
Searching on Encrypted Data

Submitted by

Sarah Louise Renwick

for the degree of Doctor of Philosophy

of the

Royal Holloway, University of London

2017

Declaration

I, Sarah Louise Renwick, hereby declare that this thesis and the work presented in it

is entirely my own. Where I have consulted the work of others, this is always clearly

stated.

Signed . (Sarah Louise Renwick)

Date:

1

For Harry and Ker.

2

Abstract

Searchable encryption allows a user to outsource encrypted data to a remote server,

whilst preserving the user’s ability to locate specific data items within the encrypted

data that satisfy some query. In its simplest form, searchable encryption allows a user

to locate all data items that contain a particular keyword.

In this thesis, we analyse searchable encryption schemes and assess their suitability

for various scenarios occurring in the real world. Despite the existence of practical

searchable encryption schemes in the literature, there is limited evidence of their de-

ployment. We discuss issues that we consider to be inhibiting the widespread adoption

of searchable encryption. This work aims to present searchable encryption as a useable

technology and, by analysing the efficiencies of the various schemes within the differ-

ent scenarios, we intend to make the design of new real-world searchable encryption

protocols an easier task.

We also present two new searchable encryption schemes. A number of searchable

encryption schemes have been proposed that are secure in the presence of a semi-honest

server, which may deviate from the protocol in order to conserve its own resources. In

existing schemes, the search queries a user can perform are not particularly expressive.

We use techniques from publicly verifiable computation to build a searchable encryption

scheme that can evaluate more expressive queries in a verifiable manner; that is, the

user is able to verify whether or not the server has computed the search honestly.

Our second construction allows users with different access rights to the data to

receive search results which are dependent on their access rights. We call this type of

scheme searchable encryption with multi-level access. Most existing searchable encryp-

tion with multi-level access schemes are built using attribute based encryption, a form

of public key cryptography. Symmetric key cryptography uses simpler and easier to im-

plement primitives, compared to its public-key counterpart. We present a construction

that extends a well-known searchable symmetric encryption scheme to support users

searching the data at different access levels.

3

Acknowledgement

The last five years have been an incredible journey, one which I would not have been

able to complete on my own. For me, it has been not only an intense intellectual

journey, but also a more personal one. I have learnt a lot about myself: my limitations

and also ways of working and being that allow me to achieve my potential and be my

best self. Special thanks to Rich, Mother and Ponyo for being there every step of the

way. I am looking forward to all the new adventures we will embark upon together in

this next chapter.

I would like to thank my supervisor, Keith Martin, for all his support and for

guiding me through my research. Our meetings would always inspire new ideas and

give me a renewed energy to continue, even when I felt most defeated. Many thanks to

my examiners Kenny Patterson and Liqun Chen for taking the time to go through my

thesis with a fine tooth comb. Their discussions and comments helped me enormously

in forming the final version of my thesis and in producing a piece of work I am very

proud of. Thanks also to Sarah Meiklejohn for her advice and support, and for being

such a great work buddy and wonderful friend.

Many thanks to my two co-authors, James Alderman and Christian Janson. It was

a pleasure to work and share ideas with these two brilliant people.

I would like to thank the Department of Mathematics at the University of Bristol

for providing such a lively and rigorous undergraduate course and for introducing me

to the mind-altering world of pure mathematics, my thoughts will never be the same

again. Thanks to Richard Porter and Andrey Bovykin for their kind words of encour-

agement when I approached them with the idea of doing a PhD and especially to Andrey

for pointing me in the direction of cryptography and for all the magic philosophical

conversations we shared during my last year in Bristol.

Thanks to the team at Thales for being so welcoming and supportive during my

work placements and always being eager to listen to my ideas. Special thanks to Adrian

Waller and Glyn Jones for mentoring me during my time at Thales.

I share my life with some incredible, outrageous and brilliant people who support

me in so many ways. A giant collective thank you to all my friends! Thank you for

inspiring me, exploring with me and helping me weather the storms.

This thesis is dedicated to Harry Swordy and Ker Standerwick, two very dear friends

who would have been so proud of me for finally reaching the top of this mountain and

not looking back.

