the samples
are very similar to their own family (high credibility) but they are also similar to
others families (low confidence). Even in this case, changing the underlying ground
truth samples, will lead to high variation in the results. However the good recall
achieved by the algorithm, is due to the fact that for incorrect results the samples
have a really low credibility meaning that it is very unlikely for the algorithm to
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Figure 3.6: Decision assessment for [102] with the original dataset. All the families
show a poor separation between correct and incorrect results. This is symptom of
weaknesses against dataset modification.

mistake a Banbra’s sample for another family. It should be clear how recall is
related to the average algorithm credibility and confidence for incorrect decision.
The more their values deviates from good ones, like the one observed in [9], the
more likely we will observe a poor recall.

With the sole knowledge of Table 3.6, it is difficult to draw conclusions or to
reason about where to look to improve the classification. This is because traditional
evaluation metrics only reports performances and do not try to explain what is
happening under the hood.

Looking at the Alpha assessment, Fig. 3.7, we can understand why some families
have good performance while others do not, and if the algorithm is overfitting the
data. For example, from the average p-values for Banbra, we can see that even if
there is no misclassification with the Bifrose family (from the confusion matrix), the
p-values of Banbra’s samples for the Bifrose hypothesis (Fig. 3.7, Banbra’s samples,
first column) are high and close to the p-values of Banbra. This fact indicates that
it is unlikely that by perturbing the dataset, the results will be comparable.
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Assigned label
Sample Bifrose Sasfis Blackenergy Banbra Pushdo Recall
Bifrose 41 6 0 4 0 0.80
Sasfis 1 18 32 1 3 0.33
Blackenergy 1 21 30 0 10 0.48
Banbra 0 3 8 87 0 0.89
Pushdo 2 1 13 0 30 0.65
Precision 0.91 0.37 0.36 0.95 0.7

Table 3.6: Confusion matrix for [102] tested on the original dataset.
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Figure 3.7: Alpha assessment for [102] with the original dataset representing inter-
fering families: white dots represent the average values, white lines represent the
median values, red crosses represent outliers.

Looking at the confusion matrix, the situation of Pushdo’s samples is similar,
i.e., the misclassification of this family to Banbra is null. If we take a look at
the alpha assessment, we can see that Pushdo’s samples p-values with respect to
the Banbra family are different from the one of Pushdo (implying that it is very
difficult to mistake Pushdo for Banbra). With the last two examples, we started
from the same situation in the confusion matrix (i.e., same no misclassification for
a particular family) and we ended up having very different quality observations
as we can see from the alpha assessment. This shows how traditional metrics are
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Figure 3.8: Decision assessment for Microsoft Challenge algorithm: poor confidence
for correct choices indicates the samples are similar to other families, poor confi-
dence for incorrect choices is desirable but high credibility for incorrect choices it
is not.

ill-suited for understanding the quality of a given machine learning task and may
therefore be misleading in deploying it in real-world settings.

Regarding recall we can see that when one or more families start to interfere with
one another (look at the samples by family, e.g., first group of 5 columns and second
group of 5 columns) quite heavily, the recall of this family drops. From Fig. 3.7 we
can see that Sasfis, Bifrose and Pushdo, are subjected to heavy interference, making
it difficult to identify them. Singling out interfering families can help to focus the
attention into the most problematic ones, sparing time that would otherwise be
spent in a full analysis.

Results with perturbed dataset

Now, I am going to perturb the dataset of [102] using as ground truth the families
in Table 3.3. Table 3.7 shows the confusion matrix and the performance matrix
respectively. We can clearly see that the results obtained with the new dataset
are very bad especially regarding Swizzor and Tibs families. Looking at these
results, we can reach the same conclusion that the decision assessment in Fig. 3.6
suggested already with only the original dataset, i.e., without a good separation
between correct and incorrect classifications, the results with a new dataset will
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dramatically change.
For completeness, in Fig. 3.9 you can see the alpha assessment to show the

heavy family interference.

Assigned label
Bifrose Sasfis Blackenergy Banbra Pushdo Gammima Hupigon Swizzor Tibs Windefender Recall

Bifrose 26 1 0 0 0 2 2 3 17 0 0.51
Sasfis 1 11 27 0 1 2 1 5 6 1 0.20
Blackenergy 0 9 27 0 7 3 0 6 10 0 0.44
Banbra 0 0 2 30 0 15 39 3 1 8 0.31
Pushdo 2 0 3 0 29 3 0 0 9 0 0.63
Gammima 1 3 5 2 0 9 0 8 6 0 0.26
Hupigon 1 0 0 1 0 0 8 1 0 3 0.57
Swizzor 1 1 36 0 0 0 37 35 0 7 0.30
Tibs 22 66 109 0 38 59 4 34 218 5 0.39
Windefender 0 0 0 0 0 0 3 2 0 0 0
Precision 0.48 0.12 0.13 0.91 0.39 0.10 0.09 0.36 0.82 0

Table 3.7: Confusion matrix for BotFinder tested on the original and perturbed
dataset together.

48



3 – Conformal Evaluator

b
if
ro

se
's

sa
m

p
le

s
sa

sf
is

's
sa

m
p
le

s
b
la

ck
e
n
e
rg

y
's

sa
m

p
le

s
b
a
n
b
ra

's
sa

m
p
le

s
p
u
sh

d
o
's

sa
m

p
le

s
g
a
m

m
im

a
's

sa
m

p
le

s
h
u
p
ig

o
n
's

sa
m

p
le

s
sw

iz
zo

r'
s

sa
m

p
le

s
ti

b
s'

s
sa

m
p
le

s
w

in
d
e
fe

n
d
e
r'

s
sa

m
p
le

s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

P-values

P
-v

a
lu

e
s:

 b
if
ro

se

P
-v

a
lu

e
s:

 s
a
sf

is

P
-v

a
lu

e
s:

 b
la

ck
e
n
e
rg

y

P
-v

a
lu

e
s:

 b
a
n
b
ra

P
-v

a
lu

e
s:

 p
u
sh

d
o

P
-v

a
lu

e
s:

 g
a
m

m
im

a

P
-v

a
lu

e
s:

 h
u
p
ig

o
n

P
-v

a
lu

e
s:

 s
w

iz
zo

r

P
-v

a
lu

e
s:

 t
ib

s

P
-v

a
lu

e
s:

 w
in

d
e
fe

n
d
e
r

Figure 3.9: Aplha assessment for [102] with perturbed and original dataset repre-
senting families interference.
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Figure 3.10: Decision assessment for [102] with original and perturbed dataset:
perturbing the dataset the results dramatically change.
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Assigned label
Sample Ramnit Lollipop Kelihos_ver3 Vundo Tracur Kelihos_ver1 Obfuscator.ACY Gatak Recall
Ramnit 768 0 0 0 0 1 1 0 0.99
Lollipop 1 1 236 0 0 0 1 1 0 0.99
Kelihos_ver3 0 0 1 471 0 0 0 0 0 1
Vundo 0 0 0 236 0 0 1 0 0.99
Tracur 1 0 0 0 369 1 3 1 0.99
Kelihos_ver1 1 0 0 0 1 196 1 0 0.99
Obfuscator.ACY 4 0 0 1 0 0 607 2 0.99
Gatak 0 0 0 0 1 1 2 502 0.99
Precision 0.99 1 1 0.99 0.99 0.99 0.99 0.99

Table 3.8: Confusion matrix for the Microsoft Challenge.

3.4.3 Evaluation of Algorithm 3
In this section, I am going to evaluate one of the algorithms proposed as a solu-
tion for the Kaggle’s Microsoft Malware Classification Challenge described in [3].
Table 3.8 reports the confusion matrix, precision and recall of the algorithm while
Fig. 3.8 shows the decision assessment. For the few misclassifications reported, we
can see that the confidence is very low meaning that there was at least another
family very close to the chosen one. It is interesting to note that even if the average
credibility for correct choices is high (close to 1), the confidence on that choices is
on average close to 0.4. This indicates that in general there are other families are
not that dissimilar to the correct one. However, the disparity is still high enough
not to pose serious classification problems (i.e., one minus the lowest confidence is
still lower than the lowest credibility).

From a quality perspective, drawing upon the alpha assessment of 3.11, two
families, Vundo and Ramnit, have significant differences. The Ramnit family has
p-values that are much higher than those of the interfering families. However, for
Vundo the p-values of interfering families are closer to the correct ones. These de-
tails can be only be observed through the alpha assessment, suggesting that the
identification of the Ramnit samples would be more robust when the data distribu-
tion changes.

Looking at the confusion matrix, we can see that the performance of the al-
gorithm regarding Kelihos_ver3 and Obfuscator.ACY are similar. From a quality
perspective instead (see Fig. 3.11), the two families have different performances.
Kelihos_ver3 family has p-values much higher than the interfering families, which
are very low with some outliers (see Kelihos_ver3’s samples boxplots). For Vundo
instead, the p-values of interfering families are closer to the correct one. These
facts, spotted by the alpha assessment only, indicates that the identification of the
Kelihos_ver3 samples will be similar when the underling ground truth change.

We note that confidence for incorrect choice is always lower than the confidence
for correct choice indicating that the algorithm is less sure when it predicts a class
that is incorrect. For the misclassifications of Kelihos_ver3 the credibility is high,
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Figure 3.11: Alpha assessment for the Microsoft classification challenge: from this
picture we can see that quality of the decision taken by the algorithm. Behind very
good results seen on the confusion matrix, the quality of those results is in general
vary a lot across different families.

to indicate a high degree of similarity towards that class but the confidence is really
low, indicating that there are other families that very similar to these samples. For
Vundo and Kelihos_ver1 the credibility and confidence for correct and incorrect
choices are similar indicating that the decision boundaries are narrower than other
families and prone to more misclassifications. This can be easily spotted when the
true labels are available i.e. in the design phase of an algorithm. However, when the
true labels are not available, as in the deployed scenario, one is left with only the
algorithm choice. The quality metrics defined with the use of conformal evaluator
allows us to trust a decision choice when high statistical evidence is available.
The family Kelihos_ver3, has a high credibility and the highest confidence, not
surprisingly it has the lowest misclassification rate.

3.4.4 Discussion
It is widely known among the machine learning and security community, that as-
sessing the effectiveness of an approach is not a solved problem (see § 3.6). In
the assessment section § 3.4, we have shown how conformal evaluator new metrics
can be used to assess consistency across different datasets, when such results are
good as for Drebin in § 3.4.1. Conversely, we have also shown how apparently
good results, according to traditional metrics, can be identified as troublesome (see
§ 3.4.2). Moreover, as shown in § 4.2, traditional metrics can hide critical situations
(e.g., samples classified correctly by chance), which are otherwise unearthed by CE
metrics. Specifically, conformal evaluator can help in identifying possible areas of
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improvement by narrowing down the problem to mutual interfering classes.
There are alternative methods that might unorthodoxly be used to look for inter-

class interference, these are dimensionality reduction algorithms, e.g., PCA [45]
(Principal Component Analysis), t-SNE [106] (t-distributed stochastic neighbor
embedding), LDA [42] (Linear discriminant analysis) or SOM [1] (self organizing
maps). They leverage sample distribution to compute a new space that tries to
maximize the distance (with different techniques) between the samples, or to project
them onto an orthogonal feature space.

Although, these techniques might seem quite effective, when improperly used
to evaluate class-interference, they suffer from the following drawbacks:

• The decision step made by the algorithm is not taken into account by these
techniques because they operate on the feature space only. Hence, conclusions
based on these methods might be misleading, as shown later on with an
example.

• The evaluated algorithm might use a technique to transform the feature space
that is different from the one used by these dimensionality reduction tech-
niques. Hence, it is misleading to base conclusions on the results of these
techniques.

• The evaluation is limited to subjective visual inspection, they do not provide
a quantifiable value of interference. CE instead, provides precise objective
qualitative metrics.

Moreover, dimensionality reduction techniques are often used at early stages of
the algorithm development process and dropped later and hence not even used in
the final decision process. CE on the other hand, evaluates the final decision of the
algorithm, taking into account all the operations happening within it.

