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Abstract

This thesis reports studies of 3He-4He mixture films adsorbed on graphite at ultra-low

temperatures, down to 200 µK, using low-frequency SQUID NMR. 3He-4He mixture films

provide an ideal model system for studying two dimensional Fermi fluid behaviour, and

two dimensional magnetic phenomena.

Two sets of mixture films were investigated. In the first 3He was added to three layers

of 4He on graphite to create an ideal homogeneous two dimensional Fermi fluid built on

the lowest energy surface bound state. However it was found that this state was unstable

below a critical 3He coverage of 1.00 nm−2. On a four layer 4He film the critical coverage

was reduced to 0.30 nm−2. The nature of these instabilities is discussed in both cases.

At higher coverages, two dimensional 3He is investigated via precise measurements of

the nuclear magnetic susceptibility, to determine the Fermi liquid parameter F a0 . Distinct

behaviour is observed for the two systems studied. For 3He on three 4He layers, where

superfluidity of the uppermost 4He layer is suppressed, F a0 suggests almost-localised Fermi

liquid behaviour. By contrast, the results for 3He on four 4He layers indicate the dominance

of back scattering. In addition, for both systems, the formation of a second two dimensional

system built on the first excited surface state is observed and the corresponding 3He

coverage dependence of F a0 is presented.

A further series of measurements was undertaken on 3He on graphite, pre-plated with

a single layer of 4He, as a function of 3He coverage. Just after promotion of the 3He to a

second 3He layer, the data suggest a coexistence of ferromagnetic and non-ferromagnetic

components. It is argued that the results provide the first direct evidence for RKKY

indirect exchange of atoms in the first 3He layer mediated by self-condensed fluid islands

in the second layer.
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Chapter 1

Introduction

3He-4He “mixture films” adsorbed on graphite provide an ideal system for studying two

dimensional Fermi fluid behaviour. This thesis presents a high precision study of atomi-

cally layered 3He-4He films on the surface of graphite into the microkelvin regime, for the

first time. At low temperatures helium will form a film consisting of a number of atomic

layers on top of atomically flat graphite crystal platelets. Due to its smaller zero point

motion, 4He will preferentially adsorb. This provides a highly tunable system; by changing

the density of 3He the interactions can be tuned from a Fermi gas regime to a Fermi liquid

regime. Furthermore, this system is incredibly pure, so that it can be studied without

masking effects from impurities. In this thesis low-frequency SQUID NMR is used to mea-

sure the nuclear magnetic susceptibility of 3He in these mixture films, at temperatures

down to 200 µK, achieved using an adiabatic nuclear demagnetisation refrigerator.

This introduction briefly reviews prior work relevant to the experiments presented in

this thesis and the motivation of the work. The plan of the rest of the thesis is as follows:

The second chapter describes background theory. It starts with a description of two

dimensional Fermi fluids, initially for the non-interacting case and then for an interacting

Landau-Fermi liquid. The key thermodynamic parameters are given and the temperature

dependence of the susceptibility is described, in terms of the phenomenological Dyugaev

Fermi fluid model. This chapter concludes with an outline of two dimensional superfluidity.
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CHAPTER 1. INTRODUCTION

Chapter three gives a description of the experimental techniques used. This begins

with a description of the refrigeration technique and thermometry used to achieve and

measure temperatures as low as 200 µK. The method of SQUID NMR is then outlined

before a description of the experimental cell and adsorption substrate is given.

In chapter four the experimental evidence for instabilities in 3He in 4He “mixture films”

is presented. Measurements were made on 3He added to either three or four atomic layers

of 4He on graphite. Initially the susceptibility isotherms are shown to highlight the regions

of interest in the data. Different physical models to fit the temperature dependence of the

susceptibility are described, with a conclusion on possible scenarios.

Chapter five presents the results for measurements of two dimensional 3He in the surface

states on 4He films. This chapter focuses on the same pre-plating of 4He as in chapter four,

but the 3He coverage is larger and in the region of a stable two dimensional homogeneous

Fermi fluid. Initially the measured temperature dependence of the susceptibility for the

ground surface state is shown. Then analysis of the low temperature susceptibility plateau

is used, in combination with previous heat capacity data [1, 2], to determine the Landau

Fermi liquid parameters, including the coverage dependence of F a0 . The second half of

chapter five shows the almost-localised behaviour of the 3He on three atomic layers of 4He

and presents the coverage dependence of F a0 up to the first excited surface bound state.

On four atomic layers of 4He, the Fermi liquid parameters are measured into the regime

where two 3He bound states are occupied.

Chapter six, summarises the work with respect to the motivations and objectives out-

lined at the end of the introduction. This chapter is concluded with an outlook to the

future on how the work presented in this thesis could be built on.

Data is also presented in the appendix for 3He on one solid layer of 4He. The 3He is

varied from a single layer close to promotion, to a homogeneous fluid second layer on top of

a solid layer. This sample displayed a large ferromagnetic signal. An analysis of the NMR

frequency line shapes in terms of a ferromagnetic and non-ferromagnetic components is

made. It is argued that this system shows direct evidence of an RKKY interaction in the
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CHAPTER 1. INTRODUCTION

first 3He layer mediated by the fluid 3He second layer, for the first time.

1.1 3He-4He Mixture Films

3He is a neutral fermion and, as such, can be used to create model systems of strongly

correlated electrons. One of the main reasons why 3He-4He “mixture films” are of such

experimental interest is because of a potential bridge between superfluidity and supercon-

ductivity. Finding superfluidity in a two dimensional 3He monolayer would be experimen-

tally significant, since most modern theories of high-Tc superconductivity emphasize two

dimensional behaviour.

3He has nuclear spin s = 1/2 and can also be used to create model magnetic systems.

Previous work has shown that two dimensional solid 3He displays frustrated magnetic

behaviour [3] as it forms on a triangular lattice. It has been proposed it could form a

quantum spin liquid [4–8].

In the review of work presented here attention is focused on mainly 3He in the surface

states of 4He films, a more complete overview of helium films can be found in chapters

four and five of “Progress in Low Temperature Physics Vol. XIV” written by Godfrin and

Lauter, and Hallock respectively [9, 10]. These chapters provided the basis of the review

given here along with “Modern Trends in Superconductivity and Superfluidity” by Kagan

[11].

1.1.1 Andreev’s Surface States

The best system for finding an experimentally accessible homogeneous two dimensional

Fermi fluid is 3He built on surface bound states of 4He. These surfaces states were first

proposed to exist by Andreev [12] to account for earlier measurements by Esel’son and

Beresnyak [13, 14] and Atkins and Narahara [15] which had shown a reduction in surface

tension of bulk 4He on the addition of small quantities of 3He.

The existence of these 3He surface bound states on the surface of bulk 4He were later

confirmed experimentally with further measurements of the surface tension by Zinov’eva
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and Boldarev [16] and measurements of surface sound by Edwards et al. [17] and also

theoretically by variational calculations which are reviewed comprehensively by Edwards

and Saam [18].

Of particular relevance to this thesis, is that 3He surface states were also found to exist

on thin 4He films on heterogenous substrates in experimental studies of heat capacity.

Theory by Gasparini [19] accounted for the potential due to the substrate and gave rea-

sonable agreement with the prior heat capacity measurements [20]. They found that the

binding of the 3He to the surface of a 4He film was less than that of bulk 4He and it had a

larger effective mass. This binding energy for 3He on 4He films was found to be between

−1.4 and −2 K for 3He coverages between 0.1 and 1 layers on 18.8 and 44 − 45 Å thick

films of 4He. By comparison the binding energy of 3He in the bulk surface state of 4He is

−5 K with respect to the lowest vacuum state (for a review of 3He on the surface of bulk

4He see Ref [18]). These initial calculations of Gasparini were subsequently refined and

improved upon by numerous groups [21–31], in particular including the effect of atomic

layering of the films, which would occur if the substrate were atomically flat. A detailed

overview of this theoretical work is beyond the scope of this thesis, but in the following

discussion of experimental studies the relevant theoretical results will be described. The

key point to take from this theoretical work though is that 3He has a bound surface state

on the 4He film as previously mentioned. As well as this, excited surfaces states are ac-

cessible on increasing the 3He coverage. Additionally, the probability density of the 3He

perpendicular to the surface of the 4He is strongly dependent on the amount of 4He. This

can be seen in Figure 1.1, which shows the theoretical prediction by Krotscheck et al. [31],

for the probability density of the 3He in the ground (red) and first excited (blue) states

against distance normal to a nuclepore substrate for two different amounts of 4He in an

atomically layered film. The difference in the structure of the 3He is clear between the

two plots.
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Figure 1.1: Shown is the theoretical work of Krotscheck et al. [31]. Both plots show the

probability density against distance normal to a nuclepore substrate of the 3He in the

ground (red) and first excited (blue) surface states as well as the 4He (shaded). The left

plot is for 5.5 nm−2 of 4He and the right is for 7.0 nm−2.

Figure 1.2 shows theoretical calculations similar to that of Figure 1.1 but for 29.0 nm−2

of 4He on a glass substrate. This is shown due to the 4He coverage being close to that of

those used in the experimentation for this thesis. Even at these higher 4He coverages the

3He surface states are still apparent.
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Figure 1.2: Shown is the theoretical work of Krotscheck et al. [31]. The plot show the

probability density against distance normal to a glass substrate of the 3He in the ground

(solid line) and first excited (dashed line) surface states as well as the 4He (shaded). This

is for 29.0 nm−2 of 4He.

Further to this the strong dependence of the binding energy of 3He in these states to

the amount of 4He and the choice of substrate should be noted. Initially in the work of

Gasparini [19] it was shown that the binding energy would increase with increasing 4He

coverage. However, the improvements to this work done by Sherrill and Edwards [21]

contrasted this by showing increasing binding energy with decreasing 4He. More recently

Clements et al. [30] theoretically calculated the ground state energy of 3He impurities

in liquid 4He films on graphite with two solid layers of 4He over the range of liquid 4He

coverages 0 to 30 nm−2 (the first two solid layers of 4He was given by Clements to have a

coverage of 25 nm−2). In this thesis we study 4He coverages of 26.7 to 33.5 nm−2, from the

work of Clements between 26.7 and 33.5 nm−2 the 4He dependence of the binding energy

appears to be very strong and the binding becomes weaker with increasing 4He coverage.
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In this range they find that the ground state has a binding energy between roughly −9

and −5 K and the first excited state has a binding energy between roughly −1 and −4 K.

In more detail, the main body of experimental work on 3He in these surface states are

heat capacity, torsional oscillator and NMR studies of the 3He energetics. The initial work

into this system, using a nuclepore substrate, was conducted by the group of Gasparini.

This comprised of a series of heat capacity and torsional oscillator experiments as well as

theory [19, 20, 32–35].

Nuclepore is a polycarbonate filter paper, of typical thickness 10 µm and is threaded

with ∼ 200 nm diameter holes. These holes were the reason for selecting nuclepore as the

adsorption material, due to the consequent large surface area to volume ratio. Further

details on this material can be found in Refs [36–39]. In our work the substrate is graphite,

which is atomically flat. The results from work on nuclepore can only be taken qualitatively

as film thickness and coverage values are difficult to compare. The reason for choosing

graphite as our adsorption medium is discussed in Section 3.4.2.

In a series of experiments measuring the heat capacity Bhattacharyya et al. [33] studied

3He in the surface bound states for 3He from 0.03 to 1 atomic layer (1 layer = 6.4 nm−2)

and 4He film thickness between 1 and 4.5 nm. This was analysed using a model where

the 3He retains its two dimensional degrees of freedom in the plane of the surface but is

quantized in its perpendicular motion to the surface [19]. Probing the energy difference

between the ground and first excited surface states as a function of 4He thickness showed

that it increased with 4He thickness, but appeared to tend towards a value well below

that of the bulk. On the other hand the effective mass only had a weak dependence on

film thickness and remained roughly at the bulk value. The later work of Alikacem et al.

[40], in the group of Hallock, confirmed this strong dependence of the energy difference

between the ground and first excited state on 4He, through the use of NMR. They found

that this energy difference had a minimum of ∼ 1.5 K at roughly 34 nm−2 of 4He and the

value was ∼ 1.7 K at 50 nm−2.

Further heat capacity measurements by the group of Gasparini showed unexpected
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behaviour [32, 34], shown in Figure 1.3. Thin 4He films displayed a sudden change to a

linear temperature dependence in the heat capacity as the temperature was lowered. Fur-

thermore at low temperatures the slope of this linear region was itself linearly dependent

on 3He coverage. The sudden transition in the heat capacity temperature dependence was

interpreted by Bhattacharyya and Gasparini [32, 34] as evidence for a transition between

a homogeneous fluid and a high density condensed system. The area of the compressed

system would increase with increasing 3He coverage thus explaining the increase in slope

of the heat capacity since in two dimensions heat capacity is proportional to area (as

described in Section 2.1.1).

Figure 1.3: Shown is the heat capacity plotted against temperature as measured by Bhat-

tacharyya et al. [34]. For reference the conversion from layering units to coverage units of

3He used in this thesis is shown.

Problematically for this interpretation however, is that the heat capacity suggests there

is a missing entropy due to a smaller heat capacity than expected. However resemblances
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to this data have been seen in the heat capacity data of pure 3He films on graphite [41, 42],

which could have similar physical origins. Greywall observed a sharp feature in the heat

capacity of the first and second layer 3He films on graphite at around 3.2 mK. This feature

occurs at much lower temperatures than that in the work by Gasparini’s group, but it is

similar in that the temperature of this anomaly is roughly independent of coverage.

Guyer [43] developed a model to try and explain the data of Bhattacharyya and Gas-

parini, where at absolute zero the 3He would locate itself above ‘mesas’, thickened parts

of the 4He film. The rest of the surface would be absent of any 3He. When increasing

the temperature, the 3He located on the ‘mesas’ would reduce and instead occupy the

rest of the surface. Eventually a temperature would be reached where these ‘mesas’ would

no longer exist and this would correspond with the observed transition in heat capac-

ity. However, as pointed out by Sherrill and Edwards [21] this model neglected exchange

effects [44]. In addition, criticism was raised over how film thickness was defined using

N4/A rather than N/A, where N4 is the total number of 4He atoms, N is the total number

of helium atoms and A is the total occupied area. This theoretical work of Sherrill and

Edwards [21] was later supported through the agreement of third sound measurements by

Valles et al. [45, 46] and further semi-phenomenological theoretical work by Anderson and

Miller [47] showed no evidence of coexisting phases, thus weakening this interpretation of

the data.

Another possible explanation for the data would be two dimensional condensation.

This would be different from Guyer as the 4He would be a passive absorbate. This type

of self bound ground state for 3He has been observed by the group of Fukuyama when

adsorbed on graphite pre-plated with a monolayer of 4He [48, 49]. By measuring the

heat capacity of 3He in the first, second and third layers they observed the formation of

self-bound liquid puddles with densities of 0.6 − 0.9 nm−2. This stability with change of

environment is what lead them to the conclusion that this is an effect separate from the

environment. As pointed out by Gasparini [50] these heat capacity measurements do not

observe the transition from the gas to the liquid and it would be interesting to see whether
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it has a similar transition to that of Ref [34].

In addition to heat capacity measurements, NMR and third sound measurements could

also be used to probe these systems. Following these heat capacity measurements by

Gasparini, the group of Hallock completed a series of NMR and third sound experiments

with one goal being to investigate similar regions to that of Gasparini.

The group of Hallock designed an experimental cell able to measure both third sound

and heat capacity, as described in Refs [51, 52]. The experiments by Valles et al. using

this cell [53], showed that there was no evidence for a transition in the susceptibility, as it

smoothly varied with temperature, as can be seen in Figure 1.4.
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Figure 1.4: Shown is the susceptibility plotted against inverse temperature as measured

by Valles et al. [53] for an equivalent region of 3He and 4He to that of Bhattacharyya et al.

[34]. Shown are data for 3He coverages of 0.011 layers (open squares), 0.022 layers (filled

squares), 0.044 layers (open triangles) and 0.088 layers (filled triangles). The dotted lines

are the fit to the two dimensional ideal Fermi gas model.

Furthermore, the lowest temperature data of Valles did not show proportionality with

the amount of 3He, as would be expected from the low temperature slopes of the heat

capacity in the case of two dimensional condensation. To solve the discrepancy between

the heat capacity and susceptibility data Anderson and Miller [54] speculated that instead

of condensation the heat capacity data could be due to a phase separation.

Valles et al. [53] used the dependence of their susceptibility measurements on 3He

density to find a value for the hydrodynamic mass, the mass of the 3He due to the in-
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teractions with the 4He surface, of mH/m = 1.8. This was obtained by fitting all the

susceptibility data for the same 4He thickness simultaneously with a model of an ideal

two dimensional Fermi gas. The Fermi temperatures were constrained using their propor-

tionality to N3/A (see Equation 2.11), thus the only fitting parameter was mH/m. The

result of this fitting relies on the assumption that the Fermi liquid interactions are weak

and the hydrodynamic mass is independent of the amount of 3He. It was also shown that

the susceptibility decreased with increasing 4He thickness and this was interpreted as due

to the hydrodynamic mass being enhanced by the substrate.

By taking the the hydrodynamic mass found by Valles et al., Krotscheck et al. [55],

formulated a microscopic theory for the quasiparticle interactions between 3He atoms. Us-

ing this they were able to calculate the magnetic susceptibility of 3He in close agreement

with the data of Valles et al.. Alternatively, disregarding the assumption of weak inter-

actions χ/χ0 < 1 could occur if F a0 > 0 which would correspond with attractive s-wave

interactions, but this is less likely.
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Figure 1.5: Shown is the susceptibility isotherm plotted against 3He coverage as measured

by Higley et al. [56]. This was done with 3He on nuclepore preplated with 44 µmol/m2 of

4He which forms a thin superfluid film.

The work of Higley et al. [56] studied the susceptibility of 3He on nuclepore preplated

with 44 µmol/m2 of 4He which forms a thin superfluid film. This study showed steps in

the low temperature isotherm, as shown in Figure 1.5. The step is accounted for as being

due to the occupation of the excited bound states. The susceptibility and linear coefficient

of heat capacity at low temperatures are independent of the number of 3He atoms and

depend on the area occupied, as discussed in Section 2.1. On occupation of the excited

bound state, along with the ground state, the effective area the 3He occupies doubles.

This would in turn double the low temperature susceptibility and the linear coefficient of

the heat capacity and thus accounts for the steps seen in the NMR data of Higley et al.

[56]. Using an approximation due to Havens-Sacco and Widom [57] for the magnetisation
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in the dilute limit and assuming there were only two possible bound states, the energy

separation of the ground and excited state was found to be 1.8 K. These experiments

proved the existence of multiple surface bound states.

In contrast to this picture of the surface state and its excitation being the only accessible

states, Pavloff and Treiner [26] proposed the possibility of multiple 3He surface states to

explain the results of Higley et al. [56]. Using density functional theory, they argue the

existence of two 3He surface states with asymptotic binding energies of−5.2 K and−3.16 K

on 4He on nuclepore. Furthermore, they propose the existence of a further state, which

locates close to the substrate referred to as the substrate state. This theory reconciles the

difference between the measured energy difference between the ground and first excited

state and the theoretical value.

Similar steps were also seen in the heat capacity experiments by Dann et al. for helium

on graphite for 3He coverages up to 14.0 nm2 on top of a four layer 4He film, consisting

of two solid and two superlfluid layers [1, 2]. This confirms the statement made earlier

in this review; helium films on nuclepore will have qualitatively equivalent behaviour to

films on graphite. These measurements also gave no evidence for instabilities which were

seen in the heat capacity measurements by the group of Gasparini [32, 34].

With regard to the Fermi liquid parameters of two dimensional 3He in the surface

bound ground state the 3He dependence of F a0 and F s1 was presented in a review by

Hallock [58]. In this review the heat capacity measurements of Dann et al. [1, 2] were

combined with the susceptibility measurements of Higley et al. [56]. Direct comparison

of the parameters between the two experiments is problematic due to the difference in

substrates and differences in 4He film thicknesses, which has been shown to this point to

strongly effect the 3He behaviour. However both −F a0 and F s1 increase with 3He density

as expected from increasing interactions in a denser fluid.

In this thesis a more reliable measure of the Landau-Fermi liquid parameters F a0 and

F s1 on graphite is presented. As well as this, the stability of a homogeneous low density two

dimensional 3He Fermi fluid is investigated. One objective is to reconcile the differences
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between the heat capacity and NMR measurements on nuclepore. A further objective is

to use normal state measurements to help identify regions in the parameter space that

would be conducive to two-dimensional 3He superfluidity.

1.2 Motivation

The majority of previous work on this system from other groups used a heterogeneous

(disordered) substrate and the measurements do not extend below ∼ 20 mK.

A crucial aspect of helium films on an atomically flat substrate is that they are atomi-

cally layered. Theory has shown that this atomic layering is an essential component to the

rich physics of these films [31]. Therefore we use the surface of graphite as our substrate,

which is atomically flat. A bonus is that we can cool into the microkelvin regime.

At the outset there were a number of important questions which the thesis was intended

to address through the precision NMR measurements of the nuclear magnetic susceptibil-

ity:

• To understand the interactions in a two dimensional Fermi system. Are they con-

sistent with Fermi liquid theory?

• At low densities can we enter a weakly interacting Fermi gas regime, in which 3He-

3He interactions are attractive?

• Does the two dimensional system show instabilities? Thus we address previously

unresolved questions around the instability of films on heterogeneous substrates.

• As the 3He coverage is increased we know it becomes favourable to populate the first

excited 3He surface bound state. How do the 3He-3He interactions change through

this step?

• Can we better understand the evolution of superfluidity of the 4He films measured

in our previous work using the new NMR data?
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• Can we gain insight into the most favourable region of parameter space to observe

two dimensional superfluid 3He (This would most likely require a substrate with

larger graphite platelet size and hence weaker disorder).

As the project progressed there were a number of surprises, which are addressed in the

discussion in the relevant chapters.

As part of the immediate continuation of the previous work of Arnold, the first work

of this thesis was a study of the crossover from antiferromagnetism to ferromagnetism in

a 3He solid layer as a fluid overlayer forms. This provides evidence for RKKY exchange

processes as discussed in Appendix A.
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Chapter 2

Theory of Helium in

Two-Dimensions

This thesis describes SQUID NMR measurements of 3He adsorbed onto a graphite sub-

strate pre-plated with 4He. This chapter covers the theoretical background of two-dimensional

fermion systems, for understanding the bulk thermodynamic properties; Fermi gas and

Landau Fermi liquid theories. Dyugaev’s successful phenomenological model of the tem-

perature dependence of the magnetic susceptibility, extensively used in this work, is intro-

duced. Finally a brief review of theoretical discussions of 3He superfluidity is given.

2.1 Fermi Fluids in Two-Dimensions

3He is a fermion due to being comprised of an odd number of fermionic particles. Therefore

the calculation of the thermodynamic quantities for a two-dimensional ensemble of 3He

requires the use of Fermi-Dirac statistics. Firstly this is done for a non-interacting system

then for an interacting system.
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2.1.1 Non-Interacting Fermi Gas

The simplest model of fermions in two dimensions assumes a gas of non-interacting free

particles. Consider fermions in an area A = L2 with periodic boundary conditions and

solve the time-independent Schrödinger equation. This gives solutions which are plane

waves,

ψ (x, y) =
ei
~k·~r
√
A
, (2.1)

where the wave vectors are thus quantised as,

kx =
2πnx
L

, ky =
2πny
L

, (2.2)

where nx and ny are integers. So in k-space each state has an area of (2π/L)2 which means

the density of states per unit area of k-space is,

ρ(~k) =
L2

4π2
=

A

4π2
. (2.3)

Now taking a circle of radius k, the number of states enclosed by it is given by,

N(k) = πk2gρ(~k) =
k2A

2π
, (2.4)

where g = 2, corresponding with the spin degeneracy. Now differentiating with respect to

k produces the density of states in k-space,

D(k) =
dN(k)

dk
=
Ak

π
. (2.5)

Hence using the energy of a free particle ε = h̄2k2/2m, the energy density of states is,

D(ε) =
dN(k)

dk

dk

dε
=
Am

h̄2π
. (2.6)
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We note that in two dimensions the energy density of states is independent of energy.

From the density of states the Fermi temperature TF can be calculated, which defines the

temperature where the system crosses over from classical to quantum. This can be found

by calculating the number of atoms in the system using,

N =

� ∞
0

D (ε) f (ε) dε, (2.7)

where f (ε) is the Fermi-Dirac distribution given by,

f (ε) =
1

exp
(
ε−εF
kBT

)
+ 1

. (2.8)

At T = 0 Equation 2.7 becomes,

N =

� εF

0
D (ε) dε. (2.9)

Substituting in Equation 2.6 and calculating the integral the equation becomes,

N =
Am

πh̄2 εF. (2.10)

The Fermi energy is defined as εF = kBTF, meaning the Fermi temperature for this system

is given by,

TF =
πh̄2

kBm

N

A
. (2.11)

The Fermi temperature is thus proportional to the number density N/A in two dimensions.

Further to this the energy density of states governs the thermodynamic quantities. The

main property explored in this thesis is the magnetic susceptibility χ and references are

made to experiments studying heat capacity Cv.

Firstly to understand the susceptibility of this system we look at the behaviour in the

zero temperature limit in weak field, i.e. µB << εF , where µ is the magnetic moment,

with the assumption of two possible spin states, up consisting of N↑ atoms and down
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consisting of N↓. It must be noted that the zero temperature limit would occur when

kBT << µB and in the system experimentally studied here this would not be the case.

However the understanding gained from this approximation is still useful. Initially in zero

field on average N↑ ' N↓ ' 1
2NT , for a paramagnetic system with two possible spin states

per fermion (up and down), where NT is the total number of atoms. Applying a weak

field of energy µB to this system distorts the number of up and down spins. This is due

to density of states for spin up being shifted down in energy by µB and the spin downs

being shifted up in energy by µB. Then since the system is at low temperature the spin

downs which are now above the Fermi energy fill the empty spin up states below the Fermi

energy. Therefore the numbers of spin ups and downs is given by,

N↑(↓) =
1

2

� εF

∓µB
D (ε± µB) dε =

Am

2πh̄2

� εF

∓µB
dε =

Am

2πh̄2 [εF ± µB] . (2.12)

Therefore, when T << TF , the magnetisation of this system is given by,

M = µ (N↑ −N↓) = µ2B
Am

πh̄2 = µ2BD (ε) . (2.13)

Thus the susceptibility is,

χ =
M

H
= µ0µ

2D (ε) , (2.14)

as B = µ0H where µ0 is the magnetic permeability of free space. The magnetic suscep-

tibility is proportional to the density of states and thus proportional to the area of the

two dimensional system. As well as this, it is independent of temperature. However, at

temperatures above the Fermi temperature we would expect a inverse temperature depen-

dence of the susceptibility in keeping with Curie law. Therefore, there must be a transition

between this 1/T and T independent behaviour, this is discussed in Section 2.1.3

Heat capacity Cv can also be found from the density of states. Generally heat capacity

is given by,

Cv =

(
∂U

∂T

)
v

, (2.15)
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where U is the internal energy of the system. This internal energy can be calculated from

the density of states and Fermi-Dirac distribution as follows:

U =

� ∞
0

D (ε) f (ε) εdε, (2.16)

where f (ε) is the Fermi-Dirac distribution, Equation 2.8. Combining Equations 2.6, 2.15,

2.16 and 2.8 gives the heat capacity for T << TF to be:

Cv =
πkBAm

3h̄2 T =
π2

3
D (ε) k2

BT. (2.17)

As with the susceptibility, this is proportional to the energy density of states and thus

the low temperature gradient of heat capacity against temperature is proportional to the

area of the two dimensional system.

2.1.2 The Interacting Landau-Fermi Liquid

The picture of non-interacting fermions should not go far enough to explain the behaviour

of an equivalent interacting system. Yet the model qualitatively holds for strongly in-

teracting systems such as bulk liquid 3He, e.g. the low temperature heat capacity is

linear in temperature [59]. To explain such phenomena in 1956 Landau proposed a theory

based around excitations [60–63] later named Landau-Fermi liquid theory. The following

description of this theory is taken from Refs [64, 65].

The underlying concept of this theory is that the thermodynamic quantities of a macro-

scopic body can be calculated in terms of weakly interacting elementary excitations. These

elementary excitations are analogous to particles, with definite energy ε and momentum

p. They are referred to as quasi-particles with dispersion relation:

ε (p) =
p2

2m∗
, (2.18)

where m∗ is the effective mass of the quasi-particles.
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Consider the non-interacting Fermi gas and adiabatically ‘turn on’ the inter-atomic

interactions to make it a Fermi liquid. In doing this, the quasi-particles are equal in

number to the atoms and they obey Fermi-Dirac statistics. Therefore, in the ground state

the quasi-particles fill the Fermi sea up to the Fermi energy. Excited states of the system

are therefore produced by taking quasi-particles from a filled to an empty state. Each

state of momentum p and spin σ can be described by the deviation of the number of

atoms δn(pσ) from its ground state value.

In addition to quasi-particles the theory includes an effective interaction between the

quasi-particles. Assuming that this interaction is independent of spin, then it is determined

by the momenta of the quasi-particles involved p, p′. Therefore, the total energy of the

system can be written as,

E = E0 +
∑
pσ

ε (p) δn(pσ) +
1

2

∑
pp′;σσ′

f(p,p′)δn(pσ)δn(p′σ′), (2.19)

where f(p,p′) is the effective interaction function and E0 is the ground state energy.