4

Contents

1 Introduction 13

1.1 Motivation . 13

1.2 Thesis Outline and Contributions . 14

1.3 Author Contributions . 15

2 Background Material 17

2.1 Notation . 18

2.2 Cryptographic Primitives . 18

2.2.1 Negligible functions . 18

2.2.2 Pseudorandom functions . 19

2.2.3 Pseudorandom permutations . 20

2.2.4 Hash functions . 20

2.2.5 One-way functions . 21

2.3 Encryption schemes . 21

2.3.1 Symmetric-key encryption . 21

2.3.2 Public-key encryption . 22

2.3.3 Attribute-based encryption . 23

2.3.4 Predicate-based encryption . 25

2.3.5 Broadcast encryption . 26

2.3.6 Order-Preserving Encryption . 27

2.4 Verifiable Computation . 28

2.4.1 Verifiable and publicly verifiable computation 28

2.4.2 Verifiable delegable computation 29

2.5 Types of data . 31

2.6 Methods of proof . 32

2.6.1 Game-based security proofs . 32

2.6.2 Simulation-based security proofs 32

2.6.3 Security Model for Symmetric-Key Encryption 34

5

2.6.4 Security Model for Public-Key Encryption 35

2.6.5 Security Model for Ciphertext-Policy Attribute-Based Encryption 36

2.6.6 Security Model for Predicate-Based Encryption 38

2.6.7 Security Model for Broadcast Encryption 41

2.6.8 Security Model for Verifiable Computation 42

2.6.9 Security Model for Verifiable Delegable Computation 43

2.7 Summary . 44

3 Searchable Encryption 45

3.1 Introduction . 45

3.2 Security of Searchable Encryption . 52

3.3 Adversarial models . 53

3.4 Literature Review . 54

3.4.1 Oblivious RAM . 54

3.4.2 Public Key Searchable Encryption 55

3.4.3 Searchable Symmetric Encryption 60

3.5 Summary . 64

4 Searchable Encryption in the Real World 66

4.1 Introduction . 66

4.2 Architecture of Searchable Encryption 67

4.3 Application of searchable encryption to provide solutions in the Scenarios 68

4.3.1 Scenario 1: Only the data owner reads and writes all the data . . 68

4.3.2 Scenario 2: Data owner can read data, all users can write data . 71

4.3.3 Scenario 3: Data owner can write data, many users can read data 73

4.3.4 Scenario 4: Many users can read and write data 74

4.4 Searchable Encryption in the Real World 76

4.5 Deployment challenges . 79

4.6 Summary . 81

5 Extended Functionality in Verifiable Searchable Encryption 82

5.1 Introduction . 83

5.1.1 Related work . 84

5.1.2 Organisation of chapter . 86

5.2 Extended Verifiable Searchable Encryption 86

5.2.1 System model . 86

5.2.2 Formal Definition . 88

5.2.3 Security Model . 90

6

5.3 Construction . 96

5.3.1 Overview . 96

5.3.2 Choosing a Broadcast Encryption scheme 98

5.3.3 Choosing a CP-ABE scheme . 100

5.3.4 Data Encoding . 102

5.3.5 Formal Details . 104

5.3.6 Instantiation Details . 105

5.4 Proofs of Security . 110

5.4.1 Public verifiability . 110

5.4.2 Index privacy . 115

5.4.3 Query privacy . 120

5.5 Summary . 124

6 Multi-level Searchable Encryption 127

6.1 Introduction . 128

6.1.1 Related work . 129

6.1.2 Organisation of chapter . 133

6.2 Searchable Symmetric Encryption . 133

6.2.1 Types of index . 133

6.2.2 Classifying leakage . 134

6.3 Generic solutions for MLSSE using SSE as a black box 135

6.3.1 Augmented Index . 136

6.3.2 Encrypted/labelled Search Results 138

6.3.3 Using a trusted third party (TTP) 139

6.3.4 Expanding the Keyword Dictionary 140

6.4 Multi-level Searchable Symmetric Encryption 142

6.4.1 System Model . 142

6.4.2 Formal Definition . 144

6.4.3 Security Model . 145

6.5 Construction . 152

6.6 Proofs of Security . 157

6.6.1 Achieving dynamicity . 165

6.7 Performance . 166

6.8 Summary . 167

7 Conclusion and Future Work 168

Bibliography 170

7

List of Figures

2.1 Verifiable Delegable Computation. 30

3.1 Searchable Encryption model. 46

4.1 Only the data owner reads and writes all the data. 69

4.2 Data owner can read data, all users can write data. 71

4.3 Data owner can write data, many users can read data. 73

4.4 Many users can read and write data. 75

8

List of Games

2.1 IND-CPA for symmetric-key encryption 35

2.2 IND-CPA for public-key encryption . 36

2.3 Selective IND-CPA game for CP-ABE. 37

2.4 Adaptive IND-CPA game for CP-ABE. 38

2.5 Selective IND-CPA game for PBE. 39

2.6 Adaptive IND-CPA game for PBE. 40

2.7 Adaptive IND-CPA game for BE. 41

2.8 Adaptive VERIFY game for VC. 42

2.9 Adaptive PUB-VERIFY game for VDC. 43

5.1 Selective public verifiability game for eVSE 92

5.2 Selective index privacy game for eVSE 94

5.3 Selective query privacy game for eVSE 95

6.1 Adaptive multi-level access game for MLSSE 150

6.2 Adaptive revocation game for MLSSE 151

9

List of Tables

5.1 Comparison of Broadcast Encryption Schemes 100

5.2 Comparison of Large Universe CP-ABE schemes 101

5.3 Comparison of Verifiable Searchable Encryption Schemes 126

6.1 Performance of MLSSE . 166

10

List of Notation

x||y the concatenation of x and y
|M | length of bit string M
{0, 1}n all binary strings of length n
{0, 1}∗ all binary strings
κ security parameter
1κ the unary representation of the security parameter
P[A] the probability of an event A occurring
∅ the empty set
[i, j] the set of integers {i,i+1,...,j-1,j}
[i] the set of integers {1,...,i}
S\s the set S with the element s removed
{si}i∈[n] the set {s1, ..., sn}
negl(x) a negligible function on input x
PRF pseudorandom function
PRP pseudorandom permutation
⊕ the binary operation XOR
y ← x assigning the value x to variable y
y ← A(y) the output of A being assigned to variable y, where A is a

deterministic algorithm

y
$← A(y) the output of A being assigned to variable y, where A is a

probabilistic algorithm
x ∈ X the element x is a member of the set X

11

List of Abbreviations

SKE Symmetric Key Encryption
PKE Public Key Encryption
VSE Verifiable Searchable Encryption
VC Verifiable Computation
VDC Verifiable Delegable Computation
eVSE Extended Verifiable Searchable Encryption
DE Deterministic Encryption
CP-ABE Ciphertext Policy Attribute Based Encryption
ABE Attribute-Based Encryption
PBE Predicate-Based Encryption
BE Broadcast Encryption
SE Searchable Encryption
SSE Symmetric Searchable Encryption
MSSE Multi-User Symmetric Searchable Encryption
MLSSE Multi-Level Symmetric Searchable Encryption
IND-CPA Indistinguishability against Chosen Plaintext Attacks

12

Chapter 1

Introduction

Contents

1.1 Motivation . 13

1.2 Thesis Outline and Contributions 14

1.3 Author Contributions . 15

This chapter provides the motivation for, and structure of, the thesis.