We would like to remark that CE does not replace these methods, as they are
usually part of the algorithm development process, however in order to have a com-
prehensive evaluation, the role of the algorithm must be taken into consideration.

We decided to provide evidence of the aforementioned limitations by apply-
ing PCA and t-SNE (as they are most spread among the security community) to
Algorithm 1 (§ 3.4.1), Algorithm 2 (§ 3.4.2) and Algorithm 3 (§ 3.4.3).

Algorithm 1: PCA and t-SNE Limitations

Applying PCA to Drebin to represent its features in a 2D or 3D plot is of no use;
the original features set is composed of more than 200K features and, after PCA,
the variance expressed by keeping the 2 most variance-preserving features is less
than 10% and less then 14% when considering 3 features. It is clear that every
possible conclusions based on such plots would have no relevance.
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Figure 3.12: t-SNE representation of Drebin dataset on 70K benign samples and
3.5K malicious samples with 1K features reduced with PCA. The malicious samples
are superimposed over the benign ones, malicious apps are mixed with benign apps.

With respect to the t-SNE analysis, this is still computationally intensive. In
order to execute, it we had to reduce the number of features to 1K. To choose mean-
ingful features we performed t-SNE on the 1K most variance-preserving features
output by PCA, this fact alone already shows a serious limitation in using t-SNE.
Fig. 3.12 shows t-SNE plot performed on a subset of 73.5K samples of the original
120K Drebin dataset samples. Particularly, the subset is composed of 70K benign
apps and 3.5K malicious ones, with a ratio of 1:20 (original ratio 1:25). We decided
to plot only a part of the original dataset since we were interested in looking at
how much benign and malicious apps are separated, furthermore the computational
complexity of t-SNE increases with the square of the number of samples, making
the analysis of large datasets computationally expensive. From Fig. 3.12 we can
clearly see that malicious applications are indistinguishable from benign ones(in
the plot, malicious apps ore superimposed over benign apps, otherwise they would
not be visible) and zooming in the plot highlights even more how each malicious
application is surrounded by many benign ones. We might even come to the wrong
conclusion that the features used in the algorithm are not good enough to distin-
guish between malicious and benign applications since the interference between the
two is very high.
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Figure 3.13: Zoomed part of PCA representation of BotFinder dataset. From this
view we can see that are few clusters of samples are isolated from the others but
the vast majority is not well separated.

Without the limitations imposed by these techniques, as pointed in § 3.4.1, con-
formal evaluator shows instead that the synergy between features and the algorithm
produces very limited interference between benign and malicious samples.

Algorithm 2: PCA and t-SNE Limitations

Differently from Drebin, BotFinder has a very low number of features, hence PCA
and t-SNE can be performed over the whole original dataset. Figures 3.13 and 3.14
show the 2D plots for PCA and t-SNE, respectively. Fig. 3.13 shows that the use
of PCA in the analysis of BotFinder features is ineffective. Most of the families are
close to each other, concentrated in a small portion of the space and mixed together
so that it seems difficult to tell families apart.

The t-SNE projection is shown in Fig. 3.14. From the plot it seems that Banbra
is isolated in one cluster. For the other families, some small clusters can be identified
even if most of them are mixed together. Following the t-SNE projection, it seems
that the chosen features might be a good starting point to separate the families. On
the other hand, our analysis on § 3.4.2 shows that families are very much interfering
with each others.

Quantifying the amount of family interference by looking at PCA and t-SNE
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Figure 3.14: t-SNE representation of BotFinder dataset- B. Banbra seems isolated
in one cluster while for the other families some small clusters can be identified,
nevertheless remaining samples are mixed together.

only is quite difficult. This is also due to the fact that to perform an analytic
comparison using t-SNE and PCA, one needs to choose an algorithm that is able
to correctly group together the samples of a family (e.g., a clustering algorithm).
Clearly the choice of the algorithm already influences the outcome of the analysis,
furthermore, we feel like we are going around in circles (to evaluate a classifica-
tion/clustering algorithm we have to choose a classification/clustering algorithm).
This is why only a visual evaluation of the figures is worth discussing. Of course
visual evaluation is subject to personal interpretation and cannot be conveyed uni-
formly to the community.

With CE instead, we enable the evaluation of the actual algorithm under quan-
tifiable and objective measures.

Algorithm 3: PCA and t-SNE Limitations

From the t-SNE projection of the features extracted for the Microsoft challenge
(Fig. 3.15), we can see that some of the classes are well separated from the others,
while other classes seems to be mixed together. From this picture it’s difficult
to imagine a confusion matrix with so few misclassification as the one that we
get in Table 3.8. Even in this case, the algorithm plays an important role in the
classification, and hence excluding it from the evaluation is not ideal.
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Figure 3.15: t-SNE projection of the features used in the Microsoft challenge: fam-
ilies appear to be well separated from the others in the outer parts of the figure
while in the middle they seems mixed together.

As for PCA, the features extracted and plotted in Fig. 3.16 retain in total 99.99%
of the variance (i.e., are reliable as much as the original features). As we can see,
the family Ramnit has the most of the variance in the features. Not surprisingly,
even PCA is not ideal to fully evaluate the features.
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Figure 3.16: 2D PCA projection of the features used in the Microsoft challenge:
Ramnit family retains most of the variance while the other families are concentrated
on small portion of the graph.

Assessment Remarks

Following the discussion on the limitations of dimensionality reduction techniques,
we have shown how these can lead to wrong conclusions if you don’t consider the
algorithm altogether with the features. Particularly, Algorithm 1 bad results shown
on t-SNE are overturned when considering the algorithm. Conversely, Algorithm 2
apparently good results shown by t-SNE leads to very poor results when bringing
the algorithm into the picture. As for Algorithm 3, the analyses are more promising,
however drawing a precise and quantifiable conclusion is not as direct as we might
think. For these reasons, the algorithm plays an important role and hence cannot
be dismissed during the evaluation.

3.5 Framework Limitations
In § 3, I have explained the benefits of using conformal evaluator by describing
how it can be used to assess the quality of malware classification and clustering
algorithms while in § 3.3 I will show empirical evidence of its benefits. However,
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conformal evaluator has also its drawbacks, which we outline next along with pos-
sible ways to address them.

The main limitation consists of the fact that in order to apply conformal evalua-
tor to any machine learning technique, the latter needs to have a similarity function,
or a similar concept, that can be shaped as a non-conformity measure. However
limiting this might seem, conformal evaluator can still help in evaluating stages of a
larger process, that relies on methods based on a similarity function. For instance,
FIRMA [79] relies on token-set payload signatures to identify malware. This is
a found/not-found classification approach that cannot directly be translated into
a non-conformity measure. Nevertheless, FIRMA internally relies on clustering
techniques whose quality could be assessed through conformal evaluator. There
are also other approaches where the application of conformal evaluator seems not
possible or at least very complex. In [50], for example, the authors use a locality
sensitive hashing algorithm to tell whether two malware samples are similar. This
algorithm cannot be directly translated into a non-conformity measure, because its
basic theory relies on some specific distance functions between pairwise samples,
that are translated into hash functions. Still, with some effort, the algorithm could
be converted into a non-conformity measure (i.e., distance from one group to one
element). This is indeed an interesting area to explore further in the future.

Another area of concern refers to the computational complexity of conformal
evaluator. The underlying machine learning algorithm, conformal predictor, used
by conformal evaluator is computationally expensive. For each sample z in a class
k ∈ K, the production of a p-value requires to compute a non-conformity measure
for every element in the whole dataset. This can further be exacerbated by non-
conformity measures that rely on distances that are complex to compute. For
instance, BotFinder [102] builds one or more models to profile malware behaviours,
and then uses each model as a part in the computation non-conformity measure.

The computational complexity in relation to the number of the times that the
non-conformity measure needs to be computed is expressed in Eq. 3.4:

O(CN2) (3.4)

Here N represents the total number of samples and C represent the number of
classes.

To speed-up the operations, most of the time we can compute a whole set of
non-conformity scores in one single algorithm run. For example, SVM used in [9]
can directly supply the total non-conformity scores for the calculation of one p-value
in only one run of the algorithm, thus reducing Eq. 3.4 into Eq. 3.5:

O(CN) (3.5)

To further speed up the process, some algorithms treat each class separately.
For example [102] uses a separate model for each class. In this case, it’s useless to
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re-run the algorithm for all the classes and we can make it run just for the class
that is currently under analysis.

To have a concrete example, let’s focus on a dataset composed by 2 000 samples
and 10 classes. One single run of the algorithm will require 10 minutes. The overall
time needed for the evaluation will be then (by Eq. 3.5):

2 000 ∗ 10 = 20 000 minutes ≈ 13 days + 22 hours

Waiting this much might not be optimal for some situations where one does not
simply have the luxury to wait. For this reason, we take advantage of the fully
parallelizable calculation process speeding up the operation.

If we distribute the operation over for example just 8 processes, (e.g., a standard
hyper-threaded CPU), the estimated time already drops to:

20 000 minutes/8 ≈ 2 days

Throughout our experiments with [9], which has a rather large dataset (≈ 129K
samples over ≈ 200K features for each sample) the analysis took 18 days and 2
hours with the optimized complexity with a standard i7 CPU with 4 cores/8 threads
dedicated to the evaluation. The analysis was also run on a high-end Xeon CPU,
with 23 cores/46 threads, and took approximately 3 days.

Regarding memory complexity and consumption, we have not noticed any dif-
ficulties to handle the workload by a standard desktop workstation with 16 GB of
RAM, as the evaluation process took around 8 GB of RAM.

To further speed up the evaluation, a potential solution to the complexity re-
quirements of conformal predictor has recently been addressed by the machine
learning community. They propose an alternative to the traditional conformal pre-
dictor which is known as inductive conformal predictor (ICP) [27]. ICP divides the
training set into proper training set and calibration set. Only the calibration set is
then used to compute p-values during the clustering or classification steps, which
relaxes considerably the computational resources required by traditional conformal
predictor.

Even if optimisations can be put in place to reduce the computational complex-
ity of conformal predictor, I want to stress the fact that our framework is meant
for evaluation purposes only, hence for an offline scenario, when the algorithm is
not yet deployed in the field. For this reason, performance optimisations are not a
primary issue and are not in the scope of this work.

3.6 Related Works
Assessing the validity of machine learning techniques is a problem that has not been
completely solved. Particularly, Li et al. in [56] have started to reason about the
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problem of assessing the effective validity of traditional measures, e.g., false positive
rate, precision, accuracy, recall and they have found out that such measures are
strongly influenced by the underlying dataset. Their work suggests that there is the
need for a more scientifically robust approach for evaluating malware identification
methods.

Similar concerns have also been raised in other works e.g., [10], [89] and [94].
Specifically [94] says:

“The community does not benefit any further from yet another study
measuring the performance of some previously untried combination of a
machine learning scheme with a particular feature set . . .The point we
wish to convey however is that we are working in an area where insight
matters much more than just numerical results”.

The authors here were addressing the intrusion detection community, however
this statement is still valid in any setting where machine learning is applied to solve
security related problems.

Another relevant work is done by Allix et al. [7], where the authors show how
incorrectly handling a dataset could potentially lead to biased results. Particularly
they historically consider malware and show that most of the time future knowledge,
i.e. malware discovered later, is used to classify old malware and not vice-versa,
leading to non-realistic scenarios. This suggests that there are a lot of common
practices within the machine learning security community that researchers usually
adhere to, but which are not completely understood.

Moreover, García et al. [28] highlight another issue concerning the development
of new methods. In their survey, the authors review fourteen network-based botnet
detection methods and notice that only one of them makes an actual comparison
with previous works. This is due mainly to practical reasons such as missing or
incomplete public datasets, and algorithm unavailability for comparison.

As anticipated in the introduction, to evaluate their methods, researchers usu-
ally relies on measures that given a labelled dataset, analyse the success rate of
classification or detection of malware. In our work, we argue that traditional error
metrics, e.g., confusion matrix, accuracy, precision, recall and ROC curve, suffer
from a common flaw (as shown in our experiments). Specifically, they do not in-
vestigate the quality of the single decision, i.e., they don’t take into account how
good or bad a decision is compared to alternative ones. Under these premises,
traditional metrics potentially base on weak decisions, i.e., correct choices that are
close to wrong ones and the opposite. In these circumstances, a small variation in
the data can dramatically change the results of the overall algorithm.