For the spin-dependent case the quasi-particle in state p may not be in an eigenstate

of σz. To deal with this it is possible to describe the state of occupation of the plane wave

state p by the total number of particles occupying it ñ(p) and the expectation value of

spin associated with the state σi(p). Taking this and the assumption that the forces in

the system are invariant under spin rotation, the energy is given by, apart from E0

E =
∑
p

ε(p)δñ(p) +
1

2

∑
p,p′

[
fs(pp′)δñ(p)δñ(p′) + fa(pp′)σ(p) · σ(p′)

]
, (2.20)

where fs and fa as the spin symmetric and antisymmetric interaction functions respec-

tively, which have dimensions of energy. Multiplying these by the density of states D∗(ε)

(which is the same as in Equation 2.6 but with m∗ instead of m, arising from dispersion

relation 2.18) gives the dimensionless quantities F s and F a. In the region of interest, close

to the Fermi surface, the rotational symmetry means that F s and F a are only functions

of the angle θ between the two momenta. This means that they can be expanded in terms
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of Legendre polynomials,

D∗(ε)fs(p,p′) = F s(p,p′) =
∑
l

F sl Pl(cos θ),

D∗(ε)fa(p,p′) = F a(p,p′) = 4
∑
l

F al Pl(cos θ).

(2.21)

These interaction parameters F sl and F al dictate the behaviour of the thermodynamic

quantities, therefore how they are calculated from an interaction potential V (r) is of vital

importance. The rest of this section is thus dedicated to describing two methods for cal-

culating these interaction parameters for the two-dimensional case. First is the Abrikosov

and Khalatnikov [63, 66] method (AK) following the arguments from Engelbrecht et al.

[67] and then second is the Hartree-Fock (HF) model [68].

Abrikosov and Khalatnikov Model

The Abrikosov and Khalatnikov (AK) model treats a weakly interacting Fermi gas and

has been extended by Engelbrecht et al. [67] to the two dimensional case.

In three-dimensions the AK method applies when the range of interaction is small

compared with the mean particle distance. In this limit, the s-wave scattering length for

the interaction of two particles with mass m within the Born approximation, where the

scattering amplitude is approximated by something proportional to the Fourier transform

of the interaction potential, is,

a =
m

h̄2

� ∞
0

V (r) r2dr. (2.22)

Transforming to the k-space potential we have,

v (k) = 4π

� ∞
0

r2 sin kr

kr
V (r) dr. (2.23)
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Therefore the scattering length can be written as,

a =
m

4πh̄2 v (0) , (2.24)

where v(0) is the k-space potential, as given in Equation 2.23, when k tends to zero.

As when k tends to zero then sin kr ≈ kr. Perturbation theory can be applied to a

renormalised potential, where the expansion parameter is kFa. From this the symmetric

and the anti-symmetric Landau parameters can be calculated, as shown by Abrikosov and

Khalatnikov [66].

In the two dimensional case [67] the expansion parameter is,

g =
1

ln
(
Ea
2εF

) , (2.25)

where the energy Ea characterises the inter-particle interaction. For hard spheres this

parameter can be approximated in terms of kFa to be,

g ∼ −1

2ln
(√

2kFa
) . (2.26)

The parameter can also be related to density by using Equation 2.10 where m now becomes

m∗ and thus it can be given as,

g =
1

ln
(
Eam∗

2πh̄2n

) =
1

ln
(
nAK
n

) . (2.27)

The inclusion of the logarithm in the two dimensional parameter means that it is harder to

enter the weakly interacting regime. Using the AK method Engelbrecht et al. [67] showed

the Landau parameters to be:

F s =
m∗

m

(
2g + 4g2 [2 + ln (cos θ/2)]

)
,

F a = −m
∗

m

(
2g + 4g2ln (cos θ/2)

)
,

(2.28)
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where θ is the scattering angle of the quasi-particles. Due to these Landau functions’

symmetry they can be expanded in terms of circular harmonics. As this expansion can

either be done in the real or complex basis it is important to point out the work by

Engelbrecht et al. [67] and Chubukov et al. [69] uses the complex basis whereas Kagan

[70], Havens-Sacco et al. [57] and Miyake [71] use the real basis.

In this work we shall use the real basis and thus the expansion of the Landau functions

is,

F s/a =

∞∑
l=0

F
s/a
l cos(lθ). (2.29)

This gives the two-dimensional Landau parameters F
s/a
l as,

F s0
m

m∗
= 2g + 4(2− ln2)g2,

F a0
m

m∗
= −2g + 4ln2g2,

F s1
m

m∗
= 4g2,

F a1
m

m∗
= −4g2.

(2.30)

Here we only show l ≤ 1 as higher order parameters are not relevant for the thermodynamic

quantities studied here. For a system then which is Galilean invariant we also have the

consistency condition that,

m∗

m
= 1 +

F s1
2
. (2.31)

However the 3He in 4He as studied in this thesis is not Galilean invariant and in this

case the equation gives the effective mass enhancement m∗ over the hydrodynamic mass

mH .

Hartree-Fock Model

Within the Hartree-Fock approximation the spin-independent interaction function is given

to be [44, 68],

fσ,σ
′

k,k′ = v (0)− v
(
k− k′

)
δσ,σ′ . (2.32)
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The first term arises from the first order perturbation theory of the interaction potential in

k-space and is the Hartree interaction energy. The second term is due to anti-symmetrizing

the wave functions through the use of Slater determinants. The spin-symmetric and anti-

symmetric parts can thus be written as,

fsk,k′ = v (0)− v
(
k− k′

)
/2,

fak,k′ = −v
(
k− k′

)
/2.

(2.33)

Since both k and k′ are on the Fermi surface it can be shown that,

fs = v (0)− v [2kF sin (θ/2)] /2,

fa = −v [2kF sin (θ/2)] /2.

(2.34)

where θ is the angle between k and k′. Again defining the dimensionless interaction

parameters, the interaction function can be expressed in terms of circular harmonics of

the potential.

v
(
k− k′

)
=

∞∑
n=0

vn cos (nθ) =

∞∑
n=0

vnTn (cos θ) , (2.35)

where Tn (z) is the nth order Chebyshev polynomial. And since k and k′ have magnitude

kF, then |k− k′| = 2kF sin(θ/2). The Landau liquid parameters are therefore,

F s0 = N (0) v (0)− 1

2
N (0) v0,

F a0 = −1

2
N (0) v0,

F sn = F an = −1

2
N (0) vn where n ≥ 1.

(2.36)

It can be seen that they are thus given directly in terms of the interaction potential’s

circular harmonics.

v0 =
1

2π

� π

−π
v (θ) dθ n = 0

vn =
1

π

� π

−π
v (θ) cos (nθ) dθ n > 0,

(2.37)

where v (θ) is the k-space potential where |k − k′| = 2kF sin (θ/2).
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Generally it is accepted that only low-order scattering processes can account for the

thermodynamic behaviour. To examine the repercussions on the interaction potential v (k)

it is first written as a power series,

v
(
k− k′

)
= v (0) + λ|k− k′|2 + ... (2.38)

This is equivalent to Equation 2.35 and indeed the interaction can be described by the

power series coefficients v(0), λ, or in terms of the scattering amplitudes v0, v1. Since

these two summations are equivalent it is possible to relate the scattering amplitudes in

terms of the power series coefficients. When just considering s and p-wave scattering and

knowing that,

cos θ = 1− 1

2

|k − k′|2

k2
F

, (2.39)

the relation between the coefficients and scattering amplitudes becomes,

v0 = v (0) + 2λk2
F

v1 = −2λk2
F.

(2.40)

Combining this with Equation 2.36 the four lowest order Landau parameters are,

F s0 =
m∗

πh̄2

(
v (0)

2
− λk2

F

)
,

F a0 = −m
∗

πh̄2

(
v (0)

2
+ λk2

F

)
,

F s1 =
m∗

πh̄2λk
2
F,

F a1 =
m∗

πh̄2λk
2
F.

(2.41)

Furthermore, the effective mass is still given by Equation 2.31.
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Comparison of the AK and HF models

Summarising the two models their key steps and results are as follows. In the AK model

the s-wave approximation is used for scattering and the f function is calculated to second

order in the small parameter, given by Equation 2.27. Therefore the Landau parameters

calculated from the AK model all have a contribution from the s-wave scattering. These

contributions are first order for F
s(a)
0 and second order for all the others.

By contrast the HF model uses the first Born approximation to find the f function and

it is not restricted to just s-wave scattering. In other words the AK model only considers

s-wave scattering but does this to second order but the HF model takes first order of all the

scattering harmonics, s,p,d... etc. (the case described above has been limited to just s and

p). The resulting Landau parameters from the HF model have first order contributions

in s-wave to F
s(a)
0 and p-wave to F

s(a)
1 . If the description above had not been limited to

just s and p-wave there would also be a d-wave contribution to F
s(a)
2 with a continuing

pattern for each subsequent set of Landau parameters.

Therefore it should be clear that when the AK model is limited to first order in s-wave

and the HF model is limited to just s-wave interactions then the two models should be

equivalent. In the three dimensional case this is simple to prove, but in two dimensions

one must renormalise the v (0) potential used in the HF model for the result to be true,

because the Born approximation breaks down in the limit of very small v(k− k′). In the

treatment by Chubukov [72] the renormalisation results in v (0) being given by,

v (0) =
4πh̄2

mln
(
nAK
n

) . (2.42)

It should be noted that after this renormalisation the potential is given in terms of nAK

from the AK model.
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Thermodynamic Parameters

The heat capacity for a Fermi liquid is of the same form to the non-interacting gas case

with the bare atomic mass replaced by the effective mass.

Cv =
πkBAm

∗

3h̄2 T, (2.43)

We define the Fermi temperature T ∗F in terms of the effective mass such that the ratio

between this and the non-interacting gas Fermi temperature, equation 2.11, is given by,

T ∗F
TF

=
m

m∗
. (2.44)

The magnetic susceptibility is determined by the effective mass and the F a0 Landau pa-

rameter. The ratio of this susceptibility to the non-interacting gas susceptibility is given

by,

χ

χ0
=
m∗/m

1 + F a0
, (2.45)

and since m∗ can be given in terms of F s1 , equation 2.31, by measuring both the heat

capacity and the magnetic susceptibility both F a0 and F s1 can be determined.

2.1.3 Dyugaev Fermi Fluid Model

The main quantity of interest in this thesis is the nuclear magnetic susceptibility. As

shown in Section 2.1.1 the susceptibilty of a two dimensional Fermi gas at T << TF is

independent of temperature. Conversely at high temperatures, T >> TF, the susceptibility

is inversely proportional to temperature and obeys Curie law with Curie constant C. A

phenomenological model for the temperature dependence of the susceptibility in three

dimensions has been discussed by Dyugaev [73, 74].

The inspiration of Dyugaev to create this model stemmed from the fits by Thompson

et al. to their low [75] and high temperature [76] data for the susceptibility of bulk 3He.
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The equations for the fits used were essentially,

χ (T >> T ∗∗F ) =
C

T

[
1− b

2

(
3

2

T

T ∗∗F

)−2d
]
,

χ (T << T ∗∗F ) =
3

2

C

T ∗∗F

[
1− a

2

(
3

2

T

T ∗∗F

)2
]
,

(2.46)

where T ∗∗F is the effective Fermi temperature and the parameters a, b, c and d are density

dependent dimensionless fit parameters.

The step Dyugaev took was, on noticing that the parameters a-d only had a weak

density dependence and were roughly unity, was to approximate the parameters a to d as

unity. Doing this meant the two equations were the high and low temperature expansions

of,

χ =
C√(

2
3T
∗∗
F

)2
+ T 2

. (2.47)

Therefore, he suggested that this equation was a reasonable approximation over the entire

temperature range. A comparison of the susceptibility given by this equation with the

high and low temperature approximations from Equation 2.46, where the parameters a-d

are set to unity, is shown in Figure 2.1. This comparison confirms that the interpolation

of the Dyugaev model is reasonable between high and low temperatures.

Looking at two dimensions the T = 0 Pauli susceptibility is,

χ(0) =
C

TF
, (2.48)

losing the 2/3 factor seen for three dimension. Therefore, the Dyugaev formula would

become,

χ(T ) =
C√

T ∗∗F
2 + T 2

. (2.49)
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Figure 2.1: Shown is the susceptibility given by the Dyugaev model in black compared

with the high (red) and low (blue) temperature approximations given by Equation 2.46

where a-d are set to unity.

Comparing Equation 2.49 when T = 0 with Equation 2.45 means that the effective

Fermi temperature can be given as,

T ∗∗F = TF
1 + F a0
m∗/m

. (2.50)

This effective Fermi temperature is renormalised not just by the effective mass but also F a0 .

Dyugaev was also able to give a density dependence of this effective Fermi temperature of

the form,

T ∗∗F (n) = T ∗∗F (n0)

(
n

n0

)ν
, (2.51)
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where n0 corresponds to a molar volume V0 = 36.84 cm mol−1, T ∗∗F (n0) = 0.239 K,

n/n0 = V/V0 and the index ν = −1.93. This was regarded as the important scientific

achievement as this single density dependent parameter characterises the susceptibility

over the entire temperature range. This phenomenological model of Dyugaev was later

found to be obeyed very well by the high precision susceptibility measurements of Goudon

[77, 78] in three dimensions. The work of Godfrin showed that this does indeed work well

in two dimensions as well, through susceptibility measurements of 3He films [79, 80].

2.2 Superfluidity in Two-Dimensions

In two dimensions 4He has previously been shown to display superfluidity with a Kosterlitz-

Thouless transition [81]. However, superfluidity has not been observed in two dimensional

3He.

This section will start with a brief description of Kosterlitz-Thouless transitions as any

superfluid transition in two dimensions would be expected to be of this type. Following this

the focus will shift to a discussion of how two-dimensional superfluid 3He could manifest

itself, this follows the description given by Kagan in chapter 11 of “Modern Trends in

Superconductivity and Superfluidity” [11].

2.2.1 Kosterlitz-Thouless Transitions

The Mermin-Wagner theorem states that long range order can not exist in two dimen-

sional systems [82]. The theoretical work of Kosterlitz and Thouless [83] and Berezinskii

[84] however, showed that through topological ordering long range order could exist, and

the transition to such an ordered state became known as a Kosterlitz-Thouless transition.

Confirmation of this theory came from Bishop and Reppy [81] through their torsional oscil-

lator study of the superfluid transition in two dimensional 4He films, which had transition

temperatures between 0.3 and 1.6 K. As a superfluid transition in a two dimensional 3He

film would most likely be of the same nature, a brief description of Kosterlitz-Thouless

transitions is given here.
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To explain Kosterlitz-Thouless transitions first quantum vortices must be mentioned.

These vortices are a topological defect found in superfluids and superconducters. In su-

perfluids they are literally the core of circulating fluid which has quantised circulation.

Considering the energy of a single vortex,

E = κln

(
R

a

)
, (2.52)

where κ is a system dependent parameter, which for example in a superfluid is related to

the density and the quantum of circulation. R is the characteristic size of the system and

a is the radius of the vortex core. Taking the system to be much larger than the vortex

core radius, then approximately the entropy given by Boltzmann’s formula is,

S = 2kBln

(
R

a

)
, (2.53)

as there are roughly (R/a)2 positions for the vortex. Using Equations 2.52 and 2.53 it can

be shown that the Helmholtz free energy, F = E − TS, is given by,

F = (κ− 2kBT ) ln

(
R

a

)
. (2.54)

What is clear here is that at T = κ
2kB

the free energy changes from diverging to positive

or negative infinity with increasing R. In more simple terms when T becomes greater

than κ
2kB

it becomes energetically favourable to produce vortices. This thus represents the

critical temperature of the transition TKT.

This simple argument suggests that above this temperature a system is proliferated

with vortices and there are none below. In reality how ever what happens is that at

temperatures below TKT there are bound vortex, anti-vortex pairs and above TKT they

unbind.
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2.2.2 Two Dimensional 3He Superfluidity

Fermionic superfluidity, either that of 3He in bulk or conventional superconductivity, gen-

erally experiences a transition to a superfluid state simultaneously with pairing of the

fermions as described by Bardeen-Cooper-Schrieffer (BCS) theory. This is because the

very weak interaction between the fermions means that their binding energy is below the

critical temperature of the superfluid transition for the bound pairs. However, if attrac-

tive interactions were strong enough between the fermions then it is possible that they

would form dimers at some temperature, before becoming superfluid at lower tempera-

tures. This would be a Bose-Einstein condensate (BEC) type superfluid, as the dimers

would be bosonic and have weak repulsive interactions between them. Thus, in a system

where the interaction strength can be tuned sufficiently it should theoretically possible to

observe a crossover from BCS to BEC. A review of the thereoretical study of this crossover

with reference to the key experiments in ultracold atom physics is given in Ref [85].

In this cross over the BCS superfluid, characterised by a coherence length much larger

than the inter-particle spacing and pairing in momentum space, would transition to a

BEC superfluid, with coherence length smaller than the inter-particle spacing and pairing

in real space. This would transition through what is known as the unitary Fermi gas which

is the most strongly interacting system of fermions with short-range interactions possible.

This is clear because in the BCS system the interactions are weak between fermions and in

the BEC system the inter-particle interactions, between what are now dimers, are weakly

repulsive. So the unitary Fermi gas is in the region where the inter-particle spacing is

roughly the same size as the coherence length [85]. The stability of superfluidity will also

be maximal in the unitary Fermi gas and is thus of experimental interest when looking for

two dimensional superfluid 3He.

As mentioned in Section 1.1.1, 3He has bound states at the surface of thin films of

4He which form an ideal homogeneous two dimensional Fermi fluid. This system has

strong potential for the studying the BEC-BCS crossover as it is easily tunable through

the density of the 3He. However, superfluidity in this system has not been observed; but
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theoretical study does provide encouragement for both superfluidity and dimerisation.

To discuss 3He superfluidity in two dimensions it is instructive to first mention the

theory of Bardeen, Baym and Pines (BBP) [44]. This theory was proposed for fermionic

superfluidity of 3He solution in 4He in three dimensions. The equivalent case of two

dimensional solutions of 3He in 4He, which are studied in this work, give the ideal system

for finding two dimensional 3He superfluidity, and BBP theory has been extended to the

two-dimensional case [86, 87]. This section is adapted from the description given by Kagan

in Chapter 11 of “Modern Trends in Superconductivity and Superfluidity” [11].

The total in plane 3He-3He interaction in two dimensions is given by BBP theory in

momentum space, to be,

V
(
q||
)

= Vd
(
q||
)

+ Ve
(
q||
)
, (2.55)

where Vd
(
q||
)

is the direct interaction between the 3He atoms which is governed by hard-

core repulsion at short distances and van der Waals attraction at large distances. Ve
(
q||
)

corresponds with the exchange of a quantum of third sound in two dimensions.

Third sound in superfluid helium was predicted in 1959 by Atkins [88] and experimen-

tally confirmed in 1962 by Everitt et al. [89]. It is a surface wave in superfluid helium films.

These waves are similar to surface waves in shallow water, in that there are oscillations

in the film thickness. The normal fluid component of the film remains stationary with

respect to the substrate on which the film sits and the oscillation occurs in the superfluid

component. The inviscid nature of the superfluid component is crucial to the existence of

these waves as similar waves in a viscous fluid would be rapidly attenuated.

For the case of thin films qL << 1 where L = d+ h4 is the film thickness,

Ve
(
q|| = 0

)
= −m4c

2
III = − 3Vsh4

n4 (d+ h4)4 , (2.56)

where Vs is the amplitude of the van der Waals potential of the substrate, d and h4

are the thickness of the solid and superfluid 4He layers respectively and cIII is the third

sound velocity [86]. The mechanism for the superfluidity is therefore apparent and anal-
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ogous to BCS superconductivity. The 3He atoms would be able to form Cooper pairs

through an attractive interaction mediated by third sound quanta (riplons) in the super-

fluid 4He. This would be singlet superfluidity as proposed by Kurihara [86], where for 4He

films greater than 2 atomic layers on quartz the superfluid transition of 3He would be of

Kosterlitz-Thouless nature and be of a different type below this. Furthermore, the critical

temperature for this system on quartz was found to be of the order of 10 mK, which is

well within the realm of dilution refrigeration.

Looking now at the direct interaction between the 3He atoms Vd
(
q|| = 0

)
, the previous

experiments by Hallock et al. [40, 53, 56, 90] displayed repulsive interactions at high 3He

densities and attractive at low 3He densities, which can be seen by the susceptibility at

the lowest temperatures being less than that of an ideal two dimensional Fermi gas. The

interactions seen suggest the system is a weakly interacting low density two dimensional

Fermi gas.

In the case where there is a two dimensional Fermi gas with attractive interactions there

are two possible scenarios. Firstly there is the limit where the magnitude of the binding

energy |Eb| of two 3He atoms due to the attractive interaction is much less than the Fermi

energy εF. In this case |Eb| << Tc << εF where Tc is the s-wave critical temperature which

is given by Miyake [71] to be Tc =
√

2εF|Eb|. This would lead to the BCS superfluidity

where pairing of fermions occurs at the critical temperature of superfluidity.

The alternative scenario is the strong coupling case where |Eb| >> εF there would be

two transition temperatures, there would be bound pairs forming at one temperature [91]

and condensation of the pairs would occur at the s-wave critical temperature [92].

When the attractions are repulsive s-wave pairing is impossible and it is expected that

p-wave pairing would be possible [72, 93]. Calculations of the critical temperature for

these systems can give it as high as 100 µK but taking quartic corrections means there

is an exponential dependence on a small parameter and thus the critical temperature is

very small and thus practically unattainable. Therefore, the most promising system for

finding superfluidity of 3He in two dimensions is at low densities where there are weak
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attractive interactions. Chapter 4 shows that such low density homogeneous 3He systems

are generally masked by instabilities and are difficult to achieve experimentally.

Dimerisation

In the previous section the crossover from a BCS to a BEC superfluidity was discussed and

the possibility of normal state pairing or dimerisation was mentioned. This would occur in

a system where the binding energy of the atoms is larger than the critical temperature of

the superfluidity. There has been much theoretical study for Fermion binding energies for

normal state dimer formation in two dimensions but here we shall focus on those which

are directly relevant to 3He-4He mixture films.

The work of Krotscheck et al. [94] used variational theory to study the potential for

dimerisation in 3He-4He mixture films. It was found that long-ranged attraction from

phonon exchange would be sufficient in low concentrations to form 3He dimers, with

binding energies ranging from milli- to micro-Kelvins. These binding energies would be at

the limit of what is capable of our experimental set up, and would experience a reduction

due to Fermi statistics.

However, at the end of this work reference is made to two effects which would enhance

this dimer binding energy beyond the values found. The effects mentioned are the quasi-

two dimensional behaviour of the 3He in this system (as opposed to being rigorously two

dimensional) [95] and ripplon exchange on systems with 4He films of more than one atomic

layer [96].

The binding energy of 3He dimers corresponding with this quasi-two dimensional be-

haviour for helium adsorbed on flat substrates was studied by Kilic [95]. In this work the

prior work studying dimers of helium in a spherically symmetric holding potential [97] was

extended. It was shown that the binding energy was significantly enhanced when the hold-

ing potential is approximately equal to the range of the pair interaction. Conveniently in

3He-4He mixture films by increasing the 4He coverage the 3He would locate further from

the strong substrate potential and thus this holding potential can effectively be tuned.
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This does still only give a maximum binding energy for the dimer of 8.39 mK which is

still low but is readily accessible with a dilution refrigerator.

Earlier theoretical work by Bashkin, Pavloff and Treiner [98] also shows 3He dimers can

exist in 3He-4He mixture films. This was done by making a quantitative calculation of the

dimer binding energy based on a semi-empirical effective interaction and the one-particle

wave functions obtained within a density-functional approach. It was found using this

approach that the binding energy was very sensitive to the details of the potential, which

depends on the substrate chosen for adsorption. Those substrates which meant the 3He

had the highest effective mass favoured the formation of dimers. The binding energy of

these dimers were ∼ 5 mK.

Coupled Fermion-Boson System

What is of additional interest within 3He-4He mixture films is the coupling between the

Fermion and Boson systems. In this system the 3He will interact with the ripplons (quanta

of third sound) in the 4He film. What is most interesting about this in this system is

the ease of tunability of the relevant parameters. The Fermi velocity of the 3He has a

dependence on 3He density n3,

vF =
h̄
√

2πn3

m
. (2.57)

Similarly the third sound velocity is dependent on the thickness of the 4He film, as can

be seen from Equation 2.56 Ve
(
q|| = 0

)
is dependent on the thickness of the 4He film

[86]. The dependence of the third sound velocity on 4He thickness in pure 4He films on

graphite foam was measured by Zimmerli et al. [99] and was shown to decrease with

increasing 4He. The dependence of the third sound velocity of 4He on 3He was studied

theoretically by Krotscheck and Miller [31] with relevance to a nuclepore substrate and

shown to oscillate with increasing 3He density. Therefore, by changing the density of the

3He in two dimensions it is plausible that three distinct regions of interest will be observed.

First is the region when vF < cIII , second is the region when vF ≈ cIII and finally is where

vF > cIII . The work of Kurihara [100] discusses the effect of this coupling on the third
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sound spectrum, and this is outlined here.

The first region where the vF < cIII is by far the most uncommon. When this is

the case there is very low damping on the third sound and the renormalised third sound

velocity is enhanced. In the second region, when vF ≈ cIII , a resonant coupling between

the fermions and bosons would be expected. In the theory by Kurihara this manifests itself

in the third sound spectrum as a sudden drop off in the damping when the first region is

entered. Finally in the third region when vF > cIII the damping increases dramatically on

approaching the second region. This third region is the one that lends itself to the singlet

superfluidity mentioned at the start of this sub-section. In a manner analogous with

conventional superconductivity there would be a retarded attractive interaction caused

between the ripplons and the 3He.
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Chapter 3

Experimental Technique

The following chapter describes the techniques used in the experiments described in this

thesis. A brief overview of the refrigeration and thermometry used is followed by a de-

scription of SQUID NMR and how it is used to measure magnetic susceptibility and spin

dynamics. Finally the creation of the two-dimensional helium films through adsorption

on graphite is explained.

3.1 Refrigeration Below 1 K

Our aim was to study the quantum behaviour of two-dimensional 3He films. This be-

haviour only manifests itself at temperatures below the Fermi temperature TF . To set

the scale, the Fermi temperature of a non-interacting two-dimensional ensemble of 3He, is

given by TF ' 0.5n3 [K] (Section 2.1.1) with n3 having units of nm−2. For an areal den-

sity of 3He n3 = 0.1 nm−2, the Fermi temperature for a non-interacting system would be

50 mK. Clearly temperatures below 50 mK are required to study the quantum degenerate

regime of the system, readily achieved by a dilution refrigerator. This however, does not

take into account interactions in the system which leads to effective Fermi temperatures

that are significantly lower. At still lower temperatures new quantum states such as su-

perfluidity and 3He dimer formation are possible. Therefore our objective was to reach
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temperatures of the order of 200 µK and be able to conduct precise NMR experiments at

these low temperatures, as well as measure the temperature of the 3He precisely.

To achieve the required temperatures, the low temperature platform, on which the

experiment was mounted, was cooled by a nuclear adiabatic demagnetisation refrigerator

pre-cooled by a conventional dilution refrigerator, reaching temperatures of 150 µK. This

section describes the physical principles behind this refrigeration method.

3.1.1 Dilution Refrigeration

Due to its ability to continuously provide temperatures down to ∼ 5 mK, the dilution

refrigerator provides the basis for most modern experimentation at low temperatures.

A dilution refrigeration was used for pre-cooling the nuclear adiabatic demagnetisation

refrigerator, and provided stable temperatures between 5 and 450 mK. The following

description of dilution refrigeration is adapted from those given in references [101, 102].

Principles of Dilution Refrigeration

A dilution refrigerator produces cooling by pulling 3He across a phase boundary between

dilute and concentrated 3He phases. Therefore it is instructive to first describe the origin

of this phase boundary. Figure 3.1 shows the phase diagram of bulk 3He-4He mixtures.

To illustrate, on cooling a 50:50 mixture from room temperature to ∼ 1.3 K the 4He in

the mixture becomes superfluid. On cooling the mixture further to ∼ 0.8 K the forbidden

(hashed) region of the phase diagram is reached. At this point phase separation occurs,

where a concentrated 3He phase floats on top of a dilute 3He phase. Continuing to cool to

the low temperature limit results in the concentrated phase consisting of essentially pure

3He and a dilute phase with 6.4 % 3He.
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Figure 3.1: Shown is the saturated vapour pressure phase diagram of 3He-4He mixture

films in bulk, taken from [101].

The finite solubility in the low temperature limit is caused by 3He preferentially binding

to 4He rather than 3He. This preference is due to the smaller zero point motion of the 4He,

meaning the 3He can effectively be closer to 4He atoms, than to 3He atoms, and thus feel a

stronger Van der Waals potential. This is limited by the Pauli exclusion principle. As 3He

is a fermion it must obey Pauli’s exclusion principle. As more 3He atoms are added to the

system they have to occupy increasingly higher energy states, up to the Fermi energy. As
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a consequence the binding energy of 3He in 4He decreases with increasing concentration.

When the 3He concentration is at 6.4% the binding energy of the 3He atoms is equivalent

to that of a pure 3He liquid, which means that it is now energetically favourable to form a

pure 3He liquid. This pure 3He phase will float on the concentrated phase due to its lower

density; the chemical potential of the two phases are equal.

