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wonder, no longer marvel, is as good as dead, and his eyes are dimmed.”
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Abstract

The treatment of far-field boundary conditions (BCs) is one of the most poorly resolved
issues for regional modelling of geodynamic processes. The mantle velocity field, along
the side-walls and base of a modelling region, is typically much more poorly known than
the geometry of past global motions of the surface plates, as constrained by global plate
motion reconstructions. In this thesis, I have developed numerical tools that allow the
study of 3-D spherical regional models with no fictitious internal boundaries using an
embedded high resolution region within a global spherical coarse mesh.

A key piece in any numerical simulation using the Finite Element Method (FEM) is
the mesh. I have developed an algorithm to generate high-quality unstructured meshes
with embedded high resolution regions within 2-D and 3-D Cartesian, 2-D cylindrical
and 3-D spherical shell domains. The mesh nodes are treated as if they were linked by
virtual springs and the FEM is used to solve iteratively for the optimal nodal positions
for the static equilibrium of this spring system. A ’guide-mesh’ is incorporated to easily
define preferred element sizes throughout the mesh.

A new technique, the ’Double Jacobian’, is presented for more accurate solution in
cylindrical or spherical geometries. This approach combines the advantages of working
simultaneously in both Cartesian and polar or spherical coordinates. On the one hand,
the governing matrix equations are kept in Cartesian coordinates, preserving their sym-
metry. On the other hand, the element geometry is described in ’straight-sided’ polar or
spherical coordinates, preserving the appropriate curved boundary surfaces and inter-
faces. These ’straight-sided’ polar or spherical elements allow search routines to rapidly
find arbitrary points in polar or spherical coordinates.

The tools described above have been applied to study the influence of the Tristan da
Cunha plume during the early rifting and break-up of the South Atlantic. Global plate
motion BCs are applied through time using GPlates. Models show a migration of hotter
and weaker plume material towards the rifting region before the break-up, influenced by
the lateral thickness variations in the initial structure of the lithosphere. Once the plume
material reaches the rifting region, it is found to preferentially migrate southwards. This
migration appears to be due to the presence of thicker São Francisco and conjugate Congo
cratonic roots in the North combined with a ridge ’suction’ force due to stretching of
non-cratonic lithosphere in the South. This mechanism could explain the observed pref-
erential southward formation of early-rifting-related Seaward Dipping Reflectors (SDRs)
along South Atlantic margins with respect to their Tristan Plume progenitor.
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Chapter 1

Introduction

The modern view of the Earth’s dynamics is based on plate tectonics, where large rigid
lithospheric plates move slowly relative to each other over tens of millions of years [Wil-
son, 1963; McKenzie and Parker, 1967; Morgan, 1968]. There are three types of plate
boundary that depend on the relative motion between plates: (1) convergent, where one
plate subducts below another one; (2) divergent, where two plates spread apart creat-
ing new oceanic crust; and (3) transform, where two plates move parallel to the plate
boundary in opposite directions. The extension and stretching of continental lithosphere
is known as rifting. If rifting continues over time, it may lead eventually to continental
break-up and the creation of a new divergent margin. This type of margin is also known
as a passive margin and is often host to economic petroleum systems. The slow rate of
motion, the temperature of the source rock, and the deposition of sediments are impor-
tant factors to create the necessary conditions to potentially produce hydrocarbon reser-
voirs. These processes are all linked to the rifting process itself, which remains poorly
understood. Depending on the amount of magmatism, passive margins can be consid-
ered non-volcanic or volcanic, also known as magma-poor and magma-rich margins,
respectively (see Figure 1.1 for the global distribution of passive margins).

1.1 Volcanic rifted margins and mantle plumes

Volcanic rifted margins are associated with syn-rift magmatism that occurs during the
last stage of continental break-up and the beginning of sea-floor spreading. Diagnos-
tic features of volcanic rifted margins are offshore Seaward Dipping Reflectors (SDRs),
a high-velocity lower crust, and an initially thicker oceanic crust [e.g. Mutter et al.,
1982; White et al., 1987; Gladczenko et al., 1997; Franke, 2013]. SDRs are thick wedges
of volcanic flows that have been widely accepted to be a clear indicator of a volcanic
margin. Volcanic rifted margins are usually associated with continental flood basalts, in
which tremendous volumes of basalts are extruded within a short geological time inter-
val [Morgan, 1971; White and McKenzie, 1989; Coffin and Eldholm, 1994; Courtillot et al.,
1999]. Flood basalt emplacement is often thought to be related to the arrival of a mantle
plume to lithospheric depths [Morgan, 1971]. Flood basalts are usually associated with
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FIGURE 1.1: Global distribution of passive margins in a topographic map from ETOPO1 [Amante
and Eakins, 2009]. Type of passive margin data from Geoffroy [2005], Blaich et al. [2011], Andres-
Martinez [2016], and Taposeea [2017].

continental break-up and volcanic rifted margins. For example in the Atlantic Ocean,
the North Atlantic Igneous Province (NAIP) is associated with the conjugate margins
East Greenland-Norway and East Greenland-Great Britain, the Central Atlantic Mag-
matic Province (CAMP) is associated with the conjugate margins East USA-NW Africa,
and the Parana-Etendeka flood basalt is associated with the conjugate margins SE South
America-SW Africa. In the Indian Ocean, the Karoo flood basalt is associated with the
conjugate margins Africa-Madagascar and South Africa-East Antarctica, the Madagascar
flood basalt is associated with conjugate margins Madagascar-Seychelles and the Deccan
Traps are associated with the conjugate margins Seychelles-India. However, not all flood
basalts need to be associated with continental break-up, for example the Siberian Traps.

The magmatism observed at volcanic rifted margins requires an anomalously warmer
mantle than in the case of magma-poor margins [White and McKenzie, 1989]. In the
North Atlantic for example, the proximity between the Iceland hotspot and the volcanic
rifted margins of East Greenland-Norway and East Greenland-Great Britain led to the
idea of mantle plumes as the origin of this local mantle temperature increase. Mantle
plumes, considered to be thermal anomalies, are usually thought to arise from the core-
mantle boundary carrying warm low density material that should eventually pond at the
base of the lithosphere to create a volcanic chain as the plate moves over the relatively
fixed plume [Morgan, 1971]. Near a ridge axis, plume material might drain towards
regions of thinner lithosphere producing melting by decompression of the asthenosphere
[Morgan et al., 1995; Sleep, 1996].

The volcanic conjugate rifted margins in the North Atlantic have been interpreted
to show the ’classic’ plume-head scenario in which SDRs are distributed symmetrically
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FIGURE 1.2: Differences between (a) symmetrical plume-head scenario (reconstruction of the
North Atlantic at 50 Ma) and (b) asymetric lateral plume-flow scenario (reconstruction of the
South Atlantic at 115 Ma). Black colour shows the position of SDRs (volcanic margins) and grey
and purple colours represent non-volcanic margins and non-volcanic basins, respectively. Struc-
tures for (a) from Lundin and Doré [2011] and for (b) from Gladczenko et al. [1997], Moulin et al.
[2010], Blaich et al. [2011], and Stica et al. [2014]. Reconstructions made using GPlates and plate
kinematic reconstructions given by Gurnis et al. [2012]. Red circle represents the location of the
mantle plume. Bottom insets show along-rift axis sketches for each scenario.

along the ridge with respect to their Iceland mantle plume progenitor (Figure 1.2a). How-
ever, there are other examples where the interaction between mantle plumes and volcanic
rifted margins does not fit this exact pattern. In the South Atlantic there is a sharp tran-
sition between volcanic rifted margins south of the Rio Grande Rise and Walvis Ridge
and non-volcanic rifted margins in the central part of the South Atlantic (Figure 1.2b).
This asymmetry has kept controversial the role of the Tristan da Cuhna plume in the
continental break-up of the South Atlantic since it departs from the conventional ’sym-
metrical’ plume-head scenario.
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1.2 Numerical modelling

The exponential growth of computational capabilities during the last two decades has
allowed numerical modelling to become an important tool to study the processes of the
Earth’s interior in regions where direct observations are not possible. Numerical mod-
elling of geodynamic processes allows us to test different hypothesis about their applica-
bility to the Earth. For example in 2-D, numerical models have been applied to explore
the role of the opening speed during rifting, showing that it controls the symmetry of
the margin and mantle exhumation [Pérez-Gussinyé et al., 2006; Brune et al., 2014] or
suggesting a strength-velocity feedback that leads to a plate acceleration before break-up
[Brune et al., 2016]. Numerical models in 3-D can study, for example, the interaction be-
tween a mantle plume and cratonic lithosphere varying the position of the plume beneath
the craton and the rheology of the lithosphere [Koptev et al., 2016].

A key piece in any numerical simulation is the mesh that divides the continuum do-
main into a discrete assemble of elements in order to solve the Partial Differential Equa-
tions (PDEs) using the Finite Element Method (FEM). A similar but more regular mesh is
used in Finite Difference based approaches . Mesh generation and refinement become es-
sential to create good quality meshes in which well shaped elements improve the perfor-
mance of iterative methods like the conjugate gradient method [Shewchuk, 2002]. One of
the many applications of FEM is its ability to use a formulation to generate unstructured
meshes on which a thermo-mechanical finite element calculation can be made by solving
a set of equations arising from the conservation of mass, momentum and energy.

In this thesis I have carried out several 3-D spherical numerical modelling experiments
in order to answer some questions related to the uncertainties that surround the role of
the Tristan da Cunha plume in the initial rifting and break-up of the South Atlantic such
as: can we explain the along-ridge asymmetry of SDRs in a plume related flow scenario?,
and how much could sublithospheric topography influence near-surface plume flow? In
order to do these experiments, I constructed and explored 3-D flow and melting mod-
els. The choice of far-field boundary conditions in planetary viscous flow problems often
strongly shapes the large-scale flow structure in this kind of geosimulation. The treat-
ment of far-field boundary conditions remains one of the most poorly resolved issues for
regional modelling of geodynamic processes, since the mantle velocity field along the
side-walls and base of a model region is typically poorly known. I improve on previous
models by using global models in which the better known geometry of past global mo-
tions of the surface plates, as constrained by fairly well-agreed upon global plate motion
reconstructions, is used as the surface boundary condition. Throughout this thesis work,
I have developed numerical tools that allow the study of this type of 3-D spherical re-
gional model that contains no fictitious internal boundaries by using an embedded high
resolution region within a global spherical coarse mesh.
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1.3 Thesis outline

Chapter 2 describes an algorithm to generate high-quality meshes with embedded high
resolution regions within 2-D and 3-D cartesian, 2-D cylindrical and 3-D spherical shell
domains. The mesh nodes are treated as if they were linked by virtual springs and the
FEM is used to solve iteratively for the optimal nodal positions for the static equilibrium
of system. A ’guide-mesh’ approach is implemented to easily define preferred element
sizes throughout the mesh. The algorithm also includes routines to locally improve the
quality of the mesh and avoid poorly shaped ’sliver-like’ tetrahedra.

Chapter 3 presents a new technique, the ’Double Jacobian’, for the improved solution
of finite element problems in cylindrical or spherical geometries. This approach com-
bines the advantages of working simultaneously in both Cartesian and polar or spherical
coordinates. On the one hand, the governing matrix equations are still formulated in
Cartesian coordinates, thereby preserving their simplest (symmetric) algebraic form. On
the other hand, the element geometry is described in ’straight/linearly varying’ polar or
spherical coordinates that preserve the appropriate curved boundary surfaces and cylin-
drical/spherical internal interfaces. These ’linear-edge’ polar or spherical elements allow
search routines to rapidly find arbitrary points in the resulting triangle or tetrahedron in
polar or spherical coordinates, respectively. The Double Jacobian consists in computing
the local to Cartesian mapping as a two-stage process: (1) from local to polar/spherical
coordinates (and back), where the mapping is to a straight-edged polar triangle or spher-
ical tetrahedron. In these cases the Jacobian partial derivatives are constant within the
element leading to a straightforward analytical matrix expressions. (2) A second analyti-
cal mapping from polar/spherical to Cartesian coordinates (and back). The net Jacobian
from local coordinates to a cylindrical or spherical element in Cartesian geometry is sim-
ply the matrix product of these two easy-to-compute inverse Jacobian matrices.

Chapter 4 studies the influence of the Tristan da Cunha plume in the break-up of
the South Atlantic using the tools described in Chapter 2 and Chapter 3, solving for the
evolution of thermo-mechanical mantle flow in this region. Models differ in varying the
plume flux, the initial position of the plume, and whether to include melting. Model
results suggest a possible explanation for the observed early-rifting-related SDRs along
South Atlantic margins within a southward plume flow scenario.

Chapter 5 presents a critical evaluation and future prospects.

Chapter 6 presents a final overview of the results.
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Abstract
We present 2-D, 3-D, and spherical mesh generators for the Finite Element Method
(FEM) using triangular and tetrahedral elements. The mesh nodes are treated as if
they were linked by virtual springs that obey Hooke’s law. Given the desired length
for the springs, the FEM is used to solve for the optimal nodal positions for the
static equilibrium of this spring system. A ’guide-mesh’ approach allows the user
to create embedded high resolution sub-regions within a coarser mesh. The method
converges rapidly. For example, the algorithm is able to refine within a few iterations
a specific region embedded in an unstructured tetrahedral spherical shell so that the
edge-length factor l0r∕l0c = 1∕33 where l0r and l0c are the desired spring length for
elements inside the refined and coarse regions respectively. One application for this
type of mesh is in regional numerical models, where a high-resolution region can be
embedded in a global mesh, thereby avoiding fictitious domain boundaries at only a
small additional computational cost. The algorithm also includes routines to locally
improve the quality of the mesh and to avoid ill-shaped ’sliver-like’ tetrahedra.
KEYWORDS:
Optimization, Finite Element Method, Adaptivity, Mesh generation

1 INTRODUCTION

Mesh generation and (adaptive) refinement are essential ingredients for computational modelling in various scientific and indus-
trial fields. A particular design metric or goal is the quality of the generated mesh, because low-quality meshes can potentially
lead to larger numerical approximation errors. A high-quality mesh would consist of triangles (in 2-D) or tetrahedra (in 3-D)
that have aspect ratios near 1, i.e. their sides should have similar lengths. The techniques to generate meshes can be crudely
classified into three groups: (1) The advancing front method [Löhner and Parikh, 1988; Schöberl, 1997; Choi et al., 2003; Ito
et al., 2004] starts from the boundary of the domain. New elements are created one-by-one from an existing front of elements
towards the interior until the region is filled. Advancing front methods generally create high-quality meshes close to the domain
boundaries but can have difficulties in regions where advancing fronts merge. (2) Octree-based methods [Mitchell and Vavasis,
1992; Labelle and Shewchuk, 2007; Ito et al., 2009] produce graded meshes through recursive subdivision of the domain. The
simplicity of these methods makes them very efficient. However, poorly shaped elements can be introduced near region bound-
aries. (3) Delaunay Triangulation ensures that the circumcircle/circumsphere associated to each triangle/tetrahedron does not
contain any other point in its interior. This feature makes Delaunay-based methods [Chew, 1989; Ruppert, 1995; Chew, 1997;
Shewchuk, 1998] robust and efficient. However, in 3-D they can generate very poorly shaped tetrahedra with four almost copla-
nar vertex nodes. These so-called ’sliver’ elements have a volume near zero. Several techniques to remove slivers have been
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proposed [Cheng et al., 2000; Li and Teng, 2001; Cheng and Dey, 2002] although some slivers near the boundaries can typi-
cally persist [Edelsbrunner and Guoy, 2002]. Any ’good’ mesh should be able to meet the following requirements [Bern et al.,
1994]: (1) It conforms to the boundary; (2) It is fine enough in those regions where the problem to be solved demands higher
accuracy; (3) Its total number of elements is as small as possible to reduce the size of the problem and the computational costs to
solve it; (4) It has well-shaped elements to improve the performance of iterative methods such as the conjugate gradient method
[Shewchuk, 2002].
Current mesh generation algorithms oriented to engineering such as Netgen [Schöberl, 1997], GiD (https://www.gidhome.

com) or TetGen [Si, 2015] are based on the methods described above. Variational methods [Alliez et al., 2005] rely on energy
minimization to optimize the mesh during the generation procedure in order to create higher-quality meshes. A widely used
open access community-code for 2-D mesh generation is Triangle [Shewchuk, 1996]. DistMesh [Persson and Strang, 2004] is
an elegant and simple spring-based method that allows the user to create 2D and 3D unstructured meshes based on the distance
from any point to the boundary of the domain. However this algorithm is often slow, requiring many steps to converge,
Frequently used mesh generators in 3-D geodynamic problems are the ones included in the ASPECT [Kronbichler et al.,

2012], Rhea [Burstedde et al., 2008] and Fluidity [Davies et al., 2011] codes. ASPECT and Rhea are written in C++ with
adaptive mesh refinement (AMR). However their regular hexahedral elements create so-called "hanging nodes" in regions where
the resolution changes and cannot be directly applied to create well-formed tetrahedral elements. Fluidity is another example
of AMR for a tetrahedral mesh. However it has very limited mesh generation capabilities, and in this context mesh-generation
should not be confused with mesh adaptivity.
Here we present a new unstructured mesh generator that is based on a finite element implementation of the DistMesh approach

using virtual springs between nodes and solving for the static equilibrium positions of the nodes. We have modified the Distmesh
solution procedure to directly solve for static equilibrium, making it considerably faster than the DistMesh code. It also allows the
user to create tetrahedral meshes without hanging nodes. The user can also create embedded high resolution sub-regions within a
much coarser mesh. This approach becomes very useful when the goal is to create a mesh that minimizes the number of fictitious
internal boundaries within a computational problem. Throughout the algorithm, a built-in MATLAB (http://www.mathworks.
com) ’delaunay’ function is called to generate the spring connectivity matrix that relates nodes to triangles or tetrahedra. We
have developed and tested techniques for adding or rejecting nodes in regions where the mesh resolution is too high or too low
respectively. A smooth variation in the element size between high resolution and low resolution regions is achieved by using
a guide-mesh approach. These local operations improve the quality of poorly shaped elements that can potentially result from
the ficticious spring algorithm to determine good nodal locations. The mesh-generation code is written in vectorized MATLAB
and can be easily used within the MATLAB working environment.
Themotivation to build this computational tool was twofold: (1) For our research wewished to perform numerical experiments

on 3-D spherical shell meshes with embedded high resolution regions, and found no available open source code that could readily
and efficiently construct this type of mesh; (2) We wished to eventually add the capability to adaptively remesh high-resolution
regions during a time-dependent solution, and preferred to have an easy-to-modify mesh-generation code that we could further
customize for this task.
We will present this approach first in its simplest form for making a mesh in a well-defined rectangular 2-D region (Section 2).

In Section 3 we show how a 2-D cylindrical annulus mesh can be generated with small modifications to the previous rectangular
mesh generator algorithm. In Section 4 we present the modifications needed to create the 3-D spherical shell mesh that we are
using to solve for mantle flow.

2 2-D RECTANGULARWORK FLOW

This mesh generation algorithm has its simplest form as a program to create a 2-D rectangular mesh with an embedded high
resolution sub-region. The white and yellow boxes in Figure 1 show the flowchart that describes this algorithm.

Step 1: Definition of preferred nodal distances and initial placement of the nodes
The first step in this recipe is to define the preferred nodal distances within the refined (l0r) and coarse (l0c) regions as well as
the dimensions of the regions. In order to avoid poor quality elements, an appropriate smooth transition for the mesh refinement
should be specified. Here we choose a preferred spring-length function that is defined on a so-called ’guide-mesh’. This approach
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FIGURE 1 Flow chart for the mesh generator iterative process. Yellow, orange and green boxes represent the routines exclu-
sively used for creating 2-D rectangular meshes, 2-D cylindrical annulus meshes and 3-D spherical shell meshes, respectively.
White boxes represent the shared routines to all mesh generators. � is the mean of the misfit spring lengths (equation (16)) and
q is the quality factor of the elements (equations (13) and (31) for triangular and tetrahedral elements respectively). Tolerance
parameters �t, qt and q̄t are listed in Table 1.

is very similar to the background grid approach created by Löhner and Parikh [1988]. The generation of a refined rectangular
mesh using the guide-mesh approach involves the following steps. First, create a (coarse) mesh to serve as a guide-mesh with
only a small number of nodes defining the boundaries of the domain and the internal boundaries of the embedded high resolution
and transition sub-regions. Second, create the design function l0(x, y) for each node of the guide-mesh. This function defines
the desired length for the springs around those points. Third, the function l0(x, y) is evaluated at the midpoint of all springs
using linear Finite Element shape functions. We find that a coarse guide-mesh is a simple and flexible way to control nodal
spacing during the generation of a Finite Element mesh. Figure 2a shows the guide-mesh for a rectangular mesh example whose
parameters are listed in Table 1. Red and blue dots represent nodes in the guide-mesh with defined l0r and l0c , respectively. The
red region represents the refined region of the mesh with spring length approximately equal to l0r. The green region defines the
transition region where the length of the springs smoothly varies from l0r to l0c . The blue region represents the coarse region of
the mesh with a approximate spring length of l0c .
The next step is to create a starting guess for the locations of the nodes. Computational work is reduced considerably with a

good initial guess for the density of the nodes. Nodes on the boundary and within the domain are created taking into account both
the location of the refined region and the desired springs length for elements inside the refined and coarse regions. Boundary
nodes in the refined and coarse regions are created using l0r and l0c respectively for the spacing between the nodes. The interior
nodes within the refined and coarse regions are created using a circle packing lattice with radius equal to l0r∕2 and l0c∕2
respectively. This fills each region with an equilateral triangular tiling. In the transition region the size of the elements is expected
to change smoothly between l0r and l0c . The initial placement for boundary and interior nodes in the transition region is created
using l0r as explained above. After this step, the rejection method described in Persson and Strang [2004] is used to discard
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FIGURE 2 (a) Guide-mesh defined by a few nodes in Cartesian coordinates for a rectangular mesh. The parameters for this
mesh are listed in Table 1. Each node is assigned a value for the desired spring length, being l0r for red dots and l0c for blue
dots. The length of the springs within the refined region (in red) is approximately equal to l0r. The length of the springs within
the transition region (in green) varies smoothly from l0r to l0c . The length of springs within the coarse region (in blue) is
approximately equal to l0c . (b) Initial guess for the rectangular mesh. (c) Zoom around the left boundary of the refined region
for the initial guess (yellow line in (b)). The guide-mesh defining refined (red) and transition (green) regions is shown in white
dashed lines.

points and create a ’balanced’ intitial distribution of nodes. After performing a Delaunay triangulation, a quasi-regular mesh of
triangles within the refined and coarse regions, with a poorly structured transition region between them is created (Figure 2b).
Figure 2c shows a zoom of the initial mesh with the guide-mesh also shown.

Step 2: Spring-based solver
Inspired by Persson and Strang [2004], to generate an unstructured mesh we link the future locations of finite element nodes
with virtual elastic springs. The spring length is used to define the desired nodal distance within any mesh region, i.e. short
springs lead to mesh regions with higher resolution and longer springs lead to lower resolution mesh regions. Nodal positions
are solved for so that the global network of virtual springs is in static equilibrium. The behaviour of each ficticious spring is
described by Hooke’s law

F = −k�s , (1)
where F is the force acting at each end of spring, k is the stiffness of the spring, and �s is the distance the spring is stretched
or compressed from its equilibrium length l0. Forces and nodal positions are expressed in x, y coordinates in 2-D (Figure 3a).
Because Hooke’s law is formulated along the spring direction it is necessary to introduce the X′ axis as the local 1-D reference
system to solve for the nodal positions. Hooke’s law for each spring in the local 1-D reference system is given by

f1
′ = k�s = k(x2′ − x1′ − l0) , (2a)

f2
′ = −k�s = −k(x2′ − x1′ − l0) , (2b)

where f ′ and x′ are the force and position of the ends of the spring given by the subscripts 1 and 2, respectively. Writing
equations (2a) and (2b) in matrix form, and moving the force terms to the left hand side yields(

f1
′

f2
′

)
+ k

[
−1 1
1 −1

](
0
l0

)
= k

[
−1 1
1 −1

](
x1′

x2′

)
. (3)
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b)a)

FIGURE 3 (a) Virtual spring in the 2-D space. Both global reference system (X, Y ) and local reference system (X′, Y ′) are
shown. (b) Virtual spring in the 3-D space. Both global reference system (X, Y , Z) and local reference system (X′, Y ′, Z′) are
shown. Grey dots represent two nodes linked by the virtual spring. Red arrows represent the forces acting at each end of the
spring.

In order to solve for the nodal positions in 2-D, a change from local coordinates (x1′, 0; x2′, 0) to global coordinates (x1, y1; x2,
y2) is needed. This change of coordinates is described in matrix form as

R2D =
[
cos � sin � 0 0
0 0 cos � sin �

]
, (4)

where � is the angle of the X′ axis measured from the X axis in the counterclockwise direction (Figure 3a). Applying equation
(4) to equation (3) (see Appendix A for further details), equation (3) becomes

k

⎡⎢⎢⎢⎢⎣

−c�2 −s�c� c�2 s�c�
−s�c� −s�2 s�c� s�2

c�2 s�c� −c�2 −s�c�
s�c� s�2 −s�c� −s�2

⎤⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎝

x1
y1
z1
x2

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝

f1,x
f1,y
f2,x
f2,y

⎞⎟⎟⎟⎟⎠
+ kl0

⎛⎜⎜⎜⎜⎝

c�
s�
−c�
−s�

⎞⎟⎟⎟⎟⎠
, (5)

where s� ≡ sin � and c� ≡ cos �. Equation (5) can be written in the matrix form as
Kx = fr + fl0 , (6)

where K is the stiffness matrix, x is the nodal displacement vector, fr is the residual force and fl0 is the force-term created
by the fact that the springs would have zero-force at their desired length. Whwn solved for the equilibrium state, fr = 0. A
vectorized ’blocking’ technique based on the MATLABmethodology described in the MILAMIN code [Dabrowski et al., 2008]
is employed to speed up the assembly of the stiffness matrix. The solution to this problem is the ’optimal’ position of each node
obtained from the inversion of the system of static force equilibrium equations

x = K−1fl0 . (7)

Straight line Boundary Conditions
Boundary conditions are necessary to constrain the mesh to the desired domain boundaries, and to differentiate between bound-
ary and interior nodes. In the simple case of a rectangular mesh, a boundary node is free to slide along a domain edges parallel to
theX- or Y -axis. We achieve this by setting one of its yi or xi values to be fixed and letting the other value vary so that the node
is free to move along the boundary segment. In the case of a general line that is not parallel to the X- or Y -axes, this requires a
transformation from global coordinates to a new local coordinate system in which the constraint direction is parallel to a local
coordinate axis. In other words, the new local axes have to be parallel to and perpendicular to the boundary segment. For sim-
plicity, the mathematical implementation is shown for one triangle (Figure 4). Node 2 is free to slide along the tilted segment
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FIGURE 4 Implementation of boundary conditions along a straight tilted segment (yellow dashed line) for one triangle. A
rotation is needed for the node 2 in order to pass from the global reference system (X, Y ) to the local reference system (X′, Y ′)
where y2′ = 0 is the constrained boundary condition.