Solutions to detect concept drift, specific to security domains, have been pro-
posed [103, 47, 62], in contrast our framework provides a generic solution which
is algorithm agnostic. On the other hand, solutions [26, 36] developed by the ML
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community have constrains that are not suitable for security applications (e.g., ret-
rospective detection of concept drift when the classification decision has already
been made).

Thomas et al. [103] presented Monarch a real-time system that crawls URLs
as they are submitted to web services and determines whether the URLs direct to
spam. The system uses machine-learning to classify URLs as malicious or benign.
The authors suggest training the model continuously to keep classification error
low as the nature of malicious URLs keeps evolving. Kantchelian et al. [47] propose
fusing human operators with the underlying machine-learning based security system
to address concept drift in adversarial scenarios. Maggi et al. [62] present a machine-
learning based system to classify malicious web applications. They use techniques
specific to web application to detect concept drift and thus retrain their model to
reduce false positives. Mariconti et al. [64] show how models decay over time and
propose ways to resist longer. CE model unifies these techniques as it generalizes to
both the area of application and machine-learning algorithm used. The presented
model can not only accurately predict when to retrain a model but also provides a
quality estimate of the decisions made. These results can reduce human intervention
and make it more meaningful thus decreasing the cost of operation. Transcend can
be plugged on top of any such approach to provide a clear separation between
non-drifting and drifting objects.

Deo et al. [23] propose using Venn-Abers predictors for assessing the quality of
binary classification tasks and identifying concept drift. The Venn-Abers predictors
offer automatically well calibrated and probabilistic guidance to detect changes in
distribution of underlying samples. Although useful, the approach has limitations
and cannot draw concrete conclusions on sample clusters which are outliers. Also,
Venn-Abers outputs multiple probabilities of which one is perfectly calibrated but
it is not possible to know which one. Our approach provides a simple mechanism
to compare predictions through p-values and does not suffer from the discussed
shortcomings. CE also works on multi-class prediction tasks, while this is not
currently supported by Venn-Abers predictors.

Other works try to detect change point detection when the underlying dis-
tribution of data samples changes significantly, e.g., in case of evolving malware
which is observed as a disruption in exchangeability [107]. Martingales have often
been used to detect drift of multidimensional data sequences using exchangeabil-
ity [38, 37]. Prior works [26, 36] use conformal prediction to detect deviation of
the data sequence from i.i.d. assumption which could be caused by concept drift.
The drift is measured by creating a martingale function. If the data is not i.i.d.,
then the conformal predictor outputs an invalid result [26]. Some p-values assigned
to the true hypotheses about data labels are too small (or have another deviation
from uniformity), and this leads to high values of the martingale. However, this
martingale approach does not use p-values assigned to wrong hypotheses, which
is another cause of wrong classification, e.g., malicious samples being classified as
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benign. This information is important because in the case of malware evolution,
malicious samples are often specially designed to be indistinguishable from benign
samples, therefore they tend to get high p-values assigned to wrong hypotheses.
Additionally, the martingale approach uses true labels to study the drift of data
without making any predictions, in contrast our approach does not have access to
true labels and analyses the predictions made by a given model.
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Chapter 4

Transcend

In this chapter, I describe Transcend, the algorithm proposed to detect concept
drift. I will demonstrate its efficacy on two systems security scenarios: binary and
multiclass classification. Nevertheless, the algorithm can be employed in different
research domains. It must be stressed here that we look at concept drift from the
perspective of a malware analysis team. Consequently, the severity of the drift
is a subjective issue. For critical applications, even a few misclassifications can
cause major issues. Consequently, the malware analysis team would have a high
standard for abandoning an ageing classification model. Transcend was developed
to compute per-class threshold based on the quality metrics chosen. It is evaluated
using p-value produced by conformal evaluator as base quality metric but it can be
employed with other metrics interchangeably.

4.1 Methodology

We make the concept drift detection in Transcend parametric in two dimensions:
the desired performance level (ω) and the proportion of samples in an epoch that
the malware analysis team is willing to manually investigate (δ). The analyst selects
ω and δ as degrees of freedom and Transcend will detect the corresponding concept
drift point constrained by the chosen parameters. The goal is to find thresholds
that best separate the correct decisions from the incorrect ones based on the quality
metrics introduced by our analysis. These thresholds are computed on the training
dataset but are enforced on predictions during deployment (for which we do not
have labels). The rationale is very simple: predictions with p-values above such
thresholds would identify objects that likely fit (from a statistical perspective) in the
model; such classifications should be trusted. Conversely, objects out of predictions
with p-values smaller than such thresholds should not be trusted as there is lack of
statistical evidence to support their fit in the model.
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What happens to untrustworthy predictions (and related test—likely drifted—
objects) is beyond the scope of this work. It is reasonable to envision a pipeline
that would eventually label drifted objects to retrain the machine learning model.
While this raises several challenges (e.g., how many objects need to be labelled,
how many resources can be invested in the process), we would like to remark on
the fact that this is only possible once concept drift is detected: the goal of this
research. Not only does Transcend plays a fundamental role in the identification
of drifting objects and thus in the understanding of when a prediction should be
trusted or not, but its metrics can also aid in selecting which drifted objects should
be labelled first (e.g., those with low p-values as are the one that have drifted the
most from the trained model).

The following discussion assumes two classes of data, malicious and benign, but
it is straightforward to extend it to a multiclass scenario.

We define the function f : B × M → Ω × ∆ that maps a pair of thresholds
in the benign and malicious class and outputs the performance achieved and the
number of decisions accepted. Here, the number of decisions accepted refers to the
percentage of the algorithm outputs with a p-value (for benign or malicious classes,
depending on the output itself) greater than the corresponding threshold; perfor-
mance means the percentage of correct decisions amongst the accepted ones. B, M,
Ω and ∆ are the domains of the possible thresholds on benign samples, malicious
samples, desired performance and classification decisions accepted, respectively.
During training of our classifier, we iterate over all values of the benign threshold t′b
and the malicious threshold t′m, at a pre-specified level of granularity, in the domain
of B and M, respectively. Let us assume f gives the output f :f(t′b, t′m) = (ω′, δ′)

To detect concept drift during deployment with a pre-specified threshold of
either ω or δ, we need to define an inverse of f which we call f−1 : Λ→ B×M where
Λ = Ω∪∆. When supplied with either ω or δ, f−1 would give us two thresholds tb
and tm which would help Transcend decide when to accept the classifier’s decision
and when to ignore it. Notice that with a conjoined domain Λ, which only accepts
either ω or δ, it is not trivial to reconstruct the values of tb and tm. For every value
of ω, there could be multiple values for δ. Therefore, we adopt a simple heuristic
to compute tb and tm whereby we maximize the second degree of freedom given
the first. For example, given ω, we find tb and tm for every possible value of δ and
pick the tb and tm that maximizes δ. The formulation is exactly the same when δ
is used as an input. The formal equations for the inverse functions are:

Γ = {x : x ∈ ∀t′b∀t′m.f(t′b, t′m))}
f−1(ω) = {(tb, tm) : δ ∈ f(tb, tm) = max(∀δ′ ∈ Γ)}
f−1(δ) = {(tb, tm) : ω ∈ f(tb, tm) = max(∀ω′ ∈ Γ)}

Comparison with Probability. The algorithm used as inner non-conformity
measure (NCM) in CE may have a pre-defined quality metric to support its own
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decision-making process (e.g., probability). Hence, we also compare the ability of
detecting concept drift of the algorithm’s internal metric with CE metrics. The
thresholds are extracted from the true positive samples, because we expect the
misclassified samples to have a lower value of the quality metric: it seems rather
appropriate to select a higher threshold to highlight decisions the algorithm would
likely make wrong. We compare our metrics with probability metrics derived from
two different algorithms for our case studies. In the first case study (see, § 3.4.1),
we compare our metrics with SVM probabilities derived from Platt’s scaling [78]; on
the other hand, the second case study (see, § 4.4) uses the probabilities extracted
from a random forest [16] model. This comparison shows the general unsuitability of
the probability metric to detect concept drift. For example, the threshold obtained
from the first quartile of the true positive p-value distribution is compared with
that of the first quartile of the true positive probability distribution, and so forth.

The reasoning outlined above still holds when a given algorithm, adapted to
represent the non-conformity measure, uses raw score as its decision-making cri-
teria. For instance, the transformation of a raw score to a probability value is
often achieved through a monotonic transformation (e.g., Platt’s scaling, for SVM)
that does not affect the p-value calculation. Such algorithms do not provide a raw
score for representing the likelihood of an alternative hypothesis (e.g., that the test
object does not belong to any of the classes seen in the training). Moreover, a
threshold built from a raw score lacks context and meaning; conversely, combining
raw scores to compute p-values provides a clear statistical meaning, able of quanti-
fying the observed drift in a normalized scale (from 0.0 to 1.0), even across different
algorithms.
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(a) Elements above the threshold.
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(b) Performance of elements above the
threshold.
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(c) Elements below the threshold.
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(d) Performance of elements below the
threshold.

Figure 4.1: Performance comparison between p-value and probability for the objects
above and below the threshold used to accept the algorithm’s decision. The p-values
are given by CE with SVM as non-conformity measure, the probabilities are given
directly by SVM. As we can see from the graph, p-values tend to contribute to a
higher performance of the classifier, identifying those (drifting) objects that would
have been erroneously classified.

4.2 Case Studies
To evaluate the effectiveness of Transcend, we introduce two case studies: a binary
classification to detect malicious Android apps [9], and a multi-class classification
to classify malicious Windows binaries in their respective family [3]. The case
studies were chosen to be representative of common supervised learning settings
(i.e., binary and multi-class classification), easy to reproduce and of high quality.

Binary Classification Case Study. The algorithm evaluated is described in [9]
and in more details in § 3.4. The Drebin dataset was collected from 2010 to 2012
and the authors released the feature set to foster research in the field. To properly
evaluate a drifting scenario in such settings, we also use Marvin [58], a dataset that
includes benign and malicious Android apps collected from 2010 and 2014. The
rationale is to include samples drawn from a timeline that overlaps with Drebin
as well as newer samples that are likely to drift from it (duplicated samples were
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Drebin Dataset Marvin Dataset
Type Samples Type Samples
Benign 123 435 Benign 9 592
Malware 5 560 Malware 9 179

Table 4.1: Binary classification case study datasets [9].

removed from the Marvin dataset to avoid biasing the results of the classifier).
Table 4.1 provides details of the datasets.

§ 4.3 outlines this experiment in detail; however, without any loss of generality,
we can say models are trained using the Drebin dataset and tested against the
Marvin one. In addition, the non-conformity measure we instantiate CE with is
the distance of testing objects from the SVM hyperplane, as further elaborated in
§ 4.3.

Multiclass Classification Case Study. The algorithm used for this experiment
is described by Ahmadi et al. in [3] and in more details in § 3.4

Table 4.2 provides details of the Microsoft Windows Malware Classification
Challenge dataset. To properly evaluate a drifting scenario, we omit the family
Tracur from the training dataset, as further elaborated in § 4.4. In this setting, a
reasonable conformity measure that captures the likelihood of a test object z∗ to
belong to a given family k ∈ K is represented by the probability p that z∗ belongs
to k ∈ K, as provided by decision trees. We initialize conformal evaluator with −p
as non-conformity measure, because it captures the dissimilarities. Please note, we
do not interpret −p as a probability anymore (probability ranges from 0 to 1), but
rather as a (non-conformity) score CE builds p-values from (see § 2.2.4).

