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Abstract

This thesis aims to study the superconducting properties of the iron-based supercon-
ductor FeSe by closely combining theoretical methods with data obtained from angle-
resolved photoemission spectroscopy (ARPES).

In order to understand the unconventional superconducting state below 7, = 8 K,
we first study the electronic structure of the normal state. Conventional ab-intio meth-
ods can only provide qualitative information on the electronic structure of the iron-
based superconductors. We overcome this limitation by optimising the hopping pa-
rameters of a tight binding model directly to ARPES data of the tetragonal phase of
FeSe at 100 K. This quantitatively accurate model of FeSe is then used to predict a
large temperature dependence of the chemical potential within this system, which we
confirm via ARPES measurements.

We then modify this tight binding model to account for the C4 symmetry breaking
effect of the nematic phase of FeSe, which occurs below 73 = 90 K. By performing
a detailed study of ARPES data measuring the nematic state, we determine an order
parameter which can quantitatively account for the magnitude and symmetry of the
band shifts observed as the material is cooled below T;. We also find that whilst the-
oretical models of FeSe suggest a Fermi surface that consists of one hole pocket and
two electron pockets, only one of these electron pockets is detected below 7y within
ARPES measurements of detwinned crystals. A similar phenomenon is also observed
in NaFeAs. We then find additional evidence supporting this interpretation of FeSe by
modelling Quasiparticle Interference experiments and comparing with experimental
data.

We end by performing ARPES measurements on the superconducting gap of FeSe.
We find a highly anisotropic gap structure which is qualitatively consistent with a pair-
ing mechanism involving spin fluctuations. To support this interpretation, we model
the momentum dependence of the superconducting gap using the ARPES-based tight
binding model derived in the previous chapters. By using a model that only includes
one hole pocket and one electron pocket, we obtain excellent agreement with the ex-
perimental results.

This thesis consists of a complete study of the electronic structure of bulk FeSe
and provides detailed information and insight into the tetragonal, nematic and super-

conducting state of FeSe.
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1 Introduction

Superconductivity, the phenomenon of a zero resistance phase of matter, has the poten-
tial to radically transform our capacity to generate, transport and use electrical power.
Below a critical temperature, 7, a superconducting material will conduct electricity
without energy dissipation and therefore, in certain materials, can produce large mag-
netic fields without additionally generating heat.

Applications for these materials are numerous, ranging from high speed levitating
trains [1] to the development of particle accelerators [2]. Some of the most notable
achievements include the creation of Nuclear Magnetic Resonance (NMR), for chemi-
cal research and drug discovery [3], Magnetic Resonance Imaging (MRI) in healthcare
[4] and the development of extremely sensitive magnetometry for the study of fun-
damental condensed matter physics [5]. On top of this non-extensive list of current
applications, superconducting materials will be essential for the future development of

nuclear fusion reactors [6], quantum computers [7] and loss free energy storage [8].

There is, however, one major challenge greatly limiting the use of superconducting
materials. The highly desirable properties are generally only exhibited at very low
temperatures, with most commercial superconducting materials having a 7. between
10 and 40 K [9, 10]. The requirement of such a low temperature greatly limits the
areas in which these materials can be applied, as well as making the devices costly
to keep cool. One of the main goals of condensed matter physics is to develop a
material which can exhibit superconductivity at or above room temperature. Whilst
this has not yet been achieved, there is currently no theoretical upper limit on the
maximum temperature at which superconductivity can be exhibited [11] and thus the
search continues.

In this thesis, I will continue the study of superconductivity by taking a close look
at the family of materials known as the iron-based superconductors. Discovered in
2008, this group of iron-pnictide or iron-chalcogenide materials exhibit a wide range

of superconducting transition temperatures, between 0-100 K [12], and appear to be
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Chapter 1. Introduction

governed by a form of superconductivity that differs from most conventional supercon-
ducting materials [13]. I will focus on one of the simplest iron-based superconductors,
FeSe. By studying the experimental electronic structure of this material in detail, I
will be able to develop a quantitatively accurate theoretical description of this system.
Then, by combining both theoretical calculations and experimental measurements on
the electronic structure and superconducting gap of FeSe, I will present new insight
into the nature of superconductivity within this material. This could eventually lead to

a route for the development of stable superconductivity at higher temperatures.

1.1 Superconductivity

Superconductivity is centred around the concept of the Cooper pair. In the presence
of an attractive interaction, two electrons close to the Fermi level, with opposite mo-
mentum and spin, can form an energetically favourable bound state [14]. The idea of a
bound state arising from pairs of fermions was originally discussed by Leon Cooper in
1956 [14], and expanded on one year later by the nobel prize winning work of Bardeen,
Cooper and Schrieffer (BCS) [15]. This work laid the foundation for the microscopic
theory of superconductivity, providing a wave of clarity to a 40 year long mystery.

There are three characteristic features of superconductivity, which arise as a di-
rect consequence of the Cooper pair; zero resistance, perfect diamagnetism and an
energy gap in the density of states. The phenomenon of zero resistance was the first of
these properties to be discovered, when Heike Kammerlingh Onnes cooled elemental
mercury below 7. =4.15 K in 1911 [16]. Onnes observed a smooth decrease of the re-
sistivity of mercury with decreasing temperature, followed by a sudden disappearance
of the resistance below 7;, as shown schematically in Fig 1.1(a).

The second universal feature of superconductivity is perfect diamagnetism. In
1933, Meissner and Ochsenfeld observed that cooling a superconductor below 7. would
expel a magnetic field (B) from within the material [17], as shown in Fig. 1.1(b). This
experimental result was made 20 years prior to the conceptualisation of the Cooper
pair, yet was instrumental in the development of the theory. It solidified superconduc-
tivity as a true thermodynamical phase of matter, rather than a low temperature limit of
a simple metal with perfect conductance. In the latter scenario, the surface of a mate-
rial would be expected to produce Eddy currents, This would shield the bulk from any
new external magnetic field, however, any intrinsic magnetisation already present in

the sample would be expected to remain trapped inside. The observation of the expul-

11



Chapter 1. Introduction

Figure 1.1: Macroscopic consequences of superconductivity. a) Cartoon of the resistivity (p)
as a function of temperature indicating the transition to a zero resistance state at 7.
The thin dashed line describes a non-superconducting material. b) Cartoon of the
Meissner effect, showing the expulsion of a magnetic field below 7. c) Cartoon of
the magnetic susceptibility, x, as a function of temperature. At 7, the value will
change sharply to y = —1.

sion of the magnetic field, known as the Meissner effect, proved that the entire material
had exhibited a phase transition, specifically to a diamagnetic state with B =0 [11].
Today, this is characterised by measuring a sharp change in the magnetic susceptibility
at 7. to y = —1, as shown in Fig. 1.1(c). This dimensionless quantity, y = %, defines
the ratio between the magnetisation of a material M, and an external magnetic field H,
with B = pio(M +H)!. For a perfect diamagnet, the bulk magnetisation of a sample is
exactly opposite to the applied magnetic field.

This result led the brothers, Fritz and Heinz London, to propose the phenomenolog-
ical London equation, relating a superconducting current, Jg, to an external magnetic
field [18],

Jo= —CA. (1.1)

m
Here, n; is the density of superconducting electrons, e and m are the electron charge and
mass, and A is the electromagnetic vector potential. London showed that if this equa-
tion was correct, then the magnetic field inside the superconducting material would
fulfil the equation

V’B =

1
2B (1.2)

This can be solved to give B(¥) = By(¥)e %, such that the magnetic field will decay

rapidly on entering a superconducting material, as observed by Meissner and Oschen-

1110 is a constant describing the permeability of the vacuum.
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Chapter 1. Introduction

Figure 1.2: Consequences of an energy gap in experimental measurements. a) Cartoon of the
density of states as a function of energy in the superconducting state as measured
in a typical STS experiment. b) Cartoon of the electronic structure in the super-
conducting state showing the backfolding of the bands around Er, note ARPES
can only measure the occupied (lower) branch. c) Cartoon of the specific heat as a
function of temperature, indicating a jump at 7.

feld. The London equation also suggests a material specific penetration depth, A,
which could be measured experimentally [18].

Importantly, London pointed out that Eq. (1.1) is only true under the specific gauge
V- A =0, which assumes that the wavefunction is only weakly affected by an external
magnetic field [19]. Bardeen suggested that this gauge would imply the existence of
an energy gap within the superconducting state [20]. Indeed, as Cooper pairs are a
bound state, they do exhibit an energy gap (A) equivalent to the binding energy of the
quasiparticle. As a result, microscopic Cooper pairs exhibit the macroscopic Meissner
effect.

The presence of an energy gap also explains the sudden disappearance of resistivity
at the onset of 7;.. A finite energy is now required to produce excitations within the
sample. As a consequence of this, low energy scattering pathways required for finite
resistance are no longer available, and the material will exhibit a zero resistance state.

Generally, A can be measured using a variety of experimental methods, such as
scanning tunnelling spectroscopy (STS), which probes the density of states around the
Fermi level as shown in Fig. 1.2(a), and in photoemission via angle-resolved pho-
toemission spectroscopy (ARPES) as shown in Fig. 1.2(b). Consequently, as the gap
closing corresponds to a second order phase transition [15], the specific heat will also
be expected to exhibit a jump at 7¢, as shown in Fig. 1.2(c). This can also be used to
characterise the superconducting transition.

The features discussed here are universal to all superconducting materials. They
allow for a robust identification of a material in a superconducting state and provide

a large number of macroscopic phenomena, which can be exploited for technological

13



Chapter 1. Introduction

applications. These measurable properties also provide a wide range of opportunities
to study the specific details of the superconducting mechanism. This is crucial for
the development of room temperature superconductivity, and today is the subject of
intense research. In the next section, I will discuss the current understanding of the

mechanisms with which Cooper pairs may form.

1.2 Pairing mechanisms

In the language of second quantisation?, the Hamiltonian for a superconducting state

can be defined as

A=A+ AP, (1.3)

HeP = Zr(k’k/)cltTc—kicli’ic*k/T' (1.4)
kK’

Here, A describes the normal state Hamiltonian and AP describes the pair interac-
tion, which gives rise to the formation of a Cooper pair. The operators Clio and cko
describe the creation and annihilation of a state k with spin o and I'(k,k’) describes
the effective pairing interaction between two fermions with momentum k and k’. The
dominant question surrounding superconductivity is: What is the form of the attractive
interaction, T'(K,K'), that can facilitate the formation of Cooper pairs? Typically, the
answer to this question can be broken down into two categories; conventional super-
conductivity, governed by the electron-phonon interaction, and unconventional super-

conductivity, where the origin remains uncertain.

1.2.1  Conventional superconductivity

In the same paper that presented the consequences of Cooper pairs, Bardeen, Cooper
and Schrieffer also proposed a theory for superconductivity mediated by phonons [15].
This idea was strongly influenced by the experimental observation of an isotope effect
for elemental mercury, where T, was observed to scale with the inverse of the square

root of the isotopic mass, M,

(1.5)

=l

IDiscussed in section 2.1.
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Chapter 1. Introduction

As the frequency of a phonon @ depends on the mass of the system, @ o< \/% where
k is a spring constant, it followed that a superconducting mechanism dependent on
phonons would also exhibit a similar mass scaling [21, 22]. Superconductivity would
then be limited by the Debye frequency, @p, which defines the maximum energy of a
phonon mode, and for simplicity is approximated to be momentum independent on the

energy scale of & ~ hwp [14]. This allows for the pairing vertex to be simplified to

Vpl’n ‘8]{‘ < th

I'(k,k') = (1.6)

0 otherwise.
Here, V), is the electron-phonon coupling constant. This form makes (1.4) solvable,
and analytical equations relating to properties of phonon-mediated superconductivity
can be obtained. For example, at 7 = 0, the superconducting energy gap, A, is expected

to obey the universal relation [15],

2A
kpT.

=3.53, (1.7)

regardless of the material composition. Here, kp is the Boltzmann constant. In 1957
this result agreed extremely well for almost all known superconducting materials>.
However, one of the most important equations derived from the BCS theory of

superconductivity is

1

kgT. ~ hope ", (1.8)
This equation describes a superconducting transition temperature which is proportional
to the magnitude of the Debye frequency, the density of states at the Fermi level, N(0),
and the electron-phonon interaction. The importance of this equation can not be under-
stated, it provides a mathematical relationship between the superconducting transition
temperature and external parameters as well as explain why conventional supercon-
ducting materials have a highly three dimensional cubic structure and a large density
of states. It also suggests that lighter elements will have a larger 7, due to the inverse
proportionality of wp and the mass of the ion [24]. Indeed, the intuition from this
equation has culminated in the recent observation of superconductivity at 7, = 203 K
in H, S, under pressures exceeding 200 GPa [25], and 7. = 260 K in LaH{, at 170 GPa
[26, 27].

3Whilst Eq. (1.7) is only strictly true in the weak coupling limit, extensions to a strong coupling
regime (i.e with large V,,;,) have been derived which modifies the ratio to a universal curve [23].
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Chapter 1. Introduction

The theoretical insight from conventional superconductivity is nothing short of re-
markable and, thanks to modern technological improvements, suggests that supercon-
ductivity above 273 K may be reached within the coming years. However, the forma-
tion of light metallic hydrogen derivatives has so far only been possible under extreme
pressure [28] and hence the applicability of room temperature superconductivity under
a conventional phonon mediated mechanism remains limited. Luckily, there is another
class of superconducting materials, which may be able to provide an alternative route

to the room temperature superconductor.

1.2.2  Unconventional superconductivity

In 1979, superconductivity was discovered in the heavy fermion material CeCu;Si;
with a 7. of 0.5 K [29]. Whilst the temperature at which superconductivity occurred
is relatively low, superconductivity had never before been observed in a strongly cor-
related material, nor in a material with a close lying magnetic instability. In fact these
features were assumed to be detrimental to the phonon-mediated mechanism [15]. This
was the first hint that other forms of superconductivity, beyond the phonon mediated
mechanism, may be possible [30].

Interest in this field exploded with the discovery of superconductivity in copper
oxide ceramic materials in 1986 [31]. These new materials, referred to generally as
the cuprate superconductors, were formed of two-dimensional layered copper oxide
sheets, and without doping were antiferromagnetic Mott insulators [32]. This is very
distinct from the trends of phonon-based superconductors which were generally three-
dimensional, non magnetic, metals. Excitingly, these materials exhibited 7; nearly
an order of magnitude larger than conventional superconductors. Before this discov-
ery, Nb3Ge held the record for largest superconducting transition temperature with
T, = 23.2 K [33], yet the first discovered cuprate BaxLas_xCu505(3,y), measured a T,
of 30 K [31], which several months later was increased to 40.2 K under hydrostatic
pressure [34]. Within a year (Y_,Ba,),CuO4_, was reported with 7. = 93 K [35]
and, in 1993, a Hg-Ba-Ca-Cu-O system boasted a 7. of 133 K at ambient pressure
[36], which increased to 164 K under pressures of 30 GPa [37].

The cuprate materials appear to be in violation of many of the specific predictions
made from phonon-mediated superconductivity. The isotope effect was observed to ei-
ther negligibly alter 7. [38—40] or exhibit a shift largely dependent on the exact system
and doping parameters [41]. Importantly, the theoretical gap to T ratio, suggested in

Eq. (1.7), was much smaller than experimentally measured. (Y;_,Ba,),CuO4_,, for
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Chapter 1. Introduction

Figure 1.3: Comparison of the momentum dependence of the superconducting gap symmetry
for a single band cuprate system. The Fermi surface in 2D is circular, described by
the white circle. a) Momentum dependence of the superconducting gap describing
an s-wave phonon-mediated mechanism of superconductivity. b) Momentum de-
pendence of the superconducting gap describing a d-wave pairing symmetry. The
yellow(+) and blue (-) regions indicate the phase of the superconducting order pa-
rameter.

example, exhibited % ~ 8 [42], over twice as large as suggested for phonon medi-
ated superconductors. Not only that, but the superconducting gap of the cuprates was

discovered to be a momentum dependent quantity [43, 44], following the d-wave form,

A(ky,ky) = Ag[cos(ky) — cos(ky)]. (1.9)

A cartoon of this is shown in Fig. 1.3. This form of pairing is very hard to reconcile
with the isotropic, s-wave, gap suggested by phonon-mediated superconductivity [15].

The phase diagram of the cuprates, shown schematically in Fig. 1.4, also pro-
vides further evidence suggesting that these materials do not exhibit superconductivity
purely from a phonon-mediated mechanism. Undoped cuprate materials are antiferro-
magnetic Mott insulators, which do not exhibit superconductivity at any temperature.
However, upon doping with hole or electron carriers, this phase is quickly suppressed
and a metallic system, which exhibits superconductivity, emerges. This produces a
dome like feature with a maximum 7; at a critical doping value [45]. This is distinct
from conventional phonon-based superconductors, which do not exhibit a large change
in T, from the addition or removal of carriers.

There is also experimental evidence for many other close lying competing phases in
this region of phase space. A pseudogap state is observed below a critical doping value

[46]. This region is characterised by a momentum dependent loss of coherent spec-
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Figure 1.4: Cartoon phase diagram of the cuprate materials as a function of hole doping. Figure
taken from Ref. [45].

tral weight, however, the microscopic origin of this phase is not currently understood
[47]. On top of this, the observation of a charge density wave state [48], and a po-
tential nematic, Cy rotational symmetry breaking, state [49] have also been uncovered
in close proximity to superconductivity, suggesting that many competing phases may
influence the superconducting state. The observation of a superconducting dome, d-
wave momentum dependence of the superconducting gap, and close lying magnetism

all suggest that an alternative mechanism of superconductivity is at work.

1.2.3  Spin fluctuation theory

Many theories have been proposed to describe the exotic complexity of the cuprate
phase diagram and capture the large values of 7;.. These include using Van-Hove sin-
gularities to enhance the density of states at the Fermi level [50], the concept of a
resonating valence bond [51] and the concept of electron-exciton coupling [11].

A leading theory for the rich phase diagram of the cuprate materials as a function
of doping is based on the concept of fluctuating spins [30, 52]. Superconductivity
only occurs in the cuprates once long range Q = (7, 7) antiferromagnetic ordering has
been suppressed. At doping values just beyond this critical point, although the spins
of the fermions will not be static, they will have a tendency to fluctuate strongly in the

direction of the magnetic ordering vector [53]. This has been proposed as a potential
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Chapter 1. Introduction

mechanism for the creation of Cooper pairs [30].

Strong spin fluctuations would not be specific to superconductivity, but would more
generally play a role in other features of the cuprate phase diagram. Phenomenologi-
cally, the spin susceptibility, which defines the tendency of a spin to fluctuate close to

a magnetic instability, can be written as [54]

XQ
e Y
This equation describes a spin susceptibility function that is peaked at a momentum
of ¢ = Q which at @ = 0 exhibits a maximum susceptibility, yq. The quantities ;s
and E2(T) describe a frequency and length cutoff for the corresponding spin fluctua-
tions. This phenomenological form successfully reproduces key features of the phase
diagram of the cuprates. This includes the emergence of superconductivity and sup-
pression of antiferromagnetism on doping [55], the inequivalence of the phase diagram
for hole and electron doped systems [56, 57] and provides an explanation for 7 -linear
resistivity observed in these materials up to temperatures as high as 700 K [56].
The equation for the pairing interaction via a spin fluctuation mediated mechanism
can then be derived on the assumption that 2_5; is a small quantity [58]*. Under this

assumption, the pairing interaction takes the form

1
'k, k) :%szs(k—k’)—Eszc(k—k’)-l—U (1.11)

Here, U defines the strength of the Coulomb repulsion and the spin susceptibility
x¢/5(q) is defined as

XC/S(q) _ % (1.12)

This spin susceptibility, dressed by the Coulombic interaction, describes the suscepti-
bility of the spins in the charge (C,+) or spin (S,-) channel. The pairing also takes place
at @ = 0. A derivation of this equation is presented in Appendix B, and discussed
in Chapter 6. For a cuprate model, this pairing vertex successfully predicts a d,2_
order parameter for the superconducting gap [59] and correctly describes a supercon-
ducting dome as a function of doping [60]. However, these results have remained
primarily numerical, and a concrete set of equations similar to those defined for the

conventional superconductors has proved much harder to obtain. This is due to the

4where Ef is the Fermi energy
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Chapter 1. Introduction

Figure 1.5: Properties of the iron-based superconductors. a) Crystal structure of BaFe;As;.
Blue atoms are Ba, red atoms are Fe and yellow atoms are As. Figure taken from
ref. [68]. b) Schematic phase diagram for electron doped BaFe,As,. Indicating the
antiferromagnetic state (blue), the C4 symmetry breaking nematic transition (red)
and the superconducting state (yellow). The C; symmetric, paramagnetic region is
also shown in white. Figure taken from Ref. [69]. ¢) Typical electronic structure of
the iron-based superconductors, showing the electron pockets in blue and the hole
pocket in red.

momentum dependent nature of the pairing vertex which strongly depends on the elec-
tronic states at the Fermi level. The spin fluctuation scenario also does not currently
offer a description for the pseudogap state, which appears to be intrinsically related to
superconductivity [46]. Whilst spin fluctuation theory successfully captures key ex-
perimental observables of the cuprate superconductors, more evidence is required to

confirm if this mechanism is truly mediating superconductivity in the cuprate systems.

1.3 Iron-based superconductors

In 2008, a new family of superconductors were discovered, again with anomalously
high 7. compared to most conventional phonon-based superconductors. Whilst these
iron-based superconductors have so far not broken the 164 K record of superconductiv-
ity in the cuprates, they still show large values of 7. compared to other phonon-based
superconductors. For example, La(O;_,F,)FeAs exhibits a 7. of 28 K [61] and Sm-
FeAsF has T, = 54 K [62]. More creative manipulation even suggest that a monolayer
of FeSe on SrTiOs can exhibit a 7. ~ 100 K°.

> There is some controversy about the exact value of the superconducting transition in this system,
ARPES measurements suggest 7. ~ 65 K [63-65]. However a single four point probe experiment
suggests 100 K [66]. A discussion on this discrepancy is presented in Ref. [67].
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On first glance, these new iron-based superconductors appear to share many simi-
larities with the cuprates, including a 2D layered structure (Fig. 1.5(a)), an antiferro-
magnetic parent state and a superconducting dome that emerges on suppression of the
magnetic state with doping (Fig. 1.5(b)). Along with the unusually high 7, it seemed
plausible that these materials could also be governed by a similar underling mechanism

of superconductivity.

However, when one looks a bit closer at the iron-based superconductors, several
key differences become apparent. The parent phase describes a semi-metal, rather than
a Mott insulator, and exhibits striped (7,0) antiferromagnetic ordering rather than the
Neel (7, ) antiferromagnetism observed in the cuprates [12]. The crystal structure,
despite being layered, is only quasi-2D with the pnictide or chalcogenide atom sitting
above or below the Fe-plane. Finally, the electronic structure no longer consists of one
large 3d,»_ > spherical Fermi surface, but rather of multiple localised hole and electron
pockets, with 3d,,, 3d,, or 3d,, orbital character (Fig. 1.5(c)).

These differences, rather than being a hindrance, actually provide a fantastic op-
portunity to get to the heart of unconventional superconductivity. If the mechanism
between these two families of materials is indeed the same, then the similarities and
contrasts between the two sets of superconducting materials may provide additional in-
formation regarding the key ingredients of the unconventional superconducting mech-
anism [13].

The phase diagram, shown of Fig. 1.5(b), is typical of several different iron-based
superconductors, such as NaFeAs and BaFe,;As, [69], and appears strongly reminis-
cent of the cuprate phase diagram of Fig. 1.4. A marked suppression of antiferro-
magnetism upon doping and the subsequent emergence of a superconducting dome is
observed. The additional phases that are detected in the cuprate materials, such as the
pseudogap state, are not present in these materials. Instead, a new nematic phase is
often exhibited. This phase breaks the C4 symmetry of the lattice and induces large
anisotropic responses in the underlying electronic properties [70, 71]. Generally, the
nematic phase occurs at temperatures either coinciding with, or at temperatures slightly
higher than, the antiferromagnetic phase transition, and is strongly susceptible to dop-
ing. Whilst this initially suggests that nematicity is somehow related to the magnetic
phase, the coexistence of magnetism and nematicity is not observed in FeSe, which
exhibits a well defined nematic transition but no long range magnetic ordering [72].

The origin of this phase remains under debate [73] and will be studied in this thesis.

A major strength of the iron-based superconductors is the diverse phase space that

21



Chapter 1. Introduction

can be explored by chemical engineering. Whilst the typical systems of NaFeAs and
BaFe;As; exhibit superconductivity, nematicity and magnetism all within a single sys-
tem, other iron-based superconductors have been synthesised which appear to probe in-
dividual sections of these phases. LiFeAs, for example, exhibits superconductivity at
T, = 18 K without the need for doping and, importantly, does not experience magnetic
ordering or nematic ordering down to the lowest measured temperatures [74]. This ma-
terial can then be probed to study superconductivity in the iron-based superconductors
without additional competing phases. FeSe also does not exhibit long range magnetic
ordering [75], but does show a well defined nematic transition at 73 = 90 K and exhibits
superconductivity below 7. = 8 K. This provides a perfect system to study the nematic
phase and it’s interplay with superconductivity. The iron based superconductors have
therefore created the opportunity to dissect the rich and varied phase space that occurs

in close proximity to an unusual mechanism of superconductivity.

1.3.1 LiFeAs

LiFeAs is an ideal system for studying the superconducting properties of the iron-
based superconductors. This material has a relatively high 7. of 18 K and exhibits
no competing phases. ARPES measurements, shown in Fig. 1.6(a), describe a Fermi
surface consisting of two hole pockets at the centre of the Brillouin zone; a large d,,
pocket and a small d,_/,, pocket, and two overlapping ellipses at the corner of the
Brillouin zone [79]. The superconducting gap, measured as a function of angle around
each of the four pockets, revealed a C4 symmetric gap structure, with the largest gap
/y- hole pocket. This is shown in Fig. 1.6(b).
Unlike the cuprates, no nodes were detected, suggesting that the gap was not d-wave

(A =~ 5 meV) residing on the smallest d,,

in symmetry [77]. However, it was theoretically proposed that there could be a sign
change between the hole and electron pockets [80] which could arise as a consequence
of an unconventional superconducting mechanism.

As the Fermi surface consists of multiple strongly correlated quasiparticle bands,
an accurate model of the electronic structure has proved difficult to obtain. Density
Functional Theory (DFT) calculations of LiFeAs are in qualitative agreement with the
size and shape of the experimental electron-like pockets, as well as the large d,, hole

pocket [81-83]. However, the small d,./,. hole pocket, with the largest superconduct-

z/yz
ing gap, is greatly overestimated.
Attempts to overcome this discrepancy have been attempted by several alternative

ab-initio calculations. The framework of DFT + Dynamic mean field theory (DMFT)
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Figure 1.6: Superconducting properties of LiFeAs. a) Fermi surface map of LiFeAs taken from
Ref. [76]. b) Schematic of the momentum dependence of the superconducting gap
for the two hole bands (left) and two electron bands (right). Taken from Ref. [77].
The height indicates the size of the gap. c) Results of the calculated momentum
dependence of the superconducting gap from Ref. [76]. The values are presented
as a function of angle for the hole bands (@ and y) and the two electron bands (B,
and f3;,). The dotted lines are experimental results from Ref. [77]. d) Revised
calculation of the momentum dependence of the superconducting gap from Ref.
[78], taking into account quasiparticle renormalisation.

has been attempted. This calculation is an extension of DFT, which captures local spin
correlations. This approach was able to describe some of the bandwidth renormali-
sation, associated with the Fe d-bands at low energies, but was unable to reproduce
the small size of one of the hole pockets [84-86]. Quasiparticle Self-consistent GW
(QSGW) calculations have also been performed. This approach does not include local
spin correlations, but does take into account non-local electron-electron correlations.
This approach was partially able to account for the reduction in size of one of the
hole pockets, compared to DFT, however, it could not fully account for the bandwidth
renormalisation at low energies [87, 88]. Despite the various attempts to describe the

electronic structure of LiFeAs, a model which can quantitatively captured the band
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dispersions measured in experiment has, so far, not been generated from first principle

theories.

To overcome this problem, Wang et. al. optimised a tight binding model directly
to ARPES data of LiFeAs [76]. This approach bypassed the discrepancy between
theory and experiment and provided a method to phenomenologically describe the
superconducting properties of the system. Wang et. al. then calculated the momentum
dependence of the superconducting gap using a multi-orbital extension of the spin
fluctuation pairing vertex described in Eq. (1.11) [89]. Their results are shown in Fig.
1.6(c). They obtain qualitative agreement with the experimental results and produce a
superconducting gap with sT~ symmetry. This suggests that whilst there are no nodes
at the Fermi level, the superconducting gap may change sign between the hole and
electron pocket, as previously suggested by Mazin et. al. [80]. However, the spin
fluctuation scenario overestimated the anisotropy of the gap function for the individual
bands, and greatly underestimated the relative magnitude of the gap at the inner d,,
hole pocket.

