
ROYAL HOLLOWAY UNIVERSITY OF LONDON

COMPUTER LEARNING RESEARCH CENTRE

DEPARTMENT OF COMPUTER SCIENCE

Small and Large Scale Probabilistic

Classifiers with Guarantees of Validity

IVAN PETEJ

Supervisor:

Prof. Vladimir VOVK

June 10, 2018

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY



2

Declaration of Authorship

I hereby declare that this thesis and the work presented in it is entirely my own. Where I

have consulted the work of others, this is always clearly stated.

Ivan PETEJ June 10, 2018



3

Abstract

This thesis addresses and expands research in probabilistic prediction with a particu-

lar emphasis on generating forecasts which are well calibrated. Chapter 1 describes stan-

dard techniques in machine learning and outlines two methods - conformal prediction

and Venn prediction - both which serve as important building blocks for the remainder

of the results in this thesis. Chapter 2 introduces the field of probabilistic machine learn-

ing and highlights some of the advantages and challenges of the methods developed to

date. Chapter 3 proposes a new method of probabilistic prediction which is based on

conformal prediction - a machine learning method for generating prediction sets that

are guaranteed to have a specified coverage probability. The method is applied to the

standard USPS data set with encouraging results. Chapter 4 focuses on the study of

Venn prediction, concentrating on binary prediction problems. Venn predictors produce

probability-type predictions for the labels of test objects which are guaranteed to be well

calibrated under the standard assumption that the observations are generated indepen-

dently from the same distribution. A new class of Venn predictors is introduced, called

Venn–Abers predictors, which are based on the idea of isotonic regression. Promising

empirical results are demonstrated both for Venn–Abers predictors and for their more

computationally efficient simplified version. Chapter 5 studies theoretically and empiri-

cally a method of turning machine learning algorithms into probabilistic predictors that,

as the Venn-Abers predictors described in the preceding chapter, automatically enjoy

a property of validity (perfect calibration) but are computationally more efficient. The

price to pay for perfect calibration is that these probabilistic predictors produce imprecise

probabilities. When these imprecise probabilities are merged into precise probabilities,

the resulting predictors, while losing the theoretical property of perfect calibration, are

shown to be consistently more accurate than the existing methods in empirical studies.
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Chapter 1

Introduction

1.1 Notion of Machine Learning

The advances in computing technology over the past several decades have been truly

staggering. The emergence of ever faster and increasingly efficient computer hardware,

the rapid spread of electronic communications and increasing use of artificial intelligence

have been some of the more notable developments recently integrated into our everyday

lives.

Despite the impressive array of applications around us today which make use of this

new technology and a recent emergence of computer devices which appear to exhibit a

form of intelligent learning, the field of artificial intelligence is not new. The notion of

intelligent, or ”thinking” machines has been proposed as early as 1950 by Alan Turing

[77] who formalised the concept in what became famously known as the Turing Test. In

this test, an intelligent machine is the one able to convince a human being by answering

questions behind a closed screen that it is not a machine but a human instead.

Shortly following Turing’s work, Samuel [65] recognised that it would be challenging

or potentially impossible to create a thinking machine which could pass Turing’s test by

programming it to always follow a predefined set of instructions. Just as humans don’t

always follow a set of instructions but rather learn from experience, Samuel suggested

that in order to begin to resemble a human, computers should be able to do so too. He

suggested that a key starting point in creating intelligent machines is an ability to pro-

gram them in such a way that they learn and adapt with experience. This idea led to

a whole new field of “machine learning” focused on developing computer algorithms
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which are able to learn and adapt. The rapid development of machine learning over the

past 50 years coupled with advances in computer speed and technology has resulted in

algorithms that can help us diagnose diseases, automatically drive a vehicle, detect fraud

and automatically classify images, to name but a few.

In the most general setting, a machine learning algorithm operates by building a

model of the world from a set of input observations in order to make predictions ex-

pressed as an output. A traditional way of classifying learning algorithms is by the way

they learn. One of the most widely used machine learning methods is known as super-

vised learning [65]. In this setting, a learning algorithm is presented with a number of

examples. Each example consists of two components: an object which contains certain fea-

tures or attributes that describe it and the label which represents an outcome. The goal of

a supervised learning algorithm is to learn how to predict a label when presented with a

particular object. It does so by learning from a set of examples in which both objects and

labels are given (known as the training set) in order to predict unknown labels for objects

which did not form part of the training set (known as as the test set).

One relatively well known example of a supervised learning problem consists of

recognition of hand written digits. Here the objects are digital images of hand-written

single digits and the labels are numbers they represent. The learning algorithm attempts

learn a rule which maps the input space of objects represented by digital images, into

labels, in this case the actual numbers the images represent. Due to the fact that labels

are discrete (numbers ranging from 0 to 9) this problem is referred to as classification. In

some other supervised problems, where the labels are continuous rather than discrete, the

problem is referred to as regression (an example would be house price prediction where

the objects contain features of a house such as size, location, etc. and the labels are house

prices).

The second type of learning is known as unsupervised learning [76]. Here the algo-

rithm is presented with examples which contain only objects without labels. The goal of

an unsupervised learning algorithm is to detect similarity of different examples and to

group them accordingly. For instance, finding groups of individuals with similar shop-

ping habits and separating them into clusters can be done by means of unsupervised
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learning.

The third traditional method of machine learning is known as reinforcement learning

[74]. Here the algorithm learns on the basis of behaviour based on feedback from the

environment. In contrast to supervised learning, where the algorithm tries to maximise

some form of predictive accuracy, the goal of a reinforcement learning algorithm is to

maximise a certain utility function over time. The algorithm does not need to be told

which actions to take but rather discovers which actions yield the greatest reward by trial

and error. This action may not just affect the immediate reward, but also all subsequent

rewards. To date, successful reinforcement learning algorithms have demonstrated their

ability to play games such as chess and Go, in some cases beating experienced human

opponents.

One further important distinction in machine learning is in how frequently algo-

rithms learn. In the traditional way of supervised learning described above, the algo-

rithms learn from a training set. Learning is performed once and subsequently the algo-

rithm is tested on yet unseen data - this is known as the batch mode of learning [76]. Other

types of algorithms learn continuously, with each new example. This type of learning is

known as online [9]. Rather than just learning once from a fixed batch of examples, data

in the form of examples is presented to an online learning algorithm in sequential order

and the algorithm aims to improve its accuracy at each step. By definition reinforcement

learning is online, whereas the supervised and unsupervised learning algorithms can be

either batch or online in nature.

The focus of this thesis will be on probabilistic prediction of supervised classification

algorithms. The following sections will introduce the terminology and some commonly

used supervised classification algorithms to date.

1.1.1 Terminology

As mentioned in the introduction above, supervised learning algorithms learn from past

experience which are formalised in the form of examples. In the remainder of this thesis

we will refer to a set of all possible examples as Z. Each individual example consists of an

object and the corresponding outcome or label. We refer to the set of all possible objects as
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X and the corresponding labels as Y with the Cartesian product Z := X× Y representing

a set of all possible examples.

Whereas Z represents the set of examples, each individual example (often referred

to as an observation) is represented by z = (x, y) where x is generally multidimensional.

The individual dimensions of objects represent particular inputs or features and the di-

mension of labels represent possible outcomes. In the case of recognition of hand-written

digits described above, X (the space of possible objects) is represented by digital images

measuring 16 by 16 pixels and 31 different shades of grey. Each object in this example

consists of a vector of length 16 × 16 = 256 rows, each row containing a value repre-

senting one of 31 different possible shades of grey. This results in a total objects space

X of 3116×16 (approximately 10357). It is not unusual for the object space to be signifi-

cantly larger than this in practice. The space of labels Y is generally smaller, in this case

it consists of a single number which can vary from 0 to 9. The goal of a machine learning

algorithm therefore is to learn a mapping rule which can classify an object into one of

nine different possible labels. This problem is therefore known as a multiclass classifica-

tion problem. Sometimes, there are only two possible classes (example are classification

of emails into spam/not spam and other similar true/false problems), in which case the

problem is referred to as a binary classification problem.

In order for an algorithm to be able to learn, there generally needs to be some stability

in the underlying environment that generates the data. The traditional way of describing

a stable environment is to assume that individual examples are drawn at random from

some fixed probability distribution, we refer to as Q, on the fixed example space Z. The

standard assumption is that we do not know the actual probability distribution Q from

which each example is drawn, all we know is that the examples are drawn independently

from it – they are independently and identically distributed (i.i.d). This type of learning

is known as learning under unconstrained randomness.

To date, machine learning has made significant advances in ability to learn in such

an environment. One of the most significant theoretical advances came in the form

of statistical learning theory developed by Vapnik and Chervonenkis in the late 1960s
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[17]. The discovery of the Vapnik–Chervonenkis (VC) dimension, or a measure of capac-

ity/complexity of a space of functions that can be learned by a statistical classification

algorithm, set machine learning on a firm theoretical footing and resulted in the develop-

ment of algorithms which today perform very well in practice. The theorem was, for the

first time, able to provide an upper bound for the probability of the error a machine learn-

ing algorithm will experience on the test set as a function of the size of the training set

and the complexity of the algorithm (its VC dimension) under the i.i.d assumption. The

following section will describe popular supervised learning algorithms to date, some of

which will be used in the remainder of this thesis.

1.1.2 Supervised Learning Algorithms

One of the very first and most basic supervised machine learning algorithms, developed

by Rosenblatt [63] in the 1950s, is called the perceptron. Based on the idea of linear regres-

sion, the perceptron is designed for binary classification problems. The perceptron is a

function which maps the input space x into an output h(x) such that:

h(x) = sign(wT x) (1.1)

where w is a vector of real-valued weights. In other words a set of objects X, with each

individual object x represented by an m dimensional vector (with m representing the

number of input features or attributes) is multiplied by a corresponding m dimensional

weight vector w in order to obtain the function h(x) which can be either 0 or 1, depending

on the sign of the value of (1.1) and which serves as the algorithms’ prediction for the

binary label. The goal of the perceptron algorithm is to learn a set of weights which

serve to emphasize or de-emphasize the influence of the individual input variables and

which result in h(x) that approximates the actual binary labels y (represented by 0 or 1)

as close as possible. The perceptron algorithm is a linear separation algorithm - if the

set of examples from which the perceptron algorithm learns (the training set) is linearly

separable then it can be shown that the perceptron algorithm eventually converges to

a solution. On the contrary, if the data is not linearly separable then the perceptron is

unable to converge, although it can still provide an estimate for y.
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Despite its relative simplicity, the perceptron algorithm was successful in solving

some simple image classification tasks and remains in use until today. More importantly,

the perceptron also formed a basic building block for one of the more successful machine

learning methods developed since, called Artificial Neural Networks (ANN) [51] [56].

ANN consist of interconnected group of nodes, each node represented by a perceptron,

also known as the neuron. In part inspired by the network of neurons in a brain, a neural

network consists of multiple layers of perceptrons, with perceptron outputs from pre-

vious layers forming inputs to the next. In general, an ANN is defined by the choice

of interconnections between different layers of perceptions/neurons, the weights of the

interconnections (which are updated during the learning process) and the individual acti-

vation functions which convert a neuron weighted input into its output activation. ANN

learns by optimising over a possible set of individual neuron weights and activation func-

tions which results in the minimum error between predicted and true classes given a set

of objects in the training set. A key advance in the development of ANN came with the

discovery of the back-propagation algorithm [64], which allowed for a far greater speed

of training and desired accuracy. The advantage of ANN over simple perceptrons is that

they can be trained to solve problems which are far more complex and do not need to be

linearly separable. As a result, they have been successfully applied to a variety of tasks

such as computer vision and speech recognition, to name but a few.

The simple perceptron which forms the basic building block for ANN algorithms

utilises regression techniques in order to derive a solution. One further algorithm with

a similar underlying principle is based on the idea of logistic regression [22]. In contrast

to the perceptron, the logistic regression uses a non-linear rather than a linear function of

mapping inputs to labels. In particular, a logistic regression algorithm tries to find the set

of weights w such that:

h(x) = θ(wT x) (1.2)

yields a likelihood for the class label to equal to 1, where θ(s) = es

1+es . Generally, the

threshold between the two classes is set at h(x) = 0.5. One of the key advantages of lo-

gistic regression is that it allows for modelling of non-linear relationships between inputs

and outcomes. Logistic regression has successfully been applied to date to a variety of
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machine learning problems such as diagnostics in medicine, economics and social sci-

ences.

Both the linear regression which forms the basis for the perceptron method of classifi-

cation and the logistic regression are special cases of broader family of models known as

Generalised Linear Models (GLM) [54] which have their roots in statistics. These models

all use regression but allow for response variables that have error distribution models

other than a normal distribution. In a generalized linear model (GLM), each outcome

y of the set of dependent variable is assumed to be generated from a particular distri-

bution in the exponential family, a large range of probability distributions that includes

the normal, binomial, Poisson and gamma distributions. The use of perceptrons within

GLM falls under the assumption of a normal distribution whereas logistic regression falls

under the binomial distribution family.

A very powerful supervised learning algorithm, known as Support Vector Machine

(SVM), was developed by Vladimir Vapnik [21] in the 1990s. The particular advantage

of SVM over standard linear classifiers is in the way that it learns. This difference can

be illustrated by considering a simple linearly separable binary classification problem. In

contrast to the perceptron, which during the learning process can converge at any solu-

tion which separates examples belonging one of two classes, the support vector machine

framework searches for an optimal separation instead. This solution is said to maximise

the margin between two classes by maximising the distance between points belonging to

different classes which lie closest to the separating hyperplane known as support vectors.

In doing so, the SVM reaches a solution to the binary classification problem by utilising

what is known as structural risk minimisation, in contrast to empirical risk minimisation

as is the case for a number of other standard machine learning algorithms. Furthermore,

SVM can be used for mutidimensional learning problems which are not linearly separa-

ble through use of kernels which transform the input space into the one which is linearly

separable. This relative power and flexibility of SVM has resulted in their widespread use

in solving some of the more challenging machine learning problems since their discovery

in the 1990s.

Another area of machine learning utilises decision trees [12] as a supervising learning
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method. Decision trees work on the basis of passing a set of input variables through a

sequence of internal nodes which test individual inputs and branch into a set of leaves

which eventually lead to a prediction for the output variable. Each individual internal

node is labeled with a test for one specific input variable and each subsequent branch of

an individual node corresponds to one possible value of the given input variable. The leaf

nodes of a decision tree lead to a given class (or a real value in case of regression). Despite

their relative simplicity, decision trees can be successfully trained utilising an information

gain (closely related to the concept of entropy from information theory) in order to decide

which feature to split on at each step in building the tree. A number of different decision

tree optimisation techniques have been developed to date [61] which helped decision tees

become a relatively versatile technique able to cope with some challenging problems.

They are popular due to their transparency, ability to deal with variety of types of input

variables and their comparative computational efficiency.

A further subset of machine learning is based on Bayes’ Theorem [3]. One of the most

popular, termed naïve Bayes, assumes an independence of input features to derive the

probability of a given class label. Amongst some of the simplest machine learning tech-

niques, naïve Bayes algorithms have been successfully used in a variety of supervised

learning problems to date, as an example in email text categorisation.

One of the advantages naïve Bayes technique is that it’s non-parametric, i.e. it’s use

does not require any input parameters. Another largely non-parametric technique used

for classification is known as the k-nearest neighbours algorithm (k-NN) [19]. Here the input

consists of the k closest training examples in the feature space. The output is a class

membership with classification performed by a majority vote of its neighbours. Each

example is assigned the class most common among its k nearest neighbours (where k is

a positive integer, typically small). If k = 1, then the object is simply assigned to the class

of that single nearest neighbour.

The list of algorithms provided above is by no means exhaustive. Over the past few

years the field of machine learning is rapidly evolving and novel techniques are being

continually developed. The methods introduced above form a useful basis for the main

results developed during the course of this thesis.
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1.2 Probabilistic Machine Learning

Despite their widespread use, many supervised machine learning classification algo-

rithms only provide discrete class labels with no probabilistic output associated with

such labels. In many real world problems, it is desirable to have probabilistic answers in-

stead of discrete case answers. For example, in medical applications, it may be preferable

to make a decision based on probabilistic predictions of the patients state, rather than be

given a discrete chosen action for each patient. More formally we are interested in the

conditional probability:

QY|X(y | x) (1.3)

for Z := X × Y, y ∈ Y and x ∈ X. In addition, it may be desirable to know not only

the predicted class label but the degree of confidence in the prediction. The following

section will introduce an important theoretical result which states that generating true

conditional probabilities for class labels is in fact impossible under an assumption of

unconstrained randomness unless test objects are identical repetitions of those observed

in the training set. We will also introduce a recently developed technique which allows

for estimation of probabilities which are not true conditional probabilities but are "well-

calibrated" under the same theoretical assumptions.

1.2.1 Probabilistic learning under unconstrained randomness

When predicting probabilities for class labels one can distinguish between the case of

asymptotic results (when the data set is assumed infinite), or more practical cases which

deal with the finite set of objects and labels. In one of the earlier works Stone [72] showed

that a predictor based on nearest neighbours under binary classification (whose proba-

bilistic prediction is the fraction of objects classified as 1 amongst the k nearest neigh-

bours of a test object) is universally consistent meaning that the difference between the

predicted and true conditional probabilities converges to zero under the assumption of

unconstrained randomness. Although this result is important in a theoretical sense, prac-

tically it is less useful as this convergence is not uniform – in other words it is true under

an asymptotic case when the number of examples tends to infinity.
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In practice, we are dealing with finite data sets and we would like to estimate the

true conditional probability of a new object based on our finite world experience. This

problem has been described in significant detail by Vovk, Gammerman and Shafer in

[84]. In particular, the authors show (see e.g. Chapter 5, Theorem 5.2 ) that any non trivial

(not empty and not containing 0 or 1) prediction interval for the conditional probability is

impossible under the assumption of unconstrained randomness for finite data sets where

the data sets are diverse (i.e. those data sets in which the objects are not precise repetitions

of each other). Given that many of real life machine learning problems contain diverse

data sets, we are faced with a situation that the best we can do is to generate probabilities

which are as close to true values, but never perfect. In order to partially overcome this

theoretical limitation, Vovk, Gammerman and Shafer [84] describe two significant novel

machine learning methods:

• Conformal prediction - with which it is possible to not just output a given label but

assign a confidence in that prediction

• Venn prediction - a framework for multiprobability prediction which results in "well-

calibrated" or valid probabilities that perform well in finite data sets

A valid or "well-calibrated" probabilistic predictor is one which gets the probabilities

approximately right on average. Each of the frameworks is described further below.

1.2.2 Conformal prediction

In the traditional supervised machine learning setting we are given a set of objects with

the goal of predicting labels. Conformal prediction expands on the traditional methods

by the ability to make "hedged" predictions - in other words, the ability to provide a

degree of confidence in the prediction as well as the prediction itself. The conformal

framework measures the degree of similarity of a new object to the existing examples

in the training set – the degree of similarity (known as the "conformity measure") is then

used to assign the confidence in the prediction for a given label. More specifically, instead

of producing a single element of Y as the predicted output, a conformal predictor gives

a range of more or less precise predictions, each with a certain degree of confidence. The
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algorithm which predicts in this manner does so at a specified significance level ε ∈ (0, 1),

with a degree of confidence 1− ε. Given a set of n examples and a significance level ε:

x1, y1, . . . xn−1, yn−1, xn, ε

the conformal predictor Γ outputs a subset

Γε(x1, y1, . . . xn−1, yn−1, xn)

of Y. Γ must satisfy

Γε1(x1, y1, . . . xn−1, yn−1, xn) ⊆ Γε2(x1, y1, . . . xn−1, yn−1, xn)

whenever ε1 > ε2, i.e. the larger the subset of possible labels, the more confident the pre-

diction is. The main assumption behind conformal predictors is that the set of examples

(z1, z2, . . . , zn) are generated independently from some fixed probability distribution P .

The two main criteria in assessing conformal predictions are:

• Validity - which means that the frequency of errors which a conformal predictor

makes does not exceed ε at each chosen confidence interval 1− ε,

• Predictive efficiency - which implies that the prediction sets output by conformal pre-

dictors should be as small as possible.

It can be shown (see [84], Chapter 2) that conformal predictors are conservatively valid

under the exchangeability assumption, meaning that the frequency of errors is asymptot-

ically no greater than ε with probability of one.

Other methods of producing predictions with a measure on confidence rely on either

statistical learning theory [80] (which allows us to estimate with respect to some confi-

dence level the upper bound on the probability of error in our prediction) or methods

which use Bayes’ theorem [3] in order to estimate the distribution of labels for a given

object (Bernardo and Smith [7]). The drawback of the former method is that for most

practical problems the confidence intervals are too large to tell us anything useful (see

Vovk, Gammerman and Shafer [84], p. 249), whereas the latter methods require a prior

distribution to be specified, which if not correct, leads to predictions which are not guar-

anteed to be valid (see Melluish et al. [50]).
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To date the conformal prediction framework has been successfully applied to a va-

riety of important problems. Examples include medicine (see Gammerman et al. [32],

Bellotti et al. [4], Papadopolous et al. [58]), active learning (Ho and Wechsler [41]) and

change detection in data streams (Ho and Wechsler [40]). A further direction explored

more recently (developed as part of this thesis) describes a framework for calibration of

conformal predictors which can yield conditional probabilities (Vovk et al. [87]). This

work has the potential to further the application of this robust and non-parametric tech-

nique to problems involving probabilistic class membership estimation.

1.2.3 Venn prediction

Venn predictors (VP), described in detail in [84] are multiprobability predictors which

yield a separate probability distribution for each class label given a test object which,

when combined, can lead to well-calibrated probabilities. The set of Venn prediction

outputs can be summarized by lower and upper bounds for the conditional probability

of the new example belonging to each one of the possible classes.

