
Generic Access Control of Cloud Storage Using
Attribute-Based Cryptography

Zhiqian Xu

Thesis submitted to the University of London

for the degree of Doctor of Philosophy

Information Security Group

School of Mathematics and Information Security

Royal Holloway, University of London

2018

Declaration of Authorship

I, Zhiqian Xu, hereby declare that this thesis and the work presented in it is entirely my own.

Where I have consulted the work of others, this is always clearly stated.

Signed:

Date: March, 2018

2

Acknowledgments

First and formost I would like to express my deepest appreciation to my supervisor, Professor

Keith Martin; for agreeing to supervise me although I have to study as a remote part-time

student, for motivating me and reminding me to stay focused, for teaching me how to do research

and write research papers, for correcting my mistakes, and for being patient throughout these

years. Without him I would not have reached this far.

Throughout my study at RHUL, I have been advised by many professors, in particular, I

would like to thank Professor Jason Crampton, Professor Stephen Wolthusen, Professor Kenny

Paterson, and Professor Carlos Cid for coming to my annual reviews; for inspiring discussions,

wise guidance, and unconditional support. I would also like to thank my thesis committee

members, Professor Liqun Chen and Professor Geraint Price, for their tremendous efforts as

well as valuable reviews and feedbacks.

A special thank to Po-Wah Yau for introducing RHUL to me, for encouraging me and explaining

that PhD actual stands for permanent head damage; for offering me help when I visited the

campus. Another special thank to Jenny Lee, for answering my questions, particularly helping

me to book the conference travels I needed.

Lastly I would like to thank my wonderful family, my husband and daughter, for understanding

and knowing my limits, and for always being there when I need them.

Thank you all. You make my life over those years unforgettable.

3

Abstract

Cloud storage provides cost-efficient storage services in an era of increased demands on data

generation and reliance. However, since cloud storage providers might not be trusted by end

users, security and privacy are a major concern to data owners. Although cryptography is

traditionally used to support data confidentiality, integrity and availability, data access control

is yet another potential field. Cryptography can help achieve access control and authentication

effectively.

Data access control can be achieved by two major approaches: server-mediated access con-

trol and cryptographically-enforced access control. In server-mediated access control, servers

receive access attempts and grant permissions based on pre-defined policies. This requires

storage servers to be fully trusted, which is not the case in many storage environments.

Cryptographically-enforced access control does not require the storage servers to be fully trusted

since the data stored on storage servers is encrypted. Data access control is enforced through

the management of decryption keys. If the key distribution process is not managed by cloud

service providers directly, data secrecy and user privacy will be protected in untrusted cloud

storage environments. However, if data owners are directly involved in key distribution, access

control could become cumbersome to operate in a cloud storage environment. Therefore, scal-

able and flexible access control schemes are necessary for securing storage systems in untrusted

clouds.

Attribute-based Encryption (ABE) provides both cryptographically-enforced confidentiality

and access control in cloud storage environments. This allows data to be protected with auto-

matically enforced access policies. Key distribution can be delegated to attribute authorities

4

that do not require the direct involvement of data owners. However, current access control

schemes associated with existing ABE schemes are inflexible and have limitations concerning

dynamic user and attribute revocation, key refreshing and revocation, and key escrow.

Attribute-based signature (ABS) schemes can also be used to facilitate anonymous access con-

trol and allow users to sign messages without disclosing their identities. However, access control

schemes associated with existing ABS schemes also have practical limitations concerning dy-

namic user and attribute revocation, in particular anonymous user revocation.

In this thesis, we improve the practicality of access control mechanism for securing data stored

on untrusted cloud storage. We adopt existing attributed-based cryptography and provide them

with more flexible user and attribute management capability. We propose two deployment

models and three systems that can be used with existing ABE and ABS schemes with no, or

minor, modifications. Those adaptations reduce the management overheads and improve the

scalability of attributed-based cryptography deployment to support security in cloud storage

environments.

5

Contents

1 Introduction 12

1.1 Motivation and Research Statement . 15

1.2 Our Contributions . 17

1.3 Outline of the Thesis . 19

2 Security Services and Techniques Suitable for Distributed and Cloud Storage

Systems 22

2.1 Distributed Data Storage Systems . 23

2.2 Data Protection Challenges in Distributed Data Storage Systems 25

2.3 Threats to Distributed Data Storage Systems 27

2.3.1 Threats to Confidentiality . 28

2.3.2 Threats to Integrity . 28

2.3.3 Threats to Availability . 29

2.3.4 Threats to Access Control . 29

2.4 Data Protection Mechanisms . 29

2.4.1 Access Control . 30

2.4.2 Confidentiality Protection . 30

2.4.3 Integrity Protection . 31

2.4.4 Data Availability and Recovery . 31

2.4.5 Auditing . 32

2.5 Cloud Storage . 32

2.5.1 Cloud Storage Security Challenges . 36

2.5.1.1 Trust in CSPs . 36

2.5.1.2 Multi-Tenant Environments . 37

6

2.5.2 Requirements for Protecting Data Secrecy and User Privacy in Cloud

Storage . 38

2.6 Existing Access Control and Data Protection Techniques 40

2.6.1 Server Mediated Access Control . 41

2.6.2 Cryptographically-Enforced Access Control 43

2.6.2.1 Access Control with Symmetric-Key Encryption 44

2.6.2.2 Access Control with Asymmetric Cryptography 46

2.6.2.3 Attribute-Based Encryption and Signatures 48

2.7 Conclusions . 51

3 Cryptographic Preliminaries and Background 52

3.1 Abstract Algebra . 53

3.2 Modern Cryptography . 54

3.2.1 Principles of Modern Cryptography . 55

3.2.1.1 Formal Definitions . 55

3.2.1.2 Assumptions . 57

3.2.1.3 Security Proofs . 57

3.2.2 Computational Security . 58

3.2.2.1 Perfect Indistinguishability . 59

3.2.2.2 Computational Indistinguishability 61

3.3 Complexity Assumptions . 64

3.3.1 Diffie-Hellman Assumptions . 65

3.3.2 The Bilinear Maps and Bilinear Diffie-Hellman Assumptions 67

3.3.2.1 The Definition of Bilinear Maps 67

3.3.2.2 Bilinear Diffie-Hellman Assumptions 68

3.4 Provable security . 69

3.4.1 Game-Based Security Models . 70

3.4.2 Types of Security Models . 75

3.4.2.1 Standard Model . 75

3.4.2.2 Random Oracle Model . 76

3.5 Conclusions . 77

4 Attribute-Based Cryptography 78

7

4.1 Attribute-Based Encryption . 79

4.1.1 ABE Scheme Definition . 80

4.1.1.1 Access Structure . 81

4.1.1.2 Definition of a KP-ABE Scheme 82

4.1.1.3 Definition of a CP-ABE Scheme 83

4.1.2 Related Work . 84

4.2 Attribute-Based Signatures . 85

4.2.1 ABS Scheme Definition . 86

4.2.2 Related Work . 87

4.2.3 Construction of an ABS Scheme . 88

4.3 Conclusions . 90

5 Generic User Revocation Systems for ABE in Cloud Storage 91

5.1 Related Work . 93

5.2 Our Contributions . 96

5.3 Accumulator . 98

5.3.1 A Bilinear Map based Accumulator . 100

5.3.2 Dynamic Accumulator (DA) . 102

5.3.2.1 Data Structure Definition . 104

5.3.2.2 Algorithm Construction . 105

5.4 Generic User Revocation Systems . 106

5.4.1 Algorithm Definition and Construction 108

5.4.2 User Revocation via Ciphertext Re-Encryption (UR-CRE) 114

5.4.2.1 Trust Model . 114

5.4.2.2 System Description . 116

5.4.2.3 Security Analysis . 121

5.4.3 User Revocation via Cloud Storage Providers (UR-CSP) 129

5.4.3.1 Trust Model . 129

5.4.3.2 System Description . 130

5.4.3.3 Security Analysis . 138

5.5 User Revocation Overhead Analysis . 143

5.6 Conclusions . 146

8

6 A Generic Attribute Revocation System for ABE in Cloud Storage 147

6.1 Related Work . 148

6.2 Our Contributions . 150

6.3 The Attribute Revocation System (AR-ABE) 151

6.3.1 Trust Model . 153

6.3.2 Algorithm Definition and Construction 153

6.3.2.1 Data Structure Definition . 153

6.3.2.2 Algorithm Construction . 157

6.3.3 System Description . 163

6.3.4 Security Analysis . 169

6.4 Attribute Revocation Overhead Analysis . 176

6.5 Conclusions . 177

7 An Anonymous User Revocation Model for ABS in Cloud Storage 178

7.1 Related Work . 180

7.2 Our Contributions . 181

7.3 Anonymous User Revocation Model (AUR-ABS) 183

7.3.1 Trust Model . 184

7.3.2 Algorithm Definition and Construction 184

7.3.2.1 Data Structure Definition and Notations 184

7.3.2.2 Algorithm Definition and Construction 186

7.3.3 Correctness . 190

7.3.4 System Description . 192

7.4 Security Analysis . 196

7.5 Performance Analysis . 204

7.6 Conclusions . 205

8 Concluding remarks 206

Bibliography 209

9

List of Figures

2.1 NIST Cloud Computing Model . 33

2.2 Cloud Storage . 34

4.1 Access Tree . 82

5.1 Trust Model of User Revocation via Ciphertext Re-encryption for ABE in Cloud Storage115

5.2 Interaction Diagram of User Revocation via Ciphertext Re-encryption for ABE in

Cloud Storage . 122

5.3 Trust Model of User Revocation via Cloud Service Providers for ABE 131

5.4 Interaction Diagram of User Revocation via Cloud Service Providers for ABE . . 139

5.5 Overhead Comparison of User Revocation Systems 144

6.1 Trust Model of Attribute Revocation System for ABE in Cloud Storage 154

6.2 Attribute Accumulator Tree . 159

6.3 Interaction Diagram of Attribute Revocation System for ABE in Cloud Storage 170

6.4 Overheads of the Attribute Revocation System (AR-ABE) 177

7.1 Trust Model of Anonymous User Revocation Model for ABS in Cloud Storage . 185

7.2 Interaction Diagram of Anonymous User Revocation Model for ABS in Cloud Storage 197

7.3 Performance Comparison of ABS and AUR-ABS 204

10

List of Tables

5.1 DA Notation . 104

5.2 User Revocation System Notation . 110

6.1 Attribute Revocation System Notation . 158

7.1 Anonymous User Revocation Model Notation 186

11

Chapter 1

Introduction

Contents
1.1 Motivation and Research Statement 15

1.2 Our Contributions . 17

1.3 Outline of the Thesis . 19

The need for distributed data storage has been driven by distributed computing environments

and data sharing demands. Distributed data storage is the result of advances in network

infrastructures and technologies of the past decades [78]. Over the years storage systems have

rapidly evolved. They have become one of the most important components in every business,

as well as something of significance to individual users. As the amount of electronically stored

data increases rapidly every day, tremendous pressure has been placed on storage infrastructure

to scale well with the growth of data while continuing to provide high performance.

The amount of electronically stored sensitive data, such as healthcare records, customer records

or financial data, has also increased rapidly. Since data tends to be shared, replicated, and re-

tained online in order to satisfy various information system requirements, such as performance,

12

availability, and recovery, storage systems are becoming much more complicated and vulnerable

to security breaches. The goals of storage security are to protect data from unauthorized access

and changes and to prevent data secrecy from being disclosed.

Cloud-based storage is a newly emerged service model to both businesses and individual users

for either paid or free storage resources. Due to its friendly accessibility, unlimited capacity,

and economic benefits, users find it attractive. The advantage of cloud storage over distributed

storage systems (see Section 2.1) is its ability to leverage virtualization techniques to provide

a storage service composed of thousands of different types of networked storage devices, dis-

tributed storage systems, and storage middleware. This enables on-demand service, capacity,

and management to users anywhere via the Internet.

Since most cloud storage is provided by third-party service providers, the trust required for the

providers (CSPs) and the shared multi-tenant environment, resulting in storage virtualization,

presents special challenges for data protection and access control [78]. These unique challenges

also raise the concerns of user privacy protection for data access. Although user privacy protec-

tion is not the most obvious goal of storage security, we will explain why it becomes important

in untrusted storage environments in Section 2.5.1.

Attribute-Based Encryption (ABE), a type of public key encryption, has a one-to-many rela-

tionship between a public encryption key and a set of decryption keys. ABE not only protects

data secrecy, but also has ciphertexts or decryption keys associated with fine-grain access poli-

cies that are automatically enforced during the decryption process. This enforcement puts data

13

access under control at each data item level. Descriptive access policy is not directly tied in to

an individual user’s identity, but rather to a set of common attributes among users who need

the access. This attribute indirectly provides a kind of anonymous data access for user privacy

protection. ABE schemes can be classified into two categories: key-policy ABE (KP-ABE) (see

Section 4.1.1.2) and ciphertext-policy ABE (CP-ABE) (see Section 4.1.1.3).

Although ABE seems to be an ideal choice for meeting data protection goals in an untrusted

storage environment, existing ABE schemes have practical limitations when they are directly

used in cloud storage systems. These limitations include the lack of support for dynamic user

and attribute revocation, key refreshing, and an inbuilt and potentially undesirable key escrow.

Inspired by ABE, Attribute-Based Signature (ABS) schemes enable anonymous authentication

and signature generation. Since CSPs can be untrusted, we do not want CSPs to manage user

identities which can contain or be associated with users’ personal identifiable information (PII),

or user accounts with passwords for authentication. Using ABS schemes, CSPs only need a

public key and its associated access policy (referred to as predicate) to authenticate users. There

is no need for CSPs to know or store user identities or login information. Although ABS seems

to be an ideal anonymous authentication mechanism, existing schemes also have limitations

concerning the lack of dynamic user revocation, especially anonymous user revocation.

14

1.1. MOTIVATION AND RESEARCH STATEMENT

1.1 Motivation and Research Statement

Motivated by the practical limitations of ABE and ABS, in this thesis we pose the following

central research question:

How can practical ABE and ABS schemes be constructed to enforce distributed data and user

privacy protection efficiently and flexibly in untrusted cloud storage environments?

Throughout this thesis we assume that CSPs are not fully trusted, meaning that they are

trusted to do what they are supposed to do, but are also curious to learn the secrecy of data

or user identities (see Section 2.5.1). Using ABE and ABS schemes to protect data and user

privacy in these kinds of cloud environments requires:

• ABE schemes to be capable of preventing revoked users or attributes from decrypting

data;

• ABS schemes to be capable of revoking user access rights;

• User access control to be anonymous with respect to untrusted cloud storage or CSPs

and not require any administration of user management from CSPs.

The solutions to the above requirements require enabling of the following features:

• ABE schemes: dynamic user and attribute revocation. These features need to avoid

15

1.1. MOTIVATION AND RESEARCH STATEMENT

expensive re-issuing of users’ private keys, and the revocation processes need to have

built-in user privacy protection.

• ABS schemes: dynamic user revocation. The revocation process avoids expensive re-

issuing of users’ private (signing) keys and is anonymous in that the authenticating party

should be able to distinguish the signatures from the revoked users without being able to

link any signature to any particular user.

Although issues concerning user and attribute revocation in ABE schemes have been studied

in the literature, most of the proposed schemes work for only one type of ABE scheme. User

privacy protection has been left out from those revocation systems. Since each ABE scheme has

its own strengths, it is more desirable that the developed mechanism is as generic as possible so

that it can be directly adapted by any ABE scheme to address user and attribute revocation. In

addition, a revocation process should have built-in user privacy protection in untrusted cloud

storage systems.

The existing ABS user revocation schemes often need to uncover a user’s identity during the

signature verification process in order to distinguish if the signatures are generated by revoked

users or not. Many existing schemes employ a trusted entity to maintain and identify user

identities in order to distinguish the signatures from revoked users. We argue that this setting

conflicts with the anonymity property of ABS. The user revocation process should also be

anonymous in that the signatures of revoked or non-revoked users should be distinguishable

with neither knowledge of an individual’s identity nor signature verification by a third party.

16

1.2. OUR CONTRIBUTIONS

1.2 Our Contributions

In this thesis we propose practical systems and adaptable models for using ABE and ABS

schemes in untrusted cloud storage. Those models and systems enable ABE and ABS to

overcome the possible limitations and make them more suitable for untrusted cloud storage

environments. Before we describe our proposed models and systems, we want to clarify two

things:

1. Model versus System: Although all the proposed mechanisms are schemes, we use model

to indicate that a proposed scheme does not treat an ABE or ABS scheme as a black

box. A model needs to be adapted to fit an ABE or ABS scheme, ideally with only minor

modification to the scheme. A system is a scheme that treats an ABE or ABS scheme

as a black box. It builds a wrapper outside an ABE or ABS scheme, which can then be

directly applied without modification.

2. Characteristics of proposed models and systems:

• Flexible: the proposed model can work directly for a scheme with at most minor

modifications to the scheme.

• Generic: the proposed system can be directly applied to a scheme with no modifi-

cation to the scheme.

• Dynamic: the proposed model or system can avoid user private or signing keys

needing to be re-issued as well as data needing to be re-encrypted.

17

1.2. OUR CONTRIBUTIONS

• User privacy protection: the proposed model or system has built-in user privacy pro-

tection that allows a user to access data anonymously or to be verified anonymously

by cloud storage service providers.

We highlight our main contributions as follows:

1. A survey of distribute storage systems. This survey investigates the security issues and

challenges concerning distributed and cloud storage systems. It then identifies the secu-

rity requirements for data and user privacy protection in untrusted cloud storage envi-

ronments.

2. Two generic user revocation systems for ABE with user privacy protection. The two

systems, UR-CRE and UR-CSP, work with any type of ABE scheme to dynamically

revoke users.

3. A generic attribute revocation system for ABE with user privacy protection (AR-ABE).

AR-ABE works with any ABE scheme to dynamically revoke attributes. Any attribute

revoked from a user does not impact the same attribute used by other users.

4. An Anonymous user revocation model (AUR-ABS) for ABS with user privacy protection.

An ABS scheme with AUR-ABS model enables CSPs to anonymously identify whether a

signature is generated by a revoked user or not during the signature verification process.

18

1.3. OUTLINE OF THE THESIS

1.3 Outline of the Thesis

The remainder of this thesis is organized as follows:

• Chapter 2: Security Services and Techniques Suitable for Distributed and Cloud Storage

Systems

We survey the existing distributed and cloud storage systems and identify the security services

and techniques suitable for data protection and access control in these environments. We

then define the special requirements of data and user privacy protection in untrusted cloud

storage environments. Based on these requirements, we compare existing data and user privacy

protection mechanisms and their possible shortcomings in cloud storage environments. Most

of the content of this chapter was published in [144].

• Chapter 3: Cryptographic Preliminaries and Background

We present relevant background material and notation necessary to understand the remainder

of the thesis. We start with a brief introduction to relevant notions from mathematics. We then

review the concepts of modern cryptography and complexity theory that will be used later.

• Chapter 4: Attribute-Based Cryptography

We introduce attribute-based encryption (ABE) and attribute-based signature (ABS) schemes.

19

1.3. OUTLINE OF THE THESIS

We begin with a description of the concept of ABE followed by related work. We then introduce

the concept of an ABS scheme and describe the construction of a threshold ABS scheme [83],

which will be used in Chapter 7.

• Chapter 5: Generic User Revocation Systems for ABE in Cloud Storage

In this chapter we propose two dynamic user revocation systems that are generic for any ABE

scheme. These systems have user privacy protections and are suitable to be used in untrusted

cloud storage environments.

• Chapter 6: A Generic Attribute Revocation System for ABE in Cloud Storage

We propose a user attribute revocation system that meets the requirements of being generic,

dynamic, and having built-in user privacy.

• Chapter 7: An Anonymous User Revocation Model for ABS in Cloud Storage

We propose an anonymous user revocation model (AUR-ABS) for ABS schemes. Our user

revocation model is dynamic and open for adaptation by ABS schemes. The model not only

removes the involvement of a third party in the path of signature generation or verification,

but also makes the user revocation completely anonymous. The content of this chapter was

published in [143].

20

1.3. OUTLINE OF THE THESIS

• Chapter 8: Concluding Remarks

In this chapter we briefly talk about our research journey, conclude the thesis and suggest

future directions for research.

21

Chapter 2

Security Services and Techniques
Suitable for Distributed and Cloud
Storage Systems

Contents
2.1 Distributed Data Storage Systems 23

2.2 Data Protection Challenges in Distributed Data Storage Systems 25

2.3 Threats to Distributed Data Storage Systems 27

2.3.1 Threats to Confidentiality . 28

2.3.2 Threats to Integrity . 28

2.3.3 Threats to Availability . 29

2.3.4 Threats to Access Control . 29

2.4 Data Protection Mechanisms . 29

2.4.1 Access Control . 30

2.4.2 Confidentiality Protection . 30

2.4.3 Integrity Protection . 31

2.4.4 Data Availability and Recovery . 31

2.4.5 Auditing . 32

2.5 Cloud Storage . 32

2.5.1 Cloud Storage Security Challenges . 36

22

2.1. DISTRIBUTED DATA STORAGE SYSTEMS

2.5.2 Requirements for Protecting Data Secrecy and User Privacy in Cloud
Storage . 38

2.6 Existing Access Control and Data Protection Techniques 40

2.6.1 Server Mediated Access Control . 41

2.6.2 Cryptographically-Enforced Access Control 43

2.7 Conclusions . 51

The rapid growth of data and data sharing has driven an evolution in distributed storage

systems. The need for data protection and greater capacity for handling massive data volume

has encouraged research to develop secure and scalable storage. In this chapter we identify

major security issues and requirements of data protection related to distributed data storage

systems, in particular to cloud storage systems.

2.1 Distributed Data Storage Systems

Distributed data storage can be built from many small-scale unreliable, or low availability,

distributed hosts. Users access distributed data storage though their local networks or the

Internet.

Generally speaking, there are four types of common storage infrastructures [66]: Direct Attached

Storage (DAS) [4], Network Attached Storage (NAS) [54], Storage Area Networks (SAN) [54],

and Object Storage [96]. Most current distributed storage systems are built on these common

storage infrastructures.

23

2.1. DISTRIBUTED DATA STORAGE SYSTEMS

From a data formatting point of view, we classify different types of storage as file, block, and

object (also referred to as object-based) storage. File storage stores data in individual files

organized by folders and file hierarchy [119]. Block storage splits data or files into evenly sized

blocks, with each block associated with its address within disk sectors and track [2]. Object

storage splits data or files into data objects. Each object is self-contained with its metadata

and a globally unique identifier [50]. The data sizes and formats of objects can vary with no

hierachy structure. This makes object storage be more efficient on data searching, mining, and

analytics. Amazon S3 [3] is an example of cloud-based object storage systems.

From the user and application standpoints, we classify distributed data storage systems into

centralized, decentralized or hybrid storage systems [144]. In a centralized storage system, data

and files are managed by a central component. A uniform interface provides a single point

of view to the underlying storage system. In a distributed management system, data and file

management are distributed to individual storage servers or devices. Users have to access each

individual storage server to locate or access data. A hybrid storage system separates data access

and metadata management from the data I/O path. Data access is through a central compo-

nent, while data retrieval can be conducted directly from individual storage servers or devices

simultaneously. This hybrid approach allows data to be split into data blocks. These data

blocks are stored on different network servers, which allows unlimited sizes of data files. In ad-

dition, simultaneously retrieving data blocks from different network servers achieves maximum

throughput.

24

2.2. DATA PROTECTION CHALLENGES IN DISTRIBUTED DATA
STORAGE SYSTEMS

2.2 Data Protection Challenges in Distributed Data

Storage Systems

Although distributed data storage provides many benefits, protecting distributed data storage

introduces many challenges:

1. Data is highly distributed across a network, thus increasing management complexity and

introducing more vulnerability points with respect to data integrity and privacy.

2. A decentralized system can be built on different sub-systems. Those sub-systems may

use different storage infrastructures, data or file formats, and storage technologies. This

complexity creates more vulnerability to security breaches, as different storage infrastruc-

tures may be vulnerable to different security threats. The security of the whole system

depends on the security of the weakest sub-system.

3. Highly distributed storage systems can consist of storage systems residing anywhere, pos-

sibly even across different security domains or regions. Therefore, sensitive data protection

in distributed storage systems not only serves to control who can access the data, but

also needs to secure data in transit and at rest in different domains and regions. Some

legislation and regulatory requirements for data access and protection may be different.

4. Legislation has placed more security demands for the preservation and retrieval of long-

term stored data. Extended retention time provides wider time windows for attackers

to discover or damage data. Dramatically increased computing power and resources can

25

2.2. DATA PROTECTION CHALLENGES IN DISTRIBUTED DATA
STORAGE SYSTEMS

result in the strength of encryption algorithm used for encrypting the archived data (when

the data was stored) being regarded as weaker over time. Backward compatibility after

data migration, data format translation, re-encryption of data without any violation of

secrecy policy due to the weaker strength of the used encryption algorithm, authorized

integrity correction due to the corruption or malicious attacks, and data recovery due to

delete of, are examples of long-term data protection issues.

5. Although there are many data protection mechanisms available today, no single method

can protect a distributed data storage system and address all vulnerabilities. For example,

encryption can protect data secrecy but cannot address data recovery and availability.

Authentication and authorization can prevent unauthorized data access, but cannot re-

place integrity and confidentiality protection. The use of data replication may provide

availability and fault tolerance but may also increase storage complexity and exposure to

confidentiality and integrity attacks.

Different distributed data storage systems are vulnerable to different threats. When selecting

and designing a distributed data storage system, we have to weigh trade-offs of security counter-

measures, system performance, and network overheads within specific environments. Therefore

it is very important to understand the threats to a specific distributed data storage system

before implementing any security features.

26

2.3. THREATS TO DISTRIBUTED DATA STORAGE SYSTEMS

2.3 Threats to Distributed Data Storage Systems

The goals of storage security are to protect data from unauthorized access and alteration as well

as prevent sensitive data from being disclosed to non-legitimate users or applications at rest or in

transit. Understanding threats at each entry point and layer is essential to selecting the right

protection strategies. Distributed data storage protection includes trade-offs. For example,

encryption can impact performance, usability, and capability for data recovery. Data replication

provides availability, but can open up more entry points for attacks. Storage standards which

define interoperability for various storage systems also need to be considered when selecting

the right countermeasures.

Confidentiality, integrity, and availability (CIA triangle) are defined by the Committee on Na-

tional Security Systems (CNSS) as the three core characteristics of protecting critical data [139].

The CIA triangle has long been an industry “model” for computer and data security. Although

the CIA triangle model is still mentioned as the industry standards for data protection, it does

not adequately address today’s environments. While CIA deals with data protection, data also

needs to be accessed by users. Data security also needs consideration of access control, which

restricts un-authorized users or entities from accessing data. Data access control should consist

of authentication (a process of identifying users who want to access data) and authorization (a

process to prevent the data from unauthorized access or modification). In untrusted storage

environments, an authentication mechanism also needs to protect user privacy for the reasons

explained in Section 2.5.1.

27

2.3. THREATS TO DISTRIBUTED DATA STORAGE SYSTEMS

In this thesis, we consider data security in four dimensions: confidentiality, integrity, availabil-

ity, and access control (CIAA). Hasan et al. [66] classifies storage threats based on the four

dimensions as follows.

2.3.1 Threats to Confidentiality

General threats to confidentiality include sniffing storage traffic, snooping on buffer caches,

deleting storage blocks, de-allocating memory, and file system profiling [110] (an attack that uses

system metadata to gain knowledge of system’s operational information, such as Input/Output

performance, file accessing protocols, CPU power, etc. The metadata information can assist

attacking on accessing decrypted data, or encryption keys). Storage and backup media can be

stolen in order to access the data or brute force keys.

2.3.2 Threats to Integrity

General threats to integrity include storage jamming (a malicious but surreptitious modification

of stored data) to modify or replace the original data, metadata modification to disrupt a storage

system, subversion attacks to gain unauthorized OS level access to modify critical system data,

man-in-the-middle attacks to change data contents in transit, exploitation of storage backup

procedures or applications, hardware failures, and long-time data preservation providing a large

time window for adversaries to find collisions of hash values.

28

2.4. DATA PROTECTION MECHANISMS

2.3.3 Threats to Availability

General threats to availability include denial-of-service (DoS) or distributed DoS (DDoS), disk

fragmentation, network disruption, and file deletion. Buffer overflows in applications have al-

lowed attackers to take control of systems, execute malicious code, and launch DoS attacks.

Centralized data location management or indexing of servers can be points of failure or victims

of DoS attacks. For long-term data archive systems, data retention introduces additional chal-

lenges such as long-term key management for encrypted data, constant protection against new

threats, backward system compatibility, new technology adoption, and data recovery [125].

2.3.4 Threats to Access Control

General threats to access control include privilege escalation to access unauthorized data, ses-

sion hijacking, man-in-the-middle attacks, authentication token theft, and replay attacks that

trick the system into performing unauthorized operations.

2.4 Data Protection Mechanisms

Common mechanisms for preventing or minimizing the risks posed by those threats listed in

section 2.3 are access control, confidentiality protection, integrity protection, data availability

and recovery mechanisms, and auditing.

29

2.4. DATA PROTECTION MECHANISMS

2.4.1 Access Control

Access control typically includes authentication and authorization. The access control type

can be either centralized or decentralized. In both types, the control validates legitimate

entities (authentication) for accessing data according to pre-defined policies (authorization).

The access privileges of an entity need to be periodically reviewed or re-granted to prevent

replay and impersonation attacks, as well as to remove excessively granted privileges from an

entity if those privileges are no longer needed.

2.4.2 Confidentiality Protection

Encryption and secret sharing are commonly used methods for confidentiality protection. En-

cryption uses keys to encrypt data. Key management is critical, in addition to key or encryption

algorithm strength. A widely distributed environment requires the key management to be flex-

ible and adaptable for key distribution, refreshing and revocation. Secret sharing splits secrets

into multiple shares. It protects data without the use of keyed encryption. Thus, it replaces key

management with secret share management. However, those secret shares also require periodi-

cal secure transfer, access, and renewal. Since a secret sharing mechanism can generate multiple

data shares, with each share potentially being the same size as or larger than the original data

size, more storage space and additional network communication are required. These overheads

may impact system performance.

30

2.4. DATA PROTECTION MECHANISMS

2.4.3 Integrity Protection

Integrity mechanisms protect data from unauthorized modification, while non-repudiation mech-

anisms prevent an entity from denying a modification of the data. Storage integrity violation

has two different aspects: hardware or software malfunctions and malicious intentions [61].

Integrity protection against hardware or software malfunction is typically provided by tech-

nologies, such as mirroring, parity, erasure codes, or hash functions. Integrity despite malicious

attacks requires digital signatures or message authentication codes (MAC). Both mechanisms

can detect unauthorized modification of data, while digital signatures additionally provide non-

repudiation verification.

2.4.4 Data Availability and Recovery

Data availability and recovery functionality are very important to critical data for users and

applications. Availability is particularly important to accessibility to critical long retention

data. Recovery mechanisms repair damaged data or re-encrypt the data when a key gets

lost, a key is compromised, or selected encryption algorithms become vulnerable to known

attacks. Replication or data redundancy provides both data availability and recovery capability.

Intrusion detection or prevention mechanisms detect or prevent malicious activity aimed at

stealing or damaging data.

31

2.5. CLOUD STORAGE

2.4.5 Auditing

Maintaining audit logs is critical for storage systems. Audit logs not only provide evidence

of compliance but also form the basis for system recovery, intrusion detection, and computer

forensics.

2.5 Cloud Storage

Cloud storage is a form of distributed storage that provides massive storage resources and

services to meet on-demand data center growth for corporations as well as remote storage for

small businesses and individuals. Cloud storage is a service model provided by cloud computing

[67, 94, 137], which is a computing paradigm that uses Internet-based services to support

business needs. It allows consumers to pay for IT services on a utility-like basis, using a shared

pool of configurable computing resources (e.g. networks, servers, storage, applications, and

services). The main attributes of cloud computing include rapid deployment, low start-up

costs and capital investment, costs based on usage and subscription, and multi-tenant sharing

of services and resources. Figure 2.1 shows the NIST cloud computing model [94].

As a type of infrastructure as a service (IaaS) offered by cloud computing, cloud storage pools

and consolidates storage resources that can be administered on demand. It is a storage model

that may run on different storage infrastructures, multiple devices, in many application do-

mains, or with the inclusion of many services [149]. Cloud storage provides consumers with a

32

2.5. CLOUD STORAGE

	

Rapid	
Elasticity

	

Measured	
Service

	

On-Demand	
Self-Service

	

Broad
Network	

Resource	Pooling
	

Essential	
Characteristic

Software	as	a		
Service		
(SaaS)

	

Platform	as	a		
Service		
(PaaS)

	

Infrastructure	
as		

a	Service		
(IaaS)

Service		
Model

Public	 Private	 Hybrid	 Commu
-nity
uun	

Deployment	
Model

Figure 2.1: NIST Cloud Computing Model

unified interface that abstracts the different storage infrastructures and physical locations of

the storage, making whether the storage is local or remote (or hybrid) irrelevant. This means

that cloud storage is by default shared by many users on many layers of the storage stack. This

shared environment is referred to as multi-tenancy. Figure 2.2 shows a typical infrastructure

diagram for cloud storage. Examples of cloud storage providers include Dropbox [5], Amazon

S3 [3], and Google Drive [6].

As a type of cloud service model, cloud storage inherits the benefits of cloud computing [33, 55,

98] and is argued by many people to offer a range of advantages over traditional owned storage

systems. Those potential benefits include:

• Cost savings. Using cloud storage, a company does not need to undertake the capital

33

2.5. CLOUD STORAGE

�������

�������
��	

������

Cloud Storage

Figure 2.2: Cloud Storage

expense of purchasing or maintaining storage equipment or physical servers.

• Mobility and Accessibility. Cloud storage allows consumers to access data via the Internet,

using any device, independent of current location.

• Flexibility. Cloud storage is capable of adapting to on-demand storage capacity changes

by provisioning and deprovisioning resources quickly. Consumers only pay for the server

space they use, rather than the space they might eventually need.

• Reliability and Availability. Virtualization technologies enable cloud storage to poten-

tially supply unlimited storage space to users. Since data can be duplicated and backed

up to cloud storage, when one server goes down, other servers can immediately be put

into service. In the event of catastrophic data loss, data can be rapidly restored.

• Agility. Cloud storage enables rapid development, deployment, and change management.

34

2.5. CLOUD STORAGE

• Collaboration and Sharing. Cloud storage services facilitate simpler data sharing between

companies and organizations.

While the benefits of cloud storage are compelling, cloud storage does have its potential down-

sides and risks, as follows [1]:

• Cost. Cloud storage services may have a specific bandwidth allowance. If an organization

surpasses the given allowance, the additional charges could be significant.

• Mobility and Accessibility. Reliance on Internet connectivity at the customer’s end might

create a single point of failure.