(yellow dashed line in Figure 4) since y2′ = 0 defines the boundary constraint. The boundary condition is imposed by a rotation
of coordinate system for node 2 given by the transformation matrix T that relates global coordinates x to local coordinates x′ by

⎛⎜⎜⎜⎜⎜⎜⎝

x1
y1
x2
y2
x3
y3

⎞⎟⎟⎟⎟⎟⎟⎠
⏟⏟⏟

x

=

⎡⎢⎢⎢⎢⎢⎢⎣

1
1
cos �2 − sin �2
sin �2 cos �2

1
1

⎤⎥⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

T

⎛⎜⎜⎜⎜⎜⎜⎝

x1
y1
x2′

0
x3
y3

⎞⎟⎟⎟⎟⎟⎟⎠
⏟⏟⏟

x′

. (8)

Applying the transformation matrix to the stiffness matrix and force vector
K ′ = TTKT , (9)

fl0
′ = TTfl0 , (10)

the new system of equations is given by
K ′x′ = fl0

′ , (11)
which is solved for x′. When desired, the original global coordinates are recovered through the transformation matrix

x = Tx′ . (12)

Step 3: Mesh refinement
In this algorithm we refine a mesh by decreasing the element size in the region of interest. One common issue in the refinement
process arises from the size contrast between large and small elements within a short spatial interval so that poorly-shaped
elements with short and long edges may form. In order to mitigate this issue a transition region surrounding the refined region
is defined using the guide-mesh approach described above (see Figure 2a).

Quality factor for triangles
The ’quality’ of a mesh is determined by assessing the quality of its individual elements. This usually involves measures of
angles, edge lengths, areas (in 2-D), volumes (in 3-D), or the radius of its inscribed and circumscribed circles/spheres [e.g.
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Dompierre et al., 1998; Shewchuk, 2002]. Here we use a normalized quality factor, which in 2-D is given by
q
2D
=
2rc
Rc

, (13)
where rc is the radius of the element’s inscribed circle andRc is the radius of its circumscribed circle.Rc and rc can be expressed
as

rc =
1
2

√
(b + c − a)(c + a − b)(a + b − c)

a + b + c
, (14)

Rc =
abc√

(a + b + c)(b + c − a)(c + a − b)(a + b − c)
, (15)

where a, b and c are the side lengths of the triangle. A fair criteria to evaluate the quality of a mesh is to provide the minimum
and mean values of the quality factor [cf. Alliez et al., 2005]. Here both are used as control parameters to determine when the
iterative algorithm has reached the desired mesh quality tolerances (Figure 1).

Step 4: Local mesh improvements
So far the above algorithm would only move nodes within the domain to meet the desired spring lengths/internodal distances.
However, in general we do not know a priori how many nodes are needed for a mesh. Therefore we use algorithms to locally
add and remove nodes where the spacing is too loose or tight in the equilibrium configuration. After solving for nodal positions,
we check if the mesh has reached the expected nodal density by determining the mean of the misfit in spring lengths (Figure 1).
This is given by

� = 1
N

N∑
i=1

|||||
li − l0i
l0i

|||||
, (16)

where l is the actual spring length, l0 is the desired spring length and N is the total number of springs in the mesh. Nodes are
added or rejected (see below) if � ≥ �t. When � < �t the expected nodal density is achieved and element shape improvements
(see below) are applied to obtain higher quality elements. After some experimentation we found it appropriate to use 0.02 <
�t < 0.05 for 2-D meshes.

Add/reject nodes
In the iterative process of mesh generation the possibility to either add or reject nodes plays an important local role. This feature
is especially relevant when the goal is to create a global coarse mesh with an embedded high resolution sub-region. The logic
for adding or rejecting nodes is based on the relative length change of the springs connecting nodes

� =
l − l0
l0

, (17)
indicating whether springs are stretched (� > 0) or compressed (� < 0) with respect to their desired lengths. A new node is
created at the midpoint of those springs with � > 0.5, i.e. springs stretched more than 50% greater than their desired length.
One node at the end of a spring is rejected when � < −0.5, i.e. springs compressed more than 50% below their desired length.
In order to save computational time, the add/reject nodes routine is called as a sub-iteration within the main iteration in which
nodal positions are found. Sub-iterations are performed until the percentage of springs with |�| > 0.5 in the sub-iteration j + 1
is higher than in the sub-iteration j. This implementation is especially useful when a large fraction of nodes need to be either
added or rejected within a particular region of the mesh, e.g. when a relatively poor initial guess is used.

Smooth positions of the interior nodes
Good quality meshes are directly related to the generation of isotropic elements [Alliez et al., 2005]. A Laplacian smoothing
criteria [cf. Choi et al., 2003] is used to improve the shape of poorly shaped elements, i.e. to make elements as close to a
equilateral triangles or regular tetrahedra as possible. This method is only applied to interior nodes. The routine repositions
interior nodes towards the mean of the barycentres of their surrounding elements, i.e.

xs =

N∑
i=1

xbi

N
, (18)
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where xs are the new coordinates of the interior node,N is the number of elements surrounding the interior node and xbi are the
barycentre coordinates of the i-th surrounding element. Figure S1 shows an example of smoothing positions of interior nodes
for a 2-D mesh.

Example: Rectangular mesh with an embedded high resolution region
Several tests have been performedwith the above implementations in order to demonstrate the robustness of this mesh-generation
recipe. As an example, we show the results for a rectangular box with an embedded high-resolution sub-region (code available in
Supporting information). The input parameters that control the algorithm are listed in Table 1. The algorithm created the mesh
in 9 s (purple dot in Figure 5) after 8 outermost loop iterations (cf. Figure 1). All tests in this study have been performed using
MATLAB R2015a (8.5.0.197613) on a 3.2 GHz Intel Core i5 (MacOSX 10.12.5) with 24 GB of 1600 MHz DDR3 memory.
Figure 6a shows the final mesh (top) and a zoom around the left boundary of the refined region (bottom) for the iteration 8 (see
Figure S2 for iterations 0 (initial mesh) and 1). The final mesh has 22000 nodes forming 43000 triangles with an edge-length
factor l0r∕l0c = 1∕200. The percentage of triangles within the coarse, transition and refined regions is 0.3%, 6.3% and 93.4%
respectively. The lowest quality factor for an element is 0.51 (red line in Figure 6b) and the mean quality factor for all elements
is 0.99 (blue line in Figure 6b). Only 0.12% of the triangles have a quality factor lower than 0.6 (green line in Figure 6b). Figure
6c shows the fraction of elements as a function of quality factor for the final mesh.

TABLE 1 Mesh Parameters.

Symbol Meaning Rectangular
box

Cylindrical
annulus

Spherical
shell

d Depth 2900 km - -
l Length 40000 km - -
ri Inner radius - 3471 km 3471 km
ro Outer radius - 6371 km 6371 km
x0 x-coordinate centre of refined region 0 km - -
z0 z-coordinate centre of refined region 0 km - -
�0 Colatitude centre of refined region - 90◦ 90◦
�0 Longitude centre of refined region - - 90◦
r0 Radial distance centre of refined region - 6371 km 6371 km
l0c Desired spring length for elements

inside the coarse region
1500 km 2000 km 2000 km

l0r Desired spring length for elements
inside the refined region

7.5 km 10 km 60 km

dt Transition region depth 2900 km 2900 km 2900 km
lt Transition region length 8000 km 8000 km 6800 km
wt Transition region width - - 9600 km
dr Refined region depth 300 km 300 km 300 km
lr Refined region length 3333 km 3333 km 2200 km
wr Refined region width - - 5000 km
qt Tolerance for minimum quality factor 0.45 0.30 0.23
q̄t Tolerance for mean quality factor 0.89 0.93 0.80
�t Tolerance for mean misfit spring length 0.025 0.04 0.13
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FIGURE 5 Computational time as a function of the number nodal degrees of freedom (dofs). All meshes have been generated
using the parameters listed in Table 1; only l0r is varied. The purple dot (7.5 km-rect. mesh) is for the example shown in Figure 6,
the blue dot (10 km-cyl. mesh) is for the example shown in Figure 9, and the orange dot (60 km-3D sph. mesh) is for the example
shown in Figure 13. The non-linear increase in solution time for the highest-resolution spherical shell mesh occurs because a
direct matrix-inversion algorithm is currently used to solve the finite element equations. Changing the current direct solver to a
standard iterative FE solver would allow the solution time to continue to scale linearly with the number of mesh-points, while
also resulting in an easy-to-parallelize code-tool.
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FIGURE 6 (a) Final mesh (top) for a rectangular box with an embedded high resolution sub-region and a zoom around the left
boundary of the refined region (bottom). (b) Minimum quality factor (red line), mean quality factor for all elements (blue line)
and percentage of elements having a quality factor lower than 0.6% (green line) as a function of iteration number. (c) Histogram
of the fraction of elements as a function of quality factor for the final mesh. The lowest quality factor for an element is 0.51.
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3 2-D CYLINDRICAL ANNULUS WORK FLOW

The algorithm presented above needs to be slightly modified to generate a cylindrical annulus mesh. The white and orange boxes
in Figure 1 show the flowchart that describes this modified algorithm. Since the general algorithm is the same, in this section
we only discuss the parts that differ from the rectangular mesh generator described previously.

Cylindrical annulus guide-mesh
The generation of a refined cylindrical annulus mesh using the guide-mesh involves the same steps as for a rectangular mesh
except that the function l0(x, y) becomes l0(�, r). In this case the guide-mesh is a coarse cylindrical annulus mesh defined in polar
coordinates. Figure 7a shows the guide-mesh (white dashed lines) defining the refined (red), transition (green) and coarse (blue)
regions and the parameters are listed in Table 1. Red and blue dots represent l0r and l0c respectively. The initial triangulation
is shown in black solid lines. Figure 7c shows a zoom of the guide-mesh defined in polar coordinates. Green dots represent the
points where the function l0(�, r) is interpolated. The use of a guide-mesh defined in polar coordinates (white dashed lines in
Figure 7a and Figure 7c) instead of Cartesian coordinates (white dashed lines in Figure 7b and Figure 7d) takes advantage of
higher precision when l0 values are interpolated in points both close and on the boundaries (green dots in Figure 7c). This is
because the shape of the outer and inner boundaries of any cylindrical annulus mesh defined in Cartesian coordinates is not
perfectly circular (Figure 7b). Therefore, it may occur that some boundary points (magenta dots in Figure 7d) may lay outside
of the boundaries of a Cartesian guide-mesh (which can be a very coarse mesh) preventing accurate interpolation for the desired
length at those points. Furthermore, the fact that both boundaries – the cylindrical annulus mesh and its guide-mesh – would
not overlap in a Cartesian geometry would reduce the precision of the interpolated l0 values (yellow dots in Figure 7d).

Circular Boundary Conditions
Boundary conditions for a cylindrical annulus mesh are a generalization to the treatment for a straight-sided boundary line-
segment.We denote the inner and outer boundariesΣ of the cylindrical annulusmesh as radii r = rinner and r = router respectively.
Ω is the interior region confined between both boundaries. A useful boundary condition is to prescribe nodes on Σ that are free to
move along the circular boundary. This nodal motion is generated by two independent steps (Figure 8a): 1) The node is allowed
to move along the tangent line to the circle at its current location, and 2) the node is placed onto the circle by projecting its new
location in the radial direction. This approximation assumes that the radial distance needed to put the node back onto the circle
is small compared to the distance moved along the tangent line. For simplicity, the mathematical implementation is presented
here only for one triangle (Figure 8b). The boundary condition for node 2 is that it slides along its tangent line (dashed line
in Figure 8b) since y2′ = |r|, where r is the radial distance from the centre of the cylindrical annulus mesh to the boundary.
The boundary condition is imposed by a rotation of the coordinate system for node 2 given by the transformation matrix T that
relates global coordinates x with local coordinates x′ (local surface-parallel reference system (X′, Y ′) in green in Figure 8b) by

⎛⎜⎜⎜⎜⎜⎜⎝

x1
y1
x2
y2
x3
y3

⎞⎟⎟⎟⎟⎟⎟⎠
⏟⏟⏟

x

=

⎡⎢⎢⎢⎢⎢⎢⎣

1
1

cos �2 sin �2
− sin �2 cos �2

1
1

⎤⎥⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

T

⎛⎜⎜⎜⎜⎜⎜⎝

x1
y1
x2′

|r|
x3
y3

⎞⎟⎟⎟⎟⎟⎟⎠
⏟⏟⏟

x′

, (19)

where �2 is the angle of the node 2 measured from the Y axis in the clockwise direction. After applying the transformation
matrix to the stiffness matrix and force vector

K ′ = TTKT , (20)

fl0
′ = TTfl0 , (21)

the new system of equations is given by
K ′x′ = fl0

′ , (22)
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FIGURE 7 (a) Guide-mesh (white dashed lines) defined by a few nodes (red and blue dots represent l0r and l0c respectively)
in polar coordinates for a cylindrical annulus mesh (initial guess is shown in black solid lines). Red, green and blue colours
represent the refined, transition and coarse regions respectively. (b) Guide-mesh defined in Cartesian coordinates. Same colours
as in (a). (c) Zoom around an edge of the transition region in polar coordinates. The function l0(�, r) can be interpolated at green
dots with maximum precision since both boundaries – the cylindrical annulus mesh and its guide-mesh – are overlapping. (d)
Zoom around an edge of the transition region in Cartesian coordinates. The function l0(x, y) cannot be interpolated at magenta
dots since they lay outside of the outer boundary of a Cartesian guide-mesh. The precision of the interpolated l0 values at yellow
dots is reduced since both boundaries – the cylindrical annulus mesh and its guide-mesh – do not overlap.

which is then solved for x′ . Global coordinates are recovered through the transformation matrix
x = Tx′ . (23)

Add/reject nodes in cylindrical annulus meshes
The routine to add or reject nodes for a cylindrical annulus mesh works like the one explained above for a rectangular mesh.
The only difference appears when a new node is added on a boundary spring. In this case, the new boundary node needs to be
projected onto the surface along the radial direction.
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FIGURE8 (a) Conceptual diagram for circular boundary conditions. Themotion of boundary nodes is first restricted to be along
the tangent line to the circle. Then they are ’pulled back’ to the circle by projecting in the radial direction. (b) Implementation
of circular boundary conditions for one triangle. A rotation is needed for the node 2 in order to pass from the global reference
system (X, Y ) to the local surface-parallel reference system (X′, Y ′) where y2′ = |r| is the constrained boundary condition.

Example: Cylindrical annulus mesh with an embedded high resolution region
We show the results for a cylindrical annulus mesh with an embedded high-resolution sub-region (code available in Supporting
information). The input generation parameters are listed in Table 1. The algorithm created the mesh in 6 s (blue dot in Figure 5)
after 7 iterations. Figure 9a shows the final mesh for iteration 7 (see Figure S3 for iterations 0 (initial mesh) and 1). Figure 9b
shows a zoom around an edge of the refined region. The final mesh has 12000 nodes forming 23000 triangular elements with an
edge-length factor l0r∕l0c = 1∕200. The percentage of triangles within the coarse, transition and refined regions is 0.2%, 6.1%
and 93.7% respectively. The worst quality factor for an element is 0.40 (red line in Figure 9c) and the mean quality factor of all
elements is 0.98 (blue line in Figure 9c). Only 0.26% of the triangles have a quality factor lower than 0.6 (green line in Figure
9c). Figure 9d shows the fraction of elements as a function of their quality factor for the final mesh.
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FIGURE 9 (a) Final mesh for a cylindrical annulus with an embedded high resolution sub-region. (b) Zoom around an edge
of the refined region. (c) Minimum quality factor (red line), mean quality factor for all elements (blue line) and percentage of
elements having a quality factor lower than 0.6% (green line) as a function of iteration number. (d) Histogram of the fraction of
elements as a function of quality factor for the final mesh. The lowest quality factor for an element is 0.40.
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FIGURE10 (a) Guide-mesh defined by a few nodes (red and blue dots represent l0r and l0c respectively) in spherical coordinates
for a spherical shell. The length of the springs within the refined region (red) is approximately equal to l0r. The length of the
springs within the transition region (green) smoothly varies from l0r to l0c . Outside the transition region the length of the springs
is approximately equal to l0c . (b) Model domain representing a 3-D spherical shell with an embedded high resolution sub-region.

4 3-D SPHERICAL SHELLWORK FLOW

The algorithm presented above was developed as an intermediate step towards the generation of 3-D spherical shell meshes that
include an embedded high resolution sub-region. The white and green boxes in Figure 1 show the flowchart that describes the
3-D spherical algorithm. In this section we discuss those parts of the algorithm that differ from the cylindrical annulus mesh
generator.

Initial placement of the nodes in 3-D
The boundary nodes in the refined and coarse regions are created by recursively splitting an initial dodecahedron according to l0r
and l0c respectively. This gives a uniform distribution of equilateral triangles on the spherical surface. In contrast to equilateral
triangles in 2-D, which are able to fill up the plane, regular tetrahedra do not fill up the entire space. However, there do exist
some compact lattices, e.g. the hexagonal close packing (hcp) lattice, that create a distribution of nodes that leads to well shaped
tetrahedra. The interior nodes within the refined and coarse regions are created by a close-packing of equal spheres with radii
equal to l0r∕2 and l0c∕2 respectively. The initial placement for boundary and interior nodes in the transition region is created
using l0r as explained above. Then the rejection method described in Persson and Strang [2004] is used to discard points and
create a weighted distribution of nodes.

Spherical shell guide-mesh
The generation of a refined spherical shell mesh using the guide-mesh involves steps similar to those described above except
that the preferred length function l0(�, r) is now l0(�, �, r). In this case the guide-mesh is a coarse spherical shell mesh defined
in spherical coordinates (Figure 10a).

Spring-based solver in 3-D
The spring-based solver described above naturally extends to 3-D. Forces and nodal positions are expressed in x, y and z
coordinates (Figure 3b). In order to solve for nodal positions in 3-D, a change from local coordinates (x1′, 0, 0; x2′, 0, 0) to global
coordinates (x1, y1, z1; x2, y2, z2) is needed. This change of coordinates consists of a 3-D rotation described by the rotation
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FIGURE 11 (a) Conceptual diagram for spherical boundary conditions. The motion of boundary nodes is first restricted to be
along the tangent plane to the sphere. Then, they are ’pulled back’ to the sphere’s surface by projecting in the radial direction.
(b) Implementation of spherical boundary conditions for one tetrahedron. Two rotations are needed for node 2 to pass from the
global reference system (X, Y , Z) to the local reference system (X′′, Y ′′, Z′′), where z2′′ = |r| is the boundary condition.

matrix
R3D =

[
cos � cos � cos � sin � sin � 0 0 0

0 0 0 cos � cos � cos � sin � sin �

]
, (24)

where � and � are angles equivalents to latitude and longitude, respectively (Figure 3b). Applying equation (24) to equation (3)
(see Appendix B for details), equation (3) becomes

k

⎡⎢⎢⎢⎢⎢⎢⎣

−c�2c�2 −c�2s�c� −s�c�c� c�2c�2 c�2s�c� s�c�c�
−c�2s�c� −c�2s�2 −s�c�s� c�2s�c� c�2s�2 s�c�s�
−s�c�c� −s�c�s� −s�2 s�c�c� s�c�s� s�2

c�2c�2 c�2s�c� s�c�c� −c�2c�2 −c�2s�c� −s�c�c�
c�2s�c� c�2s�2 s�c�s� −c�2s�c� −c�2s�2 −s�c�s�
s�c�c� s�c�s� s�2 −s�c�c� −s�c�s� −s�2

⎤⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎝

x1
y1
z1
x2
y2
z2

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝

f1,x
f1,y
f1,z
f2,x
f2,y
f2,z

⎞⎟⎟⎟⎟⎟⎟⎠

+ kl0

⎛⎜⎜⎜⎜⎜⎜⎝

c�c�
c�s�
s�

−c�c�
−c�s�
−s�

⎞⎟⎟⎟⎟⎟⎟⎠

, (25)

where s� ≡ sin �, c� ≡ cos �, s� ≡ sin � and c� ≡ cos �. The system of equations is solved as described above (see equation (7)).

Spherical Boundary Conditions
For 3-D applications, we currently focus on developing unstructured spherical meshes. Using a notation similar to that for 2-
D circular boundary conditions, we denote by Σ the inner and outer boundaries of the spherical shell with radii r = rinner and
r = router respectively. Ω is the interior region between the boundaries. A useful boundary condition consists in prescribing
boundary nodes that are free to slide along the local tangent plane to the spherical surface. Nodal sliding is generated in two
independent steps (Figure 11a): 1) The node is allowed to move along the local tangent plane to the sphere, and 2) the node is
returned to the sphere’s surface by projecting in the radial direction. This approximation assumes that the radial distance needed
to pull the node back to the surface of the sphere is small compared to the distance moved along the tangent plane. For simplicity,
the mathematical implementation of the spherical boundary conditions is presented here only for one tetrahedron (Figure 11b).
Node 2 is free to slide along the tangent plane since the boundary condition is z2′′ = |r|, where r is the radial distance from the
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centre of the sphere to the surface. This boundary condition is imposed by two rotations of the coordinate system for node 2.
The first rotation is around the Z axis by an angle �2, which is the longitude of node 2 (local reference system (X′, Y ′, Z′) in
blue in Figure 11b). The second rotation is around the Y ′ axis by an angle �2, which is the colatitude for node 2 (local reference
system (X′′, Y ′′, Z′′) in green in Figure 11b). The complete rotation is given by the transformation matrix T that relates global
coordinates x with local coordinates x′′ as follows

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
y1
z1
x2
y2
z2
x3
y3
z3
x4
y4
z4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⏟⏟⏟
x

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
cos�2 cos �2 − sin�2 cos�2 sin �2
sin�2 cos �2 cos �2 sin�2 sin �2

− sin �2 0 cos �2
1
1
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
y1
z1
x2′′
y2′′|r|
x3
y3
z3
x4
y4
z4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⏟⏟⏟

x′′

. (26)

This transformation matrix contains a � and � angle for each node on the spherical boundary. Applying the transformation
matrix to stiffness matrix and force vector

K ′′ = TTKT , (27)

fl0
′′ = TTfl0 , (28)

the new system of equations is given by
K ′′x′′ = fl0

′′ , (29)
which is solved for x′′. Global Cartesian coordinates are recovered through the transformation matrix

x = Tx′′ . (30)

Quality factor for tetrahedra
The 3-D quality factor for a tetrahedron is defined by

q
3D
=
3rs
Rs

, (31)
where rs is the radius of the tetrahedron’s inscribed sphere and Rs is the radius of its circumscribed sphere. Rs and rs are given
by

rs =
|a ⋅ (b × c) |

(|a × b| + |b × c| + |c × a| + | (a × b) + (b × c) + (c × a) |) , (32)

Rs =
|a2 ⋅ (b × c) + b2 ⋅ (c × a) + c2 ⋅ (a × b) |

2|a ⋅ (b × c) | , (33)
where a, b and c are vectors pointing from one node, O, to the three other nodes of the tetrahedron A, B and C respectively
(Figure 12a). This quality factor is normalized to be 0 for degenerate tetrahedra and 1 for regular tetrahedra. Note that different
definitions for normalized aspect ratios can lead to different estimators for the global quality of a mesh. For example, Anderson
et al. [2005] define a shape measure s that depends on tetrahedral volume and the lengths of its edges. Computing q

3D
and s for

the same mesh gives differences of up to 0.1 for the worst element (Figure 12b). The quality factor q
3D

that we choose to use is
a more restrictive aspect ratio than the shape factor measure s.

Element shape improvements
In 3-D, even when the expected nodal density is achieved (� < �t) by adding or rejecting nodes, a considerable number of
poorly shaped tetrahedra can still persist. Local improvements are needed to ensure that the mesh is robust enough to perform
optimal FEM calculations. After some experimentation, we found it appropriate to use �t = 0.13 although this can vary from
0.1 to 0.2 depending on the degree of mesh refinement. The value of �t for 2-D meshes is smaller than for 3-D meshes due to
the shape compactness that can be achieved on a 2-D planar surface.
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FIGURE12 (a) Tetrahedronwith verticesOABC.R and r are the radius of the circumscribed and inscribed spheres respectively.
(b) Number of tetrahedra as a function of the quality factor q

3D
(green) and the shape measure s (red) for the same mesh.

Methods based on swapping edges or faces to improve element quality can possibly generate non-Delaunay triangulations,
which will cause problems in algorithms that rely on a mesh created by a Delaunay triangulation (e.g. point search algorithms).
Hence, as an alternative and in addition to smoothing the position of interior nodes, we recommend two additional operations
to improve the quality of tetrahedral elements.

Improvement of badly shaped tetrahedra
Unstructured 3-D meshes are composed of irregular tetrahedra. Some may be quite poor in terms of their shape and quality
factor (see Cheng et al. [2000] for a complete categorization of badly shaped tetrahedra). The first improvement for tetrahedral
shapes acts locally and only modifies one node of each badly shaped tetrahedron. For each badly shaped tetrahedron, identified
by q

3D
< qbad , where 0.2 ≤ qbad ≤ 0.3, we select the spring with the maximum distortion, i.e. max(|�|). If � > 0, a new node

is created in the midpoint of the selected spring, while a node at one end of the selected spring is removed if � < 0. A new
connectivity is then created by another Delaunay triangulation. The new connectivity is only modified in the surroundings of
nodes that have been added or removed, keeping the rest of the connectivity to be the same as the old triangulation. Figure S4
illustrates a simple example that improves badly shaped tetrahedra when meshing the unit cube.

Removing slivers
Slivers are degenerate tetrahedra whose vertices are well-spaced and near the equator of their circumsphere, hence their quality
factor and enclosed volume are close to zero. We define a sliver as a tetrahedron with q

3D
< 0.1. Our routine for removing slivers

is purely geometrical, i.e. it does not take into account the actual or desired length of the springs. The four vertices of each sliver
are replaced by the three mesh points of the best potential triangle that can be generated from all permutations of its vertices
and potential new nodes created at the midpoints of its springs (Figure S5). Delaunay triangulation is called afterwards to create
the connectivity matrix around the changed nodes.

