
Subtyping in Signatures

Georgiana Elena Lungu

A thesis submitted for the degree of

Doctor of Philosophy

Royal Holloway University of London

2017

Declaration of Authorship

I Georgiana Elena Lungu hereby declare that this thesis and the work pre-

sented in it is entirely my own. Where I have consulted the work of others,

this is always clearly stated.

Signed:

Date:

1

Abstract

Type theories with canonical objects like Martin Löf ’s Type Theory or Luo’s

UTT have increasingly gained popularity in the last decades due to their usage

in proof assistants, formal semantics of natural language and formalization

of mathematics. The main purpose of this work is to explore a new way

of introducing coercive subtyping in such type theories which facilitates the

representation of some practical notions of subtyping.

Introducing subtyping in dependent type theories is not straightforward

when the preservation of properties like canonicity and subject reduction is also

desired. Previous research already showed how such properties are affected

by the usual notion of subsumptive subtyping and offered an alternative in

the form of coercive subtyping introduced by enriching the system with a

set of coercive subtyping judgements. Here I introduce a new way of adding

coercive subtyping to type theory, specifically by annotating certain functions

in assumptions, arguing that this is more handy to represent practical cases.

This system is also closer to the programming model of proof assistants like

Coq where coercions are annotated as such at the assumption level.

Assumptions in Type Theory are represented as either contexts, which

are sequences of membership entries for variables that bear abstraction and

substitution or signatures, which are sequences of memberships entries for

constants for which abstraction and substitution are not available. I shall use

signatures as an environment for subtyping assumptions. I will prove that

the system thus obtained is well behaved, in that it is only abbreviational to

the original system, by considering its relation with the previous version of

coercive subtyping which was already proved to be well behaved.

To demonstrate the ability of the system to argue about practical situa-

tions, I will present three case studies. The first one studies the relationship

between a subsumptive subtyping system and coercive subtyping. The second

case study discusses how Russell-style universe inclusions, as found in Homo-

topy Type Theory, can be understood as coercions in a system with Tarski

style hierarchy. And the last discussion is the need to treat injectivity as an

assumption as well in order to capture faithfully some notions of subtyping

which are based on or generalize inclusion.

2

Acknowledgements

I am extremely grateful to my supervisor Zhaohui Luo for the invaluable guid-

ance, support and patience throughout the course of this work. The things I’ve

learnt while doing this research under his supervision changed my perspective

over everything.

I would like to thank my colleagues Fjodor Part, Thomas van Binsber-

gen, Ionut Tutu and Claudia Chirita and to Sergei Soloviev for the insightful

discussions about type theory, programming languages and logic.

I am also grateful to the Department of Computer Science at Royal Hol-

loway University of London for the opportunity to pursue the research pre-

sented here.

Last but not least many thanks to my parents and my sister for the endless

support.

1

Contents

1 Introduction 4

1.1 Dependent Type Theory . 4

1.2 Signatures and Contexts . 7

1.3 Subtyping . 7

1.4 Overview of the Thesis and Contributions 10

2 Type Theory, Subtyping and Signatures 12

2.1 Dependent Type Theory . 12

2.1.1 Logical Framework . 12

2.1.2 Type Theories specified in LF 15

2.1.3 Meta-theoretic properties of LF 23

2.1.4 Universes . 24

2.2 Signatures . 28

2.3 Subtyping . 30

2.3.1 Subsumptive Subtyping 30

2.3.2 Coercive Subtyping . 34

3 Coercive Subtyping in Signatures 40

3.1 LFS . 41

3.2 TS,≤ . 42

3.3 Meta-theoretic properties of TS,≤ 47

3.3.1 Coherence for Kinds . 47

3.3.2 Weakening and Context/Signature Replacement 56

3.4 Subtyping in signatures as a well-behaved extension 58

2

3.4.1 Conservativity of TS,≤ as an extension of TS 61

3.4.2 The relation between T 0K
S,≤ and TS 65

3.4.3 T [C]; . 67

3.4.4 The relation between TS,≤ and T [C]; 73

3.4.5 The relation between TS,≤ and TS 83

4 Case Studies: Subsumptive Subtyping, Universes, Injectivity 85

4.1 Embedding Subsumptive Subtyping in Coercive Subtyping . . . 86

4.1.1 Π≤ . 86

4.1.2 ΠS,≤ . 89

4.1.3 The embedding of Π≤ in ΠS,≤ 92

4.2 Representing Russell style universes in Tarski style universes . 95

4.3 Injectivity and Constructor Subtyping 97

5 Conclusion and Future Topics 102

5.1 Definitionality . 103

5.2 Parameterized and Dependent Coercions 107

Appendices 115

A Inference Rules for LF and Π - type 116

B Rules for Universes 118

C Inference Rules for LFS, T 0K
S,≤, TS,≤, Π0K

S,≤ and ΠS,≤ 119

D Inference Rules for LF ;, T [C];0K and T [C]; 123

E Inference rules for LF and Π≤ 127

3

Chapter 1

Introduction

Considering the increasing popularity of type theories with canonical objects

due to usage in proof assistants like Coq [Coq10], Agda [Agd08], Plastic [CL01]

and Lego [Pol94], in formalization of mathematics projects like Homotopy

Type Theory [Uni13] and in formal semantics of natural language under the

paradigm of common nouns as type initiated by Ranta [Ran94] and further

developed by Luo [Luo12a], I find it important to formulate the concept of

subtyping in a way which does not break the useful properties of such type

theories and at the same time reflects the use of subtyping in practice. So the

main focus of this thesis is to introduce the notion of subtyping in such a way

and analyze some practical situations and how it can be used to argue about

them. In the rest of this chapter I informally introduce some concepts and

present the overview together with the contributions of this thesis.

1.1 Dependent Type Theory

Type Theory is a formal language developed around the concept of terms

being of a certain, defined, uniquely determined type. In contrast to Set

Theory, where a ∈ A is a proposition that can be negated as a 6∈ A, in

Type Theory the fact that a term has a type, denoted by a:A, is a derivable

judgement and its negation does not make sense as the term a can only exist

as a term of a certain type. In addition, it is its own deduction system, a

4

type A and a term of it a:A are introduced or computed via preestablished

rules. Church’s Simply Typed λ - Calculus [Chu32, Chu40] and Martin Löf’s

Intuitionistic Type Theory [ML73, ML84] are examples of such languages. The

latter uses the propositions themselves as types and a proposition P being

true amounts to the ability of constructing a proof for it p:P . This setting was

initially employed for foundation of constructive mathematics but it recently

also gained relevance as a programming language.

We can consider the type of natural numbers Nat and the type of pairs

Nat×P . The terms of this type have as their first component a natural number

and as their second component a proof of the proposition P . Similarly we can

consider the type of functions A −→ B. Further, given an integer n:Nat we

can intuitively consider n ∗ Nat which is the type of multiples of n. This

can be seen as the type of natural numbers m, such that there exists another

natural number q such that m = n ∗ q. Formally, this can also be seen as

a pair formed by m in the first component and in the second component a

proof that there exists another natural number q such that m = n ∗ q. Let us

rephrase this by saying that the second component is a proof that n divides m.

This time the type of the second component depends on the first component,

let us call this type, which is a proposition, P (n). The type of such pairs

is called a dependent pairs type which is denoted by Σ(Nat , λm:Nat .P (m))

or Σm:NatP (m). Similarly if we want to consider a program that takes a

natural number n and gives back a vector of length n, we denote the type of

this program by Π(Nat , λn:Nat .V ect(n)) or Πn:NatV ect(n) and refer to it as

dependent function type.

What these examples have in common is the idea of types that depend

on terms. A language with dependent types is more powerful than a sim-

ply typed language. Some dependent type systems in which types depend

on terms are Martin-Löf’s Intuitionistic Type Theory [ML84], Coquand and

Mohring’s Calculus of Inductive Constructions [CP90, PM93] and Luo’s Ex-

tended Calculus of Constructions [Luo90] and Unifying Theory of Dependent

Types(UTT) [Luo92, Luo94].

5

When working with dependent type theories one specifies the way well

formed terms are built by introduction rules. Such a type theory can be spec-

ified in a meta-theory which we call a logical framework. A logical framework

is a metalanguage for formalization of deductive systems like natural deduc-

tion, categorical logic, axiomatic methods or sequent calculus([Pfe02]). We

will call the deductive systems under formalization object theories. The bene-

fit of using a logical framework is that it is itself a type theory so it is computer

understandable and it can embed multiple object theories in the same type

theory.

An example of logical frameworks is Edinburgh Logical Framework from

([HHP93]) which is obtained by adding type dependency to the simply typed

λ-calculus. It was used to represent natural deduction based on the corre-

spondence judgements-as-types. Here by judgements we mean judgements of

the object theory in the style of natural deduction. The types of the logical

framework itself will be called kinds for distinction. Another logical framework

is Martin-Löf’s logical framework introduced for Martin Löf’s intensional type

theory [NPS90] and which is also based on λ-calculus. Martin-Löf’s logical

framework is untyped. A typed version of it was developed by Luo [Luo94]

and UTT [Luo92, Luo94] is a theory specified in this logical framework.

Types in such type theories are introduced by type constructors whose

introduction rules determine their canonical objects. Some of these systems

exhibit some important properties like canonicity (every closed object of a type

reduces to a canonical object of that type), subject reduction (if a term M

reduces to another term N then, if M :A is derivable then N :A is derivable as

well), strong normalization (starting from a well-typed term, every rewriting

sequence terminates) and Church-Rosser (if a term M reduces to two terms

P and Q then there exists a term N such that both P and Q reduce to N).

6

1.2 Signatures and Contexts

Judgements of a type theory are typically of the form Γ ` J , where Γ is called

context and represents the assumptions part of the judgements. This is a

sequence of membership entries like x1:A1, ..., xn:An. {xi}i={1..n} are usually

treated as variables, they can be substituted or abstracted over.

Signatures were first introduced in [HHP93], and are used to keep track

of constants as opposed to variables. They are also sequences of membership

entries like a1:A1, ..., an:An but these entries don’t support substitution or

abstraction. When signatures are used, the judgements are of the form Γ `Σ J ,

where Γ is a context and Σ is a signature. Signatures have been used in [CL15]

to represent situations in natural language under the paradigm of common

nouns as types initiated by Ranta [Ran94] and further developed by Luo and

colleagues [Luo12a, CL14, LL14].

To understand the difference better let us consider again the example with

multiples of an integer. If n:Nat is part of a context, say for the judgement

Γ, n:Nat , p:P (n) `Σ J we can substitute n with any concrete natural number,

say 2 and obtain Γ, p:P (2) ` [2/n]J1. This cannot happen if we consider

it to be part of a signature like `Σ,n:Nat ,p:P (n) J because n is not a variable

here. Similarly, if we had the context Γ, n:Nat `Σ p:P (n) we could abstract

over it and obtain the judgement Γ `Σ [n:Nat]p:Π(Nat , λn:Nat .P (n)). This

again is not possible if n:Nat is an entry in the signature. More details on

how substitution and abstraction work follow in Subsection 2.1.1 of the next

chapter.

1.3 Subtyping

Subtyping is a very important and widely used concept in Computer Science

as well as in mathematics, Natural Language and other domains. The most

intuitive and extensively used form of subtyping is subsumption, which states

1here we assume that n might occur in J and [2/n] means that we substitute any occur-
rence of it with 2

7

that, if A is a subtype of B all terms of type A are also terms of type B. The

intuition for this kind of subtyping is given by the very expressive notion of

subset. In programming languages employing type assignment systems (well

typing discipline), like ML, which is based on Curry’s system, the problem

of typeability is, for a given term M , to find a context (basis) Γ and a type

A such that Γ ` M :A. Here, because of concepts like principal types (eg.

[vB92]), it is crucial to understand the type hierarchy as a partial order and a

term as belonging to multiple types.

If A is a subtype of A′, we write A ≤ A′. A very useful consequence of the

subsumptive subtyping concept is that we can use an object of A wherever

an object of A′ is expected, a property like the Liskov substitution princi-

ple [LW94] from object oriented programming. This property is also referred

to as subtyping polymorphism. Polymorphism can be achieved through sub-

typing but there is also a form of ad hock polymorphism, when there is no

subsumptive relation, for example + can be applied to any pair of terms

belonging to subtypes of real numbers, R but also to a pair of terms of type

String([Rey80]), the type of strings or a pair of terms, for example, of type Z8,

the type of integers modulo 8([JG94], none of these types having a subsumptive

relation with R. To represent this kind of polymorphism, Reynolds [Rey80]

was first to consider the notion of coercion between objects of different unre-

lated (from subtyping point of view) types in programming languages. Other

developments of coercion semantics of subtyping for programming languages

include work by Mitchell [Mit84] and Breazu-Tannen et al [BCGS91].

When talking about dependent type theories, subtyping as understood in

programming languages simply does not fit. On the one hand the problem

of finding a type for an object doesn’t make sense as objects can only be

introduced as having a type. Further, allowing a term to have multiple types

breaks some of the useful properties of such a type theory that I mentioned

earlier, for example a term of a type can reduce to a term of a different type2.

For this, Luo [Luo96, Luo99] introduced the notion of coercion in dependent

2more details about this follow in the next chapter in section 2.3

8

type theory to denote the use of explicitly distinguished conversions to map an

object of T into objects of its supertypes. The kind of subtyping he proposed

keeps the advantage of being able to use an object of a type A wherever an

object of its supertypes is expected but without the burden of an object having

multiple types. If A is a subtype of B, we call the application of a function that

expects an object of type B to an object of type A coercive application. In

order to keep the system consistent, when enhancing it with rules for coercive

application, we want such applications to be nothing more than abbreviations

of the normal well typed application. The formalization of this correctness was

studied later in [SL02, LL01, Luo05] and only finalized in [LSX13, Xue13b].

This formalization is for a system which introduces subtyping through a set

of subtyping judgements. More precisely, the authors consider a base type

theory specified in Luo’s logical framework [Luo94] and they enrich it with a

set C formed of judgements of the form Γ ` A <c B, where c is the coercion

between A and B in context Γ, together with a rule that makes all judgements

in C derivable.

Introducing subtyping through a set of judgements works well in theory,

but it does not represent closely practical situations in which subtyping entries

are part of assumption, for example the programming model of Coq [Coq10]

which is a proof assistant that supports coercive subtyping. The way one

can specify a subtyping assumption in Coq is simply by annotating a prede-

fined mapping as coercion. This thesis introduces a system which allows the

possibility to add coercive subtyping entries to assumptions which apply to a

judgement rather than through a set which applies to the whole system. Pre-

vious work in this direction was started by Luo [LP13] but even though that

seemed like a powerful system that setting is quite tedious to work with. I

argue that the system I introduce here achieves a balance in that it is capable

to represent practical situations, it is close to the programming model of proof

assistants and at the same time it is reasonably easy to formalize and work

with.

Subtyping in dependent type theories has also been studied by Betarte and

9

Tasistro [BT98] for Martin-Löf’s logical framework analyzing subkinding be-

tween kinds (called types), Barthe and Frade[BF99] on constructor subtyping

and Aspinall and Compagnoni [AC01] on a form of subsumptive subtyping in

assumptions for Edinburgh Logical Framework [HHP93] among others. The

latter inspires one of the practical situation that I will formally represent in

the system I introduce here. I will also consider constructor subtyping when

discussing certain properties that subtyping benefits from in practice.

1.4 Overview of the Thesis and Contributions

The second chapter introduces the setting used in later chapters of this thesis

in formal details. It will give technical details about dependent type theories,

logical frameworks used to specify type theories and their inductive types,

signatures and subtyping.

A main objective of this thesis is to introduce a system which achieves

a good balance between being powerful enough to represent some practical

situations and to have a reasonably easy meta-theory. I argue that the system

I introduce in chapter three achieves this objective. This system is an extension

of an original dependent type theory with the ability to annotate conversions as

coercions at assumption level. Essentially, this system is a system with coercive

subtyping entries in signatures. This chapter also discusses the relation of this

new system to a system introduced by Luo et al. [LSX13, Xue13b] which also

uses the notion of coercive subtyping.

One of the practical situations that I claim this system is capable to repre-

sent is subsumptive subtyping. The first part of chapter four considers such a

form, more precisely, a system which introduces subtyping through contexts,

and shows how it can be represented in the system with coercive subtyping

entries in signatures. Later in the chapter, more forms of subtyping are con-

sidered. First I consider Russell style universes with their cumulativity and

argue that a system with Tarski style universes and coercive subtyping entries

in signatures can represent it. Further, when subsumptive subtyping, often

10

perceived as inclusion is considered, an important thing to consider is injectiv-

ity and to what extent coercive subtyping can exhibit such a property. This

is a discussion I carry out at the end of chapter four by means of constructor

subtyping with Leibniz equality.

The fifth chapter concludes the discussion from the previous chapters and

presents certain points raised during the research work for this thesis and

left open for future work. In particular, an important topic is extension by

definition in type theories.

11

Chapter 2

Type Theory, Subtyping and

Signatures

In this chapter I will give the formal context needed to understand the work

done in this thesis. I will reiterate the sections of the previous chapter with

emphasis on the technical details. In particular, I present the notion of logical

framework with emphasise on Luo’s Logical Framework (LF [Luo94]), and I

give examples on how logical frameworks can be used to specify type theories.

I also present universes, Russell and Tarski style and give examples of how

they can be used. I revisit the notion of signatures in a more technical light

and finish with a discussion about subsumptive and coercive subtyping and

some of the multiple forms they appeared in related work.

2.1 Dependent Type Theory

2.1.1 Logical Framework

A logical framework is a metalanguage for formalization of object theories

which are deductive system [Pfe02]. Such logical frameworks are Edinburgh

Logical Framework([HHP93]), where dependently typed λ-calculus was used to

represent natural deduction based on the correspondence judgements-as-types,

the untyped Martin-Löf’s logical framework used for Martin-Löf’s intensional

type theory [NPS90] based on the correspondence propositions-as-types and

12

the logical framework which we shall denote by LF developed by Luo [Luo94]

and used to specify UTT [Luo92, Luo94].

In what follows I will present LF in more detail. This is also presented in

Chapter 9 of [Luo94].

Kinds. As mentioned earlier, the types of the logical framework itself will

be called kinds for distinction. The kind of types will be called Type. Note

that this kind is Set in Martin-Löf’s logical framework [NPS90]. Other kinds

of LF are of the form El(A), where A:Type, and (x:K)K ′. El(A) is the kind

of elements of A. I will often write A for El(A) where there is no confusion.

(x:K)K ′ is the dependent product kind, analogous to Π(A,B) which, if de-

fined, is the dependent product type. If x does not occur free in K ′ I will

simply write (K)K ′ instead of (x:K)K ′.

Judgements. Judgements of LF are of the form

1. ` Γ which states that Γ is a valid context. Γ is of the form x1:K1, ..., xn:Kn.

Contexts are used to keep track of such variable which can be abstracted

and substituted. Note that LF does not originally use signatures so all

the assumption entries represent variables.

2. Γ ` K kind which states that the kind K is valid under the assumptions

in Γ.

3. Γ ` k:K which states that the term k has kind K under the assumptions

in Γ.

4. Γ ` k = k′:K which states that the terms k and k′ of kind K are defi-

nitionally equal under the assumptions in Γ. The notion of definitional

equality follows in this section.

Inference Rules. A judgement can be derivable, that is it can be inferred

using inference rules from derivable premises. Inference rules are of the form

J1...Jn
J

13

with {Ji}i∈{1..n} the premises of the rules and J the conclusion of the rule. An

instance of a rule is a rule in which {Ji}i∈{1..n} and J are concrete judgements.

In what follows, I will use the notation ≡ to denote the syntactic equality.

Abstraction. In the signatures discussion from Section 1.2 of the previous

chapter I also used the notation [x:K]k to denote abstraction. What this really

means is that, if we have the judgement Γ, x:K ` k:K ′, we can abstract over

the variable x to obtain the judgement Γ ` [x:K]k:(x:K)K ′. Note that [x:K]k

corresponds to the untyped functional operation (x)k from Martin-Löf’s logical

framework.

Substitution. When discussing about signatures, in Section 1.2 of the previ-

ous chapter, I briefly introduced the notation [k/x]J to denote the substitution

of the free variable x with k in the judgement J . We have seen that, in our

case, J can be Γ, K kind, k:K or k = k′:K. If J ≡ k′:K, then [k/x]J ≡

[k/x]k′:[k/x]K. Of course if x does not occur free in k′, then [k/x]k′ ≡ k′. If

J ≡ Γ ≡ x1:K1, ..., xn:Kn then [k/x]J ≡ x1:[k/x]K1, ...xn:[k/x]Kn. However

when substituting a variable special care needs to be taken to not capture free

variables, for example, let us look at [y:L]k′:K, where x does occur free in k′.

If we substitute x with y, we obtain [y:L]([y/x]k′):[y/x]K and now the bound

y:L also captures the replaced occurrences of x in k′ which were free before

the substitution, that is [y/x]([y:L]k′) 6≡ [y:L]([y/x]k′). This can be avoided

by using α-conversion which is essentially the procedure of renaming bound

variables. In our case, [y:L]([z/x]k′):K is α-convertible to [z:L]k′:K and now

we can freely substitute x with y without capturing any additional variable.

When a term t is α convertible to another term t′, we write t ≡ t′.

Definitional Equality. I will use the notation k1 = k2:K to denote that the

terms k1 and k2 are definitionally equal. This means that they are identical

up to βη - conversion. By β - conversion we mean ([x:K]k′)(k)→β [k/x]k′

and by η - conversion we mean [x:K]f(x)→η f when x does not occur free

in f . For a judgement Γ ` k = k′:K to be derivable we require that both

14

Γ ` k:K and Γ ` k′:K are derivable.

It is worth noting the difference between this kind of equality, also referred

to as judgemental equality, and propositional equality. Propositional equality

is a proposition and requires a proof, therefore a type which might be inhabited

or not. For a type A, for any two elements x:A and y:A, we define the type

IdA(x, y) which is the proposition that x and y are equal. Two terms of type

A, a1 and a2 can be proven to be equal or are propositionally equal if there

exists p:IdA(a1, a2). The type IdA(a, a) is always inhabited.

The inference rules of LF are presented in Figure 2.1 (and Figure A.1

in the Appendix A). The rules in the first section specify how to derive valid

contexts, or sequences of assumptions. For the dependent product kind section

of this figure, the first rule on the left hand side gives a way to form the kind,

the left rule on the second rule gives a way to introduce a term of this kind

and the left rule on the third row gives a way to eliminate such a term. The

last two rules from this section are for β and η conversions. The rest of the

rules specify how to derive definitional equality and the kind of elements of a

type.

2.1.2 Type Theories specified in LF

I mentioned Edinburgh Logical Framework ([HHP93]) has been used to repre-

sent natural deduction based on the correspondence judgements-as-types, the

Martin-Löf’s intensional type theory [NPS90] is specified in Martin-Löf’s log-

ical framework based on the correspondence propositions-as-types. How can

one use LF as a meta language to specify object theories?

Essentially, to specify an object type theory in LF , one has to specify new

constants and set of computation rules for each constant which represents how

a term of the newly introduced type can be used. For example, for dependent

15

Validity of Signature/Contexts, Assumptions

` 〈〉
Γ ` K kind x 6∈ dom(Γ)

` Γ, x:K

` Γ, x:K,Γ′

Γ, x:K,Γ′ ` x:K

Equality Rules

Γ ` K kind

Γ ` K = K

Γ ` K = K′

Γ ` K′ = K

Γ ` K = K′ Γ ` K′ = K′′

Γ ` K = K′′

Γ ` k:K

Γ ` k = k:K

Γ ` k = k′:K

Γ ` k′ = k:K

Γ ` k = k′:K Γ ` k′ = k′′:K

Γ ` k = k′′:K

Γ ` k:K Γ ` K = K′

Γ ` k:K′
Γ ` k = k′:K Γ ` K = K′

Γ ` k = k′:K′

Substitution Rules

` Γ0, x:K,Γ1 Γ0 ` k:K

` Γ0, [k/x]Γ1

Γ0, x:K,Γ1 ` K′ kind Γ0 ` k:K

Γ0, [k/x]Γ1 ` [k/x]K′ kind

Γ0, x:K,Γ1 ` L = L′ Γ0 ` k:K

Γ0, [k/x]Γ1 ` [k/x]L = [k/x]L′

Γ0, x:K,Γ1 ` k′:K′ Γ0 ` k:K

Γ0, [k/x]Γ1 ` [k/x]k′:[k/x]K′
Γ0, x:K,Γ1 ` l = l′:K′ Γ0 ` k:K

Γ0, [k/x]Γ1 ` [k/x]l = [k/x]l′:[k/x]K′

Γ0, x:K,Γ1 ` K′ kind Γ0 ` k = k′:K

Γ0, [k/x]Γ1 ` [k/x]K′ = [k′/x]K′
Γ0, x:K,Γ1 ` l:K′ Γ0 ` k = k′:K

Γ0, [k/x]Γ1 ` [k/x]l = [k′/x]l:[k/x]K′

Dependent Product Kinds

Γ ` K kind Γ, x:K ` K′ kind
Γ ` (x:K)K′ kind

Γ ` K1 = K2 Γ, x:K1 ` K′1 = K′2
Γ ` (x:K1)K′1 = (x:K2)K′2

Γ, x:K ` y:K′

Γ ` [x:K]y:(x:K)K′
Γ ` K1 = K2 Γ, x:K1 ` k1 = k2:K

Γ ` [x:K1]k1 = [x:K2]k2:(x:K1)K

Γ ` f :(x:K)K′ Γ ` k:K

Γ ` f(k):[k/x]K′
Γ ` f = f ′:(x:K)K′ Γ ` k1 = k2:K

Γ ` f(k1) = f ′(k2):[k1/x]K′

Γ, x:K ` k′:K′ Γ ` k:K

Γ ` ([x:K]k′)(k) = [k/x]k′:[k/x]K′
Γ ` f :(x:K)K′ x 6∈ FV (f)

Γ ` [x:K]f(x) = f :(x:K)K′

The kind Type

` Γ

Γ ` Type kind

Γ ` A:Type

Γ ` El(A) kind

Γ ` A = B:Type

Γ ` El(A) = El(B)

Figure 2.1: Inference Rules for LF

product type the constants are

Π : (A:Type)(B:(A)Type)Type

λ : (A:Type)(B:(A)Type)((x:A)B(x))Π(A,B)

app : (A:Type)(B:(A)Type)(Π(A,B))(x:A)B(x)

and the computation rule is

app(A,B, λ(A,B, f), a) = f(a) : B(a).

16

It might be worth noting that dependent product kind is part of the logical

framework. In contrast, for a type theory specified in LF to have a dependent

product type, one needs to specify this type with constants as above.

To declare constant k:K typically corresponds to the addition of a new

inference rule

` Γ

Γ ` k:K

to the type theory specified by LF . Similarly each computation rule corre-

sponds to the addition of a new rule. For the example with dependent product

type, the constants correspond to the addition of the rules in Figure 2.2 (and

in Figure A.2 of the Appendix A).

Γ ` A : Type Γ, x:A ` B(x) : Type

Γ ` Π(A,B) : Type

Γ ` A : Type Γ ` B : (A)Type Γ ` f : (x:A)B(x)

Γ ` λ(A,B, f) : Π(A,B)

Γ ` g : Π(A,B) Γ ` a : A

Γ ` app(A,B, g, a) : B(a)

Γ ` A : Type Γ ` B : (A)Type
Γ ` f : (x:A)B(x) Γ ` a : A

Γ ` app(A,B, λ(A,B, f), a) = f(a) : B(a)

Figure 2.2: Inference Rules for Π-type specified in LF

Observe that we do not need to add structural equality rules for Π, λ

and app as they are constants and the above terms are obtained through the

application from LF which already has structural equality rules.

Similarly we can introduce the type of natural numbers which we have

already mentioned, Nat , with the following constants:

Nat : Type

0 : Nat

Succ : (Nat)Nat

rec : (C:(Nat)Type)(c:C(0))(f :(x:Nat)(C(x))C(Succ(x)))(n:N)(C(n))

17

and the computation rules:

rec(C, c, f, 0) = c : C(0)

rec(C, c, f,Succ(n)) = f(n, rec(C, c, f, n)) : C(Succ(n))

Note that the rec constant corresponds to the induction principle and

in the second computation rule rec(C, c, f, n) can be seen as a proof of the

induction hypothesis. Just as the computation for Π tells us that, if we have

a function, we can use it by applying it to something, the computation rule

of Nat essentially tells that, if we have a natural number, we can use it by

counting to it. For example, one can use rec to define the addition of natural

numbers +(m,n) = rec([x:Nat]Nat ,m, [:Nat]Succ, n) Similarly to the Π type,

Nat also corresponds to the respective rules from Figure 2.3.

` Γ

Γ ` Nat : Type

` Γ

Γ ` 0:Nat

Γ ` n:Nat

Γ ` Succ(n):Nat

Γ ` C:(Nat)Type Γ ` n0:C(0) Γ ` f :(x:Nat)(C(x))C(Succ(x)) Γ ` n:Nat

Γ ` rec(C, n0, f, n):C(n)

Γ ` C:(Nat)Type Γ ` n0:C(0) Γ ` f :(x:Nat)(C(x))C(Succ(x)) Γ ` n:Nat

Γ ` rec(C, n0, f, 0) = n0:C(0)

Γ ` C:(Nat)Type Γ ` n0:C(0) Γ ` f :(x:Nat)(C(x))C(Succ(x)) Γ ` n:Nat

Γ ` rec(C, n0, f,Succ(n)) = f(n, rec(C, n0, f, n)) : C(Succ(n))

Figure 2.3: Inference Rules for Nat specified in LF

The Unifying Theory of Dependent Types UTT

UTT [Luo92, Luo94] is an important example of type theory specified in LF .

Martin-Löf’s intensional type theory [NPS90] is specified in Martin-Löf’s log-

ical framework based on the correspondence propositions-as-types. UTT dis-

tinguishes between data types and logical propositions and introduces a type

of logical propositions Prop as follows:

18

Prop : Type

Prf : (Prop)Type

∀ : (A:Type)((A)Prop)Prop

Λ : (A:Type)(P :(A)Prop)((x:A)Prf (P (x)))Prf (∀(A,P))

E∀ : (A:Type)(P :(A)Prop)(R:(Prf (∀(A,P)))Prop)((g:(x:A)Prf (P (x)))

Prf (R(Λ(A,P, g))))(z:Prf (∀(A,P)))Prf (R(z))

and the computation rule is

E∀(A,P,R, f,Λ(A,P, g)) = f(g):Prf (R(Λ(A,P, g))).

Inductive types are generated by inductive schemata as in [Dyb91, PM93,

Luo92, Luo94]. I mentioned earlier that a type is given by its canonical objects,

also called values or β normal forms which are generated by constructors.

Constructors of Nat for examples are 0 and Succ and any term of Nat can be

obtained with its constructors. Similarly λ is the constructor of Π. UTT uses

schemata to introduce inductive types. In what follows I will briefly define

what this means, more details can be found in [Luo94]. First some definitions

are required.

Definition 1. K is called a Γ - kind if Γ ` K kind is derivable. K is

called a small Γ - kind if K ≡ (x1:El(A1))...(xn:El(An))El(An+1) such that

Γ, x1:El(A1), ..., xi−1:El(Ai−1) ` Ai:Type for any i = 1, .., n.