1.1 Motivation

Nowadays, almost all data is stored digitally. Public cloud service providers provide

an infrastructure that gives businesses and individuals access to computing power and

storage space to support this digital data on a flexible pay-as-you-go basis. This allows

them to bypass the costs associated with having their own data centres such as hard-

ware, construction, air conditioning and security costs. This makes cloud computing a

very cost-effective solution for both bulk data processing and data storage.

According to a government survey on information security and data breaches relat-

ing to digital data in 2017 [103], 46 per cent of all UK businesses identified at least one

attack by an unauthorised outsider and suffered a data breach in the last 12 months (up

from 24 per cent the previous year). The number is higher for medium and large firms,

of which 66 per cent and 68 per cent respectively suffered at least one data breach.

This demonstrates a clear need for secure data storage in order to ensure the confi-

dentiality of data. However, encrypting data is just one part of the solution. Encrypting

data ensures that, in the event of a compromise, no meaningful information should leak

about the data itself if the data is compromised, yet it also reduces the possibility of

13

1.2. Thesis Outline and Contributions

performing computations on the ciphertexts, such as searching for keywords or specific

items within the data.

Suppose that, just as in a typical cloud storage environment, your data is stored

in encrypted form on a remote server due to local data storage constraints. To locate

a piece of data we could download the entirety of the encrypted data, decrypt it, and

search over the unencrypted data. Alternatively, perhaps we could create an index for

the encrypted data that is stored locally and used to navigate the encrypted files. Both

of these methods provide adequate solutions in theory, yet in practice they present

several problems. Firstly, the size of the encrypted data may not be known a priori, or

be known in advance to be very large, both of which deem the process of downloading

all of the encrypted data highly inefficient and costly. Furthermore, the reason for

storing the data remotely in the first place is due to the unavailability of local storage,

so downloading all the data in this case would not be an option. Creating an index

would require locally storing a file which may be of size in the order of the number of

encrypted files, which again may not be feasible due to local storage restrictions. In

addition, the index itself could potentially leak information about the encrypted data,

compromising confidentiality.

Searchable encryption (SE) provides a solution to this problem by supporting the

outsourcing of encrypted data to a remote server, whilst maintaining the ability to

search for specific keywords within the encrypted data.

1.2 Thesis Outline and Contributions

In this thesis we investigate different methods for searching on encrypted data. In

Chapter 2, we introduce some notation and background material relevant to the re-

mainder of the thesis. In Chapter 3, we define the paradigm of searchable encryption,

along with associated security definitions and adversarial models. We also give an

overview of the related literature in the field.

Chapter 4 establishes four scenarios in order to categorize the searchable encryption

schemes in the literature. These scenarios are categorized in terms of the number of

users and the tasks that these users are able to perform within the system. The aim

of this chapter is to present searchable encryption in a real-world setting and map the

various schemes in the literature to each of these scenarios. We define a set of features

that can vary within each scenario, such as the number of data items to be searched

over and the type of search query required. We also analyse the efficiencies of a number

of searchable encryption schemes, and use this information to map the schemes into the

scenarios. We highlight which scheme is most suitable according to the varying features.

14

1.3. Author Contributions

Although the literature on searchable encryption is vast, searchable encryption schemes

do not seem to be widely deployed. The aim of this work is to aid the deployment of

searchable encryption by helping potential users to choose the most suitable scheme

for a given scenario.

Chapter 5 focuses on a branch of searchable encryption called verifiable searchable

encryption, which assumes a more powerful adversary. In this model the server is not

trusted to compute the search honestly, hence an extra algorithm is needed to perform

verification of search results. We first identify some similarities between the models of

searchable encryption and verifiable outsourced computation. We then use techniques

from the field of verifiable outsourced computation to construct a verifiable searchable

encryption scheme with more expressive queries.

The focus of Chapter 6 is on multi-level access within searchable encryption schemes.

In many real-world scenarios for searchable encryption, not all users will have the same

access rights to the encrypted data. Most schemes in the literature that provide a

solution to this issue are based on computationally intensive cryptographic paradigms,

such as attribute-based encryption. We present a symmetric key solution to multi-

level access within searchable encryption which provides a more practical alternative.

Within this chapter we also present numerous generic ways of extending a single-user

searchable encryption scheme to one that supports multi-level access.

We draw our conclusions and identify areas of future work in Chapter 7.

1.3 Author Contributions

The work presented in this thesis is derived from three published papers [7, 120, 121],

all of which I am listed as the main author. As my supervisor, Keith Martin is a co-

author on all three papers, and helped to inspire and guide my ideas throughout the

research.