Example: Spherical shell mesh with an embedded high resolution region
We show the results for a spherical shell mesh with an embedded high-resolution sub-region (code available in Supporting
information). The input mesh parameters are listed in Table 1. We recommend to set the point around which the refined region
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FIGURE 13 (a) Cross section of the final mesh with an embedded high resolution sub-region after refinement using the guide-
mesh. (b) Zoom around the boundary of the refined region. (c) Minimum quality factor (red line), mean quality factor for all
elements (blue line) and fraction of elements having a quality factor lower than 0.4% (green line) as a function of iteration
number. (d) Histogram of the fraction of elements as a function of quality factor for the final mesh. The lowest quality factor for
an element is 0.23.

is created far from the polar axis since the guide-mesh can have difficulties in interpolating the desired spring lengths near the
polar axis.
For this example, the domain of the mesh is a spherical shell whose boundaries represent the core-mantle boundary and the

Earth’s surface (Figure 10b). The smallest tetrahedra with quasi-uniform size lie inside the high resolution region (red tesseroid
in Figure 10b). This region is embedded within a coarser global mesh. A transition region (green tesseroid in Figure 10b)
guarantees a gradual change in tetrahedral size from the high resolution region to the coarse region. The algorithm created the
mesh in 130 s (orange dot in Figure 5) after 2 iterations (see Figure 13a for a cross section of the final mesh). Figure 13b shows
a detail of the mesh around the northern boundary of the refined region. The mesh has 27000 nodes forming 150000 tetrahedra
with an edge-length factor l0r∕l0c = 1∕33. The fraction of tetrahedra within the coarse, transition and refined regions is 0.7%,
21.6% and 77.7% respectively (Figure S6). The worst quality factor for an element is 0.23 (red line in Figure 13c) and the mean
of the quality factor for all elements is 0.85 (blue line in Figure 13c). Only 1.5% of the tetrahedra have a quality factor lower
than 0.4. Figure 13d shows the fraction of elements as a function of their quality factor for the final mesh.
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5 MESH COMPARISONWITH OTHER ALGORITHMS

In 2-D, there are many open source and commercial mesh generators that are flexible and work well, e.g. Triangle [Shewchuk,
1996], so we will not discuss the 2-D version of our code here. In general, comparing meshes created by different algorithms can
be a difficult task because typically each algorithm creates a mesh with desirable characteristics for a specific problem. For this
reason, we will test our 3-D algorithm by creating a simple geometry that can be easily reproduced by all compared algorithms.
We chose three algorithms ADP3D [Dompierre et al., 1998], DistMesh [Persson and Strang, 2004] and Netgen [Schöberl, 1997]
to compare when creating a unit-radius sphere with a preferred nodal distance l0 = 0.2. DistMesh, Netgen and the algorithm
presented in this study were run on the same machine. For ADP3D we only have the benchmark published by Dompierre et al.
[1998]. Table 2 shows the number of nodal degrees of freedom (dofs), the number of mesh elements, the computational time (in
sec on our 3.2 GHz Intel Core i5 (MacOSX 10.12.5) machine with 24 GB of 1600MHz DDR3 memory) and several tetrahedron
shape-quality measures [cf. Dompierre et al., 1998] for each algorithm:

• Quality factor, q3D, given by equation (31) and also known as radius ratio, �.
• Aspect ratio,  , given by

 = 2
√
6
rs
lmax

, (34)
where lmax is the length of the longest edge of the tetrahedron.

• Mean ratio, �, given by
 = 12 3

√
9v2

6∑
i=1
l2i

, (35)

where li is the length of each edge of the tetrahedron.
• Solid angle, �min, given by

�min = �min
[
sin

(
�i
2

)]
, (36)

sin(�i∕2) = 12v
⎛⎜⎜⎜⎝

∏
j,k≠i

0≤j<k≤3

((
lij + lik

)2 − l2jk
)⎞⎟⎟⎟⎠

−1∕2

, (37)

where �−1 =√
6∕9.

TABLE 2 Statistical data.

ADP3D 1 DistMesh 2 Netgen 3 This study

Number of nodal dofs 3132 3207 3453 3483
Number of elements 4905 5177 4942 5230
Computational time (s) - - 16.51 3.46 3.75
Quality factor q3D min 0.324 0.045 0.501 0.486

mean 0.873 0.898 0.793 0.881
Aspect ratio  min 0.317 0.038 0.457 0.405

mean 0.772 0.796 0.684 0.773
Mean ratio � min 0.501 0.112 0.624 0.560

mean 0.898 0.915 0.832 0.899
Solid angle �min min 0.178 0.044 0.185 0.232

mean 0.665 0.737 0.525 0.686
1[Dompierre et al., 1998] 2[Persson and Strang, 2004] 3[Schöberl, 1997]
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The histograms corresponding to these data are shown in Figure 14. Our approach creates a comparable mesh in about the
same time as the compiled Netgen code, and more than four times faster than Distmesh (Table 2). Distmesh produces slightly
higher mean values for all the shape measures. However, since it does not include routines to deal with slivers, it also produces
the lowest minimum value for all the shape measures, e.g. it produces a few sliver-like ’bad’ elements. Netgen gives the highest
minimum value for all shape measures except for the solid angle. However, its mean values are the lowest. ADP3D produces
comparable, but slightly lower minimum and mean values for all the shape measures to our MATLAB codetool, although we do
not know the computational time for this algorithm. A specific feature that is missing from our code is that there is no graphical
user interface (GUI). For the meshes we wish to make it is relatively easy to define a guide-mesh with a few lines of MATLAB
code. As we plan to use this algorithm in an adaptive finite element code it was not a high priority to create an associated GUI.
Since Distmesh is also written in MATLAB and was the original inspiration to our algorithm, a user could straightforwardly
modify the original Distmesh code to include our guide-mesh approach. The other algorithms would require larger modifications
to similarly control the mesh refinement associated with a mesh generation including an embedded high resolution sub-region.
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FIGURE 14 Histogram of the fraction of elements as a function of: (a) quality factor, (b) aspect ratio, (c) mean ratio and (d)
solid angle.

6 SUMMARY

We have developed the tools for generating unstructured meshes in 2-D, 3-D, and spherical geometries that can contain embed-
ded high resolution sub-regions. While we do not discuss the recipe for the generation of a Cartesian 3-D mesh, only small
modifications to the 3-D spherical code are needed to place boundary points along linear boundary edges and planar boundary
surfaces rather than spherical shell boundaries. The algorithm employs the FEM to solve for the optimal nodal positions of a
spring-like system of preferred nodal positions. Straight line, circular and spherical boundary conditions are imposed to con-
strain the shape of the mesh. We use a guide-mesh approach to smoothly refine the mesh around regions of interest. Methods
for achieving the expected nodal density and improving the element shape and quality have been presented to ensure a high
quality of the generated mesh, which is a prerequisite for high computational accuracy and fast iterative convergence. We have
compared our algorithm to other open source mesh generators. This comparison shows that our algorithm generates the high-
est quality mesh, i.e. the highest minimum and mean value for all the shape measures, within a computational time comparable
to or better than other open source algorithms. The presented mesh generator can be easily used for adaptive mesh refinement
by varying the desired spring length depending on variables of interest. Since an adaptive refinement (or coarsening) will only
change node positions in regions where the spatial resolution is changed, most nodes of the spring system remain in equilibrium
so that only very few iterations are required to obtain the updated mesh.
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SUPPORTING INFORMATION

The following supporting information is available as part of the online article:

b)a)

FIGURE S1 (a) Initial 2-D mesh. (b) Mesh after applying the Laplacian correction to smooth positions of its interior nodes.
Blue points are the barycentres of the triangles. Green and black crosses are the nodal positions before and after smoothing,
respectively. Red arrows indicate the motions of interior nodes.
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FIGURE S2 (a) Initial mesh (top) for a rectangular box with an embedded high resolution sub-region and a zoom around the
left boundary of the refined region (bottom). (b) Mesh (top) and zoom (bottom) after the first iteration.
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FIGURE S3 (a) Initial mesh (top) for a cylindrical annulus with an embedded high resolution sub-region and a zoom around
an edge of the refined region (bottom). (b) Mesh (top) and zoom (bottom) after the first iteration.
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FIGURE S4 (a) Initial mesh with badly shaped tetrahedra (in blue). Rejected nodes in red. (b) Badly shaped tetrahedra. (c) Mesh
after improving badly shaped tetrahedra contains no badly shaped tetrahedra. (d) Fraction of tetrahedra for a given quality factor
for both before (dashed line) and after (solid line) local improvements to the shape of badly shaped tetrahedra. The minimum
quality factor for the initial mesh is 0.04 and for the final mesh is 0.39.
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FIGURE S5 Removing a sliver (represented by black lines and dashed grey line for hidden edge). Possible triangles (grey and
green colours) created from permutations of the vertices and midpoints of the edges of a sliver. Black, red and green points
represent unaltered, removed and added nodes, respectively. qtri is the quality factor for each triangle. The four vertices of the
sliver are replaced by the three mesh points of the potential triangle with the best quality factor (green colour).
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FIGURES6 (a) Tetrahedra within the coarse region. (b) Tetrahedra within the transition region. (c) Tetrahedra within the refined
region.
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APPENDIX

A. DERIVATION OF EQUATION (5)

The 2-D development of equation (3), rewritten here for convenience(
f1
′

f2
′

)
+ k

[
−1 1
1 −1

](
0
l0

)
= k

[
−1 1
1 −1

](
x1′

x2′

)
, (A1)

is given by two steps. First, develop the right hand side of equation (A1) by writing local coordinates as a function of global
coordinates (see Figure 3a)

k
[
−1 1
1 −1

](
x1′

x2′

)

= k
[

x2′ − x1′
−(x2′ − x1′)

]

= k
[ [

(x2 − x1)c� + (y2 − y1)s�
]

−
[
(x2 − x1)c� + (y2 − y1)s�

]
]

= k
[
−1 1
1 −1

] [
x1c� + y1c�
x2c� + y2c�

]

= k
[
−1 1
1 −1

] [
cos � sin � 0 0
0 0 cos � sin �

] ⎛⎜⎜⎜⎜⎝

x1
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x2
y2

⎞⎟⎟⎟⎟⎠
,

(A2)

where s� ≡ sin � and c� ≡ cos �. Second, express the global coordinates of the force vector as a function of local coordinates
(see Figure 3a)

⎛⎜⎜⎜⎜⎝

f1,x
f1,y
f2,x
f2,y
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)
. (A3)

Combining equations (A1) and (A2) gives
(
f1
′

f2
′

)
= k

[
−1 1
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)
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Substituting equation (A4) into equation (A3) and reordering gives

k
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which is equivalent to equation (5).
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B. DERIVATION OF EQUATION (25)

The 3-D development of equation (3), rewritten here for convenience(
f1
′

f2
′

)
+ k

[
−1 1
1 −1

](
0
l0

)
= k

[
−1 1
1 −1

](
x1′

x2′

)
, (B6)

also involves two steps. First, develop the right hand side of equation (B6) by writing local coordinates as a function of global
coordinates (see Figure 3b)

k
[
−1 1
1 −1

](
x1′

x2′

)

= k
[

x2′ − x1′
−(x2′ − x1′)

]

= k
⎡
⎢⎢⎣

([
(x2 − x1)c� + (y2 − y1)s�

]
c� + (z2 − z1)s�

)

−
([
(x2 − x1)c� + (y2 − y1)s�

]
c� + (z2 − z1)s�

)
⎤
⎥⎥⎦

= k
[
−1 1
1 −1

] [
x1c�c� + y1c�s� + z1s�
x2c�c� + y2c�s� + z2s�

]

= k
[
−1 1
1 −1

] [
c�c� c�s� s� 0 0 0
0 0 0 c�c� c�s� s�

]
⎛⎜⎜⎜⎜⎜⎜⎝

x1
y1
z1
x2
y2
z2

⎞⎟⎟⎟⎟⎟⎟⎠

,

(B7)

where s� ≡ sin �, c� ≡ cos �, s� ≡ sin � and c� ≡ cos �. Second, express the global coordinates of the force vector as a function
of local coordinates (see Figure 3b)

⎛⎜⎜⎜⎜⎜⎜⎝

f1,x
f1,y
f1,z
f2,x
f2,y
f2,z

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎢⎣

c�c� 0
c�s� 0
s� 0
0 c�c�
0 c�s�
0 s�

⎤⎥⎥⎥⎥⎥⎥⎦

(
f1
′

f2
′

)
. (B8)

Combining equations (B6) and (B7) gives

(
f1
′

f2
′

)
= k

[
−1 1
1 −1

] [
c�c� c�s� s� 0 0 0
0 0 0 c�c� c�s� s�

]
⎛⎜⎜⎜⎜⎜⎜⎝

x1
y1
z1
x2
y2
z2

⎞⎟⎟⎟⎟⎟⎟⎠

− k
[
−1 1
1 −1

](
0
l0

)
. (B9)

Substituting equation (B9) into equation (B8) and reordering gives

k

⎡⎢⎢⎢⎢⎢⎢⎣

c�c� 0
c�s� 0
s� 0
0 c�c�
0 c�s�
0 s�

⎤⎥⎥⎥⎥⎥⎥⎦

[
−1 1
1 −1

] [
c�c� c�s� s� 0 0 0
0 0 0 c�c� c�s� s�

]
⎛⎜⎜⎜⎜⎜⎜⎝

x1
y1
z1
x2
y2
z2

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝

f1,x
f1,y
f1,z
f2,x
f2,y
f2,z

⎞⎟⎟⎟⎟⎟⎟⎠

+ k

⎡⎢⎢⎢⎢⎢⎢⎣

c�c� 0
c�s� 0
s� 0
0 c�c�
0 c�s�
0 s�

⎤⎥⎥⎥⎥⎥⎥⎦

[
−1 1
1 −1

](
0
l0

)
, (B10)

which is equivalent to equation (25).



30 TARAMÓN ET AL

References

Alliez, P., D. Cohen-Steiner, M. Yvinec, and M. Desbrun (2005), Variational tetrahedral meshing, ACM Trans. Graph., 24(3),
617–625, doi:10.1145/1073204.1073238.

Anderson, A., X. Zheng, and V. Cristini (2005), Adaptive unstructured volume remeshing - I: The method, J. Comput. Phys.,
208(2), 616–625, doi:10.1016/j.jcp.2005.02.023.

Bern, M., D. Eppstein, and J. Gilbert (1994), Provably good mesh generation, J. Comput. Syst. Sci., 48(3), 384–409,
doi:10.1016/S0022-0000(05)80059-5.

Burstedde, C., O. Ghattas, M. Gurnis, G. Stadler, E. Tan, T. Tu, L. C. Wilcox, and S. Zhong (2008), Scalable adaptive mantle
convection simulation on petascale supercomputers, 2008 SC - Int. Conf. High Perform. Comput. Networking, Storage Anal.,
pp. 1–15, doi:10.1109/SC.2008.5214248.

Cheng, S., and T. Dey (2002), Quality meshing with weighted Delaunay refinement, Proc. Thirteen. Annu. ACM-SIAM Symp.
Discret. algorithms, 33(1), 137–146, doi:10.1137/S0097539703418808.

Cheng, S., T. Dey, H. Edelsbrunner, M. A. Facello, and S. Teng (2000), Sliver exudation, J. ACM, 47(5), 883–904,
doi:10.1145/355483.355487.

Chew, L. P. (1989), Guaranteed-Quality Triangular Meshes, Tech. rep., Department of Computer Science, Cornell University,
Ithaca, New York.

Chew, L. P. (1997), Guaranteed-Quality Delaunay Meshing in 3D (short version), Proc. Thirteen. Annu. Symp. Comput. Geom.,
pp. 391–393, doi:10.1145/262839.263018.

Choi, W., D. Kwak, I. Son, and Y. Im (2003), Tetrahedral mesh generation based on advancing front technique and optimization
scheme, Int. J. Numer. Methods Eng., 58(12), 1857–1872, doi:10.1002/nme.840.

Dabrowski, M., M. Krotkiewski, and D. W. Schmid (2008), MILAMIN: MATLAB-based finite element method solver for large
problems, Geochem. Geophys. Geosyst., 9(4), doi:10.1029/2007GC001719.

Davies, D. R., C. R. Wilson, and S. C. Kramer (2011), Fluidity: A fully unstructured anisotropic adaptive mesh computational
modeling framework for geodynamics, Geochem. Geophys. Geosyst., 12(6), doi:10.1029/2011GC003551.

Dompierre, J., P. Labbé, F. Guibault, and R. Camarero (1998), Proposal of benchmarks for 3D unstructured tetrahedral mesh
optimization, 7th Int. Meshing Roundtable, pp. 525–537.

Edelsbrunner, H., and D. Guoy (2002), An Experimental Study of Sliver Exudation, Eng. Comput., 18, 229–240,
doi:10.1007/s003660200020.

Ito, Y., A. M. Shih, and B. K. Soni (2004), Reliable Isotropic Tetrahedral Mesh Generation Based on an Advancing Front
Method, 13th Int. Meshing Roundtable, pp. 95–105.

Ito, Y., A. M. Shih, and B. K. Soni (2009), Octree-based reasonable-quality hexahedral mesh generation using a new set of
refinement templates, Int. J. Numer. Methods Eng., 77, 1809–1833, doi:10.1002/nme.2470.

Kronbichler, M., T. Heister, and W. Bangerth (2012), High accuracy mantle convection simulation through modern numerical
methods, Geophys. J. Int., 191(1), 12–29, doi:10.1111/j.1365-246X.2012.05609.x.

Labelle, F., and J. R. Shewchuk (2007), Isosurface stuffing: Fast Tetrahedral Meshes with Good Dihedral Angles, ACM Trans.
Graph., 26(3), doi:10.1145/1276377.1276448.

Li, X., and S. Teng (2001), Generating well-shapedDelaunaymeshed in 3D, 12th Annu. ACM-SIAMSymp. Discret. algorithms,
pp. 28–37, Washington, D. C.

Löhner, R., and P. Parikh (1988), Generation of three-dimensional unstructured grids by the advancing-front method, Int. J.
Numer. Methods Fluids, 8(10), 1135–1149, doi:10.1002/fld.1650081003.



TARAMÓN ET AL 31

Mitchell, S. A., and S. A. Vavasis (1992), Quality mesh generation in three dimensions, Proc. Eighth Annu. Symp. Comput.
Geom. ACM, pp. 212–221, doi:10.1145/142675.142720.

Persson, P., and G. Strang (2004), A Simple Mesh Generator in MATLAB, SIAM Rev., 46(2), 329–345,
doi:10.1137/S0036144503429121.

Ruppert, J. (1995), A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation, J. Algorithms, 18, 548–585,
doi:10.1006/jagm.1995.1021.

Schöberl, J. (1997), An advancing front 2D/3D-mesh generator based on abstract rules, Comput. Vis. Sci., 1(1), 41–52,
doi:10.1007/s007910050004.

Shewchuk, J. R. (1996), Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator, in Lin, Ming C and
Manocha, Dinesh, Lecture Notes in Computer Science, vol. 1148, edited by A. C. G. T. G. Eng., pp. 203–222, Springer, Berlin,
doi:10.1007/BFb0014497.

Shewchuk, J. R. (1998), Tetrahedral mesh generation by Delaunay refinement, 14th Annu. Symp. Comput. Geom. SCG ’98, pp.
86–95, doi:10.1145/276884.276894.

Shewchuk, J. R. (2002), What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures, Elev. Int. Meshing
Roundtable, pp. 115–126, doi:10.1.1.68.8538.

Si, H. (2015), TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator, AMC Trans. Math. Softw., 41(2),
doi:10.1145/2629697.





41

Chapter 3

Shape-preserving finite elements in
cylindrical and spherical geometries:
The Double Jacobian

Jason P. Morgan, Jorge M. Taramón, Jörg Hasenclever. Shape-preserving finite elements
in cylindrical and spherical geometries: The Double Jacobian. Manuscript planned for
submission at International Journal for Numerical Methods in Fluids, 2018b.

Authors contribution

JPM designed the initial research, the 3-D research was developed by JMT and JPM. JPM
developed the equations of the Double Jacobian approach in 2-D cylindrical and per-
formed initial implementation. JMT programmed the 2-D cylindrical and 3-D spherical
numerical standard version of the code in discussion with JPM and JH. JH implemented
the optimized version of the code. JMT designed the tests and analysed the results in
discussion with JPM. JMT wrote the manuscript in collaboration with JPM. JH reviewed
the manuscript.



42
Chapter 3. Shape-preserving finite elements in cylindrical and spherical geometries:

The Double Jacobian



Received ; Revised ; Accepted
DOI: xxx/xxxx

ARTICLE TYPE

Shape-preserving finite elements in cylindrical and spherical
geometries: The Double Jacobian approach
Jason P. Morgan*1 | Jorge M. Taramón1 | Jörg Hasenclever2

1Department of Earth Sciences, Royal
Holloway University of London, Egham,
Surrey, UK

2Institute of Geophysics, Hamburg
University, Hamburg, Germany
Correspondence
*Jason P. Morgan, Department of Earth
Sciences, Royal Holloway University of
London Egham, Surrey TW20 0EX, United
Kingdom. Email: Jason.Morgan@rhul.ac.uk
Present Address
Department of Earth Sciences, Royal
Holloway University of London Egham,
Surrey TW20 0EX, United Kingdom

Abstract
We present a new technique, the ’Double Jacobian’, for solving problems in cylin-
drical or spherical geometries, for example the Stokes flow problem for studying
convection in Earth’s mantle. Our approach combines the advantages of working
simultaneously in Cartesian and polar or spherical coordinates. The governingmatrix
equations are kept in Cartesian coordinates, thereby preserving their Cartesian sym-
metry. However, the element geometry is described as a linear simplex in polar or
spherical coordinates, thereby preserving appropriate cylindrical or spherical sur-
faces and internal interfaces. Isoparametric representations can still be used to define
complex surface shapes. Using linear polar or spherical elements allows search rou-
tines for triangular or tetrahedral simplexes to rapidly find arbitrary points in terms
of their polar or spherical coordinates. The Double Jacobian approach becomes
especially powerful when element sizes vary strongly within the mesh, while the
exact cylindrical or spherical surfaces or internal interfaces have to be preserved, as
happens in several geophysical applications.
KEYWORDS:

1 INTRODUCTION

Finite element methods have the well-known virtue that they can accurately approximate complex geometries and internal
interfaces using isoparametric or even superparametric elements. However, for problems whose natural form has a cylindrical
or spherical geometry, other approaches can be more efficient and accurate. A frequently used approach is to directly write the
governing equations in polar or spherical coordinates [cf. Zhong et al., 2000]. A significant drawback to this approach is that
the governing equations can have useful symmetries in their Cartesian form that are absent when expressed in polar or spherical
coordinates. For example, the matrix equations describing incompressible Stokes (creeping) flow of the Earth’s mantle in a
cylindrical (polar) or spherical geometry are

Ku + Gp = f ,
Du = 0 , (1)

or in matrix form: [
K G
D 0

](
u
p

)
=
(
f
0

)
, (2)

where K is the stiffness matrix, G is the gradient matrix, D is the divergence matrix, f is the force vector, u is the velocity and
p is the pressure. In Cartesian coordinates D = GT, leading to a symmetric system of equations, but in both polar and spherical
coordinates additional terms appear in the divergence matrix leading to a non-symmetric system of equations. Preserving as
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exact as possible a boundary shape is especially important in gravitationally influenced flow problems with a natural central
point of gravitational attraction, e.g. towards the centre of a cylinder or sphere. In this case, inexact matching of boundary or
interface shapes generates spurious flow associated with a nominally ’hydrostatic’ state similar to the well-known spurious
flow generated by the use of ’too-simple’ elements to model hydrostatic loads in sloping box [Pelletier et al., 1989]. Below,
we will show examples of this spurious hydrostatic flow mode in cylindrical and spherical geometries, and its cure through
use of an exact boundary shape. One may also wish to discretize a cylindrical or spherical volume with ’linear-order’ triangles
or tetrahedra (e.g. simplex) so that fast search techniques can be used to find tracer particles and/or traceback points for semi-
Lagrange advection schemes. Point search techniques become significantly slower and more complex when searching within
high-order curved isoparametric elements.
Here we describe a new approach, the ’Double Jacobian’ (DJ) approach, that allows us to combine several advantages of

working simultaneously in both polar/spherical and Cartesian coordinates. The governingmatrix equations are still formulated in
Cartesian coordinates, thereby preserving their simplest Cartesian form. However, element geometries are generally described as
simplices in polar or spherical coordinates, thereby naturally preserving cylindrical or spherical boundary surfaces and internal
interfaces. Note that isoparametric polar or spherical elements can still be used as needed.
The basic idea behind this approach is to compute the local to Cartesian mapping as a two-stage process, hence the name

’Double Jacobian’. The first stage maps from local to polar/spherical coordinates (and back). This mapping is typically to a
straight-edged polar or spherical element, for which the Jacobian partial derivatives are constant within the element. The map-
ping and its inverse are given by straightforward analytical matrix expressions. The second stage maps from polar/spherical to
Cartesian coordinates (and back), and is also a simple analytical mapping. The net Jacobian from local finite element coordinates
to a cylindrical or spherical element in Cartesian geometry (or any other analytically mapped geometry) is simply the matrix
product of two easy-to-compute inverse Jacobian matrices. Because the net Jacobian has an analytical form, it can also be more
rapidly computed than a general isoparametric or superparametric finite element mapping.
Wewill first present the 2-D case to illustrate the basic idea. Afterwards the 3-D case is discussed, which requires an additional

step but is otherwise straightforward.