• Insecure or incomplete data deletion. Data duplication and redundancy provide reliability

and availability, but can also result in insecure or incomplete data deletion.

• Lock-in. Cloud storage standards are not yet fully established, particularly with regard

to portability of data, applications, and services. Consumers thus face difficulties if they

migrate from one storage provider to another.

• Data protection and security. As data is outsourced to a third party storage system, data

owners lose physical control of their data. Data security is thus a big concern when using

cloud storage.

In this thesis, we focus on the last of these issues by extending data protection mechanisms

suitable for cloud storage. In particular we consider data protection and access control in

35

2.5. CLOUD STORAGE

untrusted cloud storage environments.

2.5.1 Cloud Storage Security Challenges

In addition to the discussed security issues of distributed storage systems, cloud storage has

unique challenges [41, 111, 131, 55] that arise from two major aspects: trust in the cloud storage

providers (CSPs) and the shared storage environments (multi-tenancy). Those unique security

challenges have special requirements for data protection and access control.

2.5.1.1 Trust in CSPs.

In traditional storage systems, storage servers are trusted to protect the data stored on the

servers. This kind of trust does not necessarily exist in a cloud storage environment. After

data is outsourced to cloud storage, data owners lose physical control of it. Data confidentiality

and integrity are thus at increased risk.

Although sensitive data can be encrypted before it is sent to cloud storage, key distribution and

management become more complicated. The mobility and accessibility of cloud storage enable

users to access data at any time from anywhere in the cloud. Any adopted encryption mech-

anism must be suitable for dynamic environments and users. As the CSPs may be untrusted,

data owners need to take responsibility for key distribution and management. This approach

presents a number of performance and scalability issues, especially when a potentially large

number of users desire fine-grained access to the data.

36

2.5. CLOUD STORAGE

As encryption has key distribution and management overhead, it is undesirable for non-sensitive

data. Data protection for non-sensitive data should be more focused on access control, and

unauthorized modification or corruption. Although data integrity can be achieved by the

mechanisms mentioned in Section 2.4.3, verifying correctness of data in the cloud may be

challenging because the original copy of the data may no longer be held by the data owners.

User privacy or personal information is a further issue of concern [12]. Traditionally storage

servers are trusted to mediate user access to stored data. User access management is typically

via user account management, which can store or link to user personal information. This

personal information can include a range of data items, such as user or account names, email

addresses, phone numbers, dates of birth, social security numbers, etc., which are combined to

form Personally Identifiable Information (PII) data [92]. PII data is treated as sensitive data,

which can be used or linked to an individual’s identity. As CSPs may not be fully trusted,

relying on a CSP’s administration of user accounts, or sharing/storing user PII data at CSPs,

is problematic.

2.5.1.2 Multi-Tenant Environments

In traditional storage systems, the data stored on the servers is typically from the same security

domain or shared by users in the same organization. In cloud storage, virtualization (enabling

multi-tenancy) allows data from different security domains to be stored on the same physical

server, or a single data owner’s data to be stored on multiple servers, which can reside in

different security domains. The risk of unauthorized data access to other user’s data in such

37

2.5. CLOUD STORAGE

an environment is a big concern [39].

In multi-tenant storage environments, the hypervisor of the virtualization may have privileged

access to the hardware’s physical resources. In the event that a hypervisor is compromised, it

may be possible to intercept the contents of memory, virtual network traffic, and other forms of

communication that occur from other virtualization environments hosting different applications

on the same physical server [55]. This can lead to user privacy disclosure of other applications,

as well as information about their data access patterns. Data access patterns can be used by

malicious insiders or external attackers in order to gain knowledge of the possible importance

of files, which can then be either damaged or manipulated in order to achieve malicious goals,

such as denial-of-service attacks (DoS).

2.5.2 Requirements for Protecting Data Secrecy and User Privacy
in Cloud Storage

Motivated by the special needs of data protection and access control in a cloud storage environ-

ment, in this thesis we study effective and efficient access control mechanisms to protect data

secrecy and user privacy. We assume that the cloud storage trust model consists of at least

three parties in general:

• Cloud Storage Provider (CSP). These CSPs provide cloud storage services to users. They

are not fully trusted. They are assumed to faithfully perform the required tasks, but are

curious to learn the secrecy of data or user identities.

38

2.5. CLOUD STORAGE

• Users. Users access the data stored on cloud storage. They are untrusted.

• Data owners (DO). Data owners store data in cloud storage. They are responsible for

protecting the data.

Due to the trustworthiness of cloud storage systems, data needs to be capable of “self-protection”.

We refer to this as data-centric access control. In data-centric access control, sensitive data

is encrypted before it is sent to cloud storage. Thus data-centric access control requires the

following characteristics:

• Fine-grained protection. The data access policy is defined at a data-item level. The

access policy should be enforced at each access attempt, with or without the data owner’s

involvement.

• Dynamic access rights management. The granting or revoking of user access rights to a

particular data item should be straightforward to conduct and should, ideally, be per-

formed almost instantaneously.

• Efficient key management. Critical key management operations such as key distribution,

key revocation, and key refreshing should be conducted in an efficient manner that scales

well and is appropriate for the highly dynamic and heterogeneous nature of a cloud storage

environment.

User access control and management in untrusted cloud storage should consider user privacy

39

2.6. EXISTING ACCESS CONTROL AND DATA PROTECTION
TECHNIQUES

protection. We refer to this as the user-centric access control. We argue that it requires the

following characteristics:

• Anonymous access control. Access control mechanisms should authenticate users anony-

mously.

• Dynamic user management. User access granting or revocation should be anonymous,

dynamic, and instantaneous to CSPs. CSPs should not need to know any user’s actual

identification information (PII) or administrate any user information that can be directly

or indirectly linked to the user’s true identity.

• Fine-grained policy. Access policies should be fine-grained and expressive. They should

not contain or be able to hint at any user’s identification information and should be

enforced by CSPs.

As data is accessed by users, a data access control mechanism in an untrusted cloud storage

should be concerned with both the requirements of data and user-centric controls.

2.6 Existing Access Control and Data Protection Tech-

niques

Existing access control mechanisms consist of a large set of technologies. Depending on the

trustworthiness of a server, there are two general approaches: server-mediated and cryptographically-

enforced access control.

40

2.6. EXISTING ACCESS CONTROL AND DATA PROTECTION
TECHNIQUES

To understand how those approaches work in an untrusted cloud storage environment, let us

first take a look at the following scenario:

Suppose a small global company XYZ wants to use cloud storage for storing their HR data. Their

HR personnel from different offices worldwide can access it through the Internet. Depending

on the responsibility of the HR personnel, the access to the data may need to be controlled.

Company XYZ is concerned about whether its data will be properly protected or not. It is also

concerned with the protection of employee identities and PII data during the account creation

and authentication process.

2.6.1 Server-Mediated Access Control

Server-mediated access control is the traditional approach [123], which is mainly based on the

reference monitor concept [11]. It requires the servers who mediate access to be fully trusted.

Server-mediated access control typically includes traditional authentication and authorization

mechanisms, in which users establish a trusted server to store data in the clear and then

delegates that server to perform authentication and authorization checking on every access

request. The most commonly used authentication methods include username and password

as well as certificate-based techniques that normally use Public key Infrastructure (PKI) [8].

Username and password authentication relies on identity management systems to maintain

and validate user credentials and their associated data, which can include PII data. Although

certificate-based authentication does not depend on an identity management system, both user

certificates and certificates of trusted authorities need to be managed and distributed. In

41

2.6. EXISTING ACCESS CONTROL AND DATA PROTECTION
TECHNIQUES

addition, user certificates can contain user identification information.

Traditional authorization models utilize user capabilities, roles, or resource access control lists

(ACLs) for granting access rights. The access policies define the rules by which access control

must be regulated. Policies can be grouped into classes, such as [118]:

• Discretionary (DAC): the policies enforce the rules that define who is, or is not, authorized

to carry out which actions on which resources.

• Mandatory (MAC): the policies control access based on mandated regulations determined

by a central authority.

• Role-based (RBAC): the policies control access depending on the roles that users have

within the system, and on rules stating what access is allowed to users in given roles.

While server-mediated access control is an acceptable way to protect data access, it requires

company XYZ to fully trust CSPs. For untrusted CSPs, company XYZ may have the following

concerns:

1. Data privacy. If the data is not encrypted, XYZ’s HR data can be accessed by anyone

who can access the server. While this may not be an issue if the stored data is pub-

lic information, it is a concern if the data contains sensitive information, such as PII

information.

2. Access policy enforcement. Server-mediated access control is only implemented at the

42

2.6. EXISTING ACCESS CONTROL AND DATA PROTECTION
TECHNIQUES

server level instead of the data item level. The data access policies may not be enforced

when XYZ’s HR data is transferred across the network or is temporarily cached on an

intermediate server.

3. User privacy. The server needs to manage user accounts and access, which could contain

or use PII data. If XYZ does not fully trusted the server, the company may want to

protect their employees’ privacy with anonymous access control.

Due to the above concerns, sever-mediated access control does not naturally fit in an untrusted

cloud storage environment.

2.6.2 Cryptographically-Enforced Access Control

An alternative approach is to use cryptographically-enforced access control [56, 65, 97], which

is access control provided through cryptographic “sealing”. A data owner encrypts data using

an encryption technology. The decryption key is controlled by an access policy or a trusted

party to ensure that only appropriate parties can obtain it. Cryptographically-enforced access

control allows users to store their data on an untrusted server.

Using cryptographically-enforced access control, company XYZ can first encrypt HR data with

a key and map an access policy to the decryption key. After that, the encrypted HR data is

stored on cloud storage. Since the data is encrypted, only users who are given the decryption

key can decrypt and access the data. The data is self-protected in the sense that the access

43

2.6. EXISTING ACCESS CONTROL AND DATA PROTECTION
TECHNIQUES

policy is also bound to the data. This is important since data could be stored and replicated

anywhere on the servers within the cloud storage environment. In some situations, this could

mean that the same data resides on servers in different countries.

There are two types of data encryption approach: symmetric encryption and asymmetric en-

cryption. We now discuss how these encryption approaches can be used by company XYZ

to enforce its access policies. We will also analyze the limitations that motivate our research

objectives.

2.6.2.1 Access Control with Symmetric-Key Encryption

Symmetric encryption, such as [10, 43], uses the same key to encrypt and decrypt data. It is also

known as secret-key encryption since the encryption key must be kept secret and only shared

amongst the legitimate users. Company XYZ can use symmetric encryption to protect their

data and enforce access control policies through key distribution. Two possible, but flawed,

approaches are:

1. The company can generate one secret key and encrypt all their HR records with the same

key. It only needs to distribute the key privately to the employees who need to access the

data. The limitation of this approach is that the data sharing is “all-or-nothing.” The

company does not have the flexibility to choose a fine-grained access policy. For example,

a salary record can only be viewed by managers and above. Another drawback is that

the company has to distribute the same secret key to all intended users. If only one user

44

2.6. EXISTING ACCESS CONTROL AND DATA PROTECTION
TECHNIQUES

is compromised with the distributed key, all the HR records are potentially exposed.

2. Alternatively the company can generate a different set of keys, with each key encrypting

a set of records. Different keys are thus shared among different groups of users. Although

this approach overcomes the all-or-nothing problem, the key management becomes com-

plicated. For example, if the company wants to allow n record sets with different access

rights, then it has to create and securely distribute n keys. In addition, if a data item is

shared among all of them, it has to be encrypted n times.

In both approaches, key distribution and access control need to be performed by data owners.

This means that data owners have to be online all the time to mediate access to the data. This

is not feasible and scalable in a highly distributed environment. Thus symmetric encryption

does not exactly meet the requirements of data-centric protection.

Encryption has performance and key distribution overhead. For some internal data such as

company XYZ’s general announcements that are not sensitive and only used by internal em-

ployees, it is more efficient to store these unencrypted. Authentication can be used to control

who can access the data. Symmetric encryption can also be used for user authentication. Us-

ing Message Authentication Code (MAC) [21], a unique secret key is shared between users and

an authentication server. A user is authenticated by sending to the authentication server a

randomly generated message (the challenge) encrypted by the secret key. If the server can

match the received encrypted message (the response) using its shared secret key, the user is

authenticated.

45

2.6. EXISTING ACCESS CONTROL AND DATA PROTECTION
TECHNIQUES

Although company XYZ can use symmetric encryption authentication for access control of

insensitive data, it is unfeasible to share a secret with untrusted CSPs.

2.6.2.2 Access Control with Asymmetric Cryptography

Asymmetric encryption [9, 46], also referred to as public-key encryption (PKE), uses a pair of

public and private keys. The public key is public, and mathematically related to its private key

that is kept secretly. Data is encrypted under the public key and decrypted by the private key.

Public-key encryption can also be used to support user authentication using digital signatures

[112]. In a digital signature scheme, a user is required to sign a piece of information using a

private signing key. Only the public verification key associated with the private signing key is

able to validate the signature. This implies that the signature is genuinely generated by the

user. Digital signatures can also validate the integrity of data, but they do not protect the

secrecy of data.

Using PKE, company XYZ can protect its sensitive HR data as follows:

• A manager first generates a pair of keys. The manager uses the public key to encrypt

all the HR data and stores it on the storage server. When someone needs to access the

data, the manager will download and decrypt the data, then re-encrypt the records using

the employee’s public key based on the HR access policy. The issue with this approach

is that the manager has to remain on-line to mediate the requests.

46

2.6. EXISTING ACCESS CONTROL AND DATA PROTECTION
TECHNIQUES

• Another way to do this is for the manager to encrypt the records using the employees’

public keys based on their HR access control policies. However, the manager needs to

obtain all the employees’ public keys ahead of time in order to encrypt the data. This

is difficult to manage because employees can move on to other groups or new employees

can join. Also, PKE tends to be a one-to-one relationship, meaning that one key pair is

owned by one user. If a record is shared by n users, the record will need to be encrypted

n times.

For protecting its internal data, company XYZ can implement user authentication as follows:

• Every employee is issued with a digital signature key pair. The company sends all the

public verification keys to the CSP. At the time when the CSP authenticates an employee,

the CSP randomly generates a piece of information for the employee to sign. The CSP

validates the signature with the employee’s public key.

As we can see, there are two main benefits of using asymmetric cryptography over symmetric

cryptography. Firstly the public key is readily available to the public. In fact, public keys

are often published in public directories on the Internet so that they can be easily retrieved.

This simplifies key distribution efforts. Secondly it enables user authentication with digital

signatures, which does not require a secret to be shared with CSPs. Moreover, the verification

keys are also public keys and publicly available. However, the issues with using public-key

cryptography are as follows:

47

2.6. EXISTING ACCESS CONTROL AND DATA PROTECTION
TECHNIQUES

• Encryption. Data has to be encrypted multiple times using all the public keys of each

user who needs to share the data. The data owner has to know who will require access to

the data ahead of time. Multiple encryption also introduces a large overhead if the data

needs to be shared among large group of users. Furthermore, since the access control

policy (regarding who can decrypt data) is separated from the ciphertext, it cannot be

directly enforced by CSPs.

• Authentication. Although digital signatures are a viable authentication method for cloud

storage, they still require CSPs to keep all users’ public keys. As each public key can be

linked to an employee’s identity, this may still be an issue when it comes to protecting

employees’ privacy.

2.6.2.3 Attribute-Based Encryption and Signatures

The notion of Attribute-Based Encryption (ABE) was introduced by Sahai and Waters [116]

in 2005. It is a type of public-key encryption, which has a one-to-many relationship between a

public key and a set of decryption keys. ABE is a generalization of Identity-Based Encryption

(IBE) [25], in which data is encrypted by a public key and a set of system parameters. The

decryption keys or decryption process is associated with an access policy. A user can encrypt

data addressed to a group of users that fit a specific set of requirements without knowing

each individual user in the group ahead of time. Users who have the attributes satisfying the

access policy can decrypt the data. All the ciphertexts or decryption keys are associated with

fine-grained access policies that are automatically enforced in the decryption process.

48

2.6. EXISTING ACCESS CONTROL AND DATA PROTECTION
TECHNIQUES

When using ABE to protect sensitive data, company XYZ can use one public key to encrypt

the data just once. It then defines different access policies so that different users are granted

access to different sets of HR records. Since the access policy can be automatically enforced

during the decryption process, it does not need data owners or a third party, such as a CSP,

to mediate the data access. Furthermore, when data is backed up on different servers in the

cloud, the access policy is also transferred and enforced. ABE seems to be the ideal choice

for data-centric protection in a cloud environment. However, it does come with the following

practical limitations on user management:

• Dynamic user revocation. An access policy in ABE defines a group of users who share

the same set of attributes. When an employee leaves the company or switches to another

department, the employee may no longer be entitled to access the data. But the employee

may still hold a valid private key to decrypt the data. In order to revoke the employee’s

rights, company XYZ will have to re-generate the public key and re-issue new private

keys to other employees in the same group (or groups). Also the data will need to be

decrypted and re-encrypted under the new key.

• Dynamic user attribute revocation. A user can have their status changed over time. Those

changes can invalidate one or multiple attributes of the user. Attribute revocation can

be more granular than user revocation, because a user may still hold other attributes

that can satisfy other access policies. Any revoked attribute from a user could be valid

for other users. The revocation should not impact the attribute usage of other users.

Like user revocation, a user’s attribute revocation requires key re-generation and data

49

2.6. EXISTING ACCESS CONTROL AND DATA PROTECTION
TECHNIQUES

re-encryption can significant impact the usability and scalability of ABE.

Inspired by ABE, Attribute-Based Signatures (ABS) schemes [90] enable anonymous authenti-

cation and signature generation. In ABS a set of system attributes are used to define predicates

in a similar way to the access policy in ABE. A public key is used to validate signers who have

the attributes complying to a predicate. To authenticate a user, a user uses his private key to

sign a piece of data according to the predicate. The signature can only be validated if the user

has attributes complying with the predicate. CSPs only need the public key and associated

predicate to authenticate users with no need of knowing individual user identity or certificate

information.

Using ABS, company XYZ first generates a public key and system parameters. Every employee

is issued with a signing key based on their attributes (or roles). Company XYZ then defines a

predicate that is expressed by attributes, such as {employee ∧ HR Department}. The CSP is

then given the public key and predicate. At the time when a user requests data access, the CSP

randomly generates a message (challenge) and asks the user to sign it (response). The user

generates the signature based on the predicate using his signing key. The CSP validates the

signature only if the user has the attributes conforming to the predicate. In this way the CSP

only knows that the user is one of the employees from the HR Department. The CSP cannot

link the signature to any individual user; even if the same user generates the signatures on the

same message multiple times. ABS seems to meet the requirements of user-centric protection.

However, like ABE, ABS also suffers from the issue of dynamic user revocation, especially

50

2.7. CONCLUSIONS

anonymous user revocation. In ABS, a signature attests that a user belongs to a group who

share the same subset of attributes according to a predicate. Although each user is issued with

his own signing key, those individual signing keys are all derived from the same master secret.

This kind of setting makes a user anonymous in the process of signature verification, but leads

to issues with revoking a user from the group since the revoked user can still generate valid

signatures that can be used for authentication. Therefore the signing keys of non-revoked users

need to be re-generated.

2.7 Conclusions

ABE and ABS meet the requirements of data and user centric protection in untrusted cloud

storage systems. However, they have practical limitations when directly applied. In this chapter

we have identified these limitations. In the following chapters, we will propose deployment

models and systems designed to overcome the user and attribute revocation limitations of ABE

and ABS schemes. In doing so, we make them more practical for deployment in untrusted cloud

storage environments.

51

Chapter 3

Cryptographic Preliminaries and
Background

Contents
3.1 Abstract Algebra . 53

3.2 Modern Cryptography . 54

3.2.1 Principles of Modern Cryptography 55

3.2.2 Computational Security . 58

3.3 Complexity Assumptions . 64

3.3.1 Diffie-Hellman Assumptions . 65

3.3.2 The Bilinear Maps and Bilinear Diffie-Hellman Assumptions 67

3.4 Provable security . 69

3.4.1 Game-Based Security Models . 70

3.4.2 Types of Security Models . 75

3.5 Conclusions . 77

In this chapter we provide a brief background of the cryptography necessary for the the remain-

der of the thesis. We start with a brief introduction to the necessary abstract algebra. We then

touch on the necessary concepts of modern cryptography and related complexity assumptions

52

3.1. ABSTRACT ALGEBRA

upon which our schemes are analyzed. We then describe provable security and relevant security

models.

3.1 Abstract Algebra

A group G, sometimes denoted by {G, ?}, is a set of elements with a binary operation denoted

by ?. A group G satisfies the four group axioms: closure, associativity, the identity property,

and the inverse [124]. When the group G has a finite set of elements, G is called a finite group.

The number of elements in G is called the order of the group. A cyclic group is a group that

can be generated from a single element of the group, g ∈ G. Assuming the binary operation is

multiplication, then G = 〈g〉 = {gi | i ∈ Z }, which implies that for any y ∈ G there exists an

integer i such that gi = y. Given a non-empty subset H of the group G defined under binary

operation (?), H is a subgroup of G, if H is also a group under (?).

Let Zn be the set of integers {0, 1, . . . , n - 1}, where n is a positive integer. If the operation

+ in Zn is addition modulo n, then {Zn, +} is a group and n is the order of the group. If the

operation × in Zn is multiplication modulo n, then {Zn, ×} is not a group, since not every

element in Zn has a multiplicative inverse. But if n is a prime and Z?n = Zn \ {0}, then {Z?n ,

×} is a group [124].

A field F, sometimes denoted {F, +, ×}, is a set of elements with two binary operations,

addition and multiplication. A field satisfies the following axioms: associativity, commutativity,

distributivity, the identity property, and the inverse property [124]. The number of elements

53

3.2. MODERN CRYPTOGRAPHY

in a field F is called the order of the field. If the order is finite, the field is called a finite field.

Examples of fields include the real numbers R and the complex numbers C.

3.2 Modern Cryptography

The goal of modern cryptography is to design cryptographic schemes (e.g. encryption, message

authentication, etc.) with security properties that can be proven based on the robustness of

computational assumptions, such as the assumption of factorization, or discrete logarithm [77].

Modern cryptography evolved from classical cryptography [57], which is viewed as an art with

the focus of designing and using codes (also called ciphers) to enable two parties to communicate

secretly in the presence of an eavesdropper who can monitor all communication between them.

The security of classical encryption schemes relies on a secret (or a secret key) that is shared

by the communicating parties in advance and unknown to the eavesdropper. There was no

systematic way of defining what constituted a good code or proving it to be secure. In the late

1970s to early 1980s, a rich set of theories began to emerge enabling a more rigorous study

of cryptography as a science and a mathematical discipline. This perspective led to modern

cryptography.

Modern cryptography is concerned with the rigorous analysis of a cryptographic system that

should resist malicious attempts to abuse it. It is the scientific study of techniques for securing

digital information, transactions, and distributed computations. This scientific approach dis-

tinguishes modern cryptography from classical cryptography. It made cryptography go from a

54

3.2. MODERN CRYPTOGRAPHY

heuristic set of tools to ensure secret communication for the military to a science that helps

secure systems for ordinary people. In addition, modern cryptography has a much broader

scope. It has been extended from symmetric key encryption and data secrecy protection to also

include public-key cryptography, data integrity protection, and non-repudiation verification.

3.2.1 Principles of Modern Cryptography

Modern cryptography follows three principles: formal definitions, precise assumptions, and

proofs of security [77].

3.2.1.1 Formal Definitions

A security definition defines what a scheme can possibly achieve or what the security goal of the

scheme is. The importance of security definitions is to define security guarantees for a scheme;

provide guidance on design, construction, and usage of cryptographic primitives; and enable a

way to evaluate and analyze the security of the scheme. A security definition consists of two

components: a threat model and security guarantees.

The threat model describes the power of an adversary, or the possible attacks from the adver-

sary, but does not place any restriction on the adversary’s strategy. In other words, the threat

model only assumes an adversary’s abilities but does not assume anything as to how it uses

those abilities. For example, a threat model can assume the following attacks in the context of

encryption [77]:

55

3.2. MODERN CRYPTOGRAPHY

• Ciphertext-only attack : refers to a scenario where the adversary just observes one or mul-

tiple ciphertexts in an attempt to determine information about the underlying plaintext

(or plaintexts).

• Known-plaintext attack : refers to an adversary being able to learn one or more plain-

text/ciphertext pairs generated by an encryption key. The adversary attempts to deduce

information about the underlying plaintext of some other ciphertexts encrypted by the

same key.

• Chosen-plaintext attack : is a similar attack to a known-plaintext, except that an adversary

can obtain plaintext/ciphertext pairs for the plaintexts of the adversary’s choice.

• Chosen-ciphertext attack : refers to an adversary having the additional ability to obtain

information about the decryption of ciphertexts of the adversary’s choice, e.g. whether

the decryption of some ciphertexts chosen by the adversary yields a valid message or not.

Choosing the right threat model to use depends on the environment in which an encryption

scheme is deployed.

The security guarantee defines what the scheme intends to prevent an attacker from doing

or what constitutes a successful attack on the scheme. Based on Kerckhoffs’s principle, a

cryptographic system should be secure even if everything about the system, except the key, is

public knowledge. For example, when we define the security guarantee of an encryption scheme,

the goal of the scheme might be the following:

56

3.2. MODERN CRYPTOGRAPHY

• An attacker should not be able to recover the decryption key;

• The ciphertext should make it impossible for an attacker to recover the plaintext entirely

or partially, regardless of any information the attacker already has.

Semantic security [58] and ciphertext indistinguishability [99] are commonly used definitions

for secure encryption. These are essentially equivalent, and formal definitions will be given in

Section 3.2.2.

3.2.1.2 Assumptions

Modern cryptography relies on computation theory, mathematical modeling, and proofs to ar-

gue that a cryptosystem or construction is secure. Certain assumptions need to be introduced

to establish our security arguments. Those assumptions must be made explicit and mathemat-

ically precise. Examples of the assumptions include how powerful the adversary is in terms of

run time or computer resources and what the mathematical theory or known assumptions are.

3.2.1.3 Security Proofs

Security proofs provide evidence as to whether proposed constructions are secure, based on

their security definitions and assumptions. For example, either no attacker will succeed or one

will have a certain probability of breaking the system. Although security proofs in modern

cryptography are much more formal than the heuristic approach in classical cryptography,

proofs are still relative to their definitions and assumptions. If a security guarantee does not

57

3.2. MODERN CRYPTOGRAPHY

match the security definition, or the threat model does not capture the adversary’s true abilities,

then the proof may be irrelevant. Similarly, if an assumption turns out to be false, then the

proof of security is meaningless.

3.2.2 Computational Security

Computational security is used by modern cryptography to prove the security of a cryptographic

scheme. It uses computation theory to argue how feasibly a given adversary can break the

scheme. Computational security allows cryptographic schemes to limit the computational power

of attackers and achieve a small probability of failure.

Computational security is a weaker notion than the information-theoretic security introduced by

Shannon [122]. Information-theoretic security requires that no information about an encrypted

message be leaked, even to an eavesdropper with unlimited computational power. Information-

theoretic security is considered to be the ideal security for a cryptosystem. However, this kind

of security is also considered to be too difficulty to achieve in practice [77].

There are two types of encryption systems. In symmetric encryption, the encryption and

decryption keys are the same. Public-key encryption has distinct encryption and decryption

keys, with the encryption keys (public keys) being publicly known, and the decryption keys

being kept secret. We will proceed by explaining symmetric encryption schemes, and will define

public-key encryption in Section 3.4.

58

3.2. MODERN CRYPTOGRAPHY

3.2.2.1 Perfect Indistinguishability

To better understand computational security, we will explain what we mean by a small prob-

ability of failure with bounded computational power of an attacker. The security of perfect

indistinguishability [77] is defined as follows:

Definition 3.2.1. A symmetric key encryption scheme is defined by three algorithms Gen,

Enc, and Dec, with a specification of a (finite) message space M where the length of M is

larger than 1: |M | > 1:

• Gen: A probabilistic key generation algorithm. We denote K as the key space (typically

a finite set), the set of all possible keys k is chosen uniformly from K, and output by Gen

→ k ∈ K.

• Enc: Taking a key k and a message m ∈ M as inputs, it outputs a ciphertext c. We

denote Enck(m) the encryption of the plaintext m using the key k. If Enc is proba-

bilistic algorithm, Enck(m) might output a different ciphertext c each time it runs. We

denote Enck(m) → c to indicate the possibly probabilistic process by which message m

is encrypted using k to output c. Let C denote the set of all possible ciphertexts that

can be output by Enck(m), for all possible choices of k ∈ K and m ∈ M . Here K and

M are assumed to be independent. The selection of k is completely independent from

message selection m. Note: in case Enc is deterministic, we emphasize this by writing c

:= Enck(m).

59

3.2. MODERN CRYPTOGRAPHY

• Dec: Taking a key k and a ciphertext c as inputs, it outputs a plaintext m. We denote the

decryption of the ciphertext c using the key k by Deck(c). We assume perfect correctness,

meaning that for every key k output by Gen and every message m ∈ M , it holds that

Deck(Enck(m)) := m with probability 1.

Let Π = (Gen, Enc, Dec) be an encryption scheme, and A be an adversary (eavesdropper) with

message space M and |M | > 1. We define the randomized experiment PrivKeva
A,Π as follows:

1. The adversary A outputs a pair of messages m0, m1 ∈ M .

2. A key k is generated using Gen, and a uniform bit b ∈ {1, 0 } is chosen. The ciphertext

Enck(mb) → c is computed and given to A. We refer to c as the challenge ciphertext.

3. A outputs a bit b
′
.

4. The output of the experiment is defined to be 1 if b
′

= b, and 0 otherwise. We write

PrivKA,Π = 1 if the output of the experiment is 1 and we say that A succeeds.

Definition 3.2.2. (Perfect Indistinguishability) Encryption scheme Π = (Gen, Enc, Dec) with

message space M is perfectly indistinguishable if for every A it holds that:

Pr
[
PrivKeva

A,Π = 1
]

= 1
2

.

60

3.2. MODERN CRYPTOGRAPHY

3.2.2.2 Computational Indistinguishability

As perfect indistinguishability is not considered to be practical, computational indistinguisha-

bility relaxes it in two aspects: allowing a small probability of security failure, and only con-

sidering efficient adversaries (attackers). Two general approaches are used to define those

relaxations: the concrete approach and asymptotic approach.

The concrete approach [17] takes the following form of definition:

Definition 3.2.3. A scheme is (t, ε)-secure if any adversary running for time at most t succeeds

in breaking the scheme with probability at most ε.

Although a concrete approach can provide concrete guarantees of a cryptographic scheme in

terms of exact running time t and possible breaking probability ε, it is arguably difficult to

achieve those guarantees [77, 114]. For example, it may be necessary to precisely specify what

computational power an adversary has (i.e. the type of computer, or the type of operating

system, and etc.); and whether or not to consider future advances in computing power and

technology.

Instead of binding any particular computational mode to an adversary, an asymptotic approach

introduces an integer-valued security parameter (denoted by n) that parameterizes both cryp-

tographic schemes as well as all involved parties, including both honest parties and adversaries.

One of the important aspects of using the security parameter n is that the security level of

a scheme can be adjusted, i.e., n is set to different values. Also, n can be viewed as the key

61

3.2. MODERN CRYPTOGRAPHY

length shared by parties, including adversaries. With this security parameter n, the security

failure is defined as the probability in n, and an adversary’s running time is in a polynomial

form of n. As efficient algorithms run in polynomial time in complexity theory, an adversary is

referred as an efficient one if its execution time is bounded by polynomial time.

Definition 3.2.4. A polynomial-time algorithm is an algorithm whose worst-case running time

function is of the form O(nk), where n is the input size and k is a constant.

Definition 3.2.5. A probabilistic algorithm A is a probabilistic polynomial time (PPT) algo-

rithm if the running time of A(x) is bounded by p(|x |) where p is a polynomial. The running

time is measured by the number of steps in the model algorithm (i.e. the number of steps in a

probabilistic Turing machine). Tossing a coin is one step in this model.

Definition 3.2.6. A function f is negligible, if for every polynomial p, there is an N such that

for all integers n > N it holds that f(n) < 1
p(n)

.

Definition 3.2.7. (Redefining Definition 3.2.1 using Asymptotic Approach) A symmetric key

encryption scheme is a tuple of PPT algorithms (Gen, Enc, Dec) such that:

• Gen(1n): takes as input 1n (i.e. the security parameter written in unary), outputs a

random key Gen(1n) → k. Without loss of generality, we assume the length of k is |k| >

n.

• Enc(k, m): takes as input a key k and a plaintext message m ∈ {0, 1}?, and outputs a

ciphertext c. As Enc may be randomized, we denote Enck(m) → c.

62

3.2. MODERN CRYPTOGRAPHY

• Dec(k, c): takes as input a key k and a ciphertext c, and outputs a message m or an

error. Dec is assumed to be deterministic: m := Deck(c) (without error), or ⊥ when

there is an error.

Let Π = (Gen, Enc, Dec) be a scheme defined as above with a security parameter n. An

adversary (eavesdropper) A’s indistinguishability experiment PrivKeva
A,Π (n) is defined as follows:

1. A is given an input 1n, and outputs a pair of messages m0, m1 with message lengths: |m0|

= |m1|.

2. A key k is generated by running Gen(1n), and a uniform bit b ∈ {0, 1} is chosen. Ci-

phertext c ← Enc(k, mb) is computed and given to A. We refer to c as the challenge

ciphertext.

3. A outputs a bit b
′
.

4. The output of the experiment is defined to be 1 if b
′

= b, and 0 otherwise. If PrivKeva
A,Π

(n) = 1, we say that A succeeds.

Definition 3.2.8. A private-key encryption scheme Π = (Gen, Enc, Dec) has indistinguishable

encryptions in the presence of an adversary (eavesdropper), or is EAV-secure (eavesdropping

secure), if for all probabilistic polynomial-time adversaries A there is a negligible function negl

such that, for all n,

Pr
[
PrivKeva

A,Π(n) = 1
]
≤ 1

2
+ negl(n),

63

3.3. COMPLEXITY ASSUMPTIONS

where the probability is taken over the randomness used by A and the randomness used in

the experiment (for choosing the key and the bit b, as well as any randomness used by Enc

algorithm).

We also use ε to denote the output of negl(n). The above definition requires that no PPT

adversary can determine which of two messages was encrypted, with probability significantly

better than 1
2
. This is equivalent to a definition called semantic security [58, 59].

Definition 3.2.9. A private-key encryption scheme (Gen, Enc, Dec) is semantically secure in

the presence of an eavesdropper if for every PPT algorithm A there exists a PPT algorithm A
′

such that for any PPT algorithm Samp and polynomial-time computable functions f and h,

the following is negligible:

|Pr [A(1n, Enck(m), h(m)) = f(m)]| -
∣∣Pr [(A′(1n, |m| , h(m)) = f(m)

]∣∣,
where the first probability is taken over uniform k ∈ {0, 1}n, m output by Samp(1n), the

randomness of A, and the randomness of Enc while the second probability is taken over m

output by Samp(1n) and the randomness of A
′
.

