
Black-box Security
Measuring Black-box Information Leakage via Machine Learning

by
Giovanni Cherubin

Submitted for the degree of
Doctor of Philosophy in Information Security and Machine Learning

at
Royal Holloway, University of London

Declaration of Authorship

I, Giovanni Cherubin, hereby declare that this thesis and the work presented in
it is entirely my own. Where I have consulted the work of others, this is always
clearly stated.

Giovanni Cherubin
13 October 2018

ii

Abstract

Determining how much information about a secret is leaked by a system is one
of the most fundamental questions in security and privacy. It gives roots to sev-
eral fields, such as Cryptography and side channel studies, and it has countless
applications, ranging from network traffic analysis attacks to program analysis.

In this manuscript, we wish to measure the leakage (or security) of a system,
considered as a black-box: we assume no knowledge of its internals, and we base
our estimates on examples of secret inputs and respective outputs. We refer to this
practice as Black-box security, which can be used whenever the system cannot be
modelled formally (e.g., because its internals are too complex). Black-box security
methods have been historically based on classical Statistics ideas, which although
caused strong limitations: they required observing at least one example for each
input-output combination, which does not scale to large real-world systems (e.g.,
they need several millions examples for a 10 bits input and 10 bits output), nor to
those with continuous output.

We here introduce new principles for Black-box security estimation, which orig-
inate from the Machine Learning (ML) theory. They are based on the following
observation: measuring the leakage of a system is equivalent to estimating the
error of an ML rule from a particular class: the universally consistent rules. This
gives access to several new Black-box security estimators, which scale to large real-
world systems, requiring fewer examples than previous methods. This also allows
bringing from the ML literature: impossibility results, and the idea of features to
improve an estimator’s convergence.

We apply these techniques to real-world problems, such as i) user location data,
obfuscated with location-privacy mechanisms, and ii) for measuring the security
of defences against a major traffic analysis attack, Webpage Fingerprinting (WF).
Notably, the latter constitutes, to the best of our knowledge, the first security esti-
mation method for generic WF defences, after roughly 15 years since this attack’s
introduction. We also suggest several extensions of the framework (e.g., continu-
ous secret input space, and more general classes of adversaries), some of which
inspired by recent advances in the ML theory (Conformal Prediction), and we en-
vision future applications for our methods (e.g., Membership Inference attacks,
and generic ML-based attacks).

iii

Acknowledgements

I wish to express my deepest gratitude to Alex Gammerman, my supervisor
through my MSc and doctoral studies. He gave me wise support, courage and
trust, and he opened for me the gates to the most beautiful ideas in learning the-
ory. His friendly advice accompanied me throughout these years, and for that I
thank him sincerely. I am truly grateful to Kenny Paterson, my adviser, who fol-
lowed my steps closely, and guided me through the various security aspects of my
research. He also gave me invaluable lessons on academic writing and on how to
communicate my thoughts.

I discussed this work with several people, who influenced me profoundly.
I thank Catuscia Palamidessi and Kostas Chatzikokolakis, who hosted me during
short-but-intense visits at École Polytechnique during the last years of my PhD,
and introduced me to Quantitative Information Flow research. Our collaboration
has been incredibly fruitful and enjoyable, and I look forward to learning more and
more from them. I thank Marco Stronati, a good friend, who never shied away
from listening and giving me advice, and thanks to whom I met Catuscia and
Kostas. I thank Tom Ristenpart, for hosting me at Cornell Tech to work on Mem-
bership Inference attacks; from him, I learned more on how attacks are formalised
in Cryptography. I express my gratitude to HP Labs in Bristol, where Adrian Bald-
win and Jonathan Griffin hosted me for a fantastic internship; from them, I learned
to juggle between academic and industrial research, and the true value of rest time
for productivity and creativity. Furthermore, I want to sincerely thank my other
collaborators: Marc Juarez and Jamie Hayes, with whom I had one of the most fun
and synergistic paper writing experiences, and Ilia Nouretdinov, who helped me
a lot in my first steps within Conformal Prediction. I thank Volodya Vovk, with
whom I had some of the most exciting conversations on learning, ranging from
its Philosophy to its computational foundations, and many people from RHUL
and beyond, for the numerous chats on this manuscript and related topics: Martin
Albrecht, Lorenzo Cavallaro, Ben Curtis, Jason Crampton, Alex Davidson, Jean
Paul Degabriele, Naomi Farley, Gregory Fenn, Adrià Gascón, Paul Grubbs, Tor-

v

ben Hansen, Jonathan Hoyland, Roberto Jordaney, Alexey Koloydenko, David Ko-
rczynski, Marie-Sarah Lacharite, Zhiyuan Luo, Thalia May, Feargus Pendlebury,
Rachel Player, Eamonn Postlethwaite, Dusan Repel, Claudio Rizzo, Sam Scott, Pip
Thornton, Paolo Toccaceli, Thyla van der Merwe, Fernando Virdia, and Joanne
Woodage. I also want to thank the rest of the Centre for Doctoral Training (CDT)
cohort I was part of: Simon Bell, Andreas Haggman, Suleman Ibrahim, Ela Lee,
Carlton Shepherd; it has been a fantastic journey together.

I am grateful to the EPSRC Centre for Doctoral Training (CDT) in Cyber Secu-
rity, coordinated by Carlos Cid with Claire Hudson, for generously supporting my
travels and studentship. It allowed me to attend a great deal of conferences in a
large number of countries: without this, many of my collaborators and publica-
tions may not be such.

I thank my friend Joseph O’Brien, and landlord during half of my doctoral
studies; he tirelessly proofread my early writings, and gave me moral strength.
And I thank the people who kept alive my insatiable curiosity and quest for Truth:
Ricciarda De Caria, Ledo Stefanini, Lorenzo Grespan, and the late Sergio Paleari –
a genius forgotten by society. I finally thank my parents and brother, who strongly
and lovingly believed in me, and Elisa, who patiently supported me through these
years, and gave me love I cannot describe. To her, I dedicate this thesis.

vi

Contents

I Leakage estimation via Machine Learning 1

1 Introduction 3

2 Definitions and Main Result 11
2.1 Threat model . 11
2.2 Idealised adversaries . 13

2.2.1 Bayes adversary . 13
2.2.2 Random guessing . 14

2.3 Problem definition . 15
2.4 Learning rules . 15
2.5 UC learning rules are leakage estimators 16
2.6 Impossibility results . 17

3 Estimating Security in Practice 19
3.1 UC rules . 19

3.1.1 Frequentist approach . 19
3.1.2 NN . 21
3.1.3 kn-NN . 22
3.1.4 SVM . 24
3.1.5 Neural Networks . 25
3.1.6 NN bound by Cover and Hart (1967) 26
3.1.7 A remark on convergence rates 26

3.2 Error estimates . 27
3.2.1 Validation estimate . 27
3.2.2 k-fold Cross Validation estimate 28
3.2.3 Resubstitution estimate . 28

4 Security Measures 29
4.1 Multiplicative Leakage . 30
4.2 Min-entropy . 30

vii

Contents

4.3 Bayes security measure (β) . 31

II Direct Estimation 35

5 Finite O× S 37

5.1 Notation . 37

5.2 Synthetic systems . 37

5.2.1 Experimental setting . 38

5.2.2 Geometric systems . 39

5.2.3 Spiky system: making nearest neighbour rules fail 43

5.2.4 Random system . 46

5.2.5 Comparison with the frequentist approach 47

5.3 Application to time side channel in finite field exponentiation 48

5.3.1 Side channel description . 48

5.3.2 Message blinding . 48

5.3.3 Implementation and results . 49

6 Infinite O 53

6.1 Application to location privacy . 53

6.1.1 The Gowalla dataset . 54

6.1.2 Defences . 55

6.1.3 Results . 56

7 Comparison with leakiEst 61

7.1 Time side channel on e-Passports’ RFID 61

7.2 Gowalla dataset . 63

III Estimation through Features 65

8 Features and Convergence 67

8.1 Features . 67

8.2 A brief remark . 68

8.3 Problem definition . 68

8.4 Results and discussion . 68

8.5 Features and attack’s computational complexity 70

viii

Contents

9 Application to Traffic Analysis 71
9.1 Webpage Fingerprinting . 71

9.1.1 Background . 72
9.1.2 Major defences . 74
9.1.3 Major attacks . 75
9.1.4 Previous directions in provable evaluation of WF defences . . 76

9.2 Measuring the security of WF defences 78
9.2.1 WF formulation . 78
9.2.2 WF attacks . 79
9.2.3 Assumptions . 80
9.2.4 Application of the NN bound 80
9.2.5 Methodology . 81
9.2.6 Evaluation through features . 83
9.2.7 Privacy evaluation of WF defences 86
9.2.8 Direct evaluation . 86
9.2.9 Comparison with previous evaluation 89

9.3 Application layer Webpage Fingerprinting defences 90
9.3.1 Background and assumptions 91
9.3.2 ALPaCA . 93
9.3.3 Experimental design . 96
9.3.4 Limitations . 98

9.4 Extension: Measuring λ-security for ALPaCA 99

IV Extensions, Future Work, and Conclusions 101

10 Black-box Security 103
10.1 Infinite secret space |S| . 103

10.1.1 Formulation . 103
10.1.2 UC . 103
10.1.3 Applications . 104

10.2 Extension to many-observations adversaries 104
10.2.1 Bayes Risk . 105
10.2.2 Frequentist approach . 105
10.2.3 Nearest Neighbour for many-observations adversary 105
10.2.4 Applications . 106

10.3 Further extensions . 106

ix

Contents

10.4 Future applications . 107
10.4.1 Membership Inference . 108
10.4.2 Generic ML-based attacks . 109

11 Extensions from the Conformal Prediction Theory 111
11.1 Background . 111

11.1.1 Conformal Predictors . 111
11.1.2 Exchangeability martingales 114

11.2 Conformal Prediction adversaries . 115
11.3 Zero leakage test . 116
11.4 Verifying i.i.d. assumption . 116

12 Conclusions 117

Glossary 119

List of Symbols 121

Bibliography 123

Appendix 133
1 Formal analysis of the frequentist approach 133
2 NN bound . 135
3 Webpage Fingerprinting . 136

3.1 Attacks . 136
4 ALPaCA . 137

4.1 Algorithms . 137
4.2 Distribution estimation for P-ALPaCA 137

x

Contents

Luck—or lack thereof—only
exists
in the small sample

xi

Part I

Leakage estimation via Machine

Learning

1

1 Introduction

Figure 1.1: We consider a system as a black-box, taking a secret input s ∈ S and returning
an output o ∈ O accordingly. Our goal is to measure how much o leaks about
the input s.

Measuring how much a system leaks about its secret inputs is at the foundations
of Information Security: from Cryptography to side channel analysis, knowing the
leakage of a system is essential for designing systems that minimise the amount
of information an adversary learns from their outputs.

Informally, by security of a system we mean various related concepts:

• how much information the system reveals about its secret inputs in its out-
puts; outputs here have a generic connotation: they represent any measure-
ment that one can make to the system (e.g., running time, power consump-
tion, actual output values);

• how hard it is for an adversary to predict the secret corresponding to a
system’s output.

Throughout this manuscript, we will generally use the terms “leakage” and
“security” interchangeably. A technical difference exists between them – a leakage
measure is also a type of security measure (chapter 4); however, they will represent
for us the same concept in informal parlance.

Black-box security Whenever we can describe formally the internals of a sys-
tem, we may be able to determine its security analytically (although possibly fac-
ing computational barriers). Unfortunately, most real-world systems are too com-
plex to describe in a closed-form. Alternatively, one could add noise to a system’s

3

1 Introduction

output, and achieve bounds on its security, as with Differential Privacy mecha-
nisms (Dwork, 2006); however, i) determining the noise and the corresponding
security level for some systems is often tedious, and ii) these methods usually do
not account for the security of the system before the noise is applied: the system
may already exhibit no leakage, and adding noise may just affect its utility.

In this manuscript, we seek to establish new principles for measuring the leak-
age of a system about its secret inputs; we work under the black-box assumption:
the system’s internals are unknown, and we estimate its leakage by only looking
at examples of secret inputs and respective outputs. The basic idea is as follows:
we query the system many times, for our choice of inputs, and observe the re-
spective outputs; then we wish to estimate the system’s leakage from these input-
output examples, for some definition of leakage. We make no assumption on the
system itself: the relation between inputs and outputs is ruled by an unknown
probability distribution; however, we require that the system (and this probability
distribution) does not change between queries. We will look for estimators that
only require a few examples to attain good estimates.

Quantitative Information Flow The problem of leakage estimation has been
the central subject of Quantitative Information Flow (QIF) research. In the con-
text of Black-box security, the QIF community introduced several estimation tools,
originating from Information Theory and classical Statistics principles (Chatzikoko-
lakis et al., 2010; Chothia et al., 2013, 2014). These tools are based on the idea of
estimating the probability distribution induced by a system by counting the rela-
tive frequencies of its inputs and outputs; once the distribution is estimated, one
can compute the desired leakage measure analytically. We refer to this method
as the frequentist approach. Note that the same approach has been used in other
areas of security under different names (e.g., Cai et al. (2014c)).

Unfortunately, the frequentist approach is strongly limited: whenever the out-
put space is large, it requires too many input-output examples from the system
to provide accurate estimates, which makes it impractical for several real-world
problems. As a further consequence, this approach cannot be used when the sys-
tem’s output takes continuous values (e.g., time side channels).

ML for Black-box security estimation The main observation of our work is
that Black-box security can be formulated as a Machine Learning (ML) problem.
This has several theoretical and empirical consequences for the foundations of

4

Black-box security. Perhaps the most interesting of them has a practical nature:
the leakage of a system can be measured by using a class of asymptotically opti-
mal ML techniques (universally consistent rules). This fact alone makes it feasible
to measure the security of systems that were too large or complex to evaluate
until now. Indeed, differently from the frequentist approach, these techniques
can exploit regularities in the output space (e.g., notions of distance) to achieve
convergence within a small number of input-output examples.

Security measures In this manuscript, we are interested in estimating security
measures that are defined in terms of the Bayes risk – the ideal smallest error
an adversary commits – and the random guessing error – a baseline indicating the
optimal error against perfectly secure systems (chapter 4).

In particular, we introduce the Bayes security measure (β), as a generalisation of
the cryptographic concept of advantage. We prove bounds on β with respect to the
probability distribution on the secret inputs of a system (chapter 4), and we use it
to measure the security of Webpage Fingerprinting (WF) defences (chapter 9).

Estimating λ-security and (λ, Φ)-security We introduce a distinction between
two approaches for estimating a generic security measure λ (such as β): the direct
approach (Part II), and through features (Part III). The former estimates λ “directly”
on input-output data, and it gives raise to the notion of λ-security. The latter,
which takes inspiration from ML, applies a transformation Φ (the features) to the
system’s output before estimation, and it produces (λ, Φ)-security; this is a weaker
notion than λ-security, and we will use it whenever a direct estimate of λ does not
converge within the amount of available data.

Applications We expect black-box security to benefit from ML techniques when-
ever there exist some “regularity” in a system’s outputs. This is the case for several
real-world applications (e.g., side channels and privacy); on the other hand, when
there is no such regularity, we expect them to behave similarly to the status quo
(frequentist approach).

We evaluate numerous applications of our methods. In Part II, we compare ML
techniques with the frequentist approach, both on synthetic and real-world data
(e.g., a location privacy dataset, and a time side channel attack to e-Passports). In
Part III, we measure (β, Φ)-security of WF defences; to our knowledge, this is also
the first method for provably measuring the security of generic WF defences. In

5

1 Introduction

section 9.3 we introduce a WF defence, ALPaCA, whose security we conjecture
can be measured with the stronger notion β-security.

Extensions We devote the last part of this manuscript to extensions of our
framework (Part IV). Notably, we suggest how to extend our results to systems
with infinite input spaces, we propose an ML-inspired method for tackling a more
general class of adversaries (many-observations adversaries), and we conjecture that
our results are also applicable to virtually any ML-based attack. Finally, we in-
troduce an adversary based on Conformal Prediction (Vovk et al., 2005), who can
output a set of candidate predictions Γ for the secret input, and guarantees on the
probability that Γ contains the correct prediction.

On Black-box security The presented approach shifts the frequentist paradigm
that reigned in Black-box security until now, by giving it new foundations in the
ML theory. The resulting methods perform well empirically, making it possible to
evaluate security in a much wider range of real-world applications than before.

Unfortunately, the generality and wide applicability of Black-box security come
at a price: when a system has continuous outputs, the guarantees one obtains
with Black-box security are asymptotic in the number of examples; similarly, as
a consequence of the so called No Free Lunch theorem in learning, in the small
sample there exists no classifier that outperforms all the others across all problems
(distributions). Nevertheless, we may claim we know something in the long run.
Hence the sentence at the beginning of this manuscript.

Code In Cherubin et al. (2019) we proposed a tool, F-BLEAU (Fast Black-box
Leakage Estimation AUtomated), to estimate the security of a system from exam-
ples of its inputs and outputs. The tool is available as Open Source.1 Whilst we
believe the major contributions of this manuscript are theoretical, we wish for it
to serve also as a guide for analysts to measure the security of real-world sys-
tems. We will therefore include: i) code examples, with the commands one should
run to use the estimators we introduce, and ii) links to datasets and resources for
replicating our experiments.

1https://github.com/gchers/fbleau.

6

https://github.com/gchers/fbleau

Reading this Manuscript

Figure 1.2: Chapters diagram.

The core of the ideas in this manuscript (Figure 1.2) are in chapters: 2, 4, 8, with
extensions in chapter 10 and chapter 11. A security analyst wishing to apply our
results should also consult chapter 3.

The remaining chapters (5, 6, 7, and 9) are applications of our methods to syn-
thetic and real-world data.

Contributions

We list the main contributions of this manuscript.

• We show that the information leakage (security) of a system can be estimated
in a black-box manner by using universally consistent (UC) ML rules (chap-
ter 2). This gives access to a wide set of theoretical results (e.g., section 2.6)
and practical estimators to measure security (chapter 3). This appeared in
Cherubin (2015, 2017); Cherubin et al. (2019), but it is formalised in a more
general form in this manuscript. From ML, we also import the idea of “fea-
tures”, and define a security notion, (λ, Φ)-security, based on it (chapter 8).

• We introduce a new security measure, Bayes security (β), and prove its con-
sistency w.r.t. the choice of a system’s prior probabilities (chapter 4).

7

1 Introduction

• We compare extensively our methods with the status quo (the frequentist
approach), and apply them to synthetic data and to several real-world prob-
lems, such as: i) location privacy, ii) side channel to an exponentiation al-
gorithm, iii) time side channel in e-Passports, iv) evaluation of WF defences
(Part II and Part III). We also propose a new WF defence, for which we
conjecture one can measure the security more accurately (chapter 9).

• We suggest several extensions of the main framework, such as: i) continuous
secret spaces, ii) application to many-observations adversaries, iii) extension
to Conformal Prediction (CP) adversaries (Part IV). We also suggest our
methods are applicable to almost any ML-based adversary (section 10.4).

List of papers

Cherubin (2015) Technical report containing most results of (Cherubin, 2017);
see next entry for details. (technical report)

Cherubin (2017) Formalises Webpage Fingerprinting (WF) as a Machine Learn-
ing (ML) classification task, and shows that we can use a lower-bound of the NN
classifier by Cover and Hart (1967), and a UC rule (kn-NN) to measure the secu-
rity of WF defences. It is to our knowledge the first generic method to measure
security against WF. It is also the source of our main observation: the error of UC
learning rules can be used as a security estimator.

Cherubin et al. (2017) Introduces two server-side application-layer WF defences;
both offer state-of-the-art security whilst being easy to implement in practice. One
of them, ALPaCA, is discussed in this manuscript –because of potentially interest-
ing theoretical guarantees–, and it is currently being deployed in practice.

Cherubin et al. (2019) Extends the intuition of Cherubin (2017) and brings it
into the Quantitative Information Flow (QIF) theory. It states formally the connec-
tion between ML and Black-box security, thoroughly analyses nearest neighbour
rules both on synthetic and real-world examples, and highlights their strengths
and weaknesses.

8

Chatzikokolakis et al. (2018) Analyses β, the security metric introduced in
Cherubin (2017), proves some results (e.g., prior-consistency), and compares it
with other metrics. (in preparation)

Further work

The author also published the following papers during his doctoral studies.

Cherubin et al. (2015) Proposes a clustering algorithm, Conformal Clustering,
based on Conformal Predictors (CPs), and applies it to network traffic generated
by bots. CPs are wrappers around ML techniques, providing them with validity
guarantees, and they will be used in Part IV to extend our framework.

Cherubin and Nouretdinov (2016) Applies CPs as a basis for an alternative
to the (standard) List Viterbi algorithm for decoding a Hidden Markov Model
sequence. Outperforms the standard algorithm when its strong assumptions on
data are violated.

Cherubin (2018) Considers a majority vote strategy for ensembling CPs’ predic-
tions, and formulates validity guarantees for ensembles of correlated and uncor-
related CPs.

Cherubin et al. (2018) Uses exchangeability martingales to perform feature se-
lection in anomaly detection problems. In this manuscript, we suggest future
applications of exchangeability martingales in the context of Black-box security
(Part IV).

9

2 Definitions and Main Result

Figure 2.1: The optimal error for the problem we consider is that of the Bayes adversary.
The Bayes adversary predicts for an object the most likely secret according to
P(o|s)P(s); his expected error (the Bayes error) is represented by the red area.

In this chapter, we define a class of attacks where an adversary aims to predict
the secret input of a system given its output, and we indicate the “Bayes adver-
sary” as the idealised optimal adversary. On the basis of this adversary’s error
(the Bayes error), we will derive several security measures in chapter 4.

We then focus on the goal of estimating the Bayes error of a system (and, thus,
its security) in a black-box manner, and we show that: i) the attack we consider
can be framed as an ML classification problem, and ii) the security of a system
can be measured by computing the error of asymptotically optimal ML rules. This
observation allows us to provide a new foundation for the theory of black-box
security estimation on the basis of ML; this results in new theoretical and practical
tools to measure the security of a system. In the next parts of this manuscript, we
will show these methods: i) make it practical to evaluate a much wider range of
systems than before, and ii) they often outperform the status quo.

2.1 Threat model

A black-box B : S 7→ O is a possibly randomised algorithm receiving secret
inputs s from a space of secrets S , and returning objects (or, equivalently, outputs)

11

2 Definitions and Main Result

accordingly; we call example a pair of object and secret (o, s). The secrets’ space
S is finite, although the results presented here are generalisable to continuous
secrets (section 10.1); we will consider alternatively two cases for the object space
O: discrete and continuous, which will be specified where appropriate. We say
a black-box is sampled for a secret s, meaning that algorithm B is run with input
s, and returns output o = B(s). Unless otherwise stated, secret inputs are chosen
according to a set of prior probabilities (or priors) π , with π(s) = P(s).

We call the tuple (π,B) a system. A system induces on the example space O×S
a joint probability distribution µ(o, s); we say that someone “queries” the system
to indicate that they sample an example from µ(o, s). We assume this distribution
does not change over time; i.e., (π,B) stays the same across different queries.
Observe that this is equivalent to assuming that examples (oi, si) are independently
sampled from the same distribution µ(o, s) (i.e., they are i.i.d.). We will suggest a
test to verify this assumption on real data (section 11.4), and some implications of
its violation for our purposes (subsection 9.2.3).

The framework we propose captures attacks of the following kind – although,
as we will see later, our results generalise to much stronger adversaries. Consider
an adversary whose goal is to predict the secret s corresponding to an observation
o for a given system (π,B). The adversary operates in two phases: training, and
attack. In the training phase, the adversary is given oracle access to the system,
and queries it n times for his choice of secrets to obtain the respective outputs:
{(o1, s1), ..., (on, sn)}; this constitutes his training data. Then, in the attack phase, a
secret s is sampled according to priors π, and the adversary is asked to predict s
given the corresponding black-box output o = B(s).1

More precisely, the adversary selects a function g : O 7→ S on the basis of the
training data, which predicts a secret given an object; we call g a classifier. In the
attack phase, he is evaluated with the expected risk over µ for a new object o:

Rg := E(ℓ(s, g(o))) ;

here ℓ : S × S 7→ R≥0 is a loss function, whose definition is problem-related.
Throughout this document, we will limit our discussion to the 0-1 loss function,
ℓ := I(s ̸= g(o)), where I is the indicator function taking value 1 when s ̸=

1Observe that, in the scenario we described, the adversary receives only one observation o to
predict s; this captures a wide range of attacks. In section 10.2, we will also consider an extension
where he can observe several outputs all belonging to the same secret.

12

2.2 Idealised adversaries

g(o), 0 otherwise. For this loss function, that the expected risk coincides with the
classifier’s expected probability of error:

Rg = E(I(s ̸= g(o))) = P(s ̸= g(o)) ;

for short, we will refer to Rg as the error probability or simply error. The 0-1
loss is meaningful for a great majority of real-world attacks, when S is finite; in
chapter 10 we suggest extensions.

Remark As we will see in the next section, our framework and results generalise
to a much knowledgeable adversary: an adversary who knows the true underlying
distribution µ (or, equivalently, who knows the internals of the system (π,B)), and
aims at predicting s given o. Note that, differently from the one we described in
this section, such an adversary does not need any training data.

2.2 Idealised adversaries

We now define two idealised adversaries, whose probabilities of error are the
basis for constructing security measures in chapter 4. They are the Bayes and the
random guessing adversaries.

2.2.1 Bayes adversary

Suppose one knows the true distribution µ(o, s); then the Bayes classifier min-
imises their expected risk:

Definition 2.1 (Bayes classifier). Let µ(s | o), with s ∈ S and o ∈ O, indicate the
conditional (a posteriori) probability distribution of secret s given black-box output o.
The Bayes classifier g∗ : O 7→ S predicts, for a new object o:

g∗(o) := argmax
s∈S

µ(s | o) = argmax
s∈S

µ(o, s) .

The Bayes classifier minimises the error among all classifiers:

13

2 Definitions and Main Result

Theorem 2.2 (Optimality of the Bayes classifier (e.g., Devroye et al. (2013))). For
any classifier g : O 7→ S :

P(g∗(o) ̸= s) ≤ P(g(o) ̸= s) .2

We call Bayes adversary3 the optimal idealised adversary who knows the true
distribution µ(o, s) induced by a system, and uses the Bayes classifier to make
predictions. We call the error of this adversary, R∗, the Bayes error (or Bayes risk).

R∗ is obtained analytically from the a posteriori conditional distribution µ(s | o)
as follows. Upon observing a new object o, g∗ makes a conditional error:

r∗(o) := 1−max
s∈S

µ(s | o) .

By taking the expectation of r∗(o) over the distribution on O we obtain:

R∗ := E(r∗) = 1− ∑
o∈O

max
s∈S

µ(o, s) ,

supposing O is finite; when it is infinite, we appropriately replace the summation
with an integral.