The work in Chapter 4 was co-authored by Keith Martin. The main body of work

was developed by myself, guided by helpful notes and comments from Martin. The

ideas in Section 4.5 were inspired through discussions with delegates at the ‘Future

Directions in Computing on Encrypted Data’ symposium which was held in Bristol in

November 2015.

The paper that formed the basis of Chapter 5 was co-authored by James Alderman

and Christian Janson. I recognised the similarity of the system models within their

area of research, verifiable computation and my own area of research which inspired

the work. I lead the development of the system model and the security notion of index

privacy. The rest of the work of [120] was jointly developed by all authors.

15

1.3. Author Contributions

The paper from which Chapter 6 was derived was co-authored by James Alderman.

Most of the main ideas of the paper were developed by myself through invaluable

discussions with Alderman.

16

Chapter 2

Background Material

Contents

2.1 Notation . 18

2.2 Cryptographic Primitives . 18

2.2.1 Negligible functions . 18

2.2.2 Pseudorandom functions . 19

2.2.3 Pseudorandom permutations 20

2.2.4 Hash functions . 20

2.2.5 One-way functions . 21

2.3 Encryption schemes . 21

2.3.1 Symmetric-key encryption . 21

2.3.2 Public-key encryption . 22

2.3.3 Attribute-based encryption 23

2.3.4 Predicate-based encryption 25

2.3.5 Broadcast encryption . 26

2.3.6 Order-Preserving Encryption 27

2.4 Verifiable Computation . 28

2.4.1 Verifiable and publicly verifiable computation 28

2.4.2 Verifiable delegable computation 29

2.5 Types of data . 31

2.6 Methods of proof . 32

2.6.1 Game-based security proofs 32

2.6.2 Simulation-based security proofs 32

2.6.3 Security Model for Symmetric-Key Encryption 34

2.6.4 Security Model for Public-Key Encryption 35

17

2.1. Notation

2.6.5 Security Model for Ciphertext-Policy Attribute-Based Encryp-

tion . 36

2.6.6 Security Model for Predicate-Based Encryption 38

2.6.7 Security Model for Broadcast Encryption 41

2.6.8 Security Model for Verifiable Computation 42

2.6.9 Security Model for Verifiable Delegable Computation 43

2.7 Summary . 44

This chapter provides details on the notation used throughout the thesis,

along with background information on relevant cryptographic primitives and

security notions.

2.1 Notation

In this section, we give details of some common notation used throughout the remainder

of the thesis.

We use Z to denote the set of integers, N ⊂ Z to denote the set of natural numbers,

Zp∗ is the multiplicative group {1, ...p−1}, and the symbol ∅ represents the empty set.

We use [i, j] and [n] to represent the sets of integers {i, i+ 1,, j−1, j} and {1, ..., n},
respectively, where i, j, n ∈ N and i < j. The notation S\{s} represents the set S with

the element s removed, and {si}i∈[n] represents the set {s1, ..., sn}.
In our binary operations true is denoted as 1, and false as 0. We use ∨ to denote

the binary operator OR, which produces a result of 1 if either one of the operands are

1. We use ∧ to denote the binary operation AND, which produces a result of 1 only if

both operands are 1.

We use P[A] to denote the probability of event A occuring.

2.2 Cryptographic Primitives

In this section, we give details of some common cryptographic primitives used in the

remainder of the thesis.

2.2.1 Negligible functions

We use negligible functions when defining the security of an encryption scheme. In

this thesis we deal with encryption schemes that are computationally secure as opposed

to information-theoretically secure, which remain secure against computationally un-

bounded adversaries. The one-time pad is a common example of an encryption scheme

18

2.2. Cryptographic Primitives

exhibiting this form of security. It is not always possible to achieve such high levels

of security. In practice, where the presence of a computationally unbounded adversary

may be unrealistic, a computationally limited adversary is assumed which is bounded

to run in polynomial time with respect to the security parameter used in the key gen-

eration algorithm of the encryption scheme. Similarly inverse polynomial probabilities

are considered to be a significant threshold. If there exists a polynomial p(n) and an

adversary can break the security of an encryption scheme with probability 1
p(n) then

the scheme is considered to be insecure. If the probability of breaking the security of

the encryption is asymptotically smaller than 1
p(n) for every possible polynomial, then

the encryption scheme is considered secure as the probability is so small [87, Definition

3.4]. This is referred to as negligible probability. We define a negligible function as

follows:

Definition 2.2.1 (Negligible Function). A function negl : N → R is defined as negli-

gible if for any polynomial p(x) there exists a natural number λ ∈ N such that, for all

natural numbers x > λ:

negl(x) <
1

p(x)
.

2.2.2 Pseudorandom functions

A pseudorandom function is a family of functions that, given a random instance from

this family of functions, and the ability to pass it inputs and receive the outputs, it

is hard to tell whether the function you are interacting with is a random instance

from the family of functions or a truly random function. In practice pseudorandom

functions are used in place of truly random functions as the family of functions defining

a pseudorandom function is much smaller than that defining the set of all truly random

functions. We define random a pseudorandom function as follows:

Definition 2.2.2 (Pseudorandom Function (PRF)). A function f : {0, 1}n×{0, 1}κ →
{0, 1}m is a PRF if:

• Given a key K ∈ {0, 1}κ and an input x ∈ {0, 1}n one can efficiently compute

fK(x).