For example El(A) is a small Γ - kind for any A such that Γ ` A:Type is

derivable but Type or (x:El(A))Type are not small kinds. In what follows I

will write simply A for El(A).

Definition 2 (Kind Schemata). Let Γ be a context and X a variable that does

not occur free in Γ (X 6∈ FV (Γ)). We say Φ is a strictly positive operator

in Γ and we write PosΓ(Φ) if Φ is of the form (x1:K1)...(xn:Kn)X where, for

19

any 0 ≤ i ≤ n, Ki is a small Γ, x1:K1, ...xi−1:Ki−1 - kind. We say Θ is a Γ -

schema and we write SchΓ(Θ) if

1. Θ ≡ X or

2. Θ ≡ (x:K)Θ0 where K is a small Γ - kind and SchΓ,x:K(Θ0) or

3. Θ ≡ ΦΘ0 where PosΓ(Φ) and SchΓ(Θ0)

For example any strictly positive operator in Γ is a Γ - schema.

With this we can form inductive types and introduce their terms. Let

Θ ≡< Θ1, ...,Θm > be a finite sequence of Γ - schema. Θ generates a type

constructor denoted by M[Θ] such that the judgement Γ ` M[Θ]:Type is

derivable. The logical framework constant will be

M[Θ]:Type

Further, for any 0 ≤ i ≤ n, we have a constructor represented by the logical

framework constant

ιi[Θ]:[M[Θ]/X]Θi

When I introduced Nat and Π-types, apart from the type formation and con-

structor constants, I mentioned there are some computation rules which use

an additional constant. That constant, when generated through schemata is

called the eliminator. To generate that constant and the computation rules

we need the following definitions.

Definition 3. Let PosΓ(Φ) we define

• For A:Type, C:(A)Type and z:[A/X]Φ, Φo(A,C, z) is

1. C(z) if Φ ≡ X or

2. (x:K)Φo
0(A,C, z(x)) if Φ ≡ (x:K)Φ0

• For Φ\:(C:(A)Type)(f :(x:A)C(x))(z:[A/X]Φ)Φo(A,C, z) is defined as fol-

lows

20

1. Φ\(A)(C, f) = f if Φ ≡ X or

2. Φ\(A)(C, f, z) = [x:K]Φ\
0(A)(C, f, z(x)) if Φ ≡ (x:K)Φ0

Definition 4. Let SchΓ(Θ), with Θ ≡ (x1:M1), ..., (xn:Mn)X we define the

arity of Θ to be the subsequence 〈Mi1 , ...,Mik〉 of 〈M1, ...,Mn〉 that consists

of all strictly positive operators (obtained by induction on the structure of Θ).

We denote this arity by Ari(Θ). For A:Type, C:(A)Type and z:[A/X]Θ, we

define

Θo(A,C, z) = (x1:[A/X]M1)...(xn:[A/X]Mn)(Mo
i1(A,C, xi1))...

(Mo
ik

(A,C, xik))C(z(x1, ..., xn))

The eliminator for the type M[Θ] is

E[Θ] : (C:(M[Θ])Type)(f1:Θo
1(M[Θ], C, ιi[Θ]))...(fn:Θo

n(M[Θ], C, ιn[Θ]))

(z:M[Θ])C(z)

Let Ari(Θi) = 〈Φi1 , ...,Φik〉 for each Θi from the composition of Θ. For every

constructor we have a computation rule

E[Θ](C, f, ιi(x)) = fi(x,Φ\
i1

(M[Θ])(C,E[Θ](C, f), xi1), ...,

Φ\
ik

(M[Θ])(C,E[Θ](C, f), xik)

):C(ιi(x))

for f = f1, ..., fn and x = x1, ..., xn.

The eliminator of

Nat =M[X, (X)X]

is indeed the rec constant, however, for

Π = [A:Type][B:(A)Type]M[((x:A)B(x))X]

21

observe that

app:(A:Type)(B:(A)Type)(Π(A,B))(x:A)B(x)

does not satisfy the definition of the eliminator given above. To introduce

Π-type through schemata we need to give instead the eliminator

EΠ : (A:Type)(B:(A)Type)(C:(Π(A,B))Type)

((f : (x:A)B(x))C(λ(A,B, f)))(z:Π(A,B))C(z)

and the computation rule will then become

EΠ(A,B,C, f, λ(A,B, g)) = f(g):C(λ(A,B, g))

This is a stronger way of introducing Π type and we can recover the app

operator by defining it as

app(A,B, F, a) = EΠ(A,B,C, [G:Π(A,B)]B(a), [g:(x:A)B(x)]g(a), F)

in which case we obtain the computation rule used earlier.

Similarly some other types are

• The empty type: ∅ =M[],

• The type of lists: List = [A:Type]M[X, (A)(X)X],

• The type of dependent pairs:

Σ = [A:Type][B:(A)Type]M[(x:A)(B(x))X].

I mentioned before that Π is the dependent function type. The function type

is just

−→= [A:Type][B:Type]M[((A)B)X]

Likewise Σ is the dependent pairs type and the constant pairs type is just

× = [A:Type][B:Type]M[(A)(B)X]

22

2.1.3 Meta-theoretic properties of LF

LF has certain properties which are highly desirable due to decidability of

type checking. In this subsection, I list them and explain what they mean. I

will use the notion of reduction. For a detailed presentation of reduction see

Goguen [Gog94] but just for an intuition, an example of reduction in LF is

given by the β-conversion rule.

Canonicity Property. This property states that every object of a type

reduces to a canonical object of that type. The canonical objects of a type,

also called values, are generated by the constructors of that type. For example,

for natural numbers, 0, 1, 2... are all canonical objects. 2 + 2 reduces to 4

which is a canonical object of Nat . For Π type, the canonical objects are λ

terms. For instance for Π(Nat , λn:Nat .V ect(n)), the type of programs that

for a natural number n give a vector of length n, will be terms of the form

λ(Nat , λn:Nat .V ect(n), f) where f :(n:Nat)V ect(n).

Subject Reduction This property states that if a reduces to b and a:A,

then b:A as well. For example if we consider f :(Nat)Nat with

f ≡ λn:Nat .2 + n, then f(2) is of type Nat , and through β conversion it

reduces to 2 + 2 which also has to be of type Nat .

Strong normalization Every sequence of rewriting terminates with a canon-

ical object. Again, if we consider the example above, f(2) =β [2/n]f(n) =

2 + 2 = 4 is a sequence of rewriting and it terminates with a normal form.

Formally, for the rewriting 2+2 = 4, we define the sum of natural numbers

inductively as follows

1. m+ 0 = m

2. m+ Succ(n) = Succ(m+ n)

In this case 2 + 2 = 2 + Succ(1) = Succ(2 + 1) = Succ(2 + Succ(0)) =

Succ(Succ(2 + 0)) = Succ(Succ(2)) = Succ(3) = 4 is a reduction sequence.

23

2.1.4 Universes

Girard [Gir72] showed that a type theory with type of all types becomes incon-

sistent in that all its formulas become provable. However, when adding induc-

tive types to a type theory like Martin-Löf’s Type Theory or Luo’s UTT, one

needs a type of types which satisfies reflection principle, namely it is closed to

formation of these inductive types. Martin-Löf [ML98, ML75, ML82, ML84]

introduced two kinds of universes for his intuitionistic type theory to satisfy

these needs without adding the paradox. More precisely, a universe is a type

whose objects are types closed to formation of inductive types and it is not an

object of itself. Universes can be used to prove that the constructors of a type

are distinct. Smith [Smi88] showed this property cannot be proved without

universes. Practical applications of universes include constructive formaliza-

tion of category theory, structured specifications of programs and abstract

mathematical structures. I mentioned in the previous subsection that UTT

adds a type Prop:Type. This is itself a universe, an impredicative one, in that

we can always form ∀(Prop, P).

The two kinds of universes are Russell style and Tarski style. In what

follows I shall present both types of universes.

Russell style universes

Russell style is easy to use and expressive. It has been adopted in projects like

Homotopy Type Theory [Uni13]. Russell style can be found in Extended Cal-

culus of Constructions [Luo90] and Coq [Coq10] which implements Calculus

of Inductive Constructions [CP90, PM93].

The rules for Russell style universes are the ones in Figure 2.4 (and in

Figure B.1 of the Appendix B).

for i ∈ ω

Γ valid

Γ ` Ui : Type

Γ ` A : Ui
Γ ` A : Type

Γ valid

Γ ` Ui : Ui+1

Γ ` A : Ui
Γ ` A : Ui+1

Figure 2.4: Inference Rules for Russell Style Universes

24

Observe that we have the hierarchy

U0:U1:...:Un

If we add Π type to the system, the rule corresponding to it will be

Γ ` A : Ui Γ ` B : (A)Ui

Γ ` Π(A,B) : Ui

If we add Σ type, the corresponding rule is

Γ ` A : Ui Γ ` B : (A)Ui

Γ ` Σ(A,B) : Ui

Similarly we can add other inductive types.

The last rule of Figure 2.4 represents cumulativity. This allows one to form

a type with A:Ui and Ui:Ui+1, such as pairs A × Ui or ΣX:UiX or functions,

A −→ U or Π(Ui, λX:Ui.X) as a term of Ui+1. We do this by simply regarding

A and X as a term of Ui+1. This way, for example ΣX:UiX arises directly from

the rule for Σ type with premise Γ ` Ui:Ui+1 and Γ ` λX:Ui.X : (Ui)Ui+1

The cumulativity rule induces a subsumptive relation between Ui and Uj

for any 0 ≤ i ≤ j ≤ n.

Tarski style universes

Tarski style, on the other hand, is richer from a semantic point of view. An

example of Tarski style hierarchy is the universes of UTT . Plastic [CL01] is

an implementation of LF with universes.

The rules for Tarski style universes are given in Figure 2.5 (and Figure B.2

of he Appendix B).

In addition to these rules we also require the equation

Ti+1(ti+1(a)) = Ti(a):Type

25

for i ∈ ω
` Γ

Γ ` Ui : Type

Γ ` a : Ui
Γ ` Ti(a) : Type

` Γ

Γ ` ti+1 : (Ui)Ui+1

where ti+1 are the lifting operators,

` Γ

Γ ` ui : Ui+1

` Γ

Γ ` Ti+1(ui) = Ui : Type

where ui is the name of Ui in Ui+1

Figure 2.5: Inference Rules for Tarski Style Universes

Observe that we no longer simply regard Ui as a term of Ui+1, instead we

say that the name of Ui is a term of Ui+1. Further, the terms of Ui are not

simply terms of Ui+1 through cumulativity, instead we say that they can be

converted to terms of Ui+1 via the lifting operator. Likewise, we no longer

regard its elements as types but just as names of types.

The rule for the names of Π-types is

Γ ` a : Ui Γ, x : Ti(a) ` b(x) : Ui

Γ ` πi(a, b) : Ui

together with the following:

1. And equation stating the type that the name refers to:

Γ ` Ti(πi(a, b)) = Π(Ti(a), [x:Ti(a)]Ti(b(x))) : Type

2. The fact that the name is unique, more precisely the names obtained via

lifting and via dependent product rule are equal:

Γ ` ti+1(πi(a, b)) = πi+1(ti+1(a), [x:Ti(a)]ti+1(b(x))) : Ui+1

If we want to add Σ types we add the rule

Γ ` a : Ui Γ, x : Ti(a) ` b(x) : Ui

Γ ` σi(a, b) : Ui

together with the following equations:

26

1. Γ ` Ti+1(σi(a, b)) = Σ(Ti+1(a), [x:Ti(a)]Ti+1(b(x))) : Type

2. Γ ` ti+1(σi(a, b)) = σi+1(ti+1(a), [x:Ti(a)]ti+1(b(x))) : Ui+1

Let us now look at what motivated the cumulativity for Russell style uni-

verses, namely the possibility to form a type with Ui and its own terms. So

what is now the analogous for, say ΣX:UiX? Here the name of the type we

want to form comes simply from the rule for dependent sum, specifically we

have σi(ui, λx:Ti+1(ui).ti+1(x)). Observe that here instead of simply regarding

x:Ui as a term of Ui+1, as we did for Russell style universes, now we convert it

via the lifting operator ti+1 to such a term. The type we are looking for is sim-

ply given by the first equation and it is Σ(Ti+1(ui), [x:Ti+1(ui)]Ti+1(ti+1(x)))

which is Σ(Ui, [x:Ti+1(ui)]Ti+1(ti+1(x))), where ui is the name of Ui in Ui+1.

The second equation essentially says that if we know how to convert the name

of Ui in Ui+1 to a name in Ui+2 and ti+1(x), which is a name in Ui+1 for any x:Ui

to a name in Ui+2, then we can convert the name σi(ui, λx:Ti+1(ui).ti+1(x))

from Ui+1 to a name in Ui+2.

Of course, now it is obvious what I mean by the fact that Russell style uni-

verses are simpler to use than Tarski style. However if we follow the subtleties

of the discussion above, we notice that it is much more rigorous from the se-

mantic point of view. To begin with, in Russell style we silently interchange

using something as type with using the same thing as a term of a universe.

This is avoided in Tarski style by using something as a type and a name of it

as a term of a universe. Then in Russell style we are forced to employ a cu-

mulative behaviour in order to form certain types. This also makes us silently

interchange using something as a term of a universe with using it as a term

of a superior universe. In Tarski style we don’t have to do this as we can use

the lifting operators for such conversions.

Employing Russell style universes with its cumulative feature can lead to

some subtle inconsistencies. These problems were discussed by Luo [Luo12b]

and are related to the properties of canonicity or subject reduction. On the

one hand, if one adopts the standard notation of terms with full type informa-

27

tion, for instance, the term λX:U1.Nat , where Nat : U0, would be represented

as λ(U1, [:U1]U0, [:U1]Nat). This term, which is of type U0 → U0 (by sub-

sumption, since U1 → U0 ≤ U0 → U0 by contravariance), is not definitionally

equal to a canonical term which is of the form λ(U0, ...). On the other hand,

if we employed terms with less typing information like using (a, b) instead of

pair(A,B, a, b) to represent pairs, as in HoTT (see Appendix 2 of [Uni13]) not

only the property of type uniqueness fails, but we end up with a situation in

which a proof term may have incompatible types. For example, for a : A and

A : U , where U is a type universe, the pair (A, a) has both types U × A and

ΣX:U.X, which are incompatible in the sense that none of them is a subtype of

the other. This would lead to undecidability of type checking in a presentation

where type checking depends on type inference.

This justifies why Tarski style universes, although more tedious to work

with, are preferred to Russell style. We will see in Section 4.2 of Chapter 4

how we can put some of the syntactic difficulties of using Tarski style universes

in a black box without having to carry them along in all computations.

2.2 Signatures

We have seen that a judgement in a type theory specified in LF is of the form

Γ ` J where Γ is a sequence of assumptions which keeps track of the kinds

assigned to variables. In Figure A.1, we can see that LF provides rules such

as

Γ0, x:K,Γ1 ` k′:K ′ Γ0 ` k:K

Γ0, [k/x]Γ1 ` [k/x]k′:[k/x]K ′

and

Γ, x:K ` k:K ′

Γ ` [x:K]k:(x:K)K ′

28

for substitution and abstraction of the variables in context. Because of rules

like this, if Γ, n:Nat ,m:n ∗ Nat `Σ J and Γ ` 2:Nat are derivable judgements

we can substitute n with 2 and derive Γ,m:2 ∗ Nat ` [2/n]J . Similarly, if

Γ, n:Nat `Σ m:n ∗Nat is a derivable judgement we could abstract over n and

derive the judgement Γ `Σ [n:Nat]m:Π(n:Nat , n ∗Nat).

Sometimes it makes sense to declare some assumptions as constants and

not allow substitution and abstraction on them. For a clear distinction be-

tween assumptions about variables and assumptions about constants, Harper

et al.[HHP93] introduced signatures in Edinburgh Logical Framework. Judge-

ments in the system with signatures look like

1. Σ sig which states that Σ a valid signature,

2. `Σ Γ which states that Γ is a valid context under the signature Σ

3. Γ `Σ K which states that K is a valid kind under the signature Σ and

context Γ

4. Γ `Σ k:K which states that k is a term of kind K under the signature

Σ and context Γ

In this thesis I will use Σ valid instead of Σ sig.

In the formulation from [HHP93], initially contexts are sequences of type

assignments to variables and signatures are sequences of type and kinds as-

signments to constants and later in the paper they prove that a type theory

with signatures is essentially equivalent with a type theory with context ob-

tained from gluing signatures and contexts. This suggests that signatures can

be seen simply as prefixes of contexts. More concretely, if we consider their

logical framework with signatures λPS and the logical framework λP , the one

with contexts only, we have

1. Σ valid is derivable in λPS if and only if ` Σ is derivable in λP .

2. `Σ Γ is derivable in λPS if and only if ` Σ,Γ.

3. Γ `Σ J is derivable in λPS if and only if Σ,Γ ` J is derivable in λP .

29

Note that, here, I also use ` Γ instead of their Γ ` Type.

I will use the same approach for keeping track of constants in LF from

[Luo94]. Note however that there are some subtle differences between LF , the

logical framework from [Luo94] and λP , the Edinburgh Logical Framework

from [HHP93], such as the η rule which holds for LF but not for λP .

2.3 Subtyping

In this section I shall give more details about subsumptive subtyping. After

this I will also present in more details coercive subtyping as it was previously

formulated for LF , the logical framework from [Luo94], and the motivations.

2.3.1 Subsumptive Subtyping

Subsumptive subtyping is typically represented through the idea that all ob-

jects of a type are also objects of its supertypes. I shall denote the fact that

A is a subtype of A′ under context Γ by the judgement Γ ` A ≤ A′. The rule

that represents the idea of subsumptive subtyping is

Γ `M :A Γ ` A ≤ A′

Γ `M :A′

I will refer to this as subsumption rule.

Some of the work done on subtyping for dependent type theories is by Be-

tarte and Tasistro [BT98] for Martin-Löf’s logical framework analyzing sub-

kinding between kinds (called types), Barthe and Frade [BF99] on constructor

subtyping and Aspinall and Compagnoni [AC01] on a form of subsumptive

subtyping.

Because the latter inspires one of the practical situation that I will formally

represent in the system I introduce here, the one in Section 4.1.1, and it also

gives an understanding of how one can add subtyping for systems specified in

logical frameworks, I will briefly present it first. I will finish this subsection by

giving an intuition about how constructor subtyping works, this being another

30

source of inspiration for practical situation discussed in Section4.3.

λP

The system developed by Aspinall and Compagnoni [AC01] is an extension

of Edinburgh Logical Framework (λP) [HHP93] initially with a subsumption

rule. This system introduces subtyping through contexts which now contains,

apart from membership entries also subtyping entries α ≤ A. Aspinall and

Compagnoni [AC01] initially formulates a system which extends λP to λP≤

which add rules essentially like those in Figure 2.6.

General Subtyping Rules

Γ ` A:K Γ ` B:K Γ ` A =β B

Γ ` A ≤ B
Γ ` A ≤ B Γ ` B ≤ C

Γ ` A ≤ C

Γ ` a:A Γ ` A ≤ A′

Γ ` a:A′

Subtyping in Contexts

Γ ` A:K α 6∈ FV (Γ)

` Γ, α ≤ A:K

` Γ, α ≤ A,Γ′

Γ, α ≤ A,Γ′ ` α:Type

` Γ, α ≤ A,Γ′

Γ, α ≤ A,Γ′ ` α ≤ A:Type

Dependent Product

Γ ` A′ ≤ A Γ, x:A′ ` B ≤ B′

Γ ` Π(A,B) ≤ Π(A′, B′)

Γ, x:A ` B ≤ B′

Γ ` λx:A.B ≤ λx:AB′
Γ ` B ≤ B′ Γ ` B′M :K

Γ ` BM ≤ B′M

Figure 2.6: Subtyping Rules for λP≤

Note that there are some differences between λP and LF . In the first place

LF has rules to derive definitional equality, including β and η rules, whereas

λP leaves definitional equality and β conversion at meta-level and η rule does

not hold here.

The first three rules are rules for equality, transitivity and the subsumption

rule and the next three enable us to form assumptions with subtyping and to

consume them. Then we have the rule for dependent product, lambda terms

and application. The system also contains the rules inherited from λP among

31

which is the rule for abstraction,

Γ, x:A `M :B

Γ ` λx:A.M :Π(A, λx:A.B(x))

They do not add rules for abstracting over subtyping entries, concretely,

there are no such rules as

Γ, α ≤ A `M :B

Γ ` λα ≤ A.M :Πα ≤ A.B

Similarly whereas the rule

Γ, x:A ` B ≤ B′

Γ ` Π(A,B) ≤ Π(A,B′)

is a particular case of the subtyping for dependent product rule when A ≡ A′,

there is no such rule as

Γ ` A′ ≤ A Γ, α ≤ A′ ` B ≤ B′

Γ ` Π(α ≤ A,B) ≤ Π(α ≤ A′, B′)

This last rule has been proven by Pierce [Pie93] to make the subtyping relation

undecidable for system F and hence the type checking.

The important point here is, that whenever we have a subtyping entry in

a context it blocks abstraction of all the variables occurring before it in the

context. This is because we do not have rules to move the subtyping entry

from context and the abstraction rules only apply when the last entry of the

context is a membership one. This observation is important because it poses

the question, how could we go around the undecidability noticed by Pierce

and at the same time be able to abstract freely over the variables in contexts?

Contexts do not seem to be suitable to keep track of subtyping entries so an

important point of this thesis is to find their suitable place.

Note that, as discussed by Aspinall and Companioni [AC01], we are not

32

able to prove the subject reduction property for the system with subsumption

rule. The reason why proving subject reduction for dependent types subtyping

relation is complicated is due to the inability to prove that, if Γ ` Π(A,B) ≤

Π(A′, B′) then Γ ` A′ ≤ A and Γ, x:A′ ` B ≤ B′. Aspinall and Companion

solve this with the algorithmic system they developed in [AC01] which drops

some subtyping rules, among which is also the subsumption rule. In exchange

they change some rules inherited from λP , such as

Γ `M :Πx:A.B Γ ` N :A

Γ `MN :[N/x]B

which now becomes

Γ `M :Πx:A.B Γ ` N :A′ Γ ` A′ ≤ A

Γ `MN :[N/x]B

which essentially allows polymorphic application.

Constructor Subtyping

Constructor subtyping, studied by Barthe and Frade [BF99] is another form

of subsumptive subtyping in which an (inductive) type is considered to be a

subtype of another if the latter has more constructors than the former. For

example, if we consider Even Numbers as a subtype of Nat with the argument

that the constructors of Even are 0 and successor of Odd , where Odd is the

type of Odd Numbers given by the constructor successor of Even. Then, in

Nat the successor constructor is overloaded to a lifting of these constructors.

Formally they write:

datatype Odd = S o f Even and

Even = 0

| S o f Odd

datatype Nat = 0

| S o f Nat

33

| S o f Odd

| S o f Even

What this essentially says is that, if A ≤ B then the constructors of A are

among the constructors of B. This is a development which does not refer to a

setting similar to LF , but rather to functional programming practices. How-

ever, this perspective is a very interesting as it achieves, through overloading,

the same feel for the concept of subtypes as for the concept of subsets, where

the values of a set are also values of its supersets.

2.3.2 Coercive Subtyping

I mentioned earlier, in Subsection 2.3.1 that a logical framework and a type

theory specified in a logical framework has some useful properties like canon-

icity, subject reduction and strong normalization. Subsumptive subtyping, if

introduced in such a type theory, does not preserve these properties. In par-

ticular for inductive types, in order to preserve the canonicity property, values

given by constructors of the subtype should reduce to values given by construc-

tors of the supertypes, which does not happen. For example, the empty list

of even natural numbers will not reduce to the empty list of natural numbers

as noted in [Luo99, Luo96, LSX13, Luo12b].

When talking about a subtyping relation between A and B we need to

have a way of understanding terms of A as terms of B. When the types

are sets we can simply say that the values of A are values of B, however,

when talking about inductive types, this is not trivial anymore. Let us con-

sider A ≤ A′ and the constant pairs types A × A and A′ × A′. Let us

then consider the eliminator operator for × type applied to C:(A′ ×A′)Type,

f :(x:A′)(y:A′)C(pair(A′, A′, x, y)), a:A and b:A

Elim(A′, A′, C, f, pair(A,A, a, b)):C(pair(A,A, a, b))

34

By the computation rule this reduces to

f(a, b):C(pair(A′, A′, a, b))

However, to prove subject reduction we need to prove that

C(pair(A,A, a, b)) = C(pair(A′, A′, a, b)):Type

which we cannot. The general problem here is that the types that are subject

to subtyping occur in objects of types affected by this subtyping and a fix for

this will be shown in the next subsection.

Coercive Subtyping through Sets of Judgements

What Luo et al. [Luo96, LSX13, SL02, Luo05, Xue13b] proposed with coercive

subtyping is to add a set of initial coercive subtyping judgements and some

rules to further infer subtyping judgements. A coercive subtyping judgement

is of the form Γ ` A <c B. For a type theory T , specified in LF , we denote

its enrichment with a set of coercive subtyping judgements C and all the rules

that will follow in Figure 2.7 as T [C].

First note that subkinding is essentially a structural lifting of subtyping.

Then, the last three rules (two coercive application rules and one coercive

definition rule) in this figure assume if c is a coercion between two kinds then

it is a mapping between the two kinds. Also note that if we had two coercions

between the same kinds, the last rule would make two terms definitionally

equal even if these terms were not definitionally equal in the system without

subtyping. This is precisely why, for the system above to be consistent, the

restricted system, without these last three rules, denoted by T[C]0K , would

have to satisfy what was introduced in [LSX13, Xue13b] as coherence condition

which essentially says that, if c is a coercion between A and A′, then c is a

mapping from A to A′ and it is the only coercion between the two types up

to definitional equality. Formally the following three, conditions are satisfied:

35

Subtyping Rules

Γ ` A <c B:Type ∈ C
Γ ` A <c B:Type

Congruence

Γ ` A <c B : Type Γ ` A = A′ : Type Γ ` B = B′ : Type Γ ` c = c′ : (A)B

Γ ` A′ <c′ B′ : Type

Transitivity

Γ ` A <c A
′ : Type Γ ` A′ <c′ A′′ : Type

Γ ` A <c′◦c A
′′ : Type

Weakening

Γ,Γ′ ` A ≤d B : Type Γ ` K kind

Γ, x:K,Γ′ ` A ≤d B : Type
(x 6∈ dom(Γ,Γ′))

Context Replacement

Γ0, x:K,Γ1 ` A <c BType Γ0 ` K = K′

Γ0, x:K′,Γ1 ` A <c BType

Substitution

Γ0, x:K,Γ1 ` A <c BType Γ0 ` k:K

Γ0, [k/x]Γ1 ` [k/x]A <[k/x]c [k/x]B:Type

Basic Subkinding Rule and Identity

Γ ` A <c B:Type

Γ ` El(A) <c El(B)

Γ ` K kind

Γ ` K <[x:K]x K

Structural Subkinding Rules

Γ ` K1 <c K2 Γ ` K1 = K′1 Γ ` K2 = K′2 Γ ` c = c′:(K1)K2

Γ ` K′1 <c′ K′2

Γ ` K <c K
′ Γ ` K′ <c′ K′′

Γ ` K <c′◦c K
′′

(x 6∈ dom(Γ,Γ′))
Γ,Γ′ ` K ≤d K′ Γ ` K0 kind

Γ, x:K0,Γ
′ ` K ≤d K′

Γ0, x:K,Γ1 ` L ≤d L′ Γ0 ` K = K′

Γ0, x:K′,Γ1 ` L ≤d L′
Γ0, x:K,Γ1 ` K1 <c K2 Γ0 ` k:K

Γ0, [k/x]Γ1 ` [k/x]K1 <[k/x]c [k/x]K2

Coercive Application

(CA1)
Γ ` f :(x:K)K′ Γ ` k0:K0 Γ ` K0 <c K

Γ ` f(k0):[c(k0)/x]K′

(CA2)
Γ ` f = f ′:(x:K)K′ Γ ` k0 = k′0:K0 Γ ` K0 <c K

Γ ` f(k0) = f ′(k′0):[c(k0)/x]K′

Coercive Definition

(CD)
Γ ` f :(x:K)K′ Γ ` k0:K0 Γ ` K0 <c K

Γ ` f(k0) = f(c(k0)):[c(k0)/x]K′

Figure 2.7: Inference Rules for T[C]

• Γ ` A <c A is not derivable in T[C]0K for any Γ ` A:Type and

Γ ` c:(A)A;

36

• if Γ ` A <c B is derivable in T[C]0K then Γ ` c:(A)B is derivable in

T[C]0K ;

• if Γ ` A <c B and Γ ` A <c′ B are derivable in T[C]0K then

Γ ` c = c′:(A)B is derivable in T[C]0K .

Indeed, with these conditions, Luo et al. [LSX13, Xue13b] prove that the

judgements in the system such constructed are consistent with the original

system (without subtyping), the coercive application rule being nothing more

than an abbreviation of the ordinary application. In other words, this formu-

lation enables us to benefit from the ability to use objects of a type wherever

objects of a super type are expected.

With this let us examine again the example considered earlier, the one

with A × A as a subtype of A′ × A′ whenever A is a subtype of A′ and let

us rewrite it with coercive subtyping. If we consider ×-type then T[C] should

also have the structural subtyping rule

Γ ` A <c A
′ Γ ` B <c′ B

′

Γ ` A×B <(c,c′) A′ ×B′

where (c, c′)(pair(A,B, a, b)) = pair(A′, B′, c(a), c′(b)):A′ × B′ as studied in

[LA08]. Now, if A ≤c A and A×A ≤d A′ ×A′, with (CA1), we infer

C(pair(A,A, a, b)) = C(d(pair(A,A, a, b))):Type

with (CD), we infer

C(d(pair(A,A, a, b))) = C((c, c)(pair(A,A, a, b))):Type

and, with (CA1) again, we infer

C(pair(A′, A′, a, b)) = C(pair(A′, A′, c(a), c(b))):Type

37

which at last proves

C(pair(A,A, a, b)) = C(pair(A′, A′, a, b)):Type

The system presented above offers an alternative to the notion of sub-

sumptive subtyping which is correct and adequate from theoretical point of

view. However, in practice, for example for proof assistants which use such

type theories there are two aspects in which this theoretical development is

not completely satisfactory.

In the first place if we look at the rules in Figure 2.7 we will see that

deciding subtyping relation between two types eventually amounts to deciding

whether a judgement or more belong to a set, which in theory can be infinite

so there is no formal guarantee on the decidability of subtyping relation.

The second point is that there is a presentation difference between proof

assistants which support coercive subtyping such as Coq [Coq10] and the sys-

tem from [LSX13, Xue13b]. To relate two types via subtyping, in Coq, one

annotates a predefined map coercion as part of the assumptions. The system

from [LSX13, Xue13b] adds the coercions to the system through a separate

set of coercive subtyping judgements and then, in order for the obtained sys-

tem to be consistent, it asks for the fulfillment the coherence condition, which

includes that coercions are mappings.