Remark 1 Under our threat model (section 2.1), the Bayes risk is the smallest
error achievable by any adversary, even with unbounded computational resources.

Remark 2 Because the real distribution on O × S is usually not known for real-
world systems, it is also not possible to determine R∗ analytically. However, meth-
ods exist for estimating the Bayes risk; this will be the focus of the next chapters.

2.2.2 Random guessing

It is useful to define a “baseline” to consider when measuring the Bayes risk for a
system; to this end, we construct the random guessing adversary as follows.

2In our definitions we implicitly used the notion of 0-1 loss. However, the Bayes classifier and its
optimality result can be generalised to other loss functions.

3Whilst “Bayesian adversary” would be grammatically a more appropriate choice, such name
would recall “Bayesian statistics”, which uses very different assumptions and techniques from
the ones we consider. Because Bayes classifier and Bayes risk commonly indicate respectively the
classifier used by the optimal adversary in our context and his error, we choose this name.

14

2.3 Problem definition

The random guessing adversary knows the secrets’ priors π of a system (π,B),
but he is not given access to its black-box B.4 Under these circumstances, the best
this adversary can do is to always output the secret with the largest prior. This is
what we refer to as random guessing (implicit: “according to priors”).

Definition 2.3 (Random guessing error). Consider a system (π,B) with priors π,
π(s) = P(s) for s ∈ S . The random guessing error Rπ is the error committed by an
adversary who always outputs the most likely secret,

Rπ := 1−max
s∈S

π(s) .

2.3 Problem definition

The main focus of this manuscript is to estimate the security of a system in a
black-box manner. We will measure security according to security measures λ

that can be expressed as a function of the Bayes risk and random guessing error
(chapter 4); therefore, to estimate the security of a system will be for us equivalent
to estimating its associated Bayes risk. We state this problem as follows.

Problem 2.4 (Direct black-box security estimation). Given a dataset of examples,
{(o1, s1), ..., (on, sn)}, obtained by sampling n times a system (π,B), we wish to compute
an estimate R̂∗ of the true Bayes risk R∗ of the system.

We will then compute the value of a desired security measure λ on the basis of R̂∗.

Moreover, it is desirable:

• that the estimates require a small number n of examples to converge to R∗;

• to have several options on the guarantees that the estimates provide (e.g.,
convergence from above or below);

• to also have conservative estimates (e.g., proper lower bounds) of R∗.

2.4 Learning rules

Informally, an ML rule, (or, simply, learning rule) is an algorithm that selects a clas-
sifier, from a family of classifiers, according to training data Ztrain = {(o1, s1), ..., (on, sn)},
with the goal of minimising the expected error on a new object.

4Observe this is equivalent to considering a system (π,B) where the output of B leaks nothing
about its secret input.

15

2 Definitions and Main Result

For our purposes, a learning rule is a sequence of functions {gn, n ≥ 1}; with a
slight terminology overload, we call gn : O × {O × S}n 7→ S a classifier, and will
write gn(o; Ztrain) or simply gn(o) to indicate that we use the classifier selected by
the rule according to Ztrain to predict the secret ŝ for an object o.

We evaluate the performances of a rule with its expected risk:

Rgn := E(ℓ(s, gn(o))) = P(s ̸= gn(o)) .

In the next section, we will show that a particular class of learning rules can be
used to estimate the Bayes risk, and therefore a system’s security.

2.5 UC learning rules are leakage estimators

We can finally state a central observation for this manuscript. To estimate the
security of a system is equivalent to estimating the error of a rule from a particular
class of rules: universally consistent (UC). This observation allows to bring a vast
amount of results from the ML theory into the problem we formulated; notably,
this is a paradigm shift from the standard statistical approaches (subsection 3.1.1)
that have been used so far to measure the leakage of black-boxes.

Consider a distribution µ(o, s), and a learning rule gn selecting a classifier using
n training examples sampled from µ. Intuitively, we would like its expected error
for a new example (o, s) to approximate better and better the Bayes risk of the cor-
responding system as the training set increases in size. The following definitions
capture this intuition.

We first define consistency with respect to a particular distribution:

Definition 2.5 (Consistent Learning Rule). Let µ be a distribution on O× S and let
gn be a learning rule, which is trained from n examples sampled from µ. The rule gn is
consistent if its expected error satisfies Rgn → R∗ as n→ ∞.5

The next definition generalises to all distributions:

Definition 2.6 (Universally consistent Learning Rule). A learning rule is universally
consistent if it is consistent for any distribution µ on O× S .

5We will not make explicit the mode of convergence specified by the notation Rgn → R∗ (e.g.,
weak or strong), because, for most well-behaved rules, consistency and strong consistency are
equivalent (Devroye et al., 2013).

16

2.6 Impossibility results

By this definition, the error of a classifier selected according to a UC rule is an
estimate of the Bayes risk. In the next chapter we will describe several UC rules,
and explain into details how to estimate R∗ in practice from a dataset.

2.6 Impossibility results

UC rules give asymptotic guarantees, and one may wonder whether it is possible
to have optimality guarantees in the finite sample. Unfortunately, the following
two theorems show that: i) if O is continuous, then no learning rule can assure to
converge with a certain rate, and ii) in general, no rule is optimal for all learning
problems (i.e., distributions µ).

Theorem 2.7 (No convergence rate (Antos et al., 1999)). If O is infinite, and under no
further assumption on the distribution, for any UC rule there exists a distribution µ(o, s)
for which the error of such rule converges to R∗ arbitrarily slowly.

This theorem states that, for any learning algorithm, one can find a distribution
for which the algorithm performs arbitrarily bad. One may then wonder if there
is a learning algorithm that converges faster than the others on average, among
the possible choices of distributions µ on O× S .

The No Free Lunch (NFL) theorem gives a negative answer. We provide here a
simplified version.

Theorem 2.8 (No Free Lunch (Wolpert, 2002)). Consider two learning rules, fn and
gn, and a training set of examples {(o1, s1), ..., (on, sn)} sampled from a joint distribution
µ on O × S . Then, there is always a distribution µ such that Eµ R fn < Eµ Rgn , and vice
versa, there is always a distribution µ′ such that Eµ′ R fn < Eµ′ Rgn .

Important Remark

These theorems imply that, in practical applications of Black-box security,
one should always evaluate many estimators (learning rules), and then con-
sider the one that converged faster (e.g., take the smallest error estimate).

17

3 Estimating Security in Practice

This chapter describes UC rules and how to use them to estimate R∗, in practice,
from a dataset Z = {(o1, s1), ..., (on, sn)} of examples sampled from a system.

We first provide examples of UC rules, that we will evaluate in the next parts of
this manuscript. Then, we focus on various options to estimate the error of a UC
rule using a dataset of examples.

3.1 UC rules

Method Guarantee Space O Assumptions

Frequentist → R∗ finite

NN → R∗ finite

kn-NN → R∗ infinite

SVM− rb f → R∗ infinite O compact subset of Rm

NN Bound ≤ R∗ infinite (d,O) separable

Table 3.1: Estimates’ guarantees as n → ∞. Guarantees on infinite spaces also hold for
finite space (potentially under weaker assumptions). Separability is sometimes
required on a metric space (d,O), where d is a distance metric.

We describe various UC rules and a lower bound estimate of R∗. Table 3.1 sum-
marises them, together with their assumptions and the guarantees they provide.

3.1.1 Frequentist approach

The frequentist approach (also look-up table) was formalised by Chatzikokolakis
et al. (2010) in the context of QIF, and it is the de facto standard for black-box
security estimation. It also appeared in different forms in other security domains;
for example, it was used by Cai et al. (2014c); Wang et al. (2014) to measure the
security of Webpage Fingerprinting defences (chapter 9).

19

3 Estimating Security in Practice

This approach is only applicable when O is finite. It consists in estimating the
underlying joint and prior distributions by counting the frequencies of secrets and
objects in the training data Z = {(o1, s1), ..., (on, sn)}, n ≥ 1:

µ(o, s) ≈ µ̂(o, s) :=
|{i = 1, ..., n | oi = o, si = s}|

n

π ≈ π̂(s) :=
|{i = 1, ..., n | si = s}|

n
.

The frequentist classifier works as follows:

Freq(o) =

argmaxs µ̂(o, s) if (o, ·) ∈ Z

argmaxs π̂(s) otherwise .

This classifier bases its classification for o on: i) the estimated joint distribution, if
o was observed in the training data, ii) the estimated prior distribution otherwise.

Consider a finite example space O × S . Provided with enough examples, the
frequentist approach always converges: clearly, µ̂ → µ as n → ∞, because events’
frequencies converge to their probabilities by the Law of Large Numbers.

However, this approach has a fundamental issue. Given a training set, the fre-
quentist classifier can tell something meaningful (i.e., better than random guess-
ing) for an object o, only as long as o appeared in the training set; but, for very
large systems (e.g., large object space), the probability of observing an example
for each object within the training set becomes small, and the frequentist classifier
approaches random guessing. We study this matter further in subsection 5.2.4
and in Appendix 1. An additional related issue of the frequentist approach is that,
whenever the objects come from nosy measurements, it has a tendency to strongly
underestimate the Bayes risk; we discuss this in subsection 9.1.4.

Code

Runa:

$ fbleau frequentist <training file> <validation file>

aThis, and the following code snippets in this chapter, show how to estimate the Bayes risk
(and, therefore, the security) of a system using F-BLEAU (Cherubin et al., 2019). They
require sampling examples (oi, si) from the system, and splitting them into two .csv
files, respectively containing training and validation datasets. The chosen estimator (e.g.,
frequentist) will be trained on the training set, and its error estimated on the validation
set (see the validation estimate in section 3.2 for details). More information on the file
format on the GitHub page: https://github.com/gchers/fbleau.

20

https://github.com/gchers/fbleau

3.1 UC rules

3.1.2 NN

Nearest Neighbour (NN) is one of the simplest classifiers: given a training set
and a new object o, it predicts the secret of its closest training observation (nearest
neighbour), with respect to some distance metric.1 It can be defined for an infinite
object space, where although it does not guarantee UC.

We introduce a novel formulation of NN, which can be seen as an extension
of the frequentist approach, that takes into account ties (i.e., neighbours that are
equally close to the object to predict o); the corresponding rule guarantees UC
when O is finite (Cherubin et al., 2019).

Consider a training set {(o1, s1), ..., (on, sn)}, an object o, and a distance metric
d : O ×O 7→ R≥0. The NN classifier predicts a secret for o by taking a majority
vote over the set of secrets whose objects have the smallest distance to o. Formally,
let Imin(o) = {i | d(o, oi) = minj=1...n d(o, oj)} and define:

NN(o) = sh(o) where h(o) = argmax
i∈Imin(o)

|{j ∈ Imin(o) | sj = si}| .

We show that NN is universally consistent for finite O× S :

Theorem 3.1 (Universal consistency of NN). Consider a distribution on O×S , where
O and S are finite. Let RNN

n be the expected error of the NN classifier for a new observation
o. As the number of training examples n→ ∞:

RNN
n → R∗.

Sketch Proof. For an observation o that appears in the training set, the NN classifier
is equivalent to the frequentist approach (i.e., they have identical output for the
same input). For a finite space O × S , as n → ∞, the probability that the training
set contains all o ∈ O approaches 1. Therefore, the NN rule is asymptotically
equivalent to the frequentist approach, and its error also converges to R∗.

Code

Run:

$ fbleau --knn=1 <training file> <validation file>

1The guarantees we formulate in this chapter for various nearest neighbour rules are independent
of the distance metric.

21

3 Estimating Security in Practice

3.1.3 kn-NN

NN is not UC for infinite O. However, we can achieve universal consistency in
this case with the k-NN classifier, an extension of NN, for appropriate choices of
its parameter k.

The k-NN classifier takes a majority vote among the secrets of its k neighbours
Breaking ties in the k-NN definition requires more care than with NN. In liter-
ature, this is generally done via strategies that add randomness or arbitrariness
to the choice (e.g., if two neighbours have the same distance, select the one with
the smallest index in the training data) (Devroye et al., 2013); however, while
these strategies make for an easier theoretical treatment, they do not necessarily
perform well when there are many ties (e.g., finite O). We propose a novel tie
breaking strategy, which takes into account ties whilst giving more importance
to the closest neighbours. In early experiments, we observed this strategy had a
faster convergence than standard approaches (Cherubin et al., 2019).

Consider a training set {(o1, s1), ..., (on, sn)}, a new object o, and some metric
d : O ×O 7→ R≥0. Let o(i) denote the i-th closest object to o, and s(i) its respective
secret. If ties do not occur after the k-th neighbour (i.e., if d(o, o(k)) < d(o, o(k+1))),
then k-NN outputs the most frequent among the secrets of the first k neighbours:

k-NN(o) = argmax
s∈S

|{i = 1, ..., k | s(i) = s}| .

If ties exist after the k-th neighbour, that is, for some k′ ≤ k < k′′:

d(o, o(k′−1)) < d(o, o(k′)) = ... = d(o, o(k)) = ... = d(o, o(k′′)) < d(o, o(k′′+1)) ,

we proceed as follows. Let ŝ be the most frequent secret among
{

s(k′), ..., s(k′′)
}

;
k-NN predicts the most frequent secret in the following multiset, truncated at the
tail to have size k:

s(1), s(2), ..., s(k′−1), ŝ, ŝ..., ŝ .

We now define kn-NN, a UC learning rule that selects a k-NN classifier for a
training set of n examples by choosing k as a function of n.

Definition 3.2 (kn-NN rule). Given a training set of n examples, the kn-NN rule selects
a k-NN classifier, where k is chosen such that kn → ∞ and kn/n→ 0 as n→ ∞.

Stone proved that the kn-NN rule is UC:

22

3.1 UC rules

Theorem 3.3 (kn-NN is UC (Stone, 1977)). For all distributions the expected error of
the kn-NN rule converges to R∗ as n→ ∞.

This holds for any distance metric. In our experiments, we will use the Eu-
clidean distance, and we will evaluate two kn-NN rules, kn = log(n) (where log is
the natural log) and kn = log10 n.

In the case of finite output spaces, ties may occur. Theorem 3.3 holds for a k-NN
formulation that splits ties in a simplistic way: if two objects oi and oj are equidis-
tant to o, it declares oi closer iff i < j. We shall now prove that our tie-splitting
method is also UC for finite output spaces, by showing that our formulation of
k-NN converges to the frequentist approach, which is UC in finite spaces.

We first state a lemma. Consider i.i.d. objects {o1, ..., on}, and an object o from
the same distribution. Reminder: the support of a distribution µ, supp(µ), is the
set of o s.t. µ(Bδ(o)) > 0 for all δ > 0, where Bδ(o) is the δ-ball centered in o.

Lemma 3.4 (Devroye et al. (2013)). If o ∈ supp(µ) and limn→∞ kn/n = 0, then
d(o, o(k))→ 0 with probability one.

We can now prove that our tie-splitting method is UC for finite O.

Proof. Let us indicate with maj A the function returning the most frequent element
of the multiset A, (e.g., maj{1, 2, 2, 3} = 2). By the tie-splitting procedure described
above, the k-NN prediction when ties occur is the majority vote:

k-NN(o) = maj{s(1), s(2), ..., s(k′−1), ŝ, ŝ..., ŝ} , (3.1)

where the set is truncated at the tail to have size k; in the expression, ŝ is deter-
mined as: ŝ = maj{s(k′), ..., s(k′′)}, where o(k′) and o(k′′) are respectively the first and
the last neighbours for which d(o, o(k′)) = d(o, o(k)) = d(o, o(k′′)).

If we let k/n→ 0, then d(o, o(k))→ 0 by Lemma 3.4. Furthermore, k′ = 1, and the
k-NN prediction (Equation 3.1) reduces to k-NN(o) = maj{ŝ, ŝ..., ŝ} = ŝ. Finally:

ŝ = maj{s(k′), ..., s(k′′)}

= maj{s(1), ..., s(k′′)}

= maj{si | d(o, oi) = d(o, o(k)) = 0, i = 1, ..., n}

= maj{si | oi = o, i = 1, ..., n}

= argmax
s
|{i = 1, ..., n | oi = o, si = s}| = Freq(o) .

23

3 Estimating Security in Practice

Code

F-BLEAU currently implements kn-NN for two choices of k: kn = log(n)
and kn = log10(n). Run:

$ fbleau log <training file> <validation file>
or
$ fbleau log10 <training file> <validation file>

3.1.4 SVM

Support Vector Machine (SVM) classifiers work by (possibly) mapping objects into
a Hilbert space (the so-called feature space), and then determining a hyperplane that
separates them under some constraints.

Consider a binary classification problem, |S| = 2. Select a function k : O ×
O 7→ R, such that there exists a Hilbert space H (feature space) and a mapping
Φ : O 7→ H (feature mapping) with:

k(x, y) = ⟨Φ(x), Φ(y)⟩ ∀x, y ∈ O ;

k is called a kernel; select a parameter c > 0. SVM classification is obtained by:

SVM(o) = sign(⟨w, Φ(·)⟩+ b)

where the weights w and b are obtained as a solution to the following quadratic
optimisation problem:

minimise ⟨w, w⟩+ c
n

∑
i=1

ξi for w, b, ξ

subject to si(⟨w, Φ(oi)⟩+ b) ≥ 1− ξi, i = 1, ..., n ,

ξi ≥ 0 i = 1, ..., n .

Steinwart (2002) proved that SVM is UC for certain kernels k when c is chosen
according to a set of functions c = cn in the number of training examples n. In
particular, Steinwart showed that SVM is UC for a popular kernel, Gaussian RBF,
k(x, y) := exp(−γ||x− y||2), for fixed γ > 0:

24

3.1 UC rules

Theorem 3.5 (SVM-RBF universal consistency (Steinwart, 2002)). Let |S| = 2, con-
sider a compact O ⊂ Rq, and a Gaussian RBF kernel k. For all n ≥ 1 select cn = nβ−1

for some 0 < β < 1
q . Then SVM with kernel k and sequence {cn} is UC.

Unfortunately, achieving UC in a multiclass setting (|S| > 2) with SVM is
harder, and naïve extensions from binary SVM to multiclass (e.g., one-vs-rest
(Friedman et al., 2001)) yield to inconsistent rules. Tewari and Bartlett (2007) pro-
posed principles to determine UC of multiclass SVM methods based on the equiv-
alence between classification calibration and UC; they showed that the method
by Lee et al. (2004) is UC, and claimed that both the approaches by Weston and
Watkins (1998) and Crammer and Singer (2001) were not UC. The latter claim was
refused by Glasmachers (2010), because of a logic fallacy in the inconsistency argu-
ment. Glasmachers (2010) also claimed that the method by Crammer and Singer
(2001) was UC, but the proof was found wrong, with an Erratum note on the paper
itself; the note also claims the method by Crammer and Singer (2001) is not UC.

Code

SVM is not implemented in F-BLEAU. However, one can use
scikit-learn’s implementationab. Select parameter C=cn = nβ−1, as a func-
tion of the number of training examples n and a chosen β. Then, for training
data Z, and test objects Otest={o1, o2, ...} and secrets Stest = {s1, s2, ...}:

from sklearn.svm import SVC
svm = SVC(C=C, kernel='rbf')
svm.train(Ztrain)
estimate = 1 - svm.score(Otest, Stest)

ahttp://scikit-learn.org.
bNote that one should only use this for binary classification, as the multiclass methods

implemented in the library (one-vs-rest and Crammer and Singer (2001)) are not UC.

3.1.5 Neural Networks

Literature abounds with further examples of UC rules.

A notable class is feed-forward Neural Networks (NNet). An NNet with one
hidden layer and step activation function σ is UC when the layer’s number of
neurons k is chosen as a function of the size of training data n such that k → ∞
and k log(n)

n → 0 as n→ ∞ (Faragó and Lugosi, 1993).

25

http://scikit-learn.org

3 Estimating Security in Practice

Other examples include histogram rules (e.g., Devroye et al. (2013)). Of course,
this chapter does not aim to be a comprehensive overview of all UC method, but
rather to illustrate a set of techniques that one can use to measure security.

3.1.6 NN bound by Cover and Hart (1967)

A very interesting result for our goals is a lower bound on R∗ due to Cover and
Hart (1967) coming from the error of the NN classifier. This bound was first used
to estimate the leakage of a black-box system by Cherubin (2017).

Theorem 3.6 (NN Bound). Let RNN
n be the expected error of the NN classifier given n

training examples. As n→ ∞, the following inequality holds:2

|S| − 1
|S|

(
1−

√
1− |S|
|S| − 1

RNN
n

)
≤ R∗ .

We derive this from the inequality by Cover and Hart (1967) in Appendix 2.
This lower bound is as tight as possible, in the sense that there exist distributions
for which equality is reached. However, in practice we observed it tends to be
largely conservative (e.g., section 9.2). Nevertheless, this characteristic becomes
very useful in Information Security contexts, where an analyst may need to have
a stronger confidence of security (e.g., an overestimate of the adversary’s error).

Code

Run:

$ fbleau nn-bound <training file> <validation file>

3.1.7 A remark on convergence rates

Because no rate-of-convergence results can be proved under the sole i.i.d. assump-
tion (section 2.6), it is possible that for certain distributions a non-UC rule outper-
forms UC rules for a finite sample size. This is fairly trivial to show: we could
craft a particularly malicious distribution of data such that a non-UC rule con-
verges quickly, but for which some UC rules (e.g., kn-NN, SVM) perform poorly.

2An implementation note: L
L−1 R̂NN is usually smaller or equal to 1. However, because of noise in

experiments, this quantity may take larger values than 1, making the value under square root

negative. In practice, we use 1−min
(

L
L−1 R̂NN , 1

)
under square root to avoid this.

26

3.2 Error estimates

This fact does not change our recommendation: one should always try many
estimator, and use the one converging faster. Nonetheless, if an analyst: i) suspects
none of the UC methods will converge, or ii) needs to make a very conservative
choice for security requirements, then they should use conservative estimates (e.g.,
NN lower bound).

3.2 Error estimates

The consistency of a UC rule gn is formulated on its expected error when given a
training set of n examples:

Rn = E(ℓ(s, gn(o))) =
∫
O×S

ℓ(s, gn(o))µ(o, s)do ds , (3.2)

where ℓ is the 0-1 loss in this manuscript, unless otherwise specified.

Using this expression to determine the true Rn requires knowing the distribu-
tion µ. While we will be able to compute Equation 3.2 in synthetic experiments
(section 5.2), in practical applications we need to estimate Rn from a dataset.

This section describes estimates of Rn that can be computed from a dataset Z.
Note that, whilst this topic has a wide literature, we will focus on the methods
with useful properties for our purposes.

3.2.1 Validation estimate

Ideally, one should estimate a rule’s error on data generated independently from
the training set (i.e., in a separate experiment). However, this is often not possible.
A common alternative is to split the collected data into two, training Ztrain and
validation set Zval ; then the validation error of a learning rule gn trained on Ztrain is
given by its average error on the validation set:

R̂n :=
1
n ∑

(oi ,si)∈Zval

I(gn(oi) ̸= si) .

This method has low computational requirements, as opposed to other methods
we will describe. However, its estimate is usually biased with respect to the par-
ticular (Ztrain, Zval) split (e.g., Devroye et al. (2013)). A simple extension of this is
to estimate the error multiple times for different training-validation set splits, and
then to average their estimates.

27

3 Estimating Security in Practice

Code

Note All the code snippets illustrated so far used the validation estimate.

3.2.2 k-fold Cross Validation estimate

A popular error estimation method is k-fold Cross Validation (CV). Given a dataset
Z, and for a chosen integer k > 1, we randomly split Z into k parts (folds). Then,
for each fold, we train a classifier on the remaining k− 1 folds and estimate the
error on the current fold. The final estimate is obtained by averaging the estimates.

A typical choice for k is 5 or 10, which was empirically shown to give a good
bias/variance trade-off.

A special case of this estimate is Leave One Out CV (LOOCV), obtained for
k = n, which although has a high variance.

3.2.3 Resubstitution estimate

The resubstitution estimate (or training set error or apparent error) is obtained by
both training a rule and estimating its error on the same dataset Z. This estimate
is optimistically biased (i.e., it converges to the real Rn from below). Interestingly,
it was used to obtain a lower bound of the Bayes risk with the kn-NN rule (e.g.,
Fukunaga and Hummels (1987)); note that this lower bound estimate, differently
from the NN bound, guarantees asymptotic convergence to R∗.

28

4 Security Measures

Until a decade ago, the most popular measure of leakage in information flow
theories was Shannon mutual information (MI). However, in his seminal paper,
Smith (2009) showed that MI is not appropriate to represent a realistic attacker; he
therefore suggested to use notions based on the Bayes risk.1

In this chapter, we describe two security measures that can be derived from
the Bayes risk, ME and Multiplicative Leakage, and we introduce a new one, the
Bayes Security measure (β). The need for many security measures is that there is
likely no “appropriate” measure for all security applications (Alvim et al., 2012);
furthermore, different measures provide different guarantees.

Remark 1 Note that in this text we use interchangeably the terms leakage and
security measure, although technically they have a subtle difference: a security
measure λ ∈ Λ ⊆ R≥0 is a generic numeric indicator of a system’s security; a
leakage measure is a security measure that takes higher values to indicate higher
vulnerability to an attack (i.e., to indicate the system leaks more information). We
will specify whether a security measure is a leakage measure whenever necessary.

Remark 2 Although there is a relation between MI and Bayes risk (Santhi and
Vardy, 2006), the corresponding threat models are very different: MI corresponds
to an attacker who can try infinitely many times to guess the secret; the Bayes
risk represents an adversary who has only one try at his disposal (Smith, 2009).
Consequently, measures that are based on the Bayes risk (e.g., Renyi’s min-entropy
(ME)) and MI can give very different results. For instance, Smith (2009) shows
two systems that have almost the same MI, but one has an ME several orders
of magnitude larger than the other one; conversely, there are examples of two
systems such that ME is 0 for both, while the MI is 0 in one case and strictly
positive (several bits) in the other one.

1Precisely, Smith derives notions on the basis of the vulnerability, the complement of the Bayes risk.

29

4 Security Measures

4.1 Multiplicative Leakage

Multiplicative Leakage (Braun et al., 2009) is defined as:

M =
1− R∗

1− Rπ
.

This leakage measure offers a fundamental guarantee: if computed for uniform
priors (i.e., Rπ = 1− 1/|S|), it upper-bounds the value of the Multiplicative Leak-
age computed for any other set of priors (Braun et al., 2009).