There are several potential reasons for this discrepancy, which have been debated
within the literature. The first, was the neglection of spin orbit coupling in the tight
binding model [76]. This consequence ensured that an extra hole band was present in
the calculations, which is not observed experimentally [90]. Saito et. al. [91] pointed
out that including a dressed electron phonon interaction into the spin fluctuation pair-
ing, referred to as “orbital fluctuations"”, can result in the inner hole pocket exhibiting
the largest gap. However, this approach suggests that the gap would not exhibit a sign
change between pockets, i.e the gap will have st+ symmetry. Whilst ARPES is not
sensitive to the sign of the gap, recent Bogoliubov Quasiparticle Interference (BQPI)
experiments found evidence to support the notion of a sign change in LiFeAs [92, 93].
This suggests that the orbital fluctuation scenario may not be the correct interpretation
[94]. Finally, Kreisel et. al. [78] suggested that the phenomenological tight binding
model employed simply needed to take into account the orbital dependent quasiparti-
cle weights from the strong coupling renormalisation. In this scenario, by reducing the
quasiparticle weight of the bands from unity in the original calculation, of Fig. 1.6(c),
to 0.5493 for the d,y orbital and 0.5952 for the d,; and d,, orbitals, the gap function
for each band can be almost completely reproduced®.This is shown in Fig. 1.6(d).

These numbers appear to be in reasonable agreement with DFT + DMFT studies [84]

®What is important here is not actually the value of Z, but the relative ratio of Z between the orbitals
[78].
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Figure 1.7: Physical properties of FeSe and it’s electronic structure. a) Pressure vs temperature
phase diagram of FeSe. Reproduced from Ref. [97]. b) Resistivity of FeSe as a
function of temperature showing the nematic transition at 90 K, adapted from Ref.
[98]. ¢) Lattice constants of FeSe as a function of temperature, blue describes the
c-axis, red describes the a and b-axis, and green describes the total volume of the
unit cell. Reproduced from ref. [99]. d) Fermi surface of FeSe predicted by DFT
[100], e) Predicted by DFT + DMFT [101] and c) measured in ARPES [102].

and appear to be consistent with ARPES measurements, where the 7, orbitals all have
similar coherence [77]. However, these values discussed are not systematic, and are
obtained to fit the experiment. A more rigorous calculation is still required to support
this argument. As will be discussed in Chapter 5, this methodology does not hold for

nematic materials such as FeSe [95].

The results for LiFeAs are tentatively in favour of a spin fluctuation pairing sce-
nario, correctly capturing the sign change between the hole and electron pocket in
the superconducting state as determined by BQPI. However, the fine details of this
system have proved complicated to model. It is therefore important to study alter-
native systems, to see if more information related to the nature of superconductivity
can be determined. For this reason I turn our attention towards FeSe. FeSe also does
not exhibit long range magnetic order, however, it does experience a tetragonal to or-
thorhombic structural transition at 90 K. As a consequence, the C4 symmetry of the
crystal is broken, inducing relatively large changes to the electronic properties [72].
This effect is known to alter the electronic structure of FeSe [96], and will have to be

carefully studied before it is possible to understand the superconducting state.

25



Chapter 1. Introduction

1.3.2  FeSe

The PbO-type crystal structure of FeSe, discovered in 2008 [103], exhibits supercon-
ductivity below T, ~ 8 K and has been the subject of intensive study [104—107].

One reason for this is the highly tunable nature of superconductivity within this
material. For example, under 8.9 GPa of applied pressure, 7. is observed to increase to
a maximum value of 36.7 K [108]. This is shown in a pressure vs temperature phase
diagram of Fig. 1.7(a). Intercalation with organic amide molecules [109], or alkali
metals [110, 111], can also enhance 7. to the region of 30-46 K, depending on the
exact chemical composition. On top of this, monolayers of FeSe, grown on SrTiO3
exhibit a superconducting transition temperature of 7. = 65 K [67, 112, 113], 8 times
larger than bulk FeSe. It is currently not understood why this material exhibits such
a dramatic sensitivity of 7, however, unlocking these mysteries may hold the key for
understanding high temperature superconductivity.

Another reason for the extensive research into FeSe is that it provides an ideal sys-
tem to probe the nematic state of the iron-based superconductors. At 7, =90 K, a
structural transition between a tetragonal, P4 /nmm, and orthorhombic, Cmma, crystal
structure is observed in bulk FeSe [99]. This is seen in the resistivity vs temperature
plot of FeSe in Fig. 1.7(b) and the lattice constants measured by x-ray diffraction in
Fig. 1.7(c). This structural transition, despite only inducing a small rotational symme-
try breaking anisotropy in the lattice constants, is known to exhibit a large anisotropic
response to the electron properties of the system, which has been measured in the re-
sistivity of FeSe [114] and in the experimental electronic structure [96].

In many iron-based superconductors this structural transition is often accompanied
by the stabilisation of long range striped antiferromagnetic ordering [73], however,
FeSe does not exhibit long range magnetic order at any temperature under ambient
pressure [75]. Thus this material provides an opportunity to probe the effects of the
nematic phase, without the additional complication of magnetic ordering [72].

Despite the lack of long range ordering, magnetism is still important in FeSe. Neu-
tron scattering experiments have revealed the presence of local spin fluctuations in both
the tetragonal and orthorhombic state [115, 116], which implies a close lying magnetic
phase. A spin density wave is observed in FeSe under pressure, where the nematic
phase is suppressed and a magnetism emerges at pressures exceeding 2 GPa [97]. This
spin density wave phase exhibits a dome like feature in the pressure vs temperature
phase diagram, as shown in Fig. 1.7(a), and on the suppression of the magnetically

ordered phase above 8 GPa gives rise to the enhanced values of 7;. [97]. This property
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suggests that despite the absence of long range magnetism, spin fluctuations may still
play an important role in the superconducting mechanism.

At the time of starting this PhD, high quality single crystals of FeSe had just be-
come available [75], with the first ARPES measurements of FeSe being performed in
2014 by Maletz et. al. [117]. However, the final details of the electronic structure,
such as the evolution of the bands due to the nematic phase, was still being debated
[100, 118-120]. Despite this, it was already clear that DFT, and extensions such as
DFT + DMFT, overestimated the size and energy scales of the experimental band dis-
persions [101, 117]. For this reason, a majority of the thesis will focus on uncovering
the fine details of the electronic structure of FeSe, to establish a reliable model to study

the superconducting state.

1.4  Outline of thesis

The structure of this thesis is as follows. In Chapter 2, I will discuss the theoretical
tools used throughout this thesis as well as the experimental apparatus of ARPES.
In Chapter 3, I will develop a quantitatively accurate tight binding model of FeSe in
the tetragonal phase by directly optimising the hopping parameters to experimental
ARPES data. In Chapter 4, I will study the rotational symmetry breaking effects of the
nematic phase and the consequence this has on the electronic structure of FeSe. I will
pay particular attention to the limitations of conventional ARPES experiments when
it comes to studying orthorhombic crystals. In Chapter 5, I will study the electronic
structure of the nematic phase of FeSe as probed by the independent technique of
Quasiparticle Interference (QPI). I will compute the predicted QPI patterns of FeSe
in the nematic state, using the model for the electronic structure developed in Chapter
4, and compare with the experimental literature. Finally, in Chapter 6, I will measure
the superconducting gap of FeSe using ARPES. I will use the tight binding model
developed throughout the previous chapters to calculate the momentum dependence of
the superconducting gap of FeSe, assuming that superconductivity is mediated by spin
fluctuations, and compare with the experimental result. We then conclude the results

of this study in Chapter 7 and discuss future work.
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2 Theory and Methodology

2.1  Second quantisation

The language of second quantisation will be used throughout this thesis [121, 122]. It
provides a framework which allows for a precise description of many body systems.
In this section, I will present a brief overview of the properties of second quantisation
which will be important in the following chapters.

Consider a generic wavefunction,

v =] (2.1)

where the total wavefunction, 'V, is defined as the product of n single particle wave-
functions, y. Typically, for this to describe a physical system, the wavefunction must
be carefully modified to account for the symmetries of fermions or bosons with re-
spect to particle interchange [123]. In the language of second quantisation, however,

all possible states in a many body system can be defined within a “Fock" space [124],

W= [0, 0n—1,.-, 02, 01). (2.2)

Here, each ¢ describes the occupation of a specific single particle state in a many body
system. In the language of second quantisation, ¢ can either equal O or 1 depending
on the occupation of the state. It is possible to then define operators, which can act on
wavefunctions in Fock space to either create (c™) or annihilate (¢) a particle in a given

state,

cf10) =161,
c1|¢1) =10) (2.3)
chel0) =2, 1)
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Here, |0) is written as a definition for the vacuum, or a completely empty Fock space.

From this, it is possible to write the full wavefunction as

¥ =T]cl0), (2.4)

which is the product of the creation operators that define the i occupied states. In the
case of fermionic systems, the creation and annihilation operators obey the anticom-

mutator relations,

{chcp} = 8up {cascp} = {clcp} =0. (2.5)

These symmetries automatically account for the Pauli exclusion principle as it enforces

chel, |®) = 0. Finally, the number operator

+ 0 if state is empty
na|9a) = coCalPo) = , _ _ (2.6)
1 if state is occupied
is a useful tool to define whether a given state is occupied or vacant. From these
mathematical formalisms, it is possible to concisely describe many body phenomena

such as conduction [125], magnetism [53], and superconductivity [15].

2.2 Tight binding framework

The tight binding model is one of the simplest mathematical descriptions available to
model electronic transport in a metallic system. In the language of second quantisation

a generic tight binding Hamiltonian may be written as
H=— Y tij(clej+cjci). 2.7)
<i,j>
This Hamiltonian simply defines the process of a fermion “hopping" from state i to
state j, or state j to state i. We define #;; as positive such that the hopping process

lowers the total energy of the system by the value 7;;. It is possible to calculate this

hopping parameter via the matrix element of the Hamiltonian (H),

tij = (¢i|H|9;) - (2.8)

As the overlap between two orbitals is spatially dependent, 7;; will be largest for nearest
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neighbour hoppings, and decrease as the distance between the states increases. This
will eventually become negligible at a given radial cutoff such that it is possible to
accurately describe a metallic system with relatively few parameters.

As an example, consider a non-interacting one dimensional toy model with only

nearest neighbour hopping,

H = —Zt(leC,H_] +CZ+]Cn)~ (2.9

n

Here, n describes the atomic site index. It is possible to solve this equation in momen-

tum space via Fourier transforming the creation and annihilation operators:
=Y e*c] (2.10)
k

e =Y e*ey. (2.11)
k

By substituting x = na, where a is the lattice constant, the Hamiltonian becomes

H= —tZeik“chk —tZe_ik“chk = —ZIZcos(ka)chk (2.12)
k k k

Such that the band dispersion which describes this Hamiltonian is given by E(k) =
—2t cos(ka). We therefore see that if electrons can freely hop between atomic sites, and
the band is only partially filled, our system will be able to conduct without occurring an
energy penalty. Whilst this is only a toy model to describe the properties of a simple 1D
system, this formalism can be extended, using the work of Slater and Koster [125], to
develop tight binding models which can describe hopping processes between multiple
orbitals and specific crystal geometries. Such a model will be employed in this thesis,
and will be discussed in Chapter 3.

2.3 Green’s Functions
Suppose there exists a linear differential equation

Lu(x) = f(x), (2.13)

where L is a linear differential operator, f(x) is a known function and u(x) is unknown.

We can define the Green’s function as the solution to the similar equation,
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LG(x,x') = 8(x—X), (2.14)

where &(x —x) is the Dirac delta function. If G(x,x’) can be found, given suitable

boundary conditions, then it is possible to solve for u(x) via

u(x) = /idx’ G(x,x')f(X). (2.15)

In condensed matter theory, the linear operator is the Hamiltonian. In the language

of second quantisation, the Green’s function is defined

G(x,X,1,1') = —i (¥o|Tex(t)cl (1) |Wo) - (2.16)

This equation measures the response of the many body system upon the addition of
a fermion at position x’ at time ' and its removal at position x and time ¢. The time
ordering operator 7 ensures that every operator is arranged in order of increasing time

such that the largest time is on the left hand side, and the smallest time is on the right,

o — e(t)eh (@) (t>1) -
s (t) —c;,(t’)cx(t) (r<t). &1

In a homogeneous system, the Green’s function only depends on the difference of
the position variable, x — x'. It is therefore possible to Fourier transform the Green’s

function into momentum space by using

ex(t) = / dk ™y (1), (2.18)

i) = / dk e ®%c (1), (2.19)
Applying Eq. (2.18) and (2.19) to Eq. (2.16) then gives
G(x,x,1,1') = — / dk / dK' i (Wo|Tey (1)ch, (1)) KX, (2.20)

As the momentum space representation is diagonal ck(t)clt, (t') is zero everywhere ex-

cept k = K/, the Green’s function may be written in terms of a single momentum,

G(x,X,1,1') = / dk G(k,t,t")e* %) (2.21)

where
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G(k,t,1') = —i (Wo| Ty (¢)ef (1) ¥o) - (2.22)

Finally, by expanding the time ordering operator, the Green”s function becomes

G(k,1,1") = —i[@®(t ') (¥o|cy (1) ey (') o) — O(" —1) (Poley (1')erc (1) [¥o) ]

(2.23)
Here, ©(t —t') is the Heaviside function' . This is the fundamental Green’s function
for a non-interacting many body system. The first term of Eq. (2.23) describes for-
ward time propagation and is referred to as the retarded Green’s function, whilst the
second term of Eq. (2.23) describes backward time propagation and is referred to as
the Advanced Green’s function. In the following section I will discuss the solution to
Eq. (2.23) for a non-interacting homogeneous system, how this can extend to include
interacting systems, and show a useful rearrangement of the Green’s function which

can be directly measured by experimental probes.

2.3.1 The Green’s function of a non-interacting system

Eq. (2.23) can not be numerically computed in the current form. It is possible to derive
a compact equation for the Green’s function for a non-interacting homogeneous sys-
tem, (2.23). To do this, the time dependence is removed from the second quantisation

operators using the Heisenberg representation,

ck(t) = e' lekick, (2.24)

c;(((t) = e’ektcl'(,
Here, g defines the energy of the particle at momentum k. Eq. (2.23) describes two
possible processes, either the addition of an electron to the system above kr, or the
addition of a hole below kr. Due to particle-hole symmetry this is equivalent to the
direction of time that the Green’s function is acting in [122]. ¢ < ¢’ for the addition of
an electron and ¢ > ¢’ for the addition of a hole.

For t < t’, the Retarded Green’s function can be rearranged to give

1, t>¢
1 t:t/

lo(r—1)=11
0, t<t

)
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i (Polcp (¢ e (1) [Wo) = ie™ =) (Wo|cf ey |Wo) = ie & f(gy),  (2.25)
where it was noted that
(Wolctex[Po) = (Woln|®o) = £ (&) (2.26)

Here, f (&) is the Fermi function, [e~&/%T 4-1]~!| the expectation value of the particle
density n.

Fort > t', the Advanced Green’s function can be written as
i (Woloy (£l (1) [Wo) = ie™ =) (Wo|eret | Wo) = ie &) (1= f(gy)).  (2.27)

The final part of Eq (2.27) was obtained from the rearrangement of (¥ ]ckci\‘l’o) using

the anticommutator relations of Eq. (2.5),

(Wolexer [Po) = 1 — (Wolef ey |Po) - (2.28)

Thus the complete Green’s function can then be written in momentum space as

G(k,1,1') = —i[(1 — f(ex))O(t — ') — f(ex)O(t —1)]e &), (2.29)

On the assumption that the Hamiltonian is time independent, the system only depends
on T =1t —t. Thus, the Green’s function can be converted into frequency space via

another Fourier transform,

Gk, 0) = — / “dr G(k,7)e'®" = GT (k,0) + G (k, ®), (2.30)
where
G+(k CO) — (1 _f(gk))
’ w—&+id’
. &) (2.31)
G (k, y CO) — m

Finally, the infinitesimally small iJk can be redefined as idx = i0sgn(k — k) to ensure

that the Green’s function is always on the correct side of the complex axis. With this,
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G (k,) and G~ (k,®) can be combined to give the final Green’s function of a non-

interacting homogeneous system,

1

= e e T (2.32)

G'(k, )
Eq. (2.32) is now a simple equation where @ defines the energy and g is the non-
interacting band dispersion at momentum K. If the band dispersion can be calculated,
such as with a tight binding model, it will be possible to compute the non-interacting

Green’s function of the system, which can be used to calculate experimental properties.

2.3.2  Self energy

The above solution to the Green’s function describes an ideal gas of non-interacting
fermions. This, however, ignores the electron and spin interactions, which occur in
physical systems. To account for the interaction between fermions, an energy depen-
dent effective potential is introduced. This is called the self energy and is denoted
symbolically by X(k, ®). This potential describes all many-body scattering processes
that may occur within a fermionic system. As there are an infinite number of these
scattering processes, the Green’s function for an interacting system may be written as

a sum over all possible pathways

G=G"+G"2G° +G'2G'2G0 + GG GO G + ... (2.33)

Here, G is the Green’s function for the non-interacting system, described in Eq.
(2.30). The dependences on k and @ have been dropped for simplicity.

As this is an infinite sum, Eq. (2.33) can be written in the form of a Dyson equation,

G =G"+GxG. (2.34)

This can be solved to give
G=G"1-x2G ' =[G ' -x L (2.35)
By substituting Eq. (2.32) into Eq. (2.35), the Green’s function of an interacting

system can be defined as,

1
G(k,w) = P T (2.36)
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Here, L(k, ) is generally a complex quantity,

Yk, 0) =¥ (k,0) + i (k, 0). (2.37)

The real part of the self energy is described by ¥’ (k, @) and the magnitude of the imag-
inary part is described by X”(k, ®). This imaginary component contains information
directly relating to the inverse scattering rate 7~! of the interacting process. This is a
temperature dependent quantity that tends to zero at low temperatures [121].

Eq. (2.36) is the generic equation for a Green’s function that describes interacting
systems. However, an exact description of X(k, @) is challenging to compute. To gain
some insight into Eq. (2.36) , it is convenient to study this function in the limit of low
temperature, and for small ®. In these limits, X" (k, @) is negligible, and ¥’ (k, ®) may
be expanded around @ = 0 such that

Y (k, o) :Z’(k,0)+w-w+0(w2)+.... (2.38)
The terms that are quadratic or higher in @ can be neglected and Eq. (2.36) can be

written as

1

Gk,o)= - .
(k. 0) o (1—Z80y_ g0 _51(k,0) 4 i

(2.39)

By factoring out Zx = 7> the renormalised Green’s function can be defined

1
1— dy’ (k,0
dw

1
o — Zx (g — X' (k,0) +id)

This quantity, Zx, is defined as the quasiparticle weight. It is a parameter which

(2.40)

G(k, (D) =7k

provides a method to write a Green’s function of an interacting system in a form that is
similar to a non-interacting formalism. The difference is that the bare band dispersion
of the non-interacting system is modified to Zg (€ — £'(k,0)) and the entire function

is then renormalised by a factor of Zk. This form will be used in Chapter 3.

2.3.3  Single particle spectral function

The single particle spectral function is a quantity that can be directly measured via
photoemission. It provides a link between experimental observables and the underlying
Green’s function of an interacting system. This function describes the probability of

a the removal of a single fermion from a many body ground state, and can provide
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direct information about the band dispersion of a system. To derive the single particle
spectral function, the identity 1 =Y., |¥,,) (¥ is inserted into Eq. (2.23),

G(k,t,t') =—i®(t —1') Y (Po| c (t) [P} (Pl cp(t') [Po)

(2.41)
+iO( —1) Y (Pol e (') [¥m) (Pl i (t) [Po) -

Next, equivalent to Sec. 2.3.1, the time dependence is removed by converting to
the Heisenberg notation for the creation and annihilation operators, as defined in Eq.
(2.24). The Green’s function is then also Fourier transformed into frequency space to

obtain

(PR e[ ¥R ) 2 [P0 ew|¥5) 1P

Gk, ) 2.42
; (0—e)—id (0 —¢g)+id (242)

Here, the identities
(¥ol el i) (x| %0) = | (¥ s 94 o

(Wol cic| ) (¥l e [Wo) = | (0 lew [ 1) 2,

have been used. It is noted that the particle number of the set of excited states, ¥,
must contain one extra particle in the first term of Eq. (2.42) and one less particle for
the second term, else the expectation value would equal zero. Thus, Eq. (2.42) can be
interpreted as the probability of an excitation from a particle in the ground state ¥ to
a system with a single excitation of either an electron or a hole, where the excitation
may occur via all possible pathways m.

The single particle spectral function, A(k, @), may now be defined as the imaginary

part of the Green’s function,

A(k,0) = —ImG(k,0) = Y [ (¥) e |[¥) 75 (0 — &) (for @ < 0) (2.44)

m

and

A(k,0) = —ImG(k,0) = Y [ (¥] ek PN ") 78 (0 — &) (for @ > 0). (2.45)

m

By taking the imaginary part of the Green’s function, it is possible to extract informa-
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tion regarding to the probability of an excitation for a given system, this can then be

calculated directly using either the non-interacting form of Eq. (2.32),

~ImG(k, ) = §(@ — &), (2.46)

or the Green’s function of an interacting system defined in Eq. (2.36),

¥ (k, o)

~ImG(k,®) = [0—e—2 (k,0)2+ 2 (k,0)2

(2.47)

It can be seen that the single particle spectral function of a non-interacting system de-
scribes a delta peak located at @ = €. For an interacting system, at finite temperatures,
the delta peak has now evolved to describe a Lorentzian function, with a width pro-
portional to the imaginary part of the self energy. The poles have also shifted from the
bare band dispersion by a value equivalent to the real part of the self energy.

As I will show in the following section, it is possible to directly measure this single
particle spectral function of Eq. (2.44) using the principle of ARPES [126] and thus

gain direct information on the band dispersion and self energy of a system.

2.4 Angle-resolved photoemission spectroscopy

2.4.1  Theory of photoemission spectroscopy

The photoelectric effect, originally observed by Hertz in 1887 [127], is the phenomena
of the ejection of electrons from a metallic surface upon irradiation with electromag-
netic waves. The fundamental theory of photoemission was first formulated by Ein-
stein in 1906 [128]. Following on from the recent observation of quantised energy in
black body radiation [129], Einstein suggested a theory that could explain the interac-
tion of light with electrons in a solid. When a photon with energy hv > ¢ is fired at a
material, a photoelectron may be emitted from the surface. Here, hV is the energy of
the photon, and ¢ defines the work function of a material, which is a measure of the en-
ergy required to overcome the potential barrier between the surface of the material and
the vacuum. This theory was fundamental to the formation of quantum mechanics, and
the understanding of condensed matter systems. However, it was not until 1970 that
the full mathematical framework for “The theory of photoemission for simple metals"
[130] was defined. Here, not only was the conservation of energy of photoemission

fully accounted for, but the mathematical framework also described the conservation
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of momentum. From this, it was shown that if the momentum of an outcoming pho-
toelectron could be measured, the k-resolved energy of a periodic material could be
determined. This would then provide a means to experimentally study the electronic
structure of solids. In this section, I will outline the theoretical and experimental prin-
ciples behind the technique of angle-resolved photoemission spectroscopy (ARPES),
which will be used throughout this thesis.

Process of Photoemission

The photoemission process occurs when an electron in the initial state, i, gets excited
into a final vacuum state, f, through a perturbative interaction, H;,;. The probability
that an electron will transition between an N-electron ground state, [¥V), to an excited
final state, |‘P1}’ ), can be approximated by Fermi’s golden rule,

2T

(Y | Hins |9Y) PS(EY —EY —hv)8(kf — ki — G). (2.48)

Wpi="

Here, EY k; and EV k; are the final and initial state energy and momentum of the
system. “The delta functions ensure the conservation of energy and momentum in the
transition. In the case of momentum conservation, the momentum due to the incident
photon, Kk, is neglected, as it is generally smaller than the intrinsic crystallographic
momentum for photon energies of less than 100 eV [126]. The reciprocal lattice vec-
tor, G, however is essential to the process of photoemission. Without this periodicity
inducing a backfolding of states, no zero momentum transfer would be possible [130]
and photoemission would not occur. The interaction Hamiltonian, Hj,,, describes the
coupling between an electron and the electromagnetic field generated by the photon

[131],

€ r . . ex
Hipy = 2—(A~p+p-A——A2). (2.49)

mc c
Here, p = —iAV is the quantum mechanical momentum operator, and A is the electro-

magnetic vector potential. Assuming a low intensity of photons, A will be small, thus

the quadratic term of Eq. (2.49) can be neglected. This reduces the equation to

—ih ~ ~
Hip = 2’ “(A-V+V-A). (2.50)

mc

Using the dipole approximation, which assumes that A will be constant on the scale

of atomic distances, the second term of Eq. (2.50) can be neglected. This is due to
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the fact that the divergence of the electromagnetic vector potential will be zero®. For a
photoemission induced excitation, the interaction Hamiltonian can then be defined as

the product of the electromagnetic vector potential and the electronic momentum,

e~ .
Hiy = —A P 2.51)
mc

Physically, photoemission occurs as a single process [134], where the wavefunction
must take into account, bulk states, surface states, vacuum states and all interactions
and resonances inbetween. However, this is challenging to compute. In the regime of
studying excitations measuring photoelectrons that have high kinetic energy (> 20eV),
a phenomenological, three-step model can be used to describe the photoemission pro-
cess [126, 135]. In this approach, photoemission is described by three independent
mechanisms. Firstly, the electron in an initial state is excited within the material. Sec-
ondly, the excited electron travels to the surface of the material and, finally, the excited

electron escapes from the surface into the vacuum.

A photoelectron will scatter within the material on an average length scale known
as the inelastic mean free path. On scattering, the momentum and energy information
regarding the electronic structure will be lost. As a consequence of this, only pho-
toelectrons originating from a length scale less than the inelastic mean free path will
contain information regarding the momentum and energy of the material, which en-
sures that photoemission is a surface sensitive technique. The distance probed in the
z-axis by photoemission can however be tuned by increasing the initial photon energy,

which will increase the inelastic mean free path of the photoelectron.

The three-step model therefore suggests that most of the information regarding
the probability of photoemission will be contained within the initial excitation of an
electron. If photons with a large enough kinetic energy are used, the excitation of an
electron from the initial to final state can be approximated as instantaneous. Known
as the sudden approximation, this allows us to rewrite an (N)-electron wavefunction
as a product of an (N-1)-electron wavefunction, and a photoelectron eigenstate, ¥~ =
CZ‘PN ~1. Here, cZ is the second quantisation creation operator which creates a single
particle eigenstate for the photoelectron ¢* . The transition probability from Eq (2.48)

can then be written as

ZNote that this approximation only holds for excitations within the bulk. At the surface this may not
be negligible [132, 133].
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2n A - _
Wfi:7|<¢}(|A'p|¢ik>|22|<ql% Neo WY) P8 (Erin+ Ep ' —EN —hv). (252)

Here, it is noted that the final state, f, may have been reached via several different
excited states, m. Hence, ‘I’y “land E }v 1 are replaced with a sum over all the possible
excited states, m. The conservation of momentum has also been accounted for by
ensuring that (p}‘ and q)ik have the same momentum k = k; =k; — G.

Finally, an initial state will only be excited if it is populated. To account for this

physical feature the transitional probability is multiplied by the Fermi function,

1

1—|—e’<BiT'

flo,T)= (2.53)

Here, T defines the temperature of the system and kp is the Boltzmann constant. The

final equation for the intensity of the photocurrent is then

I(k,0) =M% -A(k,0) - f(o). (2.54)

In Eq. (2.54), the component outside the sum over m, has been redefined to M}‘i =
| <¢}‘|A -P|9F) |2 The rest of the equation is then equivalent to the single particle
spectral function, A(Kk, w), defined in Eq. (2.44). Therefore, if a material is irradiated
with photons of high enough kinetic energy, and the outcoming photoelectrons are
measured, direct information regarding the single particle spectral function may be
obtained. This will then be able to provide information regarding the imaginary part
of the interacting Green’s function, from Eq. (2.47), and the underlying electronic

structure.

2.4.2  Matrix elements

The first term of Eq. (2.54) is the so-called matrix elements of photoemission. Whilst
the single particle spectral function contains information regarding the energy and mo-
mentum of the electronic states within a material, the matrix elements encode infor-

mation regarding the symmetry of the initial wavefunction.

Mf; = | (oF|A-plof) > (2.55)
A property of Eq. (2.55) is that M}‘i will only be finite if the integrand is totally

40



Chapter 2. Theory and Methodology

symmetric with respect to the scattering plane. This constraint implies that only certain
combinations of (¢}‘|, A - and |¢¥) will be measurable.

The symmetry of both the initial state wavefunction, |¢l-k>, and the final state wave-
function, (¢J'§| are fixed. For the initial state wavefunction, the symmetry is constrained
by the geometry of the crystal with respect to the scattering plane and can be either
symmetric or antisymmetric depending on the initial state being excited. The final
state wavefunction, however, must always be symmetric with respect to the scattering
plane. If the final state wavefunction is not symmetric, there would be no overlap be-
tween a symmetric free electron in the vacuum and the final state wavefunction, thus it
would not be possible for the electron to escape into the vacuum and no photoemission
intensity will be detected.