Local Coercions

I mentioned that the approach of adding coercive subtyping through sets of

coercions does not entirely reflect a possible programming model of tools that

use a dependent type theory. Some work to adjust coercive subtyping to

achieve this objective has been initiated in [LP13] where the authors add

coercive subtyping entries in contexts. They named this kind of coercions

local coercions. Of course, when adding coercions in contexts the question

that follows is how to use these assumptions. In [LP13] this was expressed

38

through the rule

Γ, A ≤c B ` k:K

Γ ` (coercion A ≤c B in k):(coercion A ≤c B in K)

which enables us to move coercions to the right of the ` or else they would

obstruct the abstraction for anything in their left.

The system such presented, although powerful, has a difficult meta-theory.

For instance, to make this work one should consider additional computation

rules like

Γ, A ≤c B valid Γ ` J

Γ ` J = (coercion A ≤c B in J)

For example for Γ ` (coercion A ≤c B in k) = k:(coercion A ≤c B in K)

and Γ ` (coercion A ≤c B in k)(coercion A ≤c B in l) = (coercion A ≤c

B in kl):[(coercion A ≤c B in l)/x](coercion A ≤c B in K).

Although, it was claimed earlier (Luo et al. [LL01, LLS02]) that coercive

subtyping is a general approach to subtyping, it has been presented over the

years as an alternative to subsumptive subtyping and it has not been explained

in what way it is a generalization and the relation between the two forms of

subtyping has not yet been discussed. What I propose in this thesis is a system

that is able to represent some practical situations of subtyping. On the one

hand it represents some subsumptive subtyping systems as particular cases

of coercive subtyping, which intuitively is the case, and on the other hand

it offers a type theory with subtyping entries at assumption level which is

close to the programming model of proof assistants like Coq [Coq10] without

becoming too difficult to work with.

39

Chapter 3

Coercive Subtyping in

Signatures

In this chapter I introduce a system with coercive subtyping at assumption

level, specifically in signatures, and I prove its consistency.

As mentioned in the previous chapter the aim is to formulate a system

which achieves a balance between a reasonably easy meta-theory and being

able to represent practical situations. Essentially the aim is a system which

exhibits the same level of theoretical correctness as the system in [LSX13,

Xue13b] but in which subtyping relations are introduced as part of assump-

tions rather than through a set of judgements.

Previous work done to introduce subtyping relations as assumption can be

found in Aspinall and Compagnoni [AC01], for subsumptive subtyping and Luo

and Part [LP13] for coercive subtyping. Both these approaches add subtyping

in contexts. The first one has entries of the form α ≤ A with α a variable and

poses restrictions on abstraction and substitution of the variables occurring in

the context before the last subtyping entry, as discussed in Subsection 2.3.1.

The second has entries of the form A ≤ B in the context with techniques to

move such an entry to the righthand side of the ` which complicate the meta-

theory, as discussed in the Subsection 2.3.2. I argue that this complication is

unnecessary to represent certain practical situation and a much simpler version

40

with coercive subtyping entries in signatures is enough.

Why Signatures? Because we don’t abstract or substitute entries of sig-

natures and these operations are not affected in any way by the presence of

subtyping entries in the signatures and we don’t have to find a way to move

them to the righthand side of the ` sign. Signatures were first introduced in

[HHP93] to differentiate between the kinds assigned to constants and kinds

assigned to variables.

In this chapter, first I introduce the logical framework with signatures,

then, for a type system specified in this logical framework, I present what it

means to extend it with coercive subtyping and I finish by giving a proof of

adequacy of such an extension.

An important part of the work presented in this chapter and in the next

chapter is also presented in [LLss]. The system introduced here was also

mentioned in a talk given at BCTCS’17.

3.1 LFS

LFS is a logical framework with signatures obtained from Luo’s logical frame-

work, LF [Luo94] by adding signatures and inference rules for signature va-

lidity and assumption in signatures. In addition, it also has weakening and

context and signature replacement as rules, as in the formulation of LF given

by Luo et al. [SL02, LSX13, Xue13b]. In LFS , there are six forms of judge-

ments:

• 〈〉 valid is the signature of length 0

• Σ valid, asserting that Σ is a valid signature.

• `Σ Γ, asserting that Γ is a valid context under Σ.

• Γ `Σ K kind, asserting that K is a kind in Γ under Σ.

• Γ `Σ k : K, asserting that k is an object of kind K in Γ under Σ.

• Γ `Σ K1 = K2, asserting that K1 and K2 are equal kinds in Γ under Σ.

41

• Γ `Σ k1 = k2 : K, asserting that k1 and k2 are equal objects of kind K

in Γ under Σ.

The inference rules of the logical framework LFS are given in Figure 3.1.

3.2 TS,≤

To a type theory TS , specified in LFS , I add subtyping in signatures by ex-

tending it with the form of judgement

Γ `Σ A ≤c B:Type

to represent subtyping. As we have seen, whenever Γ `Σ` A:Type is derivable

we also have the derivable judgement Γ `Σ` El(A) kind. In what follows I

will often omit El() and use A to also refer to the kind of the elements of the

type A.

Subtyping, not subkinding relations, can be specified in a signature by

means of entries A ≤c B : Type (or simply written as A ≤c B), where A and

B are types and c : (A)B. To infer this judgement and to use it, I add the

rules in Figure 3.2.

I also add the form of judgement

Γ `Σ K ≤c L

to represent subkinding judgements and the corresponding rules in Figure 3.3

to infer and use such judgements.

Let the system composed by the rules in Figures 3.1, 3.2 and 3.3 be denoted

by T0K
S,≤. All the rules for it are also put together in the Appendix C. As in the

formulation from [LSX13, Xue13b], the specifications of subtyping relations

are also required to be coherent. Coherence is crucial as it ensures a coercive

application abbreviates a unique functional application. Here is the definition

of coherence of a signature, which intuitively says that, under a coherent

signature, there cannot be two different coercions between the same types.

42

Validity of Signature/Contexts, Assumptions

〈〉 valid
`Σ K kind c 6∈ dom(Σ)

Σ, c:K valid

`Σ,c:K,Σ′ Γ

Γ `Σ,c:K,Σ′ c:K

Σ valid

`Σ 〈〉
Γ `Σ K kind x 6∈ dom(Σ) ∪ dom(Γ)

`Σ Γ, x:K

`Σ Γ, x:K,Γ′

Γ, x:K,Γ′ `Σ x:K

Weakening

Γ `Σ, Σ′ J `Σ K kind c 6∈ dom(Σ,Σ′)

Γ `Σ, c:K, Σ′ J

Γ,Γ′ `Σ J Γ `Σ K kind x 6∈ dom(Γ,Γ′)

Γ, x:K,Γ′ `Σ J

Equality Rules

Γ `Σ K kind

Γ `Σ K = K

Γ `Σ K = K′

Γ `Σ K′ = K

Γ `Σ K = K′ Γ `Σ K′ = K′′

Γ `Σ K = K′′

Γ `Σ k:K

Γ `Σ k = k:K

Γ `Σ k = k′:K

Γ `Σ k′ = k:K

Γ `Σ k = k′:K Γ `Σ k′ = k′′:K

Γ `Σ k = k′′:K

Γ `Σ k:K Γ `Σ K = K′

Γ `Σ k:K′
Γ `Σ k = k′:K Γ `Σ K = K′

Γ `Σ k = k′:K′

Signature Replacement

Γ `Σ0,c:L,Σ1 J `Σ0 L = L′

Γ `Σ0,c:L′,Σ1
J

Context Replacement

Γ0, x:K,Γ1 `Σ J Γ0 `Σ K = K′

Γ0, x:K′,Γ1 `Σ J

Substitution Rules

`Σ Γ0, x:K,Γ1 Γ0 `Σ k:K

`Σ Γ0, [k/x]Γ1

Γ0, x:K,Γ1 `Σ K′ kind Γ0 `Σ k:K

Γ0, [k/x]Γ1 `Σ [k/x]K′ kind

Γ0, x:K,Γ1 `Σ L = L′ Γ0 `Σ k:K

Γ0, [k/x]Γ1 `Σ [k/x]L = [k/x]L′

Γ0, x:K,Γ1 `Σ k′:K′ Γ0 `Σ k:K

Γ0, [k/x]Γ1 `Σ [k/x]k′:[k/x]K′
Γ0, x:K,Γ1 `Σ l = l′:K′ Γ0 `Σ k:K

Γ0, [k/x]Γ1 `Σ [k/x]l = [k/x]l′:[k/x]K′

Γ0, x:K,Γ1 `Σ K′ kind Γ0 `Σ k = k′:K

Γ0, [k/x]Γ1 `Σ [k/x]K′ = [k′/x]K′
Γ0, x:K,Γ1 `Σ l:K′ Γ0 `Σ k = k′:K

Γ0, [k/x]Γ1 `Σ [k/x]l = [k′/x]l:[k/x]K′

Dependent Product Kinds

Γ `Σ K kind Γ, x:K `Σ K′ kind

Γ `Σ (x:K)K′ kind

Γ `Σ K1 = K2 Γ, x:K1 `Σ K′1 = K′2
Γ `Σ (x:K1)K′1 = (x:K2)K′2

Γ, x:K `Σ y:K′

Γ `Σ [x:K]y:(x:K)K′
Γ `Σ K1 = K2 Γ, x:K1 `Σ k1 = k2:K

Γ `Σ [x:K1]k1 = [x:K2]k2:(x:K1)K

Γ `Σ f :(x:K)K′ Γ `Σ k:K

Γ `Σ f(k):[k/x]K′
Γ `Σ f = f ′:(x:K)K′ Γ `Σ k1 = k2:K

Γ `Σ f(k1) = f ′(k2):[k1/x]K′

Γ, x:K `Σ k′:K′ Γ `Σ k:K

Γ `Σ ([x:K]k′)(k) = [k/x]k′:[k/x]K′
Γ `Σ f :(x:K)K′ x 6∈ FV (f)

Γ `Σ [x:K]f(x) = f :(x:K)K′

The kind Type

`Σ Γ

Γ `Σ Type kind

Γ `Σ A:Type

Γ `Σ El(A) kind

Γ `Σ A = B:Type

Γ `Σ El(A) = El(B)

Figure 3.1: Inference Rules for LFS

43

Signature Rules for Subtyping

`Σ A : Type `Σ B : Type `Σ c : (A)B

Σ, A ≤c B valid

`Σ0,A≤cB:Type,Σ1 Γ

Γ `Σ0,A≤cB:Type,Σ1 A ≤c B : Type

Congruence

Γ `Σ A ≤c B : Type Γ `Σ A = A′ : Type Γ `Σ B = B′ : Type Γ `Σ c = c′ : (A)B

Γ `Σ A′ ≤c′ B′ : Type

Transitivity

Γ `Σ A ≤c A′ : Type Γ `Σ A′ ≤c′ A′′ : Type

Γ `Σ A ≤c′◦c A′′ : Type

Weakening

Γ `Σ, Σ′ A ≤d B : Type `Σ K kind

Γ `Σ, c:K, Σ′ A ≤d B : Type
(c 6∈ dom(Σ,Σ′))

Γ,Γ′ `Σ A ≤d B : Type Γ `Σ K kind

Γ, x:K,Γ′ `Σ A ≤d B : Type
(x 6∈ dom(Γ,Γ′))

Signature Replacement

Γ `Σ0,c:L,Σ1 A ≤d B : Type `Σ0 L = L′

Γ `Σ0,c:L′,Σ1
A ≤d B : Type

Context Replacement

Γ0, x:K,Γ1 `Σ A ≤d B : Type Γ0 `Σ K = K′

Γ0, x:K′,Γ1 `Σ A ≤d B : Type

Substitution

Γ0, x:K,Γ1 `Σ A ≤c B Γ0 `Σ k:K

Γ0, [k/x]Γ1 `Σ [k/x]A ≤[k/x]c [k/x]B

Identity Coercion

Γ `Σ A : Type

Γ `Σ A ≤[x:A]x A : Type

Figure 3.2: Inference Rules for Subtyping in T 0K
S,≤ (1)

Definition 5. A signature Σ is coherent if, in T0K
S,≤, Γ `Σ A ≤c B and

Γ `Σ A ≤c′ B imply Γ `Σ c = c′ : (A)B.

Note that, in comparison with earlier formulations such as [LSX13, Xue13b],

I have switched from strict subtyping relation < to ≤ and the coherence condi-

tion is changed accordingly as well; in particular, under a coherent signature,

any coercion from a type to itself must be equal to the identity function. This

is a special case of the above condition when B ≡ A: because we always have

A ≤[x:A]x A, if A ≤c A, then c = [x:A]x : (A)A. Note also that, it is easy to

prove by induction that, if Γ `Σ A ≤c B : Type, then Γ `Σ A,B : Type and

44

Basic Subkinding Rule and Identity Coercion

Γ `Σ A ≤c B:Type

Γ `Σ El(A) ≤c El(B)

Γ `Σ K kind

Γ `Σ K ≤[x:K]x K

Structural Subkinding Rules

Γ `Σ K1 ≤c K2 Γ `Σ K1 = K′1 Γ `Σ K2 = K′2 Γ `Σ c = c′:(K1)K2

Γ `Σ K′1 ≤c′ K′2

Γ `Σ K ≤c K′ Γ `Σ K′ ≤c′ K′′

Γ `Σ K ≤c′◦c K′′

Γ `Σ, Σ′ K ≤d K′ `Σ K0 kind

Γ `Σ, c:K0, Σ′ K ≤d K′
(c 6∈ dom(Σ,Σ′))

Γ,Γ′ `Σ K ≤d K′ Γ `Σ K0 kind

Γ, x:K0,Γ
′ `Σ K ≤d K′

(x 6∈ dom(Γ,Γ′))

Γ `Σ0,c:L,Σ1 K ≤d K
′ `Σ0 L = L′

Γ `Σ0,c:L′,Σ1
K ≤d K′

Γ0, x:K,Γ1 `Σ L ≤d L′ Γ0 `Σ K = K′

Γ0, x:K′,Γ1 `Σ L ≤d L′

Γ0, x:K,Γ1 `Σ K1 ≤c K2 Γ0 `Σ k:K

Γ0, [k/x]Γ1 `Σ [k/x]K1 ≤[k/x]c [k/x]K2

Subkinding for Dependent Product Kind

Γ `Σ K′1 ≤c1 K1 Γ, x:K1 `Σ K2 kind Γ, x′:K′1 `Σ K′2 kind Γ, x:K1 `Σ [c1(x′)/x]K2 ≤c2 K
′
2

Γ `Σ (x:K1)K2 ≤[f :(x:K1)K2][x′:K′
1]c2(f(c1(x′))) (x:K′1)K′2

Figure 3.3: Inference Rules for Subkinding in T 0K
S,≤ (2)

Γ `Σ c : (A)B.

It is also important to note the difference between a judgement with sig-

nature in the current calculus and that in the calculus employed in [LSX13,

Xue13b] where there are no signatures. For example, the signatures Σ1 ≡

Σ0, A ≤c B and Σ2 ≡ Σ0, A ≤d B can both be coherent signatures even if

the only difference between them are the coercions and it is not the case that

Γ `Σ0 c = d:(A)B is derivable, while such a situation can only be considered

in the earlier setting by having two different type systems T [C1] and T [C2] as

we will see in Subsection 3.4.4. Otherwise, if we had Γ ` A ≤c B ∈ C and

Γ ` A ≤d B ∈ C with the judgement Γ ` c = d:(A)B not being derivable, C

would not be coherent.

At this point, I can add the rules for coercive application and coercive

45

definition in Figure 3.4.

Coercive Application

(CA1)
Γ `Σ f :(x:K)K′ Γ `Σ k0:K0 Γ `Σ K0 ≤c K

Γ `Σ f(k0):[c(k0)/x]K′

(CA2)
Γ `Σ f = f ′:(x:K)K′ Γ `Σ k0 = k′0:K0 Γ `Σ K0 ≤c K

Γ `Σ f(k0) = f ′(k′0):[c(k0)/x]K′

Coercive Definition

(CD)
Γ `Σ f :(x:K)K′ Γ `Σ k0:K0 Γ `Σ K0 ≤c K

Γ `Σ f(k0) = f(c(k0)):[c(k0)/x]K′

Figure 3.4: The coercive application and definition rules in TS,≤

I denote by TS,≤ the system obtained with the rules in Figures 3.1, 3.2, 3.3

and 3.4. The rules for this system are also listed in the Appendix C.

Again, as in Subsection 2.3.2, when I mentioned coherence as defined in

[LSX13, Xue13b] for the system T [C], note that coherence condition only

makes sense for the signatures of the system T 0K
S,≤ and not TS,≤. The rea-

son is that the coercive definition rule (CD) will force any two coercions to

be equal, therefore, if I defined the notion of coherence for the system in-

cluding the (CD) rule, every signature would be coherent by definition but

inconsistent. For instance, let the judgements Γ ` c:(A)B and Γ ` d:(A)B be

derivable in TS such that the judgement Γ ` c = d:(A)B is not derivable in TS .

If the judgements Γ `Σ A ≤c B and Γ `Σ A ≤d B are derivable in TS,≤ and

coherence was not be defined before introducing this system, then, with the

coercive definition rule and symmetry and transitivity of defintional equality

we could derive Γ `Σ f(c(k0)) = f(d(k0)):[k0/x]C in TS,≤ for any f , C and k0

such that Γ `Σ f :(x:B)C and Γ `Σ k0:A are derivable in TS,≤. In particular

we could have some f , C and k0 such that Γ `Σ f :(x:B)C and Γ `Σ k0:A are

derivable in TS and Γ `Σ f(c(k0)) = f(d(k0)):[k0/x]C would be syntactically

in TS but not derivable in this system. The extension TS,≤ would then be

inconsistent with the original system.

46

3.3 Meta-theoretic properties of TS,≤

In this section I present some of the results related to the consistency of the

system TS,≤ as an extension of TS .

3.3.1 Coherence for Kinds

Note that the coherence definition 5 refers to types. In what follows I prove

that coherence for types implies coherence for kinds. I first categorise kinds

and show that they can be related via definitional equality or subtyping only

if they are of the same category. For this, I define the degree of a kind K

which intuitively denotes how many dependent product occurrences are in K.

The next two lemmas state that a coercive subtyping or subkinding relation

between two types or kinds must be associated with an underlying mapping

between the two types or kinds.

Lemma 1. If Γ `Σ A ≤c B:Type is derivable in TS,≤ then Γ `Σ c:(A)B is

derivable in TS,≤.

Proof. By induction on the structure of derivations.

Note that this lemma shows precisely that the second coherence condition

according to the definition in [LSX13, Xue13b] which I reproduced in Subsec-

tion 2.3.2 is naturally admissible for the system I introduced in this chapter.

Lemma 2. If Γ `Σ K ≤c L is derivable in T0K
S,≤ then Γ `Σ c:(K)L is derivable

in T0K
S,≤.

Proof. By induction on the structure of derivations.

• If the last rule of the derivation tree is

Γ `Σ A ≤c B:Type

Γ `Σ El(A) ≤c El(B)

then we know by the previous lemma that Γ `Σ c:(A)B is derivable and

hence Γ `Σ c:(El(A))El(B) is derivable.

47

• If the last rule is

Γ `Σ K kind

Γ `Σ K ≤[x:K]x K

then we already know that Γ `Σ [x:K]x:(K)K is derivable if Γ `Σ

K kind is derivable.

• If the last rule is

Γ `Σ K1 ≤c K2 Γ `Σ K1 = K ′1 Γ `Σ K2 = K ′2 Γ `Σ c = c′:(K1)K2

Γ `Σ K ′1 ≤c′ K ′2

then, by induction hypothesis we have that Γ `Σ c:(K1)K2 is derivable

and then, by equality rules of TS we can derive Γ `Σ c′:(K ′1)K ′2

• If the last rule is

Γ `Σ K ≤c K ′ Γ `Σ K ′ ≤c′ K ′′

Γ `Σ K ≤c′◦c K ′′

then by induction hypothesis, Γ `Σ c:(K)K ′ and Γ `Σ c′:(K ′)K ′′ are

derivable and from them we can derive Γ `Σ c′ ◦ c:(K)K ′′

• If the last rule is one of weakening in signatures like

Γ `Σ, Σ′ K ≤d K ′ `Σ K0 kind

Γ `Σ, c:K0, Σ′ K ≤d K ′

with (c 6∈ dom(Σ,Σ′)), by induction hypothesis we have Γ `Σ, Σ′ d:(K)K ′

and by weakening rule inherited from LFS , we can derive Γ `Σ, c:K0, Σ′

d:(K)K ′. Similarly, if the last rule is weakening in contexts.

• If the last rule is one for signature replacement like

Γ `Σ0,c:L,Σ1 K ≤d K ′ `Σ0 L = L′

Γ `Σ0,c:L′,Σ1 K ≤d K ′

we have by induction hypothesis that Γ `Σ0,c:L,Σ1 d:(K)K ′ and hence

by the signature replacement rule inherited from LFS , we have that

Γ `Σ0,c:L′,Σ1 d:(K)K ′ is derivable. The case for context replacement is

48

the same.

• If the last rule is

Γ0, x:K,Γ1 `Σ K1 ≤c K2 Γ0 `Σ k:K

Γ0, [k/x]Γ1 `Σ [k/x]K1 ≤[k/x]c [k/x]K2

then, by induction hypothesis, Γ0, x:K,Γ1 `Σ c:(K1)K2 is derivable and

by the substitution rule inherited from LFS , we can derive Γ0, [k/x]Γ1 `Σ

[k/x]c:([k/x]K1)[k/x]K2

• The more interesting case is if K ≡ (x:K1)K2 and L ≡ (x:L1)L2 and

a derivation tree for Γ `Σ K ≤c L ends with the rule for dependent

product kind with premises Γ `Σ L1 ≤c1 K1, Γ, x:K1 `Σ K2 kind,

Γ, y:L1 `Σ L2 kind and Γ, y:L1 `Σ [c1(y)/x]K2 ≤c2 L2.

By induction hypothesis we have Γ `Σ c1:(L1)K1 and

Γ, y:L1 `Σ c2:([c1(y)/x]K2)L2.

By weakening Γ, f :(x:K1)K2, y:L1 `Σ c2:([c1(y)/x]K2)L2 and

Γ, f :(x:K1)K2, y:L1 `Σ c1:(L1)K1.

We have Γ, f :(x:K1)K2, y:L1 `Σ y:L1 so by application

Γ, f :(x:K1)K2, y:L1 `Σ c1(y):K1.

We have Γ, f :(x:K1)K2, y:L1 `Σ f :(x:K1)K2 so by application we have

Γ, f :(x:K1)K2, y:L1 `Σ f(c1(y)):[c1(y)/x]K2. By application again we

have Γ, f :(x:K1)K2, y:L1 `Σ c2(f(c1(y))):L2 and by abstraction

Γ `Σ [f :(x:K1)K2][y:L1]c2(f(c1(y))):((x:K1)K2)(y:L1)L2.

Lemma 3. If Γ `Σ K ≤c L is derivable in T0K
S,≤ then

• if K ≡ El(A) for some A such that Γ `Σ A:Type is derivable in T0K
S,≤

then L ≡ El(B) for some B such that Γ `Σ B:Type is derivable in T0K
S,≤.

• if L ≡ El(B) for some B such that Γ `Σ B:Type is derivable in T0K
S,≤

then K ≡ El(A) for some A such that Γ `Σ A:Type is derivable in T0K
S,≤.

49

• if K ≡ El(A) and L ≡ El(B) then Γ `Σ A ≤c B:Type is derivable in

T0K
S,≤.

• if K ≡ (x:K1)K2 for some K1 and K2 such that Γ `Σ K1 kind and

Γ, x:K1 `Σ K2 kind are derivable in T0K
S,≤ then L ≡ (x:L1)L2 for some

L1 and L2 such that Γ `Σ L1 kind and Γ, x:L1 `Σ L2 kind are derivable

in T0K
S,≤.

• if L ≡ (x:L1)L2 for some L1 and L2 such that Γ `Σ L1 kind and

Γ, x:L1 `Σ L2 kind are derivable in T0K
S,≤ then K ≡ (x:K1)K2 for some

K1 and K2 such that Γ `Σ K1 kind and Γ, x:K1 `Σ K2 kind are deriv-

able in T0K
S,≤.

Proof. Induction on the structure of derivations of Γ `Σ K ≤c L. By induction

on the structure of derivations.

• If the last rule of the derivation tree is

Γ `Σ A ≤c B:Type

Γ `Σ El(A) ≤c El(B)

then we are done.

• If the last rule is

Γ `Σ K kind

Γ `Σ K ≤[x:K]x K

then it is obvious.

• If the last rule is

Γ `Σ K1 ≤c K2 Γ `Σ K1 = K ′1 Γ `Σ K2 = K ′2 Γ `Σ c = c′:(K1)K2

Γ `Σ K ′1 ≤c′ K ′2

then, if K ′1 ≡ El(A′), for Γ `Σ A′:Type, then K1 ≡ El(A) for Γ `Σ

A:Type and, by induction hypothesis K2 ≡ El(B) for Γ `Σ B:Type,

hence K ′2 ≡ El(B′) for Γ `Σ B′:Type. The case for K ′1 ≡ (x:L′1)L′2 is

identical. Likewise are K ′2 ≡ El(B′) and K ′2 ≡ (x:L′′1)L′′2

50

For the third case, if K ′1 ≡ El(A′) and K ′2 ≡ El(B′), then, K1 ≡ El(A)

and K2 ≡ El(B) with Γ `Σ A = A′:Type and Γ `Σ B = B′:Type and

by induction hypothesis Γ `Σ A ≤ B:Type

• For the first two points, if it comes from transitivity from the premises

Γ `Σ K ≤c0 K0 and Γ `Σ K0 ≤c1 L with c ≡ c1 ◦ c0 then by induction

hypothesis first point, if K ≡ El(A) for some Γ `Σ A:Type, then K0 ≡

El(C) for some Γ `Σ C:Type and further by induction hypothesis second

point, L ≡ El(B) for some Γ `Σ B:Type and the statement is proven.

The last two point are identical to the first two.

For the third point if the judgement follows from transitivity from premises

Γ `Σ K ≤c1 M and Γ `Σ M ≤c2 L with Γ `Σ c = c2 ◦ c1:(K)L then by

the previous points we have that M ≡ El(C) for some Γ `Σ C:Type and

by induction hypothesis Γ `Σ A ≤c1 C:Type and Γ `Σ C ≤c2 B:Type

and we can apply transitivity to obtain Γ `Σ A ≤c2◦c1 B:Type

• If the last rule is one of weakening in signatures like

Γ `Σ, Σ′ K ≤d K ′ `Σ K0 kind

Γ `Σ, c:K0, Σ′ K ≤d K ′

with (c 6∈ dom(Σ,Σ′)), it simply follows by induction hypothesis and

then weakening. Similarly, if the last rule is weakening in contexts.

• If the last rule is one for signature replacement like

Γ `Σ0,c:L,Σ1 K ≤d K ′ `Σ0 L = L′

Γ `Σ0,c:L′,Σ1 K ≤d K ′

again, if follows by induction hypothesis and then signature replacement.

The case for context replacement is the same.

• If the last rule is

Γ0, x:K,Γ1 `Σ K1 ≤c K2 Γ0 `Σ k:K

Γ0, [k/x]Γ1 `Σ [k/x]K1 ≤[k/x]c [k/x]K2

51

with [k/x]K1 ≡ El(A) for Γ0, [k/x]Γ1 `Σ A:Type then K1 ≡ El(A′)

for Γ0, x:K,Γ1 `Σ A′:Type s.t. [k/x]El(A′) ≡ El(A), and, by induc-

tion hypothesis, we have K2 ≡ El(B′) for Γ0, x:K,Γ1 `Σ A′:Type so

[k/x]K1 ≡ [k/x]B′.

For the third point, of the lemma, if [k/x]K1 ≡ El(A) and [k/x]K2 ≡

El(B), then K1 ≡ El(A′) and K2 ≡ El(B′) s.t. [k/x]El(A′) ≡ El(A)

and [k/x]El(B′) ≡ El(B), hence [k/x]A′ ≡ A and [k/x]B′ ≡ B. By

induction hypothesis Γ0, x:K,Γ1 `Σ A′ ≤c B′:Type so by substitution

Γ0, [k/x]Γ1 `Σ A ≤[k/x]c B:Type.

• For the last two points, if the judgement follows from a subkinding for

dependent product kind rule then the statement holds trivially.

As many of the cases for induction on the structure of derivations are

straightforward or similar, in what follows, I will only present the interesting

cases.

The following lemma states that, if there is a subkinding relation between

two dependent kinds, then the coercion can be obtained by the subtyping for

dependent product kind rule from Figure 3.3. Note that for this to hold it is

essential that we only have subtyping entries in signatures and not subkind-

ing. It might be worth noting again that subkinding is a structural lifting of

subtyping relation.

Lemma 4. If Γ `Σ (x:K1)K2 ≤d (y:L1)L2 is derivable in T0K
S,≤ then there exist

derivable judgements in T0K
S,≤ Γ `Σ c1:(L1)K1 and Γ, y:L1 `Σ c2:([c1(y)/x]K2)L2

such that

• Γ `Σ L1 ≤c1 K1

• Γ, y:K ′1 `Σ [c1(y)/x]K2 ≤c2 L2 and

• Γ `Σ d = [f :(x:K1)K2][y:L1]c2(f(c1(y))):((x:K1)K2)(y:L1)L2

are derivable in T0K
S,≤.

52

Proof. By induction on the structure of derivation of

Γ `Σ (x:K1)K2 ≤d (y:L1)L2. The only non trivial case is when it comes from

transitivity.

Γ `Σ (x:K1)K2 ≤d1 C Γ `Σ C ≤d2 (y:L1)L2

Γ `Σ (x:K1)K2 ≤d2◦d1 (y:L1)L2

By the previous lemma C ≡ (z:M1)M2. By induction hypothesis we have that

• Γ `Σ M1 ≤c′1 K1

• Γ, z:M1 `Σ [c′1(z)/x]K2 ≤c′2 M2

• Γ `Σ d1 = [f :(x:K1)K2][z:M1]c′2(f(c′1(z))):((x:K1)K2)(z:M1)M2

and

• Γ `Σ L1 ≤c′′1 M1

• Γ, y:L1 `Σ [c′′1(y)/z]M2 ≤c′′2 L2

• Γ `Σ d2 = [f :(z:M1)M2][y:L1]c′′2(f(c′′1(y))):((z:M1)M2)(y:L1)L2

are derivable.

We apply transitivity to obtain Γ `Σ L1 ≤c′1◦c′′1 K1 and by weakening

and substitution in addition, Γ, y:L1 `Σ [c′1(c′′1(y))/x]K2 ≤c′′2◦[c′′1 (y)/z]c′2
L2 and

what is left to prove is that

Γ `Σ d2 ◦ d1 = [f :(x:K1)K2][y:L1](c′′2 ◦ [c′′1(y)/z]c′2)(f((c′1 ◦ c′′1)(y)))

:((x:K1)K2)(y:L1)L2

53

Let Γ `Σ F :(x:K1)K2

d2 ◦ d1(F) = d2(d1(F))

= d2([f :(x:K1)K2][z:M1]c′2(f(c′1(z)))(F))

= d2([F/f][z:M1]c′2(f(c′1(z))))

= d2([z:M1]c′2(F (c′1(z))))

= ([f :(z:M1)M2][y:L1]c′′2(f(c′′1(y))))([z:M1]c′2(F (c′1(z))))

= [z:M1]c′2(F (c′1(z)))/f]([y:L1]c′′2(f(c′′1(y))))

= [y:L1]c′′2([z:M1]c′2(F (c′1(z)))(c′′1(y)))

= [y:L1]c′′2([c′′1(y)/z]c′2(F (c′1(c′′1(y)))))

= [y:L1]c′′2([c′′1(y)/z]c′2(F (c′1(c′′1(y)))))

= [y:L1](c′′2 ◦ [c′′1(y)/z]c′2)(F ((c′1 ◦ c′′1)(y)))

= ([f :(x:K1)K2][y:L1](c′′2 ◦ [c′′1(y)/z]c′2)(f((c′1 ◦ c′′1)(y))))(F)

The following definition gives us a measure for the structure of kinds. I will

use this measure when proving coherence for kinds. It is particularly important

and I will use the fact that this measure is not increased by substitution.