3.3 Complexity Assumptions

In computational complexity theory, a reduction is an algorithm for transforming one problem

into another problem [128]. A reduction from one problem to another may be used to show that

the second problem is as difficult as the first. For example, problem A is reducible to problem

64

3.3. COMPLEXITY ASSUMPTIONS

B if an algorithm for solving problem B efficiently (if it exists in polynomial time) could also

be used as a subroutine to solve problem A efficiently. When this is true, solving A cannot be

harder than solving B. We denote this as A 6m B.

Reduction is very useful to prove that a cryptographic scheme is secure. That is, if we can

prove that breaking a scheme means finding a solution to an assumed intractable problem,

then it is also intractable to break the scheme. We refer to the assumed intractable problem as

a complexity assumption. In the following sections we define complexity assumptions that will

be used for analyzing the security of the systems in this thesis.

3.3.1 Diffie-Hellman Assumptions

The Diffie-Hellman assumptions are closely related to the difficulty of computing the discrete

logarithm problem over a cyclic group [93].

Let IG be a polynomial-time algorithm that takes security parameter 1n as input and outputs

the tuple 〈G, p, g〉, where G is cyclic group, p is the order of G, and g is a generator of G.

Definition 3.3.1. The Discrete Logarithm Problem (DLP) in 〈G, p, g〉 is defined as follows:

given (g, ga), compute a, where a is randomly chosen from Zp. A polynomial-time adversary

A has advantage ε in solving the DLP in 〈G, p, g〉 if :

Pr[A(g, ga) = a] ≥ ε, where the probability is over the random choice of a ∈ Zp and the

random bits used by A.

65

3.3. COMPLEXITY ASSUMPTIONS

A group G satisfies the DLP if there is no such adversary A with non-negligible advantage.

Definition 3.3.2. The Computational Diffie-Hellman Assumption (CDH) [22] in 〈G, p, g〉 is

defined as follows: given (g, ga, gb), where a, b are randomly selected from Zp, compute gab.

A polynomial-time adversary A has advantage ε in solving the CDH problem in 〈G, p, g〉 if

Pr
[
A(g, ga, gb) = gab

]
≥ ε, where the probability is over the random choice of a, b ∈ Zp and

the random bits used by A.

We say that a group G satisfies the CDH if there is no such adversary A with non-negligible

advantage.

Definition 3.3.3. The Decisional Diffie-Hellman Assumption (DDH) [22] in 〈G, p, g〉 is de-

fined as follows: given (g, ga, gb, gc), where a, b, c are randomly selected from Zp, determine

whether c = ab. A polynomial-time adversary A has advantage ε in solving the DDH prob-

lem in 〈G, p, g〉 if
∣∣Pr [A(g, ga, gb, gab) = 1

]
− Pr

[
A(g, ga, gb, gc) = 1

]∣∣ ≥ ε, where the

probability is over the random choice of a, b, c ∈ Zp , and the random bits used by A.

We say that a group G satisfies the DDH if there is no such adversary A with non-negligible

advantage.

It is not difficult to see that the DLP, CDH, and DDH are related. If an algorithm can solve

DLP, it can also resolve the CDH and DDH. An algorithm which solves the CDH problem can

be used to solve the DDH problem. But if an algorithm can solve the DDH, it is unknown

whether it can solve the CDH or not. The DDH is a very important assumption for proving

66

3.3. COMPLEXITY ASSUMPTIONS

security of cryptographic systems [22]. If an adversary can solve the DDH, it can break the

indistinguishability property of a scheme.

3.3.2 The Bilinear Maps and Bilinear Diffie-Hellman Assumptions

Many cryptographic schemes are constructed using bilinear maps [73, 129], such as the CP-

ABE scheme of [20]. Computational complexity assumptions for bilinear maps, such as Bilinear

Diffie-Hellman assumptions, are thus used for arguing the security of the schemes. We will use

bilinear maps to construct our security systems.

3.3.2.1 The Definition of Bilinear Maps

Let G1 , G2 , and GT be multiplicative cyclic groups of prime order p. Let g1 and g2 be

generators of G1 and G2 . A mapping e: G1 × G2 → GT is said to be bilinear if it has the

following properties [23]:

• Bilinearity : for all u ∈ G1 , v ∈ G2 , and a, b ∈ Zp, e(ua, vb) = e(u, v)ab

• Non-degeneracy : e(g1, g2) 6= 1

Throughout this thesis, we consider G1 = G2, or e: G × G → GT .

The existence of a bilinear map e: G × G → GT has two direct implications for the groups

involved:

67

3.3. COMPLEXITY ASSUMPTIONS

• The MOV Reduction [95]: the DLP is no harder in G than it is in GT . To see this, let

P , Q ∈ G . We would like to find a ∈ Zp , such that Q = P a. Let g = e(P , P) and h =

e(P , Q). Then h = ga. Therefore we reduce the DLP in G to the DLP in GT .

• The DDH is easy [74]: The DDH in G is to distinguish between the distributions (g, ga,

gb, gab) and (g, ga, gb, gc), where a, b, c ∈ Zp are randomly selected. The DDH in GT

is easy. To see this, observe that: given g, ga, gb, gc ∈ G?, we have c = ab mod q ⇐⇒

e(g, gc) = e(ga, gb).

3.3.2.2 Bilinear Diffie-Hellman Assumptions

The Bilinear Diffie-Hellman assumptions will be used for arguing the security of our proposed

systems.

Definition 3.3.4. The Bilinear Diffie-Hellman Assumption (BDH) [24] in 〈G ,GT , p , g , e〉 is

defined as follows: given g, ga, gb, gc, where a, b, c are randomly selected from Zp, compute

e(g, g)abc. A polynomial-time adversary A has advantage ε to solve the BDH problem in

〈G, GT , p, g, e〉 if
∣∣Pr [A(g, ga, gb, gc) = e(g, g)abc

]∣∣ ≥ ε,

where the probability is over the random choice of a, b, c ∈ Zp and the random bits used by A.

We say that the group G and GT satisfy the BDH if there is no such adversary A with non-

negligible advantage.

Definition 3.3.5. The Decisional Bilinear Diffie-Hellman Assumption (DBDH) [24] is defined

68

3.4. PROVABLE SECURITY

as follows: given g, ga, gb, gc, e(g, g)z, where a, b, c, z are randomly selected from Zp, determine

if z = abc. A polynomial-time adversary A has advantage ε in solving the DBDH problem in

〈G, GT , p, g, e〉 if
∣∣Pr [A(g, ga, gb, , gc, e(g, g)abc) = 1

]
− Pr

[
A(g, ga, gb, gc, e(g, g)z) =

1 | ≥ ε,

where the probability is over the random choice of a, b, c, z ∈ Zp and the random bits used by

A.

We say that the group G and GT satisfy the DBDH if there is no such adversary A with

non-negligible advantage.

3.4 Provable security

Provable security aims to provide a mathematical basis to argue whether a scheme is secure

or not based on its definition. As modern cryptography is mainly based on the hardness

of computational security, which is based on computational complexity, it allows a negligible

possibility of security failures, but should be infeasible to break the security of the cryptosystem

by any known practical means. How to properly model the power of adversaries and precisely

specify assumptions become critical to security proofs.

69

3.4. PROVABLE SECURITY

3.4.1 Game-Based Security Models

Modern cryptography security definitions include a complexity-bounded adversary. To argue

the possibility of an adversary being able to break the cryptosystem, we need to define a model

to measure its complexity. The model specifies the type of an adversary and the adversary’s

power over a cryptosystem. The type of an adversary can be classified by whether the adversary

is polynomial-bounded or not, how the adversary interacts with a security game or simulation

system, etc. The adversary’s power over a cryptosystem defines whether the adversary has

access to a single ciphertext, multiple ciphertexts, multiple keys, etc. It also defines precisely

what constitutes a break of the cryptosystem.

There are two general approaches to forming security models: game-based and simulation-based

[45, 107]:

• In the game-based security model, an adversary is modeled by a security game. During

the game an adversary interacts with a hypothetical probabilistic algorithm called a chal-

lenger. The challenger generates keys used in the system, and may respond to queries

made by the adversary. The game terminates when the adversary terminates, and we

assess whether the adversary has met the condition for breaking the cryptosystem. Typ-

ically a reduction (see Section 3.3) is used to prove that if there exists an adversary

capable of breaking the security algorithm, then that adversary is also able to solve a

computationally intractable problem - a complexity assumption that is believed to be

hard.

70

3.4. PROVABLE SECURITY

• In the simulation-based model, the environment in which the cryptographic scheme will be

used is simulated. In a simulated environment, an arbitrary PPT adversary can interact

with the algorithms of the cryptosystem in an arbitrary PPT environment. This includes

all the parties that may have access to the algorithms of the cryptosystem. An idealized

version of the cryptosystem that can never be broken is produced. The model generally

involves using an abstract third party who can always be trusted to transport and/or

vouch for data and whose operation is outside of the view of both the environment and

the adversary. The assumption is that if the outputs of the environment and adversary are

almost the same when the idealized cryptosystem is used in place of the real cryptosystem,

then the real cryptosystem should be secure. Hence, this implies that the cryptosystem

is secure if the probability of being able to tell the difference between these two outputs

is small.

In this thesis we use game-based models and assume PPT adversaries. As this thesis concerns

attribute-based encryption, a type of public-key cryptosystem, we will introduce the concept

of game-based models for public-key encryption. To better understand the security games, we

start off with the definition of public-key encryption.

Definition 3.4.1. A public-key encryption scheme is a triple of probabilistic polynomial-time

algorithms (Gen, Enc, Dec) such that:

• Gen(1n): takes the security parameter 1n as input and outputs a pair of keys (pk, sk),

where pk is the public key and sk is the private key. For convenience we assume that |pk|

71

3.4. PROVABLE SECURITY

≥ n, |sk| ≥ n, and n can be determined from pk, sk.

• Enc(pk, m): takes a public key pk and a message m ∈ {0, 1}∗ as inputs and outputs a

ciphertext c: Encpk(m) → c.

• Dec(sk, c): takes a private key sk and a ciphertext c as inputs and outputs a message m

or ⊥ for failure: m = Decsk(c).

CPA− Security [77]: CPA stands for chosen plaintext attack. It is also referred as indistin-

guishability CPA (IND-CPA). In this security game, an adversary can query the encryption

oracle multiple times for the messages the adversary chooses. The encryption oracle is a “black

box” to the adversary. The adversary is modeled by a PPT Turing machine, meaning that it

must complete the game and output a guess within a polynomial number of steps. The CPA

game for a public-key encryption algorithm is as follows:

Let a public-key encryption scheme Π = (Gen, Enc, Dec) and an adversary be A, consider the

following experiment:

• The challenger sets up the system and generates a key pair (pk, sk) by running Gen(1n),

where n is the security parameter of the system. The challenger publishes pk to the

adversary, and keeps sk secret.

• A submits two distinctly chosen plaintexts m0, m1 of the same length (|m0| = |m1|) to

the challenger.

72

3.4. PROVABLE SECURITY

• The challenger selects a bit b ∈ { 0, 1} uniformly at random, and sends the ciphertext

Encpk(mb) → cb back to A.

• The adversary is free to request a polynomially-bounded number of additional encryptions

of messages other than m0, m1.

• Finally, A outputs a guess b
′

for the value of b. If b
′

= b, then A wins the game.

Definition 3.4.2. A public-key encryption scheme Π = (Gen, Enc, Dec) is CPA-secure if for

all PPT adversary A, there exists a negligible function negl such that:

Pr
[
PubKCPA

A,Π (n) = 1
]
≤ 1

2
+ negl(n).

CPA-Security is the basic requirement of any public-key encryption scheme [136]. The security

guarantee is that learning anything about the plaintext from the ciphertext is almost infeasible

for a PPT adversary. CPA-Security can resist two types of adversaries: a passive adversary that

only eavesdrops, and an active adversary who carries out a chosen-plaintext attack. However,

it falls short for more active attacks where an attacker tampers with a ciphertext in order to

modify the plaintext.

There is a general consensus within the cryptographic research community that in virtually ev-

ery practical application, we require security against chosen ciphertext attacks (CCA-Security)

[109], whereby an adversary is given the access of decryption oracle to obtain the decryption of

arbitrary ciphertexts of its choice. CCA-security provides security guarantees against powerful

attackers who can alter encrypted messages. Therefore CCA-security has become the accepted

73

3.4. PROVABLE SECURITY

goal for building secure encryption schemes in the real world.

CCA− Security: CCA-Security is also referred as indistinguishability CCA (IND-CCA) [77].

Let a public-key encryption scheme be Π = (Gen, Enc, Dec) and an adversary be A, consider

the following experiment:

• The challenger sets up the system and generates a key pair (pk, sk) by running Gen(1n),

where n is the security parameter of the system. The challenger publishes pk to the

adversary, and keeps sk secret.

• A gets access to black boxes of Enc and Dec.

• A submits two distinct chosen plaintexts m0, m1 of the same length to the challenger.

• The challenger selects b ∈ { 0, 1} randomly, and sends A the ciphertext:Encpk(mb)→ cb.

• A may make further calls to Dec for any message with the restriction that cb cannot be

submitted to the Dec.

• Finally, A outputs a guess for the value of b
′
. A wins the game if b = b

′
.

Definition 3.4.3. A public-key encryption scheme Π = (Gen, Enc, Dec) is CCA-secure if for

all PPT adversary A, there exists a negligible function negl such that:

Pr
[
PubKCCA

A,Π (n) = 1
]
≤ 1

2
+ negl(n).

74

3.4. PROVABLE SECURITY

3.4.2 Types of Security Models

Security assumptions are critical in proving the security of a cryptosystem. Several models

have been proposed with each making certain assumptions about properties of some parts of

the scheme or the power of adversaries. In this section we briefly introduce two models that

are generally used in security proofs.

3.4.2.1 Standard Model

In security proofs, reduction is often used to prove that if a scheme can be broken, then the

same technique that breaks the scheme can be used to break a known complexity assumption.

If we prove a scheme based on complexity assumptions, then we say that the scheme is secure

in the standard model.

A proof by reduction in the standard model proceeds as follows: Suppose we want to prove the

security of scheme S. First we assume that a computational problem P is hard to solve. Then

we fix a polynomial-time algorithm A against the scheme S. We also fix a polynomial-time

algorithm B trying to solve P. If A breaks the scheme S with a non-negligible probability, then

B solves the hard computational problem P with a non-negligible probability. However, since

we have assumed that the computational problem P is hard to solve, we get a contradiction.

At this point, we have “proved” the security of S.

Proving the security of schemes in the standard model is usually difficult. Sometimes a given

75

3.4. PROVABLE SECURITY

construction is hard to construct a reduction algorithm which reduces the problem of breaking

the scheme to the problem of breaking a standard complexity assumption. In addition, practice

has shown that most schemes with a security proof in the standard model are not practical [42].

As an alternative to proving security in the standard model, a number of practical schemes are

proven secure in idealized models, including the random oracle model [18].

3.4.2.2 Random Oracle Model

Bellare and Rogaway [18] proposed the random oracle model which has been used to prove

the security of numerous cryptosystems. In cryptography, a random oracle is an oracle (a

theoretical black box) that answers every query with a random response chosen uniformly from

its output domain. If a query is repeated, the response remains the same each time.

The random oracle model is a heuristic that assumes the existence of a truly random function

accessed by all parties in a protocol. Since in reality no such function exists, random oracles

are instantiated with hash functions which have been heuristically assumed to be capable of

replacing the theoretical random oracles. The random oracle model allows us to prove the

security of a cryptosystem with practical efficiency [7] .

In the random oracle model, an attacker only has the oracle access and can compute values

only by querying the oracle. The oracle is simulated as follows:

• A simulator answers the adversary’s queries and maintains a list of all queried inputs {xi}

76

3.5. CONCLUSIONS

and their corresponding random values {yi}:

– For each query xi:

∗ If the query xi has been previously asked by the adversary, then the random

oracle will output the same value yi;

∗ Otherwise the simulator generates a fixed length random output yi, returns it

to the adversary, and records xi and its output yi.

Similarly to the standard model, reduction is used for proving security. If there is an adver-

sary that can break the cryptographic scheme using the random oracle, then the reduction

contradicts a complexity assumption. Hence, the cryptographic scheme is argued to be secure.

However, Canetti et al. [28] show the existence of encryption and signature schemes that are

secure in the random oracle model, but are insecure for any instantiation of the random oracle

as a hash function. Despite Canetti et al.’s finding, using random oracles instantiated with

hash functions for security proving is still widely used and considered viable.

3.5 Conclusions

In this chapter we have provided the background information for the rest of the thesis. We

briefly described groups, fields, elliptic curves and bilinear maps. We have reviewed some of the

fundamental concepts in modern cryptography, and introduced the idea of security models.

77

Chapter 4

Attribute-Based Cryptography

Contents
4.1 Attribute-Based Encryption . 79

4.1.1 ABE Scheme Definition . 80

4.1.2 Related Work . 84

4.2 Attribute-Based Signatures . 85

4.2.1 ABS Scheme Definition . 86

4.2.2 Related Work . 87

4.2.3 Construction of an ABS Scheme . 88

4.3 Conclusions . 90

Attribute-Based Encryption (ABE) and Attribute-Based Signature (ABS) schemes are emerging

cryptographic primitives. ABE schemes are used to protect data secrecy with fine-grained access

policies being automatically enforced during the decryption process. ABS schemes allow users

to generate anonymous signatures over a set of attributes, which can protect user privacy during

the process of authentication. In this chapter we formally introduce ABE and ABS schemes

and provide the prerequisite information about them which is necessary to understand our

78

4.1. ATTRIBUTE-BASED ENCRYPTION

proposed models and systems in the subsequent chapters.

4.1 Attribute-Based Encryption

In their landmark work [116], Sahai and Waters proposed Fuzzy Identity Based Encryption

(FIBE) which allows error-tolerance in Identity Based Encryption (IBE) for biometric applica-

tions. Every identity is viewed as a set of descriptive attributes ω. A user is able to decrypt

a ciphertext encrypted by identity attributes ω
′

if and only if his identity attributes ω overlap

with ω
′

for at least a pre-determined threshold value d (ω ∩ ω′ ≥ d). This idea of designing

fine-grained data protection was later formalized as ABE.

In ABE, an attribute authority (AA) is used to issue private keys (in the form of key shares) to

users. When the system is initialized, a public key, a master secret, and system parameters are

generated. Data is encrypted by the public key and system parameters. The master secret is

used to derive user private keys that are used to decrypt data. There are two major classes of

ABE schemes: key-policy ABE (KP-ABE) and ciphertext-policy ABE (CP-ABE). In KP-ABE

schemes, a user’s private key is issued based on an access policy. The ciphertext is associated

with a set of attributes defined by the encryptor. A user is able to decrypt data if the attributes

associated with the data’s ciphertext comply with the access policy associated with the user’s

private key. The idea is reversed to CP-ABE schemes, where the AA issues a private key based

on the attributes held by a user. A ciphertext is associated with an access policy defined by an

encryptor. A user can decrypt a ciphertext if the user has the attributes satisfying the access

79

4.1. ATTRIBUTE-BASED ENCRYPTION

policy of the ciphertext.

One of the crucial security features of ABE is collusion-resistance. Since user private keys

are all derived from the same master secret, it is important that each user’s private key is

randomized sufficiently to prevent users from pooling their partial private keys (attribute key

shares) together to decrypt any ciphertext.

A KP-ABE scheme controls which decryption keys can decrypt a ciphertext. The access policy

is used to derive private keys. CP-ABE controls which users can decrypt a ciphertext. The

access policy controls the data decryption process. Thus CP-ABE represents a more intuitive

way of protecting data in a distributed system.

Throughout this thesis we sometimes interchange the terms decryption key, attribute key shares,

and user private keys. They all refer to the keys that users use to decrypt the data in an ABE

scheme.

4.1.1 ABE Scheme Definition

In this section we formally define KP-ABE and CP-ABE schemes. We begin by introducing the

access control structure (tree) that is used by most ABE schemes for expressing access policies.

80

4.1. ATTRIBUTE-BASED ENCRYPTION

4.1.1.1 Access Structure

An access policy can be expressed in terms of a monotone boolean formula or monotone access

structure.

Definition 4.1.1. Let P = {P1, ... , Pn} be a set of parties. A collection A ⊆ 2{P1, ... , Pn} is

monotone if ∀ B, C: if B ∈ A and B ⊆ C then C ∈ A. A monotone access structure is a

monotone collection A of non-empty subsets of P, i.e. A ⊆ 2P \ {Ø}. The sets in A are called

authorized sets, and the sets not in A are called unauthorized sets.

Access structures can be represented by access trees [16]. Access trees are n-ary trees in which

leaves are attributes and inner nodes are AND (∧) and OR (∨) boolean operations. An inner

node can also be a threshold gate consisting of a set of nodes (children) and a threshold value.

For example, suppose an inner node x is a threshold node (gate), if numx is the number of

children of x, and tx is the threshold value of x, then 0 < tx ≤ numx. In fact AND and OR

can be seen as special cases of threshold gates, where AND is the gate of tx = 2, numx = 2,

and OR is the gate of tx = 1, numx = 2.

Intuitively, an access tree expresses an access policy specifying which combination of attributes

satisfies the access policy. Consider an example, where data can be accessed by the following

access policy. The policy dictates that the data can be accessed by either an analyst in the

marketing department, or a personnel in the IT, Operation, and Support Department. The

access tree is illustrated in Figure 4.1:

81

4.1. ATTRIBUTE-BASED ENCRYPTION

�����

 ������� ��	
����

 �� ���	����� �����	�

 ��	������

�����

����	�
���

��
������

Figure 4.1: Access Tree

Γdata = ((Analyst ∧ Marketing Department) ∨ (one of the personnel in one of the following

departments: IT, Operation, Support))

In ABE, instead of parties, we use attributes where the access structure A contains the set of

authorized attributes. Most ABE schemes use secret sharing schemes [76, 101, 121] to realize

access trees for splitting and re-constructing a secret.

4.1.1.2 Definition of a KP-ABE Scheme

A KP-ABE scheme typically consists of four algorithms as follows:

• Setup (1n): takes the security parameter 1n as input and outputs the public parameters

pk and a master secret mk.

• KeyGen(Γ, mk): takes an access structure Γ and the master key mk as inputs, and

outputs a decryption key sk.

82

4.1. ATTRIBUTE-BASED ENCRYPTION

• Enc(pk, m, S): takes public parameters pk, a message m, and a set of attributes S as

inputs. It outputs a ciphertext c.

• Dec(sk, c, S): takes a private key sk, a ciphertext c, and an attribute set S as inputs. It

outputs the message m if the attribute set S complies with the access structure Γ of the

decryption key sk: if Γ(S) = 1, m := Dec(sk, c, S); otherwise it outputs ⊥.

4.1.1.3 Definition of a CP-ABE Scheme

A CP-ABE scheme also consists of four algorithms:

• Setup(1n): takes security parameter 1n as input and outputs the public parameters pk

and a master secret mk.

• KeyGen(mk, S): takes master key mk and a set of attributes S as inputs, and outputs

a decryption key sk.

• Enc(Γ, pk, m): takes an access tree Γ, the public parameters pk, and a message m as

inputs. It outputs the ciphertext c.

• Dec(sk, c, S): takes a private key sk, a ciphertext c, and a set of attributes S as inputs.

It outputs m if the attribute set S satisfies the access tree: if Γ(S) = 1, m := Dec(sk, c,

S); otherwise it outputs ⊥.

83

4.1. ATTRIBUTE-BASED ENCRYPTION

4.1.2 Related Work

The concept of KP-ABE was first introduced by Goyal et al. [130]. The initial construction

of [116] can only handle one threshold gate in an access tree. The expressibility of the access

policy was greatly improved in [130]. The work of Goyal et al. [105] proposed a scheme that

supports a non-monotone access tree. The primary drawback of [105] is that the size of a

private key can blow up with the maximum number of attributes associated with a ciphertext.

Lewko et al. [80] improved [105] to dramatically reduce the size of private keys.

The first CP-ABE scheme was proposed by Bethencourt et al. [20]. This scheme allows an access

policy expressed by a monotone tree and uses a secret sharing scheme [121] in the construction.

Waters [135] took a different approach by using a linear secret sharing scheme (LSSS) [76] to

represent an access policy. This approach was later extended by Lewko et al. [82] and Okamoto

et al. [102]. Since [20] was only proved to be secure in the generic model, multiple approaches

were proposed to construct expressive and efficient CP-ABE schemes in the standard model

[62, 71, 82, 135]. Non-monotone access structures in CP-ABE were studied in Cheung et al.

[40]. The initial construction was proved to be CPA-Secure under the DBDH assumption, and

then was improved to be CCA-Secure by using the Canetti-Halevi-Katz technique [29].

The aforementioned ABE schemes focus on the expressiveness of the access policy and security.

However, the size of the ciphertext can grow linearly with the number of attributes. To improve

efficiency, schemes with a constant-size ciphertext have been studied in [14, 37, 47, 69] for

threshold access trees, and [13, 38] for non-monotone access trees.

84

4.2. ATTRIBUTE-BASED SIGNATURES

Multi-authority ABE (MA-ABE) schemes have been studied in [34, 35, 64, 81, 82, 84, 88]. In

a MA-ABE system, multiple AAs work together to generate user private keys, with each AA

being responsible for a disjoint set of attributes. One of the biggest challenges is to prevent

users from colluding. This requires that the key shares issued by different AAs are linked in a

unique way for different users.

4.2 Attribute-Based Signatures

In an ABS scheme, a central AA uses the master secret to issue private signature keys (in the

form of key shares) to signers according to the attributes that they have. A signer with an

attribute set ω can use his private key to sign a message with any subset of ω. Unlike digital

signature schemes [60, 112], an ABS scheme is capable of supporting a complex predicate

(expressing an access policy). For example, a signature can be produced by a user who is:

((Student) AND (in Department of Mathematics OR Department of Computer Science)). The

person who validates the signature can only know that the signature is generated by a user who

is a student in the Department of either Mathematics or Computer Science. No more attributes

or identity information are disclosed. In addition, an ABS scheme is collusion resistant, which

means that multiple parties cannot collude and combine all their attributes to produce a valid

signature if any one of them cannot generate the signature independently.

ABS schemes have three important properties [90] :

85

4.2. ATTRIBUTE-BASED SIGNATURES

• Unforgeability. Users cannot forge signatures with attributes they do not possess, even

through collusion.

• Signer privacy. A legitimate signer can remain anonymous. Signatures generated based

on a predicate are indistinguishable among all the users whose attributes satisfy the

predicate.

• Unlinkability. It is impossible to link different signatures to the same party who generates

the signatures, even for the signatures of a fixed message that are generated multiple times

by the same party.

4.2.1 ABS Scheme Definition

Generally speaking, an ABS scheme consists of four algorithms. Given a security parameter λ,

these algorithms are listed as follows:

• Setup(1n): The Setup algorithm takes the security parameter n as an input. It outputs

public parameters pkparams and the master secret key mk. The universal attribute set A

is also included in the public parameters pkparams.

• Extract(mk, pkparams, S): The Extract algorithm takes the master secret mk, the public

parameters pkparams, and a user’s attribute set S ⊆ A as inputs. It generates the user’s

private key (in the form of attribute private key shares) sk.

• Sign(pkparams, m, Υ, sk): This algorithm takes a user’s private key sk for the attribute

86

4.2. ATTRIBUTE-BASED SIGNATURES

set S, and public parameters pkparams as inputs. It produces the signature σ on m if the

user’s attribute set satisfies the predicate Υ(S) = 1.

• V erify(pkparams, m, Υ, σ): On receiving a signature σ on messagem, the verify algorithm

takes the public parameters pkparams, and the signing predicate Υ to validate the signature.

It outputs a boolean value, either accept if the signature is validated or reject otherwise.

4.2.2 Related Work

A threshold ABS (t-ABS) scheme was defined and formalized by Shahandashti and Safavi-Naini

[120]. Li et al. [83] proposed a scheme to reduce signature sizes of the scheme [120] by half.

Herranz et al. [68] constructed a constant-size signature scheme based on [63] and [127]. Ge et

al. [52] presented a construction that only needs three pairing operations.

Monotone predicate ABS schemes were studied in [30, 31, 53, 91, 126]. Maji et al. [91] proposed

a generic framework for constructing ABS schemes. Ge et al. [53] constructed a short signature

scheme in the standard model. Cao et al. [30, 31] proposed schemes in which the predicate can

be expressed in AND, OR, threshold gates. Su et al. [126] constructed a scheme supporting

AND, OR, and threshold gates in the standard model. A non-monotone predicate ABS scheme

was proposed by Okamoto [103]. This scheme combines inner-product with non-monotone

access tree, where attribute x for signing key skx is a tuple of attribute vectors, and predicate

v for verification is a span program (M , ρ) along with a tuple of attribute vectors.

The concept of multi-authority ABS (MA-ABS) was introduced by Maji et al. [90], where

87

4.2. ATTRIBUTE-BASED SIGNATURES

multiple authorities generate a user secret key together, with each authority only responsible

for issuing a partial secret key associated with a subset of the attributes. Cao et al. [32] proposed

a MA-ABS scheme with a centralized trusted authority for generating the secret keys used by

distributed authorities to derive user private keys. Okamoto and Takashima [104] removed

the dependency of the centralized trusted authority and proposed a completely decentralized

MA-ABS scheme, with each authority independently issuing a partial signing key to users.

Attribute-based group signatures (ABGS) [48, 79] and ring signatures (ABRS) [85, 134, 138] are

two variations of ABS. ABGS is based on the concept of the group signature (GS) [36], which is

a method allowing a member of a group to sign a message on behalf of the group. However, the

resulting signature keeps the identity of the signer secret. The main difference between ABGS

and ABS is that there is a group manager in ABGS, who can identify a signature and reveal

the identity of the signer when necessary. ABRS is based on the concept of a ring signature

(RS) [113], in which a signer can form a ring to include anyone whose public key is accessible

by the signer and verifiers. In ABRS, those users who form a ring are replaced by a set of

attributes that are additional to the necessary attributes.

4.2.3 Construction of an ABS Scheme Construction

In this section, we explain the threshold ABS scheme construction of [83]. We will use this

scheme to demonstrate our idea for providing anonymous user revocation in Chapter 7. There

are three constructions presented in [83]. The first construction is proved secure under the

random oracle model, while the second construction removed the random oracle assumption.

88

4.2. ATTRIBUTE-BASED SIGNATURES

Those two constructions use a central AA to manage and issue user private keys (or signing

keys). To reduce the trust of the central AA, they proposed a MA-ABS threshold scheme.

Since the second and third constructions are based on the first construction, we will only show

the first construction described in their paper as follows:

• Setup: First, randomly select an element from Zp for each attribute in the universe

attribute set U. A default set of d - 1 attributes from Zp is defined as Ω = {Ω1, Ω2, · · ·

, Ωd−1}. Two multiplicative cyclic groups G1 and G2 of prime order p are defined. A

bilinear map is defined as: e: G1× G1→ G2. Select a random generator g ∈ G1, a random

x ∈ Z?
p , and set g1 = gx. Next, pick a random element g2 ∈ Z?p to compute Z = e(g1,

g2). Two hash functions are chosen: H1, H2: {0, 1}? → G1. The public parameters are

params = {g, g1, g2, Z, d, H1, H2} and the master secret is x.

• Extract: To generate a private (signing) key for an attribute set ω, the following steps

are taken:

– Randomly choose a d - 1 degree of polynomial q(y) and let q(0) = x;

– Generate a new attribute set ω̂ = ω ∪ Ω. For each i ∈ ω̂, choose ri ∈R Zp and

compute di0 = g
q(i)
2 ·H1(i)ri and di1 = gri ;

– Finally, output Di = (di0, di1) as the private key for each i ∈ ω̂.

• Sign: Suppose a user has a private key for his attribute set ω. To sign a message m

with predicate Υk,ω?(·), that is to prove owning at least k attributes among an n-element

attribute set ω?, select a k -element subset ω
′ ⊆ ω ∩ ω? and proceed as follows:

89

4.3. CONCLUSIONS

– First, select a default attribute subset Ω
′ ⊆ Ω with

∣∣Ω′∣∣ = d - k, and n + d - k

random values r
′
i ∈ Zp for i ∈ ω? ∪ Ω

′
;

– Compute σ0 =
[∏

i∈ω′∪Ω′ d
4i,S(0)
i0

][∏
i∈ω?∪Ω′ H1(i)r

′
i

]
H2(m)s, {σi = d

4i,S(0)
i1 gr

′
i}i∈ω′∪Ω′ ,

{σi = gr
′
i}ω?/ω′ , and σ

′
0 = gs, with a randomly selected value s ∈ Zp;

– Finally, output the signature σ = {σ0, {σi}i∈ω?∪Ω′ , σ
′
0}.

• Verify : To verify the signature σ = {σ0, {σi}i∈ω?∪Ω′ , σ
′
0} of message m with threshold k

for attributes ω? ∪ Ω
′
, check if the following equation holds:

e(g, σ0)

[
∏
i∈ω?∪Ω

′ e(H1(i), σi)]e(H2(m), σ
′
0)

?
= Z .

4.3 Conclusions

In this chapter we provide an introduction to ABE and ABS schemes with some formal defi-

nitions. We also present the constructions of a specific CP-ABE and threshold ABS schemes

that will be used in subsequent chapters.

90

Chapter 5

Generic User Revocation Systems for
ABE in Cloud Storage

Contents
5.1 Related Work . 93

5.2 Our Contributions . 96

5.3 Accumulator . 98

5.3.1 A Bilinear Map based Accumulator . 100

5.3.2 Dynamic Accumulator (DA) . 102

5.4 Generic User Revocation Systems 106

5.4.1 Algorithm Definition and Construction 108

5.4.2 User Revocation via Ciphertext Re-Encryption (UR-CRE) 114

5.4.3 User Revocation via Cloud Storage Providers (UR-CSP) 129

5.5 User Revocation Overhead Analysis 143

5.6 Conclusions . 146

In Chapter 4, we introduced ABE. As ABE schemes have the inflexible user, and attribute

management issues (see section 2.6.2.3), they are potentially not practical in cloud storage

environments. In this chapter, we construct two user revocation systems for ABE schemes

91

to manage user revocations dynamically. Although user revocation has been studied in the

literature, most current user revocation systems only work with some particular ABE schemes,

and are not flexible enough to be adapted to work with general ABE schemes.

User revocation is the process of removing a user’s privilege of data access. In most cases, user

identities are used for user identification in the first part of revocation. However, in untrusted

cloud storage, user identities need to be protected and kept away from CSPs for the reasons we

specified in Section 2.5.1. Since most existing user revocation schemes have not considered user

privacy protection, a data owner has to mediate every request in order to protect user privacy.