Venn predictors work by dividing the examples in the training set into categories,

classifying the test object into one of the categories, and then using the frequencies of

labels in the chosen category as probabilities for the new object’s label. In computing the

frequencies of labels in the category containing the test object, the test object is added to

the training set examples already in that category. Since at the time of prediction we do

not yet know the new object’s label, the frequencies are computed several times, once for

each label the new object might have. Each set of frequencies is interpreted as a prob-

ability distribution for the new object’s unknown label. Venn Predictors therefore pro-

duce several probability distributions for the new label rather than a single one. It can be

shown (see Vovk, Gammerman and Shafer [84], Chapter 6) that such resulting probability

distributions are guaranteed to contain well-calibrated probabilities (up to statistical fluc-

tuations) in a non-asymptotic sense, providing examples are generated randomly from

some fixed unknown probability distribution.

As is the case with conformal predictors, the main desiderata for Venn predictors are

validity, predictive efficiency and computational efficiency. To date, the VP framework
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has been successfully combined with the k-nearest neighbours algorithm (Dashevski and

Luo [25]) as well as support vector machines (Zhou et al. [100]) and neural networks

(Papadopolous [57]) leading to promising new methods in predicting class-membership

probabilities.

1.3 Main contributions

The aim of this thesis is to develop further methods for obtaining class probability esti-

mates from classifiers which are well calibrated while retaining good computational and

informational efficiency. Chapter 2 which follows will describe a range of currently avail-

able methods, both parametric and non-parametric. It will outline advantages as well as

current limitations of each. The remainder of this thesis will then focus on novel meth-

ods of probabilistic classification based on conformal and Venn prediction. These novel

methods offer improvements relative to other probabilistic classification techniques to

date.

The following list summarises the original results that were obtained during the course

of work on this thesis with the corresponding chapters for these findings given following

each bullet point.

• Chapter 3 describes a novel method of probabilistic prediction which consists of

calibration of p-values into probabilities using a novel criteria of efficiency of con-

formal prediction.

• Chapter 4 focuses on the study of Venn prediction. Probabilistic predictions pro-

duced by Venn predictors are guaranteed to be well calibrated under the standard

assumption that the observations are generated independently from the same dis-

tribution. A new class of Venn predictors is introduced called Venn–Abers predic-

tors, based on the idea of isotonic regression.

• Chapter 5 develops two further versions of Venn-Abers predictors that automati-

cally enjoy a property of validity but are computationally more efficient and demon-

strate promising empirical results.
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1.4 Publications

The following is a list of publications submitted as part of the work on this thesis:

• a journal paper by Vovk, Petej and Fedorova [87] describing a method of converting

p-values into probabilistic predictors (also available in arXiv format at [88]).

• a conference paper by Vovk and Petej [86] introducing Venn-Abers predictors (also

available in arXiv format at [85]).

• a journal paper by Vovk, Petej and Fedorova [89] introducing a computationally

more efficient version of Venn-Abers predictors with applications to large data-sets

(also available in arXiv format at [90]).

• a journal paper by Vovk, Nouretdinov, Fedorova, Petej and Gammerman [93] which

describes optimal conformity measures for various criteria of efficiency of set-valued

classification as well as probabilistic criteria of efficiency under the binary classifi-

cation setting

1.5 Thesis summary

The remainder of this thesis is organised as follows: Chapter 2 introduces the field of

probabilistic machine learning and highlights some of the advantages and challenges of

the methods developed to date. Chapter 3 describes a new method of probabilistic pre-

diction based on conformal prediction with promising empirical results on the USPS data

set. Chapter 4 introduces Venn-Abers predictors (VAPs) and demonstrates their theoret-

ical ability of producing probabilistic forecasts which can be applied on top of standard

machine learning algorithms resulting in a probabilistic prediction which is well cali-

brated under an exchangeability assumption. The method is tested on standard datasets

and promising results are demonstrated in comparison to existing methods of calibrat-

ing probabilities. Chapter 5 extends on this work and describes two further versions

of Venn-Abers predictors, namely Inductive Venn-Abers Predictors (IVAPs) and Cross

Venn-Abers Predictors (CVAPs) that also enjoy theoretical guarantees of validity (i.e. they

are well-calibrated) however with far greater computational efficiency than the standard
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Venn-Abers predictors. Their advantage is demonstrated with further empirical results.

Chapter 6 summarises the main findings of the thesis and offers scope for future work.

There are also two separate appendices: Appendix A describes used data sets and Ap-

pendix B presents a Matlab implementation of Venn-Abers prediction (VAP) and their

computationally more efficient version, IVAP and CVAP.
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Chapter 2

Literature review

This chapter introduces the field of probabilistic machine learning and highlights some of the ad-

vantages and challenges of the methods developed to date. The aim is to summarise the standard

approaches, both parametric and non-parametric which will serve as a basis of comparison for the

methods developed in the remainder of this thesis.

2.1 Introduction

The standard methods of classification can be divided into two types - statistical classifi-

cation and machine learning - which have their origins in statistics and computer science,

respectively. Classification outputs provided by statistical classification and some ma-

chine learning algorithms are generated in the form of membership probabilities which,

in addition to assigning an example to a particular class, also reflect the probabilistic

confidence that an observation belongs to that particular class. Other machine learning

algorithms, such as Support Vector Machines (SVM) [80] or Artificial Neural Networks

(ANN) [56] only generate normalised scores and are known as "scoring classifiers". In

contrast to membership probabilities, these scores do not correctly reflect assessment un-

certainty. For such learners, classifier scores need to be transformed into suitable class

membership probabilities and this is generally achieved through use of one or more suit-

able calibration methods.

Due to the popularity and relative success SVM and ANN for classification, a signif-

icant body of literature to date has been devoted to development of reliable calibration

methods for those and other scoring classifier algorithms. Section 2.2 reviews the main
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results in this field to date. Section 2.3 describes statistical classifiers and some machine

learning algorithms which classify by means of membership probabilities. We will show

that research to date suggests that even though such algorithms can be used directly to

derive probabilistic predictions, they often yield inappropriate estimates which may need

further calibration.

2.2 Calibration of scoring classifier algorithms

There are several existing approaches of obtaining class probability estimates from scor-

ing classifiers. They can broadly be summarised into four main types: calibration via

Mapping, Bayes’ rule, calibration via Assignment values and Bagging. Each of the meth-

ods is briefly summarised below.

2.2.1 Mapping

One of the most widely used methods for mapping of scores to membership probabilities

for SVM in a binary classification setting (where classes Y ∈ {0, 1}) is based on a logistic

regression calibration approach. Here, the aim is to model the log odds g(x) represented

by the conditional probabilities:

g(x) = log

[
P (y = 1 | x)

P (y = 0 | x)

]
(2.1)

using the standard notation introduced in Chapter 1 with y representing a given class

and x representing the corresponding object. Using the complement P (y = 1 | x) =

1− P (y = 0 | x) leads to the term for deriving the calibrated conditional probability:

P (y = 1 | x) =
eg(x)

1 + eg(x)
=

1

1 + e−g(x)
(2.2)

In one of the earliest works Platt [59] applied a linear function such that g(x) = Ax + B

with scalar parameters A and B. By using this function, the calibration is fitted with a

sigmoidal shape. The particular parametric form of this model was inspired by observing

the empirical data - the relationship between SVM scores and the empirical probabilities
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appears to be sigmoidal for many datasets (for example, the Adult dataset from the UCI

Repository [31]).

The search for the mapping function g is done via optimisation. The parametersA and

B are derived in sample such that the negative log-likelihood of the data is minimized.

Platt has shown empirically that this method yields probability estimates that are at least

as accurate as ones obtained by training an SVM specifically for producing accurate class

membership probability estimates (see Vapnik [80]), while being faster.

Zhang [98] extended Platt’s method by using piecewise logistic regression instead of

the full logistic regression, building on the idea of Bennett [5]. In contrast to Platt’s model

the log odds are not regarded as a linear function of membership values (i.e. Ax+B), but

as a piecewise linear function with four different knots. Using four knots leads to a sepa-

ration of membership values into the three areas - 1) obvious decision for negative class,

2) hard to classify and 3) obvious decision for positive class. In each of these three areas

the log odds are fitted separately and independently as a linear function. The authors

evaluated piecewise logistic regression calibration and standard logistic regression cal-

ibration over standard text categorization collections with three classifiers (SVM, naïve

Bayes and logistic regression classifier), and observed that piecewise logistic regression

performs significantly better than the full logistic regression method in the log-loss met-

ric.

While the parametric methods above have been shown to be relatively successful in

application to a wide range of datasets, there is no guarantee that such logistic regres-

sion calibration techniques are always valid. Motivated by this fact, Zadrozny and Elkan

[97] proposed a non-parametric method for obtaining calibrated two-class probability

estimates based on isotonic regression [2] which can be applied to any classifier that pro-

duces a ranking of examples. Assuming that the classifier ranks examples correctly and

the mapping from scores into probabilities is non-decreasing, they apply a commonly

used method for computing isotonic regression based on the pair-adjacent violators algo-

rithm (PAVA) (see Ayer et.al [2]) to convert SVM scores into probabilities. This algorithm

finds the stepwise-constant isotonic function that best fits the data according to a mean-

square error criterion. The isotonic regression technique has been shown to exhibit good
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performance characteristics for a range of binary class datasets. Furthermore, the authors

applied the technique to multiclass problems, by first separating the problem into a num-

ber of binary problems, calibrating the scores from each binary classifier using PAVA and

combining them to obtain multiclass probabilities, with some promising results.

An alternative multi class calibration method was studied by Gebel and Weihs [34].

They propose a direct multi-class calibration procedure for margin based classifiers which

combines the binary outcomes to assessment probabilities of multiple classes in a single

step. The method is based upon the Dirichlet distribution and was shown to yield some

competitive results, especially for data sets with balanced class distributions. Additional

work in directly estimating class membership probability for any class in multiclass clas-

sification without decomposition and combination was done by Takahashi [75].

A further method of calibrating classifier scores into class membership for the binary

case was proposed by Langord and Zadrozny [46]. The method is based upon a tech-

nique named the Probing reduction which is a general method for converting any classifier

learner into a probability estimator. The method relies on the observation that probabil-

ity estimates (in a Bayesian sense) can be extracted from preferences over bets at different

odds ratios. Their proposed algorithm is shown to satisfy certain strong optimality guar-

antees - good performance with respect to classification implies good performance with

respect to class probability estimation. The authors tested the probing algorithm on sev-

eral datasets with several classifier learning algorithms and found strong performance

compared to other common methods for obtaining class membership probability esti-

mates, such as bagging in decision trees and calibration using Platt’s sigmoid function

for SVM.

An alternative method of mapping SVM classifier scores into class membership prob-

abilities, which is closely related to concepts in quantum detection theory, was proposed

by Crammer and Globerson [24]. In contrast to the standard SVM interpretation, which

assumes that inputs can be transformed into a higher dimensional space such that posi-

tive and negative points correspond to different classes, in this work the authors present
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a different view of class separation, which incorporates both the concepts of margin max-

imization and probabilistic modelling. The approach assumes that classes instead corre-

spond to orthogonal linear subspaces in feature space. This assumption can be used in

many domains where the existence or absence of a feature is the key predictor of its class

identity, rather than its exact value or its relation to values of other features. For example,

in document classification there may be subsets of words (or linear combinations of word

counts) whose appearance indicates the document topic. In image classification, a set of

pixels may be indicative of image content regardless of their exact intensity ratios. An

alternative statement of the problem is that there exists a linear transformation of feature

space such that a unique subset of coordinates is active in each class. In order to measure

the degree to which a given input point belongs to a given subspace the authors use a

projection operator which measures what fraction of the point’s norm lies in a subspace.

The outputs of the projection operators have a natural interpretation as probabilities, and

these probabilities are linear functions of the model parameters (the projection matrices).

The authors compare the performance of their proposed method to the closely related

second order kernels SVM, and show that it achieves improved performance on a hand-

written digit classification task, while providing meaningful probabilistic outputs.

One of the more recent works proposes a novel method of combining multi class

support vector machines with linear ensemble methods to yield class posterior probabil-

ities (Guermeur [37]). The inspiration for the study is based upon the works of Breiman

[11] which deals with multivariate regression. The method requires the normalisation of

SVM outputs so that their outputs are non-negative and sum to one which is obtained by

applying a polytomous logistic regression. The normalised outputs are then combined

with linear ensemble methods in which the loss function is chosen such that the overall

outputs are class posterior probability estimates.

2.2.2 Calibration via Bayes’ rule

In contrast to the previously described calibration methods whose aim is to directly map

membership values to calibrated probabilities, Bayesian methods can be applicable for
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a calibration of unnormalized scores instead. In contrast to many direct mapping ap-

proaches, the Bayesian method uses two steps to calculate membership probabilities. At

first, the positive class scores are split into two groups according to their true class, so

that probabilities P (s+ | y) (s+ is a positive class score) for the score given a particular

class y ∈ {−1,+1} can be derived.

The second step involves determination of class membership probabilities by appli-

cation of Bayes’ Theorem to class conditional probabilities and class priors. While class

priors can easily be estimated from the training set (i.e. by measuring the proportion of

positively classified examples), the crucial point in this way of calibration is the choice

of the distribution type for the class conditional probability P (s+ | y). Two different

approaches are presented by Bennett [5], the standard assumption of a Gaussian distri-

bution and a further idea using the asymmetric Gaussian and asymmetric Laplace dis-

tributions. According to Bennett it is more justifiable to use an asymmetric distribution

for class conditional probabilities than a symmetric one. The study suggests that scores

have a different distributional behaviour in the area between the modes of the two distri-

butions compared to the respective other side. The area between the modes contains the

scores of those observations which are difficult to classify, while the respective other por-

tions stand for the observations for which classification is easier. This conclusion leads

to the separation of scores into the three areas 1) obvious decision for the negative class,

2) hard to classify and 3) obvious decision for the positive class. The authors analysed

the experimental performance of these models over the outputs of two text classifiers.

The analysis demonstrates that the asymmetric Laplace model is theoretically attractive

(introducing few new parameters while increasing flexibility) while computationally ef-

ficient.

2.2.3 Calibration via Assignment values

Calibration methods described based on Bayes’ rule consist of partitioning and separate

calibration and the partitioning forms the basis for the following independent determi-

nation of calibrated membership probabilities. While the calibration method by Bennett

[5] partitions the unnormalized scores for a chosen class according to their true class,
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Garczarek [33] partitions the membership values according to their assignment instead.

The idea of this method is to model the membership values for the assigned classes in

each partition separately as Beta distributed random variables. The calibration procedure

transforms these normalized membership values for each partition to new Beta random

variables with optimal parameters and regards them as membership probabilities.

2.2.4 Binning

One of the shared characteristics of the techniques mentioned above is that, except for

the isotonic regression approach of Zadrozny and Elkan [97], all other approaches rely on

parametric assumptions. One further non-parametric approach which has been applied

to date is by means of binning (see Zadrozny and Elkan [96] and Drish [30]). In binning,

the training examples are sorted according to their scores and the sorted set is divided

into a number of subsets of equal size, called bins. For each bin it is possible to compute

lower and upper boundary scores. Any test example can then be placed it in a bin ac-

cording to its score. The corrected probability that a sample belongs to a given class is the

fraction of training examples in the bin that actually belong to that class. A difficulty of

the binning method is that the number of bins is often chosen by cross-validation. If the

dataset is small, or highly unbalanced, cross-validation is not likely to indicate the opti-

mal number of bins. Also, the size of the bins is fixed and the position of the boundaries

is chosen arbitrarily. If the boundaries are such that we average together the labels of ex-

amples that clearly should have different probability estimates, the binning method will

fail to produce accurate probability estimates. As such, despite the fact that the method

is not-parametric in nature, its success highly depends on the individual characteristics

of the studied data set.

2.3 Calibration of probabilistic classifier algorithms

As described in the introductory section, there are a number of well-known classifying

machine learning techniques which produce a probabilistic confidence estimate for a

given class (examples include decision trees, logistic regression, naïve Bayes classifica-

tion and random forests). However, for a large number of such algorithms, there are
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no guarantees the probabilistic outputs they produce are well calibrated (see Cohen and

Goldszmitd [18]). A number of authors studied suitable methods of recalibration of these

outputs, in order to improve their accuracy and quality.

In one of the frequently cited works, Zadrozny and Elkan [96] compared a number of

different calibration techniques (a total of 10 different methods) on a large and challeng-

ing dataset, using naïve Bayes and decision trees as classifying algorithms. Their find-

ings suggest that binning can be used to successfully improve naïve Bayesian probability

estimates, while a technique called smoothing is useful in calibrating the probabilities as-

sociated with decision tree outputs. In particular, they propose a new technique, which

they refer to as curtailment, which builds on the method of smoothing used by Provost

and Domingos [60], in which they aim to avoid the problem of overfitting by ceasing a

search in the decision tree as soon as a node is reached that has less than v examples,

where v is a parameter of the method. The major reported advantage of this method

is that it produces relatively small and hence understandable decision trees, while still

giving high-resolution, well-calibrated probability estimates.

An alternative approach of improving class membership estimates for decision tress

involves the use of a technique called bagging. Bagging basically aggregates decision

tree predictions (by voting or averaging) from classifiers learned on multiple bootstraps

of data. It has been shown to improve accuracy (Breiman [10]) and even for large and

unbalanced datasets, lead to an improvement in the quality of probabilistic estimates

(Chawla and Cieslak [16]). Other techniques which can improve the performance of de-

cision tree classifiers involve boosting (Niculescu-Mizil and Caruana [55]), which varies

the significance of individual training examples according to how difficult they are to

classify and randomisation (Dietterich [29]), which randomises the internal decisions of

the learning algorithm. Bagging, boosting and randomisation are examples of what are

known as ensemble learning methods.

Other similar more recent works on calibration of decision tree outputs involve the

study by Alvarez et.al. [1]. Their method provides smooth class probability estimates,

without any modification of the tree when the data consists of attributes which are purely

numerical. The technique relies on the distance to the decision boundary induced by the
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decision tree which is computed on the training sample. It is then used as an input for a

one dimensional kernel-based density estimator, which provides an estimate of the class

membership probability. This geometric method is reported to give good results even

with pruned trees.

A Bayesian approach to calibrating class membership probabilities in classification

trees was proposed by Cano et.al. [14]. In this work the authors apply a Bayesian tech-

nique to induce classification trees. Their calibration of class membership probabilities is

based upon a modified technique of Bayesian model averaging (BMA) (see Wasserman

[94]). The authors also introduce a new approach to define non-uniform priors over the

parameters of the models. The authors tested their model on 27 different UCI datasets

against a commonly used decision tree inducer C4.5 (Quinlan [61]), and found an im-

provement in terms of accuracy in the overall class probability estimates.

A recent study by Böstrom [8] investigated the effect of two commonly employed

class probability estimates, Laplace estimate and m-estimate to random forests of single

probability estimation trees (PET) (developed by Provost and Domingos [60]). Their ex-

periment with 34 datasets from the UCI repository suggests that estimating class prob-

abilities using the relative class frequency significantly outperforms or is clearly ahead

of both the Laplace estimate and the m-estimate with respect to overall accuracy. Hence,

these results strongly suggest that a non-corrected probability estimate should be used in

random forests of PETs, in contrast to what previously has been commonly employed.

2.4 Conclusion

This chapter offers a brief review existing methods for class membership calibration. of

Despite a wide range of reported methods to date, one common issue faced amongst the

majority is that they are based upon parametric techniques.

The remaining chapters in this thesis will introduce novel non-parametric techniques

for producing class membership probabilities which are well calibrated and represent an

extension of the conformal and Venn prediction frameworks introduced in Chapter 1.

.
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Chapter 3

From conformal to probabilistic

prediction

This chapter proposes a new method of probabilistic prediction, which is based on conformal pre-

diction. It relies on the idea of idea of transforming p-values into probabilities using probabilistic

criteria of efficiency for conformity measures. The method is applied to the standard USPS data

set and gives encouraging results.

3.1 Introduction

In essence, conformal predictors introduced in Chapter 1 output systems of p-values: to

each potential label of a test object a conformal predictor assigns the corresponding p-

value, and a low p-value is interpreted as the label being unlikely. It has been argued,

especially by Bayesian statisticians, that p-values are more difficult to interpret than prob-

abilities; besides, in decision problems probabilities can be easily combined with utilities

to obtain decisions that are optimal from the point of view of Bayesian decision theory.

In this chapter we will apply the idea of transforming p-values into probabilities (used in

a completely different context in, e.g., [82], Section 9, and [66]) to conformal prediction:

the p-values produced by conformal predictors will be transformed into probabilities.

This chapter (whose findings are also reported in [87]) is based on the recently pub-

lished work [92] which observed that some criteria of efficiency for conformal prediction

(called “probabilistic criteria”) encourage using the conditional probability Q(y | x) as



Chapter 3. From conformal to probabilistic prediction 36

the conformity score for an observation (x, y), Q being the data-generating distribution.

In this chapter we extend this observation to label-conditional predictors (Section 3.2).

Next we imagine that we are given a conformal predictor Γ that is nearly optimal with

respect to a probabilistic criterion (such a conformal predictor might be an outcome of a

thorough empirical study of various conformal predictors using a probabilistic criterion

of efficiency). Essentially, this means that in the limit of a very large training set the

p-value that Γ outputs for an observation (x, y) is a monotonic transformation of the

conditional probability Q(y | x) (Theorem 1 in Section 3.3).

Finally, we transform the p-values back into conditional probabilities using the distri-

bution of p-values in the test set (Section 3.5). Following [82] and [66], we will say that at

this step we calibrate the p-values into probabilities.

In Section 3.6 we give an example of a realistic situation where use of the techniques

developed in this chapter improves on a standard approach. The performance of the

probabilistic predictors considered in that section is measured using standard loss func-

tions, logarithmic and Brier (Section 3.4).

It should be noted that in the process of transforming p-values into probabilities sug-

gested in this chapter we lose a valuable feature of conformal prediction, its automatic

validity. Our hope, however, is that the advantages of conformal prediction will translate

into accurate probabilistic predictions.