More formally, it satisfies prior-consistency, which we define as follows:

Definition 4.1 (Prior-consistency). Consider a black-box B, and let λ(π,B) be a secu-
rity measure computed for the system (π,B), for some choice of priors π. Also, let υ be
the uniform priors, υ(s) := P(s) = 1/|S|, ∀s ∈ S . We say that λ is prior-consistent if:

λ(υ,B) = min
π

λ(π,B) if smaller λ means “more secure”

or

λ(υ,B) = max
π

λ(π,B) if larger λ means “more secure” .

In other words, it is prior-consistent if, when computed for uniform priors, it lower-bounds
(or upper-bounds, depending on the formulation of λ) the security measure.

Remark A prior-consistent security measure allows a security analyst to neglect
prior probabilities when measuring the leakage of a system while having guaran-
tees for all priors. Of course, the analyst may also compute the measure with the
true priors whenever they are known, which would result in tighter bounds.

4.2 Min-entropy

Min-entropy leakage is defined as follows:

ME := − log2(1− Rπ) + log2(1− R∗) .

We will use it to compare our methods with leakiEst, a well-known black-box
leakage estimation tool, in chapter 7.

30

4.3 Bayes security measure (β)

4.3 Bayes security measure (β)

A more recent measure, which we refer to as Bayes Security measure (β), has the
characteristic of being bounded between [0, 1], where 1 means perfect security (i.e.,
zero leakage) (Cherubin, 2017).

It derives from the well-known concept of advantage (Adv) in Cryptography,
which informally measures how better than random guessing an adversary can
do. In Cryptography, advantage is defined for a two classes scenario (|S| = 2),
and assuming uniform priors over the secrets.

In Cherubin (2017), we generalised this notion to |S| ≥ 2 and (possibly) non-
uniform priors. By considering 1− Adv, the resulting security measure is:

β :=
R∗

Rπ
.

We now show that β is prior-consistent for |S| = 2. Note that, even if the
case |S| = 2 corresponds to the measure 1− Adv, which was widely studied in
Cryptography, its prior-consistency was unknown to the best of our knowledge.

Theorem 4.2 (β prior-consistency for |S| = 2 (Chatzikokolakis et al., 2018)). Con-
sider a system (π,B) on O× S , with |S| = 2, and let R∗(π) and Rπ(π) be respectively
the Bayes risk and random guessing error computed for a choice of priors π, and let
β(π) = R∗(π)/Rπ(π). Let υ be the uniform priors. Then:

β(υ) ≤ β(π) ∀π .

Proof. Observe that R∗(π) is concave. Let S = {s1, s2} and, without loss of gener-
ality, p = maxs∈S π(s) = s1, and let c = 2(1− p). Notice that c ∈ [0, 1], hence c
and 1− c are convex coefficients, and note that π = cυ + (1− c)π∗, where π∗ is
the point distribution on s1, i.e., π∗(s1) = 1 and π∗(s2) = 0. Then:

R∗(π) = R∗(cυ + (1− c)π∗)

≥ cR∗(υ) + (1− c)R∗(π∗)

= cR∗(υ)

= 2(1− p)R(υ) ;

31

4 Security Measures

the second step comes from the concavity of R∗, the third one because R∗(π∗) = 0.
Therefore:

R∗(π)

Rπ(π)
=

R∗(pi)
(1− p)

≥ R∗(υ)
(1/2)

=
R∗(υ)
Rπ(υ)

.

Unfortunately, this result does not generalise to |S| > 2. We show this by
providing a counterexample only for the case |S| = 3, and we leave a more exten-
sive treatment to future research. Consider the following conditional distribution
µ(o | s) on the example space O× S = {1, 2, 3} × {1, 2, 3}:

µ(o | s = 1) = (0.2, 0.3, 0.5)

µ(o | s = 2) = (0.5, 0.3, 0.2)

µ(o | s = 2) = (0.3, 0.2, 0.5) .

Then consider two choices of priors: π = (0.1, 0.45, 0.45), and uniform priors υ.
Then, by simple calculations: R∗(π) = 0.415 and R∗(υ) = 0.567, and therefore
β(υ) = 0.840 > β(π) = 0.755, thereby disproving prior-consistency for |S| = 3.

We claim this generalises to larger secret spaces (i.e., β is not prior-consistent for
|S| > 2), but we do not include a proof, as of minor interest for this manuscript.

32

What’s next

One can estimate the security of a system from black-box examples either by work-
ing directly on the objects o ∈ O or on a transformation Φ(o) of them (feature
mapping). In Part II we treat the former, in Part III the latter.

33

Part II

Direct Estimation

35

5 Finite O× S

The case of a finite example space O × S is the standard setting of Quantitative
Information Flow (QIF) research (Smith, 2009).

Whilst originally QIF assumed an analyst knows the true distribution µ(o, s)
induced by a system (π,B), and they can therefore compute R∗ analytically, a
case was made for black-box estimation (e.g., Chatzikokolakis et al. (2010)): in the
finite case, black-box methods are useful when i) a closed-form expression of the
system is too complex to derive, or even ii) when µ(o, s) is known, but the space
O×S is too large and it is computationally infeasible to determine R∗ analytically.

To date, the major black-box estimation methods proposed in QIF are based
on the frequentist approach (subsection 3.1.1). In this chapter, we compare this
approach with UC rules on both synthetic and real-world data. We focus our dis-
cussion on nearest neighbour UC rules (NN and kn-NN), which in our formulation
can be seen as an extension of the frequentist approach (section 3.1).

5.1 Notation

It is useful to introduce the following notation from the QIF literature. We define
a channel matrix Cs,o, describing the conditional a posteriori distribution over the
objects given a secret, Cs,o := P(o|s). Note that the tuple (π, Cs,o), for some priors
π, is sufficient to describe a system’s underlying distribution µ(o, s) (and, there-
fore, the system itself); indeed, given (π, Cs,o), the corresponding distribution is
µ(o, s) = Cs,oπ(s).

5.2 Synthetic systems

We evaluate the frequentist and nearest neighbour estimates on discrete synthetic
systems defined for various distributions on the channel matrix.

37

5 Finite O× S

Name |S| |O| R∗

Random 100-100 100 100 0.979
Geometric 1.0 100x10K 100 10K ∼ 0
Geometric 0.1 100x10K 100 10K 0.007
Geometric 0.01 100x10K 100 10K 0.600
Geometric 0.5 100x10K 100 10K ∼ 0
Geometric 0.5 1Kx100K 1K 100K ∼ 0
Geometric 0.5 10Kx1M 10K 1M ∼ 0
Geometric 0.2 100x1K 100 1K 0.364
Geometric 0.02 100x10K 100 10K 0.364
Geometric 0.002 100x100K 100 100K 0.364

Table 5.1: Synthetic systems we consider, and their real Bayes risk R∗.

5.2.1 Experimental setting

We sample n examples from a system’s distribution, and then compute the esti-
mate on the whole object space as in Equation 3.2; this is possible because O is
finite and µ is known.

We estimate the Bayes risk with the following estimators: frequentist – the status
quo –, NN, and kn-NN (for the choices kn = log(n) and kn = log10(n)), as we
described in chapter 3.

Since for synthetic data we also know the real Bayes risk, we can measure how
many examples are required for the convergence of each estimate. We do this as
follows: let Rg

n be an estimate of R∗, trained on a dataset of n examples. We say
the estimate δ-converged to R∗ after n examples if its relative change from R∗ is
smaller than δ: ∣∣Rg

n − R∗
∣∣

R∗
< δ .

While the relative change has the advantage of taking into account the magnitude
of the compared values, it is not defined when the denominator is 0; therefore,
when R∗ ≈ 0 (Table 5.1), we verify convergence with the absolute change:

∣∣Rg
n − R∗

∣∣ < δ .

Table 5.1 summarises the systems we evaluate in our experiments; we describe
them into details in what follows. We assume uniform priors for all the systems.

38

5.2 Synthetic systems

5.2.2 Geometric systems

We first consider systems generated by Geometric noise functions, which are one
of the typical mechanisms used to implement Differential Privacy (Dwork, 2006).
We consider different parameters to illustrate the effect of their variation on the
convergence of nearest neighbour methods and the frequentist one.

System description

Let S = {1, 2, . . . , w} and O = {1, 2, . . . , w′}, associated with the standard notion
of distance. Two numbers s, s′ ∈ S are called adjacent if s = s′ + 1 or s′ = s + 1.

Let ν be a real non-negative number and consider a function t : S 7→ O. The
channel matrix of the Geometric system is:

Cs,o = P(o | s) = α exp(−ν| t(s)− o |) ,

where α is a normalising factor. Note that the privacy level is defined by ν/∆t,
where ∆t is the sensitivity of t:

∆t = max
s1∼s2∈S

(t(s1)− t(s2)) ,

and s1 ∼ s2 means s1 and s2 are adjacent. Now let t(s) = s · w′/w. We define

α =

eν/(eν + 1) if o = 1 or o = w′

(eν − 1)/(eν + 1) otherwise ,

so to truncate the distribution at its boundaries.

We will now consider the following three parameters:

• the privacy level ν/∆t, which here is equal to ν|S|/|O|,

• the size of the secret space |S|, and

• the ratio |O|/|S|;

we vary each of these parameters one at the time, to isolate their effect on the
convergence rate.

39

5 Finite O× S

Figure 5.1: Estimates’ convergence for Geometric systems when varying their privacy
level. The respective distributions are shown in the top figure for two adja-
cent secrets s1 ∼ s2.

kn-NN
System δ Freq. NN log10 log

Geometric
100x10K
ν = 1.0

0.1 1 989 262 391 674
0.01 19 823 420 628 894

0.001 198 057 434 693 899

Geometric
100x10K
ν = 0.1

0.1 18 105 264 391 668
0.01 127 201 434 628 894

0.001 X X 10 727 900

Geometric
100x10K
ν = 0.01

0.1 105 448 103 352 99 847 34 238

Table 5.2: Convergence of the estimates when varying ν.

Variation of the privacy level

We fix |S| = 100, |O| = 10K, and we consider three cases: ν = 1.0, ν = 0.1, and
ν = 0.01. The results for the estimation of the Bayes risk and the convergence

40

5.2 Synthetic systems

rate are illustrated in Figure 5.1 and Table 5.2 respectively. In the tables, results
are reported for δ convergence levels {0.1, 0.01, 0.001}; an “X” means a particular
estimate did not converge within 500K examples, a missing row for a certain δ

means no estimate converged.

The results indicate that the nearest neighbour methods have a much faster con-
vergence than the standard frequentist approach, particularly when dealing with
larger systems. The reason is that Geometric systems have a regular behaviour
with respect to the Euclidean metric, which can be exploited by NN and kn-NN to
make good predictions for unseen objects.

Variation of the input size

Figure 5.2: Estimates’ convergence for Geometric systems when varying the number of se-
crets. The respective distributions are shown in the top figure for two adjacent
secrets s1 ∼ s2.

Here we fix ν = 0.5, |O|/|S| = 100, and we consider three cases |S| = 100,
|S| = 1K, and |S| = 10K. The results are in Figure 5.2 and Table 5.3. They confirm
what was logical to expect, namely that if we scale the number of inputs of a factor
c and all the other parameters remain the same, then the results (the number of

41

5 Finite O× S

kn-NN
System δ Freq. NN log10 log

Geometric
100x10K
ν = 0.5

0.1 3 926 264 391 678
0.01 38 181 434 628 894

0.001 371 823 434 693 899

Geometric
1Kx100K
ν = 0.5

0.1 39 461 2 191 4 570 7 287
0.01 403 135 4 083 7 018 11 337

0.001 X 5 329 8 427 14 133

Geometric
10Kx1M
ν = 0.5

0.1 X 22 929 51 705 92 740
0.01 X 46 712 82 211 X

0.001 X 66 610 X X

Table 5.3: Convergence of the estimates when varying |S|.

examples necessary to get the same estimation) are scaled by the same factor c, for
all the methods.

Variation of the ratio |O|/|S|

kn-NN
System δ Freq. NN log10 log

Geometric
100x1K
ν = 0.2

0.1 8 674 8 702 7 103 2 500
0.01 51 689 60 791 60 791 60 791
0.001 180 659 180 659 180 659 180 659

Geometric
100x10K
ν = 0.02

0.1 85 907 85 639 70 998 11 192

Geometric
100x100K
ν = 0.002

0.1 X X 413 969 2 962

Table 5.4: Convergence of the estimates when varying |O|/|S|.

Now we fix |S| = 100, ν|O|/|S| = 2, and we consider three cases |O|/|S| = 10,
|O|/|S| = 100, and |O|/|S| = 1K. (Note that as a consequence also ν has to vary: we
have to set ν to 0.2, 0.02, and 0.002, respectively.) Results in Figure 5.3 and Table 5.4
show how the nearest neighbour methods become much better than the frequen-
tist approach as |O|/|S| increases. This is because the larger is the object space,

42

5.2 Synthetic systems

Figure 5.3: Estimates’ convergence for Geometric systems when varying the ratio |O|/|S|.
The respective distributions are shown in the top figure for two adjacent secrets
s1 ∼ s2.

the larger is the number of unseen objects at the moment of classification, and
the more the frequentist approach has to rely on random guessing. The nearest
neighbour methods are not largely affected because they can rely on the proximity
to outputs already classified.

5.2.3 Spiky system: making nearest neighbour rules fail

Nearest neighbour rules can take advantage of the metric on the object space to
improve their convergence considerably. However, there are systems for which the
frequentist outperforms NN and kn-NN. While this does not come as a surprise,
given that an “optimal” learning rule does not exist (section 2.6), investigating the
form of such systems is important to understand when these methods fail.

System description We construct an example of such systems, which we call the
Spiky system. Consider an observation space constituted of q consecutive integer
numbers O = {0, ..., q − 1}, for some even positive integer q, and secrets’ space
|S| = 2. Assume that O is a ring with the operations + and − defined as the sum

43

5 Finite O× S

Figure 5.4: Estimates’ convergence for a Spiky system (2x10K).

and the difference modulo q, respectively, and consider the distance on O defined
as: d(i, j) = |i− j|. Note that (O, d) is a “circular” structure, i.e., d(q− 1, 0) = 1.
The Spiky system has uniform prior, and channel:

Cs,o =

[
2/q 0 2/q . . . 0
0 2/q 0 . . . 2/q

]
.

This system is crafted so that most neighbours of an observable are more likely
to be associated with the wrong secret. This means that NN and kn-NN rules will
tend to predict the wrong secret, until enough examples are available.

Discussion We conducted experiments for a Spiky system of size |O| = 10K.
Results in Figure 5.4 confirm our hypothesis: nearest neighbour rules are misled
for this system.

Interestingly, while the NN estimate keeps decreasing as the number of exam-
ples n increases, there is a certain range of n’s where the kn-NN estimates become
worse than random guessing. Intuitively, this is because when n becomes larger
than |O| all elements in O tend to be covered by the examples. For every i ∈ O
there are two neighbours, i− 1 and i + 1, that belong to the class opposite to the
one of i, so if k is not too small with respect to n, it is likely that in the multiset
of the k closest neighbours of i, the number of i− 1’s and i + 1’s exceeds the num-
ber of i’s, which means that i will be misclassified. As n increases, however, the
ratio between k and the number of i’s in the examples tends to decrease (because
k/n→ 0 as n→ ∞), hence at some point we will have enough i’s to win the major-

44

5.2 Synthetic systems

ity vote in the k neighbours (i’s are considered before than i− 1’s and i + 1’s, by
nearest neighbour definition) so i will not be misclassified any more.

Concerning the comparison between the NN and frequentist estimates, we can
do it analytically. We start by computing the expected error of the NN method
on the spiky system in terms of the number of training examples n. Let Tn be a
training set of examples of size n. Given a new object i, let us consider the NN
estimate rn(i) of the conditional Bayes risk r∗ for i (i.e., the expected classification
error for i). This corresponds to the probability that the element o closest to i that
appears in the training set is at odd distance from i (i.e., d(i, o) = 2ℓ+ 1, for some
natural number ℓ). Namely it is the probability that:

• i is not in training data but either i + 1 or i− 1 are, or

• i, i± 1, i± 2 are not in training data but either i + 3 or i− 3 are, or

• . . . etc.

Hence we have:

r(i) = P(d(i, o) = 2l + 1) =

= P(i /∈ Tn, i + 1 ∈ Tn) + P(i /∈ Tn, i− 1 ∈ Tn) + . . .

= 2 ·
q/4−1

∑
ℓ=0

a4ℓ+1(1− a),

where a = (1− 1/q)n is the probability that an element e ∈ O does not occur in any
of the n examples of the training set. (Thus a4ℓ+1 represents the probability that
none of the elements i, i ± 1, i ± 2, i ± 2s, with ℓ = 2s, appear in the training set,
and 1− a represents the probability that the element 2s + 1 (resp. 2s− 1) appears
in the training set.) By using the result of the geometric series

m

∑
t=0

at =
1− am+1

1− a
,

we obtain:
rn(i) = 2a

1− aq

(1 + a2)(1 + a)
.

Since we assume that the distribution on O is uniform, we have RNN
n = rn(i).

45

5 Finite O× S

We want to study how the error estimate depends on the relative size of the
training set with respect to the size of O. Hence, let x = n/q. Then we have
a = (1− 1/q)qx, which, for large q, becomes a ≈ e−x. Therefore:

RNN
x ≈ 2e−x 1− e−qx

(1 + e−2x)(1 + e−x)
.

It is easy to see that RNN
x → 1/2 for x → 0, and RNN

x → 0 for x → ∞, as expected.

Consider now the frequentist estimate RFreq
x . In this case, given an element i ∈ O,

the classification is done correctly if i appears in the training set. Otherwise, we
do random guessing, which gives a correct or wrong classification with equal
probability. Only the latter case contributes to the probability of error, hence the
error estimate is half the probability expectation that i does not belong to the
training set:

RFreq
x =

1
2
(1− 1

q
)n ≈ 1

2
e−x .

Therefore, RNN
x is always above RFreq

x .

5.2.4 Random system

Figure 5.5: Estimates’ convergence for a Random system (100× 100).

In the previous sections, we have seen cases when our methods greatly outper-
form the frequentist approach, and a contrived system example for which they fail.
We now consider a system generated randomly to evaluate their performances for
an “average” system.

46

5.2 Synthetic systems

kn-NN

δ Freq. NN log10 log

0.01 77 134 197 495

0.001 668 124 668 124 668 124 668 124

Table 5.5: Random: examples required for δ-convergence.

System description The channel matrix of a Random system is produced by
drawing its elements from the uniform distribution, Cs,o ←$ Uni(0, 1), and then
normalising its rows appropriately so that ∑o∈O P(o|s) = for all s ∈ S .

Evaluation We consider a Random system with |S| = |O| = 100, and count the
number of examples required for δ-convergence. Table 5.5 reports the results.

The frequentist estimate is slightly better than NN and kn-NN for δ = 0.01.
However, for stricter convergence requirements (δ = 0.001), all the methods re-
quire the same (large) number of examples. Figure 5.5 show that indeed the meth-
ods begin to converge similarly already after 1K examples.

5.2.5 Comparison with the frequentist approach

Results showed that nearest neighbour estimates require significantly fewer exam-
ples than the frequentist approach when dealing with large systems that have a
notion of distance on their output; however, they are generally equivalent to the
frequentist approach in the case of small systems.

To better understand why this is the case, we obtain a crude approximation of
the frequentist Bayes risk estimate.

RFreq
n ≈ R∗

(
1−

(
1− 1
|O|

)n)
+ Rπ

(
1− 1
|O|

)n

.

This approximation, derived and studied in Appendix 1, makes the very strong
assumption that all objects o ∈ O are equally likely to be sampled from µ(o, s),
i.e.: P(o) = 1

|O| . However, it is enough to give us an insight on the performance

of frequentist approach:
(

1− 1
|O|

)n
is the probability that some object does not

appear within a training set of size n. This probability weighs the value of the
frequentist estimate between the optimal R∗, used when the object appears in the
training data, and random guessing Rπ. This estimate converges to the Bayes

47

5 Finite O× S

risk asymptotically. However, it shows that the principal factor influencing its
convergence rate is the probability of observing an object – and, therefore, the
number of objects that have non-negligible probability of being observed, which
for real-world systems is closely related to the size of the object space itself.

5.3 Application to time side channel in finite field

exponentiation

We use F-BLEAU to measure the leakage in the running time of the square-and-
multiply exponentiation algorithm in the finite field F2w ; exponentiation in F2w is
relevant, for example, for the implementation of the ElGamal cryptosystem.

We consider a hardware equivalent implementation of the algorithm computing
ms in F2w , which can be thought of as the decryption of a message m under key
s. We focus our analysis on the simplified scenario of a one-observation adversary,
who makes exactly one measurement of the algorithm’s execution time o, and aims
to predict the corresponding secret key s.

A similar analysis was done by Backes and Köpf (2008) by using a leakage
estimation method based on the frequentist approach. Their analysis also ex-
tended to a many-observations adversary, that is, an adversary who can run the
algorithm many times for the same secret s, thereby obtaining q timing observa-
tions (o1, ..., oq) from which to predict s. We introduce an extension of the NN
classifier to this setting in section 10.2.

5.3.1 Side channel description

Square-and-multiply is a fast algorithm for computing ms in the finite field F2w ,
where w here represents the bit size of the operands m and s. It works by per-
forming a series of multiplications according to the binary representation of the
exponent s, and its running time is correlated to the number of 1’s in s. This
fact was noticed by Kocher (1996), who suggested side channel attacks to the RSA
cryptosystem based on time measurements.

5.3.2 Message blinding

We assume the system implements message blinding, a technique which hides to
an adversary the value m for which ms is computed. Blinding was suggested as a
method for thwarting time side channels (Kocher, 1996), which works as follows.

48

5.3 Application to time side channel in finite field exponentiation

Operands’ size |S| |O|

4 bits 24 34

6 bits 26 123

8 bits 28 233

10 bits 210 371

12 bits 212 541

Table 5.6: Size of secret and output space for the side channel to finite field exponentiation.

Consider, for instance, decryption for the RSA cryptosystem: md(modN), for some
decryption key d. The cryptographic hardware first computes m · re, where e is
the encryption key and r is some random value; then it computes (mre)d, and it
returns the decrypted message after dividing the result by r.

Message blinding has the advantage of hiding information to an adversary;
however, it was shown that it is not enough for preventing time side channels
(e.g., Backes and Köpf (2008)).

5.3.3 Implementation and results

We consider a Gezel implementation of finite field exponentiation. Gezel1 is a
description language for clocked hardware, equipped with a simulation environ-
ment whose executions preserve the corresponding circuit’s timing information.
We measure the number of clock cycles as a timing information o, which means
that our observations take finite values. The guarantees of Gezel mean that the
number of clock cycles we measure reflects the corresponding circuit implementa-
tion (Köpf and Basin, 2006).

We compare the performances of the frequentist and nearest neighbour ap-
proaches in terms of the number of black-box examples required for convergence.
For each bit size w ∈ {4, 6, .., 12}, and for all the values (mi, si) ∈ {0, ..., 2w − 1}2,
we run the exponentiation algorithm to compute ms, and we measure its execution
time oi. We estimate the Bayes risk by training a classifier on an increasing dataset
of increasing examples, and by computing its error on a validation set. We set the
size of the validation set to min(0.2 · 22w, 250 000).

Results in Figure 5.6 show that, while for small bit sizes the frequentist approach
outperforms nearest neighbour rules, as w increases the frequentist approach re-

1http://rijndael.ece.vt.edu/gezel2.

49

http://rijndael.ece.vt.edu/gezel2

5 Finite O× S

quires a larger number of examples. Nevertheless, in these experiments we did
not notice a substantial advantage in nearest neighbour rules, even though the
output space is equipped with a notion of metric. Table 5.6 helps interpreting this
result: for larger bit sizes w of the exponentiation operands, the number of pos-
sible output values (i.e., clock cycles) only increase minimally; note that the size
of the output space O here is given by the number of individual values that clock
cycles took. This confirms that, as noticed in our previous experiments, nearest
neighbour and frequentist estimates tend to perform similarly for systems with a
small output space.

50

5.3 Application to time side channel in finite field exponentiation

Figure 5.6: Convergence of the estimates for the time side channel attack to the exponen-
tiation algorithm as the bit size of the operands increases.

51

6 Infinite O

In this chapter, we consider an application where the object space is continuous.
Note that, in this case, the frequentist approach cannot be used (nor defined for-
mally). NN does not guarantee UC for continuous O; however, we will include it
in this evaluation, as it can be used even in this case.

We evaluate a dataset of users’ locations, Gowalla, protected under three privacy
mechanisms; two of them output finite values, in which case we will do a com-
parison with the frequentist approach, one has a continuous output. We consider
further applications with continuous O in chapter 7, chapter 9, and section 10.4.

6.1 Application to location privacy

Figure 6.1: Area of San Francisco considered for the experiments. The input locations
corresponds to the inner square, the output locations to the outer one. The
coloured cells represent the distribution of the Gowalla checkins.

We show that our techniques can be successfully applied to estimate the degree
of protection provided by mechanisms such as those used in location privacy.
Since our goal is to evaluate their precision, we consider basic mechanisms for
which the Bayes risk can also be computed analytically, so that we can use it for

53

6 Infinite O

comparison. Of course, the intended applications of our methods are mechanisms
or situations where the Bayes risk cannot be computed directly, either because this
is too complicated, or because of the presence of unknown factors. Examples
abound; for instance, the availability of additional information, like the presence
of points of interest (e.g., shops, churches), or geographical characteristics of the
area (e.g., roads, lakes) can affect the Bayes risk in ways that are impossible to
evaluate formally.

We will consider the planar Laplacian and the planar Geometric, that are the
typical mechanisms used to obtain geo-indistinguishability (Andrés et al., 2013),
and one of the optimal mechanisms proposed by Oya et al. (2017) as a refine-
ment of the optimal mechanism by Shokri et al. (2012). In particular, we will use
the mechanism that achieves an optimal trade-off between privacy (measured as
residual entropy) and utility loss (measured as expected distance between the true
location and the obfuscated one). The construction of such a mechanism relies on
an algorithm that was independently proposed by Blahut and by Arimoto to solve
the problem of achieving an optimal trade-off between the minimisation of the dis-
tortion rate and the minimisation of the mutual information (Cover and Thomas,
2006). From now on, we shall refer to this as the Blahut-Arimoto mechanism. Note
that the Laplacian is a continuous mechanism, i.e., it outputs obfuscated locations
on the continuous plane. The other two are discrete.

In these experiments, we estimate the error of UC rules on a validation set
(section 3.2), for an increasing number n of training examples.

6.1.1 The Gowalla dataset

We will consider real location data from the Gowalla dataset (Gow; Cho et al.,
2011), which contains users’ checkins and their location in terms of latitude and
longitude. We use data from a squared area in San Francisco, centred in the point
of latlon coordinates (37.755, -122.440), and extending for 1.5 Km in each direction.
This input area corresponds to the inner (purple) square in Figure 6.1. We discre-
tise the input using a grid of 20× 20 cells of size 150× 150 Sq m; the secret space
S of the system consists therefore of 400 locations. The prior distribution on the
secrets is derived from the Gowalla checkins, and it is represented in Figure 6.1 by
the different colour intensities on the cells of the input grid.