This means that a user’s request needs to be routed from CSPs to the data owner before the

user’s privilege is determined. This is not scalable. Therefore a practical user revocation system

for ABE schemes in an untrusted cloud storage environment should be capable of identifying

a revoked user anonymously without including a data owner or a trusted party in the data

retrieval process.

With those aspects in mind, we design and build two dynamic user revocation systems working

with existing ABE schemes to protect data and user privacy in cloud storage. These two user

revocation systems have the following three features:

• Generic: the revocation capability can be directly applied to any ABE scheme.

• Dynamic: the revocation is instantaneous with no need to re-issue any ABE private key

to users.

92

5.1. RELATED WORK

• Anonymous: users are anonymous to CSPs. A revoked user is anonymously prevented

from accessing data in the data retrieval or decryption process.

5.1 Related Work

There has been prior research into dealing with the practical problems with implementation of

ABE schemes, particularly with respect to revocation issues.

Pirretti et al. in [108] associated attributes with expiry times. This idea was enhanced by

Bethencourt et al. [20] who suggested to associate private keys (or key shares) with expiry

times. Both schemes require users to periodically contact the AA for new private keys (or

key shares), which has potential scalability issues as well as being incapable of revoking users

instantly.

Junod and Karlov [75] constructed a CP-ABE based broadcast encryption scheme that supports

direct (or instant) user revocation. In their scheme, each receiver’s identity is mapped to an

individual attribute. The access policy consists of a set of system attributes with a set of identity

attributes. Individual user revocation is achieved by updating the set of identity attributes in

the access policy. This scheme is not efficient when applied to cloud storage systems since

mapping each user’s identity to an attribute can make the ciphertext grow linearly. It also

discloses user identities to CSPs. In addition, data owners should not be directly involved in

controlling data distribution after the data has been stored at CSPs.

93

5.1. RELATED WORK

Jahid et al. [72] achieved user revocation by utilizing a semi-trusted proxy to participate in

the decryption process. In their proposed scheme, each user obtains an identity key in addition

to their attribute key shares. The identity keys are generated by a data owner using a secret

sharing scheme. The data owner also generates a proxy key for the proxy, who uses the proxy

key to transfer the ciphertext in such a way that only non-revoked users with their identity

keys can decrypt the data. The proxy key is regenerated whenever a user is revoked. Although

the scheme achieves dynamic user revocation without attribute key regeneration, it can only

revoke a predefined number of users. In addition, adding a new user to the system can trigger

re-keying all the existing identity keys, which exhibits a potential scalability issue and some

key management issues.

Hur and Noh [70] used attribute key encryption keys (KEKs) to address user revocation for

BSW’s CP-ABE scheme [20]. Their scheme requires a data service manager (such as a CSP) to

generate attribute KEKs and distribute the keys to users. The attributes in the access policy

of a ciphertext are re-encrypted by their KEKs before the ciphertext is sent to a user. When

a user is revoked, the impacted attribute KEKs are updated and redistributed. This approach

brings potential management overheads. The attribute KEKs are generated and maintained via

a global binary tree that assigns users to the leaf nodes. For a large group of users, maintaining

the binary tree becomes much harder when the system needs to add or delete users. The data

service manager also has to know every user’s attribute set in order to generate and distribute

their attribute KEKs, which requires trust in the data service manager. This kind of trust does

not exist in untrusted cloud storage environments. In addition every user needs to have two

94

5.1. RELATED WORK

sets of keys: secret attribute key shares and attribute KEKs.

Another user revocation approach is to associate ciphertext with expiration times. In this

approach, ciphertexts are encrypted with additional time stamp attributes along with periodic

key updates. Sahai et al. [117] proposed a revocable storage that prevents revoked users

from accessing the data once their access rights are removed. They introduced the notion of

ciphertext delegation, where a ciphertext encrypted under a certain policy can be re-encrypted

to a more restrictive policy using only public information. Using ciphertext delegation, CSP

can re-encrypt the ciphertexts from time t to time t + 1. However, this mechanism requires

user private keys to be updated periodically for all non-revoked users, which can potentially

create a key distribution overhead in a large group of users. Users also have to keep different

versions of the keys to decrypt the data.

As most of the existing user revocation schemes work with individual schemes, we proposed

a flexible revocation model (dynamic user revocation and key refreshment (DURKR)) which

can work with CP-ABE schemes for dynamic user revocation and key refreshing [141]. In the

model, the master secret is split into two parts. One part is used by CP-ABE schemes to

issue the attribute private keys. The other part is used to issue a proxy delegation key that

is used to re-encrypt ciphertexts of CP-ABE so that only non-revoked users can decrypt data

eventually. Although the model is intended to be flexible to work with any type of CP-ABE

schemes, it requires some modification of the underlying scheme to incorporate an additional

key share. In our other work [142], a generic framework was proposed to be adopted by any

type of ABE scheme. In addition, the framework also avoids the potential key escrow in ABE

95

5.2. OUR CONTRIBUTIONS

schemes with centralized AA settings. However, the framework does not effectively prevent

revoked and non-revoked users from colluding.

The application of ABE to cloud environments has been studied in the literature. Yu et al.

[147] proposed a scheme to protect data files in a semi-trusted cloud environment. Wang

et al. [132] built a hierarchical CP-ABE (HABE) model using the notion of a hierarchical

IBE (HIBE) scheme. Parno et al. [106] constructed a verifiable computation scheme with

public delegation and verifiability based on an ABE scheme. Yang et al. [145] proposed an

access control framework using a CP-ABE scheme for cloud storage systems. The framework

also enables dynamic attribute revocation. Yu et al. [146] proposed a CP-ABE scheme with

a hidden access policy for untrusted content distribution networks. Their scheme also uses

periodic key expiration to manage user revocation.

5.2 Our Contributions

We design and construct two data protection systems using ABE schemes in untrusted cloud

storage. As ABE protects data privacy, the newly developed systems focus on building generic

user revocation mechanisms that could work with any ABE scheme and also protect user privacy

during the revocation process.

To achieve the generic and anonymous user revocations, we aim at controlling the user access

to ABE ciphertexts. If a revoked user cannot obtain an ABE ciphertext, then the user will not

be able to decrypt the data even though the user might hold a valid ABE private (decryption)

96

5.2. OUR CONTRIBUTIONS

key. If such a control of ciphertext access is independent from ABE, then the revocation

mechanism can be generically applied to any ABE scheme. With these two considerations in

mind, our solution is to build an extra layer on the top of an ABE scheme to control access

to ABE ciphertexts. This layer, utilizing a dynamic and anonymous accumulator technique,

treats ABE as a black box. It removes the need of a data owner to mediate every data retrieval

and makes users anonymous to CSPs. Using this layer, two systems are built as follows:

• User Revocation via Ciphertext Re-encryption (UR-CRE): This system is to re-encrypt

ABE ciphertexts with accumulator (group) keys, so that only non-revoked users are able to

decrypt the re-encrypted ABE ciphertexts to get ABE ciphertexts. Users are anonymous

to CSPs during the data retrieval process. The benefit of this re-encryption system is

three-fold:

– It enables the desirable user revocation control (generic, dynamic, and anonymous)

for any type of ABE scheme.

– It protects the integrity and secrecy of the access policy embedded in ABE cipher-

texts. Since access policies of CP-ABE can be parts of the ciphertexts in plaintext

format, they are vulnerable to alteration and information leakage in regard to who

can decrypt the data. The same issue exists in KP-ABE, where attributes are also

in plaintext format.

– Data is self-protected. Revoked users are not able to decrypt the re-encrypted ci-

phertexts during the decryption process automatically.

97

5.3. ACCUMULATOR

The drawback of this system is the overhead associated with the ciphertext re-encryption

and key management of accumulators on the data owner side.

• User Revocation via Cloud Storage Providers (UR-CSP): This system separates the user

revocation control from data encryption, and utilizes untrusted CSPs to eliminate the

overhead associated with ciphertext re-encryption. We use the anonymous accumulator

mechanism to achieve the desired user verification (generic, dynamic, and anonymous),

so that user privacy is protected during the verification process. Any revoked user is

anonymously verified by CSPs and prevented from accessing ABE ciphertexts after the

user’s revocation.

Since ABE ciphertexts are not re-encrypted when stored at CSPs, the possible downside

of this approach is that access policies included in ciphertexts are exposed to CSPs or any

adversary in the unencrypted channels during transmission. The integrity and privacy of

access policies are at risk.

As accumulators are the cornerstones of building our revocation systems, we will introduce the

dynamic accumulator concept first, followed by the algorithm construction used for the rest of

this thesis.

5.3 Accumulator

Accumulators were first introduced by Benaloh and de Mare [19] as a method to condense a

set of values (elements) into one value (referred as an accumulator’s aggregate value or simply

98

5.3. ACCUMULATOR

an aggregate value in this thesis), such that a short witness is used to demonstrate that a value

has been condensed in an aggregate value. The witness has the following characteristics:

• It is unique if the value being aggregated is unique.

• It is infeasible to forge a witness for a value that has not been accumulated.

• No information about the accumulated value can be leaked through the value of the

witness or the aggregate value.

An accumulator is called universal if it supports efficient zero-knowledge membership and non-

membership proofs. An accumulator is called dynamic universal if the accumulator’s aggregate

value, membership, and non-membership witnesses can be updated efficiently.

Camenisch and Lysyanskaya introduced the notion of a dynamic universal accumulator (DUA)

[27]. The cost of adding or deleting an element is independent of the number of elements accu-

mulated. Using a zero-knowledge protocol, the scheme can prove whether a committed value is

in an accumulator or not. The scheme was constructed under the strong RSA assumption. A

DUA based on a bilinear map was proposed by Nguyen [100]. Au et al. [15] extended [100] to

build a DUA under the DDH assumption. The DUA has been used for anonymous credential

attestation [26].

99

5.3. ACCUMULATOR

5.3.1 A Bilinear Map Based Accumulator

The accumulator scheme used in our systems is based on the scheme of Au et al in [15]. The

following algorithm descriptions come from the paper [15] directly.

• Setup(1n): This algorithm takes the security parameter 1n as the input. It initializes and

outputs system parameters as follows:

– Let e: G × G → GT be a bilinear map of prime order p.

– Let Ak: 2Z
?
p → G be an accumulator’s function that is parametrized by a randomly

selected β ∈ Z?
p : Ak(X) = g

∏
x∈X(x+β), where x ∈ Zp, Ak(X) ∈ G, and β is the

trapdoor or auxiliary information.

– Finally output the system parameters: {G, GT , e, Ak, β}.

• MembershipV erification(w, x, v): The algorithm takes a witness w, element x, and

accumulator aggregate value v as the inputs. It proves the membership of x as follows:

– If e(w, gx· gβ) = e(v, g), output “true”;

– Otherwise output “false”;

• MembershipWitness(x): This algorithm takes an element x as input and computes the

witness of x as follows:

– For a set of elements Y = {x1, x2, ... , xn} ∈ Zp, a membership witness for x ∈ Y

is calculated as:

100

5.3. ACCUMULATOR

w =
[
g
∏n
i=1(xi+β)

] 1
x+β .

– Output the witness: w.

• UpdateAccumulator(x′ , v, Ops): The algorithm takes a new element x
′
, an accumulator

aggregate value v, and the operation type Ops (“Add” or ”Delete”) as inputs. It updates

v to v
′

as follows:

– If Ops = “Add”, then v
′

= vx
′
+β;

– If Ops = “Delete”, then v
′

= v
1

x
′
+β ;

– Output v
′
.

• UpdateMembershipWitness(w, x, v, v̂, Ops, x
′
): This algorithm takes the original mem-

bership witness w of x with respect to the accumulator aggregate value v, the new aggre-

gate value v̂ having x
′
, the operation type Ops, and the element x

′
as inputs. It computes

the new witness of x in regard to v̂ as follows:

– If Ops = “Add”, then x
′

is the newly added element to v̂ . The new membership

witness w
′

of x can be computed as w
′

= vwx
′−x;

– If Ops = “Delete”, then x
′

has been removed from v, the new membership witness

w
′

of x can be calculated as w
1

x′−x v̂
1

x−x′ ;

– Output w
′
.

101

5.3. ACCUMULATOR

5.3.2 Dynamic Accumulator (DA)

We build a dynamic accumulator (DA) using the scheme in [15] to manage user access to data.

We make the following adjustments to fit our systems:

• We remove the UpdateMemebershipWitness algorithm. Users and CSPs are neither

trusted in our trust models with the system parameters, nor allowed to update their

witnesses. Data owners are responsible for centrally managing accumulators and user

witness updates.

• We want to improve the efficiency and scalability of the scheme in [15]. Like most of the

existing accumulator schemes, the scheme in [15] has two potential limitations for large-

scale systems: i) an accumulator has a pre-defined number of elements to be aggregated;

ii) adding or deleting an element triggers witness updates of all elements aggregated in

the same accumulator. To make the scheme more practical and minimize the impact of

witness updates, we will use multiple accumulators to manage non-revoked users. This

adjustment can be scalable in the following ways:

– The witness update only impacts a small numbers of users. Non-revoked users will

be divided into groups. Each user only belongs to one group and is aggregated

to an accumulator. When a user is revoked, the user is removed from the user’s

accumulator. The witness updates thus only impact a smaller number of users.

– There is no limitation on the number of users in the system. The number of ac-

cumulators can be dynamically increased or decreased depending on the number of

102

5.3. ACCUMULATOR

users in the systems.

– Each accumulator is associated with one internal identifier and one external identi-

fier. The differences between the internal and external identifiers are as follows:

∗ The internal identifiers (or indexes) are kept by data owners. They are static and

sequential. An accumulator is deleted when all associated users being removed.

However its index is not recycled.

∗ The external identifiers are given out to users and CSPs to identify or look up

accumulators. They are randomized every time when the associated accumula-

tors are updated, so that the static index numbers are not directly exposed to

users and CSPs for extra protection. Furthermore, the numbers used to ran-

domize external identifiers have two main purposes: 1) to randomize ciphertext

re-encryption keys when ABE ciphertexts need to be re-encrypted in UR-CRE

(Section 5.4.2); 2) to randomize accumulators’ aggregate values each time when

the aggregate values are updated in UR-CSP (in Section 5.4.3).

To achieve better efficiency and scalability, the actual implementations can delegate the man-

agement of accumulators, especially witness updates and distribution, to a data-owner trusted

third party.

Our modification does not change the mathematical and complexity theory that DUA [15] is

based on. Its security strength remains the same without relying on the number of elements

that can be accumulated into an accumulator, nor the number of accumulators in a system.

103

5.3. ACCUMULATOR

Notation Description

gid A user’s global unique identifier

Φ Accumulator container containing a set of accumulators

k The maximum number of elements that can be aggregated into an accumulator

Ak The accumulator function

β The trapdoor value for the accumulator function Ak

α The container of an accumulator and its information

v An accumulator aggregate value

Ops The accumulator operational type - Add or Delete an element to or from an accumulator

ωα The witness container storing user witnesses of accumulator α

wgid User gid’s witness of an accumulator

Ind An integer counter storing the next created internal identifier (index) value for an accumulator

Table 5.1: DA Notation

5.3.2.1 Data Structure Definition

Table 5.1 lists the commonly used notation in this chapter.

The major data structures used by DA are defined as follows:

• An accumulator α contains: {v, {gidx}1≤x≤|{gidx}|, i, y}, where v denotes the aggregate

value by aggregating the elements in {gidx}, |{gidx}| denotes the number of gids in α, i

is the internal identifier (also referred as internal index) of α, y is randomly selected from

Zp to generate the external identifier in the form of gy.

Each component of α can be further denoted as follows:

– α1 = v

– α2 = {gidx}1≤x≤|{gidx}|

– α3 = i

104

5.3. ACCUMULATOR

– α4 = y

• Φ stores a set of accumulators: Φ = {αi}1≤i≤|Φ|, where |Φ| denotes the number of accu-

mulators included.

• wgid is the witness of user gid for an accumulator. Each witness consists of two parts:

wgid = {w1
gid, w

2
gid}. The details can be found in Section 5.4.

• ωa is a witness container to store witnesses of the users in α: {{wgidi , gidi}1≤i≤|α2|}.

5.3.2.2 Algorithm Construction

Our DA consists of the following algorithms. The details of their usage and information sharing

among parties will be specified in the following sections.

1. AccSetup(G, g): takes a group G and a generator g of G as the inputs, as shown in

Algorithm 5.1. It defines the system parameters used by DA: the maximum number of

elements k in each accumulator, the trapdoor value β, the accumulator function Ak, and

the index counter Ind of internal accumulator identifiers. It initializes Φ and returns {k,

β, Ak, Φ}.

2. AccAdd(gid, Φ): takes a user’s global identifier gid and the accumulator container Φ as

the inputs, as shown in Algorithm 5.2. The algorithm finds the first accumulator in Φ

that has less than k gids. A new accumulator is created if none is found. The algorithm

adds the gid to the accumulator and outputs the updated accumulator and Φ.

105

5.4. GENERIC USER REVOCATION SYSTEMS

3. AccDelete(gid, Φ): takes a user’s global identifier gid and the accumulator container Φ

as the inputs, as shown in Algorithm 5.3. It looks for gid in accumulators stored in Φ:

(a) If an accumulator can be found, it removes the gid from the accumulator. If the gid

is the only element in the accumulator, the accumulator is emptied out. Finally, it

returns the accumulator and Φ.

(b) If no accumulator can be found, return ⊥.

4. AccWitUpdate(α): takes an accumulator α as the input, as shown in Algorithm 5.4. It

updates all the witnesses of gids in α, and outputs witnesses set ωα.

Algorithm 5.1 AccSetup
procedure AccSetup(G, g)
1: Begin
2: Select k to be the maximum number of elements aggregated in an accumulator.
3: Randomly select β ← Z?p ; // The trapdoor of the accumulator function.

4: Define Ak: 2Z
?
p → G to be an accumulator function. // Ak(X) = g

∏
gidi∈X

(gidi+β)
, where g is

the generator of G.
5: Let v←g; α←{v, {}, 1, null}; Φ← {α}; // Initialize an accumulator and accumulator container.
6: Set Ind = 2; // Set the internal index counter to be the next value.
7: // Note: Ind is internally used. For simplicity, it is not returned.
8: Return {k, β, Ak, Φ};
9: End.

5.4 Generic User Revocation Systems

We design and construct two generic user revocation systems based on ABE schemes in un-

trusted cloud storage environments. In our systems, each user is given a unique global identifier

gid. Non-revoked users are randomly divided into groups so that each user only belongs to one

106

5.4. GENERIC USER REVOCATION SYSTEMS

Algorithm 5.2 AccAdd
procedure AccAdd(gid, Φ)
1: Begin
2: Let N = |Φ|; // Get the number of accumulators in Φ.
3: Set j = 0;
4: For i = 1 to N do // Find the first α that has less than k gids.
5: If

∣∣α2
i

∣∣ < k then
6: j = i; abort For loop; // The accumulator is found.
7: end If;
8: End For
9: If j == 0 then // No accumulator is found. Create a new one.
10: j = N + 1;
11. αj ← {g , {}, Ind, null}; // Initialize an accumulator.
12: Ind = Ind + 1; // Increase the counter by 1, so it always points to the next value.
13: End If
14: // Add gid to t αj .
15: // α3

j is static and not changed once it is set. α4
j is dynamic and will be changed outside this

algorithm.
16: αj ←{vgid+β

j , α2
j + {gid}, α3

j , α
4
j};

17: Update Φ with αj ; //Using α3
j , the internal index, to find and replace the existing one, or add

the new one.
18: Return {αj , Φ}.
19: End.

group. Each group of user gids are aggregated into an accumulator. We may interchange the

terms of group and accumulator as they are one-to-one relationship with respect to a user. Each

accumulator is identified by one internal index (or identifier) and one external identifier. The

internal index is fixed when the accumulator is created. The external identifier is changed and

randomized each time a user is added or removed from the accumulator. Only external identi-

fiers are given to users and CSPs to request or locate the re-encrypted ciphertext in UR-CRE,

or to generate membership proofs in UR-CSP.

107

5.4. GENERIC USER REVOCATION SYSTEMS

Algorithm 5.3 AccDelete
procedure AccDelete(gid, Φ)
1: Begin
2: Let N = |Φ|; // Get the number of accumulators in Φ.
3: Set j = 0;
4: For i = 1 to N do
5: If gid ∈ α2

i then // Find the the accumulator having the gid.
6: If

∣∣α2
i

∣∣ > 1 then

7: vi = v
1

gid+β

i ; // Remove gid from the aggregate value α1
i .

8: αi← {vi, α2
i - {gid}, i, yi} ; // Update the values in αi.

9: Update αi in Φ.
10: Else
11: αi ← {g , {}, N , null}; // Empty the accumulator since gid is the last one.
12: Φ ← Φ - {αi}; // Remove αi from Φ.
13: End If;
14: j = i; abort;
15: End If
16: End For
17: If j > 0 then
18: Return {αj , Φ}; // Return the accumulator. αj can be an empty accumulator removed from
Φ.
19: Else return ⊥;
20: End if;
21: End.

5.4.1 Algorithm Definition and Construction

We define the commonly used algorithms in our two systems. Whether the algorithms are run

privately or publicly, and which information should be kept secret depend on the trust models.

These will be explained in the system design and construction sections of the corresponding

user revocation system.

Since our systems can work with any ABE scheme, the · will be used to generically denote the

parameters needed by ABE algorithms: Setupabe, KeyGenabe, Encabe, and Decabe.

108

5.4. GENERIC USER REVOCATION SYSTEMS

Algorithm 5.4 AccWitUpdate
procedure AccWitUpdate(α)
1: Begin
2: Let ωα = {}; // Start with an empty set.
3: Let N =

∣∣α2
∣∣; // Set the number of gids to N .

4: For i = 1 to N // Compute witnesses.

5: w1
gidi

= v
1

gidi+β ; // v is the accumulator value: α1.

6: w2
gidi

= ggidi+β;

7: wgidi = {w1
gidi

, w2
gidi
}

8: ωα ← ωα+ {wgidi , gidi}; // Add the user’s witness to ωα.
9: End For
10: Return ωα;
11: End.

Table 5.2 lists the commonly used notation in addition to table 5.1.

• Setup(1n): The algorithm takes the security parameter 1n as an input and proceeds as

follows:

– Let U contain the gids who are granted for data access: U = {gid1 , . . . gidn}, where

gidi ∈ Z?
p (p is a n-bit prime).

– Call Setupabe (1n) with input 1n to initialize the ABE scheme. It outputs an ABE

public key pkabe and master secret mkabe.

– Initialize DA using the security parameter 1n:

∗ Let e: G × G → G1 be a bilinear map for an n-bit prime p.

∗ Let g be a generator of G.

∗ Call AccSetup(G, g) (Algorithm 5.1) with G and g as the inputs. It outputs {k,

β, Ak, Φ}.

109

5.4. GENERIC USER REVOCATION SYSTEMS

Notation Description

c An ABE ciphertext

AA The ABE attribute authority

Setupabe The setup algorithm of an ABE scheme

KeyGenabe The key generation algorithm of an ABE scheme

Encabe The encryption algorithm of an ABE scheme

Decabe The decryption algorithm of an ABE scheme

pkabe The public key of an ABE scheme

mkabe The master secret of an ABE scheme

uskabe A user ABE private key

U The data set containing non-revoked gids in the system

CSP Cloud Storage Provider

DO Data owner

wskgid The witness private key of user gid

Λ The container storing accumulator aggregate values (v)

c
′

A re-encrypted ciphertext of c for an accumulator

C
′

The container storing multiple c
′
s.

Table 5.2: User Revocation System Notation

• KeyGenabe(·): This is the ABE key generation algorithm for generating user private keys.

The symbol · denotes the input parameters. It outputs a user private key uskabe if the

user is authenticated. Otherwise the output depends on the output of AA.

• UserManager(gid, Ops, Φ): The algorithm takes a user’s gid, an operation type Ops,

and the accumulator container Φ as inputs. It proceeds as follows:

– If Ops == “Add”, call AccAdd(gid, Φ) (Algorithm 5.2) to add the gid to an accu-

mulator:

{α, Φ} = AccAdd(gid, Φ).

– If Ops == “Delete”, call AccDelete(gid, Φ) (Algorithm 5.3) to remove the gid from

an accumulator:

110

5.4. GENERIC USER REVOCATION SYSTEMS

{α, Φ} = AccDelete(gid, Φ).

– If α2 6= {}, re-randomize the external identifier and issue a new witness for each gid

∈ α2:

∗ Select a random number uniformly: y ← Zp. Set α4 = y; update α in Φ.

We randomize an accumulator external identifier each time the accumulator is

updated. y will be used to generate the external identifier (in the form of gy)

for α.

∗ Call AccWitUpdate(α) (Algorithm 5.4) to re-compute all witnesses for users in

α2:

ωα = AccWitUpdate(α).

– Return {ωα, α} if α2 6= {}, otherwise return ⊥.

• WitnessKeyGen(ωα, α): The algorithm takes witnesses container ωα, and accumulator

α as the inputs. It generates witness keys as follows:

– Extract y from α4 and compute gy as the external identifier of α;

– Let witKeys = {} be the container to store witness keys of users in α2.

– For each gidi ∈ α2:

∗ Extract wgidi from ωα.

∗ Randomly select ri ← Zp, and compute the witness key as:

wskgidi= {wsk1
gidi

= (w1
gidi

)riy = g
riy(

∏
gidx∈α2 (gidx+β))

gidi+β , wsk2
gidi

= (wgidi)
1/ri = g

(gidi+β)

ri ,

wsk3
gidi

= gy};

111

5.4. GENERIC USER REVOCATION SYSTEMS

∗ Add the witness key to witKeys: witKeys ← witKeys + (gidi, wskgidi);

– Return witKeys.

• Encabe(m, ·): This is the ABE encryption algorithm. It takes data m and the rest of

parameters · as inputs. It encrypts data m and outputs the ciphertext c: {cm, ·}.

• ReEnc(c, Φ): The algorithm takes an ABE ciphertext c and the accumulator container

Φ as the inputs. It re-encrypts c for each accumulator αi ∈ Φ as follows:

– For αi ∈ Φ, re-encrypt c:

c
′
i = {ce(gα4

i , α1
i), g

α4
i } = {ce(gyi , vi), gyi} = {ce(g, g)

yi
∏
gidx∈α2

i
(gidx+β)

, gyi}.

Since · of c may contain the access policy or attributes in clear text format, there is

a possibility of leaking user information, such as user attributes, to untrusted CSPs.

Re-encrypting the entire c provides the protection of integrity and privacy for access

policies and attributes from malicious modifications.

Although this algorithm is only used by the ciphertext re-encryption system, a pos-

sible issue to consider is that ABE ciphertext c may have different message space

than the group G1 used in DA. One way to address this is to define a reversible

converting method that maps a ciphertext of ABE to a group element of G1 in the

process of re-encryption, then converts results back in the process of decryption. We

will not elaborate it here. It can be addressed in the actual implementation.

– Finally, output C
′

= {c′i}1≤i≤|Φ|.

• Dec(c′ , wskgid): The algorithm takes a re-encrypted ciphertext c
′

and a user’s witness

112

5.4. GENERIC USER REVOCATION SYSTEMS

key wskgid as the inputs. It decrypts c
′

and outputs the ABE ciphertext c as follows:

– Decrypt ABE ciphertext c if wskgid is a valid key:

c
′

/ e(wsk1
gid, wsk

2
gid)

= ce(g, g)y
∏
gidx∈α2 (gidx+β)/e(g

riy(
∏
gidx∈α2 (gidx+β))

gid+β , g
(gid+β)
ri)

= ce(g, g)y
∏
gidx∈α2 (gidx+β)/e(g, g)y

∏
gidx∈α2 (gidx+β)

= c

We want to point out a couple of details:

1. Every c
′
is tagged with an accumulator external identifier (described in ReEnc()).

c
′

is selected by the calling process based on a given external identifier. The details

will be specified in the system construction section.

2. Although some notations, such as y versus yi, c
′
versus c

′
i , or gid versus gidi, look

similar, the notation without subscript specifies individual entities, and the notation

with subscript indicates members inside an entity set. Therefore they may refer to

the same value in algorithms.

– return c. (Note: an incorrect or random string or value is returned if wskgid cannot

decrypt c
′
.)

• Decabe(c, ·): This is the ABE decryption algorithm. It takes the ciphertext c and the

remaining parameters denoted as · as inputs. A user’s ABE private key uskabe is assumed

to be a part of ·. It outputs m if uskabe can decrypt c. Otherwise the output depends on

the output of Decabe.

113

5.4. GENERIC USER REVOCATION SYSTEMS

5.4.2 User Revocation via Ciphertext Re-Encryption (UR-CRE)

Our first approach is to achieve user revocation through ciphertext re-encryption.

5.4.2.1 Trust Model

We assume that the storage system consists of four entities:

1. Attribute Authority (AA): This is the AA of an ABE scheme. It is trusted to generate

ABE private keys (or attribute key shares) for users, publish the ABE public key pkabe,

and protect the ABE master secret mkabe.

2. Data Owners (DO): DO is a trusted party who is responsible for data and user privacy

protection. DO initializes the system, defines data access policy, and centrally manages

user access rights to the encrypted data in cloud storage.

3. Cloud Storage Provider (CSP): CSPs provide cloud storage for a DO to store data and

fulfill user requests. It is considered to be untrusted by DOs.

4. Users: Users can decrypt data only if they are eligible and have attributes complying

with the access control policy of an ABE scheme. Users are considered to be untrusted

by DOs.

We assume that, where necessary, communications between entities in our system are protected

via suitable secure communication mechanisms, such as using SSL/TLS. We also assume that

114

5.4. GENERIC USER REVOCATION SYSTEMS

Data	Owner	
(DO)	

Users	Users	

Witness	private	key	over	SSL	

AA	 Cloud	Storage	

Authen>ca>on	and	a@ributes	over	

SSL	

Figure 5.1: Trust Model of User Revocation via Ciphertext Re-encryption for ABE in Cloud Storage

CSPs and users do not collude with each other during data retrieval process.

We assume that each user is assigned with a unique gid that is not linked to their true identity.

To simplify the description of our system, we do not elaborate the user verification process.

There are multiple ways to verify whether a gid belongs to a user or not.

115

5.4. GENERIC USER REVOCATION SYSTEMS

5.4.2.2 System Description

Figure 5.2 shows the interactions among a user, user groups, a DO, AA, and a CSP. The ABE

scheme might have multiple attribute authorities. However, since ABE schemes are treated as

black boxes, the AA in our description is the generic.

The system works as follows:

1. System setup. This is a private process run by a DO. The process takes in a security

parameter 1n, and initializes system parameters, an ABE scheme and DA. It then adds

eligible (non-revoked) users to accumulators, issues and sends witness private keys to

users, encrypts data using ABE, and re-encrypts ABE ciphertext c for each accumulator.

The outputs of the process are the following:

• The ABE public key pkabe and master secret mkabe are sent to AA. pkabe is public.

mkabe needs to be kept secretly.

• An witness private key wskgid is sent to each user and kept secretly.

• The re-encrypted ciphertext C
′

is sent to CSP and kept public.

The detailed steps are as follows:

• DO calls Setup(1n) to initiate an ABE scheme and DA. The algorithm returns the

ABE public key pkabe, master secret mkabe, and DA’s system parameters {k, β, Ak,

Φ}. DA’s system parameters are kept secretly by DO.

116

5.4. GENERIC USER REVOCATION SYSTEMS

• DO sends AA the public key pkabe and master secret mkabe.

• DO creates accumulators and issues witness private keys:

– Let U contain the existing non-revoked gids.

– Let WitnessSet = {} be the temporary data structure for the returned witnesses

of an accumulator.

– For each gidi ∈ U , DO adds gidi to an accumulator and generates its witness:

∗ Call UserManager(gidi, “Add”, Φ) and get {ωα, α} as the output;

∗ Check if α has been added to WitnessSet or not by using the internal index

α3.

· If α exists, then replace the existing {ωα, α} with the new one;

· Else WitnessSet = WitnessSet + {ωα, α}.

Note: This is a one-time bulk process to add users into accumulators. Although

each gid is newly added to the system, it could be added to an existing accu-

mulator. Therefore, the witnesses of the accumulator need to be updated. An

accumulator can be updated k - 1 times until gids in the accumulator reach the

maximum number k of the allowed elements k. Since this internal computation

takes place on the DO side, no user is aware of it until the next step. This

operation can be optimized in the actual implementation.

– DO issues the witness private keys as follow:

For each {ωα, α} ∈ WitnessSet:

∗ Call WitnessKeyGen(ωα, α) and get witKeys;

117

5.4. GENERIC USER REVOCATION SYSTEMS

∗ For each gidi ∈ witKeys, send the witness key wskgidi to user gidi.

• DO calls Encabe(m, ·) to encrypt the message m and gets ciphertext c.

• DO calls ReEnc(c, Φ) to re-encrypt c and gets C
′

= {{c′i, gyi}}1≤i≤|Φ|

• Finally DO sends C
′

to CSP.

2. A new user (gid) requests a witness private key. This process is privately run by DO.

If the user is eligible, the process will add the user to an accumulator. All users in

the accumulator are updated with new witness private keys. The ABE ciphertext is

re-encrypted.

The outputs of the process are the following:

• New witness private keys are sent to users of the updated accumulator and kept

secretly.

• The updated ciphertext C
′

is sent to CSP and kept public.

The detailed steps are as follows:

• The user sends a gid to DO.

• DO authenticates and validates the user:

– If the user is eligible, DO does the following:

∗ Call UserManager(gid, “Add”, Φ) to add gid and gets {ωα, α} as the

output.

∗ Call WitnessKeyGen(ωα, α) and gets witKeys.

118

5.4. GENERIC USER REVOCATION SYSTEMS

∗ For each gidi ∈ witKeys, send the witness key wskgidi to user gidi.

∗ Call ReEnc(c, Φ) to re-encrypt c for each αi ∈ Φ and get C
′

= {{c′i,

gyi}}1≤i≤|Φ|

We re-encrypt the ABE ciphertext c for every accumulator in Φ although

only one accumulator has been changed. In this way, CSP simply replaces

the previous C
′

with the newly received C
′
.

∗ Send C
′

to CSP.

– Otherwise DO returns⊥ to the user.

3. A new user (gid) requests an ABE private key. This is a private process run by AA.

The output of the process is one of the following:

• An ABE private key uskabe is sent to the user if the user is authenticated.

• Otherwise the output of AA, which could be ⊥ as an example.

The detailed steps are as follows:

• The user contacts AA to request his ABE private key.

• AA authenticates the user:

– If the user can be authenticated, then AA does the following:

∗ Call KeyGenabe(·) and generate uskabe.

∗ Send uskabe to the user.

– Otherwise AA returns its output.

119

5.4. GENERIC USER REVOCATION SYSTEMS

4. A user (gid) retrieves a ciphertext from CSP. This process is run publicly by CSP and

a user. The user sends CSP the external identifier included in the user’s witness private

key. CSP locates the re-encrypted ciphertext tagged with the external identifier if the re-

encrypted ciphertext exists. Upon receiving the re-encrypted ciphertext, the user decrypts

it by calling Dec to get the ABE ciphertext, and Decabe to decrypt the data.