3.2 Criteria of efficiency for label-conditional conformal predic-

tors and transducers

Let X be a measurable space (the object space) and Y be a finite set equipped with the dis-

crete σ-algebra (the label space); the observation space is defined to be Z := X×Y. A confor-

mity measure is a measurable functionA that assigns to every sequence (z1, . . . , zl) ∈ Z∗ of

observations a same-length sequence (α1, . . . , αl) of real numbers and that is equivariant

with respect to permutations: for any l and any permutation π of {1, . . . , l},

(α1, . . . , αl) = A(z1, . . . , zl) =⇒
(
απ(1), . . . , απ(l)

)
= A

(
zπ(1), . . . , zπ(l)

)
.
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The label-conditional conformal predictor determined by A is defined by

Γε(z1, . . . , zl, x) := {y | py > ε} , (3.1)

where (z1, . . . , zl) ∈ Z∗ is a training sequence, x is a test object, ε ∈ (0, 1) is a given sig-

nificance level, and for each y ∈ Y the corresponding label-conditional p-value py is defined

by

py :=

∣∣{i = 1, . . . , l + 1 | yi = y & αyi < αyl+1

}∣∣
|{i = 1, . . . , l + 1 | yi = y}|

+ τ

∣∣{i = 1, . . . , l + 1 | yi = y & αyi = αyl+1

}∣∣
|{i = 1, . . . , l + 1 | yi = y}|

, (3.2)

where τ is a random number distributed uniformly on the interval [0, 1] and the corre-

sponding sequence of conformity scores is defined by

(αy1, . . . , α
y
l , α

y
l+1) := A(z1, . . . , zl, (x, y)).

It is clear that the system of prediction sets (3.1) output by a conformal predictor is nested,

namely decreasing in ε.

The label-conditional conformal transducer determined by A outputs the system of p-

values (py | y ∈ Y) defined by (3.2) for each training sequence (z1, . . . , zl) of observations

and each test object x.

Four criteria of efficiency

Suppose that, besides the training sequence, we are also given a test sequence, and would

like to measure on it the performance of a label-conditional conformal predictor or trans-

ducer. As usual, let us define the performance on the test set to be the average perfor-

mance (or, equivalently, the sum of performances) on the individual test observations.

We focus on the following four criteria of efficiency for individual test observations; all

the criteria will work in the same direction: the smaller the better.

• The sum
∑

y∈Y py of the p-values; referred to as the S criterion. This is applicable to

conformal transducers (i.e., the criterion is ε-independent).
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• The size |Γε| of the prediction set at a significance level ε; this is the N criterion. It is

applicable to conformal predictors (ε-dependent).

• The sum of the p-values apart from that for the true label: the OF (“observed fuzzi-

ness”) criterion (ε-dependent).

• The number of false labels included in the prediction set Γε at a significance level ε;

this is the OE (“observed excess”) criterion (ε-independent).

The last two criteria are simple modifications of the first two.

Remark 1. Equivalently, the S criterion can be defined as the arithmetic mean 1
|Y|
∑

y∈Y py

of the p-values; the proof of Theorem 1 below will show that, in fact, we can replace arith-

metic mean by any mean ([39], Section 3.1), including geometric, harmonic, etc.

3.3 Optimal idealized conformity measures for a known proba-

bility distribution

In this section we consider the idealized case where the probability distribution Q gen-

erating independent observations z1, z2, . . . is known. In this section we assume, for sim-

plicity, that the set Z is finite and that Q({z}) > 0 for all z ∈ Z.

An idealized conformity measure is a function A(z,Q) of z ∈ Z and Q ∈ P(Z) (where

P(Z) is the set of all probability measures on Z). We will sometimes write the correspond-

ing conformity scores as A(z), as Q will be clear from the context. The idealized smoothed

label-conditional conformal predictor corresponding to A outputs the following prediction

set Γε(x) for each object x ∈ X and each significance level ε ∈ (0, 1). For each potential

label y ∈ Y for x define the corresponding label-conditional p-value as

py = p(x, y) :=
Q({(x′, y) | x′ ∈ X & A((x′, y), Q) < A((x, y), Q)})

QY({y})

+ τ
Q({(x′, y) | x′ ∈ X & A((x′, y), Q) = A((x, y), Q)})

QY({y})
(3.3)
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(this is the idealized analogue of (3.2)), where QY is the marginal distribution of Q on Y

and τ is a random number distributed uniformly on [0, 1]. The prediction set is

Γε(x) := {y ∈ Y | p(x, y) > ε} . (3.4)

The idealized smoothed label-conditional conformal transducer corresponding toA outputs for

each object x ∈ X the system of p-values (py | y ∈ Y) defined by (3.3); in the idealized

case we will usually use the alternative notation p(x, y) for py.

Four idealized criteria of efficiency

In this subsection we will apply the four criteria of efficiency that we discussed in the

previous section to the idealized case of infinite training and test sequences; since the se-

quences are infinite, they carry all information about the data-generating distribution Q.

We will write ΓεA(x) for the Γε(x) in (3.4) and pA(x, y) for the p(x, y) in (3.3) to indicate the

dependence on the choice of the conformity measure A. Let U be the uniform probability

measure on the interval [0, 1].

An idealized conformity measure A is:

• S-optimal if E(x,τ)∼QX×U
∑

y pA(x, y) ≤ E(x,τ)∼QX×U
∑

y pB(x, y) for any idealized

conformity measure B, where QX is the marginal distribution of Q on X;

• N-optimal if E(x,τ)∼QX×U |Γ
ε
A(x)| ≤ E(x,τ)∼QX×U |Γ

ε
B(x)|

for any idealized conformity measure B and any significance level ε;

• OF-optimal if

E((x,y),τ)∼Q×U
∑
y′ 6=y

pA(x, y′) ≤ E((x,y),τ)∼Q×U
∑
y′ 6=y

pA(x, y′)

for any idealized conformity measure B;

• OE-optimal if

E((x,y),τ)∼Q×U |ΓεA(x) \ {y}| ≤ E((x,y),τ)∼Q×U |ΓεB(x) \ {y}|
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for any idealized conformity measure B and any significance level ε.

The conditional probability (PC) idealized conformity measure is

A((x, y), Q) := Q(y | x).

An idealized conformity measureA is a (label-conditional) refinement of an idealized con-

formity measure B if

B((x1, y)) < B((x2, y)) =⇒ A((x1, y)) < A((x2, y))

for all x1, x2 ∈ Z and all y ∈ Y. LetR(PC) be the set of all refinements of the PC idealized

conformity measure. If C is a criterion of efficiency (one of the four discussed above), we

let O(C) stand for the set of all C-optimal idealized conformity measures.

Theorem 1. O(S) = O(OF) = O(N) = O(OE) = R(PC).

Proof. We start from provingR(PC) = O(N). Fix a significance level ε. A smoothed con-

fidence predictor at level ε is defined as a random set of observations (x, y) ∈ Z; in other

words, to each observation (x, y) is assigned the probability P (x, y) that the observation

will be outside the prediction set. Under the restriction that the sum of the probabilities

Q(x, y) of observations (x, y) outside the prediction set (defined as
∑

xQ(x, y)P (x, y) in

the smoothed case) is bounded by εQY(y) for a fixed y, the N criterion requires us to

make the sum of QX(x) for (x, y) outside the prediction set (defined as
∑

xQX(x)P (x, y)

in the smoothed case) as large as possible. It is clear that the set should consist of the ob-

servations with the smallest Q(y | x) (by the usual Neyman–Pearson argument: cf. [48],

Section 3.2). This argument in fact also shows that O(N) ⊆ R(PC).

Next we show that O(N) ⊆ O(S). Let an idealized conformity measure A be N-

optimal. By definition,

Ex,τ |ΓεA(x)| ≤ Ex,τ |ΓεB(x)|
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for any idealized conformity measure B and any significance level ε. Integrating over

ε ∈ (0, 1) and swapping the order of integrals and expectations,

Ex,τ
∫ 1

0
|ΓεA(x)| dε ≤ Ex,τ

∫ 1

0
|ΓεB(x)| dε. (3.5)

Since

|Γε(x)| =
∑
y∈Y

1{p(x,y)>ε},

we can rewrite (3.5), after swapping the order of summation and integration, as

Ex,τ
∑
y∈Y

(∫ 1

0
1{pA(x,y)>ε} dε

)
≤ Ex,τ

∑
y∈Y

(∫ 1

0
1{pB(x,y)>ε} dε

)
.

Since ∫ 1

0
1{p(x,y)>ε} dε = p(x, y),

we finally obtain

Ex,τ
∑
y∈Y

pA(x, y) ≤ Ex,τ
∑
y∈Y

pB(x, y).

Since this holds for any idealized conformity measure B, A is S-optimal.

The argument in the previous paragraph in fact shows that O(S) = O(N) = R(PC).

Indeed, that argument shows that

∑
y∈Y

p(x, y) =

∫ 1

0
|Γε(x)| dε,

and so to optimize a conformity measure in the sense of the S criterion it suffices to opti-

mize it in the sense of the N criterion for all ε simultaneously (which can, and therefore

should, be done). More generally, for any continuous increasing function φ we have

∑
y∈Y

φ(p(x, y)) =
∑
y∈Y

∫ 1

0
1{φ(p(x,y))>ε} dε =

∫ 1

0

∑
y∈Y

1{p(x,y)>φ−1(ε)} dε

=

∫ 1

0

∣∣∣Γφ−1(ε)(x)
∣∣∣ dε =

∫ ∣∣∣Γε′(x)
∣∣∣φ′(ε′) dε′,

which proves Remark 1.
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The equality O(S) = O(OF) follows from

Ex,τ
∑
y

p(x, y) = E(x,y),τ

∑
y′ 6=y

p(x, y′) +
1

2
,

where we have used the fact that p(x, y) is distributed uniformly on [0, 1] when ((x, y), τ) ∼

Q× U (see [84] and [92]).

Finally, we notice that O(N) = O(OE). Indeed, for any significance level ε,

Ex,τ |Γε(x)| = E(x,y),τ |Γε(x) \ {y}|+ (1− ε),

again using the fact that p(x, y) is distributed uniformly on [0, 1] and so P(x,y),τ (y ∈

Γε(x)) = 1− ε.

3.4 Criteria of efficiency for probabilistic predictors

Given a training set (z1, . . . , zl) and a test object x, a probabilistic predictor outputs a

probability measure P ∈ P(Y), which is interpreted as its probabilistic prediction for

the label y of x; we let P(Y) stand for the set of all probability measures on Y. The two

standard ways of measuring the performance of P on the actual label y are the logarithmic

(or log) loss − lnP ({y}) and the Brier loss

∑
y′∈Y

(
1{y′=y} − P ({y′})

)2
,

where 1E stands for the indicator of an event E: 1E = 1 if E happens and 1E = 0

otherwise. The efficiency of probabilistic predictors will be measured by these two loss

functions.

Suppose we have a test sequence (zl+1, . . . , zl+k), where zi = (xi, yi) for i = l +

1, . . . , l+k, and we want to evaluate the performance of a probabilistic predictor (trained

on a training sequence z1, . . . , zl) on it. In the next section we will use the average log loss

−1

k

l+k∑
i=l+1

lnPi({yi})
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and the standardized Brier loss√√√√ 1

k |Y|

l+k∑
i=l+1

∑
y′∈Y

(
1{y′=yi} − Pi({y′})

)2
,

where Pi ∈ P(Y) is the probabilistic prediction for xi. Notice that in the binary case,

|Y| = 2, the average log loss coincides with the mean log error and the standardized

Brier loss coincides with the root mean square error.

3.5 Calibration of p-values into conditional probabilities

We can use a hold-out set for calibration (say nonparametric, using monotonic regres-

sion, as in [97] in a related context). This might be too wasteful, but still we should run

experiments. In this section we will discuss an alternative approach: how to calibrate

p-values using the test set.

The argument of this section will be somewhat heuristic, and we will not try to for-

malize it. Fix y ∈ Y. Suppose that q := P (y | x) has an absolutely continuous distribution

with density f when x ∼ QX. (In other words, f is the density of the image of QX under

the mapping x 7→ P (y | x)). This assumption contradicts the assumption made earlier

that Z is finite. For the CP idealized conformity measure, we can rewrite (3.3) as

p(q) :=

∫ q

0
q′f(q′)dq′

/
D , (3.6)

where D := QY({y}); alternatively, we can set D :=
∫ 1
0 q
′f(q′)dq′ to the normalizing

constant ensuring that p(1) = 1. To see how (3.6) is a special case of (3.3) for the CP

idealized conformity measure, notice that the probability that Y = y and P (Y | X) ∈

(q′, q′ + dq′), where (X,Y ) ∼ f , is q′f(q′)dq′. In (3.6) we write p(q) rather than py since py

depends on y only via q.

We are more interested in the inverse function q(p), which is defined by the condition

p =

∫ q(p)

0
q′f(q′)dq′

/
D .
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Algorithm 1 Conformal-type probabilistic predictor

Input: training sequence (z1, . . . , zl) ∈ Zl

Input: calibration sequence (xl+1, . . . , xl+k) ∈ Xk

Input: test object x0
Output: probabilistic prediction P ∈ P(Y) for the label of x0

for y ∈ Y do
for each xi in the calibration sequence find the p-value pyi by (3.2)

(with l + i in place of l + 1)
let gy be the antitonic density on [0, 1] fitted to pyl+1, . . . , p

y
l+k

find the p-value py0 by (3.2) (with 0 in place of l + 1)
for each y ∈ Y, set P ′({y}) := gy(1)/gy(p

y
0)

for each y ∈ Y set P ({y}) := P ′({y})/
∑

y′ P
′({y′})

When q ∼ f , we have

P(p(q) ≤ a) = P(q ≤ q(a)) =

∫ q(a)

0
f(q′)dq′.

Therefore, when q ∼ f , we have

P(a ≤ p(q) ≤ a+ da) =

∫ q(a+da)

q(a)
f(q′)dq′ ≈ 1

q(a)

∫ q(a+da)

q(a)
q′f(q′)dq′ =

Dda

q(a)
,

and so

q(c) ≈ D

/
P(c ≤ p(q) ≤ c+ dc)

dc
.

This gives rise to the algorithm given as Algorithm 1, which uses real p-values (3.2)

instead of the ideal p-values (3.3). The algorithm is transductive in that it uses a train-

ing sequence of labelled observations and a calibration sequence of unlabelled objects

(in the next section we use the test sequence as the calibration sequence); the latter is

used for calibrating p-values into conditional probabilities. Given all the p-values for the

calibration sequence with postulated label y, find the corresponding antitonic density

g(p) (remember that the function q(p) is known to be monotonic, namely isotonic) using

Grenander’s estimator (see [36] or, e.g., [27], Chapter 8). Use D/g(p) as the calibration

function, where D := g(1) is chosen in such a way that a p-value of 1 is calibrated into a

conditional probability of 1. (Alternatively, we could set D to the fraction of observations

labelled as y in the training sequence; this approximates setting D := QY({y}).) The



Chapter 3. From conformal to probabilistic prediction 45

probabilities produced by this procedure are not guaranteed to lead to a probability mea-

sure: the sum over y can be different from 1 (and this phenomenon has been observed in

our experiments). Therefore, in the last line of Algorithm 1 we normalize the calibrated

p-values to obtain genuine probabilities.

Remark 2. The topic of this chapter is how to transform conformal predictors into prob-

abilistic predictors. Moving in the opposite direction, from probabilistic to conformal

predictors, seems to be much easier: given a probabilistic predictor, a natural confor-

mity measure αi for an observation zi = (xi, yi) in a sequence z1, . . . , zn is the probability

αi := P (yi), where P is the probabilistic prediction for the label of xi found using that

probabilistic predictor from z1, . . . , zn (or z1, . . . , zi−1, zi+1, . . . , zn) as the training set.

3.6 Experiments

In our experiments we use the standard USPS data set of hand-written digits. The size

of the training set is 7291, and the size of the test set is 2007; however, instead of using

the original split of the data into the two parts, we randomly split all available data (the

union of the original training and test sets) into a training set of size 7291 and test set

of size 2007. (Therefore, our results somewhat depend on the seed used by the random

number generator, but the dependence is minor and does not affect our conclusions at

all; we always report results for seed 0.)

A powerful algorithm for the USPS data set is the 1-Nearest Neighbour (1-NN) algo-

rithm using tangent distance [68]. However, it is not obvious how this algorithm could

be transformed into a probabilistic predictor. On the other hand, there is a very natu-

ral and standard way of extracting probabilities from support vector machines, which

we will refer to it as Platt’s algorithm in this chapter: it is the combination of the method

proposed by Platt [59] with pairwise coupling [95] (unlike our algorithm, which is appli-

cable to multi-class problems directly, Platt’s method is directly applicable only to binary

problems). In this section we will apply our method to the 1-NN algorithm with tangent

distance and compare the results to Platt’s algorithm as implemented in the function svm

from the e1071 R package (for our multi-class problem this function calculates probabil-

ities using the combination of Platt’s binary method and pairwise coupling).
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TABLE 3.1: The performance of the two algorithms, Platt’s (with the opti-
mal values of parameters) and the conformal-type probabilistic predictor

based on 1-Nearest Neighbour with tangent distance

algorithm average log loss standardized Brier loss
optimized Platt 0.06431 0.05089

conformal-type 1-NN 0.04958 0.04359

TABLE 3.2: The performance of Platt’s algorithm with the polynomial ker-
nels of various degrees for the cost parameter C = 10

degree average log loss standardized Brier loss
1 0.12681 0.07342
2 0.09967 0.06109
3 0.06855 0.05237
4 0.11041 0.06227
5 0.09794 0.06040

There is a standard way of turning a distance into a conformal predictor ([84], Sec-

tion 3.1): namely, the conformity score αi of the ith observation in a sequence of observa-

tions can be defined as
minj:yj 6=yi d(xi, xj)

minj 6=i:yj=yi d(xi, xj)
, (3.7)

where d is the distance; the intuition is that an object is considered conforming if it is

close to an object labelled in the same way and far from any object labelled in a different

way.

Table 3.1 compares the performance of the conformal-type probabilistic predictor

based on the 1-NN conformity measure (3.7), where d is tangent distance, with the per-

formance of Platt’s algorithm with the optimal values of its parameters. The conformal

predictor is parameter-free but Platt’s algorithm depends on the choice of the kernel. We

chose the polynomial kernel of degree 3 (since it is known to produce the best results:

see [80], Section 12.2) and the cost parameter C := 2.9 in the case of the average log loss

and C := 3.4 in the case of the standardized Brier loss (the optimal values in our exper-

iments). (Reporting the performance of Platt’s algorithm with optimal parameter values

may look like data snooping, but it is fine in this context since we are helping our com-

petitor.) Table 3.2 reports the performance of Platt’s algorithm as function of the degree
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of the polynomial kernel with the cost parameter set at C := 10 (the dependence on C is

relatively mild, and C = 10 gives good performance for all degrees that we consider).

3.7 Conclusion

This chapter has proposed a way to turn conformal predictors into probabilistic ones.

Even though the initial results look premising, one of the main drawbacks of the tech-

nique is that its success is highly dependent upon the choice of a particular conformity

measure and its efficiency under the probabilistic criteria. Indeed, it may be difficult to

know a priori which particular measure is the most suitable for a given problem and this

may dependent upon the type od dataset. Furthermore, the technique also suffers from a

degree of computational inefficiency due to separate treatment of different classes at the

stage of calibrating p-values. The following chapter will consider a different method of

probabilistic prediction which relies on Venn prediction and which hopes to overcome

some of the above challenges.
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Chapter 4

Venn-Abers predictors

This chapter focuses on the study of Venn prediction, concentrating on binary prediction prob-

lems. Venn predictors produce probability-type predictions for the labels of test objects which are

guaranteed to be well calibrated under the standard assumption that the observations are gen-

erated independently from the same distribution. This chapter offers a simple formalization and

proof of this property. A new class of Venn predictors is introduced, called Venn–Abers predictors,

which are based on the idea of isotonic regression. Promising empirical results are demonstrated

both for Venn–Abers predictors and for their more computationally efficient simplified version.

4.1 Introduction

Chapter 2 discussed a number of methods of calibrating a variety of machine learning

algorithms into better probabilistic classifiers. Despite a degree of success achieved by

methods to date, one of the potential drawbacks is that many of them rely on parametric

assumptions. One has to often therefore select a certain calibrating method to the partic-

ular problem and dataset at hand. It would be instructive to consider a method which

relies on as few parametric assumptions as possible but which produces probabilistic pre-

dictions which are well calibrated. This chapter introduces a novel method which aims

to achieve both of these requirements.

The chapter builds on the work Venn prediction to define a natural class of Venn

predictors, called Venn-Abers predictors (VAP) (with the “Abers” part formed by the

initial letters of the authors’ surnames of the paper by Ayer et al. [2] introducing the

underlying technique). The latter (introduced in Section 4.3) are defined on top of a
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wide class of classification algorithms, which we will refer to as “scoring classifiers” in

this chapter; each scoring classifier can be automatically transformed into a Venn-Abers

predictor, and this transformation is referred to as the “Venn–Abers method”. Because

of its theoretical guarantees, this method can be used for improving the calibration of

probabilistic predictions.

The definition of Venn–Abers predictors was prompted by research carried out by

Lambrou et al. [45], which demonstrated that the method of calibrating probabilistic pre-

dictions introduced by Zadrozny and Elkan [97] introduced in Chapter 2 (an adaptation

of the isotonic regression procedure of [2]) does not always achieve its goal and some-

times leads to poorly calibrated predictions. Another paper reporting the possibility for

the Zadrozny–Elkan method to produce grossly miscalibrated predictions is [42]. The

Venn–Abers method is a simple modification of Zadrozny and Elkan’s method; being a

special case of Venn prediction, it overcomes the problem of potentially poor calibration.