2 2-D DOUBLE JACOBIAN

2.1 First Jacobian
The classical way to construct the stiffness matrices needed for a finite element discretization is to compute the local-coordinate
derivatives of the shape functions in a reference element and then calculate the derivatives with respect to global coordinates
for each element of the mesh using a local to global Cartesian coordinate mapping [cf. Hughes, 1987]. These local and global
derivatives may be related in matrix form as

⎛⎜⎜⎜⎜⎝

dNi

dx

dNi

dz

⎞⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎣

d�
dx

d�
dx

d�
dz

d�
dz

⎤⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

JLC

⎛⎜⎜⎜⎜⎝

dNi

d�

dNi

d�

⎞⎟⎟⎟⎟⎠
, (3)

whereN are the shape functions, i is the local node numbering of the element, (x, z) are the Cartesian coordinates and (�, �) are
the local coordinates within the reference triangle (Figure 1). The matrix JLC is the Jacobian of the transformation from local
to Cartesian coordinates. The shape functions for a 3-node triangle are given by:

N1 = 1 − � − � , (4a)
N2 = � , (4b)
N3 = � . (4c)

The Double Jacobian approach uses the standard finite element approach to first map from local to linear polar coordinates.
The first Jacobian for a cylindrical (polar) mapping is analogous to the standard Jacobian where x and z are now changed to �
and r respectively, � being the angle measured from the positive Z axis in clockwise direction and r being the radius. The global
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FIGURE 1 Nodal ordering for the reference triangle in the local coordinate frame.

derivatives may be expressed in matrix form as
⎛⎜⎜⎜⎜⎝

dNi

d�

dNi

dr

⎞⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎣

d�
d�

d�
d�

d�
dr

d�
dr

⎤⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

JLP

⎛⎜⎜⎜⎜⎝

dNi

d�

dNi

d�

⎞⎟⎟⎟⎟⎠
, (5)

whereNi are the shape functions and JLP is the Jacobian of the transformation from local to polar coordinates. The derivatives
of these shape functions with respect to local coordinates can be computed explicitly. However, the terms of the Jacobian JLP
cannot be directly computed since explicit expressions for �(�, r) and �(�, r) do not exist. A wonderful ’trick’ in finite element
programming (discovered by Bruce Irons in the mid 60s) is to make use of the inverse coordinate transformation

⎛⎜⎜⎜⎜⎝

dNi

d�

dNi

d�

⎞⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎣

d�
d�

dr
d�

d�
d�

dr
d�

⎤⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

JPL

⎛⎜⎜⎜⎜⎝

dNi

d�

dNi

dr

⎞⎟⎟⎟⎟⎠
, (6)

where JPL is the Jacobian of the transformation from polar to local coordinates. From equations (5) and (6), JLP ≡ (JPL)−1.
The inverse of the Jacobian from polar to local coordinates is given by

(JPL)−1 =
1

||JPL||

⎡⎢⎢⎢⎢⎣

dr
d�

−dr
d�

−d�
d�

d�
d�

⎤⎥⎥⎥⎥⎦
. (7)

The polar coordinates for each element are related to local coordinates through the the shape functions:

�(�, �) =
3∑
i=1

Ni(�, �) �i , (8a)

r(�, �) =
3∑
i=1

Ni(�, �) ri . (8b)
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Differentiating equations (8a) and (8b):
d�
d�

= �2 − �1 ≡ �21 , (9a)
d�
d�

= �3 − �1 ≡ �31 , (9b)
dr
d�

= r2 − r1 ≡ r21 , (9c)
dr
d�

= r3 − r1 ≡ r31 . (9d)
Finally, the inverse of the Jacobian from polar to local coordinates is given by combining equations (9a-d) and (7):

(JPL)−1 =
1

�21r31 − r21�31

[
r31 −r21
−�31 �21

]
, (10)

which is the standard finite element mapping between local coordinates and an arbitrary triangular element defined in linear
polar coordinates.

2.2 Second Jacobian
The second Jacobian in the Double Jacobian method is the analytical mapping from polar coordinates to Cartesian coordinates.
The derivatives expressed in matrix form are given by

⎛⎜⎜⎜⎜⎝

dNi

dx

dNi

dz

⎞⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎣

d�
dx

dr
dx

d�
dz

dr
dz

⎤⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

JPC

⎛⎜⎜⎜⎜⎝

dNi

d�

dNi

dr

⎞⎟⎟⎟⎟⎠
, (11)

where JPC is the Jacobian from polar to Cartesian coordinates. The analytical expressions for �(x, z) and r(x, z) are known,
however, it is again easier to use the inverse transformation

⎛⎜⎜⎜⎜⎝

dNi

d�

dNi

dr

⎞⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎣

dx
d�

dz
d�

dx
dr

dz
dr

⎤⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

JCP

⎛⎜⎜⎜⎜⎝

dNi

dx

dNi

dz

⎞⎟⎟⎟⎟⎠
, (12)

where JCP is the Jacobian from Cartesian to polar coordinates. From equations (11) and (12), JPC ≡ (JCP )−1. The inverse of
the Jacobian from Cartesian to polar coordinates is given by

(JCP )−1 =
1

||JCP ||

⎡⎢⎢⎢⎢⎣

dz
dr

−dz
d�

−dx
dr

dx
d�

⎤⎥⎥⎥⎥⎦
. (13)

Cartesian coordinates are related to polar coordinates by:
x(�, r) = r sin � , (14a)
z(�, r) = r cos � . (14b)
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Differentiating equations (14a) and (14b):
dx
d�

= r cos � , (15a)
dx
dr

= sin � , (15b)
dz
d�

= −r sin � , (15c)
dz
dr

= cos � . (15d)
The inverse of the Jacobian from Cartesian coordinates to polar coordinates can also be written as a function of polar

coordinates by combining equations (15a-d) and (13):
(JCP )−1 =

1
r

[
cos � r sin �
− sin � r cos �

]
, (16)

where � and r are evaluated at each integration point. Making use of the matrix product of the two inverse Jacobians, global
Cartesian derivatives can be expressed as a matrix product of the local derivatives in the local to polar and polar to Cartesian
coordinate mappings. Substituting equation (5) into equation (11) yields

⎛
⎜⎜⎜⎜⎝

dNi

dx

dNi

dz

⎞⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎣

d�
dx

dr
dx

d�
dz

dr
dz

⎤⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

JPC

⎡
⎢⎢⎢⎢⎣

d�
d�

d�
d�

d�
dr

d�
dr

⎤⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

JLP

⎛
⎜⎜⎜⎜⎝

dNi

d�

dNi

d�

⎞⎟⎟⎟⎟⎠
, (17)

which is equivalent to
⎛⎜⎜⎜⎜⎝

dNi

dx

dNi

dz

⎞⎟⎟⎟⎟⎠
= (JCP )−1(JPL)−1

⎛⎜⎜⎜⎜⎝

dNi

d�

dNi

d�

⎞⎟⎟⎟⎟⎠
. (18)

Substituting equations (10) and (16) into equation (18), the analytical expression for this mapping is
⎛⎜⎜⎜⎜⎝

dNi

dx

dNi

dz

⎞⎟⎟⎟⎟⎠
= 1
�21r31 − r21�31

⎡⎢⎢⎢⎢⎣

r31
cos �
r

− �31 sin � −r21
cos �
r

+ �21 sin �

−r31
sin �
r

− �31 cos � r21
sin �
r

+ �21 cos �

⎤⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎝

dNi

d�

dNi

d�

⎞⎟⎟⎟⎟⎠
. (19)

Note that the 2-D Double Jacobian approach (DJ) will ensure a perfect mapping to the circular arc-edges of the elements of a
cylindrical annulus mesh. In the mapping from local coordinates to polar coordinates (first Jacobian of the Double Jacobian), the
elements are described in polar coordinates in which their edges are straight line segments (Figure 2a). Any point on the edge
of a boundary element of the mesh is mapped to its true position along a circular arc (Figure 2b). Neither the linear Jacobian for
straight edge elements (LIN) nor the isopametric Jacobian for quadratic elements (ISO) can exactly map to a circular arc-shape
since they use Cartesian linear and quadratic polynomial approximations, respectively (Figure 2d and Figure 2f, respectively).
For this reason a superparametric cubic or quartic mapping is sometimes chosen to better approximate curved boundaries. The
third column in Figure 2 shows the distance in km between the edge shape computed in Cartesian coordinates (red line for DJ,
blue line for LIN and green line for ISO) and the true shape of a circular arc edge. The element shown in Figure 2 has an average
edge length of 2000 km. The boundary of the ISO mapping differs from the DJ mapping by a few kilometres (compare Figure
2g and Figure 2c). While seemingly small, this inaccuracy can negatively influence the solution for viscous (Stokes) flow within
a cylindrical annulus mesh that contains coarsely meshed regions, as will be shown below.
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FIGURE 2 Cartesian and polar mapping for the edge shape of an arbitrary triangle along the surface of the region. The first
two columns show the edge shape calculated by: 3-linear polar mapping (red line), which is the true circular arc shape (DJ),
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shows the distance between the edge shape given by the Cartesian mappings and the true circular arc shape.
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2.3 2-D Standard Jacobian vs 2-D Double Jacobian
We first test the Double Jacobian formulation by comparing the stiffness matrices given by both the standard Jacobian (LIN and
ISO) and Double Jacobian (DJ) formulations. Benchmarking has been done for the boundary elements of cylindrical annulus
meshes with different resolutions, from an element edge length l0 = 2000 km to l0 = 50 km (Figure 3a). The domain of the
Cartesian coordinate system is ℝ2 whereas the domain of the polar coordinate system is � ∈ [0, 2�) and r ∈ [0,∞). Due to the
cyclic property of the polar coordinate system, elements that cross the positive Z axis have a discontinuity in the � coordinate
of their vertices. This issue is solved by a 180◦ rotation of all elements that cross � = 2�, computing the Jacobian and stiffness
matrices in the rotated frame, and then performing a back-transformation into the unrotated frame. The general rule for applying
a rotation matrix to vectors and tensors is:

vrot = Rv , (20a)
�rot = R�RT , (20b)

where v is a vector, � is a tensor and R is the rotation matrix. The inverse transformation is given by:
v = RTvrot , (21a)
� = RT�rotR . (21b)

The matrix defining a 180◦ rotation in 2-D Cartesian coordinates is
R180 =

[
−1 0
0 −1

]
. (22)

Considering a Stokes problem with Taylor-Hood elements, the sizes of the element matrices Ke, Ge and vector fe for each
6-node quadratic-velocity and 3-node linear-pressure triangular element (P2P1) are 12x12, 12x3 and 12x1 respectively. In terms
of applying a rotation, the Ge matrix is treated as three column vectors since it is not a square matrix. In order to recover the
matricesKe, Ge and vector fe from the rotated counterparts we apply the rotation matrix to each pair of two degrees of freedom
(dof) for each node:

Ke = RT
180K

rot
e R180 , (23a)

Ge = RT
180G

rot
e , (23b)

fe = RT
180f

rot
e . (23c)

For simplicity, we show here the unrotatedmatrices and vector for one node with two dof. The rotated stiffness matrix, gradient
matrix and force vector for velocity node one of an element are:

Krot
e (node 1) =

[
k11 k12
k21 k22

]
, (24a)

Grot
e (node 1) =

[
g11 g12 g13
g21 g22 g23

]
, (24b)

f rote (node 1) =
(
f11
f21

)
. (24c)

Substituting equations (24a) to (24c) in equations (23a) to (23c) respectively:
Ke(node 1) = Krot

e (node 1) , (25a)
Ge(node 1) = −Grot

e (node 1) , (25b)
fe(node 1) = −f rote (node 1) . (25c)

Note that the stiffness matrix Ke remains the same due to the symmetry of this rotation. Figure 3b shows the difference
between the stiffness matrix Ke computed with P2P1LIN and P2P1DJ elements. This difference is calculated as:

�
STD−DJ

=
max

(|||Ke
STD −Ke

DJ |||
)

max
(|||Ke

DJ |||
) . (26)

The stiffness matrices of both approaches become more similar when elements are smaller. For example, LIN applied to a
mesh with l0 = 150 km (cyan line in Figure 3b) gives stiffness matrices which differ from the ones given by DJ by less than
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FIGURE 3 (a) Boundary triangular elements of an unstructured cylindrical annulus mesh with element edge length l0 = 900
km. (b) Themaximum relative difference betweenKe computedwith P2P1LIN elements andKe computedwith P2P1DJ elements.
This is computed for different mesh resolutions (colours in legend) as a function of the colatitude � of the barycentres of the
boundary elements. (c) The maximum relative difference between Ke computed with P2P1ISO elements and Ke computed with
P2P1DJ elements.

1%. However, in the case of a mesh with l0 = 1800 km (red line in Figure 3b), the stiffness matrices given by both Jacobians
differ by 12% on average. P2P1LIN elements provide a poor mapping to the curvature of the elements in coarse meshes, and
the resulting stiffness matrices are poor approximations. For P2P1ISO elements, smaller differences remain when compared to
P2P1DJ elements (Figure 3c). These smaller differences result from the better (but still imperfect) quadratic Cartesian polynomial
approximation to the true circular arc used by P2P1ISO elements (Figure 2). Fluctuations in the lines of Figure 3b and Figure
3c are directly related to small variations in element size.

2-D quadratic elements with straight edges
The general quadratic-order triangular element in a Cartesian coordinate system has nodes added to the middle of each edge.
The Cartesian coordinates of the mid-edge nodes mi for a straight-edged element are given by:

m4 =
(1
2
(x1 + x2),

1
2
(z1 + z2)

)
, (27a)

m5 =
(1
2
(x2 + x3),

1
2
(z2 + z3)

)
, (27b)

m6 =
(1
2
(x3 + x1),

1
2
(z3 + z1)

)
. (27c)

where subscripts are the local node numbering of the element, being 1, 2 and 3 for the vertices and 4, 5 and 6 for the mid-edge
nodes. Calculating the mid-edge node positions of a quadratic isoparametric element using equations (27a) to (27c) will lead to
quadratic triangular elements with straight edges in the Cartesian coordinate system.

2-D quadratic elements computed in polar coordinates
In cylindrical geometries it may be more useful to add mid-edge nodes using the polar coordinate system so that the mid-edge
nodes of boundary edges lie along a cylindrical boundary. To do so, the Cartesian coordinates of the vertices of each element
are transformed into polar coordinates, and then mid-edge nodes �i in polar coordinates for each element are computed as:

�4 =
(1
2
(�1 + �2),

1
2
(r1 + r2)

)
, (28a)

�5 =
(1
2
(�2 + �3),

1
2
(r2 + r3)

)
, (28b)

�6 =
(1
2
(�3 + �1),

1
2
(r3 + r1)

)
. (28c)
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Then the polar vertex and mid-edge coordinates are transformed back into Cartesian coordinates. Equations (28a) to (28c) can
be applied to the whole domain of the cylindrical annulus mesh except for elements that cross � = 2�, for which the following
recipe can be used (Figure 4). First, make a 180◦ rotation in Cartesian coordinates (Figure 4b). Second, transform to polar
coordinates and compute mid-edge nodes following equations (28a) to (28c) (Figure 4c). Third, transform back to Cartesian
coordinates (Figure 4d). Fourth, make a 180◦ rotation in Cartesian coordinates (Figure 4e).
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FIGURE 4 (a) A linear (3-node) element crossing � = 2� of an annular cylindrical mesh. Black points are the vertices of the
element and grey lines represent the ideal circular-arc boundaries. (b) The same element after a 180◦ rotation. (c) The same
rotated element defined in a polar coordinate system. Mid-edge nodes (grey points) have been computed following equations
(28a) to (28c) to obtain a quadratic-order element. (d) Rotated quadratic element shown in Cartesian coordinates, where the mid-
edge node of the boundary edge lies along the annular boundary. (e) Quadratic element in the original position after undoing
the 180◦ rotation used to determine its stiffnes matrix.
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FIGURE 5 Root mean square of the speed for the ’no-flow’ test in a cylindrical annulus using: (a) P2P1LIN, (b) P2P1ISO and
(c) P2P1DJ elements. Results are shown as a function of the number of mesh nodes (X axis) and integration points (ip) per
element (dashed colour lines in legend).

Numerical integration of Double Jacobian elements
Because the Jacobian for a polar/spherical to Cartesian mapping is not a low order polynomial function, care is needed to
accurately evaluate these numerical integrations. In other words, the Jacobian mapping cannot be exactly integrated by any
Gaussian integration so that element integrations benefit from high-order numerical integration. We will see this effect in the
examples below. Note, however, that the time-savings resulting from the fact that shape-function derivatives can be analytically
evaluated at each integration point more than compensates for the extra time consumed by the evaluation of more integration
points.

Results
Differences between the standard Jacobian (LIN and ISO) and Double Jacobian (DJ) approaches are most apparent for coarse
meshes due to their differently-shaped boundaries. We performed three tests to assess the accuracy of the 2-D Double Jacobian
formulation: (1) the hydrostatic ’no-flow’ test proposed by Pelletier et al. [1989], (2) a viscous flow problem solved for a simple
case in which density and viscosity are uniform and (3) theMethod ofManufactured Solutions (MMS) [Salari and Knupp, 2000;
Roache, 2002] applied to the steady state diffusion equation.We test usingM2TRI [Hasenclever, 2010;Hasenclever et al., 2011],
a numerical code written in MATLAB (http://www.mathworks.com) to solve for the 2-D thermo-mechanical viscous flow of
the mantle using the standard Jacobian method in Cartesian coordinates (LIN and ISO). The 2-D Double Jacobian approach has
been implemented in a cylinder-coordinate version ofM2TRI. For performance reasons both codes use the vectorized ’blocking’
technique for assembly the stiffness matrices described in Dabrowski et al. [2008].
A simple and surprisingly robust test for the potential accuracy of a finite element flow solver is to test the code’s ability to

predict zero flow for a ’hydrostatic’ no-flow state [Pelletier et al., 1989]. To assess general performance, this test is best conducted
on a irregular mesh because regular ’finite-difference-like’ grids can sometimes mask an element’s poor performance [Pelletier
et al., 1989]. Cylindrical and spherical geometries with spatially varying gravity directions prove to be more difficult to obtain
accurate no-flow solutions than Cartesian discretizations in which gravity only acts in the vertical direction. A ’cylindrical no-
flow’ test was performed using the P2P1LIN, P2P1ISO and P2P1DJ elements (Figure 5). The test has no-slip boundary conditions
and uniform density and viscosity. The resolution of the meshes varies from l0 = 1800 km to l0 = 50 km and the number of
integration points (ip) used are 3, 7 and 12, describing 2nd , 5tℎ and 6tℎ order accurate polynomial integration, respectively.
Figure 5 shows the root mean square of the speed as a function of the number of mesh nodes. P2P1DJ gives a more accurate zero
no-flow solution than P2P1LIN or P2P1ISO, if a sufficiently accurate numerical integration rule is employed.
We have also performed a variant of the ’no-flow’ test (Figure 6). The setup consists of two concentric layers with different

densities, where the deeper layer is 100 kg∕m3 denser than the shallower layer. Again viscosity is uniform and no-slip boundary
conditions are applied. Again for coarse meshes P2P1DJ with appropriate numerical integration gives a more accurate zero flow
than do either P2P1LIN or P2P1ISO.
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FIGURE 6 Same ’no-flow’ test as in Figure 5 for two concentric layers with a uniform density layer that overlies a denser layer.

Figure 7 shows the no-flow solution using 12 integration points for the cases shown in Figure 6. The zero flow solution
obtained using P2P1LIN elements is not well resolved for any mesh resolution. The zero flow solution obtained using P2P1ISO
elements is not well resolved except for the highest resolution considered in the test (l0 = 120 km ; Figure 7k). When using the
Double Jacobian method (DJ) the zero flow solution is resolved independent of mesh resolution.
The second test consists of solving a flow problem for a setup in which the velocity boundary conditions are free slip for the

inner ’core-mantle’ boundary and a prescribed horizontal velocity distribution along the outer surface. The prescribed velocity
in the northern hemisphere is uniform in the counter-clockwise direction (v� = -40 mm∕yr) whereas in the southern hemisphere
the velocity is the same magnitude in the clockwise direction (v� = 40 mm∕yr). This applied velocity distribution creates a
divergence point at � = 90◦ simulating rifting, and a convergence point at � = 270◦ simulating subduction. In order to see how
accurate the flow solutions are as a function of mapping method and mesh resolution, we would ideally compare them to an
known analytical solution, however to our knowledge no closed-form analytical solution exists for this example. For comparison
purposes, we consider the numerical solution for a mesh with l0 = 10 km (4.3⋅106 nodes) to be a good approximation to the exact
solution. The implied solution as a function of mesh resolution is calculated by interpolating the flow field at all node locations
of the high-resolution mesh. Figure 8 shows the root mean square (rms) of the deviation in velocity between these solutions and
the high-resolution mesh solution as a function of mesh resolution, in all cases using 7 integration points per element. P2P1LIN
elements gives deviations > 1 mm∕yr unless the mesh has more than 2 ⋅103 nodes (black line in Figure 8). P2P1ISO and P2P1DJ
elements yield the same deviation for meshes with more than 103 nodes (green line and red line respectively in Figure 8). DJ
again works better for coarse meshes with resolutions of 1800 km because it can exactly map the circular-arc shape of the
boundaries. This test was also conducted using 3 and 12 integration points per element (not shown). In the case of 3 integration
points, P2P1DJ gives the same deviation as P2P1LIN and P2P1ISO for all mesh resolutions because this numerical integration is
not accurate enough for the Double Jacobian method. For 12 integration points, the P2P1DJ elements gives results very similar
to those shown in Figure 8.
Figure 9 shows the flow solution for three meshes with different resolutions (rows) using three different mapping methods

(columns) and 7 integration points per element. As noted above, mesh resolution plays an important role in determining how
well this flow can be resolved by these different mapping methods. The solutions obtained using P2P1LIN elements are not well
resolved for the meshes with l0 = 1800 km and l0 = 900 km (Figures 9a and 9d), reaching maximum speeds of 210 mm∕yr and
55 mm∕yr, respectively. However, the solution for this large scale flow problem becomes well resolved for a mesh with l0 = 450
km (Figure 9g). When using P2P1ISO and P2P1DJ elements, the solution is well resolved for meshes with l0 = 900 km and l0 =
450 km (Figures 9e, 9f, 9h and 9i). However, for the mesh with l0 = 1800 km (Figures 9b and 9c) observable differences remain
between the flows computed by P2P1ISO or P2P1DJ approaches near the inner boundary.
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solution to compute the rms of the deviation in velocity. All calculations use 7 integration points per element.
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FIGURE 9 Viscous flow solution for a model with a uniform density and viscosity layer driven by imposed surface motion.
The boundary conditions are free slip along the inner surface boundary and a horizontal prescribed velocity at the outer surface.
The prescribed velocity in the northern hemisphere is in counter-clockwise direction (v� = -40 mm∕yr) whereas in the southern
hemisphere the velocity is in clockwise direction (v� = 40 mm∕yr). The flow is solved on three meshes with different resolutions
(label on left side of each row). The P2P1LIN, P2P1ISO, and P2P1DJ elements are used to solve the flow (label on the top of
each column). Colour represents speed and black arrows show velocity vectors.
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The third test consists of using the MMS to verify the order of accuracy of the 2-D code. This method provides a straightfor-
ward procedure to generate analytical solutions for benchmarking. The basic idea is to manufacture a non-trivial exact solution.
In this test we applied the MMS to the steady state diffusion equation

�∇2T = Ψ , (29)
where � is the thermal diffusivity (� = 1), T is the tempreature field and Ψ is the source term. We use continuous Taylor-Hood
triangular elements with a 6-node quadratic-Temperature interpolation (P2). The domain is a cylindrical annulus with inner and
outer radii equal to 0.5 and 1, respectively. The chosen solution with inherent radial symmetry is:

Tmms = e−(x
2+y2) . (30)

This solution also defines the Dirichlet boundary conditions. The solution is passed through equation (29) to manufacture a
compatible source term:

Ψmms = −�
[
−4 + 4x2 + 4y2

]
e−(x2+y2) . (31)

Then we compute discrete solutions by solving
�∇2T = Ψmms . (32)

To verify the code and algorithm, we compute the L2 norm given by:

L2 =

√

∫
(
Tmms − T

)2 dV . (33)
Equation (33) is discretized by computing the normalized global error or RMS error:

e2 =

√√√√1
n

n∑
i=1

(
T mmsi − Ti

)2 , (34)

where T mmsi is the manufactured solution evaluated at (xi, zi
), i is the index of the discrete solution location, n is the total number

of nodes and Ti is the discrete solution. Figure 10 shows the RMS error of temperature as a function of the average element size
< ℎ > which in 2-D is defined by:

< ℎ >=
( A
N

)1∕2
, (35)

where A is the area of the domain andN is the total number of elements. The error is seen to decrease quadratically for P2LIN
and cubically for P2ISO and P2DJ elements as the mesh is refined. Again the P2DJ elements gives better results for coarser
meshes as it exactly maps the circular-arc shape of boundaries. Note that the poor ability of the P2LIN elements to map the
boundaries of the region means they have a suboptimal ℎ2 vs. ℎ3 convergence rate even though they use the same second-order
P2 element interpolation as do the P2ISO and P2DJ elements.
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FIGURE 10 Root mean square error of temperature as a function of the average element size in the cylindrical annulus mesh
after using the Method of Manufactured Solutions (MMS) to the steady state diffusion equation. Note that the P2LIN element
has a suboptimal ℎ2 convergence rate even though it uses the same second-order accurate interpolation functions as the P2ISO
element. The P2DJ element performs best when large elements are used to define the circular boundaries of the problem region.
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3 3-D DOUBLE JACOBIAN

For completeness, we also summarize the development of a 3-D spherical shell version of the Double Jacobian formulation. The
one additional complication of the 3-D spherical formulation is the need to avoid integrating elements along the polar axis of the
spherical coordinate system. We avoid this by rotating these elements to a equatorial location (and back) during their assembly,
as we discuss below.