• For all probabilistic polynomial-time algorithms D, there exists a negligible func-

tion negl such that:

|P[K
$← {0, 1}κ, DfK (1κ)]− P[f

$← F , Df (1κ)]| ≤ negl(κ),

where F = {f : {0, 1}n → {0, 1}m}.

19

2.2. Cryptographic Primitives

2.2.3 Pseudorandom permutations

Pseudorandom permutations are defined similarly to pseudorandom functions, except

it is required that their output be indistinguishable from that of a truly random per-

mutation, rather than a truly random function. A pseudorandom permutation is in

fact an invertible pseudorandom function which we define as follows:

Definition 2.2.3 (Pseudo Random Permutation (PRP)). Let f : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ be an efficient, length-preserving, keyed function. We say that f is a pseudoran-

dom permutation if, for every K ← {0, 1}κ, fK(·) is one-to-one (this in fact implies that

f is a bijection as it also length-preserving) and, for all probabilistic polynomial-time

distinguishers D, there exists a negligible function negl such that:

|P[DfK(·)(1κ) = 1]− P[Df(·)(1κ) = 1]| ≤ negl(κ),

where K ← {0, 1}κ is chosen uniformly at random and f is chosen uniformly at random

from the set of permutations mapping κ-bit strings to κ-bit strings [87, Section 3.6.3].

Definition 2.2.4 (Strong PRP). A PRP f is a strong PRP if the inverse f−1 of the

PRP is also a PRP.

2.2.4 Hash functions

A hash function is an algorithm that maps arbitrary sized input to a (usually) fixed size

output. Hash functions are generally used to compare values which cannot be stored in

the clear. In this these we use a type of hash function known as a keyed hash function,

which is defined as follows:

Definition 2.2.5 (Keyed Hash Function). A keyed hash function is a pair of proba-

bilistic polynomial-time algorithms (KeyGen,H) that satisfy the following:

• K $← KeyGen(1κ) is a probabilistic algorithm which takes as input a security

parameter 1κ and outputs a key K;

• There exists a polynomial ` such that H takes as input a key K and a string

x ∈ {0, 1}∗ and outputs a string HK(x) ∈ {0, 1}`(k).

A hash function is defined as collision resistant if the probability of two different inputs

hashing to the same output is negligible. That is, for any probabilistic polynomial time

algorithm A we have that:

P[K
$← KeyGen(1κ), (x1, x2)← A(K, 1κ) : x1 6= x2, HK(x1) = HK(x2)] ≤ negl(k).

20

2.3. Encryption schemes

2.2.5 One-way functions

A one-way function is a function that is easy to compute on the entirety of its domain,

but it is hard to invert the function given the image of a random input. It is formally

defined as follows:

Definition 2.2.6 (One-way Function). A function f : {0, 1}∗ → {0, 1}∗ is a one-way

function if:

• f can be evaluated in polynomial time.

• For every probabilistic polynomial time (PPT) algorithm A there is a negligible

function such that:

P
X

$←{0,1}κ
[A(f(X)) ∈ f−1(f(X))] ≤ negl(κ),∀κ.

2.3 Encryption schemes

This section presents information on encryption schemes that are used in the thesis,

along with their formal correctness definitions. Encryption is a common method for

protecting the confidentiality of data. In order to make sense of encrypted data you

need to have access to the secret key that is required to decrypt the data. Access to

encrypted data is usually granted on an all-or-nothing basis, meaning that you can ei-

ther decrypt the entire data, or you cannot. However, advanced encryption techniques

such as attribute-based encryption (Section 2.3.3), predicate-based encryption (Sec-

tion 2.3.4) and searchable encryption (Chapter 3) are able to facilitate partial access

to the encrypted data, such as evaluating a query over the encrypted data.

The algorithms in the encryption schemes can either be deterministic or proba-

bilistic. A deterministic algorithm always outputs the same ciphertext when supplied

with the same key and plaintext, whenever it is executed. In contrast, a probabilistic

algorithm produces a random ciphertext, even on executions involving the same key

and plaintext.

Throughout this thesis, we will use M to denote the plaintext space, C to denote

the ciphertext space, K to denote the keyspace, and κ ∈ N to denote the security

parameter of an encryption scheme..

2.3.1 Symmetric-key encryption

In symmetric-key encryption, the key used to encrypt the data is the same as the

key used to decrypt the data. This presents the major issue associated with using

21

2.3. Encryption schemes

symmetric-key encryption, which is how to share the secret key. The symmetric secret

key must be kept secret at all times in order to ensure the confidentiality of the en-

crypted data and a secure method is required to distribute the key to all parties whom

we wish to have the capability to encrypt and decrypt data.

Definition 2.3.1 (Symmetric-key Encryption (SKE)). Let K be the key space, M be

the plaintext space and C be the ciphertext space. A symmetric-key encryption scheme

consists of the following three algorithms:

• SK $← KeyGen(1κ): A probabilistic algorithm that takes as input the security

parameter κ ∈ N and outputs a secret key SK ∈ K.

• c $← Enc(m,SK): A probabilistic or deterministic algorithm that takes as input a

plaintext m ∈M and the secret key SK, and outputs a ciphertext c ∈ C.

• m or ⊥← Dec(c, SK): A deterministic algorithm that takes as input a ciphertext

c ∈ C and outputs either m ∈M or ⊥.

An SKE scheme is correct if, when using the same key, the decryption algorithm

reverses encryption. That is, if a plaintext is encrypted using a key SK, then running

the decryption algorithm on this ciphertext using the same key will return the original

plaintext.