The output area is represented in Figure 6.1 by the outer (blue) square. It spawns
1050 m (7 cells) more than the input square on every side. The reason we consider
a larger area for the output is that the planar Laplace and the planar Geometric

54

6.1 Application to location privacy

Mechanism ν R∗ Utility

Blahut-Arimoto 2 0.760 334.611

4 0.571 160.839

8 0.428 96.2724

Geometric 2 0.657 288.372

4 0.456 144.233

8 0.308 96.0195

Laplacian 2 0.657 288.66

4 0.456 144.232

8 0.308 96.212

Table 6.1: True Bayes risk and utility for Gowalla dataset defended under various location
privacy mechanisms.

naturally expand outside the input square.1 Since the planar Laplacian is contin-
uous, its output domain O is constituted by all the points of the outer square. As
for the planar Geometric and the Blahut-Arimoto mechanisms, which are discrete,
we divide the output square in a grid of 350× 340 cells of size 15× 15 Sq m. The
size of O for these mechanisms is therefore 340× 340 = 115, 600 cells.

6.1.2 Defences

The planar Geometric mechanism has channel matrix Cs,o, representing the condi-
tional probability to report the location o when the true location is s:

Cs,o = α exp
(
− ln ν

100
d(s, o)

)
,

where ν is a parameter controlling the level of noise, α is a normalisation factor,
and d(s, o) is the Euclidean distance between s and o.

The conditional probability of the planar Laplacian is defined by the same equa-
tion, except that o belongs to a continuous domain, and the equation defines a
probability density function.

As for the Blahut-Arimoto, it is obtained as the result of an iterative algorithm,
whose definition can be found in Cover and Thomas (2006).

1In fact, these functions distribute the probability on the infinite plane, but on locations very distant
from the origin the probability becomes negligible.

55

6 Infinite O

6.1.3 Results

We evaluated the estimation’s convergence to the Bayes risk as a function of the
number of training examples n, and for different values of the level of noise: ν =

{2, 4, 8}. Table 6.1 reports the true Bayes risk for the Gowalla dataset, defended
under these mechanisms for the various choices of parameters.

Figure 6.2: Estimates’ convergence rate for the planar Geometric defence applied to the
Gowalla dataset, for ν = 2, ν = 4 and ν = 8, respectively. On top of each graph
is the distribution of the geometric noise for two adjacent secrets.

kn-NN

ν δ Freq. NN log 10 log

2 0.1 X X 26 809 1 102

0.05 X X X 54 914

4 0.1 X X 35 942 2 820

0.05 X X X 45 032

8 0.1 X X 13 236 5 249

0.05 X X X 19 948

Table 6.2: Convergence for the Planar Geometric for various ν.

56

6.1 Application to location privacy

The results for the geometric noise are shown in Figure 6.2. We observe that
convergence is faster when ν is higher (i.e., with less noise and therefore lower
Bayes risk); this is in line with the results for the synthetic systems of chapter 5. In
all cases, the nearest neighbour methods outperform the frequentist one; this was
expected given the large output space. Table 6.2 shows the number of examples
required to achieve δ-convergence to the Bayes risk. The symbol “X” means that
we did not achieve the required level of approximation within 80K examples.

The corresponding results for the Laplacian noise are shown in Figure 6.2 and
Table 6.3. In this case we did not evaluate the frequentist approach, which cannot
be used in the continuous case. Results indicate that δ-convergence is reached
within a small number of examples by the kn-NN estimator, for kn = log(n).

Figure 6.3: Estimates’ convergence speed for the planar Laplacian defence applied to the
Gowalla dataset, for ν = 2, ν = 4 and ν = 8, respectively. On top of each graph
is the distribution of the geometric noise for two adjacent secrets.

The case of the Blahut-Arimoto mechanism is quite different: surprisingly, the
output probability concentrates on a small number of locations. For instance,
in the case ν = 2, with 100K sampled pairs we obtained only 19 different output
locations (which reduced to 14 after we mapped them on the 20× 20 grid). Thanks
to the small number of actual outputs, all the methods converge very fast. The
results are shown in Figure 6.4 and in Table 6.4.

57

6 Infinite O

kn-NN

ν δ Freq. NN log 10 log

2 0.1 N/A X X 259

4 0.1 N/A X X 4 008

8 0.1 N/A X X 6 135

0.05 N/A X X 19 961

Table 6.3: Convergence for the Planar Laplacian for various ν.

Figure 6.4: Estimates’ convergence speed for the planar Laplacian defence applied to the
Gowalla dataset, for ν = 2, ν = 4 and ν = 8, respectively. On top of each graph
it is represented the distribution of the output probability as produced by the
mechanism. All the outputs with non-null probability turn out to be inside the
input square. The Blahut-Arimoto noise for two adjacent input cells distributes
in on the outputs with non-null probability in a way similar to the laplacians.
The outputs are originally points on the 340× 340 output grid, but here are
mapped on the coarser 20× 20 grid for the sake of visual clarity.

58

6.1 Application to location privacy

kn-NN

ν δ Freq. NN log 10 log

2 0.1 37 37 37 37

0.05 135 135 135 135

0.01 1 671 1 664 1 408 1 408

0.005 6 179 5 724 1 671 1 671

0.001 X X X X

4 0.1 220 220 220 257

0.05 503 502 509 703

0.01 2 029 2 029 2 055 2 404

0.005 2 197 2 055 2 280 2 658

0.001 X 2 404 2 830 3 481

8 0.1 345 398 553 1 285

0.05 1 285 1 211 1 343 1 679

0.01 2 104 2 017 2 495 4 190

0.005 2 231 2 231 3 433 6 121

0.001 3 881 3 881 6 079 7 724

Table 6.4: Convergence for the Blahut-Arimoto for various ν.

59

7 Comparison with leakiEst

In the previous chapters, we have seen that nearest neighbour methods tend to
substantially outperform the frequentist approach whenever there is a notion of
distance on the output space, and in particular when the output space is large.
We will call F-BLEAU (Fast Black-box Leakage Estimation AUtomated) the tool
we introduced in Cherubin et al. (2019), which runs several nearest neighbour
estimators and the frequentist approach, and then selects the smallest estimate.

LeakWatch (Chothia et al., 2014) and leakiEst (Chothia et al., 2013) are the state-
of-the-art Black-box security measurement tools. Both are based on the frequentist
approach, and they should therefore inherit the drawbacks we have seen in the
previous chapters. leakiEst can be considered as an evolution of LeakWatch: they
both compute Shannon mutual information (MI) and Min-entropy leakage (ME)
on the finite output case, but leakiEst also computes MI in the infinite output case,
under some continuity conditions. leakiEst runs two evaluations: i) evidence /
no evidence of leakage (zero-leakage test), and ii) leakage estimation. These are
accompanied by confidence indications, and it is possible that leakiEst reports no
evidence of leakage, and yet a non-zero leakage estimation.

In this chapter, we compare leakiEst with F-BLEAU.1 In particular, we wish to
verify whether the advantage of nearest neighbour techniques with respect to the
frequentist approach, that we observed in chapter 5 and chapter 6, translates into
an advantage also with respect to leakiEst. We perform this comparison for a time
side channel on the RFID on European passports, and on the Gowalla examples
that we considered in the previous chapter.

7.1 Time side channel on e-Passports’ RFID

Chothia and Smirnov (2010) discovered a side channel attack in the way the proto-
cols of various European countries exchanged message some years ago (the proto-

1Note that, while F-BLEAU can also compute the frequentist estimate, we limit it to nearest neigh-
bour methods for this discussion.

61

7 Comparison with leakiEst

Passport leakiEst: Evidence of leak? (MI) F-BLEAU: R∗

British yes (0.053) 0.383

German no (0.152) 0.490

Greek no (0.034) 0.462

Irish yes (0.421) 0.350

Table 7.1: Estimated leakage of European passports.

cols have been corrected since then). The problem was that, upon receiving a mes-
sage, the e-Passport would first check the Message Authentication Code (MAC),
and only afterwards verify the nonce – so to assert the message was not replayed.
Therefore an attacker, who had previously intercepted a valid message from a
legitimate session, could replay the message and detect a difference between the
response time of the victim’s passport and any other passport; this could be used
to track the victim. To avoid such attack, Chothia et al. (2013) proposed to add
padding to the response time, and they used leakiEst to measure the effectiveness
of such defence.

We compared F-BLEAU and leakiEst on the data with time padding applied,
available on the leakiEst webpage.2 The secret space S contains answers to the
binary question: “is this the same passport?”; the dataset is balanced (Rπ = 0.5).

On continuous data, leakiEst only deals with MI, which is not directly compara-
ble to leakage measures derivable from R∗. However, we can base our comparison
on leakiEst’s zero-leakage test: indeed, MI is 0 if and only if R∗ = Rπ.

For F-BLEAU, we randomly split the data into training (75%) and validation
set, and then estimated R∗ on the latter; we repeated this for 100 different random
initialisation seeds, and averaged the estimates. Table 7.1 reports the results: there
are two cases where leakiEst did not find enough evidence of leakage, whereas
F-BLEAU indicated the leakage was non-negligible: in the case of the German
passport, a Bayes error of 0.49 corresponds to a probability of 0.51 to detect the
victim’s passport, and for the Greek passport a Bayes error of 0.46 corresponds
to a probability of 0.54. This suggests an inaccuracy of the zero-leakage test by
leakiEst, possibly due to the small size of the available data.

2www.cs.bham.ac.uk/research/projects/infotools/leakiest/examples/epassports.php.

62

www.cs.bham.ac.uk/research/projects/infotools/leakiest/examples/epassports.php

7.2 Gowalla dataset

Mechanism ν leakiEst: Conf? (ME) F-BLEAU: ME True ME

B.-Arimoto 2 no* (1.481) 1.479 1.501

4 no* (2.305) 2.310 2.304

8 no* (2.738) 2.746 2.738

Geometric 2 no (2.585) 1.862 1.988

4 no (2.859) 2.591 2.638

8 no (3.105) 2.983 2.996

Mechanism ν leakiEst: Conf? (MI) F-BLEAU: ME True ME

Laplacian 2 no (1.150) 1.802 1.987

4 no (1.911) 2.550 2.631

8 no (2.401) 2.970 3.003

Table 7.2: Estimated leakage of privacy mechanisms on Gowalla data. The leakiEst ME
estimate is often much farther from its true value than F-BLEAU’s estimate.

7.2 Gowalla dataset

We now compare F-BLEAU with leakiEst on the location privacy mechanisms
examined in section 6.1: Blahut-Arimoto, planar Geometric, and planar Laplacian.
For the first two mechanisms we compare the estimated values of ME. For the
latter this is not possible because the Laplacian is continuous, where leakiEst can
only estimate MI.

We run F-BLEAU and leakiEst on the defended datasets, comprising of n =

100K examples. The results are reported in Table 7.2, where “Conf?” indicates
whether leakiEst considers having achieved the intended level of confidence, or
not. The values between parentheses indicate the leakage estimate that leakiEst
reports. On the planar Geometric leakiEst reports “Too small sample size”, and
indeed its estimate of ME is quite distant from the true ME. F-BLEAU, on the con-
trary, provides a quite tight bound (recall that F-BLEAU provides a lower bound
of the true ME). The situation is similar for the planar Laplacian.

On the Blahut-Arimoto, the situation is more interesting: because of the small
number of actual outputs, F-BLEAU and the frequentist approach perform equally
well (see also section 6.1), hence we were expecting a similar outcome from leaki-
Est. This was not the case: for Blahut-Arimoto, leakiEst still reports “Too small
sample size”. However, we think this is because leakiEst takes into account the

63

7 Comparison with leakiEst

number of outputs declared, instead of the actual number generated with the ex-
amples. Indeed, its ME estimate is close to ours. Hence this problem should be
easy to fix simply by inferring the output space size from the examples (this is the
meaning of the “*” in the leakiEst column in Table 7.2).

64

Part III

Estimation through Features

65

8 Features and Convergence

So far we estimated the security of a system with learning rules trained and tested
directly on the example space O × S . However, with the goal of speeding up the
convergence rate of a rule (i.e., reducing the number of examples required for its
convergence), it is common practice in ML to apply a transformation Φ : O 7→ O′

to the objects before passing them to the rule. We call Φ features.

In this chapter, we use features to define the notion of (λ, Φ)-security. This
notion, although weaker than λ-security, will allow us to tackle problems where
the direct estimation approach does not converge.

8.1 Features

Features are high level descriptions of objects, which should help predicting their
corresponding secrets. They represent measurements that one can make of reality
(e.g., the colour of an object, its sizes, its shape).

More formally, a feature is an algorithm of the form ϕ : O 7→ Oϕ, which extracts
from the original object o ∈ O, containing all the information available, a new
object ϕ(o) ∈ Oϕ. For instance, if o is a pixel matrix representing an image,
and the corresponding secret s indicates whether this image represents a sea or a
mountain, ϕ could be the algorithm returning the number of blue pixels in o.

In practice, it is convenient to define a set of features, Φ = {ϕ1, ϕ2, ...}. With a
slight abuse of notation, we will use Φ : O 7→ O′ to refer to the algorithm that
runs each feature on an object o and concatenates the corresponding outputs:

o′ = Φ(o) := (ϕ1(o), ϕ2(o), ...) .

We call Φ features (or feature set or feature mapping), and O′ the feature space.

67

8 Features and Convergence

8.2 A brief remark

One may wonder why we make features explicit in our formalisation, rather than
including them into the learning rule. Indeed, for any learning rule gn and features
Φ, there exists a learning rule gΦ

n (o) which first performs the mapping o′ = Φ(o)
and then runs gn on input o′. Furthermore, it may be argued that some classifiers,
such as neural networks, already embed a feature transformation.

We do this for two reasons. Firstly, we believe that features are such a fun-
damental aspect of learning that one could base learning theory on them rather
than on classifiers; this aspect has been marginalised by most statistical learning
literature. Secondly, in the context of Black-box security, it will be convenient to
define security measures on the basis of a feature set whenever convergence is not
reached via direct estimation. We will illustrate an example of this in chapter 9.

8.3 Problem definition

In section 2.3, we defined the direct estimation problem, i.e., estimating the Bayes
risk (and, therefore, a security measure λ) directly on examples from O × S . We
now redefine this problem by taking into account features.

Problem 8.1 (Black-box estimation through features). Consider a dataset of examples
{(o1, s1), ..., (on, sn)}, obtained by sampling n times a system (π,B). We wish to select
a feature set Φ, and to compute an estimate R̂∗Φ of the true Bayes risk R∗Φ of the system
(π, Φ ◦ B). Here Φ ◦ B indicates the composition of B and Φ, which for input o ∈ O runs
algorithm B and then maps its output into the feature space: (Φ ◦ B)(o) := Φ(B(o)).

For a certain set of features Φ, and a security measure λ derived from an es-
timate R̂∗Φ, we declare a system is (λ, Φ)-secure. As we see in the remainder of
this chapter, (λ, Φ)-security is a weaker notion than λ-security, as it only bounds
the security against adversaries that use a set of features Φ (or any “less effec-
tive” one); if a better set of features is ever discovered, the actual security of the
system may be worse. However, this notion is sometimes necessary in real-world
applications (e.g., chapter 9).

8.4 Results and discussion

We first state an important but fairly intuitive result: the Bayes risk cannot be
improved by a transformation of the object space (i.e., features).

68

8.4 Results and discussion

Theorem 8.2 (Optimality of original space (e.g., Devroye et al. (2013))). Consider a
system (π,B) inducing a distribution µ on O × S . Let R∗ be the Bayes risk on O × S ,
and R∗Φ the Bayes risk on the feature space O′ × S = Φ(O)× S . Then:

R∗Φ ≥ R∗ .

We do not give a formal proof of this; intuitively, it holds because, for any
transformation Φ, Φ(o) will contain at most as much information as the original
object o ∈ O.

From Theorem 8.2 we should conclude that, theoretically speaking, one should
never work in a feature space. However, this is not true in practice: empirically,
a UC rule may achieve a much smaller error after feature transformation. This
apparently counterintuitive result has to do with the asymptotic guarantees of UC:
whilst in the infinite sample a UC rule on the original space O will converge to R∗

(i.e., the smallest error among all feature mappings), in finite sample conditions,
the feature mapping may give the rule a faster convergence.1

Faster convergence in the feature space may be due to various reasons, which
are not easy to categorise. Without aiming for completeness, we give two: i) the
feature mapping may discard noisy features, whose utility is only marginal, ii) a
learning rule generally performs better for small-dimensional objects (e.g., because
of the Curse of Dimensionality).

Remark 1 For the problem of Black-box security, we suggest the analyst should
first attempt measuring convergence of a direct estimate. If such estimate does not
work, they may select a set of features Φ, and achieve the weaker (λ, Φ)-security
notion. It is hard to provide more general guidelines on what problems require the
latter approach; however, in real-world situations, it seems that human analysts
are fairly good at discerning when this is the case. This supports our conjecture
that features, and not classifiers, are at the basis of learning.

Remark 2 A fairly common research pattern in Black-box security applications is
to look for feature sets that are complete; that is, such that the feature mapping Φ is
a bijection (e.g., Cai et al. (2014c)). Whilst in theory this assures R∗Φ = R∗, in prac-

1Clearly, because of the theorem we just stated, the error of a UC rule in the feature space Φ does
not necessarily converge to the Bayes risk. However, we refer here to the possibility that, for a
limited number of examples, it produces a “closer” estimate to R∗ than when working in the
original space.

69

8 Features and Convergence

tice there are distributions for which an estimate based on Φ does not converge in
the finite sample, whilst a non-complete feature set Φ′ makes it converge.

8.5 Features and attack’s computational complexity

Many guarantees in Cryptography are based on the computational time complex-
ity of an attack. In Black-box security and QIF, this is usually not taken into
account, and security is usually measured with classical definitions of information
(e.g., Shannon entropy). Smith (2009) suggested future work may try to include
computational aspects in their definitions.

In Cherubin (2017), we proposed a direction for moving from (λ, Φ)-security
to λ-security (i.e., to achieve independence from features, even when the direct
estimation approach does not converge); along the process, we also introduced a
notion of computational complexity for the attacks we consider.

We suggested that, whenever a direct estimate does not converge, one should
look for (and estimate security with) an efficient feature set Φ∗, which we define
as follows. Let R∗ be the true Bayes error associated with a system (π,B) (i.e.,
the Bayes risk on full information). An efficient feature set Φ∗ : O 7→ O′ is an
algorithm for which:

1. R∗Φ∗ = R∗ + δ, for some negligible δ ≥ 0;

2. the algorithm Φ∗ is computationally efficient (e.g., time, memory);

3. an estimate on the feature space O′ ×S converges within a small number of
examples.

Note that, in this case, (λ, Φ∗)-security would be equivalent to λ-security, because
of the first requirement.

We believe this could open a new line of research both in Black-box security and
ML, which could draw from randomness notions such as Kolmogorov or Levin
complexity (Levin, 1973; Ming and Vitányi, 1997; Vovk et al., 2015) to describe the
problem of finding efficient feature sets.

70

9 Application to Traffic Analysis

Traffic Analysis refers to a wide range of attacks, where a passive adversary in-
fers something about the content of encrypted network traffic from its observable
characteristics (e.g., packets’ size, time and direction). We apply the methods we
introduced so far to measure the security of defences against Webpage Finger-
printing1 (WF), a major class of Traffic Analysis. In WF, an adversary aims to
predict which webpage a victim visits, by only looking at the encrypted network
traffic she produces.

This chapter develops as follows. In section 9.1 we introduce WF attacks, and in
section 9.2 we apply the NN bound (Theorem 3.6) to measure the (β, Φ)-security
of WF defences, where β is the Bayes security measure we introduced in chapter 4,
and (β, Φ) denotes estimation of β through features (chapter 8). This application,
which appeared in Cherubin (2017), was the first method that could provably
measure the security of any WF defence in a black-box manner – and indeed
the first use of the main idea in this manuscript. In section 9.3, we introduce a
practical WF defence (ALPaCA), which appeared in Cherubin et al. (2017); this
defence will allow us to make some deeper remarks on features in section 9.4,
where we conjecture on the possibility of estimating its security directly (i.e., not
through features). In chapter 10, we will suggest the possibility of applying the
same approach to other traffic analysis attacks.

9.1 Webpage Fingerprinting

We presently provide an informal description of WF attacks, which we will for-
malise in the next section.

1Most literature in the past 15 years referred to this problem as Website Fingerprinting. While
many of them acknowledged such terminology is incorrect, the common use prevailed so far.
However, given the raise of studies which do proper Website Fingerprinting (i.e., where the adver-
sary aims to predict the website and not the webpage a victim visits), there is a real need to start
using the proper terminology. In this work, we will commit to the “Webpage Fingerprinting”
term, here abbreviated to WF, as opposed to Website Fingerprinting (WsF).

71

9 Application to Traffic Analysis

Figure 9.1: In the Closed World scenario of WF, the victim visits one page among those
monitored by the adversary, which the adversary has to guess.

9.1.1 Background

In WF attacks, a local passive adversary observes the encrypted network traffic
generated by a victim, while she loads a webpage via an encrypted tunnel. An
encrypted tunnel represents a communication channel between the victim and the
web server such that:

1. all the traffic is encrypted;

2. an observer who is local to the victim (e.g., her ISP) knows her IP address,
but not that of the web server.

Examples of encrypted tunnels are VPNs, SSH tunnels, and anonymity networks
(e.g. Tor). However, variants of WF have been used against encrypted wireless
networks; for example, British broadcaster BBC allegedly used similar techniques
to detect if a user without TV licence was using BBC’s online service iPlayer (Fos-
ter, 2016). The natural candidate for the attacks and defences described in this
chapter is the Tor network, which anonymises the traffic coming from a victim
by re-routing it via a number of relays (usually 3); understanding how the Tor
network works is not required to follow this section, and we refer the interested
reader to the seminal paper on Tor by Syverson et al. (2004).

To avoid trivial solutions, we assume that the adversary cannot decrypt the
packets. However, when the victim uses a WF defence mechanism (e.g., adds
noise to her network traffic), we will assume the adversary knows what kind of
mechanism she uses.

In WF, the adversary selects a set of webpages (henceforth called monitored
pages), and his goal is to predict which one of them the victim visits, if any. De-

72

9.1 Webpage Fingerprinting

Figure 9.2: In One VS All, a special case of the Open World scenario, the WF adversary
only monitors one page, and the victim can visit a much larger set of unmoni-
tored pages.

pending on the choice of monitored webpages, and on the assumptions on which
webpages the victim may visit, we formulate the following scenarios.

Closed World The victim is only allowed to visit one of the monitored pages
(Figure 9.1). This scenario is a simplification of real-world attacks, but because
it allows an adversary to perform the attack in nearly-perfect conditions, it is
generally used for evaluating the security of defences.

Open World This scenario resembles more closely a real-world setting, where
the victim can visit both monitored and unmonitored pages. It is therefore typi-
cally used for evaluating attacks, and their scalability to the real world. In addition
to the Closed World scenario, we will evaluate defences under the One VS All sce-
nario, a special case of Open World, which indicates the ability of a defence to
protect an individual page (Figure 9.2). In the One VS All scenario, the adversary
only monitors one webpage, and the victim can either visit that page, or one of
the unmonitored pages; for this reason, this scenario can be seen as an extreme case
of the Open World scenario.

A WF attack has two phases: training and attack. In the training phase, the ad-
versary generates defended network traffic on his computer, by loading monitored
pages several times, and applying the same defence mechanism as the target vic-
tim; then, he extracts features from this traffic, and trains an ML classifier on them.
This phase can be performed offline. Features are high level descriptions of data
(network traffic, in this case), as we introduced in chapter 8. In this section, we

73

9 Application to Traffic Analysis

will show experimentally that, in general, we can only measure the security of WF
defences through features (i.e., not directly), thereby obtaining (λ, Φ)-security for
some security measure λ; for this reason, we will argue that features are the major
next step for future WF research (section 9.2). In the attack phase, the adversary
collects defended network traffic coming from the victim. He extracts features
from the new traffic, and uses the ML classifier to predict which webpage the
victim loaded.

We shall now describe the major WF attacks and defences, and previous direc-
tions in provable evaluation of defences

9.1.2 Major defences

WF defences can be divided into deterministic, which deterministically transform
the characteristics of traffic, and probabilistic (also called elsewhere random), where
randomness is involved in the morphing process. We will consider six defences
for evaluation: two deterministic (BuFLO and Tamaraw), four probabilistic (Ran-
domised Pipelining, Decoy Pages, CS-BuFLO, WTF-PAD).

Randomised Pipelining (RP) randomises the order of HTTP requests in the
HTTP pipeline. This defence is embedded by default in the Tor browser. Since in
experiments we will defend network traffic coming from the Tor browser, we will
implicitly assume RP is underlying to any of the defences we shall now present;
consequently, “No Defence” will refer to plain Tor traffic (i.e., only defended using
RP) (Perry, 2011).

BuFLO For parameters (d, ρ, τ), BuFLO sends packets of fixed size d, with
frequency ρ, for at least τ time. If more time is required by the page load, packets
of size d are sent with frequency ρ for the time needed (Dyer et al., 2012).

Tamaraw Similarly to BuFLO, it sends fixed-size packets at fixed intervals. It
considers distinct intervals between packets with respect to their direction: out-
going packets are sent every ρout seconds, incoming packets are sent every ρin

seconds, and ρout > ρin. It further pads the number of packets sent in both direc-
tions by multiples of a padding parameter (Cai et al., 2014c).

Decoy Pages Loads a randomly chosen page in the background together with
the requested page. The traffic introduced by the background page should confuse

74

9.1 Webpage Fingerprinting

features the adversary. It is a probabilistic defence, and it is arguably the easiest
to implement among the defences presented here (Panchenko et al., 2011).

CS-BuFLO is a modification of BuFLO, which reduces overheads and eases im-
plementation. As with BuFLO, it sends packets of size d with frequency ρ. How-
ever, the value of ρ is dynamically adapted to the network bandwidth, and events
like client’s onLoad (i.e., the browser finished loading a page) and channel_idle
are used to determine the end of communication. Padding is also inserted at the
end of communication, up to a certain transmission size (Cai et al., 2014a).

WTF-PAD is based on Adaptive Padding (AP) (Shmatikov and Wang, 2006).
At each endpoint (client, server), the defence sends real or dummy packets ac-
cording to the state (idle, burst, gap) of an internal state machine. This allows
adaptively morphing traffic to avoid large overheads (Juarez et al., 2016). This
defence is relatively easy to implement, although it is currently not well under-
stood how to optimally determine the distributions that regulate transitions of the
internal state machines; in experiments we used the distributions by Pulls (2016a).