We would like to remark that these case studies are chosen because they are
general enough to show how concept drift affects the performance of the models.
This is not a critique against the work presented in [9, 3]. Rather, we show that
even models that perform well in closed world settings (e.g., k-fold cross validation),

Microsoft Malware Classification Challenge Dataset
Malware Samples Malware Samples
Ramnit 1 541 Obfuscator.ACY 1 228
Lollipop 2 478 Gatak 1 013

Kelihos_ver3 2 942 Kelihos_ver1 398
Vundo 4 75 Tracur 751

Table 4.2: Multiclass classification case study datasets [3].
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eventually decay in the presence of non-stationary data (concept drift). Transcend
identifies when this happens in operational settings, and provides indicators that
allow to establish whether one should trust a classifier decision or not. In absence
of retraining, which requires samples relabelling, the ideal net effect would then
translate to having high performance on non-drifting objects (i.e., those that fit
well into the trained model), and low performance on drifting ones.

In a nutshell, our experiments aim to answer the following research question:

RQ: How can CE statistical metrics detect concept drift in binary and multiclass
classification? Intuitively, we can interpret quality metrics as thresholds: predic-
tions of tested objects whose quality fall below such thresholds should be marked
as untrustworthy, as they drift away from the trained model.

4.3 Binary Classification Case Study
This section assesses the quality of the predictions of Drebin (unless otherwise
stated, I refer to Drebin as both the learning algorithm and the dataset outlined
in [9]), the learning algorithm presented in [9]. We reimplemented Drebin and
achieved results in line with those reported by Arp et al. in absence of concept
drift (0.95 precision and 0.92 recall, and 0.99 precision and 0.99 recall for malicious
and benign classes, respectively on hold out validation with 66-33% training-testing
Drebin dataset split averaged on ten runs).

This section presents a number of experiments to show how Transcend identifies
concept drift and correctly marks as untrustworthy the decisions the NCM-based
classifier predicts erroneously.

We first show how the performance of the learning model introduced in [9] decays
in the presence of concept drift. To this end, we train a model with the Drebin
dataset [9] and we test it against 9,000 randomly selected malicious and benign
Android apps (with equal split) drawn from the Marvin dataset [58]. The confusion
matrix in Table 4.3a clearly shows how the model is affected by concept drift as it
reports low precision and recall for the positive class representing malicious objects.
Drebin spans the years 2010–2012 while Marvin covers from 2010 to 2014. Most
of the Drebin’s features capture information (e.g., string and IP addresses) that
is likely to change over time, affecting the ability of the classifier to identify non-
stationary data. This is further outlined in Fig. 4.2a, which shows how the p-value
distribution of malicious objects is pushed towards low values (poor prediction
quality).

Table 4.3b shows how enforcing cut-off quality thresholds affects —by improving—
the performance of the same learning algorithm. We then asked Transcend to iden-
tify suitable quality thresholds with the aim to maximize the F1-score as derived
by the calibration dataset, subject to a minimum F1-score of 0.99 and a minimum
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Assigned label
Sample Benign Malicious Recall
Benign 4 498 2 1
Malicious 2 890 1 610 0.36
Precision 0.61 1

(a)
Assigned label

Sample Benign Malicious Recall
Benign 4 257 2 1
Malicious 504 1 610 0.76
Precision 0.89 1

(b)
Assigned label

Sample Benign Malicious Recall
Benign 4 413 87 0.98
Malicious 255 4 245 0.94
Precision 0.96 0.98

(c)

Table 4.3: Binary classification case study ([9]). Table 4.3a: confusion matrix
when the model is trained on Drebin and tested on Marvin. Table 4.3b: confusion
matrix when the model is trained on Drebin and tested on Marvin with p-value-
driven threshold filtering. Table 4.3c: retraining simulation with training samples
of Drebin as well as the filtered out element of Marvin of Table 4.3b (2 386 malicious
samples and 241 benign) and testing samples coming from another batch of Marvin
samples (4 500 malicious and 4 500 benign samples). The fate of the drifting objects
is out of scope of this paper as that would require to solve a number of challenges
that arise once concept drift is identified (e.g., randomly sampling untrustworthy
samples according to their p-values, effort of relabelling depending on available
resources, model retraining). We nonetheless report the result of a realistic scenario
in which objects drifting from a given model, correctly identified by Transcend,
represent important information to retrain the model and increase its performance
(assuming a proper labelling as briefly sketched above).

70



4 – Transcend

TPR FPR TPR FPR MALICIOUS BENIGN
of kept elements of kept elements of discarded elements of discarded elements kept elements kept elements

p-value probability p-value probability p-value probability p-value probability p-value probability p-value probability
1st quartile 0.9045 0.6654 0.0007 0.0 0.0000 0.3176 0.0000 0.0013 0.3956 0.1156 0.6480 0.6673
Median 0.8737 0.8061 0.0000 0.0 0.3080 0.3300 0.0008 0.0008 0.0880 0.0584 0.4136 0.4304
Mean 0.8737 0.4352 0.0000 0.0 0.3080 0.3433 0.0008 0.0018 0.0880 0.1578 0.4136 0.7513
3rd quartile 0.8723 0.6327 0.0000 0.0 0.3411 0.3548 0.0005 0.0005 0.0313 0.0109 0.1573 0.1629

Table 4.4: Binary classification case study ([9]): examples of thresholds. From
the results we can see that increasing the threshold will lead to keep only the
sample where the algorithm is sure about. The number of discarded samples is very
subjective to the severity of the shift in the dataset, together with the performance
of those sample it is clear the advantage of the p-value metric compared to the
probability one.

percentage of kept element of 0.76. In [9], Arp et al. report a TPR of 94% at a FPR
of 1%. Such metrics do not rule out the possibility of having 0.99 as F1-score; if
that is a plausible constraint, Transcend’s parametric framework will find a suitable
solution. It is worth noting that such thresholds are derived from the calibration
dataset but are enforced to detect concept drift on a testing dataset. Results show
how flagging predictions of testing objects with p-values below the cut-off thresh-
olds as unreliable improves precision and recall for the positive (malicious) class,
from 0.61 to 0.89 and from 0.36 to 0.76, respectively (in Table 4.3b).

We would like to remark that drifting objects are still given a label as the output
of a classifier prediction; Transcend flags such predictions as untrustworthy, de-facto
limiting the mistakes the classifier would likely make in the presence of concept drift.
It is clear that one needs to deal with such objects, eventually. Ideally, they would
represent an additional dataset that, once labelled properly, would help retraining
the classifier to predict similar objects. This opens up a number of challenges that
are out of the scope of this work; however, one could still rely on CE’s metrics
to prioritize objects that should be labelled (e.g., those with low p-values as they
are the one the drift the most from the model). This might require to randomly
sample drifting objects once enough data is available as well as understanding how
much resources one can rely on for data labelling. It is important to note that
Transcend plays a fundamental role in this pipeline: it identifies concept drift (and,
thus, untrustworthy predictions), which gives the possibility of start reasoning on
the open problems outlined above.

The previous paragraphs show the flexibility of the parametric framework we
outlined in § 4, on an arbitrary yet meaningful example, where statistical cut-off
thresholds are identified based on an objective function to optimize, subject to
specific constraints. Such goals are however driven by business requirements (e.g.,
TPR vs FPR) and resource availability (e.g., malware analysts available vs number
of likely drifting samples—either benign or malicious—for which we should not
trust a classifier decision) thus providing numerical example might be challenging.

71



4 – Transcend

Given label: malicious Given label: benign0.0

0.2

0.4

0.6

0.8

1.0

Given label malicious: p-value malicious
Given label malicious: p-value benign
Given label benign: p-values malicious
Given label benign: p-values benign

(a)

Given label: malicious Given label: benign0.0

0.2

0.4

0.6

0.8

1.0

Given label malicious: p-value malicious
Given label malicious: p-value benign
Given label benign: p-values malicious
Given label benign: p-values benign

(b)

Given label: malicious Given label: benign0.0

0.2

0.4

0.6

0.8

1.0

Given label malicious: probability malicious
Given label malicious: probability benign
Given label benign: probability malicious
Given label benign: probability benign

(c)

Given label: malicious Given label: benign0.0

0.2

0.4

0.6

0.8

1.0

Given label malicious: probability malicious
Given label malicious: probability benign
Given label benign: probability malicious
Given label benign: probability benign

(d)

Figure 4.2: Binary Classification Case Study: p-value and probability distribution
for true malicious and benign samples when the model is trained on Drebin dataset
and tested on Marvin. Graph (a): p-value distribution for true malicious samples.
Graph (b): p-value distribution of true benign samples. Graph (c): probability
distribution of true malicious samples. Graph (d): probability distribution of true
benign samples.

To better outline the suitability of CE’s statistical metrics (p-values) in detecting
concept drift, we provide a full comparison between p-values and probabilities as
produced by Platt’s scaling applied to SVM. We summarize a similar argument
(with probabilities derived from decision trees) for multiclass classification tasks
in § 4.4.

Comparison with Probability. In the following, we compare the distributions
of p-values, as derived from CE, and probabilities, as derived from Platt’s scaling
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for SVM, in the context of [9] under the presence of concept drift (i.e., training
on Drebin, testing on Marvin as outlined). The goal of this comparison is to
understand which metric is better-suited to identify concept drift.

Fig. 4.2a shows the alpha assessment of the classifications shown in Table 4.3a.
The figure shows the distribution of p-values when the true label of the samples
is malicious. Correct predictions (first and second columns), reports p-values (first
column) that are are slightly higher than those corresponding to incorrect ones
(second column), with a marginal yet well-marked separation as compared to the
values they have for the incorrect class (third and fourth columns). Thus, when
wrong predictions refer to the benign class, the p-values are low and show a poor
fit to both classes. Regardless of the classifier outcome, the p-value for each sample
is very low, a likely indication of concept drift.

Fig. 4.2b depicts the distribution of p-values when true label of the samples is
benign. Wrong predictions (first and second columns) report p-values representing
benign (second column) and malicious (first column) classes to be low. Conversely,
correct predictions (third and fourth columns) represent correct decisions (fourth
column) and have high p-values, much higher compared to the p-values of the
incorrect class (third column). This is unsurprising as benign samples have data
distributions that do not drift with respect to malicious ones.

A similar reasoning can be followed for Fig. 4.2c and Fig. 4.2d. Contrary to the
distribution of p-values, probabilities are constrained to sum up to 1.0 across all the
classes; what we observe is that probabilities tend to be skewed towards high values
even when predictions are wrong. Intuitively, we expect to have poor quality on all
the classes of predictions in the presence of a drifting scenario: while probabilities
tend to be skewed, CE’s statistical metrics (p-values) seem better-suited at this
task.

So far, we have seen how Transcend produces statistical thresholds to detect
concept drift driven by predefined goals under specific constraints. In addition, the
analysis of p-value and probability distributions highlighted how the former seem
to be better-suited than probabilities to identify concept drift. In the following
paragraphs, we show how CE’s statistical metrics provide thresholds that always
outperform probabilities in detecting concept drift. Fig. 4.3 provides a thorough
comparison. For simplicity, here, we focus the attention on the 1st and 3rd quartile,
the median and the average of the distribution of p-values and probabilities as
potential cut-off thresholds, as shown in Table 4.4.

Intuitively speaking, a successful technique would not only achieve high per-
formances on correct predictions, but it would also report poor performances on
drifting objects. This is evident from Table 4.4, where a cut-off threshold at the
1st quartile reports a high performance for the objects that fit the trained model
(0.9045 TPR at 0.0007 FPR), and a poor performance for those drifting away (0
TPR and 0 FPR); this means that at this threshold, CE’s statistical metrics sug-
gest to consider as untrustworthy only objects the classifier would have predicted
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incorrectly. Conversely, probabilities also tend to be skewed when predictions are
wrong, affecting the ability to rely on such metrics to correctly identify concept
drift. Table 4.4 shows 0.6654 TPR and 0 FPR for objects whose quality fall above
the 1st quartile of the probability distribution, and 0.3176 TPR and 0.0013 FPR
for those who fall below; this means that probabilities marked as unreliable also
make predictions that would have been classified correctly.

As we move up towards more conservative thresholds, CE’s statistical metrics
start discarding objects that would have been classified correctly. This is unsur-
prising as we have defined a threshold that is more selective of the desired quality.
Regardless, at each point p-values still outperform probabilities (higher TPR and
FPR of objects with a quality higher than the cut-off, and lower for those below
the threshold). These results further show how relying on detecting concept drift
is a challenging problem that cannot be easily addressed by relying on a prefixed
50% threshold [82].