Definition 2.3.2 (Correctness of SKE). An SKE scheme is correct if for all κ ∈ N,

for all m ∈M:

P[SK
$← KeyGen(1κ),

c
$← Enc(m,SK),

m← Dec(c, SK)] = 1.

2.3.2 Public-key encryption

In public-key encryption, the key used to encrypt the data is different from the key used

to decrypt it. The decryption key must be kept secret, however the encryption key can

be made public. This solves the issue associated with key transfer in SKE, since a user

is able to encrypt a plaintext for someone using a public key which can be made freely

available, for example by publishing it online. This means that the party encrypting

the data needs to know the recipient of the data before encryption in order to use the

correct public key.

22

2.3. Encryption schemes

Definition 2.3.3 (Public Key Encryption (PKE)). Let K be the key space, M be the

plaintext space and C be the ciphertext space. A public-key encryption scheme consists

of the following three algorithms:

• (PK,SK)
$← KeyGen(1κ): A probabilistic algorithm that takes as input a security

parameter κ ∈ N and outputs a public and secret key pair (PK,SK) ∈ K.

• c $← Enc(m,PK): A probabilistic or deterministic algorithm that takes as input

a plaintext m ∈M, the public key PK, and outputs a ciphertext c ∈ C.

• m or ⊥← Dec(c, SK): A deterministic algorithm that takes as input a ciphertext

c ∈ C and outputs either a plaintext m or ⊥.

The correctness of PKE is similar to that of SKE, in that the decryption algorithm

reverses the encryption algorithm.

Definition 2.3.4 (Correctness of PKE). A PKE scheme is correct if for all κ ∈ N, for

all m ∈M:

P[(PK,SK)
$← KeyGen(1κ),

c
$← Enc(m,PK),

m← Dec(c, SK)] = 1.

2.3.3 Attribute-based encryption

The paradigm of attribute-based encryption is a form of PKE where a user’s key is

associated with general descriptive attributes. These attributes can be descriptors

such as the user’s role, location, type of subscription or the department the user works

in, for example. Ciphertexts are associated with monotonic access structures, which

means that if there exists a set of attributes that satisfy the access structure, then

any superset of this set will also satisfy the access structure. The access structures are

composed of ∨ and ∧ gates, and a ciphertext can only be decrypted if the attributes

on the secret key satisfy the policy determined by the access structure.

There are two variants of attribute-based encryption. The one we will describe

is referred to as ciphertext-policy attribute-based encryption, while the other is known

as key-policy attribute-based encryption. In key-policy attribute-based encryption the

monotonic access structure is associated with the keys instead of the ciphertext, and the

ciphertext is associated with a set of descriptive attributes. We give a formal definition

23

2.3. Encryption schemes

of ciphertext-policy attribute-based encryption only as this is the only variant we utilise

in the thesis.

Attribute-based encryption allows a user to encrypt data without knowing the spe-

cific identity of the recipient(s); the user only needs to specify a policy involving a

general set of attributes that they require the recipient to possess. For example, an

employee at a company could encrypt data so that every manager in the finance de-

partment is able to decrypt it by embedding the policy ‘FINANCE ∧ MANAGER’

into each ciphertext. Applying an access structure to each ciphertext allows the data

owner to enforce a more fine-grained access policy to the encrypted data, whereas in

standard SKE and PKE (Definitions 2.3.1 and 2.3.3), access to the encrypted data is

all-or-nothing, meaning that a user is either authorized to decrypt all data items or

none at all. We denote a set of attributes A that satisfy a policy A as A |= A.

Definition 2.3.5 (Ciphertext Policy Attribute Based Encryption (CP-ABE)). Let U
be the attribute space, M be the plaintext space, K be the key space, C be the cipher-

text space and A∗ be the access structure space. A ciphertext policy attribute based

encryption scheme consists of the following four algorithms:

• (PK,SK)
$← Setup(1κ,U): A probabilistic algorithm that takes as input a security

parameter κ ∈ N and outputs a master public key and master secret key pair

(PK,SK) ∈ K.

• c $← Encrypt(m,A, PK): A probabilistic algorithm that takes as input an access

structure A ∈ A∗, a plaintext m ∈ M and the public key PK, and outputs a

ciphertext c ∈ C associated with access structure A.

• SKA
$← KeyGen(SK,A, PK): A probabilistic algorithm that takes as input the

master secret key SK and a set of attributes A ∈ U that describe the key (or the

user that the key is produced for). It outputs a secret key SKA ∈ K associated

with the set of attributes A.

• m or ⊥← Decrypt(SKA, c, PK): A deterministic algorithm that takes as input a

ciphertext c ∈ C associated with an access structure A, a secret key SKA associated

with some set of attributes A, and the public key PK. It outputs a plaintext

m ∈M or ⊥.

Definition 2.3.6 (Correctness of CPABE). A CP-ABE scheme is correct if for all

κ ∈ N, for all (PK,SK)
$← Setup(1κ), for all attribute sets A ∈ U , for any key

SKA
$← KeyGen(SK,A, PK), and for all access structures A ∈ A∗, if A satisfies A,

24

2.3. Encryption schemes

then:

m← Decrypt(SKA, c, PK).