Having established the origin of the phase separation between the concentrated and

dilute 3He phases, we will now discuss how the transfer of 3He from the concentrated to

the dilute phase produces cooling. 3He in the dilute phase has a greater enthalpy than in

the concentrated phase and thus by moving 3He across the phase boundary and reducing

the enthalpy, cooling is produced. This process is analogous to the evaporation from liquid

to gas, and the cooling power is,

Q̇ = ṅ (Hd −Hc) (3.1)

where ṅ is the 3He flow rate (in mole s−1) across the boundary and L = (Hd −Hc)

is the associated molar latent heat given by the change in enthalpy between the dilute

and concentrated phases. The enthalpy of the concentrated phase is found from the

experimentally measured temperature dependence of the 3He heat capacity below 40 mK,

which is Cc = 22T [JK−2] [59]. This gives the concentrated phase enthalpy to be:

Hc (T ) = Hc (0) + 11T 2. (3.2)

To determine the enthalpy of the dilute phase we use the fact that the two phases are in

thermodynamic equilibrium, so the chemical potentials are equal;

Hc − TSc = Hd − TSd. (3.3)
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Since S =
� T

0
C
T ′dT

′ and using Equation 3.2, the enthalpy of the dilute phase is thus:

Hd (T ) = Hc (0) + 11T 2 + T

� T

0

Cd − Cc
T ′

dT ′. (3.4)

The dilute phase at a concentration of 6.4%, behaves as a Fermi gas with 3He hydrody-

namic effective mass m∗ 6= m due to coupling with the liquid 4He. With Cd ' 106T [JK−2],

the enthalpy for the dilute phase is,

Hd (T ) = Hc (0) + 95T 2. (3.5)

Finally combining Equations 3.2 and 3.5 with Equation 3.1 we retrieve an expression for

the maximum cooling power.

Q̇ = 84ṅT 2 (3.6)

Practically this is the upper limit of the cooling power as we now discuss.

Dilution Refrigerator Operation

A simple schematic of the dilution unit is shown in Figure 3.2 for reference.
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Figure 3.2: A schematic of a dilution refrigerator, showing the 3He in blue, the dilute 3He

in 4He in light green and the 4He in dark green.

When the mixture is appropriately adjusted the mixing chamber is where the phase

boundary between the dilute and concentrated phases of 3He will be located. This is the

area where the cooling is generated. The flow of 3He from the concentrated to the dilute

phase is achieved using the still. The still is connected to the dilute phase in the mixing

chamber and is pumped on. Holding the still at a temperature of ∼ 0.6 K means that the

pumping removes mostly 3He due to the lower binding energy of the 3He. This reduces the

3He concentration in the still and hence produces an osmotic pressure gradient between

the mixing chamber and the still, which drives the flow of 3He. A dynamic equilibrium is
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reached where 3He flowing from the mixing chamber to the still is replaced by 3He crossing

the phase boundary in the mixing chamber producing cooling.

At this point we have described single shot dilution refrigeration which will continue

to produce cooling at the mixing chamber until the concentrated phase is depleted and

the phase boundary leaves the mixing chamber. In continuous operation 3He is returned

to the mixing chamber in a manner that minimises the heat load on it.

The “1 K pot” is a bath of 4He which is pumped on. On our refrigerator the pot is

equipped with a continuous fill from the helium bath, and in normal operations, with the

dilution refrigerator circulating operates at ∼ 1 K. Specifically on the refrigerator used the

pot has a volume of approximately 1.9 litres, which is filled continuously from the helium

bath through an impedance, it can also be filled from the helium bath via a needle valve.

The returning 3He stream is thermally coupled to the “1 K pot” by a coarse sinter heat

exchanger. An impedance ensures that the pressure in the flow path is high enough for

the 3He to liquefy at 1 K.

The 3He return stream is cooled by heat exchange with the still and subsequently a

continuous heat exchanger, followed by five step heat exchangers. The purpose of these

heat exchangers is to cool the returning 3He by thermally coupling it with the helium

between the mixing chamber and the still. The continuous heat exchanger consists of

an inner tube carrying the returning 3He and an outer surrounding tube carrying helium

from the mixing chamber to the still. The inner tube is formed into a spiral within the

outer tube to increase the surface area. The continuous heat exchanger cools the 3He to

∼ 40 mK. To cool the returning 3He further there are five step heat exchangers. Here the

surface area of thermal contact is increased by using silver sinter, to overcome the larger

boundary resistance at lower temperature.

We now discuss the practical cooling power for the continuously operating dilution

refrigerator. This is done by balancing the cooling power of the refrigerator Q̇cp with the

external heat leak Q̇ and the power arising from the head load to cool the incoming 3He
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entering the mixing chamber from the last heat exchanger Q̇ex.

Q̇cp = Q̇+ Q̇ex, (3.7)

where,

Q̇cp = ṅ (Hd (Tmc)−Hc (Tmc)) ,

Q̇ex = ṅ (Hd (Tex)−Hc (Tmc)) ,

(3.8)

and Tmc and Tex are the temperature of the mixing chamber and the last heat exchanger

respectively. Now combining equations 3.7 and 3.8 we find,

Q̇ = ṅ (Hd (Tmc)−Hc (Tex)) ,

Q̇ = ṅ
(
95T 2

mc − 11T 2
ex

)
.

(3.9)

From this the maximum cooling power in Equation 3.6 is found to be true when Tmc = Tex.

Therefore the closer the returning 3He is to the mixing chamber temperature the higher

the cooling power.

Shown in Figure 3.3 is an image of the refrigerator used with the key parts of the

dilution unit labelled. It is a commercial Oxford Instruments dilution refrigerator from

the 1970s which over the years has been modified to increase the sample space and to add

a demagnetisation stage. The dilution unit has a base temperature of 5 mK in continuous

operation, with a typical circulation rate of around 100 µmol s−1. It was capable of

running in the milikelvin regime for over a year, by utilising a series of three heaters on

the return line to prevent blockages forming.
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Figure 3.3: A picture of the dilution refrigerator used, showing the key parts.

3.1.2 Nuclear Adiabatic Demagnetisation Refrigeration

To cool significantly below 1 mK nuclear adiabatic demagnetisation was used. This is a

process in which adiabatically reducing the external magnetic field on a system of nuclear

paramagnetic moments, causes the temperature to decrease.

We first derive the entropy for an adiabatic, paramagnetic, nuclear spin system. Then

the methodology for practically using this as a refrigeration technique will be explained.
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The entropy of the system is related to the partition function by,

S = kB
∂ (T ln (Z))

∂T
. (3.10)

The partition function Z is determined by the Zeeman levels for nuclear spins of moment

µn and spin I. The energy of these levels is given by εm = −mµngnB, where m runs from

−I to I, µn is the nuclear magneton and gn is the nuclear g-factor given by µ/I. This

then means the partition function for N spins is,

Z =

(
I∑

m=−I
e
mµngnB
kBT

)N
=

sinh
[(
I + 1

2

) µngnB
kBT

]
sinh

[
µngnB
2kBT

]
N

(3.11)

Substituting this into Equation 3.10 and setting x = µngnB
kBT

, the entropy becomes:

S

NkB
=
x

2

[
coth

(x
2

)
− (2I + 1) coth

(
x (2I + 1)

2

)]
+ ln

[
sinh

((
I + 1

2

)
x
)

sinh
(
x
2

) ]
. (3.12)

The demagnetisation stage used to cool experiments in this thesis was made of copper

and the two nuclear isotopes which contribute to the cooling have I = 3
2 . Also at this

point we note that the requirement for nuclear cooling is that the energy of interaction

between the nuclear moments is much lower than the thermal energy at all temperature

we access. The nuclear ordering temperature of copper is < 0.1 µK [103]. Furthermore

we can apply the condition of εm << kBT and substituting in the value for spin, I, the

entropy equation becomes,

S

NkB
= ln (4)−

(
µngnB

2kBT

)2

. (3.13)

The key point is that the entropy reduction due to spin polarisation by the magnetic field

is proportional to
(
B
T

)2
.

The full entropy temperature relationship given by Equation 3.12 is shown in Figure 3.4

for both a high and low magnetic field. Using this graph it is possible to see how the cooling
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is achieved. Initially a high magnetic field is applied to the copper via a superconducting

magnet. Then the copper is cooled using the dilution refrigerator to Ti ' 15 mK. Once

at Ti the demagnetisation stage of the refrigerator is thermally isolated from the dilution

unit to achieve the required adiabatic state (neglecting any external heat leak). This is

done by using an aluminium superconductor between the two stages, which relies on the

poor thermal conductivity of a type I superconductor below its critical field. Now the

high field is lowered slowly to prevent large eddy current heating as it is proportional

to
(
dB
dt

)2
. If the demagnetisation process is reversible (by eliminating dissipation from

sources such as eddy currents and by ensuring that the stage is always close to internal

thermal equilibrium) and the system is adiabatic then the total entropy is constant. The

magnetic field is then held at a final field Bf and the system gradually warms following

the low B curve due to heat leaks into the system.
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Figure 3.4: Plot of entropy against temperature for an ensemble of spin −3/2 paramagnetic

copper nuclei, for a range of magnetic fields between 10 mT and 10 T.

The fact that the entropy is only a function of B/T shows that after the adiabatic

demagnetisation the final temperature of the nuclei Tf is related to the initial temperature

Ti, the initial field Bi and the final field Bf by,

Tf = Bf
Ti
Bi
. (3.14)

This would imply the possibility of reaching absolute zero by just having Bf = 0, but

obviously this is not possible as it would violate the third law of thermodynamics. This is

accounted for as Bf =
√
B2
ex + b2, where Bex is the applied field for the demagnetisation

and b is the internal field. Taking this into account the final temperature of the nuclei is
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limited to,

Tmin = b
Ti
Bi
. (3.15)

The copper nuclei are coupled to the electron system by the hyperfine interaction. The

thermal link to the platform is determined by conduction through the electron system, and

low resistance thermal contacts (e.g. cone joints) determined by the Wiedemann-Franz

law.

This technique is a one shot refrigeration technique. The system warms at a rate

determined by the heat capacity and the heat leaks. The heat capacity of the stage is,

CB = NkB

(
µngnB

2kBT

)2

. (3.16)

Therefore careful optimisation of the choice of final field is required, depending on the aim

of the experiment. After all these considerations the minimum temperature reached by

the samples in this thesis was 150 µK. Taking the temperature lower than this meant that

the warm up rate became impractically fast.

A typical cool down to the base temperature of the demagnetisation stage on our

refrigerator is started by raising the field of the main magnet, which has a field current

ratio of 108.4 mTA−1, to a field of 5 T by raising the current in steps of 15 mA every 0.21s.

If the stage was initially at the base temperature of the dilution refrigerator 5 mK, doing

this warms it to around 70 mK. Then the stage is precooled using the dilution refrigerator.

After approximately 48 hours the stage is at roughly 15 mK, the demagnetisation stage is

then thermally isolated. Then the external field is lowered from 5 T to 39 mT by reducing

the current in the magnet generally in steps of 15 mA every 7.51s, but increasing this to

every 20.51s at the lowest temperatures to reduce the eddy current heating. This results

in a base temperature of ∼ 200 µK which will warm to above 1 mK over a few days.

By precooling for longer and slowing the rate of lowering the magnetic field 150 µK is

achievable. Due to the increasing the time to reach the base temperature by up to two

days this was only done rarely, as the gain in temperature is minimal.

52



CHAPTER 3. EXPERIMENTAL TECHNIQUE

3.2 Thermometry

The precise measurement of temperature at ultra-low temperatures is of crucial impor-

tance. In principle, anything which is temperature dependant could be used as a secondary

thermometer. The question is how to determine the absolute temperature. Furthermore,

at ultra-low temperatures issues such as the heat leak caused by the temperature measure-

ment and the thermal connection between the thermometer and the experimental sample

are challenging.

Due to the vast range of temperature covered in this work, from 150 µK to 450 mK,

multiple thermometry techniques were used. Each technique had a different working

range in temperature and most temperature ranges overlapped meaning calibration of the

different thermometers was possible, the exception to this being the current sensing noise

thermometer which operates over the entire temperature range. Figure 3.5 compares the

temperature regimes for the different thermometers used in this thesis, and this section

will be focused on explaining the methodology behind each.
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Figure 3.5: Temperature regimes for the different thermometers used. Black bars are for

resistive thermometers, blue is for noise thermometry, red is for NMR thermometry and

green is for melting curve thermometry.

3.2.1 Resistive Thermometry

Resistive thermometry is the most simple form of thermometry used in this work and

its use was restricted to diagnostics of the dilution refrigerator. Most materials have

a temperature dependant resistance therefore one can measure the resistance and can

convert it to a temperature.

The dilution refrigerator used in this work was equipped with numerous RuO2 semi-

conducting resistive thermometers. These were mounted to the mixing chamber, the still,

the “1 K” pot, on the first third and fifth step heat exchangers and the cold plate (which is

located between the “1 K” pot and the continuous heat exchanger). The main purpose of

these thermometers was to monitor these different components of the dilution refrigerator.

RuO2 thermometers were chosen as they are cheap and easy to set up relative to other

methods of thermometry. There is also a germanium thermometer and a carbon-glass

thermometer on the mixing chamber, which monitor the mixing chamber temperature
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above the regime of the melting curve thermometer discussed in the following section and

the germanium thermometer is the main thermometer used between 250 and 450 mK.

3.2.2 Helium Melting Curve Thermometry

Melting curve thermometers (MCTs) are primary thermometers, on which PLTS-2000

is based, which utilise the pressure temperature relationship of the 3He’s melting curve,

Figure 3.6.

Figure 3.6: Graph of the 3He melting curve for Greywall’s temperature scale [59] between

1 and 250 mK (blue) and the PLTS-2000 scale [104] between 0.9 mK and 1 K (red).

The strong temperature dependence and minimum of the melting curve are described

by the Clausius-Claperyon equation,

dP

dT
=

∆S

∆V
=
Sl − Ss
Vl − Vs

, (3.17)

where the subscripts s and l correspond to the solid and liquid phases respectively. The
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minimum in this equation arises because the solid entropy is dominated by the 3He nuclear

spin. From Boltzmann’s equation we find that Ss = NkBln(2) for s = 1/2. By comparison

the liquid state of 3He can be described to a good approximation as a Fermi gas. Therefore,

at low temperatures Sl ∝ T . So as the temperature is lowered the liquid entropy at ∼ 0.3 K

starts to become less than that of the solid entropy, therefore the sign of equation 3.17

changes. The minimum is where the solid and liquid entropies are equal.

At low milikelvin temperatures 3He supports two superfluid phases, the A and B phase.

The transition between the normal liquid and the superfluid A phase is used as a fixed

point to calibrate the thermometer, and thus why it is a primary thermometer. These

superfluid transitions were first measured by Osheroff et al. [105] in a Pomeranchuk

pressure cell, manifesting themselves as discontinuities in the pressure time relationships.

The A phase causes an abrupt change in the slope of the pressure time relationship and

is highly reproducible. Once the pressure of the A transition, PA, is measured it can be

converted to temperature using the empirical formula,

P = PA +

5∑
i=−3

aiT
i. (3.18)

The coefficients ai of this polynomial equation are given by Greywall et al. [59] and are

shown in Table 3.1. The resulting melting curve is plotted in Figure 3.6. This melting

curve from Greywall is only valid below 250 mK, above this temperature our experiments

relied on the germanium thermometer. The MCT in this higher temperature range was cal-

ibrated to the PLTS-2000 temperature scale as this is valid to 1 K. This uses and equation

similar to that of Greywall but with different coefficients, for more information see [104].

The Greywall temperature scale was used in these experiments so that direct comparison

can be made between these experiments and those taken by the group previously.

A capacitive gauge [106] was used to measure the pressure of a volume of 3He. Initially

the 3He fills the MCT volume via a fill line and is held at ∼ 36 bar. This pressure is above

the highest pressure of the melting curve below the temperature of the minimum as can be
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Coefficient Value

a−3 −0.019652970
a−2 0.061880268
a−1 −0.078803055
a0 0.13050600
a1 −0.43519381
a2 0.13752791× 10−3

a3 −0.17180436× 10−6

a4 −0.22093906× 10−9

a5 0.85450245× 10−12

Table 3.1: Coefficients for pressure temperature equation of the 3He melting curve. Given
by Greywall et al. [59]

seen on Figure 3.6. Thus on cooling the contents of the cell will follow the melting curve

to the lowest temperatures. As the temperature is lowered the 3He in the fill line solidifies,

thus closing off the MCT volume creating the confined volume of 3He. One wall of the cell

enclosing the 3He is a flexible diaphragm which will deform with the changing pressure of

3He. This diaphragm is then connected to one plate of a capacitor and thus the changing

pressure is measured via the changing capacitance using a home made capacitance bridge

[107].

The MCT used was mounted on the experimental plate next to the NMR cell and was

the main thermometer between 1 and 250 mK; as at 0.9 mK the solid 3He undergoes a spin

ordering transition and the melting curve deviates from the empirical formula stated. At

250 mK the empirical formula from Greywall stops being valid and the slope of the melting

curve becomes small around the minimum. The calibrated germanium thermometer is then

in its working range so it is used as the main thermometer in this regime.

3.2.3 Current Sensing Noise Thermometry

The method of measuring temperature using a current sensing noise thermometer is based

around the random and temperature dependent Brownian motion of electrons in resistive

elements. The time average of the noise voltage across the resistive element will be zero,

but the root mean square voltage Vrms =
√
〈V 2
n 〉t is not. The relation between this root
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mean square voltage and temperature for a resistor was derived from first principles by

Nyquist [108] and first measure by Johnson [109], and is given by,

V 2
rms = 4kBTR∆ν, (3.19)

where R is the resistance and ∆ν is the frequency range of the measurement. This rela-

tionship can be used in principle to determine the absolute temperature, if the resistance

is known and frequency range defined. Practically however this effect is incredibly small

and difficult to measure, for example at T = 10 mK for R = 1 kΩ and ∆ν = 1 kHz, then

V 2
rms ' 10−10 V.

Our method employs a SQUID operated in flux locked loop mode (see section 3.3.2)

as a sensitive current amplifier. The SQUID measures the noise current, Irms, coupled to

the SQUID input coil (of inductance Li) via a superconducting twisted pair. Converting

equation 3.19 to relate to the noise current we get,

I2
rms =

4kBT∆ν

R

[
1 +

(
ωLT
R

)2
]−1

, (3.20)

where ω = 2πν and the total inductance in the SQUID input circuit LT = Li + Ls,

where Ls is any additional inductance in the input circuit, for example stray inductance

associated with the twisted pair. By fitting the noise frequency spectrum from the SQUID

with this equation the temperature is found.

The thermometer used in this work is described in detail by references [110] and [111]

and is capable of measuring temperatures as low as 100 µK. It consists of a 0.2 mΩ copper

foil resistive element and includes a tantalum bobbin which part of the input circuit was

wrapped around. This tantalum bobbin provides an in-built calibration reference, at the

inductance change of the input circuit when the temperature drops below the tantalum’s

Tc. This thermometer was located on the upper experimental plate of the refrigerator,

which is the plate above that which the experimental cell was located (see Figure 3.3), and

will be the main thermometer for the next generation SQUID NMR cell, which will also
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be located on this plate. Therefore the main purpose of the thermometer was to check

that the plate was cooling as expected, this will be discussed further when describing the

next generation experimental cell in Section 3.4.

3.2.4 13C NMR Thermometry

Our 13C NMR thermometer utilises the Curie law behaviour of the 13C nuclear susceptibil-

ity, which is measured by the nuclear magnetic resonance techniques described in Section

3.3.1. This thermometer is accurate down to 100 µK, since interactions between 13C nu-

clear moments are weak, and is the main thermometer in our set up below 1 mK. The 13C

is located, with roughly a 1% abundance, in the grafoil substrate comprising part of the

experimental sample, which will be described further in Section 3.4, thus there is a good

thermal link between this thermometer and the experiment.

This thermometer relies on the paramagnetic behaviour of the 13C; 13C is a spin-1
2

paramagnet and its susceptibility obeys Curie law i.e. χ ∝ 1/T . By measuring the

nuclear spin susceptibility a relative temperature can be found. Absolute temperature is

obtained by calibration against the MCT in a temperature range between 6 and 20 mK.

The dilution refrigerator is stabilised at each temperature and the 13C thermometer was

measured using the previous calibration until it read a temperature constant in time. This

constant reading implies a thermal equilibrium has been reached by the thermometer and

the dilution unit and thus they must be at the same temperature. Doing this for multiple

temperatures means a plot of the temperature against the inverse of the 13C magnetisation

can be made, like that in Figure 3.7. This plot is linear in temperature due to the Curie

law relationship and thus the gradient of a fit to this data with a line forced through zero

gives the relationship between the magnetisation and temperature and thus is used to give

a temperature for the measured magnetisation.
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Figure 3.7: Graph of the 3He melting curve temperature plotted against the inverse of the

13C magnetisation, for the calibration from the 14th demagnetisation of run 48. Shown is

the linear fit of the data forced through zero giving an inverse gradient which corresponds

to 658.3 a.u. mK.

A key advantage to this thermometer in our cell was that the thermometry measure-

ments can be done simultaneously with the measurements of the 3He susceptibility. This

relies on the broadband SQUID NMR method we employ. An RF pulse is chosen to tip

both the 3He spins by 7.2◦ and the 13C by 0.38◦. In this way the susceptibility can then

be simultaneously measured for both, as can be seen on Figure 3.8.

The main drawback to this thermometry method is that the C13 has a long T1 relaxation

time. This is the time that characterises the energy loss from the nuclear spins to the lattice

and is thus the characteristic time for the spin relaxing back to its equilibrium. Therefore,
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NMR pulses needed to have a separation longer than this time. For this system the T1

relaxation time was ∼ 1800 s at 250 µK however for the majority of samples measured the

signals were large enough in this temperature range that just a single trace was needed.

The amount of averaging was increased with temperature as the signal sizes decreased but

along with this T1 was decreasing meaning the pulse rate could be increased. Typically

below 0.4 mK one average was taken with a pulse period of 30 minutes, at 1 mK this

was one average with a period of 5 minutes, whereas at 20 mK we took 50 averages

with a pulse period of 2 s. Beneficial for this work was that the T1 relaxation time of

the 13C had an empirical T−0.5 dependence with temperature rather than an inverse T

dependence meaning that at the lowest temperature the relaxation time was much less than

it would have been had it followed the standard relationship. This empirical temperature

dependence was first noted by Arnold [112].
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Figure 3.8: Plot from Arnold et al. [113] showing the power spectrum of a 40 µs 100 kHz

sinusoidal transmitter pulse (dotted line) and the frequency response (solid line).

Another consideration which had to be made with regard to the carbon thermometry

was the lag of the 13C thermometer on a rapid warm up. The problem is that the 13C

lagged behind in temperature due to its long T1. A method which would transition the

temperature measured by the 13C to be in line with that measured by the MCT, which did

not suffer from lag, was formulated by Frank Arnold [112]. This used the fact that since

the 13C thermometer was lagging due to its T1 the difference in the temperatures measured

between the MCT and the 13C would be proportional to the warm up rate. Therefore

by plotting the difference between the thermometers against the warm up rate, the linear

gradient of this could then be used to correct the 13C for the lag. This is explained in

more detail in Ref [112]. Due to the nature of the experiments in this thesis generally a

continuous warm up was not useful as at temperatures around 0.8 mK the warm up rate

62



CHAPTER 3. EXPERIMENTAL TECHNIQUE

would be too fast to get a measurement of the 3He signal. Thus this correction method

was only required for the data discussed in the appendix and for the coverages showing

the large low temperature upturn in Section 5.3.1.

3.3 SQUID NMR

Nuclear magnetic resonance (NMR) is a powerful technique whereby one can probe the

nuclear magnetisation and spin dynamics of a system. This section provides a description

of the basic principles of NMR and how this technique was implemented within our ex-

periments. For a more in depth discussion of NMR see Ref [114], as this section follows its

description. Following this, the basic principles of SQUIDs are outlined, before explaining

the implementation of the SQUID NMR method.

3.3.1 Principles of Nuclear Magnetic Resonance

Consider a nuclear magnetic moment µn = γh̄I, where I is the total spin of the nucleus

and γ is the gyromagnetic ratio. When an external magnetic field B is applied to this

moment it will experience a torque µn ×B, thus the equation of motion for the spin is,

h̄İ = µn ×B =
µ̇n

γ
(3.21)

It is now instructive to address the problem as a collection of spins, as NMR is usually

applied to systems of at least 1019 spins. We define the magnetisation vector M as the

total magnetic moment per unit volume, thus Equation 3.21 becomes,

Ṁ = γM×B. (3.22)
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Taking the magnetic field B to be oriented along the z-axis, B = B0k̂, the components to

Equation 3.22 are therefore,

Ṁx = γB0My,

Ṁy = −γB0Mx,

Ṁz = 0,

(3.23)

with respect to the magnitude of the magnetisation the solution is,

Mx (t) = Msin (θ) cos (γB0t) ,

My (t) = −Msin (θ) cos (γB0t) ,

Mz (t) = Mcos (θ) ,

(3.24)

where θ is the angle between the magnetisation and magnetic field vectors. This solution

corresponds to the magnetisation being tilted away from the direction of the magnetic

field and then rotating around it in the xy-plane. This rotation is Larmor precession

at ω = γB0. However, this does not provide the complete picture of the system as the

precession would continue indefinitely. In physical systems the magnetisation vector would

relax and align with the magnetic field in its equilibrium state.

The dynamical behaviour of the magnetisation is modelled by the Bloch equations,

Ṁx = γ|M×B|x −
Mx

T ∗2
,

Ṁy = γ|M×B|y −
My

T ∗2
,

Ṁz = γ|M×B|z +
M (∞)−Mz

T1
.

(3.25)

These are simply equivalent to Equations 3.23 with the addition of relaxation terms. The

additional relaxation terms depend on some time T1 or T ∗2 . T1 is the spin-lattice or lon-

gitudinal relaxation time and is related to energy loss from the spins to the lattice. T ∗2 is

the effective spin-spin or transverse relaxation time and is related to individual spins pro-

cessing at slightly different rates producing a destructive interference in the magnetisation
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perpendicular to B. The different rates of precession are caused by each spin experiencing

slightly different field due to inhomogeneities in the field. These arise from intrinsic pro-

cesses, the dipole-dipole interaction, or from inhomogeneities in the magnetic field. The

intrinsic and effective relaxation times are related by,

1

T ∗2
=

1

T2
+ γ∆B, (3.26)

where ∆B is the difference in strength of the field. To see the behaviour of the system

with this relaxation one must solve the Bloch equations, which results in:

Mx (t) = M (∞) sin (θ) cos (γB0t) e
− t
T∗2 ,

My (t) = M (∞) sin (θ) sin (γB0t) e
− t
T∗2 ,

Mz (t) = M (∞)−M (∞) (1− cos (θ)) e
− t
T1 .

(3.27)

Now a system is described where there is an exponential recovery of the magnetisation

along the external B-field with time constant T1 and an exponential decay of the mag-

netisation perpendicular to the external B-field with a time constant T ∗2 . It was the

measurement of this precession and corresponding relaxations which provided the data in

this thesis. The intrinsic T2 can be measured by the spin-echo technique, but this was not

employed in this work.

3.3.2 Principles of SQUIDs

Superconducting quantum interference devices (SQUIDs) are sensitive flux to voltage

transducers. In the NMR set up used in this work a dc-SQUID was used to measure

the precessing magnetisation of 3He and 13C nuclei. This set-up is the same as described

by Arnold [112, 113].

A dc-SQUID is made from two Josephson junctions connected in parallel as shown in

Figure 3.9. A Josephson junction is a weak link between two superconductors. The wave
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functions of the superconducting states either side of the junction are,

ψ1(2) =
√
n1(2)e

iθ1(2) , (3.28)

where n1(2) is the Cooper pair density, θ1(2) is the is the phase and the subscript 1 or 2

defines the relevant superconductor. Taking these wave functions and substituting them

into the relevant time dependant Schrodinger equation,

ih̄
∂ψ1(2)

∂t
= µ1(2)ψ1(2) +Kψ2(1), (3.29)

where K is a coupling constant across the junction and µ is the lowest energy state, it can

be shown that,

h̄
∂n1

∂t
= −h̄∂n2

∂t
= 2K

√
n1n2 sin(θ2 − θ1),

− h̄ ∂
∂t

(θ2 − θ1) = µ2 − µ1.

(3.30)

The charge transport across the junction is equal to the time derivative of the Cooper pair

density and also when there is an applied voltage V across the junction then µ2−µ1 = 2eV

is true. Therefore, knowing this, Equations 3.30a and 3.30b can be rewritten as,

I = I0 sin(θ2 − θ1),

∂

∂t
(θ2 − θ1) =

2eV

h̄
,

(3.31)

where I0 = 2K
√
n1n2/h̄. These two equations define the voltage and current across the

junction, both which depend on the phase change across the junction.
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Figure 3.9: Schematic of a SQUID, showing two Josephson junction labelled ‘a’ and ‘b’

connected in parallel by identical superconductors.

For a SQUID there are two of these junctions in parallel each junction will have its own

phase difference across it δa and δb for junctions a and b respectively (this phase difference

was written as θ2− θ1 in Equations 3.31). These phase differences will depend on the flux

threading the SQUID φ as,

2πs =
2π

φ0
φ+ δa − δb, (3.32)

where φ0 = h/2e is the flux quantum, s is an integer and assuming that the superconduc-

tors are much thicker than the London penetration depth. The total current through the

SQUID IT (flowing from A to B in Figure 3.9) will be given as an addition of Equation

3.31a for the two separate junctions,

IT = Ia + Ib = I0 (sin δa + sin δb) , (3.33)

where δa(b) is the phase difference over junction a(b) and I0 is the critical current which
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will be the same assuming both junctions are identical. Combining Equations 3.32 and

3.33 we get the maximum supercurrent through the SQUID,

IT = 2Ic

∣∣∣∣cos

(
πφ

φ0

)∣∣∣∣ . (3.34)

This equation clearly shows a periodicity relating to the flux quantum.

The origin of this periodicity in flux can be seen by considering a SQUID and applying

an external magnetic field. This will set up screening currents Is which oppose the applied

field while keeping the flux threading the SQUID an integer of the flux quantum nφ0.

When the applied flux exceeds (n+ 0.5)φ0 it becomes energetically favourable for another

flux quantum to thread the SQUID thus reversing the screening current. The I − V

characteristic for a SQUID is shown in Figure 3.10 for the limiting cases of φ = nφ0 and

φ = (n+ 0.5)φ0.
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Figure 3.10: Schematic of a SQUID current-voltage characteristic for the limiting cases of

nφ0 and (n+ 0.5)φ0. The horizontal dashed line shows the location of a reasonable bias

current Ib, where there would be large variation in voltage with flux.