Note that the number of untrustworthy predictions on the testing dataset is a
function of the number of drifting objects. If the entire dataset drifts, we would
expect Transcend to flag all (or most of) the predicted objects that do not fit the
trained model as untrustworthy.

Adapting to Concept Drift. Once drifting objects are identified, the next step
would require data relabelling and model retraining, as outlined throughout the
thesis. Table 4.3c shows the results of these steps, which take precision for benign
samples to 0.89 and recall for malicious ones to 0.76. We would like to remark that
this work focuses on the construction of statistical metrics to identify concept drift
as outlined so far. While relabelling is out of scope for this work, it is clear that an
approach that identifies drifting objects is well-suited to address such a challenge
in the pipeline as resources can be focused on analysing samples that do not fit in
the trained model.
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Figure 4.3: Binary Classification Case Study [9]: complete comparison between
p-value and probability metrics. Across all the threshold range we can see that the
p-value based thresholding is providing better performance than the probability
one, discarding the samples that would have been incorrectly classified if kept.

4.4 Multiclass Classification Case Study

In this section we evaluate the algorithm proposed by Ahmadi et al. [3] as a solution
to Kaggle’s Microsoft Malware Classification Challenge; the underlying rationale
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Figure 4.4: Multiclass Classification Case Study [3]: P-value distribution for sam-
ples of Tracur family omitted from the training dataset; as expected, the values are
all close to zero.

is similar to that outlined in the previous section, thus, we only report insightful
information and takeaways. In this evaluation, we train the classifier with seven
out of eight available malware families; Trucur, the excluded family, represents our
drifting testing dataset.

Family Discovery. Below, we show how we identify a new family based on CE’s
statistical metrics.

The testing samples coming from Tracur are classified as follows: 5 as Lollipop, 6
as Kelihos_ver3, 358 as Vundo and 140 as Kelihos_ver1. Looking at the distribution
of probabilities (Fig. 4.5) and p-values (Fig. 4.4) it is easy to relate to the case of
binary classification, i.e., for each family there is only one class with high p-values
corresponding to the class of the true label. For the test objects of Tracur, we
observe that the p-values for all the classes are close to 0. This is a clear pattern
which shows that the samples are coming from an unknown distribution. In a
scenario changing gradually, we will observe an initial concept drift (as shown in
the binary classification case study in § 4.3), characterized by a gradual decrease of
the p-values for all the classes, which ends up in a situation where we have p-values
very close to 0 as observed here. These results clearly show that even in multiclass
classification settings, CE provides metrics that are better-suited to identify concept
drift than probabilities (the algorithm in [3] relies on probabilities because it is based
on decision trees). The comparison between p-values and probabilities is reported
in Fig. 4.6, 4.7, 4.4 and 4.5 and follow a reasoning similar to that of the binary
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Figure 4.5: Multiclass Classification Case Study [3]: probability distribution for
samples of Tracur family omitted from the training dataset. Probabilities are higher
then zero and not equally distributed across all the families, making the classifica-
tion difficult. It is worth noting some probabilities are skewed towards large values
(i.e., greater than 0.5) further hindering a correct classification result.

classification case study.

4.5 Discussion
Security community has grappled with the challenge of concept drift for some time
now [103, 47, 107]. The problem commonly manifests itself in most malware de-
tection/classification algorithm tasks and models perform poorly as they become
dated. Literature [64, 47, 62] recommends retraining the model periodically (see
§ 3.6) to get around this. However, retraining periodicity is loosely defined and
is an expensive process that leads to sub-optimal results. Consequently, there are
periods where the model performance cannot be trusted. The problem is further
exacerbated as concept drift is hard to identify without manual intervention. If
the model is retrained too frequently, there will be little novelty in information
obtained through retraining to enrich the model. Regardless of the periodicity, the
retraining process requires manual labelling of all the processed objects. Transcend
selectively identifies the drifted objects with statistical significance thus is able to
restrict the manual labelling process to the objects that are substantially different
than the ones in the trained model (see § 4.4 and § 4.3). The p-value for an object z

77



4 – Transcend

with label k is the statistical support of the null hypothesis H0, i.e., that z belongs
to k. Transcend finds the significance level (the per-class threshold) to reject H0
for the alternative hypothesis Ha, i.e., that z does not belong k (p-values for wrong
hypotheses are smaller than those for correct ones, e.g., Fig. 3.3)

Comparison with Probability. Probabilities have been known to work well in
some scenarios but as demonstrated in § 4.3 and § 4.4 they are not as effective as
compared to p-values which are more versatile, especially in the presence of concept
drift. When probabilities are reported to be low it is difficult to understand if the
sample does not belong to any class or if the sample is actually just difficult to
classify while still belonging to one of the known classes. In other words, the p-
value metric offers a natural null option when the p-values calculated for all the
classes are low. Instead, as shown in the case of SVM (see, § 4.3), the probability
metric is bounded to one of the options in the model. It does not matter if the
probabilities are well calibrated or not, the limitation is inherent to the metric. As
discussed, the work by Rieck et al. [82] faces similar challenges when choosing the
probability threshold. Moreover, the p-value metric provided by our framework,
can be calculated from algorithms that do not provide probabilities, e.g., custom
algorithms like [102], thus extending the range of algorithms that can benefit from
a statistical evaluation.
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Figure 4.6: Multiclass Classification Case Study [3]: a new family is discovered by
relying on the p-value distribution for known malware families. The figure shows
the amount of conformity each sample has with its own family; for each sample,
there is only one family with high p-value.
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Figure 4.7: Multiclass Classification Case Study [3]: probability distribution for
samples of families included in the training dataset. High probabilities support the
algorithm classification choice.
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Chapter 5

Malware Download Prediction

Malicious websites are the main infection vectors used by attackers to spread mal-
ware [71, 41]. The main countermeasure used to deal with this problem is the use
of blacklist (e.g., Google Safe Browsing [32]) that prevents the malicious URLs to
be accessed by unaware and inexperienced users. Although widely used, the main
drawback of this technique is the inability to rapidly update itself [51, 92]. The
update time can vary from few hours to few weeks, therefore, in order to conduct a
successful malware campaign, malware authors have to change their strategies fre-
quently. Such changes make it very difficult to design an effective defence strategy.

When the blacklist fails, a malware is downloaded. This is usually the result of
a web navigation that eventually leads to a malicious web page where the user is
tricked to download the malicious content. In this study, I follow this observation
to build a predicting model that exploits the history of the web navigation before a
download event happens, to decide if the download itself is malicious or benign. I
will not consider the spread of a malware propagated by direct link (e.g., phishing)
or by malicious attachment (e.g., word, PDF) because in these cases I can not
leverage the historical pattern that will end up in a download. To validate this
intuition I need a dataset containing the history of the navigation from a real-
world environment. For this purpose, I created a dataset by recording the necessary
information coming from a major US University for 2 months. To do so, I employed
an extension of AMICO [105] that allows to record the HTTP requests coming from
each host in a network and reconstruct binary downloads. To label each download
I leverage VirusTotal’s labelling capability.

The aim of this study is to prevent the download of a malicious binary before
the actual executable reaches the user’s PC. The results clearly indicate that there
is a strong relation between the pages visited before a download and the download
itself. This relation needs to be explored further in depth.
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5.1 Introduction
Malicious websites are one of the most common sources of threats that spreads
malware across the web. An inexperienced internet user is often unaware of the
threat that is exposed when browsing malicious content. From scam, phishing,
drive-by download, zero-day exploits (just to name few) it seems that there is an
always increasing source of danger that threat a safe navigation. Researchers and
antivirus firms have proposed many techniques to prevent or alleviate this threat
but the problem presents many challenges.

The first challenge is the access to well labelled and documented dataset coming
from real-world usage. Researchers often face restriction to access the information
due to non-technical reasons mainly related to privacy. When the data is eventually
made available to be studied, it is still almost impossible to release it in order to
give the opportunity for a broader study by the community. This problem hinders
the repeatability of the results and the comparison with new ideas. Once the
non-technical challenges have been addressed, the dataset creation needs to care
about different technical aspects of the internet, due to its variable nature. When
visiting a URL, the server might return different versions of the page for many
different reasons. Legitimate reasons include optimisation of the content depending
on the browser used to access the page. A malicious server instead might return a
malicious page depending on the geographic IP location of the client, exploitability
of the browser used to get the page or might return legitimate contents to disguise
possible investigation. Additionally, malicious web pages tend to be accessible for
a very quick period of time before they are blacklisted therefore made inaccessible.
Nevertheless, the efficacy of blacklisting is very limited in time [92, 51], malicious
authors change the domain and strategy often to circumvent it. This behaviour
makes it very difficult to replicate the experiments. In this work, the information
was recorded passively by placing the recording tool at the edge of the network, in
order to produce a new detection mechanism.

Many works in the literature exploit the information contained in the down-
loaded URLs [60, 14, 17, 85, 112, 2]. These works do not prevent the download
of the malicious artefact because they analyse it as part of the process. The in-
formation that were explored in these works can be categorised as: IP information
(geographical location, ASN), domain information (whois, TTL, word contained),
page content (HTML and graphical comparison). In another work [72], the authors
explore the previously visited pages as part of a broad investigation meant to deal
with drive-by download. The work does not build a detection system but aims to
provide context around malicious download. In [57], the authors performed active
crawling to analyse the resulting web traces. They explore the properties of ma-
licious advertising and their related content delivery network to build a detection
mechanism that detects malicious advert. In [68], the authors exploit redirection
chains, and the resulting redirection graph, that lead to malicious page to produce a
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detection system. In this work, I do not restrict the work to redirections but I look
at the whole history of requests before a download. Following the redirection idea
of [68], in [97] the authors looked at different web browsers and how they interact
with websites, they aggregate the information to be more resilient when detecting
a page that delivers malware.

In this work, I investigate the importance of the complete browsing history to
detect malware downloads by focusing on users behaviours. The goal is to avoid
the download of a malware before it reaches the user’s machine. To the best of
my knowledge, this is the first study that bases the prediction mechanism on the
history of the previously visited URLs.

5.2 Methodology
Dataset. In order to obtain the data necessary for this research, I need to record
the HTTP requests before a download event happens. For this purpose, I use as
baseline for my research the tool AMICO [105]. AMICO is a tool that sits at
the edge of a network and is able to reconstruct binaries downloads from the live
network traffic (TCP flows) and is able to predict if the downloaded binaries are
malware or not. I leverage its binary reconstruction capability and by extending
its capability it was possible to record the history of requests and responses that
were produced by each machine when they were downloading an executable.

In addition to the information recorded by [105], its extension, namedMIGLIOR
AMICO, recorded the following information from the requests before each down-
load:

• Timestamp: the time of the request

• Server IP: destination of the request

• Hostname: hostname of the destination

• Referer: the field address of the referrer from the HTTP request

• User Agent: user agent of the HTTP request

• Client IP: the source IP address of the request

In order to produce the dataset used in this study, the system ran for 2 months
in a major US University, from the mid-November 2017 to mid-January 2018. Due
to the sensitivity of the data collected, a clearance process was submitted and au-
thorised prior to the beginning of the study. The clearance process included an
ethical committee to raise questions on the research itself. Major concerns raised
by the committee were related to the storage and the anonymisation of the data
obtained. Furthermore, only the data strictly used for the purpose of that research
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was authorised to be collected. To address the concern of the committee, the IP ad-
dresses were anonymised and the data was stored in a secure server. The anonymity
of the data was performed by replacing the original IP address with fictional ones.
Although it is not a strong anonymisation procedure and more advanced methods
are available, they were not implemented. The data collected was strictly stored in
secure servers in the premises of the university. The subsequent analyses on such
data were authorised only if the data was not moved by its secure location.

To build a verifiable ground truth, Virus Total [31] was queried to label the
downloaded binaries. A malicious label was given if at least 2 antivirus vendors
labelled the binary as malicious, benign otherwise. The use of multiple antivirus
vendors to confirm the label of a binary was exploited in other works [30, 53, 95].
The query to get the label for each binary was repeated after 1 or 2 weeks to check
for consistency. It is known that antivirus vendors change their decisions on binary
labels after further investigation [69].