As illustrated in Chapter 1, Venn predictors (introduced by Vovk et al. in [91] and

discussed in detail in [84], Chapter 6) are an important class of multiprobability predic-

tors. This chapter describes them in greater detail. The chapter also states an important

property of validity of Venn predictors: they are automatically well calibrated. In some

form this property of validity has been known: see, e.g., [84], Theorem 6.6. However,

this known version is complicated, whereas the version described here (Theorem 2 be-

low) is much simpler and the intuition behind it is more transparent. The same section

shows (by Theorem 3) that Venn prediction is essentially the only way to achieve this

new property of validity.

We show in Theorem 2 in Section 4.2 that Venn predictors are perfectly calibrated.

The price to pay, however, is that Venn predictors are multiprobabilistic predictors, in the

sense of issuing a set of probabilistic predictions instead of a single probabilistic predic-

tion. Section 4.5 explores the efficiency of Venn–Abers predictors empirically using the

fundamental log loss function and another popular loss function, square loss. To apply

these loss functions, we need, however, probabilistic predictions rather than multiprob-

abilistic predictions, therefore Section 4.4 defines natural minimax ways of replacing the

latter with the former.
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Finally, Section 4.5 explores the empirical predictive performance of the most natu-

ral version of the original Zadrozny–Elkan method, the Venn–Abers method, and the

latter’s simplified version, which is not only simpler but also more efficient computa-

tionally. The methods are applied to nine benchmark data sets from the UCI repository

[31] and six standard scoring classifiers, and for each combination of a data set and clas-

sifier we evaluate the predictive performance of each method. The results show that

the Venn–Abers and simplified Venn–Abers methods usually improve the performance

of the underlying classifiers, and in these sets of experiments they work better than the

original Zadrozny–Elkan method.

4.2 Venn predictors

We consider observations z = (x, y) consisting of two components: an object x ∈ X and

its label y ∈ Y. In this chapter we are only interested in the binary case and for concrete-

ness set Y := {0, 1}. We assume that X is a measurable space, so that observations are

elements of the measurable space that is the Cartesian product Z := X×Y = X×{0, 1}.

A Venn taxonomy A is a measurable function that assigns to each n ∈ {2, 3, . . .} and

each sequence (z1, . . . , zn) ∈ Zn an equivalence relation ∼ on {1, . . . , n} which is equiv-

ariant in the sense that, for each n and each permutation π of {1, . . . , n},

(i ∼ j | z1, . . . , zn) =⇒ (π(i) ∼ π(j) | zπ(1), . . . , zπ(n)),

where the notation (i ∼ j | z1, . . . , zn) means that i is equivalent to j under the relation

assigned by A to (z1, . . . , zn). The measurability of A means that for all n, i, and j the set

{(z1, . . . , zn) |(i ∼ j | z1, . . . , zn)} is measurable. Define

A(j | z1, . . . , zn) := {i ∈ {1, . . . , n} | (i ∼ j | z1, . . . , zn)}

to be the equivalence class of j. Let (z1, . . . , zl) be a training sequence of observations

zi = (xi, yi), i = 1, . . . , l, and x be a test object. The Venn predictor associated with a given
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Venn taxonomy A outputs the pair (p0, p1) as its prediction for x’s label, where

py :=
|{i ∈ A(l + 1 | z1, . . . , zl, (x, y)) | yi = 1}|

|A(l + 1 | z1, . . . , zl, (x, y))|

for both y ∈ {0, 1} (notice that the denominator is always positive). Intuitively, p0 and p1

are the predicted probabilities that the label of x is 1; of course, the prediction is useful

only when p0 ≈ p1. The probability interval output by a Venn predictor is defined to be the

convex hull conv(p0, p1) of the set {p0, p1}; we will sometimes refer to the pair (p0, p1) or

the set {p0, p1} as the multiprobabilistic prediction.

Validity of Venn predictors

Let us say that a random variable P taking values in [0, 1] is perfectly calibrated for a ran-

dom variable Y taking values in {0, 1} if

E(Y | P ) = P a.s. (4.1)

Intuitively, P is the prediction made by a probabilistic predictor for Y , and perfect calibra-

tion means that the probabilistic predictor gets the probabilities right, at least on average,

for each value of the prediction. A probabilistic predictor for Y whose prediction P sat-

isfies (4.1) with an approximate equality is said to be well calibrated [26], or unbiased in

the small [53, 26].

A selector is a random variable taking values 0 or 1.

Theorem 2. Let (X1, Y1), . . . , (Xl, Yl), (X,Y ) be IID (independent identically distributed) ran-

dom observations. Fix a Venn predictor V and an l ∈ {1, 2, . . .}. Let (P0, P1) be the output of V

given (X1, Y1, . . . , Xl, Yl) as the training set and X as the test object. There exists a selector S

such that PS is perfectly calibrated for Y .

Intuitively, at least one of the two probabilities output by the Venn predictor is per-

fectly calibrated. Therefore, if the two probabilities tend to be close to each other, we

expect them (or, say, their average) to be well calibrated.

In the proof of Theorem 2 and later in the chapter we will use the notation *a1, . . . , an+

for bags (in other words, multisets); the cardinality of the set {a1, . . . , an} might well
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be smaller than n (because of the removal of all duplicates in the bag). Intuitively,

*a1, . . . , an+ is the sequence (a1, . . . , an) with its ordering forgotten. We will sometimes

refer to the bag *z1, . . . , zl+, where (z1, . . . , zl) is the training sequence, as the training set

(although technically it is a multiset rather than a set).

Proof of Theorem 2. Take S := Y as the selector. Let us check that (4.1) is true even if we

further condition on the observed bag *(X1, Y1), . . . , (Xl, Yl), (X,Y )+ (so that the remain-

ing randomness consists in generating a random permutation of this bag). We only need

to check the equality E(Y | P = p) = p, where P is the average of 1s in the equivalence

class containing (X,Y ), for the ps which are the percentages of 1s in various equivalence

classes (further conditioning on the observed bag is not reflected in our notation). For

each such p, E(Y | P = p) is the average of 1s in the equivalence classes for which the

average of 1s is p; therefore, we indeed have E(Y | P = p) = p.

The following simple corollary of Theorem 2 gives a weaker property of validity,

which is sometimes called “unbiasedness in the large” [53, 26].

Corollary 1. For any Venn predictor V and any l = 1, 2, . . .,

P(Y = 1) ∈
[
E (V (X;X1, Y1, . . . , Xl, Yl)) ,E

(
V (X;X1, Y1, . . . , Xl, Yl)

)]
, (4.2)

where (X1, Y1), . . . , (Xl, Yl), (X,Y ) are IID observations and [V (. . .), V (. . .)] is the probability

interval produced by V for the test object X based on the training sequence (X1, Y1, . . . , Xl, Yl).

Proof. It suffices to notice that, for a selector S such that P = PS ((P0, P1) being the output

of V ) satisfies the condition of perfect calibration (4.1),

P(Y = 1) = E(Y ) = E(E(Y | PS)) = E(PS) ∈
[
EV ,EV

]
,

where the arguments of V and V are omitted.

The following is a direct argument: First notice that in (4.2) we can replace the

left-hand side by the expectation of the arithmetic mean of Y1, . . . , Yl, Y and the right-

hand side by the (one-element set consisting of the) expectation of the VP predic-

tion pY with Y as the postulated classification for X . Now suppose that the bag
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*(X1, Y1), . . . , (Xl, Yl), (X,Y )+ has already been generated and it only remains to be

decided which element of the bag is the test observation. Then the expectation on the

left-hand side becomes a constant (the arithmetic mean of Y1, . . . , Yl, Y is now known),

and the expectation on the right-hand side becomes the average over the equivalence

classes of the percentage of 1s in each equivalence class; the two sides clearly coincide.

Unbiasedness in the large (4.2) is easy to achieve even for probabilistic predictors

if we do not care about other measures of quality of our predictions: for example, the

probabilistic predictor ignoring the xs and outputting k/l as its prediction, where k is the

number of 1s in the training sequence of size l, is unbiased in the large. Unbiasedness in

the small (4.1) is also easy to achieve if we allow multiprobabilistic predictors: consider

the multiprobabilistic predictor ignoring the xs and outputting {k/(l+1), (k+1)/(l+1)} as

its prediction. The problem is how to achieve predictive efficiency (making our prediction

as relevant to the test object as possible without overfitting) while maintaining validity.

Our following result, Theorem 3, will say that under mild regularity conditions unbi-

asedness in the small (4.1) holds only for Venn predictors (perhaps weakened by adding

irrelevant probabilistic predictions) and, therefore, implies all other properties of validity,

such as the more complicated one given in [84, Chapter 6].

To state Theorem 3 we need a few further definitions. Let us fix the length l of the

training sequence for now. A multiprobabilistic predictor is a function that maps each

sequence (z1, . . . , zl) ∈ Zl to a subset of [0, 1] (not required to be measurable in any

sense). Venn predictors are an important example for this chapter. Let us say that a

multiprobabilistic predictor is invariant if it is independent of the ordering of the train-

ing set (z1, . . . , zl). An invariant selector for an invariant multiprobabilistic predictor F is

a measurable function f : Zl+1 → [0, 1] such that f(z1, . . . , zl+1) does not change when

z1, . . . , zl are permuted and such that f(z1, . . . , zl+1) ∈ F (z1, . . . , zl) for all (z1, . . . , zl+1).

(It is natural to consider only invariant predictors and selectors under the IID assumption

because of the principle of sufficiency [23, Chapter 2]). We say that an invariant multi-

probabilistic predictor F is invariantly perfectly calibrated if it has an invariant selector f
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such that

E
(
Y | f(Z1, . . . , Zl, (X,Y ))

)
= f(Z1, . . . , Zl, (X,Y )) a.s. (4.3)

whenever Z1, . . . , Zl, (X,Y ) are IID observations.

Theorem 3. If an invariant multiprobabilistic predictor F is invariantly perfectly calibrated,

then it contains a Venn predictor V in the sense that both elements of V (Z1, . . . , Zl) belong to

F (Z1, . . . , Zl) almost surely provided Z1, . . . , Zl are IID.

Proof. Let f be an invariant selector of F satisfying the condition (4.3) of being invariantly

perfectly calibrated. By definition,

E
(
Y − f(Z1, . . . , Zl, (X,Y )) | f(Z1, . . . , Zl, (X,Y ))

)
= 0 a.s.,

which implies

E
(
(Y − f(Z1, . . . , Zl, (X,Y )))1{f(Z1,...,Zl,(X,Y ))∈[a,b]}

)
= 0 a.s. (4.4)

for all intervals [a, b] with rational end-points. The expected value in (4.4) can be obtained

in two steps: first we average

(y′l+1 − f(z′1, . . . , z
′
l+1))1{f(z′1,...,z′l+1)∈[a,b]}

over the orderings (z′1, . . . , z
′
l+1) of each bag *z1, . . . , zl+1+, where zi = (xi, yi) and z′i =

(x′i, y
′
i), and then we average over the bags *z1, . . . , zl+1+ generated according to zi := Zi,

i = 1, . . . , l, and zl+1 := (X,Y ). The first operation is discrete: the average over the

orderings of *z1, . . . , zl+1+ is the arithmetic mean of (yi−pi)1{pi∈[a,b]} over i = 1, . . . , l+ 1,

where pi := f(. . . , zi) and the dots stand for z1, . . . , zi−1 and zi+1, . . . , zl+1 arranged in

any order (since f is invariant, the order does not matter). By the completeness of the

statistic that maps a data sequence of size l+ 1 to the corresponding bag [48, Section 4.3],

this average is zero for all [a, b] and almost all bags. Without loss of generality we assume

that this holds for all bags.

Define a Venn taxonomy A as follows: given a sequence (z1, . . . , zl+1), set i ∼ j if

pi = pj where p is defined as above. It is easy to check that the corresponding Venn
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predictor satisfies the requirement in Theorem 3.

Remark 3. The invariance assumption in Theorem 3 is essential. Indeed, suppose l > 1

and consider the multiprobabilistic predictor whose prediction for the label of the test

observation does not depend on the objects and is


{k/l, (k + 1)/l} if y1 = 0

{(k − 1)/l, k/l} if y1 = 1,

where k is the number of 1s among the labels of the l training observations. This non-

invariant predictor is perfectly calibrated (see below) but does not contain a Venn pre-

dictor (if it did, such a Venn predictor, being invariant, would always output the one-

element multiprobabilistic prediction {k/l}, which is impossible). Let us check that this

non-invariant predictor is indeed perfectly calibrated, even given the union of the train-

ing set and the test observation (i.e., given the bag of size l+ 1 obtained from the training

sequence by joining the test observation and then forgetting the ordering). Take the se-

lector such that the selected probabilistic predictor is



k/l for sequences of the form 0 . . . 0

(k + 1)/l for sequences of the form 0 . . . 1

(k − 1)/l for sequences of the form 1 . . . 0

k/l for sequences of the form 1 . . . 1.

For a binary sequence of labels of length l+ 1 with m 1s the probabilistic prediction P for

its last element will be, therefore,



m/l for sequences of the form 0 . . . 0

m/l for sequences of the form 0 . . . 1

(m− 1)/l for sequences of the form 1 . . . 0

(m− 1)/l for sequences of the form 1 . . . 1.
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The conditional probability that Y = 1 (Y being the label of the last element) given P = p

(and given m) is (
l−1
m−1

)(
l
m

) =
m

l

when p = m/l and is (
l−1
m−2

)(
l

m−1
) =

m− 1

l

when p = (m− 1)/l; in both cases we have perfect calibration.

4.3 Venn–Abers predictors

We say that a function f is increasing if its domain is an ordered set and t1 ≤ t2 ⇒ f(t1) ≤

f(t2). As described in the introductory chapter, many machine-learning algorithms for

classification are in fact scoring classifiers: when trained on a training sequence of observa-

tions and fed with a test object x, they output a prediction score s(x); we will call s : X→ R

the scoring function for that training sequence. The actual classification algorithm is ob-

tained by fixing a threshold c and predicting the label of x to be 1 if and only if s(x) ≥ c

(or if and only if s(x) > c). Alternatively, one could apply an increasing function g to

s(x) in an attempt to “calibrate” the scores, so that g(s(x)) can be used as the predicted

probability that the label of x is 1.

Fix a scoring classifier and let (z1, . . . , zl) be a training sequence of observations

zi = (xi, yi), i = 1, . . . , l. The most direct application [97] of the method of isotonic

regression [2] to the problem of score calibration is as follows. Train the scoring classi-

fier on the training sequence and compute the score s(xi) for each training observation

(xi, yi), where s is the scoring function for (z1, . . . , zl). Let g be the increasing function on

the set {s(x1), . . . , s(xl)} that maximizes the likelihood

l∏
i=1

pi, where pi :=


g(s(xi)) if yi = 1

1− g(s(xi)) if yi = 0.

(4.5)

Such a function g is indeed unique [2, Corollary 2.1] and can be easily found using the

“pair-adjacent violators algorithm” (PAVA, described in detail in the summary of [2] and
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FIGURE 4.1: An example of the pair-adjacent violator algorithm (PAVA)

in [13, Section 1.2]; see also the proof of Lemma 1 below). We will say that g is the

isotonic calibrator for ((s(x1), y1), . . . , (s(xl), yl)). To predict the label of a test object x, the

direct method finds the closest s(xi) to s(x) and outputs g(s(xi)) as its prediction (in the

case of ties our implementation of this method used in Section 4.5 chooses the smaller

s(xi); however, ties almost never happen in our experiments). We will refer to this as the

direct isotonic-regression (DIR) method. An illustration of the PAVA algorithm is shown in

Figure 4.1.

The direct method is prone to overfitting as the same observations z1, . . . , zl are used

both for training the scoring classifier and for calibration without taking any precautions.

The Venn–Abers predictor corresponding to the given scoring classifier is the multiproba-

bilistic predictor that is defined as follows. Try the two different labels, 0 and 1, for the

test object x. Let s0 be the scoring function for (z1, . . . , zl, (x, 0)), s1 be the scoring function

for (z1, . . . , zl, (x, 1)), g0 be the isotonic calibrator for

(
(s0(x1), y1), . . . , (s0(xl), yl), (s0(x), 0)

)
, (4.6)
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Algorithm 2 Venn–Abers predictor

Input: training sequence (z1, . . . , zl)
Input: test object x
Output: multiprobabilistic prediction (p0, p1)

for y ∈ {0, 1} do
set sy to the scoring function for
(z1, . . . , zl, (x, y))

set gy to the isotonic calibrator for
(sy(x1), y1), . . . , (sy(xl), yl), (sy(x), y)

set py := gy(sy(x))

and g1 be the isotonic calibrator for

(
(s1(x1), y1), . . . , (s1(xl), yl), (s1(x), 1)

)
. (4.7)

The multiprobabilistic prediction output by the Venn–Abers predictor is (p0, p1), where

p0 := g0(s0(x)) and p1 := g1(s1(x)). (And we can expect p0 and p1 to be close to each other

unless DIR overfits grossly.) The Venn–Abers predictor is described as Algorithm 2.

The intuition behind Algorithm 2 is that it tries to evaluate the robustness of the DIR

prediction. To see how sensitive the scoring function is to the training set we extend the

latter by adding the test object labelled in two different ways. And to see how sensitive

the probabilistic prediction is, we again consider the training set extended in two differ-

ent ways (if it is sensitive, the prediction will be fragile even if the scoring function is

robust). For large data sets and inflexible scoring functions, we will have p0 ≈ p1, and

both numbers will be close to the DIR prediction. However, even if the data set is very

large but the scoring function is very flexible, p0 can be far from p1 (the extreme case is

where the scoring function is so flexible that it ignores all observations apart from a few

that are most similar to the test object, and in this case it does not matter how big the data

set is). We rarely know in advance how flexible our scoring function is relative to the size

of the data set, and the difference between p0 and p1 gives us some indication of this.

The following proposition says that Venn–Abers predictors are Venn predictors and,

therefore, inherit all properties of validity of the latter, such as Theorem 2.

Proposition 1. Venn–Abers predictors are Venn predictors.
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Proof. Fix a Venn–Abers predictor. The corresponding Venn taxonomy is defined as fol-

lows: given a sequence

(z1, . . . , zn) = ((x1, y1), . . . , (xn, yn)) ∈ (X× {0, 1})n

and i, j ∈ {1, . . . , n}, we set i ∼ j if and only if g(s(xi)) = g(s(xj)), where s is the scoring

function for (z1, . . . , zn) and g is the isotonic calibrator for

(
(s(x1), y1), . . . , (s(xn), yn)

)
.

Lemma 1 below shows that the Venn predictor corresponding to this taxonomy gives

predictions identical to those given by the original Venn–Abers predictor. This proves

the proposition.

Lemma 1. Let g be the isotonic calibrator for ((t1, y1), . . . , (tn, yn)), where ti ∈ R and yi ∈

{0, 1}, i = 1, . . . , n. Any p ∈ {g(t1), . . . , g(tn)} is equal to the arithmetic mean of the labels yi

of the ti, i = 1, . . . , n, satisfying g(ti) = p.

Proof. The statement of the lemma immediately follows from the definition of the PAVA

[2, summary], which we will reproduce here. Arrange the numbers ti in the strictly in-

creasing order t(1) < · · · < t(k), where k ≤ n is the number of distinct elements among

ti. We would like to find the increasing function g on the set {t(1), . . . , t(k)} = {t1, . . . , tn}

maximizing the likelihood (defined by (4.5) with ti in place of s(xi) and n in place of l).

The procedure is recursive. At each step the set {t(1), . . . , t(k)} is partitioned into a num-

ber of disjoint cells consisting of adjacent elements of the set; to each cell is assigned a

ratio a/N (formally, a pair of integers, with a ≥ 0 and N > 0); the function g defined

at this step (perhaps to be redefined at the following steps) is constant on each cell. For

j = 1, . . . , k, let a(j) be the number of i such that yi = 1 and ti = t(j), and let N(j) be the

number of i such that ti = t(j). Start from the partition of {t(1), . . . , t(k)} into one-element

cells, assign the ratio a(j)/N(j) to {t(j)}, and set

g(t(j)) :=
a(j)

N(j)
(4.8)
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(in the notation used in this proof, a/N is a pair of integers whereas a
N is a rational num-

ber, the result of the division). If the function g is increasing, we are done. If not, there is a

pairC1, C2 of adjacent cells (“violators”) such thatC1 is to the left ofC2 and g(C1) > g(C2)

(where g(C) stands for the common value of g(t(j)) for t(j) ∈ C); in this case redefine the

partition by merging C1 and C2 into one cell C, assigning the ratio (a1 +a2)/(N1 +N2) to

C, where a1/N1 and a2/N2 are the ratios assigned to C1 and C2, respectively, and setting

g(t(j)) :=
N1

N1 +N2
g(C1) +

N2

N1 +N2
g(C2) =

a1 + a2
N1 +N2

(4.9)

for all t(j) ∈ C. Repeat the process until g becomes increasing (the number of cells de-

creases by 1 at each iteration, so the process will terminate in at most k steps). The final

function g is the one that maximizes the likelihood. The statement of the lemma follows

from this recursive definition: it is true by definition for the initial function (4.8) and

remains true when g is redefined by (4.9).

4.4 Probabilistic predictors derived from Venn predictors

In the next section we will compare Venn–Abers predictors with known probabilistic pre-

dictors using standard loss functions. Since Venn–Abers predictors output pairs of prob-

abilities rather than point probabilities, we will need to fit them (somewhat artificially)

in the standard framework extracting one probability p from p0 and p1.

We will consider two loss functions, log loss and square loss. The log loss suffered

when predicting p ∈ [0, 1] whereas the true label is y is

λln(p, y) :=


− ln(1− p) if y = 0

− ln p if y = 1.

This is the most fundamental loss function, since the cumulative loss
∑n

i=1 λln(pi, yi) over

a test sequence of size n is equal to the minus log of the probability that the predictor as-

signs to the sequence (this assumes either the batch mode of prediction with independent

test observations or the online mode of prediction); therefore, a smaller cumulative log
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loss corresponds to a larger probability. The square loss suffered when predicting p ∈ [0, 1]

for the true label y is

λsq(p, y) := (y − p)2.