Definition 6. For Γ `Σ K we define the degree of Γ `Σ K kind deg(K) ∈ N

as follows:

1. deg(Type) = 1

2. deg(El(A)) = 1

3. deg((x:K)L) = deg(K) + deg(L)

The following lemma shows that if two kinds are related by equality or

subtyping then their degree is the same.

Lemma 5. The following hold:

• if Γ `Σ K = L then deg(K) = deg(L)

54

• if Γ `Σ K ≤c L then deg(K) = deg(L)

Proof. We do induction on the structure of derivations of Γ `Σ K = L respec-

tively Γ `Σ K ≤ L. For example if it comes from the rule

Γ `Σ K1 = K2 Γ, x:K1 `Σ K ′1 = K ′2
Γ `Σ (x:K1)K ′1 = (x:K2)K ′2

by induction hypothesis, deg(K1) = deg(K2) and deg(K ′1) = deg(K ′2), hence

deg((x:K1)K ′1) = deg((x:K2)K ′2)

Lemma 6 (Coherence for Kinds). If Γ `Σ K ≤c L and Γ `Σ K ≤c′ L are

derivable in T0K
S,≤, then Γ `Σ c = c′ : (K)L is derivable in T0K

S,≤.

Proof. By induction on n = deg(K).

1. For n = 1:

• If Γ `Σ K = El(A) and Γ `Σ L = El(B) then by Lemma 3 we

have Γ `Σ A ≤c B and Γ `Σ A ≤c′ B and from coherence for types

Γ `Σ c = c′:(A)B, hence Γ `Σ c = c′:(K)L

• If Γ `Σ K = Type and Γ `Σ L = Type then we can only have

Γ `Σ c = Id:(K)L.

2. For n > 1, K ≡ (x:K1)K2 and L ≡ (x:L1)L2, by Lemma 4

• Γ `Σ L1 ≤c1 K1,

• Γ, x:K1 `Σ [c1(y)/x]K2 ≤c2 L2 and

• Γ `Σ c = [f :(x:K1)K2][y:L1]c2(f(c1(y))):((x:K1)K2)(y:L1)L2

are derivable for some Γ `Σ c1:(L1)K1 and Γ, x:K1 `Σ c2:([c1(x)/x]K2)L2

and deg(L1), deg(K1), deg([c1(y)/x]K2), deg(L2) are all smaller than n.

If

• Γ `Σ L1 ≤c′1 K1,

• Γ, x:K1 `Σ [c′1(y)/x]K2 ≤c′2 L2 and

• Γ `Σ c′ = [f :(x:K1)K2][y:L1]c′2(f(c′1(y))):((x:K1)K2)(y:L1)L2

55

are derivable for some other coercions Γ `Σ c′1:(L1)K1 and

Γ, x:K1 `Σ c′2:([c′1(y)/x]K2)L2 then by induction hypothesis we have

Γ `Σ c1 = c′1:(L1)K1 and Γ, x:K1 `Σ c2 = c′2:([c′1(y)/x]K2)L2 and we

are done.

3.3.2 Weakening and Context/Signature Replacement

If we look at the rules in Figures 3.1, 3.2 and 3.3 or in the Appendix C at

Figures C.1, C.3 and C.5. We observe that there are rules for weakening and

signature replacement for a membership entry. I will use later in this chapter

weakening and replacement for subtyping entries as well. The following lemma

proves the admissibility of such a result.

Lemma 7. The following hold:

• If Γ `Σ,Σ′ J and `Σ,A≤cB:Type,Σ′ Γ are derivable in T 0K
S,≤ then

Γ `Σ,A≤cB:Type,Σ′ J is derivable in T 0K
S,≤.

• If Γ `Σ,A≤cB:Type,Σ′ J , `Σ A = A′:Type, `Σ B = B′:Type and

`Σ c = c′:(A)B are derivable in T 0K
S,≤ then Γ `Σ,A′≤c′B′:Type,Σ′ J is deriv-

able in T 0K
S,≤.

Proof. By induction on the structure of derivation.

Note that rules are not required for weakening and context/signature re-

placement to hold as they are naturally admissible even for membership entries

in the system TS,≤. I express the admissibility result in the following lemma

only for completion purpose as the rest of the chapter will be using the corre-

sponding rules.

Lemma 8 (Weakening and Signature/Context Replacement).

1. (Weakening)

• If Γ `Σ,Σ′ J and `Σ L kind are derivable in TS,≤ and l 6∈ dom(Γ)∪

dom(Σ,Σ′), then Γ `Σ,l:L,Σ′ J is derivable in TS,≤.

56

• If Γ,Γ′ `Σ J and Γ `Σ K kind are derivable in TS,≤ and x 6∈

dom(Γ,Γ′) ∪ dom(Σ), with x 6= l, then Γ, x:K,Γ′ `Σ J is derivable

in TS,≤.

Note that, in the above hypothesys, if l 6∈ dom(Γ) ∪ dom(Σ,Σ′) then

`Σ,l:LΣ′ Γ is derivable in TS,≤ and similarly if x 6∈ dom(Γ,Γ′)∪ dom(Σ).

2. (Context and Signature Replacement)

• If Γ `Σ,m:M,Σ′ J and `Σ M = N then Γ `Σ,m:N,Σ′ J .

• If Γ, x:K,Γ′ `Σ J , and Γ `Σ K = L then Γ, x:L,Γ′ `Σ J .

Proof. By induction on the structure of derivation. I only illustrate a case for

weakening.

If Γ `Σ,Σ′ J is Σ,Σ′ valid, coming from the rule

(∗)`Σ1 L
′ kind l′ 6∈ dom(Σ1)

Σ1, l′:L′ valid

with Σ′ ≡ Σ′′, l′:L′ or Σ ≡ Σ′′, l′:L′ and Σ′ ≡ 〈〉.

• If Σ′ ≡ Σ′′, l′:L′, for Σ,Σ′′ valid, we have, by induction hypothesis, that

`Σ,l:L,Σ′′ L
′ kind, and since l 6= l′, if l′ 6∈ dom(Σ,Σ′′) then

l′ 6∈ dom(Σ, l:L,Σ′′) and we can apply the rule (∗) to get

Σ, l:L,Σ′′, l′:L′ valid.

• If Σ ≡ Σ′′, l′:L′ and Σ′ ≡ 〈〉, then the lemma is precisely the rule (∗).

The reason I will use the corresponding rules instead of the admissibility

results is because I prove the well-behavedness of this system by establishing

a relation with the previous formulation from [LSX13, Xue13b]. These rules

are not admissible for the system T [C] from Figure 2.7, in particular for the

case of subtyping judgements. For example, without the weakening rule we

do not have that if Γ0,Γ1 ` A ≤c B ∈ C then Γ0, x:K,Γ1 ` A ≤c B. The

necessity of such properties has first been studied by Soloviev and Luo [SL02]

57

and Yong Luo [Luo05] where the author denotes the set C which satisfies such

properties as a well-defined set of coercions (WDC). A WDC is a set which is

coherent, and respects congruence, transitivity, substitution and weakening.

The latter four properties have been adopted as rules in [LSX13, Xue13b].

3.4 Subtyping in signatures as a well-behaved ex-

tension

In this section I prove that the system TS,≤ is a well-behaved extension of

TS in that it is conservative - if a judgement is syntactically in TS and it is

derivable in TS,≤, then it is derivable in TS too.

Another way in which the system introduced in this chapter is well-behaved

is that, if a judgement can be derived in TS,≤, then a corresponding judge-

ment can be derived in TS . This section will present what it means for a

derivable judgement J in TS to correspond to a derivable judgement J ′ in

TS,≤, but roughly, it means that any judgement J ′ derivable in TS,≤ is related

by definitional equality to a judgement J0 derivable in T 0K
S,≤ and for every such

judgement J0, there exists a certain set of judgements derivable in TS .

First I formulate the relation given by definitional equality:

Definition 7. In the system TS,≤

• 〈〉 = 〈〉, Σ, c:K = Σ′, c:K ′ if and only if Σ = Σ′ and `Σ K = K ′ are

derivable in TS,≤

• `Σ Γ, x:K =`Σ′ Γ′, x:K ′ if and only if `Σ Γ =`Σ′ Γ′ and Γ `Σ K = K ′

are derivable in TS,≤

• Γ `Σ K kind = Γ′ `Σ′ K
′ kind if and only if `Σ Γ =`Σ′ Γ′ and

Γ `Σ K = K ′ are derivable in TS,≤

• Γ `Σ k:K = Γ′ `Σ′ k
′:K ′ if and only if Γ `Σ K kind = Γ′ `Σ′ K

′ kind

and Γ `Σ k = k′:K are derivable in TS,≤

58

• Γ `Σ k = l:K = Γ′ `Σ′ k
′ = l′:K ′ if and only if Γ `Σ K kind = Γ′ `Σ′

K ′ kind and Γ `Σ k = k′:K and Γ `Σ l = l′:K are derivable in TS,≤

• Γ `Σ A ≤c B = Γ′ `Σ′ A
′ ≤c′ B′ if and only if

Γ `Σ A:Type = Γ′ `Σ′ A
′:Type and Γ `Σ B:Type = Γ′ `Σ′ B

′:Type and

Γ `Σ c:(A)B = Γ′ `Σ′ c
′:(A′)B′ are derivable in TS,≤

Similarly we define this relation on judgements in T0K
S,≤ and TS

A similar relation was formulated in [LSX13, Xue13b, Xue13a] for the

system T [C]. Observe that there, unless C was coherent, one could have a

situation in which Γ ` c:(A)B = Γ ` c′:(A)B hold in T [C] because they are

both declared as coercions but Γ ` c:(A)B = Γ ` c′:(A)B might not hold in T

if C is not coherent. However this cannot happen for the system in this thesis

because, if Γ `Σ c:(A)B = Γ `Σ c′:(A)B and they are both coercions, it cannot

be that Σ is a signature in TS unless they are both the identity coercions, in

which case they are trivially equal in TS .

In what follows, unless otherwise specified when using the definitional

equality between judgements, I will refer to the relation defined on judgements

in TS,≤.

Lemma 9. The above relation is an equivalence relation on judgements deriv-

able in TS,≤.

Proof. By induction on the structure of derivation of the judgement at the

lefthand side of the equal. I just exemplify for the case `Σ Γ, x:K =`Σ′

Γ′, x:K ′, the other cases being similar.

By induction hypothesis, `Σ′ Γ′ =`Σ Γ.

By context and signature replacement for each entry in Σ and Γ, if

Γ `Σ K = K ′, then Γ′ `Σ′ K = K ′

This kind of well-behavedness was first studied in [LSX13, Xue13b, Xue13a]

where the authors generalise Kleene’s [Kle52] formulation of extension by def-

inition from first order logic, essentially naming definitional extension of a

system T an extension of it T ′ which

59

1. is conservative: any judgement in T derivable in T ′ is derivable in T and

2. every valid derivation tree D′ in T ′ can be translated into a valid deriva-

tion tree D in T such that the conclusion of D′ is definitionally equal to

the conclusion of D

This expresses that the extension is nothing more than an abbreviation for

certain judgements in the base system. A further discussion about this follows

in Section 5.1.

For the conservativity condition, the authors of [LSX13, Xue13b] prove

that T [C] is equivalent to a classically conservative extension T [C]∗ of T [C]0K ,

where coercive applications of the form Γ ` f ∗ k0:[c(k0)/x]K ′ are derivable

whenever Γ ` f :(x:K)K ′, Γ ` K0 ≤ K and Γ ` k0:K0 are derivable in

T [C]∗. Further, T [C]0K is a conservative extension of T as it only derives

subtyping judgements which are not syntactically in T . They also prove that

T [C] respects the second condition as an extension of T [C]0K whenever C is

coherent in T [C]0K . Essentially, they define a translation which transforms

valid derivation trees in T [C] in valid derivation trees in T [C]0K by inserting

the coercions wherever coercive application rules are used. T [C]0K is further

a definitional extension of T because subtyping judgements can only be used

to infer other subtyping judgements in the restricted system. So any non-

subtyping judgement derivable in T [C]0K is definitionally equal to a judgement

in T , and for subtyping judgements the second condition of coherence from

the definition in [LSX13, Xue13b] guarantees that there exists a corresponding

non-subtyping judgements representing the well-typedness of the underlying

mapping.

For the system I introduced here, it is not true that any non-subtyping

judgement derivable in T 0K
S,≤ is definitionally equal to a judgement in TS , be-

cause we have subtyping entries in signatures. However I will prove that

there exists a corresponding set of derivable judgements. For a non subtyp-

ing judgement Γ `Σ J , this set will include the judgement Γ `Σ∗ J , where

Σ∗ is just Σ without the subtyping entries. If J is of the form A ≤c B,

60

then the set will contain simply the judgement for the underlying coercion

Γ `Σ∗ c:(A)B. Apart from this, in both cases the set will contain corre-

sponding judgements for all the subtyping entries of Σ. For example, for the

signature Σ1, A ≤c B:Type,Σ2 valid in T 0K
S,≤, the judgement corresponding to

the subtyping entry A ≤c B:Type will be `Σ1 c:(A)B.

I have mentioned often the system T [C] in analogy or in contrast with the

system I introduced in this chapter. It is indeed a very strong relation between

these two systems, or to be more precise, between TS,≤ and an adjustment of

T [C] which I will denote by T [C];. I will use this relation to prove that TS,≤

is also well-behaved in a similar sense.

3.4.1 Conservativity of TS,≤ as an extension of TS

The system T [C] from [LSX13, Xue13b] is equivalent to a conservative exten-

sion of T . TS,≤ is a classically conservative extension of TS and this follows

directly from the fact that TS,≤ keeps track of subtyping entries in the signa-

tures and it carries them along in derivations. More precisely we prove that

if a judgement is derivable in TS,≤ and not in TS then it cannot be written in

TS .

The following two lemmas state that any subtyping or subkinding judge-

ment can only be derived with a signature containing subtyping entries, and

hence the signature cannot be written in TS

Lemma 10. If Γ `Σ A ≤c B:Type is derivable in TS,≤, then Σ contains at

least a subtyping entry or Γ `Σ A = B:Type and Γ `Σ c = Id:(A)A are

derivable in TS,≤.

Proof. By induction on the structure of derivation. For example if it comes

from transitivity from premises Γ `Σ A ≤c A′ : Type and Γ `Σ A′ ≤c′ B : Type

then the statement simply is true by induction hypothesis.

If it comes from a dependent product rule with premises

Γ `Σ A2 ≤c1 A1:Type and Γ, x:A1 `Σ B1(x) ≤c2[x] B2(x), with

Γ `Σ Π(A1, B1) ≤c Π(A2, B2):Type ≡ Γ `Σ A ≤c B:Type where

61

c ≡ [F : Π(A1, B1)]λ(A2, B2 ◦ c1, [x:A2]c2[x](app(A1, B1, F, c1(x)))). By induc-

tion hypothesis, if at least one of the c1 or c2[x] is not the identity, Σ contains

at least one subtyping entry and we are done. If both are the identity, then c

is also the identity.

Lemma 11. If Γ `Σ K ≤c L is derivable, then Σ contains at least a subtyping

entry or Γ `Σ K = L and Γ `Σ c = Id:(K)L are derivable in TS,≤.

Proof. By induction on the structure of derivation.

If it comes from the rule

Γ `Σ A ≤c B:Type

Γ `Σ El(A) ≤c El(B)

then it follows from Γ `Σ A ≤c B:Type by the previous lemma.

For all the other cases, the proof mirrors the proof of the previous lemma.

For example if it comes from transitivity from premises Γ `Σ K ≤c M and

Γ `Σ M ≤c′ L then the statement simply is true by induction hypothesis and

similarly for dependent product kind.

The following lemma extends the statement to express the fact that it is

enough for a judgement to contain a non trivial subtyping or subkinding entry

(not the identity coercion) in its derivation tree to have a signature that cannot

be written in TS . This is important because it allows us to conclude that the

extension cannot derive judgements syntactically in TS which are not already

derivable in TS .s

Lemma 12. If D is a derivation tree with the conclusion Γ `Σ J , valid in

TS,≤ and Γ1 `Σ1 K1 ≤c0 K2 is present in D then, either Σ contains at least

a subtyping entry or Γ1 `Σ1 K1 = K2 and Γ1 `Σ1 c0 = IdK1 :(K1)K1 are

derivable in TS,≤.

Proof. If Γ `Σ J is a subtyping or subkinding judgement it follows directly

from the previous lemmas 10, 4. Otherwise we do induction on the depth of

D.

62

We have two possibilities for the last rule in D.

If it ends with a rule in T 0K
S,≤, for instance

Γ `Σ K kind Γ, x:K `Σ K ′ kind

Γ `Σ (x:K)K ′ kind

then the subkinding judgements must be in at least one of the subderivations

concluding Γ `Σ K kind and Γ, x:K `Σ K ′ kind. The statement then holds

by induction hypothesis. The other rules are similar.

The second possibility is that D ends with a coercive application or coer-

cive definition rule. Let us assume, for instance, that the judgement Γ `Σ J is

Γ `Σ f(k0):[c(k0)/x]K ′ and a derivation tree for it ends with a coercive appli-

cation rule with premises Γ `Σ f :(x:K)K ′, Γ `Σ k0:K0 and Γ `Σ K0 ≤c K,

then by the previous lemma either c is trivial or Σ contains at least a subtyping

entry. If Σ contains at least one subtyping entry then we are done. If c is trivial

then by induction hypothesis either the derivation trees for Γ `Σ f :(x:K)K ′,

Γ `Σ k0:K0 and Γ `Σ K0 ≤c K contain no judgement of non trivial subtyping

or subkinding or Σ contains at least a subtyping entry.

The following lemma states that, if a judgements is derived in TS,≤ using

only trivial coercions then it can be derived in TS .

Lemma 13. If in a derivation tree of a judgement derivable in TS,≤ which

is not subtyping or subkinding judgement all of the subtyping and subkinding

judgements are of the form Γ1 `Σ1 A ≤IdA A:Type respectively

Γ1 `Σ1 K ≤[x:K]x K then the judgement is derivable in TS.

Proof. By induction on the structure of derivations. If the derivation tree D

that only contains trivial coercions ends with one of the rules of TS ,

D1
J1
...DnJn
J

(R)

then J1,..., Jn also have derivation trees D1,...,Dn which only contain at most

trivial coercions, hence, by induction hypothesis, they are derivable in TS . We

63

can apply to them, with D1,...,Dn replaced by their derivation in TS the same

rule R to obtain the judgement J and the derivation is in TS .

Otherwise, if for example the derivation containing only trivial coercions

ends with coercive application

Γ `Σ f :(x:K)K ′ Γ `Σ k0:K Γ `Σ K ≤[x:K]x K

Γ `Σ f(k0):[[x:K]x(k0)/x]K ′

Γ `Σ [[x:K]x(k0)/x]K ′ = [k0/x]K ′ and Γ `Σ f :(x:K)K ′ and Γ `Σ k0:K are

derivable in TS by induction hypothesis, and from them it follows directly by

functional application, in TS , Γ `Σ f(k0):[k0/x]K ′

Finally, the following corollary states the conservativity of TS,≤ as an ex-

tension of TS , namely that it does not derive judgements syntactically written

in TS which can not already be derived in TS . This happens because, for a

judgement to be derived using subtyping judgements it needs to keep track of

them in its own syntax, specifically in its signature. Again, this is unlike in

the system T [C];, which does not carry references to the subtyping judgements

it uses in the syntax and hence is just equivalent to a classically conservative

extension.

Corollary 1 (Conservativity). If a judgement is derivable in TS,≤ but not in

TS, its signature will contain subtyping entries, and hence it cannot be written

in TS.

Proof. From the previous lemma, a judgement can only be derivable in TS,≤

but not in TS when it contains in all of its derivation trees non trivial subtyping

or subkinding judgements. If the judgements is itself a subtyping or subkinding

judgement then it vacuously cannot be written in TS . Otherwise, by Lemma 12

it follows that either all of the subtyping and subkinding judgements are of the

form Γ1 `Σ1 A ≤IdA A:Type respectively Γ1 `Σ1 K ≤[x:K]x K in which case

the judgement is derivable in TS or its signature contains subtyping entries,

in which case it cannot be written in TS .

64

3.4.2 The relation between T 0K
S,≤ and TS

Here I show that, if a judgement J is derivable in T 0K
S,≤, we obtain a set of

judgements, one of which is of same nature as J up to erasing the subtyping

entries from a signature. The idea here is that, for any the valid signature

in T 0K
S,≤ and all the judgements using it, we can remove the subtyping entries

from it to obtain a valid signature in TS and corresponding judgements using

this signature.

Definition 8. We define erase(·), a map which simply removes subtyping

entries from signature as follows:

• erase(〈〉) = 〈〉

• erase(Σ, c:K) = erase(Σ), c:K

• erase(Σ, A ≤c B) = erase(Σ)

Lemma 14. For Σ ≡ Σ0, A0 ≤c0 B0,Σ1, ..., An−1 ≤cn−1 Bn−1Σn a valid

signature in T 0K
S,≤ we will consider the following set of judgements (?)(Σ) =

{`erase(Σ0,...,Σi) ci:(Ai)Bi}, where i ∈ 0, ..., n. Then the following statements

hold:

1. `Σ Γ is derivable in T 0K
S,≤ if and only if `erase(Σ) Γ and all the judgements

in (?) are derivable in TS.

2. Γ `Σ J is not a subtyping judgement and is derivable in T 0K
S,≤ if and only

if Γ `erase(Σ) J and all the judgements in (?) are derivable in TS.

3. If Γ `Σ A ≤c B is derivable in T 0K
S,≤ then Γ `erase(Σ) c:(A)B and all the

judgements in (?) are derivable in TS.

4. If Γ `Σ K ≤c L is derivable in T 0K
S,≤ then Γ `erase(Σ) c:(K)L and all the

judgements in (?) are derivable in TS.

Proof. The only if implication for the first two cases goes by induction on

the structure of derivations. Since subtyping judgements do not contribute to

65

deriving any other type of judgement in T 0K
S,≤, the proof is relatively straight-

forward. It is worth stressing that, if Σ ≡ 〈〉, the whole judgement needs to be

in TS and (?)(Σ). I am mentioning this as I will consider the cases for Σ ≡ 〈〉

trivial in this proof and will not mention them.

For the first point, if Γ ≡ 〈〉, then `Σ 〈〉 can only follow from the judgement

Σ valid. We have two subcases. If Σ ≡ Σ′, k:K, then it can only follow from

the premise `Σ′ K kind with k 6∈ Dom(Σ′). By induction hypothesis we know

that `erase(Σ′) K kind is derivable in TS and all the judgements in (?)(Σ′) are

derivable. If k 6∈ Dom(Σ′) then k 6∈ Dom(erase(Σ′)). So we can derive

erase(Σ′), k:K valid. But erase(Σ′), k:K ≡ erase(Σ′, k:K) and

Σ′, k:K ≡ Σ, so we have that erase(Σ) valid is derivable in TS , hence

`erase(Σ) 〈〉 is derivable in TS . Likewise, by how we defined (?)(·),

(?)(Σ′) = (?)(Σ).

The second case is when Σ ≡ Σ′, A ≤c B:Type. Now the judgement for

the validity of Σ can only come from the premise `Σ′ c:(A)B. By induction

hypothesis `erase(Σ′) c:(A)B and all the judgements in (?)(Σ′) are derivable

in TS . But erase(Σ′) ≡ erase(Σ) and (?)(Σ) = (?)(Σ′) ∪ {`erase(Σ′) c:(A)B}

which we already know are all derivable and we can derive `erase(Σ′) 〈〉.

If Γ ≡ Γ′, x:K then, the proof is straightforward as, by induction hypoth-

esis, Γ `Σ K kind is derivable in T 0K
S,≤ only if Γ `erase(Σ) K kind is derivable

in TS and we are done.

The second case is also straight forward.

For the if implication, Lemma 7 is used.

For the fourth point let us assume the judgement comes from a derivation

tree ending with the rule

`Σ0,A≤cB:Type,Σ1 Γ

Γ `Σ0,A≤cB:Type,Σ1 A ≤c B:Type

Again, as above we have the case when Γ ≡ 〈〉 and the case when

Γ ≡ Γ0, x:K. If we consider the first one, its validity judgement can only

come from the premise Σ0, A ≤c B:Type,Σ1 valid. Now we have again the

66

subcases Σ1 ≡ 〈〉 Σ1 ≡ Σ′, cK and Σ1 ≡ Σ′, A′ ≤c′ B′. For the first subcase,

Σ0, A ≤c B:Type valid can only be derived from `Σ0 c:(A)B. By induction

hypothesis, `erase(Σ0) c:(A)B and all the judgements in (?)(Σ0) are derivable

in TS . But erase(Σ0) ≡ erase(Σ) and

(?)(Σ) = (?)(Σ0)∪{`erase(Σ0) c:(A)B} so we are done. For the second subcase,

we have by induction hypothesis that `erase(Σ0,A≤cB:Type,Σ′) K kind and all

the judgements in (?)(Σ0, A ≤c B:Type,Σ′) are derivable in TS . We have that

`erase(Σ0) c:(A)B ∈ (?)(Σ0, A ≤c B:Type,Σ′) so the judgement is derivable.

By weakening, the judgement `erase(Σ0,Σ′,c:K) c:(A)B is also derivable in TS .

Note that we can apply weakening because if `erase(Σ0,A≤cB:Type,Σ′) K kind is

derivable in TS , and k 6∈ dom(erase(Σ0, A ≤c B:Type,Σ′)) then we can derive

erase(Σ0, A ≤c B:Type,Σ′), k:K valid. The other cases and the next point

are similar.

3.4.3 T [C];

The system T [C] from [LSX13, Xue13b] was proven to be a well behaved

extension of T in that it is equivalent to a classically conservative extension

and any valid derivation tree of T [C] can be translated into a derivation tree of

T such that their conclusion are definitionally equal in T [C]. The translation

essentially transforms all the coercive application and coercive definition rules

of the derivation tree in T [C] into ordinary functional application and equality

judgements such as reflexivity. The result is that all the coercions are inserted

into the judgement obtained as conclusion.

Here I consider a system T [C]; similar to the system T [C] as presented in

[LSX13, Xue13b]. The difference is that here we fix some prefixes of a context,

not allowing substitution and abstraction for these prefixes. In more details,

the judgements of T [C]; will be of the form Σ; Γ ` J instead of Γ ` J , where

Σ and Γ are just contexts and substitution and abstraction can be applied to

entries in Γ but not Σ. We call this system T [C];. To delimitate these prefixes

we use the symbol ”;” and the judgement forms will be as follows:

67

• ` Σ; Γ

• Σ; Γ ` K kind

• Σ; Γ ` k:K

• Σ; Γ ` K = K ′

• Σ; Γ ` k = k′:K

where the first judgement says that Σ; Γ is a valid context. The rules of

the system T [C]; are the ones in Figures 3.5,3.6, 3.7 and 3.8. These rules

are also listed in the Appendix The difference between these rules and those

described in [LSX13, Xue13b] is that there is now an additional set of rules for

the prefixes of contexts, apart from substitution and abstraction rules which

are only available for regular contexts. More detailed, I duplicate contexts,

assumptions, weakening, context replacement. For example, the assumption

rule

` Γ, x:K,Γ′

Γ, x:K,Γ′ ` x:K

now becomes the set of two rules

` Σ, c:K,Σ′; Γ

Σ, c:K,Σ′; Γ ` c:K
` Σ; Γ, x:K,Γ′

Σ; Γ, x:K,Γ′ ` x:K

For all other rules I adjust them to the new forms of judgements by replacing

Γ ` J with Σ; Γ ` J . Notice that I do not duplicate substitution as only the

context at the righthand side of the ; supports substitution. I will consider

the system T [C];0K to be the one without coercive application and definition

rules, namely it only contains the rules in Figures 3.5,3.6 and 3.7. C is formed

of subtyping judgements and we have the following rule in T [C];0K

Γ ` A ≤c B ∈ C

Γ ` A ≤c B

68

For the system T [C] coercive application is added as an abbreviation to ordi-

nary functional application and this is ensured by coercive definition together

with coherence of C. Indeed, it was proved in [LSX13, Xue13b] that, when

C is coherent, T [C] is a well behaved extension of T [C]0K in that every valid

derivation tree D in T [C] can be translated into a valid derivation tree D′ in

T [C]0K and the conclusion of D is definitionally equal to the conclusion of D′

in T [C]. I want to avoid doing the complex proof in [LSX13, Xue13b] again

and assume that the properties of T [C] carry over to T [C];. So next I give the

definition of coherence for the set C.

Definition 9. The set C of subtyping judgements is coherent if the following

two conditions hold in T [C];0K :

• If Σ; Γ ` A ≤c B is derivable, then Σ; Γ ` c:(A)B is derivable.

• If Σ; Γ ` A ≤c B and Σ; Γ ` A ≤c′ B are derivable, then

Σ; Γ ` c = c′:(A)B is derivable.

Note that in the original formulation Σ; Γ ` A <[x:A]x A was not allowed.

The fact that there is no coercion between a type and itself which I mentioned

when I described the system T [C] from Subsection 2.3.2 of the previous chap-

ter was used to prove the consistency of the system in [LSX13] and [Xue13b]

essentially to prove that a coercive application judgement cannot come from

a functional application of the same function. However with the current con-

dition one can prove that, if this is the case, the coercion has to be equal to

the identity.

I will also refer to a relation given by definitional equality for the system

T [C];:

Definition 10.

• 〈〉 = 〈〉, Σ, c:K = Σ′, c:K ′ if and only if Σ = Σ′ and Σ; 〈〉 ` K = K ′.

• ` Σ; Γ, x:K =` Σ′; Γ′, x:K ′ if and only if ` Σ; Γ =` Σ′; Γ′ and

Σ; Γ ` K = K ′.