Generally a bias current, like that shown in Figure 3.10 of ∼ 2Ic, is applied to maximise

the amplitude of the voltage change with flux, as this is the measured quantity. Figure

3.11 shows the dependence of this voltage across the SQUID on flux.
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Figure 3.11: Schematic of a SQUID V-φ characteristic.

The voltage of the current biased SQUID is periodic in flux with a period of φ0. Flux

biasing the SQUID to a point where the slope of the V −φ characteristic is steepest means

that the SQUID can be read out directly for small signals φ << φ0. In this region the

V − φ curve is approximately linear. To measure bigger signals and to ensure stability of

the gain the SQUID is operated in flux-locked loop mode.

Flux-Locked Loop

In this work a two-stage SQUID was operated in a flux-locked loop mode (FLL). This

maintains the working point of the SQUID at the steepest point of the V − φ curve using

a feedback circuit. A simplified version of this set-up is shown in Figure 3.12. The SQUID

set-up used also had a Q-spoiler formed of a SQUID array in the flux transformer. This
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was designed to protect the SQUID electronics from high currents as it would become

resistive when the critical current was surpassed. This is omitted from Figure 3.12 as it

was not utilised in this work.

Figure 3.12: Simplified Diagram of two-stage dc-SQUID electric ciruit.

The NMR receiver coil is inductance matched and coupled to the input inductance

of the SQUID, Li = 1.8 µH, via a superconducting flux transformer. The current signal

from the NMR receiver is thus coupled to the first stage SQUID via Mi the mutual

inductance between the SQUID and the input coil. The signal from the first stage SQUID

is then amplified using the second stage SQUID, which is an array of 16 SQUIDs in

series. The second stage is connected to a room temperature differential amplifier, with

the bias voltage VB connected to the other terminal. Once the signal has gone through

the differential amplifier it is integrated to produce the output signal. The output voltage

Vout is then measured across the feedback resistor Rf . The signal is fed back, coupling

to the first stage SQUID via Mf , to hold the first stage at its working point. The bias

currents IB1 and IB2 control the two SQUID stages separately and serve the purpose of

maximising the amplitude of the v−φ characteristic as shown in Figure 3.10 and the bias

voltage Vb defines the working point.
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The low frequency gain corresponding with this circuit is related to the resistance of

the feed back resistor Rf and the mutual inductance with the SQUID Mf . This gain is

given by,

Gf =
Rf
Mf

=
Vout
φs

, (3.35)

where Vout is the voltage measured across the feedback resistor in FLL mode and φs is the

input flux to the SQUID. This is not dependent on the slope of the V − φ curve at the

working point and thus is insensitive to fluctuations in the SQUID characteristics.

3.3.3 SQUID NMR Experimental Method

Practially NMR was implemented by having our sample in a uniform magnetic field (sim-

ulations of this field gave a maximal inhomogeneity of ∆B/B ≈ 2.5 × 10−3) and then

applying a 100 kHz, 4.5 Vpk−pk transmitter pulse for four periods, to tip the magneti-

sation vector away from equilibrium. This pulse corresponds to a tipping angle of 7.2◦

for 3He and 0.38◦ for 13C. This precession was then measured using the two stage dc-

SQUID, developed by PTB [115], as outlined in Section 3.3.2. The measurement of this

precession produced an oscillating signal decreasing in amplitude over time, as described

by Equation 3.27, a free induction decay (FID). This FID was background corrected by

subtracting data from identical pulses with no helium in the cell at zero magnetic field

and at a magnetic field which meant the 3He was off resonance of the tipping pulse. This

off resonance field was found by increasing the field until the 3He Larmor frequency cor-

responded with a node in the power spectrum of the tipping pulse, the chosen node was

the first minimum at ∼ 125 kHz. A 15th order polynomial was fitted to the time domain

signal and then also subtracted from this FID to remove any residual backgrounds. This

left the background corrected time domain signal, shown in figure 3.13.
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Figure 3.13: Example of the free induction decay, the red shows the transmitter pulse and

the black is the response from the SQUID.

It is possible to fit this background corrected FID in the time domain using an expo-

nentially decaying sinusoid. Rather than doing this a fast Fourier transform (FFT) was

applied to the FID to convert the data to frequency domain, because this time domain

signal becomes a lorenztian in frequency domain and is much simpler to fit to compared

to the exponentially decaying sinusoid. Prior to the FFT the FID was truncated to re-

duce distortion caused by the recovery period of the SQUID. This truncation generally

removed the first 200 µs of data meaning the data started 180 µs after the centre of the

40 µs transmitter pulse. After the FFT the Lorentzian line shape produced is centred on

the resonant frequency ω0, as shown in Figure 3.14.
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Figure 3.14: Example of the frequency line shape after an FFT of the FID for data taken

from run 44, as discussed in the appendix.

These Lorentzian line shapes are of the form,

L2 = (Lacosθ + Ldsinθ)
2 + (−Lasinθ + Ldcosθ)2 , (3.36)

where θ is the phase angle between the adsorption La and dispersion Ld parts of the

response. The absorption and dispersion curves given by,

La =
Aδ

δ2 + (ω − ω0)2 ,

Ld =
A (ω − ω0)

δ2 + (ω − ω0)2 ,

(3.37)
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where A = M/π and δ = 1/T ∗2 . The first term in Equation 3.36 is the real part and the

second is the imaginary, thus by fitting this to the Fourier transformed data it is possible

to find the magnetisation M , the effective transverse relaxation time T ∗2 , the resonant

frequency ω0 and the phase θ of the system.

3.4 Experimental Cell

The results presented in this thesis were taken using a pre-existing SQUID NMR set

up built by Frank Arnold [112] which contained the exfoliated graphite, grafoil [116], as

the adsorption substrate. The natural progression for this set up was to increase the

coherence length of exfoliated graphite, the length of which the crystal platelets of the

exfoliated graphite can be considered atomically flat. The improvements in substrate

quality would potentially help to understand any edge effects and associated disorder on

prior results obtained with grafoil. Reduction of surface disorder is also of importance

in the search for superfluidity in two-dimensional 3He as the disorder length scale could

inhibit its formation.

Such exfoliated graphite, with increased coherence length, had been developed by Kris

Kent [117]. A new SQUID NMR cell was made using the same design as its predecessor.

We decided to replicate the successful design of the current cell with the new exfoliated

graphite, and enable the new cell to be measured in tandem with the old cell, thus providing

a direct comparison between exfoliated graphite with different coherence length scales. In

this section the experimental set-ups are described. First the NMR magnet and coil sets

are described. Then the adsorption medium is discussed, concluding with an explanation of

the preparation of two-dimensional helium films. For reference, Figure 3.15 shows a cross-

sectional schematic of the experimental setup highlighting the locations of the shielding,

coils and grafoil.
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Figure 3.15: Schematic of the experimental set up.

3.4.1 NMR Magnet, Coil Sets and Shielding

The designs for both the original and new cells was based on that made by Frank Arnold

[112] and Ben Yager [118]. The arrangement consisted of a solenoid magnet to produce

the NMR field; a pair of counter wound saddle coils used as the transmitter coil to tip

the nuclear magnetisation and a receiver coil which was small solenoid with inductance

matched to that of the SQUID input coil inductance.

Solenoid Magnet

The solenoid magnet is shown in Figure 3.16. The former for the coil was made of copper.

This was thermally grounded to the mixing chamber and also acted as a mount for the
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outer continuous Nb shield, the inner Hechtfischer shield [119] and the transmitter coil.

This copper former allowed for a solenoid of diameter 32 mm and length of 95 mm.

Figure 3.16: Image of the NMR Solenoid.

The solenoid was wound as four layers of 107 µm diameter single filament, formvar

insulated, CuNi clad, NbTi wire. The field current ratios produced by these solenoids

were 5.24 mTA−1 for the original cell as shown by the NMR measurements [112] and

6.3 ± 0.5 mTA−1 for the new cell as determined using a Hall probe located 20 mm into

the bore of the solenoid.
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Figure 3.17: Plot of the Hall resistance against current applied to the NMR magnet. The

line is a linear fit to the data points where the gradient can be converted to the field

current ratio as described in the text.

Figure 3.17 shows the measurement of the Hall resistance RH against current applied

to the magnet I, for the new cell’s NMR magnet. The Hall probe used (Toshiba THS119)

had a resistance to field ratio of RH/B = −0.237 ± 0.02 ΩmT−1. Taking the gradient

dRH/dI the field current ratio B/I is thus found using,

B

I
=
dRH

dI

(
RH

B

)−1

. (3.38)

The purpose of the Hall probe measurement was simply to ascertain whether the field

current ratio was in the correct range. It should be noted that the value was taken with

the probe which was not located in the centre of the solenoid, with the outer Nb shield
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present and the Hechtfischer shield not present. Therefore the measured field current ratio

should only be taken as a guide before future accurate NMR measurements.

Transmitter Coil

The transmitter coil consists of two counter wound saddle coils as shown in Figure 3.18.

This geometry was chosen to optimise homogeneity of the transmitter pulses as described

by Hoult and Richards [120]. The transmitter former was a cylinder of 1 mm thick stycast

1266 with an outer diameter of 26 mm. Into the walls of the cylinder, 1 mm wide and

0.5 mm deep grooves were machined for the wire to be wound in. Each saddle coil was

effectively a rectangle projected onto the transmitter former, separated 180◦ round the

cylinder from the other. The short edges of each rectangle extended for 120◦ around the

cylinder and the long edges were 38 mm in length.
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Figure 3.18: Image of the transmitter coil for the new cell.

The original cell transmitter coil was quoted as having an unshielded inductance of

83 µH and a shielded field current ratio of 0.275 mTA−1, as determined from the 3He NMR

tipping angle dependence when mounted inside the Nb and Hechtfischer shields [112]. The

requirement for the new transmitter was to match the inductance of the original. To do

this 35 turns of 120 µm multi-filament, formvar insulated, CuNi clad, NbTi wire were

wound on to each saddle coil and the inductance was measured using resonance methods

at 4 K. During winding, care was taken to ensure the two coils were counter wound so

their fields would not cancel each other out. The transmitter was placed in parallel with

different capacitors, of known capacitance, at 4 K, to form an LC-circuit and the resonant

frequency of this circuit was measured using a vector impedance meter. Then using the
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relationship between resonant frequency f , the capacitance C and the inductance L,

f =
1

2π
√
L (C + C0)

, (3.39)

the inductance of the coil can be found, where C0 must be added due to the intrinsic

capacitance in the circuit.

Figure 3.19: Graph of f−2 against capacitance of the transmitter coil put into an LC-

circuit where the capacitance is varied. The straight line shows a linear fit to the data

which can be used to find the inductance of the transmitter as described in the text.

Figure 3.19 shows the plot of f−2 against capacitance C which should be linear ac-

cording to Equation 3.39. A linear fit is shown on Figure 3.19 where the gradient is 4π2L

and a y-intercept of LC0. This fit gave C0 = 575± 6 pF corresponding with the inherent
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capacitances of the circuit and an inductance of 82.4± 0.6 µH, which matches that of the

original cell.

Receiver Coil

The receiver coil was wound directly onto the body of the Stycast 1266 cell containing

the exfoliated graphite. The main design aims for the receiver were that the inductance

had to match that of the SQUID input inductance 1.8 µH and to be uniformly wound, to

optimise signal size. The Stycast 1266 cell was an 11.8 mm × 11.8 mm × 10 mm cuboid

where the short length would correspond with the length of the receiver coil. At each end

of the 10 mm length a lip was machined to aide winding. One of the ends also contained

a backbone for thermal grounding and the fill lines, which will be discussed further in

Section 3.4.2.

To produce the required inductance of 1.8 µH 13 turns of 107 µm single filament,

formvar insulated, CuNi clad, NbTi wire were wound around the Stycast 1266 creating

a solenoid. Even spacing between the turns was ensured by initially winding 13 turns of

0.8 mm diameter teflon sleeve onto the Stycast before winding the wire between the sleeve

and GE varnishing it in place [112].

Shielding

Two types of superconducting shielding are used in the design. The first is located around

the outside of the solenoid magnet and consists of Nb tube of length 105 mm, 5 mm longer

than the NMR magnet at either end. The purpose of this shield is twofold. (i) It provides

magnet shielding from stray magnetic fields in the cryostat environment (e.g. fringe field

from the demagnetisation solenoid which changes with time during the experimental cycle).

(ii) It improves the homogeneity of the field produced by the bare solenoid. Both of

these purposes improve the sensitivity of the NMR measurements as reductions in the

homogeneity of the field would increase the spin-spin relaxation time and broaden the

Lorentzian frequency line shapes thus making the smaller signals harder to measure. By
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preventing stray fields into the system which could increase or decrease the overall field it

is possible to infer that changes in the frequency of the signals are due to the physics of

the system and not external field changes.

The second shield is based on that proposed by Hechtfischer [119]. It is located between

the transmitter coil and the copper magnet former. The purpose of this Hechtfischer shield

was to shield the copper NMR magnet former from the fields produced by the transmitter

coil. Pulsing of the NMR transmitter would induce eddy currents in the copper former,

the decay of which would significantly degrade the recovery time of the SQUID amplifier.

The shield also improves the homogeneity of the NMR field. This shield was produced

following the same method as described by Frank Arnold [112]. It was made from a

122 mm by 95 mm rectangle of 50 µm thick Nb foil, with two 5 mm thick tabs at either

end of the 122 mm length extending the width out to 120 mm. The Nb foil was then

covered by a rectangle of 25 gm−2 of glass fibre measuring 115 mm by 305 mm. The Nb

foil covered by the glass fibre was painted with a 50 : 50 mixture of stycast 1266 and 2580

and rolled into a cylinder with an outer diameter of 31 mm. Care was taken to ensure

that at the overlap of the Nb foil there was no electrical contact between the ends of the

Nb. This produced a cylinder where the Nb inside did not form a complete loop.

The purpose of this Hechtfischer shield was to shield the copper NMR magnet former

from the fields produced by the transmitter coil as well as improving the homogeneity of the

NMR field, similarly to the first shield. However achieving this through the unconnected

geometry of the Nb foil meant current loops could not be produced around the Nb as they

would have done in a tube.

3.4.2 Adsorption on Exfoliated Graphite

The main body of prior experimental work on adsorbed “helium mixture” films uses nu-

clepore as a substrate, as discussed in Section 1.1. Nuclepore filter membranes consist of

pores a few hunderd nanometres in diameter, creating a large surface area to volume ratio

for the helium to adsorb to.
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The surface of nuclepore is not atomically flat and the surface binding potential is

heterogeneous. On such substrates a solid “dead” layer of 4He must be formed before

superfluidity of a 4He film can be detected [81]. This superfluid film surface will have a

uniform chemical potential and be effectively flat. Yet due to the rough surface of the

substrate the 4He film will not be homogeneous in thickness. To the extent that the

thickness of the 4He film on which the 4He sits is a crucial parameter, determining the

spectrum of the surface states, we conclude that a substrate with an atomically flat surface

is needed.

Potentially an ideal substrate to provide a homogeneous surface would be graphene.

However as NMR is the measurement technique the issue of specific area (ratio of surface

area to mass) needs to be considered. The cell containing the adsorption material in

these experiments is roughly 1 cm3 in size due to constraints of the magnet and coil set.

Therefore, graphene appears not to be suitable as NMR needs large numbers of spins to

get a measurable signal.

The compromise is to use exfoliated graphite, which combines an atomically flat surface

with large specific area. The optimal substrate would have a large specific area and an

atomically flat surface as previously mentioned. But, in addition to this the crystalline

platelets of the graphite need to have a large coherence length, to reduce disorder effects

masking the physics of the two-dimensional helium. Furthermore the orientation of the

platelet surfaces (mosaic spread) would ideally be parallel with each other, so that they

can all be normal to the external NMR magnetic field. Furthermore, avoiding this mosaic

spread is important in NMR because of the tensor nature of the dipole interaction.

The main commercial options for a graphite substrate are Papyex [121], ZYX [122]

and Grafoil [116]. It is produced, as discussed by Dash [123], by taking natural flakes of

graphite and creating an intercalation compound by putting them in a strongly oxidizing

medium. The compound is then exfoliated by rapidly heating it and then compressed

back into a foil like material. Table 3.2 gives the properties of interest for the different

types of graphite.
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Graphite La Ls Angular Distribution Specific Area
(nm) (nm) (◦) (m2g−1)

Grafoil 40 10-20 ±15 18-30
Papyex 60 [124] 20-30 ±15 20
ZYX >300 160-220 ±5, < ±1.5 [125] 2-4

Table 3.2: Table showing the relevant properties of the different types of exfoliated
graphite. La is the Crystallite length which is the length scale of the platelets in the
plane and Ls is the coherence length, which corresponds to the length scale over which
they are atomically flat. This table is adapted from [117] where values are compiled from
[124–126].

Grafoil [116] was chosen for the original NMR cell, over the alternatives mentioned,

as ZYX has a specific area that was regarded to be too small for this initial work. The

next generation exfoliated graphite in the new NMR cell by comparison had an apparent

Scherrer size (the lower bound in size of sub-micron crystalites found from the broadening

in the diffraction pattern) of 91.3 nm this being effectively the same as La and Ls under

the assumption that the crystallites are finite, but otherwise perfect [117]. The coherence

length would therefore be of the same order as this but smaller. The equivalent length

for the grafoil in the original cell is 66 nm [117], therefore the improved size of the new

substrate is clear. The mosaic spread of the new substrate is 8.1◦ which is also an im-

provement also over the grafoil. However the specific area is only 1.58 m2g−1, which is

significantly smaller than that of the grafoil but is to be expected with such an increase

in the platelet size and improvement in the mosaic spread.

To study the adsorbed helium films on these new exfoliated graphite substrates they

had to be incorporated into an NMR cell, similar to that used for the grafoil sample.

Exfoliated graphite suffers from very poor in plane thermal conductivity. Therefore, to

thermalise the graphite to the cryostat the exfoliated graphite foils were diffusion bonded

to either side of silver foils, as shown in Figure 3.20. Fingers were made in the silver foils

to reduce the eddy current heating in them.
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Figure 3.20: Left: Exploded schematic of the exfoliated graphite and the silver foil. Right:

Image of the next generation exfoliated graphite diffusion bonded to the silver foil.

In the new set up 16 of these graphite-silver-graphite sandwiches were put into the cap

of the 1266 Stycast cell whereas the original cell contained 36. These were the maximum

amounts which could be fit into both due to differences in foil thicknesses. As shown in

Figure 3.21, these sandwiches were placed in the cell cap so that they were all parallel

within the cell and were oriented such that they will be perpendicular to the NMR field

which is itself mutually orthogonal with the axes of the receiver and transmitter coils. The

cap containing the graphite was then glued to the “backbone” with a 50:50 mixture of

Stycast 1266 and 2580. This backbone defines where the fill line and heat sink tabs run

away from the cell.
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Figure 3.21: Shown is a schematic of how the graphite was oriented in the stycast cell.

The tabs of the silver foils were in turn diffusion bonded to an annealed silver post

with a cone joint which would be attach to the coldest plate of the cryostat. An image of

the new set up prior to winding the receiver coil is shown in Figure 3.22.

Figure 3.22: Shown is an image of the stycast 1266 cell containing the graphite, which has

been glued together with a 50:50 mix of stycast 1266 and 2580. The fill line and silver

heat sink post are also visible.

3.4.3 Adsorption Potential

The helium films we study are produced by adsorption on exfoliated graphite. An overview

of 3He adsorption on graphite is given in Ref [9] and their description is summarised here.
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The attractive part of the adsorption potential arises from helium-carbon Van der Waals

forces. At short distances the interaction is repulsive, this repulsion is caused by an

overlapping of the helium and graphite electrons. This means that there is an potential

well at the surface of the graphite in which the helium are bound.

Much effort has been devoted to modelling this adsorption potential [127–132] and

reviews can be found in [133–137]. A model for the potential given by Joly et al. [138]

is shown in figure 3.23 as an example. This is the adsorption potential averaged over the

surface for a helium atom on graphite, which was used in the theoretical work of Brami

et al. [139] to investigate the low density phases of 3He on graphite. This model shows

remarkable agreement with experimental data from spectroscopy by Derry et al. [140, 141]

and thermodynamic data by Elgin et al. [142] and Cole et al. [133].
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Figure 3.23: Adsorption potential of graphite plotted aginst distance above the substrate

z as given by Joly et al. [138]. Also shown are the bound states of 3He. This graph was

taken from [9].

Shown also on Figure 3.23 are the bound states of 3He as calculated from the model

[138], which agree with experimental data of Derry et al. [140, 141]. What can be seen is

that the excited states are well separated from the ground state and thus are not relevant

in this work, below 4 K
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A simple picture of the helium films is that they form single atom thick layers, these

layers initially form as self-condensed fluid islands which grow in area with a uniform

density until they occupy the entire available area [49]. Three dimensional clustering of

atoms is prevented by a strong adsorption potential and weak helium-helium interactions.

At low helium densities there is initially a 2D fluid system, as the helium atom can freely

tunnel across the periodic potential of the graphite surface, with an effective mass ratio of

roughly 1. The larger zero point motion for 3He compared to 4He leads to the preferential

adsorption of 4He in mixture films [143–145]. This preferential adsorption was taken

advantage of in this thesis as 4He, which produces no NMR signal, was used to pre-plate

the grafoil before adding 3He.

3.4.4 Sample Preparation

Within the cell used in this work we have a total surface area available for adsorption of

∼ 12 m2. This total area is determined using a 4He vapour pressure adsorption isotherm

at 4.2 K

Since the vapour and film are in thermal equilibrium, their chemical potentials are

equal. Therefore, the vapour pressure determines the chemical potential of the film which

shows clear features as a function of 4He coverage, for example when a new layer forms.

In a 4.2 K isotherm promotion to the second layer has a clear signature as can be seen in

Figure 3.24, this point is known as the B point.
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Figure 3.24: Graph showing the pressure above the cell against the amount of 4He added

for run 46. The solid circles are the raw data and the open circles have been corrected

for the volume of still gaseous 3He. The red line is a guide to the eye to show the kink,

corresponding with monolayer completion, and the blue dashed line shows where the B-

point was taken. The B-point was 5.33± 0.02 cc STP.

The cell is carefully maintained at 4.2 K. The manifold of known volume is filled with

∼ 1.5 µmol of 4He. The pressure, Pi within the manifold is measured using a quartz

parascientific pressure gauge. The manifold was then opened to the fill line and cell and

the pressure P at the manifold was then measured again once an equilibrium had been

reached. This is then repeated to add further 4He to the cell. The pressure difference

∆P = Pi − P at the manifold is then used to calculated the amount of 4He added to

the cell via the ideal gas equation. The final equilibrium pressure after each shot is then

plotted as shown in Figure 3.24.
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The amount of 4He added had to be corrected to account for the ‘dead’ volume of

gaseous 4He between the room temperature system and the cold cell which is not in the

film. Due to the very low density we can assume the gaseous component in the ‘dead’

volume VD will be an ideal gas. Therefore the amount of adsorbed helium, Na is easily

calculable from the ideal gas equation.

Na = Nt −
PVD
kBT

, (3.40)

where Nt is the total number of 4He atoms added to the system. The ‘dead’ volume was

determined from previous experimentation during Run 38 on a similar cell, which inferred

its 4He bath level dependence. The value at STP ranged from 278 to 289 cm3.

Using this the area of the cell was found to vary from run-to-run between 11.9 and

12.5 m2. This was attributed to the opening of pockets of grafoil on thermal cycling to

room temperature. This grafoil was probably a part of a small proportion of grafoil in the

cell covered in stycast while making the cell. Then the difference in thermal expansion

between the grafoil and the stycast is enough to free some of it on thermal cycling.

In this work we take the B point of this 4.2 K 4He vapour pressure isotherm to define

the coverage scale. We take this number of atoms to correspond to a surface density of

11.4 nm−2 based on Ref [146]. All subsequent coverages are therefore determined precisely

relative to this fiducial point. This allows a precise comparison between experiments on

the same cell on different runs and also with the work of other groups who sometimes use

a different convention to define coverage scale.

The samples produced in this work were formed in the same manner as the adsorption

isotherm using the B point to define the coverage. To increase the efficiency of experi-

mentation the samples were generally measured in sequence from low coverages to high

coverages. This was because to reduce the coverage accurately all helium would have to be

removed from the cell. This would require temperatures of a few hundred kelvin, whereas

just adding more helium to system can be done while still at low temperatures.
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Once the desired amount of 3He and 4He had been added to the cell it was held with

vapour pressures above 1 mbar for a minimum of 2 hours to anneal the sample. Then

the cooling rate to base from the anneal was done no faster than 1 Khr−1 to assure film

homogeneity.
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Instabilities in Dilute Solution of

3He in 4He Films

As reviewed in Section 1.1, for low 3He coverages on sufficiently thin 4He films on a nu-

clepore substrate the group of Gasparini observed a kink in the temperature dependence

of the heat capacity, which was attributed to instabilities in their system [34]. Guyer

[43] proposed that deformations in the 4He thickness along with phase separation of the

3He could account for this observation. However subsequent NMR measurements of the

susceptibility by the group of Hallock observed no such instabilities [56]. This work only

extended down to ∼ 30 mK. In this chapter the susceptibility data for a thin atomically

layered film on grafoil is presented, down to temperatures as low as 200 µK. This suscep-

tibility data will be discussed in light of the prior heat capacity measurements performed

by our group [2, 147]

4.1 Experimental Sample

The experimental samples studied in this chapter consist of atomically layered helium

films adsorbed on a grafoil substrate, as discussed in Section 3.4.4. Figure 4.1 shows a

schematic of the two samples used. The ‘2+1’ sample, which was measured over two
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separate thermal cycles (runs) of the refrigerator, consists of 26.7 or 26.9 nm−2 of 4He

for runs 45 and 46 respectively. For both of these coverages the 4He consists of 2 solid

layers and 1 fluid layer, with the fluid layer at slightly different densities for each. The

‘2+2’ sample has 33.5 nm−2 of 4He pre-plating the grafoil, consisting of 2 solid and 2 fluid

layers. For both samples 3He is then adsorbed on to this 4He film. In summary, regions

of instabilities (behaviour not following that of a simple Fermi fluid) are observed below

1.00 nm−2 and 0.30 nm−2 for the ‘2+1’ and ‘2+2’ samples respectively.

Figure 4.1: Schematic of the two types of 4He pre-plating. The ‘2+1’ sample (left) has 2

solid layers and 1 fluid layer of 4He and instabilities occur between 0.10 and 1.20 nm−2

of 3He. The ‘2+2’ sample (right) has 2 solid layers and 2 fluid layers of 4He and the

instabilities occur between 0.10 and 0.30 nm−2 of 3He.

4.2 Susceptibility Normalisation

The acquisition of the susceptibility data has been discussed in Section 3.3.3. This gives

the susceptibility in arbitrary units. We normalise the data by the low temperature sus-

ceptibility of a non-interacting ideal Fermi gas in two dimensions χ0, as given by Equation

2.14, it is stated again here for convenience;

χ0 = µ2
n

Am

πh̄2 . (4.1)
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To ascertain a value of χ0, in terms of the measured arbitrary units, we use the high

temperature, T >> T ∗∗F , susceptibility isotherm. In this temperature range the measured

susceptibility is given by,

χ (T >> T ∗∗F ) =
C

T
=
Cn3n3

T
, (4.2)

where Cn3 is the Curie constant per unit coverage. This means that the gradient of

the isotherm should be Cn3/T where T is the temperature of the isotherm. For a non-

interacting Fermi gas at low temperatures we have,

χ0 (T << TF) =
Cn3n3

TF
=
Cn3kBm

πh̄2 , (4.3)

where TF = πh̄2

kBm
n3 is the Fermi temperature of an ideal gas. Using the gradient of the

isotherm all of the parameters in Equation 4.3 are known and thus χ0 is calculable.
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Figure 4.2: Plot of susceptibility against coverage for the linear region of the 450 mK

isotherm from run 48. This is fitted with a line which is forced through the origin, giving

a gradient of 24.64± 0.15 a.u./nm−2

Figure 4.2 shows a typical example of this normalisation procedure. Following measure-

ments of χ (T ) (0.2 to 450 mK) an isotherm is taken at 450 mK (data for run 48). Below a

3He coverage of 0.30 nm−2 the isotherm is linear, since 450 mK is still significantly above

the degeneracy temperature for these coverages. The fit to this linear relationship, shown

in blue, which is forced through the origin, gives a gradient of 24.64 ± 0.15 a.u./nm−2.

Relating this to Equation 4.2, Cn3 is thus 11090 ± 70 a.u.mK/nm−2 and therefore from

Equation 4.3 the non-interacting Fermi gas susceptibility is 22.0±0.1 a.u. Using the same

method for runs 45 and 46 we gain normalisation constants which are shown, along with

that for run 48 in Table 4.1.
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Run χ0 (a.u.)

45 22.0± 0.2
46 21.7± 0.4
48 22.0± 0.1

Table 4.1: Table of the low temperature (T << TF) susceptibility of a non-interaction two
dimensional Fermi gas in arbitrary units with respect to the experimental run.

All the values given in Table 4.1 agree within their uncertainties. The main causes

of discrepancy in the value between runs would be due to the long term gain stability of

the SQUID NMR spectrometer. From this point all susceptibility data is normalised with

respect to its corresponding χ0 value.