Designing a WF defence requires: i) understanding of how WF attacks work
and what they target, and ii) engineering the defence on the top of other network
protocols. In the past, probabilistic defences attracted the attention of researchers
because they are often easier to implement, and they tend to introduce less over-
heads in terms of time and bandwidth. However, before our work there was
no generic method for evaluating their security. More in general, there seems to
be a pattern in literature where WF defences that are secure by construction are
impractical to engineer, while the security of defences that are easier to engineer
cannot be provably evaluated. With this work, we hope to fill this gap, by allowing
to measure the security of defences in a black-box setting.

9.1.3 Major attacks

In the context of WF, where attacks are usually based on ML methods, we will
estimate security measures conservatively, by using the NN bound by Cover and
Hart (1967) (section 3.1). To verify the convergence of our estimates in this setting,
we will compare them with the error of previous WF attacks, and assert they are
a lower bound in practice.

75

9 Application to Traffic Analysis

Rank Feature Description

1 # incoming packets
2 # outgoing packets (fraction of tot # packets)
3 # incoming packets (fraction of tot # packets)
4 Standard deviation of outgoing packet ordering list
5 # outgoing packets
6 Sum of items in the alternative concentration feature list
7 Average of outgoing packet ordering list
8 Sum of incoming, outgoing, and total # of packets
9 Sum of alternative # packets per second
10 Tot # packets
11-18 Packet concentration and ordering feature list
19 # incoming packets stats in first 30 packets
20 # outgoing packets stats in first 30 packets

Table 9.1: Best 20 features according to the feature analysis by Hayes and Danezis (Hayes
and Danezis, 2016). Each feature is extracted from the network trace corre-
sponding to a webpage load, and features are concatenated to form objects o.

A WF attack is composed of two choices: a feature set and an ML classifier.
In our evaluation we will consider 5 attacks: LL, VNG++, k-NN, CUMUL, and
k-FP; we omit here their description (i.e., the enumeration of their feature set and
classifier), which is not central to our evaluation, and we address the interested
reader to Appendix 3.

In Table 9.1, we report the 20 most important features in the attacks up to 2017,
according to a study by Hayes and Danezis (2016); in this work, they analysed
features used for previous attacks, and proposed an attack, k-FP, based on them.

9.1.4 Previous directions in provable evaluation of WF defences

Cai et al. (2014c) Proposed a method to compute a lower bound of error for
WF adversaries. Let us call packet sequence a sequence specifying size, time, and
direction of each packet within the network trace corresponding to a webpage
load; note that, under the threat model we will formulate, this constitutes the
only information available to an adversary when the victim loads a webpage. Cai
et al. (2014c) considered an idealised “lookup-table” adversary, who knows exactly
what network traffic each webpage can produce. This adversary creates a look-
up table T(p) = {w1, w2, ...}, which associates each packet sequence p of network
traffic to the set of webpages wi that can produce that traffic (Figure 9.3). The

76

9.1 Webpage Fingerprinting

packet sequences of two pages are considered to be the same if all their packets
have the same size, direction and time. The error of such an adversary is computed
by counting the collisions (i.e., how many pages produce the same traffic), and it
is the smallest error achievable by any WF adversary.

Figure 9.3: The idealised lookup-table adversary proposed by Cai et al. knows exactly
what network traffic each webpage (w1, w2, ...) may produce, and only commits
an error when many pages exhibit identical traffic.

Observe that this methodology is equivalent to the frequentist approach we de-
scribed in subsection 3.1.1, and it has analogous drawbacks. The smallest change
in the quantities observed by the adversary (e.g., time, total bandwidth), which
is likely to happen in network communications because of noise, leads similar
traffic to be misclassified by the adversary. Furthermore, the accuracy of such an
adversary can only be estimated for a defence if: i) the defence is deterministic,
and ii) we know how it is constructed internally. The second requirement is of
particular interest: if we were to blindly apply this method to some defence, the
results would largely underestimate both probabilistic and deterministic defences,
because of noise in network data. Indeed, Cai et al. only applied this method to
defences for which, by design, only some characteristics of the traffic (e.g. the to-
tal transmission size) could change; even in this case, however, they had to apply
the method to partial information (e.g., they excluded timing information), as it
would have otherwise returned unreasonable bounds.

Wang and Goldberg (2015) Proposed an extension of the method by Cai et al.
for probabilistic defences. This method attempts to approximate the probability
distribution of network traffic defended by a defence, and to derive from it the
smallest error achievable. However, to estimate such distribution i) they use a
look-up table strategy, which is highly susceptible to noise, and ii) they compute
it by running the defence a finite number of times. Because of these issues, the

77

9 Application to Traffic Analysis

estimated distribution is not guaranteed to approximate the real distribution, and
the method does not necessarily guarantee valid bounds.

9.2 Measuring the security of WF defences

In this section, we give a formal description of WF, we show how the NN bound
described in section 3.1 can be used to lower bound an adversary’s error, and we
evaluate our findings on real-world data.

9.2.1 WF formulation

W is a set containing all possible webpages. An adversary selects a subset of such
pages, Wm, which we call monitored webpages. We define a set of unmonitored
webpages,Wu, such thatWm ∩Wu = ∅ andWm ∪Wu ⊆ W . The victim can visit
any page inWm ∪Wu. It is natural to assume that |Wm| > 0, and |Wm ∪Wu| > 1.
We talk about Closed World scenario when Wu = ∅. Open World scenario is when
|Wu| > 0. We also define the One VS All scenario, a subclass of Open World,
where the adversary only monitors one webpage: |Wm| = 1 and |Wu| > 0.

A packet sequence p ∈ P is a finite list of arrival time τj, size σj, and direction
δj ∈ {↑, ↓} of packets:

p = (τ1, σ1, δ1), (τ2, σ2, δ2), ... ,

with, τ1 = 0 and τj+1 ≥ τj, σj ∈ (0, MTU], where MTU (maximum transmission
unit) is 1500. As with previous work, we assume that a WF adversary, when ob-
serving the encrypted network traffic corresponding to a page load, gets a packet
sequence as the only information to make his prediction (e.g., Cai et al. (2014c)).

A label (or secret) s ∈ S is associated with a packet sequence p according to the
webpage w ∈ W that produced it. Specifically,

s(w) =

w if w ∈ Wm

⊙ otherwise ;

in other words, symbol ⊙ represents a page that is not monitored.

A WF defence is a (possibly randomised) algorithm D : P 7→ P that takes as
input a packet sequence, and returns a defended packet sequence. Note that D
also includes the trivial “no-defence” algorithm, which simply outputs its input.

78

9.2 Measuring the security of WF defences

A WF adversary is a pair A = (Φ, T) of a feature set Φ and an ML training
algorithm T. A feature set is a list of algorithms:

Φ = (ϕ1, ϕ2, ..., ϕQ) ,

with ϕq : P 7→ Rdq and dq > 0 for q = 1, 2, ..., Q; each ϕq gets as input a packet
sequence, and returns a vector of dq real values. With a slight abuse of notation,
we will use Φ to refer to the algorithm:

Φ : P 7→ O ,

which runs each ϕq on an input packet sequence p, and concatenates the resulting
vectors of values:

Φ(p) = (ϕ1(p), ..., ϕQ(p)) ;

We call O = Rd the object space, where d = ∑Q
q=1 dq, and we call x = Φ(p) an

object. An ML training algorithm T : (O×S)∗ 7→ G is an algorithm that accepts an
arbitrary number of pairs of objects and respective labels, and returns a classifier
g ∈ G from the collection G = {g | g : O 7→ S}. A training algorithm T is
class-specific, in the sense that it returns classifiers of a specific class (e.g., logistic
regression, SVM).

9.2.2 WF attacks

We shall now describe a WF attack. Consider the case where a victim uses defence
D to protect her traffic. In the training phase, a WF adversary A = (Φ, T) gen-
erates n pairs of packet sequences, corresponding to his choice of webpages with
si ∈ Wm, defended using defence D:

(p′i, si)
n
i=1 = (D(pi), si)

n
i=1 .

The adversary extracts objects from the packet sequences, obtaining a training set:

Ztrain = (oi, si)
n
i=1 = (Φ(p′i), si)

n
i=1 .

Then, he trains a classifier on the training set: g = T(Ztrain).

In the attack phase, the victim visits a webpage with label sn+1 ∈ S , using de-
fence D, which produces a defended packet sequence p′n+1. The adversary eaves-

79

9 Application to Traffic Analysis

drops this packet sequence, extracts a test object on+1 = Φ(p′n+1), and outputs a
prediction ŝn+1 = f (on+1).

The adversary is evaluated in terms of the probability that classifier g misclassi-
fies the test object xn+1:

RA = P(g(on+1) ̸= sn+1) .

In practice, this probability is estimated using the empirical error R̂A, by av-
eraging the error committed by the adversary over a validation set of nval pairs
Zval = {(on+1, sn+1), ..., (on+nval , sn+nval)} as follows (section 3.2):

R̂A =
1

nval

n+nval

∑
i=n+1

I(g(oi) ̸= si) ,

where I is the indicator function.

9.2.3 Assumptions

We will make the standard i.i.d. assumption on (o1, s1), ..., (on, sn), (on+1, sn+1);
that is, examples are independently sampled from some (unknown) distribution.
In other words, we expect that the traffic produced by each webpage follows the
same distribution. Violations of this assumption (e.g., the adversary trains on
a different version of the webpage) would generally be disadvantageous for an
adversary (Juárez et al., 2014). In section 11.4, we discuss a method to verify the
i.i.d. assumption. We make no further assumption on the underlying distribution.

9.2.4 Application of the NN bound

We use the NN bound R̂∗ introduced in subsection 3.1.6 to bound a WF adversary,
and then define (β, Φ)-security on its basis.

From chapter 8, we can show that the error of a WF adversary using feature set
Φ is asymptotically lower-bounded by the NN bound estimate computed for the
same features.

Theorem 9.1 (Lower bound of WF adversary’s error (Cherubin, 2017)). Fix a feature
set Φ. Sample Z = {(o1, s1), ..., (on+1, sn+1)} i.i.d. from a distribution on O × S , where
oi’s take values from a separable metric space on O; let Ztrain = {(o1, s1), ..., (on, sn)}.

For any training algorithm T ∈ T , where T = {T | T : (O × S)∗ 7→ G} selecting
classifiers from G = {g | g : O 7→ S}, consider an attack A = (Φ, T), and let RAn be

80

9.2 Measuring the security of WF defences

the probability that the selected classifier, g = T(Ztrain), misclassifies a test object on+1;
let RNN

n be the expected error of the NN classifier trained on Ztrain at predicting on+1, and
let R̂∗n be the NN bound computed from RNN

n as in Theorem 3.6. Then, as n→ ∞:

R̂∗n ≤ R∗ ≤ RAn ,

where R∗ is the error of the Bayes classifier, which has perfect knowledge of the prior
probabilities and underlying distribution from which Z was sampled.

Proof. The second inequality, R∗ ≤ RAn , follows trivially from the fact that the
Bayes classifier commits the smallest error among the collection of classifiers G =

{g | O 7→ S}, and any training algorithm T ∈ T returns a model g ∈ G.

The first inequality, R̂∗n ≤ R∗, holds because of Theorem 3.6.

This guarantee is independent of the NN’s distance metric. In section 9.2.6, we
compare different metrics, and select Euclidean for the security evaluation.

In practice, we need to compute the NN bound on a finite dataset. In subsec-
tion 9.2.6, we show empirically that the lower bound estimate, computed for a
certain set of features, is always smaller than the respective attack error.

9.2.5 Methodology

Experiments in this section aim at i) verifying the validity of the NN bound es-
timate R̂∗ empirically, ii) measuring the evolution of feature sets in previous WF
attacks, and iii) measuring the (β, Φ)-security of WF defences. We conducted ex-
periments for the most influential attacks and defences on the dataset by Wang
et al. (2014). Henceforth, we refer to this dataset as WCN+.

Dataset The WCN+ dataset is a collection of network traces produced by visiting,
over Tor, 100 unique webpages 90 times each. Because in Tor traffic packets have
a fixed size, attacks using size of packets as a feature may be penalised.

Background noise The security bounds of a WF defence should be determined
under optimal conditions for the adversary. Any noise in the data (e.g., back-
ground webpages or BitTorrent clients) would produce an overestimate of the
defence’s security. For this reason, we did not add further noise to the dataset.

81

9 Application to Traffic Analysis

Distribution of the labels in data We designed the experiments so that train-
ing and validation sets would have a uniform distribution of labels. This prevents
an unbalance towards webpages that are easier to defend, which would cause
security overestimates.

Scenarios We performed experiments in the Closed World and One VS All sce-
narios. The former is of common use when evaluating defences, and it indicates
the ability of an adversary to distinguish many pages in nearly-perfect conditions.
One VS All is an extreme case of Open World scenario, in which an adversary only
targets one webpage. This scenario highlights how well a defence protects unique
pages. We remark that our method is applicable to any other case of Open World.

Resources

The WCN+ dataset can be found at:

https://cs.uwaterloo.ca/~t55wang.

The code of the major WF attacks and defences is openly available; it is
usually written in Python or C. We acknowledge the use of the following:

• T. Wang: Decoy Pages, BuFLO, Tamaraw, k-NNa

• K. P. Dyer: VNG++, LLb

• J. Hayes: k-FPc

• M. Juarez: WTF-PAD.d

We created a Python framework to abstract the different APIs employed by
researchers, with the goal of unifying the way experiments are carried out
in WF research. We implemented CS-BuFLO, and the CUMUL attack, and
adapted other researchers’ code to the API. We created routines to compute
error bounds and (β,Φ)−security of WF defences as they are described in
this manuscript. This code and links to the data can be found at:

https://github.com/gchers/wfes.

ahttps://cs.uwaterloo.ca/~t55wang/wf.html.
bhttps://github.com/kpdyer/website-fingerprinting.
chttps://github.com/jhayes14/k-FP.
dhttps://github.com/wtfpad/wtfpad.

82

https://cs.uwaterloo.ca/~t55wang
https://github.com/gchers/wfes
https://cs.uwaterloo.ca/~t55wang/wf.html
https://github.com/kpdyer/website-fingerprinting
https://github.com/jhayes14/k-FP
https://github.com/wtfpad/wtfpad

9.2 Measuring the security of WF defences

Distance R̂∗ (%) Feature Set

Euclidean 5.8 k-NN
Standardised Euclidean 6.0 CUMUL
City Block 6.6 k-NN
Levenshtein 12.2 packets’ sizes

Table 9.2: Comparison of the NN lower bound R̂∗ obtained using different distance met-
rics. Experiments were performed against No Defence (RP), on the WCN+ dataset.
In this table, the name of an attack refers to its feature set.

9.2.6 Evaluation through features

This section justifies empirically the use of the NN bound and of the respective
(β, Φ)-security measure. Specifically, it shows that: i) the NN lower bound esti-
mate R̂∗ is indeed a lower bound for the error of the major attacks, and ii) recent
WF attacks did not manage to improve their feature sets significantly (if at all),
which suggests it is safe to use a security measure that depends on a feature set.

What Distance Metric The lower bound estimate R̂∗ depends on a distance
metric. Whilst its guarantee holds regardless this choice, different metrics may
perform better on our data.

We experimented with four distance metrics: Euclidean, Standardised Euclidean,
City Block and Levenshtein. The first three distances were applied to feature sets;
the estimate corresponding to the best performing feature set is shown. We ap-
plied Levenshtein distance directly to packet sequences as follows. Given a packet
sequence ((τj, σj, δj)), we created a binary string containing 0 when δj =↑, and 1
when δj =↓; this makes sense in the context of Tor traffic, where packets’ sizes are
the same; by doing so we excluded timing information. We then computed the
NN-based bound on the binary strings using Levenshtein as a distance metric.

Results in Table 9.2 indicate the distance metric not impact heavily on the bound.
Levenshtein distance, however, performed poorly; this may be due to the fact that
it does not consider timing information. In the following experiments we use
Euclidean distance.

Empirical validity of the bound Under the sole i.i.d. assumption, it is not
possible to prove convergence rates of a Bayes error estimate (section 2.6). We
studied the convergence of R̂∗ in finite sample conditions experimentally, for an

83

9 Application to Traffic Analysis

Figure 9.4: Validity of the lower bound R̂∗ on the WCN+ dataset (Closed World scenario),
with respect to an increasing number of training examples. The lower bound
estimates R̂∗ (dashed lines) are smaller than the error of an attack (continuous
lines) performed using the same feature set (same colour).

increasing number of training examples. We used the following heuristics to verify
the estimates’ convergence:

• verify that R̂∗ computed for a feature set is lower than the error of an attack
performed with the same feature set;

• visually inspect that the decreasing trend of the estimate becomes slower.

We performed these experiments in a Closed World scenario on the WCN+ dataset,
which is composed of ntot = 9000 network traces from 100 distinct pages. We kept
a fixed validation set of size nval = 0.2× ntot, and iteratively increased the number
of traces of the training set: n = {0.1× ntot, ..., 0.8× ntot}. To show that the bound
is valid for adversaries predicting new data, we computed the bound only on the
training set, and compared it with the attack error on the validation set. More

84

9.2 Measuring the security of WF defences

specifically, for an adversary A = (Φ, T), we computed the attack error RA by
training the attack’s classifier on the training set, and predicting the validation set.
We computed on the training set the lower bound R̂∗, for the same feature set Φ,
using 5-folds cross validation (CV) to reduce the variance.

Figure 9.4 presents the results of these experiments. Each colour represents a
set of features; continuous lines indicate the error of an attack, and dashed lines
error bounds. The figure shows that, for any size of the training set, the bound
estimate computed for a feature set is a lower bound of the error committed by an
attack using the same features. Furthermore, visually, the decreasing trend of the
estimates seems to converge towards an asymptote, with some exceptions; e.g., the
NN bound for defence Decoy Pages, computed for the feature set of the “k-NN”
attack by Wang et al. (2014), seems to have not reached convergence.

Figure 9.5: NN lower bound of R∗ when using the feature sets of the major attacks up to
2017, against the most influential WF defences. Feature sets have not improved
substantially since the attack by Wang et al. (2014). Bounds were computed on
the WCN+ dataset in a Closed World scenario.

Evolution of feature sets The Bayes error also indicates the smallest error
achievable with a certain feature set. We use R̂∗ to compare the feature sets of
major WF attacks, and address the question: did WF attacks’ feature sets improve?

We computed the estimates in a Closed World scenario, on the full WCN+ dataset,
using 5-folds CV. Figure 9.5 shows the evolution of feature sets in the major attacks
from 2006 to 2016. We observe that, against most defences, the feature set used
by the 2014 attack k-NN (Wang et al., 2014) performs nearly as well as the one
employed by the current state-of-the-art attack, k-FP (Hayes and Danezis, 2016).

These results support the following hypothesis: improving feature sets is be-
coming harder, and we might reach a limit for their improvement soon. This
strengthens the value of a security measure depending on a feature set.

85

9 Application to Traffic Analysis

9.2.7 Privacy evaluation of WF defences

We measured (β, Φ)-security and overheads of the defences, under Closed World
and One VS All scenarios; for the estimates, we used the entire WCN+ dataset

We computed the packet overhead Ohb
D for each packet sequence p and a de-

fence D as:
Ohb

D =

(
|D(p)|
|p| − 1

)
× 100 ,

where |p| indicates the number of packets in packet sequence p. We computed
the time overhead Oht

D by dividing the difference tℓ − t1 for packets in packet se-
quence p by the same computed for packets in p′. We report the median overhead
among packet sequences for both Ohb and Oht.

For the Closed World scenario, we considered all the dataset, extracted the fea-
tures, and computed R̂∗ (Theorem 3.6) using 5-folds CV. We then determined
(β, Φ)-security. Random guessing error in this scenario (|S| = 100) was Rπ = 0.99.

In the One VS All case, for each potential target w ∈ W , we took all 90 exam-
ples from webpage w, and then randomly selected 90 examples from other pages,
which we labelled ⊙. Finally, we computed the bounds in this binary classifica-
tion setting, where random guessing error was 0.5. Since the method produced a
bound for each page, indicating its fingerprintability, we averaged these results. In
this scenario, we observed a high variance, which is due to the heterogeneity of the
pages. We also considered taking the minimum of the bounds as an alternative to
averaging. Unfortunately, to date no defence is able to achieve a minimum bound
better than 2.9% (Tamaraw). Future work may consider alternative methods to
combine error bounds in this scenario.

Table 9.3 shows the results in both scenarios. Results indicate that the best
defence for the Closed World scenario is Tamaraw. However, we notice that Bu-
FLO and Decoy Pages outperform Tamaraw in the One VS All scenario. This
suggests that Decoy Pages, a very simple defence to implement, could be a safe
choice for defending individual pages from WF attacks. Results also confirm that
Tor Browser’s default defence, RP, is ineffective, as it was suggested by previous
work (Cai et al., 2012; Wang and Goldberg, 2013; Juárez et al., 2014).

9.2.8 Direct evaluation

We now attempt to achieve β-security, rather than (β, Φ)-security, by computing
the estimates directly on packet sequences (i.e., without feature extraction).

86

9.2 Measuring the security of WF defences

Closed World One VS All Overhead
Defence R̂∗ (%) (β, Φ) R̂∗ (%) (β, Φ) Bw (%) T (%)

No Defence 6.2 ± 0.3 (0.06, W+) 2.5 ± 1.7 (0.05, W+) 0.0 0.0
Decoy Pages 42.6 ± 0.6 (0.43, W+) 14.7 ± 5.5 (0.29, W+) 134.4 59.0
BuFLO 56.9 ± 1.0 (0.58, HD) 14.4 ± 13.7 (0.29, HD) 110.1 79.1
Tamaraw 69.0 ± 0.9 (0.70, W+) 12.7 ± 5.8 (0.25, W+) 257.6 341.4
CS-BuFLO 61.9 ± 0.9 (0.63, HD) 8.1 ± 3.5 (0.16, HD) 67.2 575.6
WTF-PAD 48.6 ± 1.2 (0.49, HD) 9.0 ± 3.8 (0.18, P+) 247.0 0.0

Table 9.3: Bayes lower bounds R̂∗ and (β, Φ)-security of WF defences on the WCN+ dataset.
A lower bound R̂∗ is the smallest error an adversary achieves in a specific sce-
nario (Closed World, One VS All). (β, Φ)-security indicates how far a defence is
from perfection (achieved for β = 1). In bold, the most (β, Φ)-secure defences.
We use an attack authors’ initials to indicate the attack’s feature set Φ (i.e., W+:
Wang et al. (2014), P+: Panchenko et al. (2016), HD: Hayes and Danezis (2016)).

Figure 9.6: Comparison of lower bounds R̂∗ computed using full information (i.e., in the
packet sequence space) and those computed using the feature sets of the best
attacks (k-NN, k-FP). Bounds computed on full information do not converge
rapidly enough, and are invalidated by those using feature sets.

We concatenate time and size of each packet sequence to form a vector, and pad
such vector to the same length. We then use Euclidean distance in this space to
estimate the NN bound.

Unfortunately, the estimates obtained on full information are worse than those
achieved using feature sets (Figure 9.6). This result is not too surprising: in WF
attacks, classifiers tend to converge more rapidly in the feature space than in the
original space. This shows that Black-box security, when applied to generic WF

87

9 Application to Traffic Analysis

Figure 9.7: Comparison of lower bounds R̂∗ computed using full information (i.e., packet
sequences) and those computed using the feature sets from the best attacks
(k-NN, k-FP) on the WCN+ dataset. Results show that bounds using full infor-
mation typically do not converge quickly enough.

defences, should rely on feature sets. However, we notice that, for some defences
(Tamaraw and CS-BuFLO), the bounds computed on full information are close to
the error of the best classifiers (Figure 9.7). This suggests their bounds may be
valid independently of the features.

Future research may also find a better performing distance metric, which might
favour a quicker convergence of the Bayes error estimate directly computed in the
packet sequence space.

88

9.2 Measuring the security of WF defences

Defence R̂∗ (%) Cai et al. (%) Cai et al. - full (%)

BuFLO 57 53 19
Tamaraw 69 91 11

Table 9.4: Comparison of the bound for deterministic defences suggested by Cai et al. and
the lower bound estimate R̂∗. The last column indicates the bound by Cai et al.
on full information, which indicates its susceptibility to noise.

9.2.9 Comparison with previous evaluation

We computed the bound based on the frequentist approach that was proposed by
Cai et al. (2014c), on the full WCN+ dataset. As discussed in subsection 9.1.4, this
method is only applicable to deterministic defences, and it needs to be adapted to
the defence.

We estimated the bound by Cai et al. for defences BuFLO and Tamaraw. With
the goal of reducing noise, their method requires limiting the information available
to an adversary: against BuFLO, an adversary can only observe the transmission
size; against Tamaraw, the number of incoming and outgoing packets.2

Table 9.4 compares the bound by Cai et al. with R̂∗. Results do not exhibit
any particular trend: their bound is larger than R̂∗ for Tamaraw, but smaller for
BuFLO. We notice, however, that for Tamaraw their error bound is higher than the
error of the best performing attack (86.6%, VNG++) (Figure 9.4). This may be due
to noise in the data.

To better grasp the impact of noise on their bound, we estimated it using all the
information available to a real-world adversary (Table 9.4). Interestingly, in this
case the error bound for Tamaraw was smaller than the one for BuFLO. This indi-
cates that the lookup-table strategy is strongly affected by noise, which suggests
that it may not be reliable for evaluating security for traffic analysis.

Discussion

We presented the first method for measuring the security of generic WF de-
fences. Unfortunately, we could only measure the weaker notion of security,
(β, Φ)-security (i.e., estimated through features). In the next section, we introduce
ALPaCA, a defence for which we conjecture we can measure β-security directly.

2The reason for this comes from the design of these defence, which provably hide the remaining
information. However, this means evaluation by Cai et al. (2014c) relies on describing formally
the internals of a defence, which is often not possible.

89

9 Application to Traffic Analysis

9.3 Application layer Webpage Fingerprinting defences

Figure 9.8: Graphical representation of ALPaCA. Once a target page is defined, by using
one of the two variants P-ALPaCA and D-ALPaCA , ALPaCA pads the con-
tents of the original page as defined by the target, generating new padding
objects if needed. The original and morphed page will look identical to a user.

In this section we introduce ALPaCA, a WF defence targeted specifically at
.onion sites, websites that are hosted over the Tor network (Cherubin et al., 2017).3

In section 9.4, we conjecture ALPaCA’s security may be evaluated without the
need for feature extraction (i.e., direct estimation approach).

In the past, WF defences were designed:

1. at the network layer: they would operate directly on network packets, by
morphing them (e.g., padding or splitting their content across multiple pack-
ets) or delaying them;

2. from the client-side: the defence would run on the client’s computer, possi-
bly in cooperation with the server.