69

Validity of Signature/Contexts, Assumptions

` 〈〉
Σ; 〈〉 ` K kind c 6∈ dom(Σ)

` Σ, c:K

` Σ, c:K,Σ′; Γ

Σ, c:K,Σ′; Γ ` c:K

` Σ

` Σ; 〈〉
Σ; Γ ` K kind x 6∈ dom(Σ) ∪ dom(Γ)

` Σ; Γ, x:K

` Σ; Γ, x:K,Γ′

Σ; Γ, x:K,Γ′ ` x:K

Weakening

Σ,Σ′; Γ ` J Σ; 〈〉 ` K kind c 6∈ dom(Σ,Σ′)

Σ, c:K, Σ′; Γ ` J

Σ; Γ,Γ′ ` J Σ; Γ ` K kind x 6∈ dom(Γ,Γ′)

Σ; Γ, x:K,Γ′ ` J
Equality Rules

Σ; Γ ` K kind

Σ; Γ ` K = K

Σ; Γ ` K = K′

Σ; Γ ` K′ = K

Σ; Γ ` K = K′ Σ; Γ ` K′ = K′′

Σ; Γ ` K = K′′

Σ; Γ ` k:K

Σ; Γ ` k = k:K

Σ; Γ ` k = k′:K

Σ; Γ ` k′ = k:K

Σ; Γ ` k = k′:K Σ; Γ ` k′ = k′′:K

Σ; Γ ` k = k′′:K

Σ; Γ ` k:K Σ; Γ ` K = K′

Σ; Γ ` k:K′
Σ; Γ ` k = k′:K Σ; Γ ` K = K′

Σ; Γ ` k = k′:K′

Context Replacement

Σ0, c:L,Σ1; Γ ` J Σ0 ` L = L′

Σ0, c:L′,Σ1; Γ ` J
Σ; Γ0, x:K,Γ1 ` J Σ; Γ0 ` K = K′

Σ; Γ0, x:K′,Γ1 ` J

Substitution Rules

` Σ; Γ0, x:K,Γ1 Σ; Γ0 ` k:K

` Σ; Γ0, [k/x]Γ1

Σ; Γ0, x:K,Γ1 ` K′ kind Σ; Γ0 ` k:K

Σ; Γ0, [k/x]Γ1 ` [k/x]K′ kind

Σ; Γ0, x:K,Γ1 ` L = L′ Σ; Γ0 ` k:K

Σ; Γ0, [k/x]Γ1 ` [k/x]L = [k/x]L′

Σ; Γ0, x:K,Γ1 ` k′:K′ Σ; Γ0 ` k:K

Σ; Γ0, [k/x]Γ1 ` [k/x]k′:[k/x]K′
Σ; Γ0, x:K,Γ1 ` l = l′:K′ Σ; Γ0 ` k:K

Σ; Γ0, [k/x]Γ1 ` [k/x]l = [k/x]l′:[k/x]K′

Σ; Γ0, x:K,Γ1 ` K′ kind Σ; Γ0 ` k = k′:K

Σ; Γ0, [k/x]Γ1 ` [k/x]K′ = [k′/x]K′

Σ; Γ0, x:K,Γ1 ` l:K′ Σ; Γ0 ` k = k′:K

Σ; Γ0, [k/x]Γ1 ` [k/x]l = [k′/x]l:[k/x]K′

Dependent Product Kinds

Σ; Γ ` K kind Σ; Γ, x:K ` K′ kind
Σ; Γ ` (x:K)K′ kind

Σ; Γ ` K1 = K2 Σ; Γ, x:K1 ` K′1 = K′2
Σ; Γ ` (x:K1)K′1 = (x:K2)K′2

Σ; Γ, x:K ` y:K′

Σ; Γ ` [x:K]y:(x:K)K′
Σ; Γ ` K1 = K2 Σ; Γ, x:K1 ` k1 = k2:K

Σ; Γ ` [x:K1]k1 = [x:K2]k2:(x:K1)K

Σ; Γ ` f :(x:K)K′ Σ; Γ ` k:K

Σ; Γ ` f(k):[k/x]K′
Σ; Γ ` f = f ′:(x:K)K′ Σ; Γ ` k1 = k2:K

Σ; Γ ` f(k1) = f ′(k2):[k1/x]K′

Σ; Γ, x:K ` k′:K′ Σ; Γ ` k:K

Σ; Γ ` ([x:K]k′)(k) = [k/x]k′:[k/x]K′
Σ; Γ ` f :(x:K)K′ x 6∈ FV (f)

Σ; Γ ` [x:K]f(x) = f :(x:K)K′

The kind Type

` Σ; Γ

Σ; Γ ` Type kind

Σ; Γ ` A:Type

Σ; Γ ` El(A) kind

Σ; Γ ` A = B:Type

Σ; Γ ` El(A) = El(B)

Figure 3.5: Inference Rules for LF ;

70

Subtyping Rules

Σ; Γ ` A ≤c B ∈ C
Σ; Γ ` A ≤c B

Congruence

Σ; Γ ` A ≤c B : Type Σ; Γ ` A = A′ : Type Σ; Γ ` B = B′ : Type Σ; Γ ` c = c′ : (A)B

Σ; Γ ` A′ ≤c′ B′ : Type

Transitivity

Σ; Γ ` A ≤c A′ : Type Σ; Γ ` A′ ≤c′ A′′ : Type

Σ; Γ ` A ≤c′◦c A′′ : Type

Weakening

Σ,Σ′; Γ ` A ≤d B : Type Σ ` K kind

Σ, c:K, Σ′; Γ ` A ≤d B : Type
(c 6∈ dom(Σ,Σ′))

Σ; Γ,Γ′ ` A ≤d B : Type Σ; Γ ` K kind

Σ; Γ, x:K,Γ′ ` A ≤d B : Type
(x 6∈ dom(Γ,Γ′))

Context Replacement

Σ0, c:L,Σ1; Γ ` A ≤c B Σ0 ` L = L′

Σ0, c:L′,Σ1; Γ ` A ≤c B
Σ; Γ0, x:K,Γ1 ` A ≤c B Σ; Γ0 ` K = K′

Σ; Γ0, x:K′,Γ1 ` A ≤c B

Substitution

Σ; Γ0, x:K,Γ1 ` A ≤c B Σ; Γ0 ` k:K

Σ; Γ0, [k/x]Γ1 ` [k/x]A ≤[k/x]c [k/x]B

Identity Coercion

Σ; Γ ` A:Type

Σ; Γ ` A ≤[x:A]x A:Type

Figure 3.6: Subtyping Rules for T [C];0K (1)

• Σ; Γ ` K = Σ′; Γ′ ` K ′ if and only if ` Σ; Γ =` Σ′; Γ′ and

Σ; Γ ` K = K ′.

• Γ `Σ k:K = Γ′ `Σ′ k
′:K ′ if and only if

Σ; Γ ` K kind = Σ′; Γ′ ` K ′ kind and Σ; Γ ` k = k′:K.

• Σ; Γ ` k = l:K = Σ′; Γ′ ` k′ = l′:K ′ if and only if

Σ; Γ ` K kind = Σ′; Γ′ ` K ′ kind and Σ; Γ ` k = k′:K and

Σ; Γ ` l = l′:K.

• (Σ; Γ ` K = L) = (Σ′; Γ′ ` K ′ = L′) if and only if

Σ; Γ ` K kind = Σ′; Γ′ ` K ′ kind and

Σ; Γ ` L kind = Σ′; Γ′ ` L′ kind

• Σ; Γ ` A ≤c B = Σ′; Γ′ ` A′ ≤c′ B′ if and only if

71

Basic Subkinding Rule and Identity

Σ; Γ ` A ≤c B:Type

Σ; Γ ` El(A) ≤c El(B)

Σ; Γ ` K kind

Σ; Γ ` K ≤[x:K]x K

Structural Subkinding Rules

Σ; Γ ` K1 ≤c K2 Σ; Γ ` K1 = K′1 Σ; Γ ` K2 = K′2 Σ; Γ ` c = c′:(K1)K2

Σ; Γ ` K′1 ≤c′ K′2

Σ; Γ ` K ≤c K′ Σ; Γ ` K′ ≤c′ K′′

Σ; Γ ` K ≤c′◦c K′′

Σ,Σ′; Γ ` K ≤d K′ Σ; 〈〉 ` K0 kind

Σ, c:K0,Σ
′; Γ ` K ≤d K′

(c 6∈ dom(Σ,Σ′))

Σ; Γ,Γ′ ` K ≤d K′ Σ; Γ ` K0 kind

Σ; Γ, x:K0,Γ
′ ` K ≤d K′

(x 6∈ dom(Γ,Γ′))

Σ0, c:L,Σ1; Γ ` K ≤d K′ Σ0; 〈〉 ` L = L′

Σ0, c:L
′,Σ1; Γ ` K ≤d K′

Σ; Γ0, x:K,Γ1 ` L ≤d L′ Σ; Γ0 ` K = K′

Σ; Γ0, x:K′,Γ1 ` L ≤d L′

Σ; Γ0, x:K,Γ1 ` K1 ≤c K2 Σ; Γ0 ` k:K

Σ; Γ0, [k/x]Γ1 ` [k/x]K1 ≤[k/x]c [k/x]K2

Subkinding for Dependent Product Kind

Σ; Γ ` K′1 ≤c1 K1 Σ; Γ, x:K1 ` K2 kind Σ; Γ, x′:K′1 ` K′2 kind Σ; Γ, x:K1 ` [c1(x′)/x]K2 ≤c2 K
′
2

Σ; Γ ` (x:K1)K2 ≤[f :(x:K1)K2][x′:K′
1]c2(f(c1(x′))) (x:K′1)K′2

Figure 3.7: Subtyping Rules for T [C];0K (2)

Coercive Application

(CA1)
Σ; Γ ` f :(x:K)K′ Σ; Γ ` k0:K0 Σ; Γ ` K0 ≤c K

Σ; Γ ` f(k0):[c(k0)/x]K′

(CA2)
Σ; Γ ` f = f ′:(x:K)K′ Σ; Γ ` k0 = k′0:K0 Σ; Γ ` K0 ≤c K

Σ; Γ ` f(k0) = f ′(k′0):[c(k0)/x]K′

Coercive Definition

(CD)
Σ; Γ ` f :(x:K)K′ Σ; Γ ` k0:K0 Σ; Γ ` K0 ≤c K

Σ; Γ ` f(k0) = f(c(k0)):[c(k0)/x]K′

Figure 3.8: The coercive application and definition rules in T [C];

Σ; Γ ` A:Type = Σ′; Γ′ ` A′:Type and Σ; Γ ` B:Type = Σ′; Γ′ ` B′:Type

and Σ; Γ ` c:(A)B = Σ′; Γ′ ` c′:(A′)B′.

Similar relations can be defined on subsystems T [C];0K and T ;. Note how-

ever that now there can be a case like Σ; Γ ` c:(A)B = Σ; Γ ` c′:(A)B in T [C];

and the judgements Σ; Γ ` c:(A)B and Σ; Γ ` c′:(A)B derivable in T ; but such

that Σ; Γ ` c:(A)B = Σ; Γ ` c′:(A)B is not the case in T ; for C not coherent

72

because the coercions now are tracked separately in a set.

As the relation from the Definition 7, this is also an equivalence relation

on judgements derivable in T [C];.

Observe that this system, unlike T [C] from [LSX13, Xue13b], has fixed

prefixes of contexts, which do not allow abstraction or substitution. By using

T [C];, we place our argument close enough to TS,≤ as the prefixes of contexts

before ; act just like signatures. The difference between T [C]; and TS,≤ will be

in how the subtyping judgements are introduced in the system and with this

regards, the system T [C]; is like T [C] for which we have the well behavedness

result from [LSX13, Xue13b].

3.4.4 The relation between TS,≤ and T [C];

There are important differences between the new TS,≤ and T [C]; following from

the fact that I introduce coercive subtyping through signature. More precisely

coercions are now local to the signatures that introduce them. This enables us

to have more coercions between two types under the same kinding assumptions

(of the form c:K, x:K) and still have coherence satisfied, whereas by enriching a

system with a set of coercive subtyping, our coercions are introduced globally

and only one coercion (up to definitional equality) can exist between two

types under the same kinding assumptions. I illustrate this with the following

example. Let us consider the two signature Σ0, A ≤c B:Type,Σ1 and Σ0, A ≤d

B:Type,Σ1 with Σ0 and Σ1 free of subtyping entries. In T 0K
S,≤, both these

signatures are coherent provided they are valid, however, if we introduced

coercive judgements through a set C which contains Σ0; Σ1 ` A ≤c B:Type

and Σ0; Σ1 ` A ≤d B:Type, then this set would not be coherent in T [C];0K .

Another very important difference is that TS,≤ here is classically conser-

vative extension of TS as we saw earlier in Subsection 3.4.1 which cannot be

proven for system T [C]; as an extension of T ; since this one does not carry

the coercive entries in the syntax. Yet another important difference is that,

in TS,≤, weakening and context and signature replacement are admissible as

we saw in Subsection 3.3.2. This is not true for the system T [C]; without

73

additional properties of C as if, for example, Σ; Γ0,Γ1 ` A ≤c B:Type is a

judgement in C and hence derivable in T [C];, we could not derive, without the

weakening rule and without adding the requirement of closure under weaken-

ing, that Σ; Γ0, x:K,Γ1 ` A ≤c B:Type is derivable.

However, because signatures are technically just prefix of contexts for

which abstraction and substitution are not available (in [HHP93] it is proven

that the derivability of the judgements in the system with signatures is equiva-

lent to the derivability of the corresponding judgements obtained from moving

the signatures before contexts in the system with contexts only), we naturally

expect that there is a relation between TS,≤ and T [C];. And indeed here we

shall show that for any valid signature Σ in TS,≤, we can represent a class of

judgements of TS,≤ depending on Σ as judgements in a T [CΣ];, where CΣ is

defined below in Definition 11.

In what follows some proofs are more interesting if dependent types are

introduced to the system and the more interesting case is the one that derives

that type. Because I would like to present these cases, let us consider T 0K
S,≤

with the dependent product type rules with the subtyping rule

Γ `Σ A : Type Γ, x:A `Σ B(x) : Type

Γ `Σ Π(A,B) : Type

Γ `Σ A : Type Γ `Σ B : (A)Type Γ `Σ f : (x:A)B(x)

Γ `Σ λ(A,B, f) : Π(A,B)

Γ `Σ g : Π(A,B) Γ `Σ a : A

Γ `Σ app(A,B, g, a) : B(a)

Γ `Σ A : Type Γ `Σ B : (A)Type
Γ `Σ f : (x:A)B(x) Γ `Σ a : A

Γ `Σ app(A,B, λ(A,B, f), a) = f(a) : B(a)

Figure 3.9: Inference Rules for Π-type

Γ `Σ A′ ≤c1 A : Type Γ `Σ B,B′ : (A)Type Γ, x:A `Σ B(x) ≤c2[x] B
′(x) : Type

Γ `Σ Π(A,B) ≤d Π(A′, B′ ◦ c1) : Type

where d ≡ [F : Π(A,B)]λ(A′, B′ ◦ c1, [x:A′]c2[x](app(A,B, F, c1(x))))

This system will be introduced in more detail in Subsection 4.1.2 of the

next chapter.

74

First I consider just T 0K
S,≤ and T [C];0K which are the systems without coer-

cive application and coercive definition and we define a way to transfer coercive

subtyping entries of a signature Σ in T 0K
S,≤ to a set of coercive subtyping judge-

ments of T [CΣ];0K . For this I give the following definition which extracts from

a signature Σ of T 0K
S,≤ the sequence of nonsubtyping entries which we shall later

see that is a valid context prefixes in T [C];0K provided that Σ. For any valid

signature Σ, I also define a way to extract a set formed by subtyping judge-

ments corresponding to the subtyping entries of Σ. The set will be denoted

as CΣ and the subtyping judgements contained in it will be syntactically in

T [CΣ];0K

Definition 11. Let Σ be a signature (not necessarily valid) in T 0K
S,≤. We define

ΓΣ as follows:

• Γ〈〉 = 〈〉

• ΓΣ0,k:K = ΓΣ0 , k:K

• ΓΣ0,A≤cB:Type = ΓΣ0

If Σ is valid in T 0K
S,≤ we define CΣ as follows:

• C〈〉 = ∅

• CΣ0,k:K = CΣ0

• CΣ0,A≤cB:Type = CΣ0 ∪ {ΓΣ0 ; 〈〉 ` A ≤c B:Type}

Lemma 15. Let Σ ≡ Σ0, A ≤c B:Type,Σ1. If Σ valid is derivable in T 0K
S,≤,

then ΓΣ ≡ ΓΣ0,Σ1 and CΣ = CΣ0,Σ1 ∪ {ΓΣ0 ; 〈〉 ` A ≤c B:Type}.

Proof. By induction on the length of Σ1. If Σ1 ≡ 〈〉, then, by definition,

ΓΣ ≡ ΓΣ0 and CΣ = CΣ0 ∪ {ΓΣ0 ; 〈〉 ` A ≤c B:Type}. Otherwise, we have two

cases.

If Σ1 ≡ Σ′1, A
′ ≤c′ B′:Type, then, by definition, ΓΣ ≡ ΓΣ0,A≤cB:Type,Σ′1

and CΣ = CΣ0,A≤cB:Type,Σ′1
∪ {ΓΣ0,A≤cB:Type,Σ′1

; 〈〉 ` A′ ≤c′ B′:Type}. But by

induction, the statement holds for Σ′1 so ΓΣ0,A≤cB:Type,Σ′1
≡ ΓΣ0,Σ′1

≡ ΓΣ0,Σ1

75

and

CΣ0,A≤cB:Type,Σ′1
∪ {ΓΣ0,A≤cB:Type,Σ′1

; 〈〉 ` A′ ≤c′ B′:Type} =

= CΣ0,Σ′1
∪{ΓΣ0 ; 〈〉 ` A ≤c B:Type}∪{ΓΣ0,A≤cB:Type,Σ′1

; 〈〉 ` A′ ≤c′ B′:Type} =

= CΣ0,Σ1 ∪ {ΓΣ0 ; 〈〉 ` A ≤c B:Type}.

If Σ1 ≡ Σ′1, k:K then, by definition ΓΣ ≡ ΓΣ0,A≤cB:Type,Σ′1
, k:K. But by

induction hypothesis, ΓΣ0,A≤cB:Type,Σ′1
≡ ΓΣ0,Σ′1

. By definition,

ΓΣ0,Σ′1
, k:K ≡ ΓΣ0,Σ′1,k:K . For CΣ = CΣ0,A≤cB:Type,Σ′1

, again, by induction

CΣ0,A≤cB:Type,Σ′1
= CΣ0,Σ′1

∪ {ΓΣ0 ; 〈〉 ` A ≤c B:Type} =

= CΣ0,Σ′1,k:K ∪ {ΓΣ0 ; 〈〉 ` A ≤c B:Type}

The results that follow will analyse what happens when we interleave se-

quences in valid signature. The reason why I do so is because, for a signature

Σ valid in T 0K
S,≤, I consider the system T [CΣ];0K . In this system, I can always

obtain new judgements, by weakening or context replacement in ΓΣ and it’s

prefixes and I am studying precisely the consequence of this. Note that ΓΣ

and its prefixes cannot be altered by substitution, unlike in [LSX13, Xue13b],

as it is not allowed for the part of the context before ;. Note further that

abstraction is not allowed either, so the entries of ΓΣ are not variables, the

only difference between ΓΣ is that it does not contain subtyping entries, but

instead it it participates in the subtyping judgements belonging to CΣ.

Lemma 16. Let Σ1,Σ3 and Σ1,Σ2,Σ3 be valid signatures in T 0K
S,≤. If J is

derivable in T [CΣ2,Σ3];0K then J is derivable in T [CΣ1,Σ2,Σ3];0K .

Proof. By induction on the structure of derivation of J .

According to Luo et al. [LSX13, Xue13b], if we add coercive subtyping

and coercive definition rules from Figure 3.8 to a system enriched with a

coherent set of subtyping judgements CΣ, any derivation tree in T [CΣ]; can be

translated to a derivation tree in T [CΣ];0K (that is a derivation tree that does

not use coercive application and definition rules - CA1, CA2 and CD) and

their conclusions are definitionally equal in T [CΣ];. I aim to use that result to

prove that for any judgement using a coherent signature in TS,≤, there exists

76

a judgement definitionally equal to it in T 0K
S,≤. For this I shall first prove that

CΣ is coherent in the sense of the Definition 9 if Σ is coherent in the sense of

the Definition 5. To prove this we need to describe the possible contexts at

the lefthand side of ; in T [CΣ];0K used to infer coercive subtyping judgements.

I first prove a theorem used throughout the section which allows us to

argue about judgements in T 0K
S,≤ and judgements in T [CΣ];0K interchangeably.

I start by presenting a lemma representing the base case and then the theorem

appears as an extension proven by induction. The lemma is not required to

prove the theorem but it gives a better intuition. The theorem essentially

states that, for contexts at the lefthand side of ; obtained by interleaving

membership entries in the image through Γ· of a valid signature Σ or its

prefixes give judgements in T [CΣ];0K corresponding to judgements in T 0K
S,≤. We

will see later that all the contexts at the lefthand side of ; in T [CΣ];0K are in

fact obtained by interleaving membership entries in prefixes of Σ.

Lemma 17. Let Σ ≡ Σ1,Σ2,Σ3 be a valid signature in T 0K
S,≤ then, for any

c,K and Σ′1,Σ
′
2 such that Σ1 = Σ′1 and Σ1,Σ2 = Σ′1,Σ

′
2 the following hold:

• ` ΓΣ′1
, c:K,ΓΣ′2

; 〈〉 is derivable in T [CΣ];0K if and only if

Σ′1, c:K,Σ
′
2 valid is derivable in T 0K

S,≤

• ` ΓΣ′1
, c:K,ΓΣ′2

; Γ is derivable in T [CΣ];0K if and only if `Σ′1,c:K,Σ
′
2

Γ is

derivable in T 0K
S,≤

• ΓΣ′1
, c:K,ΓΣ′2

; Γ ` J is derivable in T [CΣ];0K if and only if Γ `Σ′1,c:K,Σ
′
2
J

is derivable in T 0K
S,≤.

Proof. By induction on the structure of derivation.

By repeatedly applying the previous lemma (except for the case when we

weaken with the empty sequence, which is straight forward by induction on

the structure of derivations) we can prove:

Theorem 1 (Equivalence for T 0K
S,≤). Let Σ ≡ Σ1, ...,Σn be a valid signature in

T 0K
S,≤ then, for any 1 ≤ k ≤ n, for any {Γi}i∈{0..k} sequences free of subtyping

77

entries and and Σ′1, ...,Σ
′
k such that Σ1, ...,Σk = Σ′1, ...,Σ

′
k for any i ∈ {1..k}

the following hold:

• ` Γ0,ΓΣ′1
,Γ1,ΓΣ′2

,Γ2, ...,Γk−1ΓΣ′k
,Γk; 〈〉 is derivable in T [CΣ];0K if and

only if Γ0,Σ
′
1,Γ1,Σ

′
2,Γ2, ...,Γk−1,Σ

′
k,Γk valid is derivable in T 0K

S,≤

• ` Γ0,ΓΣ′1
,Γ1,ΓΣ′2

,Γ2, ...,Γk−1ΓΣ′k
,Γk; Γ is derivable in T [CΣ];0K if and

only if `Γ0,Σ′1,Γ1,Σ′2,Γ2,...,Γk−1Σ′k,Γk
Γ is derivable in T 0K

S,≤

• Γ0,ΓΣ′1
,Γ1,ΓΣ′2

,Γ2, ...,Γk−1ΓΣ′k
,Γk; Γ ` J is derivable in T [CΣ];0K if and

only if Γ `Γ0,Σ′1,Γ1,Σ′2,Γ2,...,Γk−1Σ′k,Γk
J is derivable in T 0K

S,≤.

Now the aim is to prove that we do not introduce any new subtyping

entries in T 0K
S,≤ by weakening (up to definitional equality). Note that, for

this, it is essential that the weakening rules do not add subtyping entries.

More precisely, in the following lemma I prove a form of strengthening, which

roughly says that by strengthening the assumptions of a subtyping judgement,

we can still derive it (up to definitional equality).

Lemma 18. Let Σ ≡ Σ1,Σ2 a valid signature in T 0K
S,≤, for any c,K, Σ′1 = Σ1

and Σ′1,Σ
′
2 = Σ1,Σ2, if Γ `Σ′1,k:K,Σ′2

A ≤c B is derivable in T 0K
S,≤ then there

exists A′, c′, B′ such that `Σ A′ ≤c′ B′, Γ `Σ′1,k:K,Σ′2
A = A′:Type,

Γ `Σ′1,k:K,Σ′2
B = B′:Type and Γ `Σ′1,k:K,Σ′2

c = c′:(A)B derivable in T 0K
S,≤.

Proof. By induction on the structure of derivation of Γ `Σ′1,k:K,Σ′2
A ≤c B.

If it comes from transitivity with the premises Γ `Σ′1,k:K,Σ′2
A ≤c1 C and

Γ `Σ′1,k:K,Σ′2
C ≤c2 B then, by induction hypothesis, there exist A′, C ′, c′1, C ′′,

B′, c′2 such that `Σ A′ ≤c′1 C
′ and `Σ C ′′ ≤c′2 B

′ and

Γ `Σ′1,k:K,Σ′2
A = A′:Type, Γ `Σ′1,k:K,Σ′2

B = B′:Type,

Γ `Σ′1,k:K,Σ′2
C = C ′:Type, Γ `Σ′1,k:K,Σ′2

C = C ′′:Type,

Γ `Σ′1,k:K,Σ′2
c1 = c′1:(A)C and Γ `Σ′1,k:K,Σ′2

c2 = c′2:(C)B. By transitivity

of equality we have Γ `Σ′1,k:K,Σ′2
C ′ = C ′′:Type. By Lemma 14 we have that

Γ `erase(Σ′1,k:K,Σ′2) C
′ = C ′′:Type is derivable in TS . Similarly, because

`Σ C ′:Type and `Σ C ′′:Type we have that `erase(Σ′1,k:K,Σ′2) C
′:Type and `erase(Σ′1,k:K,Σ′2)

C ′′:Type are derivable in TS . From Strengthening Lemma from [Gog94] which

78

holds for TS we have that `erase(Σ) C
′ = C ′′:Type is derivable. Again, by 14 we

obtain `Σ C ′ = C ′′:Type. At last, we can apply congruence and transitivity

`Σ A′ ≤c′2◦c′1 B
′.

Let us now consider the dependent product rule

Γ `Σ′1,k:K,Σ′2
A′′ ≤c1 A′

Γ `Σ′1,k:K,Σ′2
B′, B′′ : (A′)Type

Γ, x:A′ `Σ′1,k:K,Σ′2
B′(x) ≤c2[x] B′′(x)

Γ `Σ′1,k:K,Σ′2
Π(A′, B′) ≤c Π(A′′, B′′ ◦ c1)

with A ≡ Π(A′, B′), B ≡ Π(A′′, B′′ ◦ c1) and

c ≡ [F : Π(A′, B′)]λ(A′′, B′′ ◦ c1, [x:A′′]c2[x](app(A′, B′, F, c1(x)))).

By induction hypothesis, there exist A′′0, A′0, c′1, B′0, B′′0 , c′2 such that

`Σ A′′0 ≤c′1 A
′
0, `Σ B′ ≤c′2 B

′′ and Γ `Σ′1,k:K,Σ′2
A′′ = A′′0:Type,

Γ `Σ′1,k:K,Σ′2
A′ = A′0:Type, Γ, x:A′ `Σ′1,k:K,Σ′2

B′′(x) = B′′0 :Type,

Γ, x:A′ `Σ′1,k:K,Σ′2
B′(x) = B′0:Type, Γ `Σ′1,k:K,Σ′2

c1 = c′1:(A′′)A′ and

Γ, x:A′ `Σ′1,k:K,Σ′2
c2(x) = c′2:(B′(x))B′′(x):Type are derivable. We apply

dependent product rule for the case when types are constants and obtain

` A′0 −→ B′0 ≤′c A′′0 −→ B′′0 with c′ ≡ [F : A′0 −→ B′0][x:A′′0](c′′2(F (c′1(x)))).

By normal equality rules for dependent product and its terms we have that

Γ `Σ′1,k:K,Σ′2
A′0 −→ B′0 = Π(A′, B′), Γ `Σ′1,k:K,Σ′2

A′′0 −→ B′′0 = Π(A′′, B′′) and

Γ `Σ′1,k:K,Σ′2
c = c′:(Π(A′, B′))Π(A′′, B′′)

By repeatedly applying the previous lemma we obtain

Corollary 2. For Σ valid derivable in T 0K
S,≤, for any partition Σ ≡ Σ1, ...,Σn,

for any

{Γi}i∈{0..n} sequences free of subtyping entries and {Σ′i}i∈{1..n} such that

Σ1, ...,Σi = Σ′1,,Σ
′
i for any i ∈ {1..n}, if

Γ `Γ0,Σ1,Γ1,Σ2,Γ2,...,Γn−1Σn,Γn A ≤c B is derivable in T 0K
S,≤ then there exists

A′, c′, B′ such that `Σ A′ ≤c′ B′, Γ `Γ0,Σ1,Γ1,Σ2,Γ2,...,Γn−1Σn,Γn A = A′:Type,

Γ `Γ0,Σ1,Γ1,Σ2,Γ2,...,Γn−1Σn,Γn B = B′:Type and

Γ `Γ0,Σ1,Γ1,Σ2,Γ2,...,Γn−1Σn,Γn c = c′:(A)B derivable in T 0K
S,≤.

Next I prove that weakening does not break coherence:

79

Lemma 19. For Σ valid in T 0K
S,≤, if Σ ≡ Σ1,Σ2,Σ3 is coherent, for any Σ′1,Σ

′
2

such that Σ1 = Σ′1 and Σ1,Σ2 = Σ′1,Σ
′
2, for any c,K such that Σ′1, c:K,Σ

′
2 is

valid, Σ′1, c:K,Σ
′
2 coherent.

Proof. Let us consider the derivable judgements Γ `Σ′1,c:K,,Σ
′
2
A ≤c B and

Γ `Σ′1,c:K,,Σ
′
2
A ≤d B. Then we know from Corollary 2 that there exist A′, B′,

A′′, B′′, c′, d′ such that `Σ1,Σ2 A
′ ≤c′ B′, `Σ1,Σ2 A

′′ ≤d′ B′′,

Γ `Σ′1,c:K,,Σ
′
2
A′ = A:Type, Γ `Σ′1,c:K,,Σ

′
2
B′′ = B:Type,

Γ `Σ′1,c:K,,Σ
′
2s
B′′ = B:Type Γ `Σ′1,c:K,,Σ

′
2
c = c′:(A)B and

Γ `Σ′1,c:K,,Σ
′
2
d = d′:(A)B are derivable in derivable in T 0K

S,≤. As in the proof of

the previous lemma, using Lemma 14 and Strengthening Lemma from [Gog94]

we have that `Σ1,Σ2 A
′ = A′′:Type, `Σ1,Σ2 B

′ = B′′:Type. By congruence we

have that `Σ1,Σ2 A
′ ≤d′ B′ is derivable in T 0K

S,≤. If Σ is coherent then any prefix

of it Σ1, ...,Σk is coherent so `Σ1,Σ2 c
′ = d′:(A′)B′. Further, by weakening and

Lemma 7, we have the desired result.

By repeatedly applying the previous lemma we obtain:

Lemma 20. For Σ valid in T 0K
S,≤, if Σ ≡ Σ1, ...,Σn is coherent, for any

1 ≤ k ≤ n, for any {Γi}i∈{0..k} sequences free of subtyping entries, for any

{Σ′i}i∈{0..k} such that Σ1, ...,Σi = Σ′1, ...,Σ
′
i for any i ∈ {1..k} such that

Γ0,Σ1,Γ1,Σ2,Γ2, ...,Γk−1,Σk,Γk is valid, then Γ0,Σ1,Γ1,Σ2,Γ2, ...,Γk−1,Σk,Γk

is coherent.