The symmetry of the interaction Hamiltonian, A. P, however, can be controlled. In
an idealised experimental setup, the incoming photon beam and photoelectron detector
will lie along the scattering plane, as presented in Fig. 2.1(a). In this scenario, it is
possible to use linearly polarised photons, such that the electromagnetic field compo-
nent is either symmetric with respect to the scattering plane or antisymmetric. This can
be achieved using vertically polarised light (LV) or horizontally polarised light (LH)
respectively. It is therefore possible to probe the symmetry of the initial wavefunction
of a sample simply by switching the polarisation of light. The d-orbitals are shown
in Fig. 2.1(b-f) to illustrate this principle. The 3dy;, 3d,2_,» and 3d.» orbitals are all
symmetric with respect to the scattering plane and will be observed under LV light.
The d,, and d,, orbitals are antisymmetric with respect to the scattering plane and will
be detected under LH light.

The arguments presented here weaken for states with finite momenta, and in reality
the alignment of sample and photon beam may not be exact. Nevertheless, a majority
of the intensity that would be associated with antisymmetric matrix elements will still
be suppressed under linearly polarised light. This allows photoemission experiments
to probe not only the energy and momenta of the electronic structure, but also the

underlying orbital content of a band.

2.4.3  Experimental principle

Fig. 2.1(a) describes a schematic for the experimental setup of an ARPES experiment.
A beam of photons is fired at the surface of a material. This induces photoelectrons,
with a range of kinetic energies, to be ejected out of the material at all angles. By

collecting these photoelectrons, within a specific energy range and given angles of 0
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Figure 2.1: Schematic illustration of matrix elements and orbital symmetries. a) The photoe-
mission setup, the scattering plane is shown in grey. The wavey line (hVv) describes
a photon, whilst the straight line describes a photoelectron. LV and LH describe
the polarisation of light, either linear vertical or linear horizontal. The d-orbitals b)
3dy; ¢) 3dy; d) 3dy, e) 3dx2_y2 f) 3d are also shown. The scattering plane in grey
is presented to highlight the symmetry of the orbitals with respect to the plane.

and ¢, it is possible to determine the binding energy of an electronic state within a

material as well as the in-plane momentum of that state. This can be calculated via

Eping = hv —® — Eyjpy (2.56)
1

ky = E\/ZmEk,-n sin(6)cos(¢) (2.57)
1

ky = = /2mEjgy sin(0) sin(9). (2.58)

Here, the binding energy, Ep;,q, is determined from the energy difference between
the incident photon and outcoming photoelectron. 4v describes the energy of the pho-
ton beam, ® defines the work function of a material, and Ej;, is the measured photo-
electron energy.

The in-plane momentum is determined by converting from the measurement geom-
etry of spherical polar coordinates to a Cartesian coordinate system. Here, m defines
the electron mass and 7 is the reduced Plancks constant. By rotating the surface of the
sample, the angles 6 and ¢ may be altered, and thus the electronic structure at any ky
and ky may be measured.

At the surface of a material the z axis is no longer periodic and thus the out of plane
momentum, K, is no longer a good quantum number. Information regarding k, may,

however, still be obtained if the final state of the electron within the sample is assumed
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to behave as a nearly free electron.

21,2 2 2 2 2
k h°(k k k
! 2m 2m

Here, E¢(k) = Eyin — P, and Ej is the bottom of the parabolic, nearly free electron,

—|E. (2.59)

band. In this approximation, Eq. (2.59) can be rearranged to give an equation for k,

1
= \ 2m(Eiincos?(8) + Vo). (2.60)

Here, Vo = |Ep| + ®. This equation suggests that the k, momentum can be altered by
changing the initial photon energy and will also change as a function of angle. The
implication of this is that a Fermi surface map measuring a full Brillouin zone at a
fixed photon energy will not probe a single plane in k,. This must be accounted for if
specific high symmetry points are of interest.

The surface sensitivity of photoemission will also induce an uncertainty into the
measurement of k,. As photoemission experiments only probes a finite distance below
the surface, proportional to the inelastic mean free path, there will be a finite broad-
ening along k, axis. In relatively two-dimensional materials, this will not greatly ef-
fect the measured in-plane electronic structure. However, for highly three-dimensional
materials, the measured photoemission data may exhibit partial averaging in k,. From
these principles ARPES can be used to probe the full three dimensional electronic

structure of a material.

2.4.4  Synchrotron radiation and high resolution ARPES

The experimental work presented in this thesis has been performed at the 105 ARPES
beamline at the Diamond Light Source in the United Kingdom. In this section I will
outline the technical details used at this facility that allow for high resolution ARPES
experiments.

The Diamond Light source is a synchrotron radiation facility, which accelerates
electron up to 3 GeV within a storage ring. The storage ring consists of 24 straight sec-
tions with bending magnets at each corner to produce a closed loop which the electrons
traverse. Insertion devices or bending magnets are additionally placed at each corner
of the ring to generate the radiation required for experimental use. In the case of the
105 beamline an undulator insertion device has been fitted which produces radiation in
the visible-ultraviolet (VUV) region between 18 eV and 240 eV [136]. This device is

of APPLE II type and consists of four sets of N = 34 permanent magnets, as shown in
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Figure 2.2: a) The APPLE II undulator, showing the four sets of superconducting magnets.
Figure taken from Ref. [137]. b) Diagram of the sample manipulator and hemi-
spherical analyser setup at the 105 beamline.

Fig. 2.2(a). This setup constrains the angular distribution of the electron beam such
that the emitted photons have an angular spread of A@ = \/Lﬁy_l . Here, y ! = — Z—i
where v is the velocity of the electrons and c is the speed of light. These photons are
mostly in phase and will therefore constructively interfere, producing flux N2 times
greater than is achievable with a single bending device.

The energy of the outcoming photons may be tuned by changing the distance be-
tween the upper and lower sets of permanent magnets. It is also possible to displace the
upper and lower sets of magnets with respect to one another to enable the production
of linear horizontal, linear vertical and circularly polarised light [138].

To further increase the energy resolution of the photon beam, a plane grating mono-
choromator is used, this device provides an energy resolving power of % = 20,000
for photon energies of less than 100 eV [136]. The photon beam is then focused via
a series of mirrors to produce a final photon spot size of 50 x 50 um at the sample
surface.

The surface of a sample is prepared via cleaving in ultra-high vacuum (< 10~ mbar).
This process involves breaking the top of the sample by gluing a post to the crystal,
and removing with force. In an ideal scenario, the freshly generated surface should
be flat with no dirt adsorbed onto it. The sample is mounted on a manipulator with 6
degrees of freedom [136], allowing for precise movement of the sample in the x,y and
z directions. The sample may also be rotated in the polar and azimuthal directions, and
tilted to align the sample with respect to the photon beam, as shown in Fig. 2.2(b).
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This provides the ability to orient the sample along a high symmetry direction, and
map the k-space in two dimensions.

Finally, the outcoming photoelectrons are collected in a hemispherical analyser.
The entrance of this device consists of an slit and preretarding lens. The entrance
slit can be used to increase the energy resolution of the measurement, whereas the
preretarding lens greatly reduces the energy of the photoelectrons without altering the
spread of energies. The photoelectrons traverse a hemispherical pathway, where the
photoelectrons are bent by a potential difference between two hemispherical plates
separated by a fixed distance. Only electrons with a particular energy, Ey = AEy, will
be collected at the detector which may be tuned by changing the potential difference
between the two hemispheres. The energy Ey is known as the pass energy. A lower
pass energy increases the energy resolution of the experiment at the expense of the
intensity of measured photons. The total number of photoelectrons hitting the detector
is then counted and converted into a data file of kinetic energy vs angle, which can be

transformed into binding energy vs momentum as discussed in Section 2.4.3.
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3 Tight binding model for the tetrag-

onal phase of FeSe

3.1 Introduction

We begin our study of the electronic structure of FeSe by looking at the tetragonal
phase of the material. At high enough temperatures, all iron-based superconductors
exhibit a paramagnetic state with tetragonal lattice symmetry [139]. This can therefore
be thought of as a normal phase of the iron-based superconductors, from which the
spontaneous orderings of nematicity, magnetism and superconductivity emerge.

DFT-based models qualitatively capture the band dispersions of the tetragonal phase
of FeSe above 90 K, correctly describing a Fermi surface consisting of localised hole
and electron pockets [140, 141]. However, these ab-initio calculations overestimate
the energy scale of the band dispersions when compared with ARPES measurements
[117]. The calculations describe a system where the maxima of the hole bands and
minima of the electron bands are several hundred meV above or below the Fermi level
[142]. This is in contrast to experiment measurements where the band maxima and
minima are less than £50 meV from the Fermi level [100]. Moreover, partially due
to this discrepancy, DFT based models of FeSe suggest a Fermi surface with three
hole pockets at the centre of the Brillouin zone, whereas experimentally only two are
observed [100].

One reason for this difference, between theory and experiment, is that DFT calcula-
tions do not account for spin fluctuations as a result of the electron-electron interaction,
which becomes important in strongly correlated materials. The theoretical framework
of DFT + Dynamic Mean Field Theory (DMFT) attempts to rectify this issue by self
consistently including local spin fluctuations onto an already converged DFT-based
electronic structure. Whilst this framework captures most of the renormalisation as-
sociated with the bandwidth of the 3d Fe bands of FeSe [84], the size of the hole and
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Figure 3.1: Comparison of the Fermi surface of FeSe at k, = &. a) The Fermi surface predicted
by a DFT based model [100]. b) The Fermi surface predicted by a DFT + DMFT
based model [101]. ¢) The Fermi surface measured by ARPES at 100 K [101].

electron pockets at the Fermi level are still much larger than what is measured using
ARPES [102]. The Fermi surface of FeSe suggested by DFT and DFT + DMFT cal-
culations, as well as the Fermi surface measured by ARPES experiments is shown in
Fig. 3.1.

In order to study the superconducting properties of FeSe, it is essential to have a
model which can precisely describe the Fermi surface of the material. In this chapter,
to overcome this limitation of ab-initio models, 1 will develop an ARPES-based tight
binding description of FeSe. This model will be optimised directly to experimental
ARPES data in the tetragonal phase at 100 K, which will provide a quantitative phe-
nomenological description of the band dispersions. Using this model, I will study the
temperature dependence of the chemical potential of FeSe in the tetragonal phase. I
will show that this experimental model predicts a large shift to the chemical poten-
tial as the temperature is increased between 100 K and 300 K, a feature not captured
by ab-initio models. I will then confirm this prediction by performing a temperature
dependent ARPES study on FeSe. This model will provide the basis to study the emer-

gent orderings within the nematic and superconducting state in the following chapters.

3.2 Tight binding model of FeSe

FeSe has a quasi-2D layered crystal structure, consisting of a 2D plane of Fe atoms
connected by Se atoms. These Se atoms are staggered above and below the plane, as
shown in Fig. 3.2(b), such that a single unit cell of FeSe consists of two Fe-atoms and

two Se-atoms. In Fig. 3.2(a) we present a top-down view of FeSe showing several
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Figure 3.2: Crystal and electronic structure of the P4 /nmm space group. a) Top down view of
the unit cell structure of FeSe. The boxes define a unit cell, black circles describe
Fe atoms, whilst grey circles describe Se atoms. Red vectors describe the primitive
lattice vectors, whilst the blue vectors describe the distance between the centre of
the unit cell and an Fe atom. b) 3D crystal structure of a single layer of FeSe.
¢) 2D Brillouin zone of FeSe, the solid black line defines the 2-Fe Brillouin zone
boundary with axes k; = k, +k, and k; = —k, + k,. The dashed line describe an
unfolded 1-Fe Brillouin zone, with axes k, and k,. In the 2-Fe notation (ki, k;) the
high symmetry points are labelled I' = (0,0), M, = (n,—7), My = (7, 7) and X =
(,0) and I = (27,0). d) Three dimensional Brillouin zone description, defining
the k., = 7 high symmetry points, Z = (0,0,+x) and A = (7, 7w, £ 7).

adjacent unit cells, and the vectors which connect the atomic positions.

The primitive lattice vectors for the crystal are defined

Ri =R, +R,
Ry = — x"’Ry

(3.1)

These vectors correspond to the red vectors in Fig. 3.2(a). R, and R, describe the

vector which connects neighbouring Fe atoms in the x and y direction.

In this tight binding model we will only focus on the d-orbitals of the Fe atoms,
which are the bands present close to the Fermi level [140]. We can then define lattice

vectors connecting the two Fe atoms, FeA and Fe?, by

This tight binding model will only focus on the d-orbitals of the Fe atoms, which
are present in the vicinity of the Fermi level [140]. Each unit cell of FeSe consists
of two Fe-atoms, labelled Fe? and Fe?. The primitive lattice vectors of the individual

atoms can then be defined
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Ry =niRy +mRy+ S
A A 32)
Rg=mR;+mRr+Sp

Here, n; and n, are integers, and S4 and Sp describe the vector between the centre
of the unit cell and either Fe atom A or Fe atom B. In momentum space, the 1st
Brillouin zone is defined between —7 and +7 for the momentum vectors k; = ky +ky,
and ko = —k, + k,, this is referred to as the 2-Fe unit cell. This produces a square
Brillouin zone with high symmetry points I', M and X with coordinates (k;,k;) =(0,0),
(m,m) and (7,0) in the k; = O plane. At k, = £, the equivalent high symmetry points
are labelled as Z, A and R as shown in Fig. 3.2(d).

Mathematically, it is possible to unfold the 2-Fe Brillouin zone, into an effective
1-Fe Brillouin zone, by making use of the non symmorphic glide symmetry of the
P4 /nmm lattice [143]. This would produce the larger Brillouin zone, shown as the
dashed boundaries in Fig. 3.2(c), with Brillouin zone boundaries at =7 in the k, and
ky axis. Physically, ARPES measures the 2-Fe unit cell of FeSe, this will therefore be
used for the optimisation of the tight binding model.

The general form of the tight binding model can then be generated by defining the
creation and annihilation operators for fermions originating on either of the two Fe

atoms.

c§(k) =Y e™Rac*(Ry) (k) =Y e *RacT(Ry) (3.3)
Ry Ra

(k) =Y e™Rc*(Rp) cg (k) =Y e *Rec (Rp) (3.4)
Rp Rp

These operators then define the creation (CX/TB(k)) or annihilation (c§ ) 5(Kk)) of a fermion
in orbital o on Fe? or Fe? , with momentum k. The glide symmetry of the P4 /nmm
lattice provides a connection between the creation and annihilation operators of the

two Fe atoms,

TeP.c% (k) = (—1)%c%(K). (3.5)

This glide symmetry operator is executed by a translation, 7%, of the vector T = S5 — §4,
followed by a reflection in the z axis (P;). This operator will change the parity of the

initial orbital depending on whether the orbital is symmetric or antisymmetric with
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respect to reflection in the z axis. For the 3d orbitals

+1, dyadpe p.d
(-1)%= o Sy (3.6)
1, dy, dy..

It is then possible to define a linear combination of the creation and annihilation oper-

ators for the two Fe atoms,
cg (k) = —=[cy (k) + (=1)%cg (k)] (3.7)

co(k) = —=[cg (k) = (=1)%c5 (K)]. (3.8)

These new operators are decoupled with respect to the relative even (E) or odd (O)
symmetries under the glide plane. A Hamiltonian which incorporates the glide sym-

metry of the P4 /nmm lattice can now be defined as,

=YY 2P (k)% (k)b (k) + 157 ()% (k)b (k). (3.9)

off k

Here, the even and odd components of the Hamiltonian do not mix without the inclu-
sion of spin orbit coupling [143]. The creation and annihilation operators of Eq. (3.9)

can then be substituted into Eq. (3.7) and (3.8) to produce a Hamiltonian with the form,

(3.10)

This Hamiltonian can now be written as a 2x2 block matrix, where each block is a 5x5
matrix, HXY, which describes the hopping process between any d-orbital on FeX and

any d-orbital on Fe? .

H(k) = (HAA (k) HAB(k)) (3.11)

HBA (k) HBB (k)
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Due to the presence of time reversal symmetry(T) , Tc* (k) = P (k)* [142], the Hamil-

tonian may be further simplified to,

H(K) = <HAA(k) HAB(k)) . (3.12)

HAB(k)* HAA (k)*
This reduces the number of hopping parameters required by a factor of two. For this
work, the momentum space formalism developed for FeSe by Eschrig and Koepernik
[142] will be used. In Appendix A, the form of each element of the Hamiltonian is
defined, and the hopping parameters used in the optimisation procedure are presented.

Finally, spin orbit coupling is included via

. HK)+L, L.+iL
Hsoc(k) = A( )—t e Lot Y (3.13)
Ly—iL, H(k)—L,
where I, is defined as
. A[L 0
Li=— A 3.14
: (O z,-> 614

The 5x5 matrices [y, fy and [, are presented in Appendix A and discussed in Ref. [91].
The strength of the spin-orbit interaction,A is fixed to A = 19 meV throughout this

thesis, which is in quantitatively agreement with experiment [144].

3.3 ARPES data of FeSe at 100 K

In Fig. 3.3, the ARPES data of the high symmetry points of FeS used in the optimisa-
tion procedure is presented. Fig. 3.3(a) describes the I point of FeSe at k, = 0. Two
hole bands can be observed, the outer hole band is seen to just cross the Fermi level,
whereas the inner hold band has a maximum at -13 meV. At the k, = 7 Z point, of Fig.
3.3(c), a similar band dispersion is observed, except that both hole bands now cross
the Fermi level. The two bands at k, = 7 are roughly 20 meV higher in energy than at
the k; = 0 position. These two bands consist of dy; and d,, weight respectively and are
C4 symmetric, such that rotating the sample 90 degrees will produce equivalent band
positions with the dy; and d,, orbital weight swapped. These bands are also observed
to be split by spin orbit coupling by a value of 20 meV [90, 91, 144]. For the electron
states at the M and A point, the symmetry of the P4 /nmm crystal structure implies the

presence of two degenerate sets of bands at the corner of the Brillouin zone [102, 145].
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Figure 3.3: ARPES data from the four high symmetry points of FeSe in the tetragonal phase
under Linear Vertical (LV) polarised light. a) ARPES data of the hole bands around
the I' point at 100 K with hv = 37 eV. b) ARPES data of the electron bands around
the M point at 100 K with Av = 37 eV. ¢) ARPES data of the hole bands around
the Z point at 120 K with ~zv = 23 eV. d) ARPES data of the electron bands at the
A point at 100 K v = 56 eV.

These degenerate states form saddle points, which give rise to two Van-Hove singu-
larities. As a consequence, a large density of states is measured at the corner of the
Brillouin zone, which can be seen at the k, = 0, M point, in Fig. 3.3(b) and at the
k., = m, A point, in Fig. 3.3(d). This makes determining the exact band positions along
the high symmetry axis less precise. However, two bands can be observed crossing the
Fermi level at the A point. The inner band is of dy; weight, whilst the outer band is of
dyy weight!. It is therefore possible to extract the estimated minimum binding energies
for these two electron bands by approximating parabolic dispersions to these bands.
By performing this analysis it suggests that there exists a 20 meV separation between
the two bands. The d,, saddle point has a binding energy of ~-40 meV and the upper
dy./dy; saddle point has a binding energy of ~-20 meV. This data will be used in the

This dyy band, however, is not resolved at the M point in this geometry due to matrix element effects.
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optimisation of the tight binding model.

3.4  Optimisation of an ARPES-based tight binding model
Consider the equation for the single particle spectral function measured by ARPES,

¥ (k, o)

A ) = Yo+ [ (ko)

(3.15)

Here, ¥/ (k, ®) and X' (k, @) describe the real, and imaginary part of the self energy
and g is the bare band dispersion. Eq. (3.15) describes a Lorentizan equation which
is peaked at & — Y (k, ®), and has a width proportional to ¥ (k, o).

From this equation, it can be seen that all of the information regarding the mo-
mentum dependent band dispersion is contained within the peak position of the single
particle spectral function. As discussed in Section 2.3.3, by neglecting the width of the
spectral function peak y (k, w), and assuming the low energy, low temperature, limit,

Eq. (3.15) can be rewritten as

Ak o)=Z-8(0—Z- (&) —2(k,0))) =Z-5(0 — E“P(K)). (3.16)

Where Z describes the quasiparticle weight, which is a real quantity between 0 and
1. This will simply renormalise the magnitude of the spectral function and, assum-
ing that the quasiparticle weight of each orbital is approximately equivalent, can be
neglected. From this equation, the experimentally measured single particle spectral
function can be directly related to the experimental band dispersion E“P(k), without
explicitly knowing the components of Z, 819 and X(k,0). A phenomenological tight
binding description of the electronic structure which can correctly describes the E vs
k experimental band dispersion can then be defined, without knowing the fine details
regarding the self energy.

The ARPES-based hopping parameters were optimised by first rescaling the LDA-
based hopping parameters defined by Eschrig er. al. [142] by a factor of 6. This
is a phenomenological rescaling to ensure the bands are on the correct energy scale
measured in experiment, as discussed by Mukherjee ez. al. [146]. This is then followed
by a least squares minimisation routine where the bands are fit to the peak positions
extracted from ARPES data. This experimental data is presented as orange crosses in
Fig. 3.4(e) and 3.5(a). The optimised hopping parameters are presented in Appendix
A.
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Figure 3.4: Comparison of the electronic structure at k, = O predicted from a tight binding
model of FeSe using either a DFT-based set of hopping parameters or the optimised
ARPES-based set of hopping parameters. a) Band dispersion within a £2.5 eV
energy scale for the DFT-based model. b) Close up band dispersion, around the
Fermi level, for the DFT-based model. ¢) Fermi surface of the DFT-based model.
d-f) Equivalent images for the ARPES-based model. The band colour indicate the
maximum orbital contribution at a given momenta, as labelled in (d), and the orange
crosses in (b) and (e) describe the experimental band positions extracted from the
data in Fig. 3.3.

In Fig. 3.4, a comparison of the electronic structure predicted from two sets of hop-
ping parameters is presented. The first set describes the DFT-based band dispersion,
originally presented in Ref. [142], and the second set describes the experimentally
optimised ARPES-based band dispersion. In Fig. 3.4(a), the band dispersions of the
DFT-based tight binding model is shown. It describes a system with a d-orbital band-
width of roughly 4 eV. On a smaller energy scale, three hole bands can be observed
crossing the Fermi level, around the I" point, and two electron bands crossing the Fermi
level, around the M point. These band positions do not quantitatively agree with the
ARPES data, presented as orange crosses. In Fig. 3.4(c), the Fermi surface predicted
from the DFT-based hopping parameters is presented. The hole and electron pockets
are predicted to be much larger than observed experimentally, with three hole pockets

and square-like electron pockets.

Using the ARPES-based hopping parameters, the band dispersion now describes
a much narrower d-orbital bandwidth of ~600 meV, as shown in Fig. 3.4(d). In Fig.
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Figure 3.5: Calculated band structure in the k, = 7 plane for the ARPES-based tight binding
model. a) Band dispersions along the Z — A direction. b) Fermi surface at k, = 7.
¢) Fermi surface for the hole pocket (left) and electron pocket (right) as a function
of k, along the k, axis.

3.4(e), the band dispersion is presented, which agrees quantitatively with measured
ARPES data near the Fermi level. It is noted that, experimentally, this d,, band is
predicted to the the most renormalised, compared to a DFT framework, and should
be less dispersive between the I' and M point than described by this set of hopping
parameters [102]. This is a fundamental limitation of the model used, however, for
features within 50 meV of the Fermi level, the model is in very good agreement with
experiment. The Fermi surface, presented in 3.4(f), correctly describes the very small
hole and electron pockets, with a single hole pocket at the I" point, in agreement with
the experimental results.

This model also correctly describes the k; dispersion of FeSe. In Fig. 3.5(a),
the calculated Z — A band dispersion is shown for the k, = 7 plane. Again, in very
good agreement with the band dispersions extracted from experimental data, shown as
orange crosses. The Fermi surface, presented in Fig. 3.5(b), also correctly describes
the two hole pockets at this value of k; [102]. Both the hole and electron pockets are
larger than in the k, = O plane, as shown in Fig. 3.5(c) where the calculated k, vs k;
Fermi surface of the hole and electron pockets is shown.

This model will now be used throughout the remainder of the thesis.

3.5 Temperature dependence of the chemical potential in FeSe

The description of the electronic structure of FeSe, that has been developed here, de-
scribes a system where the top of the hole bands and bottom of the electron bands sit
very close to the Fermi level. At the centre of the Brillouin zone, the two hole bands
have band maximas of +7 meV and -13 meV at k, = 0 and +30 meV and +10 meV at
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k., = m. At the corner of the Brillouin zone, the minimas are located at -26 meV and
-46 meV at both k;, =0 and k, = 7.

The shallow nature of the hole and electron pockets suggest that the temperature
dependence of the chemical potential may become an important quantity. The chemical
potential of a system is often assumed to be a constant value. This is a good approxi-
mation in systems where the density of states is relatively uniform around the chemical
potential, like in the DFT-based tight binding model described in Fig. 3.4(b). However,
when shallow bands are present, a change in temperature can produce an anisotropic
population of thermally active hole and electron carriers, which will necessitate a shift
in the chemical potential to conserve the charge of the system. This temperature depen-
dent chemical potential shift has been measured in other iron-based superconductors
such as Ba(Fe; _,Coy)2As, [147], Ba(Fe;_,Ru,)>As, [148] and FeSe;_,S, [149].

As a quantitatively accurate tight binding model of FeSe is now present, it should
be possible to predict the magnitude of the temperature dependent shift that will be
observed in FeSe. In this section I will calculate the predicted changes to the electronic
structure as a function of temperature between 100 K and 300 K. I will then perform a

temperature dependent ARPES study to test this theoretical prediction.

3.5.1 Calculated temperature dependence of the chemical potential

To determine the evolution of the chemical potential, the total number of electrons, N,

is calculated,

N=2YY f(Ev(k)—u(T)). (3.17)
k Vv

Here, v is the band index, Ey (k) is the energy of the band v at momentum K, f(Ey (k) —
W (T)) is the Fermi function and p(7T') is the temperature dependent chemical potential.
The value of the chemical potential at 100 K is set to 4 (100 K) = 12 meV in order
to agree with the experimental Fermi cut off. Using this value, N was determined to
be 12.00e™, in agreement with the total number of electrons available from two Fe2t
atoms in a 2-Fe unit cell.

As a function of temperature the number of electrons can not change, else the
system would gain charge. Therefore N is fixed to 12.00e™ and Eq. (3.17) is solved
self consistently for the chemical potential at a given temperature. In Fig. 3.6(a),
the relative shift to the chemical potential is plotted as a function of temperature, as
predicted from the ARPES-based tight binding model. This is compared with the
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Figure 3.6: a) Shift of the chemical potential as a function of temperature predicted using the
ARPES-based parameter set (black line), compared to a set of DFT-based hopping
parameters (red line). Ap is determined relative to the 100 K value. b) Band
dispersions along I' — M indicating the predicted location of the chemical potential
at 100 K and 300 K.

prediction from the same tight model using the DFT-based hopping parameters. The
ARPES-based parameters predict a 10 meV increase to the chemical potential between
100 K and 300 K, whereas the DFT-based model suggests a negligible -0.4 meV shift.
This highlights an important difference between these two models.

In FeSe, a 10 meV rigid shift to the chemical potential would imply that the max-
imum binding energy of the outer hole pocket at the I" point will have moved entirely
below the chemical potential by 300 K, as shown in Fig. 3.6(b). If this is true, the
effect should be noticeable in ARPES measurements.

3.5.2  Temperature dependent ARPES study

To confirm this theoretical prediction, a temperature dependent ARPES study on sin-
gle crystals of FeSe has been performed. If a rigid chemical potential shift does occur,
the kr value of the hole pocket should decrease with increasing temperature and, op-
positely, the kr value of the electron pocket should increase. In Fig. 3.7, the hole
and electron pocket, close to the high-symmetry Z and A point, is measured for tem-
peratures between 100 K and 300 K. A photon energy of 56 eV has been used, this
corresponds to k, ~ 7, where the pockets are largest and should therefore be easiest
to observe changes in kr. At 100 K, the two hole pockets can be observed, which is
correctly described in the ARPES-based model, shown in Fig. 3.5(b). The two over-
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Figure 3.7: a) Temperature-dependent Fermi surfaces of the hole pocket (top row) and electron
pocket (bottom row), taken at a photon energy of 56 eV between 100 and 300 K.
The axes are defined relative to the centre of the pocket.

lapping ellipses of the electron pockets can also be seen. By ~ 200 K the inner hole
pocket has disappeared below the chemical potential, followed by the outer hole pocket
by ~ 300 K. Conversely, the electron pocket appears to get larger as the temperature
increases. This is in agreement with a rigid shift of the chemical potential described

by our model.

To confirm the loss of the hole pocket below the chemical potential, the experimen-
tally extracted kr values for the hole and electron pocket are plotted in Fig. 3.8(c,d).
Assuming the hole band dispersions are quadratic, the kr value of the hole pocket
should decrease with a square root behaviour as a function of temperature. The square
root function fitted to the data in Fig. 3.8(c) (blue lines) shows that both the inner and
outer hole pocket are in agreement with this behaviour. For the electron pocket, the
band dispersions in the vicinity of the chemical potential are approximately linear and,
as a result, the k¢ value is expected to be increase linearly with increasing temperature.

This is in agreement with the results from Fig. 3.8(d).