The main advantage of this loss function is that it is proper (see, e.g., [26]): the function

Ey∼Bp λsq(q, y) of q ∈ [0, 1], where Bp is the Bernoulli distribution with parameter p,

attains its minimum at q = p. (Of course, the log loss function is also proper.)

First suppose that our loss function is λln and we are given a multiprobabilistic

prediction (p0, p1); let us find the corresponding minimax probabilistic prediction p.

If the true outcome is y = 0, our regret for using p instead of the appropriate p0 is

− ln(1 − p) + ln(1 − p0). If y = 1, our regret for using p instead of the appropriate p1

is − ln p + ln p1. The first regret as a function of p ∈ [0, 1] strictly increases from a non-

positive value to∞ as p changes from 0 to 1. The second regret as a function of p strictly

decreases from∞ to a nonpositive value as p changes from 0 to 1. Therefore, the minimax

regret is the solution to

− ln(1− p) + ln(1− p0) = − ln p+ ln p1,

which is

p =
p1

1− p0 + p1
. (4.10)

The intuition behind this minimax value of p is that we can interpret the multiprobabilis-

tic prediction (p0, p1) as the unnormalized probability distribution P on {0, 1} such that

P ({0}) = 1− p0 and P ({1}) = p1; we then normalize P to get a genuine probability dis-

tribution P ′ := P/P ({0, 1}), and the p in (4.10) is equal to P ′({1}). Of course, it is always

true that p ∈ conv(p0, p1).

In the case of the square loss function, the regret is


p2 − p20 if y = 0

(1− p)2 − (1− p1)2 if y = 1
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and the two regrets are equal when

p := p1 + p20/2− p21/2. (4.11)

To see how natural this expression is notice that (4.11) is equivalent to

p = p̄+ (p1 − p0)
(

1

2
− p̄
)
,

where p̄ := (p0 + p1)/2. Therefore, p is a regularized version of p̄: we move p̄ towards the

neutral value 1/2 in the typical (for the Venn–Abers method) case where p0 < p1. In any

case, we always have p ∈ conv(p0, p1).

The following lemma shows that log loss is never infinite for probabilistic predictors

derived from Venn predictors.

Lemma 2. Neither of the methods discussed in this section (see (4.10) and (4.11)) ever produces

p ∈ {0, 1} when applied to Venn–Abers predictors.

Proof. Lemma 1 implies that p0 < 1 and that p1 > 0. It remains to notice that both (4.10)

and (4.11) produce p in the interior of conv(p0, p1) if p0 6= p1 and produce p = p0 = p1 if

p0 = p1 (and this is true for any sensible averaging method).

4.5 Experimental results

In this section we compare various calibration methods discussed so far by applying

them to six standard scoring classifiers (we will usually omit “scoring” in this section)

available within Weka [38], a machine learning tool developed at the University of

Waikato, NZ. The standard classifiers are J48 decision trees (abbreviated to J48, or even

to J), J48 decision trees with bagging (J48 Bagging, or JB), logistic regression (LR), naïve

Bayes (NB), neural networks (NN), and support vector machines calibrated using a sig-

moid function as defined by Platt [59] (SVM Platt, or simply SVM). Each of these standard

classifiers produces scores in the interval [0, 1], which can then be used as probabilistic

predictions; however, in most previous studies these have been found to be inaccurate

(see [97] and [46]). We use the scores generated by classifiers as inputs, and by applying
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TABLE 4.1: Log loss (MLE) results obtained using standard Weka clas-
sifiers (W) and the three calibration methods (VA, SVA, DIR) applied to
the standard classifiers’ outputs for the following Weka classifiers: J48,
J48 Bagging, logistic regression (upper part) and naïve Bayes, neural net-
works, and SVM Platt (lower part). The best results for each pair (classi-

fier, dataset) are in bold.

J48 (J) J48 Bagging (JB) logistic regression (LR)
W VA SVA DIR W VA SVA DIR W VA SVA DIR

Australian ∞ 0.380 0.469 ∞ 0.328 0.369 0.344 ∞ 0.342 0.340 0.340 ∞
Breast ∞ 0.607 0.642 ∞ 0.581 0.592 0.636 ∞ 0.584 0.567 0.586 ∞
Diabetes ∞ 0.552 0.635 ∞ 0.504 0.515 0.561 ∞ 0.492 0.490 0.491 ∞
Echo ∞ 0.606 0.670 ∞ 0.556 0.517 0.563 ∞ ∞ 0.589 0.606 ∞
Hepatitis ∞ 0.491 0.528 ∞ 0.420 0.456 0.434 ∞ ∞ 0.393 0.504 ∞
Ionosphere ∞ 0.383 0.410 ∞ ∞ 0.387 0.251 ∞ ∞ 0.387 0.524 ∞
Labor ∞ 0.503 0.537 ∞ 0.427 0.427 0.385 ∞ 1.927 0.687 0.297 ∞
Liver ∞ 0.662 0.866 ∞ 0.609 0.635 0.707 ∞ 0.619 0.622 0.611 ∞
Vote ∞ 0.134 0.145 ∞ 0.135 0.159 0.131 ∞ 1.059 0.188 0.148 ∞

naïve Bayes (NB) neural networks (NN) SVM Platt (SVM)
W VA SVA DIR W VA SVA DIR W VA SVA DIR

Australian 0.839 0.355 0.367 ∞ 0.557 0.427 0.450 ∞ 0.391 0.356 0.351 ∞
Breast 0.663 0.563 0.551 ∞ 0.774 0.615 0.738 ∞ 0.583 0.568 0.582 ∞
Diabetes 0.753 0.495 0.508 ∞ 0.536 0.500 0.519 ∞ 0.491 0.497 0.490 ∞
Echo 0.658 0.505 0.522 ∞ 0.770 0.578 0.605 ∞ 0.558 0.495 0.538 ∞
Hepatitis 0.936 0.365 0.372 ∞ 0.753 0.471 0.484 ∞ 0.435 0.349 0.404 ∞
Ionosphere 0.704 0.262 0.227 ∞ 0.625 0.427 0.379 ∞ 0.359 0.250 0.333 ∞
Labor 1.854 0.410 0.296 ∞ 0.325 0.560 0.298 ∞ 3.643 0.364 0.287 ∞
Liver 0.727 0.649 0.661 ∞ 0.642 0.603 0.615 ∞ 0.645 0.663 0.639 ∞
Vote 0.594 0.218 0.211 ∞ 0.235 0.229 0.158 ∞ 0.125 0.211 0.121 ∞

the DIR (defined in Section 4.3), Venn–Abers (VA), and simplified Venn–Abers (SVA, see

below) methods we investigate how well we can calibrate the scores and improve them

in their role as probabilistic predictions.

In the set of experiments described in this section we do not perform a direct compar-

ison to the method developed by Langford and Zadrozny [46] primarily because, as far

as we are aware, the algorithms described in their work are not publicly available.

For the purpose of comparison we use a total of nine datasets with binary labels (en-

coded as 0 or 1) obtained from the UCI machine learning repository [31]: Australian

Credit (which we abbreviate to Australian), Breast Cancer (Breast), Diabetes, Echocar-

diogram (Echo), Hepatitis, Ionosphere, Labor Relations (Labor), Liver Disorders (Liver),

and Congressional Voting (Vote). The datasets vary in size as well as the number and type

of attributes in order to give a reasonable range of conditions encountered in practice.
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TABLE 4.2: The analogue of Table 4.1 for square loss (RMSE).

J48 (J) J48 Bagging (JB) logistic regresion (LR)
W VA SVA DIR W VA SVA DIR W VA SVA DIR

Australian 0.366 0.346 0.359 0.366 0.313 0.338 0.318 0.323 0.317 0.319 0.319 0.321
Breast 0.472 0.453 0.463 0.473 0.443 0.451 0.460 0.474 0.442 0.437 0.444 0.450
Diabetes 0.449 0.431 0.443 0.449 0.407 0.415 0.420 0.427 0.399 0.401 0.401 0.402
Echo 0.478 0.456 0.460 0.482 0.427 0.417 0.423 0.444 0.457 0.443 0.446 0.475
Hepatitis 0.407 0.393 0.401 0.419 0.362 0.390 0.368 0.391 0.400 0.357 0.384 0.411
Ionosphere 0.318 0.355 0.312 0.318 0.267 0.356 0.261 0.267 0.357 0.363 0.349 0.361
Labor 0.407 0.403 0.402 0.413 0.361 0.371 0.339 0.341 0.294 0.498 0.287 0.303
Liver 0.528 0.482 0.518 0.528 0.457 0.478 0.478 0.493 0.460 0.463 0.458 0.461
Vote 0.187 0.186 0.186 0.187 0.187 0.206 0.186 0.188 0.198 0.233 0.195 0.203

naïve Bayes (NB) neural networks (NN) SVM Platt (SVM)
W VA SVA DIR W VA SVA DIR W VA SVA DIR

Australian 0.392 0.328 0.333 0.335 0.360 0.363 0.361 0.371 0.343 0.324 0.325 0.327
Breast 0.449 0.436 0.427 0.433 0.485 0.465 0.491 0.508 0.443 0.431 0.442 0.447
Diabetes 0.420 0.406 0.410 0.413 0.413 0.408 0.413 0.417 0.399 0.393 0.400 0.402
Echo 0.428 0.408 0.412 0.426 0.457 0.436 0.443 0.468 0.416 0.427 0.418 0.431
Hepatitis 0.357 0.339 0.335 0.342 0.396 0.402 0.379 0.427 0.350 0.350 0.353 0.364
Ionosphere 0.281 0.273 0.250 0.251 0.321 0.378 0.316 0.333 0.312 0.309 0.312 0.316
Labor 0.256 0.363 0.284 0.281 0.279 0.442 0.293 0.307 0.274 0.358 0.280 0.283
Liver 0.480 0.476 0.478 0.487 0.459 0.456 0.456 0.463 0.473 0.477 0.472 0.477
Vote 0.292 0.257 0.251 0.250 0.216 0.271 0.206 0.227 0.183 0.191 0.185 0.188

In our comparison we use the two standard loss functions discussed in the previous

section. Namely, on a given test sequence of length n we will calculate the mean log error

(MLE)
1

n

n∑
i=1

λln(pi, yi) (4.12)

and the root mean square error (RMSE)

√√√√ 1

n

n∑
i=1

λsq(pi, yi), (4.13)

where pi is the probabilistic prediction for the label yi of the ith observation in the test

sequence. MLE (4.12) can be infinite, namely when predicting pi ∈ {0, 1} while being

incorrect. It therefore penalises the overly confident probabilistic predictions much more

significantly than RMSE. We compare the performance of the standard classifiers with

their versions calibrated using the three methods (VA, SVA, and DIR) under both loss

functions for each dataset. In each experiment we randomly permute the dataset and use
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Algorithm 3 Simplified Venn–Abers predictor

Require: training sequence (z1, . . . , zl)
Require: test object x
Ensure: multiprobabilistic prediction (p0, p1)

set s to the scoring function for (z1, . . . , zl)
for y ∈ {0, 1} do

set gy to the isotonic calibrator for
(s(x1), y1), . . . , (s(xl), yl), (s(x), y)

set py := gy(s(x))

the first 2/3 observations for training and the remaining 1/3 for testing.

One of the potential drawbacks of the Venn–Abers method is its computational inef-

ficiency: for each test object the scores have to be recalculated for the training sequence

extended by including the test object first labelled as 0 and then labelled as 1. This im-

plies that the total calculation time is at least 2n times that of the underlying classifier,

where n is the number of test observations. Therefore, we define a simplified version of

Venn–Abers predictors, for which the scores are calculated only once without recalculat-

ing them for each test object with postulated labels 0 and 1.

In detail, the simplified Venn–Abers predictor for a given scoring classifier is defined as

follows. Let (z1, . . . , zl) be a training sequence and x be a test object. Define s to be the

scoring function for (z1, . . . , zl), g0 to be the isotonic calibrator for

(
(s(x1), y1), . . . , (s(xl), yl), (s(x), 0)

)
,

and g1 to be the isotonic calibrator for

(
(s(x1), y1), . . . , (s(xl), yl), (s(x), 1)

)
(cf. (4.6) and (4.7)). The multiprobabilistic prediction output for the label of x by the sim-

plified Venn–Abers (SVA) predictor is (p0, p1), where p0 := g0(s(x)) and p1 := g1(s(x)).

This method, summarized as Algorithm 3, is intermediate between DIR and the Venn–

Abers method.

Notice that Lemma 2 continues to hold for SVA predictors; therefore, they never suffer
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infinite loss even under the log loss function. On the other hand, the following proposi-

tion shows that SVA predictors can violate the property (4.2) of unbiasedness in the large;

in particular, they are not Venn predictors (cf. Corollary 1).

Proposition 2. There exists a simplified Venn–Abers predictor violating (4.2) for some l.

Proof. Let the object space be the real line, X := R, and the probability distribution gen-

erating independent observations (X,Y ) be such that: the marginal distribution of X is

continuous; the probability that X > 0 (and, therefore, the probability that X < 0) is 1/2;

the probability that Y = 1 given X < 0 is 1/3; the probability that Y = 1 given X > 0

is 2/3. Therefore, P(Y = 1) = 1/2. Let l be a large number (we are using a somewhat

informal language, but formalization will be obvious). Given a training set (z1, . . . , zl),

where zi = (xi, yi) for all i, the scoring function s is:

s(x) :=


0 if x ∈ {x1, . . . , xl} and x < 0

1 if x ∈ {x1, . . . , xl} and x > 0

2 if x /∈ {x1, . . . , xl}.

It is easy to see that, with high probability,

V → 2/3, V = 1.

Therefore, (4.2) is violated.

Proposition 2 shows that SVA predictors are not always valid; however, the construc-

tion in its proof is artificial, and our hope is that they are “nearly valid” in practice, since

they are a modification of provably valid predictors.

For each dataset/classifier combination, we repeat the same experiment a total of 100

times for standard classifiers (denoted W in the tables), SVA, and DIR and 16 times for

VA (because of the computational inefficiency of the latter) and average the results. The

same 100 random splits into training and test sets are used for W, SVA, and DIR, but for

VA the 16 splits are different.
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Tables 4.1–4.2 compare the overall losses computed according to (4.12) (MLE, used

in Table 4.1) and (4.13) (RMSE, used in Table 4.2) for probabilities generated by the stan-

dard classifiers as implemented in Weka (W) and the corresponding Venn–Abers (VA),

simplified Venn–Abers (SVA), and direct isotonic-regression (DIR) predictors. The val-

ues in bold indicate the lowest of the four losses for each dataset/classifier combination.

The column titles mention both fuller and shorter names for the six standard classifiers;

the short name “SVM” is especially appropriate when using VA, SVA, and DIR, in which

case the application of the sigmoid function in Platt’s method is redundant. The three

entries of∞ in the column W for logistic regression of Table 4.1 come out as infinities in

our experiments only because of the limited machine accuracy: logistic regression some-

times outputs probabilistic predictions that are so close to 0 or 1 that they are rounded to

0 or 1, respectively, by hardware.

In the case of MLE, the VA and SVA methods improve the predictive performance

of the majority of the standard classifiers on most datasets. A major exception is J48

Bagging. The application of bagging to J48 decision trees improves the calibration signif-

icantly as bagging involves averaging over different training sets in order to reduce the

underlying classifier’s instability. The application of VA and SVA to J48 Bagging is not

found to improve the log or square loss significantly. What makes VA and SVA useful

is that for many data sets other classifiers, less well calibrated than J48 Bagging, provide

more useful scores.

In the case of RMSE, the application of VA and SVA also often improves probabilistic

predictions.

Whereas in the case of square loss the DIR method often produces values comparable

to VA and SVA, under log loss this method fares less well (which is not obvious from [97],

which only uses square loss). In all our experiments DIR suffers infinite log loss for at

least one test observation, which makes the overall MLE infinite. There are modifications

of the DIR method preventing probabilistic predictions in {0, 1} (such as those mentioned

in [55], Section 3.3), but they are somewhat arbitrary.

Table 4.3 ranks, for each loss function and dataset, the four calibration methods: W
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TABLE 4.3: The ranking of the best three methods (among W, VA, SVA,
and DIR) for each dataset according to the two loss functions (see the text

for details).

log loss square loss
Australian W (JB), VA (LR), SVA (LR) W (JB), SVA (JB), VA (LR)
Breast SVA (NB), VA (NB), W (JB) SVA (NB), VA (SVM), DIR (NB)
Diabetes VA (LR), SVA (SVM), W (SVM) VA (SVM), W (LR), SVA (SVM)
Echo VA (SVM), SVA (NB), W (JB) VA (NB), SVA (NB), W (SVM)
Hepatitis VA (SVM), SVA (NB), W (JB) SVA (NB), VA (NB), DIR (NB)
Ionosphere SVA (NB), VA (SVM), W (SVM) SVA (NB), DIR (NB), W (JB)
Labor SVA (SVM), W (NN), VA (SVM) W (NB), SVA (SVM), DIR (NB)
Liver VA (NN), W (JB), SVA (LR) VA (NN), SVA (NN), W (JB)
Vote SVA (SVM), W (SVM), VA (J) W (SVM), SVA (SVM), VA (J)

(none), VA (Venn–Abers), SVA (simplified Venn–Abers), and DIR (direct isotonic regres-

sion). Only the first three methods are given (the best, the second best, and the second

worst), where the quality of a method is measured by the performance of the best un-

derlying classifier (indicated in parentheses using the abbreviations given in the column

titles of Tables 4.1–4.2) for the given method, data set, and loss function. Notice that we

are ranking the four calibration methods rather than the 24 combinations of Weka classi-

fiers with calibration methods (e.g., were we ranking the 24 combinations, the entry for

log loss and Australian would remain the same but the next entry, for log loss and Breast,

would become “SVA (NB), VA (NB), VA (LR)”).

For MLE, the best algorithm is VA or SVA for 8 data sets out of 9; for RMSE this is true

for 6 data sets out of 9. In all other cases the best algorithm is W rather than DIR. (And

as discussed earlier, in the case of log loss the performance of DIR is especially poor.)

Therefore, it appears that the most interesting comparisons are between W and VA and

between W and SVA.

What is interesting is that VA and SVA perform best on equal numbers of datasets, 4

each in the case of MLE and 3 each in the case of RMSE, despite the theoretical guarantees

of validity for the former method (such as Theorem 2). The similar performance of the

two methods needs to be confirmed in more extensive empirical studies, but if it is, SVA

will be a preferable method because of its greater computational efficiency.

Comparing W and SVA, we can see that SVA performs better than W on 7 data sets

out of 9 for MLE, and on 5 data sets out of 9 for RMSE. And comparing W and VA, we
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can see that VA performs better than W on 6 data sets out of 9 for MLE, and on 5 data

sets out of 9 for RMSE. This suggests that SVA might be an improvement of VA not only

in computational but also in predictive efficiency (but the evidence for this is very slim).

4.6 Conclusion

This chapter has introduced a new class of Venn predictors thereby extending the domain

of applicability of the method. Our experimental results suggest that the Venn–Abers

method can potentially lead to better calibrated probabilistic predictions for a variety of

datasets and standard classifiers. The method seems particularly suitable in cases where

alternative probabilistic predictors produce overconfident but erroneous predictions un-

der an unbounded loss function such as log loss. In addition, the results suggest that

an alternative simplified Venn–Abers method can yield similar results while retaining

computational efficiency. Unlike the previous methods for improving the calibration of

probabilistic predictors, Venn–Abers predictors enjoy theoretical guarantees of validity

(shared with other Venn predictors).
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Chapter 5

Large-scale probabilistic predictors

This chapter studies theoretically and empirically a method of turning machine learning algo-

rithms into probabilistic predictors that, as the Venn–Abers predictors described in the preceding

chapter, automatically enjoy a property of validity (perfect calibration) but are computationally

more efficient. The price to pay for perfect calibration is that these probabilistic predictors pro-

duce imprecise (in practice, almost precise for large data sets) probabilities. When these imprecise

probabilities are merged into precise probabilities, the resulting predictors, while losing the theo-

retical property of perfect calibration, are shown to be consistently more accurate than the existing

methods in empirical studies.

5.1 Introduction

Prediction algorithms studied in this chapter belong to a class of Venn–Abers predictors,

introduced in the preceding chapter and reported in [85]. As described in the introduc-

tory section of this thesis, the main desiderata for Venn ([84], Chapter 2) predictors are

validity, predictive efficiency and computational efficiency. Whereas the standard and the

special Venn-Abers predictors enjoy the first two, their computational efficiency is rela-

tively weak compared with many standard machine learning algorithms. This chapter

introduces two computationally efficient versions of Venn–Abers predictors, which we

refer to as inductive Venn–Abers predictors (IVAPs) and cross-Venn–Abers predictors

(CVAPs). The ways in which they achieve the three desiderata above are:

• Validity (in the form of perfect calibration) is satisfied by IVAPs automatically, and

the experimental results reported in this chapter suggest that it is inherited by
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CVAPs.

• Predictive efficiency is determined by the predictive efficiency of the underlying

learning algorithms (so that the full arsenal of methods of modern machine learning

can be brought to bear on the prediction problem at hand).

• Computational efficiency is, again, determined by the computational efficiency of

the underlying algorithm; the computational overhead of extracting probabilistic

predictions consists of sorting (which takes time O(n log n), where n is the number

of observations) and other computations taking time O(n).

The rest of this chapter is organised as follows: in Sections 5.2 and 5.3 we introduce

IVAPs and CVAPs, respectively. Section 5.4 is devoted to minimax ways of merging im-

precise probabilities into precise probabilities and thus making IVAPs and CVAPs precise

probabilistic predictors.

In order to illustrate the applicability of this method we again concentrate on binary

classification problems, in which the objects to be classified are labelled as 0 or 1. Just like

VAPs, as precise probabilistic predictors, IVAPs and CVAPs are ways of converting the

scores for test objects output by underlying machine learning algorithms into numbers

in the range [0, 1] that can serve as probabilities. Section 5.5 compares two existing alter-

native calibration methods, Platt’s [59] and the method based on isotonic regression [96],

with IVAPs and CVAPs theoretically. Section 5.6 is devoted to experimental comparisons

and shows that CVAPs consistently outperform the two existing methods.