To recap Section 2.1.2, for a uniform two-dimensional Fermi liquid,

χ

χ0
=
m∗/m

1 + F a0
=
mH

m

1 +
F s1
2

1 + F a0
(4.4)

and,

T ∗∗F = TF
1 + F a0
m∗/m

= TF
m

mH

1 + F a0

1 +
F s1
2

, (4.5)

where χ0 is proportional to the area the system occupies. The value we normalise by

assumes that the total available areaAT is occupied and thus the equation would multiplied

be a factor of A/AT if the area A differed from AT . And where TF is proportional to the

density. Therefore, by fitting over the full temperature range we gain information on area,

density and interactions.
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4.3 Susceptibility Isotherms

Figure 4.3: 4 mK susceptibility isotherms for the ‘2+1’ sample (left) and the ‘2+2’ sample

(right) for 3He coverages below 1.2 nm−2

Figure 4.3 shows the normalised susceptibility isotherms at 4 mK. A non-interacting Fermi

gas would have a normalised susceptibility independent of coverage at a value of 1 on these

isotherms. For the interacting case a simple expectation would be that the normalised

susceptibility would increase with increasing density, reflecting the enhancement from

density dependent interactions. It is apparent that the behaviour in the ‘2+1’ sample’s

isotherm is anomalous while it may appear that for the ‘2+2’ sample the isotherm is in

keeping with the simple picture, but the temperature dependence of the susceptibility

shows this is not the case.

From the fits to the temperature dependence, described in the next section, we have

an instability region n3 < 1.00 nm−2 for the ‘2+1’ sample and n3 < 0.30 nm−2 for the

‘2+2’ sample. The rest of this chapter will discuss these regions in more detail, describing

possible fitting models for the temperature dependence of the data and their physical

interpretation. The initial discussion will focus on the ‘2+1’ sample and introduce the

analysis methods used. The ‘2+2’ sample is discussed in Section 4.5.
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4.4 ‘2+1’ Sample

In the ‘2+1’ sample four distinct regions of behaviour are observed, which we label as

regimes (a) through (d). In this section we discuss the different fitting models used in

each region before discussing possible scenarios for the physical development of the sample

with respect to 3He coverage.

4.4.1 Coverage Regime (a)

This regime covers the 3He coverage range from 0 to 0.30 nm−2. The coverages studied were

0.30 nm−2 (Run 45 4He= 26.7 nm2) and 0.10, 0.15, 0.22 nm−2 (Run 46 4He= 26.9 nm−2).

The temperature dependence of the susceptibility for these coverages are shown in Figure

4.4. The upper plot shows the data from run 45 and the lower plot show the data for run

46.
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Figure 4.4: Susceptibility temperature dependence for the 3He coverages in region (a) for

run 45 (upper) and run 46 (lower).

As shown in Figure 4.5, the 0.30 nm−2 coverage from run 45 is well fitted by a model

of a single Fermi fluid,

χ =
C√

T ∗∗F
2 + T 2

, (4.6)

as would be expected for a two dimensional Fermi liquid. In this fit the Curie constant C

was fixed to the total Curie constant of the system using the total Curie constant per unit
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coverage (see Section 4.2). This means the only free parameter in this fit was the effective

Fermi temperature, which was 126.0± 0.5 mK.

Figure 4.5: Fermi fluid fit of the 0.3 nm−2 Coverage from run 45.

However in run 46 there is a clear up turn in the low temperature data, which is

not present in the run 45 data. In run 46 the data above roughly 30 mK evolves with

temperature in a manner one would expect for a single Fermi fluid for all three coverages.

The upturn in the data only appears once the plateau in susceptibility is reached. This

suggests that there are a two components, one being a Fermi fluid and a second which

causes the upturn.
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Figure 4.6: Susceptibility temperature dependence for the helium 3He coverages in region

(a) for run 46 with a constant value removed (upper) and susceptibility temperature

dependence fitted with a Curie-Weiss term added to the single Fermi fluid model (lower).

The constants removed on the upper plot, shown in the legend, are 0.32, 0.46 and 0.78 for

the 0.10, 0.15 and 0.22 nm−2 coverages respectively.

Assuming this is the case, the upturn can be isolated by removing a constant to account

for the Fermi fluid susceptibility. This is valid as the upturn only appears to be significant

at temperatures where the susceptibility is constant i.e. when T < T ∗∗F . The upper plot of
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Figure 4.6 shows the temperature dependence of the susceptibility where a constant has

been removed for each 3He coverage. These constants were ascertained by visually finding

the susceptibility of where the plateau appeared to be. The values used were χ/χ0 = 0.32,

0.46 and 0.78 for the 0.10, 0.15 and 0.22 nm−2 coverages respectively. The figure is plotted

in log-log form with the addition of a dashed line representing 1/T behaviour. This shows

that the low temperature upturn is consistent with Curie law due to its approximate 1/T

dependence. This implies that there was a small amount of localised 3He atoms, which

comprise this second component. Therefore, a Curie-Weiss term was added to the fitting

models when applied to run 46. This Curie-Weiss term was of the form,

χ =
Ccw
T + θ

, (4.7)

where Ccw is the Curie constant and θ is the Curie-Weiss temperature.

The lower plot of Figure 4.6 shows the run 46 coverages fitted by a single Fermi fluid

model with the addition of a Curie-Weiss term. The quality of these fits helps strengthen

the idea that there is a Fermi fluid component and Curie-Weiss component. In these

fits, as with the fit to the 0.3 nm−2 coverage in run 45, the total Curie constant CT was

fixed. This means that for the run 45 coverage the only free parameter was the effective

Fermi temperature. For the run 46 coverages, the relative number of atoms in both the

Fermi liquid and the Curie-Weiss systems could be found by dividing the corresponding

Curie constant by the total Curie constant. The susceptibility at T = 0 for the Fermi

liquid system can also be calculated from C/T ∗∗F , this is effectively the same as the low

temperature χ/χ0 value, but the contribution from separate systems can be isolated. In

this case it means the Curie-Weiss behaviour which masks the low temperature Fermi

liquid susceptibility can be removed.

The parameters from theses fits are shown in Table 4.2. Using the parameters for

the Fermi fluid component the relative number of atoms Ni/NT and the susceptibility as

T → 0 can be found, where the subscript i would denote the component referenced for

104



CHAPTER 4. INSTABILITIES IN DILUTE SOLUTION OF 3HE IN 4HE FILMS

Run 4He 3He CT C T ∗∗F Ccw Θ
(nm−2) (nm−2) (a.u.) (a.u.) (mK) (a.u.) (mK)

45 26.7 0.30 151.50 151.50 126.0± 0.5 n/a n/a
46 26.9 0.10 50.50 49.8± 0.9 151.7± 3.3 0.68± 0.05 0.44± 0.06
46 26.9 0.15 75.75 75.1± 1.4 154.0± 3.1 0.68± 0.06 0.25± 0.07
46 26.9 0.22 111.10 110.7± 2.0 139.0± 1.6 0.41± 0.04 0.15± 0.05

Table 4.2: Fitting parameters for the Fermi fluid model.

example 1 or 2 for the Fermi fluids or cw for the Curie-Weiss component. This can be

done as,
Ni

NT
=

Ci
CT

,

χ

χ0
=

Ci
T ∗∗F

.

(4.8)

The subscript i denotes the fluid component, which is required for later regimes as more

Fermi fluid systems appear to be present. The plots of these derived parameters against

3He coverage are shown in Figure 4.7, along with coverage dependence of the effective

Fermi temperature. The relative number of atoms and the Curie-Weiss temperature for

the Curie-Weiss component are plotted against coverage on Figure 4.8.
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Figure 4.7: Figure showing the relationship with coverage of the relative number of atoms

(upper) dash-dot line represents the total number of atoms, the effective Fermi temper-

ature (middle) and the effective Pauli susceptibility plateaus (lower) for the Fermi fluid

component in region (a).
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Figure 4.8: Figure showing the relationship with coverage of the relative number of atoms

(upper) and the Curie-Weiss temperature (lower) for the the Curie-Weiss component of

the system.

Firstly it is clear from these plots that the amount of atoms contributing to the Curie-

Weiss term is small (< 1.5%) and thus can be treated effectively as a background to the

data. The Curie-Weiss component is discussed further in Sections 4.4.5. The Fermi liquid

system contains the vast majority of the atoms (all the atoms in run 45). The origin of

the Curie-Weiss component of the 3He is unclear. One possibility is that the addition of

further 4He causes some almost-localised behaviour of the 3He by forcing its wave-function

to locate closer to the substrate.
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Looking at the Fermi fluid component, the effective Fermi temperature is roughly

constant at ∼ 150 mK over this entire range, decreasing slightly at the highest coverages.

As the effective Fermi temperature is proportional to the interactions multiplied by the

density this suggests that the density of the system is roughly constant, assuming that the

interactions are weakly coverage dependent. It should be noted that although coverage

has units of density, density and coverage are different quantities. The coverage is the

density of the 3He assuming that the 3He covers the entire available area. The 3He may

not cover this entire area, in this case the density and the coverage would be different.

χ/χ0 increases approximately linearly and is less than 1. As this is proportional to the

area occupied multiplied by interactions, using the same assumption of weak interactions

this implies that the area occupied by the 3He is increasing with 3He coverage. Since this

value is less than 1 over the majority of the range, and 1 would correspond with a non-

interacting Fermi gas covering the entire area, the system must be occupying a fraction of

the total area available. Alternatively, disregarding the assumption of weak interactions,

χ/χ0 being less than 1 could occur if F a0 > 0 which would correspond with attractive

s-wave interactions, but this is less likely.

What is still uncertain about the system in this regime is the location of the 3He. The

two most plausible locations for 3He are either in the fluid 4He film next to the solid 4He

or on the surface of the 4He film. If the 3He was self bound next to the solid 4He surface

then m∗/m ∼ 1 and F a0 would be negative implying repulsive interactions. If the 3He was

sitting on the 4He surface then the effective mass m∗/m would be in the region between

1.3 and 1.5 meaning the density would be higher than if it was on the solid surface.

4.4.2 Coverage regime (b)

This regime covers the 3He coverage range from 0.30 to 0.60 nm−2. The coverages studied

were 0.53 nm−2 (Run 45 4He= 26.7 nm2) and 0.30, 0.35, 0.42 and 0.53 nm−2 (Run 46

4He= 26.9 nm−2).
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Figure 4.9: Susceptibility temperature dependence for the 3He coverages in region (b) for

run 45 (upper) and run 46 (lower).

Figure 4.9 shows the temperature dependence of the normalised susceptibility for the

coverages in regime (b). In this regime the 3He coverage of 0.53 nm−2 is measured in both

run 45 and 46. It is clear from Figure 4.10 that the measurements of this coverage are

consistent between runs for the majority of the temperature range. The only significant

difference is the low temperature up turn as discussed for regime (a). Therefore, it seems
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reasonable to compare the two systems directly. However, the 0.30 nm−2 3He coverage is

in separate regimes for each run. To discuss this further, the fitting for regime (b) must

first be described and shown to fit better than the previous model in the regime.

Figure 4.10: Comparison of the temperature dependence of the susceptibility for 0.53 nm−2

of 3He for runs 45 and 46 where the 4He coverage is 26.7 and 26.9 nm−2 respectively.

In regime (b) the data was best fitted by a model of two independent Fermi fluid

systems,

χ =
C1√

T ∗∗F1
2 + T 2

+
C2√

T ∗∗F2
2 + T 2

. (4.9)
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Similarly to regime (a), when fitting with this model the total Curie constant was fixed

CT = C1 +C2 (with the addition of Ccw for run 46). Shown in Figure 4.11 is the 0.53 nm−2

data from run 45 fitted with both the single (green) and two Fermi fluid models (black)

as the best example of the fitting in the regime. From this plot is clear that this data is

fitted better by the two Fermi fluid model. Fitting the run 46 coverages with the single

Fermi fluid model (again adding the Curie-Weiss component) returns fits which visually

look good. The 0.30 nm−2 3He coverage fit shown in Figure 4.12 is the exception to this

with the low temperature upturn not being fully characterised, this is rectified with the

addition of a second Fermi fluid. The single Fermi fluid fits to the other run 46 coverages in

this regime return Curie-Weiss parameters which mean the susceptibility is dominated by

this component which is not consistent with the behaviour of the Curie-Weiss component

in regime (a).
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Figure 4.11: Comparison of the single (green) and two Fermi fluid (black) fits to tempera-

ture dependence of the susceptibility for the 0.53 nm−2 3He coverage in run 45 where the

4He coverage is 26.7 nm−2. Also shown is the temperature dependence of the susceptibility

for the two components of the two Fermi fluid (dashed and dash-dot lines).
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Figure 4.12: Fit of the single Fermi fluid model to the temperature dependence of the sus-

ceptibility for the 0.30 nm−2 3He coverage in run 46 where the 4He coverage is 26.9 nm−2.

The data for run 46 in this regime is shown fitted with the two Fermi fluid model

with the Curie-Weiss component in Figures 4.13 and 4.14 along with the susceptibility

temperature dependence for each component of the fit (as is shown in Figures 4.11). This

model clearly fits all of the coverages well and the different components of the model are

in keeping with the small Curie-Weiss behaviour of regime (a) and the fit to the 0.53 nm−2

3He coverage from run 45.
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Figure 4.13: Separate plots for the 0.3 and 0.35 nm−2 3He coverages in run 46 fitted with

the two Fermi fluid model with the Curie-Weiss component. Also shown are the temper-

ature dependences of the separate components of the fit, the two Fermi fluid components

(dashed and dash-dot lines) and the Curie-Weiss component (dotted lines).
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Figure 4.14: Separate plots for the 0.42 and 0.53 nm−2 3He coverages in run 46 fitted with

the two Fermi fluid model with the Curie-Weiss component. Also shown are the temper-

ature dependences of the separate components of the fit, the two Fermi fluid components

(dashed and dash-dot lines) and the Curie-Weiss component (dotted lines).
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As mentioned the 0.30 nm−2 3He coverage is included in regimes (a) and (b) for runs 45

and 46 respectively. The data at 0.53 nm−2 shows the behaviour is consistent between runs

and higher coverages measured across both runs also show this to be the case. Therefore,

this significant difference in the temperature dependence between the two different runs,

as shown in Figure 4.15, must therefore be related to the difference in the 4He coverage.

This difference in 4He coverage is only 0.2 nm−2 and therefore the behaviour of the 3He

must be strongly influenced by the 4He coverage.

Figure 4.15: Comparison of the temperature dependence of the susceptibility for 0.30 nm−2

of 3He between runs 45 and 46 where the 4He coverage is 26.7 and 26.9 nm−2 respectively.

It is possible that the 3He in coverage regime (a) is located within the 4He film and on
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the addition of 3He a maximum solubility of the film is reached and then the 3He sits on

top of the surface of the 4He, causing the aforementioned double Fermi fluid behaviour.

The addition of 4He to this system could have the affect of reducing this finite solubility

and thus meaning the transition from regime (a) to (b) happens at a lower 3He coverage.

Therefore, the addition of 0.2 nm−2 of 4He moves the 3He coverage at which the behaviour

transitions from one regime to the other, and within the regime the two runs can be fitted

in the same manner.

An alternate possibility is related to the surface bound states. As discussed in section

1.1.1 theory by Krotscheck [31] showed that the bound states are sensitive to changes in

the 4He coverage. Therefore, it is possible that in the transition from regime (a) to (b) the

3He starts to occupy the surface bound state. The effect of the 4He would be to change

the energetics of the surface state such that the 3He would be able to start to occupy it at

lower 3He coverages. Then the double Fermi fluid behaviour would arise from some 3He

occupying the surface state and the rest not.

Figure 4.16 shows the parameters of the double Fermi fluid model plotted in the same

manner as in regime (a), the parameters are also shown in Table 4.3 and the corresponding

Curie-Weiss parameters are shown in Table 4.4.
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Figure 4.16: Figure showing the relationship with coverage of the relative number of

atoms (upper) dash-dot line represents the total number of atoms, the effective Fermi

temperature (middle) and the effective Pauli susceptibility plateaus (lower) for region (b).

The red and black symbols represent the separate components with the convention that

the black has the larger amount of atoms.

What is striking at first glance of these fitting parameters is that the effective Fermi

temperature of one of the two components is always less than 20 mK in this regime. This

shows that the low temperatures achieved in this thesis were essential to observing the
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Run 4He 3He CT C1 T ∗∗F1 C2 T ∗∗F2

(nm−2) (nm−2) (a.u.) (a.u.) (mK) (a.u.) (mK)

45 26.7 0.53 267.65 242± 2 173± 2 25.5± 0.7 15.8± 0.3
46 26.9 0.30 151.50 145± 3 127± 2 6.3± 0.7 11.2± 1.2
46 26.9 0.35 176.75 159± 3 143± 2 16.7± 0.9 15.3± 0.7
46 26.9 0.42 212.10 189± 4 149± 3 22.3± 1.3 16.8± 0.7
46 26.9 0.53 267.65 252± 5 149± 2 12.8± 0.8 14.5± 1.2

Table 4.3: Fermi fluid fitting parameters for the two Fermi fluid model.

Run 4He 3He Ccw Θ
(nm−2) (nm−2) (a.u.) (mK)

46 26.9 0.30 0.47± 1.07 0.33± 0.12
46 26.9 0.35 0.63± 1.25 0.51± 0.08
46 26.9 0.42 0.41± 1.78 0.26± 0.06
46 26.9 0.53 2.50± 1.38 3.21± 0.67

Table 4.4: Curie-Weiss fitting parameters for the two Fermi fluid model.

fuller behaviour of the system. Physically this low effective Fermi temperature implies

a low density system assuming the interactions are weak. In addition to this the Fermi

temperatures of both systems are fairly constant over the 3He coverages, which implies

similarly to regime (a), that the density is only weakly dependent on 3He coverage. What

also should be noted is that the Fermi temperature of the system represented with black

points is similar to the Fermi temperature seen in regime (a).

The relative number of atoms in each system also stays roughly constant as well mean-

ing that both accept amounts of the 3He which is being added to the system in proportion

with their density. This would rule out any finite solubility of the 4He, as if this were the

case then the 3He added to the system would solely go into one of the two systems and

this would have an increasing relative number of atoms with 3He coverage.

The χ/χ0 values of both systems appear to have increased with 3He coverage, except for

the red component in run 46. If this gradual increase is indeed the case, and again assuming

weak interactions, what appears to be happening is that there is a gradual increase in the

area both systems occupy. Furthermore the area of both systems would be approximately
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the same as the χ/χ0 values are roughly the same, since χ/χ0 is proportional to area and

interactions, and the interactions in both systems are most probably weak and of similar

size.

The physical behaviour which these parameters seems to indicate is that there are

two Fermi systems both of similar area, but one has a very low density and the other

is very high. If the low density system was an ideal Fermi gas then it would have a

density of 0.031 nm−2. These systems then share the 3He atoms which are being added

proportionally to the systems density and then grow in area equally. The location of these

two systems is harder to determine. If we assume weak interactions then it is likely that,

since both systems have a χ/χ0 of just over 1, that there are two vertically stratified

fluid systems occupying close to the total area and increasing closer to this point with the

addition of 3He. Alternatively a value of F a0 in the range −1 < F a0 < 0 would increase the

size of the plateau. Therefore, it is possible that the two Fermi fluids could be in plane.

However, this is less likely as having a system with such a value of F a0 would enhance its

effective Fermi temperature and would mean the density would have to be even lower than

0.031 nm−2 to achieve the values seen. Such a low density system likely has a very small

F a0 value.

The next highest 3He coverage measured after the 0.53 nm−2 was the 0.605 nm−2

coverage in run 46. There is a ’break’ which occurs between 0.53 and 0.605 nm−2 and

the fits to 0.605 nm−2 are more problematic. Shown in Figure 4.17 is the temperature

dependence of the susceptibility for the 0.605 nm−2 coverage fitted with both the Fermi

fluid and two Fermi fluid model. These fits do not appear too bad but they are unable to

account for the slight peak in the data around 250 mK and therefore a different model is

needed. This is discussed in more detail in the following section.
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Figure 4.17: Susceptibility temperature dependence for the 0.605 nm−2 3He coverage fitted

with both the Fermi fluid (black) and the two Fermi fluid (red) models.

4.4.3 Coverage regime (c)

This regime covers the 3He coverage range from 0.60 to 0.85 nm−2. The coverages studied

were 0.70 and 0.80 nm−2 (Run 45 4He= 26.7 nm2) and 0.605 and 0.70 nm−2 (Run 46 4He=

26.9 nm−2). The susceptibility against temperature is shown for each of these coverages

in Figure 4.18. In this coverage regime a highly anomalous temperature dependence of

the susceptibility develops. The susceptibility of the 0.605 nm−2 coverage (run 46) has a

subtle peak in the data, that appears to be slightly masked by the Curie-Weiss behaviour.
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This peak becomes more pronounced on the 0.70 nm−2 coverages (run 45 and 46) and

then becomes more subtle again as the coverage is increased to 0.80 nm−2. This data can

not be fitted by the single or two Fermi fluid models as neither can account for this peak

in the temperature dependence of the susceptibility.
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Figure 4.18: Susceptibility temperature dependence for the 3He coverages in region (c) for

run 45 (left) and run 46 (right).
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The most striking coverage in this regime is the 0.70 nm−2 coverage, which is consistent

in both runs. This, very clearly can not be modelled by the single or two independent

Fermi fluid models as they can not account for the peak in the data. To account for this

peak we developed a model which assumes there are still two Fermi fluids as seen in regime

(b) but now 3He atoms in one of the two systems form singlet dimers on cooling. Since, in

regime (b) we identified a low density component of estimated concentration ∼ 0.03 nm−2

at 0.53 nm−2, it is natural to hypothesise that dimerisation occurs in this extremely low

density component, arising from attractive interactions. These dimers contribute nothing

to the susceptibility, therefore as they form the susceptibility decreases. We take the two

Fermi fluid model, with two systems of areas A1 and A2 with N1 and N2 atoms respectively.

We assume that the areas of the two systems are independent of temperature and that the

number of atoms in each system stays constant. In system 2 (denoted by the subscript 2)

we write the temperature dependence of the effective number of atoms as:

N∗2 (T ) = N2e−
∆
T , (4.10)

where ∆ is the characteristic temperature of the dimerisation, related to the dimer binding

energy. To find the temperature dependence of the susceptibility for this dimerising system

we use the Dyugaev Fermi fluid model, as before. The Curie constant is proportional to

the effective number of atoms contributing to the susceptibility and the Curie constant

per spin Cn meaning that,

C2 (T ) = CnN
∗
2 (T ) = CnN2e−

∆
T = C2e−

∆
T . (4.11)

In contrast the effective Fermi temperature of this system is proportional to the areal

density of undimerised quasi-particles ρ∗2 (T ) = N∗2 (T ) /A2 so this means the temperature

dependence of this effective Fermi temperature is,

T ∗∗∗F2 (T ) =
πh̄2

m∗kB
(1 + F a0 ) ρ∗2 (T ) =

πh̄2

m∗kB
(1 + F a0 )

N2

A2
e−

∆
T = T ∗∗F2e−

∆
T , (4.12)
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where we assume F a0 is constant. Substituting Equation 4.11 and 4.12 into the Dyugaev

Fermi fluid model, Equation 4.6, the temperature dependence of the susceptibility is given

by,

χ2 (T )

χ0
=

C2e−
∆
T√(

T ∗∗F2e−
∆
T

)2
+ T 2

(4.13)

where C2 and T ∗∗F2 are the Curie constant and effective Fermi temperature of the system for

T >> ∆. Combining this with system 1 which follows the Dyugaev Fermi fluid behaviour

the full temperature dependence of the susceptibility for this model is,

χ (T )

χ0
=

C1√
T ∗∗F1

2 + T 2
+

C2e−
∆
T√(

T ∗∗F2e−
∆
T

)2
+ T 2

. (4.14)

Using this equation there are three different methods to fitting the data:

Fit 1. Fit to the equation with the constraint that CT = C1 + C2, as done in previous

regimes.

Fit 2. Assume that ∆ << T ∗∗F2, and fit in the same manner as 1 to the corresponding

equation.

χ (T )

χ0
=

C1√
T ∗∗F1

2 + T 2
+

C2e−
∆
T√

T ∗∗F2
2 + T 2

. (4.15)

Fit 3. Assume that T ∗∗F2 << ∆, and fit in the same manner as 1 to the corresponding

equation.

χ (T )

χ0
=

C1√
T ∗∗F1

2 + T 2
+
C2e−

∆
T

T
. (4.16)
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Figure 4.19: Susceptibility temperature dependence for the 3He coverages of 0.605 nm−2

and 0.7 nm−2 from run 45 in region (c) fitted with the dimerisation model using the three

different fitting methods stated in the text.
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Figure 4.20: Susceptibility temperature dependence for the 3He coverages of 0.7 nm−2

from run 46 and 0.8 nm−2 in region (c) fitted with the dimerisation model using the three

different fitting methods stated in the text.

Figures 4.19 and 4.20 show these three fitting methods fitted to each data set. All the

fits have roughly identical behaviour on each coverage except for on the 0.80 nm−2 3He

coverage. The susceptibility of the 0.80 nm−2 coverage has a local minima in temperature
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at roughly 15 mK and the minimum is only accounted for by fitting methods 1 and 3.

This suggest that ∆ << T ∗∗F2 is not a valid assumption at this coverage. This would be

expected for all coverages in this region as the dimerisation would require an attractive

interaction which is most likely to occur in a low density system, which would as a result

have a small effective Fermi temperature.

A comparison of the parameters from the fits for each coverage are shown in Tables

4.5, 4.6, 4.7 and 4.8. Looking at the T ∗∗F2 parameter it is obvious for both the coverages in

run 46 that this is either negligible or has a massive uncertainty meaning it is most likely

the case that ∆ >> T ∗∗F2 is true and that fit 3 is the one which should be trusted. For the

0.80 nm−2 3He coverage from run 45 fit 2 was excluded due to its inability to account for

the local minimum. Looking at the fit parameters for this coverage for fits 1 and 3 they

are very similar for both methods, and thus the large value of T ∗∗F2 must have only a small

effect on the behaviour. Therefore, fit 3 is taken as trustworthy for this coverage.

The 0.70 nm−2 coverage from run 45 is more problematic. The C1, T ∗∗F1 and C2 pa-

rameters are within uncertainty of each other for all three fitting methods. The main

difference in the parameters is that fits 1 and 3 give ∆ > T ∗∗F2 and fit 2 gives the reverse.

In these fittings fit 3 has the lowest uncertainty across all the parameters and agrees with

fit 1 which is the fit with the unapproximated equation. The large uncertainty on T ∗∗F2 in

fit one implies that this parameter is only weakly effecting the fit and therefore seems to

agree with the approximation of fit 3. Thus for all coverages fit 3 (where ∆ >> T ∗∗F2 is

assumed) seems to give the best fittings. It is the parameters from this fit which will be

used for further analysis.
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Run 46 4He: 26.9 nm−2, 3He:0.605 nm−2

Fit CT C1 T ∗∗F1 C2 T ∗∗F2 ∆

(a.u.) (a.u.) (mK) (a.u.) (mK) (mK)

Fit 1 305.525 284± 6 151± 3 18± 3 6× 10−9 ± 2× 10−15 23± 1

Fit 2 305.525 284± 6 151± 3 18± 3 5× 10−8 ± 3× 10−16 23± 1

Fit 3 305.525 283± 6 151± 3 18± 3 n/a 23± 1

Fit Ccw Θ

(a.u.) (mK)

Fit 1 2.8± 0.6 3.2± 0.5

Fit 2 2.8± 0.6 3.2± 0.5

Fit 3 2.8± 0.6 3.2± 0.5

Table 4.5: Fitting parameters for the dimerisation model fitting methods on the run 46

0.605 nm−2.

Run 46 4He: 26.9 nm−2, 3He:0.70 nm−2

Fit CT C1 T ∗∗F1 C2 T ∗∗F2 ∆

(a.u.) (a.u.) (mK) (a.u.) (mK) (mK)

Fit 1 353.5 292± 6 174± 2 61± 3 23± 120 27.9± 0.4

Fit 2 353.5 295± 6 175± 1 59± 3 0.002± 6000 28± 1

Fit 3 353.5 295± 6 175± 1 59± 2 n/a 27.8± 0.4

Fit Ccw Θ

(a.u.) (mK)

Fit 1 0.15± 0.02 0.006± 0.06

Fit 2 0.14± 0.03 −0.004± 0.07

Fit 3 0.14± 0.02 −0.004± 0.06

Table 4.6: Fitting parameters for the dimerisation model fitting methods on the run 46

0.70 nm−2.
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Run 45 4He: 26.7 nm−2, 3He:0.70 nm−2

Fit CT C1 T ∗∗F1 C2 T ∗∗F2 ∆

(a.u.) (a.u.) (mK) (a.u.) (mK) (mK)

Fit 1 353.5 300± 4 183± 1 54± 2 11± 23 28.8± 0.4

Fit 2 353.5 304± 3 186.0± 0.7 49± 1 26± 3 18.0± 0.8

Fit 3 353.5 300± 3 182.9± 0.7 53.0± 0.9 n/a 28.8± 0.3

Table 4.7: Fitting parameters for the dimerisation model fitting methods on the run 45

0.70 nm−2.

Run 45 4He: 26.7 nm−2, 3He:0.80 nm−2

Fit CT C1 T ∗∗F1 C2 T ∗∗F2 ∆

(a.u.) (a.u.) (mK) (a.u.) (mK) (mK)

Fit 1 404 77± 4 32± 2 327± 5 101± 8 86± 2

Fit 2 404 58± 4 24± 2 346± 5 129± 3 34± 3

Fit 3 404 99± 6 41± 3 305± 7 n/a 99± 2

Table 4.8: Fitting parameters for the dimerisation model fitting methods on the run 45

0.80 nm−2.

The plots showing the fits to fit 3 are replotted in Figures 4.21 and 4.22 showing also

the temperature dependence of the two separate components. The derived parameters

from fit 3 are plotted in Figure 4.23.
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Figure 4.21: Figure showing the fits of fit method 3 (black lines) to the data in region (c)

from run 46. Also shown is the temperature dependence of each component of the fitting

model.
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Figure 4.22: Figure showing the fits of fit method 3 (black lines) to the data in region (c)

from run 45. Also shown is the temperature dependence of each component of the fitting

model.
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Figure 4.23: Figure showing the relationship with coverage of the relative number of

atoms (upper) dash-dot line represents the total number of atoms, the effective Fermi

temperature (middle) and the effective Pauli susceptibility plateaus (lower) for region (c).