To quantify the chemical potential shift, the energy distribution curves (EDC),
taken at the centre of the high symmetry momenta of the Z and A point, are anal-
ysed in Fig 3.8(a,b). For the Z point, two main peaks are observed, a large d > peak
at ~ 220 meV and a mixture of d,,, dy, and dy, bands near the Fermi level. For the
A point, only a single peak composed of a mixture of d,,, d,; and dy, bands near the
Fermi level is observed. For all bands there is a decrease in the maximum peak position
as a function of temperature. By extracting the peak position for the d> band at the Z

point, which is composed of only a single band and is situated far away from the Fermi
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Figure 3.8: Data analysis of chemical potential shift. EDC taken along the high symmetry
momentum of a) the Z-point and b) the A-point as a function of temperature. c)
The extracted kr values of the hole pocket (Z-point). d) The extracted kg values of
the electron pocket (A-point).

level, a linear decrease of ~ -0.13 meV/K is extracted, leading to a 25 meV increase
to the chemical potential between 100 K and 300 K. This is over twice as large as the
10 meV shift predicted from the ARPES-based tight binding model.

As the ARPES-based tight binding model accurately describes the important fea-
tures that effects the temperature dependence of the chemical potential, it is unlikely
that the discrepancy between the 10 meV theoretical chemical potential shift and the
25 meV experimental chemical potential shift arises from the numerical inaccuracies
of the model. A more likely scenario is that a temperature-dependent self energy, that
is neglected within these theoretical calculations, would account for the enhanced in-

crease.

Such correlation effects could lead to a reduction of the coherent quasiparticle
weight with increasing temperature which would decrease the density of states of the
system. In this scenario a greater shift to the chemical potential will be required to en-
sure charge conservation. Evidence for the importance of the temperature dependence
of the self energy has been shown in previous theoretical calculations of BaFe;As;
[150, 151]. The increase in the self energy can also be observed when studying the
experimental band dispersions as a function of temperature. In Fig. 3.9 the width of
the bands increases with increasing temperature, this implies that the imaginary part of
the self energy has also increased. It is likely that the temperature dependence of the

self energy can not be ignored at high temperatures.
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Figure 3.9: Temperature dependence of the band dispersions of FeSe between 100 K and
300 K. Top row - The Z point at v =56 eV using LH polarised light. Bottom
row - The A point at hv =56 eV using LV polarised light.

3.5.3  Doping effects of the chemical potential

Doping is another parameter which will affect the chemical potential and can be stud-
ied using the ARPES-based model. In Fig. 3.10(a) the calculated change in the chem-
ical potential, predicted as a function of hole and electron doping, is presented. To
model the influence of doping, the value of N, in Eq. (3.17), is altered. The doping is

defined as a percentage of an electron such that 1% doping is equal to 0.0le™.

An asymmetric shift to the chemical potential between hole and electron doping
is calculated. For electron doping values of 24%, a 100 meV increase to the chemical
potential is predicted, assuming that the temperature is held constant at 100 K. Whereas
24% hole doping only produces a -60 meV shift to the chemical potential. This is a
consequence of the fact that the density of states per meV is larger below the chemical
potential than above, such that more states must be removed per meV to alter the

chemical potential.

Interestingly, the hole and electron doped systems are predicted to have an oppo-
site effect on the temperature dependence of the chemical potential. As shown in Fig.
3.10(b), the hole doped systems (as well as the undoped system) show an increase in
the chemical potential at temperature increases whereas, for electron doped systems,
the chemical potential decreases as a function of temperature. This can be understood
in an analogous way to the neutral FeSe, as the system becomes more electron doped,

there are less hole states to ensure a conservation of charge with increasing tempera-
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Figure 3.10: a) Calculated change to the chemical potential, Ay, as a function of doping. The
temperature is fixed to 100 K. b) Temperature dependence of the chemical po-
tential for hole doped systems (red lines), the undoped system (black line) and
electron doped systems (blue lines).

ture. To compensate, the chemical potential actually decreases to ensure that charge is
conserved. This effect has been experimentally observed in the doping behaviour of
the chemical potential in Ba(Fe|_,Co,)>As; [147].

3.5.4  Comparison with experimental literature

During the preparation of the manuscript for the work presented in this chapter, Kush-
nirenko et. al. [152] presented a study of the temperature dependence of the electronic
structure of FeSe . They report, an opposite shift in binding energy between 100 K and
300 K for the hole and electron bands. The hole bands are claimed to increase in bind-
ing energy by 25 meV and the electron bands are claimed to decrease by 25 meV. This
conclusion disagrees with our experimental data, where both bands are observed to de-

crease by 25 meV, which we have interpreted as a rigid shift to the chemical potential.

In response to this disagreement, Pustovit ez. al. [153] performed an independent
study of the temperature dependence of the hole bands of single crystals of FeSe and
a tellurium doped Fej gsSeg g4 Teg.16 sample [154]. By studying the Z point, using
photon energies of 21 eV, Pustovit et. al. observed that the hole bands continuously
decreased in binding energy between 100 K and 250 K in both systems. This result
is in agreement with our experimental conclusions and additionally the conclusions
obtained from the sulphur doped FeSeq 94550055 measured by Adbel-Hafiez et. al.
[149].
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3.6 Discussion

The ARPES-based tight binding model, developed in this chapter, provides an accurate
description of the low energy quasiparticle band dispersions of FeSe and, importantly,
highlights the large discrepancy between a DFT-based model and experimental mea-
surements. However, this model does have some limitations. This model can not
explain what causes the large renormalisation between the non-interacting, bare band
dispersion and the measured ARPES data. It is also not possible to comment on the re-
liability of the tight binding description of the bands above the Fermi level, or far below
the Fermi level. That being said, for experimental features which depend on an exact
description of the Fermi surface, such as superconductivity, this model will provide a
precise description of the experimental electronic structure at low temperatures.

At high temperatures, the temperature dependence of the self energy has also been
shown to be important when it comes to accurately describing the electronic structure
of FeSe at room temperature [144]. This may be important for features of FeSe above
100 K, however, for properties that occur below 100 K, the low temperature limit will
be adequate to describe the electronic structure of FeSe.

Despite most theoretical treatments to date ignoring the effects of the chemical
potential, the large sensitivity of this property as a function of temperature may be
important for the theoretical modelling of electron doped systems [155] and monolay-
ers [67], where T, can fluctuate between 8 K and 65 K. As this model underestimates
the experimental temperature dependence of the chemical potential in bulk FeSe, it is
likely that the predicted temperature dependence of the chemical potential in hole and
electron doped systems will be even larger than the values that have been calculated
here. The importance of the sensitive chemical potential in these systems can not be
overlooked and, as we will be discussed in the next chapter, will directly affect the

electronic structure of the low temperature nematic phase.

3.7 Conclusion

In this chapter I have developed a tight binding model which quantitative describes the
experimentally observed band dispersions of FeSe in the tetragonal phase at 100 K.
In particular this model captures the shallow bands around Er which predicted a very
sensitive chemical potential, not captured within a DFT-based framework. I have then

experimentally confirmed this prediction by observing a 25 meV shift to the chemical
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potential, between 100 K and 300 K, in ARPES measurements of FeSe [144]. This
model can now be modified to account for the symmetry breaking effects of the ne-

matic and superconducting states.
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4 Effect of nematicity on the electronic
structure of FeSe and NaFeAs

4.1 Introduction

Below Ty = 90 K, FeSe exhibits a spontaneous, nematic, C4 rotational symmetry break-
ing phase. This phase induces a structural transition between a tetragonal and or-
thorhombic lattice [99] and generates large anisotropic signatures in resistivity mea-
surements [114], Knight shift experiments [156] and the electronic structure measured
by both ARPES [100, 118-120] and QPI [157-159]. Currently the microscopic origi-
nal of the rotational symmetry breaking state is not known [73], however, it has been
suggested that it may originate from electronic degrees of freedom rather than from
the lattice distortion [72]. This is due to the fact that the anisotropy of the lattice con-
stants is only 0.3% [75] at low temperatures, which is much smaller than what would
be necessary to produce the large anisotropic responses measured in experiment [145].
So far, both orbital [156, 160] and spin [116, 161] mechanisms have been proposed as
the potential origin of nematicity, however no consensus has been reached [162].

In order to correctly model the superconducting properties of FeSe, the tight bind-
ing description must first correctly describe the electronic structure of FeSe within the
nematic state. In this regard, following a similar philosophy to the previous chapter,
this chapter will be spent studying the evolution of the electronic structure upon enter-
ing the nematic state, as measured by ARPES [102, 163].

The analysis of ARPES data of the nematic state of FeSe is, however, complicated
by the newly formed orthorhombic lattice. This new crystal symmetry will induce
structural domains within the sample, with each domain rotated by 90° with respect to
its neighbour. These domains are typically smaller than the spot size of a conventional
photon beam used in ARPES experiments [164]. As a consequence, ARPES data of

the nematic state will generally consist of a superposition of photoelectrons arising
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from two 90° rotated structures. This introduces ambiguity when determining which

band arises from which domain.

It is possible to overcome this issue by applying uniaxial strain to the orthorhombic
crystal. This will align a majority of the orthorhombic domains along the axis of strain
allowing for the possibility to study the electronic structure where all the domains are in
oriented in the same direction. Due to the technical challenges posed by measurements
on crystals under uniaxial strain, most ARPES data of the nematic state of FeSe has
been performed on twinned crystals, and the electronic structure of a single domain

has had to be interpreted from this.

In this chapter, I will aim to understand the electronic structure of the nematic
phase of FeSe by closely studying the recent experimental work on both unstrained
(twinned) crystals [96, 102, 165] and strained (detwinned) crystals [163]. T will use
this information to develop a phenomenological nematic order parameter which can
quantitatively describe the experimental temperature dependent band shifts that are

observed in ARPES data of twinned crystals.

I will then focus on the surprising anisotropy observed in ARPES measurements
on detwinned crystals of FeSe. Whilst theoretical models of the nematic state of FeSe
conventionally describe a Fermi surface consisting of one hole pocket and two electron
pockets [145, 146], ARPES measurements on detwinned crystals reveal a Fermi sur-
face consisting of one hole pocket and only one electron pocket. I compare this exper-
imental result with the tight binding model and discuss what needs to be phenomeno-

logically included in order to correctly describe the experimental measurements.

Finally, I discuss the electronic structure of detwinned crystals of NaFeAs, which
exhibits a nematic phase at 7y = 54 K and an antiferromagnetic state at 7, =43 K. A
similar anisotropic behaviour at the Fermi surface of NaFeAs is observed, such that
only one of the two electron pockets contributes to the Fermi surface below 7;. This
suggests that the lack of a second electron pocket may be a generic feature of the

nematic state.

The experimental data of FeSe presented in this chapter was obtained and pro-
cessed by Matthew Watson and Timur Kim. The theoretical analysis however is my
own. For the ARPES study of detwinned crystals of NaFeAs, I personally contributed

to the experimental measurement of the sample.
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Figure 4.1: Temperature evolution of the M point of FeSe at 56 eV using LV polarised light,
adapted from Ref. [102]. a) Tetragonal phase electronic structure at 98 K. b) Ne-
matic phase electronic structure at 82 K. ¢) 67 K and d) 21 K. The MDC’s in-
tegrated around the Fermi level are presented as red curves showing two distinct
bands crossing the Fermi level at every temperature. e-h) Cartoons corresponding
to the temperature dependent band dispersions suggested by the ARPES data. Here
the colours correspond to the maximum orbital character of the band with red: d,.,
green: d,., blue: d,,.

4.2  Temperature dependence of the electronic structure of FeSe

In this section, I will review the experimental ARPES data of the nematic state of
FeSe, focusing on twinned crystals. in these unstrained crystals, careful temperature
dependent studies of the electronic structure have been performed [96]. I will use this
data to determine the magnitude and symmetry of the nematic order parameter that will

reproduce the experimental electronic structure within the tight binding framework.

4.2.1 Electron bands

In the tetragonal phase, it was observed that two bands crossed the Fermi level at
the M/A point of FeSe. This resulted in two degenerate saddle points separated by
20 meV [144]. The upper saddle point consisted of a d,; and a d, degenerate band,
and the lower saddle point consisted of two dy, bands.

This was not entirely clear from previous data sets on FeSe [100, 118—120]. In
these earlier reports, it was believed that the M/A point consisted of only a single saddle

point, of degenerate dy; and d,, orbital character, and the lower d,, saddle point was
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unobservable. On cooling the sample down to low temperatures (< 20 K), these reports
observed two bands at the M/A point separated by 50 meV [100, 118-120], which led
the authors of these manuscripts to suggest that a 50 meV symmetry breaking nematic

splitting of the the d,; and dy, states had occurred.

The re-evaluation of the electronic structure in the tetragonal phase, where both the
dy;/dy and d,, bands are observed, called for a more detailed study of the temperature
dependence of the M/A point [102]. In Fig. 4.1, the results of the temperature depen-
dent study of the A point are shown. This data was measured using LV polarised light
and with a photon energy of v = 56 eV. At 98 K, in Fig. 4.1(a), two separate bands
can be observed crossing the Fermi level, indicating two individual saddle points at
the A point within the tetragonal phase, as discussed in Section 3.3. To clarify the
electronic structure, in Fig. 4.1(e) a cartoon of the band dispersion corresponding to

Fig. 4.1(a) is shown.

As the system is cooled below the nematic transition (Fig. 4.1(b-d)), the upper
saddle point is observed to increase in binding energy, by around 20 meV. Conversely,
the lower saddle point slightly decreases in binding energy by around 10 meV. At 21 K,
two saddle points are still observed. This is illustrated in the cartoons of Fig. 4.1(f-h).

A temperature dependent analysis of the data is also shown in Fig. 4.2(b).

From this data, it was determined that no symmetry breaking band splitting at the
A point could be detected (within experimental resolution). Moreover, the 50 meV
splitting, that had been reported in the literature [100, 118-120], appeared to arise
from a combination of the already present 20 meV separation in the tetragonal state, an
additional ~20 meV upward shift to the upper saddle point and a 10 meV downward
shift to the lower saddle point. In total, a 30 meV increase in separation of the two

saddle points was detected.

It must be noted that Fig. 4.1 describes data obtained from a twinned sample
of FeSe, therefore it is not possible to determine which bands arise from which or-
thorhombic domain. Nevertheless, if a d.,/ d, band splitting had occurred, ARPES
data on twinned crystals would be able to observe this effect by measuring a dou-
bling of the bands at low temperatures. This would arise as the electron bands would
no longer be C4 symmetric and thus the two 90° rotated domains would produce two

different band dispersions. This is not detected in this data set.
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4.2.2  Hole bands

At the A point, it appeared that there was a 30 meV increase to the separation of the
two degenerate saddle points, with a symmetry conserved upwards shift to the degen-
erate dy; and dy, states. For the hole bands, however, the d; and d,, states are already
split by the presence of a 20 meV spin orbit interaction [90, 100]. This pushes the d,;
state above the Fermi level, making it challenging to truly detect the maxima using
photoemission. This challenge was overcome by Watson et. al. [165]. Here, the au-
thors performed a Laser-ARPES study of FeSe at the I" point, where the maxima of the
hole band is only 7 meV above the Fermi level. This is shallow enough that thermally
excited electrons can still populate the top of the hole band at finite temperatures, albeit
with a reduced intensity. This allowed the authors to track the evolution of this band
position upon entering the nematic phase. They concluded that the separation between
the d,, and dy, bands increases from 20 meV at 100 K, to 37.5 meV at 10 K. Indicating
a 17.5 meV increase to the splitting of these states.

This increase in splitting, however, is not equivalent to the strength of the nematic
ordering. Due to the already finite spin orbit interaction, any additional ordering will

add in quadrature with the magnitude of the spin orbit coupling,

AE = \[A},+ A2, (4.1)

Thus, given that the bands at 10 K are split by AE = 37.5 meV and assuming
that the spin orbit interaction, Agp, is temperature independent, and fixed at a value
of 20 meV [90, 100], the authors concluded that the nematic ordering strength, A,
reached 29 meV at at 10 K. Their temperature dependent results for the I" point are

presented in Fig. 4.2(a).

Evidence for a chemical potential shift in the nematic state

In the same laser ARPES paper measuring the I' point of FeSe, It was also observed
that the dy, band, located at around -40 meV at 100 K, decreases by 10 meV [165]. This
is equivalent to the 10 meV decrease of the d,, band observed at the A point [102]. A
momentum independent shift at both the centre and corner of the Brillouin zone, hints
at a possible change in the position of the chemical potential, induced by the nematic
ordering. This would be similar to the temperature dependent shift observed in Chapter
3 [144]. On this assumption, the observed 20 meV increase to the degenerate d,, and

dy, states at the A point would actually be a 30 meV increase, plus a 10 meV shift to
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Figure 4.2: Summary of the temperature evolution of the electronic structure of FeSe. a) Tem-
perature dependence of the hole bands of FeSe, reproduced from Ref. [165]. Here,
red labels the d; band, green is the d,, band and dark blue is the d, band. b) Tem-
perature dependence of the electron bands, reproduced from Ref. [102]. Here, red
labels the degenerate d../d,. state and dark blue labels the d, band. c¢) Fermi sur-
face of a twinned sample of nematic FeSe at 7 K. d) Fermi surface of the tetragonal
phase of FeSe at 100 K, reproduced from Ref. [163].

the chemical potential. This would then imply that the magnitude of nematic ordering
at both the hole and electron pockets is of the order of 30 meV. I will therefore use this

value as the energy scale for describing nematic ordering in FeSe.
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4.2.3  Fermi surface

The Fermi surface of the tetragonal phase of FeSe has been previously discussed in
Chapter 3. It consists of one or two hole pockets at the centre of the Brillouin zone,
depending on k_, and two overlapping oval shaped electron pockets at the corner of the
Brillouin zone. On cooling the system into the nematic phase, the inner hole pocket,
which is present at 56 eV (k; ~ 7) in Fig. 4.2(d), moves below the Fermi level due
to the increased nematic splitting. The outer, spherical, hole pocket is observed to
elongate to form an ellipse. In Fig. 4.2(c) two 90° rotated ellipses are observed at the
centre of the Brillouin zone. This is a consequence of measuring a twinned crystal.
Here, it is assumed that there is one ellipse per orthorhombic domain, this assumption
will be tested in Sec. 4.4.

At the corner of the Brillouin zone, the two 90° rotated elliptical electron pockets
have both evolved into peanut shaped features, where the ellipses have been pinched
in at the sides, this corresponds to the symmetry preserved shift of the bands described
in Fig. 4.2(b). As this is a twinned sample, a doubling of the bands due to the presence
of the two orthorhombic domains would also be expected. However, only two electron
pockets can be observed at 7 K. This would seem to imply that the electron pockets
retain C4 symmetry and that the states arising from both orthorhombic domains directly
overlap. This claim will again be tested in Sec. 4.4.

The four figures of Fig. 4.2 completely describe the temperature dependence of
the electronic structure of a twinned sample of FeSe. The observed symmetry of the
band shifts, as well as the 30 meV nematic ordering energy scale will now be used to
determine an order parameter that can describe the electronic structure of the nematic

state.

4.3  Determination of the nematic order parameter for FeSe

A theoretical analysis of the symmetry breaking effects of nematic ordering has been
studied in detail by Ref. [166, 167]. Here, the authors suggest a large number of possi-
ble forms the nematic order parameter could take, and the corresponding consequences
each nematic order parameter may have on the electronic structure of FeSe. Now that a
complete set of experimental data has been obtained, it is possible to apply the various
forms of nematic ordering to the ARPES-based tight binding model, that describes the
tetragonal phase, and compare the consequences with the experimental results.

The order parameters are included into the tight binding model as Hy, + A(T)h
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Figure 4.3: Comparison of the effects that nematic order parameters would have on the Fermi
surface of FeSe. a) Modelled Fermi surface of the tetragonal phase of FeSe at k, =
7. b) Fermi surface with added ferro-orbital order with A,,.,,, = 29 meV. ¢) Fermi
surface with added d-wave bond ordering with A, = 14.5 meV. d) Fermi surface
with an extended s-wave bond ordering term of A, = 14.5 meV. e¢) Fermi surface
with a symmetry allowed hopping, which only effects the electron pockets, A, =
29 meV. f) The experimental nematic order parameter combining the orderings
from (d) and (e), Apern = 29 meV. Here the colour describes the maximum orbital
content of the band, green = d,,, red = d,; and blue = d,,.

where A(T) = A(0),/1— % and A(0) =30 meV. The order parameter symmetry is
defined as 4. The most common types of nematic order suggested in the literature,

these are
e Ferro orbital ordering : h = (ny; —ny;) [146, 168, 169]
e d-wave bond ordering : i = (n,, +n},)(cos(k,) —cos(ky)) [120, 167, 170]
e Extended s-wave bond ordering: h = (ny, —n,)(cos(ky) +cos(ky)) [166, 167].

Here, ng = cjxica,- is the second quantization number operator for orbital & on
T

atomic site 7, in the 2-Fe unit cell, and nj, = CiCaj T c:(x Cai defines the off diagonal
bond operator between neighbouring sites.
In Fig. 4.3, the Fermi surfaces suggested from these various forms of nematic

ordering are presented. In Fig. 4.3(a), the modelled Fermi surface of the tetragonal
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Figure 4.4: Model of FeSe with the phenomenological nematic order parameter. a) Calculated
chemical potential shift of FeSe as a function of temperature compared to the 90 K
value. Below 90 K the nematic order parameter is switched on with a mean-field

temperature dependence Ayep (T) = Apem(0)4/1 — % where Ay, (0) = 29 meV. b)

Calculated band dispersions along the Z-A direction in the nematic phase, the black
numbers above the high symmetry points correspond to the calculated band split-
tings, shown with a grey double headed arrow. The red values describe the experi-
mental values. Here the colour describes the maximum orbital content of the band,
green = d,,, red = d,; and blue = d,,.

phase (h = 0) is shown for comparison. In Fig. 4.3(b), the predicted Fermi surface
in the presence of a ferro-orbital ordering term is shown, which defines a momentum-
independent splitting of the population of the d,; and d,, states. It can be seen that the
hole pocket elongates into an elliptical shape, as suggested by experiment. However,
this order parameter also induces a symmetry breaking effect at the electron pockets,
giving rise to a small peanut shaped electron pocket and a large spherical electron
pocket. This does not agree with the twinned Fermi surface presented in Fig. 4.2(c).
In Fig. 4.5(c), the predicted Fermi surface in the presence of a d-wave order parameter
is shown. Here, the hole states are not affected by the ordering, and remain spherical,
whereas the electron pockets experience a degeneracy breaking splitting between the
dy, and dy, states. This does not agree with our experimental results. In Fig. 4.3(d), the
Fermi surface in the presence of an extended s-wave bond ordering term is shown. This
form of symmetry breaking correctly accounts for the elongation of the hole pocket,

but does not produce an effect the electron pockets.

Out of all the order parameters considered, none of the symmetry breaking terms
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preserve the C4 symmetry of the electron pockets. This is with the exception of the
extended s-wave bond ordering term, which doesn’t alter the electron pockets from
the tetragonal state. To overcome this a symmetry allowed hopping term A, (n),, —
ny,.)(cos(ky) —cos(ky)) is introduced which correctly reproduces the shifts to the elec-
tron pockets observed in twinned crystals, but does not affect the hole states. This is
shown in Fig. 4.3(e). By combining the extended s-wave bond ordering term of Fig.
4.3(d) with this symmetry allowed hopping term, we arrive at a form for the nematic
order parameter which agrees with the experimental results. This is shown in Fig.

4.3(1).

The experimental nematic order parameter is defined

(), —n.)(cos(ky) + cos(ky)) + Anzem (n, — my) (cos(ky) — cos(ky)).  (4.2)

Here, an additional factor of two in the symmetry breaking extended s-wave term
has been included, which counters the doubling of the splitting which would otherwise
occur between the hole bands. This then quantitatively reproduces the 37.5 meV split-
ting of the hole bands as observed in experiment [165]. If this additional factor of two

was not required, then Eq. (4.2) could be simply reduced to Anem(n;Z —

;) cos (k),
which was reported in Ref. [102].

In Fig. 4.4(b), the band structure described by the tight binding model in the pres-
ence of the experimental nematic order parameter is presented. This model describes
a 36.9 meV splitting between the hole bands, and a 53.9 meV gap between the saddle
points of the electron bands. This quantitatively reproduces the experimental disper-
sions.

Finally, to test if the observation of a momentum independent downward shift of the
dyy band is a chemical potential effect, the shift to the chemical potential is calculated
as a function of temperature. It is assumed that the nematic order parameter behaves
with a mean field temperature dependence, which becomes finite below 7y = 90 K. By
applying the temperature dependent experimental order parameter, and repeating the
calculations from section 3.5.1, it is suggested that the chemical potential will increase
by 9 meV between 90 K and 10 K. This is shown in Fig. 4.4(a). This value is in
quantitative agreement with the downward shift observed for the dy, band in Fig. 4.2(a)
and (b). Therefore, the experimental nematic order parameter can account for all the
observed features on the electronic structure, based on ARPES data of twinned crystals

of FeSe. By applying Eq. (4.2) to the tight binding model developed in Chapter 3, we
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Figure 4.5: Summary of the ARPES-based tight binding model of FeSe. a) Experimental Fermi
surface in the tetragonal phase of FeSe at 100 K. b) Calculated Fermi surface of
FeSe in the tetragonal phase at k, = m. c¢) Calculated band dispersions along the
Z-A direction for the tetragonal phase. d) Experimental Fermi surface of a twinned
crystal of FeSe within the nematic phase at 7 K. e) Calculated Fermi surface in-
cluding the 29 meV experimental nematic order parameter. f) Calculated band
dispersion for the nematic model of FeSe. Here the colour describes the maximum
orbital content of the band, green = d,,, red = d,; and blue = d,,.

now have a model which can quantitatively describe the low temperature electronic
structure as described by ARPES experiments on twinned crystals of FeSe. This result

is concluded in Fig. 4.5.

4.4  ARPES studies on detwinned crystals of the iron-based

superconductors

4.4.1  Detwinning orthorhombic crystals

Domain structures occur to lower the total energy of a macroscopic system. In a fer-
romagnet, a single domain holds a large amount of magnetostatic energy, the stress
of which can be greatly relieved if the system splits into two smaller domains aligned

antiparallel to each other [171]. Equivalently, one single orthorhombic domain will
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Figure 4.6: Comparison of a twinned and detwinned Fermi surface of FeSe. a) Photograph
of the uniaxial strain device with attached sample. b) Fermi surface of a twinned
crystal of FeSe at 10 K. c¢) Fermi surface of a detwinned crystal FeSe at 10 K, here
strain has been applied along the a-crystallographic axis. Figures adapted from
Ref. [163].

exhibit a large amount of strain on the macroscopic crystal, which can be alleviated by
forming two smaller 90° rotated domains.

In FeSe, these domains are considerably smaller than a conventional photon beam
used in ARPES. the corresponding photoemission data that is measured will be a su-
perposition of both rotated domain structures. This is clearly seen in Fig. 4.2(c), where
two 90° rotated ellipses are observed at the centre of the Brillouin zone at 7 K. The
determination of the nematic order parameter has, so far, been entirely based around
inferring the true electronic structure of nematic FeSe from this twinned data. How-
ever, it would be informative to confirm if this interpretation is also correct in a mono-
domain sample.

It is possible to greatly reduce the population of one of the orthorhombic domains
by introducing uniaxial strain [172]. Effectively, the orthorhombic domains will tend
to align along the axis of strain. This provides a method to significantly reduce the
population of the 90° rotated electronic structure measured in photoemission experi-
ments and study the contribution of the electronic structure of FeSe without twinning
effects. To confirm the validity of the nematic order parameter, I will now study the
experimental ARPES data of detwinned crystals of FeSe [163].

4.4.2  Uniaxial strain device

Fig. 4.6(a) presents a photograph of the uniaxial strain device employed to study de-
twinned crystals. The strain is applied mechanically, the device consists of two pillars

separated by a small distance, with the corners of the crystal glued to each crystal.
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Figure 4.7: Fermi surface and band dispersions of detwinned crystals of FeSe at the hole pocket
using a photon energy of 23 eV and LH polarisation. a) Fermi surface measured
with the strain parallel to the k, axis. b) Fermi surface measured with the sample
rotated 90° degrees, corresponding to the second orthorhombic orientation. c,d)
Band dispersions corresponding to the cuts taken along the dashed red lines in
(a,b). The MDC'’s integrated around the Fermi level are also presented. Figure
adapted from Ref. [163].

Whilst most of the strain on the sample occurs via thermal contraction of the device,
additional strain can be applied via the screw if the degree of detwinning does not look
sufficient. The Fermi surface of FeSe measured on an unstrained crystal, and a strained
crystal are presented in Fig. 4.6(b) and Fig. 4.6(c). This shows the effect of detwinning

the crystal via uniaxial strain.

4.4.3  ARPES study of detwinned crystals of FeSe

Hole pocket

In Fig. 4.7, the band dispersion and Fermi surface located around the centre of the
Brillouin zone, are presented. This data was taken at 23 eV, corresponding to the Z
point, using LH polarised light. In Fig. 4.7(a), a single elliptical hole pocket can be
observed, which indicates that the sample has been successfully detwinned. In Fig.