5.2 Inductive Venn–Abers predictors (IVAPs)

In this chapter we consider data sequences (usually loosely referred to as sets) consisting

of observations z = (x, y), each observation consisting of an object x and a label y ∈ {0, 1};

we only consider binary labels. We are given a training set whose size will be denoted l.

This section introduces inductive Venn–Abers predictors. Our main concern is how

to implement them efficiently, but as functions, an IVAP is defined in terms of a scoring

algorithm (see the last paragraph of the previous section) as follows:
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• Divide the training set of size l into two subsets, the proper training set of size m and

the calibration set of size k, so that l = m+ k.

• Train the scoring algorithm on the proper training set.

• Find the scores s1, . . . , sk of the calibration objects x1, . . . , xk.

• When a new test object x arrives, compute its score s. Fit isotonic regression

to (s1, y1), . . . , (sk, yk), (s, 0) obtaining a function f0. Fit isotonic regression to

(s1, y1), . . . , (sk, yk), (s, 1) obtaining a function f1. The multiprobability prediction

for the label y of x is the pair (p0, p1) := (f0(s), f1(s)) (intuitively, the prediction is

that the probability that y = 1 is either f0(s) or f1(s)).

Notice that the multiprobability prediction (p0, p1) output by an IVAP always satis-

fies p0 < p1, and so p0 and p1 can be interpreted as the lower and upper probabilities,

respectively; in practice, they are close to each other for large training sets.

First we state formally the property of validity of IVAPs (adapting the approach of

Theorem 2, Chapter 4 to IVAPs). A random variable P taking values in [0, 1] is perfectly

calibrated (as a predictor) for a random variable Y taking values in {0, 1} if E(Y | P ) = P

a.s. A selector is a random variable taking values in {0, 1}. As a general rule, in this

chapter random variables are denoted by capital letters (e.g., X are random objects and

Y are random labels).

Proposition 3. Let (P0, P1) be an IVAP’s prediction for X based on a training sequence

(X1, Y1), . . . , (Xl, Yl). There is a selector S such that PS is perfectly calibrated for Y provided

the random observations (X1, Y1), . . . , (Xl, Yl), (X,Y ) are i.i.d.

Our next proposition concerns the computational efficiency of IVAPs; both proposi-

tions will be proved later in the section.

Proposition 4. Given the scores s1, . . . , sk of the calibration objects, the prediction rule for com-

puting the IVAP’s predictions can be computed in timeO(k log k) and spaceO(k). Its application

to each test object takes time O(log k). Given the sorted scores of the calibration objects, the

prediction rule can be computed in time and space O(k).
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Proofs of both statements rely on the geometric representation of isotonic regression

as the slope of the GCM (greatest convex minorant) of the CSD (cumulative sum di-

agram): see [13], pages 9–13 (especially Theorem 1.1). To make our exposition more

self-contained, we define both GCM and CSD below.

First we explain how to fit isotonic regression to (s1, y1), . . . , (sk, yk) (without neces-

sarily assuming that si are the calibration scores and yi are the calibration labels, which

will be needed to cover the use of isotonic regression in IVAPs). We start from sort-

ing all scores s1, . . . , sk in the increasing order and removing the duplicates. (This is

the most computationally expensive step in our calibration procedure, O(k log k) in the

worst case.) Let k′ ≤ k be the number of distinct elements among s1, . . . , sk, i.e., the car-

dinality of the set {s1, . . . , sk}. Define s′j , j = 1, . . . , k′, to be the jth smallest element of

{s1, . . . , sk}, so that s′1 < s′2 < · · · < s′k′ . Define wj :=
∣∣∣{i = 1, . . . , k : si = s′j

}∣∣∣ to be the

number of times s′j occurs among s1, . . . , sk. Finally, define

y′j :=
1

wj

∑
i=1,...,k:si=s′j

yi

to be the average label corresponding to si = s′j .

The CSD of (s1, y1), . . . , (sk, yk) is the set of points

Pi :=

 i∑
j=1

wj ,

i∑
j=1

y′jwj

 , i = 0, 1, . . . , k′; (5.1)

in particular, P0 = (0, 0). The GCM is the greatest convex minorant of the CSD. The value

at s′i, i = 1, . . . , k′, of the isotonic regression fitted to (s1, y1), . . . , (sk, yk) is defined to be

the slope of the GCM between
∑i−1

j=1wj and
∑i

j=1wj ; the values at other s are somewhat

arbitrary (namely, the value at s ∈ (s′i, s
′
i+1) can be set to anything between the left and

right slopes of the GCM at
∑i

j=1wj) but are not needed for our purposes (unlike in the

standard use of isotonic regression in machine learning, [96]): e.g., f1(s) is the value of

the isotonic regression fitted to a sequence that already contains (s, 1).

Proof of Proposition 3. Set S := Y . The statement of the proposition even holds

conditionally on knowing the values of (X1, Y1), . . . , (Xm, Ym) and the multiset
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*(Xm+1, Ym+1), . . . , (Xl, Yl), (X,Y )+; this knowledge allows us to compute the scores

*s1, . . . , sk, s+ of the calibration objects Xm+1, . . . , Xl and the test object X . The only

remaining randomness is over the equiprobable permutations of

(Xm+1, Ym+1), . . . , (Xl, Yl), (X,Y ); in particular, (s, Y ) is drawn randomly from the

multiset *(s1, Ym+1), . . . , (sk, Yl), (s, Y )+. It remains to notice that, according to the GCM

construction, the average label of the calibration and test observations corresponding to

a given value of PS is equal to PS .

The idea behind computing the pair (f0(s), f1(s)) efficiently is to pre-compute two

vectors F 0 and F 1 storing f0(s) and f1(s), respectively, for all possible values of s. Let

k′ and s′i be as defined above in the case where s1, . . . , sk are the calibration scores and

y1, . . . , yk are the corresponding labels. The vectors F 0 and F 1 are of length k′, and for all

i = 1, . . . , k′ and both ε ∈ {0, 1}, F εi is the value of fε(s) when s = s′i. Therefore, for all

i = 1, . . . , k′:

• F 1
i is also the value of f1(s) when s is just to the left of s′i;

• F 0
i is also the value of f0(s) when s is just to the right of s′i.

Since f0 and f1 can change their values only at the points s′i, the vectors F 0 and F 1

uniquely determine the functions f0 and f1, respectively.

Computational details of IVAPs

Let k′, s′i, and wi be as defined above in the case where s1, . . . , sk and y1, . . . , yk are the

calibration scores and labels. The corners of a GCM are the points on the GCM where the

slope of the GCM changes. It is clear that the corners belong to the CSD, and we also add

the extreme points (P0 and Pk′ in the case of (5.1)) of the CSD to the list of corners.

We will only explain in detail how to compute F 1; the computation of F 0 is analogous

and will be explained only briefly. First we explain how to compute F 1
1 .

Extend the CSD as defined above (in the case where s1, . . . , sk and y1, . . . , yk are the

calibration scores and labels) by adding the point P−1 := (−1,−1). The corresponding

GCM will be referred to as the initial GCM; it has at most k′ + 2 corners. Algorithm 4,
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which operates with a stack S (initially empty), computes the corners; it is a trivial mod-

ification of Graham’s scan ([35]; [20], Section 33.3). The corners are returned on the stack

S, and they are ordered from left to right (P−1 being at the bottom of S and Pk′ at the

top). The operator “and” in line 4 is, as usual, short circuiting. The expression “the angle

formed by points a, b, and c makes a nonleft (resp. nonright) turn” may be taken to mean

that (b− a)× (c− b) ≤ 0 (resp. ≥ 0), where × stands for cross product of planar vectors;

this avoids computing angles and divisions (see, e.g., [20], Section 33.1).

Algorithm 4 allows us to compute F 1
1 as the slope of the line between the two bottom

corners in S, but this will be done by the next algorithm. Notice that we only need to

compute F 1
i for even i, as

F 1
1 = F 1

2 ≤ F 1
3 = F 1

4 ≤ · · · ≤ F 1
2k′−1 = F 1

2k′ ≤ F 1
2k′+1 = 1.

The possibilities are: s is to the left of the scores in B1, s coincides with the scores

in B1, s is between the scores in B1 and the scores in B2, s coincides with the scores in

B2,. . . , s coincides with the scores inBn, s is to the right of the scores inBn. We will move

over these possibilities from the left to the right.

First we extend the CSD by adding the line connecting (−1,−1) and (0, 0) on the

left. (At each point the CSD will remain a continuous piece-wise constant function.) We

extend the GCM by connecting the point (−1,−1) (which becomes a new corner) to the

right-most corner C such that the slope of the line connecting (−1,−1) and that corner is

minimal; all corners between (−1,−1) and that right-most corner C cease to be corners.

The detailed procedure is: we move through the old corners from left to right computing

Algorithm 4 Initializing the corners for computing F 1

1: PUSH(P−1, S)
2: PUSH(P0, S)
3: for i ∈ {1, 2, . . . , k′} do
4: while S.size > 1 and the angle formed by points

NEXT-TO-TOP(S), TOP(S), and Pi
makes a nonleft turn do

5: POP(S)

6: PUSH(Pi, S)

7: return S
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Algorithm 5 Computing F 1

1: while ¬STACK-EMPTY(S) do
2: PUSH(POP(S), S′)

3: for i ∈ {1, 2, . . . , k′} do
4: set F 1

i to the slope of
−−−−−−−−−−−−−−−−−−−−−→
TOP(S′),NEXT-TO-TOP(S′)

5: Pi−1 = Pi−2 + Pi − Pi−1
6: if Pi−1 is at or above

−−−−−−−−−−−−−−−−−−−−−→
TOP(S′),NEXT-TO-TOP(S′) then

7: continue
8: POP(S′)
9: while S′.size > 1 and the angle formed by points

Pi−1, TOP(S′), and NEXT-TO-TOP(S′)
makes a nonleft turn do

10: POP(S′)

11: PUSH(Pi−1, S
′)

12: return F 1

the slope of the line between (−1,−1) and the current corner; the slope first decreases

and then starts increasing; we define C to be the last corner for which the slope takes

its minimal value (and there will often be only one corner at which the minimum is

attained).

The rest of the procedure for computing the vector F 1 is shown as Algorithm 5. The

main data structure in Algorithm 5 is a stack S′, which is initialized (in lines 1–2) by

putting in it all corners of the initial GCM in reverse order as compared with S (so that

P−1 = (−1,−1) is initially at the top of S′).

At each point in the execution of Algorithm 5 we will have a length-1 active interval

and the active corner, which will nearly always be at the top of the stack S′. The initial

CSD can be visualized by connecting each pair of adjacent points: P−1 and P0, P0 and

P1, etc. It stretches over the interval [−1, k′] of the horizontal axis; the subinterval [−1, 0]

corresponds to the test score s (assumed to be to the left of all s′i) and each subinter-

val
[∑i−1

j=1wj ,
∑i

j=1wj

]
corresponds to the calibration score s′i, i = 1, . . . , k′. The active

corner is initially at P−1 = (−1,−1); the corners to the left of the active corner are ir-

relevant and ignored (not remembered in S′). The active interval is always between the

first coordinate of TOP(S′) and the first coordinate of NEXT-TO-TOP(S′). At each itera-

tion i = 1, . . . , k′ of the main loop 3–11 we are computing F 1
i , i.e., f1(s) for the situation

where s is between s′i−1 and s′i (meaning to the left of s′1 if i = 1), and after that we swap
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the active interval (corresponding to s) and the interval corresponding to s′i; of course,

after swapping pieces of CSD are adjusted vertically in order to make the CSD as a whole

continuous.

At the beginning of each iteration i of the loop 3–11 we have the CSD

P−1, P0, P1, . . . , Pk′ (5.2)

corresponding to

the points s′1, . . . , s
′
i−1, s, s

′
i, s
′
i+1, . . . , s

′
k′

with the weights w1, . . . , wi−1, 1, wi, wi+1, . . . , wk′

(respectively); the active interval is the projection of
−−−−−−→
Pi−2, Pi−1 (onto the horizontal axis,

here and later). At the end of that iteration we have the CSD which looks identical to (5.2)

but in fact contains a different point Pi−1 (cf. line 5 of the algorithm) and corresponds to

the points s′1, . . . , s
′
i−1, s

′
i, s, s

′
i+1, . . . , s

′
k′

with the weights w1, . . . , wi−1, wi, 1, wi+1, . . . , wk′

(respectively); the active interval becomes the projection of
−−−−−→
Pi−1, Pi. To achieve this, in

line 5 we redefine Pi−1 to be the reflection of the old Pi−1 across the mid-point (Pi−2 +

Pi)/2. The stack S′ always consists of corners of the GCM of the current CSD, and it

contains all the corners to the right of the active interval (plus one more corner, which is

the active corner).

At each iteration i of the loop 3–11:

• We report the slope of the GCM over the active interval as F 1
i (line 4).

• We then swap the fragments of the CSD corresponding to the active interval and to

s′i leaving the rest of the CSD intact. This way the active interval moves to the right

(from the projection of
−−−−−−→
Pi−2, Pi−1 to the projection of

−−−−−→
Pi−1, Pi).
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1. Insert P(0,0) and P(-1,-1) and 
initialise the CSD
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2. f1(1) equals to GCM given by 
the active corner = 1/3=0.33 

3. f1(2) equals to GCM given by the 
same active corner = 1/2=0.5 

4. f1(3) equals to GCM given by the 
new active corner = 2/3 = 0.67

Legend:

Additional points P0, P-1

Points on CSD for y=0

Points on CSD for y=1

Active corner

Inactive corner

GCM slope

FIGURE 5.1: A graphical representation of Algorithms 4 and 5.

• If the point Pi−1 above the left end-point of the active interval is above (or at) the

GCM, move to the next iteration of the loop. (The active corner does not change.)

The rest of this description assumes that Pi−1 is strictly below.

• Make Pi−1 the active corner. Redefine the GCM to the right of the active corner by

connecting the active corner to the right-most corner C such that the slope of the

line connecting the active corner and that corner is minimal; all the corners between

the active corner and that right-most corner C are then forgotten.

Lemma 3. The worst-case computation time of Algorithms 4 and 5 is O(k′).

Proof. In the case of Algorithm 4, see [20], Section 33.3. In the case of Algorithm 5, it

suffices to notice that the total number of iterations for the while loop does not exceed

the total number of elements pushed onto S′ (since at each iteration we pop an element

off S′); and the total number of elements pushed onto S′ is at most k′ (in the first for loop)

plus k′ (in the second for loop).

A graphical illustration of Algorithms 4 and 5 is shown in Figure 5.1. Algorithms 6

and 7 respectively below are counterparts of Algorithms 4 and 5 for computing F 0. In
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Algorithm 6 Initializing the corners for computing F 0

1: PUSH(Pk′+1, S)
2: PUSH(Pk′ , S)
3: for i ∈ {k′ − 1, k′ − 2, . . . , 0} do
4: while S.size > 1 and the angle formed by points NEXT-TO-TOP(S),

TOP(S), and Pi makes a nonright turn do
5: POP(S)

6: PUSH(Pi, S)

7: return S

Algorithm 7 Computing F 0

1: while ¬STACK-EMPTY(S) do
2: PUSH(POP(S), S′)

3: for i ∈ {k′, k′ − 1, . . . , 1} do
4: set F 0

i to the slope of
−−−−−−−−−−−−−−−−−−−−−→
TOP(S′),NEXT-TO-TOP(S′)

5: Pi = Pi−1 + Pi+1 − Pi
6: if Pi is at or above

−−−−−−−−−−−−−−−−−−−−−→
TOP(S′),NEXT-TO-TOP(S′) then

7: continue
8: POP(S′)
9: while S′.size > 1 and the angle formed by points Pi,

TOP(S′), and NEXT-TO-TOP(S′) makes a nonright turn do
10: POP(S′)

11: PUSH(Pi, S
′)

12: return F 0

those algorithms, we do not need the point P−1 anymore; however, we need a new point

Pk′+1 := Pk′ + (1, 1). The stacks S and S′ that they use are initially empty.

Alternatively, we could use the algorithm for computing F 1 in order to compute F 0,

since, for all i ∈ {1, . . . , k′},

F 0
i

(
s′1, . . . , s

′
k′ , w1, . . . , wk′ , y

′
1, . . . , y

′
k′
)

= 1− F 1
i

(
−s′1, . . . ,−s′k′ , w1, . . . , wk′ , 1− y′1, . . . , 1− y′k′

)
,

where the dependence on various parameters is made explicit.

After computing F 0 and F 1 we can arrange the calibration scores s′1, . . . , s
′
k′ into a

binary search tree: see Algorithm 8, where F 0
0 is defined to be 0 and F 1

k′+1 is defined

to be 1; we will refer to s′i as the keys of the corresponding nodes (only internal nodes

will have keys). Algorithm 8 is in fact more general than what we need: it computes
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Algorithm 8 BST(a, b) (to create the binary search tree, run BST(1, k′))

1: if b = a then
2: construct the binary tree

whose root has key s′a and payload {F 0
a , F

1
a },

left child is a leaf with payload {F 0
a−1, F

1
a },

and right child is a leaf with payload {F 0
a , F

1
a+1} return its root

3: else if b = a+ 1 then
4: construct the binary tree

whose root has key s′a and payload {F 0
a , F

1
a },

left child is a leaf with payload {F 0
a−1, F

1
a },

and right child is BST(b, b) return its root
5: else
6: c = b(a+ b)/2c
7: construct the binary tree

whose root has key s′c and payload {F 0
c , F

1
c },

left child is BST(a, c− 1),
and right child is BST(c+ 1, b) return its root

Algorithm 9 IVAP(T ′, T ′′, x)

1: set N to the root of the binary search tree and compute the score s of x
2: while N is not a leaf do
3: if s < key(N) then
4: set N to N ’s left child
5: else if s > key(N) then
6: set N to N ’s right child
7: else
8: return payload(N)

9: return payload(N)

the binary search tree for the scores s′a, s′a+1, . . . , s
′
b for a ≤ b; therefore, we need to run

BST(1, k′). The size of the binary search tree is 2k′ + 1; k′ of its nodes are internal nodes

corresponding to different values of s′i, i = 1, . . . , k′, and the other k′ + 1 of its nodes are

leaves corresponding to the k′ + 1 intervals formed by the points s′1, . . . , s
′
k′ .

Once we have the binary search tree it is easy to compute the prediction for a test

object x in time logarithmic in k′: see Algorithm 9, which passes x through the tree and

usesN to denote the current node. Formally, we give the test object x, the proper training

set T ′, and the calibration set T ′′ as the inputs of Algorithm 9; however, the algorithm uses

for prediction the binary search tree built from T ′ and T ′′, and the bulk of work is done

in Algorithms 4–8.
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The worst-case computational complexity of the overall procedure involves the fol-

lowing components:

• Training the algorithm on the proper training set, computing the scores of the cali-

bration objects, and computing the scores of the test objects; at this stage the com-

putation time is determined by the underlying algorithm.

• Sorting the scores of the calibration objects takes time O(k log k).

• Running our procedure for pre-computing f0 and f1 takes timeO(k) (by Lemma 3).

• Processing each test object takes an additional time of O(log k) (using binary

search).

In principle, using binary search does not require an explicit construction of a binary

search tree (cf. [20], Exercise 2.3-5), but once we have a binary search tree we can eas-

ily transform it into a red-black tree, which allows us to add new observations to (and

remove old observations from) the calibration set in time O(log k) ([20], Chapter 13).

5.3 Cross Venn–Abers predictors (CVAPs)

A CVAP is just a combination of K IVAPs, where K is the parameter of the algorithm. It

is described as Algorithm 10, where IVAP(A,B, x) stands for the output of IVAP applied

to A as proper training set, B as calibration set, and x as test object, and GM stands

for geometric mean (so that GM(p1) is the geometric mean of p11, . . . , p
K
1 and GM(1 −

p0) is the geometric mean of 1 − p10, . . . , 1 − pK0 ). The folds should be of approximately

equal size, and usually the training set is split into folds at random (although we choose

contiguous folds in Section 5.6 to facilitate reproducibility). One way to obtain a random

assignment of the training observations to folds (see line 1) is to start from a regular array

in which the first l1 observations are assigned to fold 1, the following l2 observations are

assigned to fold 2, up to the last lK observations which are assigned to fold K, where

|lk − l/K| < 1 for all k, and then to apply a random permutation. Remember that the

procedure RANDOMIZE-IN-PLACE ([20], Section 5.3) can do the last step in time O(l). See
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Algorithm 10 CVAP(T, x)

1: split the training set T into K folds T1, . . . , TK
2: for k ∈ {1, . . . ,K} do
3: (pk0, p

k
1) := IVAP(T \ Tk, Tk, x)

4: return GM(p1)/(GM(1− p0) + GM(p1))

the next section for a justification of the expression GM(p1)/(GM(1− p0) + GM(p1)) used

for merging the IVAPs’ outputs.

5.4 Making probability predictions out of multiprobability ones

In CVAP (Algorithm 10) we merge the K multiprobability predictions output by K

IVAPs. In this section we design a minimax way for merging them, essentially follow-

ing [85]. For the log-loss function the result is especially simple, GM(p1)/(GM(1− p0) +

GM(p1)).

The deficiency of guaranteed calibration: log(GM(1−p0)+GM(p1)) ∈ [0, 1] (for binary

log). We need to check how small it is.

Remark 4. Notice that the probability interval (1−GM(1−p0),GM(p1)) (formally, a pair

of numbers) is narrower than the corresponding interval for the arithmetic means; this

follows from the fact that a geometric mean never exceeds the corresponding arithmetic

mean and that we always have p0 < p1.