Algorithm. The algorithm used in these experiments is divided into 4 main
stages. The first part is involved in the reconstruction of the history of requests
for each download starting from the raw data. In the second part, the features are
extracted to create the feature vectors. Then a classification algorithm is trained
to produce a predictive model and it is tested to produce the final predictions.
The train-test set split is performed respecting the timeline (see § 2.4) to ensure
real-world usage.

During the first stage of the algorithm, the history for each download must
be reconstructed. Sitting at the edge of the network, the raw information of the
requests is recorded for each IP address. The inherent limitation from the use
of [105] makes the analysis possible only on HTTP traffic and not HTTPS. The
reconstruct module tries to link the raw requests together with a limit of 5 minutes
before the download event. The use of the time limit is an approximation that
takes into account the fact the recent navigation history is usually more related
to a download rather than the old one. It is possible that using a browser with
multiple websites open at the same time affects the correct reconstruction. This is
a limitation of the recording system architecture.

The next step is the extraction of the features to create feature vectors suitable
for a ML algorithm. The feature vectors include the following information extracted
from the history of each download:

• Alexa top: the number of domain in the Alexa top [8] 1000 websites

• Domain and second level domain name: number of domain and second level
domain requested

• Domain and second level domain diversity: the unique number of domain and
second level domain requested
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• History length: number of requests before the download

• Automatic redirect: the number of automatic redirection (a request is marked
as automatic if it comes less than 1 second after the previous one)

• BGP prefix: the BGP prefix extracted from the IP address of the requested
hostname

• Words in the requested hostname: the unique words extracted from the host-
name of the requests

• IP: the destination IP address of the request

It is not possible to directly use the features of each request before the download
as single features because the history of each download may have a different size
(the ML algorithm used in the next stage will require feature vectors with the same
length). I describe now how I handle the variable history size. During the training
phase, the algorithm created 2 counters for each one of the above features. The
benign-leading counters contain, for each value of a feature, the number of times that
a value was observed while the following download was leading to a benign down-
load. The malicious-leading counters contain how many times a specific value of a
feature was observed while the following download was leading to a malicious down-
load. For example, for the domain name feature, the value “free-mac-update.com”
was observed 26 times in the history of requests when a malicious download event
eventually happened; the same value was observed 3 times in the history of the re-
quests that ended up in a benign download. The value “google.com” was observed
121 times when downloading a benign binary and 111 times when downloading a
malicious binary.

To obtain a fixed number of features suitable for a ML algorithm, I summed
the counter’s values for each feature (keeping the separation between malicious and
benign). For example, 3 requests were observed before a download event. The re-
quested domains before the download are “free-mac-update.com” (h0), “google.com”
(h1), “google.com” (h2). As explained before, the domain name feature will con-
tains 2 counters. The benign-leading counter will be used to sum the history of
benign events: 3 (h0) + 121 (h1) + 121 (h2). The malicious-leading counter will
be used to sum the number of malicious events: 26 (h0) + 111 (h1) + 111 (h2). In
this way, the length of the history does not matter because for each feature there
will be only 2 counters.

The third phase is involved with the creation of the predicting model. I used
the XGBoost classifier [101] (explained in § 2.2.3) to train the model and performed
a grid search of model’s parameters to optimize the F1 score.

The testing of the model is performed slightly differently from the traditional
approach. As described before, the testing was performed respecting the histori-
cal timeline, i.e., the testing feature vectors were extracted from the data strictly
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temporarily after the train set.
After the algorithm predicts a label for a download event, the benign and ma-

licious leading counters, previously described, are updated using the correct label,
not the predicted one. This step is performed because the goal is to prevent the
download of a malicious sample. Once the download is completed, we can submit
it to [31] to get the label or perform other analyses on it. Therefore it makes sense
to update the benign and malicious counters with the correct label in order to help
the classification of next binaries. I am not using an online ML algorithm thus
this update is not changing the predicting model. The purpose of the update is to
change only the metadata (i.e., the counters) that are used to generate the features
used to test the model.

5.3 Results
The analyses were performed by splitting the timeline into 2 days slots. Initially,
I used the first slot as train set and the following slot as test set. After that, the
testing slot (previously used as test set) will be included in the train set to produce
a new predictive model and it will be used to test the next slot. This mechanism
will continue until there are no more slots to be tested.

In Fig. 5.1 and Fig. 5.2, it is shown the precision and recall of the classifier
respectively. In Fig. 5.1, we can see that the precision for benign sample is always
very high, i.e., above 0.96. The precision for the malware samples is above 0.90
until the beginning of January where it fell to 0.77 before rising again near the end
of the examined period.

In Fig. 5.2, we can see that recall for benign samples is always very high, i.e.
above 0.98. The recall for the malware samples varies quite a lot, most of the period
it stays between 0.73 and 0.87 but during the initial period, it reached a minimum
of 0.68 and a maximum of 0.92.

In Fig. 5.1 and Fig. 5.2, the number of benign and malicious elements are
shown. The benign downloads increased considerably since the beginning of the
data recording, the malware downloads instead, increased very little. Despite the
change in the number of downloads, the results did not seem affected by much.

In addition to the aforementioned results, it is interesting to understand how
long before the actual download it is possible to predict its maliciousness. Taking
the samples that are correctly classified as malicious I ran a backward analysis to
understand when the algorithm misclassified the samples by increasingly removing
more requests from the history of a download. I divided the misclassification into 5
bands depending on how many requests were excluded from the request history, in
order for the model to misclassify a malware. Looking at Fig. 5.4, only 10-20% of
the misclassifications happened when removing the last request, i.e., it is possible to
identify a malware download even before the last request for most of the correctly
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Figure 5.1: Precision for benign and malicious binaries along the timeline on the
left y axis. On the right y axes, the number of tested samples.

labelled malware. It is possible to see that most of the downloads are labelled
malicious relying on 10 or more requests close to the download event — in Fig. 5.4
these are marked in blue, orange and green. This result is validating the idea that
the history of requests close to a download is important to decide its maliciousness.
The red and purple represent the samples that were classified as malicious before
the latest 10 or more requests.

It will be interesting to see how this analysis is related to the length of the
download chain. This is because, in the current model, the value of each counter is
summed across the whole history, therefore, long download chains are more likely to
have a high score for both benign and malicious counters. Normalizing the history
length or limiting its length will be part of the future works. Another interesting
analysis that can be performed involves understanding how many times the decision
label on a potential download changes during user navigation.
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Figure 5.2: Recall for benign and malicious binaries along the timeline on the left
y axis. On the right y axes, the number of tested samples.
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Figure 5.3: False positive rate (FPR) for benign and malicious binaries along the
timeline on the left y axis. On the right y axes, the number of tested samples.
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Figure 5.4: Early detection of malware download.
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5.4 Future Works
The results show that there is a strong correlation between historical data and the
download of malicious malware. Nevertheless, there are limitations that can be
overcome in future works.

One of the limitations of this work is that is not possible to understand if the
requests coming from a host are coming from the same tab or from different ones.
This is due to the architecture of the system that places itself at the edge of the
network. To overcome this limitation, a host agent can be developed to distinguish
the source of each request. Developing the client agent can be used to produce a
warning to the user when her surfing patterns will result in a malicious prediction
if tested.

Another limitation of the current experiments is that the data used for the
experiments only contains requests that eventually ended up in a download. There
is no browsing history that did not complete in a download. To overcome this
limitation the recording mechanism needs to be changed.

Other analysis can be performed in addition to the previously described ones.
It will be interesting to know how long the request history needs to be, in order to
reliably detect a malicious download. Currently, the history length is not limited
by the number of requests but by a 5 minute counter.

It will also be interesting to test the system in a long-lived experiment to de-
termine the time period that the ML algorithm would need to analyse to produce
a meaningful predictive model, i.e., how long should the train set be? In the cur-
rent set-up, the algorithm learns to download behaviours from the beginning of the
recording up to the beginning of the test set, but malicious actors tends to change
their strategies very often. For this reason, it may not be needed to learn several
months before the test set.

Finally, another interesting work that can be explored regards to the transfer-
ability of a model, i.e., when a predictive model is trained using data collected in
a certain environment but tested in a different one. This analysis is interesting
because the model is created from the users’ behaviour and it is possible that other
environments will react differently.
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Chapter 6

Conclusion

Learning-based approaches have long been acknowledged as promising in a number
of different application domains. When applied in computer security and in partic-
ular, to detect and classify malicious software, they often perform extraordinarily
well. Our community often relies on best-practices and evaluations are generally
carried out in controlled lab settings only. Little or no attention is paid to under-
stand whether a given technique would actually retain its staggering performance
once deployed in realistic settings, of paramount importance when exploring a fast-
paced evolving application domain such as the one malicious software represents.

In this thesis, I contributed to tackle the problem of evolving threats by following
two main approaches: one system oriented and one more machine learning oriented.
The machine learning approach tries to assess the ML decisions of a given classifier.
Assessing the validity of malware clustering and classification approaches has always
proven difficult. Researchers have empirically shown that traditional metrics fall
short of assessing the actual quality of a classification/clustering methodology.

To address such shortcomings, I have proposed conformal evaluator (§ 3), an
evaluation framework built around conformal predictor, a machine learning algo-
rithm originally designed for tailoring classification tasks. Within conformal evalu-
ator, two novel analyses were proposed, which are able to evaluate similarity-based
classification and clustering algorithms with respect to their own decisions and
against the dataset itself. To this end, such analyses are built on top of algorithm
confidence and credibility, which ultimately enable to assess whether the similar-
ity function underpinning such machine learning approaches is poorly designed or
badly handled.

I have shown the usage of conformal evaluator through three malware detection
and classification algorithms belonging to three different areas (i.e., botnet network
communication, windows and android malware), and I have shown how apparently
good results, according to traditional metrics, can result in inconsistent perfor-
mances, according to conformal evaluator metrics. Additionally, the robustness of
the conformal evaluator results was demonstrated by running the same tests on
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different datasets. It is worth to note that conformal evaluator can be beneficial to
other research communities because of its versatility.

I have also proposed Transcend (§ 4)—a fully tunable tool for statistically filter-
ing out unreliable classification decisions. At the heart of Transcend, CE’s statisti-
cal confidence provides evidence for better understanding model generalization and
class separation; for instance, CE has been successfully adopted to selectively in-
voke computationally expensive learning-based algorithms when predictions choose
classes with low confidence [21], trading off performance for accuracy. My work
details the CE metrics used in [21] and extend it to facilitate the identification of
concept drift, thus bridging a fundamental research gap when dealing with evolving
malicious software. Although evaluated within systems security domain, Transcend
can be beneficial to other communities and its inner mechanism allows the use of
other quality metrics, making it very versatile.

I presented two case studies as representative use cases of Transcend capability.
The approach provides sound results for both binary and multi-class classification
scenarios on different datasets and algorithms using proper training, calibration and
validation, and testing datasets. The diversity of case studies presents compelling
evidence in favour of our framework being generalizable.

In the second part of my thesis I approached the problem of evolving threats
in a more algorithmic way. Especially, I tackled the problem of evolving malware
campaigns. In this scenario, the attacker continuously changes part of the offensive
infrastructure (e.g., URL, website content) to evade the detectors. When inexpe-
rienced users are fooled by the attacker they will download the malicious binary
leading to an infection. If a user downloads the malware it is considered as game
over in this model. My defence mechanism involves into updating the counters of
websites that showed a malicious download. Higher is the counter more is likely
that the website is malicious. It is clear that the very first infections will unlikely
be recognised by the system as malicious but this countermeasure can be applied
to a whole network infrastructure enabling knowledge sharing of different malicious
entities. The system was tested using data coming from a big US university with
promising results. Still, more experiments and investigations need to be performed
to refine this technique.

By building tools that will allow to study and investigate non-stationary prob-
lems in a more comprehensive and scientific manner, the Pandora’s Box has been
opened; the hope is that more researchers might be stimulated to increase their
efforts in the same direction hence bringing more insights than merely numerical
results.

The ultimate desire is to marry the machine learning and the systems security
community to provide a toolkit to the latter to understand the subtle implications
of machine learning-based techniques (e.g., choosing a similarity measure over an-
other), and better support their claims.