2.3.4 Predicate-based encryption

Predicate-based encryption is a generalisation of ABE that associates ciphertexts with

a set of attributes X, and the secret keys with a predicate F (as opposed to the access

structure in ABE). Decryption succeeds if F (X) = 1. Unlike ABE, predicate based en-

cryption is both attribute hiding and predicate hiding, meaning that both the predicates

and attributes are concealed (there are some examples of ABE that also conceal this

information [108, 96] but, ABE is not necessarily attribute hiding by definition). Pred-

icate based encryption can support the following types of queries over the encrypted

data: disjunctive queries, polynomial evaluation (where the set of attributes is Zn and

the predicates are in the form of polynomials in Zn[x]; the predicate evaluates to 1

if the corresponding polynomial evaluates to 0 on the attributes), threshold queries,

and predicates corresponding to conjunctive normal form (CNF) or disjunctive normal

form (DNF) formulae.

Definition 2.3.7 (Predicate Based Encryption (PBE)). Let P be the predicate space,

K be the key space, M be the plaintext space, C be the ciphertext space and U be the

attribute space. A Predicate Based Encryption (PBE) scheme consists of the following

four algorithms:

• (PK,SK)
$← Setup(1κ,P): A probabilistic algorithm that takes as input a security

parameter κ ∈ N and a predicate space P, and outputs a master public key and

master secret key pair (PK,SK) ∈ K.

• SKp
$← KeyGen(SK, p, PK): A probabilistic algorithm that takes as input the

master secret key SK and the description of a predicate p ∈ P. It outputs a

secret key SKp ∈ K associated with the predicate p.

• c $← Encrypt(m,A,PK): A probabilistic algorithm that takes as input a set of

attributes A ∈ U , a plaintext m ∈ M and the public key PK, and outputs a

ciphertext c ∈ C associated with the set of attributes A.

• m or ⊥← Decrypt(SKp, c, PK): A deterministic algorithm that takes as input a

ciphertext c ∈ C associated with some set of attributes A ∈ U , and a secret key

SKp associated with a predicate p ∈ P. It outputs a plaintext m ∈M or ⊥.

25

2.3. Encryption schemes

Definition 2.3.8 (Correctness of PBE). A PBE scheme is correct if for all κ ∈ N,

for all (PK,SK)
$← Setup(1κ), for all plaintexts m ∈ M, for all p ∈ P, for any key

SKp
$← KeyGen(SK, p), and for all sets of attributes A ∈ U , if f(A) = 1, then:

m← Decrypt(SKp, c, PK),

and if f(A) 6= 1 :

P[(PK,SK)
$← Setup(1κ),

SKp
$← KeyGen(SK, p),

c
$← Encrypt(m,A,PK),

⊥ ← Decrypt(SKp, c, PK)] = 1− negl(κ).

2.3.5 Broadcast encryption

Broadcast encryption provides an efficient way of allowing different sets of authorised

users access to encrypted data delivered via a broadcast channel. The trivial way of

achieving this would be to distribute a unique public and secret key pair to each user

in the authorised set, and then encrypt the data using each of the different public keys.

Hence, if there are n users in the authorised set then this method requires n different

encryptions of the same data to be broadcast to all users in order for each authorised

user to be able to decrypt the data.

Using broadcast encryption requires only one ciphertext to be broadcast to all users,

which can reduce the bandwidth required. When encrypting data using a broadcast

encryption scheme, a set of authorised users are input into the encryption algorithm,

along with the plaintext. Encryption ensures that only users belonging to the set of

authorised users input into the encryption algorithm are able to decrypt the resulting

ciphertext. Broadcast encryption works by distributing keying information to each user

so that authorised users are able to construct the decryption key, whereas unauthorised

users are not.

A Broadcast encryption (BE) scheme consists of a set of three polynomial time

algorithms BE = (BE.KeyGen,BE.Enc,BE.Dec) such that KeyGen generates the public

key and n secret keys for each user in the system, Enc takes the set of authorised users,

a plaintext and the public key as input, and outputs the BE encryption for the set of

authorised users, and Dec takes a user’s identity, their secret key, the BE encryption of

26

2.3. Encryption schemes

a plaintext,the public key and the set of authorised users, and outputs either the data

(if the user is authorised to view the data), or ⊥ otherwise.

In the following definition we consider a data owner broadcasting a ciphertext to a

set of users, some of which may not be authorised to decrypt it.

Definition 2.3.9 (Broadcast Encryption (BE)). Let U be the user identity space, G ⊆
U a set of authorised users, K be the keyspace, C be the ciphertext space and M be

the plaintext space. A Broadcast Encryption (BE) scheme consists of the following four

algorithms:

• (PK,SK)
$← Keygen(1κ, h): A probabilistic algorithm that takes a security pa-

rameter κ ∈ N (and possibly a value h which determines the maximum number of

users that can be revoked from the system), and outputs a public and secret key

pair (PK,SK) ∈ K.

• SKu
$← Add(SK, u): A probabilistic algorithm that takes a user identity u ∈ U

and the secret key SK, and outputs a secret key SKu ∈ K.

• c $← Encrypt(m,G, PK): A probabilistic algorithm that takes a plaintext m ∈M,

a set of users G ⊆ U that are authorized to decrypt the resulting ciphertext and

the public key PK. It outputs a ciphertext c ∈ C.

• (m or ⊥) ← Decrypt(SKu, c): A deterministic algorithm run by a user that

takes a ciphertext c and the user’s secret key SKu. The algorithm outputs either

a plaintext m or ⊥.