4.7(b), the Fermi surface measured at the same location on the sample after rotating
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the sample 90° is presented. This corresponds to the spectral weight arising from the
second orthorhombic orientation. Here, the majority of the spectral weight has shifted
to be aligned along the k, axis. This confirms that the second orthorhombic orientation
is being measured. It can seen in Fig. 4.7(b), that this sample is not 100% detwinned
and that some spectral weight from the elliptical hole pocket of the minority domain
can still be detected. This can also be seen in the cuts presented in Fig. 4.7(c) and
4.7(d), where two hole bands can be observed crossing the Fermi level. In Fig. 4.7(c)
a majority of the spectral weight is present on the outer band, corresponding to one
domain, whilst the spectral weight in Fig. 4.7(d) is localised on the inner band from
the other domain. This is most clearly seen in the MDC'’s taken at the Fermi level.

By comparing the relative ratios of the intensity of the outer and inner bands from
both domains, it is possible to extract the degree of detwinning of the sample. In the
sample studied here it was determined that this population of the domain along the axis
of strain was 80% of the total spectral weight. However, a 20% contribution from the
second domain is still present [163].

The observation of only one hole pocket in detwinned crystals of FeSe agrees with
the assumptions made on twinned crystals of FeSe, and agrees with the tight binding
model described in Fig. 4.5(e,f).

The electron pocket

In Fig. 4.8, ARPES measurements of the electron pocket at 56 eV, corresponding to the
A point, are presented using LV polarised light. In a single domain, one electron pocket
can be observed at the Fermi surface, as shown in Fig. 4.8(a). The band dispersion,
taken though the centre of the A point, along the k, axis, is presented in Fig. 4.8(d).
This also confirms that only one electron band can be observed. This electron band is
very shallow, with a minima less than -5 meV below the Fermi level. Apart from the
shallow electron band only the broad d,, state at -50 meV can be observed.

In Fig 4.8(b), the Fermi surface from the second orthorhombic orientation is pre-
sented. Again, only one electron pocket can be observed. However, by taking a cut
along k,, in Fig 4.8(e), a deeper electron band of dxy orbital character can be observed.
There is also a hole-like band, with a maximum binding energy which is equivalent to
the electron-band minima in Fig. 4.8(d). This corresponds to a saddle point at the high
symmetry axis, where the band rotates by 90°.

This information does not agree with the tight binding model, presented in Fig.

4.5(e,f), where two electron pockets are expected to be present at the Fermi level, and
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Figure 4.8: Fermi surface and band dispersions of detwinned crystals of FeSe at the electron
pocket using a photon energy of 56 eV and LV polarisation. a) Fermi surface of the
A point with the strain parallel to the &, axis. b) Equivalent Fermi surface measured
after the sample is rotated 90° corresponding to the second domain. c) Twinned
Fermi surface of the A point for comparison, showing both electron pockets. d-f)
Band dispersions of (a-c) taken along the dashed red lines. A cartoon of the band
dispersion for each image is shown in the bottom right hand corner. Here the colour
describes the maximum orbital content of the band, green = d,,, d,; and blue = d,,.
Figure adapted from Ref. [163].

the band dispersions were expected to exhibit Cy4 rotational symmetry. Moreover, a
Fermi surface consisting of only a single electron pocket is inconsistent with any form
of nematic ordering which only shifts or splits the band dispersions from the tetrago-
nal state [163]. In the tetragonal state, at 100 K, two electron pockets are detected in
ARPES studies [100, 102]. If a band shift or splitting occurred to remove one of the
electron pockets from the Fermi level, this would have been observed within ARPES
data on twinned crystals. Instead, two bands which were present in the tetragonal
state, are simply no longer observed at temperatures below the nematic transition. Po-
tentially, this could originate from a Fermi surface reconstruction, or a momentum and

orbital dependent incoherence. However, the origin of this will require further study.

78



Chapter 4. Effect of nematicity on the electronic structure of FeSe and NaFeAs

Figure 4.9: Summary of the Fermi surface of FeSe. a) In the tetragonal phase, where two
electron pockets are observed. b) In the nematic phase where only one electron
pocket is measured. The red arrows point to the position where the second electron
pocket is predicted to be by theoretical models. c,d) Calculated Fermi surface of
FeSe from the optimised tight binding model corresponding to (a) and (b).

4.4.4  Developing a “one electron pocket" model of FeSe

The data that has been obtained on detwinned crystals of FeSe suggests that the Fermi
surface consists of one elliptical hole pocket and one peanut shaped electron pocket.
Currently, the experimental tight binding model describes a system of FeSe with
one elliptical hole pocket and two peanut shaped electron pockets. A method to remove
the bands not detected within ARPES experiments must therefore be defined. This is
challenging for several reasons; the first reason is that the fundamental symmetry of
the Cmma crystal structure of orthorhombic FeSe implies that two electron pockets
must be present. The bands at the high symmetry M/A point consist of saddle points,
rather than maxima and minima. A shift to the binding energy of the saddle point,
either above or below the Fermi level, would not lower the number of bands crossing
the Fermi level. The second reason, is that the limits of the changes to the electronic
structure are not explicitly known. It is not known if the bands predicted to exist in
tight binding descriptions, are incoherent down to a specified energy or if there is a

momentum dependence to this incoherence. It is also a possibility that some unknown
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reconstruction of the Fermi surface has occurred to remove the bands entirely.

From the data discussed in Fig. 4.8 it is possible to claim that the d,, hole-like
band in the k, direction around the M point is not present down to below -50 meV and
within the momenta of +0.4 A~! around the M point in the k, direction. The same
conclusion is obtained with the dy, electron band that is predicted to cross the Fermi
level.

If the states within this energy and momentum range are ignored, then it is possible
to reproduce a tight binding description of FeSe that describes the experimental mea-
surement. However, this limits the tight binding model to properties that only depend
on binding energies in the region of 0 to -50 meV. Caution must therefore be applied
when applying this model to higher binding energies.

A comparison between the experimental and modelled Fermi surface of FeSe, in
both the tetragonal and nematic state, is presented in Fig. 4.9. Fig. 4.9(a) shows the
experimental Fermi surface of the tetragonal state of FeSe at 100 K. This consists of
two overlapping elliptical electron pockets at the corner of the Brillouin zone (A point),
and two spherical hole pockets at the centre (Z point). This is directly reproduced from
the tight binding model, derived in Chapter 3. The Fermi surface of the tetragonal
ARPES-based model is shown in Fig. 4.9(c). In Fig.4.9(b) the Fermi surface measured
at 10 K in a detwinned crystal of FeSe is shown. This consists of only one elliptical
hole pocket and one peanut shaped electron pocket. In Fig. 4.9(d), the Fermi surface
described by the updated tight binding model is presented. This includes the 29 meV
nematic order parameter, described in Sec. 4.4.2. It also neglects the bands that are not
observed in detwinned ARPES. This then correctly reproduces the shape of the Fermi
surface and the binding energy of the bands as seen in ARPES experiments [102, 165].

Here, I would like to stress that the physical origin for this description of the elec-
tronic structure of FeSe is unknown. However, as I will discuss in the following chap-
ters, this experimental phenomenology will have dramatic consequences on the exper-

imental properties of FeSe.

4.4.5 ARPES studies of detwinned crystals of NaFeAs

The experimental observation of only one electron pocket at the Fermi level of FeSe
had not been suggested prior to the experiment of Watson. et. al. [163]. However, it is
natural to now ask whether this “one electron pocket" description is a generic feature
of the nematic phase, or specifically linked to FeSe.

To provide some insight to this question ARPES measurements were performed on
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Figure 4.10: ARPES data of the electron pocket of detwinned crystals of NaFeAs in the ne-
matic phase at 45 K and tetragonal phase at 60 K. a) The Fermi surface of a single
domain with strain pointing along the k, axis. b) The Fermi surface of the sec-
ond domain with strain point along the k, axis. c¢) Fermi surface of a twinned
orthorhombic sample. d) Fermi surface of a sample in the tetragonal phase. e-h)
Cuts along the k, axis corresponding to the Fermi surface of a-d). i-l) Second
derivative images of (e-h) highlighting the differences between the orthorhombic
domains.

a detwinned crystal of NaFeAs!. NaFeAs, has the same P4 /nmm crystal structure as
FeSe and exhibits a nematic transition at the lower temperature of 7; = 54 K. A striped
antiferromagnetic phase also occurs below Ty = 43 K [174]. There is therefore an
11 K window where nematicity is finite, but magnetic ordering has not stabilised. In
Fig. 4.10, Fermi surface maps and band dispersions of the electron pocket of NaFeAs,
within the nematic-only window at 45 K, are presented. The nematic ordering is less
pronounced here than in FeSe, only 9 K below T, however, a marked anisotropy be-
tween the single domain of Fig. 4.10 (a,e,i) and the 90 degree rotated domain of Fig.
4.10 (b,f,j) can be observed. This indicates that a majority of the spectral weight is

from only one electron pocket, analogous to the effect seen in Fig. 4.8 for FeSe.

!'Unlike the previous discussion on detwinned crystals of FeSe, I personally contributed to the ex-
perimental results presented here [173].
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Figure 4.11: ARPES data of the electron pocket of detwinned crystals of NaFeAs in the an-
tiferromagnetic phase at 10 K. a) Fermi surface of a single domain with strain
pointing along the k, axis. b) Fermi surface for the second domain with strain
point along the k, axis. ¢) Fermi surface of a twinned orthorhombic sample. d-f)
Cuts along the k, axis corresponding to the Fermi surface of a-c). g-i) Second
derivative images of d-f) highlighting the differences between the orthorhombic
domains.

On entering the antiferromagnetic phase, the unit cell of the NaFeAs doubles to
include the newly stabilised up and down spin configuration. As a consequence, the
momentum space Brillouin zone halves in size. The electron pockets fold onto of the
hole pockets, and hybridise [173]. This hybridisation leads to an entirely reconstructed
Fermi surface, shown in Fig. 4.11. Despite the added complication, the anisotropy
between the two domains (Fig. 4.11 (a,d,g) and Fig. 4.11 (b,e,h)) still remains. This
indicates that only the single electron pocket, observed in the nematic phase of Fig.
4.10 is present in the hybridisation.

This result provides evidence to suggest that a Fermi surface composed of only

one electron pocket might be a generic feature of the nematic phase. However, this
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experiment must be repeated with more materials to confirm this hypothesis.

4.5 Discussion

The observation of only one electron pocket at the Fermi surface of the nematic phase
of FeSe and NaFeAs is unconventional and unexpected. Currently, no theory of the
nematic phase suggests such a dramatic anisotropy of the band structure, nor does
the symmetry of the Fermi surface agree with ab-initio calculations or tight binding
models of a Cmma crystal structure [145].

Considering that two electron pockets are observed in the tetragonal phase of FeSe,
it is natural to assume that two electron pockets should also be observed at tempera-
tures below the structural transition. The exact band positions may have potentially
shifted or split from the tetragonal values, but all bands should be present in some ca-
pacity. However, no band shift, splitting or nematic order parameter can account for
this observed anisotropy. If an electron band simply rose above the Fermi level at the
M point, a new hole pocket would appear, due to the nature of the saddle point at this
momenta. Instead the states associated with one of the electron pockets are simply not
observed.

This phenomenon was completely masked from conventional ARPES studies on
twinned crystals due to the apparent C4 symmetry of the electron pockets. This now
leaves the interpretation of a nematic order parameter more ambiguous. In Fig. 4.3,
certain nematic order parameters were ruled out on the basis that they did not agree
with the symmetry of the electron pocket. Whilst ferro-orbital ordering (Fig. 4.3(b))
still does agree with the detwinned ARPES data, it is now not possible to rule out some
combination of extended s-wave bond ordering (Fig. 4.3(d)) and d-wave bond ordering
(Fig. 4.3(c)), assuming that the dy, and d,, bands do not contribute to the electron
pocket below the nematic transition. This is not equivalent to an orbital dependent
incoherence, however, as both d,, weight and d,, weight can still be detected at other
momenta within the Brillouin zone [95].

There is additional evidence in favour of a one hole pocket and one electron pocket
Fermi surface within the nematic state of FeSe. Hardy er. al. [175] has presented
measurements of the Sommerfeld coefficient of FeSe from specific heat experiments.
Quantum oscillation experiments on 2D materials are able to extract the effective mass
of quasiparticle bands at the Fermi surface [176, 177], which can be used to calculate

the Sommerfeld coefficient. Hardy et. al. showed that the Sommerfeld coefficient
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measured from specific heat studies of FeSe could accurately be reproduced from the
effective masses obtained from quantum oscillation studies. However, it could only
be reproduced when a Fermi surface consisting of one hole pocket and one electron
pocket was assumed.

The amount of uniaxial strain applied to the sample depends on the thermal con-
traction of the strain device [102]. Thus a temperature dependence of the electron
bands, as performed on twinned samples in Fig. 4.1, is not possible as it would alter
the amount strain applied to the crystal, making our results unsystematic. A peizostack
based device, compatible with ARPES, may be able to rectify this issue [178]. Alter-
native methods may be required to probe the disappearance of the electron pocket as a
function of nematic ordering.

It is unlikely that the non-observation of the theoretically predicted second electron
pocket is induced by the application of uniaxial strain. No other differences between
the electronic structure of a twinned crystal and a detwinned crystal are observed.
Moreover, the amount of strain applied should not cause any external change to the
band structure until most of the domains have been aligned along the axis of strain
[179]. The sample studied in this chapter was only 80% detwinned [163]. To confirm
that strain is not important, it is necessary to use alternate experimental probes which
can resolve the momentum dependent electronic structure of a single domain of an
iron-based superconductors. This will be addressed in the next chapter.

Finally, whilst the lack of observation of the second electron pocket was unex-
pected, this phenomena could be the key signature of the nematic phase. The loss of
an electron pocket is likely to induce large anisotropic effects in experimental observ-
ables such as conductivity, resistivity, and magnetism, which all depend on available
scattering channels at the Fermi level [72]. If this is the case, it calls for theoretical
efforts to develop a microscopic model which can account for the loss of the specific
bands within the nematic state, and consequently the lack of observation of a second
electron pocket. This may provide the insight required to understand nematicity, and

potentially superconductivity in the iron-based superconductors.

4.6  Conclusion

In this chapter I have studied in detail the consequences of nematicity on the electronic
structure of FeSe. I have determined that a 30 meV nematic order parameter is required
to describe the shift to the bands observed in ARPES studies on twinned crystals. I then
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determined a nematic order parameter which could quantitatively describe the change
to the electronic structure.

By studying the data of detwinned crystals of FeSe, it was concluded that two
bands, which were present in the tetragonal state, can no longer be detected in the
nematic state. As a consequence the theoretically predicted electron pocket pointing
along the b crystallographic axis is not present at the Fermi surface. This phenomenon
was also observed in detwinned crystals of NaFeAs, suggesting that a one electron
pocket Fermi surface may be a generic signature of the nematic phase of the iron-based
superconductors.

This anisotropy, whist unconventional, may be able to explain many of the exper-
imentally observed anisotropic responses of FeSe, and other iron-based superconduc-
tors. As I will show in the Chapter 6, this loss of the second electron pocket will have

consequences on the superconducting state.
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terference spectrum of the nematic
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5.1 Introduction

In Chapter 4, we studied the electronic structure of the nematic state of FeSe using
ARPES. It was noted, that two bands, which were present in the tetragonal state, were
no longer detected below 90 K. As a consequence of this, the Fermi surface of the
nematic state was observed to consist of one hole pocket and one electron pocket. This
measurement, however, disagreed with ab-initio calculations [145] and the generic
symmetry arguments of tight binding models for the Cmma lattice [142, 146], where
one hole pocket and two electron pockets are suggested to be present.

Until this discovery of a “one electron pocket" Fermi surface in FeSe [163], it was
always assumed that two electron pockets would contribute to the Fermi surface within
the nematic state. In fact, to date, all theoretical calculation of the nematic state of FeSe
has been performed on a model which is composed of two individual electron pockets
[78, 94, 146, 170, 180-183]. For theoretical calculations which are sensitive to the
Fermi surface topology, such as calculations involving the superconducting gap [89],
a “one electron pocket" model of the electronic structure would provide a dramatically
different description of physical observables, compared to the conventional “two elec-
tron pocket" model [95]. It is therefore crucial to study the experimental electronic
structure of FeSe in more detail, in order to distinguish between the the apparent con-
tradiction between ARPES data on detwinned crystals [163] and previous theoretical
assumptions.

For this reason we turn our attention to the technique of Quasiparticle Interference
(QPI). QPI is a scanning tunnelling spectroscopy (STS) based technique, which probes

86



Chapter 5. Calculation of the Quasiparticle Interference spectrum of the nematic state of
FeSe

the local density of states on the individual atom scale. By measuring the density of
states as a function of position, (ry, ry), centred around a scattering site, it is possible to
extract information about the scattering vectors, q = k — K/, associated with a material.

This experiment therefore is an independent yet complimentary technique to ARPES,
which is not limited by photoemission-based selection rules. Moreover, the atomic-
level precision of STS based experiments allows QPI to probe the electronic structure
of FeSe within a single orthorhombic domain. This overcomes one of the limitations
of ARPES, where there data collected on orthorhombic crystals is a superposition of
two 90° rotated lattices.

In this chapter, I will calculate the scattering vectors that are measured by QPI ex-
periments. By comparing the calculated dispersions suggested by the experimentally
determined “one electron pocket" model of FeSe with a conventional “two electron
pocket" model, I will be able to determine whether QPI experiments support or con-
tradict the unusual conclusion obtained from ARPES studies on detwinned crystals.
I will also address the issue of finite k, states within measurements of QPI. Whilst
most theoretical calculations describing QPI assume a 2D, k, = 0, model for the elec-
tronic structure, I find that k, = 7 states also need to be accounted for to describe the

experimental QPI measurements of FeSe.

5.2 Methodology

52.1 STM

Scanning tunnelling microscopy (STM) utilises the quantum mechanical effect of tun-
nelling. By bringing two metallic objects a small but finite distance apart, electrons
from the surface can transfer between the two. In STM, one metallic object is the ma-
terial of interest, whilst the other is an (almost) atomically sharp tip of a conductive
material. By inducing a bias voltage into the tip, a current can be induced between the
two objects. The measured current can then be related to the density of states of the
material at the surface.

Assuming a spherical s-wave tip, and Bardeen’s theory of tunnelling [184], it is

possible to equate the tunnelling current, I(V,r), to the density of states at the sample,

dme _y 50 0
I(V,r)zﬁe Vo n,(O)/ ny(e,v)de. 5.1)
—eV

Here, n,(0) is the density of states for the tip (which is assumed to be independent
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of the bias voltage, V) and ny(€,r) is the density of states of the sample at a given
energy and position. The exponential depends on the distance between the sample and
tip, s, and the work function of the sample, ¢.

The derivative of Eq. (5.1), with respect to energy, provides a direct measure of the

density of states of the sample,

dl V,I‘ 475@ —s 8mo
d(<—eV)) = V.12 n(0)ng(—eV,r). (5.2)

It is important to keep the sample to tip distance (s) constant. Not only does this
ensure that the tip does not collide with the surface, but, as the current is exponentially
sensitive to s, it also ensures that the measured current is directly proportional to the
density of states. To achieve a constant value for s, STM measurements are typically
performed with a feedback mechanism. This adjusts the z position of the tip such that
the current is held constant. This chosen current is locked in by applying an initial bias

voltage, Vp, such that,

Ame ;. /58 0
I(V,r) = %e VR 1y (0) / ns(€,r)de. (5.3)
—eVp

This can then be fed into a feedback loop which allows the position of the tip to be
adjusted to ensure a constant current at a given bias voltage.
By combining equation (5.1) and (5.3), the measured current is now independent

of the prefactors associated with the density of states,

10, ny(e,r)de

I(V,r) =1 . (5.4)
2oy, ns(€,x)de
The derivative of Eq. (5.4) then gives,
dl(Vv. —eng(—eV.
g(V, r) — ( 7r> — IO enS( e ?r) (55)

dv 20y, ns(e,v)de

By applying an additional voltage V, and measuring the current, It is possible to obtain
a direct measure of the density of states, g(V,r). Eq. (5.5) is a standard quantity
that can be measured by experimental equipment. However, as the denominator of
this equation has a complicated dependence on the density of states, which can be
influenced by the choice of Vj, if one is not careful it is possible to obtain qualitatively
different results for g(V,r), depending on the initial bias voltage [185]. There are

several methods used to overcome this issue, for the case of the experimental work of
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FeSe [158, 159] the Feenstra function has been used. The Feenstra function, L(V,r),

is defined as,

dl
L(V,r) = v —eng(—eV,r)

v 10, ny(e,r)de

Eq. (5.6) is the result of dividing Eq. (5.5) by Eq. (5.4). This is now independent

of the initial bias voltage, Vj, and thus will in theory produce the same result regardless

(5.6)

of experimental setup. This is the function that I will calculate in this chapter.

5.2.2  Local density of states in the presence of a point like defect

In order to model the momentum resolved local density of states (LDOS), measured
by experiment, we must describe a system with a local perturbation which gives rises
to spatial modulations in the density of states. These perturbations can arise from the

presence of impurities and can be calculated by using a T-Matrix formalism.

In this section, I will derive the equation for the LDOS of a system with a single
impurity. It is assumed that the impurity produces a scalar scattering potential, V, and
is located at a single site, ry, which can be modelled by a point-like delta function.
The Hamiltonian of this system is defined,

Hr)=Ar)+V8(ry). (5.7)
Here, A(r) describes the initial Hamiltonian of the system and V §(r) describes the

localised impurity.

Green’s Function

The retarded Green’s function, GR (r,r’, ), for the Hamiltonian described in Eq. (5.7)

can be written in the form of a Dyson equation,

GR(r,Y',0) =G(r—r',0)+ G'(r —rg, ©)VGR (re,r, o). (5.8)

This equation relates the real space, non-interacting Green’s function, which only
depends on the difference of the co-ordinates r and r/, to the interacting system.

A

GR(r,r', ®) can then be expanded into an infinite series,
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GR(r,¥',0) =G’(r—r,0)
+G(r,0)VG (-1, 0)
+G(r,0)VG(0,0)VG (-1, @) (5.9)
+GO(r,0)VG(0,0)VG(0,0)VG (-1, @)

Here, ro = 0 has been set to zero for simplicity. This infinite series can be written in

the compact form,

A

GR(r,r',0) =G (r—v, 0) + G%(r,0)T (0)G’ (-1, »). (5.10)

The T-matrix, T(®), is defined

T(®)=V[1+G°0,0)V +(G°(0,0)V)* + (G°(0,0)V)* +...]. (5.11)

This is then equivalent to,

A A

Vv Vv

T(w)= T V6e(r=0,0) 1-VyGk o) 612

Moreover, the Fourier transform relationship, G°(r = 0,®) = ¥ G°(k, @), makes it
possible to calculate this T-matrix in momentum space. The Fourier transform of the

retarded Green’s function from Eq. (5.10) is then
GR(k,K, 0) = G°(k, 0) + Gk, 0)T (0) G’ (K, w). (5.13)
Finally, the non-interacting Green’s function in momentum space is defined as,

1

Gk 0) = (o i57) ~ O

(5.14)

LDOS

The LDOS is defined as
1 *
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For the special case of a single impurity, within a centrosymmetric crystal, this can be
simplified to

1
N(q,0) = —ETr{ImZG(k,k—kq,a))}. (5.16)
k
This allows us to write the LDOS for a system as a sum of the non-interacting density of
states, N°( ), plus a perturbation term , SN(q, ®), due to the presence of the impurity,
N(q, ) = No(®) + 5N(q, »). (5.17)

Here, No(w) and SN(q, ®) are defined as,

No(@) = —%Tr{lmik: GOk, m)} (5.18)

5N(q, ®) = —%Tr{ImZGo(k, 0)T(0)G(k+q,0)}. (5.19)
k

We can then take the inverse Fourier transform of Eq. (5.17) to obtain the LDOS in
real space,
N(r,o) =Y N(q, )" (5.20)
q

Eq. (5.20) is equivalent to ns(g,r) of Eq. (5.1). Therefore, to match the form of the
experimental data that is presented in the literature, the Feenstra function (Eq. (5.6))

can be calculated by

N(r,o)
Ly@=9N(r, o)

L(r,0) = (521)
In the following work, I present the Fourier transform of Eq. (5.21), L(q, ®), to model

the QPI experiments of FeSe.

5.2.3  Tight binding model

In this chapter, I will compare two models of the electronic structure of FeSe within the
nematic state. The first model is a conventional tight binding model that we developed
in Chapter 4, which describes a Fermi surface consisting of one hole pocket and two
electron pockets. The Fermi surface of this model is presented in Fig. 5.1(a) and will

be referred to as the “2eP" model. The second model describes a Fermi surface with
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Figure 5.1: Fermi surface and band dispersions for the two tight binding models that will be
studied in this chapter. a,b) Fermi surface and band dispersion for the two-electron-
pocket (2eP) model of FeSe. solid lines in (a) describe the k, = O Fermi surface,
dashed lines describe k, = @. the shaded region in (b) shows states with finite &,
momenta. c,d) Equivalent calculations for the one-electron-pocket (1eP) model of
FeSe. Here, the colours describe the maximum orbital character of the bands: green
=dy;, red = d,; and blue = d,,.

one hole pocket and one electron pocket. The Fermi surface of this model is presented
in Fig. 5.1(c) and will be referred to as the “1eP" model.

The 2eP model is similar to many tight binding models used within the literature
[78, 170, 181, 182]. Whilst there is still some disagreement about the exact theoretical
form of the momentum dependence of the nematic order parameter, with some models
using a d-wave bond ordering term as described in Fig. 4.3(c) [170, 181], each model
of FeSe consists of a Fermi surface with one hole pocket and two electron pockets. The
2eP model in this study includes the nematic order parameter developed in Chapter 4
(Eq. (4.2)), which quantitatively reproduces the ARPES band dispersions for twinned
crystals.

Additionally, In this chapter we have reduced the contribution of spin orbit-coupling
around the M point, which was slightly overestimated in Chapter 4. The reason for this
overestimation is that we are including the bare spin-orbit interaction within a renor-

malised tight binding model. Thus, it is possible that the in-plane spin orbit interaction
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(Ly and Ly) will be different from the out of plane spin orbit interaction (L;). In order
to capture the states between 0 and -25 meV around the M point we therefore modify
the in-plane spin orbit coupling strength, such that A, remains at 19 meV, whereas 1, ,
is reduced to 5 meV. Here, A; is the prefactor infront of the spin-orbit matrix L;. This
is discussed in Appendix A.

The band structure, at both k, = 0 and k, = «, is presented in Fig. 5.1(b). The
states around the M, and M, points are C4 symmetric, with the d, and d,, orbital
characters swapping under a 90° rotation. The bands at the M /A point are also highly
two-dimensional and exhibit a negligible shift in binding energy between k, = 0 and
k, = m. In contrast, both the inner and outer hole bands, at the I'/Z point, increase in
binding energy by 20 meV between k; = 0 and k; = 7. The k; = 7 hole pocket at the
Fermi surface (shown in Fig. 5.1(a) with dashed lines) is also much larger than that the

hole pocket at k, = 0 (Fig. 5.1(a) with a solid line).

The Green’s function used for this system is defined as

1
(04 i) —HO(K)

Go(k,w) = (5.22)

Here, i is the identity matrix, @ defines the energy, k is the momentum, HO (k) is
the Hamiltonian of the tight binding description and I is a broadening parameter which
is set to 1.25 meV to model the experimental broadening observed in measurements of
FeSe [159].

The bands in the 1eP model have equivalent binding energies to the 2eP model, the
only difference is that the d, band near the M point along both the k, and k, axis have
been removed. On top of this, the d,, band that is located along the k, axis near the
M point have also been removed. The equivalent dy, band along the k, axis, however,
remains. As a consequence one of the electron pockets, described by the conventional
2eP tight binding model, is no longer present. The band dispersion of the 1eP model
is presented in Fig. 5.1(d).

Here, to suppress the bands that are not observed in experiment, the Green’s func-

tion of the 2eP model is modified with a matrix of orbital weights, Z(k),

Go(k,w) = : (5.23)

Here, the elements of Z(k) are defined Z¥ (k) = /Zi(k)/Z;(k) and the indices

describe the d-orbital equivalent to that of the initial Hamiltonian [1 : dyy,2:d2_ 2,3
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dy;,4:dy;,5 : d2]. We introduce a phenomenological momentum dependence to the or-
bital weights. For each energy, we determine the range of momenta, in k, and k,, where
the states associated with the bands that are to be suppressed. For momenta within this
region, we set Z; = [0, 1,0, 1, 1], however outside this region Z; = [1,1,1,1,1]. Thisis a
highly phenomenological approach that suppresses a majority of the spectral weight as-
sociated with the bands that are not observed in ARPES studies on detwinned crystals.
We do not have a microscopic justification for this method of suppression, however, it
successfully reproduces the band dispersion observed in ARPES studies on detwinned
crystals [163]. For the purpose of this investigation we will therefore use this approach.

It is possible to envisage a reduced 1-Fe unit cell model of FeSe [142], where the
two electron pockets are separated in momentum space. However, in the presence of
spin orbit coupling, the 1-Fe unit cell is incompatible with & states which are not k;, =0
or k; = mw [143]. As I will study the effect of k; on the QPI dispersion, I will retain the
physical 2-Fe unit cell of FeSe during this chapter.