Finally, the following lemma describes the relation between parts of the

context at the lefthand side of the ; of judgements in T [CΣ];0K and Σ. This is a

very important result for proving the coherence of CΣ based on the coherence of

Σ. It states that any such context is in fact obtained from weakening of a prefix

of Σ. In addition from this Lemma, because all the derivable judgements in

T [CΣ];0K that are not in T ; are subtyping judgements, we have as a consequence

that all the judgements of T [CΣ];0K are equivalent to judgements in T 0K
S,≤.

Lemma 21. For Σ a valid signature in T 0K
S,≤, for any derivable judgement

Γ′; Γ ` J in T [CΣ];0K there exists a partition of Σ ≡ Σ1, ...,Σn, 1 ≤ k ≤ n,

80

Γ0, ...,Γk free of subtyping entries and Σ′1, ...,Σ
′
k with Σ′1, ...,Σ

′
i = Σ′1, ...,Σ

′
i

for any 1 ≤ i ≤ k such that Γ′ ≡ ΓΓ0,Σ1,Γ1,...,Σk,Γk

Proof. By induction on the structure of derivation of the judgement in T [CΣ];0K .

I only prove a case for third point when the judgement is Γ′; Γ ` A ≤c B. The

only nontrivial case is when the judgements follows from weakening. Let us

assume it comes from a derivation tree ending with

Γ′1,Γ
′
2; Γ ` A ≤c B Γ′1; 〈〉 ` K kind

Γ′1, c:K,Γ
′
2; Γ ` A ≤c B

with Γ′ ≡ Γ1, c:K,Γ2.

By induction hypothesis we know that there exists a partition

Σ ≡ Σ1, ...,Σn and 1 ≤ k ≤ n and Γ0, ...,Γk and Σ′1, ...,Σ
′
k with

Σ′1, ...,Σ
′
i = Σ′1, ...,Σ

′
i for any 1 ≤ i ≤ k such that Γ′1,Γ

′
2 ≡ ΓΓ0,Σ′1,Γ1,...,Σ′k,Γk

with Γ `Γ0,Σ′1,Γ1...,Σ′k,Γk
A ≤c B. Let us consider the case when

Γ′1 ≡ ΓΓ0,Σ′1,Γ1,...,Γi−1,Σ1′
i

and Γ′2 ≡ ΓΣ2′
i ,Γi,...,Σ

′
k,Γk

. With Σ′i ≡ Σ1′
i ,Σ

2′
i for some

1 ≤ i ≤ k. We consider the partition Σ ≡ Σ1, ...,Σ
1
i ,Σ

2
i , ...,Σn such that

Σ′1, ...,Σ
1′
i ,Σ

2′
i , ...,Σ

′
n Σ1, ...,Σl = Σ′1, ...,Σ

′
l for any l ∈ 1..i− 1, Σ1, ...,Σ

1
i =

Σ′1, ...,Σ
1′
i , Σ1, ...,Σ

1
i ,Σ

2
i = Σ′1, ...,Σ

1′
i ,Σ

2′
i and Σ1, ...,Σl = Σ′1, ...,Σ

′
l for any

l ∈ i+ 1..n and Γ0, ...,Γi−1, c:K,Γi, ...,Γk such that

Γ′ = ΓΓ0,Σ1,...,Γi−1,Σ1
i ,c:K,Σ

2
i ,Γi,...,Σk,Γk

.

The next lemma refers to the ability to argue about coherence of a set of

coercive subtyping judgements corresponding to a signature.

Theorem 2 (Equivalence of Coherence). Let Σ be a valid signature in T 0K
S,≤.

Then Σ is coherent in the sense of Definition 5 if and only if CΣ is coherent

for T [CΣ];0K in the sense of Definition 9.

Proof. Only if: Let Γ′; Γ ` A ≤c B and Γ′; Γ ` A ≤d B be derivable in

T [CΣ];0K . From Lemma 21, it follows that there exists a partition of

Σ ≡ Σ1, ...,Σn and 1 ≤ k ≤ n and Γ0, ...,Γk such that Γ′ = ΓΓ0,Σ1,...,Σk,Γk .

If Σ is coherent, then Γ0,Σ1, ...,Σk,Γk is coherent (from Lemma 20). From

Theorem 1, Γ′; Γ ` A ≤c B and Γ′; Γ ` A ≤d B are derivable in T [CΣ];0K if and

81

only if Γ `Γ0,Σ1,...,Σk,Γk A ≤c B and Γ ` Γ0,Σ1, ...,Σk,ΓkA ≤d B are derivable

in T 0K
S,≤. From coherence here we have Γ `Γ0,Σ1,...,Σk,Γk c = d:(A)B which is

derivable in T 0K
S,≤ if and only if Γ′; Γ ` c = d:(A)B is derivable in T [CΣ];0K

(again by Theorem Theorem 1).

If: By Theorem 1, Γ `Σ A ≤c B:Type and Γ `Σ A ≤d B:Type are derivable

in T 0K
S,≤ if and only if ΓΣ; Γ ` A ≤c B and ΓΣ; Γ ` A ≤d B are derivable in

T [CΣ];0K . Because CΣ is coherent, ΓΣ; Γ ` c = d:(A)B is derivable in T [CΣ];0K

which happens if and only if Γ `Σ c = d:(A)B is derivable in T 0K
S,≤

To prove that the system TS,≤ is well behaved I first prove that it is well

behaved when all the signatures considered are valid in the restricted system

T 0K
S,≤. First I prove another equivalence lemma for this situation.

Theorem 3 (Equivalence between TS,≤ and T [CΣ];). For Σ valid in T 0K
S,≤, the

following hold:

• ` ΓΣ; Γ is derivable in T [CΣ]; if and only if `Σ Γ is derivable in TS,≤

• ΓΣ; Γ ` J is derivable in T [CΣ]; if and only if Γ `Σ J is derivable in

TS,≤.

Proof. By induction on the structure of derivation.

The following theorem shows that the system we defined here is well be-

haved and that every coercive subtyping application is really just an abbrevi-

ation.

Lemma 22. If a valid signature Σ in T 0K
S,≤ is coherent the following hold:

1. If `Σ Γ is derivable in TS,≤ then there exists Γ′ such that `Σ Γ′ is

derivable in T 0K
S,≤ and `Σ Γ = Γ′ is derivable in TS,≤.

2. If Γ `Σ J is derivable in TS,≤ then there exists Γ′, J ′ such that

Γ′ `Σ J ′ is derivable in T 0K
S,≤ and `Σ Γ = Γ′ and Γ `Σ J = J ′ are

derivable in TS,≤.

82

Proof. By Theorem 2, since Σ is coherent in, CΣ is coherent. If we look at the

last case, by Theorem 3, Γ `Σ J is derivable in TS,≤ if and only if ΓΣ; Γ ` J is

derivable in T [CΣ];. From [LSX13, Xue13b] we know that, when CΣ is coherent,

any derivation tree of ΓΣ; Γ ` J can be translated into a derivation tree in

T [CΣ];0K which concludes with the judgement definitionally equal to ΓΣ; Γ ` J .

So let us consider one such derivation tree, its translation and the definitionally

equal conclusion ΓΣ; ∆ ` J ′ (` ΓΣ; 〈〉 is already derivable in T [CΣ];0K so by

inspecting the definition of the translation in [LSX13, Xue13b] we observe that

ΓΣ will not be changed by the translation). We have ` ΓΣ; Γ = ΓΣ; ∆ and

ΓΣ; Γ ` J = J ′ are derivable in T [CΣ];. From Theorem 3 we know that in this

case `Σ Γ = ∆ and Γ `Σ J = J ′ are derivable in TS,≤ so the desired derivable

judgement is simply ∆ `Σ J ′.

3.4.5 The relation between TS,≤ and TS

I can, at last, express the well behavedness of TS,≤. Note that Theorem 22 cov-

ers the well-behavedness of judgements derived under a signature that is valid

in T 0K
S,≤. We now prove further that any signature valid in TS,≤ is definition-

ally equal to a signature valid in T 0K
S,≤, then because of signature replacement

we have that any judgement derivable in in TS,≤ is definitionally equal to a

judgement derivable in T 0K
S,≤.

Lemma 23. For any signature Σ valid in TS,≤ there exists Σ′ valid in T 0K
S,≤

such that Σ = Σ′ is derivable in TS,≤.

Proof. By induction on the length of Σ. We assume Σ = Σ0, c:K. By induction

hypothesis we have that there exists Σ′0 valid in T 0K
S,≤ such that Σ0 = Σ′0. By

repeatedly applying signature replacement to `Σ0 K kind we have

`Σ′0
K kind is derivable in TS,≤. By Lemma 22, we have that there exists K ′

such that `Σ′0
K ′ kind is derivable in T 0K

S,≤ with `Σ′0
K = K ′. That means we

can derive, in T 0K
S,≤, Σ′0, c:K

′ valid. Going back with context replacement we

also have `Σ0 K = K ′ derivable, so Σ′0, c:K
′ is the signature we are looking

for.

83

I finish this section with the following theorem:

Theorem 4. If a valid signature Σ in TS,≤ is coherent the following hold:

1. If `Σ Γ is derivable in TS,≤ then there exists Σ′ and Γ′ such that `Σ′ Γ′

is derivable in T 0K
S,≤ and Σ = Σ′ and `Σ Γ = Γ′ are derivable in TS,≤.

2. If Γ `Σ J is derivable in TS,≤ then there exists Σ′,Γ′, J ′ such that

Γ′ `Σ′ J
′ is derivable in T 0K

S,≤ and Σ = Σ′, `Σ Γ = Γ′ and Γ `Σ J = J ′

are derivable in TS,≤.

Proof. According to the Lemma 23 there exist Σ′ valid in T 0K
S,≤ such that

Σ = Σ′. If we consider the last point, by signature replacement Γ `Σ′ J is

derivable TS,≤. Because Σ′ valid in T 0K
S,≤, we can apply the Lemma 22 to obtain

Γ′ `Σ′ J
′ such that `Σ′ Γ = Γ′ and Γ `Σ′ J = J ′ are derivable in TS,≤. Again

by signature replacement `Σ Γ = Γ′ and Γ `Σ J = J ′.

Further, according to the Lemma 14, the derivability of any nonsubtyping

judgement in T 0K
S,≤ is equivalent to the derivability of a judgement in TS and

any subtyping judgement in T 0K
S,≤ implies a judgement in TS .

To review, in this chapter I proved that, for any derivable judgement J in

TS,≤, there exists a set of derivable judgements in TS for which J is an abbre-

viation. The set of derivable judgements from TS is formed by a corresponding

judgement and the typing judgements for the underlying mappings of all co-

ercions from signatures. I also proved that TS,≤ is a conservative extension of

TS in the classical sense.

84

Chapter 4

Case Studies: Subsumptive

Subtyping, Universes,

Injectivity

The aim of this chapter is to explore some practical situations and the condi-

tions in which they can be represented by the system previously defined. First,

I will consider a system with subsumptive subtyping Π≤, with subtyping en-

tries in contexts, inspired by the system of Aspinall and Compagnoni [AC01].

To represent this system, I will use an instance of the system previously de-

fined, more precisely that when TS is the system specified in LFS with Π-type.

I will refer to this system as ΠS and to its extension with coercive subtyping

as ΠS,≤. The result in this first part is a faithful embedding of Π≤ into ΠS,≤.

This is important because it establishes the connection between coercive

subtyping and a form of subsumptive subtyping, more precisely I claim that

coercive subtyping is a more general notion of subtyping which can, in partic-

ular, represent a form of subsumptive subtyping as opposed to giving coercive

subtyping only as an alternative to subsumptive subtyping as it was previously

done.

The second part of the chapter considers two forms of universes subtyping,

Russell style universes with subsumptive subtyping and Tarski style universes

85

with coercive subtyping. I will argue that the Tarski style setting with coer-

cive subtyping entries in signatures can be used to represent the Russell style

hierarchy.

I finish the chapter with a discussion on a property commonly exhibited by

inclusions, namely injectivity and present a way to add it to the system with

coercive subtyping entries in signatures. I will consider constructor subtyping

with Leibniz equality as the practical situation that exhibits injectivity.

4.1 Embedding Subsumptive Subtyping in Coercive

Subtyping

I start by presenting the system with subsumptive subtyping, then I will con-

cretely present TS,≤ when TS ≡ ΠS and, at last, I will show how to embed Π≤

in ΠS,≤.

4.1.1 Π≤

Here I consider the logical framework LF obtained from LF by changing ` to

. It has the following forms of judgements

1. Γ valid,

2. Γ
 K kind,

3. Γ
 k:K,

4. Γ
 K = K ′ and

5. Γ
 k = k′:K

and the rules from Figure 4.1

I specify the Π-type constants from Figure 4.2 as described in Subsec-

tion 2.1.2. This constants give the rules in Figure 4.3.

I add the forms of judgements Γ
 A ≤ B:Type and Γ
 K ≤ K ′ obtained

with the rules from Figure 4.4. The rules from Figures 4.2, 4.3 and 4.4 consti-

tute the system denoted by Π≤. This rules are also listed in the Appendix E.

86

Validity of Signature/Contexts, Assumptions

 〈〉
Γ
 K kind x 6∈ dom(Γ)

 Γ, x:K

 Γ, x:K,Γ′

Γ, x:K,Γ′
 x:K

Equality Rules

Γ
 K kind

Γ
 K = K

Γ
 K = K′

Γ
 K′ = K

Γ
 K = K′ Γ
 K′ = K′′

Γ
 K = K′′

Γ
 k:K

Γ
 k = k:K

Γ
 k = k′:K

Γ
 k′ = k:K

Γ
 k = k′:K Γ
 k′ = k′′:K

Γ
 k = k′′:K

Γ
 k:K Γ
 K = K′

Γ
 k:K′
Γ
 k = k′:K Γ
 K = K′

Γ
 k = k′:K′

Substitution Rules

 Γ0, x:K,Γ1 Γ0
 k:K

 Γ0, [k/x]Γ1

Γ0, x:K,Γ1
 K′ kind Γ0
 k:K

Γ0, [k/x]Γ1
 [k/x]K′ kind

Γ0, x:K,Γ1
 L = L′ Γ0
 k:K

Γ0, [k/x]Γ1
 [k/x]L = [k/x]L′

Γ0, x:K,Γ1
 k′:K′ Γ0
 k:K

Γ0, [k/x]Γ1
 [k/x]k′:[k/x]K′
Γ0, x:K,Γ1
 l = l′:K′ Γ0
 k:K

Γ0, [k/x]Γ1
 [k/x]l = [k/x]l′:[k/x]K′

Γ0, x:K,Γ1
 K′ kind Γ0
 k = k′:K

Γ0, [k/x]Γ1
 [k/x]K′ = [k′/x]K′
Γ0, x:K,Γ1
 l:K′ Γ0
 k = k′:K

Γ0, [k/x]Γ1
 [k/x]l = [k′/x]l:[k/x]K′

Dependent Product Kinds

Γ
 K kind Γ, x:K
 K′ kind

Γ
 (x:K)K′ kind

Γ
 K1 = K2 Γ, x:K1
 K′1 = K′2
Γ
 (x:K1)K′1 = (x:K2)K′2

Γ, x:K
 y:K′

Γ
 [x:K]y:(x:K)K′
Γ
 K1 = K2 Γ, x:K1
 k1 = k2:K

Γ
 [x:K1]k1 = [x:K2]k2:(x:K1)K

Γ
 f :(x:K)K′ Γ
 k:K

Γ
 f(k):[k/x]K′
Γ
 f = f ′:(x:K)K′ Γ
 k1 = k2:K

Γ
 f(k1) = f ′(k2):[k1/x]K′

Γ, x:K
 k′:K′ Γ
 k:K

Γ
 ([x:K]k′)(k) = [k/x]k′:[k/x]K′
Γ
 f :(x:K)K′ x 6∈ FV (f)

Γ
 [x:K]f(x) = f :(x:K)K′

The kind Type

 Γ

Γ
 Type kind

Γ
 A:Type

Γ
 El(A) kind

Γ
 A = B:Type

Γ
 El(A) = El(B)

Figure 4.1: Inference Rules for LF

Constant declarations:

Π : (A:Type)(B:(A)Type)Type

λ : (A:Type)(B:(A)Type)((x:A)B(x))Π(A,B)

app : (A:Type)(B:(A)Type)(Π(A,B))(x:A)B(x)

Definitional equality rule

app(A,B, λ(A,B, f), a) = f(a) : B(a).

Figure 4.2: Constants for Π-types in logical framework

Besides the ordinary variables from contexts in Π, I allow contexts in Π≤

to have subtyping variables like α ≤ A.

87

Γ
 A : Type Γ, x:A
 B(x) : Type

Γ
 Π(A,B) : Type

Γ
 A : Type Γ
 B : (A)Type Γ
 f : (x:A)B(x)

Γ
 λ(A,B, f) : Π(A,B)

Γ
 g : Π(A,B) Γ
 a : A

Γ
 app(A,B, g, a) : B(a)

Γ
 A : Type Γ
 B : (A)Type
Γ
 f : (x:A)B(x) Γ
 a : A

Γ
 app(A,B, λ(A,B, f), a) = f(a) : B(a)

Figure 4.3: Inference Rules for Π - types specified in LF

General Subtyping Rules

Γ
 K = K′

Γ
 K ≤ K′
Γ
 K ≤ K′ Γ
 K′ ≤ K′′

Γ
 K ≤ K′′

Γ
 A = B:Type

Γ
 A ≤ B:Type

Γ
 A ≤ B:Type Γ
 B ≤ C:Type

Γ
 A ≤ C:Type

Subtyping in Contexts

Γ
 A:Type α 6∈ FV (Γ)

Γ, α ≤ A valid

Γ, α ≤ A,Γ′ valid
Γ, α ≤ A,Γ′
 α:Type

Γ, α ≤ A,Γ′ valid
Γ, α ≤ A,Γ′
 α ≤ A:Type

Type Lifting and Subtyping

Γ
 A ≤ B:Type

Γ
 El(A) ≤ El(B)

Γ
 k:K Γ
 K ≤ K′

Γ
 k:K′
Γ
 k = k′:K Γ
 K ≤ K′

Γ
 k = k′:K′

Dependent Product

Γ
 Π(A,B):Type Γ
 Π(A′, B′):Type

Γ
 A′ ≤ A:Type Γ, x:A′
 B ≤ B′:Type
Γ
 Π(A,B) ≤ Π(A′, B′):Type

Figure 4.4: Subtyping Rules for Π≤

Π≤ is the subsumptive subtyping system specified in LF that corresponds

to the system λP≤ in [AC01]. Note that there are some subtle differences

between Edinburgh LF (λP) [HHP93] and the logical framework LF we use

(LF has rules to derive definitional equality, including β and η rules, whereas

λP leaves definitional equality and β conversion at meta-level and η rule does

not hold here.), but they are irrelevant to the point of this chapter: the system

with coercive subtyping in signatures can be used to faithfully represent a

subsumptive subtyping system.

88

4.1.2 ΠS,≤

Here I shall consider the system described in Section 3.2 of the previous chapter

for the particular case when TS is in fact ΠS . ΠS is the system specified in

LFS given by the rules in Figure 3.1 with the Π-type constants as in Figure 4.2

from the previous section which give the rules in Figure 4.5. A complete listing

of the rules of this system can also be found in the Appendix C.

Γ `Σ A : Type Γ, x:A `Σ B(x) : Type

Γ `Σ Π(A,B) : Type

Γ `Σ A : Type Γ `Σ B : (A)Type Γ `Σ f : (x:A)B(x)

Γ `Σ λ(A,B, f) : Π(A,B)

Γ `Σ g : Π(A,B) Γ `Σ a : A

Γ `Σ app(A,B, g, a) : B(a)

Γ `Σ A : Type Γ `Σ B : (A)Type
Γ `Σ f : (x:A)B(x) Γ `Σ a : A

Γ `Σ app(A,B, λ(A,B, f), a) = f(a) : B(a)

Figure 4.5: Inference Rules for Subtyping in ΠS

In order to extend this system with subtyping, we need to add the struc-

tural subtyping rule for dependent product type to the subtyping rules from

Figure 3.2. The rule is the following

Γ `Σ A′ ≤c1 A : Type

Γ `Σ B,B′ : (A)Type

Γ, x:A `Σ B(x) ≤c2[x] B′(x) : Type

Γ `Σ Π(A,B) ≤d Π(A′, B′ ◦ c1) : Type
(∗)

where d ≡ [F : Π(A,B)]λ(A′, B′ ◦ c1, [x:A′]c2[x](app(A,B, F, c1(x))))

Let us now consider the system Π0K
S,≤ given by the rules in Figures 3.1, 4.5,

3.2 and 3.3 and the rule (∗). All these rules can also be found listed in the

Appendix C. Coherence in the sense of the Definition 5 is now considered for

signatures in the system Π0K
S,≤.

At this point, as studied by Luo and Adams [LA08], we need to make sure

that we cannot produce incoherence from derivable premises. It turns out

that for this particular way of adding dependent product, we don’t need to do

anything further. For example, if we consider the situation when we have a

coercion obtained from transitivity and one from the (∗) rule. Let us assume

89

we have a

Γ`ΣA
′′≤c′1

A′≤c1A:Type

Γ`ΣA′′≤c1◦c′1
A:Type

Γ`ΣB,B
′,B′′:(A)Type Γ,x:A`ΣB(x)≤c2[x]B

′(x)≤c′2[x]B
′′(x):Type

Γ,x:A′′`ΣB(x)≤c′2[x]◦c2[x]B
′′(x):Type

Γ `Σ Π(A,B) ≤d Π(A′′, B′′ ◦ (c1 ◦ c′1)) : Type

where d(F) = λ(A′′, B′′◦(c1◦c′1), [x:A′′](c′2[x]◦c2[x])(app(A,B, F, (c1◦c′1)(x)))

for F : Π(A,B) and (omitting :Type)

Γ`ΣA
′′≤c′1

A′ Γ,x:A′`ΣB
′(x)≤c′2[x]B

′′(x)

Γ`ΣΠ(A′,B′)≤d2Π(A′′,B′′◦(c′1))

Γ`ΣA
′≤c1A Γ,x:A`ΣB(x)≤c2[x]B

′(x)

Γ`ΣΠ(A,B)≤d1Π(A′,B′◦(c1))

Γ `Σ Π(A,B) ≤d2◦d1 Π(A′′, B′′ ◦ (c1 ◦ c′1))

where d1(F) = λ(A′, B′ ◦ c1, [x:A]c2[x](app(A,B, F, c1(x))) for F : Π(A,B)

and d2(G) = λ(A′′, B′′ ◦ c′1, [x:A′′]c′2[x](app(A′, B′, G, c′1(x))) for G : Π(A′, B′).

The question is, whether, for F : Π(A,B), (d2 ◦ d1)(F) = d(F).

(d2 ◦ d1)(F) = d2(d1(F))

= d2(λ(A′, B′ ◦ c1, [x:A′]c2[x](app(A,B, F, c1(x))))

= λ(A′′, B′′ ◦ c′1, [x:A′′]c′2[x](app(A′, B′, λ(A′, B′ ◦ c1,

[x:A′]c2[x](app(A,B, F, c1(x))), c′1(x)))

= λ(A′′, B′′ ◦ (c1 ◦ c′1),

[x:A′′](c′2[x] ◦ c2[x])(app(A,B, F, (c1 ◦ c′1)(x)))

= d(F)

Note that here I used the app constant instead of the eliminator discussed

in Subsection 2.1.2 which is lazy and the above equality happens with η rule.

It turns out that if we used the eliminator for dependent product which is

strict in defining the structural coercion we would no longer be able to prove

this. Let

EΠ : (A:Type)(B:(A)Type)(C:(Π(A,B))Type)(g:((f : (x:A)B(x))

C(λ(A,B, f))))(z:Π(A,B))C(z)

90

and

d(F) = EΠ(A,B, [f :Π(A,B)]Π(A′′, B′′), [g:(x:A)B(x)]λ(A′′, B′′ ◦ (c1 ◦ c′1),

[x:A′′]c′2[x](c2[x]g((c1 ◦ c′1)(x)))), F)

then we have

(d2 ◦ d1)(F) = d2(d1(F))

= d2(EΠ(A,B, [f1:Π(A,B)]Π(A′, B′),

[g:(x:A)B(x)]λ(A′, B′ ◦ (c1), [x:A′]c2[x]g(c1(x))), F))

= EΠ(A′, B′, [f2:Π(A′, B′)]Π(A′′, B′′),

[h:(x:A′)B′(x)]λ(A′′, B′′ ◦ (c′1), [x:A′′]c′2[x]h(c′1(x))),

EΠ(A,B, [f1:Π(A,B)]Π(A′, B′), [g:(x:A)B(x)]λ(A′, B′ ◦ (c1),

[x:A′]c2[x]g(c1(x))), F))

and this cannot be reduced any further.

As studied by Luo and Adams [LA08], a solution for this is the addition of

a functoriality rule. In this chapter, for simplicity I will stick to the usage of

app. Similarly, one can add structural subyping rule for dependent sum with

projections.

With coherence defined for signatures of the system Π0K
S,≤, I form the system

ΠS,≤ from the rules Figures 3.1, 4.5, 3.2, 3.3 and 3.4 and the rule (∗). The

rules for this system can also be found listed together in the Appendix C.

Note that the fact that we consider Π and the structural subtyping rule for Π

- type does not impact the well-behavedness proof from the Section 3.4 of the

previous chapter. It carries over simply by considering Π;, the type system

specified in LF ; with Π-type, Π[C]; instead of T [C]; and it should also have

91

structural subtyping rule for dependent product type

ΣΓ`A′≤c1A:Type Σ;Γ`B,B′:(A)Type Σ;Γ,x:A`B(x)≤c2[x]B
′(x):Type

Σ;Γ`Π(A,B)≤dΠ(A′,B′◦c1):Type (∗)

where d ≡ [F : Π(A,B)]λ(A′, B′ ◦ c1, [x:A′]c2[x](app(A,B, F, c1(x))))

4.1.3 The embedding of Π≤ in ΠS,≤

Once introduced Π≤ I proceed by giving an interpretation of it in the sys-

tem with coercive subtyping in signatures ΠS,≤, namely I will show that this

calculus can be faithfully embedded in the coercive subtyping one.

In this system, an important thing to note is how placing subtyping en-

tries in contexts interferes with abstraction, specifically, the abstraction is not

allowed at the lefthand side of subtyping entries. I will give a mapping that

sends the contexts with subtyping entries in the subsumptive system to sig-

natures in the coercive system, prove that these signatures are coherent, and,

finally, that we can embed the subsumptive subtyping system into the coer-

cive subtyping system via this mapping. I am motivated by giving a coercive

subtyping system in which I can represent this subsumptive system and at the

same time allowing abstraction to happen freely.

I will assume that ∆ is an arbitrary context in Π≤. We can also assume

without loss of generality that ∆ ≡ ∆1, α1 ≤ A1, ...,∆n, αn ≤ An,∆n+1, where

{αi ≤ Ai}i=1,n are all of the subtyping entries of ∆. If ∆n+1 is free of sub-

typing entries we can abstract over its entries freely but the abstraction is

obstructed by αn ≤ An for the entire prefix. I move this prefix, together

with the obstructing entry to the signature using constant coercions Σ∆ =

∆1, α1:Type, c1:(α1)A1, α1 ≤c1 A1:Type, ...,∆n, αn:Type, cn:(αn)An, αn ≤cn An:Type.

I map the left ∆n+1 to a context. This way, for

∆ ≡ ∆1, α1 ≤ A1, ...,∆n, αn ≤ An,∆n+1, the judgement ∆ ` J from Π≤ gets

translated to ∆n+1 `Σ∆
J in ΠS,≤, with Σ∆ as above. In the rest of the sec-

tion we shall prove that mapping subsumptive subtyping entries in context to

constant coercions in signature is indeed adequate. For this, I first prove that

92

such a signature is coherent.

Lemma 24. For any valid context ∆ in Π≤, Σ∆ is coherent w.r.t. ΠS,≤.

Proof. We need to show that, in ΠS,≤, if we have Γ `Σ∆
T1 ≤c T2 and

Γ `Σ∆
T1 ≤c′ T2, then c = c′:(T1)T2. There are two cases:

1. T1 ≡ α is a constant. By the validity of ∆, we have that, if αi ≤ Ai

and αj ≤ Ai are two different subtyping entries in ∆, then αi 6= αj ,

therefore, if αi ≤ci Ai and αj ≤cj Ai are two different coercions in Σ∆,

then necessarily, αi 6= αj .

2. T1 ≡ Π(A,B) and T2 ≡ Π(A′′, B′′). In this case the non trivial situation

is:

Γ `Σ Π(A,B) ≤c1 C Γ `Σ C ≤c2 Π(A′′, B′′)

Γ `Σ Π(A,B) ≤c2◦c1 Π(A′′, B′′)

and C is equal to dependent product too. What we need to show is

that applying dependent product rule followed by transitivity leads to

the same coercion as applying transitivity first and then the dependent

product rule. Namely that, for some A′, B′ such that

Γ `Σ∆
A′′ ≤c2 A′ ≤c1 A Γ `Σ∆

B ≤d1 B
′ ≤d2 B

′′

Γ `Σ∆
Π(A,B) ≤e1 Π(A′, B′) ≤e2 Π(A′′, B′′)

where, for F :A −→ B andG:Π(A′, B′), e1(F) = λ[x′:A′]d1(app(F, c1(x′)))

and e2(G) = λ[x′′:A′′]d2(app(G, c2(x′′))) applying transitivity rule, first

to A, A′, A′′ and to B, B′, B′′ and then to Π(A,B), Π(A′, B′), Π(A′′, B′′)

results in the same coercion, that is:

e2 ◦ e1 = e2(e1(F))

= λ[x′′:A′′]d2(app(e1(F), c2(x′′)))

=β λ[x′′:A′′]d2(d1(app(F, c1(c2(x′′)))))

= d2 ◦ d1(app(F, c1(c2(x′′))))

93

Notation If Γ `Σ k:K and Γ `Σ K ≤c K ′ are derivable in ΠS,≤, I write

Γ `Σ k :: K ′.

Theorem 5 (Embedding Subsumptive Subtyping). Let ∆ and Γ be valid con-

texts in Π≤, such that Γ does not contain any subtyping entries. Then we have:

1. If ∆,Γ is valid in Π≤ then `Σ∆
Γ valid in ΠS,≤.

2. If ∆,Γ
 K kind is derivable in Π≤, then Γ `Σ∆
K kind is derivable

in ΠS,≤.

3. If ∆,Γ
 K = K ′ is derivable in Π≤, then Γ `Σ∆
K = K ′ is derivable

in ΠS,≤.

4. If ∆,Γ
 k:K is derivable in Π≤, then Γ `Σ∆
k::K in ΠS,≤.

5. If ∆,Γ
 k = k′:K is derivable in Π≤, then Γ `Σ∆
k = k′::K in ΠS,≤.

6. If ∆,Γ
 A ≤ B:Type is derivable in Π≤ then Γ `Σ∆
A ≤c B:Type, for

some coercion c:(A)B, is derivable in ΠS,≤.

7. If ∆,Γ
 K ≤ K ′is derivable in Π≤, then Γ `Σ∆
K ≤c K ′, for some

c:(K)K ′, is derivable in ΠS,≤.

Proof. The proof proceeds by induction on derivations for all the points of

the theorem and I only exhibit it for the sixth point here and in particular

when the last rule in the derivation tree is the one for the dependent product.