However, these defences were usually impractical (or extremely difficult) to de-
ploy, for the following reasons: 1) a defence working at the network layer generally
requires major changes to the TCP/IP stack or in the anonymisation software used
(e.g., the Tor client); 2) optimal defences (i.e., defences that by construction leak the
least information whilst consuming the least bandwidth) require prior knowledge
of the webpages they were defending.

We propose a defence mechanism called ALPaCA (Application Layer Padding
Concerns Adversaries), which: i) operates at the application layer, and ii) is run

3In the same work, we also introduced LLaMA, a client-side defence that should serve as a drop-in
replacement until ALPaCA is deployed. In this manuscript we focus on ALPaCA, because of its
interesting properties (section 9.4), and we refer the interested reader to Cherubin et al. (2017)
for details on LLaMA.

90

9.3 Application layer Webpage Fingerprinting defences

by the web server. Being server-side, ALPaCA has complete knowledge of the
webpages it should defend, and it can decide the amount of padding accordingly.
Furthermore, being implemented at the application layer makes it easier to deploy.

As a real life motivating example, we were contacted by SecureDrop, an organ-
isation that provides .onion services for the anonymous communication between
journalists and whistleblowers. They are concerned that sources wishing to use
their service can be de-anonymised through WF. As a consequence, they are inter-
ested in using a server-side WF defence. We have included a SecureDrop website
in all the datasets used for the evaluation of defences.

WF attacks are possible because different webpages serve different content.
High level features, such as the number of requests the browser makes to down-
load a page, the order of these requests, and the size of each response, induce
distinctive low level features observed in the network traffic (Dyer et al., 2012;
Panchenko et al., 2011). For instance, the number of requests sent by the browser
corresponds to the number of objects embedded in the page such as images,
scripts, stylesheets, and so on. For this reason, we believe that adding the padding
to the actual contents of the page is a more natural strategy for hiding traffic fea-
tures than sending dummy packets: if the defence successfully conceals high-level
features, the low-level features will follow.

9.3.1 Background and assumptions

We define threat model, assumptions, and illustrate related research.

Threat model We consider the problem of WF as described in section 9.1. How-
ever, this time we assume the victim visits an .onion site, rather than a common
website on the Internet. Observe that .onion sites have several characteristics that
make them particularly vulnerable to WF attacks, even in an Open World scenario:
their overall number is largely inferior to that of common websites, and they are
more static (often they have no active content at all) (Kwon et al., 2015). Further-
more, considering that they tend to host sensitive content, WF attacks to .onion
sites constitute a substantial privacy concern.

We will construct ALPaCA at the server-side. Luo et al. (2011) argued that a
WF defence should be implemented at the client-side, because web servers have
no incentive to offer such a service. However, we believe .onion site operators
are aware of the privacy concerns that Tor clients have, and they would make the
necessary (minor) modifications in the server to implement our defence.

91

9 Application to Traffic Analysis

For the design of ALPaCA, we will assume there is no dynamic content. This
includes content generated at the client-side (e.g., AJAX) as well as the server-side
(e.g., a PHP script polling a database). This assumption simplifies the design of
the server-side defence: ALPaCA requires to know the size of the web resources
being loaded, and it is hard to estimate the size of dynamic content a priori.

To assume that no JavaScript will run in the browser is not as unrealistic as it
may seem. The Tor Browser’s4 security slider allows users to select different levels
of security, disabling partially or totally JavaScript. Furthermore, privacy-aware
websites (e.g., SecureDrop) already recommend their clients to disable JavaScript
to prevent attacks such as cross-site scripting. It is reasonable to think that clients
who wish to protect themselves against WF will first disable JavaScript to prevent
these and other attacks.

Intuition Most WF defences in the literature are based on link-padding. The
traffic morphing approach attempts to transform the traffic of a page to resemble
that of another page (Wright et al., 2009; Lu et al., 2010; Panchenko et al., 2011),
or to generalise groups of traffic traces into anonymity sets (Wang et al., 2014; Cai
et al., 2014b). The main downside of this type of defences is that they require a
large database of traffic traces that would be costly to maintain (Juárez et al., 2014).
We refer the reader to section 9.1 for a list of the major WF defences.

Link-padding aims to conceal patterns in web traffic by adding varying amounts
of dummy messages and delays in flows. It has been used for traffic morphing
to cause confusion in the classifier by disguising the target page fingerprint as
that of another page (Wright et al., 2009). However, as Dyer et al. (2012) noticed,
traffic morphing techniques produce high bandwidth overheads as some packets
must be buffered for a long period. The strategy of ALPaCA is different from traf-
fic morphing, in that page contents are not disguised as other pages’, but rather
the content is modified to become less fingerprintable. The intuition behind AL-
PaCA is to make each resource look like an “average” resource, according to the
distribution of resources in the world of pages. This approach reduces the over-
heads with respect to morphing, as resizing an object to an average size will tend
to require less amount of padding than to an object of a specific page. We have also

4The recommended way to visit .onion sites is via the Tor Browser, a modified version of Fire-
fox which channels all its traffic through the Tor network, and in addition prevents common
deanonymisation attacks (e.g., Browser Fingerprinting).

92

9.3 Application layer Webpage Fingerprinting defences

experimented with morphing the contents in a page to make it look like another
page.5 This can be seen as the application-level counterpart of traffic morphing.

9.3.2 ALPaCA

ALPaCA is a server-side defence that pads the contents of a webpage and creates
new content with the objective of concealing distinctive features at the network
level. We demonstrate that this strategy is not only effective, but also practical to
deploy. We have implemented and evaluated ALPaCA as a script that periodically
runs on a server hosting an .onion site.

We first show that it is possible to pad the most popular types of webpage
objects (e.g., images, HTML) to a desired size, without altering how they look
to a user. We then propose two variants of server-side defences, referred to as
P-ALPaCA and D-ALPaCA . For a given page to defend, both ALPaCA variants
choose a suitable list of sizes T, the target. A target specifies the number and size of
the objects of the morphed page; P-ALPaCA and D-ALPaCA differ in how they
select such a target. Then, the objects of the original page are padded to match the
sizes defined in T. If T contains more elements than the page’s objects, then new
objects (“padding objects”) are created and referenced from the morphed HTML
page. Figure 9.8 gives a high level overview of this process.

Padding an object to a target size

We now describe how we can pad most object types. It is important to note
that an adversary looking at encrypted packets cannot: i) distinguish the type of
objects that are being downloaded, nor ii) infer how much padding was added to
such objects or whether they were padded at all. By padding an object directly
on the server, we can control how large it will look like at the network level.
While this control is not complete (because of compression in the HTTP protocol),
experiments show that this discrepancy does not largely affect the security.

Table 9.5 shows the types of objects that we can pad up to a desired size, and
their frequency within the .onion site world. To pad text objects (e.g., HTML and
CCS) we can add the desired amount of random data into a comment. To pad
binary objects (e.g., images), it is normally sufficient to append random data to
the end of the file; in fact, the file structure allows programs to recognise the end
of the file even after this operation. We verified that binary files would not be

5Details of this are in Cherubin et al. (2017).

93

9 Application to Traffic Analysis

Table 9.5: Padding the most frequent objects in .onion sites up to a desired size. “Fre-
quency” indicates how frequent the object type was among the .onion sites we
examined. “N.O.” stands for “not observed”. We assume JavaScript is disabled,
although it is possible to morph JS files as shown.

Content type Morphing Frequency

PNG, ICO,
JPG, GIF, BMP

Append random bytes
to the file.

51%

HTML Insert random data
within a comment
“<!–”, “–>”.

13%

CSS Insert random data
within a comment “/*”
“*/”.

12%

JS Insert random data
within a comment “/*”
“*/”.

13%

MP3 Append random bytes
to the file.

N.O.

AVI Append random bytes
to the file.

N.O.

corrupted after such padding, and we refer to Cherubin et al. (2017) for details.
We suspect that many other types of objects can be morphed analogously, by
appending random bytes or by inserting data in comments or unused sections of
the type structure. We remark, however, that in experiments we did not remove
from webpages the objects that we could not morph.

Morphing a page to a target T

We introduce the basic ALPaCA morphing algorithm, which morphs the contents
of a page to match the sizes defined by a target T. The target is selected differently
by the two versions of ALPaCA, as presented later, and it defines the size of the
objects that the morphed page should have.

The algorithm keeps two lists: M, containing the morphed objects o, and P,
which keeps track of the sizes in T that have not been used for morphing an object;
both lists M and P are initially empty. The algorithm sequentially considers the
objects of the original page from the smallest to the largest; for object o, it seeks
the smallest size t ∈ T which o can be padded (i.e., for which size(o) ≤ t). Once

94

9.3 Application layer Webpage Fingerprinting defences

it has found such a t, it removes all the elements of T smaller than t, and pads
o to size t; the elements removed from T at this stage (except t) are put into P.
After all the original objects have been morphed, the sizes remaining in T are
appended to P. New “padding objects” (objects containing random bytes) are
generated according to the sizes in P. We make sure that padding objects will be
downloaded by a browser, but will not be shown, by inserting a reference to them
in the HTML page as if they were hidden images.6 Finally, the HTML page itself is
padded to a target size by the defence. In Appendix 4 we illustrate the algorithm.

P-ALPaCA Probabilistic-ALPaCA (P-ALPaCA) generates a target by randomly
sampling from a distribution that represents real-world .onion sites. Specifically,
it has access to three probability distributions, Dn, Dh and Ds, defined respectively
on the number of objects a page has, the size of the HTML page and the size of
each of its objects. The defence samples a target T using these distributions, and
then morphs the original page as shown in Algorithm 2 in Appendix 4.

We estimated Dn, Dh and Ds using Kernel Density Estimation (KDE) from 5, 295
unique .onion websites we crawled. In Appendix 4.2 we show the resulting dis-
tributions Dn, Dh and Ds, and provide details on how we estimated them.

The defence first samples the number of objects n for the morphed page accord-
ing to Dn. Then, it samples the size of the morphed HTML from Dh, and n sizes
from Ds which constitute a target T. Finally, it attempts to morph the original
page to T; if morphing fails, the procedure is repeated.

Because sampling from the distributions can (with low probability) produce
very large targets T, we introduced a parameter max_bandwidth to P-ALPaCA .
Before morphing, the defence checks that the total page size is within this param-
eter: ∑t∈T t ≤ max_bandwidth. If not, the sampling procedure is repeated.

D-ALPaCA We propose a second variant, Deterministic-ALPaCA (D-ALPaCA),
which decides deterministically by how much a page’s objects should be padded.
The defence is inspired by Tamaraw (Cai et al., 2014c), which pads the number of
packets in a network trace to a multiple of a padding parameter L. D-ALPaCA has
the advantage of introducing less overheads than P-ALPaCA , but experimental
results suggest this defence is slightly less effective against a WF adversary.

6To add an invisible object called “rnd.png” to an HTML page we insert <img src="rnd.png"
style="visibility:hidden">’. The browser will consider this a PNG file and it will download
it, but it will not attempt to show it. The file, thus, needs not to respect the PNG format, and it
can just contain random bytes.

95

9 Application to Traffic Analysis

D-ALPaCA accepts as input three parameters: λ, σ and max_s, where max_s
should be a multiple of σ. It pads the number of objects of a page to the next mul-
tiple of λ, and the size of each object to the next multiple of σ. Then, if the target
number of objects is larger than the original number of objects, it creates padding
objects of size sampled uniformly at random from {σ, 2σ, ..., max_s}. Details of
D-ALPaCA are in Appendix 4.

9.3.3 Experimental design

In this manuscript, we only include a limited evaluation of ALPaCA, under a
Closed World scenario. We refer to the original paper for a more thorough analy-
sis, and for details on the data collection (Cherubin et al., 2017).

Data We evaluate ALPaCA via a live implementation on the Tor network. We
first crawl over a significant fraction of the total Tor .onion sites, obtained from
Ahmia7, the most popular search engine for onion services, and we used them to
estimate the distributions for P-ALPaCA . Note that Ahmia maintains a blacklist
of illegal .onion sites, which we excluded from our crawls.

We collected 40 network traffic loads (instances) for a set of chosen 100 .onion
sites. We applied P-ALPaCA and D-ALPaCA , and evaluated them against state-
of-the-art WF attacks. Note that, in this work, we did not estimate (β, Φ)-security
as introduced in section 9.2, although that is a possible future application.

Latency Volume

% Avg. (s) % Avg. (KB)

Undefended − 3.99 − 175

P-ALPaCA 52.6 6.09 86.2 326

D-ALPaCA (2, 500, 5000) 66.3 6.63 3.66 182

D-ALPaCA (2, 5000, 5000) 56.1 6.22 9.84 193

D-ALPaCA (5, 2500, 5000) 61.7 6.44 15.1 202

D-ALPaCA (10, 5000, 5000) 41.7 5.65 44 254

Table 9.7: P-ALPaCA & D-ALPaCA latency and bandwidth overheads.

7https://ahmia.fi.

96

https://ahmia.fi

9.3 Application layer Webpage Fingerprinting defences

Overheads We evaluated D-ALPaCA under four different parameter choices:
(λ, σ, max_s): (2, 500, 5000), (2, 5000, 5000), (5, 2500, 5000), (10, 5000, 5000). As for
P-ALPaCA , its distributions were estimated as described in Appendix 4.2.

In Table 9.7, we see that average latencies are approximately 40-60% greater in
the defended traces than in the undefended ones. The extra time that the user will
spend loading the pages is between two and three seconds.

k-NN (%) k-FP (%) CUMUL (%)

Undefended 45.6 69.6 55.6

P-ALPaCA 0.2 9.5 15.6

D-ALPaCA (2, 500, 5000) 9.5 22.7 27.0

D-ALPaCA (2, 5000, 5000) 12.5 34.4 40.0

D-ALPaCA (5, 2500, 5000) 5.8 22.3 30

D-ALPaCA (10, 5000, 5000) 7.2 22.9 33.0

Decoy (Panchenko et al., 2011) 4.9 11.2 X

Tamaraw (Cai et al., 2014c) 6.8 14.0 X

BuFLO (Dyer et al., 2012) 5.3 13.3 X

Table 9.8: Closed world comparison of P-ALPaCA and D-ALPaCA with other defences.
CUMUL attack depends on packet lengths and so defences that only operate on
time information cannot be applied.

Closed World classification We performed a Closed World WF attack on P-
ALPaCA defended, D-ALPaCA defended and undefended .onion sites. We use
the attacks CUMUL, k-FP, and k-NN for evaluation (section 9.1); the number of
neighbours used for k-FP and k-NN is fixed at 2.8

Table 9.8 shows the Closed World classification results of undefended .onion
sites against .onion sites with each instance uniquely defended using P-ALPaCA
or D-ALPaCA . WF attacks are ineffective under both defences, and in fact P-
ALPaCA improves upon Tamaraw and BuFLO. D-ALPaCA does slightly worse
than the P-ALPaCA in terms of defending .onion sites, but as can it be seen from
Table 9.7, it has real advantages in terms of limiting bandwidth overheads. For
example, D-ALPaCA with parameters (2, 500, 5000), reduced k-FP accuracy from
69.6% to 22.7%, compared to the P-ALPaCA which reduced attack accuracy to

8We use Tobias Pulls’ implementation of the k-NN WF attack (Pulls, 2016b).

97

9 Application to Traffic Analysis

10%. But, D-ALPaCA (2, 500, 5000) required 23.6 times less bandwidth than P-
ALPaCA to achieve these results. Results also show no notable difference in attack
accuracy when changing parameters; however, unsurprisingly, smaller parameters
led to smaller bandwidth overheads.

9.3.4 Limitations

ALPaCA is easy to deploy, and it showed high a high degree of security. We
discuss its limitations.

Defence Fingerprinting An adversary could carry on what we call a Defence
Fingerprinting attack: given the traffic between the victim and a web server, he
may predict whether the web server is running ALPaCA or not. This is possible
because ALPaCA-defended .onion sites may look different at the network level
from those that do not. This attack may be a concern if the .onion sites imple-
menting ALPaCA are a small number (e.g., because of a slow rate of adoption).

Other leakage An aspect which was mostly neglected by previous WF litera-
ture is that there may be more leakage than the one exhibited by network traffic.
For instance, an .onion site may take longer to reply to the client than another
site. While this leakage is negligible for most WF scenarios, cases may exist where
an adversary can exploit this.

In particular, we suspect there could be an active WF attack, where the adver-
sary, who tries to distinguish for example between two .onion sites, purposely
slows down one of the two (e.g., with a DoS-like attack).

Resources

The source code and datasets of both ALPaCA and LLaMA are publicly
available on GitHub.a The original code is also available on an .onion siteb,
which is protected using our defence ALPaCA.
We are now developing ALPaCA as a library, libalpaca, with the intent of
deploying it as a module for web servers such as Apache and NGINX:

https://github.com/camelids/libalpaca.

ahttp://github.com/camelids.
bhttp://3tmaadslguc72xc2.onion.

98

https://github.com/camelids/libalpaca
http://github.com/camelids
http://3tmaadslguc72xc2.onion

9.4 Extension: Measuring λ-security for ALPaCA

9.4 Extension: Measuring λ-security for ALPaCA

Figure 9.9: How a page load translates into network traffic. The network traffic generated
when loading the page mostly depends on the size (and number) of its objects.

We conjecture it is possible to estimate the black-box security of ALPaCA via
the direct method (chapter 2), therefore obtaining λ-security, rather than through
features (obtaining (λ, Φ)-security).

This is based on the following hypothesis: because ALPaCA morphs a web-
page’s objects directly, we can assume that the generated network traffic (and,
therefore, any corresponding feature), depends directly on them (Figure 9.9). In
other words, the random variable p ∈ P , which defines the packet sequences gen-
erated by some webpage W, is entirely described by the size of the objects of W
themselves, W = (σ1, ..., σq). Clearly, this requires assuming that other sources of
randomness or leakage (e.g., a website’s latency) are negligible; this hypothesis
was supported by our experiments on ALPaCA in the previous section, where
the indistinguishability of webpages at the application layer (i.e., page’s objects)
resulted in indistinguishability at the network layer.

For this reason, we can estimate the security of ALPaCA directly on these objects
W, rather than on packet sequences p or features Φ(p); observe that this would
not be possible for any WF defence. But this fact is important: whilst packet
sequences p carry a lot of noise due to network-dependent events, a webpage’s
objects W do not. For this reason, we conjecture that a direct security estimate
on W would guarantee convergence. We leave to future research to verify this
conjecture empirically.

99

Part IV

Extensions, Future Work, and

Conclusions

101

10 Black-box Security

This chapter suggests several extensions of the Black-box security framework we
described so far, and it highlights future applications.

10.1 Infinite secret space |S|

Throughout this manuscript, we assumed a finite S . A natural extension of our
framework is to consider the case when both O and S are infinite.

10.1.1 Formulation

In ML terms, this corresponds to the problem of regression. Consider an example
space O × S , with infinite O and S , and define a joint distribution µ(o, s). In
regression, one aims to find a function g : O 7→ S that minimises the expected loss
E(ℓ(s, g(o))) for a new example (o, s) sampled from µ(o, s); we call g a regressor.

In the classification setting we described in chapter 2, we selected ℓ to be the
0-1 loss function; this loss function is clearly not applicable to regression. We will
consider two loss functions:

(L1) ℓ(s, ŝ) := |s− ŝ|
(L2) ℓ(s, ŝ) := (s− ŝ)2

10.1.2 UC

Literature contains several UC results in the case of regression. We report one,
based on the kn-NN regression rule.

103

10 Black-box Security

Consider a training set (o1, s1), ..., (on, sn), a test object o with secret s, and let
(o(i), s(i)) denote the i-th nearest neighbour of o according to some distance metric
d. The k-NN regressor g outputs:

g(o) :=
1
k

k

∑
i=1

s(i) .

We define the kn-NN regression rule as the rule using the k-NN regressor and
choosing k = kn such that kn/n → 0 and kn → ∞ as n → ∞. Then Stone (1977),
as a corollary of the same theorem that proved UC of the kn-NN rule (section 3.1),
showed that the kn-NN regression rule is UC both for the L1 and L2 loss functions.1

Note that lower bounds similar to the one by Cover and Hart (1967), which we
described in section 3.1, exist for regression (Cover, 1968).

10.1.3 Applications

Several applications exist for this extended framework. For example, in our exper-
iments on the Gowalla dataset (section 6.1), the adversary aimed to guess users’
geographical coordinates, and was penalised with the 0-1 loss function. A better
model is to use a “less rigid” loss notion (e.g., L1 or L2), and therefore employ
a regression rule to estimate the Bayes risk; this would penalise less a prediction
that is closer to the real location, which represents better real-world threat models.

We leave the application of regression to real-world Black-box security problems
to future research.

Remark A rule that is UC for the L2 loss function is also consistent in classi-
fication (0-1 loss), after an appropriate thresholding. However, convergence in
a regression setting requires more examples than classification, which suggests
regression is a harder problem than classification (Devroye et al., 2013).

10.2 Extension to many-observations adversaries

In the problem we considered, an adversary receives one test object o, and has to
predict the corresponding secret s; this is called a one-observation adversary.

1The UC results established by Stone (1977) apply to a more general definition of loss function; we
refer the interested reader to the reference for details.

104

10.2 Extension to many-observations adversaries

We now consider the more general scenario of a many-observations adversary.
This adversary is given, for the same secret s, a vector of q objects (o1, ..., oq). As
before, his goal is to predict s, although this time he has more information.

We define the Bayes risk in this context, introduce a novel estimator based on
the nearest neighbor classifier, and then suggest real-world applications.

10.2.1 Bayes Risk

Let us consider a system (π,B), inducing a joint distribution µ on O × S , and
for simplicity suppose O × S is finite. The Bayes risk of a many-observations
adversary, upon making q observations, is:

R∗q := ∑
(o1,...,oq)∈Oq

1−max
s

q

∏
i=1

µ(oi, s) ;

the summation is appropriately replaced by an integral when O is infinite.

10.2.2 Frequentist approach

Intuitively, the frequentist approach works as before (subsection 3.1.1), by replac-
ing the distribution µ with an estimate µ̂, and π with an estimate π̂. Formally,
suppose it is trained on training data Z = {(o1, s1), ..., (on, sn)}; then, its prediction
for an observation of q objects is:

Freq(o1, ..., oq) =

argmaxs ∏
q
i=1 µ̂(oi, s) if (o1, ..., oq) in training set

argmaxs π̂(s) otherwise .

Now, if all (o1, ..., om) were observed in the training data, this is optimal: as we
noticed in subsection 3.1.1, µ̂ → µ and π̂ → π as n → n because of the Law of
Large Numbers.

However, similarly to what we observed for the frequentist approach in the one-
observation scenario, if some oi is missing, the frequentist cannot say as much, and
indeed his error is equivalent to random guessing for that object.

10.2.3 Nearest Neighbour for many-observations adversary

We can extend the frequentist approach by using the nearest neighbour idea even
in this scenario. Consider a training set Z = {(o1, s1), ..., (on, sn)}, a new object oi,

105

10 Black-box Security

and let N(oi, Z) be the secret of the nearest neighbour of oi within Z. Then we
define the following classifier:

NN((o1, ..., oq)) = argmax
s

q

∏
i=1

µ̂(N(oi, Z), s) ;

in this case, if some oi did not appear in the training set, its prediction is replaced
by that of its nearest neighbour.

We claim this classifier is UC in the many-observations setting (i.e., it converges
to R∗q for a chosen q > 0). This is easy to see: as n → ∞, the nearest neighbour
of each test object oi approaches oi itself, making NN equivalent to the frequentist
approach, which is UC.

We leave the empirical evaluation of this method to future research; however, we
suspect this NN method to have similar advantages over the frequentist approach
to those we observed in chapter 5.

10.2.4 Applications

This extended scenario has a wide applicability. For example, it was considered by
Backes and Köpf (2008) for the side channel attack to the exponentiation algorithm
we described in chapter 5; there, an adversary could make the hardware compute
the algorithm q times for the same key s, thereby obtaining q timing measurements
from which to predict the key. The estimation approach used by Backes and Köpf
(2008) was based on the frequentist principle.

We suggest this scenario could be also used to extend from Webpage Finger-
printing (section 9.1), where an adversary guesses the webpage the victim is view-
ing, to Website Fingerprinting where he wants to predict the website – possibly
made of multiple webpages. In this case, the adversary would observe q webpage
loads, assuming they all belong to the same website s, and try to predict s.

10.3 Further extensions

Extension to various loss functions In this manuscript we considered two
alternative loss functions to the 0-1 loss. However, sometimes one may want to

106

10.4 Future applications

define custom loss functions; for example, we may want to capture a greater risk
for an adversary in predicting a certain secret rather than another one, i.e.:

ℓ(s, ŝ) := I(s ̸= ŝ)wŝ ,

for some set of weights ws, s ∈ S .

The extension to such loss functions is straightforward for frequentist approaches.
We leave the extension of our techniques to this setting as future research.

Confidence levels Under certain assumptions on the distribution, frequentist
estimates can be associated with confidence intervals (e.g., Chothia et al. (2013)).

One could obtain confidence levels also from UC rules, by estimating their error
using, for example, bootstrap techniques (Friedman et al., 2001). We leave the
empirical evaluation of these and other techniques as future work.

We remark, however, that under our weak assumptions it is not possible to
determine convergence rates for UC rules, nor valid confidence interval. In chap-
ter 11, we show that Conformal Predictors (CP) can immediately guarantee pre-
dictions’ validity, although by shifting the learning problem.

Other security measures In this manuscript, we focused on security measures
that are computed as a function of the Bayes risk and random guessing error
(chapter 4).

However, the security and QIF communities have been also interested in other
leakage measures, such as Mutual Information (MI), which can be estimated by
using a frequentist approach. Methods exist for estimating MI by exploiting the
nearest neighbour principle (e.g., Kraskov et al. (2004)). We leave to future research
the analysis of relevant literature, and the application of these methods to Black-
box security.

10.4 Future applications

Applications for our methods abound. For example, many traffic analysis prob-
lems have a similar form of WF attacks (chapter 9), and we suspect they can be
tackled with our framework to produce either λ-security or (λ, Φ)-security guar-
antees, for some desired security measure λ.

107

10 Black-box Security

We now focus on a future application example, Membership Inference attacks,
and then suggest a stronger generalisation of our methods’ applicability.

10.4.1 Membership Inference

Membership Inference attacks were recently introduced by Shokri et al. (2017).
They are carried out against an ML classifier f : X 7→ [0, 1]L, which outputs, for a
test object x ∈ X , a distribution over the L labels (confidence vector); for example,
the i-th value in the confidence vector indicates how much f “is confident” that i
is the correct prediction for its input.