3.1 First Jacobian
In a 3-D problem, derivatives are expressed in matrix form in terms of local �, �, � derivatives as:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

dNi

dx

dNi

dy

dNi

dz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d�
dx

d�
dx

d�
dx

d�
dy

d�
dy

d�
dy

d�
dz

d�
dz

d�
dz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
JLC

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

dNi

d�

dNi

d�

dNi

d�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (36)

where N are the shape functions, i is the local node numbering of the element and JLC is the Jacobian from local to Cartesian
coordinates. The shape functions for a 4-node reference tetrahedron (Figure 11) are given by:

N1 = � , (37a)
N2 = � , (37b)
N3 = � , (37c)
N4 = 1 − � − � − � . (37d)

and their derivatives with respect to local coordinates can be explicitly computed.

z

x

4

1

3

h
2

FIGURE 11 Nodal ordering for the reference tetrahedron in the local coordinate frame.
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The first Jacobian for a spherical mapping is analogous to the standard Jacobian where x, y and z are replaced by �, � and r
respectively, where � is the colatitude, � is the longitude, and r is the radius. Global derivatives expressed in matrix form are

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

dNi

d�

dNi

d�

dNi

dr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d�
d�

d�
d�

d�
d�

d�
d�

d�
d�

d�
d�

d�
dr

d�
dr

d�
dr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
JLS

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

dNi

d�

dNi

d�

dNi

d�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (38)

where JLS is the Jacobian from local to spherical coordinates. As before, we do not have an analytical expression for �(�, �, r),
�(�, �, r) and � (�, �, r). Since we do know the inverse relations, we use the inverse transformation of coordinates

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

dNi

d�

dNi

d�

dNi

d�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d�
d�

d�
d�

dr
d�

d�
d�

d�
d�

dr
d�

d�
d�

d�
d�

dr
d�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
JSL

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

dNi

d�

dNi

d�

dNi

dr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (39)

where JSL is the Jacobian matrix for transforming from spherical to local coordinates. From equations (38) and (39) we see that
JLS ≡ (JSL)−1. The inverse of the Jacobian from spherical to local coordinates is given by

(JSL)−1 =

⎡⎢⎢⎢⎢⎢⎣

�,� r,� −�,� r,� �,� r,� −�,� r,� �,� r,� −�,� r,�

�,� r,� −�,� r,� �,� r,� −�,� r,� �,� r,� −�,� r,�

�,� �,� −�,� �,� �,� �,� −�,� �,� �,� �,� −�,� �,�

⎤⎥⎥⎥⎥⎥⎦
�,� �,� r,� +�,� �,� r,� +�,� �,� r,� −�,� �,� r,� −�,� �,� r,� −�,� ',� r,�

, (40)
where the compact notation �,� means the derivative of � with respect to �. Spherical coordinates for each element are related
to local coordinates through the shape functions:

�(�, �, � ) =
4∑
i=1

Ni(�, �, � ) �i , (41a)

�(�, �, � ) =
4∑
i=1

Ni(�, �, � )�i , (41b)

r(�, �, � ) =
4∑
i=1

Ni(�, �, � ) ri , (41c)
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Differentiating equations (41a) to (41c) yields:
�,� = �1 − �4 ≡ �14 , (42a)
�,� = �2 − �4 ≡ �24 , (42b)
�,� = �3 − �4 ≡ �34 , (42c)
�,� = �1 − �4 ≡ �14 , (42d)
�,� = �2 − �4 ≡ �24 , (42e)
�,� = �3 − �4 ≡ �34 , (42f)
r,� = r1 − r4 ≡ r14 , (42g)
r,� = r2 − r4 ≡ r24 , (42h)
r,� = r3 − r4 ≡ r34 . (42i)

Finally, the inverse of the Jacobian from spherical to local coordinates is given by substituting equations (42a) to (42i) into
equation (40):

(JSL)−1 =

⎡
⎢⎢⎢⎢⎢⎣

�24r34 − �34r24 �34r14 − �14r34 �14r24 − �24r14

�34r24 − �24r34 �14r34 − �34r14 �24r14 − �14r24

�24�34 − �34�24 �34�14 − �14�34 �14�24 − �24�14

⎤
⎥⎥⎥⎥⎥⎦

�14(�24r34 − �34r24) + �24(�34r14 − �14r34) + �34(�14r24 − �24r14)
. (43)

3.2 Second Jacobian
The second Jacobian used in constructing the Double Jacobian is the analytical mapping from spherical coordinates to Cartesian
coordinates. These derivatives expressed in matrix form are

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

dNi

dx

dNi

dy

dNi

dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

d�
dx

d�
dx

dr
dx

d�
dy

d�
dy

dr
dy

d�
dz

d�
dz

dr
dz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

JSC

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

dNi

d�

dNi

d�

dNi

dr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (44)

where JSC is the Jacobian from spherical to Cartesian coordinates. Again, we make use of the inverse transformation between
these coordinate systems

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

dNi

d�

dNi

d�

dNi

dr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

dx
d�

dy
d�

dz
d�

dx
d�

dy
d�

dz
d�

dx
dr

dy
dr

dz
dr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

JCS

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

dNi

dx

dNi

dy

dNi

dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (45)
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where JCS is the Jacobian matrix to transform from Cartesian to spherical coordinates, and JSC ≡ (JCS)−1. The inverse of the
Jacobian from Cartesian to spherical coordinates is given by

(JCS)−1 =

⎡
⎢⎢⎢⎢⎢⎣

y,� z,r −y,r z,� y,r z,� −y,� z,r y,� z,� −y,� z,�

x,r z,� −x,� z,r x,� z,r −x,r z,� x,� z,� −x,� z,�

x,� y,r −x,r y,� x,r y,� −x,� y,r x,� y,� −x,� y,�

⎤
⎥⎥⎥⎥⎥⎦

x,� (y,� z,r −y,r z,� ) + x,� (y,r z,� −y,� z,r ) + x,r (y,� z,� −y,� z,� )
, (46)

where again x,� means the derivative of x with respect to �. Cartesian coordinates within each element are related to spherical
coordinates through:

x(�, �, r) = r sin � cos� , (47a)
y(�, �, r) = r sin � sin� , (47b)
z(�, �, r) = r cos � . (47c)

Differentiating equations (47a) to (47c) yields:
x,� = r cos � cos� , (48a)
x,� = −r sin � sin� , (48b)
x,r = sin � cos� , (48c)
y,� = r cos � sin� , (48d)
y,� = r sin � cos� , (48e)
y,r = sin � sin� , (48f)
z,� = −r sin � , (48g)
z,� = 0 , (48h)
z,r = cos � . (48i)

The inverse of the Jacobian from Cartesian coordinates to spherical coordinates is obatined by substituting equations (48a) to
(48i) into equation (46):

(JCS)−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cos � cos�
r

− sin�
r sin �

sin � cos�

cos � sin�
r

cos�
r sin �

sin � sin�

−sin �
r

0 cos �

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (49)

where �, � and r are evaluated at each integration point within the spherical tetrahedron. Making use of the two Jacobians,
global derivatives can be expressed as a function of local derivatives through a spherical coordinate mapping. In this way, the
surfaces and edges of Cartesian elements are appropriately curved. Substituting equation (38) into equation (44) yields

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

dNi

dx

dNi

dy

dNi

dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

d�
dx

d�
dx

dr
dx

d�
dy

d�
dy

dr
dy

d�
dz

d�
dz

dr
dz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

JSC

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

d�
d�

d�
d�

d�
d�

d�
d�

d�
d�

d�
d�

d�
dr

d�
dr

d�
dr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

JLS

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

dNi

d�

dNi

d�

dNi

d�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (50)
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which is equivalent to
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

dNi

dx

dNi

dy

dNi

dz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (JCS)−1(JSL)−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

dNi

d�

dNi

d�

dNi

d�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (51)

Substituting equations (43) and (49) into equation (51) yields
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

dNi

dx

dNi

dy

dNi

dz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1
�14(�24r34 − �34r24) + �24(�34r14 − �14r34) + �34(�14r24 − �24r14)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cos � cos�
r

− sin�
r sin �

sin � cos�

cos � sin�
r

cos�
r sin �

sin � sin�

−sin �
r

0 cos �

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

�24r34 − �34r24 �34r14 − �14r34 �14r24 − �24r14

�34r24 − �24r34 �14r34 − �34r14 �24r14 − �14r24

�24�34 − �34�24 �34�14 − �14�34 �14�24 − �24�14

⎤⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

dNi

d�

dNi

d�

dNi

d�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(52)

The 3-D Double Jacobian (DJ) approach ensures an exact mapping to the spherical cap surfaces of the boundary elements in a
spherical shell mesh. In the mapping from local coordinates to spherical coordinates (first Jacobian of the Double Jacobian), the
element geometries are expressed in spherical coordinates in which their surfaces are the surfaces of tetrahedral 3-simplexes. Any
point on the surface of a boundary element of the mesh is mapped to the true spherical shape. This contrasts with direct isopara-
metric or superparametric mapping from local to Cartesian coordinates. Neither the linear Jacobian (LIN) nor the isoparametric
Jacobian (ISO) nor even the superparametric Jacobian (SUP) can exactly map to a spherical shape since these are polynomial
approximations. Figure 12 shows the distance in km between the shape of tetrahedral faces computed using 4-node linear spher-
ical mapping (DJ) and the face’s shape computed using LIN, ISO, SUP Cartesian mappings. Note that the scale in the colour
bar is different for each case. The element shown in Figure 12 has an average edge length of 2000 km. The shape of the tetrahe-
dron faces given by ISO differ from DJ by a few kilometres. However, when solving for viscous flow within a spherical mesh
containing coarse regions, results can be affected by these small boundary mismatches as will be shown below.
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FIGURE 12 Distance in km (colours) between the shape of tetrahedral faces computed by 4-node linear spherical mapping
(DJ), which preserves the true surface shape in spherical coordinates and the face’s shape for the same tetrahedron computed by:
(a) 4-node linear Cartesian mapping (LIN); (b) 10-node quadratic isoparametric Cartesian mapping (ISO); (c) 14-node quasi-
cubic superparametric Cartesian mapping (Q-SUP); (d) 20-node cubic superparametric Cartesian mapping (SUP). The position
of the tetrahedron in the mesh is shown in the top right inset in (a). Black lines represent the curved edges of the tetrahedron
and red points represent the mapping element’s nodal position. Note that the scale in the colour bar is different for each case.
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3.3 3-D Standard Jacobian vs 3-D Double Jacobian
The 3-D spherical Double Jacobian formulation was first examined by comparing the stiffness matrices given by both Standard
Jacobian (LIN and ISO) and Double Jacobian (DJ) formulations in a similar way to the above 2-D test. This comparison was
done for the boundary elements of spherical shell meshes with different resolutions, from l0 = 2000 km to l0 = 50 km. We
selected boundary elements along the plane YZ (inset of Figure 13b).
The domain of the Cartesian coordinate system is ℝ3 whereas the domain of the spherical coordinate system is � ∈ [0, �],

� ∈ [0, 2�) and r ∈ [0,∞). As in the 2-D case, the elements crossing the meridian at � = 2� have a discontinuity in the
� coordinate of their vertices. Again as in 2-D, the 2�-crossing issue is resolved by doing a 180◦ rotation around the Z axis
of the elements crossing the meridian � = 2� and computing the Jacobian and stiffness matrices in this rotated frame. When
assembling the stiffness matrices, transformations need to be done to the stiffness matrices of elements crossing � = 2� in order
to recover the correct matrices in the original frame. The matrix describing a 180◦ rotation around the Z axis is given by

RZ180 =
⎡
⎢⎢⎣

−1 0 0
0 −1 0
0 0 1

⎤
⎥⎥⎦
. (53)

We use continuous Taylor-Hood tetrahedral elements with a quadratic 10-node velocity interpolation (3 dof for each of the
10 nodes) and linear pressure interpolation (1 dof for each vertex node)(P2P1). The size of the matrices Ke, Ge and vector fe
for each tetrahedral element are 30x30, 30x4 and 30x1 respectively. In terms of applying a rotation, the Ge matrix is handled as
four column vectors. In order to recover the matrices Ke, Ge and vector fe from the rotated counterparts we apply the rotation
matrix to the first, second and third dof of all nodes:

Ke = RT
Z180

Krot
e RZ180 , (54a)

Ge = RT
Z180

Grot
e , (54b)

fe = RT
Z180

f rote . (54c)
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FIGURE 13 (a) Themaximum relative difference betweenKe computed with P2P1LIN elements andKe computed with P2P1DJ
elements without rotations. The data is computed for different mesh resolutions (colours in legend) as a function of the colatitude
� of the barycentres of the boundary elements. The inset in (b) shows an example ring of boundary elements with l0 = 1000 km.
(b) The maximum relative difference between Ke computed with P2P1LIN elements and Ke computed with P2P1DJ elements
with rotations. (c) The maximum relative difference between Ke computed with P2P1ISO elements and Ke computed with
P2P1DJ elements with rotations.
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For simplicity we show the unrotated matrices and vector for one node with three dof. The rotated stiffness matrix, gradient
matrix and force vector for one velocity node of one element are:

Krot
e (node 1) =

⎡
⎢⎢⎣

k11 k12 k13
k21 k22 k23
k31 k32 k33

⎤
⎥⎥⎦
, (55a)

Grot
e (node 1) =

⎡
⎢⎢⎣

g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 g34

⎤
⎥⎥⎦
, (55b)

f rote (node 1) =
⎛
⎜⎜⎝

f11
f21
f31

⎞
⎟⎟⎠
. (55c)

Substituting equations (55a) to (55c) into equations (54a) to (54c) respectively gives:

Ke(node 1) =
⎡
⎢⎢⎣

k11 k12 −k13
k21 k22 −k23
−k31 −k32 k33

⎤
⎥⎥⎦
, (56a)

Ge(node 1) =
⎡⎢⎢⎣

−g11 −g12 −g13 −g14
−g21 −g22 −g23 −g24
g31 g32 g33 g34

⎤
⎥⎥⎦
, (56b)

fe(node 1) =
⎛⎜⎜⎝

−f11
−f21
f31

⎞⎟⎟⎠
. (56c)

Elements near the axis of the spherical coordinate system have an additional resolution issue. Their longitudinal coordinate
will vary considerably within an element leading to less accurate numerical integration of these stiffness matrices using the
Double Jacobian approach. To highlight the problem of numerical integration near the pole of the spherical geometry we cal-
culated the difference between the stiffness matrix computed with P2P1LIN and P2P1DJ elements using equation (26) for a ring
of boundary elements shown in the inset of Figure 13b. The large differences near the poles reflect the poor numerical integra-
tion of P2P1DJ elements in this region (Figure 13a). We choose to resolve this issue by doing a 90◦ counter-clockwise rotation
around the X axis for all elements with an angular distance less than �c from the pole, where �c is the angle between the Z
axis and the cone’s surface (Figure 14 shows an example). This 90◦ rotation places them near the equator of this new spherical
reference frame and their Jacobian, element matrices and vectors are computed in this rotated frame. After some experimen-
tation, we choose �c = 45◦. Alternatively, one could try the approach of increasing the accuracy of the numerical integration
scheme for elements near the pole of the spherical coordinate system. When assembling the matrices of the elements inside
the cone, two transformations are needed to construct the corresponding matrices in the unrotated frame. The matrix for a 90◦
counter-clockwise rotation around the X axis is given by

RX90
=
⎡⎢⎢⎣

1 0 0
0 0 −1
0 1 0

⎤⎥⎥⎦
. (57)

In order to recover the matricesKe,Ge and vector fe from the rotated counterparts we apply the rotation matrix to each group
of three dof for each node:

Ke = RT
X90
Krot
e RX90

, (58a)
Ge = RT

X90
Grot
e , (58b)

fe = RT
X90
f rote . (58c)
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FIGURE 14 Classification of the spherical tetrahedral elements of a spherical shell mesh: (1) elements outside the cone that
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lines define the meridian � = 2� and blue lines represent the double cone with �c = 45◦.

Substituting equations (55a) to (55c) into equations (58a) to (58c) respectively gives:

Ke(node 1) =
⎡⎢⎢⎣

k11 k13 −k12
k31 k33 −k32
−k21 −k23 k22

⎤⎥⎥⎦
, (59a)

Ge(node 1) =
⎡⎢⎢⎣

g11 g12 g13 g14
g31 g32 g33 g34
−g21 −g22 −g23 −g24

⎤⎥⎥⎦
, (59b)

fe(node 1) =
⎛⎜⎜⎝

f11
f31
−f21

⎞⎟⎟⎠
. (59c)

The difference between the stiffness matrices for the boundary elements computed with P2P1LIN and P2P1DJ elements using
these rotations is shown in Figure 13b. The effect of proximity to the pole does not appear when using the above rotations to
calculate the element matrices. For simplicity, from now on we will refer to the Double Jacobian method including the rotations
as ’the Double Jacobian method’ (DJ). The two approaches yield more similar stiffness matrices for smaller element sizes. For
example, P2P1LIN elements in a mesh with l0 = 250 km give stiffness matrices which differ from the ones given by P2P1DJ
elements by about 1% (cyan line in Figure 13b). However, in the case of a mesh with l0 = 2000 km, the stiffness matrices given
by both Jacobians differ by 10% on average (red line in Figure 13b). As in the cylindrical case, P2P1LIN elements provide a
poor approximation to the boundary curvature for elements in coarse meshes, and its resulting stiffness matrices are imprecise.
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Even using the Cartesian isoparametric P2P1ISO element, noticeable differences remain when compared to the Double Jacobian
(Figure 13c).

3-D quadratic elements with straight edges
The general quadratic tetrahedral element in a Cartesian coordinate system has nodes added to the middle of each edge. Cartesian
coordinates of the edge nodes for an element are given by:

m5 =
(1
2
(x1 + x2),

1
2
(y1 + y2),

1
2
(z1 + z2)

)
, (60a)

m6 =
(1
2
(x2 + x3),

1
2
(y2 + y3),

1
2
(z2 + z3)

)
, (60b)

m7 =
(1
2
(x3 + x4),

1
2
(y3 + y4),

1
2
(z3 + z4)

)
, (60c)

m8 =
(1
2
(x4 + x1),

1
2
(y4 + y1),

1
2
(z4 + z1)

)
, (60d)

m9 =
(1
2
(x1 + x3),

1
2
(y1 + y3),

1
2
(z1 + z3)

)
, (60e)

m10 =
(1
2
(x4 + x2),

1
2
(y4 + y2),

1
2
(z4 + z2)

)
, (60f)

where subscripts are the local numbering of the element, being 1 to 4 for the vertices and 5 to 10 for the mid-edge nodes.
Calculating the edge node positions using equations (60a) to (60f) leads to quadratic tetrahedral elements with straight edges in
the Cartesian coordinate system. In isoparametric elements, the mid-edge node positions are shifted to better represent curved
boundaries.

3-D quadratic elements computed in spherical coordinates
In spherical geometries it is useful to perform a recursive mesh refinement by splitting the Taylor-Hood elements in a spherical
coordinate system in which mid-edge nodes of boundary edges lie along a spherical boundary. The larger the element size,
the larger the improvement given by the use of curved edges. Quadratic elements with curved edges in Cartesian coordinates
are computed in spherical coordinates using the Euclidean distance in a similar way to quadratic elements with straight edges.
Note that linear edges in spherical coordinates will be curved edges in Cartesian coordinates, and vice versa. The process
involves a coordinate transformation. First, the Cartesian coordinates of the vertices of each element are transformed to spherical
coordinates. Second, mid-edge nodes in spherical coordinates for each element are computed through:

�5 =
(1
2
(�1 + �2),

1
2
(�1 + �2),

1
2
(r1 + r2)

)
, (61a)

�6 =
(1
2
(�2 + �3),

1
2
(�2 + �3),

1
2
(r2 + r3)

)
, (61b)

�7 =
(1
2
(�3 + �4),

1
2
(�3 + �4),

1
2
(r3 + r4)

)
, (61c)

�8 =
(1
2
(�4 + �1),

1
2
(�4 + �1),

1
2
(r4 + r1)

)
, (61d)

�9 =
(1
2
(�1 + �3),

1
2
(�1 + �3),

1
2
(r1 + r3)

)
, (61e)

�10 =
(1
2
(�4 + �2),

1
2
(�4 + �2),

1
2
(r4 + r2)

)
. (61f)

Third, the spherical vertex and mid-edge coordinates are transformed back to Cartesian coordinates. Alternatively, boundary
mid-edge nodes can be projected in the radial direction to the boundary. Again there is a special case for elements crossing
the meridian � = 2�. While their vertices are nearby in Cartesian coordinates, some are nearly 2� radians from each other
in spherical coordinates. Elements close to the spherical pole can also become very distorted when their mid-edge nodes are
computed in spherical coordinates. This is mainly due to two facts. First, the closer the element to the Z axis the wider the
longitude range of the vertices within the same element, leading to wrong mid-edge positions. Second, elements may have one
or two vertices on the Z axis itself. Any node lying on the Z axis will not have a well defined longitude.
The problem of computing mid-edge nodes in spherical coordinates for elements crossing the meridian � = 2� and elements

lying closer than an angle �c from the pole is addressed through the identification of four types of elements as a function of their
position within the mesh (Figure 14):
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• Type 1 (tetrahedron 1 in Figure 14): Elements whose four vertices are outside of the double cone and do not cross the
meridian � = 2�. These tetrahedral elements have linear edges and faces in the original spherical frame.

• Type 2 (tetrahedron 2 in Figure 14): Elements whose four vertices are outside of the double cone yet cross the meridian
� = 2�. These tetrahedral elements have linear edges and faces in the 180◦-rotated-around-the-Z-axis spherical frame.

• Type 3 (tetrahedron 3 in Figure 14): Elements having at least three vertices inside of the double cone. These tetrahedral
elements have linear edges in the 90◦-rotated-around-the-X-axis spherical frame.

• Type 4 (element 4 in Figure 14): Elements that cross the double cone boundary and have at least one edge outside the
double cone. These elements act as a link between the spherical tetrahedral elements computed inside the cone, i.e. in
the 90◦-rotated-around-the-X-axis spherical frame, and the spherical tetrahedral elements computed outside the cone, i.e.
in the original spherical frame. These elements have some curved edges and faces in the 90◦-rotated-around-the-X-axis
spherical frame.

Type 1 elements
The mid-edge nodes of Type 1 elements are computed as follows:
• Transform to spherical coordinates.
• Compute mid-edge nodes following equations (61a) to (61f) where edges are straight.
• Transform back to Cartesian coordinates.

Type 2 elements
Computing mid-edge nodes for Type 2 elements involves the following steps:
• Make a 180◦ rotation around the Z axis (Figure 15b).
• Transform to spherical coordinates and compute mid-edge nodes following equations (61a) to (61f) where edges are
straight (Figure 15c).

• Transform back to Cartesian coordinates (Figure 15d).
• Make a 180◦ rotation around the Z axis (Figure 15e).
The mid-edge nodes of elements crossing the meridian � = 2� computed in the 180◦ rotated spherical system match exactly

with the mid-edge nodes of the shared edges with the neighbour elements computed in the original spherical system due to
their symmetry with respect to the Z axis.

Type 3 elements
The mid-edge nodes of Type 3 elements are computed as follows:
• Make a 90◦ counter-clockwise rotation around X axis (Figure 16b).
• Transform to spherical coordinates and compute mid-edge nodes following equations (61a) to (61f) where edges are
straight (Figure 16c).

• Transform back to Cartesian coordinates (Figure 16d).
• Make a 90◦ clockwise rotation around X axis (Figure 16e).
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FIGURE 15 (a) Linear element crossing the meridian � = 2� of a spherical shell mesh in Cartesian coordinate system. (b)
Same element in a 180◦ rotated Cartesian coordinate system. (c) The same element in a 180◦ rotated spherical system in which
it has straight edges. Mid-edge nodes (grey points) are computed following equations (61a) to (61f) to obtain a quadratic-order
linear-edged element. (d) Rotated quadratic element in Cartesian coordinates, where the mid-edge nodes of the boundary edges
lie along the boundary. (e) Quadratic element with curved edges in the original Cartesian coordinate system after undoing the
180◦ rotation. Black points are the vertices of the element, grey lines represent the ideal spherical boundaries, orange colour
represents the element face which is on the outer mesh boundary, green lines define the meridian �= 2 � and blue lines represent
the double cone with �c = 45◦.
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FIGURE 16 (a) Linear element inside the cone of a spherical shell mesh in Cartesian coordinate system. (b) Same element in
a 90◦ counter-clockwise rotated Cartesian coordinate system. (c) The same element in a 90◦ rotated spherical system in which
it has straight edges. Mid-edge nodes (grey points) are computed following equations (61a) to (61f) to obtain a quadratic-order
element. (d) Rotated quadratic element in Cartesian coordinates, where the mid-edge nodes of the boundary edges lie along the
boundary. (e) Quadratic element with curved edges in the original Cartesian coordinate system. Black points are the vertices of
the element, grey lines represent the ideal spherical boundaries, orange colour represents the element face which is on the outer
mesh boundary, green lines define the meridian � = 2� and blue lines represent the double cone with �c = 45◦.
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FIGURE 17 (a) Type 4 element (green) that shares a face with a Type 1 element (white) in Cartesian coordinate system. Black
points are the vertices of the elements, grey points are the mid-edge nodes of the non shared edges, red points are the mid-edge
nodes of the shared edges for the element outside the cone, i.e. linear mid-edge nodes computed in the original spherical frame,
and green points are the mid-edge nodes of the shared face for the element crossing the cone boundary, i.e. linear mid-edge
nodes computed in the 90◦ rotated spherical frame. (b) In the original spherical frame, the Type 1 element (white) has straight
edges and its mid-edge nodes are computed following the equations (61a) to (61f). The Type 4 element (green) has curved edges
since its mid-edge nodes are linear in the 90◦ rotated spherical frame. (c) In the 90◦ rotated spherical frame, the Type 4 element
(green) has straight edges and its mid-edge nodes are computed following the equations (61a) to (61f). The Type 1 element
(white) has curved edges since its mid-edge nodes are linear in the original spherical frame.

Type 4 elements
The mid-edge node position computed on an edge of an element crossing the cone boundary (computed in the 90◦ rotated

spherical frame) is not congruent with the mid-edge node position computed on the same shared edge of a Type 1 element
(computed in the original spherical frame; Figure 17). This distortion is assessed by measuring the distance between mid-edge
nodes, for the same shared edge, computed in both 90◦ rotated spherical frame and original spherical frame. Figure 18a shows
the mean distance of mid-edge nodes on shared edges between elements crossing the cone boundary and adjoined elements
outside the cone as a function of the mesh node number for different cone angles. The distance between mid-edge nodes is
directly related to the element size. The cone angle dependence of the mean distance is shown in Figure 18b for different mesh
resolutions. Assuming a spherical shell mesh with an embedded high resolution subregion outside the cone, the coarse elements
with element size around 2000 km cross the cone boundary. The best choice of �c to minimize the distance between mid-edge
nodes of shared edges computed in both the 90◦ rotated spherical frame and the original spherical frame was empirically found
to lie between 45◦ and 55◦.
Isoparametric spherical elements link both the 90◦ rotated spherical frame and the original spherical frame in order to avoid

the mismatch in the mid-edge nodes of the shared edges. The mid-edge nodes of the shared edges of the Type 4 elements are
substituted by the mid-edge nodes of the shared edges of the Type 1 elements. In other words, some of the mid-edge nodes of the
Type 4 elements are computed in the 90◦ rotated spherical frame and some other mid-edge nodes are computed in the original
spherical frame. Therefore the Type 4 elements have curved edges in both spherical frames (Figure 19). In the mapping from
local coordinates to spherical coordinates (first Jacobian of the Double Jacobian) for Type 4 elements, some faces are curved in
spherical coordinates, whereas the faces in the local coordinate system are straight. In order to have a more accurate mapping
of these elements, 20-node cubic elements are used as a superparametric elements to compute their first Jacobian of the Double
Jacobian. Figure 20 shows the distance in km between a face’s shape computed using 4-node linear spherical mapping and its
shape computed in the 90◦ rotated spherical frame using its 4-node linear mapping, 10-node quadratic mapping, 14-node quasi-
cubic mapping and 20-node cubic mapping. Note that the scale of colour bar is different for each case. The element shown in
Figure 20 has an average edge length of 2000 km and its location in the mesh is shown in the inset in Figure 20a. For simplicity,
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from now on we will refer to the combination of DJ using 4-node linear mapping for Type 1-3 elements and DJ using 20-node
cubic mapping for Type 4 elements as the DJ method. Note that for calculations on a spherical prism instead of the whole sphere,
this additional element complexity is not needed in the DJ approach.
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FIGURE 18 (a) Mean distance of mid-edge nodes on shared edges between elements crossing the cone boundary and adjoined
elements outside the cone as a function of the mesh node number for different cone angles. (b) Mean distance of mid-edge nodes
on shared edges between elements crossing the cone boundary and adjoined elements outside the cone as a function of the cone
angle for different mesh resolutions.
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FIGURE 19 (a) Type 4 element (green) that shares a face with a Type 1 element (white) in Cartesian coordinate system. Black
points are the vertices of the elements, grey points are the mid-edge nodes. (b) In the original spherical frame, the Type 1
element (white) has straight edges. The Type 4 element (green) has three curved edges and three straight edges. (c) In the 90◦
rotated spherical frame, the Type 4 element (green) has three curved edges and three linear edges. The Type 1 element (white)
has curved edges since its mid-edge nodes are linear in the original spherical frame.
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FIGURE 20 Distance in km (colours) between a face’s shape computed by DJ using 4-node linear spherical mapping and its
shape computed in the 90◦ rotated spherical frame using: (a) 4-node linear spherical mapping; (b) 10-node quadratic spherical
isoparametric mapping; (c) 14-node quasi-cubic spherical superparametric mapping; (d) 20-node cubic spherical superparamet-
ric mapping. The position of the tetrahedron in the mesh is shown in the top right corner in (a). Black lines represent the curved
edges of the tetrahedron and red points represent the mapping element’s nodal position. Note that the scale in the colour bar is
different for each case.