We have, by induction hypothesis, that, for Γ `Σ∆
Π(A,B)::Type and Γ `Σ∆

Π(A′, B′)::Type we have Γ `Σ∆
A′ ≤c A:Type and

Γ, x:A′ `Σ∆
B ≤c′ B′:Type. Note that, if K ≤c Type, then K ≡ Type, so

Γ `Σ∆
Π(A,B)::Type is equivalent to Γ `Σ∆

Π(A,B):Type, and

Γ `Σ∆
Π(A′, B′)::Type is equivalent to Γ `Σ∆

Π(A′, B′):Type, hence we can

directly apply the rule for dependent product in ΠS,≤ to obtain

Γ `Σ∆
Π(A,B) ≤d Π(A′, B′):Type where

F :Π(A,B), d(F) = λ[x:A′]c′(app(F, c(x))).

94

What this proves is that we can represent the previously introduced sub-

sumptive subtyping system in the system with coercive subtyping in signa-

tures, meaning that we can argue about the former system with the sematic

richness of the latter.

4.2 Representing Russell style universes in Tarski

style universes

Universes were introduced by Martin-Löf [ML98, ML75, ML82, ML84] for his

intuitionistic type theory to enable the formulation of type of types motivated

by the need to have reflection principle (it is closed to formation of inductive

types) and at the same time avoid the paradox of having all formulas in the

system provable which is caused by having a type of all types studied by

Girard [Gir72] and later presented presented by Coquand [Coq86]. Two forms

of universes were introduced, Russell and Tarski style. I introduced these forms

of universes in Subsection 2.1.4 and I explained how Russell style is easier to

use than Tarski style. I also mentioned that Russell style universes bear a

subsumptive hierarchy induced by cumulativity. I gave an example of how

Tarski style can be used to form these inductive types without cumulativity

but at the expense of a more complicate system to work with.

In what follows I will present two forms of subtyping for the two styles of

universes, I will explain why one of them can introduce issues for meta-theory

and how we can use signatures to represent it in the other style.

Russell-style Universes and Subsumptive Subtyping.

Let us extend the subsumptive subtyping system Π≤ from Section 4.1 with

Russell-style universes by adding the rules in Figure 4.6.

Problems with Russell style universes were observed by Luo [Luo12b]. This

straightforward formulation of universes does not satisfy the properties of

canonicity or subject reduction if one adopts the standard notation of terms

with full type information. For instance, the term λX:U1.Nat , where Nat : U0,

95

for i ∈ ω

Γ valid

Γ
 Ui : Type

Γ
 A : Ui
Γ
 A : Type

Γ valid

Γ
 Ui : Ui+1

Γ valid

Γ
 Ui ≤ Ui+1

Γ
 A : Ui Γ
 B : (A)Ui
Γ
 Π(A,B) : Ui

Figure 4.6: Inference Rules for Russell Style Universes with Π-type

would be represented as λ(U1, [:U1]U0, [:U1]Nat), but this term, which is of

type U0 → U0 (by subsumption, since U1 → U0 ≤ U0 → U0 by contravari-

ance), is not definitionally equal to any canonical term which is of the form

λ(U0, ...).

An alternative is to use proof terms with less typing information like using

(a, b) instead of pair(A,B, a, b) to represent pairs, as in HoTT (see Appendix

2 of [Uni13]). The problem with this approach is that not only the property

of type uniqueness fails, but a proof term may have incompatible types. For

example, for a : A and A : U , where U is a type universe, the pair (A, a)

has both types U ×A and ΣX:U.X, which are incompatible in the sense that

none of them is a subtype of the other. This would lead to undecidability

of type checking which is unacceptable for type theories with logics based on

the propositions-as-types principle. To see the problem of type checking, it

may be worth pointing out that, for a dependent type theory, type checking

depends on type inference that is, in a type-checking algorithm one has to

infer the type of a term in many situations, however, it has not been studied

what happens in presentations where, in our case pairs are only type-checked.

Tarski Style Universes with Coercive Subtyping to represent Russell

Style Universes

The Tarski-style universes are introduced into ΠS,≤ by adding the rules in

Figure 4.7.

Further, I annotate the lifting operators ti+1 as coercions, as suggested

in [Luo12b]. Already the example considered in Subsection 2.1.4 is simpli-

fied with coercive application. The analogous to Σ(Ui, λX:Ui.X) from Russell

96

for i ∈ ω
`Σ Γ

Γ `Σ Ui : Type

Γ `Σ a : Ui
Γ `Σ Ti(a) : Type

`Σ Γ

Γ `Σ ti+1 : (Ui)Ui+1

where ti+1 are the lifting operators,

`Σ Γ

Γ `Σ ui : Ui+1

`Σ Γ

Γ `Σ Ti+1(ui) = Ui : Type

where ui is the name of Ui in Ui+1

With the equation: Ti+1(ti+1(a)) = Ti(a):Type

Γ `Σ a : Ui Γ, x : Ti(a) `Σ b(x) : Ui
Γ `Σ πi(a, b) : Ui

which satisfy the following equations:
Γ `Σ Ti(πi(a, b)) = Π(Ti(a), [x:Ti(a)]Ti(b(x))) : Type
Γ `Σ ti+1(πi(a, b)) = πi+1(ti+1(a), [x:Ti(a)]ti+1(b(x))) : Ui+1

Figure 4.7: Inference Rules for Tarski Style Universes with Π-type

style, which we considered then, and which was Σ(Ui, [x:Ti+1(ui)]Ti+1(ti+1(x)))

now becomes Σ(Ui, [x:Ti+1(ui)]Ti+1(x)).

At this point we can further ask that all the signatures start with the prefix

Σi ≡ U0 ≤t0 U1, ..., Ui−1 ≤ti Ui where i is bigger than the largest universe

index that is used in an application. If universes are specified in the Tarski-

style as above with the lifting operators declared as coercions, together with

several notational conventions (eg, Ti is omitted, ui is identified with Ui, etc.),

they can now be used easily in Russell-style. The lifting operators are not

seen (implicit) by the users. In particular, in this setting, all the Russell-style

universe rules become derivable. Theorem 5 can now be extended in such a

way that the Russell-style universes are faithfully emulated by the Tarski-style

universes with coercive subtyping.

4.3 Injectivity and Constructor Subtyping

In subsumptive subtyping, A ≤ B means that A is directly embedded in B.

Intuitively, this may imply that, for a and a′ in A, if they are not equal in

B, then they are not equal in A, either. If we think of sets, we know that if

a set A is a subset of another set B, then one can always define an injective

mapping from A to B. If we consider coercive subtyping A ≤c B, this would

97

translate to the requirement that c is injective in the sense that c(a) = c(a′)

implies that a = a′. Here I shall formally discuss this issue in the context of

representing intuitive subtyping notions by means of coercions.

In what follows I explore a particular situation which exhibits injectivity.

More precisely, I look at Leibniz equality for a system with constructor sub-

typing as developed by Barthe and Frade [BF99]. I introduced this example

in Subsection 2.3.1. In this setting an (inductive) type is considered to be a

subtype of another if the latter has more constructors than the former. Here

I discuss the example they start from, namely Even Numbers(Even) being a

subtype of Natural Numbers (Nat) with the argument that the constructors

of Even are 0 and successor of Odd , where Odd is given by the constructor

successor of Even. Then, in Nat the successor constructor is overloaded to a

lifting of these constructors as well. Formally they write:

datatype Odd = S o f Even and Even = 0

| S o f Odd

datatype Nat = 0

| S o f Nat

| S o f Odd

| S o f Even

Leibniz equality is defined as follows: x = y if for any predicate P ,

P (x) ⇐⇒ P (y). We denote by x =A y for some type A the Leibniz equality

between x and y related to a certain domain. Then, we have injectivity of sub-

typing if, given x =Nat y, with x, y:Even it is the case that x =Even y. Namely,

whether for any predicate Q:Even −→ Prop, it is the case that Q(x)⇐⇒ Q(y).

For this it is enough to show that any predicate Q:Even −→ Prop admits a

lifting Q′:Nat −→ Prop such that for any x:Even, Q′(x) =⇒ Q(x). We can

easily define such a Q′ as follows:

Q’ (x) = Q(0) i f x = 0

Q(S(n)) i f x = S o f n : Odd

true i f x = S o f n : Even

98

t rue i f x = S o f n : Nat

Injectivity of the embedding holds here but it does not transfer without addi-

tionally imposing properties for the coercion.

To represent the example above in a coercive subtyping calculus we can

consider a predicate subtyping as in [BB08], or if we want to see even natural

numbers as a dependent pair(Sigma Type), as described by Luo [Luo99] when

talking about adjectives associated with nouns. In either case, the coercion

will be the first projection. In Coq proof assistant [Coq10] for example, we

can write it like this:

Induct ive Nat : Type :=

| O : Nat

| S : Nat −> Nat .

Induct ive even : Nat −> Prop :=

| O1 : even O

| S1 : f o r a l l n1 , even n1 −> even (S (S n1)) .

Induct ive Even := pa i r {n : Nat ; e : even n } .

D e f i n i t i o n pro j1 (ev : Even) :=

match

ev with pa i r n e => n

end .

Coercion pro j1 : Even >−> Nat .

Note that the definition of Even changed and we refer to it as a feature of

the natural numbers rather than as a subset. In order for a natural number

to be even we require a proof of that. Also note that this discussion uses first

order data types, and it would be considerably more complicated for higher

order data types.

We can have two proofs that 4 is even p1, p2:even4, and hence, two pairs

(4, p1), (4, p2):Even mapped to the same 4:Nat . Enforcing injectivity here is

similar to enforcing proof irrelevance. This happens to hold for this example,

in particular, as proved by Hedberg [Hed98]. Simply put, any two proofs that

99

O is even will be equal as they reduce to O1. Then, for any even number

n = S(S(m)) (where the even number m can be understood as n− 2), we do

induction on n and we have by induction hypothesis that any two proofs that

m is even are equal. Let such a proof be p:even(S(S(m))), then any proof

q:even(S(S(n))) that n is even is of the form S1(S(S(m)))p so any two such

proofs are also equal.

An extended example that no longer proves injectivity is as follows.

Induct ive Nat : Type :=

| O : Nat

| S : Nat −> Nat .

Induct ive even : Nat −> Prop :=

| O1 : even O

| O2 : even O

| S1 : f o r a l l n1 , even n1 −> even (S (S n1)) .

Induct ive Even := pa i r {n : Nat ; e : even n } .

D e f i n i t i o n pro j1 (ev : Even) :=

match

ev with pa i r n e => n

end .

Coercion pro j1 : Even >−> Nat .

The reason this coercion is not injective is that we can have two dif-

ferent proofs that O is even O1, O2:evenO, and hence, two different pairs

(O,O1), (O,O2):Even, both of them being mapped to the same O:Nat .

So the following definition makes sense. For functions f :(x:A)B I denote

injective(f) = ∀x, y:A.f(x) =B f(y) −→ x =A y

. A function f is then injective if ∃p:injective(f).

Definition 12. Let Σ, A, B, c such that `Σ A:Type, `Σ B:Type, `Σ A ≤c B

are derivable. Then c is injective under Σ if `Σ p:injective(c) is derivable

100

for some p.

In particular, for a constant coercion (namely of the form

`Σ0,c:(A)B,Σ1,A≤cB,Σ2,Σ3
A ≤c B) we can add the assumption that it is injective

`Σ0,c:(A)B,Σ1,A≤cB,Σ2,p:injective(c),Σ3
A ≤c B

If we embed a subsumptive subtyping that propagates an equality from a type

throughout its subtypes, we represent it as a constant coercion, thus, all we

need to do is add the assumption that a coercion is injective. It is obvious

that the transitivity and congruence preserve the injectivity property.

101

Chapter 5

Conclusion and Future Topics

In this thesis I introduced a new formulation of subtyping in type theories spec-

ified in a logical framework with signatures. The logical framework considered

here is a variant of Luo’s logical framework [Luo94] but I expect a similar

development can be done for type theories such as Martin-Löf’s specified in

Martin-Löf’s logical framework [NPS90] as they are similar.

This formulation achieves a balance between being powerful enough to rep-

resent some practical situations from the area of subsumptive subtyping and

having a reasonably easy meta-theory. In addition. it is a formulation closer

to the programming model of proof assistants compared to the previous sys-

tems of coercive subtyping from [LSX13, Xue13b] but still very much related

to it, a thing which I have used to prove that the system I introduced here is

well-behaved as an extension of the original system without subtyping in that

it is a conservative extension and every derivable judgement in it is only an

abbreviation of a derivable judgement in the base system.

For the examples considered here, I chose certain inductive types but other

inductive types can be considered in a similar manner. More precisely, I dis-

cussed in Subsection 4.1.2 the coherence of the system with Π - types intro-

duced with app constant. I expect the same situation for a system with Σ -

types introduced with projections. I also discussed why an additional functo-

riality rule discussed in [LA08] would be required to ensure the coherence if

the eliminator was used instead of app constant. A functoriality rule would

102

also ensure coherence for other inductive types introduced with eliminator.

The development in this thesis raised some questions open for future work

which is what I present in the rest of this chapter.

5.1 Definitionality

The discussion in this section was also presented during a talk at Types’17

using Sigma - types. Here I shall use Π - types as the system Π has been often

discussed in the thesis and the rules for it can be found in the Appendix A.

I mentioned in Section 3.4 that Luo et al. [LSX13, Xue13b, Xue13a] refer

to the well-behavedness in which T ′ is an extension of T and

1. T ′ is conservative: any judgement in T derivable in T ′ is derivable in T

2. every valid derivation tree D′ in T ′ can be translated into a valid deriva-

tion tree D in T such that the conclusion of D′ is definitionally equal to

the conclusion of D

as definitional extension.

Indeed, this definition captures a generalization of the Kleene’s [Kle52]

idea of extension by definition by expressing that the extension is nothing

more than an abbreviation for certain judgements in the base system. But

how comprehensive is it for type theory?

If we consider a straightforward translation of Kleene’s definition, we ob-

tain a notion of definitional extension related to the notion of conservativity

as studied in [Hof95, Lum10] where an embedding of a type theory into its

extension is used and induces a particular notion of definitional extension with

new symbols. In the setting of this thesis, it can be formulated as follows.

1. Let T and T ′ be type theories specified in LF and T ′ an extension of T

by adding new terms and rules.

2. Let f be a mapping from the terms of T ′ to those of T such that

• f |T = idT , and

103

• the new rules involving the new terms in T ′ all become admissible

under f in T .

Then T ′ is a definitional extension of T if and only if T ′ is a conservative

extension of T and the definition rules of the form

Γ ` k:K Γ ` f(k):K

Γ ` k = f(k) : K

are admissible in T ′.

Another way to think of this is that T ′ extends T with new terms and

new rules, including those definition rules which correspond to the definition

axiom in Kleene’s setting of first-order theories.

Observe that f induces a mapping on judgements f as follows:

1. x1:K1, ..., xn:Kn ` El(A) kind

7−→ x1:f(K1), ..., xn:f(Kn) ` El(f(A)) kind

2. x1:K1, ..., xn:Kn ` (x:K)L kind

7−→ x1:f(K1), ..., xn:f(Kn) ` (x:f(K))f(L) kind

3. x1:K1, ..., xn:Kn valid 7−→ x1:f(K1), ..., xn:f(Kn) valid

4. x1:K1, ..., xn:Kn ` K = L 7−→ x1:f(K1), ..., xn:f(Kn) ` f(K) = f(L)

5. x1:K1, ..., xn:Kn ` k:K 7−→ x1:f(K1), ..., xn:f(Kn) ` f(k):f(K)

6. x1:K1, ..., xn:Kn ` k = l:K

7−→ x1:f(K1), ..., xn:f(Kn) ` f(k) = f(l):f(K)

and because of definition rules, context replacement and equality rules we

obtain that if J is derivable in T ′, then f(J) is also derivable in T .

In this setting, some meta-theoretic properties are carried over from T to

its definitional extension T ′. For instance, if kind uniqueness holds for T , so

does it for T ′. To show this, let us consider Γ ` k:K and Γ ` k:L derivable

in T ′. Then f(Γ) ` f(k):f(K) and f(Γ) ` f(k):f(L) are derivable in T and

because kind uniqueness holds here we know that f(Γ) ` f(K) = f(L). By

104

repeated application of definition rules and context replacement, f(Γ) = Γ and

Γ ` f(K) = f(L) are derivable in T ′. Again by definition rules Γ ` f(K) = K

Γ ` f(L) = L are derivable in T ′, we have that Γ ` K = L is also derivable in

T ′.

To exemplify the syntactic mapping justification of definitionality, we can

consider Π, a type theory specified in LF with Π-types and Π[−→], the ex-

tension of Π with function type and the rules in Figure 5.1

Γ ` A : Type Γ ` B : Type

Γ ` A −→ B : Type

Γ ` A : Type Γ ` B : Type Γ ` f : (A)B

Γ ` λ−→(A,B, f) : A −→ B

Γ ` g:A −→ B Γ ` a : A

Γ ` app−→(A,B, g, a) : B

Γ ` A : Type Γ ` B : Type
Γ ` f : (A)B Γ ` a : A

Γ ` app−→(A,B, λ−→(A,B, f), a) = f(a) : B

Figure 5.1: Inference Rules for −→ - type

A syntactic map f :Term(Π[−→]) −→ Term(Π) can be defined as follows

1. f |Term(Π) = IdTerm(Π)

2. f(A −→ B) = Π(A, [x:A]B)

3. f(λ−→(A,B, f)) = λ(A, [x:A]B, f)

4. f(app−→(A,B, g, a)) = app(A,B, g, a)

Then, if in Π[−→] the definition rules

Γ ` A:Type Γ ` B:Type

Γ ` A −→ B = Π(A, [x:A]B)

Γ ` A : Type Γ ` B : Type Γ ` f : (A)B

Γ ` λ−→(A,B, f) = λ(A, [x:A]B, f) : Π(A, [x:A]B

Γ ` g:A −→ B Γ ` a : A

Γ ` app−→(A,B, g, a) = app(A, [x:A]B, g, a) : ([x:A]B)(a)

105

are admissible, then Π[−→] is a definitional extension of Π. Note that, in this

case, ([x:A]B)(a) = [a/x]B = B as B does not depend on A.

Unfortunately this straightforward way of expressing definitionality in type

theory leaves out some situations in which the extension and the base system

have the same set of terms, such as the extension with coercive subtyping

discussed in Chapter 3 and [LSX13, Xue13b]. However, we have clearly seen

that coercive subtyping gives a way to abbreviate some judgements in the base

system and nothing more so the natural way to think of it is that this extension

is too, a definitional extension in a sense. This was discussed in [LSX13,

Xue13b, Xue13a] and led to the definition I mentioned at the beginning of

this section. This definition needs to take derivation trees into consideration.

This definition is in a sense a generalization of the sense that uses a syntactic

mapping. To see this, it might be helpful to rephrase it so that it focuses on

judgements rather than derivation trees as follows:

T ′ is an extension of T that adds new terms and rules then T ′ is definitional

if and only if:

1. It is conservative.

2. For every derivable judgement J ′ in T ′, for any D a derivation tree of

J ′, there exists J derivable in T such that J ′ =D J .

where J ′ =D J is defined inductively by the fact that, if

D ≡
D1
J ′1
· · · DnJ ′n
J ′

J and J ′ are definitionally equal and there exist J1, ..., Jn such that J ′1 =D1 J1,

..., J ′n =Dn Jn and

J1 · · · Jn
J

is admissible in T .

However this definition is still not general enough to cover new forms of

judgements as we don’t have definitional equality available for judgements of

different forms. Because of this, I think an important step in the direction of

106

establishing a comprehensive definition of definitionality or, so to say, what

it means to be a syntactic sugar for type theories would be to generalize

the meaning of definitionality to the point that it does cover new forms of

judgements.

5.2 Parameterized and Dependent Coercions

Parameterized coercions, in the sense of point-wise subtyping described by

Luo and Soloviev [LS99, SL02] are coercions parameterized over free vari-

ables, for example, if A ≤c B then for any n, V ectA(n) ≤c V ectB(n) where

c(a1, ..., an) = (c(a1), ..., c(an)). Here c is parameterized by n. This kind of co-

ercions are used for example in the study of natural language semantic (Asher

and Luo [AL12]).

An interesting future work would be to study how, if possible, one can

represent this in the system with coercive subtyping entries in signatures as

we don’t have free variables available there. Similarly, it would be interesting

to study the potential of this system to represent dependent coercions in the

sense of [LS99], of the form x:A ≤c B(x). A possibility would be to allow the

substitution and not abstraction for the entries in signatures but how to do

this and the consequences have yet to be studied.

107

Bibliography

[AC01] D. Aspinall and A. Compagnoni. Subtyping dependent types. The-

oretical Computer Science, 266:273–309, 2001.

[Agd08] The Agda proof assistant (version 2).

http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php,

2008.

[AL12] Nicholas Asher and Zhaohui Luo. Formalization of coercions in

lexical semantics. 2012.

[BB08] B. Barras and B. Bernardo. The implicit calculus of constructions

as a programming language with dependent types. Foundations

of Software Science and Computational Structures, 4962:365–379,

2008.

[BCGS91] Valeriu Breazu-Tannen, Thierry Coquand, Carl A. Gunter, and

Andre Scedrov. Inheritance and explicit coercion. Information and

Computation, 93, 1991.

[BF99] G. Barthe and M. J. Frade. Constructor subtyping. Lecture Notes

in Computer Science, 1576:109–127, 1999.

[BT98] Gustavo Betarte and Alvaro Tasistro. Extension of Martin-Löf’s

type theory with record types and subtyping. Oxford University

Press, 1998.

[Chu32] Alonzo Church. A set of postulates for the foundation of logic.

Annals of Mathematics, 33(2):346–366, 1932.

108

[Chu40] Alonzo Church. A formulation of the simple theory of types. J

Symbolic Logic, (5):56–68, 1940.

[CL01] Paul Callaghan and Zhaohui Luo. An implementation of LF with

coercive subtyping and universes. Journal of Automated Reasoning,

27(1):3–27, 2001.

[CL14] Stergios Chatzikyriakidis and Zhaohui Luo. Natural language infer-

ence in Coq. J. of Logic, Lang. and Inf., 23(4):441–480, December

2014.

[CL15] S. Chatzikyriakidis and Z. Luo. Using signatures in type theory to

represent situations. T. Murata, K. Mineshima and D. Bekki (eds).

New Frontiers in Artificial Intelligence - JSAI-isAI 2014 Work-

shops in Japan (LENLS, JURISIN and GABA), Revised Selected

Papers. LNCS 9067, 2015.

[Coq86] Thierry Coquand. An analysis of Girard’s paradox. In Proceedings

of the IEEE Symposium on Logic in Computer Science, pages 227–

236, 1986.

[Coq10] The Coq Development Team. The Coq Proof Assistant Reference

Manual (Version 8.3), INRIA, 2010.

[CP90] Thierry Coquand and Christine Paulin. Inductively defined types.

In Proceedings of the International Conference on Computer Logic,

COLOG ’88, pages 50–66, London, UK, UK, 1990. Springer-Verlag.

[Dyb91] P. Dybjer. Inductive sets and families in Martin-Löf’s type the-

ory and their set-theoretic semantics. In G. Huet and G. Plotkin,

editors, Logical Frameworks. Cambridge University Press, 1991.

[Gir72] J. Y. Girard. Interprétation fonctionelle et élimination des

coupures dans l’arithmétique d’ordre supérieur. PhD thesis, Uni-

versit Paris VII, 1972.

109

[Gog94] Healfdene Goguen. A Typed Operational Semantics for Type The-

ory. PhD thesis, University of Edinburgh, 1994.

[Hed98] Michael Hedberg. A coherence theorem for Martin-Löf’s type the-

ory. J. Funct. Program., 8(4):413–436, July 1998.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for defin-

ing logics. Journal of the Association for Computing Machinery,

40:143–184, 1993.

[Hof95] M. Hofmann. Extensional concepts in intensional type theory. PhD

thesis, Univ of Edinburgh, 1995.

[JG94] Razvan Diaconescu Joseph Goguen. An Oxford survey of order

sorted algebra. Mathematical Structures in Computer Science,

(2):363–392, 1994.

[Kle52] S. Kleene. Introduction to Mathematics. North Holland, 1952.

[LA08] Zhaohui Luo and Robin Adams. Structural subtyping for inductive

types with functorial equality rules. Mathematical Structures in

Computer Science, 18(5), 2008.

[LL01] Yong Luo and Zhaohui Luo. Coherence and transitivity in coercive

subtyping. In Robert Nieuwenhuis and Andrei Voronkov, editors,

Logic for Programming, Artificial Intelligence, and Reasoning, vol-

ume 2250 of Lecture Notes in Computer Science, pages 249–265.

Springer Berlin Heidelberg, November 2001.

[LL14] Georgiana E. Lungu and Zhaohui Luo. Monotonicity reasoning in

formal semantics based on modern type theories. Lecture Notes in

Computer Science, 8535:138–148, 2014.

[LLss] Georgiana E. Lungu and Zhaohui Luo. On subtyping in type theo-

ries with canonical objects. In Postproceedings of Types for Proofs

and Programs, in press.

110

[LLS02] Yong Luo, Zhaohui Luo, and Sergei Soloviev. Weak transitivity in

coercive subtyping. In H. Geuvers and F. Wiedijk, editors, Types

for Proofs and Programs, volume 2646 of LNCS, pages 220–239.

Springer-Verlag, 2002.

[LP13] Zhaohui Luo and Fjodor Part. Subtyping in type theory: Coercion

contexts and local coercions, TYPES 2013, Toulouse. 2013.

[LS99] Zhaohui Luo and Sergei Soloviev. Dependent coercions. Electr.

Notes Theor. Comput. Sci., 29:152–168, 1999.

[LSX13] Zhaohui Luo, Sergei Soloviev, and Tao Xue. Coercive subtyp-

ing: theory and implementation. Information and Copmutation,

223:18–42, 2013.

[Lum10] Peter LeFanu Lumsdaine. Higher Categories from Type Theories.

PhD thesis, Carnegie Mellon University, 2010.

[Luo90] Z. Luo. An Extended Calculus of Constructions. PhD thesis, Uni-

versity of Edinburgh, 1990.

[Luo92] Zhaohui Luo. A unifying theory of dependent types: The schematic

approach. In Proceedings of the Second International Symposium

on Logical Foundations of Computer Science, TVER ’92, pages

293–304, London, UK, UK, 1992. Springer-Verlag.

[Luo94] Zhaohui Luo. Computation and Reasoning: A Type Theory for

Computer Science. Oxford University Press, 1994.

[Luo96] Zhaohui Luo. Coercive subtyping in type theory. In Proc. of

CSL’96, the 1996 Annual Conference of the European Associa-

tion for Computer Science Logic, Utrecht. LNCS 1258, page draft.,

1996.

[Luo99] Zhaohui Luo. Coercive subtyping. Journal of Logic and Computa-

tion, 9, 1999.

111

[Luo05] Yong Luo. Coherence and Transitivity in Coercive Subtyping. PhD

thesis, University of Durham, 2005.

[Luo12a] Zhaohui Luo. Formal semantics in modern type theories with co-

ercive subtyping. Linguistics and Philosophy, 35(6):491–513, 2012.

[Luo12b] Zhaohui Luo. Notes on universes in type theory (for a talk given

at institute of advanced studies), 2012.

[LW94] Barbara H. Liskov and Jeanette M. Wing. A behavioral notion

of subtyping. ACM Transactions on Programming Languages and

Systems, 16:1811–1841, 1994.

[Mit84] John C. Mitchell. Coercion and type inference. In Proceedings

of the 11th ACM SIGACT-SIGPLAN Symposium on Principles

of Programming Languages, POPL ’84, pages 175–185, New York,

NY, USA, 1984. ACM.

[ML73] Per Martin-Löf. An intuitionistic theory of types: Predicative part.

80, 01 1973.

[ML75] Per Martin-Löf. An intuitionistic theory of types: predicative part.

Studies in Logic and the Foundations of Mathematics, 80:73–118,

1975.

[ML82] Per Martin-Löf. Constructive mathematics and computer program-

ming. Stud. Logic Found. Math, 104:153–175, 1982.

[ML84] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

[ML98] Per Martin-Löf. An intuitionistic theory of types. Oxford Logic

Guides, 36:127–172, 1998.

[NPS90] Bengt Nordström, Kent Petersson, and Jan M. Smith. Program-

ming in Martin-Löf’s Type Theory: An Introduction. Clarendon

Press, New York, NY, USA, 1990.

112

[Pfe02] Frank Pfenning. Logical frameworksa brief introduction. In Helmut

Schwichtenberg and Ralf Steinbrggen, editors, Proof and System-

Reliability, volume 62 of NATO Science Series, pages 137–166.

Springer Netherlands, 2002.

[Pie93] Benjamin C. Pierce. Bounded quantification is undecidable. In

Information and Computation, pages 305–315, 1993.

[PM93] Christine Paulin-Mohring. Inductive definitions in the system Coq -

rules and properties. In Proceedings of the International Conference

on Typed Lambda Calculi and Applications, TLCA ’93, pages 328–

345, London, UK, UK, 1993. Springer-Verlag.

[Pol94] Robert Pollack. The Theory of LEGO – A Proof Checker for the

Extended Calculus of Constructions. PhD thesis, 1994.

[Ran94] Aarne Ranta. Type-Theoretical Grammar. Monograph Collection

(Matt - Pseudo), 1994.

[Rey80] John C. Reynolds. Using category theory to design implicit con-

versions and generic operators. Semantics-Directed Compiler Gen-

eration 1980, Lecture Notes in Computer Science 94, 1980.

[SL02] Sergei Soloviev and Zhaohui Luo. Coercion completion and conser-

vativity in coercive subtyping. Annals of Pure and Applied Logic,

113(1-3):297–322, 2002.

[Smi88] Jan M. Smith. The independence of Peano’s fourth axiom from

Martin-Lof’s type theory without universes. The Journal of Sym-

bolic Logic, 53(3):840–845, 1988.

[Uni13] Univalent Foundations Program. Homotopy Type Theory: Univa-

lent Foundations of Mathematics. Institute for Advanced Study,

2013.

[vB92] S. van Bakel. Principal type schemes for the strict type assignment

system. Journal of Logic and Computation, 3:643–670, 1992.

113

[Xue13a] Tao Xue. Definitional extension in type theory. In Ralph Matthes

and Aleksy Schubert, editors, LIPIcs Proceedings 19th Internationa

Conference on Types for Proofs and Programs, pages 251–269, 2013.

[Xue13b] Tao Xue. Theory and Implementation of Coercive Subtyping. PhD

thesis, Royal Holloway University of London, 2013.

114

Appendices

115

Appendix A

Inference Rules for LF and Π

- type

This appendix puts together the rules for a system Π which is the system with

dependent product type specified in LF .