Membership Inference Suppose a company trains a classifier f on a private
dataset D, but it gives users oracle access to f . This setting is known as Machine
Learning as a Service (MLaaS), where for instance the company allows users to
query the model to receive predictions.

In this setting, the goal of the adversary with oracle access to f is to decide
whether some test object x was in the training dataset D or not; that is, for an object
x, the adversary should predict the answer to the binary question “Is x ∈ D?”.

Intuitively, this attack works because f may be overly confident on the predic-
tions for objects x ∈ D (e.g., express very high confidence for its label). One may
think this attack is only possible because of overfitting; however, it was shown
that even when no overfitting occurs Membership Inference attacks are sometimes
feasible (e.g., Yeom et al. (2018)).

Measuring β-security We suggest that our framework can be used for measur-
ing the security of a classifier f against Membership Inference attacks. Note that,
to the best of our knowledge, there are currently no methods for measuring the
security of a generic classifier for these attacks, other than running state-of-the-art
attacks against it.

One can proceed as follows. Create a dataset of examples {(o1, s1), ..., (on, sn)},
where oi := f (xi) is the confidence vector associated by the classifier to some object
xi, and si := I(xi ∈ D) tells whether xi was in the training data or not. Observe
that we do not specify from what distribution should come the xi’s that do not
belong to D; in Shokri et al. (2017), they were sampled from a dataset “similar”
to D, although it is difficult to provide guidelines on this. As for the priors π(s),

108

10.4 Future applications

we can select them as uniform, and then use a prior-consistent security measure,
such as β or Min-entropy leakage (chapter 4).2

Then, we can simply estimate the Bayes risk R∗ on the dataset as shown in chap-
ter 2, and therefore compute an appropriate security measure. Note that in this
case, because the example space O × S = [0, 1]L × {0, 1} may be large, one may
want to opt for a conservative estimate of R∗ (e.g., NN bound, subsection 3.1.6).
We leave the empirical evaluation of this idea to future research.

10.4.2 Generic ML-based attacks

In this manuscript, we have seen several applications of our methods, ranging
from traffic analysis to inference attacks.

We can state something even more general on their applicability: whenever
in a security attack the adversary makes use of an ML classifier (or regressor),
and is evaluated with respect to his prediction risk, we can use the methods we
introduced in this manuscript to measure security against this attack.

This may appear a trivial conclusion: researchers have been constructing attacks
on the basis of ML for long, and our methods are also based on ML techniques.
However, we claim our contributions for this kind of attacks are twofold: i) we
provided a theoretical basis to claim (and verify) the optimality of our methods in
this context (i.e., now we know why ML should be used in these security problems),
and ii) we give a conservative estimate (NN bound, subsection 3.1.6) which can be
used to lower-bound the error (and the security) for any existing attack.

2Note that the Bayes security measure β is prior-consistent for |S| = 2, which is the case for
Membership Inference attacks.

109

11 Extensions from the Conformal

Prediction Theory

This section uses tools from the seminal work by Vovk et al. (2005), namely Con-
formal Predictors (CP) and exchangeability martingales, to extend our framework.

11.1 Background

We describe CPs, which can be used for prediction, and exchangeability martin-
gales for testing the i.i.d. assumption on data.

11.1.1 Conformal Predictors

Conformal Predictors (CP)1 are wrappers around ML classifiers (here called non-
conformity measures2), equipping them with the validity property: for a test object
o ∈ O with label s ∈ S , and for a chosen significance level ε ∈ [0, 1], a CP predicts
a set Γε ⊆ S of candidate labels (prediction set); such prediction set is conservatively
valid, in that it guarantees that Pr(y ̸∈ Γε) ≤ ε. In order to evaluate the tightness
of a CP’s predictions, an efficiency criterion (e.g., average size of Γε) is adopted in
applications (Vovk et al., 2005, 2016).

Internally, a CP uses the nonconformity measure to perform a randomness test
for a test object o, given a training set of examples {(o1, s1), ..., (on, sn)}, which
outputs a p-value for each possible label ŝ ∈ S for the hypothesis: “(o, ŝ) belongs
to the same distribution as the training examples”. The p-value associated with
each candidate label ŝ is then thresholded by ε to decide whether to accept the
hypothesis, and therefore to include ŝ in the prediction set Γε.

1This description of CP is taken from Cherubin (2018).
2More precisely, a nonconformity measure is a scoring function, such as an ML classifier with

probabilistic output.

111

11 Extensions from the Conformal Prediction Theory

Validity Formally, a CP, CA,ε : O × (O,S)n 7→ P(S), with nonconformity mea-
sure A and significance level ε ∈ [0, 1], is an algorithm taking as input a training
set of examples (oi, si)

n
i=1 and a new object o ∈ O, and returning a prediction set

Γε ⊆ S of candidate labels for o (Vovk et al., 2005). We describe the CP algorithm
in Algorithm 1. Whenever possible, we will leave the nonconformity measure A
implicit, and refer to a CP simply with Cε.

The following result holds for a CP.

Theorem 11.1 (CP validity (Vovk et al., 2005)). Let Cε be a CP, for some significance
level ε ∈ [0, 1]. Let

Γε := Cε(o, ((o1, s1), ..., (on, sn)))

be the prediction set associated with a test object o with true label s, given n > 0 training
examples (oi, si)

n
i=1. Then Cε is conservatively ε-valid, in that it guarantees:

Pr(s /∈ Γε) ≤ ε .

The validity defined in this theorem is a conservative validity. There exists
an alternative formulation of the CP algorithm, smoothed CP3, which gives exact
validity, i.e., Pr(s /∈ Γε) = ε.

Nonconformity measures A nonconformity measure is a function A : O×S ×
{O × S}∗ 7→ R≥0, which can be thought of as scorer: it takes as input a bag of
examples and a new example, and it associates with the new example a score
(the nonconformity score); this score represents how “strange” the new example
looks like with respect to the other examples, and it takes a higher value the less
this object conforms to them. Nonconformity measures can be constructed from
virtually any ML classifier or regressor, and the validity guarantees of CP holds
regardless this choice.

A simple example is a nonconformity measure based on the k-NN classifier,
which returns the sum of the distances of the k nearest neighbours to the new
example that have its same label. Formally, consider a multiset of examples Z =

{(o1, s1), ..., (on, sn)}, and a new example (on+1, sn+1). Then let Zs = {(oi, si) ∈ Z |
si = sn+1} be the multiset of examples with the same label as the new example,

3CPs considered here are formally known as deterministic CPs.

112

11.1 Background

and indicate with (o(i), s(i)) the i-th closest example to (on+1, sn+1) within Zs. Then
the k-NN nonconformity measure for a chosen distance metric d is:

A =
k

∑
i=1

d(o(i), on+1) .

Efficiency A CP gives immediately what is generally sought for in standard
ML applications: a guarantee on the errors. This however comes at a price: its
predictions may be uncertain (|Γε| > 1) or even empty (|Γε| = 0); in other words, a
CP’s prediction may be not efficient. (Nonetheless, we argue that a CP gives more
information to the analyst: it tells how (im)precise its predictions are, whilst in
standard ML one does not necessarily know the errors committed.)

This constitutes a shift in the standard problem of learning; the new goal is
to produce efficient (or tight) predictions. Several efficiency measures have been
proposed in the past (Vovk et al., 2016); the most intuitive one is the average size
of a prediction set, |Γε|, for a chosen significance level ε.

In order to achieve efficient predictions one should evaluate several nonconfor-
mity measures, and select the one achieving the best performances. However, this
is problem-dependent, and we suspect one can prove the non-existence of optimal
nonconformity scorers, similarly to what the NFL theorems proved for learning
rules (section 2.6).

Algorithm 1 Deterministic CP for computing a p-value

function CA,ε(o, (z1, ..., zn))
Initialize Γε to the empty set
for ŝ ∈ S do

Set temporarily zn+1 = (o, ŝ)
for i = 1, ..., n + 1 do

αi ← A(zi, (z1, ..., zn+1) \ zi)
end for
pŝ ← #{i|αi≥αn+1}

n+1
if pŝ > ε then

Add ŝ to Γε

end if
end for
return Γε

end function

113

11 Extensions from the Conformal Prediction Theory

11.1.2 Exchangeability martingales

Exchangeability martingales are tools introduced by Vovk et al. (2003) that allow
testing whether a sequence of objects v1, ..., vn is i.i.d. according to some (un-
known) probability distribution.4

Intuition An exchangeability martingale is defined for a CP and a betting strat-
egy b : [0, 1]× [0, 1]∗ 7→ [0, ∞) as follows (Vovk et al., 2003). We first use a CP in
“online” mode (i.e., the prediction for vn + 1 is obtained by training on v1, ..., vn)
to generate p-values p1, ..., pn.5 Then we compute martingale values, M1, ..., Mn,
one for each p-value, by using the betting function:

Mt =
t

∏
i=1

bi(pi) t = 1, 2, ... ;

we assume M0 = 1.

Then we have the following guarantee. Consider the following statements:

(S1) Sequence v1, ..., vn is i.i.d..

(S2) P-values p1, ..., pn generated from v1, ..., vn are i.i.d. uniformly in [0, 1].

(S3) For all ϑ ≥ 1, P(∃t : Mt ≥ ϑ) ≤ 1
ϑ .

The exchangeability martingale test is based on the fact that:

S1 =⇒ S2 =⇒ S3 ,

where the first implication is due to CP’s properties (e.g., Vovk et al. (2005)), and
the second one comes from Ville (1939). In other words, if the sequence is indeed
i.i.d., then its martingales should never take a “large” value.

The exchangeability martingales i.i.d. test is defined for a threshold ϑ, which is
usually set to 20 or 100, corresponding to significance levels of 0.05 and 0.01: if
the martingale value Mt exceeds ϑ for some t then we should reject the hypothesis
that the sequence v1, ..., vn is i.i.d..

4More formally, they verify that the sequence of objects is exchangeable (i.e., their joint distribu-
tion is the same for any permutation of the sequence). However, to test for exchangeability is
equivalent to testing for i.i.d..

5P-values are the intermediate values of Algorithm 1 pŝ. More details on p-value generation for
exchangeability martingales can be found in Vovk et al. (2003).

114

11.2 Conformal Prediction adversaries

Theoretical background and practical recommendations on the betting function
are found in Vovk et al. (2003); Fedorova et al. (2012).

11.2 Conformal Prediction adversaries

We introduce a kind of attacks in Black-box security that we call many-predictions
attacks. As in the original formulation (chapter 2), the adversary receives an object
o obtained by sampling a system (π,B), with secret s. Differently from before,
however, we ask the adversary to output a set of predictions Γ ⊆ S , and we define
the prediction error to be 1 if s /∈ Γ, 0 otherwise.

A trivial adversary exists, who outputs Γ = S for every input; clearly, however,
his predictions are not “useful”. We will therefore be interested in the efficiency of
his predictions (informally, how tight Γ is), which can be measured for example
with the average |Γ| (subsection 11.1.1).

Under this threat model, CP methods allow us to disregard the number of errors
the adversary commits, and to only focus on his efficiency. We call CP adversary a
many-predictions adversary who uses a CP for prediction. Trivially, this adversary
inherits the validity property from CP (Theorem 11.1):

Theorem 11.2 (Validity of CP adversary). A CP adversary selects a nonconformity
scorer, and, for a chosen significance level ε, uses the corresponding CP to make predic-
tions. In particular, suppose he observes n examples, {(o1, s1), ..., (on, sn)}, sampled from
a system (π,B), and has to make a set prediction Γ for a new object o, with true secret s.
Then for any n > 0 his error probability is upper-bounded by ε:

P(s /∈ Γ) ≤ ε .

CP adversaries shift the usual black-box attack setting. Indeed, they always know
that, with probability at least 1− ε, the true secret s is contained in a CP’s output.
Therefore, their goal is to choose a nonconformity scorer A so to minimise the
prediction’s uncertainty (e.g., average |Γε|).

We suspect CP adversaries will have several applications in security and privacy.
For example, in the context of WF attacks, a CP adversary would produce a set
of candidate webpages, containing the true webpage ε · 100% of the times, and his
goal would be to make predictions tight.

115

11 Extensions from the Conformal Prediction Theory

11.3 Zero leakage test

Tests for zero leakage assert whether a system leaks no information – or, equiva-
lently, if it is perfectly secure (i.e., R∗ ≈ Rπ), by only observing examples sampled
by the system. These methods give less information to a security analyst than the
estimation framework we considered so far. However, they can be run before the
actual estimation: clearly, if the zero-leakage test does not find any leakage, then
there should be no need for measuring the amount of leakage.

To the best of our knowledge, leakiEst is the only tool providing a zero leak-
age test in the context of Black-box security; its test is based on Kernel Density
Estimation (KDE) (Chothia and Guha, 2011; Chothia et al., 2013), which we par-
tially evaluated in chapter 7. Chothia et al. (2013) also compared this method
with other well-known non-parametric zero-leakage tests, such as Kolmogorov-
Smirnov, BWS, Anderson-Darling, CVM, and concluded that leakiEst tends to be
more reliable for security purposes under small sample conditions.

We suggest that CP methods can be used as the basis for zero-leakage tests;
this is a fairly natural application of CP, which has its roots in the problem of
determining whether an object belongs to the same distribution as training objects.

The approach we suggest is as follows. For simplicity, suppose S = {s1, s2} and
consider two datasets, D1 and D2, containing objects respectively from secrets s1

and s2. Compute p-values p1, p2, ... for the concatenated datasets (D1, D2) in an
on-line setting, and use the exchangeability martingales test (subsection 11.1.1) to
verify whether the sequence {oi ∈ D1 ∪ D2} is i.i.d.; this test will give answer to
the hypothesis “D1 and D2 were generated from the same distribution”, or equiv-
alently whether the system leaks something or not. Future work may implement
this idea, and evaluate it empirically.

11.4 Verifying i.i.d. assumption

A very simple application that follows immediately from exchangeability mar-
tingales is the following. Throughout this manuscript we assumed (π,B) (and
therefore µ(o, s)) was fixed; this implies assuming that examples sampled from
µ(o, s) are i.i.d. according to some (unknown) distribution.

In practice, one may want to verify this assumption (e.g., because they are not
sure the system does not change overtime). We suggest one can use the exchange-
ability martingales test for this purpose.

116

12 Conclusions

Black-box security allows estimating the security (or leakage) of a system without
knowing its internals, and by only looking at examples of inputs and correspond-
ing outputs. Methods for black-box estimation have been traditionally based on
classical Statistics principles. Unfortunately, they often did not scale to large real-
world systems, and they posed restrictions on the type of systems they could
handle (e.g., only systems with finite outputs).

This manuscript established new principles for measuring Black-box security.
We based this on the following intuition: to measure the security of a system is
equivalent to estimating the prediction error of a universally consistent Machine
Learning (ML) rule; this allowed us to bring results and estimators from the ML
theory, effectively giving new foundations to Black-box security in the ML theory.

We defined two strategies for estimating a generic security measure λ: the direct
approach, and estimation through features, respectively giving rise to λ-security,
and (λ, Φ)-security notions. The latter, a weaker notion, applies a transformation
(features) to the system’s outputs before estimation, and it should be used when the
direct approach does not converge. We also proposed and studied a new measure,
Bayes security (β), as a generalisation of a well-known measure in Cryptography.

We used our approaches on synthetic data and for real-world applications. For
instance, we measured λ-security for: i) a location privacy dataset, ii) a side
channel on an exponentiation algorithm, and iii) a time side channel against e-
Passports. We also estimated (λ, Φ)-security for defences to Webpage Fingerprint-
ing (WF) attacks, a major class of Traffic Analysis, and we introduced a defence,
ALPaCA, for which we conjectured one can estimate security directly, thereby
achieving λ-security guarantees.

In the final part of this manuscript, we proposed several extensions of the
method, such as systems with continuous input space, new loss functions, and
an extension to a more general class of adversaries (many-observations adversaries).
We leave to future research their empirical evaluation. We also suggested that our
approaches can tackle virtually any ML-based attack (e.g., traffic analysis, Mem-

117

12 Conclusions

bership Inference), for which they can provide security lower bounds. We further
proposed extensions inspired by the Conformal Prediction (CP) theory, such as
the notion of CP adversaries, and as a conjecture we suggested a zero-leakage test.
In the future, we hope these tools can be developed further and applied to even
more problems.

Most of our theoretical results where based on the large sample assumption;
indeed, for any security estimator, there exists some (possibly very contrived) sys-
tem for which it would need an arbitrarily large number of input-output examples
to converge. But unfortunately this is an intrinsic problem of Black-box security
estimation, which we cannot avoid under our weak assumptions, and it is good
practice to always measure security with more than one estimator. Nonetheless,
we reiterate that our methods provide a sound approach to measure the security
of real-world systems, and that they perform well empirically – indeed, they often
outperform the standard frequentist approach. We therefore hope in the future
they will find a wide application in security.

118

Glossary

.onion site A website that is hosted over the Tor network.
WF Webpage Fingerprinting, a major class of traffic analysis at-

tacks, where an adversary aims at predicting the webpage
the victim visits by only looking at the encrypted network
traffic she produces.

WsF Website Fingerprinting, an extension of WF, where the ad-
versary aims at visiting which website (and not the indi-
vidual webpage) the victim is viewing.

Adversary In this manuscript, an adversary has the goal of predicting
the input of a system given its output.

Convergence An estimator converged if its estimate is “close” – for some
definition of closeness – to the true value of the quantity
it is trying to estimate. Convergence is measured with re-
spect to the number of training examples available; a fast
convergence rate means an estimator requires few exam-
ples for convergence. When the true value is not known
(the common case in real-world applications), we establish
heuristics criteria to determine whether an estimator con-
verged (e.g., chapter 9).

ML Machine Learning studies learning and prediction algo-
rithms whose functionalities are programmed significantly
according to observed data.

QIF Quantitative Information Flow (Smith, 2009) is the research
field interested in defining or estimating the leakage of a
channel (system).

Security analyst Someone who is interested in computing or estimating the
security of a system.

119

Glossary

System A (possibly randomised) algorithm, receiving inputs and
returning outputs according to some underlying distribu-
tion; inputs are chosen according to a set of priors specified
by the system itself.

Tor network A network that guarantees unlinkability of source and des-
tination of a user, thereby guaranteeing her anonymity.

UC A Universally Consistent (UC) rule is an ML rule whose
error converges to the Bayes risk; in other words, UC rules
are asymptotically optimal in the size of their training data.

120

List of Symbols

Bayes risk (R∗) For some loss function ℓ : S × S 7→ R≥0, it is the risk of the
(ideal) optimal adversary at predicting the secret input s corresponding
to an object o = B(s). We will usually assume 0-1-loss, for which R∗

corresponds to the adversary’s probability of error (chapter 2).

Bayes security measure (β) The Bayes security measure, defined as in chapter 4.

Black-box (B) A possibly randomised algorithm B : S 7→ O, defining how a
system associates inputs to outputs.

Classifier (g) An algorithm g : O 7→ S , which predicts a secret ŝ = g(o) for a
system’s output o.

Distance metric (d) A distance metric d : O×O 7→ R≥0.

Error (Rg) The probability of error of a classifier (or learning rule) g.

Generic security measure (λ) A generic security (or leakage) measure, which can
be computed as a function of R∗ and Rπ (chapter 4).

Generic security measure through features ((λ, Φ)) A generic security (or leak-
age) measure, computed using estimation through features: for a chosen
transformation Φ : O 7→ O′ (features), mapping the objects o ∈ O into the
feature space O′, and for the corresponding Bayes risk R∗Φ computed on
the transformed example space O′ × S , we compute λ as a function of
R∗Φ, and declare the system is (λ, Φ)-secure (chapter 8).

Joint distribution (µ) The joint probability distribution µ(o, s) induced by a system
(π,B) on the example space O× S .

Learning rule (gn) An ML rule (or simply learning rule); it associates a classifier to
a training set of size n; with a slight abuse of notation, we write gn(o) to
indicate the chosen classifier.

Objects’ space (O) Space of the system’s outputs (or objects). We indicate an
output with o ∈ O. We call O× S the example space.

Priors (π) Set of prior probabilities defining the probability of s being sampled,
π(s) = P(s).

121

List of Symbols

Random guessing error (Rπ) Smallest risk an adversary commits at predicting the
secret input s when only knowing the system’s priors π.

Secrets’ space (S) Space of the system’s inputs (or secrets). We indicate an input
with s ∈ S .

System ((π,B)) A system is a tuple of prior probabilities π and a black-box B.

122

Bibliography

The gowalla dataset. URL https://snap.stanford.edu/data/loc-gowalla.
html.

M. S. Alvim, K. Chatzikokolakis, C. Palamidessi, and G. Smith. Measuring
information leakage using generalized gain functions. In Proceedings of the
25th IEEE Computer Security Foundations Symposium (CSF), pages 265–279. IEEE,
2012. doi: http://doi.ieeecomputersociety.org/10.1109/CSF.2012.26. URL http:
//hal.inria.fr/hal-00734044/en.

M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi. Geo-
indistinguishability: differential privacy for location-based systems. In Pro-
ceedings of the 20th ACM Conference on Computer and Communications Security
(CCS 2013), pages 901–914. ACM, 2013. ISBN 978-1-4503-2477-9. doi: 10.1145/
2508859.2516735. URL http://doi.acm.org/10.1145/2508859.2516735.

A. Antos, L. Devroye, and L. Gyorfi. Lower bounds for bayes error estimation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(7):643–645, 1999.
doi: 10.1109/34.777375.

M. Backes and B. Köpf. Formally bounding the side-channel leakage in unknown-
message attacks. In European Symposium on Research in Computer Security, pages
517–532. Springer, 2008.

C. Braun, K. Chatzikokolakis, and C. Palamidessi. Quantitative notions of leakage
for one-try attacks. Electronic Notes in Theoretical Computer Science, 249:75–91,
2009. doi: 10.1016/j.entcs.2009.07.085.

X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. Touching from a Distance: Website
Fingerprinting Attacks and Defenses. In the ACM Conference on Computer and
Communications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012, pages
605–616. ACM, 2012. doi: 10.1145/2382196.2382260. URL http://doi.acm.
org/10.1145/2382196.2382260.

123

https://snap.stanford.edu/data/loc-gowalla.html
https://snap.stanford.edu/data/loc-gowalla.html
http://hal.inria.fr/hal-00734044/en
http://hal.inria.fr/hal-00734044/en
http://doi.acm.org/10.1145/2508859.2516735
http://doi.acm.org/10.1145/2382196.2382260
http://doi.acm.org/10.1145/2382196.2382260

Bibliography

X. Cai, R. Nithyanand, and R. Johnson. CS-BuFLO: A Congestion Sensitive Website
Fingerprinting Defense. In Workshop on Privacy in the Electronic Society (WPES),
pages 121–130. ACM, 2014a. doi: 10.1145/2665943.2665949. URL http://doi.
acm.org/10.1145/2665943.2665949.

X. Cai, R. Nithyanand, and R. Johnson. Glove: A Bespoke Website Fingerprinting
Defense. In Workshop on Privacy in the Electronic Society (WPES), pages 131–134.
ACM, 2014b. doi: 10.1145/2665943.2665950.

X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg. A Systematic
Approach to Developing and Evaluating Website Fingerprinting Defenses. In
ACM Conference on Computer and Communications Security (CCS), pages 227–238.
ACM, 2014c. doi: 10.1145/2660267.2660362. URL http://doi.acm.org/10.
1145/2660267.2660362.

K. Chatzikokolakis, T. Chothia, and A. Guha. Statistical measurement of infor-
mation leakage. In J. Esparza and R. Majumdar, editors, Proceedings of the 16th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), volume 6015 of Lecture Notes in Computer Science, pages
390–404. Springer, 2010. ISBN 978-3-642-12001-5. URL http://dx.doi.org/10.
1007/978-3-642-12002-2.

K. Chatzikokolakis, G. Cherubin, and C. Palamidessi. The bayes security measure.
Technical report, 2018.

G. Cherubin. A valid and universal framework to evaluate website fingerprinting
defences. Technical report, Royal Holloway University of London, 2015.

G. Cherubin. Bayes, not naïve: Security bounds on website fingerprinting de-
fenses. Proceedings on Privacy Enhancing Technologies, 4:215–231, 2017.

G. Cherubin. Majority vote ensembles of conformal predictors. Machine Learning,
Aug 2018. ISSN 1573-0565. doi: 10.1007/s10994-018-5752-y. URL https://doi.
org/10.1007/s10994-018-5752-y.

G. Cherubin and I. Nouretdinov. Hidden markov models with confidence. In Con-
formal and Probabilistic Prediction with Applications - 5th International Symposium,
COPA 2016, Madrid, Spain, April 20-22, 2016, Proceedings, pages 128–144, 2016.
doi: 10.1007/978-3-319-33395-3_10.

124

http://doi.acm.org/10.1145/2665943.2665949
http://doi.acm.org/10.1145/2665943.2665949
http://doi.acm.org/10.1145/2660267.2660362
http://doi.acm.org/10.1145/2660267.2660362
http://dx.doi.org/10.1007/978-3-642-12002-2
http://dx.doi.org/10.1007/978-3-642-12002-2
https://doi.org/10.1007/s10994-018-5752-y
https://doi.org/10.1007/s10994-018-5752-y

Bibliography

G. Cherubin, I. Nouretdinov, A. Gammerman, R. Jordaney, Z. Wang, D. Papini,
and L. Cavallaro. Conformal clustering and its application to botnet traffic. In
Statistical Learning and Data Sciences - Third International Symposium, SLDS 2015,
Egham, UK, April 20-23, 2015, Proceedings, pages 313–322, 2015. doi: 10.1007/
978-3-319-17091-6_26.

G. Cherubin, J. Hayes, and M. Juarez. Website fingerprinting defenses at the appli-
cation layer. Proceedings on Privacy Enhancing Technologies, 2:165–182, 2017. doi:
10.1515/popets-2017-0023.

G. Cherubin, A. Baldwin, and J. Griffin. Exchangeability martingales for selecting
features in anomaly detection. In Proceedings of the Seventh Workshop on Conformal
and Probabilistic Prediction and Applications, volume 91 of Proceedings of Machine
Learning Research, pages 157–170. PMLR, 2018. URL http://proceedings.mlr.
press/v91/cherubin18a.html.

G. Cherubin, K. Chatzikokolakis, and C. Palamidessi. F-bleau: Fast black-box
leakage estimation. In IEEE Symposium on Security and Privacy (S&P), 2019.

E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: User movement
in location-based social networks. In Proceedings of the 17th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, KDD ’11, pages
1082–1090, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0813-7. doi: 10.
1145/2020408.2020579. URL http://doi.acm.org/10.1145/2020408.2020579.

T. Chothia and A. Guha. A statistical test for information leaks using continuous
mutual information. In Proceedings of the 24th IEEE Computer Security Foundations
Symposium, CSF 2011, Cernay-la-Ville, France, 27-29 June, 2011, pages 177–190.
IEEE Computer Society, 2011. doi: 10.1109/CSF.2011.19. URL https://doi.
org/10.1109/CSF.2011.19.