92



Bibliography

[1] H.P. Siemon A. Ultsch. Kohonen’s self organizing feature maps for
exploratory data analysis. In International Neural Network Conference,
volume 2, page 305–308, 1990.

[2] Sadia Afroz and Rachel Greenstadt. Phishzoo: Detecting phishing websites
by looking at them. In Semantic Computing (ICSC), 2011 Fifth IEEE
International Conference on, pages 368–375. IEEE, 2011.

[3] Mansour Ahmadi, Giorgio Giacinto, Dmitry Ulyanov, Stanislav Semenov,
and Mikhail Trofimov. Novel feature extraction, selection and fusion for
effective malware family classification. Technical Report,
arXiv:submit/1402914, 2015.

[4] J Albert, E Aliu, H Anderhub, P Antoranz, A Armada, M Asensio,
C Baixeras, JA Barrio, H Bartko, D Bastieri, et al. Implementation of the
random forest method for the imaging atmospheric cherenkov telescope
magic. Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment,
588(3):424–432, 2008.

[5] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon.
Are Your Training Datasets Yet Relevant? In ESSoS. Springer, 2015.

[6] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon.
Androzoo: Collecting Millions of Android Apps for the Research
Community. In ACM Mining Software Repositories (MSR), 2016.

[7] Kevin Allix, Tegawendé François D Assise Bissyande, Jacques Klein, and
Yves Le Traon. Machine learning-based malware detection for android
applications: History matters! Technical report, University of Luxembourg,
SnT, 2014.

[8] Amazon. Alexa-Top-Sites, 2019.
[9] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and

Konrad Rieck. DREBIN: effective and explainable detection of android
malware in your pocket. In 21st Annual Network and Distributed System
Security Symposium, NDSS 2014, San Diego, California, USA, February
23-26, 2014, 2014.

[10] Adam J. Aviv and Andreas Haeberlen. Challenges in experimenting with

93



Bibliography

botnet detection systems. In Proceedings of the 4th USENIX Workshop on
Cyber Security Experimentation and Test (CSET ’11), 2011.

[11] Stefan Axelsson. The Base-Rate Fallacy and the Difficulty of Intrusion
Detection. ACM Transactions on Information and System Security
(TISSEC), 2000.

[12] Christopher M Bishop. Pattern Recognition and Machine Learning. 2006.
[13] Christopher M. Bishop. Pattern Recognition and Machine Learning

(Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg,
2006.

[14] Aaron Blum, Brad Wardman, Thamar Solorio, and Gary Warner. Lexical
feature based phishing url detection using online learning. In Proceedings of
the 3rd ACM Workshop on Artificial Intelligence and Security, AISec ’10,
pages 54–60, New York, NY, USA, 2010. ACM.

[15] Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Introduction to
Statistical Learning Theory, pages 169–207. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2004.

[16] Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.
[17] Davide Canali, Marco Cova, Giovanni Vigna, and Christopher Kruegel.

Prophiler: A fast filter for the large-scale detection of malicious web pages.
In Proceedings of the 20th International Conference on World Wide Web,
WWW ’11, pages 197–206, New York, NY, USA, 2011. ACM.

[18] Thomas Cover and Peter Hart. Nearest neighbor pattern classification.
IEEE transactions on information theory, 13(1):21–27, 1967.

[19] Charlie Curtsinger, Benjamin Livshits, Benjamin G Zorn, and Christian
Seifert. ZOZZLE: Fast and Precise In-Browser JavaScript Malware
Detection. In USENIX Security, 2011.

[20] George E Dahl, Jack W Stokes, Li Deng, and Dong Yu. Large-Scale
Malware Classification Using Random Projections and Neural Networks. In
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on, pages 3422–3426. IEEE, 2013.

[21] Santanu Kumar Dash, Guillermo Suarez-Tangil, Salahuddin Khan,
Kimberly Tam, Mansour Ahmadi, Johannes Kinder, and Lorenzo Cavallaro.
Droidscribe: Classifying Android Malware Based on Runtime Behavior. In
MoST-SPW. IEEE, 2016.

[22] Jesse Davis and Mark Goadrich. The relationship between precision-recall
and roc curves. In Proceedings of the 23rd international conference on
Machine learning, pages 233–240. ACM, 2006.

[23] Amit Deo, Santanu Kumar Dash, Guillermo Suarez-Tangil, Volodya Vovk,
and Lorenzo Cavallaro. Prescience: Probabilistic guidance on the retraining
conundrum for malware detection. In Proceedings of the 2016 ACM
Workshop on Artificial Intelligence and Security, AISec ’16, pages 71–82,
New York, NY, USA, 2016. ACM.

94



Bibliography

[24] Jun Du and Charles X Ling. Active Learning with Human-Like Noisy
Oracle. In Data Mining (ICDM), 2010 IEEE 10th International Conference
on, pages 797–802. IEEE, 2010.

[25] Eleazar Eskin, Jason Weston, William S Noble, and Christina S Leslie.
Mismatch string kernels for svm protein classification. In Advances in
neural information processing systems, pages 1441–1448, 2003.

[26] Valentina Fedorova, Alex J. Gammerman, Ilia Nouretdinov, and Volodya
Vovk. Plug-in martingales for testing exchangeability on-line. In
Proceedings of the 29th International Conference on Machine Learning,
ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012, 2012.

[27] Alex Gammerman and Vladimir Vovk. Hedging predictions in machine
learning. Computer Journal 50, pages 151–177, 2007.

[28] Sebastián García, Alejandro Zunino, and Marcelo Campo. Survey on
network-based botnet detection methods. Security and Communication
Networks, 7(5):878–903, May 2014.

[29] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck.
Structural Detection of Android Malware using Embedded Call Graphs. In
AISec. ACM, 2013.

[30] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck.
Structural detection of android malware using embedded call graphs. In
Proceedings of the 2013 ACM workshop on Artificial intelligence and
security, pages 45–54. ACM, 2013.

[31] Google. VirusTotal, 2004.
[32] Google. Google safe browsing. https://safebrowsing.google.com/, 2019.
[33] Google. Android Security 2017 Year In Review.

https://source.android.com/security/reports/Google_Android_
Security_2017_Report_Final.pdf, March 2018.

[34] David J Hand. Measuring Classifier Performance: a Coherent Alternative to
the Area Under the ROC Curve. Machine learning, 77(1):103–123, 2009.

[35] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning. Springer Series in Statistics. Springer New York Inc.,
New York, NY, USA, 2001.

[36] Shen-Shyang Ho. A martingale framework for concept change detection in
time-varying data streams. In Machine Learning, Proceedings of the
Twenty-Second International Conference (ICML 2005), Bonn, Germany,
August 7-11, 2005, pages 321–327, 2005.

[37] Shen-Shyang Ho and Harry Wechsler. Query by transduction. IEEE Trans.
Pattern Anal. Mach. Intell., 30(9):1557–1571, 2008.

[38] Shen-Shyang Ho and Harry Wechsler. A martingale framework for detecting
changes in data streams by testing exchangeability. IEEE Trans. Pattern
Anal. Mach. Intell., 32(12):2113–2127, 2010.

95

https://safebrowsing.google.com/
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf


Bibliography

[39] M. Hubert and E. Vandervieren. An adjusted boxplot for skewed
distributions. Computational Statistics and Data Analysis, 52(12):5186 –
5201, 2008.

[40] Kaggle Inc. Microsoft malware classification challenge (big 2015), 2015.
[41] Luca Invernizzi, Stanislav Miskovic, Ruben Torres, Christopher Kruegel,

Sabyasachi Saha, Giovanni Vigna, Sung-Ju Lee, and Marco Mellia. Nazca:
Detecting malware distribution in large-scale networks. In NDSS,
volume 14, pages 23–26, 2014.

[42] Alan Julian Izenman. Linear discriminant analysis. In Modern Multivariate
Statistical Techniques, pages 237–280. Springer, 2008.

[43] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An
Introduction to Statistical Learning: With Applications in R. Springer
Publishing Company, Incorporated, 2014.

[44] Nathalie Japkowicz and Shaju Stephen. The class imbalance problem: A
systematic study. Intelligent data analysis, 6(5):429–449, 2002.

[45] Ian Jolliffe. Principal component analysis. Wiley Online Library, 2002.
[46] Roberto Jordaney, Kumar Sharad, Santanu Kumar Dash, Zhi Wang, Davide

Papini, Ilia Nouretdinov, and Lorenzo Cavallaro. Transcend: Detecting
Concept Drift in Malware Classification Models. In USENIX Security, 2017.

[47] Alex Kantchelian, Sadia Afroz, Ling Huang, Aylin Caliskan Islam, Brad
Miller, Michael Carl Tschantz, Rachel Greenstadt, Anthony D. Joseph, and
J. D. Tygar. Approaches to adversarial drift. In AISec’13, Proceedings of
the 2013 ACM Workshop on Artificial Intelligence and Security, Co-located
with CCS 2013, Berlin, Germany, November 4, 2013, pages 99–110, 2013.

[48] Kaspersky. Kaspersky Security Bulletin 2018. https://securelist.com/
kaspersky-security-bulletin-2018-statistics/89145/, 2018.

[49] Dong Seong Kim, Ha-Nam Nguyen, and Jong Sou Park. Genetic algorithm
to improve svm based network intrusion detection system. In 19th
International Conference on Advanced Information Networking and
Applications (AINA’05) Volume 1 (AINA papers), volume 2, pages 155–158.
IEEE, 2005.

[50] Christopher Kruegel, Engin Kirda, Paolo Milani Comparetti, Ulrich Bayer,
and Clemens Hlauschek. Scalable, behavior-based malware clustering. In
Proceedings of the 16th Annual Network and Distributed System Security
Symposium (NDSS 2009), 1 2009.

[51] Marc Kührer, Christian Rossow, and Thorsten Holz. Paint it black:
Evaluating the effectiveness of malware blacklists. In International
Workshop on Recent Advances in Intrusion Detection, pages 1–21. Springer,
2014.

[52] Pavel Laskov and Nedim Šrndić. Static Detection of Malicious
JavaScript-Bearing PDF Documents. In ACSAC. ACM, 2011.

[53] Pavel Laskov and Nedim Šrndić. Static detection of malicious

96

https://securelist.com/kaspersky-security-bulletin-2018-statistics/89145/
https://securelist.com/kaspersky-security-bulletin-2018-statistics/89145/


Bibliography

javascript-bearing pdf documents. In Proceedings of the 27th annual
computer security applications conference, pages 373–382. ACM, 2011.

[54] Sangho Lee and Jong Kim. WarningBird: Detecting Suspicious URLs in
Twitter Stream. In NDSS, 2012.

[55] Kun-Lun Li, Hou-Kuan Huang, Sheng-Feng Tian, and Wei Xu. Improving
one-class svm for anomaly detection. In Proceedings of the 2003
International Conference on Machine Learning and Cybernetics (IEEE Cat.
No. 03EX693), volume 5, pages 3077–3081. IEEE, 2003.

[56] Peng Li, Limin Liu, Debin Gao, and Michael K Reiter. On challenges in
evaluating malware clustering. In Recent Advances in Intrusion Detection,
pages 238–255. Springer, 2010.

[57] Zhou Li, Kehuan Zhang, Yinglian Xie, Fang Yu, and XiaoFeng Wang.
Knowing your enemy: understanding and detecting malicious web
advertising. In Proceedings of the 2012 ACM conference on Computer and
communications security, pages 674–686. ACM, 2012.

[58] Martina Lindorfer, Matthias Neugschwandtner, and Christian Platzer.
Marvin: Efficient and comprehensive mobile app classification through static
and dynamic analysis. In Proceedings of the 39th Annual International
Computers, Software and Applications Conference (COMPSAC), 7 2015.

[59] Martina Lindorfer, Stamatis Volanis, Alessandro Sisto, Matthias
Neugschwandtner, Elias Athanasopoulos, Federico Maggi, Christian Platzer,
Stefano Zanero, and Sotiris Ioannidis. AndRadar: Fast Discovery of
Android Applications in Alternative Markets. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 51–71. Springer, 2014.