The LDOS is calculated on a 512x512 g, vs gy grid and the k, and k, summation
is equivalently performed on a 512x512 grid. For the 3D scenario we assume a model
which includes k, = 0 and k, = 7 states only unless otherwise stated. Finally, the

impurity potential V used in the 7 matrix is set to -100 meV for both models.

5.3 Results

5.3.1 Evidence for k, = 1 states in the LDOS of FeSe

The effect of k; on the absolute value of the LDOS, |N(gy,qy, ®)| is presented in Fig.
5.2. In Fig. 5.2(a) we study the 2D scenario for the 2eP model. Here, we only focus
on the small scattering vectors which describes intra-pocket scattering. In g-space,
scattering associated with the two peanut shaped electron pockets overlap with the el-
liptical scattering dispersion of the hole pocket. In Fig. 5.2(b), we show the equivalent
LDOS for the 2eP model where both k, = 0 and k, = 7 states contribute. A notice-
ably different LDOS is calculated, with a marked suppression of the scattering vectors
associated with the k; = 0 hole band. This suggests that if k; does plays a role in
the measurements of QPI, it would has a strong influence on the observable scattering
dispersion. An equivalent statement can be made about the 1eP model of FeSe. As
there is only one electron pocket at the Fermi surface, the overlap of scattering vectors
arising from the hole and electron pocket can be clearly observed in the 2D scenario,

as shown in Fig. 5.2(c). A large difference between the 2D scenario (Fig. 5.2(c)) and
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Figure 5.2: Comparison the momentum resolved local density of states |N(gy, gy, ® =0 meV)|.
a) For the 2eP model of FeSe assuming a 2D, k, = 0, electronic structure. b) For the
2eP model of FeSe assuming both k, = 0 and k, = 7 states contribute to scattering.
c,d) Equivalent images for the 1eP model.

the scenario with k, = 7 states (Fig. 5.2(d)) is also observed. Again, the 3D nature of
the hole band weakens the scattering dispersions arising from the k, = 0 hole pocket
in Fig. 5.2(c), which is now averaged over both k, = 0 and k, = 7 states.

To determine whether scattering from k, = 7 states are present in the experimen-
tal QPI data of FeSe, we focus on modelling the Feenstra function of FeSe at @ =
+25 meV. At this energy, scattering from the k; = 0 hole state will not be present,
as this band has a maxima of only +7 meV [165]. However, the hole band at k, = 7
extends up to +30 meV, and thus may contribute. In Fig. 5.3, we compare the ab-
solute value of the Feenstra function at @ = +25 meV assuming either a 2D, k, = 0,
approximation for the electronic structure, or a scenario with both k, =0 and k;, =7
states. In 5.3(a) and (b) we study the 2eP model. For the 2D scenario, only the two
C4 symmetric, electron bands contribute to the scattering dispersion, thus a C4 sym-
metric image is calculated. For a scenario including both k; = 0 and k, = 7 states, the
2eP model consists of the same scattering vectors associated with these two electron
states, however, the scattering vectors associated with k; = 7 hole states are now also
predicted to be present. This can be seen as a bright feature highlighted by the yellow
arrow in Fig. 5.3(b).
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Figure 5.3: Calculated Feenstra function, |L(gy,qy,,® = +25 meV)|. a) For the 2eP model of
FeSe assuming a 2D, k, = 0, electronic structure. b) For the 2eP model of FeSe
assuming both k, = 0 and k, = 7 states contribute to scattering. c,d) Equivalent
images for the 1eP model. The experimental work of Hanaguri et. al. [158] is
presented for comparison. The red and yellow arrows highlight agreement between
theory and experiment.

For the 1eP model, presented in 5.3(c) and (d), a similar change between the 2D
scenario and a scenario which contains both k;, = 0 and k, = 7 states is observed.
However, in the 2D scenario, the scattering vectors only occur from a single electron
band. For the k; = 0 and k; = & scenario, the 1eP model again shows the appearance
of the bright additional feature which is highlighted by the yellow arrow in Fig. 5.3(d)
and is associated with the k; = 7 hole band. At the same time, a more diffuse region of
scattering vectors highlighted by the red arrow in Fig. 5.3(d) is also predicted, which
is not present in the 2eP model.

In Fig. 5.3(e), we show, for comparison, the experimental Feenstra function mea-
sured at @ = +25 meV from the work of Hanaguri et. al. [158]. The bright feature
(yellow arrow) that is present in both the 2eP model and 1eP model is also observed in
the experimental dispersion, albeit weakly. As this feature is present in both the 2eP
and 1eP model, we attribute these states to scattering from the hole pocket at k, = 7.
Moreover, the 1eP model also captures the brighter features highlighted by the red ar-
row in Fig. 5.3(d,e), which is not present in the 2D calculation of Fig. 5.3(c). Thus, the
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Figure 5.4: Calculated Feenstra function, |L(qy,qy, ® = —25 meV)|. a) For the 2eP model of
FeSe assuming a 2D, k, = 0, electronic structure. b) For the 2eP model of FeSe
assuming both k, = 0 and k, = 7 states contribute to scattering. c,d) Equivalent
images for the 1eP model. The experimental work of Hanaguri et. al. [158] is
presented for comparison. The red, yellow and green arrows highlight agreement
between theory and experiment.

calculation at @ = +25 meV suggests that k, = 7 states contribute to the experimental
scattering dispersions.

To further support this argument, we next focus on the Feenstra function at @ =
—25 meV. Starting again with the 2eP model, in Fig. 5.4(a), the 2D scenario describes
scattering from a single elliptical hole pocket, as well as scattering between the small
circular like pockets arising from a crossing between a hole band and an electron band
around the M point. If we include k, = 7 states however, as shown in Fig. 5.3(b), the
additional 3D hole bands produce a significantly different scattering dispersion where
the intensity associated with the k£, = 0 hole band and the states around M are much
weaker than the small q scattering vectors.

For the 1eP model, presented in Fig. Fig. 5.4(c,d), The inclusion of k, = 7 states
produces a much more anisotropic set of scattering vectors. However, compared to the
equivalent 2eP model, the scattering vectors are observed to be much more anisotropic.
This is in quantitative agreement with experiment. This agreement is highlighted by

the yellow, red and green arrows in Fig. 5.4(d,e). Thus, on the assumption that the
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Figure 5.5: Comparison of the calculated Feenstra function of the 1eP model, for a 2D, k, =0,
approximation of the electronic structure, an electronic structure where k, = 0 and
k, = m states contribute, and an electronic structure where all &, states contribute.
a-c) Calculated scattering vectors for |L(gy,qy,® = +25 meV)|. d-f) Calculated
scattering vectors for |L(gx, gy, ® = —25 meV)|. g,h) Experimental Feenstra func-
tion corresponding to +25 meV and -25 meV respectively, taken from Ref. [158].

1eP model is the correct description of the electronic structure, we can conclude that

k, = m states also influence the scattering vectors at @ = —25 meV.

From these two energies, we conclude that k, = 7 states are detected in the experi-
mental scattering dispersions measured in QPI. We find however that when we perform
a full k; integration, the calculated result does not reproduce the experimental data. In
Fig. 5.5, we present the Feenstra function of the 1eP model again at ® = 425 meV
(Fig. 5.5(a-c)) and —25 meV (Fig. 5.5(d-f)). Fig. 5.5(a,b) and (d,e) are the same
calculations as shown in Fig. 5.3 and 5.4 respectively. However, Fig. 5.5(c) and (e)
represents the calculated Feenstra function where we included full k; integration in
the LDOS. This produces a more smeared out distribution of scattering vectors, which
does not agree with the experimental results, again shown in Fig. 5.5(g,h). We find that
including k; = 0 and k; = 7 states is, however, sufficient to reproduce the experimental

dispersion.
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Figure 5.6: Comparison of the energy dependent scattering dispersions predicted from a 2eP
tight binding model and a 1eP tight binding model. In both cases it is assumed
that k, = 0 and k, = 7 contribute to scattering. a) |L(gy,0,®)| dispersion for the
2eP model. b) |L(0, gy, w)| for the 2eP model. c,d) Equivalent images for the 1eP
model. e,f) The experimental data from Ref. [158]. The red circles highlight the
presence of electron bands.

5.3.2  Comparison of a “one electron pocket" model with a “two

electron pocket" model

Having justified the importance of k; = 7 states in the LDOS of FeSe, we now fo-
cus on identifying which model of FeSe best describes experimental reality. We have
partially discussed this in the previous section by studying the Feenstra function at the
specific energies of +25 meV and -25 meV. Now we will focus on the energy dependent

dispersion of the scattering vectors.

In Fig. 5.6, we plot the QPI scattering dispersions between 50 meV along the g,
axis at gy = 0 (left side of Fig. 5.6) and the gy axis at g, = 0 (right side of Fig. 5.6).
In Fig. 5.6(a) and (b) we present the dispersions for the 2eP model. Both images look
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qualitatively similar. This is not unexpected, the 2eP model describes an electronic
structure which has the same number of hole and electron bands in both the &, and
ky directions. The only presence of anisotropy, therefore, is in the elliptical scattering
vectors associated with the hole pocket. This would change the position of certain scat-
tering vectors in the g, and g, directions, but would not alter the number of scattering

bands that would be present in both g, and gy cuts.

In the 1eP model, however, shown in Fig. 5.6(c) and (d), the electron band asso-
ciated with d,, orbital weight is no longer present in the g, direction. Equivalently
the dy, electron band and the hole-like d,, band that is present below the Fermi level
around the M /A point are also not present in the g, direction. This will then lead to
a different number of hole and electron scattering bands in the g, and g, directions

which will produce a highly anisotropic scattering dispersion.

In Fig. 5.6(e,f) we show the experimental QPI dispersions of Ref. [158] for com-
parison. The highly anisotropic dispersion between the g, and g, images are in much
better agreement with our calculation for a 1eP model than with the 2eP model. In par-
ticular, the 2eP model suggests that scattering dispersions from electron bands should
be present in both the g, and g, direction, as highlighted by the red circles in Fig.
5.6(a,b). However, in the experimental images, scattering vectors associated with elec-
tron bands are only observed in the g, direction, again highlighted by a red circle in
Fig. 5.6(e). This is in direct agreement with the 1eP model and is strong evidence to
suggest that only one electron pocket is present at the Fermi surface of FeSe within the

nematic state.

Finally, we compare the Feenstra function calculated using the 2eP model and the
1eP model at a range of energies. In Fig. 5.7(a-f) we present the calculated Feenstra
function at +25 meV, +15 meV, +6 meV, -7 meV, -15 meV and -25 meV. The corre-
sponding 1eP calculations are presented in 5.7(g-1). For each energy, we find that the
leP model is in better qualitative agreement with the experimental dispersions shown
at +25 meV, +15 meV, +5 meV, -5 meV, -15 meV and -25 meV respectively in Fig.
5.7(m-r). Here, as the model is optimised to experimental ARPES data, with a typ-
ical energy resolution of ~5 meV [102], we choose the energies that best match the
experimental dispersions within a 5 meV energy range. At +25 meV, the 1eP model
captures the diffuse scattering vectors highlighted by the yellow arrow, which is not
observed in the 2eP calculation. At +15 meV, the 2eP model suggests a qualitatively
different set of scattering vectors should be present, compared to what is observed in

the experimental measurement of Fig. 5.7(1). The 1eP calculation, however, does cor-
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Figure 5.7: Comparison of the Feenstra function, |L(gy,qy, ®)|, for the 2eP and 1eP models
of FeSe at various energies. a-e) Feenstra function of the 2eP model for w = a)
+25 meV b) +15 meV, ¢) +6 meV, d) -7 meV, e) -15 meV, f) -25 meV. g-1) Equiv-
alent images for the 1eP model of FeSe. The experimental data of Ref. [158] is
presented for comparison in (m-r). The arrows are used to highlight agreement
between theory and experiment.

rectly capture the main features shown in the experiment. At +6 meV, the 2eP model
produces a nearly four-fold symmetric, square-like dispersion, whereas the 1eP model
suggests a much greater anisotropy between the bright regions, highlighted with a red
arrow in Fig. 5.7(h), and the weaker regions, highlighted with a yellow arrow. Whilst
the intensity with the experimental data of 5.7(m) is opposite to that predicted for
the 1eP model, the scattering vectors that are calculated are in quantitative agreement
with the experimental result whereas the 2eP calculation predicts additional scattering
vectors not observed in the experimental data. At -7 meV, the 2eP model suggests
two perpendicular sets of scattering vectors, arising from the two electron pockets,
should be present. However, the experimental data, of Fig. 5.7(n), shows only two
bright features. These two features are correctly described within the 1eP model pre-
sented in Fig. 5.7(j). At-15 meV, the 2eP calculation (Fig.5.7(e)) and 1eP calculation
(Fig.5.7(k)) suggest a very different set of scattering vectors. The 1eP model presents
a much more anisotropic dispersion, which is in better agreement with experiment.
Three of the four main features are quantitatively accounted for within the 1eP sce-

nario, whereas the 2eP model does not agree at all with experiment. It is noted that
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the central scattering vector observed in the experimental data of Fig. 5.7(q) is not
captured within the 1eP model. The origin of this discrepancy is unknown. Finally,
at -25 meV the 2eP model, of Fig. 5.7(f), suggests that the most intense scattering
vectors will be located around q = (0,0), whereas the 1eP model of Fig. 5.7(1) de-
scribes a highly anisotropic set of scattering vectors, which is in direct agreement with
experiment. The quantitative agreement is highlighted by the yellow, red and green
arrows.

We thus conclude that the QPI scattering dispersions measured by Hanaguri et.
al. [158] support the conclusions obtained from detwinned ARPES experiments, that
is that the electronic structure of FeSe is best described by the “one electron pocket"

model.

5.4 Discussion

In this chapter we have determined two key pieces of information regarding QPI ex-
periments of FeSe and the electronic structure of the nematic state.

Firstly, we have provided evidence that finite k, states play a role in the scattering
dispersion detected by QPI experiments. This was initially suggested by Hanaguri et.
al. from analysis of the experimental data, and we have been able to confirm this with
theoretical calculations. Specifically, we find that including k; = 0 and k;, = 7 states
is sufficient to reproduce the observed scattering dispersions. The current microscopic
reason for this is unknown, however, as suggested by Hanaguri, et. al. [158], it may
relate to the fact that scattering probabilities will be dominated by the extremal areas
of the Fermi surface. Another possibility is that defects not located at the surface of
the material may contribute, which would produce a finite ¢, dependence in the LDOS.
Additional work studying the assumptions of Bardeens theory of tunnelling [184] and
the surface electronic structure of FeSe are required to shed light on this observation.

By including the three-dimensionality of the electronic states, albeit in a simplified
manner, we attain significantly better agreement overall than was reported by Kostin
et. al. [159], who only used a k; = 0 model of FeSe. In both that study and this, we
find agreement that a conventional 2D 2eP model can not reproduce the experimental
data and that a significant anisotropy had to be included into the simulations in order
to reproduce the strongly twofold-symmetric QPI patterns. Whilst Kostin ez. al. as-
sumed highly anisotropic, orbitally selective, quasiparticle weights, which suppresses

the spectral weight of the d.; and d,, states, we use a 1eP model of the electronic struc-
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ture. This has the advantage of correctly reproducing the experimental dispersions
observed by photoemission experiments on detwinned crystals of FeSe, as well as pre-
serving the scattering vectors associated with the outer hole band, which is composed
of predominantly d,, weight, and is detected in ARPES experiments [95].

Finally, we have provided additional evidence that the physical electronic structure
of FeSe in the nematic state is incompatible with a model that describes a Fermi surface
with two electron pockets. This result is in direct agreement with detwinned ARPES
measurements of FeSe, and was obtained by an experiment which was not subject to
external strain. As discussed in Chapter 4, the origin of this unusual electronic structure
is unknown, however, the additional evidence from the independent technique of QPI
suggests that the “one electron pocket" model of FeSe is the true description of the
nematic phase.

It would be informative to repeat the calculations presented in this chapter for the
isovalent sulphur doped FeSe;_,S; series, for which experimental data has been ob-
tained by Hanaguri et. al. [158]. This doping suppresses the nematic state, up to a
critical doping of x = 0.18. Beyond this value, the tetragonal electronic structure of
FeSe is recovered [176, 186], and a Fermi surface consisting of two electron pockets is
observed in ARPES measurements [144, 176, 186]. Thus, at some point in this doping
series a transition between a “one electron pocket" Fermi surface and a “two electron
pocket" Fermi surface must occur. It would be useful to determine where this transition
lies, in order to gain additional information about the response of the nematic state to

the electronic structure of FeSe.

5.5 Conclusion

We have studied the complimentary experimental technique of QPI in order to gain
additional insight into the electronic structure of the nematic state of FeSe. We find
that the QPI data is in direct agreement with the results obtained from ARPES mea-
surements on detwinned crystals, specifically, that two bands, which are predicted to
appear around the M point, are not present. Thus we can conclude that the Fermi
surface of FeSe consists of only one hole pocket and one electron pocket.

We have also studied the k, dependence of the QPI spectra. We find evidence that
scattering vectors associated with k, = 7 states are also present in the experimental
dispersion of FeSe. This result raises questions about how 3D materials should be

accounted for within experimental and theoretical treatments of QPI.
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The results presented in this chapter unifies both tunnelling and photoemission
based experiments on FeSe and provides important insight into the consequence of
nematicity on the electronic structure of FeSe in a single domain. This conclusion will

directly influence our study of the superconducting state in the next chapter.
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6 The superconducting gap structure
of FeSe

6.1 Introduction

Over the course of this thesis, we have uncovered the foundations of the electronic
structure of FeSe. We began by studying the electronic structure of the tetragonal
phase above 100 K, and observed how the electronic structure spontaneously evolved
upon entering the nematic phase as the temperature was cooled below 90 K. Here, we
made the surprising observation that the Fermi surface of FeSe in the nematic state
consisted of only one hole pocket and one electron pocket. This was in contradiction
to ab-initio calculations and previous assumptions of the electronic structure, which
suggested that a Fermi surface consisting of one hole pocket and two electron pockets
should be present. The origin of this disagreement between theory and experiment
remains unclear, however, now that we have determined the experimental low temper-
ature electronic structure of FeSe, we are finally in a position to study what is arguably
the most important phase of this material, the superconducting state.

Superconductivity in the iron-based superconductors generally occurs in close prox-
imity to an antiferromagnetic phase [187]. This observation has led to the suggestion
that superconductivity may be mediated by local, instantaneous and repulsive Coulomb
interactions [80], generally referred to as spin-fluctuation mediated superconductivity
[89]. Evidence for this mechanism has been inferred by the observation of a spin-
resonance peak in the superconducting state [188, 189], and the detection of a sign
change in the superconducting gap of some systems [13, 190]. However, more evi-
dence is required to confirm the validity of spin fluctuation mediated superconductivity
in the iron-based superconductors.

As the Coulomb potential is inversely proportional to the distance between two

fermions, the spin-fluctuation mediated pairing interaction will be largest between
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fermions in the same orbital. As a consequence of this, pairing between two fermions
in momentum space will be largest if those states have the same underlying orbital
character. An identifier of spin-fluctuation mediated superconductivity, therefore, would
be the observation of a superconducting gap which is sensitive to the orbital content at
the Fermi surface. In most iron-based superconductors, the complexities of the multi-
band, nematic and antiferromagnetic electronic structure make the verification of this
link challenging. However, we have gained sufficient knowledge of both the experi-
mental and theoretical electronic structure of FeSe to be able to determine whether this
hypothesis holds.

In this chapter, I will use ARPES to simultaneously measure the momentum de-
pendence of the superconducting gap of FeSe and the orbital content of the bands for
the full, three-dimensional, electronic structure. From this, it will become apparent
that the superconducting gap of FeSe directly scales with the dy, orbital weight at the
Fermi level, which supports the spin-fluctuation pairing hypothesis. I will then perform
theoretical calculations modelling the momentum dependence of the superconducting
gap of FeSe, assuming that superconductivity is mediated by spin fluctuations. I will
show that the calculated gap structure is in direct agreement with the experimental re-
sults if the model takes into account all the features of the electronic structure that have
been determined during the course of this thesis. This includes the momentum depen-
dent nematic band shifts determined in Chapter 4 and, most importantly, the correct
“one electron pocket" description of the electronic structure, which has been discussed
in Chapter 4 and Chapter 5. 1 will conclude with a discussion of the consequences
of nematicity and superconductivity, and compare these results with other theoretical

interpretations.

6.2 Experimental methodology

6.2.1  Determination of orbital content at the Fermi level

As discussed in Section 2.4.2, photoemission experiments are sensitive to the symme-
try of the underlying orbital character of the band. By using different polarisations of
light, it is possible to excite electrons only from the orbitals that are either symmetric
or antisymmetric with respect to the propagation of light.

Numerical simulations for the matrix elements of the d-orbitals suggest that bands
with dy, and dy, orbital character will couple strongly to opposite polarisations of light

[191]. The d,; orbital character will be excited under Linear Horizontal (LH) polarised
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Figure 6.1: Band dispersion and MDC of the I" point of FeSe measured at 10 K using a photon
energy of 37 eV. a) MDC of (c), taken at the Fermi level, measured under LH po-
larised light. b) MDC of (d), taken at the Fermi level, measured under LV polarised
light. c) Band dispersion of the I" point under LH polarised light. d) Equivalent
band dispersion measured under LV polarised light.

light, whereas dy, orbital character will be visible under Linear Vertical (LV) polarised
light. The d,, orbital character will only be very weakly observed in both polarisations
within the first Brillouin zone, however residual weight may still be observed when the
sample is rotated off the high symmetry axis [102]. Therefore, to a first approximation,
the intensity of the single particle spectral function under LV polarised light can be
assumed to be directly proportional to the dy, weight at the Fermi surface and LH

polarised light may be assumed to be directly proportional to the d,, orbital weight.

In most scenarios, only qualitative information about the orbital content can be ob-
tained. However, the I" point of a twinned sample of FeSe is a special case, where
it is possible to extract numerical estimates for the ratio of d,, weight to d,, weight.
This is possible for three reasons, firstly, the single band crossing the Fermi level is
clearly separated from other spectral weight, secondly, the band can approximately be
described as a combination of only two orbital characters, and thirdly, due to the ro-
tational symmetry of the d., and d,, orbitals, the twinning effect of an orthorhombic
crystal allows us to probe both orbital characters within the same experimental mea-

surement. By fitting the Momentum Distribution Curves (MDCs) around the Fermi
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level of Fig. 6.1 with four Lorentzian functions, we can extract the amplitude of the
outer band (O) and the inner band (I). This corresponds to the intensity of the d,; or
dy, weight from both the main elliptical hole pocket (outer branch) and the 90° rotated
hole pocket (inner branch)!.

From this, we can obtain ratios of the intensity of the d,, and d,, states from a single
MDC. The data measured under LH polarised light (Fig. 6.1(a) and (¢)) gives % =16

1
Here, we are assuming that the orbital characters couple perfectly to one polarisation

and the data measured under LV polarised light (6.1(b) and (d)) gives O:;Z = 0.19.
and that only the d,; and d,, orbital characters contribute at the Fermi level. From this
assumption, we can also write Wy _+ Wa,. = 1. Here W is the intensity of either the
inner or outer band. By solving this set of linear equations, we obtain dy, = 0.18 on the
minor axis of the ellipse, and 0.05 on the major axis. This indicates that the d,, weight
is greatest along the sides of the elliptical hole pocket. However, the dominant orbital
character at the I" point is the d,, weight, which is always greater than 80%.

We use this method to provide a quantitative estimate for the ratio of the orbital
characters at the I" point. However, at other momenta, such as the Z point, this is not
possible. The dy, band observed at -20 meV in Fig. 6.1(d) is now much closer to the
Fermi level, which as a consequence overlaps with the spectral weight of the hole band
crossing the Fermi level. This makes it impossible to clearly resolve the two bands.
Despite this, the numerical estimate will prove useful in the following discussion and

a visualisation of these results is shown in Fig. 6.3(e).

6.2.2  Determination of the superconducting gap from ARPES data

In the ARPES data, presented in this chapter, we report the leading edge gap (LEG)
as the quantity that defines the magnitude of the superconducting gap. The LEG mea-
sures the shift to the position of the Energy Distribution Curve (EDC) where the Fermi
function is equal to 0.5. Above T this is equivalent to the chemical potential, however
below 7. the LEG will shift to a negative value, due to the formation of gapped states
around the Fermi level. Whilst this value is not equivalent to the true gap, the LEG
1s much less sensitive to the overall resolution of the experiment, as well as the exact
location of the Fermi level [192].

To estimate the size of the true superconducting gap, we compare the experimental

EDC, both above and below T, to the Fermi-Dynes function,

I'The Fermi surface of a twinned hole pocket of FeSe is discussed in Section 4.4.
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Figure 6.2: Comparison of the experimental EDCs (left) with simulations of the Fermi-Dynes
function (right). Red curves describe ARPES data at 10.5 K, above T, blue curves
describe data collected at 3.8 K, below 7,.. The parameters used in Eq. (6.1) are
presented within the figures on the right hand side, where Res =T'.
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Here, N(w) is the density of states at energy @, N is the density of states above
T., I' is the experimental resolution, A is the magnitude of the superconducting gap
and f(w,T) is the Fermi function which accounts for the finite temperature. In Fig.
6.2 we show both the raw data (left), and Fermi-Dynes simulation (right), for two
different momenta both above T, (red curve) and below 7, (blue curve). By comparing
the simulation and experimental data of the normal state (red curve), where A = 0,
we can obtain an estimation for the resolution of the experiment. By using the same
resolution, we can then compare the simulation of the superconducting state (blue
curve) to the 3.8 K data, using A as a tuning parameter, and obtain an estimate for the

true superconducting gap at a given momenta.

6.3 Experimental Results

6.3.1  Hole pocket

We begin by discussing the Fermi surface and orbital content of the k, = 0, I' point
of FeSe. In Fig. 6.3(a,b) we present Fermi surface maps at 10 K, in both LH and LV
polarisation, using 37 eV photons. As discussed in Sec. 6.2.1, the hole pocket at I" is
dominated by d,, weight, which is observed under LH polarised light. By switching to
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Figure 6.3: a,b) Fermi surface maps of twinned FeSe samples around the I" point (37 eV), in
both linear polarizations. c) High-symmetry dispersions in LH polarisation above
and below T.. d) High symmetry dispersion in LV polarisation, highlighting the
shorter axis of the ellipse. e) Schematic of the distribution of orbital weights. f)
Schematic correlation between the LEG and the d,, orbital character. g,h) EDCs
integrated in small regions (cyan dashed lines in (c,d)) around kr . i,j) EDCs at
positions shown in (b), off the high-symmetry axes. *Note that (d) and (h) are
obtained with a higher resolution than other plots.

LV light, we observe states from the hole pocket originating from the second domain,
which is rotated 90° degrees and therefore detected using the opposite polarisation of
light. From the quantitative analysis, discussed in Sec. 6.2.1, we have determined that
the hole pocket at I' is composed of 82 % d,, weight along the minor axis of the ellipse,
which increases to 95 % along the major axis of the ellipse. The remaining spectral
weight is attributed to the dy, orbital character as sketched in Fig. 6.3(e).

We now study the superconducting gap as a function of angle around the elliptical
Fermi surface. In Fig. 6.3(c), we present band dispersions above and below 7. corre-
sponding to a cut along k, for k, = 0. There is no evidence of Bogoliubov backbending
at this momenta, with the bands both above and below 7, appearing to cross the Fermi
level. This does not necessarily imply that a gap does not exist, only that the gap is
smaller than our experimental resolution of ~ 2 meV [95]. In Fig. 6.3(d), we use the
hole pocket originating from the twinned domain and present a band dispersion along
the minor axis of the ellipse. Below T, a clear Bogoliubov backbending of the band is
observed, indicating a superconducting gap. In Fig. 6.3(g) and (h), we present EDCs
integrated around kr, corresponding to the band dispersions of Fig. 6.3(c) and (d).
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Figure 6.4: a) Fermi surface of the hole pocket of FeSe at the Z point. b) High symmetry cut,
focusing on the hole band dispersions along k, for k, = 0. ¢) EDC above (red line)
and below (blue line) T, corresponding to #1 in (b). d) equivalent EDC for region
#2 of (b). e,f) Band dispersion off the high symmetry axis above and below 7
corresponding to #3 in (b) . The Bogoliubov backfolding can be seen in the raw
data. (g) EDC above and below T for region #3.

We find a maximum LEG of 1.6 meV in Fig. 6.3(h), which corresponds to a true gap
of 2.1 meV at 3.8 K2. In Fig. 6.3(i) and (j), we show EDCs off the high symmetry
axis, the exact positions are marked as #3 and #4 in Fig. 6.3(b). We find that the gap
continuously decreases as we move from the minor axis of the ellipse, where the dy,
weight is largest, to the major axis of the ellipse, where the gap is not resolved, and the
dy, weight is less than 5% of the orbital content. This is presented pictorially in Fig.
6.3(f).

We now focus on the Z point of FeSe, the hole pocket at k, = w. Here, at 23 eV,
it is not possible to perform the same numerical analysis of the orbital content as per-
formed at the I" point, as discussed in the section 6.2.1. However, it can be qualita-
tively observed, from the Fermi surface map of the Z point under LH polarised light
(Fig. 6.4(a)), that there is a greater variation of intensity between the minor axis and
the major axis of the ellipse. This indicates that there is also a greater variation of d;
weight to d,, weight.