Blue circles are for the component which dimerises and the black are for the Fermi fluid

component.

Looking at Figure 4.23 the 0.80 nm−2 coverage seems anomalous compared to the low

coverages. Initially the non-dimerising system (black) contains most of the atoms and has

an effective Fermi temperature of roughly 150 mK in a manner continuing from regime
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(b). The dimerising system seems to arise from the low density system seen in regime (b)

as below 0.80 nm−2 it only contains a small share of the atoms. The parameters from the

0.80 nm−2 coverage however show that the dimer component contains the majority of the

atoms and the effective Fermi temperature of the non-dimerising component is low. If this

is truly the case then there appears to be a cross over between the two systems. This will

be discussed further in section 4.4.5.

Figure 4.24 shows characteristic temperature of dimerisation plotted against coverage.

What can be seen is that this temperature gradually increases between the 0.605 and

0.70 nm−2 coverages before going to what seems like an unphysically large value of 99 mK

for the 0.80 nm−2 coverage. Again this raises the question of whether this is a good

physical model for the 0.80 nm−2 coverage.
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Figure 4.24: Plot of the characteristic energy associated with dimers ∆ against 3He cov-

erage.

4.4.4 Coverage Regime (d)

This regime covers the 3He coverages above 0.85 nm−2. The coverages studied were 0.9

1.00 and 1.13 nm−2 (Run 45 4He= 26.7 nm2) and 1.00 nm−2 (Run 46 4He= 26.9 nm−2).

The susceptibility against temperature is shown for each of these coverages in Figure 4.25.

Figures 4.26 and 4.27 show this susceptibility data plotted separately along with the best

fittings of each coverage. Higher 3He coverages were measured for run 45 but are discussed

in more detail in the following chapter.
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Figure 4.25: Susceptibility temperature dependence for the 3He coverages in region (d)

for run 45 (upper) and run 46 (lower).
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Figure 4.26: Susceptibility temperature dependence plotted separately for the 0.9 and

1.0 nm−2 3He coverages in region (d) from run 45, showing fits to the Fermi fluid model,

the two Fermi fluid model or both depending on which was appropriate.
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Figure 4.27: Susceptibility temperature dependence plotted separately for the 1.13 and

1.0 nm−2 3He coverages in region (d) from run 45 and 46 respectively, showing fits to the

Fermi fluid model, the two Fermi fluid model or both depending on which was appropriate.
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As can be seen from Figures 4.26 and 4.27, the data is well fitted by the models for the

single Fermi fluid or the two Fermi fluid model. The 0.90 nm−2 is clearly best fitted by

the two Fermi fluid model as the single Fermi fluid model would not be able to account

for the step like behaviour. The 1.00 nm−2 coverage from run 46 is well fit by both the

double and single Fermi fluid models. Yet, as can be seen from the Curie-Weiss component

(black dotted line), the Curie-Weiss term is behaving in a manner one would expect from

a Fermi system, thus suggesting that the two Fermi fluid model is more appropriate. The

other two coverages of 1.00 and 1.13 nm−2 from run 45 are well fitted by single Fermi fluid

model.

This coverage regime therefore seems to have a transition from the dimerising behaviour

in regime (c) to a single Fermi fluid behaviour, via a brief two Fermi fluid period. The lower

coverages in this regime, 0.90 nm−2 for run 45 and 1.00 nm−2 for run 46, are well fitted by

the two Fermi fluid model. Again this shows the moving of the transition regions to higher

3He coverages for the different 4He coverages between runs. These fitting parameters are

presented in Tables 4.9 and 4.10 and shown in Figure 4.28 are the derived parameters for

these models. As it has been observed in previous work [2, 56] that at higher coverages

this system occupies the surface bound state it is logical therefore that the system in this

regime is transitioning to this. Therefore the highest shown coverage of 1.13 nm−2 is a

homogenous two-dimensional Fermi fluid in the surface bound state.

Run 4He 3He CT C1 T ∗∗F1 C2 T ∗∗F2

(nm−2) (nm−2) (a.u.) (a.u.) (mK) (a.u.) (mK)

45 26.7 0.90 454.5 3.5± 0.3 10.0± 0.6 451± 4 184.4± 0.6
45 26.7 1.00 505 505 191.5± 0.2 n/a n/a
45 26.7 1.13 570.65 570.65 214.3± 0.2 n/a n/a
46 26.9 1.00 505 11± 3 27± 5 494± 10 183± 2

Table 4.9: Fermi fluid fitting parameters for the two Fermi fluid model.
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Run 4He 3He Ccw Θ
(nm−2) (nm−2) (a.u.) (mK)

46 26.9 1.00 0.14± 4 0.3± 0.3

Table 4.10: Curie-Weiss fitting parameters for the two Fermi fluid model.

Figure 4.28: Figure showing the relationship with coverage of the relative number of

atoms (upper) dash-dot line represents the total number of atoms, the effective Fermi

temperature (middle) and the effective Pauli susceptibility plateaus (lower) for region (d).

A convention of giving the system with more atoms (or the long system for the single

Fermi fluid fit) black symbols and red symbols for the system with fewer atoms.
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4.4.5 ‘2+1’ Sample Summary

There are four different regimes of instabilities seen in this system. The first consists of

what appears to be self condensed liquid islands that grow with 3He coverage. The second

is a regime of two Fermi fluids coexisting. This then develops into two systems where one

of the two dimerises. Then the final regime is a transition from this dimerising behaviour

to a homogeneous two dimensional Fermi fluid in the surface state.

Figure 4.29: Figure showing the relationship with coverage of the relative number of atoms

(upper) and the Curie-Weiss temperature (lower) for the the Curie-Weiss component of

the system.

In these measurements there were two runs of the refrigerator, runs 45 and 46. In
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run 46 a Curie-Weiss term had to be added to all the fitting models to account for a

low temperature up turn. These Curie-Weiss parameters are shown plotted against 3He

coverages in Figure 4.29. For all components this system has less than 1.5% of the total

number of atoms. There is fluctuation in the parameters but this is most likely due to

how small of an effect this component has on the overall behaviour of the coverages above

0.30 nm−2. It is most likely there there is a localisation of a very small number of atoms

which is remaining relatively constant, with very similar behaviour across all coverages.

Therefore, treating this as a background seems justified.
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Figure 4.30: Figure showing the relationship with coverage of the relative number of atoms

(upper), the effective Fermi temperature (middle) and the effective Pauli susceptibility

plateaus (lower). The red and black circles represent each separate component of the

fluid, the blue circles are the dimerising system and the black stars give the sum of the

two systems. The vertical dashed black lines separate the fitting regions (a) through (d)

as described in the text.

Shown in Figure 4.30 is a compilation of all of the parameters from the different fitting

regimes against coverage. The colouring of the separate systems for each coverage has
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been chosen to help guide the eye to see the apparent development of the parameters.

The scenario for how this system develops which we propose is the following. Firstly

the 3He grows as self condensed fluid islands in the 4He film. The evidence for this is

that the effective Fermi temperature remains roughly constant meaning the density of the

system must be roughly constant. And, the χ/χ0 value increases linearly and remains

below one which suggests the occupied area is increasing. These self condensed islands

end at approximately 0.3 nm−2 which suggest this is roughly the density of the 3He in the

islands.

On increasing the coverage beyond 0.30 nm−2 the system transitions into two vertically

stratified Fermi fluids (i.e. one on top of the other). The evidence for this being the case

is that the χ/χ0 value for each system is slightly larger than one and the equivalent value

for the entire system increase in this regime to about 2.5, which seems too large for just

an interaction enhancement. One of these two systems is very low density and the other

is high density, as can be seen from the effective Fermi temperatures. We propose that

the low density system is occupying the surface bound state and the high density system

is in the film. We assert that this is the case due to the evolution of the systems with

coverage. It is known from prior work [2, 56] that at higher coverages the system is in

the surface bound state. Following the behaviour of the parameters of the surface bound

state on Figure 4.30 it can be seen that from region (d), through a cross over behaviour

in region (c), that the low density system seems to correspond with this surface bound

state in region (b). Further to this the parameters suggest that these systems occupy the

same area which is almost the total area available and they increase in area together with

increasing 3He coverage.

Reaching a coverage of 0.605 nm−2 the data suggests that the low density system has

started to form dimers at low temperature. Between 0.605 and 0.8 nm−2 the relative num-

ber of atoms in the in film (high density) system decreases and there is the corresponding

increase in the dimer (low density) system. At 0.80 nm−2 the fit gives parameters that

suggest that the dimer system now has more of the atoms than the in film system. Fur-
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thermore the effective Fermi temperature of the in film system suggests that its density is

now much lower. Therefore, there has been a cross-over from the in film system containing

the majority of the atoms to the dimer system in the surface state containing the majority.

At a coverage of 0.90 nm−2 the dimerisation appears to have stopped and the in film

system is gradually reducing in number of atoms until at around 1.13 nm−2 the surface

state contains all the 3He.

The biggest flaw with this scenario is that it rests on the fit to the 0.80 nm−2 coverage.

This fit gives a value of 99 mK for the characteristic dimerisation temperature, which

seems too large. However, if this is the case it would mean the ideal system has been

found for looking for superfluidity in two-dimensional 3He. The reason it would not have

been observed here is due to the coherence length of the superfluidity most likely being

similar to the size of the graphite platelets. This coverage regime should be investigated

further in the new experimental cell.

Conversely, if the 0.80 nm−2 were removed from this data set as the fit gave parameters

which were not possible, then there would be no evidence for cross over in the dimer region

(regime (c)). If this were the case then it would seem more likely that the low density

system in regime (b) would be located in film and the high density system would have

been in the surface state. Further to this the self condensation seen below 0.3 nm−2 would

most likely also be in the surface state. Or there could plausibly be a more complex jump

at 0.3 nm−2 where there in film, the self condensed system transitions in to the surface

state almost in its entirety, leaving some 3He in a low density in films state.

It is clear that further measurements are required especially in the vicinity of the

0.80 nm−2 coverage to see the true development of the dimer system. In addition, theoret-

ical work is needed to understand whether this observed susceptibility does indeed mean

there is dimerisation or whether it is caused by some form of in film phase separation. A

phase separation of the 3He occurring at a few tens of milikelvin could plausibly explain

a peak in the susceptibility data, further work is needed exploring this avenue.

What is abundantly clear from the data is that at approximately 1.00 nm−2 the system
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stops having instabilities. Torsional oscillator data measured previously by our group [148]

also shows a change in the behaviour for a similar 3He three system built on 26.7 nm−2 of

4He which corresponds with the ‘2+1’ sample. Figure 4.31 shows the frequency difference

between the torsional oscillator at high temperatures (well above any superfluidity) and

what it tends to at absolute zero with respect to 3He coverage. This, in effect, shows the

dependence of the superfluid fraction of the third 4He layer on the 3He coverage above.

In the coverage range of the instabilities between 0 and 1.00 nm−2 the superfluid

fraction is gradually suppressed. Then at roughly the coverage where the susceptibility

data of the 3He starts to be well described by a single Fermi fluid model 1.00 nm−2, the

superfluid fraction is restored to near its initial value.

Further increases of the 3He coverage means that the superfluid fraction again is sup-

pressed almost to zero at a coverage which corresponds with the occupation of the first

excited surface state. Further discussion of this will be found in the following chapter

when the Fermi liquid Landau parameters of the 3He are analysed.

146



CHAPTER 4. INSTABILITIES IN DILUTE SOLUTION OF 3HE IN 4HE FILMS

Figure 4.31: Torsional oscillator data showing the change in frequency of resonance be-

tween high temperatures (well above any superfluid transition) and in the limit of zero

temperature, with respect to 3He coverage on top of the 4He. This is effectively a measure

of the dependence of the superfluid fraction of the third 4He layer on 3He coverage in the

‘2+1’ sample. [148]

4.5 ‘2+2’ Sample

In the ‘2+2’ sample, where the 4He coverage is 33.5 nm−2 less exotic behaviour is observed

than in the ‘2+1’ sample. Here there only appear to be two regions of interest. The

instability region and the stable Fermi fluid region which we label as regimes (a) and (b)

respectively. Again, the fitting will be discussed in each of the regimes and then scenarios

for the physical development of the sample with 3He coverage are discussed.
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4.5.1 Coverage Regime (a)

This regime covers the 3He coverage range 0 < n3 < 0.30 nm−2. The coverages studied

were 0.10, 0.15 and 0.23 nm−2 all with 4He= 33.5 nm−2. The temperature dependence of

the susceptibility for these coverages are shown in Figure 4.32.

Figure 4.32: Susceptibility temperature dependence for the 3He coverages in region (a).

In this regime, none of these coverages can be well fitted with a single Fermi fluid

model. Figure 4.33 shows this model fitted to the data fixing the total Curie constant. It

is clear that this model can not fully characterise the behaviour.
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Figure 4.33: Susceptibility temperature dependence for the 3He coverages in region (a)

with fitted the single Fermi fluid model.

These single fits seem similar to the single fit of the 0.53 nm−2 coverage for the ‘2+1’

sample in run 45. Therefore it is logical to try fitting this regime with the two Fermi

fluid model, as shown in Figure 4.34. The two Fermi fluid model definitely fits the data

much better than the single Fermi fluid model. However, when looking at the 0.23 nm−2

coverage the fit still looks like it could be improved. The temperature dependence of

the susceptibility for this coverage has a small low temperature upturn. Looking at the

fit parameters in Table 4.11 one component of the model is trying to account solely for

this upturn. This is why there is a small discrepency between the fit and the data at

around 20 mK, which could imply that a third Fermi fluid is needed to account for the

full behaviour.
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Figure 4.34: Susceptibility temperature dependence for the 3He coverages in region (a)

with fitted the two Fermi fluid model.

Run 4He 3He CT C1 T ∗∗F1 C2 T ∗∗F2

(nm−2) (nm−2) (a.u.) (a.u.) (mK) (a.u.) (mK)

48 33.5 0.10 50.5 8.8± 0.5 10.0± 0.3 41.7± 0.5 65± 2
48 33.5 0.15 75.75 52± 2 92± 4 23± 2 22.6± 0.8
48 33.5 0.23 116.15 0.7± 0.2 2.5± 0.5 115.4± 0.6 75.6± 0.9

Table 4.11: Fermi fluid fitting parameters for the two Fermi fluid model.

The 0.23 nm−2 coverage is shown fitted to a model of three Fermi fluids in Figure 4.35.

The fit gives Curie constants of 61 ± 7, 55 ± 7 and 0.22 ± 0.04 a.u. with corresponding

effective Fermi temperatures of 147± 15, 45± 3 and 0.9± 0.1 mK respectively.
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Figure 4.35: Susceptibility temperature dependence for the 0.23 nm−2 3He coverages fitted

with the three Fermi fluid model.

The plot of the derived parameters is shown in Figure 4.36. Shown as circles are the

parameters from the two Fermi fluid model and shown as triangles are the parameters

from the three Fermi fluid fit. Using the trend in data from the 0.10 and 0.15 nm−2

across the plots it appears to be the case that the parameters from the three Fermi fluid

model are more in keeping with the trend than the two Fermi fluid model at 0.23 nm−2.

On the plots of relative number of atoms and χ/χ0 both models give parameters which

are in keeping with the behaviour of the lower coverages. However, the effective Fermi

temperature of the system represented by black symbols reduces drastically compared to

the gradually increasing trend when looking at the two Fermi fluid model. Whereas, the

parameters from the three Fermi fluid model continue the trend seen at lower coverages.
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It should be noted however that the possible trend is only being taken from two coverages

and more data would be required to make a firm statement about which fit is correct.

Figure 4.36: Figure showing the relationship with coverage of the relative number of atoms

(upper), the effective Fermi temperature (middle) and the effective Pauli susceptibility

plateaus (lower). The red and black circles represent each separate component of the two

fluid model, the red, black and green triangles represent the separate components from

the three Fermi fluid model. The black stars represent the sum of χ/χ0 for each coverage.
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4.5.2 Coverage Regime (b)

This regime covers the 3He coverage range n3 ≥ 0.30 nm−2 and will be discussed further

in the following chapter. For the purpose of this chapter however, we will discuss the 0.30,

0.40 and 0.50 nm−2 3He coverages. In this regime the susceptibility has returned to being

well fitted by the single Fermi fluid model. Figure 4.37 shows the fits to these coverage

with the parameters displayed in Table 4.12.

Figure 4.37: Susceptibility temperature dependence for the 3He coverages in region (a)

with fits to the single Fermi fluid model.

4.5.3 ‘2+2’ Sample Summary

Figure 4.38 shows the relations of the fitting parameters with coverage in the same manner

as Figure 4.30. As can be seen in Figure 4.38 the instability region ends at 0.30 nm−2.
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Run 4He 3He CT C T ∗∗F

(nm−2) (nm−2) (a.u.) (a.u.) (mK)

48 33.5 0.30 151.50 151.50 92.1± 0.4
48 33.5 0.40 202 202 115.2± 0.2
48 33.5 0.50 252.5 252.5 140.0± 0.2

Table 4.12: Fitting parameters for the Fermi fluid model.

Below 0.30 nm−2 there are only two possible types of instability observed. First for the

coverages of 0.10 and 0.15 nm−2 the temperature dependence of the susceptibility is best

fitted by the two Fermi fluid model Equation 4.9. At 0.23 nm−2 the susceptibility is well

fitted by either a model of two or three independent Fermi fluids.

The scenario for this system’s physical development we propose assumes that the

0.23 nm−2 coverage data is best fitted by the three Fermi fluid model. This is because

the parameters from this fit match the trend set by the lower coverages. Initially at low

coverages the 3He is composed of two systems which, due to the value of χ/χ0, is most

likely covering almost the entire area AT . On increasing the 3He coverage from 0.10 to

0.23 nm−2 the component represented by the black points on Figure 4.38 drops in χ/χ0,

increases in T ∗∗F and the relative number of atoms decreases. We infer from this that the

area of this component is decreasing, which causes the decrease in χ/χ0.

This decrease in area is accompanied with a reduction in the number of atoms, but

this reduction of atoms is not significant when compared to the area reduction, meaning

there is still an increase in the density causing the increase in T ∗∗F .

At 0.23 nm−2 the two components of the system which had existed at lower coverages

contain roughly the same number of atoms and are joined by a separate third component.

This third component, represented by the green point in Figure 4.38, contains 0.19±0.03 %

of the total atoms, has T ∗∗F = 0.9 ± 0.1 mK and contributes 0.25 ± 0.05 to χ/χ0. From

these parameters it is clear that this component contains nearly no atoms, but due to

its low effective Fermi temperature it still has a noticeable effect on the low temperature

susceptibility.

This third component possibly could be attributed to the occupation of the surface
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ground state which at 0.30 nm−2 would be occupied by all the atoms. To further under-

stand whether this is the case more measurements are needed between 0.2 and 0.3 nm−2

to track the development of this third component or even possibly disprove its existence.

Above 0.30 nm−2, as mentioned, the 3He can be modelled as a single Fermi fluid which

would correspond with the 3He occupying the surface ground state. Similarly to the ‘2+1’

sample this will be discussed in detail in the following chapter.
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Figure 4.38: Figure showing the relationship with coverage of the relative number of atoms

(upper), the effective Fermi temperature (middle) and the effective Pauli susceptibility

plateaus (lower). The red and black represent each separate component of the fluid. The

triangles represent the parameters from the three Fermi fluid fit. The vertical dashed

black lines separate the fitting regions (a) and (b) as described in the text.
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4.6 Comparison and Summary of ‘2+1’ and ‘2+2’ Samples

In summary the 3He instabilities we propose for the ‘2+1’ sample extend from 0 to

1.00 nm−2 and exhibit a variety of different behaviour. Over this coverage region we

have inferred from our models that the system goes from self condensed fluid islands, to

two stratified Fermi systems, to two Fermi fluid systems where one component dimerises.

There is then a cross over in density of the dimerising and non-dimerising components,

before the system reaches a point where it occupies the surface ground state and the

instabilities end. All this behaviour was observed by just adding 3He to the system.

The ‘2+2’ sample, which has a thicker 4He film, has a narrower range of instabilities,

from 0 to 0.30 nm−2. The instabilities suggested from our models for this system show

two Fermi fluids at coverages below 0.23 nm−2 and then three Fermi fluid components at

0.23 nm−2 before the system occupies the surface ground state at 0.30 nm−2.

Qualitatively what has been observed are instabilities which occur below a critical 3He

coverage. This critical coverage appears to depend on the amount of 4He layers the grafoil

has been pre-plated with. A simplistic picture to explain this is that on adding more 4He

layers to the sample the 3He feels a weaker potential from the grafoil substrate as it is

physically further away and this would lead to fewer instabilities in the system.

This qualitative picture agrees with the previous work by the group of Gasparini [34],

who also saw instabilities for dilute solutions of 3He on thin 4He films but not thick 4He

films. Our models which observe multiple 3He systems agree with what was suggested by

Guyer [43] but similarly to the measurements by Gasparini’s group we are not sensitive to

small deformations of 4He. Yet, by comparing this data with the torsional oscillator data,

taken by our group [148], it is clear that the 4He beneath is also undergoing changes in

the same regions of 3He coverage.

The 40 mK isotherm for this sample also qualitatively matches that given by the group

of Hallock [56]. This means that similar effects may have been seen by Hallock’s group if

they had gone to lower temperatures.

The proposed models rely heavily on the assumption that multiple Fermi fluid systems
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can exist in close proximity and remain independent of each other. This assumption is

reasonable for a first approximation as the interaction of the fluids would most likely have

a weak temperature dependence. The work of Krotscheck [31] finds theoretically that a

lateral separation of high and low density 3He areas is possible and is strongly dependent

on the 4He thickness, further supporting the assumption. This is also in agreement with

the measurements by the group of Gasparini [34] and the analysis by Guyer [43]. However,

most relevant to this qualitative analysis is the proposal by Pavloff and Treiner [26] that

multiple different surface states can be accommodated by the 4He film. Moreover, they

propose that one of these states locates close to the substrate, but in their work, they use

a substrate potential, which they state, is twice less attractive than graphite. It is clear

further theoretical work is needed to assess the presented models.

158



Chapter 5

3He Surface States on 4He films

Surface states, analogous to those proposed by Andreev on bulk 4He, have previously been

observed for dilute solutions of 3He in 4He films [1, 2, 20, 56]. In this chapter susceptibility

measurements combined with previous heat capacity data will be presented with analysis

showing back scattering dominating in the ground surface state built on 2 solid and 2 fluid

4He layers. Results for 3He occupying the excited surface states will also be discussed.

5.1 Experimental Sample

The 4He pre-plating for the samples used in this chapter are the same as the two used

for the instability measurements in chapter 4. Here we look at 3He coverages above the

instability regions of both samples. For the ‘2+1’ and the ‘2+2’ samples 3He coverages

were investigated from 1.00 to 7.00 nm−2 and 0.30 to 14.00 nm−2 respectively. This is

shown schematically in Figure 5.1.
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Figure 5.1: Schematic of the two types of 4He pre-plating. The ‘2+1’ sample (left) has 2

solid layers and 1 fluid layer of 4He and between 1.00 and 7.00 nm−2 of 3He. The ‘2+2’

(right) 2 solid layers and 2 fluid layers of 4He and between 0.30 and 14.00 nm−2 of 3He.

In addition to this at a 3He coverage of 7.00 nm−2 the 4He coverage was incrementally

increased from 26.7 nm−2 to 33.50 nm−2 which corresponds with going from the ‘2+1’

sample to the ‘2+2’ sample.

5.2 Fermi Liquid Interactions in the Ground Surface State

In both samples, once enough 3He has been added and the instability regions described

in the previous chapter have been past, the system forms a 2D Fermi fluid occupying the

ground surface state, as laid out in section 1.1.1. This system is ideal for probing the

Landau Fermi liquid parameters described in section 2.1.2.

5.2.1 Susceptibility Temperature Dependence

At 3He coverages above the instability region, as previously mentioned, the system behaves

again as an ideal homogeneous Fermi fluid. This means that the susceptibility has an

inverse proportionality with temperature when T >> TF and is constant when T <<

TF. Furthermore, the temperature dependence of the susceptibility is well fitted by the

Dyugaev Fermi fluid model as laid out in section 2.1.3.
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Figure 5.2: Plots of susceptibility temperature relations in the ‘2+1’ (upper) and ‘2+2’

(lower) samples for a range of 3He coverages.
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Shown in Figure 5.2 is the susceptibility temperature dependence of the 3He in the

ground surface state for the ‘2+1’ (upper) and the ‘2+2’ (lower) samples. These depen-

dences are shown for 3He coverages in the ranges 1.00− 4.00 nm−2 and 0.30− 1.00 nm−2

for the ‘2+1’ and the ‘2+2’ samples respectively.

The coverages above 1.00 nm−2 are not shown for the ‘2+2’ sample as the data taken

was affected by the NMR pulse rate. Shown in Figure 5.3 is the susceptibility temperature

relationship of the 2.00nm−2 3He coverage on the ‘2+2’ sample, which is representative of

all the coverages above 1.00 nm−2.
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Figure 5.3: A graph of the susceptibility against temperature for the 2.00 nm−2 3He

coverage on the ‘2+2’ sample. There is a distinct peak and drop in the susceptibility

shown by the majority of the points but there are some clear exceptions to this trend

sitting roughly level in susceptibility with the peak. This difference is due to the differences

in pulse rate between the data points as explained in the text.

On the plot, in Figure 5.3, the data follows the expected 1/T relationship at high

temperatures. As the temperature is lowered the majority of the data show a peak in the

susceptibility and then there is a gradual reduction in the susceptibility as the temperature

is lowered further.

In contrast to the majority of the behaviour though there are a number of points which

sit above this behaviour. The difference between these point and the majority of the data

is the NMR pulse rate. This therefore implies that the spin-lattice (T1) relaxation time
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has increased and therefore magnetisation does not have enough time between the pulses

to relax back to equilibrium.

To understand why a pulse rate that is too fast would reduce the measured susceptibility

we start by considering the magnetisation along the direction of the external field, which

as in section 3.3.1 will be defined at the z direction. The reduction in magnetisation in

the z direction due to a pulse which tips the magnetisation vector away from the z axis

by an angle θ is found using simple trigonometry to be,

∆Mz = Mz (1− cos θ) . (5.1)

Therefore for r pulses per second the rate of loss of magnetisation is,

Ṁz = −Mz

τ
, (5.2)

where we define τ = [r (1− cos θ)]−1. Adding this to the Bloch Equation 3.25 (c) it can

be seen that,

Ṁz = γ|M×B|z +
M ′ (∞)−Mz

T ′1
, (5.3)

where,
1

T ′1
=

1

T1

(
1 +

T1

τ

)
,

M ′ (∞) =
M (∞)

1 + T1
τ

.

(5.4)

From Equation 5.4 it is clear that the equilibrium magnetisation would be reduced if the

pulse rate was increased [149].

From pulse rate checks, where the susceptibility was measured for different pulse rates

at 6 mK for each coverage, the magnetisation is at its equilibrium, within measurement

uncertainty, for a pulse rate of 1/30 Hz. This means the points sitting above the majority

of the data on Figure 5.3, which were taken using this pulse rate, are indicative of the

Pauli plateau susceptibility. As the analysis done for this sample required this plateau

value, the average of the lowest temperature points with the 1/30 Hz pulse rate was used
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to give the value for the analysis.

5.2.2 Effective Mass

Using heat capacity measurements it is possible to determine robustly the effective mass

m∗ from Equation 2.43, which is restated here for convenience,

Cv =
πkBAm

∗

3h̄2 T. (5.5)

Figure 5.4: Shown are the effective mass data for the ‘2+1’ (blue) and ‘2+2’ (green)

systems plotted against 3He coverage. Also shown are the associated fits for both the AK

(solid lines) and HF (dashed lines) models. The data is taken from the work of Dann et

al. [1, 2].
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The plot in Figure 5.4 shows the effective mass found in this manner by Dann et al.

[1, 2] for equivalent systems to those presented in this chapter; meaning the data is directly

comparable. In two dimensions the effective mass is related to the Landau Fermi liquid

parameters by Equation 2.31, for a Galilean-invariant system using the real basis. As

mixture films are not Galilean-invariant F s1 gives the enhancement over the hydrodynamic

mass,

m∗ = mH

(
1 +

F s1
2

)
, (5.6)

As discussed in section 2.1.2 there are two relevant models for ascertaining the Landau

Fermi liquid parameters, the AK and the HF models.

First considering the AK model, by combining Equations 2.27, 2.30(c) and 5.6 the

effective mass can be shown to be,

m

m∗
=

m

mH
− 2(

ln
(
nAK
n

))2 , (5.7)

where the term inside the logarithm is converted to have a coverage dependence using

nAK = Eam∗

2πh̄2 , as this is the independent variable in this experiment. The fit to this

Equation is shown by the solid lines in Figure 5.4.

For the HF model, Equations 2.41(c) and 5.6 combine to give the effective mass as,

m

m∗
=

m

mH
− n

nHF
, (5.8)

where nHF = h̄2

mλ and kF =
√

2πn. Again the fits to this Equation are shown in Figure

5.4, represented by the dashed lines.

The main difference which can be seen between the fits on Figure 5.4 is the the hook

down at low coverages for the AK model which does not occur for the HF model. The fit

parameters of the two models for both systems are shown in Table 5.2.2.
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System Model mH/m nAK(HF) (nm−2)

‘2+1’ AK 1.35± 0.03 48± 4

HF 1.50± 0.04 16± 1

‘2+2’ AK 1.40± 0.03 108± 20

HF 1.52± 0.02 30± 3

Table 5.1: Table showing the fitting parameters from the AK and HF models on the

effective mass data for both the ‘2+1’ and ‘2+2’ systems.