116

Validity of Signature/Contexts, Assumptions

` 〈〉
Γ ` K kind x 6∈ dom(Γ)

` Γ, x:K

` Γ, x:K,Γ′

Γ, x:K,Γ′ ` x:K

Equality Rules

Γ ` K kind

Γ ` K = K

Γ ` K = K′

Γ ` K′ = K

Γ ` K = K′ Γ ` K′ = K′′

Γ ` K = K′′

Γ ` k:K

Γ ` k = k:K

Γ ` k = k′:K

Γ ` k′ = k:K

Γ ` k = k′:K Γ ` k′ = k′′:K

Γ ` k = k′′:K

Γ ` k:K Γ ` K = K′

Γ ` k:K′
Γ ` k = k′:K Γ ` K = K′

Γ ` k = k′:K′

Substitution Rules

` Γ0, x:K,Γ1 Γ0 ` k:K

` Γ0, [k/x]Γ1

Γ0, x:K,Γ1 ` K′ kind Γ0 ` k:K

Γ0, [k/x]Γ1 ` [k/x]K′ kind

Γ0, x:K,Γ1 ` L = L′ Γ0 ` k:K

Γ0, [k/x]Γ1 ` [k/x]L = [k/x]L′

Γ0, x:K,Γ1 ` k′:K′ Γ0 ` k:K

Γ0, [k/x]Γ1 ` [k/x]k′:[k/x]K′
Γ0, x:K,Γ1 ` l = l′:K′ Γ0 ` k:K

Γ0, [k/x]Γ1 ` [k/x]l = [k/x]l′:[k/x]K′

Γ0, x:K,Γ1 ` K′ kind Γ0 ` k = k′:K

Γ0, [k/x]Γ1 ` [k/x]K′ = [k′/x]K′
Γ0, x:K,Γ1 ` l:K′ Γ0 ` k = k′:K

Γ0, [k/x]Γ1 ` [k/x]l = [k′/x]l:[k/x]K′

Dependent Product Kinds

Γ ` K kind Γ, x:K ` K′ kind
Γ ` (x:K)K′ kind

Γ ` K1 = K2 Γ, x:K1 ` K′1 = K′2
Γ ` (x:K1)K′1 = (x:K2)K′2

Γ, x:K ` y:K′

Γ ` [x:K]y:(x:K)K′
Γ ` K1 = K2 Γ, x:K1 ` k1 = k2:K

Γ ` [x:K1]k1 = [x:K2]k2:(x:K1)K

Γ ` f :(x:K)K′ Γ ` k:K

Γ ` f(k):[k/x]K′
Γ ` f = f ′:(x:K)K′ Γ ` k1 = k2:K

Γ ` f(k1) = f ′(k2):[k1/x]K′

Γ, x:K ` k′:K′ Γ ` k:K

Γ ` ([x:K]k′)(k) = [k/x]k′:[k/x]K′
Γ ` f :(x:K)K′ x 6∈ FV (f)

Γ ` [x:K]f(x) = f :(x:K)K′

The kind Type

` Γ

Γ ` Type kind

Γ ` A:Type

Γ ` El(A) kind

Γ ` A = B:Type

Γ ` El(A) = El(B)

Figure A.1: Inference Rules for LF

Γ ` A : Type Γ, x:A ` B(x) : Type

Γ ` Π(A,B) : Type

Γ ` A : Type Γ ` B : (A)Type Γ ` f : (x:A)B(x)

Γ ` λ(A,B, f) : Π(A,B)

Γ ` g : Π(A,B) Γ ` a : A

Γ ` app(A,B, g, a) : B(a)

Γ ` A : Type Γ ` B : (A)Type
Γ ` f : (x:A)B(x) Γ ` a : A

Γ ` app(A,B, λ(A,B, f), a) = f(a) : B(a)

Figure A.2: Inference Rules for Π - type specified in LF

117

Appendix B

Rules for Universes

for i ∈ ω

Γ valid

Γ ` Ui : Type

Γ ` A : Ui
Γ ` A : Type

Γ valid

Γ ` Ui : Ui+1

Γ ` A : Ui
Γ ` A : Ui+1

Γ ` A : Ui Γ ` B : (A)Ui
Γ ` Π(A,B) : Ui

Figure B.1: Inference Rules for Russell Style Universes with Π - type

for i ∈ ω
` Γ

Γ ` Ui : Type

Γ ` a : Ui
Γ ` Ti(a) : Type

` Γ

Γ ` ti+1 : (Ui)Ui+1

where ti+1 are the lifting operators,

` Γ

Γ ` ui : Ui+1

` Γ

Γ ` Ti+1(ui) = Ui : Type

where ui is the name of Ui in Ui+1

Γ ` a : Ui Γ, x : Ti(a) ` b(x) : Ui
Γ ` πi(a, b) : Ui

with the following equations:

1. Γ ` Ti+1(πi(a, b)) = Π(Ti+1(a), [x:Ti(a)]Ti+1(b(x))) : Type

2. Γ ` ti+1(πi(a, b)) = πi+1(ti+1(a), [x:Ti(a)]ti+1(b(x))) : Ui+1

Figure B.2: Inference Rules for Tarski Style Universes with Π - type

118

Appendix C

Inference Rules for LFS, T 0K
S,≤,

TS,≤, Π0K
S,≤ and ΠS,≤

In this appendix I list the rules of the system LFS , T 0K
S,≤ and TS,≤. All these

rules are part of the systems Π0K
S,≤ and ΠS,≤ as well. For these two systems

there are additional rules for Π - type which are also presented here.

119

Validity of Signature/Contexts, Assumptions

〈〉 valid
`Σ K kind c 6∈ dom(Σ)

Σ, c:K valid

`Σ,c:K,Σ′ Γ

Γ `Σ,c:K,Σ′ c:K

Σ valid

`Σ 〈〉
Γ `Σ K kind x 6∈ dom(Σ) ∪ dom(Γ)

`Σ Γ, x:K

`Σ Γ, x:K,Γ′

Γ, x:K,Γ′ `Σ x:K

Weakening

Γ `Σ, Σ′ J `Σ K kind c 6∈ dom(Σ,Σ′)

Γ `Σ, c:K, Σ′ J

Γ,Γ′ `Σ J Γ `Σ K kind x 6∈ dom(Γ,Γ′)

Γ, x:K,Γ′ `Σ J

Equality Rules

Γ `Σ K kind

Γ `Σ K = K

Γ `Σ K = K′

Γ `Σ K′ = K

Γ `Σ K = K′ Γ `Σ K′ = K′′

Γ `Σ K = K′′

Γ `Σ k:K

Γ `Σ k = k:K

Γ `Σ k = k′:K

Γ `Σ k′ = k:K

Γ `Σ k = k′:K Γ `Σ k′ = k′′:K

Γ `Σ k = k′′:K

Γ `Σ k:K Γ `Σ K = K′

Γ `Σ k:K′
Γ `Σ k = k′:K Γ `Σ K = K′

Γ `Σ k = k′:K′

Signature Replacement

Γ `Σ0,c:L,Σ1 J `Σ0 L = L′

Γ `Σ0,c:L′,Σ1
J

Context Replacement

Γ0, x:K,Γ1 `Σ J Γ0 `Σ K = K′

Γ0, x:K′,Γ1 `Σ J

Substitution Rules

`Σ Γ0, x:K,Γ1 Γ0 `Σ k:K

`Σ Γ0, [k/x]Γ1

Γ0, x:K,Γ1 `Σ K′ kind Γ0 `Σ k:K

Γ0, [k/x]Γ1 `Σ [k/x]K′ kind

Γ0, x:K,Γ1 `Σ L = L′ Γ0 `Σ k:K

Γ0, [k/x]Γ1 `Σ [k/x]L = [k/x]L′

Γ0, x:K,Γ1 `Σ k′:K′ Γ0 `Σ k:K

Γ0, [k/x]Γ1 `Σ [k/x]k′:[k/x]K′
Γ0, x:K,Γ1 `Σ l = l′:K′ Γ0 `Σ k:K

Γ0, [k/x]Γ1 `Σ [k/x]l = [k/x]l′:[k/x]K′

Γ0, x:K,Γ1 `Σ K′ kind Γ0 `Σ k = k′:K

Γ0, [k/x]Γ1 `Σ [k/x]K′ = [k′/x]K′
Γ0, x:K,Γ1 `Σ l:K′ Γ0 `Σ k = k′:K

Γ0, [k/x]Γ1 `Σ [k/x]l = [k′/x]l:[k/x]K′

Dependent Product Kinds

Γ `Σ K kind Γ, x:K `Σ K′ kind

Γ `Σ (x:K)K′ kind

Γ `Σ K1 = K2 Γ, x:K1 `Σ K′1 = K′2
Γ `Σ (x:K1)K′1 = (x:K2)K′2

Γ, x:K `Σ y:K′

Γ `Σ [x:K]y:(x:K)K′
Γ `Σ K1 = K2 Γ, x:K1 `Σ k1 = k2:K

Γ `Σ [x:K1]k1 = [x:K2]k2:(x:K1)K

Γ `Σ f :(x:K)K′ Γ `Σ k:K

Γ `Σ f(k):[k/x]K′
Γ `Σ f = f ′:(x:K)K′ Γ `Σ k1 = k2:K

Γ `Σ f(k1) = f ′(k2):[k1/x]K′

Γ, x:K `Σ k′:K′ Γ `Σ k:K

Γ `Σ ([x:K]k′)(k) = [k/x]k′:[k/x]K′
Γ `Σ f :(x:K)K′ x 6∈ FV (f)

Γ `Σ [x:K]f(x) = f :(x:K)K′

The kind Type

`Σ Γ

Γ `Σ Type kind

Γ `Σ A:Type

Γ `Σ El(A) kind

Γ `Σ A = B:Type

Γ `Σ El(A) = El(B)

Figure C.1: Logical Framework Inference Rules for LFS , ΠS , T 0K
S,≤, TS,≤, Π0K

S,≤
and ΠS,≤

120

Γ `Σ A : Type Γ, x:A `Σ B(x) : Type

Γ `Σ Π(A,B) : Type

Γ `Σ A : Type Γ `Σ B : (A)Type Γ `Σ f : (x:A)B(x)

Γ `Σ λ(A,B, f) : Π(A,B)

Γ `Σ g : Π(A,B) Γ `Σ a : A

Γ `Σ app(A,B, g, a) : B(a)

Γ `Σ A : Type Γ `Σ B : (A)Type
Γ `Σ f : (x:A)B(x) Γ `Σ a : A

Γ `Σ app(A,B, λ(A,B, f), a) = f(a) : B(a)

Figure C.2: Inference Rules for Π-type in ΠS , Π0K
S,≤ and ΠS,≤

Signature Rules for Subtyping

`Σ A : Type `Σ B : Type `Σ c : (A)B

Σ, A ≤c B valid

`Σ0,A≤cB:Type,Σ1 Γ

Γ `Σ0,A≤cB:Type,Σ1 A ≤c B : Type

Congruence

Γ `Σ A ≤c B : Type Γ `Σ A = A′ : Type Γ `Σ B = B′ : Type Γ `Σ c = c′ : (A)B

Γ `Σ A′ ≤c′ B′ : Type

Transitivity

Γ `Σ A ≤c A′ : Type Γ `Σ A′ ≤c′ A′′ : Type

Γ `Σ A ≤c′◦c A′′ : Type

Weakening

Γ `Σ, Σ′ A ≤d B : Type `Σ K kind

Γ `Σ, c:K, Σ′ A ≤d B : Type
(c 6∈ dom(Σ,Σ′))

Γ,Γ′ `Σ A ≤d B : Type Γ `Σ K kind

Γ, x:K,Γ′ `Σ A ≤d B : Type
(x 6∈ dom(Γ,Γ′))

Signature Replacement

Γ `Σ0,c:L,Σ1 A ≤d B : Type `Σ0 L = L′

Γ `Σ0,c:L′,Σ1
A ≤d B : Type

Context Replacement

Γ0, x:K,Γ1 `Σ A ≤d B : Type Γ0 `Σ K = K′

Γ0, x:K′,Γ1 `Σ A ≤d B : Type

Substitution

Γ0, x:K,Γ1 `Σ A ≤c B Γ0 `Σ k:K

Γ0, [k/x]Γ1 `Σ [k/x]A ≤[k/x]c [k/x]B

Identity Coercion

Γ `Σ A : Type

Γ `Σ A ≤[x:A]x A : Type

Figure C.3: Inference Rules for Subtyping in T 0K
S,≤, TS,≤, Π0K

S,≤ and ΠS,≤ (1)

121

Subtyping for dependent product Rule

Γ `Σ A′ ≤c1 A : Type Γ `Σ B,B′ : (A)Type Γ, x:A `Σ B(x) ≤c2[x] B
′(x) : Type

Γ `Σ Π(A,B) ≤d Π(A′, B′ ◦ c1) : Type

where d ≡ [F : Π(A,B)]λ(A′, B′ ◦ c1, [x:A′]c2[x](app(A,B, F, c1(x))))

Figure C.4: Subtyping for dependent product Rule for Π0K
S,≤ and ΠS,≤

Basic Subkinding Rule and Identity Coercion

Γ `Σ A ≤c B:Type

Γ `Σ El(A) ≤c El(B)

Γ `Σ K kind

Γ `Σ K ≤[x:K]x K

Structural Subkinding Rules

Γ `Σ K1 ≤c K2 Γ `Σ K1 = K′1 Γ `Σ K2 = K′2 Γ `Σ c = c′:(K1)K2

Γ `Σ K′1 ≤c′ K′2

Γ `Σ K ≤c K′ Γ `Σ K′ ≤c′ K′′

Γ `Σ K ≤c′◦c K′′

Γ `Σ, Σ′ K ≤d K′ `Σ K0 kind

Γ `Σ, c:K0, Σ′ K ≤d K′
(c 6∈ dom(Σ,Σ′))

Γ,Γ′ `Σ K ≤d K′ Γ `Σ K0 kind

Γ, x:K0,Γ
′ `Σ K ≤d K′

(x 6∈ dom(Γ,Γ′))

Γ `Σ0,c:L,Σ1 K ≤d K
′ `Σ0 L = L′

Γ `Σ0,c:L′,Σ1
K ≤d K′

Γ0, x:K,Γ1 `Σ L ≤d L′ Γ0 `Σ K = K′

Γ0, x:K′,Γ1 `Σ L ≤d L′

Γ0, x:K,Γ1 `Σ K1 ≤c K2 Γ0 `Σ k:K

Γ0, [k/x]Γ1 `Σ [k/x]K1 ≤[k/x]c [k/x]K2

Subkinding for Dependent Product Kind

Γ `Σ K′1 ≤c1 K1 Γ, x:K1 `Σ K2 kind Γ, x′:K′1 `Σ K′2 kind Γ, x:K1 `Σ [c1(x′)/x]K2 ≤c2 K
′
2

Γ `Σ (x:K1)K2 ≤[f :(x:K1)K2][x′:K′
1]c2(f(c1(x′))) (x:K′1)K′2

Figure C.5: Inference Rules for Subkinding in T 0K
S,≤, TS,≤, Π0K

S,≤ and ΠS,≤ (2)

Coercive Application

(CA1)
Γ `Σ f :(x:K)K′ Γ `Σ k0:K0 Γ `Σ K0 ≤c K

Γ `Σ f(k0):[c(k0)/x]K′

(CA2)
Γ `Σ f = f ′:(x:K)K′ Γ `Σ k0 = k′0:K0 Γ `Σ K0 ≤c K

Γ `Σ f(k0) = f ′(k′0):[c(k0)/x]K′

Coercive Definition

(CD)
Γ `Σ f :(x:K)K′ Γ `Σ k0:K0 Γ `Σ K0 ≤c K

Γ `Σ f(k0) = f(c(k0)):[c(k0)/x]K′

Figure C.6: The coercive application and definition rules in TS,≤ and ΠS,≤

122

Appendix D

Inference Rules for LF ;,

T [C]
;
0K and T [C];

In this appendix I list the rules of the system LF ;, T [C];0K and T [C];.

123

Validity of Signature/Contexts, Assumptions

` 〈〉
Σ; 〈〉 ` K kind c 6∈ dom(Σ)

` Σ, c:K

` Σ, c:K,Σ′; Γ

Σ, c:K,Σ′; Γ ` c:K

` Σ

` Σ; 〈〉
Σ; Γ ` K kind x 6∈ dom(Σ) ∪ dom(Γ)

` Σ; Γ, x:K

` Σ; Γ, x:K,Γ′

Σ; Γ, x:K,Γ′ ` x:K

Weakening

Σ,Σ′; Γ ` J Σ; 〈〉 ` K kind c 6∈ dom(Σ,Σ′)

Σ, c:K, Σ′; Γ ` J

Σ; Γ,Γ′ ` J Σ; Γ ` K kind x 6∈ dom(Γ,Γ′)

Σ; Γ, x:K,Γ′ ` J
Equality Rules

Σ; Γ ` K kind

Σ; Γ ` K = K

Σ; Γ ` K = K′

Σ; Γ ` K′ = K

Σ; Γ ` K = K′ Σ; Γ ` K′ = K′′

Σ; Γ ` K = K′′

Σ; Γ ` k:K

Σ; Γ ` k = k:K

Σ; Γ ` k = k′:K

Σ; Γ ` k′ = k:K

Σ; Γ ` k = k′:K Σ; Γ ` k′ = k′′:K

Σ; Γ ` k = k′′:K

Σ; Γ ` k:K Σ; Γ ` K = K′

Σ; Γ ` k:K′
Σ; Γ ` k = k′:K Σ; Γ ` K = K′

Σ; Γ ` k = k′:K′

Context Replacement

Σ0, c:L,Σ1; Γ ` J Σ0 ` L = L′

Σ0, c:L′,Σ1; Γ ` J
Σ; Γ0, x:K,Γ1 ` J Σ; Γ0 ` K = K′

Σ; Γ0, x:K′,Γ1 ` J

Substitution Rules

` Σ; Γ0, x:K,Γ1 Σ; Γ0 ` k:K

` Σ; Γ0, [k/x]Γ1

Σ; Γ0, x:K,Γ1 ` K′ kind Σ; Γ0 ` k:K

Σ; Γ0, [k/x]Γ1 ` [k/x]K′ kind

Σ; Γ0, x:K,Γ1 ` L = L′ Σ; Γ0 ` k:K

Σ; Γ0, [k/x]Γ1 ` [k/x]L = [k/x]L′

Σ; Γ0, x:K,Γ1 ` k′:K′ Σ; Γ0 ` k:K

Σ; Γ0, [k/x]Γ1 ` [k/x]k′:[k/x]K′
Σ; Γ0, x:K,Γ1 ` l = l′:K′ Σ; Γ0 ` k:K

Σ; Γ0, [k/x]Γ1 ` [k/x]l = [k/x]l′:[k/x]K′

Σ; Γ0, x:K,Γ1 ` K′ kind Σ; Γ0 ` k = k′:K

Σ; Γ0, [k/x]Γ1 ` [k/x]K′ = [k′/x]K′

Σ; Γ0, x:K,Γ1 ` l:K′ Σ; Γ0 ` k = k′:K

Σ; Γ0, [k/x]Γ1 ` [k/x]l = [k′/x]l:[k/x]K′

Dependent Product Kinds

Σ; Γ ` K kind Σ; Γ, x:K ` K′ kind
Σ; Γ ` (x:K)K′ kind

Σ; Γ ` K1 = K2 Σ; Γ, x:K1 ` K′1 = K′2
Σ; Γ ` (x:K1)K′1 = (x:K2)K′2

Σ; Γ, x:K ` y:K′

Σ; Γ ` [x:K]y:(x:K)K′
Σ; Γ ` K1 = K2 Σ; Γ, x:K1 ` k1 = k2:K

Σ; Γ ` [x:K1]k1 = [x:K2]k2:(x:K1)K

Σ; Γ ` f :(x:K)K′ Σ; Γ ` k:K

Σ; Γ ` f(k):[k/x]K′
Σ; Γ ` f = f ′:(x:K)K′ Σ; Γ ` k1 = k2:K

Σ; Γ ` f(k1) = f ′(k2):[k1/x]K′

Σ; Γ, x:K ` k′:K′ Σ; Γ ` k:K

Σ; Γ ` ([x:K]k′)(k) = [k/x]k′:[k/x]K′
Σ; Γ ` f :(x:K)K′ x 6∈ FV (f)

Σ; Γ ` [x:K]f(x) = f :(x:K)K′

The kind Type

` Σ; Γ

Σ; Γ ` Type kind

Σ; Γ ` A:Type

Σ; Γ ` El(A) kind

Σ; Γ ` A = B:Type

Σ; Γ ` El(A) = El(B)

Figure D.1: Logical Framework Inference Rules for LF ;, T [C];0K and T [C];

124

Subtyping Rules

Σ; Γ ` A ≤c B ∈ C
Σ; Γ ` A ≤c B

Congruence

Σ; Γ ` A ≤c B : Type Σ; Γ ` A = A′ : Type Σ; Γ ` B = B′ : Type Σ; Γ ` c = c′ : (A)B

Σ; Γ ` A′ ≤c′ B′ : Type

Transitivity

Σ; Γ ` A ≤c A′ : Type Σ; Γ ` A′ ≤c′ A′′ : Type

Σ; Γ ` A ≤c′◦c A′′ : Type

Weakening

Σ,Σ′; Γ ` A ≤d B : Type Σ ` K kind

Σ, c:K, Σ′; Γ ` A ≤d B : Type
(c 6∈ dom(Σ,Σ′))

Σ; Γ,Γ′ ` A ≤d B : Type Σ; Γ ` K kind

Σ; Γ, x:K,Γ′ ` A ≤d B : Type
(x 6∈ dom(Γ,Γ′))

Context Replacement

Σ0, c:L,Σ1; Γ ` A ≤c B Σ0 ` L = L′

Σ0, c:L′,Σ1; Γ ` A ≤c B
Σ; Γ0, x:K,Γ1 ` A ≤c B Σ; Γ0 ` K = K′

Σ; Γ0, x:K′,Γ1 ` A ≤c B

Substitution

Σ; Γ0, x:K,Γ1 ` A ≤c B Σ; Γ0 ` k:K

Σ; Γ0, [k/x]Γ1 ` [k/x]A ≤[k/x]c [k/x]B

Identity Coercion

Σ; Γ ` A:Type

Σ; Γ ` A ≤[x:A]x A:Type

Figure D.2: Subtyping Rules for , T [C];0K and T [C]; (1)

125

Basic Subkinding Rule and Identity

Σ; Γ ` A ≤c B:Type

Σ; Γ ` El(A) ≤c El(B)

Σ; Γ ` K kind

Σ; Γ ` K ≤[x:K]x K

Structural Subkinding Rules

Σ; Γ ` K1 ≤c K2 Σ; Γ ` K1 = K′1 Σ; Γ ` K2 = K′2 Σ; Γ ` c = c′:(K1)K2

Σ; Γ ` K′1 ≤c′ K′2

Σ; Γ ` K ≤c K′ Σ; Γ ` K′ ≤c′ K′′

Σ; Γ ` K ≤c′◦c K′′

Σ,Σ′; Γ ` K ≤d K′ Σ; 〈〉 ` K0 kind

Σ, c:K0,Σ
′; Γ ` K ≤d K′

(c 6∈ dom(Σ,Σ′))

Σ; Γ,Γ′ ` K ≤d K′ Σ; Γ ` K0 kind

Σ; Γ, x:K0,Γ
′ ` K ≤d K′

(x 6∈ dom(Γ,Γ′))

Σ0, c:L,Σ1; Γ ` K ≤d K′ Σ0; 〈〉 ` L = L′

Σ0, c:L
′,Σ1; Γ ` K ≤d K′

Σ; Γ0, x:K,Γ1 ` L ≤d L′ Σ; Γ0 ` K = K′

Σ; Γ0, x:K′,Γ1 ` L ≤d L′

Σ; Γ0, x:K,Γ1 ` K1 ≤c K2 Σ; Γ0 ` k:K

Σ; Γ0, [k/x]Γ1 ` [k/x]K1 ≤[k/x]c [k/x]K2

Subkinding for Dependent Product Kind

Σ; Γ ` K′1 ≤c1 K1 Σ; Γ, x:K1 ` K2 kind Σ; Γ, x′:K′1 ` K′2 kind Σ; Γ, x:K1 ` [c1(x′)/x]K2 ≤c2 K
′
2

Σ; Γ ` (x:K1)K2 ≤[f :(x:K1)K2][x′:K′
1]c2(f(c1(x′))) (x:K′1)K′2

Figure D.3: Subkinding Rules for T [C];0K and T [C]; (2)

Coercive Application

(CA1)
Σ; Γ ` f :(x:K)K′ Σ; Γ ` k0:K0 Σ; Γ ` K0 ≤c K

Σ; Γ ` f(k0):[c(k0)/x]K′

(CA2)
Σ; Γ ` f = f ′:(x:K)K′ Σ; Γ ` k0 = k′0:K0 Σ; Γ ` K0 ≤c K

Σ; Γ ` f(k0) = f ′(k′0):[c(k0)/x]K′

Coercive Definition

(CD)
Σ; Γ ` f :(x:K)K′ Σ; Γ ` k0:K0 Σ; Γ ` K0 ≤c K

Σ; Γ ` f(k0) = f(c(k0)):[c(k0)/x]K′

Figure D.4: The coercive application and definition rules in T [C];

126

Appendix E

Inference rules for LF and Π≤

In this appendix I list the rules for the logical framework LF, Π - type in

this logical framework and subtyping rules. All these rules form the rules for

system Π≤.

127

Validity of Signature/Contexts, Assumptions

 〈〉
Γ
 K kind x 6∈ dom(Γ)

 Γ, x:K

 Γ, x:K,Γ′

Γ, x:K,Γ′
 x:K

Equality Rules

Γ
 K kind

Γ
 K = K

Γ
 K = K′

Γ
 K′ = K

Γ
 K = K′ Γ
 K′ = K′′

Γ
 K = K′′

Γ
 k:K

Γ
 k = k:K

Γ
 k = k′:K

Γ
 k′ = k:K

Γ
 k = k′:K Γ
 k′ = k′′:K

Γ
 k = k′′:K

Γ
 k:K Γ
 K = K′

Γ
 k:K′
Γ
 k = k′:K Γ
 K = K′

Γ
 k = k′:K′

Substitution Rules

 Γ0, x:K,Γ1 Γ0
 k:K

 Γ0, [k/x]Γ1

Γ0, x:K,Γ1
 K′ kind Γ0
 k:K

Γ0, [k/x]Γ1
 [k/x]K′ kind

Γ0, x:K,Γ1
 L = L′ Γ0
 k:K

Γ0, [k/x]Γ1
 [k/x]L = [k/x]L′

Γ0, x:K,Γ1
 k′:K′ Γ0
 k:K

Γ0, [k/x]Γ1
 [k/x]k′:[k/x]K′
Γ0, x:K,Γ1
 l = l′:K′ Γ0
 k:K

Γ0, [k/x]Γ1
 [k/x]l = [k/x]l′:[k/x]K′

Γ0, x:K,Γ1
 K′ kind Γ0
 k = k′:K

Γ0, [k/x]Γ1
 [k/x]K′ = [k′/x]K′
Γ0, x:K,Γ1
 l:K′ Γ0
 k = k′:K

Γ0, [k/x]Γ1
 [k/x]l = [k′/x]l:[k/x]K′

Dependent Product Kinds

Γ
 K kind Γ, x:K
 K′ kind

Γ
 (x:K)K′ kind

Γ
 K1 = K2 Γ, x:K1
 K′1 = K′2
Γ
 (x:K1)K′1 = (x:K2)K′2

Γ, x:K
 y:K′

Γ
 [x:K]y:(x:K)K′
Γ
 K1 = K2 Γ, x:K1
 k1 = k2:K

Γ
 [x:K1]k1 = [x:K2]k2:(x:K1)K

Γ
 f :(x:K)K′ Γ
 k:K

Γ
 f(k):[k/x]K′
Γ
 f = f ′:(x:K)K′ Γ
 k1 = k2:K

Γ
 f(k1) = f ′(k2):[k1/x]K′

Γ, x:K
 k′:K′ Γ
 k:K

Γ
 ([x:K]k′)(k) = [k/x]k′:[k/x]K′
Γ
 f :(x:K)K′ x 6∈ FV (f)

Γ
 [x:K]f(x) = f :(x:K)K′

The kind Type

 Γ

Γ
 Type kind

Γ
 A:Type

Γ
 El(A) kind

Γ
 A = B:Type

Γ
 El(A) = El(B)

Figure E.1: Logical Framework Rules for LF and Π≤

Γ
 A : Type Γ, x:A
 B(x) : Type

Γ
 Π(A,B) : Type

Γ
 A : Type Γ
 B : (A)Type Γ
 f : (x:A)B(x)

Γ
 λ(A,B, f) : Π(A,B)

Γ
 g : Π(A,B) Γ
 a : A

Γ
 app(A,B, g, a) : B(a)

Γ
 A : Type Γ
 B : (A)Type
Γ
 f : (x:A)B(x) Γ
 a : A

Γ
 app(A,B, λ(A,B, f), a) = f(a) : B(a)

Figure E.2: Inference Rules for Π - types specified in LF

128

General Subtyping Rules

Γ
 K = K′

Γ
 K ≤ K′
Γ
 K ≤ K′ Γ
 K′ ≤ K′′

Γ
 K ≤ K′′

Γ
 A = B:Type

Γ
 A ≤ B:Type

Γ
 A ≤ B:Type Γ
 B ≤ C:Type

Γ
 A ≤ C:Type

Subtyping in Contexts

Γ
 A:Type α 6∈ FV (Γ)

Γ, α ≤ A valid

Γ, α ≤ A,Γ′ valid
Γ, α ≤ A,Γ′
 α:Type

Γ, α ≤ A,Γ′ valid
Γ, α ≤ A,Γ′
 α ≤ A:Type

Type Lifting and Subtyping

Γ
 A ≤ B:Type

Γ
 El(A) ≤ El(B)

Γ
 k:K Γ
 K ≤ K′

Γ
 k:K′
Γ
 k = k′:K Γ
 K ≤ K′

Γ
 k = k′:K′

Dependent Product

Γ
 Π(A,B):Type Γ
 Π(A′, B′):Type

Γ
 A′ ≤ A:Type Γ, x:A′
 B ≤ B′:Type
Γ
 Π(A,B) ≤ Π(A′, B′):Type

Figure E.3: Subtyping Rules for Π≤

129

	Introduction
	Dependent Type Theory
	Signatures and Contexts
	Subtyping
	Overview of the Thesis and Contributions

	Type Theory, Subtyping and Signatures
	Dependent Type Theory
	Logical Framework
	Type Theories specified in LF
	Meta-theoretic properties of LF
	Universes

	Signatures
	Subtyping
	Subsumptive Subtyping
	Coercive Subtyping

	Coercive Subtyping in Signatures
	LFS
	TS,
	Meta-theoretic properties of TS,
	Coherence for Kinds
	Weakening and Context/Signature Replacement

	Subtyping in signatures as a well-behaved extension
	Conservativity of TS, as an extension of TS
	The relation between TS,0K and TS
	T[C];
	The relation between TS, and T[C];
	The relation between TS, and TS

	Case Studies: Subsumptive Subtyping, Universes, Injectivity
	Embedding Subsumptive Subtyping in Coercive Subtyping
	
	S,
	The embedding of in S,

	Representing Russell style universes in Tarski style universes
	Injectivity and Constructor Subtyping

	Conclusion and Future Topics
	Definitionality
	Parameterized and Dependent Coercions

	Appendices
	Inference Rules for LF and - type
	Rules for Universes
	Inference Rules for LFS, TS,0K, TS,, S,0K and S,
	Inference Rules for LF;, T[C]0K; and T[C];
	Inference rules for LF and