[60] Justin Ma, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker.
Beyond blacklists: learning to detect malicious web sites from suspicious
urls. In Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1245–1254. ACM, 2009.

[61] Federico Maggi, Alessandro Frossi, Stefano Zanero, Gianluca Stringhini,
Brett Stone-Gross, Christopher Kruegel, and Giovanni Vigna. Two Years of
Short URLs Internet Measurement: Security Threats and Countermeasures.
In WWW. ACM, 2013.

[62] Federico Maggi, William K. Robertson, Christopher Krügel, and Giovanni
Vigna. Protecting a moving target: Addressing web application concept
drift. In Recent Advances in Intrusion Detection, 12th International
Symposium, RAID 2009, Saint-Malo, France, September 23-25, 2009.
Proceedings, pages 21–40, 2009.

[63] Davide Maiorca, Giorgio Giacinto, and Igino Corona. A Pattern Recognition
System for Malicious PDF Files Detection. In Intl. Workshop on Machine
Learning and Data Mining in Pattern Recognition. Springer, 2012.

[64] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano

97



Bibliography

De Cristofaro, Gordon Ross, and Gianluca Stringhini. MaMaDroid:
Detecting Android Malware by Building Markov Chains of Behavioral
Models. In NDSS, 2017.

[65] Zane Markel and Michael Bilzor. Building a Machine Learning Classifier for
Malware Detection. In Anti-malware Testing Research (WATeR) Workshop.
IEEE, 2014.

[66] McAfee. McAfee Labs Threats Reports. https://www.mcafee.com/
enterprise/en-gb/threat-center/mcafee-labs/reports.html,
December 2018.

[67] Michael Mccord and M Chuah. Spam detection on twitter using traditional
classifiers. In international conference on Autonomic and trusted computing,
pages 175–186. Springer, 2011.

[68] Hesham Mekky, Ruben Torres, Zhi-Li Zhang, Sabyasachi Saha, and Antonio
Nucci. Detecting malicious http redirections using trees of user browsing
activity. In INFOCOM, 2014 Proceedings IEEE, pages 1159–1167. IEEE,
2014.

[69] Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Rekha
Bachwani, Riyaz Faizullabhoy, Ling Huang, Vaishaal Shankar, Tony Wu,
George Yiu, et al. Reviewer Integration and Performance Measurement for
Malware Detection. In DIMVA. Springer, 2016.

[70] Bradley Austin Miller. Scalable Platform for Malicious Content Detection
Integrating Machine Learning and Manual Review. University of California,
Berkeley, 2015.

[71] Antonio Nappa, M Zubair Rafique, and Juan Caballero. Driving in the
cloud: An analysis of drive-by download operations and abuse reporting. In
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 1–20. Springer, 2013.

[72] Terry Nelms, Roberto Perdisci, Manos Antonakakis, and Mustaque
Ahamad. Webwitness: Investigating, categorizing, and mitigating malware
download paths. In USENIX Security Symposium, pages 1025–1040, 2015.

[73] Steven R Ness, Anthony Theocharis, George Tzanetakis, and Luis Gustavo
Martins. Improving automatic music tag annotation using stacked
generalization of probabilistic svm outputs. In Proceedings of the 17th ACM
international conference on Multimedia, pages 705–708. ACM, 2009.

[74] Luiz S Oliveira and Robert Sabourin. Support vector machines for
handwritten numerical string recognition. In Ninth International Workshop
on Frontiers in Handwriting Recognition, pages 39–44. IEEE, 2004.

[75] Frank Olken and Doron Rotem. Simple random sampling from relational
databases. In Proceedings of the 12th International Conference on Very
Large Data Bases, VLDB ’86, pages 160–169, San Francisco, CA, USA,
1986. Morgan Kaufmann Publishers Inc.

[76] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder,

98

https://www.mcafee.com/enterprise/en-gb/threat-center/mcafee-labs/reports.html
https://www.mcafee.com/enterprise/en-gb/threat-center/mcafee-labs/reports.html


Bibliography

and Lorenzo Cavallaro. TESSERACT: Eliminating Experimental Bias in
Malware Classification across Space and Time. In 28th USENIX Security
Symposium, Santa Clara, CA, 2019. USENIX Association. USENIX Sec.

[77] Roberto Perdisci, Davide Ariu, and Giorgio Giacinto. Scalable fine-grained
behavioral clustering of http-based malware. Computer Networks,
57(2):487–500, 2013.

[78] John Platt et al. Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods. Advances in large margin
classifiers, 10(3):61–74, 1999.

[79] M. Zubair Rafique and Juan Caballero. Firma: Malware clustering and
network signature generation with mixed network behaviors. Proceedings of
the 16th International Symposium on Research in Attacks, Intrusions and
Defenses, 2013.

[80] Babak Rahbarinia, Marco Balduzzi, and Roberto Perdisci. Exploring the
Long Tail of (Malicious) Software Downloads. In DSN. IEEE, 2017.

[81] Greg Ridgeway. The state of boosting. Computing Science and Statistics,
pages 172–181, 1999.

[82] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Düssel, and Pavel
Laskov. Learning and classification of malware behavior. In Detection of
Intrusions and Malware, and Vulnerability Assessment, 5th International
Conference, DIMVA 2008, Paris, France, July 10-11, 2008. Proceedings,
pages 108–125, 2008.

[83] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Düssel, and Pavel
Laskov. Learning and classification of malware behavior. In International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 108–125. Springer, 2008.

[84] Konrad Rieck, Tammo Krueger, and Andreas Dewald. Cujo: Efficient
Detection and Prevention of Drive-By-Download Attacks. In ACSAC.
ACM, 2010.

[85] Konrad Rieck, Tammo Krueger, and Andreas Dewald. Cujo: Efficient
detection and prevention of drive-by-download attacks. In Proceedings of
the 26th Annual Computer Security Applications Conference, ACSAC ’10,
pages 31–39, New York, NY, USA, 2010. ACM.

[86] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz.
Automatic analysis of malware behavior using machine learning. Journal of
Computer Security, 19(4):639–668, 2011.

[87] VF Rodriguez-Galiano, M Chica-Olmo, F Abarca-Hernandez, Peter M
Atkinson, and C Jeganathan. Random forest classification of mediterranean
land cover using multi-seasonal imagery and multi-seasonal texture. Remote
Sensing of Environment, 121:93–107, 2012.

[88] Justin Sahs and Latifur Khan. A machine learning approach to android
malware detection. In 2012 European Intelligence and Security Informatics

99



Bibliography

Conference, pages 141–147. IEEE, 2012.
[89] Luca Salgarelli, Francesco Gringoli, and Thomas Karagiannis. Comparing

traffic classifiers. ACM SIGCOMM Computer Communication Review,
37(3):65–68, July 2007.

[90] Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero,
Pablo Garcia Bringas, and Gonzalo Álvarez. Puma: Permission usage to
detect malware in android. In International Joint Conference
CISIS’12-ICEUTE 12-SOCO 12 Special Sessions, pages 289–298. Springer,
2013.

[91] Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. The
Journal of Machine Learning Research, 9:371–421, 2008.

[92] Steve Sheng, Brad Wardman, Gary Warner, Lorrie Cranor, Jason Hong,
and Chengshan Zhang. An empirical analysis of phishing blacklists. In Sixth
conference on email and anti-spam (CEAS). California, USA, 2009.

[93] Marina Sokolova and Guy Lapalme. A systematic analysis of performance
measures for classification tasks. Information Processing & Management,
45(4):427–437, 2009.

[94] Robin Sommer and Vern Paxson. Outside the Closed World: On Using
Machine Learning for Network Intrusion Detection. In IEEE Symposium on
Security and Privacy, pages 305–316, 2010.

[95] Nedim Šrndic and Pavel Laskov. Detection of malicious pdf files based on
hierarchical document structure. In Proceedings of the 20th Annual Network
& Distributed System Security Symposium, pages 1–16. Citeseer, 2013.

[96] Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna. Shady
Paths: Leveraging Surfing Crowds to Detect Malicious Web Pages. In CCS.
ACM, 2013.

[97] Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna. Shady
paths: Leveraging surfing crowds to detect malicious web pages. In
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 133–144. ACM, 2013.

[98] Guillermo Suarez-Tangil, Santanu Kumar Dash, Mansour Ahmadi,
Johannes Kinder, Giorgio Giacinto, and Lorenzo Cavallaro. DroidSieve:
Fast and Accurate Classification of Obfuscated Android Malware. In ACM
CODASPY, 2017.

[99] Symantec. 2018 Internet Security Threat Report.
https://www.symantec.com/security-center/threat-report, 2018.

[100] Gil Tahan, Lior Rokach, and Yuval Shahar. Mal-id: Automatic malware
detection using common segment analysis and meta-features. JMLR, 2012.

[101] Yuan Tang. extreme gradient boosting.
[102] Florian Tegeler, Xiaoming Fu, Giovanni Vigna, and Christopher Kruegel.

Botfinder: Finding bots in network traffic without deep packet inspection.
In In Proc. Co-NEXT 12, pages 349–360, 2012.

100

https://www.symantec.com/security-center/threat-report


Bibliography

[103] Kurt Thomas, Chris Grier, Justin Ma, Vern Paxson, and Dawn Song.
Design and evaluation of a real-time URL spam filtering service. In 32nd
IEEE Symposium on Security and Privacy, S&P 2011, 22-25 May 2011,
Berkeley, California, USA, pages 447–462, 2011.

[104] A. Gammerman V. Vovk and Glenn Shafer. Algorithmic learning in a
random world. Springer-Verlag New York, Inc., 2005.

[105] Phani Vadrevu, Babak Rahbarinia, Roberto Perdisci, Kang Li, and Manos
Antonakakis. Measuring and Detecting Malware Downloads in Live
Network Traffic. In ESORICS. Springer, 2013.

[106] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of Machine Learning Research, 9(2579-2605):85, 2008.

[107] Harry Wechsler. Cyberspace security using adversarial learning and
conformal prediction. Intelligent Information Management, 7(04):195, 2015.

[108] Jason Weston and Chris Watkins. Multi-class support vector machines.
Technical report, Citeseer, 1998.

[109] Li Xu, Zhenxin Zhan, Shouhuai Xu, and Keying Ye. Cross-layer detection
of malicious websites. In Proceedings of the Third ACM Conference on Data
and Application Security and Privacy, CODASPY ’13, pages 141–152, New
York, NY, USA, 2013. ACM.

[110] Zhou Yajin and Jiang Xuxian. Dissecting android malware:
Characterization and evolution. In Proceedings of the 2012 IEEE
Symposium on Security and Privacy, pages 95–109, 2012.

[111] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue. Droid-sec:
Deep learning in android malware detection. In ACM SIGCOMM Computer
Communication Review. ACM, 2014.

[112] Junjie Zhang, Christian Seifert, Jack W. Stokes, and Wenke Lee. Arrow:
Generating signatures to detect drive-by downloads. In Proceedings of the
20th International Conference on World Wide Web, WWW ’11, pages
187–196, New York, NY, USA, 2011. ACM.

[113] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. Semantics-Aware
Android Malware Classification Using Weighted Contextual Api
Dependency Graphs. In CCS. ACM, 2014.

101


	I Introduction
	Introduction
	Research Contributions

	Machine Learning and Security
	Training, Validation and Testing Set
	Cross-Validation

	Algorithms
	Taxonomy
	Support Vector Machine
	Gradient Boosting
	Conformal Predictor

	Evaluation Metrics
	Security Considerations


	II Research Work
	Conformal Evaluator
	Methodology
	Relationship with Conformal Predictor

	Statistical Measures
	Algorithm Credibility
	Algorithm Confidence

	Assessments
	Decision Assessment
	Alpha Assessment

	Case studies
	Evaluation of Algorithm 1
	Evaluation of Algorithm 2
	Evaluation of Algorithm 3
	Discussion

	Framework Limitations
	Related Works

	Transcend
	Methodology
	Case Studies
	Binary Classification Case Study
	Multiclass Classification Case Study
	Discussion

	Malware Download Prediction
	Introduction
	Methodology
	Results
	Future Works

	Conclusion
	Bibliography