5.2.3 F a
0 Landau Parameter

The measurements of χ/χ0 mean that F a0 can also be determined by using Equation 2.45

which we restate here for convenience,

χ

χ0
=
m∗/m

1 + F a0
. (5.9)

To do this it was assumed that the lowest temperature points in the susceptibility gave

the most accurate measurement of the Pauli susceptibility plateau value, thus the χ/χ0

values for each coverage are taken as the average of the points at the lowest temperature,

as discussed in section 5.2.1

In addition to this, it is possible to calculate a value of F a0 from both the AK and HF

models using the fitting parameters from the effective mass. Doing this means that the

validity of the models for these systems can be probed.

For the AK model F a0 is given by Equation 2.30(b). This is given in terms of the

expansion parameter g which is known from Equation 2.27. Therefore F a0 is related to

density in the AK model by,

F a0 =
m∗

m

(
−2

ln
(
nAK
n

) +
4ln2

ln
(
nAK
n

)2
)
. (5.10)

For the HF model F a0 is given in Equation 2.41(b) and, similarly to the effective mass for
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the HF model, this can be related to density using kF =
√

2πn,

F a0 = −m
∗

m

(
α+

2n

nHF

)
. (5.11)

where we define α = mv (0) /2πh̄2.

Figure 5.5: Plot of F a0 against coverage for both the ‘2+1’ (blue) and ‘2+2’ (green) samples.

The data points are found using the susceptibility data and interpolating an effective mass

from either the HF (solid circles) or the AK (open circles) models. The solid lines represent

the calculation from the AK model from the fit parameters to the effective mass and the

dashed line is the equivalent for the HF model. The HF model calculation for ‘2+1’ is not

shown for the reasoning given in the text.

Figure 5.5 shows the comparison of the data with the calculations from these models.
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F a0 has been calculated from the susceptibility data by using the fit of the effective mass

in Figure 5.4 as an interpolation function, where the open circles use the AK model and

the solid circles use the HF model. There is no significant difference between the different

methods of interpolating the effective mass data.

The solid lines are the coverage dependence of F a0 calculated from the AK model.

Clearly this is insufficient to explain the data from either system. By contrast the dashed

line, which shows the prediction from the HF model where α was taken to be 0.06, agrees

relatively well with the ‘2+2’ sample.

This value of 0.06 was chosen by looking at the plot in terms of m
m∗F

a
0 against coverage.

Simply manipulating Equation 5.11 shows that the HF model predicts a straight line in

these coordinates with an intercept of α and a gradient of 2/nHF. This is plotted in Figure

5.6 and the data appears to be roughly linear with an intercept of ∼ 0.06. By contrast

the prediction of the gradient for the ‘2+1’ system is vastly different to the data, thus it is

clear that this model can not explain the ‘2+1’ system, which is why the prediction from

the HF model was neglected on Figure 5.5.
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Figure 5.6: Shown is the plot of m
m∗F

a
0 against 3He coverage for the ‘2+1’ (blue) and

the ‘2+2’ (green) sample. The data points are calculated by combining the susceptibility

data with the interpolation of the effective mass from either the HF (solid circles) or the

AK (open cirlces) models. The dashed lines represent the calculation from the HF model

where α = 0.06 has been chosen and nHF was taken from the HF model fit to the effective

mass.

Since neither model can explain the data from the ‘2+1’ sample from this point we will

focus solely on the ‘2+2’ sample. The ‘2+1’ sample will be revisited in section 5.3.1, with

a qualitative description of why these models fail to describe its behaviour.

From these models it would be reasonable to say that the HF model provides a good

fit for the data, but at low coverages there is an indication that F a0 is going to zero as the

coverage goes to zero. This behaviour of F a0 would be accounted for in the logarithmic
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behaviour of the AK model but no parameters can match this model to the data, this

behaviour will be scrutinised further in section 5.2.5.

5.2.4 Relative Behaviour of F s
1 and F a

0

Obtaining F s1 is much simpler than F a0 as it is directly related to the effective mass,

as shown in Equation 5.6. Since it has been established in the previous section that

the HF model provides a better fit to both the effective mass and F a0 , there are two

methods of determining F s1 for the ‘2+2’ sample. First it is possible to get five data points

corresponding with the five coverages where there are heat capacity data and taking the

hydrodynamic mass from the HF model fit to the effective mass. Alternatively a continuous

plot of F s1 can be made by combining Equations 5.6 and 5.8 to get,

F s1 = 2

[(
1− mH

m

n

nHF

)−1

− 1

]
, (5.12)

and then substituting the appropriate fit parameters from Table 5.2.2.
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Figure 5.7: Plot of F s1 against 3He coverage for the ‘2+2’ sample. The data points with

associated error bars are calculated from the coverages where there are heat capacity data.

The green region is calculated from the HF model where the size of the region is due to

the uncertainties on the fit parameters given by the effective mass fit.

Figure 5.7 shows both F s1 calculated directly from the effective mass data with their

associated error bars and the region where the HF model fit parameters, from Table 5.2.2,

predict F s1 should be. The agreement is to be expected as this plot is effectively a replotting

of Figure 5.4 in different coordinates, where the fit in Figure 5.4 is translated into a region

governed by the uncertainty in the fit parameters. Yet finding F s1 is instructive because

in the HF model it can be shown from Equations 2.41(b) and (c) that,

−F a0 =
m∗

m
α+ F s1 . (5.13)
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Therefore a plot of m
m∗F

a
0 against m

m∗F
s
1 should be a straight line with gradient −1 and

intercept α.

Figure 5.8: Shown is a plot of m/m∗F s1 against m/m∗F a0 . The solid circles take the

F s1 value calculated using the HF model fit to the effective mass. The open circles are

calculated from where there is both susceptibility and heat capacity data with mH taken

from the HF model fit to the effective mass.

Figure 5.8 shows the plot of m
m∗F

a
0 against m

m∗F
s
1 where the open circles represent the

‘real’ data. This was taken from the densities where there are both heat capacity and

susceptibility data, meaning the only unknown parameter to make this plot is mH which

was taken from the HF model fit to the effective mass. Conversely the solid circles are

calculated from the interpolation of the effective mass from the HF model. The dashed

line represents the desired relationship from Equation 5.13 where α has been chosen to
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be 0.06 as it was in the earlier analysis. This further confirms the suitability of the HF

model for describing this data.

5.2.5 Chubukov Sokol Model

As previously mentioned in section 2.1.2 it is possible to show that the HF and AK models

are equivalent when AK is taken to just first order in s-wave scattering and HF is limited to

just s-wave. The renormalisation by Chubukov [72] gave v (0) in terms of n and nAK from

the AK model. Using this potential given in Equation 2.42 and the Landau parameters

from the HF model, Equation 2.41, Chubukov and Sokol [69] give the Landau parameters

to be essentially,

F s0 = 2
m∗

m

(
1

ln
(
nAK
n

) +
n

nHF

)
,

F a0 = −2
m∗

m

(
1

ln
(
nAK
n

) +
n

nHF

)
,

F s1 = 2
m∗

m

n

nHF
,

F a1 = 2
m∗

m

n

nHF
.

(5.14)

From this point this model will be referred to as the CS model. The key feature of

this model is that it predicts an F a0 Landau parameter that goes to zero with decreasing

coverage, as was hinted by the data in Figure 5.5. F a0 calculated from the CS model is

plotted with the data in Figure 5.9.
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Figure 5.9: A plot of F a0 against coverage where the data points are calculated using the

HF model fit to the effective mass. The solid line represents the calculation from the HF

model and the dash-dot line corresponds with the fit to the CS model.

The calculated line from the CS model (dash-dot line) corresponds to nHF = 30 nm−2

(taken from the fit to the effective mass) and nAK ≈ 10 mm−2 (1013 nm−2). The CS

model is similar to that of the HF model shown by the solid line. This would be expected

as the nHF parameter is taken to be the same as for the HF model. As well as this the

logarithmic term does not have any significant effect on the result until very low coverages

due to the non-physical value of nAK. Due to the non-physical size of this parameter this

model is not consistent with the measured data.
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5.2.6 Back Scattering

In summary the effective mass data taken from the heat capacity measurements are con-

sistent with both the HF and AK models. However the fit parameters for the AK model

mean that the perturbation theory is not valid due to the small parameter g being 0.3 at

the highest coverages measured.

The AK model is not compatible when taking both the heat capacity and susceptibility

measurements into account as it is unable to fit the F a0 data. The HF model on the other

hand is still reasonably consistent with the data. The problem with the HF model is

that the F a0 data indicates that it is going to zero with decreasing coverage which is not

accounted for by the HF model. The CS model does however account for this tendency

towards going to zero with coverage but with an up turn that does not match that seen

in the data. Furthermore it gives nAK to be non-physically large.

What seems to be the case is that v (0) is small as can be seen from the smallness of α.

Thus its contribution to the s-wave scattering amplitude is also small. Hence it appears

that the s-wave and p-wave scattering amplitudes arise from the λ term in the potential

expansion, Equation 2.38, and are roughly equivalent and opposite.

Looking more closely at the HF model the coefficients of the power series expansion in

Equation 2.38 can be given as,

v (0) =
2πh̄2

m
α,

λ =
h̄2

m

1

nHF
.

(5.15)

From this the potential v(k− k′) can be expressed as,

v
(
k− k′

)
=

2πh̄2

m

(
α+

1

2π

|k− k′|2

nHF

)
. (5.16)

Using Equation 2.39 this can be written as,

v
(
k− k′

)
=

2πh̄2

m

(
α+

2n

nHF
(1− cos θ)

)
. (5.17)
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The angular dependence of this equation is shown in polar coordinates in Figure 5.10

for the different coverages measured in this experiment. The parameters were taken as

α = 0.06 and nHF = 30 nm−2 as determined in the preceding sections.

Figure 5.10: Shown is the angular dependence on the magnitude of v (k− k′) for the

coverages of 3He measured.

In the Born approximation the scattering amplitude is proportional to v (k− k′). Look-

ing at Figure 5.10 the potential is dominated by back scattering and, since the Born

approximation is used, so are the scattering amplitudes.

5.3 Excited Surface States

Above ∼ 4 nm−2 the 3He starts to occupy the first excited surface state. The occupation

of the excited state and ground state means the density of states roughly doubles from

when just the ground state was occupied. This is due to the doubling of the occupied
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area as can be seen from Equation 2.6. Furthermore doubling the density of states causes

a doubling of χ/χ0 and γ. This produces a step in the coverage dependence of these

parameters, which has previously been measured by Higley et al. [56] and Dann et al.

[1, 2] respectively.

5.3.1 Almost-Localised 3He in Thin 4He Films

In the experiments presented here, the ‘2+1’ sample shows a dramatic upturn in the

susceptibility at low temperatures, as shown in Figure 5.11.

Figure 5.11: Susceptibility against temperature for the ‘2+1’ sample between 3He cover-

ages of 3.00 and 7.00 nm−2. Shown is the large low temperature upturn occurring around

promotion to the first excited surface state.

The upturn is most likely due to the wave-function of the 3He in the excited state
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extending towards the substrate, and thus the 3He is localised for part of its life time.

This incipient tendency to localise on approaching 4-5 nm−2 influences the correlations,

evidence for this can be seen both in the torsional oscillator data from our group [148] and

in the behaviour of m
m∗F

a
0 with respect to 3He coverage.

In the torsional oscillator data shown in Figure 4.31 between 1.00 and 4.00 nm−2 the

frequency difference between the high temperature and zero temperature limits drops.

This frequency difference is representative of the superfluid fraction of the third 4He layer

and thus the superfluidity is being suppressed on approaching the first excited surface

state. This superfluid suppression can be interpreted, in the light of the almost localised

behaviour at higher coverages, as the wave-function of the 3He overlapping more and more

with the 4He beneath.

The behaviour of m
m∗F

a
0 with respect to 3He coverage, shown in Figure 5.12, shows

evidence of the correlations influence as it is roughly constant at a value corresponding

with the almost localised Fermi fluid model. Whereas, the naive expectation would be

that this system would be similar to that of the ‘2+2’ sample.
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Figure 5.12: m/m∗F a0 against coverage for the 2+1 sample, where the data points were

calculate using the HF model fit to the effective mass as an interpolation function.

All this makes the understanding of the interactions in the ground state far more

complicated than in the ‘2+2’ sample, meaning the AK and HF models are not sufficient

to describe its behaviour. Furthermore the upturn means the Landau parameters can not

be analysed above the 4.00 nm−2 coverage.

However; on the addition of 4He up to the coverage of the ‘2+2’ sample, 33.5 nm−2,

the upturn is suppressed back to what would be expected from a fluid system, shown in

Figure 5.13. This means that the Landau parameters can be investigated for the excited

states of this sample, as will be discussed in the following section.
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Figure 5.13: Susceptibility against temperature plot of a 3He coverage of 7.00 nm−2 for

a range of 4He coverages between the ‘2+1’ sample 26.67 nm−2 and the ‘2+2’ sample

33.50 nm−2. Shown is the suppression of the large low temperature upturn with increasing

4He coverage.

Previous theoretical work on helium films on nuclepore by Krotscheck et al. [31] and

Pavloff et al. [26] has shown that location of the 3He wave-function normal to the substrate

is very sensitive to the amount of 4He pre-plating. The ground state wave-function can

go from being located in the 4He to being above the 4He. Therefore it is not too much

of a leap to suggest that in this system on grafoil that the addition of 4He has moved the

wave-function away from the localisation potential of the grafoil.
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5.3.2 F a
0 in Excited States

The occupation of excited states, in the 2+ 2 sample, manifests itself as steps in the 4 mK

susceptibility isotherm, Figure 5.14, as expected from the theory.

Figure 5.14: 4 mK susceptibility isotherm showing the steps occurring at promotion to

successive excited surface states.

The coverage dependence of F a0 can be found, as it was in section 5.2, by combining the

low temperature susceptibility plateau value with the previous heat capacity data, Figure

5.15.
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Figure 5.15: F a0 against coverage over the promotion to excited surface states. Green

points are data from this work and the black point are from the work of Lusher et al.

[150] for 3He on grafoil pre-plated with a single solid layer of 4He.

On increasing the 3He coverage F a0 becomes more negative until in the vicinity of the

step. In the step region F a0 returns to a value closer to zero, and on leaving the region

it again becomes more negative with increasing coverage. Similar behaviour to the step

region is expected to occur between 9 and 10 nm−2 where promotion to the next excited

surface state should occur.

Also shown on Figure 5.15 is data measured by Lusher et al. [150] for 3He on grafoil pre-

plated with a single solid layer of 4He. This data shows a similar discontinuity occurring

around the occupation of the excited surface state. It is therefore clear that our data

is consistent with previous work. This discontinuity implies a reduction in the strength

183



CHAPTER 5. 3HE SURFACE STATES ON 4HE FILMS

of repulsive interactions as the excited surface state is occupied. If there are minimal

interactions between atoms in the different surface states and because the density of atoms

in each state would be lower than what it would be if there were less available states, then

its logical to think there would be weaker interactions. Further theoretical work is needed

to test this suggestions and fully understand the significance of this discontinuity.
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Chapter 6

Conclusions and Outlook

In this chapter a summary of the results of this thesis is presented with reference to the

initial aims of the thesis laid out in the introduction. Finally an outlook to the future is

given with suggestions for further experimentation.

6.1 Summary

In chapter 4 instabilities were shown to occur in 3He-4He mixture films. The range of these

instabilities in 3He spanned from zero coverage to some critical coverage where the system

became a homogeneous two dimensional Fermi fluid occupying the ground surface state.

This critical coverage was found to be dependent on the 4He pre-plating of the grafoil and

dropped from approximately 1.00 nm−2 for a pre-plating of 2 solid and 1 fluid 4He layers

to approximately 0.30 nm−2 for a pre-plating of 2 solid and 2 fluid layers of 4He. This

is in agreement with the work of Gasparini [34], whom also measured instabilities at low

3He coverages on thin 4He films which disappeared on thicker 4He films and at higher 3He

coverages. In addition to this the data also agrees with the work of Hallock [56] as our

40 mK isotherm is qualitatively the same as theirs and shows no indication of the exotic

behaviour seen at lower temperatures in susceptibility. This work therefore reconciles the

problems between the groups of Hallock and Gasparini as to whether the instabilities were
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present or not.

In addition to this the transition from a system with instabilities to a stable homo-

geneous two dimensional Fermi fluid in the ‘2+1’ system at 1.00 nm−2 coincides with a

discontinuity in the superfluid fraction of the superfluid 4He as measured previously by

this group [148].

Also in chapter 4 an analysis of the physical behaviour of the instabilities was presented.

For the 3He on 2 solid and 1 fluid 4He layers the system develops in 3He coverage as follows.

Initially there is self condensed fluid growing in area and most likely locating within the

4He film occurring between 0 and 0.3 nm−2. This then progresses into what seems to

be two vertically stratified fluid systems in the coverage region 0.3 to 0.6 nm−2. One of

these systems has a very small density (of order 0.03 nm−2) and is most likely occupying

the surface state, the other system has a much higher density and is probably located

in the film, as inferred from the evolution of the fitting parameters. Theses systems

appear to occupy almost the entire available area and grow slightly with the addition

of further 3He. On reaching a coverage of 0.605 nm−2 the data suggest the system still

has two Fermi fluid components but in lower density component of these there is the

formation of singlet dimers. On increasing the 3He coverage there appears to be a crossover

where the dimerising component starts to contain the majority of the 3He atoms and the

characteristic temperature of the dimerisation increases to 99± 2 mK. Then between 0.90

and 1.00 nm−2 the system transitions through a two Fermi fluid system to a homogeneous

two dimensional Fermi fluid located in the surface state. This physical scenario does

however rest quite heavily on the fitting of the 0.80 nm−2 and clearly more data is need in

this coverage region to fully characterise the behaviour of the system. If the dimerisation

model does hold to be the case on further measurement this system would be an ideal place

to start looking for two dimensional superfluid 3He on the new cell using the graphite with

the larger platelet sizes.

The physical development of the ‘2+2’ sample with 3He coverage is however much more

simple. Below 0.3 nm−2 there are instabilities which at the lowest coverages measured (0.1
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and 0.15 nm−2) manifest as two Fermi fluids. These two fluids appear to be separated

in plane and thus occupying the total area of the cell. On increasing the 3He coverage

between 0.1 and 0.15 −2 one of the components drops in area and relative number of

atoms while the other increases in both. In both components we observed an increase in

the density. Then at 0.23 nm−2 we infer from the trends in the data that there are three

Fermi fluids one which is very small compared to the other two which continue the trend

of the lower coverages. Above 0.3 nm−2 the system appears to be a homogeneous two

dimensional Fermi fluid located in the surface state.

In chapter 5 the behaviour of the 3He in the surface states was investigated. It was

shown for the ‘2+2’ sample that when combining the susceptibility data taken for this

thesis with the previously measured heat capacity data to gain values for F a0 and F s1 , the

AK model was not compatible, the HF model was consistent with the data and the CS

model was unable to match the trend in the data and gave non-physically large parameters.

It was concluded thus from the HF model that the potential was dominated by back

scattering.

By contrast these models were not able to account for the behaviour of the ‘2+1’

sample. This sample showed what appeared to be almost localised behaviour when the

coverage corresponded with the occupation of the first excited surface state. This is

consistent with what was seen in the ground surface state as the incipient tendency to

localise influenced the correlations and hence explaining the inability of the models to fit

the data. This almost localised behaviour appears to be due to the wave-function of the

3He in the excited state overlapping with the substrate, and thus the 3He is localised for

part of its lifetime. Again this is mimicked by the behaviour seen in the torsional oscillator

measurements of the superfluid 4He fraction [148]. The superfluidity is being suppressed

on approaching the coverage of the first excited state and we interpret this suppression as

being due to the incipient tendency of the 3He to localise being seen by the 4He.

Finally for the ‘2+2’ sample data was taken which show the occupation of multiple

excited states. From this data F a0 was shown to be negative and gradually decreasing
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with increasing 3He. At the point of occupation of first excited state a discontinuity in F a0

was observed and it reduced in magnitude before returning to a decreasing trend. This

discontinuity was interpreted as being due to a decrease in the 3He-3He interactions which

occurs as the effective density of the system halves on the occupation of the first excited

state.

6.2 Outlook and Further Work

The study of the instabilities of 3He in thin 4He films has provided a wealth of exotic

behaviour and clearly more measurements should be taken. Further measurements would

be able to clarify the existence of dimerisation and confirm this region in coverage as being

ideal for looking for superfluid 3He in two dimensions. Further theoretical work should

also be undertaken with regard to this system as it could confirm the physical location

with respect to the substrate of the multiple fluid systems.

With respect to excited surface states a more comprehensive study of the behaviour of

F a0 should be undertaken across multiple excited states. This could help in understanding

the discontinuity at the occupation of excited states and could possibly give indication of

interactions between the bound states.

In addition any further experimentation should be undertaken using the new experi-

mental cell containing the graphite which has a larger platelet size. This would reduce

any size effects which hinder the observation of interesting phenomena.
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Appendix A

3He Ferromagnetism in

3He/4He/Grafoil

In this appendix the magnetism of 3He on graphite pre-plated with a single 4He layer is

investigated. This is directly related to pure 3He films on graphite. The advantage of

studying the 4He pre-plated system is that it eliminates the paramagnetism of the 3He

first layer. The differences between this system and a pure 3He film would mainly be the

density of the first layer, which for 4He is 11.88 nm−2, whereas it is 11.1 nm−2 for 3He.

A.1 Magnetism in Two Dimensional 3He

The Mermin-Wagner theorem states that in a two-dimensional system, with sufficiently

short-range interactions, there will be no long-range order at finite temperatures [82]. How-

ever, 3He on graphite can display a wealth of magnetic phenomena from ferromagnetism

to frustration leading to a quantum spin liquid [151–155].

Surface magnetism of 3He in confined geometries had been observed by numerous

groups [156–161] but the surface system could not be understood independently of the

bulk 3He. Franco et al. [162] pioneered a technique where 3He on graphite could be

cooled to low millikelvin temperatures and allow the measurement of the 3He using NMR.
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In this work, by Franco et al. [162], a “ferromagnetic anomaly” was observed, shown in

Figure A.1. Specifically a peak in the coverage dependence of the susceptibility was seen

in pure 3He films at a coverage of ∼ 24 nm−2. This coverage corresponds with roughly

2.5 layers of 3He.

Figure A.1: Shown is the susceptibility isotherm plotted against 3He coverage taken from

Franco et al. [162] at 3 mK. Shown is the free spin behaviour (dashed line) and the first

layer contribution (dash-dot line).
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This measurement by Franco et al. [162] was later improved upon by Godfrin et al.

[163] by cooling to 0.7 mK compared to the 3 mK achieved by Franco. Godfrin confirmed

the existence of the “ferromagnetic anomaly”, showed that the magnetisation was well

fitted by the exact high-temperature 2D Heisenberg expansion for T > J = 2.1 mK and

showed that the low temperature behaviour of the susceptibility was consistent with that

of a 2D Heisenberg ferromagnet [164–170]. The possible origins of the ferromagnetism

suggested are: in plane three-particle exchange in the second layer [171] or an indirect

RKKY-like interaction [172, 173]. Both of these possibilities were consistent with the

prior work of Franco.

More recent work on the ferromagnetism on the second layer of 3He by Casey et al. [3]

showed that the effective exchange constant, governing the spin-wave spectrum, is different

from that determining the high temperature magnetism. This is understood in terms of

the multiple spin exchange model of frustrated exchange on a triangular lattice [174].

The system of 3He atop one layer of 4He on graphite, has recently been studied through

heat capacity experiments by Sato et al. [48, 49]. This work finds a gas-liquid transition

in the 3He monolayers with 3He 2D liquid density in the range 0.6-0.9 nm−2. This means

that in a two layer film on graphite pre-plated by a solid 4He monolayer, the 3He second

layer, atop the 3He solid first layer, will first form in liquid puddles. In this appendix

we study this regime and the onset of ferromagnetism. We infer that ferromagnetism is

triggered by the RKKY processes turned on by the fluid overlayer.

The microscopic mechanism for this ferromagnetism has remained unclear hitherto.

Does it arise from the density dependence of intralayer exchange - it is known that the

second layer is compressed by the fluid overlayer [174]. Or does it arise from an RKKY

indirect exchange mediated by the fluid layer.

The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction is an indirect exchange cou-

pling between localised moments in a metal mediated by the conduction electrons, which

was first proposed by Ruderman and Kittel in 1954 [175] and was expanded upon by

Kasuya [176] and Yosida [177] in 1956 and 1957 respectively. The possible significance of
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RKKY processes in 3He films have been discussed by Refs [174] [178].

Previous experimentation has shown that ferromagnetic ordering occurs in an atomi-

cally flat second-layer of 3He on graphite [3, 162]. The role of weak magnetic fields and

finite size effects in circumventing the Mermim-Wagner theorem are discussed in detail in

[162].

A.1.1 RKKY Interaction

Frölich and Nabarro were the first to suggest that polarisation of nuclear moments could be

caused by contact hyperfine interactions with s-state electrons [179] and the formalism of

this interaction was first produced by Ruderman and Kittel [175]. This was taken further

by Zener to to explain ferromagnetism in transition metals [180], Kasuya studied its effect

on resistivity and spin waves [176] and the magnetic properties of Cu-Mn alloys were

explained with it by Yosida [177]. Therefore all indirect couplings of magnetic moments

became known as the Ruderman-Kittel-Kasuya-Yosida interaction, or more commonly the

RKKY interaction.

In simple terms the RKKY interaction creates magnetic order in a system of localised

particles through intermediary particles. An intermediary particle will initially interact

with one of the localised particles then move elsewhere and interact with a different lo-

calised particle and thus an indirect interaction is set up between the two localised par-

ticles. This interaction is usually associated with conduction electrons interacting with

localised electrons, but with respect to helium films it is proposed by [178] that through

localised 3He in one layer exchanging with 3He in a liquid layer a RKKY-like indirect

interaction can be set up.

Following the description by White [181], to mathematically understand this interaction

we will first consider the interaction between a localised spin Sα at r = 0 and a non-

localised spin si. The Hamiltonian corresponding to this will be,

Hint = −J
∑
i

Sα · si (r) , (A.1)
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where J is the interaction constant. Therefore, every non-localised spin will see an effective

field of,

H (r) = − J

gµ
Sαδ (r) , (A.2)

where µ is either the nuclear or Bohr magneton depending on whether the non-localised

spin is a nuclear or electron spin. This can then be related to a magnetisation of the

non-localised spins as,

M (r) = − J

gµ
χ (r)Sα, (A.3)

where χ (r) is the spacially dependent susceptibility. From this the non-localised spin

density is,

s (r) =
J

(gµ)2χ (r)Sα. (A.4)

As mentioned above this non-localised spin interacts with another localised spin Sβ at r.

Therefore, the RKKY Hamiltonian is thus,

HRKKY = −
(
J

gµ

)2

χ (r)Sα · Sβ. (A.5)

A key feature of this interaction, which is due to χ (r), is that the strength of the interaction

oscillates as a function of distance between the localised spins.

A.2 Experimental Sample

We focus on the magnetic behaviour of the 3He second-layer in the immediate vicinity

of promotion to the third layer. The experimental sample, shown in Figure A.2, consists

of the underlying grafoil substrate, then a complete solid single atom thick layer of 4He.

This first-layer is a 4He triangular lattice incommensurate with the substrate of density

11.9 nm−2. Above this is the layer of interest; a 3He film with a range of coverages between

6.90 and 8.54 nm−2. In pure 3He films this coverage range would span from a solid second

layer at the start of promotion to the third layer, up to a solid second layer with a fluid
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overlayer [182].

Figure A.2: Schematic of the experimental sample. It consists of 11.88 nm−2 of 4He

adsorbed on grafoil and then between 6.90 and 8.54 nm−2. The 3He coverages correspond

with a layer on the verge of promotion up to two homogeneous layers.

After promotion the third-layer of 3He condenses into self bound liquid islands which

increase in size with coverage until the third layer coverage reaches the self bound density.

According to heat capacity measurements by Sato et al. [49] the main puddling region is

measured to be between coverages of 7.30 and 8.10 nm−2. In this coverage region Godfrin

et al. [183], predicts that there would be an increase in ferromagnetism in the second-layer

due to an indirect exchange mechanism.

Our SQUID NMR data shows evidence of an RKKY interaction in the second-layer.

This is based on an analysis of NMR lineshapes which show the presence of second layer

islands with ferromagnetic exchange. These are regions where the overlayer is in self

condensed liquid islands. In the rest of the second layer there is no fluid overlayer.

A.3 Cross-Calibration of Data

The NMR signals for this system became very large for some 3He coverages and tempera-

ture, therefore different transmitter pulses and different gain band width products of the

SQUID were used. Therefore to make the data from different settings comparable with

each other a method of cross-calibrating the data had to be found. As the transmitter

and SQUID settings were independent of each other they can be addressed independently,
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thus this section will start by dealing with the transmitter settings before addressing the

SQUID settings. The section will finish with a table summarising how the data were

cross-calibrated to the usual setting.