Application to multigrid meshes
One of the advantages of using quadratic elements with mid-edge nodes computed in spherical coordinates arises when a recur-
sive refinement of themesh is required, for example, when using adaptivemesh refinement ormultigrid techniques. Themultigrid
method in combination with the Finite Element Method performs better when the fine mesh is nested within each coarser mesh
[e.g. Briggs et al., 2000]. Figure 21 shows three methods to recursively refine a Taylor-Hood element that has one of its faces on
the surface of a spherical mesh. The first method splits the elements in Cartesian coordinates using the methodology described
in Section 3-D quadratic elements with straight edges. The 10-node tetrahedron is split into eight tetrahedra (3-simplices) and
new mid-edge nodes are created (Figures 21a and 21b). The process is repeated recursively (Figure 21c). This method will keep
the fine mesh nested within all coarser meshes (black dots are in the same position as dashed squares) but is not able to well
approximate the face, which is a Cartesian plane, to the spherical surface (red dashed lines). The second method also splits the
elements in Cartesian coordinates. However, the new vertices of the ’child’ elements that are on the top surface are projected
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outwards to the actual spherical surface (Figures 21d, 21e and 21f). This method better approximates the top surface face to the
true spherical surface as the number of level of multigrid increases, although the elements have straight Cartesian faces. A draw-
back is that the fine ’child’ mesh is not completely nested within its coarser ’parent’ mesh. The third method splits the elements
in spherical coordinates using the methodology described in Section 3-D quadratic elements computed in spherical coordinates
(Figures 21g, 21h and 21i). This method creates true spherical faces for all ’parent’ elements. Furthermore each fine mesh is
nested within its coarser parent mesh. We employed this latter method in our mantle convection code.
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FIGURE 21 Generation of multigrid meshes for three methods: (a), (b), and (c) split the element in Cartesian coordinates; (d),
(e), and (f) split the element in Cartesian coordinates and project the new top surface vertices of ’child’ elements towards the
true spherical surface; (g), (h), and (i) split the element in spherical coordinates. The position of the tetrahedron in the mesh is
shown in the top right inset in panel (g). The solid squares show the position one of the mid-edge nodes in the ’parent’ element,
the dashed squares represent the position of one of the mid-edge nodes of the ’parent’ element in the ’child’ element and the
black dots show the position of one of the vertex of a ’child’ element. Red dashed lines represent the spherical surface of the face.
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Results
As in 2-D, differences between the standard Jacobian and Double Jacobian approaches are largest when large elements are used
along the problem boundaries. The final 3D experiments are carried out in a spherical coarse mesh with an embedded high
resolution subregion. Again, we perform three tests to assess the accuracy of the 3-D Double Jacobian formulation: (1) the
hydrostatic ’no-flow’ test proposed by Pelletier et al. [1989], (2) the Stokes problem solved for a small, dense, icosahedral sinker
placed within a uniform density spherical shell and (3) the Method of Manufactured Solutions (MMS) [Salari and Knupp, 2000;
Roache, 2002] applied to the steady state diffusion equation. We use M3TET [Hasenclever, 2010; Hasenclever et al., 2011], a
numerical code written in MATLAB to solve for the 3-D thermo-mechanical viscous flow and melting of the mantle using the
standard Jacobian method in Cartesian coordinates. The matrix equations arising from the viscous flow problem are solved using
a Conjugate Gradient algorithm [Saad, 2003] preconditioned with single V-cycles of geometrical multigrid [Briggs et al., 2000].
To efficiently utilize multigrid, a recursive mesh refinement is performed as described above. The 3-DDouble Jacobian approach
has been implemented in M3TET_SPH, which is a spherical-coordinate version of M3TET. Both codes use the vectorized
’blocking’ technique [Dabrowski et al., 2008] for more efficient assembly of the finite element matrices in MATLAB.
A ’spherical no-flow’ test is performed for P2P1LIN, P2P1ISO and P2P1DJ elements (Figure 22). The resolution of the meshes

varies from l0 = 2000 km to l0 = 500 km and the number of integration points (ip) per element used are 5, 10 and 14, describing
3rd , 3rd and 5tℎ order accurate gaussian quadrature, respectively. For coarse meshes, the Double Jacobian gives a much more
accurate zero flow solution for higher-order numerical integration (blue and orange dashed lines in Figure 22c) than for low-
order integration. For example, for the mesh with l0 = 2000 km (1940 nodes), the speed computed with P2P1DJ elements for the
’no-flow’ test is between 0 and 0.02 mm∕yr when using 10 or 14 integration points (orange bars in Figure 23b and Figure 23c).
P2P1LIN elements are unable to produce ’no-flow’ like results due to the size of the planar patches of irs boundary approximation
to a spherical surface (purple bars in Figure 23).
The second test consists of solving the viscous flow for an icosahedral sinker placed within a spherical shell. The aim of this

test is to check the reliability of the 3-D methods to reproduce realistic buoyancy forces within the high resolution region. The
density contrast between the sinker and the surrounding mantle is 100 kg∕m3. The sinker is located at 100 km depth on the Z
axis. The test has been performed for viscosity contrasts between the sinker and the surrounding mantle varying from 1 to 103,
and the boundary condition is no-slip at both ’core-mantle’ boundary and outer surface. The 3-D setup consists of a spherical
shell with an embedded high resolution region centred on the polar axis. The sinker is an icosahedron with edge length l0 =
25 km (Figure 24a). The purpose of this test is to check the buoyancy forces from a high viscosity non-deforming sinker. For
such isolated buoyancy anomalies, the Double Jacobian approach (red dashed line in Figure 24b) yields very similar results
to standard FE approaches (green dashed line and black solid line in Figure 24b) as all meshes have a close approximation to
spherical boundaries above the region with the sinker. The 3-D methods have an accuracy that is most significantly shaped by
mesh-discretization-related errors, i.e. mesh resolution is the controlling factor for these errors. We observe that at shallower
depths within the high resolution region, the flow solution reproduces the falling speed better than when the sinker is located
close to the transition to lower-resolution parts of the mesh (not shown). It is possible to improve the accuracy in regions within
the high resolution near transitions to lower-resolution parts of the mesh by introducing a fictitious concentric internal boundary
to the high-resolution portion of the mesh.
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FIGURE 22 Root mean square of the speed for the ’no-flow’ test in a spherical shell using: (a) P2P1LIN; (b) P2P1ISO; (c)
P2P1DJ elements. Plots show accuracy (rms) as a function of the number of mesh nodes. Colour lines represent the number of
integration points (ip) per element used.
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The MMS test to verify the order of accuracy of the 3-D code is the 3-D analog to the 2-D MMS test. We use continuous
Taylor-Hood tetrahedral elements with a 10-node quadratic-Temperature interpolation (P2). The domain is a spherical shell with
inner and outer radii equal to 0.5 and 1, respectively. The chosen 3-D solution is:

Tmms = e−(x
2+y2+z2) (62)

and also defines the Dirichlet boundary conditions. The solution, passed through equation (29), manufactures a compatible
source term:

Ψmms = −�
(
4x2 e−x2−y2−z2 + 4y2 e−x2−y2−z2 + 4z2 e−x2−y2−z2 − 6 e−x2−y2−z2

)
. (63)

Then we compute discrete solutions by solving equation (32). Figure 25 shows the RMS error (34) of temperature as a function
of the average element size < ℎ >:

< ℎ >=
( V
N

)1∕3
, (64)

where V is the volume of the domain and N is the total number of elements. The error decreases suboptimally (quadratically)
for P2LIN elements and optimally (cubically) for P2ISO and P2DJ elements when refining the mesh. In this case, the P2DJ
element (red line in Figure 25) performs better than the P2ISO element (green line in Figure 25) for all mesh resolutions as it
can accurately match the spherical boundaries. Note the the error does not decrease when the geometry of the boundaries is
kept fixed while refining the mesh (the cyan line in Figure 25 which uses meshes that are projected multigrid refinements of the
coarsest mesh).
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4 SUMMARY

We have developed a newmethod, the Double Jacobian, to improve the efficient solution of finite element problems in cylindrical
or spherical geometries. Themethod computes the local to Cartesianmapping as a two-stage process using analytical expressions
that can be more rapidly computed than a general isoparametric or superparametric finite element. This approach is combined
with linear-geometry (e.g. ’straight-edged’) elements defined in polar or spherical coordinates. Their edges are all straight in
polar or spherical coordinates with the exception (in 3-D) of a few elements that cross the cone (Type 4 elements). The use of
linear simplex element geometries allows search routines to rapidly find arbitrary points in the resulting polar (2-D) triangular or
spherical (3-D) tetrahedral elements. Of course, isoparametric or superparametric DJ elements can be used as needed to model
deflections from cylindrical or spherical geometries.
We show that in cylindrical geometries, the DJ method is both more accurate and more efficient than Cartesian isoparametric

or superparametric approaches. In spherical geometries, the DJ approach has to deal with the issue of the singular pole of the
spherical coordinates system. To address this issue, we use an additional coordinate transformation during the assembly of
element matrices near the pole. This approach has the advantage that it can exactly map the surfaces and internal spherical
interfaces of the region. A somewhat simpler hybrid approach could combine the DJ method to assembly elements away from
the pole with Cartesian superparametric assembly of elements near the pole.
The combination of the Double Jacobian formulation and quadratic Taylor-Hood elements ensures an effective method to

study large 3-D problems with spherical geometry using multigrid techniques. Through different tests in both 2-D and 3-D we
can confirm that, for relatively coarse meshes: (1) The DJ method is superior to conventional FE approaches in cylindrical and
spherical geometries at not generating spurious flow associated with hydrostatic pressure fields; (2) The DJ method is equivalent
to conventional methods at properly capturing the effects of local buoyancy force variations; (3) The DJ method is more accurate
than conventional FE approaches at capturing the effects of internal shell-like layering with changes in internal density at layer
interfaces.
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Abstract
We study the potential mantle flow associated with the early rifting evolution of the
South Atlantic, exploring in particular the influence of Tristan da Cunha plume and
initial lithospheric thickness variations on this system. Global plate motion bound-
ary conditions and plate boundaries are updated using GPlates every 1 Myr. While
surface plate motions are prescribed everywhere on the sphere, buoyancy forces are
only considered within a 4200 km (N-S) x 1800 km (E-W) x 300 km (depth) high-
resolution sub-region to avoid convective instabilities in the coarser mesh regions.
Our models show the migration of hotter and weaker plume material towards the rift-
ing region before break-up. This flow is influenced by the lateral thickness variations
in the initial structure of the lithosphere. Once the plume material reaches the rifting
region, it is found to preferentially migrate southwards. This preferential southward
flow appears to be due to the presence of thicker São Francisco and conjugate Congo
cratonic roots in the North combined with a ridge ’suction’ force due to stretching of
non-cratonic lithosphere in the South. Regions of plume-influenced rifting are found
to have significant early uplift in comparison to ’non-volcanic’ rifting sectors.
KEYWORDS:

1 INTRODUCTION

Volcanic rifted margins are associated with large magmatic extrusion during the last stage of continental break-up and the
beginning of sea-floor spreading. These margins are usually identified by offshore thick wedges of volcanic material called
Seaward Dipping Reflectors (SDRs), a high-velocity lower crust and a thickened oceanic crust [e.g. Mutter et al., 1982; White
et al., 1987;Gladczenko et al., 1997;Holbrook et al., 2001;Franke, 2013]. Volcanicmargins are often associatedwith continental
flood basalts that erupt in a short geological timelapse of a few million years [Morgan, 1971;White and McKenzie, 1989; Coffin
and Eldholm, 1994; Courtillot et al., 1999].
In the South Atlantic in particular, it is thought that the origin of the continental flood basalts located in the Paraná and

Etendeka traps as well as the Walvis Ridge and Rio Grande Rise are associated with the Tristan da Cunha mantle plume [e.g.
Morgan, 1981;O’Connor andDuncan, 1990]. Althoughmantle plumesmay initiate continental rifting and break-up, also known
as plume-induced rifting, the Tristan da Cunha plume was not thought to trigger the opening of the South Atlantic since there
is evidence for sea-floor spreading starting in the south and propagating northwards [Nürnberg and Müller, 1991; Storey, 1995;
Fromm et al., 2015].
Mantle plumes, considered to be thermal anomalies, arise from the core-mantle boundary and carry warmer low density

material that eventually ponds at the base of the lithosphere to create a volcanic chain as the plate moves over the fixed plume
[Morgan, 1971]. Near a ridge axis, plume material might flow towards regions of thin lithosphere producing enhanced melting
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and volcanism by decompression of the asthenosphere [Morgan et al., 1995; Sleep, 1996]. Plume material flowing to regions
of thin lithosphere reduces the lithosphere strength and has been proposed to aid in the final stage of the continental rifting
and break-up [Buiter and Torsvik, 2014]. Thermo-chemical plumes have been proposed to be an effective mechanism to erode
the base of the lithosphere [Sobolev et al., 2011] and have been also linked to large mass-extinctions events [Courtillot et al.,
1999]. Other mechanisms have been proposed to explain the offshore along-strike volcanism observed in the South Atlantic.
For example, Koopmann et al. [2014] suggest that a segmentation in rifting is the main mechanism that controls the volcanism
in that region. Other authors, following Sleep’s hypothesis, suggest that the sublithospheric topography may have played an
important role in guiding plume material towards the south, where lithosphere is thin, producing the observed volcanism and
producing much less volcanism towards the north where the lithosphere is thick [Gladczenko et al., 1997; Buiter and Torsvik,
2014; Taposeea et al., 2017].
The plume location and its arrival to the base of the lithosphere are not well constrained. Some authors suggest Africa was

the place of the plume impact [Duncan, 1984; Fromm et al., 2015]. Others locate it beneath the Paraná basin since most of the
continental flood basalts are located on South America [e.g. O’Connor and Duncan, 1990; Turner et al., 1994; VanDecar et al.,
1995]. The flood basalt emplacement within the Paraná and Etendeka traps located in Brazil and Namibia, respectively, was a
fast process that lasted approximately 1 Myr starting at 134-132 Ma [Renne et al., 1992, 1996; Thiede and Vasconcelos, 2010].
However, Dodd et al. [2015] suggest it took more than 4 Myr for the event, and used this to explain why the Paraná-Etendeka
LIP is not associated with a mass-extinction like many other LIPs. The age of the opening of the South Atlantic Ocean is not
well constrained either, varying from 126 Ma to 132 Ma [Torsvik et al., 2009]. Buiter and Torsvik [2014] argue that flood basalt
emplacement and break-up occurs almost simultaneously in several conjugate margins of the Atlantic and Indian oceans.
SDRs have been observed alongmore than 2000 km of the South American and South Africanmargins with amaximumwidth

of the SDRs located between the continental flood basalt province of Paraná and the Rio Grande Rise [Gladczenko et al., 1997].
The African margin shows an asymmetry between volcanic margins south of the Walvis Ridge [e.g. Bauer et al., 2000] and
non-volcanic margins north of the Walvis Ridge [e.g. Contrucci et al., 2004]. A recent study shows a sharp transition between
volcanic and non-volcanic margin across the Florianópolis Fracture Zone and Walvis ridge along-strike [Fromm et al., 2015].
In the South America conjugate margin there is also asymmetry between volcanic margins south of the Rio Grande Fracture
Zone [e.g. Stica et al., 2014] and non-volcanic margins north of the Campos basin [e.g. Moulin et al., 2010]. The presence
of Aptian salt along Santos and Campos basins makes it difficult to interpret seismic images to find possible SDRs. Mohriak
et al. [2008] consider that the central segment of the South Atlantic is associated with SDRs. Blaich et al. [2011] argue that the
magmatism experienced in that region was not sufficient to form SDRs. The contrast between volcanic margin south of the Rio
Grande Rise and Walvis Ridge and non-volcanic margin to the north (Figure 1 and Figure 2b) keeps controversial the role of the
Tristan da Cunha plume in the continental break-up since it departs from the conventional plume-head scenario, that predicts
symmetrically enhanced volcanism along the plume head (Figure 2a).
The choice of far-field boundary conditions in planetary viscous flow problems often strongly shapes the large-scale structure

of a geosimulation. For example, numerical models in 2-D have shown that rift speed controls the margin symmetry and mantle
exhumation [Pérez-Gussinyé et al., 2006; Brune et al., 2014]. A recent study suggest a strength-velocity feedback during the
continental rifting with a plate acceleration before break up [Brune et al., 2016]. In 3-D, numerical modelling of regional rifting
is usually done in Cartesian rectangular boxes with simplified ’plate spreading’ or ’uniform rifting’. For exampleKoopmann et al.
[2014] model the rift migration of North and South Atlantic with a sequential activation of segments using the same extension
velocity for all the segments. Oblique extension has been proposed to aid the continental rifting and break-up [Brune et al.,
2012]. Koptev et al. [2016] use 3-D numerical models to show the interaction between mantle plumes and cratonic lithosphere
applied to the Central-East African rift. One way to improve the capabilities of regional models is to include more accurate
boundary conditions by using a nested modelling approach, in which a global model is used to determine a large-scale flow
pattern that is then imposed as a constraint along the boundaries of the region to be modelled [e.g. Mihalffy et al., 2008]. In
a recent study, Gassmöller et al. [2016] use the nested approach to model in 3-D the long-term evolution of Tristan da Cunha
plume and its interaction with the ridge.
Here we use a different approach by using 3-D spherical global numerical models with an embedded high-resolution sub-

region. Thereby, regional rifting processes can be modelled with no fictitious internal boundaries for which poorly-known
velocities or stresses need to be prescribed. We use this approach to study the potential mantle flow associated with the first
30 Myr of rifting evolution in the South Atlantic. We explore the influence of Tristan da Cunha plume and initial lithospheric
thickness variations on plume and mantle flow during rifting. Our results suggest a lateral plume flow scenario in which hotter
and weak plume material preferentially migrates southwards. This preferential southward flow appears to be mainly due to the
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FIGURE 1 Map of the South Atlantic from ETOPO1 [Amante and Eakins, 2009] with onshore and offshore flood basalts and
seaward dipping reflectors (SDRs). Structures from Gladczenko et al. [1997]; Moulin et al. [2010]; Blaich et al. [2011]; Stica
et al. [2014].

presence in the North of thicker São Francisco and conjugate Congo cratonic roots during early rifting combined with ’suction’
associated with early plate stretching in the non-cratonic regions. We propose this mechanism led to the observed preferential
southward formation of early-rifting-related SDRs along South Atlantic margins with respect to their Tristan da Cunha plume
progenitor.

2 METHODOLOGY

2.1 Numerical methods
We use M3TET_SPH, a numerical code written in MATLAB (http://www.mathworks.com) to solve for the thermo-mechanical
viscous flow evolution of the mantle in spherical geometries. M3TET_SPH is based on the Cartesian verison, M3TET [Hasen-
clever, 2010; Hasenclever et al., 2011]. The mantle is modelled as a 3-D incompressible fluid that satisfies the Boussinesq
approximation. Using the index notation with the Einstein summation convention, the coupled equations of conservation of
mass, force balance and energy are given by:

)ui
)xi

= 0 , (1)
)p
)xi

=
)�ij
)xj

− �gi , (2)
)T
)t

= � )
2T
)x2i

− ui
)T
)xi

, (3)
where ui are the individual velocity components, xi are the physical components, p is the pressure, �ij is the deviatoric stress
tensor, � is the density, gi are the components of the gravitational acceleration, T is the temperature, t is time and � is the thermal
diffusivity. The constitutive law is given by

�ij = �
(
)ui
)xj

+
)uj
)xi

)
, (4)
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FIGURE 2 Differences between (a) symmetrical plume-head scenario (reconstruction of the North Atlantic at 50 Ma) and (b)
asymetric lateral plume-flow scenario (reconstruction of the South Atlantic at 115Ma). Black colour shows the position of SDRs
(volcanic margins) and grey and purple colours represent non-volcanic margins and non-volcanic basins, respectively. Structures
for (a) from Lundin and Doré [2011] and for (b) from Gladczenko et al. [1997];Moulin et al. [2010]; Blaich et al. [2011]; Stica
et al. [2014]. Reconstructions made using GPlates and plate kinematic reconstructions given by Gurnis et al. [2012]. Red circle
represents the location of the mantle plume. Bottom insets show along-rift axis sketches for each scenario.

where � is the viscosity. The density, that controls the buoyancy-driven flow, is given by the simplified equation of state
� = �0

(
1 − �

(
T − T0

))
, (5)

where �0 = 3300 kg m-3 is the density at reference mantle temperature T0 = 1300 ◦C , and � = 3 x 10-5 K-1 is the thermal
expansion coefficient. Tetrahedral P2P1 Taylor-Hood elements with continuous quadratic velocity and linear pressure interpo-
lation functions are used to discretize the equations (1) to (3). The iterative solution technique constists of a conjugate gradient
algorithm that is preconditioned by the multigrid method [Hasenclever, 2010; Hasenclever et al., 2011]. The 3-D code is paral-
lelized using the MPI-wrapper routines in MATLAB’s Parallel Computing Toolbox. The Double-Jacobian approach (Chapter 3)
is used to improve the efficiency when solving problems in a spherical geometry as well as to speed-up the particle search rou-
tines in curved-edge elements. The thermal advection-diffusion problem is solved by operator splitting [Hasenclever, 2010]. The
diffusion part is discretized using quadratic-order elements and the equations are solved using a conjugate gradient algorithm.
Temperature advection is done by a Semi-Lagrange advection scheme with second-order Predictor-Corrector back-tracking and
cubic interpolation [Shi, 2012]. Melting is implemented following the approach in Hasenclever [2010]. The unstructured finite
element spherical mesh is generated using MESH_3D_SPRING_SPH (Chapter 2).
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FIGURE 3 Model domain representing a 3-D spherical shell for the Earth’s mantle (left) and zoom for the embedded high
resolution region (right). Black lines represent the plate boundaries. Colour arrows are the speed for the plate motion (left). In
the embedded high resolution region (right) the colour represents the depth of the isosurface of T = 1170 ◦C and black arrows
are the velocity field obtained after imposing the plate motion boundary conditions. Red color shows plume material with the
isosurface of log(�) = 18.2.

2.2 Model design
The 3-D model domain consists of a coarse spherical shell with the Earth’s mantle dimensions that includes an embedded high
resolution region around the area of interest (Figure 3). An embedded calculation avoids the ’edge’ boundary conditions used in
the nested modelling approach since they are replaced by global plate motion boundary conditions on the surface of the sphere.
The embedded high resolution region is 300 km deep and extends 4200 km in latitudinal direction and 1800 km in longitudinal
direction. A transition region surrounds the high resolution region in order to have a smooth spatial variation from the element
size within the global coarse mesh (500 km) to the element size within the high resolution region (25 km). The mesh has 1.7
million elements (18 million degrees of freedom), with 66% of elements within the high resolution region. Buoyancy forces are
only considered within the high resolution region to avoid convective instabilities in coarser mesh regions. The use of tetrahedral
P2P1 Taylor-Hood elements allows a higher accuracy with a distance between mesh points of around 12.5 km.

2.3 Initial conditions
The velocity boundary conditions are free slip along the core-mantle boundary and prescribed plate motion through time along
the top surface. The simulation time for the early rifting and break-up of the South Atlantic ocean goes from 130 to 100 Ma. In
order to impose the velocity boundary conditions numerically we use GPlates (https://www.gplates.org). The plate velocities are
extracted every 1Myr from the plate kinematic reconstructions given byGurnis et al. [2012]. Velocities are linearly interpolated
for each 0.1 Myr time step of the simulation.
The initial thermal structure is given by considering the lithosphere to be the thermal boundary layer of a half-space cool-

ing model. Plate thickness variations from continental to cratonic lithosphere are simulated using ages of 100 and 350 Myr,
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respectively. This results in a depth for the isotherm of 1170 ◦C of 130 km for continental lithosphere and 245 km for cratonic
lithosphere. Outside the high resolution region we assume a constant lithosphere age of 80 Myr. The craton contours are digi-
tised from de Wit et al. [2008]. The model contains a single ’hot Tristan Plume’. The initial geometry of the plume tail consists
of a cylinder of radius 100 km extending from 670 km depth to the bottom of the high resolution region. The initial thermal
structure for the plume is assumed to follow a Gaussian-shaped radial temperature profile with a maximum temperature anomaly
of 150 ◦C with respect to background mantle. The velocity boundary conditions for the plume are implemented by a parabolic-
shaped radial velocity profile with the maximum velocity in the centre of the plume tail. The maximum ascent velocity is given
by

Vmax =
2Qp

�R2
, (6)

whereQp is the plume flux (km3yr-1) andR is the plume tail radius (km). We consider the effects of a range of plume fluxes from
5 – 20 km3 yr−1 (Table 1 ), which is consistent with ~20 – 40 mantle plumes supplying an upward return flow to the shallow
mantle that balances the ~300 km3 yr−1 downward flux associated with plate subduction [cf. Yamamoto et al., 2007].
We use a temperature and pressure dependent upper mantle rheology given by

�(T , p) = �0exp
[
1
RT0

(
Ea

(
T0
T
− 1

)
+ pVa

)]
, (7)

where �0 = 2 x 1018 Pa⋅s is the reference viscosity, R is the universal gas constant, Ea = 400 kJ/mol is the activation energy
and Va = 4 x 10-6 m3/mol is the activation volume [Hirth and Kohlstedt, 2003]. The minimum and maximum cut-off viscosities
are 1018 Pa⋅s and 1023 Pa⋅s, respectively. For simplicity, the lower mantle viscosity is considered to be uniform with a value of
5x1021 Pa⋅s.

3 RESULTS

We have performed several numerical experiments by varying the initial position of the plume, the plume flux and whether to
include melting during the numerical experiments (Table 1 and Figure 4). We found two plume flow scenarios depending on
the plume location.

TABLE 1 Model parameters and output southward plume-flow migration.