The output of the process is one of the following:

• ⊥ if the re-encrypted ciphertext is not found.

• Otherwise, either data m if the user is not revoked and has a valid ABE private key,

or the output of Decabe.

The detailed steps are as follows:

• User gid sends the external accumulator identifier wsk3
gid (gy) to CSP.

• CSP returns the ciphertext c
′

identified by gy if c
′

exists, otherwise ⊥ is returned.

• If the return value is not ⊥:

– The user calls Dec(c
′
, wskgid):

∗ If wskgid is a valid witness key of gy, c is returned.

∗ Otherwise a random string is returned.

– The user calls Decabe(c, ·):

∗ If c is in a correct form and uskabe is able to decrypt it, m is returned.

∗ Otherwise the output of Decabe is returned.

120

5.4. GENERIC USER REVOCATION SYSTEMS

5. DO revokes a user (gid). This is a private process run by DO. DO removes the user from

the user’s accumulator, updates the remaining users with new witness private keys, and

re-encrypts ABE ciphertext c to C
′
.

The outputs of the process are the following:

• New witness private keys is sent to the users of the updated accumulator and kept

secretly.

• The re-encrypted ciphertext C
′

is sent to CSP and kept public.

The detailed steps are as follows:

• DO calls UserManager(gid, “Delete”, Φ) to remove the gid and gets the output

{ωα, α}.

• If α2 6= {}, DO does the following:

– Call WitnessKeyGen(ωα, α) to generate witness private keys witKeys.

– For gidi ∈ α2, send wskgidi to user gidi.

• DO calls ReEnc(c, Φ) to re-encrypt c and gets C
′

= {{c′i, gyi}}1≤i≤|Φ| as the output.

• DO sends C
′

to CSP for the update.

5.4.2.3 Security Analysis

The ciphertext re-encryption system (UR-CRE) enables an anonymous user revocation generi-

cally for ABE in untrusted cloud storage environments. The system is built on top of an ABE

121

5.4. GENERIC USER REVOCATION SYSTEMS

A User Revocation System via Ciphertext Re-encryption for ABE in Cloud Storage (UR-CRE)

Cloud Service Provider (CSP)Data Owner (DO) New User Attribute Authority (AA) User Groups

Initialization

Initialize ABE:
 Setupabe (·)

Initialize DA:
AccSetup(·)

Encrypt data using
Encabe (·)

Re-encrypt it by keys
derived from

accumulator values:
ReEnc (·)

ABE public key and
master secret:

pkabe, mkabe

Witness private keys
identified by the

external identifiers:
wskgidi

All re-encrypted
ciphertexts of
accumulators

C’

Output of AA

Add the user to an
accumulator:

UserManager (·).
 Update witness

private keys of the
accumulator:

WitnessKeyGen (·)

All re-encrypted
ciphertexts of
accumulators

C’

The new user added to
an accumulator.
All users in the

accumulator updated
with new witness

private keys: wskgidi

Use the
accumulator

identifier to find
the re-encrypted

ciphertext

Decrypt ciphertext:
Dec (·)

Decabe (·)

Remove the user from an
accumulator:

UserManager (·).
Update witness private

keys of the accumulator:
WitnessKeyGen (·)

Adding a new user

Revoking a user

A user requesting a
ciphertext

Revoked user being
removed, new User

witness private keys:
wskgidi

Re-encrypted
Ciphertext of the

accumulator:
c’

Re-encrypt ABE
ciphertext for
accumulators:

ReEnc (·)

All re-encrypted
ciphertexts of
accumulators

C’

Generate witness
private keys:

UserManager (·)
WitnessKeyGen (·)

Re-encrypt ABE
ciphertext for
accumulators:

ReEnc (·)

 found?

Yes

Null No

Data m if all keys are
valid, otherwise the
output of Decabe (·).

Requesting ABE
private key

authenticated?

Yes

Requesting witness
private key

No Null

authenticated?

ABE private key

uskabe

No

Yes

Issuing ABE key

Generate private key:
KeyGenabe (·)

Figure 5.2: Interaction Diagram of User Revocation via Ciphertext Re-encryption for ABE in Cloud

Storage 122

5.4. GENERIC USER REVOCATION SYSTEMS

scheme and leverages a dynamic accumulator (DA) based on the scheme of ([15]). Therefore,

the fundamental security of the system relies on the security of the selected ABE scheme and

DA. We assume that:

• The ABE scheme is at least CPA-secure.

• The DA scheme is secure against the forgeability of witnesses and provides anonymity

protection for elements aggregated into accumulators.

The revocation capability aims to equip an ABE scheme with two additional security features:

• A revoked user is not able to access ABE ciphertext immediately after the revocation.

However, this protection does not apply to the ciphertext that has been requested or

possibly kept by the user locally before the revocation.

• Users can anonymously request re-encrypted ABE ciphertexts from CSPs.

The two security features require the system to have:

1. Dynamic user revocation: Revoked users, having valid ABE private keys, are immediately

prevented from being able to access ABE ciphertext.

2. Ciphertext indistinguishability: The re-encrypted ABE ciphertext should remain indis-

tinguishable against eavesdropping attacks.

123

5.4. GENERIC USER REVOCATION SYSTEMS

3. Unforgeability: Users should not be able to forge their witness private keys to decrypt

the re-encrypted ABE ciphertexts.

4. Anonymity: Users remain anonymous to CSPs. CSPs are not required for any user

management or administration to fulfill data retrieval requests. In addition, the privacy

and integrity of ABE access policies (expressed by user attributes) are protected by the

re-encryption.

The system security is analyzed as follows:

The Security of Dynamic User Revocation

Dynamic user revocation is realized by preventing the revoked users from accessing ABE ci-

phertexts.

Each user has two types of private keys: a witness private key for decrypting a re-encrypted

ABE ciphertext and an ABE private key for decrypting an ABE ciphertext. Once a user is

revoked, AA does not re-issue ABE private keys. Instead, DO takes the following actions to

invalidate the user’s witness private key:

• First DO removes the user from the user’s accumulator. Let us assume that accumulator

αi is the one containing the user. After the user is removed, αi is updated with the new

aggregate value (α1
i = v

′
i). The external identifier gyi is re-generated as gy

′
i , where y

′
i is

randomly selected from Zp. All accumulator data structures, α and Φ, are kept secret by

124

5.4. GENERIC USER REVOCATION SYSTEMS

DO. yi and y
′
i are not provided to users and CSPs. Only the external identifiers (in the

form of gy) are public and given to users and CSP.

• Then DO generates new witness private keys to the remaining users in αi. As being

described in the algorithm WitnessKeyGen (in Section 5.4.1), each user’s witness private

key is derived from the user’s new witness of αi by randomizing it with y
′
i and r

′
which

is also randomly and uniquely selected from Zp to each user every time.

As the revoked user is removed from αi and does not belong to any other accumulator,

the user is not updated with a new witness key. The user is not able to forge a witness

of any accumulator based on the unforgeability of DA. All numbers yi are kept privately

by DO. Based on the DLP assumption, the revoked user is not able to discover y
′
i even

though the user can obtain gy
′
i . Without the needed components: v

′
i (α1

i) and y
′
i, the

revoked user is not able to forge a valid witness private key once being revoked.

• The DO re-encrypts the ABE ciphertext with the new accumulator value v
′
i and the

external identifier y
′
i: c

′
i = ce(gy

′
i , v

′
i). Although the revoked user is not able to forge the

new witness of an accumulator, the user can try to forge the new aggregate value. Let us

assume that this user is the only user who has been removed from the accumulator. As

the DA’s system parameters (such as accumulator trapdoor β and function Ak) are kept

secretly by DO, the user needs to get the previous vi from his witness private key obtained

before his revocation. Assuming the witness private key is: wskgid= {wsk1
gid = (w1

gid)
r =

g

ryi(
∏
gidx∈α2

i
(gidx+β))

gid+β , wsk2
gid = (wgid)

1/r = g
(gid+β)

r , wsk3
gid = (g)α

4
= gyi}. Under the DLP

assumption, the user cannot get
∏

gidx∈α2
i
(gidx + β) to compute vi = g

∏
gidx∈α2

i
(gidx+β)

.

125

5.4. GENERIC USER REVOCATION SYSTEMS

Therefore, the user cannot forge v
′
i, which is v

1
gid+β

i .

Based on the above analysis, the user cannot decrypt any re-encrypted ABE ciphertext,

since without the witness private key, the original ABE private key is insufficient for

decryption.

It is possible that a non-revoked user has a valid witness private key, but the attributes fail to

comply with the ABE’s access policy. This might happen because the witness private keys are

issued and used separately from the keys used in ABE. In this case, the security of the ABE

scheme should prevent the user from decrypting the ciphertext.

The Security of Ciphertext Indistinguishability

The system should resist eavesdropping adversaries.

The communication channels between DO and CSPs, or users and CSPs, might be unprotected.

An adversary can eavesdrop on ciphertexts sent in unsecured channels. Assume that an ad-

versary is able to get the ABE public (encryption) key and the re-encrypted ciphertexts from

unencrypted channels. If the adapted ABE is CPA-secure, ABE ciphertext is indistinguishable

against eavesdropping attacks. As the re-encryption keys (in the form of e(gy, v)) are random-

ized (by uniformly selected y) for each accumulator as well as changed for every subsequent

ciphertext re-encryption, intuitively the re-encrypted ciphertext is also indistinguishable.

126

5.4. GENERIC USER REVOCATION SYSTEMS

The Security of Unforgeability

The system prevents a revoked user from forging the new ciphertext re-encryption key based

on the witness private key that the user acquired before the revocation. This security is based

on the membership unforgeability of the DA (scheme [15]) and the DLP assumption. We use

the following scenario to informally analyze this. Let us assume that a user (A) with gid is

aggregated in αi.

1. At the beginning, user A is given his witness key of αi as:

wskgid= {wsk1
gid = (w1

gid)
r = g

ryi(
∏
gidx∈α2

i
(gidx+β))

gid+β , wsk2
gid = (wgid)

1/r = g
(gid+β)

r , wsk3
gid =

(g)α
4
= gyi}.

2. When A is revoked, DO removes gid from αi and y
′
i is randomly selected. The accumulator

αi has the new external identifier gy
′
i and the new aggregate value v

′
i. DO then refreshes

the witness private keys of the remaining members in α2
i (which does not include the

revoked gid any more) .

3. A is free to retrieve any number of re-encrypted ciphertexts from CSPs within polynomial

time. As A is not a member of any accumulator, A is not able to forge any witness of an

accumulator based on the security of DA. A is also not able to extract vi from his previous

witness private key, as explained in the security of dynamic user revocation analysis (in

Section 5.4.2.3). Therefore A is not able to reconstruct any re-encryption key of the

ciphertext even though gy
′
i might be obtained by A.

127

5.4. GENERIC USER REVOCATION SYSTEMS

The Security of Anonymity

The anonymity protection is for users being anonymous to CSPs. Users identities are protected

in the following ways:

1. Each user is assigned a pseudo identifier gid that is unique and not linked to a real

identity.

2. An accumulator’s aggregate value (v) does not reveal any aggregated gids based on the

security of DA ([15]).

3. CSPs are provided with any accumulator value and information other than re-encrypted

ciphertexts.

Based on the above analysis, we can conclude that the proposed user revocation system has

met the security goals.

Although collusion protection is one of the security requirements of ABE schemes, our proposed

system does not consider it. This is because ABE schemes use one master secret to derive user

private keys. An encryption and decryption key can consist of multiple portions, each related

to a particular attribute. As attributes are shared by users, users without all valid key portions

or attributes can pool the key portions to construct a valid private key. Therefore collusion

prevention is a critical security requirement of ABE. However, this type of collusion does not

apply to our proposed user revocation system, which builds an additional layer above the ABE

128

5.4. GENERIC USER REVOCATION SYSTEMS

scheme. There is no attribute sharing between the ABE scheme and the revocation system.

5.4.3 User Revocation via Cloud Storage Providers (UR-CSP)

Although using the ciphertext re-encryption approach UR-CRE enables user revocation at

data item level and requires no user management on CSPs, it introduces extra overheads in the

following aspects:

• It requires CSPs to store multiple re-encryption copies of an ABE ciphertext.

• It requires a DO to re-encrypt the ABE ciphertext for an accumulator whenever it adds

or removes a user.

To eliminate the above overhead, the second generic user revocation system, UR-CSP, leverages

CSPs to anonymously identify revoked users during the ciphertext retrieval process. In this

way, one copy of the ABE ciphertext needs to be stored. Only non-revoked users can get the

ABE ciphertext from CSPs.

5.4.3.1 Trust Model

The trust model still has four entities (see Section 5.4.2.1). The only difference is that CSPs

become semi-trusted instead of being completely untrusted. The CSPs are trusted to perform

user management in regard to anonymously identifying a user’s eligibility to access an ABE

ciphertext.

129

5.4. GENERIC USER REVOCATION SYSTEMS

• Cloud storage provider (CSP): CSPs store ABE ciphertexts, validate user access rights,

and fulfill data retrieval requests. CSPs are semi-trusted entities to execute the assigned

tasks, but might be curious to know the data and user identities.

The communication channels between entities in our framework is assumed to be secure, as

showed in Figure 5.3. We also assume that CSPs and users do not collude with one another.

Each user is assigned a global unique identifier gid that is not linked to the user’s true identity.

We do not elaborate the verification process of identifying whether a gid belongs to a user

or not. There are multiple ways of verifying a user’s identity against the given gid, such as

certifications.

5.4.3.2 System Description

This second user revocation system, UR-CSP, still uses DA to manage user access rights as in

UR-CRE, except that users are given witnesses instead of witness private keys. Each witness

is used to prove a user (gid) being aggregated to an accumulator. If CSPs can validate a user’s

claim to an accumulator, the requested ABE ciphertext is returned.

The external accumulator identifiers are not tagged to any user witness and accumulators’

aggregate values. Instead, α4 (the randomly selected number when α gets created or updated)

is used to randomize the witnesses that are sent to users, and aggregate values (α1) that are

sent to CSP. In this way, the aggregate values and witnesses get further protection from CSPs

130

5.4. GENERIC USER REVOCATION SYSTEMS

Authen'ca'on		over	SSL	

Data	Owner	
(DO)	

Users	Users	

Witnesses	over	SSL	

AA
	se

tu
p	
ov
er
	S
SL
	

AA	
Cloud	Storage	

Figure 5.3: Trust Model of User Revocation via Cloud Service Providers for ABE

131

5.4. GENERIC USER REVOCATION SYSTEMS

and users.

One way for a user to attest the membership of an accumulator is to send his/her witness directly

to a CSP. Although each witness does not directly link to a user’s identity, it does identify the

individual user and the user’s access privilege to a ciphertext. Since CSP is not fully trusted,

directly sharing a witness with CSP could have potential risks, such as impersonation attacks

launched by the malicious insiders of CSP. Therefore, the witnesses are considered to be private

and kept secret by users.

Inspired by zero knowledge proofs [27], our approach is to make users compute witness proofs.

Each time a user requests the ABE ciphertext, the user computes a witness proof using his/her

witness. The witness proof is randomized each time, even on the same witness. The CSP is

able to validate the proof against the accumulators’ aggregate values provided by DO. Figure

5.4 shows the interactions between different parties in the system.

The details of the system construction are as follows:

1. System setup. This is a private process run by DO. It initializes the system by setting

up system parameters, an ABE scheme, and DA. It then adds non-revoked users into

accumulators, issues and sends witnesses, encrypts data using ABE, randomizes accumu-

lators’ aggregate values, and sends the ABE ciphertexts and randomized aggregate values

to CSPs.

The outputs of the process are the following:

132

5.4. GENERIC USER REVOCATION SYSTEMS

• ABE pkabe and mkabe are sent to AA. pkabe is public. mkabe is kept secretly.

• Witnesses wgid is sent to eligible users to be kept secretly.

• The ABE ciphertext c and Λ (the container described below for storing randomized

aggregate values) are sent to CSP. Values c and Λ can be public.

The detailed steps are as follows:

• DO calls Setup(1n) to initialize an ABE scheme and DA. The algorithm returns the

ABE public key pkabe, master secret mkabe, and DA’s system parameters {k, β, Ak,

Φ}. DA’s system parameters are kept secretly by DO.

• DO provides AA with the public key pkabe and master secret mkabe.

• Let U contain the existing non-revoked gids.

– Let WitnessSet = {} be the container to temporarily store the returned wit-

nesses of accumulators.

– For each gidi ∈ U , DO proceeds as the follows:

∗ Call UserManager(gidi, “Add”, Φ) to add gidi to an accumulator and get

{ωα, α} as the output;

∗ Check whether α has been added to WitnessSet or not by using the internal

index α3. If α exists, remove the existing {ωα, α}.

∗ Update WitnessSet: WitnessSet ← WitnessSet + {ωα, α}.

Note: This again is a one-time bulk process for adding all users into accumula-

tors.

133

5.4. GENERIC USER REVOCATION SYSTEMS

– For each {ωα, α} ∈ WitnessSet:

∗ For each gidi ∈ α2, DO re-computes wgidi = {(w1
gidi

)α
4

= (w1
gid)

y, w2
gidi
}, and

sends wgidi to user gidi.

• DO calls Encabe(m, ·) to encrypt the message m and get ABE ciphertext c.

• Let Λ be the container to store all the current aggregate values.

– For each accumulator αi ∈ Φ:

∗ DO adds vi to Λ = Λ + {vyii }, where vi is α1
i and yi is α4

i .

We use yi to randomize aggregate values.

• DO sends {Λ, c} to CSP.

2. DO adds a new user (gid) to the system. This process is run by DO privately. It adds

the user to an accumulator and updates all users in the accumulator with new witnesses.

It then updates CSP with the new randomized aggregate values.

The outputs of the process are as follows:

• New witnesses of the updated accumulator are sent to users to be kept secretly.

• Updated Λ is sent to CSP. It can be public.

The detailed steps are as follows:

• DO first validates and authenticates the user gid.

• If the user is eligible:

134

5.4. GENERIC USER REVOCATION SYSTEMS

– DO calls UserManager(gid, “Add”, Φ) to add gid to an accumulator and has

{ωα, α} returned.

– For each gidi ∈ α2, DO gets y from α4, re-computes wgidi = {(w1
gidi

)y, w2
gidi
},

and sends the witness wgidi to the user.

– Let Λ = {}.

– For each αi ∈ Φ, DO adds vi to Λ: Λ = Λ + {vyii }, where vi is α1
i and yi is α4

i .

Note: The updated α has been included in Φ. Therefore, all the aggregate values

are currently in Φ. Although only one accumulator is updated, Λ is re-generated for

the CSP to simply replace the previous one completely.

– DO sends Λ to CSP to replace the previous one.

• If the user is not eligible, DO returns ⊥.

3. A new user (gid) requests an ABE private key. This process is the same as described in

UR-CRE.

The output of the process is one of the following:

• The ABE private key uskabe is kept secretly by the user if the user is authenticated.

• Otherwise the output is the output of AA, which could be ⊥ as an example.

The detailed steps are as follows:

• The user contacts AA with his/her attributes.

• AA verifies the user and his/her attributes.

135

5.4. GENERIC USER REVOCATION SYSTEMS

• If the user is successfully verified, AA calls KeyGenabe(·) and sends the user uskabe.

• Otherwise AA outputs its output.

4. A user gid requests an ABE ciphertext. This process consists of the following communi-

cations between CSP and the user :

• First the user computes a witness proof and sends it to CSP.

• Upon getting the request and the proof, CSP checks the proof against the accumu-

lator’s aggregate values.

• If the proof can be verified, CSP sends ciphertext c to the user. Otherwise CSP

returns ⊥.

• If the user gets c back, he/she calls Decabe to decrypt the data.

The output of this process is one of the following:

• Data m, if the user can prove his/her membership and has a valid uskabe.

• The output of Decabe, if the user can prove his/her membership, but does not have

a valid uskabe.

• ⊥, if the user cannot prove his/her membership of an accumulator.

The detailed steps are as follows:

• User gid computes a proof:

– Randomly select γ uniformly from Zp, and compute:

atte = e(w1
gid, (w2

gid)
γ) = e(v

y
gid+β , gγ(gid+β)) = e(g

∏
gidx∈α2 (gidx+β), gγy)

136

5.4. GENERIC USER REVOCATION SYSTEMS

= e(g, g)ry
∏
gidx∈α2 (gidx+β)

– Compute gγ;

• User gid sends {atte, gγ} to CSP;

• CSP validates atte:

– For each {vyii } ∈ Λ:

∗ Compute e(vyii , gγ) = e(vi, g
yiγ) = e(g, g)

ryi
∏
gidx∈α2

i
(gidx+β)

.

∗ Check whether atte
?
= e(g, g)

ryi
∏
gidx∈α2

i
(gidx+β)

or not;

– If one match found, ABE ciphertext c is returned;

– Otherwise ⊥ is returned.

• If c is returned, the user calls Decabe(c, ·) to get m if skabe is able to decrypt c.

• Otherwise the output depends on the output of Decabe(c, ·).

5. DO revokes a user gid. This process is run by DO privately. It removes the user from an

accumulator and updates the remaining users with new witnesses. CSP is also provided

with the updates.

The outputs of the process are the following:

• New witnesses are sent users to be kept secretly, if the updated accumulator α has

the remaining users.

• Updated Λ is sent to CSP and can be public.

The detailed steps are as follows:

137

5.4. GENERIC USER REVOCATION SYSTEMS

• DO calls UserManager(gid, “Delete”, Φ) to remove gid from an accumulator and

has {ωα, α} returned.

• If α2 6= {}:

– For each gidi ∈ α2, DO gets the random number y from α4, re-computes wgidi

= {(w1
gidi

)y, w2
gidi
}, and sends the witness wgidi to the user gidi.

• Let Λ = {}.

• For each αi ∈ Φ, DO computes vyii and adds it to Λ: Λ = Λ + {vyii }, where vi is α1
i

and yi is α4
i .

• DO sends Λ to CSP to replace the previous one.

5.4.3.3 Security Analysis

As UR-CSP is still built on top of an ABE scheme and leverages DA to achieve dynamic and

anonymous user revocation, the fundamental security of UR-CSP still relies on the security of

ABE and DA. We assume that:

• The selected ABE scheme is at least CPA-secure.

• DA, which is build out of the scheme in [15], is secure against witness forgeability and

provides anonymity of elements aggregated into accumulators.

UR-CSP aims to achieve similar goals to the previous system, UR-CRE:

138

5.4. GENERIC USER REVOCATION SYSTEMS

A User Revocation System via Cloud Service Providers for ABE (UR-CSP)

Cloud Service Provider (CSP)Data Owner (DO) New User Attribute Authority (AA) User Groups

Initialization

Initialize ABE:
 Setupabe (·)

Initialize DA:
AccSetup(·)

Encrypt data usingEncabe (·).
Create the data structure Λ

for storing aggregate values

ABE public key and
master secret:

pkabe, mkabe

User witnesses
wgidi

ABE ciphertext c and
accumulator aggregate

values: Λ

Generate private key:
KeyGenabe (·)

Output of AA

Add the user and
update the witnesses of

users in the accumulator:
UserManager (·)

A new set of aggregate
values: Λ

The user added. User
witnesses updates of

the accumulator
wgidi

Verify the proof atte
using Λ

Decrypt it using:
Decabe (·)

Remove the user and
update the witnesses of

users in the accumulator:
UserManager (·)

Adding a new user

Revoking a user

A user computing a
proof to request a

ciphertext:
atte

 The user removed. User
witnesses updates of

the accumulator for the
rest of users

wgidi

ABE Ciphertext c

Create the data structure
Λ for storing aggregate

values

A new set of aggregate
values: Λ

Generate
witnesses:

UserManager (·)

Create the data structure
Λ for storing aggregate

values

Validated?

Yes

Null No

Requesting ABE
private key

Requesting Witness

Authenticated?

Yes

No Null

Issuing ABE key

Authenticated?

Yes

No

ABE private key

uskabe

Retrieving Ciphertext

Output of Decabe (·)

Figure 5.4: Interaction Diagram of User Revocation via Cloud Service Providers for ABE
139

5.4. GENERIC USER REVOCATION SYSTEMS

• A revoked user is unable to decrypt ABE ciphertexts after the revocation.

• CSPs can anonymously identify revoked users during the ciphertext retrieval process.

These goals require the same security as for UR-CRE:

• Dynamic user revocation: revoked users, having valid ABE private keys, are prevented

from accessing any ABE ciphertext after the revocations.

• Ciphertext indistinguishability: The ABE ciphertext should remain indistinguishable

against eavesdropping attacks.

• Unforgeability: users should not be able to forge their witnesses to prove the membership

of an accumulator.

• Anonymity: users remain anonymous to CSPs in any user identification and data retrieval

request.

The detailed analysis is as follows:

The Security of Dynamic User Revocation

Assume a revoked user still holds a valid ABE private key for decryption, the system prevents

the user from accessing the ABE ciphertext as follows:

140

5.4. GENERIC USER REVOCATION SYSTEMS

• When the user (gid) is revoked, DO removes the gid from its accumulator. Suppose α is

the accumulator. The external randomizing number α4 is re-selected and the aggregate

value α1 is recalculated. Let y
′

and v
′

denote the updated values of α4 and α1. Each of

the remaining users gidi ∈ α2 receives a new witness w
′

gidi
randomized by y

′
:

w
′

gidi
= {w′1gidi = v

′ y
′

gidi+β , w
′2
gidi

= ggidi+β}

The CSP is also updated with a new Λ (containing (v
′
)y
′
).

• The revoked user (gid) is not given any new or updated witness. Suppose that the revoked

user has the “old” witness and is denoted as follows:

wgid = {w1
gid = v

y
gidi+β = g

y(
∏
gidi∈α(gidi+β))

gid+β , w2
gid = ggid+β}, where y and v are the “old”

values.

– Based on the DLP assumption, the user cannot extract
y
∏
gidx∈α(gidx+β)

gid+β
and gid+ β

from his/her witness.

– Suppose the user compute e(w1
gid, w

2
gid) to get e(g, g)y

∏
gidx⊆α(gidx+β). y

∏
gidx∈

∏
α(gidx+

β) cannot be extracted based on the DLP assumption, nor the original aggregate

value v. Since DA’s system parameters and data structures are kept secretly from

users, the user is prevented from computing v
′
.

– Based on the witness unforgebility of DA, the user cannot forge a witness of any

accumulator.

– Suppose that the user assumes him/her to be the only person removed from the

accumulator. The user tries to forge a proof (atte) by randomly select γ
′

and only

141

5.4. GENERIC USER REVOCATION SYSTEMS

uses w1
gid as follows: atte = e(w1

gid, (g)γ
′
) = e(g, g)r

′
y
∏
gidx∈α(gidx+β). Since y has been

changed to y
′
, which is randomly selected and kept secretly by DO, the atte cannot

be validated correctly.

Based on the above analysis, the revoked user cannot generate a valid proof to CSP. He/She is

not given any ABE ciphertext after the revocation.

The Security of Ciphertext Indistinguishability

Since UR-CSP uses an ABE scheme for data encryption, we assume that the security of cipher-

text indistinguishability is provided by the ABE scheme selected by DO.

The Security of Unforgeability:

This security is based on the membership unforgeability of the scheme in [15]. Any user,

whether revoked or not, cannot forge a valid witness of an accumulator that does not have the

user’s gid aggregated in it.

The Security of Anonymity:

The user verification process does not need user identities or gids:

• Users use witnesses to compute a claim to prove their memberships of a particular accu-

142

5.5. USER REVOCATION OVERHEAD ANALYSIS

mulator:

atte = e(w1
gid, (w2

gid)
γ) = e(v

y
gid+β , gγ(gid+β)) = e(g, g)ry

∏
gidx∈α2 (gidx+β).

γ is randomly chosen each time so that atte is differently formed even using the same

witness.

• Using the given aggregate values Λ= {{vyii }1≤i≤|Φ|}, CSP verify a claim by checking the

following:

For each vyii ∈ Λ:

– Compute e(vyii , gγ) = e(g, g)
ryi

∏
gidx∈α2

i
(gidx+β)

.

– Check whether atte
?
= e(g, g)

ryi
∏
gidx∈α2

i
(gidx+β)

or not;

None of the above steps and information will disclose user identities to CSP. Thus, users remain

anonymously to CSP in the process of user versification and data retrieval.

Based on the above analysis, we can conclude that the second proposed user revocation system,

UR-CSP, has met the security requirements.

5.5 User Revocation Overhead Analysis

We are not aware any similar system that can generically work with any existing ABE scheme.

Thus, we simply compare our two systems in this section (in Figure 5.5).

143

5.5. USER REVOCATION OVERHEAD ANALYSIS

User	Revoca+on	
System	

Data	Owner	
Management	
		

Storage	Required	at	a	
CSP	
		

User	Witness	or	Key	
Refreshing	
		

Data	Retrieval	
		

UR-CRE	

1.	Accumulator	
management	
2.	User	witness	key	
management	
3.	ABE	ciphertext	re-
encryp@ons	and	
updates	to	CSPs	

Mul@ple	copies	of	
ABE	ciphertext	
		

The	witness	keys	and	
key	updates	provided	
by	the	data	owner	

The	re-encrypted	
ciphertext	sent	to	a	
user	

UR-CSP	

1.	Accumulator	
management	
2.	User	witness	
management	
3.	Accumulator	value	
updates	to	CSPs	

One	copy	of	ABE	
ciphertext	

The	witnesses	and	
witness	updates	
provided	by	the	data	
owner	

1.	User	verifica@on	by	
CSPs	
2.	ABE	ciphertext	sent	
to	a	verified	user	

Figure 5.5: Overhead Comparison of User Revocation Systems

144

5.5. USER REVOCATION OVERHEAD ANALYSIS

The user revocation systems add integration and management overheads. As we can see, the

overheads are mainly coming from the following aspects:

1. Accumulator management;

2. User witness or witness private key management;

3. Ciphertext re-encryption and re-encryption updates to CSPs;

4. User membership construction and verification;

5. Storage required for storing multiple copies of the re-encrypted ciphertext.

UR-CRE has the overheads 1, 2, 3, and 5. Most of those overheads, (1, 2, 3), are on the data

owner side. CSPs are only required to provide extra storage space for multiple copies of the

re-encrypted ABE ciphertexts (overhead 5). The data owner can be a potential bottleneck for

updates and witness private key management. However, the performance and scalability can

be greatly improved by delegating the witness private key updates and ciphertext re-encryption

to a trusted party or servers. Transferring updates to users and CSPs can also be out-of-band.

UR-CSP has the overheads 1, 2, and 4. Most of those overheads, (1, 2), are still on the data

owner side, but the data owner does not need to re-encrypt ABE ciphertexts. The data owner

can still be a bottleneck to manage accumulators and witness updates. Delegation can still

be the implementation strategy to reduce the bottleneck. Only one copy of ABE ciphertext

is stored at CSPs. However, ciphertext retrieval is a protocol of user membership verification

145

5.6. CONCLUSIONS

process (overhead 4). It requires a user to construct a proof for a CSP to validate the proof

every time. CSPs are required to be semi-trusted to perform user membership verification.

This trust is not required in UR-CRE.

Overall, the overheads of UR-CSP appear to be more evenly distributed compared to UR-

CRE. It is slightly more scalable than UR-CRE, but UR-CRE can improve the scalability by

delegating the tasks and computations.

5.6 Conclusions

In this chapter, we proposed two dynamic user revocation systems for ABE schemes. Our

systems are generic and can be applied directly to any ABE scheme. We build user privacy

protection into the data retrieval process, making ABE schemes more suitable and practical for

deployment in untrusted cloud storage systems.

146

Chapter 6

A Generic Attribute Revocation
System for ABE in Cloud Storage

Contents
6.1 Related Work . 148

6.2 Our Contributions . 150

6.3 The Attribute Revocation System (AR-ABE) 151

6.3.1 Trust Model . 153

6.3.2 Algorithm Definition and Construction 153

6.3.3 System Description . 163

6.3.4 Security Analysis . 169

6.4 Attribute Revocation Overhead Analysis 176

6.5 Conclusions . 177

User revocation concerns user access rights being revoked from an ABE system. It might be

excessive in situations where a user has only a few attributes needing to be revoked, while

other attributes continue to satisfy certain access policies. Resolving this situation requires

revocation to be more granular, which means that revocation is required at both attribute and

147

6.1. RELATED WORK

user levels, rather than only at the user level.

In ABE, an attribute can be shared by multiple users. Any shared attribute being revoked

from a user should not impact the use of the attribute by other users. In other words, attribute

revocation should allow any number of attributes to be revoked from one or multiple users

without impact on other users who share or use the same attributes for data decryption.

Attribute revocation has been studied in the literature, however most existing revocation

schemes only work with certain individual ABE schemes. Some are inflexible in the num-

ber of attributes that can be revoked, or not granular enough to support attribute revocation

both at user and attribute level (two-level revocation): revoking any number of attributes from

a user or revoking any attribute from a number of users. We propose an attribute revocation

system that is generic to all ABE schemes, and supports two-level attribute revocation. User

privacy is also protected in the revocation system.

6.1 Related Work

Yu et al. [148] proposed a CP-ABE scheme to accomplish revocation of user access rights

via attribute revocation. When a user’s access right is revoked, the AA generates a new re-

encryption key for the semi-trusted on-line proxy server. On behalf of the AA, the proxy server

generates and distributes new updated attribute key shares (private keys) to each non-revoked

user. Then the proxy server re-encrypts the data with the new encryption key. Although the

scheme offloads the data and attribute private key updates to a semi-trusted proxy server, each

148

6.1. RELATED WORK

revocation triggers a round of user attribute key updates and data re-encryption.

Yang et al. [145] proposed a CP-ABE revocation scheme which generates a new attribute

public key and private key whenever an attribute is revoked. The difference between this

scheme and [148] is that only those components associated with the revoked attribute in secret

keys and ciphertexts, instead of all the components in the secret keys and ciphertexts, need

to be updated. Users are required to obtain those updates of their private keys. Data is

re-encrypted by semi-trusted CSPs using the new attribute public key. While these schemes

enable instantaneous user revocation, each revocation still triggers a round of attribute key

share updates and ciphertext re-encryption.

Based on Hur and Noh’s user revocation system [70], Xie et al. [140] constructed a user and

attribute revocation system aimed at reducing the computational overhead of the data service

manager in [70]. The new construction in [140] improved the key update computation of the

data service manager by half. Despite this efficient new construction, it inevitably inherits the

potential issues of service managers discussed in Section 5.1.

Wang et al. [133] proposed attribute revocation for a KP-ABE scheme. In their scheme, each

user is associated with two access trees. Each tree has its own private key. The first tree is

used for data decryption if the user does not have any revoked attributes. Otherwise the second

tree is used as long as the user’s valid attributes still satisfy the policy of the KP-ABE scheme.