By studying the band dispersions in Fig. 6.4(b), we are still able to detect both

an outer (#1) and inner (#2) band, corresponding to the hole pocket from two rotated

?Determined using the methodology described in section 6.2.2.
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domains. The integrated EDC around each of these kr values in Fig. 6.4(c) and (d)
reveal that no gap is detected along the major axis of the ellipse, however a gap is still
detected along the minor axis. In Fig. 6.4(e) and (f) we present band dispersions at a
momenta off the high symmetry axis. Here, the Bogoliubov backbending is identifiable
in the raw data of Fig. 6.4(f) and seen as a peak in the EDC of Fig. 6.4(g).

We therefore find that the momentum dependence of the gap at the Z point is equiv-
alent to that at I'. We qualitatively infer that the gap at the hole pocket follows the
symmetry of the d\, weight. We also find that the absolute magnitude of the supercon-
ducting gap appears smaller at the Z point, at roughly half the size of the gap at the I'
point.

Comparison with Literature

Xu et. al. [193] had previously studied the Z point of 7% sulphur doped FeSe using
ARPES via synchrotron radiation. The highly anisotropic two-fold momentum depen-
dence of the gap is in agreement with our results here for pure FeSe. However, they
were not able to resolve the gap at the I' point. Liu et. al. [194] have reported a laser
ARPES study on the hole pocket of FeSe using 6.994 eV photons. Due to the low
photon energy k; is not well defined, so a precise definition of I" and Z is not possi-
ble. In this report they claim a highly two-fold momentum dependence of the gap,
in agreement with the conclusions drawn here. Hashimoto et. al. [195] performed a
similar laser ARPES study using 6.994 eV photons. They present a gap structure from
a twinned sample which follows a more exotic angular dependence, with a cos(86)
component. This is in disagreement with our experiment, the experimental of Xu et.
al. [193] and the equivalent laser ARPES study by Liu et. al. [194] which all suggest
that the gap at the hole pocket can be described by cos(26).

Kushnirenko et. al. used synchrotron radiation on pure FeSe and studied the gap
at both I (hv = 37 eV) and Z (hv = 21 eV) [196]. In both cases, we find that our
results are in agreement with the momentum dependence of the superconducting gap
determined in their study. We also find agreement with the magnitude of the gap that
they determined at the Z point. However, we find that the maximum gap at the I" point
is twice the size of the Z point, whereas Kushnirenko ez. al. report a smaller gap at I
This discrepancy highlights the challenge of measuring a superconducting gap on the
order of 1 meV, using photons energies of 37 eV.

Finally, Bugoliubov Quasiparticle Interference experiments on FeSe have also been

reported by Sprau et. al. [157]. Whilst the three-dimensional nature of this technique
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is unclear, the in plane momentum dependence of the superconducting gap at the hole
pocket is in agreement with our observations, as is the magnitude of the superconduct-

ing gap at the I" point.

6.3.2  Electron pocket

We now focus our attention on the electron pocket of FeSe. In Fig. 6.5(a) we present
the Fermi surface map of the A point, using 28 eV photons and LV polarised light.
The interpretation of the orbital content at the electron pocket is more complicated
than at the hole pocket. Here, the centre of the electron pocket is also the corner of
four different Brillouin zones in the 2-Fe unit cell. The transition between the first
and second Brillouin zone in FeSe reverses the parity of the d,, and d,, orbitals due
to the glide symmetry of the lattice. Thus, whilst the peanut oriented along the k,
axis (from the second orthorhombic domain) should have d,, orbital character, it is
still observed under LV polarised light. Under LH polarised light in Fig. 6.5(b), the
tips of the electron pocket in the 1st and 3rd Brillouin zones are also detected. From
first principle calculations, these should be of d,, weight [102]. The parity switching
effect does not apply to the d,, orbital, and thus only the tips parallel to the k, axis
are observed. This would imply that the d,, tips of the electron pockets should also
be observed in LV polarisation, however from the numerical analysis of the matrix
elements [191], the d,, weight in LV polarisation at this momenta should be negligible
and thus will not be observed. The orbital character of the electron pocket from a
single domain is drawn schematically in Fig. 6.5(c). The length of the peanut shaped
feature is predominantly dy, orbital character, with d,, weight at the tips.

In Fig. 6.5(d-g), we show the evolution of the band dispersion both above and
below T, for the electron pocket, at the specified k, momenta, labelled as #1 to #4 in
Fig. 6.5(a). At3.7 K, backbending of the bands can be observed along the length of the
peanut. This is shown by the detection of a coherence peak and LEG in the EDCs (Fig.
6.5(h-k)). Here the EDCs have been integrated around kr, as shown by the dashed
blue lines in Fig. 6.5(d-g). The coherence peak and LEG remain roughly equivalent
along the length of the peanut, where the orbital character is dominated by d,, weight.
However, the LEG decreases close to the tips of the electron pocket (Fig .6.5(g) and
(k).

Using 42 eV photons, we study the M point of FeSe. In Fig. 6.6(a), we present a
Fermi surface map, which has a smaller kr than the A point. Despite this, the orbital

analysis remains equivalent. The one exception is the slight observation of the tip of
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Figure 6.5: a,b) Fermi surface maps of twinned FeSe at the A point (28 eV) in LV (a) and LH
(b) polarisation. c¢) Schematically representation of the orbital character of the elec-
tron pocket. d-g) Cuts along &, , above and below 7. h-k) EDC’s above T, (red)
and below T; (blue) Integrated around kr in (d-g). 1) Section of the Fermi surface
used for peak-fitting analysis. The yellow circles indicate the peak positions. m)
Peak amplitude from fitting the Fermi surface, which is proportional to the d,, or-
bital character. The decrease in the LEG (red) with kx correlates with the decrease
in d,; orbital character (blue).
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Figure 6.6: a) Fermi surface of FeSe at the M point (42 eV, LV). b) Band dispersions above and
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obtain higher intensity on the outer band with d,, character. ¢) EDCs for the outer
band with d,, character both above 7. (red) and below T (blue). d) EDC’s for the
inner band with d,, character.

the electron pocket parallel to the ky axis. The band dispersion for the cut, indicated by
the blue line in Fig. 6.6(a), is shown in Fig. 6.6(b). No gap was detected at the tip of

the electron pocket, indicating that the gap is below the experimental resolution (Fig.
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6.6(c)). However, a LEG of 0.64 meV was detected for the band near the centre of the
electron pocket (Fig. 6.6(d)). Whilst detecting a gap of < 1 meV using 42 eV photons
is challenging, the detection of the LEG suggests that the momentum dependence at

the M point is equivalent to that of the A point.

Comparison with Literature

Measurements of the electron pocket of FeSe have been much harder to obtain due to
the higher photon energies required to reach the corner of the Brillouin zone. Conse-
quentially, a higher energy resolution is required to resolve the gap. However, Kush-
nirenko et. al. [196] have recently reported the momentum dependence of the su-
perconducting gap at both the M (hv =42 eV) and A (hv = 28 eV) point. We find
agreement with their measured momentum dependence and magnitude of the super-

conducting gap at both the M and A point.

The momentum dependence of the superconducting gap at the electron pocket has
also been determined by BQPI [157]. Again, the k; nature of this technique is not ap-
parent, however our results are in agreement with the in plane momentum dependence

of the gap determined via this method.

6.3.3  Scaling of superconducting gap with orbital character

Having observed that the magnitude of the superconducting gap is always largest where
the dy, weight of the band is maximum, we can make the qualitative statement that the
magnitude of the superconducting gap appears to follow the d,, orbital character. At
the electron pocket, we can go one step further and provide evidence for a quantitative
scaling between d), weight and gap magnitude. In Fig. 6.5(f) we present a close up
of one lobe of the electron pocket. Here we extract out the amplitude of the peak
under LV polarisation, which we assume is directly equivalent to the dy, weight. In Fig
6.5(m) we plot this peak amplitude as a function of momentum on top of a plot of the
LEG as a function momentum. We find a direct scaling between the magnitude of the
LEG and the magnitude of dy, orbital character of the band. Thus, we find evidence for
a direct linear relationship between orbital character and gap magnitude. We conclude

from this that the superconducting gap scales with orbital character.
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6.4  Theoretical modelling of the superconducting gap

We have found experimental evidence to suggest that the gap magnitude follows the
dy, weight of a band. This suggests that superconducting pairing in FeSe is sensitive
to orbital content, as would be expected from a pairing mechanism involving spin
fluctuations.

Unlike phonon-mediated superconductors, there is no analytical theory for spin-
fluctuation mediated superconductivity. However, it is still possible to extract numer-
ical information out of a specific system, provided the electronic structure is known.
Throughout this thesis we have developed a model of FeSe which can quantitatively
describe the electronic structure observed in ARPES experiments. Thus, we are in a
position to attempt to model the superconducting gap of FeSe. In this section we will
solve the linearised gap equation for FeSe under the assumption of spin-fluctuation

mediated superconductivity, and compare with our experimental results.

6.4.1  Pairing vertex

The formation of a Cooper pair may be described by the following Hamiltonian [15].

A=A"+Y Tk, k')cliTc_k el Lok (6.2)
kK’

Here HY is the non-interacting Hamiltonian. clT( o and ¢k defines the creation or anni-

hilation operators for a fermion with momentum, k and spin ¢ and I'(k,Kk’) describes
the pairing vertex, which couples two fermions at different momenta.

In the case of phonon-mediated BCS superconductivity, I'(k,k’) is assumed to be a
constant. Thus, it becomes possible to derive an analytical model for the ground state
wavefunction of phonon-mediated superconductors assuming a mean field approxima-
tion [15]. However, as spin-fluctuations are strongly momentum dependent [89, 161],
this assumption no longer applies. We must therefore define a pairing vertex which
can couple two fermions via spin-fluctuations.

Such a pairing vertex can be derived using the fluctuation-exchange approximation
(FLEX), originally developed by Bickers and Scalapino [197],

3 1
L(k, k) = 50U (a) - 502 (@) + U, (63)

This equation was then generalised for use in multiorbital systems by Graser et. al.
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tq

3 1 1 1
(kK o) = iLﬁx%qﬂnUS—EUCf%%a»UC+§US+§UC (6.4)
ps

Here p,q,s,t are orbital indices. U $/C is a matrix which includes local Coulomb re-

pulsion and Hunds coupling in the spin or charge channel,

( 4

U, p=qg=s=t U, p=qg=s=t
U, p=s#q=t ~U'+2J, p=s#q=t
US: J’ p:q;és:[ UC: 2U/—J, p:q;ﬁs:t (65)
J, p=t#q=s J, p=t#q=s
0, otherwise 0, otherwise.

N \

In these calculations we assume spin rotational invariance such that U’ = U — 2J, and
setJ = % with J' = J. U is set to 0.3 eV throughout. These parameters are equivalent
to those used by Graser ef. al. [89], however as long as the condition U > U’ > J
is imposed, the qualitative features will remain consistent regardless of the numerical
value of U, U’ and J.

Finally xS/ C(q) describes the spin susceptibility under the random phase approxi-
mation (RPA),

0
C/S(q — 1k K — x"(q)
X (g=k-K) LU0 (6.6)

The non-interacting susceptibility matrix, x°, is then calculated via a convolution of

two Green’s functions in Matsubara space [89],

xgq;st(q,ia)m) = Gsp(k,iw,)Gy (K+q, i, +ioy,). (6.7)

Nﬁ k,iw,

Here, = kbLT, where T is the temperature of the system, N is the number of Fe atoms,
and @, = (2n+1)xT, is the Matsubara frequency. We have used a 32x32x16 k-grid to
determine equation (6.7), and set the Matsubara cutoff to n.,,,rr = 128 for a tempera-

ture of 10 K. Finally, the Green’s function in Matsubara space is defined
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s p*
Gyp(k,io,) = ;% (6.8)
Here aj, (k) projects the orbital space, s, p, into a band space, u, as defined by the
eigenvector of the Hamiltonian of our system, and Ey, (k) is the eigenvalue of the orig-
inal Hamiltonian.
A full derivation and discussion of the FLEX approximation, the random phase
approximation, and the non-interacting spin susceptibility, x°(q), is presented in Ap-

pendix B.

6.4.2  Linearised gap equation

To extract information about the momentum dependence of the superconducting gap
we first make the assumption that the superconducting order parameter, A(K), can be

decomposed into a magnitude, A, and a normalised symmetry function, g(k),

A(k) = A-g(K). (6.9)

Under this assumption, we lose information regarding to the magnitude of the super-
conducting gap, but retain the momentum dependence. At values close to 7., where
only the leading instability is present, this is generally a valid approximation.

We are only interested in fixed energies contours in the study of superconductivity,

thus the co-ordinate transformation,

k= vr(k)(k—kp), (6.10)

is applied. This converts k into a contour of momenta specifically defined on the Fermi
surface, where kg is the momenta at the Fermi level and vg (k) is the Fermi velocity.
To obtain the linearised gap equation, which can be solved to determine information
about the pairing instability of a system, we define the expectation value for the pairing

vertex as,

dk dk’
Ly fC,L VF_(‘I‘() Ly §Cv vr (kH/) g(k) v (k,k)g(k)
B dk
Y fe, g (k)2

Here, A defines the leading pairing instability in the system. The minus sign is in-

=A. (6.11)

cluded as a convention such that the lowest (most negative) eigenvalue is the dominant
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instability in the system and the summation of tt and v define the sum over bands.
The pairing vertex, I'yv(k, k'), is equivalent to the pairing vertex defined in Sec.

6.4.1, expected converted into band space,

Cuv(k.K) = Z at* (K)Re[lH(k, K, 0 = 0)]al) (K )al (—K'). (6.12)
stpq

The expectation value of Eq. (6.11) is technically dependent on the summation over the
imaginary part of the pairing vertex, I';(k,k’, ®), as a function of energy. However,
as the vertex decays rapidly as we move away from the Fermi energy, we can perform a
Krammers-Kronig transformation so that only the @ = O real part of the pairing vertex

[89] is required.
Finally, it is assumed that k is stationary and independent of K’. This allows us to

write the linearised gap equation as an Eigenequation,

- D T kK )alK) = Aaa ), 6.13)

We thus perform an integral of the pairing vertex over all states k’ present at the
Fermi surface of each band, v. The leading eigenvalue A then defines the dominant
instability of the system, and the corresponding eigenvector go(Kk) contains information
on the momentum dependence and symmetry of the gap.

To ensure this equation produces real eigenvalues we require that the resulting

VK

matrix be Hermitian. To ensure this we multiply Eq. (6.13) by Jor k) and redefine our
VF

eigenvectors as

Gu(K) = K 2a(K). (6.14)
VF (k)

Here, dk’ | has been discretised such that it is not an infinitesimally small quantity.

This ensures the resulting matrix is now symmetric with respect to k and K/,

47r2 ;; m\/\/_—ruV(kak/)ga (k/) = Aaga(k). (6.15)

To determine the momentum dependence of the superconducting gap we take the
eigenvector, g°(k), corresponding to the leading eigenvalue. Each element of this

eigenvector corresponds to the normalised magnitude of the superconducting gap at
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a specific momentum on the Fermi surface, and can be directly compared with experi-

ment.

6.4.3  Spin orbit coupling

As the linearised superconducting gap equation is sensitive to the exact topology of
the Fermi surface, we must take into account all the features required to provide a
quantitatively accurate Fermi surface. Specifically, we must include additional spin-
indices introduced by the presence of spin-orbit coupling. For this reason we have to
slightly modify the pairing vertex of Eq. (6.4) to also include the pseudospin bands
generated by the spin orbit interaction.

The pairing vertex in the band basis for a singlet state takes the form presented in
Ref. [91],

LHoC (k) = T k) — T (k.1 . (6.16)

where

MK = Y Y af (e (—k)Re[T24H (K, k)" *(—K)a?h (K). (6.17)

st;06
SIPG G GAL

Here, auz(k) is the eigenvector of the original Hamiltonian, in the presence of spin
orbit coupling, which connects the orbital and spin basis (s, p,q,t and o,A) with the
band and pseudospin-band basis (¢, Vv and X, A).

The pairing vertex in orbital space is then defined as

PM2 (k) = Ve

st;,66 pq;st

86/1501—’_ qstGGl (6.18)

Here, G, is a vector of Pauli matrices and J,; defines the Kronecker delta function.

By performing the spin sum over these Pauli matrices, we obtain a pairing vertex of

the form
Vlfqvt—f—V[qu, c=A=6=41
Ve  —VS . G=A#£0=2A
Mo (kK'Y = 4 7 e 7 (6.19)
2V st c=A#A=6
\ 0, otherwise.

Here, V¢/5 = %U c/s x/SU/S. The Coulomb matrix U¢/*, and spin susceptibility x¢/*,

120



Chapter 6. The superconducting gap structure of FeSe

are the same as Eq. (6.5) and (6.6). We calculate )y without the inclusion of spin
orbit coupling as it has been shown that this quantity will only strongly affect the

susceptibility when very close to a magnetic instability [91].

6.4.4  Tight binding model and orbital content

Here we use the unfolded 1-Fe unit cell of FeSe, which, in the k; = O plane, is exactly
equivalent to the folded 2-Fe unit cell [143]. We use this model, firstly, to simplify the
computational cost of the calculation and secondly, to separate the two electron pockets
in momentum space. This provides a method to easily generate a “one electron pocket"
Fermi surface from the conventional “two electron pocket" tight binding model. To

perform the unfolding procedure we write the Hamiltonian as

H'F(k) = H* (k) + HAB (k). (6.20)

Here, H*4 (k) and H48(K) are 5x5 block matrices, which are defined in Section 3.2.

This 1-Fe Hamiltonian now has a Brillouin zone twice as large as the 2-Fe unit cell
Hamiltonian used in the previous chapters. The important high symmetry points for
FeSe are, the I'" pocket, the electron pocket along the k, axis, which we will refer to as
the X pocket, and the electron pocket pointing along the k, axis, which we will refer to
as the Y pocket. These are located at (ky,k,) = (0,0), (7,0) and (0, 7r) respectively.

When compared to the 2-Fe unit cell models, used in the Chapter 5, the “one elec-
tron pocket model" is equivalent to a Fermi surface where the Y pocket is neglected,
whereas the “two electron pocket model" is a model with eh Y pocket included.

In Fig. 6.7(a), we present the calculated Fermi surface for the hole states at k; = 0.
Here, the colour describes the maximum orbital character of the band. In Fig. 6.7(b) we
then present the corresponding orbital character as a function of angle around the centre
of the pocket, taken counter clockwise from the horizontal axis. The model describes a
hole pocket which is predominantly composed of d, weight. It also captures a weaker
component of dy, weight which reaches a maximum value of 16.5% along the minor
axis of the ellipse (0°). This reduces to around 8% along the major axis of the ellipse
(90°), in agreement with our numerical analysis in Sec. 6.2.1. The X electron pocket,
described in Fig. 6.7(c) and (d) has nearly 100% d,, weight along the sides of the
peanut shape, which is quickly suppressed and replaced with d,, weight at the tips.
However, a smaller 10% contribution of dy, and d,, weight is also present. Finally, in

Fig. 6.7(e) and (f) the Y electron pocket is shown. This pocket is equivalent to a 90°
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Figure 6.7: Tight binding description of the 1-Fe unit cell of the nematic phase of FeSe at
k, = 0. a) Close up of the hole pocket centred at k = (0,0). b) Orbital content
of the pocket as a function of angle. c,d) Equivalent close up of the X electron
pocket centred at k = (7,0) and orbital content. e,f) Equivalent close up of the Y
electron pocket centred at k = (0, ) and orbital content. The angular dispersion is
taken counter clockwise with O positioned parallel to the k, axis, as labelled in the
figures. The colour of the band describes the maximum orbital content as labelled
at the top of the figure.

rotated X pocket, with the d\, and d,; orbital content swapped.

6.4.5 Results

We now present the results of the solution to the eigenvalue equation from Eq. (6.15)
using the pairing vertex described in Eq. (6.16).

In Fig. 6.8 we present the leading eigenvalue obtained from the solution to Eq.
(6.15). Although we have determined that the Y electron pocket is not present in
the nematic phase of FeSe [163], the Y electron pocket is predicted to exist in ab-initio
modelling and tight binding descriptions of the Cmma lattice. For this reason, we begin
by presenting the solution of Eq. (6.15) assuming a Fermi surface composed of a hole
pocket and two electron pockets, as shown in Fig. 6.8(a). The leading eigenvalue of
this model is presented in Fig. 6.8(c). Here, the red curve describes the magnitude of

the superconducting gap at the hole pocket, which is suggested to be much smaller than
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Figure 6.8: a) Fermi surface map of nematic FeSe in the 1-Fe unit cell including a hole pocket
(H) and two electron pockets (X and Y). The black dashed line describes the 1-Fe
unit cell Brillouin zone boundary, and the red dashed line defines the 2-Fe unit cell
equivalent. b) Fermi surface map of nematic FeSe where the Y electron pocket has
been removed. ¢) Momentum dependence of the superconducting gap calculated
using the Fermi surface of (a). The convention of the angular dispersion is the same
as in Fig. 6.7. Here, the green curve describes the gap at the Y electron pocket, the
red curve describes the gap at the hole pocket, and the blue curve describes the gap
at the X electron pocket. d) Equivalent calculation using the Fermi surface in (b).
Here, the red and blue circles describe the experimental gap magnitude obtained in
Section 6.2. The red and blue crosses are the corresponding gap results obtained
from BQPI experiments [157].

the magnitude of the gap at either electron pocket, and consist of nodes. The X and
Y electron pockets present a similar momentum dependence of the gap with opposite
sign and offset by 90°. The maximum gap here is predicted to be observed at the tips
of the electron pocket. This calculation does not reproduce the experimental results of
Section 6.3.

By taking into account the observations of ARPES studies on detwinned FeSe
[163] and removing the contribution of the Y electron pocket from the superconducting
pairing, as shown in Fig. 6.8(b), we obtain a completely different momentum depen-

dence of the superconducting gap. In Fig. 6.8(d) we present the calculated momentum
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Figure 6.9: a,b) Fermi surface and orbital character of the nematic phase of FeSe without spin
orbit coupling. c,d) Fermi surface and orbital character of the nematic phase of
FeSe with spin orbit coupling. e) Calculated momentum dependence of the super-
conducting gap without spin orbit coupling. f) Calculated momentum dependence
of the superconducting gap with spin orbit coupling. In (a-d) the colours corre-
spond to the orbital content as labelled in the Figure. In (e-f) red describes the gap
at the hole pocket, blue describes the gap at the electron pocket.

dependence. Here, the hole pocket is predicted to be very anisotropic, with the largest
gap along the minor axis of the ellipse, and a very small gap along the major axis of
the ellipse. The electron pocket, is predicted to have a maximum gap along the length
of the peanut shaped pocket, which rapidly tends to zero (but remains nodeless) at the
tips. This is in direct agreement with our experimental results, and the results obtained
from BQPI experiments by Sprau et. al. [157]. These experimental results have been
overlaid on top of the calculated result in Fig. 6.8(d). To facilitate comparison with
experiment, we have scaled the calculated results by a single constant, such that the
maximum normalised gap has the same magnitude as the experimental results. The
relative magnitude of the gap at the hole and electron pocket have not been altered by

the scaling parameter.

Finally, to illustrate that the momentum dependence of the superconducting gap

scales with the d,, orbital weight, we solve Eq. (6.15) using the pairing vertex from
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Eq. (6.4), where spin orbit coupling has been set to zero. Again, we assume that the
Y pocket is not present. In Fig. 6.9(a) and (b) it can be seen that this only has a
minor effect on the shape and symmetry of the Fermi surface, with a slight reduction
in the size of the hole pocket. However, without spin orbit coupling, the hole pocket
is composed of 100% d,, weight. By solving Eq. (6.15) using this model, we find
that the hole pocket gap is expected to be totally isotropic, and much larger than the
electron pocket. The equivalent model and gap calculation with spin orbit coupling are
presented again for comparison in Fig. 6.9(c-f).

This calculation demonstrates the orbitally-differential nature of spin-fluctuation
mediated superconductivity. The inclusion of a minor contribution of d,, states at the
hole pocket provides a pathway for (7,0) spin-fluctuations to pair two fermions with
the same orbital character. This interaction will be much larger than both the pairing
between different orbital characters separated by (7,0), or the same orbital characters
separated by a small q vector. As a result, the d), states will dominate the momentum

dependence of the superconducting gap.

6.4.6  Calculated superconducting gap structure of FeSe|_,Sx

The results from section 6.4.5 suggest that the “one electron pocket" Fermi surface
directly influences the momentum dependence of the superconducting gap. We now
ask the question, how will the gap structure evolve as the strength of nematicity is
decreased? Experimentally, It is possible to tune the strength of nematicity in FeSe
by substituting Se atoms with sulphur. Sulphur is isoelectronic to selenium, but has
a smaller atomic radius. Sulphur substitution therefore does not dope the electronic
states of FeSe but instead only applies effective chemical pressure to the lattice, which
consequentially suppresses the nematic state [176]. Above a critical doping of x ~
0.18, nematicity is completely suppressed and the tetragonal electronic structure mea-
sured in FeSe at 100 K is recovered [186]. This has little impact on the the supercon-
ducting transition temperature [198].

We can model the FeSe;_,S, system using the tight binding model of FeSe. By
reducing the strength of our nematic order parameter A,.,, we have an effective pa-
rameter which mimics the suppression of nematic ordering. In Fig. 6.10, the Fermi
surface and orbital characters of the tight binding model in the k, = 0 plane are pre-
sented for the tetragonal phase (A, = 0). The hole pocket, presented in Fig. 6.10(a)
and (b), now describe a C4 symmetric state with equivalent contribution of d,; and dy,
orbital weight. The X and Y electron pockets (Fig. 6.10(c)-(f)) describe bands with
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Figure 6.10: Tight binding description of the 1-Fe unit cell of the tetragonal phase of FeSe at
k, = 0. a) Close up of the hole pocket centred at k = (0,0). b) Orbital content
of the pocket as a function of angle. c,d) Equivalent close up of the X electron
pocket centred at k = (7,0) and orbital content. e,f) Equivalent close up of the Y
electron pocket centred at k = (0, ) and orbital content. The angular dispersion
is taken counter clockwise with O positioned parallel to the k, axis, as described in
the figures. The colour of the state describe the maximum orbital content labelled
at the top of the figure.

mixed orbital characters. By increasing A;.,;,, we smoothly evolve the orbital content
of Fig. 6.10 to the full nematic state of Fig. 6.7.

In Fig 6.11 we present the results of these calculations as a function of A,,. We
begin by assuming that the Y electron pocket does not contribute in any of the sulphur
substituted systems (6.11(a)-(d)). Fig. 6.11(a) reproduces the calculation of undoped
FeSe, as presented in Fig. 6.8, which is in agreement with the experimentally observed
gap structure [95]. As sulphur substitution increases, nematicity is suppressed. The
gap at the X electron pocket becomes larger than the gap at the hole pocket. This pre-
diction does not necessarily imply that the absolute magnitude of the gap will increase,
only that the ratio between the two will shift in favour of the electron pocket. These
calculations also suggest the presence of an accidental node at the tip of the electron

pocket as nematicity is reduced.

This prediction of a decrease to the magnitude of the gap at the hole pocket, com-
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Figure 6.11: Calculated momentum dependence of the superconducting gap for sulphur doped
FeSe. a-d) Assuming that the Y pocket is not present, and for nematic strengths
of Apern = 29 meV, 20 meV, 10 meV and 0 meV. e-h) Equivalent calculations
assuming the Y electron pocket is present.

pared to the gap at the electron pocket, is consistent with the general description of
multiband pairing. In a multiband system, the ratio of the gap on the two pockets is
proportional to the inverse ratio of the density of states [199],

Ah o \/Ne
Ae \/Nh.

Here, A, /; describes the gap at the electron and hole pocket respectively, and N, /,

6.21)

describes the density of states. If we assume that these quantities are dominated by
the dy, orbital character, as would be the case in the spin-fluctuation scenario, then a
smaller density of dy, states on the hole band will lead to a larger magnitude of the
superconducting gap at the same state. However, as nematicity is suppressed, the d,,
orbital weight at the hole pocket increases, as shown in Fig. 6.10. This increase in N,
then decreases the relative ratio of the gap at the hole pocket, compared to the electron
pocket.

If at any point the Y electron pocket is present in the sulphur doped systems, a
dramatic change to the momentum dependence of the gap structure is predicted to
occur. This is shown in Fig. 6.11(e)-(h). The gap at the electron pocket is predicted
to become much larger than the gap at the hole pocket and have a maximum gap at

the tips of the electron pocket. Conversely, the gap at the hole pocket is predicted to
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become much smaller and exhibit nodes. For a tetragonal sample, where two electron
pockets should be observed [186], our calculations suggest a d-wave type gap, with
nodes at the hole pocket.

Looking at the momentum dependence of the gaps closely, it appears that the gap
at the electron pockets follow the dy, orbital character in a two electron pocket sce-
nario. This implies that (7, ) scattering between the d,, electron states dominate the
calculation. We note that the RPA approximation is known to overestimate the spin
susceptibility at q = (7, 7) [146], which is in contrast to inelastic neutron scattering
experiments, which observe a peak at (7,0) and (0, ) [115]. Thus, the RPA pairing
vertex may be artificially overestimating the interaction between these states. Whilst
theoretical efforts to go beyond the RPA approximation have been attempted [182], the
calculations are much more computationally expensive and beyond the scope of this
thesis.