Model Plume location
(colat, lon)

Plume flux
(km3 yr−1) Melting Southward plume-

flow migration

L1F10 L1 (118◦, 354◦) 10 No Yes
L1F15 L1 (118◦, 354◦) 15 No Yes
L1F20 L1 (118◦, 354◦) 20 No Yes
L1F15M L1 (118◦, 354◦) 15 Yes Yes
L1bF15 L1b (120◦, 0◦) 15 No Yes
L2F10 L2 (121◦, 351◦) 10 No Yes
L2F15 L2 (121◦, 351◦) 15 No Yes
L3F15 L3 (124◦, 351◦) 15 No No
L4F7.5 L4 (127◦, 348◦) 7.5 No No

3.1 Lateral southward plume-flow scenario
Models where the plume is located at L1, L1b and L2 (see Figure 4) develop a lateral southward plume flowmigration. For com-
parison purposes we present here the results for the models L1F15, L1F15M, L1bF15 and L2F15 (see Supporting Information
for models L1F10, L1F20 and L2F10).
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FIGURE 4 Plume location (red triangle) for each model listed in Table 1. Brown color represents the initial cratonic structure
from de Wit et al. [2008]. Black and white lines are the reconstructed coastlines and the plate boundaries, respectively.
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Figure 6 and supporting information Movie S1 show the 3-D evolution of the model L1F15. At the start of the simulation
there is a migration of hotter and weak plume material towards the rifting region before the break-up (Figure 6a). This migration
is strongly influenced by the lateral thickness variations in the initial structure of the lithosphere (top inset Figure 6a). Once
the plume material has reached the rifting region it flows preferentially southwards with much higher sub-rift temperatures in
regions underlain by the plume material (Figure 6b). The southward migration is primarly due to ’suction’ from the stretching
region combined with a flow barrier of the thicker São Francisco and conjugate Congo cratonic roots in the North. After 16 Myr
of rifting in the North, break-up finally occurs between São Francisco and Congo cratons. This opens a new ’path’ for the plume
material that starts to flow northwards but still in lesser amounts than flow to the south. At 18 Myr the plume material reaches
its maximum southward influence (Figure 6c). However, faster opening and northwards flow lead to a shrinking of the region of
the plume influence (Figure 6d). The top inset in Figures 6a-d shows the thermal thickness of the lithosphere, represented here
by the depth of the isosurface of 1170 ◦C . The bottom inset in Figures 6a-d shows the plume contribution to the topography
along the plate boundary between South America and Africa through the profiles AA’ (south), AB (central) and BB’ (north).
The plume contribution to the topography is computed in two steps. First, the mantle contribution to isostatic topography for all
plume models and for a plume free model is computed by an isostatic numerical integration [for a similar implementation see
Appendix C of Sparks et al., 1993]

dc

∫
0

(�(z) − �m)gdz = Δ�gℎiso , (8)

where dc = 300 km is the compensated depth, �(z) is the depth dependent density, �m is the mantle density, Δ� is the density
contrast between the mantle and water, g is the gravity and ℎiso is the isostatic topography. In order to discretize equation (8), �(z)
is sampled by interpolating the density in the radial direction along a column of points with a spatial interval dz = 10 km beneath
each surface mesh point. Finally, the mantle contribution of a plume free model is subtracted from the mantle contribution of
a plume model in order to compute the plume contribution to the topography. Figure 7 and supporting information Movie S2
show the evolution of the plume contribution to topography for the model L1F15. As the South America plate is moving over
the plume, part of the plume’s influence, as thermally-supported relief, is shaped by its motion and by rifting-related changes in
lithosphere thickness. Regions of plume-influenced rifting are found to be associated with significant early uplift (green colour
in Figure 7).
Figure 8 and supporting information Movie S3 show the 3-D evolution of the model L1F15M which explicitly includes the

thermal effects of mantle melting. The behaviour of the plume material in this model with melting contribution is similar to
the model without melting (L1F15). Note that the plume material is represented in the model L1F15M by an isosurface with
log(�) = 18.5 in comparison to log(�) = 18.2 for model L1F15, e.g. it is roughly twice as viscous. The reason is because
as melting consumes latent heat, the temperature of the melting plume material cools and therefore its temperature-dependent
viscosity increases. The first 6 Myr of evolution are identical since no melting is produced at that time (Figure 8a). Similar to
model L1F15, plume material starts to flow southwards once it reaches the rifting region. Melting occurs first along the profile
AA’, where the rifting velocities are higher than in the northern part. The region overlying the plume material shows a higher
melt production rate per km upflow than in the southern end of the rifting region (black isosurface in Figure 8b). The isosurface
for non-negligible melting rate (10−4 km−1) shows the maximum extension of the melting region. After break-up between the
São Francisco and Congo cratons melting appears in the northern part (Figure 8c). Regions with plume materal beneath the
ridge present more melting rate per km upflow (a wider black isosurface above plume material in Figure 8c). Towards the end
of the simulation, the width of the isosurface for melting rate per km upflow is still slightly wider in regions overlying the plume
material (Figure 8d). Figure 9 and supporting information Movie S4 show the evolution of the plume contribution to topography
for the model L1F15M. Again, there is a early uplift in regions of plume-influenced rifting. However, the plume contribution
to the topography is lower in the model L1F15M than in model L1F15. This occurs because there is less plume material and
because the mantle in the model with melting is cooler.
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b)
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FIGURE 6 3-D evolution of plume material during rifting and break-up of the South Atlantic for model L1F15.
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d)

c)

FIGURE 6 (Cont.) 3-D evolution of plume material during rifting and break-up of the South Atlantic for model L1F15. Main:
3-D images showing the geometry of the plume material at different times: (a) 6.06 Myr, (b) 12.05 Myr, (c) 18.08 Myr and
(d) 28.08 Myr. Colour represents logarithm of viscosity. The velocity field and isotherms every 200 ◦C in the vertical cross
sections are represented by arrows and white lines, respectively. Black line represents the plate boundary. The plume material
is represented by the red isosurface with log(�) = 18.2. Top inset: Top view of the 3-D evolution shown in the main inset.
The isosurface with a temperature of 1170 ◦C is coloured with depth to show the lithospheric thickness variations. The plume
material is represented by the red isosurface with log(�) = 18.2. Colour arrows represent the top surface plate motion. Grey
lines and black thick lines represent the reconstructed coastlines and the plate boundaries, respectively. Capital letters show the
ends of the along ridge profiles shown in bottom inset. Numbers between parentheses show the full opening speed in mm∕yr.
Bottom inset: Plume contribution to axial topography in km. The red horizontal line represents the plume material beneath the
ridge profile.
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FIGURE 7 Evolution of the plume contribution to the topography for model L1F15. Colour represents the plume contribution to the topography in km. The plume
material is represented by a isosurface with log(�) = 18.2. Black thin and thick lines represent the reconstructed coastlines and the plate boundaries, respectively.
Capital letters show the ends of the along ridge profiles shown in bottom inset. Numbers between parentheses show the full openning spped in mm∕yr. Top inset: Plume
contribution to axial topography in km. The red horizontal line represents the plume material beneath the ridge profile.
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b)

a)

FIGURE 8 3-D evolution of plume material during rifting and break-up of the South Atlantic for model L1F15M.
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FIGURE 8 (Cont.) 3-D evolution of plume material during rifting and break-up of the South Atlantic for model L1F15M.
Main: 3-D images showing the geometry of the plume material at different times: (a) 6.10 Myr, (b) 12.05 Myr, (c) 18.05 Myr
and (d) 28.05 Myr. Colour represents logarithm of viscosity. The velocity field and isotherms every 200 ◦C in the vertical cross
sections are represented by arrows and white lines, respectively. Black line represents the plate boundary. The plume material is
represented by the red isosurface with log(�) = 18.5. The melting rate per km upflow is represented by the black isosurface with
dF∕dz = 0.0001km−1. Top inset: Top view of the 3-D evolution shown in the main inset. The isosurface with a temperature
of 1170 ◦C is coloured with depth to show the lithospheric thickness variations. The plume material is represented by the red
isosurface with log(�) = 18.5. Colour arrows represent the top surface plate motion. Grey lines and black thick lines represent
the reconstructed coastlines and the plate boundaries, respectively. Capital letters show the ends of the along ridge profiles
shown in bottom inset. Numbers between parentheses show the full opening speed in mm∕yr. Bottom inset: Plume contribution
to axial topography in km. The red horizontal line represents the plume material beneath the ridge profile.
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FIGURE 9 Evolution of the plume contribution to the topography for model L1F15M. Colour represents the plume contribution to the topography in km. The plume
material is represented by a isosurface with log(�) = 18.5. Black thin and thick lines represent the reconstructed coastlines and the plate boundaries, respectively.
Capital letters show the ends of the along ridge profiles shown in bottom inset. Numbers between parentheses show the full openning spped in mm∕yr. Top inset: Plume
contribution to axial topography in km. The red horizontal line represents the plume material beneath the ridge profile.
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Models L1F10 (see supporting information Figure S1, Figure S2, Movie S5 and movie S6) and L1F20 (see supporting infor-
mation Figure S3, Figure S4, Movie S7 and movie S8) show the plume’s influence beneath the rifting region when the only
parameter changed with respect to the model L1F15 is the plume flux (See Table 1). The behaviour of the plume material is
similar to the one observed in models L1F15 and L1F15M. The results for model L1F20 show plume material reaching further
along the rifting region (firstly southwards and northwards towards the end of the simulation). On the other hand, model L1F10
shows less influence of the plume material in the rifting region.
Models where plume is located at L1 present similar behaviour of the plume material except for its extension along the ridge.

We observe an increase of the southward plumematerial speed that is correlated with the abrupt increase in opening rate between
8 Myr and 12 Myr (Figure 5b) (The mean southward plume material speed is calculated measuring the travelled distance by
the tip of the plume material for each 2 Myr interval during its southward motion). This is important, as it suggests that the
’suction’ from the spreading region is the primary force that ’pulls’ plume material towards the South. The southward plume
material speed is directly proportional to the plume flux (compare purple line (L1F10), blue line (L1F15) and black line (L1F20)
in Figure 5b). Model L1F15M (orange line in Figure 5b) presents the same initial southward plume material speed than model
L1F15, although the isosurfaces for plume material differ by log(�) = 0.3. Once melting starts, the southward plume material
speed slows considerably due to the three-fold increase in viscosity.
Model L1bF15 presents a plume located beneath Congo craton close to its south-western edge. Figure 10 and supporting

information Movie S9 show the 3-D evolution of the model L1bF15. During the first 4 Myr of simulation the plume material is
impinging the base of the craton. At 6 Myr the plume material starts to drain towards the rifting region (Figure 10a). Once the
plume material has reached the rifting region it starts to flow southwards (Figure 10b). The plume material reaches it maximum
southward extent at 18 Myr (Figure 10c) and its region of influence shrinks towards the end of the simulation (Figure 10d).
Figure 11 and supporting informationMovie S10 show the evolution of the plume contribution to topography for model L1bF15.
Model L2F15 presents a plume located in the northern edge of the Rio de la Plata craton. Figure 12 and supporting information

Movie S11 show the 3-D evolution of the model L2F15. When the plume material impinges the edge of the craton, it flows
towards regions of thinner lithosphere and towards the rifting region (Figure 12a). Afterwards, it starts to migrate southwards
(Figure 12b). At 18 Myr the plume material reaches it maximum southward influence (Figure 12c) and again, towards the end
of the simulation, the region of plume influence shrinks (Figure 12d). Figure 13 and supporting information Movie S12 show
the evolution of the plume contribution to the topography for model L2F15.
Model L2F10 (see supporting information Figure S5, Figure S6, Movie S13 and Movie S14) shows the plume’s influence

beneath the rifting region when the only parameter varied with respect to the model L2F15 is the plume flux (See Table 1). The
behaviour of the plume material is similar to the one observed in models where the plume is located at L1 and model L2F15.
However, the plumematerial does not reach the same southward distance as the plumematerial in model L1F10 (compare Figure
S5c and Figure S2c) probably to the initial position of the plume and the initial plume flux. At the beginning of the simulation,
the plume material needs around 4 Myr to reach a similar position to the initial position of the plume in the model L1F10. This
delay produces that the plume material arrives to the rifting region when the abrupt acceleration of the southern part is too far
to influence a rapid southward migration (purple dash line in Figure 5b) like observed for models where plume is located at
L1 and for model L2F15. The southern end of the rifting region is then filled by upwelling mantle material instead of plume
material. The plume contribution to the topography is lower in the model L2F10 than in the model L1F10. All models where
plume location is at L1 and L2 experiment a considerably reduction of southward plume material speed once the North passage
between São Francisco and Congo cratons opens (vertical dot line in Figure 5b).
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b)

a)

FIGURE 10 3-D evolution of plume material during rifting and break-up of the South Atlantic for model L1bF15.
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FIGURE 10 (Cont.) 3-D evolution of plume material during rifting and break-up of the South Atlantic for model L1bF15.
Main: 3-D images showing the geometry of the plume material at different times: (a) 6.06 Myr, (b) 12.06 Myr, (c) 18.07 Myr
and (d) 28.09 Myr. Same representation as in Figure 6.
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FIGURE 11 Evolution of the plume contribution to the topography for model L1bF15. Same representation as in Figure 7.
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b)
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FIGURE 12 3-D evolution of plume material during rifting and break-up of the South Atlantic for model L2F15.
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d)
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FIGURE 12 (Cont.) 3-D evolution of plume material during rifting and break-up of the South Atlantic for model L2F15. Main:
3-D images showing the geometry of the plume material at different times: (a) 6.07 Myr, (b) 12.04 Myr, (c) 18.08 Myr and (d)
28.08 Myr. Same representation as in Figure 6.
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FIGURE 13 Evolution of the plume contribution to the topography for model L2F15. Same representation as in Figure 7.
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3.2 Other lateral plume-flow scenarios
We have explored other possible plume flow scenarios by moving the plume location further southwards. Model L3F15 presents
a plume beneath the Rio de la Plata craton close to its north-eastern edge. Figure 14 and supporting information Movie S15
show the 3-D evolution of the model L3F15. During the first 6 Myr of simulation, the model L3F15 shows a plume head flow
scenario in which the plume material is impinging the base of the craton (top inset in Figure 14a). Around 8 Myr, the westward
motion of the South America plate over the plume opens a new path for the plume material, which starts to drain towards the
ridge (Figures 14b and 14c). Once plume material reaches the ridge, it starts to flow along the ridge with no preferred direction.
Towards the end of the simulation, the region of the plume influence shinks due to faster opening rate (Figure 14d). Figure 15
and supporting information Movie S16 show the evolution of the plume contribution to topography for the model L3F15. The
thermal uplift of the plume beneath the craton is clearly visible along the simulation.
Model L4F7.5 (see supporting information Figure S7, Figure S8, Movie S17 and movie S18) presents a plume beneath the

western part of the Rio de la Plata craton. During the first 14 Myr of simulation, the model L4F7.5 shows a plume head flow
scenario with the plume material impinging the base of the craton and creating a dome. At 18 Myr, the plume material starts to
drain towards the ridge.

4 DISCUSSION

The lateral southward plume flow migration observed in the models where plume is located at L1, L1b and L2 is potentially due
to a combination of two main factors: (1) a ’suction’ from regions of stretching in the South and (2) the presence of thicker São
Francisco and conjugate Congo cratonic roots in the North. The southward plume material speed-up observed in models where
plume is located at L1 suggest that the ’suction’ from the spreading region is the dominant factor that ’pulls’ plume material
towards the South.
Although we cannot compare directly the models L1F15 and L1F15M since melting consumes energy leading to a decrease

on temperature of the plume material, the results obtained in both models are quite similar, with a southward migration of
the plume material. However, the southward migration of the plume material in model L1F15M is limited by the increase of
viscosity due to the cooling from the latent heat of melting.
Models where plume is located at L1 show a correlation between a southward speed-up of plume material and abrupt accel-

eration in the opening speed (Figure 5). In general, this behaviour is not observed for models where the plume is at different
locations. It appears that for models with the plume located at L1, the plume material has enough time to accumulate in the
rifting region and start to migrate southwards before the abrupt acceleration in the opening speed occurs. When the opening
speed increases dramatically, plume material migrates southwards faster than the mantle upwelling below the southern part of
the ridge. This provides a possible alternative explanation for the observation of a plate acceleration before the break-up [Brune
et al., 2016]. In this case, the widespread development of SDRs is linked to rapid southward extrusion of plume material, with
the SDR volcanism contributing to weakened lithosphere and enhanced ridge push over a wide section of ridge that leads to
breakup. On the other hand, plume material in model L2F10 arrives with aproximately 4 Myr of delay to the rifting region when
begins the abrupt plate acceleration. Plume material starts to flow southwards but it does not speed-up. This could be due to that
mantle upwelling in the southern part inhibits the rapid southward motion of the plume material, or that the ’pond’ of available
mobile plume material is too small to be pulled southwards. Future models with a plume at L1 and a temporal delay are needed
to make a better comparison.
Our models do not account for power law creep. However, if the rheology would consist of a composite viscosity including

both dislocation and diffusion creep mechanisms it would decrease the viscosity of the upper part of the mantle in the stretching
and plume regions. This would lead to models where plume material would flow faster than in our models, which could be
more realistic. An additional simplification of the models is that a composition-dependent rheology is not included. Including a
composition-dependent rheology would also tend to create a more viscous asthenosphere, at depths where water easily partitions
into a melt.
The initial structure of the base of the craton above the plume in models L3F15 and L4F7.5 seems to play an important role

in the initial evolution of the plume material by inhibiting its drainage to thinner lithosphere regions. A caveat of the numerical
implementation of the cratons is that their base is exactly flat, and does not include a small regional tilt. This may cause plume
material to accumulate at the base of the craton especially when plate motions are slow. Making the base of the craton slightly
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tilted would allow the plume material to more easily drain (cratons could have a more realistic initial shape by smoothing their
lower boundaries by, for example, applying diffusion for tens of millions of years before the start of the experiment).

b)

a)

FIGURE 14 3-D evolution of plume material during rifting and break-up of the South Atlantic for model L3F15.
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d)

c)

FIGURE 14 (Cont.) 3-D evolution of plume material during rifting and break-up of the South Atlantic for model L3F15. Main:
3-D images showing the geometry of the plume material at different times: (a) 6.06 Myr, (b) 12.06 Myr, (c) 18.05 Myr and (d)
28.06 Myr. Same representation as in Figure 6.
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d)c)b)a)

FIGURE 15 Evolution of the plume contribution to the topography for model L3F15. Same representation as in Figure 7.
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4.1 Implications for SDRs observations
Seward Dipping Reflectors (SDRs) are an accepted indicator for volcanic rifted margins. In the South Atlantic, they have been
observed offshore South of Brasil, Uruguay and the central-north of Argentina in the South America margin and offshore
Namibia and South Africa in the Africa margin. The distribution of the SDRs in the South Atlantic shows an asymmetry that is
not observed in some other volcanic rifted margins with plume influence, for example in Greenland where there is a symmetric
distribution of the volcanic rifted margins with respect to the plume position (classic plume head flow scenario). Our models
predict a scenario in which plume material preferentially migrates southwards (Figure 6). This migration would lead to the
emplacement of offshore thick wedges of volcanic material (SDRs) along the southern part of the South Atlantic, in agreement
with the observed distribution of SDRs.

5 CONCLUSIONS

We have studied the influence of Tristan da Cunha plume and initial lithosphere thickness in the early rifting evolution of the
South Atlantic is a series of 3-D numerical models. Models consistent with the location of the Tristan plume track where plume
is located at L1 and L2 show a lateral southward plume flow migration with a maximum extent proportional to the plume flux.
This preferential southward flow is mainly due to a combination of suction associated with stretching in the South and the
presence of thicker São Francisco and conjugate Congo cratonic roots in the North. In these models, plume material experiences
a southward speed-up that is related to the abrupt acceleration in the opening speed. The duration of SDR emplacement is
predicted to take 5-10 Myr. This rapid southward migration of the plume material could explain the formation of the observed
rifting-related SDRs along the South Atlantic margins.



TARAMÓN ET AL 27

SUPPORTING INFORMATION

The following supporting information is available as part of the online article:

b)

a)

FIGURE S1 3-D evolution of plume material during rifting and break-up of the South Atlantic for model L1F10.
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d)

c)

FIGURE S1 (Cont.) 3-D evolution of plume material during rifting and break-up of the South Atlantic for model L1F10. Main:
3-D images showing the geometry of the plume material at different times: (a) 6.09 Myr, (b) 12.09 Myr, (c) 18.08 Myr and (d)
28.10 Myr. Same representation as in Figure 6.
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d)c)b)a)

FIGURE S2 Evolution of the plume contribution to the topography for model L1F10. Same representation as in Figure 7.
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b)

a)

FIGURE S3 3-D evolution of plume material during rifting and break-up of the South Atlantic for model L1F20.
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d)

c)

FIGURE S3 (Cont.) 3-D evolution of plume material during rifting and break-up of the South Atlantic for model L1F20. Main:
3-D images showing the geometry of the plume material at different times: (a) 6.09 Myr, (b) 12.05 Myr, (c) 18.10 Myr and (d)
28.07 Myr. Same representation as in Figure 6.
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d)c)b)a)

FIGURE S4 Evolution of the plume contribution to the topography for model L1F20. Same representation as in Figure 7.
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b)

a)

FIGURE S5 3-D evolution of plume material during rifting and break-up of the South Atlantic for model L2F10.
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d)

c)

FIGURE 5 (Cont.) 3-D evolution of plume material during rifting and break-up of the South Atlantic for model L2F10. Main:
3-D images showing the geometry of the plume material at different times: (a) 6.09 Myr, (b) 12.03 Myr, (c) 18.03 Myr and (d)
28.08 Myr. Same representation as in Figure 6.
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d)c)b)a)

FIGURE 6 Evolution of the plume contribution to the topography for model L2F10. Same representation as in Figure 7.
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b)

a)

FIGURE S7 3-D evolution of plume material during rifting and break-up of the South Atlantic for model L4F7.5.
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d)

c)

FIGURE S7 (Cont.) 3-D evolution of plume material during rifting and break-up of the South Atlantic for model L4F7.5.
Main: 3-D images showing the geometry of the plume material at different times: (a) 6.02 Myr, (b) 12.10 Myr, (c) 18.09 Myr
and (d) 28.07 Myr. Same representation as in Figure 6.
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d)c)b)a)

FIGURE S8 Evolution of the plume contribution to the topography for model L4F7.5. Same representation as in Figure 7.



TARAMÓN ET AL 39

References

Amante, C., and B. Eakins (2009), Etopo1 1 arc-minute global relief model: procedures, data sources and analysis, Noaa
technical memorandum nesdis ngdc-24, National Geophysical Data Center, NOAA, doi: 10.7289/V5C8276M.

Bauer, K., S. Neben, B. Schreckenberger, R. Emmermann, K. Hinz, N. Fechner, K. Gohl, A. Schulze, R. B. Trumbull, and
K. Weber (2000), Deep structure of the Namibia continental margin as derived from integrated geophysical studies, J.
Geophys. Res., 105(B11), 25829–25853, doi: 10.1029/2000JB900227.

Blaich, O. A., J. I. Faleide, and F. Tsikalas (2011), Crustal breakup and continent-ocean transition at South Atlantic conjugate
margins, J. Geophys. Res. Solid Earth, 116(1), 1–38, doi: 10.1029/2010JB007686.

Brune, S., A. A. Popov, and S. V. Sobolev (2012), Modeling suggests that oblique extension facilitates rifting and continental
break-up, J. Geophys. Res. Solid Earth, 117(8), 1–16, doi: 10.1029/2011JB008860.

Brune, S., C. Heine, M. Pérez-Gussinyé, and S. V. Sobolev (2014), Rift migration explains continental margin asymmetry and
crustal hyper-extension, Nat. Commun., 5, 1–9, doi: 10.1038/ncomms5014.

Brune, S., S. E. Williams, N. P. Butterworth, and R. D. Müller (2016), Abrupt plate accelerations shape rifted continental
margins, Nature, 536(7615), 201–204, doi: 10.1038/nature18319.

Buiter, S. J., and T. H. Torsvik (2014), A review ofWilson Cycle plate margins: A role for mantle plumes in continental break-up
along sutures?, Gondwana Res., 26(2), 627–653, doi: 10.1016/j.gr.2014.02.007.

Coffin, M. F., and O. Eldholm (1994), Large igneous provinces: Crustal structure, dimensions, and external consequences, Rev.
Geophys., 32(1), doi: 10.1029/93RG02508.

Contrucci, I., L. Matias, M. Moulin, L. Géli, F. Klingelhofer, H. Nouzé, D. Aslanian, J. L. Olivet, J. P. Réhault, and J. C.
Sibuet (2004), Deep structure of the West African continental margin (Congo, Zaïre, Angola), between 5 S and 8 S, from
reflection/refraction seismics and gravity data, Geophys. J. Int., 158(2), 529–553, doi: 10.1111/j.1365-246X.2004.02303.x.

Courtillot, V., C. Jaupart, I. Manighetti, P. Tapponnier, and J. Besse (1999), On causal links between flood basalts and continental
breakup, Earth Planet. Sci. Lett., 166(3-4), 177–195, doi: 10.1016/S0012-821X(98)00282-9.

de Wit, M. J., J. Stankiewicz, and C. Reeves (2008), Restoring pan-african-brasiliano connections: more gondwana control, less
trans-atlantic corruption, Geol. Soc. London, Spec. Publ., 294(1), 399–412, doi: 10.1144/SP294.20.

Dodd, S. C., C. Mac Niocaill, and A. R. Muxworthy (2015), Long duration (>4 Ma) and steady-state volcanic activity in the
early Cretaceous Paraná-Etendeka Large Igneous Province: New palaeomagnetic data from Namibia, Earth Planet. Sci. Lett.,
414, 16–29, doi: 10.1016/j.epsl.2015.01.009.

Duncan, R. A. (1984), Age progressive volcanism in the New England Seamounts and the opening of the central Atlantic Ocean,
J. Geophys. Res. Solid Earth, 89(B12), 9980–9990, doi: 10.1029/JB089iB12p09980.

Franke, D. (2013), Rifting, lithosphere breakup and volcanism: Comparison of magma-poor and volcanic rifted margins, Mar.
Pet. Geol., 43, 63–87, doi: 10.1016/j.marpetgeo.2012.11.003.

Fromm, T., L. Planert, W. Jokat, T. Ryberg, J. H. Behrmann, M. H. Weber, and C. Haberland (2015), South Atlantic opening:
A plume-induced breakup?, Geology, 43(10), 931–935, doi: 10.1130/G36936.1.

Gassmöller, R., J. Dannberg, E. Bredow, B. Steinberger, and T. H. Torsvik (2016), Major influence of plume-ridge interaction,
lithosphere thickness variations, and global mantle flow on hotspot volcanism-The example of Tristan, Geochem. Geophys.
Geosyst., pp. 1454–1479, doi: 10.1002/2015GC006177.

Gladczenko, T. P., K. Hinz, O. Eldholm, H. Meyer, S. Neben, and J. Skogseid (1997), South Atlantic volcanic margins, J. Geol.
Soc. London., 154, 465–470, doi: 10.1144/gsjgs.154.3.0465.