Let us check that GM(p1)/(GM(1 − p0) + GM(p1)) is indeed the minimax expression

under log loss. Suppose the pairs of lower and upper probabilities to be merged are

(p10, p
1
1), . . . , (p

K
0 , p

K
1 ) and the merged probability is p. The extra cumulative loss suffered

by p over the correct members p11, . . . , p
K
1 of the pairs when the true label is 1 is

log
p11
p

+ · · ·+ log
pK1
p
, (5.3)

and the extra cumulative loss of p over the correct members of the pairs when the true

label is 0 is

log
1− p10
1− p

+ · · ·+ log
1− pK0
1− p

. (5.4)
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Equalizing the two expressions we obtain

p11 · · · pK1
pK

=
(1− p10) · · · (1− pK0 )

(1− p)K
,

which gives the required minimax expression for the merged probability (since (5.3) is

decreasing and (5.4) is increasing in p).

In the case of the Brier loss function, we solve the linear equation

(1− p)2 − (1− p11)2 + · · ·+ (1− p)2 − (1− pK1 )2 = p2 − (p10)
2 + · · ·+ p2 − (pK0 )2

in p; the result is

p =
1

K

K∑
k=1

(
pk1 +

1

2
(pk0)2 − 1

2
(pk1)2

)
.

This expression is more natural than it looks: see [85], the discussion after (11); notice

that it reduces to arithmetic mean when p0 = p1.

The argument above (“conditioned” on the proper training set) is also applicable to

IVAP, in which case we need to set K := 1; the probability predictor obtained from an

IVAP by replacing (p0, p1) with p := p1/(1− p0 + p1) will be referred to as the log-minimax

IVAP. (And CVAP is log-minimax by definition.)

5.5 Comparison with other calibration methods

The two alternative calibration methods that we consider in this chapter are Platt’s [59]

and isotonic regression [96].

5.5.1 Platt’s method

As described in Chapter 2, Platt’s [59] method uses sigmoids

g(s) :=
1

1 + exp(As+B)
,

where A < 0 and B are parameters, to calibrate the scores. Platt discusses two ap-

proaches:
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• run the scoring algorithm and fit the parameters A and B on the full training set,

• or run the scoring algorithm on a subset (called the proper training set in this chap-

ter) and fit A and B on the rest (the calibration set).

Platt recommends the second approach, especially that he is interested in SVM, and for

SVM the scores for the training set tend to cluster around ±1. (In fact, this is also true for

the calibration scores, as discussed below.)

Platt’s recommended method of fitting A and B is

−
k∑
i=1

(ti log pi + (1− ti) log(1− pi))→ min, (5.5)

where, in the simplest case, ti := yi are the labels of the calibration observations (so that

(5.5) minimizes the log loss on the calibration set). To obtain even better results, Platt

recommends regularization:

ti = t+ :=
k+ + 1

k+ + 2
(5.6)

for the calibration observations labelled 1 (if there are k+ of them) and

ti = t− :=
1

k− + 2
(5.7)

for the calibration observations labelled 0 (if there are k− of them). We can see from (5.6)

and (5.7) that the predictions of Platt’s predictor are always in the range

(
1

k− + 2
,
k+ + 1

k+ + 2

)
. (5.8)

where k− is the number of calibration observations labelled 0 and k+ is the number of

calibration observations labelled 1. It is interesting that the predictions output by the log-

minimax IVAP are in the same range (except that the end-points are now allowed): see

[90].

Let us check that the predictions output by the log-minimax IVAP are in the same

range as those for Platt’s method (except that the end-points are now allowed):
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Lemma 4. In the case of IVAP, p1 ≥ 1/(k−+ 1) and p0 ≤ 1− 1/(k+ + 1), where k− and k+ are

the numbers of positive and negative observations in the calibration set, respectively. In the case

of log-minimax IVAP, p ∈ [1/(k− + 2), 1 − 1/(k+ + 2)] (i.e., p is in the closure of (5.8)). In the

case of CVAP, p ∈ [1/(k + 2), 1− 1/(k + 2)], where k is the size of the largest fold.

Proof. The statement about IVAP is obvious, and we will only check that it implies the

two other statements. For concreteness, we will consider the lower bounds. The lower

bound 1/(k− + 2) for log-minimax IVAP can be deduced from p1 ≥ 1/(k− + 1) using the

isotonicity of t/(c+ t) in t > 0 for c > 0:

p1
(1− p0) + p1

≥ 1/(k− + 1)

(1− p0) + 1/(k− + 1)
≥ 1/(k− + 1)

1 + 1/(k− + 1)
=

1

k− + 2
.

In the same way the lower bound 1/(k + 2) for CVAP follows from GM(p1) ≥ 1/(k + 1):

GM(p1)

GM(1− p0) + GM(p1)
≥ 1/(k + 1)

GM(1− p0) + 1/(k + 1)
≥ 1/(k + 1)

1 + 1/(k + 1)
=

1

k + 2
.

It is clear that the end-points of the interval (5.8) can be approached arbitrarily closely

in the case of Platt’s predictor and attained in the case of IVAPs.

The main disadvantage of Platt’s method is that the optimal calibration curve g is

quite often far from being a sigmoid; and if the training set is very big, we will suffer,

since in this case we can learn the best shape of the calibrator g. This is particularly

serious in asymptotics as the amount of data tends to infinity.

Zhang [99] (Section 3.3) observes that in the case of SVM and universal [70] kernels

the scores tend to cluster around ±1 at “non-trivial” objects, i.e., objects that are labelled

1 with non-trivial (not close to 0 or 1) probability. This means that any sigmoid will

be a poor calibrator unless the prediction problem is very easy. Formally, we have the

following statement (a trivial corollary of known results), which uses the notation η(x)

for the conditional probability that the label of an object x ∈ X is 1 and assumes that the

labels take values in {−1, 1}, yi ∈ {−1, 1} (rather than yi ∈ {0, 1}, as in the rest of this

chapter).
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Proposition 5. Suppose that the probability of each of the events η(X) = 0, η(X) = 1/2, and

η(X) = 1 is 0. Let fm be the SVM for a training set of sizem, i.e., the solution to the optimization

problem

Cm ‖f‖2H +
m∑
i=1

φ(f(xi)yi)→ min, (5.9)

where φ(v) := (1− v)+ and H is a universal RKHS ([71], Definition 4.52).

H is separable automatically: see Lemma 4.33 in [71]. H consists of bounded functions

automatically (since the elements of H are continuous). The assumptions in [71] (Theorem 8.1)

are weaker: e.g., it is enough to assume that H is dense in L1(QX), Q being the data-generating

probability measure on X× {0, 1} and QX) being its marginal on X.

As m→∞,

fm(X)→ f(X) :=


−1 if η(X) ∈ [0, 1/2]

1 if η(X) ∈ (1/2, 1]

in probability provided Cm →∞ and Cm = o(m).

Proof. This follows immediately from Theorem 4.4 in [99] for a natural class of universal

kernels related to neural networks. In general, see the proof of Theorem 8.1 in [71].

The intuition behind the SVM decision values clustering around ±1 is very simple.

SVM solves the optimization problem (5.9); asymptotically as m→∞ and under natural

assumptions (such as Cm →∞ and Cm = o(m)), this solves

Eφ(f(X)Y )→ min .

We can optimize separately for different values of η(x). Given η(x) = η∗, we have the

optimization problem

η∗φ(f) + (1− η∗)φ(−f)→ min,
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whose solutions are

f(x) ∈



(−∞,−1] if η(x) = 0

{−1} if η(x) ∈ (0, 1/2)

[−1, 1] if η(x) = 1/2

{1} if η(x) ∈ (1/2, 1)

[1,∞) if η(x) = 1.

As a function of f ,

η∗φ(f) + (1− η∗)φ(−f)

is a continuous function which is equal to η∗(1−v) for v ∈ (−∞,−1], equal to (1−η∗)(1+

v) for v ∈ [1,∞), and linear for v ∈ [−1, 1] (and these conditions determine the function).

Assuming that the probability of each of the events η(X) = 0, η(X) = 1/2, and

η(X) = 1 is 0, it is easy to check that asymptotically the best achievable excess log loss of

a sigmoid over the Bayes algorithm is

E
(

KL (η || E(η | η > 1/2))1η>1/2 +KL (η || E(η | η < 1/2))1η<1/2

)
, (5.10)

where KL is Kullback–Leibler divergence defined in terms of base 2 logarithm log2, and

the conditional expectation E(η | E) is defined to be E(η 1E)/P(E).

Indeed, the optimal prediction for η > 1/2 is E(η | η > 1/2) and the optimal prediction

for η < 1/2 is E(η | η < 1/2). Let us check, e.g., the first statement. We are to minimize

over p ∈ (0, 1) the integral of

−η log p+ (1− η) log(1− p)

over the set η > 1/2. Set C :=
∫
η>1/2 η dP and D := P (η > 1/2). So we are to maximize

C log p+ (D − C) log(1− p).
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Differentiating and solving the equation

C

p
− D − C

1− p
= 0

we obtain

p = C/D = E(η | η > 1/2).

On the other hand, there are no apparent obstacles to it approaching 0 in the case of

isotonic regression, considered in the next subsection.

5.5.2 Isotonic regression

There are two standard uses of isotonic regression: we can train the scoring algorithm

using what we call a proper training set, and then use the scores of the observations in a

disjoint calibration (also called validation) set for calibrating the scores of test objects (as

in [15]); alternatively, we can train the scoring algorithm on the full training set and also

use the full training set for calibration (it appears that this was done in [96]). Alterna-

tively, we could use a cross-validation scheme similar to CVAPs. In both cases, however,

we can expect to get an infinite log loss when the test set becomes large enough (see [90]).

Indeed, suppose that we have fixed proper training and calibration sets (not necessar-

ily disjoint, so that both cases mentioned above are covered) such that the score s(X) of

a random object X is below the smallest score of the calibration objects with a positive

probability; suppose also that the distribution of the label of a random observation is

concentrated at 0 with probability zero. Under these realistic assumptions the probabil-

ity that the average log loss on the test set is ∞ can be made arbitrarily close to one by

making the size of the test set large enough: indeed, with a high probability there will be

an observation (x, y) in the test set such that the score s(x) is below the smallest score of

the calibration objects but y = 1; the log loss on such an observation will be infinite.

The presence of regularization is an advantage of Platt’s method: e.g., it never suf-

fers an infinite loss when using the log loss function. There is no standard method of

regularization for isotonic regression, and we do not apply one.
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5.6 Experimental results

The main loss function (cf., e.g., [83]) that we use in our empirical studies is the log loss

λlog(p, y) :=


− log p if y = 1

− log(1− p) if y = 0,

(5.11)

where log is binary logarithm, p ∈ [0, 1] is a probability prediction, and y ∈ {0, 1} is the

true label. Another popular loss function is the Brier loss

λBr(p, y) := 4(y − p)2. (5.12)

We choose the coefficient 4 in front of (y − p)2 in (5.12) and the base 2 of the logarithm

in (5.11) in order for the minimax no-information predictor that always predicts p := 1/2

to suffer loss 1. An advantage of the Brier loss function is that it still makes it possible

to compare the quality of prediction in cases when prediction algorithms (such as iso-

tonic regression) give a categorical but wrong prediction (and so are simply regarded as

infinitely bad when using log loss).

In the multi-class case we assume that the label space Y is finite and consider proba-

bility predictions that are probability measures on Y; for example, a prediction p ∈ [0, 1]

output by a CVAP is re-interpreted as the probability measure P on {0, 1} such that

P ({1}) = p. As in the previous chapter the main loss function that we use is the log

loss

λlog(P, y) := − log|Y| P ({y}), (5.13)

where we take the size |Y| of the label space as the base of the logarithm and the Brier

loss

λBr(P, y) :=
|Y|
|Y| − 1

∑
y′∈Y

(
1y′=y − P ({y′})

)2
,

where the coefficient in front of the sum is chosen in such a way that the minimax no-

information predictor that always predicts 1/ |Y| suffers loss 1 (this is also the reason for

our choice of the base of the logarithm in (5.13)).
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The loss of a probability predictor on a test set will be measured by the arithmetic

average of the losses it suffers on the test set, namely, by the mean log loss (MLL) and the

mean Brier loss (MBL)

MLL :=
1

n

n∑
i=1

λlog(pi, yi), MBL :=
1

n

n∑
i=1

λBr(pi, yi), (5.14)

where yi are the test labels and pi are the probability predictions for them. We will not be

checking directly whether various calibration methods produce well-calibrated predic-

tions, since it is well known that lack of calibration increases the loss as measured by loss

functions such as log loss and Brier loss (see, e.g., [52] for the most standard decomposi-

tion of the latter into the sum of the calibration error and refinement error).

In this section we compare log-minimax IVAPs (i.e., IVAPs whose outputs are re-

placed by probability predictions, as explained in Section 5.4) and CVAPs with Platt’s

method [59] and the standard method [96] based on isotonic regression; the latter two

will be referred to as “Platt” and “Isotonic” in our tables and figures. (Even though for

both IVAPs and CVAPs we use the log-minimax procedure for merging multiprobability

predictions, the Brier-minimax procedure leads to virtually identical empirical results.)

We use the same underlying algorithms as in [85], namely J48 decision trees (abbreviated

to “J48”), J48 decision trees with bagging (“J48 bagging”), logistic regression (sometimes

abbreviated to “logistic”), naïve Bayes, neural networks, and support vector machines

(SVM), as implemented in Weka [38] (University of Waikato, New Zealand). The under-

lying algorithms (except for SVM) produce scores in the interval [0, 1], which can be used

directly as probability predictions (referred to as “Underlying” in our tables and figures)

or can be calibrated using the methods of [59, 96] or the methods proposed in this chapter

(“IVAP” or “CVAP” in the tables and figures).

We start our empirical studies with the adult data set available from the UCI repos-

itory [31] (this is the main data set used in [59] and one of the data sets used in [96]);

however, as we will see later, the picture that we observe is typical for other data sets

as well. We use the original split of the data set into a training set of Ntrain = 32, 561

observations and a test set of Ntest = 16, 281 observations. The results of applying the
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four calibration methods (plus the vacuous one, corresponding to just using the underly-

ing algorithm) to the six underlying algorithms for this data set are shown in Figure 5.2

which reports results for the log loss (namely, MLL, as defined in (5.14)) and Figure 5.3

for the Brier loss (namely, MBL).

The underlying algorithms are given in the titles of the plots and the calibration meth-

ods are represented by different line styles, as explained in the legends. The marks on the

horizontal axis are the ratios of the size of the proper training set to the size of the cali-

bration set (except for the label all, which will be explained later); in the case of CVAPs,

the number K of folds can be expressed as the sum of the two numbers forming the ra-

tio (therefore, column 4:1 corresponds to the standard choice of 5 folds in the method of

cross-validation). Missing curves or points on curves mean that the corresponding val-

ues either are too big and would squeeze unacceptably the interesting parts of the plot if

shown or are infinite (such as many results for isotonic regression and neural networks

under log loss). In the case of CVAPs, the training set is split into K equal (or as close to

being equal as possible) contiguous folds: the first dNtrain/Ke training observations are

included in the first fold, the next dNtrain/Ke (or bNtrain/Kc) in the second fold, etc. (first

d·e and then b·c is used unless Ntrain is divisible by K). In the case of the other calibra-

tion methods, we used the first dK−1K Ntraine training observation as the proper training

set (used for training the scoring algorithm) and the rest of the training observations are

used as the calibration set.

In the case of log loss, isotonic regression often suffers infinite losses, which is indi-

cated by the absence of the round marker for isotonic regression; e.g., only one of the

log losses for SVM is finite. We are not trying to use ad hoc solutions, such as clipping

predictions to the interval [ε, 1− ε] for a small ε > 0, since we are also using the bounded

Brier loss function. The CVAP lines tend to be at the bottom in all plots; experiments with

other data sets also confirm this.

The column all in the plots of Figures 5.2 and 5.3 refers to using the full training

set as both the proper training set and calibration set. (In our official definition of IVAP

we require that the last two sets be disjoint, but in this section we continue to refer to

IVAPs modified in this way simply as IVAPs; in [85], such prediction algorithms were
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FIGURE 5.2: The log losses of the four calibration methods applied to the
six prediction algorithms on the adult data set.
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FIGURE 5.3: The analogue of Figure 5.2 for Brier loss.
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referred to as SVAPs, simplified Venn–Abers predictors.) Using the full training set as

both the proper training set and calibration set might appear naive (and is never used

in the extensive empirical study [15]), but it often leads to good empirical results on

larger data sets. However, it can also lead to very poor results, as in the case of “J48

bagging” (for IVAP, Platt, and Isotonic), the underlying algorithm that achieves the best

performance in Figures 5.2 and 5.3.

A natural question is whether CVAPs perform better than the alternative calibration

methods in Figures 5.2 and 5.3 (and our other experiments) because of applying cross-

over (in moving from IVAP to CVAP) or because of the extra regularization used in IVAPs.

The first reason is undoubtedly important for both loss functions and the second for the

log loss function. The second reason plays a smaller role for Brier loss for relatively large

data sets (in Figure 5.3 the curves for Isotonic and IVAP are very close to each other),

but IVAPs are consistently better for smaller data sets even when using Brier loss. In

Tables 5.1 and 5.2 we apply the four calibration methods and six underlying algorithms

to a much smaller training set, namely to the first 5, 000 observations of the adult data

set as the new training set, following [15]; the first 4, 000 training observations are used

as the proper training set, the following 1, 000 training observations as the calibration set,

and all other observations (the remaining training and all test observations) are used as

the new test set. The results are shown in Tables 5.1 for log loss and 5.2 for Brier loss.

They are consistently better for IVAP than for IR (isotonic regression). Results for nine

very small data sets are given in Tables 1 and 2 of [85], where the results for IVAP (with

the full training set used as both proper training and calibration sets, labelled “SVA” in

the tables in [85]) are consistently (in 52 cases out of the 54 using Brier loss) better, usually

significantly better, than for isotonic regression (referred to as DIR in the tables in [85]).

The following information might help the reader in reproducing the results (in ad-

dition to the code being publicly available [90]). For each of the standard prediction al-

gorithms within Weka that we use, we optimise the parameters by minimising the Brier

loss on the calibration set, apart from the column labelled all. (We cannot use the log

loss since it is often infinite in the case of isotonic regression.) We then use the trained
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TABLE 5.1: The log loss for the four calibration methods and six underly-
ing algorithms for a small subset of the adult data set

algorithm Platt IR IVAP CVAP
J48 0.5226 ∞ 0.5117 0.5102

J48 bagging 0.4949 ∞ 0.4733 0.4602
logistic 0.5111 ∞ 0.4981 0.4948

naïve Bayes 0.5534 ∞ 0.4839 0.4747
neural networks 0.5175 ∞ 0.5023 0.4805

SVM 0.5221 ∞ 0.5015 0.4997

TABLE 5.2: The analogue of Table 5.1 for the Brier loss

algorithm Platt IR IVAP CVAP
J48 0.4463 0.4378 0.4370 0.4368

J48 bagging 0.4225 0.4153 0.4123 0.3990
logistic 0.4470 0.4417 0.4377 0.4342

naïve Bayes 0.4670 0.4329 0.4311 0.4227
neural networks 0.4525 0.4574 0.4440 0.4234

SVM 0.4550 0.4450 0.4408 0.4375

algorithm to generate the scores for the calibration and test sets, which allows us to com-

pute probability predictions using Platt’s method, isotonic regression, IVAP, and CVAP.

All the scores apart from SVM are already in the [0, 1] range and can be used as proba-

bility predictions. In the case of SVM, we use the Weka sequential minimal optimization

algorithm with the option “build logistic models”, which calibrates the SVM scores into

probabilities. We then apply the other calibration methods on top of those probability

predictions, which is equivalent to applying them to the original SVM scores.

Most of the parameters are set to their default values, and the only parameters

that are optimised are C (pruning confidence) for J48 and J48 bagging, R (ridge)

for logistic regression, L (learning rate) and M (momentum) for neural networks

(MultilayerPerceptron), and C (complexity constant) for SVM (SMO, with the linear

kernel); naïve Bayes does not involve any parameters. Notice that none of these pa-

rameters are “hyperparameters”, in that they do not control the flexibility of the fitted

prediction rule directly; this allows us to optimize the parameters on the training set for

the all column. In the case of CVAPs, we optimise the parameters by minimising the
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cumulative Brier loss over all folds (so that the same parameters are used for all folds).

To apply Platt’s method to calibrate the scores generated by the underlying algorithms

we use logistic regression, namely the function mnrfit within MATLAB’s Statistics

toolbox. For isotonic regression calibration we use the implementation of the PAVA in

the R package fdrtool (namely, the function monoreg). Missing values are handled

using the Weka filter ReplaceMissingValues, which replaces all missing values for

nominal and numeric attributes with the modes and means from the training set.

Figures 5.4 and 5.5 show our results for the covertype data set available from the

UCI repository [31] and also known as forest). In converting this multiclass classifica-

tion problem to binary we follow [15]: treat the largest class as 1 and the rest as 0, and

only consider a random and randomly permuted subset consisting of 30, 000 observa-

tions; the first 5000 of those observations are used as the training set and the remaining

25, 000 as the test set. The CVAP results are still at the bottom of the plots and very stable;

and the values at the all column are still particularly unstable.

Similar results for the insurance, Bank Marketing, Spambase, and Statlog

German Credit Data data sets are shown in Figures 5.6–5.13. The data sets are split

into training and test sets in proportion 2:1, without randomization. In particular, for the

insurance data set we ignore the original split into the training (5822 observations) and

test (4000 observations) sets.

Since the values for the all column are so unstable, the reader might prefer to disre-

gard them in the case of IVAP, Platt, and Isotonic. In Figures 5.6–5.11 the CVAP results

tend to be at the bottom of the plots. The Statlog German Credit Data data set is

much more difficult, and all results in Figures 5.12–5.13 are poor and somewhat mixed;

however, they still demonstrate that CVAPs and IVAPs produce stable results and avoid

the occasional bad failures characteristic of the alternative calibration methods.