A.3.1 Transmitter Pulse Cross-Calibration

The usual transmitter pulse used to probe 3He in this thesis was a 4 period 100 kHz

sinusoid with a peak to peak voltage of 4.5 V, therefore it is desirable to cross-calibrate all

data to an equivalent of this setting. This is because the signal size of the measured NMR

signal is proportional to the signal size of the transmitter pulse. The parameters changed

for the transmitter pulse were the period, either 1 N or 4 N periods or the peak to peak

voltage, 1.5, 2.25 or 4.5V. The cross-calibration between these settings was achieved by

using the power spectrum of the transmitter pulse. The transmitter pulse is measured in

time domain and then Fourier transformed in the same manner as the data to produce a

frequency power spectrum. The power spectra without cross-calibration for the different

transmitter pulses used are show on the upper plot of Figure A.3. From this plot it is clear

that, for all the settings with the same number of periods (4 N), the power spectrum is

qualitatively the same with nodes and peaks appearing at equivalent frequencies. When

only the peak to peak voltage of the transmitter pulse is changed, the power spectrum is

scaled linearly as expected.
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Figure A.3: Plots of the different power spectra corresponding with different transmitter

settings at 100 kHz. The upper plot shows the raw power spectra and the lower shows the

spectra scaled with the corresponding cross-calibration value.
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The lower plot on Figure A.3 shows the power spectra scaled by a constant κ, where

κ is the ratio between the amplitude at 100.4 kHz (the 3He Larmor frequency) of the

standard 4 N, 100 kHz, 4.5 V pulse and the chosen setting. For all the pulses with the

same number of periods the power spectra are now approximately equivalent, therefore

this linear scaling can be used to cross-calibrate the data.

However; with this simple linear scaling it is not possible for the pulse with only a single

period to replicate the shape of the 4 N, 100 kHz, 4.5 V pulse. The method of scaling

between this setting and the standard setting would be to find a frequency dependent

ratio of the two and use that as the scaling. This is problematic due to the sheer quantity

of data and processing time that would be required to then normalise the actual data.

In fact this transmitter setting was only used for the 8.54 nm−2 3He coverage and only

below ∼ 560 µK and the features of interest for this coverage range from roughly 80

to 115 kHz. Any physical analysis beyond the frequency tracking of features would not

be applicable for this setting as the spectral weight after the cross-calibration would be

distorted. Therefore, all data taken using this setting have been disregarded except for

showing the qualitative behaviour of the line shape and frequency tracking.

A similar process had to be followed to scale the power spectra for the 13C signals,

but κ was then the ratio between the amplitudes of the standard pulse and the chosen

setting at 33.13 kHz, which is the 13C Larmor frequency. The power spectra (upper) and

cross-calibrated power spectra (lower) using this new κ is shown in Figure A.4. Similarly

to the 3He the one period pulse does not scale to that of the 4 period pulses, but this is

less of an issue for the 13C. The width of the 13C is roughly a few kHz and therefore the

error in this linear approximation of the scaling is minimal.
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Figure A.4: Plots of the different power spectra corresponding with different transmitter

settings at 33.13 kHz. The upper plot shows the raw power spectra and the lower shows

the spectra scaled with the corresponding cross-calibration value.
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A.3.2 SQUID Setting Cross-Calibration

The setting we change on the SQUID is the feedback resistance for the flux locked loop.

Since the output from the SQUID is the voltage drop across the feedback resistor, the

output voltage is simply scaled by this resistance, with the standard setting of 10 kΩ.

A.3.3 Cross-Calibration Summary

The following tables show the scaling factors applied to the data to cross-calibrate them.

For example if the transmitter pulse was 4 N, 1.5 V and the feedback resistance was

2.31 kΩ then the scaling factor for the data would be 3.88 × (10/2.31) = 16.80 to two

decimal places.

Transmitter Setting 3He 13C

4 N, 4.5 V 1 1

4 N, 2.25 V 2.26 2.34

4 N, 1.5 V 3.88 4.13

1 N, 2.25 V 9.02 4.13

Table A.1: Transmitter setting cross-

calibration factors

Rf Setting Factor

10 kΩ 1

3 kΩ 10/3

2.31 kΩ 10/2.31

2.14 kΩ 10/2.14

Table A.2: SQUID feedback resistor set-

ting cross-calibration factors

A.4 NMR Line Shapes

In the following we give a qualitative description of the evolution of NMR lineshapes, at

coverages just above third layer promotion. The NMR line shapes for the 3He coverages

between 6.90 and 8.54 nm−2 at 200 µK and 1 mK are shown in Figure A.5. These line

shapes are produced using the method described in section 3.3.3, but a truncation of 80 µs

from the centre of the transmitter pulse was used. This shorter truncation was used as

the ferromagnetic signals were short lived. It should be noted as well that the axes in

each plot in Figure A.5 have different scales to show the line shapes with a similar visual

size; this is so that the key features of the shapes can be compared as opposed to absolute
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values. This qualitative analysis is helpful initially due to the complexity of the shapes

seen.

Looking at the evolution of the line shapes over the coverage range it can be seen

that from 6.90 to 7.20 nm−2 there is a consistent Lorentzian shape across the entire

temperature range. The overall size of the of the Lorentzian appears to reduce with

increasing temperature which would be expected of a paramagnetic system. Less obvious

from the plots however is a decrease in the maximum amplitude with increasing coverage.

Beyond the coverages of this Lorentzian regime, between 7.41 and 7.61 nm−2 an asym-

metry develops at the lowest temperatures. Similarly to the previous regime the maximum

amplitude decreases with increasing coverage and temperature.
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Figure A.5: Shown are the frequency line shapes for all the coverages measured for this

sample.
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When the coverage of 7.82 nm−2 is reached this asymmetry has developed into three

separate features, which are also visible and more distinct at the 8.02 nm−2 coverage. The

first of these features is the peak at ∼ 100 kHz which is at the same frequency as the

Lorentzians and asymmetrical line shapes of earlier coverages. This peak now reaches a

point where the increase in its maximum amplitude, with decreasing temperature, stops

and then starts to decrease. Second is a broad peak shifted in the negative frequency

direction and its maximum amplitude decreases with decreasing temperature. The third

and final feature is a knee which is further negatively shifted than the broad peak, and in

contrast to the broad peak its maximum amplitude increases with decreasing temperature.

At the highest coverage of 8.54 nm−2 the three features have developed into a large,

broad, negatively frequency shifted shape. The frequency shift of which increases with

decreasing temperature. This feature grows from a single Lorentzian peak at the Larmor

frequency observed at the highest temperatures.

Looking at this qualitative information in terms of the range of puddling by Sato et

al. [49] the data appears to support their predictions and measurements. The Lorentzian

shapes for coverages between 6.90 and 7.20 nm−2 and then the change to an asymmetric

shape at 7.41 nm−2 confirms that some physical change must occur between 7.20 and

7.41 nm−2. This is in agreement with the start of puddling occurring at 7.3 nm−2. In

this picture the end of the puddling regime clearly occurs between 8.02 and 8.54 nm−2

according to our NMR lineshapes. This is seen as the change from the three peak structure

of the lower coverage to the line shape of 8.54 nm−2. The lineshape is then qualitatively

the same as the ferromagnetic line shape seen by Casey et al. [3], which was well accounted

for in terms of the internal dipoles as a function of spin polarisation, taking into account

mosaic spread of the graphite platelets. This again is consistent with [49] giving 8.1 nm−2

as the end of puddling.

For the coverages within the puddling regime there are two different types of line

shape, the asymmetric line shape 7.41 and 7.61 nm−2 and the three featured line shape

7.82 and 8.02 nm−2. The simpler to understand is the three featured line shape. The
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feature at ∼ 100 kHz is most likely caused by the second-layer helium which remains

antiferromagnetic (due to the absence of the fluid overlayer). The knee is most likely

caused by a ferromagnetic component of the second-layer, this is because of the increase

in its maximum amplitude with decreasing temperature and increasing coverage. The

origin of the negatively shifted peak (located between the frequencies of the knee and

the Lorenztian peak) is far more unclear due to its reduction in size with decreasing

temperature, but one possibility is that it is due to having two superimposed signals with

different phases which is explained further in section A.5.2.

The asymmetry of the line shapes at the lower end of the puddling regime (7.41 and

7.61 nm−2) is also most likely a consequence of the ferromagnetism. This is because

of the larger frequency shift of the ferromagnetic component. The bulge of asymmetry

on the 7.41 − 7.61 nm−2 coverage regime seems to increase with decreasing temperature

thus appearing similar to the ferromagnetism of higher coverages. In the higher measured

coverages (7.82, 8.02 and 8.54 nm−2) the ferromagnetism causes a large negative frequency

shift and thus the asymmetric broadening focused in the negative direction seen at these

lower coverages must be due to ferromagnetism.

A.5 Ferromagnetic Onset

In the following we provide a more quantitative analysis of the ferromagnetic features

which appear in the NMR lineshapes. The data is analysed at each coverage to find the

characteristic temperature Tc, defined as the onset temperature of frequency shift arising

from a ferromagnetic component. This relies on the prior work of [3], which for a uniform

layer with ferromagnetic exchange shows a relatively sharp onset of frequency shift. Three

methods are used to do this; tracking the negative frequency shift of the ferromagnetic

features in temperature; using a long truncation on the FID to remove the short lived

ferromagnetic signal and finally analysing the interference between the ferromagnetic and

non-ferromagnetic components. This section starts by discussing each method individually

and then the resulting Tc data from each method is analysed simultaneously.
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A.5.1 Low Frequency Peak

Ferromagnetism causes the peak of the lineshape to shift negatively in frequency for the

relative orientation of surface and static magnetic field used in this experiment. To find

the onset of the ferromagnetism, the peak frequency of the ferromagnetic component was

tracked in temperature and then extrapolated back to the Larmor frequency.

Tracking the frequency shift of the ferromagnetic peak for the 8.54 nm−2 coverage was

simple as this was maximum amplitude of the entire line shape, but for the lower coverages

there is overlap between different features and a distinct peak can not be found. Therefore,

the frequencies of all the significant features of the line shape were tracked in temperature.

This was done for the well defined peaks by taking a first order, numerical derivative and

then taking the frequency at the point where this derivative goes from positive to negative.

For the knee like feature attributed the ferromagnetism a second order derivative was

taken, and the selected frequency was where the first order derivative was closest to zero

and the second order derivative went from negative to positive. To reduce the uncertainty

on both these methods a running average, with a window of 191 Hz, was used on the

resulting first and second order derivatives, before assessing whether they was a change in

sign.

The results from tracking these features are shown in Figure A.6 for 7.82, 8.02 and

8.54 nm−2. For coverages below 7.82 nm−2 this method breaks down and can only track

the overall peak of the line shape, see A.5.2.
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Figure A.6: The temperature dependence of the three different features frequency for the

3He coverages 7.82 (green), 8.02 (blue) and 8.54 nm−2 (black).

The negative frequency shifted branches shown for the 7.82 and 8.02 nm−2 coverages

correspond to the knee (which has the greater shift) and the broad peak. The fact that

the relationship between the broad peak’s frequency shift with temperature has the same

gradient for both coverages could shed light on the physical origin of the feature. The

feature which remains at roughly 100 kHz has a small positive frequency shift for all the

coverages. This positive frequency shift is a product of overlapping features with different

phases, this is discussed further in section A.5.2.

The ferromagnetic onset temperature is found from this procedure by first isolating the

branches which correspond to the ferromagnetic component. For the 8.54 nm−2 coverage

this is simply the negatively shifted branch and then for the other two it is the branch
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with the greater negative shift corresponding to the knee. The knee is taken as the

ferromagnetic component due to its increase in magnitude with decreasing temperature.

Having discerned the ferromagnetic features, the frequency shift is assumed to be linear

in temperature, following [3] and their observed behaviour. The temperature dependant

frequency shift, ∆f = |f − fL| where fL is the Larmor frequency, is fitted with a straight

line, Figure A.7. The extrapolation to zero frequency shift is identified with the onset of

ferromagnetism Tc.

Figure A.7: The temperature dependence of the ferromagnetic feature’s frequency with

respect to the Larmor frequency for the 3He coverages 7.82 (green), 8.02 (blue) and

8.54 nm−2 (black). Linear fits are shown for each coverage.

This method gives values for Tc of 1.05± 0.01 mK, 1.44± 0.02 mK and 1.77± 0.01 mK

for the 7.82, 8.02 and the 8.54 nm−2 coverages respectively. In addition it gives frequency

206



APPENDIX A. 3HE FERROMAGNETISM IN 3HE/4HE/GRAFOIL

shifts at T = 0 of 7.00± 0.03 kHz, 6.89± 0.02 kHz and 7.99± 0.01 kHz for the 7.82, 8.02

and the 8.54 nm−2 coverages respectively. These values make sense in light of the work by

Casey et al. [3]. The samples studied by Casey were pure 3He films with a solid first layer

of 11.1 nm−2. By subtracting this first layer coverage from their total 3He coverage it is

possible to compare our coverage values with theirs. Doing this they studied the coverages

13.56, 14.59, 16.64 and 18.08 nm−2 all of which are significantly larger than our coverages.

They find values of the T = 0 frequency shift which decrease from just about 12 kHz to

just below 10 kHz with decreasing coverage. Therefore our measured values are within

the realms of possibility assuming that the rate of this decrease with coverage slows. In

the fully polarised system this frequency shift is solely determined by the density and thus

it is logical to expect a decrease with density. Furthermore, the fact that the values for

both the 7.82 and the 8.02 nm−2 coverages are roughly equal this is further evidence for

self-condensed liquid islands in this system.

A.5.2 Positive Frequency Shift

As mentioned in the previous section there is a positive frequency shift of the peak which

is at roughly 100 kHz. This positive frequency shift is a product of overlapping features

with different phases. This can be seen when looking at the real (blue) and imaginary

(red) parts of the line shape, Figure A.8. The figure shows the feature is at a different

phase to the dominant ferromagnetic shape, thus explaining the positive shift of the peak

on the line shape (inset) due to interference. Therefore the feature is actually remaining

at a constant frequency but the interference distorts this on the magnitude plot. It is

therefore also possible that this explains the broad negatively shifted peak on the 7.82 and

8.02 nm−2 coverages. It could be that the effect of the phase interference is weak and then

increases in effect which causes the broad peak before going through the sharp feature at

100 kHz. This would be supported by the decreasing size of this peak with decreasing

temperature as it is behaving in the same manner as what would be expected from the

peak of the Lorentzian peak.
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Figure A.8: A typical example of a three feature frequency line shape is shown for a 3He

coverage of 8.02 nm−2. The frequency dependency of the real (blue), imaginary (red) and

magnitude (black) are displayed.

As the positive frequency shift is due to interference between the non-ferromagnetic

component and the ferromagnetic component, the temperature where the positive fre-

quency shift starts indicates the onset of the ferromagnetism. This subtle method was

required for the 7.41 and 7.61 nm−2 coverages due to there only being an asymmetry in

the line shape and no separate clear features. Figure A.9 shows the peak frequency of the

7.41 and 7.61 nm−2 line shapes. The ferromagnetic onset temperature was taken from the

minimum frequency which was found to be 0.29±0.03 mK and 0.60±0.06 mK for the two

coverages respectively. The uncertainty in this method comes from the poor resolution

in frequency, meaning it is difficult to find the exact temperature of the minimum. This
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resolution was improved by increasing the zero padding of the time data before the fast

Fourier transform. Generally the time data was zero padded so the total amount of points

is 218, as the FFT algorithm works faster for data with 2n points. To increase the resolu-

tion for this frequency analysis this value was increased to 225 as a compromise between

improving the resolution and keeping the computing time required realistic.

Figure A.9: The temperature dependence of the frequency corresponding to the peak of

the line shape for the 7.41 and 7.62 nm−2.

A.5.3 Long Lived Non-Ferromagnetic Component

The final method used for finding the ferromagnetic onset temperature took advantage of

the shorter effective relaxation time of the ferromagnetic component in the FID. Increasing

the truncation time from the centre of the pulse from 80 µs to 480 µs meant that the
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ferromagnetic component could be removed. This removal left a Lorentzian line shape

which was fitted using Equations 3.36 and 3.37 giving a susceptibility for the long non-

ferromagnetic component. At Tc there should be a corresponding drop in the susceptibility

of the long lived component as the majority ferromagnetic signal will have been removed

by the truncation. Figure A.10 shows the resulting magnetisation of the long component

against temperature as given by this fitting. As the temperature is low, using the point

where the susceptibility deviates from a 1/T relationship would yield a ferromagnetic onset

temperature with a large uncertainty. This is because the non-ferromagnetic component

is most likely paramagnetic and thus would deviate from this behaviour around the Fermi

temperature, which would be around 1 mK itself. The ferromagnetic onset temperature

was therefore taken as the temperature corresponding with the peak of the susceptibility

and therefore is probably a slight under estimate of the true onset temperature.
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Figure A.10: The temperature dependence of the susceptibility of the long non-

ferromagnetic component of the system for the coverages 7.41 (green), 7.61 (blue), 7.82

(black) and 8.02 nm−2 (red).

A.6 Onset Temperature of Ferromagnetic Frequency Shifts

The ferromagnetic onset temperatures found from the methods described in the previous

sections are shown in Figure A.11. Black circles are from the linear negative frequency

shift of the low frequency peak, red circles are from the positive frequency shift method

and the green circles are from the analysis of the long lived component’s susceptibility

drop.
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Figure A.11: Onset Temperature of the ferromagnetic behaviour against coverage as found

using the linear negative frequency shift of the low frequency peak (black circles), the

positive frequency shift method (red circles) an the analysis of the long lived component’s

susceptibility drop (green circles).

The coverage dependence of Tc visually suggests that ferromagnetism appears just after

promotion to the third layer at ∼ 7 nm−2. The equivalent values for the work of Casey et

al. [3] are in the range of 0.8 to 1.4 mK which are relatively low when compared to what we

see from the 8.54 nm−2 coverage of 1.77± 0.01 mK. The coverages of the samples studied

by Casey were 13.56, 14.59, 16.64 and 18.08 nm−2 (when subtracting the coverage of the

first layer as done previously) and the trend of the onset temperature they see is increasing

with decreasing coverage. Therefore, this suggests that our value of 1.77 ± 0.01 mK at

8.54 nm−2 is consistent with their results.
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At low temperatures it is known that the magnetisation of this system is controlled by

thermal excitations of spin waves [184, 185],

M0 −M (B, T )

M0
=

2

N

1

eTB/T − 1
+

1

2π
√

3

T ∗

Js

[
1− T

T ∗
ln
(

eT
∗/T − 1

)]
, (A.6)

where M0 is the magnetisation at T = 0, Js is an effective exchange constant, N is the

number of ferromagnetic spins on each grafoil platelet, TB = hf/kB and T ∗ = T0 + TB

where T0 = 8π2Js/N . The frequency shift is related to the magnetisation by,

∆f

f0
=
M (B, T )

M0
, (A.7)

where f0 is the frequency at T = 0. Using this relation Equation A.6 becomes,

∆f

f0
= 1− αT ∗

Js
+
αT ∗

Js
ln
(

eT
∗/T − 1

)
− 2

N

1

eTB/T − 1
, (A.8)

where α = 1/
(
2π
√

3
)
. TB is specifically the energy of a 3He spin in an external field.

In these experiments the Larmor frequency of the 3He is 100.4 kHz and therefore TB =

4.82 µK. As all data taken in this work was above 150 µK then T >> TB. Taking this

approximation then,

1

eTB/T − 1
≈ T

TB
, (A.9)

and hence Equation A.8 becomes,

∆f

f0
= 1− αT ∗

Js
+
αT

Js
ln
(

eT
∗/T − 1

)
− T

TB

2

N
. (A.10)

As the temperature corresponding with the onset of the ferromagnetism has been mea-

sured; ∆f
f0

= 0 and T = Tc are substituted into Equation A.10,

0 = 1− αT ∗

Js
+
αTc
Js

ln
(

eT
∗/Tc − 1

)
− Tc
TB

2

N
. (A.11)
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To relate this equation to the data in Figure A.11 N is converted to coverage through the

relation,

N = Ap (n3 − n0) , (A.12)

where Ap is the area of the platelets which is assumed to be the same for all platelets and n0

is the coverage where the ferromagnetism starts. This equation assumes that all platelets

contain the same density of atoms and on increasing the coverage, after ferromagnetism

has started, the number of ferromagnetic spins increases proportionally to this.

Equation A.11 gives a non-trivial relationship between Tc and n3 and the rest of this

section deals with relating this equation to the data.

A.6.1 Limit of T ∗ << Tc

Recalling that T ∗ = T0 + TB, TB = 4.82 µK and T0 = 8π2Js/N , where Js should be

∼ 1 mK meaning T0 ≈ 80/N mK; therefore T ∗ << Tc should be valid for the highest

measured coverages. Since, Tc reaches 1.77 mK and it is expected that N will be of the

order 1000. At the lowest coverages measured when Tc ∼ 250 µK; for Tc ≈ T ∗ to be

true N would need to be ∼ 300, therefore this approximation breaks down at the lowest

measured coverages.

Taking T ∗ << Tc means that,

ln
(

eT
∗/Tc − 1

)
≈ −ln

T ∗

Tc
. (A.13)

Furthermore, the logarithm will be very slowly varying function and can be approximated

further to a constant β of value roughly unity. Thus, using this and Equation A.12,

Equation A.11 becomes,

Tc =

[
β

Js
α+

2

TBAp (n3 − n0)

]−1

. (A.14)

Fits using this equation to the data in Figure A.11 are shown in Figure A.12, where the
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points found using the long lived non-ferromagnetic component are disregarded due to

their underestimation of Tc.

Figure A.12: The ferromagnetic onset temperature fitted using the approximation that

T ∗ << Tc and taking β/Js as a coverage independent fit parameter. This fit was done

with the platelet size either being fixed at a value of 1600 nm2 (blue line) or as a free

parameter (red line). The final free parameter for both fits was the onset coverage of the

ferromagnetic behaviour n0.

Firstly it should be noted that by fitting the coverage dependence in this manner, the

Js parameter is assumed to be weakly coverage dependent and thus can be approximated

as a constant over the whole range of data. The fit to the data was done in two different

ways, the first of which was taking the value of the platelets size to be 1600 nm2 [117] and

leaving n0 and β/Js as free parameters. This fitting, shown in blue on Figure A.12, gave
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n0 and β/Js to be 7.36±0.03 nm−2 and 0.26±0.01 respectively. Taking β ≈ 1 means that

Js ≈ 3.8 ± 0.1 mK, which seems non-physically large, but this is most likely due to the

approximation used in determining β. This approximation of Js does how ever confirm

the invalidity of this model at the lowest coverages shown.

The alternate fitting method allowed the platelet are Ap to also be a free parameter.

This fit, represented in red on Figure A.12, gave n0 = 7.32±0.07 nm−2, β/Js = 0.29±0.05

and Ap = 1300 ± 300 nm2, all which agree with the values from the previous fit. Again

this shows the invalidity of the approximation at the lowest coverages and thus a more

complex method is needed for finding Js.

A.6.2 Coverage Dependence of Js

Even though Equation A.11 is non-trivial it is still possible to find optimised parameters

that correspond with the data. To do this the equation is combined with T ∗ = TB +

8π2Js/N to give,

0 = 1− α

Js

(
TB +

8π2Js
N

)
+
αTc
Js

ln

[
exp

((
TB +

8π2Js
N

)
/T

)
− 1

]
− T

TB

2

N
(A.15)

Remembering that N is coverage dependent, as in Equation A.12, trial parameters can be

substituted into this equation and then the entire equation can be minimised with respect

to the data by varying the trial parameters, to give the optimum parameters. This can be

done assuming that Js is either density independent or dependent.

Assuming that Js is constant with coverage, the minimisation procedure to find the

optimum parameters works by choosing a set of trial parameters and then for each data

point working out the value of Equation A.15 squared. It is the sum of these squared

values that is minimised with respect to the parameters. This method was implemented

in two ways, one where n0 and Ap were fixed and Js was the only free parameter and

alternatively where n0, Ap and Js are all free parameters. The optimum parameters from

this method are shown in Table A.3.
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Method Js (mK) Ap (nm2) n0 (nm−2)

Fixed Ap and n0 0.81 1600∗ 7.30∗

Free Ap and n0 1.70 836 7.27

Table A.3: Table showing the optimum parameters assuming Js is constant and either

fixing or leaving free Ap and n0.

∗ Fixed parameter

To display the quality of this optimisation Figure A.13 shows a plot of Equation A.15

for each data point, with the corresponding set of fit parameters. A perfect fit would show

a line where all values are zero.
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Figure A.13: Plot of the minimization value against coverage for when Ap and n0 are

either fixed (red) or free parameters (black). A perfect minimisation would result in all

the minimisation values being zero.

The square sum of these points also gives an indication of the quality of the optimisa-

tion, this is 0.29 and 0.027 for the fixed and free optimisations respectively. Clearly when

Ap and n0 are left free the fit is better, as would be expected since the function is allowed

to vary more.

Alternatively when Js is allowed to vary with coverage the same optimisation procedure

can be used, but would be applied to each coverage separately rather than collectively.

This method gave a value of Js for each measured coverage, as shown in Table A.4, and

again this has been done for both Ap and n0 either being fixed or free parameters.
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Coverage Ap and n0 fixed Ap and n0 free

(nm−2) Js (mK) Js (mK) Ap (nm2) n0 (nm−2)

7.41 0.14 1.75 850 7.27

7.61 0.28 1.72 828 7.30

7.82 0.58 1.73 849 7.26

8.02 0.85 1.75 864 7.21

8.54 0.95 1.74 822 7.38

Table A.4: Table showing the optimum parameters assuming Js is coverage dependent

and either fixing Ap and n0 to 1600 nm2 and 7.30 nm−2 respectively or leaving them as

free parameters.

Unlike previously when assessing how good the optimisation was, was possible, the

same can not be done here, as taking each coverage separately means that the parameters

actually make the equation equal to zero. What is interesting from these values is that

the area of the platelets, when allowed to vary, is given to be roughly constant at 850 nm2.

This is plausible as it is constant with coverage and would correspond with a characteristic

length scale of the platelets of ∼ 30 nm, whereas the value taken for the fixing the area

was ∼ 40 nm [117].

There is also a very different dependence of Js on coverage for the two optimisations,

as plotted on Figure A.14, for both the fixed (red) and free (black) parameters.
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Figure A.14: Plot of Js against coverage as found using the optimisation method where

Js was taken as a coverage dependent quantity. Shown are the result of this method when

Ap and n0 are either free (black) or fixed (red) parameters.

What is clear from Figure A.14 is that when the parameters are free Js is roughly

constant with density and when the parameters are fixed Js increases with coverage.

A.7 Puddling Mediated RKKY Interaction

From the previous section what is clear is that above a critical coverage n0 ferromagnetism

manifests itself and that the amount of atoms contributing to this ferromagnetism increases

with coverage. So if the puddling model is correct n0 would correspond with the start of the

puddling region. These third-layer puddles increase in size in the coverage regime where we
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see an increase in the onset temperature, thus it can be inferred that the ferromagnetism

is due to the third layer puddles, since the ferromagnetic onset temperature is dependent

on the number of atoms.

The most probable mechanism for this would be an RKKY interaction where the atoms

in the third-layer puddles are the intermediaries. Therefore the system has a second-layer

which is ferromagnetic when covered by a third-layer puddle and non-ferromagnetic when

uncovered.

Figure A.15: Simple schematic of the RKKY interaction in this system as given by Guyer

[178]. The left image (a) shows the initial exchange of atoms between layers. Then the

right image (b) shows the following exchange, resulting in the mediated interaction in the

lower layer.

Figure A.15 is an illustration of how an RKKY interaction would work within this

system, as described by Guyer [178]. Initially an atom spin σ at site R in the solid

layer, (R, σ), transitions to an empty liquid state (m′, q′, σ), and an atom in a liquid state

(m, q, σ′) filling the empty solid state Figure A.15 (a). A similar transition then occurs

where (S, σ′′) goes to (m, q, σ′′) and (m′, q′, σ) goes to (S, σ) Figure A.15 (b). This leads

to a spin exchange between sites in the solid-layer since σ′ = σ′′. This type of interaction

would create the non-ferromagnetic and ferromagnetic components seen. As the area of

the second-layer covered by third-layer puddles would be ferromagnetic and then the area

uncovered would not be ferromagnetic. This could even possibly explain the origin of the

broad intermediate peak on the line shape as a possible domain wall feature, but this
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requires further analysis.

Also if this RKKY interaction is true then Js would probably be constant in coverage

as it is related to the distance between the ferromagnetic spins and as these spins are the

3He in the second layer their inter-atomic distance would not be changing. Therefore, the

results from the optimisation where Js is assumed to be constant and Ap and n0 are left

as free parameters, from Table A.3, are the most valid within this model.

A.8 Summary

The current understanding of this sample, using the qualitative analysis of the line shapes,

is that a ferromagnetic component appears at a coverage between 7.20 and 7.41 nm−2, in

agreement with Sato et al. [49]. This ferromagnetic component is caused by self-bound

liquid islands (puddles) forming in the third-layer and the particles in these puddles being

used by the second layer as intermediaries in a ferromagnetic RKKY exchange interaction.

This puddling regime ends between 8.02 and 8.54 nm−2 as can be seen by the shape of

the higher coverage being similar to that of a ferromagnetic second layer as seen by Casey

et al. [3], and the lower coverage having a three featured structure.

Analysis into the temperature Tc, where the ferromagnetic frequency shifts onset, show

that it increases with coverage. This increase with coverage of Tc occurs in a manner

consistent with the number of ferromagnetic spins increasing proportionally to coverage,

after an onset coverage n0. This fits within the puddling mediated RKKY interaction

model as the number of atoms in the first 3He layer that are covered by the puddles

increases with coverage. This data is inconclusive with respect to the end of puddling due

to the lack of data between 8.02 and 8.54 nm−2, as a real trend in this region can not be

seen. Furthermore, the model for Tc is very weakly dependent on number of atoms in this

region. So, further experimentation would be needed to provide a coverage for the end of

puddling.

Within this RKKY model it would be expected that Js would be constant with coverage

as it would be related to the inter-atomic distances of the 3He in the first 3He layer.
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Therefore from optimisation of Equation A.15, Js = 1.70 mK, the platelet size is 836 nm2

and the onset coverage of puddling is 7.27 nm−2.
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[79] C. Bäuerle, Y. M. Bunkov, A. Chen, S. N. Fisher, and H. Godfrin, J. Low Temp.

Phys. 110, 333 (1998).
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