Currently, the superconducting gap of sulphur doped FeSe has not been measured,
thus comparisons with experiment are not possible at this moment in time. The one
exception is the momentum dependence of the hole pocket measured by Xu et. al.
for 7% sulphur doped FeSe [193] which corresponds to A, = 23 meV. Here, the
symmetry of the gap at the hole pocket is in agreement with the theoretical calculations
of Fig. 6.11(b), assuming that the Y electron pocket is not present, however the electron

pocket gap was not resolved.

6.5 Discussion

There has been a general consensus, within the theoretical literature, that spin fluc-
tuations must be an important ingredient when it comes to superconductivity in the
iron-based superconductors [13, 80, 89, 94, 200, 201]. However, direct experimental
evidence is still challenging to obtain. In this chapter, we have presented two pieces of
evidence supporting the spin-fluctuation pairing scenario in FeSe. Firstly, we have ex-
perimentally determined that the magnitude of the superconducting gap directly scales
with the orbital content of the band. Secondly, we have shown that once we take
into account all of the fine details of the electron structure of FeSe, such as spin orbit
coupling and band shifts associated with nematic ordering, the highly anisotropic mo-

mentum dependence of the superconducting gap, measured in our ARPES experiment,

3So far, neutron scattering has only been performed on twinned crystals of FeSe, so the difference
between (7,0) and (0, 7) has not yet been established.
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is directly reproduced on the assumption of a spin fluctuation pairing scenario.

Importantly, this theoretical result would not have been obtained without previous
experimental evidence to suggest that the Fermi surface of FeSe only consists of one
hole pocket and one electron pocket [163]. Conventional theories of the electronic
structure of FeSe suggest that the Fermi surface should be composed of one hole pocket
and two electron pockets. However, as discussed in Chapter 4, detwinned ARPES
studies do not observe this. We have also found that the experimental QPI data does not
show any evidence for a Fermi surface composed of one hole pocket and two electron
pockets. Whilst the origin of this partial reconstruction of the electronic structure is
still not known, by taking this experimental phenomenology seriously of ARPES and
QPI seriously, we can naturally account for the unusual anisotropic response in the
superconducting state. This provides further evidence supporting the “one electron
pocket" description of FeSe.

Several other theories have been put forward to describe the anisotropic gap distri-
bution measured in FeSe. Sprau et. al. [157] and Kreisel et. al. [78] have suggested a
theory that the electronic structure of FeSe is sufficiently renormalised by orbitally se-
lective quasiparticle weights. Specifically, they introduce a tight binding model of FeSe
which is modified by quasiparticle weights to satisfy the criteria Zy, < Z,, << Z,.
This assumption dramatically reduces the coherence of the dy, (Zy; = 0.16) and d,,
(Z,y = 0.073) states, such that the gap only follows the remaining dy, (Z,, = 0.85)
states. However, whilst this theory correctly reproduces the measured gap structure,
the assumptions required to obtain this agreement would also have a direct impact on
the single particle spectral function measured by ARPES. In this chapter we have pre-
sented a detailed study on the orbital content of the bands of FeSe, and observe all three
dyz, dy; and dy, orbital characters, with roughly equal intensity and sharpness. there-
fore, this assumption, of a large difference in quasiparticle weights between different
orbitals, does not agree with experimental ARPES measurements. We note however,
that the Y electron pocket, which we explicitly remove in our calculations, is composed
entirely of d,, and d,, weight at the Fermi level (Fig. 6.7(¢)). The chosen quasiparticle
values used in Ref. [157] and [78] have the additional consequence of suppressing the
contribution of the Y electron pocket to the superconducting pairing. This is consistent

with the conclusion drawn here.

Benfatto et. al. [181] have proposed a scenario where the spin fluctuations them-
selves generate an anisotropic preference in the X or Y direction, which they claim

could originate from the induction of nematicity [180]. Benfatto ez. al. found that

129



Chapter 6. The superconducting gap structure of FeSe

the required anisotropy in the spin fluctuations along the X or Y direction had to be at
least ‘;—); =21, where g is the directional coupling parameter, to match the experimental
results. This suggests that coupling between the hole pocket and Y electron pocket is
effectively negligible compared to coupling between the hole and X electron pocket.
Again, this theoretical assumption has the consequence of removing the contribution
of the Y electron pocket from superconducting pairing, which is in agreement with our

conclusions.

Kang et. al. [170], using a simplified tight binding model, proposed that nematic-
ity alone may account for the observed anisotropy at the hole pocket. However, in
this approach, the orbital character at the hole pocket does not match the experimental
observations determined in this chapter. The hole pocket used consists of 100% d,
weight along the minor axis of the ellipse, compared to the 18.5% determined experi-
mentally. This theoretical approach also suggests a unique momentum dependence of
the superconducting gap at the Y pocket, such that experimental measurements should
observe three separate superconducting gaps. So far this has not been observed within
ARPES [95, 196] or BQPI [157].

Finally, Hu et. al. [183] used a self consistent slave-spin model to determine the
quasiparticle weights of the d,,, dy, and d,, orbitals as suggested from a DFT-based
tight binding model. Here, they obtain similar values for the quasiparticle weights to
those suggested by the experiment of Sprau er. al. [157] and Kreisel et. al. [78],
and equivalently, the calculation of the momentum dependence of the superconducting
gap reproduces the experimental result. However, the DFT-based tight binding model,
used as a starting point for their calculations, describes a system with an additional
dyy hole pocket at the Fermi surface, which may have influenced the slave-spin cal-
culation. The values of the quasiparticle weights chosen would one more produce a
noticeable difference in the ARPES data of FeSe, which we have not observed. Again,
the quasiparticle weight values determined in this work would have the consequence

of suppressing the Y electron pocket from contributing to the superconducting pairing.

In each of these theoretical attempts to model the superconducting gap of FeSe,
spin fluctuation mediated superconductivity has been assumed. Each approach has
found that the gap structure in a multi-orbital system will follow the orbital content
that dominates the superconducting pairing. Thus, the conclusion that superconductiv-
ity in FeSe is mediated by spin fluctuations appears to be unanimously accepted. The
discrepancies lie in determining the origin of the dramatic anisotropy of the gap. Refs

[78, 157, 181, 183] have all proposed modifications to either the electronic structure
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or pairing vertex which greatly reduces the contribution of the Y electron pocket to
superconducting scattering. We propose that the simplest explanation, which does not
require phenomenological quasiparticle weights or coupling parameters, is simply that
the Y electron pocket is not present in the nematic phase. And that the Fermi surface
consists of only one hole pocket and one electron pocket. This “one electron pocket"
description of FeSe is in agreement with ARPES data on detwinned crystals [163],
QPI experiments [158, 159] and can reproduce the momentum dependence of the su-
perconducting gap. We stress that the origin of this reconstruction of the electronic
structure within the nematic state is still unknown. However, this may be a key fea-
ture of nematicity, which could allow us to understand both superconductivity and the

microscopic mechanism of nematicity in FeSe.

6.6 Conclusion

One of the major challenges in our attempts to understand unconventional supercon-
ductivity is uncovering the underlying mechanism which controls 7¢. In this chapter,
we have studied the momentum dependence of the superconducting gap of FeSe. We
have observed a large anisotropy of the gap at both the hole and electron pockets, which
follows the dy, orbital character of the band, as suggested by a spin-fluctuation pairing
mechanism of superconductivity.

We have further supported this observation, by performing theoretical calculations,
using the understanding of the electronic structure of FeSe, developed throughout the
course of this thesis. We find that the experimental gap structure and the theoretical
gap structure are in direct agreement, when a “one electron pocket" model description
of the electronic structure of FeSe is used. This result shows a direct consequence
of nematicity on the superconducting gap structure, and provides strong evidence in

favour of spin-fluctuation mediated superconductivity in FeSe.
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7 Conclusion

In this thesis I have attempted to understand the superconducting mechanism of FeSe.

In Chapter 3, a set of ARPES-based hopping parameters for a tight binding model
of FeSe was developed. These parameters were able to quantitatively describe the elec-
tronic structure of the tetragonal phase of FeSe at 100 K. Using this model, a strong
temperature dependence of the chemical potential was predicted to occur. This was
then confirmed via a temperature dependent ARPES study [144]. This result high-
lighted the importance of capturing the low temperature electronic structure from a
quantitatively accurate model of FeSe.

In Chapter 4, this tight binding model was updated to account for the C4 symmetry
breaking effects of the nematic state of FeSe. A phenomenological nematic order pa-
rameter was developed which could quantitatively reproduce the band shifts observed
in ARPES studies of twinned sample of FeSe. By studying detwinned crystals of FeSe,
an entirely expected result was uncovered. Whilst theoretical models suggest that the
Fermi surface of FeSe should consist of one hole pocket and two electron pockets, only
of the two electron pockets were detected within the nematic state [163]. This disap-
pearance could not be explained by band shifts of splittings alone and is potentially a
more fundamental feature of nematicity. We also observed a similar phenomenon in
detwinned studies of NaFeAs [173].

In Chapter 5, additional evidence was found for a Fermi surface of the nematic
state which only consisted of one hole pocket and one electron pocket within the QPI
experiments of FeSe. By comparing the experimental data of Hanaguri et. al. [158]
with theoretical calculations, assuming either a “two electron pocket" or “one electron
pocket" tight binding model, it was found that the “one electron pocket" tight bind-
ing model was in much better agreement with the experimental data of FeSe. The
importance of finitie k, states within QPI measurements were also highlighted.

Whilst the discovery of a Fermi surface consisting of one hole pocket and only one

electron pocket was unexpected, this observation provides a possible justification for
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the large anisotropic responses observed in the nematic phase of iron-based supercon-
ductors [72]. However, it’s microscopic origin remains unclear and requires further
study.

Finally, In Chapter 6, the superconducting state of FeSe was studied [95]. A two-
fold highly anisotropic momentum dependence of the superconducting gap was ob-
served at both the hole and electron pockets and in three dimensions. It was observed
that the magnitude of the superconducting gap appeared to scale with the d,, orbital
character of the band. This suggested that the pairing mechanism for superconductivity
in FeSe was sensitive to the orbital content of the underlying band structure.

Using the tight binding model developed in the previous chapters, the momentum
dependence of the superconducting gap was calculated assuming superconductivity
was mediated by spin fluctuations. It was found that when the correct “one-electron
pocket" Fermi surface of FeSe was used, the theoretical calculation directly reproduced
the experimental results.

This thesis provides a detailed study of the electronic structure of bulk FeSe. It
presents an argument to suggest that whilst the Fermi surface of the nematic phase is
predicted to consist of one hole pocket and two electron pockets, experimentally only
one hole pocket and one electron pocket are observed. This thesis also presents strong
experimental and theoretical evidence in favour of a spin fluctuation mediated pairing

mechanism for superconductivity in FeSe.

7.1 Future work

One of the key conclusions from this thesis is that the Fermi surface of FeSe consists
of only one hole pocket and one electron pocket. Whereas theoretical calculations
suggested that two electron pockets should be present. The tetragonal state of FeSe
at 100 K does exhibit a Fermi surface with two electron pockets, thus it would be
informative to perform a temperature dependent study of this pocket as the system
evolves through the nematic transition.

Detwinned ARPES studies on other nematic iron-based superconductors such as
BaFe;As;, will also need to be performed to determine if the “one electron pocket"
Fermi surface is a generic feature of the nematic phase or a phenomenon specific to
FeSe and NaFeAs.

Regarding superconductivity, it would be interesting to study the sulphur doped
phase diagram of FeSe. Sulphur doping has the effect of suppressing the nematic state,
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whilst only weakly affecting the superconducting transition temperature. Beyond the
nematic critical point of 18% sulphur doping, the low temperature electronic structure
appears almost equivalent to the tetragonal electronic structure of FeSe at 100 K, and
two electron pockets are measured in ARPES [186]. The model devised in Chapter 3,
along with the nematic order parameter devised in Chapter 4, is able to describe the
experimental band dispersions of the sulphur doped system of FeSe. It would also be
interesting to experimentally measure the superconducting gap of the sulphur doped
systems, to compare with the theoretical calculations we have made in section 6.4.6.
It would also be informative to calculate the QPI images of the Sulphur doped
FeSe systems and compare with experimental literature. Beyond 18% sulphur doping,
scattering vectors from the second electron pocket should be present. It would be
informative to determine which value of sulphur doping shows evidence for the second

electron pocket.
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A Tight binding model

In this section we describe the tight binding model, first introduced by Eschrig and
Koepernik [142], and used throughout this thesis. Following the notion of Ref. [142],
we label the hopping parameters as téyé where x, y and z describe the number of Fe-
atoms a fermion has hopped in the x, y or z direction and o, 8 describe the initial and
final orbital character for the overlap integral. For 2D hoppings the z label is neglected
for simplicity. Finally, the orbitals are labelled as [1 : dj?y,Z : dfz_yz,?) : idfz,4 : id;‘Z,S :
d?2,6 : dfy,7 : dfziyz,S : —idfz79 : —idf;, 10 : df;] where the A and B notation relates to
the first or second Fe atom, this is labelled as + and — in the notation of Ref. [142].
The sign change for the imaginary d,, and d,, orbitals is a matter of convention to take
into account the glide symmetry of the P4 /nmm lattice [142, 143].

The full 10x10 matrix can be written as 5x5 block matrices,

H(K) = <HAA(") HAB(k)) 7 (A1)

HAB (k) * HAA (k) *

And the two Bloch matrices, HA4 and HZ take the form: [142, 146]

HY = g +21]] [cos(kl) + cos(kz)] + 213 [cos(2k1) + cos(Zkz)]
—I—{ZI??I +4r}! [COS(kl) -l-cos(kz)] + 43! [cos(ka) -|—cos(2ky)] }COS(kZ)
HY =0
HM = 24l [sin(kl) - sin(kz)} — 412 sin(2k,) sin(k.)
HM = 2] [sin(kl) + sin(kz)} — 42 sin(2k,) sin(k; )
HY = 21! [cos(kl) —cos(kz)]
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HY = & 4201 [cos(kl) + cos(kz)}

HY = 2irl) [sin(kl) + sin(kz)}
HY = 2il] [— sin(ky) + sin(kz)]
HY =0

HE = &+ 213 [cos(kl) + cos(kz)] + 2139 cos(2k)
+2133 cos(2ky) + 4133 cos 2k, ) cos(2ky)
—l—{2t§)§n + 4639 cos (2ky) + 41331 cos(2ky) } cos(k;)
Hg‘f = 2t3]i [cos(kl) — cos(kz)]

H = 2irld [sin(kl) + sin(kz)}

HY = &+ 213 [cos(kl) + cos(kz)] + 2193 cos(2ky)
12139 cos(2ky) + 4133 cos 2k, ) cos(2ky)

—l—{2t§)§)1 + 41931 cos 2k, ) + 41391 cos(2ky) } cos(k;)

HA = 2l [sin(kl) - sin(kz)}
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HiB = 2410 [cos(kx) +Cos(ky)] —|—2t1261{ [cos (k1) +cos(kz) ] [cos —l—cos(ky)]
—sin(ky) [sin(kx) + sin(ky)} +sin(ky) [sm(k ) — sm(ky)] }
+41! [cos(kx) +cos(ky)} cos(k;)

+2tm{ [cos(kl +ky) 4 cos(k; + kx)} ek ¢ [cos(kz +ky) + cos(ky — kx)} e_ikz}

H¥E =0
HiE = 2ir]0sin(k,) — 4{t11g1 sin(ky) 41131 sin(k,) b sin(k

HE = 2it]Ysin(k,) — 4{t118131n(k +t11glsm sin(k

+2zt121{sin(k1+ky)e’ —sin(ky +ky)e lkz}
7lk }

+2it{5! { sin(ky + ky)e™* + sin(ky —

HF =0

HYE = 21)9 [cos(kx) +cos(ky)]

HyB = 21t29 sin(ky)
HYE = 21t29 sin(ky)
Hffo = 2t21010 [cos(k ) — cos(ky)]
AB
Hi{ = 2638 cos(ky) + 2149 cos (ky)
+2t {[ os(ky) + cos(kz) ]cos [sm (k1) —sin kz)] sin(kx)}
t49{[ os(ky) +cos(kz) ] cos(k [sm (k1) +sin kz)] sin(ky)}
{t3l§)1 cos(ky) + 149" cos(ky) } cos(k;)
2121 { 0s(ki + ky)e™: + cos(ka —kx)e—”‘z}
tjgl{ os (ki +ky)e™: +cos (ky +ky)e ™ }
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AB
Hyy =

Here HA4 describes a Hermitian matrix such that HAA = HAA* Whereas the off

diagonal matrix, HAB is symmetric but not Hermitian HAB HAB This ensures that
the full Hamiltonian of eq. (A.1) is Hermitian, and producmg real Eigenvalues. The
DFT-based hopping parameters used in chapter 3 are taken from Ref.

hopping parameters obtained from the optimization procedure outlined in this thesis

H{Y = 4it})" | cos(ky) + cos(ky) | sin(k,)
HB = 2it}9  sin(k,)
3,10 = 4410 y

2149 cos (k) + 2135 cos (ky)
212 {[s&1+wsb} [
4272 {[s@1+wsb}am ka1+mn@ﬂmm@&

{tjgl cos(ky) + 119" cos (ky ) } cos(k,)

(
+mm{ 0s(ky + ky)els + cos(ks — ky)e ™ }
(

cos(k sin(ky) — sin kz)] sin(kx)}

)
—|—2t121{ cos(ky +ky)e'™ + cos(ky +ky)e ™ }

AB _ 510
Hj'{o = 2ity 1 5in(kx)

AB
Hs519=0

[142].

are presented below, all in units of eV.
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2D parameters

111 =0.01818

thh = —0.01226i
1l =—0.01817
11 =—0.01669
13 = 0.01484i

114 = 0.01650
14 = 0.05023
&1 = 0.03405
&4 =0.00310

3D parameters

111 = 0.00270
i = —0.00283
19 = 0.00150i
191 =0.00183

1o = —0.03133
74 = —0.00231
11 =0.11516i

139 = —0.04988
19 = —0.09492;
190 = 0.059659
114 =0.00569i

133 = —0.00008

& = —0.05050
&5 = —0.19398
=0

Al =0
91 =0.00013
i = 0.00300

111 =0.02433

139 = 0.00096

19 = —0.00717
137 = 0.00758

i = 0.00868

134 = —0.00493
1,90 = —0.00902i

& =0.00310

291 = 0.00950i
119 =0.00333i
1121 =0.00517i
143" = 0.00100.

3 = —0.00133 niz' = —0.00050 143" = 0.00217
1971 =0.00333 1t = 0.00250

Finally, to introduce spin orbit coupling to the Hamiltonian we use the angular mo-
mentum matrices discussed in Ref. [91]. We use a spin orbit coupling strength of
A =19 meV in Chapters 3,4 and 6. In Chapter 5 we however modify the in-plane spin
orbit coupling strength such that 4, = 19 meV, and A,/, = 5 meV. Here 4; is applied to
the spin orbit matrix /;.

0 0 —i 0 0
0 0 0 0
L=1i o0 0 o0 0 (A.2)
0 —i 0 0 —3i
0 0 0 V3 0
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0 0 0 i 0

0 0 i 0 0
L=]0 —i 0 0 V3i (A.3)

i 0 0 0 0

0 0 —/3i 0

0 220 0 0

-2 00 0 0
=10 00 —i 0 (A.4)

0 0 i 0 0

0 00 0 O

Iy, fy and l; describe the angular momentum operators in the x,y, and z directions re-
spectively for a single Fe atom where the rows and columns are defined equivalent to

the Hamiltonian as [dy,,d

2_y2,dxz,dyz,d2]. As mentioned in the main text, we include

spin orbit coupling via

. HK)+L. L.+il
Hsoc(k) = (k) R (A.5)
L,—iL, H(k)-L;,
Where L; is defined as
S Y A
Li=— .- A.6

Finally, the nematic order parameter is defined,

A’Zm (n, — my,) (cos(ky) + cos(ky)) + An;m (ny, — my,) (cos(ky) — cos(ky)). (A7)

We use Ayern = 29 meV for the nematic phase of FeSe. In the notation of the

Hamiltonian defined in this section n;z

means add to the matrix element H5>.

means add to the matrix element H4® and
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B Derivation of the spin fluctuation pair-

ing vertex

B.1  Non-interacting spin susceptibility

In order to describe superconductivity mediated by spin fluctuations, we must first
introduce the dynamic spin susceptibility. In the Matsubara notation of imaginary time,
the dynamic spin susceptibility is defined as a Fourier transform of the spin correlation

function,
; p N 0T
ts(a,i0) = [ de (75, (0,005, (~q.0)) B.1)

Here, the dynamic spin susceptibility ()) depends on the orbital indices, s and p, the
momentum, (, and the imaginary Matsubara frequency, i®. In the Matsubara formal-
ism this integral is periodic in f = T where T is the temperature. The spin operator
is defined as

Ss(q,7) = Z Cla (K, T) Gaycyy(k + 4, 7). (B.2)
The sum in Eq. (B.2) is performed over the first Brillouin zone. c,q(y)(k, 7) is the
creation/annihilation operator for a fermion at time 7 in orbital s, with momentum k

and spin o(y). Finally 64y is a vector of Pauli matrices. By expanding Eq. B.1 using
Eq. B.2 the spin susceptibility becomes.

s, i) = 4kZ r / AT { Tl (6, )Gy + 4, 1)l (K,0) Gy (K —,0) ) 6.
ayk oy’

(B.3)
The Pauli matrices can then be summed over using the relation Zay GayBGay = 20qy to

give,

141



Appendix B. Derivation of the spin fluctuation pairing vertex

B . ,
1(0.0) = LY [ (T D)ep(k+q. 1)elulK,0)cq (K —q.0)) e
k K
(B.4)

Next, kK’ can be redefined as k' = k + q to give,

B |
1s(0.0) = X [ a7 (Tec (. ey k0, 7)cl (k+,0)cq (k.0) )", (B.5)
k

We then apply the time ordering operator 7', such that we order the creation and
annihilation operators with the lowest time on the left hand side, and largest on the
right. Here, we also assume that the Hamiltonian of the many body system is time
independent. This is denoted by the subscript “0" next to the expectation value, and
changes the spin susceptibility of the interacting system, Y, into the non-interacting

spin susceptibility.
0 ; p i T 0T
2p(@.i0) = X [ dv (el (k,0)c.(lorq, 0)c) (levq 2)c, (k,)) 7 (B)
k

From Wicks theorem, we note that this is simply the product of two non interacting

Green’s functions,
xps q,iw) = Z/ dt G k+q, )G(S)p(k, —17)e'“". (B.7)
We can then Fourier transform the Green’s function into a Frequency space via,

= LGk im)e . (B.3)
Applying eq (B.8) to (B.7) and manipulating we obtain
Xps(4,i0) = Z / dfe’“”Gﬁs(km,f)ZG?,,(kmn)efwnf,
(B.9)
Xps q,zw / dTZe 0+, rGO k+q, T)Ggp(k,ia)n),
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Appendix B. Derivation of the spin fluctuation pairing vertex

A4, i) = ZZG (k+q,i0 +i0,)GY, (K, io,). (B.10)
Here, the non-interacting Matsubara Green’s function in orbital space is defined

ay (K)ay’ (k)

0 . _
Gsp(k,la)n) = m

(B.11)
u

Here, a;, (k) corresponds to the eigenvector connecting the orbital space (s) and diag-
onal band space (i), from the tight-binding Hamiltonian, and E (k) is the energy of
the band u at momentum k. Using the Feynman notation, Eq. 6.7 can be expressed as
an electron-hole bubble diagram.

k+q,0,+ o,

ng;st(% W) = @

k, w,

Here the curved lines connecting the two vertices are mathematically equivalent to a

Green’s function of Eq. B.11. This defines the non-interacting spin susceptibility.

B.2 Random phase approximation

To describe the physics of fluctuating spins we must go beyond the non-interacting
spin susceptibility of Eq. (B.10) and include interaction terms which govern the mag-
netic properties of the system. To do this we include a vertex correction to the non-
interacting spin susceptibility, shown diagrammatically on the left hand side of Fig.
B.1,

int

x™ =Ty’ (B.12)

Here ¥ is the dressed, or interacting spin susceptibility, ¥ is the non-interacting
susceptibility of Eq. (B.10) and I is the interacting vertex correction. For the ran-
dom phase approximation, we define the vertex as the sum of the bubble and ladder
diagrams

I =T+ Iyx'U; +T%0:. (B.13)

This is shown diagrammatically in Fig. B.1. Here U; and U, are interaction terms
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d d LI,
P P 1
= + +
) ) U, )
l ) l 1 ! T

Figure B.1: The three diagrams of the first order perturbative expansion of the spin susceptibil-
ity. Figure taken from Ref. [203].

related to the Coulomb repulsion, shown as wavey lines in Fig. B.1. Within the ran-
dom phase approximation, I’y = 1. We therefore neglect any contributions beyond the
first order of this perturbative expansion, such as the Maki-Thompson or Aslamasov-
Larkin second order perturbations [202]. This was shown by Migdal [58] to be a valid
approximation assuming that % << 1, where @ defines the maximum spin fluctuation
energy, and EF is the Fermi energy of the system.

If we define U = Uy + U, then T = [1 — x°U]~!. We can therefore write the inter-
acting RPA spin susceptibility as

KA =0 —Ux (B.14)

Which allows us to study spin fluctuations and magnetic instabilities as a function of

the interaction variable U.

B.3  Pairing vertex using the FLEX approximation

To describe superconductivity, we must account for an interaction term which can
couple two fermions. Mathematically, we can write this equation as a particle-particle
pairing vertex. In Chapter 6 we use this vertex to deduce the leading symmetry and mo-
mentum dependence of the superconducting gap. In this thesis, we are assuming that
the pairing mechanism is spin-singlet, and mediated by fluctuating spins, interacting
via electronic interactions.

The fluctuation-exchange approximation (FLEX), originally developed by Bickers
and Scalapino [197] is the simplest infinite-order approximation that takes into account
both spin and charge fluctuations. This is useful in the description of the properties of
materials where magnetism plays a dominant role.

We can construct the analytical form of the FLEX approximation in a single band

system by summing up all bubble and ladder diagrams. In Fig. B.2, the first two terms
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of the singlet bubble diagrams (Top row) and first two terms of the singlet ladder dia-
gram (bottom row) are shown. Here each solid line refers to a non-interacting Green’s
function, G, with a spin given by the up or down arrow. The dashed lines refer to the
interaction between the Green’s functions, which in this case is the Coulomb repulsion
U.

To determine the form of the pairing vertex, I', which is distinct from the vertex
used in the RPA approximation, we multiply together all Green’s functions and in-
teraction lines present in the Feynman diagrams of Fig. B.2. That is the interaction
parameters U with any intermediate Green’s functions. We neglect the initial Green’s
functions (with momentum k and —K) and final Green’s functions (with momentum
k' and —K’). An additional rule of this formulation states that for every intermediate
Green’s function we must introduce a sum over the entire Brillouin zone, to account

for all possible scattering pathways.

kT k' 0 1
U
Lyl = +
ol T ¢

Figure B.2: Pairing vertex in the FLEX approximation. Top row: the first two terms of the
infinite series of bubble diagrams. Bottom row: the first three terms of the ladder
diagram series. Figure taken from Ref. [203].

The analytical form of the first two terms of the bubble diagram (top row) can then be

written as

U+Y Y UG)(p+q)G)(p)UGD +q)G(p)U +.... (B.15)
p p

Here, by using the relationship defined in Eq. 6.7, we notice that the additional summa-
tion over the intermediate momenta p is equivalent to the non-interacting susceptibility.
This relationship also holds for higher order terms, such that the infinite series for the

bubble diagrams can be written as

145



Appendix B. Derivation of the spin fluctuation pairing vertex

U+U%°(q)* +0°x°(q)* + U x°(q)° + U°x"(q)® + ...
UL+ 0% (@) +U*x%(@)* + U2 (q)° + U x°(q)® + ..
Ull-U*x%q)? "

Likewise the ladder diagrams can be summed in a similar way:

=Y UG)(p+q)G)(p)U
|Y

+ L L UG+ )G (pUG(P +a)G(p)U

P p
+Y Y Y ucl(p+a)G(p)ucl(p’ +q)GL(p ) UG (p" +q)GO(p")U +...

P pp
U2 (@)+ U@ + U (@) + U2 (@)* + U2 " (@) + ...
U@ +Ux°(q)+ U2 (@) + U@ + U2 (@)* + ..
U (@)1 -Ux’(q)) "

We can then re-express these summations in the charge and spin channel,

Ull-02°(@] ' + U (@)1 - Ux’(@)] ' =Ax*(q) + Bx“(q) +C.

Here, the interacting spin susceptibility is defined,
(@) =21 -Ux’(q)] ",

1C(@) = 2" (@1 +Ux(q)] "

By solving Eq. B.23, the single band pairing vertex may be defined as

3 1
I'kk)= 5Uzggs(k—k’) - EUzgcc(k—k’) +U.

This can then be generalised to multi-orbital systems as discussed in Sec. 6.4.1.
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