And finally, Figures 5.14 and 5.15 show the results for log loss and Brier loss, respec-

tively, for the adult data set and for a wide range of the ratios of the size of the proper

training set to the calibration set. The left-most column of each plot is 1 : 9, which means,

in the case of Platt’s method, isotonic regression, and IVAPs, that 10% of the training set

was allocated to the proper training set and the rest to the calibration set. In the case of
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FIGURE 5.4: The analogue of Figure 5.2 for the covertype data set.
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FIGURE 5.5: The analogue of Figure 5.3 for the covertype data set.
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FIGURE 5.6: The analogue of Figure 5.2 for the insurance data set.
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FIGURE 5.7: The analogue of Figure 5.3 for the insurance data set.
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FIGURE 5.8: The analogue of Figure 5.2 for the Bank Marketing data set.
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FIGURE 5.9: The analogue of Figure 5.3 for the Bank Marketing data set.
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FIGURE 5.10: The analogue of Figure 5.2 for the Spambase data set.
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FIGURE 5.11: The analogue of Figure 5.3 for the Spambase data set.
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FIGURE 5.12: The analogue of Figure 5.2 for the data set Statlog
German Credit Data.
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FIGURE 5.13: The analogue of Figure 5.3 for the data set Statlog
German Credit Data.
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CVAPs, 1 : 9 means that the training set was split into 10 folds, each of them in turn was

used as the proper training set, and the rest were used as the calibration set; the results

were merged using the minimax procedure as described in Section 5.4. In the case of

the underlying algorithm, 1 : 9 means that only 10% of the training set was in fact used

for training (the same 10% as for the first three calibration methods). The other columns

are 1 : 8, 1 : 7,. . . , 1 : 2, 1 : 1 (which corresponds to 1 : 1 in Figures 5.2 and 5.3),. . . ,

4 : 1 (which corresponds to 4 : 1 in Figures 5.2 and 5.3, i.e., to the standard procedure of

5-fold cross-validation), 5 : 1,. . . , 9 : 1 (the latter corresponds to the other standard cross-

validation procedure, that of 10-fold cross-validation); the results in those columns are

analogous to those in the column 1 : 9. In order not to duplicate the information we gave

earlier for the adult data set, we give the results for a randomly permuted adult data

set. There is not much difference between 5 and 10 folds for most underlying algorithms

(logistic regression behaves unusually in that its performance deteriorates as the size of

the proper training set increases, perhaps because less data are available for calibration).

5.7 Conclusion

This chapter introduces two new computationally efficient algorithms for probabilistic

prediction, IVAP, which can be regarded as a regularised form of the calibration method

based on isotonic regression, and CVAP, which is built on top of IVAP using the idea of

cross-validation. Whereas IVAPs are automatically perfectly calibrated, the advantage of

CVAPs is in their good empirical performance.
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FIGURE 5.14: The log loss on the adult data set of the six prediction algo-
rithms and four calibration methods
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FIGURE 5.15: The analogue of Figure 5.14 for the Brier loss function
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Chapter 6

Conclusion

This thesis studies novel methods of producing well calibrated probabilistic predictions

using standard machine learning algorithms which can complement or improve on ex-

isting methods to date.

Chapter 1 introduces the field of probabilistic machine learning and Chapter 2 de-

scribes some of the existing methods to date. Despite the wide array of algorithms which

can either produce probabilistic predictions directly or in turn produce scores which can

be calibrated into probabilities, the resulting outputs are often miscalibrated. Where cal-

ibration is used to improve on the resulting accuracy, the methods often rely on para-

metric assumptions. A clear need is therefore identified for research into non-parametric

probabilistic classification methods which form the bulk of the work carried out in this

thesis.

Chapter 3 applies the idea of transforming p-values produced by conformal predic-

tors into probabilities. The method relies on the previously reported observation that

some criteria of efficiency for conformal prediction (called “probabilistic criteria”) en-

courage using the conditional probability Q(y | x) as the conformity score for an obser-

vation (x, y), with Q being the data-generating distribution. The chapter extends this

observation to label-conditional predictors. Theorem 1 in Section 3.3 shows that given a

conformal predictor Γ that is nearly optimal with respect to a probabilistic criterion, in

the limit of a very large training set the p-value that Γ outputs for an observation (x, y)

is a monotonic transformation of the conditional probability Q(y | x). The results sug-

gest that the p-values can therefore be converted back into conditional probabilities using

their distribution in the test set, i.e. they can be calibrated into probabilities. Section 3.6
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shows an example of a realistic situation where use of the above technique improves on

the standard approach. The experiments use the USPS data set of hand-written digits

and compare the results of the 1-Nearest Neighbour (1-NN) algorithm using tangent dis-

tance calibrated using the method derived in this chapter with the standard Platt’s algo-

rithm for extracting probabilities from support vector machines combined with pairwise

coupling. The resulting log and Brier losses are significantly better for the former. De-

spite promising empirical results, one of the main identified drawbacks of the proposed

method lies in its relative inefficiency caused by separate treatment of different classes at

the stage of calibrating p-values.

Chapter 4 discusses Venn predictors which are an important class of multiprobability

predictors. The chapter also states an important property of validity of Venn predictors:

they are automatically well calibrated. Section 4.3 builds on the work Venn prediction

to define a natural class of Venn predictors, called Venn-Abers predictors (VAP) (with

the “Abers” part formed by the initial letters of the authors’ surnames of the paper by

Ayer et.al. [2] introducing the underlying technique). Venn-Abers predictors are defined

on top of a wide class of classification algorithms, referred to as “scoring classifiers” in

this thesis; each scoring classifier can be automatically transformed into a Venn-Abers

predictor and this transformation is referred to as the “Venn–Abers method”. Because

of its theoretical guarantees, this method can be used for improving the calibration of

probabilistic predictions.

The Venn–Abers method is a simple modification of Zadrozny and Elkan’s method

[97]; being a special case of Venn prediction, it overcomes the problem of potentially poor

calibration. Theorem 2 in Section 4.2 shows that Venn predictors are perfectly calibrated.

The price to pay, however, is that Venn predictors are multiprobabilistic predictors, in the

sense of issuing a set of probabilistic predictions instead of a single probabilistic predic-

tion. Section 4.5 explores the efficiency of Venn–Abers predictors empirically using the

fundamental log loss function and another popular loss function, square loss. To apply

these loss functions we need, however, probabilistic predictions rather than multiproba-

bilistic predictions, therefore Section 4.4 defines natural minimax ways of replacing the

latter with the former. Section 4.5 explores the empirical predictive performance of the
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Venn–Abers method, and the latter’s simplified version, which is not only simpler but

also more efficient computationally. Each methods is applied to nine benchmark data

sets from the UCI repository [31] and six standard scoring classifiers, with the predictive

performance of each method evaluated for each combination of a data set and classifier.

The results show that the Venn–Abers and simplified Venn–Abers methods usually im-

prove the performance of the underlying classifiers, and in these sets of experiments they

work better than the original Zadrozny–Elkan method.

Despite promising results, one of the main drawbacks of the Venn–Abers and simpli-

fied Venn–Abers methods is that their computational efficiency is relatively weak com-

pared with many standard machine learning algorithms. Chapter 5 introduces two com-

putationally efficient versions of Venn–Abers predictors, referred to as inductive Venn–

Abers predictors (IVAPs) which can be regarded as a regularised form of the calibration

method based on isotonic regression and cross-Venn–Abers predictors (CVAPs) which

are built on top of IVAPs using the idea of cross-validation. The results in Sections 5.2

and 5.3 show that the main desiderata of Venn predictors, namely validity, predictive

efficiency and computational efficiency are satisfied by IVAPs and CVAPs. In particular

the chapter shows that:

• Validity (in the form of perfect calibration) is satisfied by IVAPs automatically, and

experimental results in section 5.6 suggest that it is inherited by CVAPs.

• Predictive efficiency of IVAPs and CVAPs is determined by the predictive efficiency

of the underlying learning algorithms.

• Their computational efficiency is, again, determined by the computational effi-

ciency of the underlying algorithm; the computational overhead of extracting prob-

abilistic predictions consists of sorting (which takes time O(n log n), where n is the

number of observations) and other computations taking time O(n).

Just like VAPs, as precise probabilistic predictors, IVAPs and CVAPs are ways of con-

verting the scores for test objects output by underlying machine learning algorithms into

numbers in the range [0, 1] that can serve as probabilities. Section 5.5 compares two ex-

isting alternative calibration methods with IVAPs and CVAPs theoretically. Section 5.6



Chapter 6. Conclusion 113

is devoted to experimental comparisons and shows that CVAPs consistently outperform

the two existing methods.

In summary, this thesis outlined three novel methods for probabilistic classification,

one based on conformal prediction and two based on Venn prediction. The former, de-

scribed in Chapter 3 offers promising initial results however its practical use is deter-

mined by the choice of particular conformity measure and its efficiency with respect to

the probabilistic criteria for a given problem at hand. Further empirical tests are therefore

necessary, perhaps most optimally on synthetic datasets, in order to determine the extent

to which the method is best applied in practice. In contrast the Venn–Abers method

described in Chapter 4 and its computationally more efficient version described in Chap-

ter 5 are more universal in a sense that they can be applied on top of a wide range of

classification algorithms without any parametric assumptions, aside from the monotonic-

ity of the output of the underlying algorithm with respect to its probabilistic prediction.

Experimental results reported in this thesis suggest that the Venn–Abers method can be

useful for probabilistic calibration of either small datasets with a large number of fea-

tures (as in Chapter 4) or for larger datasets for which existing underlying algorithms

produce miscalibrated probability outputs (as in Chapter 5). The most dramatic impact

of the Venn–Abers method is in calibrating algorithms which suffer a potentially infinite

log loss in incorrectly predicting a class with 100% probability. Empirically, the method

also seems to offer improvement for relatively simple classifiers (such as naïve Bayes and

logistic regression) thereby possibly correcting for bias and for classifiers which assume

a parametric relationship between the underlying algorithm outputs and class probabil-

ities (such as Platt calibration for SVM). The lowest impact appears to be for algorithms

which contain a degree of randomisation (such as J48 with bagging). It would be inter-

esting therefore to consider whether the Venn–Abers method could also be applied in

the context of ensemble learning methods. The following section outlines some other

possible avenues of extending the results reported in this thesis further.
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6.1 Further work

Following on from the work in this thesis, enclosed are some directions for future re-

search which would be interesting to pursue:

• There are several algorithms for performing isotonic regression on a partially, rather

than linearly, ordered set: see, e.g., [13], Section 2.3. IVAPs and CVAPs can be

defined in the situation where scores take values only in a partially ordered set;

moreover, Proposition 3 will continue to hold. The importance of partially ordered

scores stems from the fact that they enable us to benefit from a possible “synergy”

between two or more prediction algorithms [81]. Preliminary results reported in

[81] in a related context suggest that the resulting predictor can outperform predic-

tors based on the individual scalar scores. It would be interesting to test whether a

similar result holds for partially ordered IVAP and CVAP equivalents.

• This thesis did not study empirically upper and lower probabilities produced by

IVAPs and CVAPs, whereas the distance between them provides information about

the reliability of the merged probability prediction. Finding interesting ways of

using this extra information could be one of the directions of further research.

• Finally, the work in this thesis primarily focused on binary prediction problems.

Some work has already begun on applying the methods derived in this thesis to

multi-class problems [49] and it would be interesting to extend the results further.
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Appendix A

Datasets

The experimental results of this thesis relied on use of standard datasets briefly sum-

marised below.

A.1 USPS

The US Postal Service (USPS) dataset, first reported in [47] is a widely used dataset within

the machine learning community. It consists of a collection of handwritten digits from

real-life postal codes. The sizes of training and test sequences are 7291 and 2007, respec-

tively. Each example is described by 256 features representing the brightness of pixels on

the 16 × 16 grey-scaled image displaying a digit and its corresponding label (the digit).

The brightness takes values in the interval (−1, 1) and the label is a decimal digit from 0

to 9. For experiments in Chapter 3 each example is normalised as described in Appendix

B.3 in [84] so that the mean brightness of pixels in each picture is 0 and its standard

deviation is 1.

A.2 Australian Credit Approval

The Australian Credit Approval dataset1 [31], reported in [62], concerns credit card appli-

cations. It contains 690 instances and 14 attributes. All attribute names and values have

been changed to symbols to protect confidentiality of the data. This dataset is interesting

because there is a good mix of attributes – continuous, nominal with small numbers of

values, and nominal with larger numbers of values. There are also a few missing values.

1http://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval)

http://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval)
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There are 6 numerical and 8 categorical attributes. The labels have been changed for the

convenience of the statistical algorithms.

A.3 Breast Cancer

The Breast Cancer dataset2, first used in [73], contains features computed from a digitized

image of a fine needle aspirate of a breast mass. There are a total of 569 instances. They

describe characteristics of the cell nuclei present in the image. Each image is summarised

by 10 real valued attributes and a label containing the diagnosis, malignant (M) or benign

(B).

A.4 Diabetes

The Pima Indians Diabetes Data Set3 supplied by the US National Institute of Diabetes

and Digestive and Kidney Diseases first used in [69], contains data on patients who are

females at least 21 years old of Pima Indian heritage. There are a total of 768 instances, 8

attributes and a class label specifying whether the patient is diabetic.

A.5 Echocardiogram

The Echocardiogram dataset4 contains 132 instances and 12 attributes for classifying if

patients will survive for at least one year after a heart attack. The survival and still-

alive variables, when taken together, indicate whether a patient survived for at least one

year following the heart attack. The problem addressed by past researchers [43] was to

predict from the other variables whether or not the patient will survive at least one year.

The most difficult part of this problem is correctly predicting that the patient will not

survive.
2https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
3https://archive.ics.uci.edu/ml/datasets/Pima%20Indians%20Diabetes
4https://archive.ics.uci.edu/ml/datasets/echocardiogram

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Pima%20Indians%20Diabetes
https://archive.ics.uci.edu/ml/datasets/echocardiogram
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A.6 Hepatitis

The Hepatitis dataset5 used in [28] contains 19 categorical, integer and real attributes and

a class label specifying histology (YES or NO). There are a total of 155 instances.

A.7 Ionosphere

The Ionosphere dataset concerns classification of radar returns from the ionosphere. The

targets were free electrons in the ionosphere. Classification labels consist of "Good" radar

returns showing evidence of some type of structure in the ionosphere and "Bad" returns

which do not; their signals pass through the ionosphere. There are a total of 34 continuous

attributes which aid classification. The dataset was first reported in [67].

A.8 Labor Relations

The Labor Relations dataset6, reported in [6] includes all collective agreements reached

in the business and personal services sector for Canadian local authorities with at least

500 members (teachers, nurses, university staff, police, etc.) in Canada in 1987 and first

quarter of 1988. It contains 57 instances and 16 attributes.

A.9 Liver Disorders

The Liver Disorders dataset7, provided by BUPA Medical Research,contains 7 attributes

and 345 instances. The variables are all blood tests which are thought to be sensitive

to liver disorders that might arise from excessive alcohol consumption. Each instance

constitutes the record of a single male individual.

5https://archive.ics.uci.edu/ml/datasets/hepatitis
6https://archive.ics.uci.edu/ml/datasets/Labor+Relations
7https://archive.ics.uci.edu/ml/datasets/liver+disorders

https://archive.ics.uci.edu/ml/datasets/hepatitis
https://archive.ics.uci.edu/ml/datasets/Labor+Relations
https://archive.ics.uci.edu/ml/datasets/liver+disorders
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A.10 Congressional Voting

The Congressional Voting dataset8 includes votes for each of the U.S. House of Repre-

sentatives Congressmen on the 16 key votes (serving as attributes) identified by the Con-

gressional Quarterly Almanac (CQA) [78]. The CQA lists nine different types of votes

which are summarised as "yes" or "no". The goal is to predict whether the congressmen

is a democrat or a republican (serving as a class label). The dataset contains 435 instances.

A.11 Adult

The Adult dataset9 was extracted from the 1994 US Census database and reported in [44].

There are a total 14 attributes and the prediction task is to determine whether a person

earns over 50,000 USD a year. There are a total of 48842 instances.

A.12 Covertype

This is a large dataset10 consisting of 581,012 instances and 54 categorical and real valued

attributes. The goal is to predict forest cover type from cartographic variables only. The

data was provided by the Department of Forest Sciences, Colorado State University, US

and the study area includes four wilderness areas located in the Roosevelt National Forest

of northern Colorado.

A.13 Insurance

The Insurance dataset11 was used in the CoIL Challenge 2000 [79]. It contains information

about customers in the form of 86 variables and includes product usage data and socio-

demographic data derived from zip area codes. The data was supplied by the Dutch

data mining company Sentient Machine Research and is based on a real world business

problem. The goal is to predict whether customers have a caravan insurance policy.

8https://archive.ics.uci.edu/ml/datasets/congressional+voting+records
9https://archive.ics.uci.edu/ml/datasets/adult

10https://archive.ics.uci.edu/ml/datasets/covertype
11https://archive.ics.uci.edu/ml/datasets/Insurance+Company+Benchmark+(COIL+

2000)

https://archive.ics.uci.edu/ml/datasets/congressional+voting+records
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/covertype
https://archive.ics.uci.edu/ml/datasets/Insurance+Company+Benchmark+(COIL+2000)
https://archive.ics.uci.edu/ml/datasets/Insurance+Company+Benchmark+(COIL+2000)
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A.14 Bank Marketing

The dataset12 concerns direct marketing campaigns of a Portuguese banking institution.

The marketing campaigns were based on phone calls. Often, more than one contact to

the same client was required, in order to access if the product (bank term deposit) would

be ("yes") or not ("no") subscribed. There are a total of 45211 instances and 17 attributes.

A.15 Spambase

This Spambase dataset13 originated from Hewlett-Packard Labs. It contains 4610 in-

stances and 57 attributes, consisting of frequencies of certain words and characters and

several other character specific features. The goal is to predict whether an email is classi-

fied as "spam" or not.

A.16 Statlog German Credit Data

This dataset 14 provided by University of Hamburg, classifies people described by a set

of attributes as good or bad credit risks. It contains a total of 1000 instances with 20

categorical and integer attributes.

12https://archive.ics.uci.edu/ml/datasets/bank+marketing
13https://archive.ics.uci.edu/ml/datasets/spambase
14https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)

https://archive.ics.uci.edu/ml/datasets/bank+marketing
https://archive.ics.uci.edu/ml/datasets/spambase
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
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TABLE A.1: The summary of the datasets

Dataset Attributes Number of instances Instances in training set
Australian 14 690 66%
Breast 10 699 66%
Diabetes 8 768 66%
Echo 12 132 66%
Hepatitis 19 155 66%
Ionosphere 34 351 66%
Labor 16 57 66%
Liver 7 345 66%
Vote 16 435 66%
Adult 14 48842 32561
Covertype 58 30000 5000
Insurance 86 9000 66%
Bank Marketing 17 45211 66%
Spambase 57 4610 66%
Statlog 20 1000 66%
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Appendix B

Implementation

The Matlab functions for calculating Brier and log losses for different underlying algo-

rithms and calibration methods (Platt, Isotonic Regression, IVAP and CVAP) reported in

this thesis are publicly available1.

The main function genLosses has the following form:

loss = genLosses(data,wekaAlgorithm,properInt,calibrationInt,tuneType);

The wekaAlgorithm parameter is based on the Weka data mining tool Weka 3.7.122.

The functions also require the Matlab-R interface3 and the Matlab-Weka interface4.

The choice for the wekaAlgorithm parameter consists of:

• ’tree’ - J48 decision tree

• ’SMO’ - Platt SVM method

• ’naive’ - naïve Bayes

• ’logistic’ - Logistic regression

• ’bagging’ - J48 with bagging

• ’nn’ - neural networks
1https://arxiv.org/abs/1511.00213
2http://www.cs.waikato.ac.nz/ml/weka/
3http://www.mathworks.co.uk/matlabcentral/fileexchange/5051-matlab-r-link/
4http://www.mathworks.co.uk/matlabcentral/fileexchange/21204-matlab-weka-interface

https://arxiv.org/abs/1511.00213
http://www.cs.waikato.ac.nz/ml/weka/
http://www.mathworks.co.uk/matlabcentral/fileexchange/5051-matlab-r-link/
http://www.mathworks.co.uk/matlabcentral/fileexchange/21204-matlab-weka-interface
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The data paramater corresponds to choice of datasets available from the UCI repository

described in Appendix A (formatted to Weka arff file type).

The other input parameters correspond to

• properInt,calibrationInt - integer determining the proportion of the proper

training set to the calibration set, (in Chapter 5 referred to proper:calibration)

• tuneType - either ’coarse’ or ’fine’ tuning

The generated output loss is a 10 member array of the following format:

• loss(1) - Brier loss for the underlying algorithm

• loss(2) - Brier loss for Platt calibration applied to the underlying algorithm

• loss(3) - Brier loss for Isotonic Regression calibration applied to the underlying

algorithm

• loss(4) - Brier loss for IVAP calibration applied to the underlying algorithm

• loss(5) - Brier loss for CVAP calibration applied to the underlying algorithm

• loss(6) - log loss for the underlying algorithm

• loss(7) - log loss for Platt calibration applied to the underlying algorithm

• loss(8) - log loss for Isotonic Regression calibration applied to the underlying

algorithm

• loss(9) - log loss for IVAP calibration applied to the underlying algorithm

• loss(10) - log loss for CVAP calibration applied to the underlying algorithm

For example the following code will generate the corresponding losses for the

insurance dataset using the J48 tree algorithm with a 3:1 ratio of the proper training

set to calibration set:

loss = genLosses(’insurance’,’tree’,3,1,’fine’);

A summary ot the Weka parameters used is shown in Table B.1.
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TABLE B.1: The summary of the experimental parameters

Algorithm Varied parameters Range
J48 -C pruning confidence 0.25E-04 to 0.25
J48 Bagging -C pruning confidence 0.25E-04 to 0.25
naïve Bayes
logistic regression -R ridge in log-likelihood 1E-03 to 1E+03
ANN -L learning rate, -M momentum L: 0.1 to 1E+05 M: 0.3 to 0.6
SVM Platt - C complexity 1E-03 -to 1E+06
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