40 TARAMÓN ET AL

Gurnis, M., M. Turner, S. Zahirovic, L. DiCaprio, S. Spasojevic, R. Müller, J. Boyden, M. Seton, V. C. Manea, and
D. J. Bower (2012), Plate tectonic reconstructions with continuously closing plates, Comput. Geosci., 38(1), 35–42, doi:
10.1016/j.cageo.2011.04.014.

Hasenclever, J. (2010), Modeling mantle flow and melting processes at mid-ocean ridges and subduction zones development
and application of numerical models, Ph.D. thesis, Universität Hamburg.

Hasenclever, J., J. P. Morgan, M. Hort, and L. H. Rüpke (2011), 2d and 3d numerical models on compositionally buoyant diapirs
in the mantle wedge, Earth Planet. Sci. Lett., 311(1-2), 53–68, doi: 10.1016/j.epsl.2011.08.043.

Hirth, G., and D. Kohlstedt (2003), Rheology of the upper mantle and the mantle wedge: A view from the experimental-
ists, in Insid. subduction Fact., edited by J. Eiler, pp. 83–105, American Geophysical Union, Washington, D. C., doi:
10.1029/138GM06.

Holbrook, W., H. Larsen, J. Koneraga, T. Dahl-Jensen, I. Reid, P. Kelemen, J. Hopper, G. Kent, D. Lizarralde, S. Bernstein,
and R. Detrick (2001), Mantle thermal structure and active upwelling during continental breakup in the North Atlantic, Earth
Planet. Sci. Lett., 190(3-4), 251–266, doi: 10.1016/S0012-821X(01)00392-2.

Koopmann, H., S. Brune, D. Franke, and S. Breuer (2014), Linking rift propagation barriers to excess magmatism at volcanic
rifted margins, Geology, 42(12), 1071–1074, doi: 10.1130/G36085.1.

Koptev, A., E. Burov, E. Calais, S. Leroy, T. Gerya, L. Guillou-Frottier, and S. Cloetingh (2016), Contrasted continen-
tal rifting via plume-craton interaction: Applications to Central East African Rift, Geosci. Front., 7(2), 221–236, doi:
10.1016/j.gsf.2015.11.002.

Lundin, E. R., and A. G. Doré (2011), Hyperextension, serpentinization, and weakening: A new paradigm for rifted margin
compressional deformation, Geology, 39(4), 347–350, doi: 10.1130/G31499.1.

Mihalffy, P., B. Steinberger, and H. Schmeling (2008), The effect of the large-scale mantle flow field on the Iceland hotspot
track, Tectonophysics, 447(1-4), 5–18, doi: 10.1016/j.tecto.2006.12.012.

Mohriak, W., M. Nemčok, and G. Enciso (2008), South Atlantic divergent margin evolution: rift-border uplift and salt tectonics
in the basins of SE Brazil, Geol. Soc. London, Spec. Publ., 294(1), 365–398, doi: 10.1144/SP294.19.

Morgan, J. P., W. J. Morgan, Y.-S. Zhang, and W. H. F. Smith (1995), Observational hints for a plume-fed, suboceanic astheno-
sphere and its role in mantle convection, J. Geophys. Res. Solid Earth, 100(B7), 12753–12767, doi: 10.1029/95JB00041.

Morgan, J. W. (1981), The Oceanic Lithosphere, vol. 7, chap. 13. Hotspot tracks and the opening of the Atlantic and Indian
Oceans, pp. 443–487, Harvard University Press.

Morgan, W. J. (1971), Convection Plumes in the Lower Mantle, Nature, 230(5288), 42–43, doi: 10.1038/230042a0.
Moulin, M., D. Aslanian, and P. Unternehr (2010), A new starting point for the South and Equatorial Atlantic Ocean, Earth-
Science Rev., 98(1-2), 1–37, doi: 10.1016/j.earscirev.2009.08.001.

Mutter, J. C., M. Talwani, and P. L. Stoffa (1982), Origin of seaward-dipping reflectors in oceanic crust off the Norwegian margin
by ’subaerial sea-floor spreading’., Geology, 10(7), 353–357, doi: 10.1130/0091-7613(1982)10<353:OOSRIO>2.0.CO;2.

Nürnberg, D., and R. Müller (1991), The tectonic evolution of the south atlantic from late jurassic to present, Tectonophysics,
191(1), 27–53, doi: 10.1016/0040-1951(91)90231-G.

O’Connor, J. M., and R. A. Duncan (1990), Evolution of the Walvis Ridge-Rio Grande Rise Hot Spot System: Impli-
cations for African and South American Plate motions over plumes, J. Geophys. Res., 95(B11), 17475–17502, doi:
10.1029/JB095iB11p17475.

Pérez-Gussinyé, M., J. P. Morgan, T. J. Reston, and C. R. Ranero (2006), The rift to drift transition at non-volcanic margins:
Insights from numerical modelling, Earth Planet. Sci. Lett., 244(1-2), 458–473, doi: 10.1016/j.epsl.2006.01.059.



TARAMÓN ET AL 41

Renne, P. R., M. Ernesto, I. G. Pacca, R. S. Coe, J. M. Glen, M. Prevot, and M. Perrin (1992), The Age of Parana
Flood Volcanism, Rifting of Gondwanaland, and the Jurassic-Cretaceous Boundary, Science, 258(5084), 975–979, doi:
10.1126/science.258.5084.975.

Renne, P. R., J. M. Glen, S. C. Milner, and A. R. Duncan (1996), Age of Etendeka flood volcanism and associated intrusions in
southwestern Africa, Geology, 24(7), 659–662, doi: 10.1130/0091-7613(1996)024<0659:AOEFVA>2.3.CO;2.

Shi, C. (2012), The dynamics of a mantle with plume-fed asthenosphere: Method development and numerical experimental
studies, Ph.D. thesis, Cornell University.

Sleep, N. H. (1996), Lateral flow of hot plume material ponded at sublithospheric depths, J. Geophys. Res., 101(B12), 28065–
28083, doi: 10.1029/96JB02463.

Sobolev, S. V., A. V. Sobolev, D. V. Kuzmin, N. A. Krivolutskaya, A. G. Petrunin, N. T. Arndt, V. A. Radko, and Y. R. Vasiliev
(2011), Linking mantle plumes, large igneous provinces and environmental catastrophes, Nature, 477(7364), 312–316, doi:
10.1038/nature10385.

Sparks, D. W., E. M. Parmentier, and J. P. Morgan (1993), Three-dimensional mantle convection beneath a segmented spreading
center: Implications for along-axis variations in crustal thickness and gravity, J. Geophys. Res. Solid Earth, 98(B12), 21977–
21995, doi: 10.1029/93JB02397.

Stica, J. M., P. V. Zalán, and A. L. Ferrari (2014), The evolution of rifting on the volcanic margin of the Pelotas Basin and the
contextualization of the Paraná-Etendeka LIP in the separation of Gondwana in the South Atlantic,Mar. Pet. Geol., 50, 1–21,
doi: 10.1016/j.marpetgeo.2013.10.015.

Storey, B. C. (1995), The role of mantle plumes in continental breakup: Case histories from Gondwanaland, Nature, 377(6547),
301–308, doi: 10.1038/377301a0.

Taposeea, C. A., J. J. Armitage, and J. S. Collier (2017), Asthenosphere and lithosphere structure controls on early onset oceanic
crust production in the southern South Atlantic, Tectonophysics, 716, 4–20, doi: 10.1016/j.tecto.2016.06.026.

Thiede, D. S., and P. M. Vasconcelos (2010), Paraná flood basalts: Rapid extrusion hypothesis confirmed by new 40Ar/39Ar
results, Geology, 38(8), 747–750, doi: 10.1130/G30919.1.

Torsvik, T. H., S. Rousse, C. Labails, and M. A. Smethurst (2009), A new scheme for the opening of the South Atlantic Ocean
and the dissection of an Aptian salt basin, Geophys. J. Int., 177(3), 1315–1333, doi: 10.1111/j.1365-246X.2009.04137.x.

Turner, S., M. Regelous, S. Kelley, C. Hawkesworth, and M. Mantovani (1994), Magmatism and continental break-up in the
South Atlantic: high precision40Ar-39Ar geochronology, Earth Planet. Sci. Lett., 121(3-4), 333–348, doi: 10.1016/0012-
821X(94)90076-0.

VanDecar, J. C., D. E. James, and M. Assumpção (1995), Seismic evidence for a fossil mantle plume beneath south america and
implications for plate driving forces, Nature, 378(6552), 25–31, doi: 10.1038/378025a0.

White, R., and D. McKenzie (1989), Magmatism at rift zones: The generation of volcanic continental margins and flood basalts,
J. Geophys. Res., 94(B6), 7685–7729, doi: 10.1029/JB094iB06p07685.

White, R. S., G. D. Spence, S. R. Fowler, D. P. McKenzie, G. K. Westbrook, and A. N. Bowen (1987), Magmatism at rifted
continental margins, Nature, 330, 439–444, doi: 10.1038/330439a0.

Yamamoto, M., J. P. Morgan, and W. J. Morgan (2007), Global plume-fed asthenosphere flow–I: Motivation and model devel-
opment, in Plates, Plumes Planet. Process., vol. 430, edited by D. M. Foulger, G. R. Jurdy, pp. 165–188, Spec. Pap. Geol.
Soc. Am.

How to cite this article: Taramón, J. M., Morgan, J. P., Shi, C., and Hasenclever, J. (2018), 3-D modelling of South Atlantic
rifting.





125

Chapter 5

Critical evaluation and future
prospects

The aim of this thesis is to study the influence of a mantle plume on the initial rifting
and break-up of the South Atlantic. This type of regional study is usually done in a 3-
D Cartesian box. Using a spherical geometry helps to create a more realistic model of
a region. However, implementing realistic boundary conditions along the surfaces of a
spherical prism is challenging. My new approach avoids this by using a computational
framework consisting of an embedded approach in which regional rifting processes are
modelled within a global spherical mesh on which global plate motions are imposed as
boundary conditions. For this purpose, I have built upon several pre-existing numerical
codes in order to create new algorithms for the demands of the project.

5.1 Mesh Generator

The first stage of this thesis consisted in creating an algorithm to generate 3-D unstruc-
tured spherical shell mesh with an embedded high resolution region. The numerical code
for solving the thermo-mechanical viscous flow (M3TET_SPH) uses an Eulerian scheme.
For this reason, I focused my effort in creating high-quality meshes that contain high-
resolution regions rather than optimizing the algorithm to adaptive mesh refinement.

One of the drawbacks of this algorithm is that is not able (yet) to adaptively refine the
mesh. However, since an adaptive refinement (or coarsening) will only change node posi-
tions in regions where the spatial resolution is changed, most nodes of the spring system
remain in equilibrium so that only very few iterations are required to obtain the updated
mesh. Future work will consist in merging the codes MESH_3D_SPRING_SPH (mesh
generator) and M3TET_SPH (solver) to include an adaptive mesh refinement scheme, for
example, coupling the spring constants or the preferred spring length l0 to strain rates or
temperature gradients.

Another caveat of the 3-D mesh generator algorithm is that although it successfully
removes the slivers, there is still a small fraction of tetrahedra (~1%) that remains with



126 Chapter 5. Critical evaluation and future prospects

a quality factor between 0.23 and 0.4. However, most mesh algorithms usually create
meshes with a small fraction of elements with relatively low quality [e.g. Alliez et al.,
2005; Dardenne et al., 2009]. Although Dompierre et al. [1998] made a proposal for
benchmarking 3-D unstructured tetrahedral meshes, the wide variety of shape measure
definitions and the lack of more benchmarking makes it difficult to evaluate and compare
different mesh optimization algorithms.

5.2 Double Jacobian

The second tool implemented through this thesis consists in a new method to improve
the solution of finite element problems in cylindrical or spherical geometries. In a cylin-
drical geometry, the 2-D Double Jacobian solves the issue of elements crossing θ = 2π by
rotating them 180°. The mid-edge nodes of elements crossing θ = 2π computed in the
rotated polar system match exactly with the mid-edge nodes of the shared edges with the
neighbour elements computed in the original polar system due to their symmetry of the
rotation. Hence the 2-D DJ only needs linear elements in polar coordinates to preserve
the exact curved boundary.

In a spherical geometry, the issue for elements crossing φ = 2π (Type 2) is solved
similarly to the 2-D case by doing a 180° counter-clockwise rotation around the Z axis.
The mid-edge nodes of Type 2 elements computed in the 180° rotated spherical system
match exactly with the mid-edge nodes of the shared edges with the neighbour elements
computed in the original spherical system due to their symmetry with respect to the Z
axis. The poor numerical integration near the polar axis is solved by doing a 90° counter-
clockwise rotation around the X axis of the elements inside a double cone (Type 3) which
places them near the equator in this new reference frame. For elements crossing the cone
boundary (Type 4), i.e., elements that link both the 90° rotated spherical frame and the
original spherical frame, cubic 20-node elements are used to compute their first Jacobian
in the Double Jacobian. This is done because the mid-edge node position computed on
an edge of a Type 4 element, i.e., computed in the 90° rotated spherical frame, is not
congruent with the mid-edge node position computed on the same shared edge of a Type
1 element, i.e., computed in the original spherical frame. Hence the Double Jacobian in 3-
D uses linear elements for Type 1, Type 2 and Type 3 elements and cubic 20-node elements
for Type 4 elements to preserve the exact curved boundary.

Even when using 20-node elements for the first Jacobian, DJ results faster than the
standard Jacobian mappings due to its analytical mappings for the first and second Jaco-
bians. Since elements in the Double Jacobian method are defined in their polar/spherical
coordinates, in which their edges are straight, search routines can easlily find arbitrary
points for semi-Lagrange advection schemes.
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5.3 South Atlantic experiments

In the last part of the thesis, the tools described in Chapter 2 and Chapter 3 are applied to
model the regional influence of the Tristan da Cunha plume in the rifting and break-up
of the South Atlantic. The plume flux is a not well constrained parameter. For exam-
ple, Davies [1988], Turcotte and Schubert [2002] and Sleep [1990] estimate the buoyancy
plume flux to 500 kg s−1, 1100 kg s−1 and 1700 kg s−1, respectively. They made these esti-
mations assuming that the relief of a hotspot swell reflects the whole upwelling flux of a
mantle plume. Yamamoto et al. [2007], within the scenario of a plume-fed asthenosphere
[Morgan et al., 1995], estimate the global plume flux to be of order 300 km3yr−1, divided
into ~20-40 mantle plumes, which could imply a typical 7.5 km3yr−1 plume flux for a ’40
plume Earth’. In our models we vary the plume flux from 5 km3yr−1 to 20 km3yr−1. We
find that the best plume flux value that simulates a southward migration of the plume
material that matches with the SDRs emplacement along the margins is 15 km3yr−1, close
to the value proposed by Yamamoto et al. [2007]. Our models do not account for a power
law creep. A composite viscosity including both diffusion and dislocation creep mech-
anisms would decrease the viscosity of the upper part of the mantle. This would imply
that we would need a lower plume flux to get similar southward plume material trans-
port to model L1F15. On the other hand, an additional simplification of the models is
that a composition-dependent rheology is not included. Including the potential effect
that melting would increase the viscosity of the residue would tend to create a more vis-
cous asthenosphere. It is important to note that although the effects of a power law creep
and a composition-dependent rheology act in opposite directions, they do not necessary
cancel each other. Future models are needed to assess the roles of these effects.

The initial structure of the lithosphere appears to play an important role in the ini-
tial steps of the simulation as plume material drains towards thinner lithosphere regions
[Sleep, 1996]. The base of the cratons in our models is completely flat without any small
regional tilt. When the plume is located beneath a craton, as for example in models L3F15
and L4F7.5, the plume material ponds and creates a dome at the base of the craton, es-
pecially when the plate motions are slow. Making the base of the craton slightly tilted
would aid to plume drainage. Smoothing the lower boundaries of the cratons by apply-
ing diffusion for tens millions of years before the start of the experiment would also help
to create cratons with a more realistic lower surface.

Models in which the plume is located at L1, L1b and L2 present a lateral plume flow
migration that is potentially due to a combination of two factors: (1) a ’suction’ from re-
gions of greater stretching in the South and (2) the presence of thicker São Francisco and
conjugate Congo cratonic roots in the North. Models where the plume is located at L1
show a correlation between a southward speed-up of plume material and abrupt accel-
eration in the opening speed. For these models, the plume material has enough time to
accumulate in the rifting region and start to migrate southwards before the abrupt accel-
eration in the opening speed occurs. When the opening speed increases abruptly, plume
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material migrates southwards faster than the mantle upwells below the southern part
of the ridge. This behaviour is not observed in models in which the plume is at differ-
ent locations. For example, plume material in model L2F10 arrives with approximately
4 Myr of delay to the rifting region with respect to model L1F10. At that moment be-
gins the abrupt plate acceleration. Plume material starts to flow southwards but it does
not speed-up. This could be due to that mantle upwelling in the southern part inhibits
a rapid southward motion of the plume material. Creating a model with the same pa-
rameters as model L1F15 but with a delay of the plume arrival of, for example, 8 Myr
would test the influence of the abrupt acceleration in the rapid southward migration of
the plume material.

The plume contribution to the topography (thermal relief) shows uplift in regions in-
fluenced by the plume material. The dynamic topography would also show the contribu-
tion from viscous stresses from deeper flow in the mantle. A mesh with more resolution
would be required to compute accurate stresses.

One of the limitations of the model resolution does not come from the mesh generator
itself but from the algorithm to solve the velocity subproblem. The iterative solution tech-
nique consists of a conjugate gradient algorithm preconditioned by a single V-cycle of a
geometric multigrid solver, which has been shown to improve the performance consider-
ably compared to other solution algorithms [Hasenclever, 2010; Hasenclever et al., 2011].
A Cholesky forward-backwards substitution is performed on the coarsest level. For this
reason, especially in 3-D, the number of nodes of the coarsest multigrid mesh should not
exceed ~60000. Table 5.1 presents a comparison of mesh resolution, number of nodes and
average running time on a large workstation for the mesh used in the experiments shown
in Chapter 4. When creating the mesh, a compromise between the number of nodes and
the maximum resolution must be achieved. Creating elements in the refined region with
a resolution of 80 km, keeping the same size of the refined region, would double the
number of nodes than using a resolution of 100 km for the refined region (Table 5.1).
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TABLE 5.1: Comparison of multigrid levels.

multigrid level
resolution of
coarse region

l0c (km)

resolution of
refined region

l0r (km)

number
of nodes

running
time

1 (mesh given by
the mesh generator)

2000
100
90
80

37000
48000
72000

7 h
11 h
18 h

2 1000
50
45
40

290000
375000
560000

3.5 d
5.5 d
9.5 d

3 500
25

22.5
20

2.3 million
2.9 million
4.4 million

24 d
–
–

4 250
12.5
11.2
10

17.5 million
22.6 million
34.3 million

–
–
–
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Chapter 6

Conclusions

• An algorithm for generating unstructured meshes with embedded high resolution
regions within 2-D and 3-D Cartesian, 2-D cylindrical and 3-D spherical shell do-
mains has been developed .

• The algorithm employs the FEM to solve for the optimal nodal positions of a spring-
like system of preferred nodal positions. A guide-mesh approach is used to smoothly
refine the mesh around regions of interest.

• Methods for achieving the expected nodal density and improving the element shape
and quality have been presented to ensure a high quality of the generated mesh,
which is a prerequisite for high computational accuracy and fast iterative conver-
gence.

• A new technique, the ’Double Jacobian’, is presented for more accurate solution of
finite element problems in cylindrical and spherical geometries, in particular when
element sizes vary strongly within the mesh.

• The Double Jacobian approach computes the local to Cartesian mapping as a two-
stage process using analytical expressions that can be more rapidly computed than
a general isoparametric or superparametric finite element.

• The use of elements computed in polar or spherical coordinates in which their
edges vary linearly (e.g. are ’straight’), allows standard search routines to rapidly
find arbitrary points. These elements naturally preserve the appropriate circular or
spherical boundary surfaces as well as cylindrical/spherical interfaces in Cartesian
coordinates.

• The combination of the Double Jacobian formulation and quadratic finite elements
ensures an effective method to study large 3-D problems with spherical geometry
using multigrid techniques.

• The influence of Tristan da Cunha plume and initial lithosphere thickness in the
early rifting evolution of the South Atlantic has been studied in a series of 3-D
numerical models.



132 Chapter 6. Conclusions

• Models consistent with the location of the Tristan plume track where the plume is
located at L1, L1b and L2 (Figure 4 in Chapter 4) show a lateral southward plume
flow migration with a maximum extent proportional to the assumed plume flux.

• The preferential southward flow observed in the models is mainly due to a combi-
nation of suction associated with stretching in the sourthern rifting region and the
presence of thicker São Francisco and conjugate Congo cratonic roots in the North,
that inhibit northwatd flow.

• In models where plume is located at L1 (see Figure 6 in Chapter 4 for model L1F15),
consistent with the early location of the Tristan plume track, plume material experi-
ences a southward speed-up that is related to the abrupt acceleration in the opening
speed between 8 Myr and 12 Myr (Figure 5 in Chapter 4).

• The duration of SDR emplacement is predicted to take 5-10 Myr. This rapid south-
ward migration of the plume material could explain the formation of the observed
rifting-related SDRs along the South Atlantic margins.
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Appendix A

Implementing Velocity BCs in a
spherical shell mesh with an
embedded high resolution
sub-region: South Atlantic
application

A.1 Introduction

In this appendix, we describe the tools and steps to implement the velocity boundary
conditions from plate kinematic reconstructions in a sphercal shell. We present a partic-
ular case for the South Atlantic region.

A.2 Generation of a spherical shell with an embedded hi-resolution
region

The first step is to create a mesh according to the purpose of the study. We provide a
3-D spherical mesh generator (springmesh_3d) that is able to create a spherical shell with
an embedded high resolution subregion (see Chapter 2 for further information about the
mesh generator). For example, to study the South Atlantic region we create a global
coarse mesh with a rectangular embedded high resolution subregion (Figure A.1). This
mesh is generated by setting a few parameters as e.g., the edge-length of elements within
the high resolution region and whithin the coarse region, the quality tolerance of the
elements and the mean quality of the elements. The rectangular shape of the high reso-
lution region can also be modified (length, width, depth and position) in order to satisfy
the requirements of the region of interest of a particular study case. By default, the mesh
generator creates a mesh centering the high resolution region around a point P0 with co-
latitud θ = 90° and longitude φ = 90°, althought these coordinates can be changed. We
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high resolution sub-region: South Atlantic application

FIGURE A.1: (a) Spherical shell mesh with a high resolution embedded region. (b) Detail of the
high resolution region.

recomend to create the high resolution region far from the spherical polar axis since the
guide-mesh used in the mesh generator can have dificuties in interpolating the desired
element edge length near the polar axis. Then, the high resolution region can be shifted
to the region of interest (e.g., South Atlantic) using Finite Rotations. We only have to
provide the centre point (colatitude and longitude) of the region of interest.

The output mesh can also be split in multigrid levels to further increment of the res-
olution. The mesh generator creates an output file (.gpml) compatible with GPlates con-
taining the top surface nodes of the mesh (latitude, longitude).

A.3 Velocities at surface nodes from plate kinematic reconstruc-
tions

In this section we explain the basic steps to export velocities at the top surface nodes of the
mesh using GPlates. For further details the reader is referred to the Tutorial 5.3: Velocity
Fields. Global plate kinematic reconstructions through time are required to generate and
export plate velocities. The input files needed to export plate velocities are a rotation
file (.rot) to reconstuct the geometries through time, a dinamically-close plate polygons
file (.gpml) to define the plates geometry and a mesh file (.gpml). Optionally we can
load a coastline file (.dat). Gurnis et al. [2012] provide here the geometry and rotation
files for the last 140 Ma. Matthews et al. [2016] also provide here global rotation model
from the last 410 Ma. The steps for exporting top surface velocities from plate kinematic
reconstructions are:

• Click File and then Manage Feature Collections.

http://gplates.org
https://docs.google.com/document/d/1xUHGu1N-nirc9t2srspdSOsmx0jrRsrBoJgWw5Ge0bI/pub
https://docs.google.com/document/d/1xUHGu1N-nirc9t2srspdSOsmx0jrRsrBoJgWw5Ge0bI/pub
http://web.gps.caltech.edu/~gurnis/Old/GPlates/gplates.html
http://www.earthbyte.org/gplates-2-0-software-and-data-sets/#features
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• Click Open File... and load the rotation (.rot), geometry (.gpml) and mesh (.gpml)
files.

• Click Reconstruction and then Export....

• Select time in the Time Range box. We export velocities from 130 Ma to 100 Ma with
an increment of 1 Ma per frame (Figure A.2a).

• Click Add export... in the Export Data box. In the new window select the folowing
(Figure A.2b):

– Box 1: Select Velocities

– Box 2: Select GMT(*.xy)

– Box 3: Select the following:

* Velocity Calculation Options: (T+dt,T)

* File Options: Export to a single file

* Velocity Vector Format Options: Colatitude/Longitude

* Domain Point Format Options: Latitude/Longitude

* Include Options: Include plate ID and Include domain point

– Box 4: Type in Template: %0.0fMa

• Select the output directory and click Begin Animation

Figure A.3 shows snapshots of the top surface velocities every 6 Ma cenetered in the
South Atlantic region. The velocities (arrows) are exported from the plate kinematic re-
constructions given by Gurnis et al. [2012] global model. White and black lines represent
the plate boundaries and present day coastlines. Yellow dots are the top surface points of
the mesh. Brown colour represents the contour of the South America and Africa cratons.
Red triangle is the position of the plume.

A.4 Velocity field for the viscous flow

The exported files from GPlates are read and loaded in a finite element convection code
(M3TET_SPH) written in MATLAB. Figure shows the global mantle flow solution after
solving the viscous flow for the first time step (130 Ma). Black lines represent the plate
boundaries. Colour represents the speed in mm/yr and arrows are the velocity vectors.
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FIGURE A.2: (a) Export animation window. (b) Window with settings to export the data.
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FIGURE A.3: Snapshots for the top surface velocities derived from plate kinematic reconstructions
by Gurnis et al. [2012]. White lines represent the plate boundaries. Black lines are the present day
coastlines reconstructed back in time. Yellow dots are the top surface nodes of the mesh obtained
with the mesh generator. Arrows represent the reconstructed plate velocities. Note that GPlates
only plot some arrows to do the image more legible, but the velocity exported data is done for
each top surface node. Brown colour represents the contour of the South America and Africa
cratons. Red triangle sets the position of the plume.



138
Appendix A. Implementing Velocity BCs in a spherical shell mesh with an embedded

high resolution sub-region: South Atlantic application

FIGURE A.4: Global mantle flow solution after solving the viscous flow for the first time step (130
Ma). Black lines represent the plate boundaries. Colour is the speed in mm/yr and arrows are
the velocity vectors.
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