Although this revocation scheme does not require attribute key re-issuing, it only works for

revoking one attribute at a time.

149

6.2. OUR CONTRIBUTIONS

6.2 Our Contributions

We propose an attribute revocation system, AR-ABE, for ABE schemes with the following

characteristics:

• Generic: The revocation process can directly work with any ABE scheme.

• Dynamic: The revocation is instantaneous without requiring ABE private keys to be

re-issued or data to be re-encrypted.

• Granular: The revocation can take place at either attribute level or user level. At attribute

level, an attribute can be revoked from a user or a number of users. At the user level, a

user can have one or multiple attributes being revoked. Any level of revocation does not

impact other users using the same attributes.

• Collusion resistant for re-encryption keys: The revocation system utilizes ciphertext re-

encryption to control the access to ABE ciphertexts. Ciphertext re-encryption keys are

re-constructed by users with their attribute witnesses. The revocation system (AR-ABE)

prevents users from pooling their attribute witnesses to construct any ciphertext re-

encryption key. Re-encryption keys are completely independent with regard to ABE

private keys.

• Anonymous: Users are anonymous to CSPs.

150

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

6.3 The Attribute Revocation System (AR-ABE)

Granular attribute revocation is not as straightforward as user revocation. In ABE schemes,

each user’s private key is uniquely formed. A special link is typically used to bind the private

key shares of a user’s attributes together so that users are prevented from pooling their key

shares together to construct a decryption key. This type of prevention is referred to as collusion

resistance. Revoking an attribute without re-issuing the private key can break the bond among

the attribute key shares, and prohibit the user from reconstructing other decryption keys. This

makes it difficult to implement a dynamic and granular revocation system.

To make an attribute revocation system dynamic and granular as well as generic to all types

of ABE schemes, we separate the revocation control from the underlying ABE schemes. This

revocation control is again achieved by controlling access to ABE ciphertexts via ciphertext re-

encryption. Re-encryption keys are randomly generated one-time keys. If a user does not have

the non-revoked attributes that are required by the ABE policy, the one-time re-encryption key

cannot be recovered during the decryption process, even though the user still possesses a valid

ABE private key. The proposed system still uses DA (defined in Section 5.3.2) to manage user

access to ABE ciphertext. Again, users are uniquely identified by global identifiers (gids) that

are not linked to their attributes and identities.

• At the attribute level, each attribute is associated with a set of accumulators aggregated

with users (gids) who possess the attribute that has not been revoked. When an attribute

151

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

is revoked from a user, the user’s gid will be removed from its accumulator. The rest of

users of the accumulator will receive their new witnesses. When a new user is granted

access to an ABE ciphertext, the user will be added to an accumulator for each attribute

that the user has. Other users in those accumulators will receive new witness updates.

• At the user level, we employ an access tree called an attribute accumulator tree (AATree)

(see Section 6.2). AATree is constructed by a data owner (DO) with the attributes

required by the access policy of an ABE scheme. The tree is provided to CSPs.

The AATree is used for the following purposes:

– It contains the necessary attributes (via their accumulators) needed by the selected

ABE scheme. Although AATree is inspired by the access tree of ABE schemes, it is

completely independent in regard to the content and relationship with the underlying

ABE scheme. AATree is not used by any ABE scheme and does not replace any ABE

scheme’s access policy. It simply contains the necessary attributes that are used by

the selected ABE scheme in the decryption process.

– It is used to control user access to ABE ciphertexts. When a user requests an ABE

ciphertext, a CSP randomly generates a one-time re-encryption key, re-encrypts

the ABE ciphertext, and embeds the re-encryption key using the AATree in the

re-encrypted ciphertext. Only users who have non-revoked attributes with their ac-

cumulator witnesses satisfying the AATree are able to re-construct the re-encryption

key to get the ABE ciphertext.

– It is used to protect user privacy. As the AATree and accumulators are managed

152

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

and updated by data owners, CSPs do not need to know, or keep a list of users with

their revoked attributes. A CSP only needs to be posted with the latest AATree and

uses it to embed re-encryption keys.

6.3.1 Trust Model

The trust model for AR-ABE is the same as the trust model of the one with UR-CSP described

in Section 5.4.3.1. Data owners (DO) and the ABE attribute authority (AA) are trusted, while

CSP are semi-trusted, and users are not trusted. Figure 6.1 is the diagram of the trust model.

The communications between DO and users, as well as AA, are protected via suitably secured

channels encrypted by SSL/TLS. We also assume that users are properly authenticated before

ABE private keys or attribute witnesses are issued.

6.3.2 Algorithm Definition and Construction

We first define the data structures and algorithms used in AR-ABE.

6.3.2.1 Data Structure Definition

There are two main data structures for AATree and accumulators. AATree data structures are

used for managing user access to ABE ciphertexts. Accumulator data structures are used to

manage user attributes and their revocation statuses.

153

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

A"rib
ute		w

itness
	over

	SSL	

Data	Owner	
(DO)	

Users	

Users	

AA
	se

tu
p	
ov
er
	S
SL
	

AA	
Cloud	Storage	

Re
-e
cr
yp
te
d	
ci
ph

er
te
xt
		

Authe
nBcaB

on		ov
er	SSL

	
Ci
ph

er
te
xt
	re

tr
ie
va
l	r
eq
ue
st
	

Figure 6.1: Trust Model of Attribute Revocation System for ABE in Cloud Storage

154

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

• Attribute Accumulator Tree (AATree): Figure 6.2 shows an example of an AATree. The

internal nodes are attributes that are required by the selected ABE scheme to check for

the compliance of its access policy. Each leaf node is one of the accumulators of the

attribute. Since each user is only aggregated to one accumulator of an attribute, the

internal nodes (attributes) are 1 − out − of − n threshold gates. The n denotes the

number of accumulators for an attribute, that can be different among attributes. As the

number of accumulators for an attribute can be changed for adding or removing users,

each n is not static and subject to change throughout its lifetime. AATree is dynamically

updated by DO. Figure 6.2 also illustrates how a re-encryption key is split and embedded

into the tree.

• Data structures used to manage accumulators: the system and DO use the following data

structures to manage accumulators and user attributes.

– Let Att = {atti}1≤i≤|Att| contain attributes in the system. |Att| denotes the number

of attributes in the system.

– Let Λpolicy = {atti}1≤i≤|Λpolicy| contain the attributes that are used by an ABE access

policy. |Λpolicy| denotes the number of attributes included.

– Let UAttgid = {atti}1≤i≤|UAttgid| contain the attributes of user gid. |UAttgid| denotes

the number of attributes of user gid.

– Let α denote an accumulator as it is defined in Section 5.3.2.1:

α = {α1 = v, α2 = {gidx}1≤x≤|{gidx}|, α
3 = i, α4 = y}.

155

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

– Let Φatt denote the attribute accumulator container containing all the accumulators

of attribute att:

Φatt = {Φ1
att = att, Φ2

att = Φ = {αi}1≤i≤|Φ| }, where |Φ| is the number of the accu-

mulators of att.

– Let Ω = {Φatti}atti∈Att contain all the attribute accumulator containers.

– Let uwgid = {{atti, wgid, gyj}}1≤i≤|uwgid| contains the witnesses of the attributes that

user gid has had and not been revoked.

• Data structures used to express AATree: As accumulators are solely managed by a DO,

they are kept and stored on the DO side. But information, such as the accumulator’s

aggregate values and attributes required by ABE access policy, is needed by CSPs to

control user access to an ABE ciphertext. ∆ is for a DO to provide the information to

CSPs. Ψ is created by a CSP to embed re-encryption keys in the ciphertext based on

Λpolicy.

– ∆ is used to store accumulator aggregate values of attributes in Λpolicy :

∆ = {atti, {v
yj
j , gyj}1≤j≤|Φ2

atti
|}1≤i≤|Λpolicy | , where vj is the aggregate value of accu-

mulator αj for attribute atti, g
yj is the external identifier of accumulator αj, and

|Φ2
atti
| (= |Φ|) is the total number of accumulators for atti.

– Ψ is used to carry a ciphertext re-encryption key. An example is like the following:

Ψ = {{(e(g, g)
si−gid·yj

∏
gidx∈αj

(gidx+β)
, gyj)}1≤j≤|Φ2

atti
|}1≤i≤|Λpolicy |, where si is a ran-

domly split share of a randomly selected s at the re-encryption time. Users re-

156

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

construct re-encryption keys if their non-revoked attributes have the valid witnesses

of those accumulators.

Table 6.1 lists the commonly used notation in this chapter.

6.3.2.2 Algorithm Construction

We define the commonly used algorithms in our system. Whether the algorithms can be run

privately or publicly and which information is kept secret depend on the trust model. These

will be described in Section 6.3.3.

• Setup(1n): The algorithm takes the input 1n as security parameter and proceeds as

follows:

– Let U contain the existing user gids: U = {gid1 , . . . gidn}, where gidi ∈ Z?
p (p is a

n-bit prime).

– Call Setupabe(1
n) to initialize the ABE scheme using the security parameter 1n. The

algorithm outputs the public key pkabe and the master secret mkabe.

– Initialize DA using the security parameter 1n:

∗ Let e: G × G → G1 be a bilinear map for p.

∗ Let g be a generator of G.

∗ Call AccSetup(G, g) (Algorithm 5.1) with G and g as the inputs. It outputs {k,

157

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

Notation Description

c An ABE ciphertext

AA The ABE attribute authority

Setupabe The setup algorithm of an ABE scheme

KeyGenabe The key generation algorithm of an ABE scheme

Encabe The encryption algorithm of an ABE scheme

Decabe The decryption algorithm of an ABE scheme

pkabe The public key of an ABE scheme

mkabe The master secret of an ABE scheme

uskabe An ABE private key of a user

gid A user’s global unique identifier

U The set containing user gids in the system

CSP Cloud Storage Providers

DO Data Owner

Φ Accumulator container used by Φatt to store the accumulators of attribute att

Φatt Accumulator container to store the accumulators of attribute att

Ω Accumulator container to store all the Φatt in the system

k The maximum number of elements that can be aggregated to an accumulator

Aκ The accumulator function to generate aggregate values

β The trapdoor value used by the accumulator function Ak
α The container of a particular accumulator and its information

v An accumulator aggregate value

Ops The operational type - Add or Delete a gid to or from an accumulator

ωα The witness container of α to store user witnesses

Att The set of attributes in the system

UAttgid The set of attributes for user gid

Λpolicy The container storing the attributes that may be required by the ABE scheme

uwgid The container storing attribute witnesses of user gid

∆ The data structure storing accumulator aggregate values of attributes in Λpolicy
Ψ The data structure storing shares of a ciphertext re-encryption key

C
′

The container storing the re-encrypted ABE ciphertext

Table 6.1: Attribute Revocation System Notation

158

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

Attribute-1
(Threshold Gate

1-out-of-n)

Accumulator-1 Accumulator-n

Attribute-n
(Threshold Gate

1-out-of-n)

Accumulator-1 Accumulator-n

Root
(Re-Encryption

Key)

S

𝑆1 𝑆𝑛

𝑆1 𝑆1 𝑆𝑛 𝑆𝑛

Figure 6.2: Attribute Accumulator Tree

159

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

β, Ak, Φ}, where Φ is the container used by Φatt to store the accumulators for

attribute att. att is a generic notation of an attribute in the system.

• KeyGenabe(·): This is the ABE algorithm to generate user private keys. The · generically

denotes the input parameters. It outputs a user private key uskabe.

• UserAttributeManager(gid, Ops, Φatt): This algorithm takes a user’s gid, the operation

type Ops, and the accumulator container Φatt of attribute att as the inputs. It proceeds

as follows:

– Extract accumulator container Φ: Φ = Φ2
att = {αi}1≤i≤|Φ2

att|.

– If Ops == “Add”, the algorithm calls AccAdd(gid, Φ) (Algorithm 5.2) to add gid

to an accumulator: {α, Φ} = AccAdd(gid, Φ).

– If Ops == “Delete”, the algorithm calls AccDelete(gid, Φ) (Algorithm 5.3) to re-

move gid:

{α, Φ} = AccDelete(gid, Φ).

– Replace the old Φ in Φatt with the newly returned Φ: Φ2
att = Φ.

– Set w
′
α = {}.

– If α2 6= {}, issue witness updates for the users in the accumulator:

∗ Select a random number uniformly from Zp: y ← Zp, and set α4 = y.

∗ Find and replace the old α in Φ2
att (using the internal index α3).

∗ Call AccWitUpdate(α) (Algorithm 5.4) to compute witnesses of users:

ωα = AccWitUpdate(α).

160

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

∗ Embed gids and accumulator random number α4 (y) in user witnesses to prevent

collusions and witness forgery:

· For each gidi ∈ ωα: re-compute witness as:

w
′

gidi
= {w′1gidi = (w1

gidi
)gidiα

4
= g

gidiy(
∏
gidx∈α2 (gidx+β))

gidi+β , w2
gidi

= g(gidi+β)};

add w
′

gidi
to ω

′
α: ω

′
α + {w′gidi , gidi}.

– Finally return {w′α, α, Φatt}.

• Encabe(m, ·): This is the ABE encryption algorithm. It takes the inputs of message m

and the rest of parameters denoted as ·. It outputs ABE ciphertext c.

• ReEnc(c, Λpolicy, ∆, gid): This algorithm inputs an ABE ciphertext c, the attributes

needed by the ABE access policy Λploicy, the aggregate values with external identifiers ∆,

and a user’s gid. It re-encrypts c as follows:

– Let Λpolicy = {atti}1≤i≤|Λpolicy | , and ∆ = {{atti, {v
yj
j , gyj}}1≤j≤|Φ2

atti
|}1≤i≤|Λpolicy| .

(Φatti cannot be accessed by this algorithm. We use this denotation to express the

total number of accumulators for attribute atti.)

– Randomly select s ← Zp, and re-encrypt c to c
′

= ce(g, g)s.

– Embed s in Ψ:

∗ s is split into |Λpolicy| number of shares differently and randomly, so that no

share is equal to any other shares:

s= s1 + s2 + · · · + sI , where I = |Λpolicy| .

∗ Each share is assigned to an atti ∈ Λpolicy.

161

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

∗ To prevent collusion, gid is embedded into shares. As accumulators’ aggregate

values do not disclose the aggregated gids, gid is blindly embedded in every

accumulator. However, this is not a concern. The AATree is 1 − out − of − n

threshold (described in 6.2). A gid can only belong to one accumulator at most.

Using the accumulators’ external identifiers, correct components can be located

for reconstructing the key in the decryption algorithm.

The following is the steps of building Ψ:

· For each atti ∈ ∧policy:

Find {atti, {v
yj
j , gyj}1≤j≤|Φ2

atti
|} in ∆:

For each accumulator of attribute atti, compute:

e(gsi , (v
yj
j)−gid) = e(g, g)

si−gidyj(
∏
gidx∈α2

j
(gidx+β))

, where j is the jth accumu-

lator αj for atti.

· The final Ψ is as the following:

Ψ = {{(e(g, g)
si−gidyj(

∏
gidx∈α2

j
(gidx+β))

, gyj)}1≤j≤|Φ2
atti
|}1≤i≤|Λpolicy|.

– Finally the algorithm outputs C
′

= {c′ = ce(g, g)s, Ψ}.

• Dec(C ′ , uwgid): This algorithm inputs the re-encrypted ciphertext C
′
, and attribute

witness set uwgid for user gid. It uses the attribute witnesses in uwgid to recover the

re-encryption key, and decrypts C
′

to get the ABE ciphertext c.

– Let uwgid be expressed as: {{atti, wgid, gyj}}1≤i≤|UAttgid| , where |UAttgid| is the

number of attributes of user gid, wgid is the witness of attribute atti, and gyj is the

external identifier of the accumulator.

162

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

– The re-encrypted key can be recovered as follows:

∗ For each atti in uwgid, use the external identifier gyj to find the re-encryption

key share in Ψ. If the share can be found, then proceed as follows:

· Compute the intermediate value using the witness:

e(w1
gid,w

2
gid) = e(g

gidyj(
∏
gidx∈α2

j
(gidx+β))

gid+β , g(gid+β)) = e(g, g)
gidyj(

∏
gidx∈α2

j
(gidx+β))

.

· Recover the key share:

e(g, g)
si−gidyj(

∏
gidx∈α2

j
(gidx+β))

·e(g, g)
gidyj(

∏
gidx∈α2

j
(gidx+β))

= e(g, g)si .

∗ Reconstruct the re-encryption key if all the shares can be recovered:∏
1≤i≤|Λpolicy |e(g, g)si = e(g, g)s.

– Decrypt c
′
, which is a part of C

′
, to get the ABE ciphertext: c = c

′
/ e(g, g)s.

– The algorithm returns c. Note: if the re-encryption key can be successfully con-

structed, c is a well-formed ABE ciphertext; otherwise c is a random string.

• Decabe(c, ·): This is the ABE decryption algorithm. It takes the ciphertext c and required

parameters denoted as · as the inputs. · should include the user’s uskabe. It returns data

m if uskabe can decrypt c, otherwise the output depends on Decabe.

6.3.3 System Description

Figure 6.3 illustrates interactions and communications between a DO, AA, a CSP, and users.

1. System setup. This is run by DO privately. It takes in a security parameter 1n and

initializes the system by setting up system parameters, an ABE scheme, and DA. It then

163

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

adds users into accumulators, issues and distributes attribute witnesses, encrypts data

using ABE, and constructs data structures.

The outputs of the process are the following:

• pkabe and mkabe are sent to AA. pkabe is public. mkabe needs to kept secret.

• Non-revoked attribute witnesses are sent to users. They need to be kept secret.

• The ABE ciphertext c, data structures ∆ and Λpolicy are sent to CSP. They can be

public.

The detailed steps are as follows:

• DO calls Setup(1n) to initialize an ABE scheme and DA. The algorithm returns the

ABE public key pkabe, master secret mkabe, and DA’s system parameters {k, β, Ak,

Φ}.

• DO sends AA the ABE public key pkabe and master secret skabe.

• DO keeps the system parameters of DA privately.

• DO calls Encabe(m, ·) to encrypt the message m to c.

• DO creates the data structure Λpolicy = {atti}1≤i≤|Λpolicy| containing all the attributes

needed by the access policy of the ABE scheme.

• DO issues attribute witnesses to users:

– Let U contain the existing gids.

– For each gidj ∈ U :

164

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

∗ Let UAttgidj contain all the attributes of gidj.

∗ For each atti ∈ UAttgidj :

· If atti has not been revoked:

Call UserAttributeManager(gidj, “Add”, Φatti) and have {wα, α, Φatti}

returned.

If α2 6= {}, compute the external identifier gα
4

= gy; for each gidi ∈ α2,

send gidi the witness of atti:

{atti, wgidi , gy}.

Update Φatti in Ω, where Ω is the container containing all the Φatt in the

system.

• DO constructs ∆ = {atti, {v
yj
j , gyj}1≤j≤|Φ2

atti
|}1≤i≤|Λpolicy| using Φatti in Ω.

• DO sends c, ∆ , and Λpolicy to CSP.

2. A new user (gid) requests witnesses for the attributes he/she has. This process is privately

run by DO. It first validates the user’s eligibility of data access. If the user is eligible, the

process adds the user to an accumulator of each non-revoked attribute. DO then updates

attribute witnesses for all users in those changed accumulators. ∆ is also re-constructed

at the end.

The outputs of the process are the following:

• Attribute witnesses in the updated accumulators are sent to the users to be kept

secretly.

• Updated ∆ is sent to CSP. It can be public.

165

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

The detailed steps are as follows:

• User gid contacts DO and with attribute set UAttgid = {atti}1≤i≤|UAttgid|.

• DO first authenticates the user and verifies the attributes in UAttgid.

• If the user is authenticated, DO issues the witnesses as follows:

– For every non-revoked atti ∈ UAttgid:

∗ Call UserAttributeManager(gid, “Add”, Φatti) and have {wα, α, Φatti} re-

turned.

∗ If α2 6= {}:

· Compute the external identifier gα
4

= gy;

· For each gidi ∈ α2, send gidi the witness update of attribute atti:

{atti, wgidi , gy}.

∗ Replace the old Φatti with the new Φatti in Ω.

• DO re-constructs ∆ = {atti, {v
yj
j , gyj}1≤j≤|Φ2

atti
|}1≤i≤|Λpolicy| using Φatti in Ω.

• DO sends ∆ to the CSP to replace the previous one.

3. A new user (gid) contacts AA for an ABE’s private key. This is the private process run

by AA.

The output of the process is one of the following:

• uskabe is sent to the user and kept secretly if the user is authenticated.

• The output of AA is sent to the user otherwise.

166

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

The detailed steps are as follows:

• The user contacts AA with the required input parameters.

• AA authenticates the user:

– If the user can be authenticated, AA:

∗ Call KeyGenabe(·) and generate uskabe.

∗ Send uskabe to the user.

– Otherwise the output depends on the output of AA.

4. A user (gid) retrieves ciphertext for decryption. This is a process run by CSP and a user.

The user contacts the CSP with his/her user gid to retrieve ABE ciphertext c. The CSP

re-encrypts c to c
′

using a randomly selected key. The re-encryption key is embedded

into the data structure Ψ. The user is provided with c
′

and Ψ that are stored in C
′
. If

the user has all the required attributes that have not been revoked, the re-encryption key

can be re-constructed. Once the user gets the ABE ciphertext c, the user calls Decabe to

decrypt the data.

The output of the process is one of the followings:

• Data m if the user has all the required witnesses and a valid ABE private key.

• The output of Decabe otherwise.

The detailed steps are as follows:

• User gid contacts CSP to request ABE ciphertext c with gid.

167

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

• CSP calls ReEnc(c, Λpolicy, ∆, gid) and returns C
′

= {ce(g, g)s, Ψ} to the user.

• Let uwgid = {{atti wgid, gyj}}1≤i≤|UAttgid| denote the container having all the at-

tribute witnesses for gid.

• The user calls Dec(C
′
, uwgid). If uwgid has all the required and valid attribute

witnesses, the ABE ciphertext c is returned; otherwise a random string is returned.

• User gid calls Decabe(c, ·) to decrypt m if c is correctly returned and uskabe is able

to decrypt c according to the access policy of the ABE. Otherwise the output is the

output of Decabe.

5. DO revokes an attribute of user gid. This is the private process run by DO. The process

takes the user’s gid and the attribute att to be revoked as the inputs. It first removes the

gid from an accumulator for att, then updates the rest of users in the accumulator with

new attribute witnesses. It reconstructs ∆ and sends it to CSP.

The outputs of the process are as follows:

• Attribute witnesses in the updated accumulator are sent to the users and kept se-

cretly.

• Re-constructed ∆ is sent to CSP and can be public.

The detailed steps are as follows:

• DO extracts the attribute accumulator container Φatt of att from Ω.

• DO calls UserAttributeManager(gid, “Delete”, Φatt) and have {wα, α, Φatt} re-

turned.

168

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

• If α2 6= {}, DO

– Compute the external identifier gα
4

= gy.

– For each gidi ∈ α2, send the updated witness: {att, wgidi , gy} to user gidi.

• DO replaces the old Φatt with the new Φatt in Ω.

• DO re-constructs ∆ = {atti, {v
yj
j , gyj}1≤j≤|Φ2

atti
|}1≤i≤|Λpolicy| using Φatti in Ω.

• Finally, DO sends ∆ to the CSP to replace the previous one.

6.3.4 Security Analysis

The goal of the generic attribute revocation system is to prevent users from using their revoked

attributes to decrypt ABE ciphertexts after revocations. As the revocation capability is built

on top of an ABE scheme and leverages a dynamic accumulator (DA) scheme ([15]) to achieve

dynamic and anonymous user revocation, the fundamental security of the system first relies on

the security of the selected ABE scheme and DA. We assume that:

• The ABE scheme is at least CPA-secure.

• The DA scheme is secure against any forgeability of the witnesses and provides the

anonymity protection for elements aggregated into the accumulators.

The attribute revocation capability aims to equip an ABE scheme with two additional security

features:

169

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

An Attribute Revocation System for ABE in Cloud Storage (AR-ABE)

Cloud Service Provider (CSP)Data Owner (DO) New User Attribute Authority (AA) Users

Initialization

Initialize ABE:
 Setupabe (·)

Initialize DA:
AccSetup(·)

Encrypt data using Encabe (·).

Create the data structure Δ
for storing aggregate values

and Λpolicy for storing
needed attributes by ABE

access policy

ABE public key and
master secret:

pkabe, mkabe

User Attribute
witnesses:

(atti, wgidi , gy)

ABE ciphertext, attribute
accumulator aggregate

values, and needed
attributes for ABE policy:

c, Δ, Λpolicy ABE private key:

uskabe

Add non-revoked
attributes to

accumulators. Update
the witnesses of the

impacted accumulators:
UserAttributeManager(·)

New attribute
accumulator aggregate

values:
Δ

 Updated attribute
witnesses for users in the

accumulator:
(atti, wgidi , gy)

Construct a one-time re-
encryption key and re-

encrypt the ABE
ciphertext with the re-

encryption key
embedded:

ReEnc (·)

Decrypt to get the ABE
Ciphertext and decrypt

the ABE ciphertext:
Dec (·)

Decabe (·)

Remove the attribute
from its accumulator.

Update the witnesses of
the rest users in the

accumulator:
UserAttributeManager(·)

Adding attributes for the
user

Revoking an attribute
of a user

Requesting ABE
ciphertext

 Updated attribute
witnesses for users in

the accumulator:
(atti, wgidi , gy)

Re-construct the data
structure Δ for storing

aggregate values

Updated attribute
accumulator aggregate

values:
Δ

Generate attribute
witnesses:

UserAttributeManag
er(·)

Re-construct the data
structure Δ for storing

aggregate values

Data m if all the keys
are valid, otherwise the

output of Decabe (·)

Null

Issuing user ABE key
Requesting ABE

private key

authenticated?Output of AA
No

Generate private key:
KeyGenabe (·)

Yes

Requesting attribute
witnesses

authenticated? No

Yes

Re-encrypted
ciphertext:

C’

Retrieving Ciphertext

Figure 6.3: Interaction Diagram of Attribute Revocation System for ABE in Cloud Storage
170

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

• Any number of attributes revoked from one user or multiple users does not impact other

users using the same attribute or attributes. The users can still use their non-revoked

attributes despite of their other attributes being revoked. No ABE private key is required

to be re-generated after a revocation.

• Users can anonymously request re-encrypted ABE ciphertexts from CSPs.

With those in mind, the system should meet the following security requirements:

• Dynamic attribute revocation: Users are prevented from using their revoked attributes

to decrypt ABE ciphertexts, even the users hold valid ABE private keys. However, this

protection applies to the ciphertexts retrieved after the revocation.

• Witness unforgeability: Users should not be able to forge their attribute witnesses.

• Collusion prevention: A user cannot combine his/her attribute witnesses with other users’

to successfully construct a re-encryption key.

• Anonymity: Users remain anonymous to CSPs.

• Ciphertext indistinguishability (CPA-Secure): The re-encrypted ABE ciphertext is CPA-

secure against eavesdropping attacks.

171

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

Dynamic Attribute Revocation and Collusion Prevention

This security feature relies on the ciphertext re-encryption to control the access of ABE ci-

phertext, in particular, the inability of recovering ciphertext re-encryption keys using forged

attribute witnesses. The witnesses unforgeability of DA should prevent users from forging any

attribute witness.

We use the following scenario to informally analyze that a user is prevented from using revoked

attribute(s) to recover any re-encryption keys. The system is assumed to be concerned with

PPT adversaries.

1. Assume user gidA has a set of attributes which can be denoted by UAttgidA = {atti}1≤i≤|UAttgidA |.

They are not revoked at the beginning. gidA is given the witnesses of his/her attributes:

{{atti, wgid, gyj}}1≤i≤|UAttgidA |.

2. Suppose user gidA has attribute attj ∈ Λpolicy revoked. DO removes gidA from the accumu-

lator for the attribute attj and re-generates the witnesses for the remaining users in that

accumulator. DO also updates and sends CSP: ∆ = {atti, {v
yj
j , gyj}1≤j≤|Φatti |}1≤i≤|Λpolicy|

, which contains the accumulator’s updated aggregate value.

3. User gidA can freely ask for any number of re-encrypted ciphertexts from CSP within

polynomial time. Each time the re-encryption key is randomly generated and embedded

in Ψ. Since the attribute attj for user gidA is not a member of any accumulator in ∆

after its revocation, gidA does not have the valid witness of an accumulator for attj.

172

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

(a) Suppose user gidA still holds the old witness of attj. Based on the membership

unforgeability of [15], user gidA should not be able to forge any valid witness of any

accumulator if gidA is not aggregated to any accumulator for attj.

(b) Suppose user gidA tries to re-construct the re-encryption key using either his old

attribute witness or colluding with other users. (Assume that αi, one of the accu-

mulators for attj, has gidA removed.)

As it has been described in Dec algorithm, the following steps recover a share of the

re-encryption key:

• The external identifier gyi provided in the witness of the attribute: {attj, wgidA

= (g

gidAyi(
∏
gidx∈α2

i
(gidx+β))

gidA+β , ggidA+β), gyi} is used to locate the share in Ψ.

• Then, a share for this attribute attj can be recovered as follows:

1. e(w1
gidA

,w2
gidA

) = e(g

gidAyi(
∏
gidx∈α2

i
(gidx+β))

gidA+β , g(gidA+β)) = e(g, g)
gidAyi(

∏
gidx∈α2

i
(gidx+β))

2. e(g, g)
si−gidAyi(

∏
gidx∈α2

i
(gidx+β))·e(g, g)

gidAyi(
∏
gidx∈α2

i
(gidx+β))

= e(g, g)si .

If user gidA has the old witness, he/she does not have the accumulator’s correct

external identifier gyi as this identifier has been changed after his/her revocation.

Since yi is randomly selected from Zp and kept secretly by DO, gidA is not able to

guess the new gyi within PPT, assuming the prime number p is large enough. Even

though user gidA can collude with other users to get the new gyi , gidA cannot forge

a valid witness of an existing accumulator under the witness unforgeability of DA.

Suppose user gidA can get the user gidB to share his/her valid witness of attj to

compute #1: e(g, g)
gidB ·yi

∏
gidx∈α2

i
(gidx+β))

(Note: α2
i here does not contain gidA

173

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

as his/her attribute has been revoked). But with gidB being embedded into the

share, gidA and gidB cannot be cancelled out in #2. Furthermore, based on the

DLP assumption, A should not be able to recover the aggregate value vi by given

e(g, g)
gidByi(

∏
gidx∈α2

i
(gidx+β))

(#1) within polynomial time. Therefore, A cannot col-

lude with other users to reconstruct the re-encryption key.

Let us assume that gidA is the only one removed from αi for attj. Given gyi , gidA

can not extract yi under the DLP assumption. Therefore gidA cannot replace the

old yi with the new yi in his/her w1
gidA

.

(c) As re-encryption key is a one-time randomly selected key, the key and shares are

different each time the ABE ciphertext is requested. If gidB can provide gidA a share

of attj from his/her retrieved ciphertext, the share cannot work with the rest of shares

gidA has to recover the ciphertext re-encryption key. The previous re-encryption keys

recovered by gidA also cannot decrypt the newly retrieved ciphertext.

Based on the above analysis, the system achieves dynamic user attribute revocation and collu-

sion prevention.

Witness Unforgeability

This protection is assumed to be provided by the scheme [15] that DA is built upon.

174

6.3. THE ATTRIBUTE REVOCATION SYSTEM (AR-ABE)

Anonymity:

The anonymity protection is the same one as in the user revocation system, UR-CSP (see

Section 5.4.2.3). We omit the analysis here.

Ciphertext Indistinguishablilty (CPA-Secure):

Ciphertext sent over the various channels can be eavesdropped by an adversary. Although the

adversaries can obtain the ABE public keys, all the re-encryption keys are one-time keys that

are randomly and uniformly generated. Assume that the selected ABE scheme is CPA-secure.

Intuitively the re-encrypted ciphertext should remain CPA-secure.

The user attribute revocation control is implemented on top of an ABE scheme which is treated

as black boxes and “wrapped” by the revocation layer. ABE private keys are generated inde-

pendently from the attribute witnesses. Although an adversary may be given valid witnesses

for their attributes, if those attributes do not comply with the ABE access policy, the adversary

should not be able to decrypt an ABE ciphertext due to the security of the underlying ABE

scheme. The control layer only manages user access to the ABE ciphertext.

Based on the above analysis, we conclude that the proposed attribute revocation system, AR-

ABE, has met the security requirements.

175

6.4. ATTRIBUTE REVOCATION OVERHEAD ANALYSIS

6.4 Attribute Revocation Overhead Analysis

To the best of our knowledge, we are not aware any similar system that can generically work

with any existing ABE scheme. The analysis below is only pertaining to our system.

Adding the attribute revocation system to an ABE scheme introduces the following overheads:

1. Accumulator management

2. Attribute witness updates and management

3. One time encryption key generation and ciphertext re-encryption

Data owners are responsible for managing item 1 and 2. As was discussed in our user revocation

systems (see Section 6.3), the overheads associated with items 1 and 2 potentially have scala-

bility issues if a user’s attributes or status is changed frequently. Delegating management tasks

to a trusted entity and servers can dramatically improve the scalability. The third overhead is

at CSPs and takes place whenever a CSP fulfills a data retrieval request. This can also become

a bottleneck during a peak time of data retrieval. However, parallel processing in re-encrypting

ciphertext and constructing the data structure to carry the re-encryption key can help ease the

bottleneck.

Figure 6.4 shows the overheads incurred by different entities in the system:

176

6.5. CONCLUSIONS

Data	Owner	Management	 CSP	Storage	Requirement	 CSP	Data	Retrieval	
Management	

User	Witness	Refreshing	

1.	Accumulator	
management	
2.	A1ribute	witness	
management	
3.	AATree	management	
and	updates	

1.  Storage	for	one	copy	of	
ABE	ciphertext	

2.  Storage	for		the	AATree	
provided	by	the	data	
owner	

1.  One-Dme	re-
encrypDon	key	
generaDon	

2.  Ciphertext	Re-
encrypDon	

3.  One-Dme	re-
encrypDon	key	
embedded	to	the	
AATree	

1.	A1ribute	witness	
and	witness	updates	
provided	by	the	data	
owner	

Figure 6.4: Overheads of the Attribute Revocation System (AR-ABE)

6.5 Conclusions

In this chapter we propose an attribute revocation system (AR-ABE) for ABE schemes. Our

system is generic and can be directly applied to any ABE scheme without the need to modify

the underlying ABE scheme. The revocation is dynamic. It neither requires the ABE scheme

to re-issue user private keys, nor requires it to re-encrypt the message for any revoked attribute.

There is no limitation on the number of attributes to be revoked from a user or multiple users.

AR-ABE also protects user privacy and is thus practical for deployment in untrusted cloud

storage environments.