T. Chothia and V. Smirnov. A traceability attack against e-passports. In FC10:
Proceedings of the 14th International Conference on Financial Cryptography and Data
Security 2010. LNCS, Springer-Verlag, 2010.

T. Chothia, Y. Kawamoto, and C. Novakovic. A tool for estimating information
leakage. In International Conference on Computer Aided Verification (CAV), pages
690–695. Springer, 2013.

125

http://proceedings.mlr.press/v91/cherubin18a.html
http://proceedings.mlr.press/v91/cherubin18a.html
http://doi.acm.org/10.1145/2020408.2020579
https://doi.org/10.1109/CSF.2011.19
https://doi.org/10.1109/CSF.2011.19

Bibliography

T. Chothia, Y. Kawamoto, and C. Novakovic. LeakWatch: Estimating information
leakage from java programs. In Proc. of ESORICS 2014 Part II, pages 219–236,
2014. doi: 10.1007/978-3-319-11212-1_13.

T. Cover. Estimation by the nearest neighbor rule. IEEE Transactions on Information
Theory, 14(1):50–55, 1968.

T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE Trans-
actions on Information Theory, 13(1):21–27, 1967. doi: 10.1109/TIT.1967.1053964.
URL http://dx.doi.org/10.1109/TIT.1967.1053964.

T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons,
Inc., second edition, 2006.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass
kernel-based vector machines. Journal of machine learning research, 2(Dec):265–
292, 2001.

L. Devroye, L. Györfi, and G. Lugosi. A probabilistic theory of pattern recognition,
volume 31. Springer Science & Business Media, 2013.

C. Dwork. Differential privacy. In M. Bugliesi, B. Preneel, V. Sassone, and I. We-
gener, editors, 33rd International Colloquium on Automata, Languages and Program-
ming (ICALP 2006), volume 4052 of Lecture Notes in Computer Science, pages 1–
12. Springer, 2006. ISBN 3-540-35907-9. URL http://dx.doi.org/10.1007/
11787006_1.

K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton. Peek-a-Boo, I Still See You:
Why Efficient Traffic Analysis Countermeasures Fail. In IEEE Symposium on
Security and Privacy (S&P), pages 332–346. IEEE, 2012. doi: 10.1109/SP.2012.28.
URL http://dx.doi.org/10.1109/SP.2012.28.

A. Faragó and G. Lugosi. Strong universal consistency of neural network classi-
fiers. IEEE Transactions on Information Theory, 39(4):1146–1151, 1993.

V. Fedorova, A. J. Gammerman, I. Nouretdinov, and V. Vovk. Plug-in martin-
gales for testing exchangeability on-line. In Proceedings of the 29th International
Conference on Machine Learning, ICML, 2012.

P. Foster. BBC to deploy detection vans to snoop on internet
users, 2016. URL https://www.telegraph.co.uk/news/2016/08/05/
bbc-to-deploy-detection-vans-to-snoop-on-internet-users.

126

http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1007/11787006_1
http://dx.doi.org/10.1007/11787006_1
http://dx.doi.org/10.1109/SP.2012.28
https://www.telegraph.co.uk/news/2016/08/05/bbc-to-deploy-detection-vans-to-snoop-on-internet-users
https://www.telegraph.co.uk/news/2016/08/05/bbc-to-deploy-detection-vans-to-snoop-on-internet-users

Bibliography

J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, vol-
ume 1. Springer series in statistics New York, NY, USA:, 2001.

K. Fukunaga and D. M. Hummels. Bayes error estimation using parzen and k-nn
procedures. IEEE Transactions on Pattern Analysis and Machine Intelligence, (5):
634–643, 1987.

T. Glasmachers. Universal consistency of multi-class support vector classification.
In Advances in Neural Information Processing Systems, pages 739–747, 2010.

J. Hayes and G. Danezis. k-fingerprinting: a Robust Scalable Website Fingerprint-
ing Technique. In 25th USENIX Security Symposium, USENIX Security 16, Austin,
TX, USA, August 10-12, 2016., pages 1187–1203. USENIX Association, 2016.

M. Juárez, S. Afroz, G. Acar, C. Díaz, and R. Greenstadt. A critical evaluation of
website fingerprinting attacks. In ACM Conference on Computer and Communica-
tions Security (CCS), pages 263–274. ACM, 2014. doi: 10.1145/2660267.2660368.
URL http://doi.acm.org/10.1145/2660267.2660368.

M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright. Toward an Effi-
cient Website Fingerprinting Defense. In European Symposium on Research in
Computer Security (ESORICS), pages 27–46. Springer, Springer, 2016. doi:
10.1007/978-3-319-45744-4_2.

P. C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In Annual International Cryptology Conference, pages 104–113.
Springer, 1996.

B. Köpf and D. Basin. Timing-sensitive information flow analysis for synchronous
systems. In European Symposium on Research in Computer Security, pages 243–262.
Springer, 2006.

A. Kraskov, H. Stögbauer, and P. Grassberger. Estimating mutual information.
Physical review E, 69(6):066138, 2004.

A. Kwon, M. AlSabah, D. Lazar, M. Dacier, and S. Devadas. Circuit fingerprinting
attacks: passive deanonymization of tor hidden services. In 24th USENIX Secu-
rity Symposium, USENIX Security 15, Washington, D.C., USA, August 12-14, 2015.,
pages 287–302. USENIX Association, 2015. URL https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/kwon.

127

http://doi.acm.org/10.1145/2660267.2660368
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/kwon
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/kwon

Bibliography

Y. Lee, Y. Lin, and G. Wahba. Multicategory support vector machines: Theory and
application to the classification of microarray data and satellite radiance data.
Journal of the American Statistical Association, 99(465):67–81, 2004.

L. A. Levin. Universal sequential search problems. Problemy Peredachi Informatsii,
9(3):115–116, 1973.

M. Liberatore and B. N. Levine. "Inferring the source of encrypted HTTP con-
nections". In ACM Conference on Computer and Communications Security (CCS),
pages 255–263. ACM, 2006. doi: 10.1145/1180405.1180437. URL http://doi.
acm.org/10.1145/1180405.1180437.

L. Lu, E. Chang, and M. Chan. Website Fingerprinting and Identification Using Or-
dered Feature Sequences. In European Symposium on Research in Computer Security
(ESORICS), pages 199–214. Springer, 2010. doi: 10.1007/978-3-642-15497-3_13.

X. Luo, P. Zhou, E. W. W. Chan, W. Lee, R. K. C. Chang, and R. Perdisci. HTTPOS:
Sealing Information Leaks with Browser-side Obfuscation of Encrypted Flows.
In Proceedings of the Network and Distributed System Security Symposium, NDSS
2011, San Diego, California, USA, 6th February - 9th February 2011. IEEE Computer
Society, 2011. URL http://www.isoc.org/isoc/conferences/ndss/11/pdf/6_
3.pdf.

L. Ming and P. Vitányi. An introduction to Kolmogorov complexity and its applications.
Springer Heidelberg, 1997.

S. Oya, C. Troncoso, and F. Pérez-González. Back to the drawing board: Revisiting
the design of optimal location privacy-preserving mechanisms. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’17, pages 1959–1972. ACM, 2017. ISBN 978-1-4503-4946-8. doi: 10.1145/
3133956.3134004. URL http://doi.acm.org/10.1145/3133956.3134004.

A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. Website fingerprinting in
onion routing based anonymization networks. In Proceedings of the 10th annual
ACM workshop on Privacy in the electronic society, WPES 2011, Chicago, IL, USA,
October 17, 2011, pages 103–114. ACM, 2011. doi: 10.1145/2046556.2046570. URL
http://doi.acm.org/10.1145/2046556.2046570.

A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Pennekamp, K. Wehrle, and
T. Engel. Website fingerprinting at internet scale. In Proceedings of the 23rd

128

http://doi.acm.org/10.1145/1180405.1180437
http://doi.acm.org/10.1145/1180405.1180437
http://www.isoc.org/isoc/conferences/ndss/11/pdf/6_3.pdf
http://www.isoc.org/isoc/conferences/ndss/11/pdf/6_3.pdf
http://doi.acm.org/10.1145/3133956.3134004
http://doi.acm.org/10.1145/2046556.2046570

Bibliography

Internet Society (ISOC) Network and Distributed System Security Symposium (NDSS
2016). IEEE Computer Society, 2016. doi: 10.14722/ndss.2016.23477.

M. Perry. Experimental Defense for Website Traffic Fingerprint-
ing. Tor project Blog. "https://blog.torproject.org/blog/
experimental-defense-website-traffic-fingerprinting", 2011. (accessed:
October 10, 2013).

T. Pulls. Adaptive padding early (APE). http://www.cs.kau.se/pulls/hot/thebasketcase-
ape/, 2016a.

T. Pulls. A golang implementation of the kNN website fingerprinting attack.
"https://github.com/pylls/go-knn", 2016b. (accessed: May, 2016).

N. Santhi and A. Vardy. On an improvement over Rényi’s equivocation
bound, 2006. Presented at the 44-th Annual Allerton Conference on
Communication, Control, and Computing, September 2006. Available at
http://arxiv.org/abs/cs/0608087.

SecureDrop. SecureDrop. securedrop.org. "https://securedrop.org/", 2016. (ac-
cessed: April 20, 2016).

V. Shmatikov and M.-H. Wang. Timing analysis in low-latency mix networks:
Attacks and defenses. In European Symposium on Research in Computer Security,
pages 18–33. Springer, 2006. doi: 10.1007/11863908_2.

R. Shokri, G. Theodorakopoulos, C. Troncoso, J.-P. Hubaux, and J.-Y. L. Boudec.
Protecting location privacy: optimal strategy against localization attacks. In
T. Yu, G. Danezis, and V. D. Gligor, editors, Proceedings of the 19th ACM Confer-
ence on Computer and Communications Security (CCS 2012), pages 617–627. ACM,
2012. ISBN 978-1-4503-1651-4.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks
against machine learning models. In Security and Privacy (SP), 2017 IEEE Sym-
posium on, pages 3–18. IEEE, 2017.

G. Smith. On the foundations of quantitative information flow. In L. de Alfaro,
editor, Proceedings of the 12th International Conference on Foundations of Software
Science and Computation Structures (FOSSACS 2009), volume 5504 of LNCS, pages
288–302, York, UK, 2009. Springer.

129

https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
https://github.com/pylls/go-knn
https://securedrop.org/

Bibliography

I. Steinwart. Support vector machines are universally consistent. Journal of Com-
plexity, 18(3):768–791, 2002.

C. J. Stone. Consistent nonparametric regression. The annals of statistics, pages
595–620, 1977. doi: 10.1214/aos/1176343886.

P. Syverson, R. Dingledine, and N. Mathewson. Tor: The Second-Generation
Onion Router. In USENIX Security Symposium, pages 303–320. USENIX Associ-
ation, 2004. doi: 10.21236/ada465464.

A. Tewari and P. L. Bartlett. On the consistency of multiclass classification
methods. Journal of Machine Learning Research, 8:1007–1025, 2007. URL http:
//dl.acm.org/citation.cfm?id=1390325.

J. Ville. Etude critique de la notion de collectif. Gauthier-Villars Paris, 1939.

V. Vovk, I. Nouretdinov, and A. Gammerman. Testing exchangeability on-line. In
Machine Learning, Proceedings of the 20th International Conference ICML, 2003.

V. Vovk, A. Gammerman, and G. Shafer. Algorithmic learning in a random world.
Springer Science & Business Media, 2005.

V. Vovk, H. Papadopoulos, and A. Gammerman. Measures of Complexity: Festschrift
for Alexey Chervonenkis. Springer, 2015.

V. Vovk, V. Fedorova, I. Nouretdinov, and A. Gammerman. Criteria of efficiency
for conformal prediction. In Symposium on Conformal and Probabilistic Prediction
with Applications, pages 23–39. Springer, 2016.

T. Wang and I. Goldberg. Improved Website Fingerprinting on Tor. In ACM
Workshop on Privacy in the Electronic Society (WPES), pages 201–212. ACM, ACM,
2013. doi: 10.1145/2517840.2517851.

T. Wang and I. Goldberg. Walkie-talkie: An effective and efficient defense against
website fingerprinting. Technical report, University of Waterloo, 2015.

T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg. Effec-
tive Attacks and Provable Defenses for Website Fingerprinting. In
USENIX Security Symposium, pages 143–157. USENIX Association,
2014. URL https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/wang_tao.

130

http://dl.acm.org/citation.cfm?id=1390325
http://dl.acm.org/citation.cfm?id=1390325
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang_tao
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang_tao

Bibliography

J. Weston and C. Watkins. Multi-class support vector machines. Technical report,
Citeseer, 1998.

D. H. Wolpert. The supervised learning no-free-lunch theorems. In Soft computing
and industry, pages 25–42. Springer, 2002.

C. V. Wright, S. E. Coull, and F. Monrose. Traffic morphing: An efficient defense
against statistical traffic analysis. In Network & Distributed System Security Sympo-
sium (NDSS). IEEE Computer Society, 2009. URL http://www.isoc.org/isoc/
conferences/ndss/09/pdf/14.pdf.

S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha. Privacy risk in machine learning:
Analyzing the connection to overfitting. In 2018 IEEE 31st Computer Security
Foundations Symposium (CSF), pages 268–282. IEEE, 2018.

131

http://www.isoc.org/isoc/conferences/ndss/09/pdf/14.pdf
http://www.isoc.org/isoc/conferences/ndss/09/pdf/14.pdf

Appendix

1 Formal analysis of the frequentist approach

This Appendix complements subsection 5.2.4. To better understand the behaviour
of the frequentist approach for observations that were not in the training data, we
derive a crude approximation of this estimate in terms of the size of training data
n. The approximation makes the following assumptions:

1. each observation o ∈ O is equally likely to appear in training data (i.e.,
P(o) = 1− 1

|O|);

2. if an observation appears in the training data, the frequentist approach out-
puts the secret minimising the Bayes risk;

3. the frequentist estimate knows the real priors π;

4. if an observation does not appear in the training data, then the frequentist
approach outputs the secret with the maximum prior probability;

The first two assumptions are very strong, and thus this is just an approximation
of the real trend of such estimate. However, in practice it approximates well the
real trend Figure 1.

Figure 1: Approximation of the frequentist estimate as n grows for R∗ ≈ 0.08, |O| = 10K,
and |S| = 1K; this is compared with the real frequentist estimate RFreq

n .

133

Bibliography

Let An(o) denote the event “observation o appears in a training set of n ex-
amples”; because of assumption 1), P(An(o)) = 1−

(
1− 1

|O|

)n
. The conditional

Bayes risk estimated with a frequentist approach given n examples is:

rn(o) =rn(o|An(o))P(An(o)) + rn(o|¬An(o))P(¬An(o)) =

=

(
1−max

s∈S

Ĉs,oπ̂(s)
P(o)

)
P(An(o))+

+ (1−max
s∈S

π̂(s))P(¬An(o)) ≈

≈
(

1−max
s∈S

Cs,oπ(s)
P(o)

)
P(An(o))+

+ (1−max
s∈S

π(s))P(¬An(o))

Assumptions 2) and 3) were used in the last step. From this expression, we derive
the frequentist estimate of R∗ t step n:

RFreq
n = Ern =

= ∑
o∈O

P(o)
(

1−max
s∈S

Cs,oπ(s)
P(o)

)
P(An(o))+

+ ∑
o∈O

P(o)(1−max
s∈S

π(s))P(¬An(o)) =

= P(An(o))

(
∑

o∈O
P(o)− ∑

o∈O
max
s∈S
Cs,oπ(s))

)
+

+ P(¬An(o))(1−max
s∈S

π(s)) ∑
o∈O

P(o) =

= P(An(o))

(
1− ∑

o∈O
max
s∈S
Cs,oπ(s))

)
+

+ P(¬An(o))(1−max
s∈S

π(s)) =

= P(An(o))R∗ + P(¬An(o))Rπ =

= R∗
(

1−
(

1− 1
|O|

)n)
+ Rπ

(
1− 1
|O|

)n

.

In the second step we used P(An(o)) as a constant, as allowed by assumption 1).

The expression of Rn indicates that P(An(o)) weights between random guessing
according to priors-based random guessing and the Bayes risk; when P(An(o)) ≥

134

2 NN bound

P(¬An(o)), which happens for n ≥ − log 2

log
(

1− 1
|O|

) the frequentist approach starts

approximating using the actual Bayes risk (Fig. 1).

2 NN bound

The following result holds for the NN classifier. Let L = |S|, and let RNN be the
probability that the NN classifier trained on a training set of size n misclassifies a
test object. Then, as n→ ∞ (Cover and Hart, 1967):

R∗ ≤ RNN ≤ R∗
(

2− L
L− 1

R∗
)

.

This holds for arbitrary distributions on O× S .

From this we obtain the NN lower bound on R∗ shown in subsection 3.1.6.

Proof. Consider the right-hand side of the above inequality. We get:

L
L− 1

(R∗)2 − 2R∗ + RNN ≤ 0 ,

which has radices:

R∗1,2 =
2±

√
4− 4 L

L−1 RNN

2 L
L−1

,

for which holds:
R∗1 ≤ R∗ ≤ R∗2 .

Then, by only considering the first one we obtain:

2−
√

4− 4 L
L−1 RNN

2 L
L−1

≤ R∗ ,

which we can simplify to

L− 1
L

(
1−

√
1− 1

L
L− 1

RNN

)
≤ R∗ .

135

Bibliography

3 Webpage Fingerprinting

We include details on the attacks we evaluated in section 9.2.

3.1 Attacks

LL The feature set of this attack is composed of the count of packets with a
certain direction and size, for each direction and size {↑, ↓} × (0, ..., MTU], where
MTU = 1500 is the maximum transmission unit. It uses the naïve Bayes classifier
(NB) for classification, with kernel density estimation (KDE) for estimating the
conditional probabilities (Liberatore and Levine, 2006).

VNG++ Its feature set includes total time span of a trace, total per-direction
bandwidth, and (direction, size) of each sequence of contiguous outgoing packets
(“bursts”). It uses NB as a classifier (Dyer et al., 2012).

k-NN The feature set comprises general features (e.g., bandwidth, and packet
counts), unique packet lengths, features related to packet ordering and bursts,
and the lengths of the first 20 packets accounting for direction (set to negative for
incoming packets). An algorithm also determines a set of weights for the features,
according to their importance; feature vectors are multiplied by these weights
before classification.1 For classification, it uses a custom modification of the k-
Nearest Neighbours classifier, which works as follows. To predict the label for an
object x, the classifier first determines the k closest objects to x. If all of them have
the same label, it predicts that label; otherwise, it outputs an empty prediction.
Manhattan distance is used as a distance metric for the classifier (Wang et al.,
2014).

CUMUL The feature set of this attack includes basic information of packet se-
quences (e.g., total bandwidth, total in/out packets), together with the cumulative
sum of packets’ sizes. The attack employs a Support Vector Machine (SVM) clas-
sifier with an RBF kernel, and uses cross validation (CV) grid search to determine
the optimal parameters for the kernel (Panchenko et al., 2016).

1In the original attack, weights are used by the distance metric. This is equivalent to multiplying
weights before prediction.

136

4 ALPaCA

k-FP This is the current state-of-the-art attack. Its feature set comes from a
systematic analysis of the features proposed by previous research. Importance of
features was evaluated with respect to the classifier used for the attack (k-Nearest
Neighbours); the 20 most important features are in Table 9.1 (section 9.1). In this
attack, the selected features are transformed using Random Forest (RF) as follows.
First, feature values from the original feature set are extracted. Then, RF is applied
to these values for generating leaves; leaves are then used as feature values for
classification. As a classifier, this attack employs the custom modification of the
k-Nearest Neighbours classifier that was used for the k-NN attack. Hamming
distance is used as a distance metric (Hayes and Danezis, 2016).

4 ALPaCA

We provide details on the WF defence we introduced, ALPaCA. When defending
a webpage, ALPaCA selects a target page T according to one of two variants:
probabilistic (P-ALPaCA) or deterministic (D-ALPaCA). The target specifies the
size of the HTML page once defended, and the size (and number) of all its objects.

4.1 Algorithms

We illustrate the algorithms we described in subsection 9.3.2.

ALPaCA The basic morphing algorithm for defending a webpage, and padding
its content to a chosen target T is shown in Algorithm 2.

P-ALPaCA The probabilistic variant of ALPaCA selects the target T according
to distribution estimated from data (subsection 4.2). After estimating said distri-
butions, we run Algorithm 3.

D-ALPaCA The deterministic variant of ALPaCA generates a target as in Algo-
rithm 4.

4.2 Distribution estimation for P-ALPaCA

We used Kernel Density Estimation (KDE) to estimate the distributions of number
of objects (Figure 2), size of HTML pages (Figure 3) and size of objects (Figure 4).
KDE is a non-parametric method for estimating a probability distribution given a

137

Bibliography

Algorithm 2 Pad a list of objects to a target

Require: O: list of original page objects
T: list of target sizes

Ensure: M: list of morphed objects

M← []
P← []
▷ Morph the original objects.
while |M| < |O| do

o ← arg min
o∈O

size(o)

▷ Remove the target sizes smaller than size(o).
while min(T) < size(o) do

Remove min(T) from T
Append min(T) to P

end while
if T is empty then

▷ Cannot morph O to T
fail

end if
▷ Note: the current min(T) is larger than size(o)
t← min(T)
m← o padded to size t
Append m to M

end while
▷ Add padding objects.
Merge P and T into P
for p in P do

m← New padding object of size p
Append m to M

end for

data sample, which provides smoother estimates than histograms. KDE requires
to specify a kernel (Gaussian, in our case) and a bandwidth. The bandwidth im-
pacts on the smoothness of the estimate: a larger bandwidth tends to provide bet-
ter smoothness, but less fidelity to the original data. To determine the bandwidth
for each of our distributions, we first performed Grid Search Cross Validation us-
ing scikit-learn library2, to obtain a rough idea of the bandwidth ranges. Then,
we manually trimmed the bandwidth to achieve what visually seemed to reflect
well the variance of data, but also provided smooth distributions. For our pur-

2http://scikit-learn.org.

138

http://scikit-learn.org

4 ALPaCA

Algorithm 3 P-ALPaCA
Require: O: list of original page objects

Dn: distribution over the number of objects
Dh: distribution over the size of HTML pages
Ds: distribution over the size of objects
html_size: size of the original HTML page
max_bandwidth: maximum page size

▷ We use x ←$ D to indicate that x is sampled from distribution D
morphed← False
while not morphed do

T ← []
h←$ Dh
if h < html_size then

continue
end if
n←$ Dn
for i in 1..n do

s←$ Ds
Append s to T

end for
if sum(T) < max_bandwidth then

Try morphing O to target T (Algorithm 2)
If successful, morphed← True

end if
end while
Pad the HTML page to size h

poses, it was important to have smooth estimates to guarantee a good quality in
sampling (e.g., to avoid spikes). We used a bandwidth of 2 for the distribution
over objects, and of 2000 for both the HTML and object sizes distributions.

139

Bibliography

0 20 40 60

0.00000

0.05000

0.10000

Number of objects

Figure 2: KDE distribution of the number of objects

0K 20K 40K

0.00000

0.00005

0.00010

Bytes

Figure 3: KDE distribution of the HTML sizes

0K 20K 40K

0.00000

0.00005

0.00010

Bytes

Figure 4: KDE distribution of the object sizes

140

4 ALPaCA

Algorithm 4 D-ALPaCA
Require: O: list of original page objects

σ: size parameter
λ: number of objects parameter
html_size: size of the original HTML page
max_s: maximum size of a padding object (should be a multiple of σ)

▷ We use x ←$ S to indicate that x is sampled uniformly at random from a set S
T ← []
h← next multiple of σ greater or equal to html_size
for o in O do

s← next multiple of σ greater or equal to size(o)
Append s to T

end for
n← next multiple of λ greater or equal to size(O)
while size(T) < n do

s←$ {σ, 2σ, ..., max_s}
Append s to T

end while
Morph O to target T (Algorithm 2)
Pad the HTML page to size h

141

	Leakage estimation via Machine Learning
	Introduction
	Definitions and Main Result
	Threat model
	Idealised adversaries
	Bayes adversary
	Random guessing

	Problem definition
	Learning rules
	UC learning rules are leakage estimators
	Impossibility results

	Estimating Security in Practice
	UC rules
	Frequentist approach
	NN
	kn-NN
	SVM
	Neural Networks
	NN bound by cover1967nearest
	A remark on convergence rates

	Error estimates
	Validation estimate
	k-fold Cross Validation estimate
	Resubstitution estimate

	Security Measures
	Multiplicative Leakage
	Min-entropy
	Bayes security measure ()

	Direct Estimation
	Finite OS
	Notation
	Synthetic systems
	Experimental setting
	Geometric systems
	Spiky system: making nearest neighbour rules fail
	Random system
	Comparison with the frequentist approach

	Application to time side channel in finite field exponentiation
	Side channel description
	Message blinding
	Implementation and results

	Infinite O
	Application to location privacy
	The Gowalla dataset
	Defences
	Results

	Comparison with leakiEst
	Time side channel on e-Passports' RFID
	Gowalla dataset

	Estimation through Features
	Features and Convergence
	Features
	A brief remark
	Problem definition
	Results and discussion
	Features and attack's computational complexity

	Application to Traffic Analysis
	Webpage Fingerprinting
	Background
	Major defences
	Major attacks
	Previous directions in provable evaluation of WF defences

	Measuring the security of WF defences
	WF formulation
	WF attacks
	Assumptions
	Application of the NN bound
	Methodology
	Evaluation through features
	Privacy evaluation of WF defences
	Direct evaluation
	Comparison with previous evaluation

	Application layer Webpage Fingerprinting defences
	Background and assumptions
	ALPaCA
	Experimental design
	Limitations

	Extension: Measuring -security for ALPaCA

	Extensions, Future Work, and Conclusions
	Black-box Security
	Infinite secret space |S |
	Formulation
	UC
	Applications

	Extension to many-observations adversaries
	Bayes Risk
	Frequentist approach
	Nearest Neighbour for many-observations adversary
	Applications

	Further extensions
	Future applications
	Membership Inference
	Generic ML-based attacks

	Extensions from the Conformal Prediction Theory
	Background
	Conformal Predictors
	Exchangeability martingales

	Conformal Prediction adversaries
	Zero leakage test
	Verifying i.i.d. assumption

	Conclusions

	Glossary
	List of Symbols
	Bibliography
	Appendix
	Formal analysis of the frequentist approach
	NN bound
	Webpage Fingerprinting
	Attacks

	ALPaCA
	Algorithms
	Distribution estimation for P-ALPaCA