177

Chapter 7

An Anonymous User Revocation
Model for ABS in Cloud Storage

Contents
7.1 Related Work . 180

7.2 Our Contributions . 181

7.3 Anonymous User Revocation Model (AUR-ABS) 183

7.3.1 Trust Model . 184

7.3.2 Algorithm Definition and Construction 184

7.3.3 Correctness . 190

7.3.4 System Description . 192

7.4 Security Analysis . 196

7.5 Performance Analysis . 204

7.6 Conclusions . 205

Attribute-based signature (ABS) schemes allow a party to sign a message with fine-grained

control over a set of defined attributes. When an ABS scheme is used for access control in a

cloud storage environment, a data owner specifies an access policy defined by system attributes.

178

This access policy is also referred to as the predicate. The CSP is given the predicate and its

verification key. During an authentication process, the CSP challenges a user by giving the user

a piece of data to sign. The user uses his/her private key to generate a signature of the data

based on the given predicate. The CSP validates the signature using the verification key. The

signature can be verified if the user has the attributes complying with the predicate. Since the

user owns his/her private key, the user is authenticated if the signature is validated. On the

other hand, the CSP gains no more knowledge other than the fact that a signature is generated

by a user who has attributes satisfying the predicate.

Since attributes are not associated with any user’s identity, an ABS scheme provides anony-

mous access control over an expressive fine-grained policy. It seems to be a promising access

control method for use in untrusted cloud storage environments. However, like ABE, basic ABS

schemes have fundamental issues in regard to dynamic user revocation, especially anonymous

user revocation.

We propose a model (AUR-ABS) for ABS schemes to enable an anonymous and dynamic user

revocation feature. The AUR-ABS model is flexible and can be applied to different ABS schemes

with minimum modifications to the underlying ABS schemes. The content of this chapter has

been published in [143].

179

7.1. RELATED WORK

7.1 Related Work

Dynamic user revocation for ABS has been investigated in the literature. Escalate et al. [49]

proposed a revocable ABS scheme, assigning a randomly selected identifier to each user in

addition to their attributes. An external entity keeps a secret verification key and a list of

identifiers for the revoked users. The verification key can trace a signature to its signer to

identify the signatures generated by revoked users. However, this revocation method relies

on an external trust entity with a verification key. The verification process conflicts with the

unlinkability and anonymity properties of ABS schemes.

Cao et al. [44] proposed a user revocation scheme that also uses an external party (a mediator).

In their scheme, the AA issues two parts of attribute private keys for each user. One part is

sent to the user, and the other part is given to the mediator. Every signature consists of two

parts. One part is generated by a user, and the other part comes from the mediator. A revoked

user cannot obtain the signature portion from the mediator. Letting the mediator keep every

user’s partial private key increases the workload on key management and distribution tasks.

This approach also introduces performance and scalability overheads.

Lian et al. [87] proposed a user revocation scheme using timestamps. Each user’s private key

is tagged with a timestamp via a time attribute. The time attribute is added to the user’s

private key. The predicate also includes an attribute for the expiration time. User attribute

private keys are therefore updated periodically. Revoked users are prevented from obtaining

new private keys. Periodic key re-issuing cannot immediately revoke users. It also has a

180

7.2. OUR CONTRIBUTIONS

potential performance impact.

User revocation has also been studied in a special type of ABS scheme called an Attribute-

Based Group signature (ABGS) scheme. We can view ABGS schemes as a special type of group

signature (GS) scheme [36] that consists of members who generate signatures corresponding to

a predicate. Khader [79] constructed a revocable ABGS scheme. However, this scheme relies on

the group manager to link a signature to a signer, so the signature can be verified and revoked

if that is the case. The approach also violates the unlinkability of ABS.

Applying ABS to data protection in a cloud environment has also been studied. Ruj et al. [115]

designed a privacy preserving authentication scheme that was built in [81] and [91]. Zhao et al.

[150] proposed a data sharing protocol using ABS to anonymously identify readers and writers

who can modify and re-encrypt data. Liu et al. [89] used ABS to construct an attribute-based

proxy signature system. This allows a data owner to delegate signature generation to a cloud

proxy. Li et al. [86] leverage the computing resource of the cloud to propose a mechanism that

allows a signer to outsource intensive computation during the signing process.

7.2 Our Contributions

Most of the existing user revocation proposals for ABS take one of the follow approaches:

• Periodically updating user private keys. This approach generates a new master secret

periodically, and reissues user private keys to all non-revoked users. It is simple and

181

7.2. OUR CONTRIBUTIONS

straightforward, but potentially very expensive and not instantaneous [87].

• Using a third party to identify a revoked user or a signature generated by a revoked user.

This approach requires a signature being linked to a user [44, 79], which violates the

anonymity property of ABS schemes.

Ideally any revocation approach should retain all the ABS properties. The revocation approach

should meet the following requirements:

1. Dynamic: Any user can be instantaneously revoked. The revocation process does not

require regeneration of the master secret or user signing keys.

2. Anonymous: A verifier, regardless of whether trusted or not, should be able to anony-

mously identify whether a given signature is generated by a revoked user or not. This

verification process does not need to know user identities and have a trusted party as a

mediator in the process.

As unlinkability is one of the core properties of an ABS scheme, it makes user revocation hard

to meet the anonymous requirement. Although a number of schemes have been proposed to

achieve dynamic user revocation, none of them meets the anonymous requirement.

We propose a user revocation model for ABS schemes, referred to as the ABS-AR model. This

model makes the following contributions:

• It meets the two defined requirements: dynamic and anonymous.

182

7.3. ANONYMOUS USER REVOCATION MODEL (AUR-ABS)

• It is sufficiently flexible and requires only minor changes to an ABS scheme.

Since each ABS scheme is differently constructed, we will illustrate our AUR-ABS model on

the scheme of Li et al. [83].

7.3 Anonymous User Revocation Model (AUR-ABS)

To meet the anonymous user revocation requirements, we introduce a witness attribute that will

be included in every user’s attribute set. This attribute is also “AND”ing with the predicate

of an ABS scheme. A data owner (DO) centrally manages this attribute and issues each user

a unique witness private key (referred as witness key) for this attribute.

To issue witness keys of the introduced attribute, we split the ABS master secret into two parts.

One part of the secret is used by the ABS AA to issue user signing (private) keys. This key

issuing process remains the same as it is in the original ABS construction. The other part of

the secret is used by DO to derive witness keys. Thus, each user is given two kinds of private

keys: an ABS signing key and a witness key. Both keys are used to produce signatures. Users

are also identified by their unique global identifiers (gids). These gids are randomly selected,

but not linked to the true identities of users. They are used to tie the two types of private keys

together uniquely for each user to prevent collusions. A revoked user cannot get his up-to-date

witness private key and is not able to generate a valid signature immediately after revocation.

For simplicity, the details of user authentication to AA and DO have been omitted in our

183

7.3. ANONYMOUS USER REVOCATION MODEL (AUR-ABS)

description. The authentication and user gid validation are orthogonal to this AUR-ABS

model.

7.3.1 Trust Model

The AUR-ABS trust model consists of four entities: AA, CSP, users, and DO, as shown in

Figure 7.1. The entities and their trustworthiness are the same as they are defined in the trust

model of Section 5.4.3.1.

7.3.2 Algorithm Definition and Construction

7.3.2.1 Data Structure Definition

The data structure for accumulators

The data structures used by DA algorithms are the same as they are defined in Section 5.3.2.1.

Although we will build the AUR-ABS model into the scheme of Li et al. [83] (described

in Section 4.2.3), we will follow the commonly used notations in this thesis, which means that

some of the denotations or notations used in [83] will be changed without impacting the original

scheme.

Table 7.1 lists the commonly used notation in this chapter.

184

7.3. ANONYMOUS USER REVOCATION MODEL (AUR-ABS)

Authen'ca'on		over	SSL	

Data	Owner	
(DO)	 Users	

Users	

Witness	key	over	SSL	

Ac
cu
m
ul
at
or
	v
er
ifi
ca
'o

ns
		

AA
	se

tu
p	
ov
er
	S
SL
	

AA	
Cloud	Storage	

Ch
al
le
ng
e	
	a
nd

	p
re
di
ca
te
	

Si
gn
at
ur
e	
of
	th

e	
ch
al
le
ng
e	

Ac
ce
pt
ed

	o
r	r
ej
ec
te
d	
ba
se
d	
	

on
	th

e	
va
lid
a'

on
	

Figure 7.1: Trust Model of Anonymous User Revocation Model for ABS in Cloud Storage

185

7.3. ANONYMOUS USER REVOCATION MODEL (AUR-ABS)

Notation Description

Att All the attributes in the system. |Att| donates the total number of attributes.

d The minimum number of attributes for generating a signature

dAtt A default set of d - 1 attributes that are required to generate the signature

UAttgid An attribute set of user gid

uskgid User gid’s signing key issued by AA

mkabs A portion of the master secret used by AA to generate user signing keys

mkacc A portion of the master secret used by ABS-AR model to derive witness (private) keys

∆ A data structure for storing accumulator aggregate values

Ops The operational type - Add or Delete a gid to or from an accumulator

ωα The witness container for storing witnesses of users in the accumulator α

wgid The accumulator witness of user gid

Table 7.1: Anonymous User Revocation Model Notation

7.3.2.2 Algorithm Definition and Construction

We construct the algorithms and build the model into the scheme in [83]. The AUR-ABS

model adds IndAcc algorithm to the scheme. Changes to the algorithms of an ABS scheme

are demonstrated using the scheme in [83]. Whether those algorithms can be run privately or

publicly, and which information is kept secretly or can be public will be described in the system

construction section.

• Setup(1n): The algorithm takes the input 1n as security parameter and proceeds as

follows:

– Let Att contain all the attributes in the system and d be the minimum number of

required attributes for generating a signature.

– Let p be an n-bit prime.

186

7.3. ANONYMOUS USER REVOCATION MODEL (AUR-ABS)

– Use the security parameter 1n to generate a bilinear map e: G × G → G1.

– The following steps work in the same way as in Setup algorithm of [83]. The only

change made is to split the master secret into two parts: mkabs and mkacc.

∗ Map each attribute in Att to an element in Zp uniquely: Att = {atti}1≤i≤|Att|.

∗ Let dAtt = {atti}1≤i≤d−1 be a d - 1 default attribute set in Zp.

∗ Select a random generator: g ∈ G, and two random numbers uniformly: x1, x2

∈ Z?
p .

∗ Let mkabs = x1 and mkacc= x2.

∗ Let mk = mkabs + mkacc and set g1 = gmk.

∗ Pick a random element g2 ∈ G and compute Z = e(g1, g2).

∗ Choose two hash functions H1, H2: {0, 1}∗ → G.

– Initialize accumulator algorithms:

∗ Call AccSetup(G, g) (Algorithm 5.1) to set up DA. It returns the system pa-

rameters: k, β, Ak, Φ.

– Finally, output:

∗ ABS verification key: paramsabs = (G, G1, g, g1, g2, Z, d, H1, H2).

∗ Master secrets: mkabs and mkacc.

∗ DA’s system parameters: {k, β, Ak, Φ}.

• KeyGen(mkabs, UAttgid, gid): This algorithm inputs master secret mkabs, a user’s at-

tribute set UAttgid, and gid. It issues ABS signing key as it does in [83], except that user

gid is embedded into q(0) for preventing collusions:

187

7.3. ANONYMOUS USER REVOCATION MODEL (AUR-ABS)

– Choose a d - 1 degree polynomial and set q(0) = mkabs - gid.

– Generate a new attribute set UAtt
′

gid = UAttgid ∪ dAtt.

– For each i ∈ UAtt′gid, randomly choose ri ∈ Zp and compute: di0 = g
q(i)
2 (H1(i))ri and

di1 = gri .

– Output user’s signing key uskgid: {Di = (di0, di1)}1≤i≤|UAtt′gid|
, where |UAtt′gid| is the

number of attributes in UAtt
′

gid.

• IndAcc(mkacc, gid, Ops, Φ, β): This algorithm is added to insert ABS-AR model into

the scheme. It inputs master secret mkacc, a user’s gid, the operation type Ops, the

accumulator container Φ, and the accumulator trapdoor β. It generates the witness

private keys as follows:

– If Ops == “Add”, call AccAdd(gid, Φ) (Algorithm 5.2) to add gid to an accumulator:

{α, Φ} = Add(gid, Φ).

– If Ops == “Delete”, call AccDelete(gid, Φ) (Algorithm 5.3) to remove gid from an

accumulator: {α, Φ} = AccDelete(gid, Φ).

– Set witKeys = {}.

– If α2 6= {}, do the following:

∗ Select a random number: y
′ ← Zp.

∗ Set α4 = y
′

and update α in Φ.

∗ Compute gy
′

as the new external identifier of α.

∗ For each gidi ∈ α2:

188

7.3. ANONYMOUS USER REVOCATION MODEL (AUR-ABS)

· Randomly select ri ← Zp.

· Compute wskwgidi= {wsk
1
gidi

= g

ri(
∏
gidx∈α2 (gidx+β)+mkacc+gidi)

gidi+β

2 , wsk2
gidi

= g
(gidi+β)

ri ,

wsk3
gidi

= gy
′
}.

· Add the witness private key to witKeys: witKeys ← witKeys + {gidi,

wskgidi}

We embed gidi in the witness private key for collusion prevention.

– Return witKeys.

• Sign(m, uskgid, wskgid , Υk,Att? , UAttgid, d): This algorithm inputs message m, ABS

signing key uskgid, witness key wskgid, predicate Υk,Att? , attributes UAttgid, and the

number of attributes d required in the signature. It generates a signature consists of

two portions: the portion generated by [83] remains exactly the same as in the original

scheme, and the portion generated by AUR-ABS model is ϑ. Although both portions

are generated independently, they are linked by a user gid which has been embedded to

uskgid and wskgid.

– Select a subset with k number of attributes: Att
′
= UAttgid ∩ Att? ; (Note: Υk,Att?

specifies the attribute set Att∗ and the threshold value k).

– Select a default attribute subset dAtt′ ⊆ dAtt so that
∣∣dAtt′∣∣ = d − k.

– Randomly select γ
′
i ∈ Zp for all atti ∈ Att

′ ∪ dAtt′ .

– Randomly select s ∈ Zp.

– Compute σ0 =

[∏
i∈Att′∪dAtt′

di0

][∏
i∈Att?∪dAtt′

(H1(i))γ
′
i

]
H2(m)s, {σi = di1g

γ
′
i}i∈Att′∪dAtt′ ,

189

7.3. ANONYMOUS USER REVOCATION MODEL (AUR-ABS)

{σi = gγ
′
i}i∈Att?/Att′ and σ

′
0 = gs.

– Compute ϑ = { ϑ0 = (wsk1
gid)

s = g

sri(
∏
gidx∈α2 (gidx+β)+mkacc+gid)

gid+β

2 ,

ϑ1 = (wsk2
gid)

1
s = g

(gid+β)
sri)} .

– Finally, output the signature: σ = {σ0, {σi}i∈Att∗∪dAtt′ , σ
′
0, ϑ}.

• V erify(m, σ, paramsabs, Υk,Att? , v): The algorithm takes the inputs of message m, signa-

ture σ, ABS verification key paramsabs, predicate Υk,Att? , and the accumulator aggregate

value v. It validates the signature as follows:

– Verify the input signature σ= {σ0, {σi}i∈Att?∪dAtt′ , σ
′
0, ϑ} on message m over the

predicate Υk,Att? , (for attribute set Att? ∪ dAtt′) by checking whether the following

equation holds:

e(g,σ0)e(ϑ0,ϑ1)

[
∏
i∈Att?∪dAtt′ e(H1(i),σi)]e(H2(m),σ

′
0)e(g2,v)

?
= Z. (Note: only two components: e(ϑ0, ϑ1)

and e(g2, v), are added by ABS-AR to the equation.)

(7.3.1)

– Output “Accept” if the above equation holds; otherwise output “Reject”.

7.3.3 Correctness

The above equation (8.3.1) can be verified as follows:

e(g,σ0)e(ϑ0,ϑ1)∏
i∈ω?∪Ω

′
e(H1(i),σi)e(H2(m),σ

′
0)e(g2,v)

190

7.3. ANONYMOUS USER REVOCATION MODEL (AUR-ABS)

=

e(g,

 ∏
i∈Att′∪dAtt′

di0

 ∏
i∈Att?∪dAtt′

(H1(i))γ
′
i

H2(m)s)e((wsk1
gid)s, g

(gid+β)
sri)[∏

i∈Att?∪dAtt′
e(H1(i),σi)

]
e(H2(m),gs)e(g2, v)

=

e(g,

 ∏
i∈Att′∪dAtt′

g
q(i)
2 H1(i)ri

 ∏
i∈Att?∪dAtt′

(H1(i))γ
′
i

H2(m)s)e((wsk1
gid)s, g

(gid+β)
sri) ∏

i∈Att?∪dAtt′
e(H1(i),σi)

e(H2(m),gs)e(g2, v)

=

e(g,g
x1−gid
2

 ∏
i∈Att′∪dAtt′

(H1(i))ri+r
′
i


 ∏
i∈Att?/dAtt′

(H1(i))γ
′
i

)e(g,H2(m)s)e((wsk1
gid)s, g

(gid+β)
sri)

 ∏
i∈Att′

⋃
dAtt

′
e(H1(i),gri+r

′
i)

e(g,
 ∏
i∈Att?/Att′

(H1(i))γ
′
i

)e(H2(m),gs)e(g2, v)

=

e(g,g
x1−gid
2)e(g,

 ∏
i∈Att′∪dAtt′

(H1(i))ri+r
′
i

)e(g,

 ∏
i∈Att?/Att′

(H1(i))γ
′
i

)e(g,H2(m)s)e((wsk1
gid)s, g

(gid+β)
sri)

e(

 ∏
i∈Att′

⋃
dAtt

′
e(H1(i)ri+r

′
i ,g)

e(g,
 ∏
i∈Att?/Att′

(H1(i))γ
′
i

)e(H2(m),gs)e(g2, v)

=
e(g,g

mkabs−gid
2)e(g

sri(
∏
gidx∈α2 (gidx+β)+mkacc+gid)

gid+β
2 , g

(gid+β)
sri)

e(g2, g
(
∏
gidx∈α2 (gidx+β))

)

=
e(g,g

mkabs−gid
2)e(g2, g)

∏
gidx∈α2 (gidx+β)+mkacc+gid

e(g2, g)
(
∏
gidx∈α2 (gidx+β))

=e(g, g2)mkabs−gide(g, g2)mkacc+gid

=e(g, g2)mkabs−gid+mkacc+gid

=e(g, g2)mk

=e(g1, g2)

191

7.3. ANONYMOUS USER REVOCATION MODEL (AUR-ABS)

= Z.

7.3.4 System Description

Figure 7.2 shows the interactions between a user, DO, AA, and CSP. Some ABS schemes may

have multiple AAs. It makes no difference in regard to adopting AUR-ABS model. We can

generically refer to AA regardless. The system in a cloud storage environment works as follows:

1. System setup. This is a private process run by DO. It takes in a security parameter 1n

and initializes system parameters, ABS scheme, and DA. It then adds non-revoked users

into accumulators, issuing witness keys to users.

The outputs of the process are the following:

• The versification key paramsabs and a portion of master secret mkabs are sent to AA.

paramsabs is public. mkabs is kept secretly.

• Witness keys are sent to users and kept secretly.

• ∆, which contains aggregate values tagged with their external identifiers, is sent to

the CSP. It can be public.

The detailed steps are as follows:

• DO calls Setup(1n) to initiate the ABS scheme and DA. The process returns the

ABS verification key paramsabs, master secrets mkabs and mkacc, and DA’s system

parameters {k, β, Ak, Φ}.

192

7.3. ANONYMOUS USER REVOCATION MODEL (AUR-ABS)

• DO provides AA with paramsabs, and mkabs.

• Let U contain non-revoked gids.

• For each user gidi ∈ U , DO adds gidi to a group: RtWitKeys = IndAcc(mkacc,

gidi, “Add”, Φ, β).

• If RtWitKeys 6= {}:

– For each gidi in RtWitKeys (={gidi, wskgidi}1≤i≤|RtWitKeys|), DO sends the

witness key wskgidi to the user.

• Using Φ, DO creates ∆ = {vi, gyi}1≤i≤|Φ|, where vi is the ith accumulator aggregate

value α1
i , and gyi is its external identifier (αi ∈ Φ).

• DO sends ∆ to CSP.

2. A new user (gid) requests a witness key. This process is privately run by DO. It first

validates the user’s eligibility. If the user is eligible, the process will add the user to an

accumulator and update users of the accumulator with new witness keys. It also updates

the CSP with new aggregate values.

The outputs of the process are as follows:

• ⊥ if the user is not authenticated or verified.

• Otherwise, the updated witness keys are sent to users to be kept secretly, and the

updated ∆ is sent to CSP. ∆ can be public.

The detailed steps are as follows:

193

7.3. ANONYMOUS USER REVOCATION MODEL (AUR-ABS)

• The user gid contacts DO for his/her witness key.

• If DO can authenticate the user and validate gid, DO proceeds as follows:

– Add gid to an accumulator: RtWitKeys = IndAcc(mkacc, gid, “Add”, Φ, β).

– If RtWitKeys 6= {} , then:

∗ For each gidi in RtWitKeys, send the witness key wskgidi to the user.

∗ Create a new ∆ = {vi, gyi}1≤i≤|Φ|

∗ Send ∆ to CSP to replace the previous one.

• Otherwise DO returns ⊥ to the user.

3. A new user (gid) requests an ABS signing key. This is the private process run by AA.

The output of the process is one of the following

• The user’s signing key uskabs is sent to the user and kept secretly if user is authen-

ticated.

• The output of AA is sent to the user otherwise.

The detailed steps are as follows:

• A user contacts AA with gid and UAttgid for an ABS signing key.

• If the user is authenticated, AA calls KeyGen(mkabs, UAttgid, gid) and sends uskgid

to the user.

• Otherwise AA returns its output.

194

7.3. ANONYMOUS USER REVOCATION MODEL (AUR-ABS)

4. A user authenticates to a CSP. This is a process run by the CSP and a user. The CSP

requires the user to make a signature on a randomly generated message. The user signs

the message and sends the signature back to the CSP. The CSP can verify and detect

whether the signature is valid or signed by a revoked user.

The output of the process is one of the following:

• ”Accept” if the signature is valid and generated by a non-revoked user.

• ”Reject” otherwise.

The detailed steps are as follows:

• CSP randomly generates a message m and sends m and predicate Υk,Att? to the user.

• The user calls Sign(m, uskgid, wskwgid , Υk,Att? , UAttgid, d) to generate the signature

σm.

• The user sends σm and gy to CSP, where gy is the external identifier of gid’s witness

key.

• CSP uses gy to locate v in ∆.

• If v can be found, CSP calls Ret = V erify(m, σm, paramsabs, Υk,Att? , g
y, v).

– If Ret = “Accept”, the user is authenticated.

– Otherwise the user is rejected.

• CSP send Ret to the user.

5. DO revokes user (gid). This process is privately run by DO. It removes the user from

195

7.4. SECURITY ANALYSIS

an accumulator and updates other user new witness keys. It also updates CSPs with the

new aggregate value.

The outputs of the process are as follows:

• Updated witness keys are sent to users and kept secretly.

• New ∆ is sent to CSPs. ∆ can be public.

The detailed steps are as follows:

• DO removes gid: RtWitKeys = IndAcc(mkacc, gid, “Delete”, Φ, β).

• If RtWitKeys 6= {} , then:

– For each gidi in RtWitKeys, send witness private key wskwgidi to the user.

– Create a new ∆ = {vi, gyi}1≤i≤|Φ|

– Send ∆ to CSP to replace the previous one.

7.4 Security Analysis

The AUR-ABS model enables dynamic user revocation and anonymous signature verification

for ABS schemes. However, this model has to be built into an ABS scheme. We assume that

the ABS scheme adopting AUR-ABS model meets the security properties of ABS:

• Collusion Resistance

• Unforgeability

196

7.4. SECURITY ANALYSIS

An Anonymous User Revocation Model for ABS in Cloud Storage (AUR-ABS)

Data Owner (DO) Cloud Storage Provider (CSP) User GroupsNew User Attribute Authority (AA)

Initialization

Initialize an ABS
scheme:
Setup(·)

ABS verification key
and master secret:

paramsabs, mkabs

Initialize DA:
AccSetup(·)

User witness keys:
wskgidi

Generate
witnesses:
IndAcc(·)

Generate the signing
key:

KeyGen(·)

The output of AA

Requesting a signing
key

Create data structure Δ
for storing accumulator

aggregate values.

Accumulator
aggregate values with

external identifiers:
Δ

Adding a new user

Authenticated?
No

Requesting a witness
key

Null

Add the user. Update
the witness keys of

users in the
accumulator:

IndAcc(·)

Yes
 New witness keys of

users in the
accumulator:

wskgidi

Re-generate Δ for
storing accumulator

aggregate values.

Updated Δ

Generate a random
challenge m

The challenge and
predicate:

m, ϒk,Att*

Sign m with ϒk,Att*

Sign(·)

The signature:
σm

A user authenticating
to CSP

Verified?

“Reject”

“Accept”

No

Yes

Revoking a user

Remove the user.
Regenerate witness

keys of the rest users
in the accumulator:

IndAcc(·)

Re-generate Δ for
storing accumulator

aggregate values.

Updated Δ

 The new witness keys
of users in the
accumulator:

wskgidi

Issuing user signin key

authenticated?

ABS signing key:
uskgid

No

Yes

Authenticating a user

Verify the signature:
Verify(·)

Figure 7.2: Interaction Diagram of Anonymous User Revocation Model for ABS in Cloud Storage
197

7.4. SECURITY ANALYSIS

• Anonymity (unlinkability)

With those in mind, the security goals of the AUR-ABS model equip an ABS scheme with

three additional features:

• No ABS signing key needs to be re-generated because of a user revocation.

• A revoked user is not able to generate a verifiable signature with or without colluding

with a non-revoked user;

• Users are anonymous to CSP in the signature verification process. No other party needs

to be involved in the process.

Therefore, the security of the AUR-ABS model requires:

• Collusion Prevention: Users cannot collude with each other to produce a valid signature.

• Unforgeability: Users, including revoked users having valid ABS signing keys, should not

be able to forge any valid signatures.

• Anonymity (unlinkability): The AUR-ABS model extends anonymity to user revocation

for ABS schemes. Users are anonymous during the signature verification process, even

for a signature generated by a revoked user. No signature can be linked to a particular

user.

We assume that ABS schemes with AUR-ABS model only resist PPT adversaries.

198

7.4. SECURITY ANALYSIS

Collusion Resistance

Collusion prevention is implemented by using user identifiers (gids) to link ABS signing keys

with witness keys. We assume that AA validates users against their submitted gids prior to

issuing the keys. We also assume that the underlying ABS scheme has been built with collusion

prevention. That is, users are prevented from pooling their partial ABS signing keys together to

generate any valid ABS signature. AUR-ABS model does not change the way how the adapted

ABS scheme generates signatures. Any signature generated by an ABS scheme using an ABS

signing key is intact. It is one portion of an outputted signature of Sign algorithm. The other

potion of the signature is generated by AUR-ABS model using a witness key. If we can stop

users from combining a witness key with an ABS signing key to generate a verifiable signature,

then the whole system is protected from collusion.

It is not difficult to see that the system indeed prevents users from colluding as follows:

• Suppose that user gid1 has the ABS signing key: uskgid1 : {Di = (di0, di1)}1≤i≤|UAtt′gid1 |
,

and user gid2 has the witness key: wskgid2= {wsk1
gid2

= g
ri(

∏
gidx∈α(gidx+β)+mkacc+gid2)

gid2+β

2 , w2
gid2

= g
(gid2+β)

ri , w3
gid2

= gy
′
) .

• Suppose that user gid1 colludes with gid2 by using gid1’s ABS signing key and gid2’s

witness key to sign a message m. Then a signature is of the form: σm = {σ0, {σi}i∈ω∗∪Ω′ ,

σ
′
0, ϑ}.

• When σm is verified, the signature is calculated and comes to the following result:

199

7.4. SECURITY ANALYSIS

e(g, g2)mkabs−gid1e(g, g2)mkacc+gid2 .

Since each gid is unique, gid1 6= gid2. Therefore the two gids cannot cancel each other

out. At the end, the signature cannot be validated as e(g, g2)mk.

Based on the above analysis, we conclude that an ABS scheme within the AUR-ABS model

prevents users from colluding.

Unforgeability

In order to simplify our analysis, we use the following game to analyze unforgeability. The game

involves a challenger C and a forger F over a selected predicate Υ∗k,Att? . At the beginning, F

submits Υ∗k,Att? to be challenged.

1. Setup: C sets up the system by running Setup(1n) to generate the verification key

paramsabs, master secrets mkabs, mkacc, and DA’s system parameters. C gives paramsabs

to F, and keeps the rest information.

2. Queries: F is allowed to query polynomial times to the following:

(a) Request signing keys and witness keys for a set of gids with the restriction that the

attributes owned by a gid either do not comply with Υ∗k,Att? , or comply withΥ∗k,Att? ,

but the gid is revoked.

(b) Request a signature on a message m over predicate Υk′ ,Att′ , or Υ∗k,Att? with witness

keys of revoked users. Note: Υk′ ,Att′ 6= Υ∗k,Att? .

200

7.4. SECURITY ANALYSIS

(c) Make multiple calls on the choices of different m over different Υ
′

k′ ,Att′
as long as

Υ
′

k′ ,Att′
6= Υ∗k,Att? ; or over Υ∗k,Att? as long as the witness private key is from a revoked

user.

3. Challenge: At the end, F forges a signature σ? on m∗ for the predicate Υ∗k,Att? with the

restriction that m∗ has never been submitted. If σ? can be validated by V erify algorithm,

then F wins the game. That is F successfully breaks the unforgeability of an ABS scheme

with AUR-ABS model in PPT.

The unforgeability of AUR-ABS relies on the possibility for an F , as described above, to be

able to forge a valid signature. We use the security assumptions to analyze the possibility as

follows:

Suppose F repeatedly makes requests to obtain private keys for a selected gids with those

restrictions. There are two possible cases for C to generate private keys as follows:

Case 1: A non-revoked user does not have the attributes satisfying the predicate: Υk,Att? . As

gid does not have attribute set complying with the policy, based on the security of ABS scheme,

the signature portion generated by ABS scheme (σ0, {σi}i∈ω∗∪Ω′ , σ
′
0) should not be able to

verified, even though the user can generate a valid portion of signature by a valid witness key.

Case 2: A revoked user has the attributes satisfying the predicate Υ∗k,Att? . Since the user

is removed from his/her accumulator, his/her witness private key is invalid. Based on the

witness unforgeability of DA, F is not able to forge the witness of any accumulator that is not

201

7.4. SECURITY ANALYSIS

aggregated with the user’s gid. F can try to forge a witness key as follows:

Suppose F has a revoked user’s witness private key before the revocation:

wskwgidi= {wsk
1
gid = g

ri(
∏
gidx∈α2 (gidx+β)+mkacc+gid)

gid+β

2 , wsk2
gid = g

(gid+β)
ri , wsk3

gid = gy}

Under the DLP assumption, F is not able to extract ri(
∏

gidx∈α2(gidx + β) + mkacc + gid). F

may try to compute e(wsk1
gid, wsk

2
gid) = e(g2, g)

∏
gidx∈α2 (gidx+β)+mkacc+gid and still cannot extract∏

gidx∈α2(gidx + β) + mkacc under the DLP assumption, even he can get rid of e(g2, g)gid.

Without being able to forge a valid witness private key, the signature portion generated by

witness private key, ϑ, cannot be correctly verified.

Based on the above intuitive analysis, we conclude that an ABS scheme with AUR-ABS model

meets the unforgeability requirement.

Anonymity (unlinkability):

User privacy protection of an ABS scheme makes the signature reveal nothing about the identity

or the attributes of a signer beyond what is explicitly revealed by the attributes used in a

predicate. The AUR-ABS model preserves this kind of user privacy and further extends it to

the user revocation process.

The ABS scheme in [83] is attribute-signer private. Adding AUR-ABS model does not change

the way of the scheme in [83] for generating and validating signatures. It only adds an additional

202

7.4. SECURITY ANALYSIS

portion in a signature.

Let us assume the following as an example of signatures:

σ= {σ0, {σi}i∈Att?∪dAtt′ , σ
′
0, ϑ}

where ϑ is the portion of the signature generated by AUR-ABS model and the rest of the

signature is generated by the scheme in [83]. As described in the Sign algorithm, ϑ is considered

to be independently generated using a witness key. User gids, which do not contain any user

identifies, are embedded into portions of signatures for collusion prevention. They cannot

disclosed under the DLP assumption. No user identities is used or embedded in signatures

and witness keys. Accumulators and witnesses based on the scheme of [15] provide anonymity

protections, so does ϑ. Signature verification process and algorithms do not require any user

identity information, no matter if a user is revoked or not. Further, signatures are randomized

every time to make them different even though they are generated by the same user with the

same witness key. In this way, signatures are unlinkable. Therefore the ABS scheme within the

AUR-ABS model protects the privacy of signers and revoked signers.

Based on the above analysis, we conclude that AUR-ABS model meets the security require-

ments.

203

7.5. PERFORMANCE ANALYSIS

System	 Signature	Size	 P-Key	size	 Signing	Time	 Verifica6on	
Time	

ABS	Scheme	in	
[89]	

O(N)	 O(A)	 O(S)	 O(V)	

ABS	with	AUR-
ABS	

O(N+3)	 O(A+2)	 O(S+2)	 O(V+2)	

Figure 7.3: Performance Comparison of ABS and AUR-ABS

7.5 Performance Analysis

Integrating a dynamic accumulator into an ABS scheme incurs a small amount of overhead,

part of which comes from the witness attribute. Figure 7.3 indicates the overheads for a typical

ABS scheme adopting the revocation model. Suppose the ABS scheme in [83] has O(N) size of

signature, O(A) size of attribute private key, O(S) time of signing, andO(V) time of verification.

An ABS scheme with the AUR-ABS model has O(N + 3) size of signature, O(A + 2) size of

private key (attribute private key + witness key), O(S+ 2) time of signing, and O(V + 2) time

of verification.

The other overhead comes from the accumulator management and witness key updates. To

reduce the overhead of witness key updates, each user is assigned to one of n accumulators.

For example, users can be grouped by regions, or their roles. As a result, the average number

of updates is about n - 1 times fewer than the one for a single accumulator. Also the witness

key update can be conducted out-of-band.

204

7.6. CONCLUSIONS

7.6 Conclusions

Attribute-based signature schemes seem to be a promising mechanism for fine-grained anony-

mous access control in untrusted cloud computing environments. We have designed and con-

structed a dynamic user management and anonymous revocation model (AUR-ABS) while

integrating a dynamic accumulator into an ABS scheme. This AUR-ABS model is efficient

and scalable. It does not use a third party in the signature verification path to identify a

revoked signer. We use accumulator clusters to reduce the overheads of witness key updating

and believe that AUR-ABS model is practical for cloud storage systems.

205

Chapter 8

Concluding remarks

My research journey started from developing a survey paper [144] of security controls and

technologies in distributed storage systems. As a type of distributed storage system, cloud

storage provides many potential benefits (see Section 2.5). However, cloud storage providers

might not be trusted by users. This leads to concerns about data and user privacy protection,

which are the focus of this thesis.

While cryptography supports data confidentiality and integrity, attribute-based cryptography

provides particularly promising mechanisms for facilitating access control to protect data that

has been placed in cloud storage.

In this thesis, we have considered how to make ABE and ABS more practical for providing

distributed data and user privacy protection in an efficient and flexible manner in untrusted

cloud storage environments.

206

As the security concerns about cloud storage arise from two major aspects: the trust of service

providers and multi-tenant storage environments, we identified the required characteristics for

using attribute-based cryptography to protect data and user privacy in untrusted cloud storage

environments. We identified two major requirements:

• Flexible user and attribute management: This requires user access management to be dy-

namic and scalable, in particular to avoid user private key re-issuing in user and attribute

revocation processes. Users are highly distributed in cloud storage environments. Re-

issuing user private keys everytime when a user or an attribute is revoked has scalablility

and performance issues (see Section 2.5).

• Protecting user access privacy: This requires user access privacy to be properly protected

during authentication and data retrieval processes.

Although user and attribute revocations have been studied in the literature, these are generally

considered with respect to particular schemes. User access privacy protection has not been

previously considered. In this thesis we focused on providing general mechanisms for supporting

revocation which are independent of underlying schemes, and on user access privacy protection.

The core adopted approach is to build a revocation control layer on top of an ABE or ABS

scheme, so that the scheme can be treated as either a complete or partial black-box. (By the

latter we mean that only minimum modifications need to be made to the underlying scheme.) A

modified dynamic accumulator scheme [15] is used in our user and attribute revocation systems,

207

which provides dynamic user and attribute management in anonymous ways.

Two dynamic user and one attribute revocation systems for ABE, and a model for anonymous

user revocation for ABS have been proposed. Their security features have been analyzed against

the defined security requirements.

We have shown that attribute-based cryptography can be made more practical for deployment

in cloud storage environments with small additional costs. There are a number of potential

areas for continuing this work. A natural next step is to implement simulations of the proposed

systems and models, and assess their performance in real systems. Several other features could

also be examined in order to further enhance the usability of ABE and ABS in cloud storage.

Those include:

• Privacy and integrity protection of access policies in ABE schemes: In ABE, access policies

are attached to ciphertexts in clear text. When data is updated, the data needs to be re-

encrypted based on its access policy. This raises a concern if a user could have a malicious

intent to alter the access policy and prevent legitimate users from accessing data or enable

non-legitimate users to access data. When ciphertexts are stored in storage controlled

by an untrusted CSP, the access policy can be changed by malicious insiders to launch a

denial-of-service (DoS) attack. In addition, an access policy itself may be sensitive since

it can leak information concerning user identities or the criticality of the data.

• Composable decryption keys: In ABE schemes, all the data is encrypted by a system

public key and parameters. Decryption keys are derived from a master secret. Users who

208

comply with the access policy can reconstruct their decryption keys. However, it might

be possible that different sets of data require different sets of encryption and decryption

keys. This requires the reconstructed keys to be different. Therefore encryption and

decryption keys may need to be derived or composed from multiple pairs of public and

master keys. ABS schemes face the same situation.

• Non-repudiation using ABS schemes: In ABS schemes, a group of users share the same

master signing key, although each user’s private (signing) key is constructed uniquely

from the same master key. Although this mechanism protects user privacy for generating

a signature, it does not prevent users from sharing their private keys with anyone outside

the group. Thus the concept of non-repudiation or accountability does not exist.

• Combining attribute-based encryption and attribute-based signature schemes together:

There may be situations where a user needs to either encrypt data or make digital sig-

natures. It is desirable that the user only needs one pair of keys, instead of two pairs

of keys. However, some existing schemes, such as [51], use one pair of keys associated

with an ABE scheme to encrypt data, and the other pair of keys associated with an ABS

scheme to generate signatures.

It is our opinion that attribute-based cryptography is an extremely useful tool for protecting

data in cloud storage environments. It is hoped that the research in this thesis has helped

further this case by making its deployment more practical.

209

Bibliography

[1] 5 advantages and disadvantages of cloud storage. http://bigdata-madesimple.com/5-

advantages-and-disadvantages-of-cloud-storage/.

[2] Amazon ebs service. http://aws.amazon.com/ebs; access date: Noverber, 2015.

[3] Amazon S3. http://aws.amazon.com/s3/; access date: April, 2015.

[4] Direct-attached storage. https://en.wikipedia.org/wiki/Direct-attached storage; access

date: April, 2015.

[5] Dropbox. https://www.dropbox.com/business; access date: April, 2015.

[6] Google Drive. http://www.google.com/drive/about.html; access date: April, 2015.

[7] A design principle for hash functions. In Advances in Cryptology — CRYPTO’ 89, Lecture

Notes in Computer Science, volume 435, pages 416 – 427. Springer, 1989.

[8] Public key infrastructures (pki) overview. https://www.sslshopper.com/public-key-

infrastructure-pki-overview.html; access date: Sept, 2017, 2002.

210

BIBLIOGRAPHY

[9] Carlisle Adams and Steve Lloyd. Understanding PKI: concepts, standards, and deploy-

ment considerations. Addision-Wesley Professional, 2003.

[10] Hamdan O. Alanazi, A. A. Zaidan, B. B. Zaidan, Hamid A. Jalab, and Zaidoon Kh. Al-

Ani. New comparative study between DES, 3DES and AES within nine factors. Journal

of Computing, 2:152 – 157, 2010.

[11] James P. Anderson. Computer security technology planning study. Technical re-

port, Deputy For Command and Management Systems HQ Electronic Systems Division

(AFSC), 1972.

[12] Annie Anton and Jessica D. Young. How internet users’ privacy concerns have evolved

since 2002. Security & Privacy, IEEE, 8:21 – 27, 2010.

[13] Nuttapong Attrapadung, Javier Herranz, Fabien Laguillaumie, Benôıt Libert, Elie

de Panafieu, and Carla Ràfols. Attribute-based encryption schemes with constant-size

ciphertexts. Theoretical Computer Science, 422(9):15–38, March 2012.

[14] Nuttapong Attrapadung, Benôıt Libert, and Elie de Panafieu. Expressive key-policy

attribute-based encryption with constant-size ciphertexts. In Public Key Cryptography,

Lecture Notes in Computer Science, volume 6571, pages 90–108. Springer, 2011.

[15] Man Ho Au, Patrick P. Tsang, Willy Susilo, and Yi Mu. Dynamic universal accumulators

for DDH groups and their application to attribute-based anonymous credential systems.

In Topics in Cryptology - CT RSA, Lecture Notes in Computer Science, volume 5473,

pages 295 – 308. Springer, 2009.

211

BIBLIOGRAPHY

[16] Amos Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD thesis,

Israel Institute of Technology, Technion, Haifa, Israel, 1996.

[17] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of

symmetric encryption: Analysis of the des modes of operation. In 38th Annual Symposium

on Foundations of Computer Science. IEEE, 1997.

[18] Mihir Bellare and Philiph Rogaway. Random oracles are practical: A paradigm for

designing efficient protocols. In First ACM Conference on Computer and Communications

Security, pages 62 – 72. ACM, 1993.

[19] Josh Benaloh and Michael de Mare. One-way accumulators: A decentralized alternative

to digital signatures. In Workshop on the Theory and Application of Cryptographic Tech-

niques on Advances in Crypto - EUROCRYPT’93, Lecture Notes in Computer Science,

pages 274 – 285. Springer, 1993.

[20] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based

encryption. In Proceedings of IEEE Symposium on Security and Privacy - SP ’07, pages

321–334. IEEE, 2007.

[21] Ray Bird, Inder Gopal, Amir Herzberg, Phil Janson, Shay Kutten, Refik Molva, and

Moti Yung. Systematic design of two-party authentication protocols. In Advances in

Cryptology - CRYPTO’91, Lecture Notes in Computer Science, volume 576, pages 44 –

61. Springer, 1991.

212

BIBLIOGRAPHY

[22] Dan Boneh. The decision Diffie-Hellman problem. In the Third Algorithmic Number

Theory Symposium, Lecture Notes in Computer Science, volume 1423, pages 48 – 63.

Springer, 1998.

[23] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Advances

In Cryptology - CRYPTO 2004, Lecture Notes in Computer Science, volume 3152, pages

227 – 242. Springer, 2004.

[24] Dan Boneh and Matthew Franklin. Identity-based encryption from the weil pairing. In

Advances in Cryptology - CRYPTO 2001, Lecture Notes in Computer Science, volume

2139, pages 213 – 229. Springer, 2001.

[25] Dan Boneh and Matthew Franklin. Identity-based encryption from the weil pairing. In

SIAM Journal on Computing, volume 32, pages 586–615, 2003.

[26] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation. In the

11th ACM Conference on Computer and Communications Security, pages 132 – 145.

ACM, 2004.

[27] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient

revocation of anonymous credentials. In Advances in Cryptology - CRYPTO 2002, Lecture

Notes in Computer Science, volume 2442, pages 61 – 76. Springer, 2002.

[28] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revis-

ited. Journal of the ACM, 51(4):557 – 594, 2004.

213

BIBLIOGRAPHY

[29] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-

based encryption. In Advances in Cryptology - EUROCRYPT 2004, Lecture Notes in

Computer Science, volume 3027, pages 207 – 222. Springer, 2004.

[30] Dan Cao, Xiaofeng Wang, Tianzuo Wang, and Jinshu Su. An expressive attribute-based

signature scheme without random oracles. In the 2nd International Conference on Com-

puter Application and System Modeling, pages 560 – 564. IEEE, 2012.

[31] Dan Cao, Baokang Zhao, Xiaofeng Wang, Jinshu Su, and Yijiao Chen. Authenticat-

ing with attributes in online social networks. In the 14th International Conference on

Network-Based Information Systems (NBiS), 2011, pages 607 – 611. IEEE, 2011.

[32] Dan Cao, Baokang Zhao, Xiaofeng Wang, Jinshu Su, and Guofei Ji. Multi-authority

attribute-based signature. In the 3rd International Conference on Intelligent Networking

and Collaborative Systems, pages 668 – 672. IEEE, 2011.

[33] Mariana Carroll, Alta van der Merwe, and Paula Kotzé. Secure cloud computing: Bene-

fits, risks and controls. In Information Security South Africa (ISSA), pages 1 – 9. IEEE,

2011.

[34] Melissa Chase. Multi-authority attribute based encryption. In the 4th Conference on

Theory of Cryptography, Lecture Notes in Computer Science, volume 4392, pages 515–

534. Springer, 2007.

214

BIBLIOGRAPHY

[35] Melissa Chase and Sherman S.M. Chow. Improving privacy and security in multi-

authority attribute-based encryption. In the 16th ACM Conference on Computer and

Communications Security, number 121-130. ACM, 2009.

[36] D. Chaum and E. van Heyst. Group signatures. In Advances in Cryptology - Eurocrypt’

91, Lecture Notes in Computer Science, volume 547, pages 257 – 265. Springer, 1991.

[37] Cheng Chen, Jie Chen, Hoon Wei Lim, Zhenfeng Zhang, Dengguo Feng, San Ling, and

Huaxiong Wang. Fully secure attribute-based systems with short ciphertexts/signatures

and threshold access structures. In Topics in Cryptology – CT-RSA 2013, Lecture Notes

in Computer Science, volume 7779, pages 50 –67. Springer, 2013.

[38] Cheng Chen, Zhenfeng Zhang, and Dengguo Feng. Efficient ciphertext policy attribute-

based encryption with constant-size ciphertext and constant computation-cost. In Prov-

able Security, Lecture Notes in Computer Science, volume 6980, pages 84 – 101. Springer,

2011.

[39] Yanpei Chen, Vern Paxson, and Randy H. Katz. What’s new about cloud computing se-

curity? Technical report, EECS Department, University of California, Berkeley, January

2010.

[40] Ling Cheung and Calvin Newport. Provably secure ciphertext policy abe. In the 14th

ACM conference on Computer and Communications security, pages 456–465. ACM, 2007.

215

BIBLIOGRAPHY

[41] R. Chow, P. Golle, M. Jakobsson, R. Masuoka, J. Molina, E. Shi, and J. Staddon. Con-

trolling data in the oloud: Outsourcing computation without outsourcing control. In

ACM Cloud Computing Security Workshop (CCSW), pages 85 – 90. ACM, 2009.

[42] Jean-Sebastien Coron, Jacques Patarin, and Yannick Seurin. The random oracle model

and the ideal cipher model are equivalent. In Advances in Cryptology - CRYPTO 2008,

Lecture Notes in Computer Science, volume 5157, pages 1 – 20. Springer, 2008.

[43] Joan Daernen and Vincent Rijmen. The design of Rijndael: AES the Advanced Encryption

Standard. Springer, 2002.

[44] Baokang Zhao Jinshu Su Dan Cao, Xiaofeng Wang and Qiaolin Hu. Mediated attribute

based signature scheme supporting key revocation. In the 8th International Conference on

Information Science and Digital Content Technology, volume 2, pages 277 – 282. IEEE,

2012.

[45] Alexander W. Dent. Fundamental problems in provable security and cryptography. IACR

Cryptology ePrint Archive, 2006:278 – 292, 2006.

[46] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans-

actions on Information Theory, 22:644 – 654, 1976.

[47] Keita Emura, Atsuko Miyaji, Akito Nomura, Kazumasa Omote, and Masakazu Soshi.

A ciphertext-policy attribute-based encryption scheme with constant ciphertext length.

In Information Security Practice and Experience, Lecture Notes in Computer Science,

volume 5451, pages 13 – 23. Springer, 2009.

216

BIBLIOGRAPHY

[48] Keita Emura, Atsuko Miyaji, and Kazumasa Omote. A dynamic attribute-based group

signature scheme and its application in an anonymous survey for the collection of attribute

statistics. In International Conference on Availability, Reliability and Security, pages 487

– 492. IEEE, 2009.

[49] Alex Escala, Javier Herranz, and Paz Morillo. Revocable attribute-based signatures with

adaptive security in the standard model. In Progress in Cryptology - AFRICACRYPT

2011, Lecture Notes in Computer Science, volume 6737, pages 224 – 241. Springer, 2011.

[50] Michael Factor, Kalman Meth, Dalit Naor, Ohad Rodeh, and Julian Satran. Object stor-

age: the future building block for storage systems. In Local to Global Data Interoperability

- Challenges and Technologies, pages 119 – 123. IEEE, 2005.

[51] Martin Gagné, Shivaramakrishnan Narayan, and Reihaneh Safavi-Naini. Threshold

attribute-based signcryption. In Security and Cryptography for Networks, Lecture Notes

in Computer Science, volume 6280, pages 154 – 171. Springer, 2010.

[52] A. Ge, C. Ma, and Z. Zhang. Attribute-based signature scheme with constant size signa-

ture in the standard model. IET Information Security, 6:47 – 54, 2012.

[53] Aijun Ge, Cheng Chen, Chuangui Ma, and Zhenfeng Zhang. Short and efficient expressive

attribute-based signature in the standard model. IACR Cryptology ePrint Archive, (125),

2012.

[54] Garth A. Gibson and Rodney Van Meter. Network attached storage architecture. Com-

munications of the ACM, 43:37 – 45, 2000.

217

BIBLIOGRAPHY

[55] Joel Gibson, Darren Eveleig, Robin Rondeau, and Qing Tan. Benefits and challenges of

three cloud computing service models. In Computational Aspects of Social Networks (CA-

SoN), 2012 Fourth International Conference on Computational Aspects of Social Networks

(CASoN), 2012 Fourth International Conference on Fourth International Conference on

Computational Aspects of Social Networks (CASoN), pages 198 – 205. IEEE, 2012.

[56] David K. Gifford. Cryptographic sealing for information secrecy and authentication.

Communications of the ACM, 25:274 – 286, 1982.

[57] Oded Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness, vol-

ume 17. Springer-Verlag, 1998.

[58] Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to play mental poker

keeping secret all partial information. In the Fourteenth Annual ACM Symposium on

Theory of Computing, pages 365 – 377, 1982.

[59] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and

System Sciences, 28:270–299, 1984.

[60] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure

against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281 – 308,

1988.

[61] Charles P. Wright Gopalan Sivathanu and Erez Zadok. Ensuring data integrity in storage:

techniques and applications. In The 1th International Workshop on Storage Security and

Survivability, pages 26 – 36. ACM, 2005.

218

BIBLIOGRAPHY

[62] Vipul Goyal, Abhishek Jain, Omkant Pandey, and Amit Sahai. Bounded ciphertext policy

attribute based encryption. In Automata, Languages and Programming, Lecture Notes in

Computer Science, volume 5128, pages 579 – 591. Springer, 2008.

[63] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups.

In Advances in Cryptology – EUROCRYPT 2008, Lecture Notes in Computer Science,

volume 4865, pages 415 – 432. Springer, 2008.

[64] Jinguang Han, Willy Susilo, Yi Mu, and Jun Yan. Privacy-preserving decentralized

key-policy attribute-based encryption. IEEE Transactions on Parallel and Distributed

Systems, 23:2150 – 2162, 2012.

[65] Anthony Harrington and Christian Jensen. Cryptographic access control in a distributed

file system. In the 8th ACM symposium on Access control models and technologies, pages

158 – 165, 2003.

[66] Myagmar Hasan, Lee, and Yurcik. Toward a threat model for storage systems. In the

2005 ACM workshop on Storage security and survivability, pages 94 – 102. ACM, 2005.

[67] Brian Hayes. Cloud computing. Communications ACM, 51:9 – 11, 2008.

[68] Javier Herranz, Fabien Laguillaumie, Benôıt Libert, and Carla Ràfols. Short attribute-

based signatures for threshold predicates. In Topics in Cryptology – CT-RSA 2012,

Lecture Notes in Computer Science, volume 7178, pages 51 – 67. Springer, 2012.

219

BIBLIOGRAPHY

[69] Javier Herranz, Fabien Laguillaumie, and Carla Ràfols. Constant size ciphertexts in

threshold attribute-based encryption. In Public Key Cryptography - PKC 2010, Lecture

Notes in Computer Science, volume 6056, pages 19 – 34. Springer, 2010.

[70] Junbeom Hur and Dong Kun Noh. Attribute-based access control with efficient revocation

in data outsourcing systems. IEEE Transactions on Parallel and Distributed Systems, 22:

1214–1221, 2011.

[71] Luan Ibraimi, Qiang Tang, Pieter Hartel, and Willem Jonker. Efficient and provable

secure ciphertext-policy attribute-based encryption schemes. In Information Security

Practice and Experienc, Lecture Notes in Computer Science, volume 5451, pages 1 – 12.

Springer, 2009.

[72] Sonia Jahid, Prateek Mittal, and Nikita Borisov. Easier: Encryption-based access control

in social networks with efficient revocation. In Proceedings of the 6th ACM Symposium

on Information, Computer and Communications Security, pages 411 – 415, 2011.

[73] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In Algorithmic Number

Theory, Lecture Notes in Computer Science, volume 1838, pages 385 – 393. Springer,

2000.

[74] Antoine Joux and Kim Nguyen. Separating decision Diffie-Hellman from Diffie-Hellman

in cryptographic groups. Journal of Cryptology, 16:239 – 247, 2003.

220

BIBLIOGRAPHY

[75] Pascal Junod and Alexandre Karlov. An efficient public-key attribute-based broadcast

encryption scheme allowing arbitrary access policies. In Proceedings of the Tenth Annual

ACM Workshop on Digital Rights Management, pages 13 – 24, 2010.

[76] M. Karchmer and A. Wigderson. On span programs. In The 8th Annual Structure in

Complexity Theory Conference, pages 102 – 111. IEEE, 1993.

[77] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second Edi-

tion. Chapman and Hall/CRC, 2014.

[78] Len Seligman Ken Smith and Vipin Swarup. Everybody share: The challenge of data-

sharing systems. Computer, pages 54 – 61, 2008.

[79] Dalia Khader. Attribute based group signature with revocation. IACR Cryptology ePrint

Archive, (241), 2007.

[80] Allison Lewko, Amit Sahai, and Brent Waters. Revocation systems with very small

private keys. In 2010 IEEE Symposium on Security and Privacy, pages 273 – 285. IEEE,

2010.

[81] Allison Lewko and Brent Waters. Decentralizing attribute-based encryption. In Advances

in Cryptology – EUROCRYPT 2011, Lecture Notes in Computer Science, volume 6632,

pages 568–588. Springer, 2011.

[82] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent

Waters. Fully secure functional encryption: Attribute-based encryption and (hierarchical)

221

BIBLIOGRAPHY

inner product encryption. In Advances in Cryptology – EUROCRYPT 2010, Lecture Notes

in Computer Science, volume 6110, pages 62–91. Springer, 2010.

[83] Jin Li, Man Ho Au, Willy Susilo, Dongqing Xie, and Kui Ren. Attribute-based signa-

ture and its applications. In the 5th ACM Symposium on Information, Computer and

Communications Security, pages 60 – 69, 2010.

[84] Jin Li, Qiong Huang, Xiaofeng Chen, Sherman S. M. Chow, Duncan S. Wong, and

Dongqing Xie. Multi-authority ciphertext-policy attribute-based encryption with ac-

countablility. In ACM Symposium on Information, Computer and Communications Se-

curity - ASIACCS’11, pages 386 – 390, 2011.

[85] Jin Li and Kwangjo Kim. Attribute-based ring signatures. Cryptology ePrint Archive,

Report 2008, (394), 2008.

[86] Jingwei Li, Duncan Wong, Jin Li, Xinyi Huang, and Yang Xiang. Secure outsourced

attribute-based signatures. IEEE Transactions on Parallel and Distributed Systems, 25:

3285 – 3294, 2014.

[87] Yanling Lian, Li Xu, and Xinyi Huang. Attribute-based signatures with efficient revo-

cation. In the 5th International Conference on Intelligent Networking and Collaborative

Systems (INCoS), pages 573 – 577. IEEE, 2013.

[88] Huang Lin, Zhenfu Cao, Xiaohui Liang, and Jun Shao. Secure threshold multi author-

ity attribute based encryption without a central authority. In Progress in Cryptology -

222

BIBLIOGRAPHY

INDOCRYPT 2008, Lecture Notes in Computer Science, volume 5365, pages 426 – 436.

Springer, 2008.

[89] Ximeng Liu, Jianfeng Ma, Jinbo Xiong, Tao Zhang, and Qi Li. Personal health records

integrity verification using attribute based proxy signature in cloud computing. In Internet

and Distributed Computing Systems, Lecture Notes in Computer Science, volume 8223,

pages 238 – 251. Springer, 2013.

[90] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based signatures:

Achieving attribute-privacy and collusion-resistance. IACR Cryptology ePrint Archive,

(328), 2008.

[91] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based signatures.

In Topics in Cryptology – CT-RSA 2011, Lecture Notes in Computer Science, volume

6558, pages 376 – 392. Springer, 2011.

[92] Erika McCallister, Erika McCallister, and Karen Scarfone. Guide to protecting the confi-

dentiality of personally identifiable information (pii). NIST Special Publication 800-122,

April 2010.

[93] Kevin McCurley. The discrete logarithm problem. In Symposia in Applied Mathematics,

pages 49 –74. American Mathematical Society, 1990.

[94] Peter Mell and Timothy Grance. The NIST definition of cloud computing.

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf, October 2009; access

date: April, 2015.

223

BIBLIOGRAPHY

[95] Alfred Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reducing elliptic curve

logarithms to logarithms in a finite field. IEEE Transactions on Information Theory, 39:

1636 – 1646, 1993.

[96] Mike Mesnier, Gregory R. Ganger, and Erik Riedel. Object-based storage. IEEE Com-

munications Magazine, 41:84–90, August 2003.

[97] Gerome Miklau and Dan Suciu. Controlling access to published data using cryptography.

In the 29th International Conference on Very Large Data Bases, pages 898 – 909. ACM,

2003.

[98] H. Gilbert Miller and John Veiga. Cloud computing: Will commodity services benefit

users long term? IT Professional; IEEE Computer Society, 11(6):57 – 59, Nov - Dec

2009.

[99] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen

ciphertext attacks. In the 22nd Annual ACM Symposium on Theory of Computing, pages

427 – 437, 1990.

[100] Lan Nguyen. Accumulators from bilinear pairings and applications. In Topics in Cryp-

tology – CT-RSA 2005, Lecture Notes in Computer Science, volume 3376, pages 275 –

292. Springer, 2005.

[101] Ventzislav Nikov and Svetla Nikova. New monotone span programs from old. IACR

Cryptology ePrint Archive, (282), 2004.

224

BIBLIOGRAPHY

[102] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with

general relations from the decisional linear assumption. In Advances in Cryptology

– CRYPTO 2010, Lecture Notes in Computer Science, volume 6223, pages 191–208.

Springer, 2010.

[103] Tatsuaki Okamoto and Katsuyuki Takashima. Efficient attribute-based signatures for

non-monotone predicates in the standard model. In Public Key Cryptography – PKC

2011, Lecture Notes in Computer Science, volume 6571, pages 35 – 52. Springer, 2011.

[104] Tatsuaki Okamoto and Katsuyuki Takashima. Decentralized attribute-based signatures.

In Public-Key Cryptography – PKC 2013, Lecture Notes in Computer Science Volume,

volume 7778, pages 125 – 142. Springer, 2013.

[105] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with non-

monotonic access structures. In the 14th ACM Conference on Computer and Communi-

cations Security, pages 195 – 203. ACM, 2007.

[106] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and verify

in public: Verifiable computation from attribute-based encryption. In Theory of Cryp-

tography, Lecture Notes in Computer Science, volume 7194, pages 422 – 439. Springer,

2012.

[107] Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation of secure

reactive systems. In the 7th ACM Conference Computer and Communications Security,

pages 245–254. ACM, 2000.

225

BIBLIOGRAPHY

[108] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters. Secure attribute-based systemsibute-

based systems. In the 13th ACM Conference on Computer and Communications Security,

pages 99 – 112. ACM, 2006.

[109] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge

and chosen ciphertext attack. In Advances in Cryptology — CRYPTO ’91, Lecture Notes

in Computer Science, volume 576, pages 433 – 444. Springer, 1991.

[110] Peter Reiher. File profiling for insider threats. Technical report, Department of Computer

Science, California University, Los Angelas, Febuary 2002.

[111] K. Ren, C. Wang, and Q. Wang. Security challenges for the public cloud. In IEEE

Internet Computing, volume 16, pages 69 – 73. 2012.

[112] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and

public-key cryptosystems. Communications of the ACM, pages 120 – 126, 1978.

[113] Ronald Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Advances in

Cryptology — ASIACRYPT 2001, Lecture Notes in Computer Science, volume 2248,

pages 554–567. Springer, 2001.

[114] Phillip Rogaway. On the role of definitions in and beyond cryptography on the role of def-

initions in and beyond cryptography on the role definitions in and beyond cryptography.

In Advances in Computer Science - ASIAN 2004; Lecture Notes in Computer Science,

volume 3321, pages 13–32, 2004.

226

BIBLIOGRAPHY

[115] Sushmita Ruj, Milos Stojmenovic, and Amiya Nayak. Privacy preserving access control

with authentication for securing data in clouds. In the 12th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing, pages 556 – 563, 2012.

[116] A. Sahai and B.Waters. Fuzzy identity based encryption. In Advances in Cryptology –

EUROCRYPT 2005, Lecture Notes in Computer Science, volume 3494, pages 457 – 473.

Springer, 2005.

[117] Amit Sahai, Hakan Seyalioglu, and Brent Waters. Dynamic credentials and ciphertext

delegation for attribute-based encryption. In Advances in Cryptology – CRYPTO 2012,

Lecture Notes in Computer Science, volume 7414, pages 199 – 217. Springer, 2012.

[118] Pierangela Samarati and Sabrina De Capitani di Vimercati. Access control: Policies,

models, and mechanisms. In Foundations of Security Analysis and Design, Lecture Notes

in Computer Science, volume 2171, pages 137–196. Springer, 2001.

[119] R. Sandberg, D. Golgberg, S. Kleiman, D. Walsh, and B. Lyon. Design and implementa-

tion or the sun network filesystem. In USENIX Summer Technical Conference, number 12,

1985.

[120] Siamak F. Shahandashti and Reihaneh Safavi-Naini. Threshold attribute-based signatures

and their application to anonymous credential systems. In Progress in Cryptology –

AFRICACRYPT 2009, Lecture Notes in Computer Science, volume 5580, pages 198 –

216. Springer, 2009.

[121] Adi Shamir. How to share a secret. Communications of the ACM, 22:612 – 613, 1979.

227

BIBLIOGRAPHY

[122] Claude Shannon. Communication theory of secrecy systems. Bell Systems Technical

Journal, 28:656 – 715, 1949.

[123] Karsten Sohr, Michael Drouineaud, Gail-Joon Ahn, and Martin Gogolla. Analyzing and

managing role-based access control policies. IEEE Transactions on Knowledge and Data

Engineering, 20:924 – 936, 2008.

[124] William Stallings. Cryptography and Network Security. Prentice Hall, 2011.

[125] Greenan Storer and Ethan L. Miller. Longterm threats to secure archives. In Storage

Security And Survivability, pages 9 – 16. ACM, 2006.

[126] Jinshu Su, Dan Cao, Baokang Zhao, Xiaofeng Wang, and Ilsun You. ePASS: An expressive

attribute-based signature scheme with privacy and an unforgeability guarantee for the

internet of things. Future Generation Computer Systems, 33:11 – 18, 2014.

[127] Yevgeniy Vahlis Tal Malkin, Isamu Teranishi and Moti Yung. Signatures resilient to

continual leakage on memory and computation. In Theory of Cryptography, Lecture Notes

in Computer Science, volume 6597, pages 89 – 106. Springer, 2011.

[128] John Talbot and Dominic Welsh. Complexity and cryptography an introduction. Cam-

bridge, 2006.

[129] E. Verheul. Self-blindable credential certificates from the weil pairing. In Advances in

Cryptology — ASIACRYPT 2001, Lecture Notes in Computer Science, volume 2248,

pages 533 – 551. Springer, 2001.

228

BIBLIOGRAPHY

[130] Amit Sahai Vipul Goyal, Omkant Pandey and Brent Waters. Attribute-based encryp-

tion for fine-grained access control of encrypted data. In the 13th ACM Conference on

Computer and Communications Security, pages 89 – 98. ACM, 2006.

[131] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Ensuring data storage security in

cloud computing. In the 17th International Workshop on Quality of Service, pages 1 – 9.

IEEE, 2009.

[132] Guojun Wang, Qin Liu, Jie Wu, and Minyi Guo. Hierarchical attribute-based encryption

and scalable user revocation for sharing data in cloud servers. Computers & Security, 30:

320 – 331, 2011.

[133] Pengpian Wang, Dengguo Feng, and Liwu Zhang. Towards attribute revocation in key-

policy attribute based encryption. In Cryptology and Network Security, Lecture Notes in

Computer Science, volume 7092, pages 272 – 291. Springer, 2011.

[134] Wenqiang Wang and Shaozhen Chen. Attribute-based ring signature scheme with

constant-size signature. Information Security, Institution of Engineering and Technol-

ogy, 4:104 – 110, 2010.

[135] Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and

provably secure realization. In Public Key Cryptography - PKC 2011, Lecture Notes in

Computer Science, volume 6571, pages 53 – 70. Springer, 2011.

229

BIBLIOGRAPHY

[136] Hoeteck Wee. Efficient chosen-ciphertext security via extractable hash proofs. In Advances

in Cryptology – CRYPTO 2010, Lecture Notes in Computer Science, volume 6223, pages

314–332. Springer, 2010.

[137] Aaron Weiss. Computing in the clouds. NetWorker, 11:16 – 25, 2007.

[138] Wang Wenqiang and Chen Shaozhen. An efficient attribute-based ring signature scheme.

In 2009 International Forum on Computer Science-Technology and Applications, pages

147 – 150. IEEE, 2009.

[139] Michael E. Whitman and Herbert J. Mattord. Principles of Information Security. Cen-

gage Learning, 2012.

[140] J. Li X. Xie, H. Ma and X. F. Chen. New ciphertext-policy attribute-based access control

with efficient revocation. In Information and Communication Technology; Lec- ture Notes

in Computer Science, volume 7804, pages 373 – 382. Springer, 2013.

[141] Zhiqian Xu and Keith M. Martin. Dynamic user revocation and key refreshing for

attribute-based encryption in cloud storage. In the 11th IEEE International Confer-

ence on Trust, Security and Privacy in Computing and Communications, pages 844–849,

2012.

[142] Zhiqian Xu and Keith M. Martin. A practical deployment framework for use of attribute-

based encryption in data protection. In the 15th IEEE International Conference on High

Performance Computing and Communications, pages 1593 – 1598, 2013.

230

BIBLIOGRAPHY

[143] Zhiqian Xu and Keith M. Martin. Anonymous user revocation for using attribute-based

signature in cloud computing. In the 6th IEEE International Conference on Cloud Com-

puting Technology and Science, pages 358 – 365, 2014.

[144] Zhiqian Xu, Keith M. Martin, and Clifford Kotnik. A survey of security services and

techniques in distributed storage systems. In 2011 International Conference on Security

and Management (SAM ’11), pages 3 – 9. Wold Congress in Computer Science, 2011.

[145] Kan Yang, Xiaohua Jia, and Kui Ren. Attribute-based fine-grained access control with

efficient revocation in cloud storage systems. In the 8th ACM SIGSAC Symposium on

Information, Computer and Communications Security, pages 523 – 528, 2013.

[146] Shucheng Yu, Kui Ren, and Wenjing Lou. Attribute-based content distribution with

hidden policy. In the 4th IEEE Workshop on Secure Network Protocols, pages 39 – 44,

2008.

[147] Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou. Achieving secure, scalable, and

fine-grained data access control in cloud computing. In the 29th Conference on Computer

Communications, pages 534 – 542. IEEE, 2010.

[148] Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou. Attribute based data sharing

with attribute revocation. In the 5th ACM Symposium on Information, Computer and

Communications Security, pages 261–270, 2010.

231

BIBLIOGRAPHY

[149] Wenying Zeng, Yuelong Zhao, Kairi Ou, and Wei Song. Research on cloud storage archi-

tecture and key technologies. In the 2nd International Conference on Interaction Sciences:

Information Technology, Culture and Human, pages 1044 – 1048. ACM, 2009.

[150] Fangming Zhao, Takashi Nishide, and Kouichi Sakurai. Realizing fine-grained and flexible

access control to outsourced data with attribute-based cryptosystems. In Information

Security Practice and Experience, Lecture Notes in Computer Science, volume 6672, pages

83 – 97. Springer, 2011.

232