Definition 2.3.10 (Correctness of BE). A BE scheme is correct if for all κ ∈ N,

(PK,SK)
$← Keygen(1κ, h), for all u ∈ U , for all G ∈ U , for any key SKu

$←
Add(SK, u), for all plaintexts m, if u ∈ G:

P[(PK,SK)
$← KeyGen(1κ, h),

SKu
$← Add(SK, u),

c
$← Encrypt(m,G, PK),

m← Decrypt(SKu, c, PK)] = 1.

2.3.6 Order-Preserving Encryption

Order-preserving encryption is a form of deterministic encryption that produces cipher-

texts that preserve the ordering of the underlying plaintexts. In order to define OPE

27

2.4. Verifiable Computation

we first give a definition of an order-preserving function:

Definition 2.3.11 (Order-Preserving Function). For A,B ⊆ N with |A| ≤ |B|, a

function f : A→ B is order-preserving if for all i, j ∈ A, f(i) > f(j) iff i > j.

Definition 2.3.12 (Order-Preserving Encryption (OPE)). Let DE = (KeyGen,Enc,Dec)

be a deterministic encryption scheme with keyspace K, plaintext space M and cipher-

text space C. DE is an order-preserving encryption scheme if Enc(K, ·) is an order

preserving function from M to C for all K output by KeyGen.

Definition 2.3.13 (Correctness of OPE). An OPE scheme is correct if the underlying

deterministic encryption scheme DE is correct. See definitions 2.3.2 and 2.3.4.

2.4 Verifiable Computation

This section presents information on verifiable computation schemes

2.4.1 Verifiable and publicly verifiable computation

Verifiable Computation (VC) allows a client with limited resources to efficiently out-

source the computation of a function f on various inputs x1, ..., xn to a more powerful

server, and to verify the correctness of results. In verifiable computing we consider a

semi-honest but curious server (Definition 3.3.2) which may not perform the compu-

tation honestly or give a false result in order to save its bandwidth or computational

resources. Due to this a user receiving computation results from the server needs to be

able to verify that the server executed the computation correctly. The server computes

the function on the specified input and returns the results, e.g. f(xi), along with a

proof that the server computed the function correctly on the given input. It is required

that the verification of the proof requires less computation by the client than if the

client computed the actual function.

Other notable approaches in the realm of querying remote data can be found in

[8, 10, 11, 23, 24, 28, 53].

Definition 2.4.1 (Verifiable Computation (VC)). Let F be the function space, X be

the input space and K be the keyspace. A VC scheme consists of the following four

algorithms:

• (EKf , SKf)
$← KeyGen(1κ, f): A probabilistic algorithm that takes as input the

security parameter 1κ along with a function f ∈ F to be computed. It outputs a

public and secret key pair (EKf , SKf) ∈ K. The public key EKf will be used by

the server to compute the function f .

28

2.4. Verifiable Computation

• (σf,x, V Kf,x)
$← ProbGen(x, SKf): A probabilistic algorithm that takes as input

x along with the secret key SKf . It outputs the public encoded input σf,x, along

with a secret verification key V Kf,x.

• θf(x)
$← Compute(σf,x, EKf): A probabilistic function that takes as input the en-

coded input σf,x along with the public evaluation key EKf . It outputs an encoding

of the computation result, θf(x), evaluating f(x).

• y ← Verify(θf(x), V Kf(x), SKf): A deterministic algorithm that takes as input the

encoded result θf(x), the verification key V Kf and the secret key SKf . It outputs

a value y which is either the result of the computation f(x) or ⊥ if θf(x) is not a

valid input.

Definition 2.4.2 (Correctness of VC). A VC scheme for a set of functions F is correct

if for all f ∈ F and for all x in the domain of f :

P[(EKf , SKf)
$← Setup(1κ, f),

(σf,x, V Kf,x)
$← ProbGen(x, SKf),

θf(x)
$← Compute(σf,x, EKf),

f(x)← Verify(θf(x), V Kf(x), SKf)] = 1.

Gennaro et al. [67] considered the use of garbled circuits, whilst Parno et al. [115]

introduced publicly verifiable computation (PVC) built from key policy attribute based

encryption (KP-ABE), where a single client computes an evaluation key for the server

and publishes information enabling other clients to outsource computation to the server.

Any client may verify the correctness of a result.

2.4.2 Verifiable delegable computation

Alderman et al. [6] considered an alternative system model that used ciphertext pol-

icy attribute based encryption (CP-ABE) to allow clients to query computations on

data held by the server (or initially outsourced by a client) called Verifiable Delegable

Computation (VDC). The data is given public, descriptive labels to allow the clients to

request computations on subsets of the data. This can naturally be applied to problems

like querying on remote data.

Definition 2.4.3 (Verifiable Delegable Computation (VDC)). Let F be the function

space, S be the server space and K be the keyspace. A verifiable delegable computation

scheme consists of the following algorithms:

29

2.4. Verifiable Computation

Figure 2.1: Verifiable Delegable Computation.

• (MK,PP)
$← Setup(1κ,F): A probabilistic algorithm that takes as input security

parameter and a family of functions F . It outputs a master secret key MK and

public parameters PP .

• PKf
$← FnInit(f,MK,PP): A probabilistic algorithm that takes as input the

master secret key, public parameters and a function f ∈ F . It outputs a public

delegation key PKf which can be used to request computations of the function f .

• SKSi
$← Register(Si,MK,PP): A probabilistic algorithm used to enrol a compu-

tation server into the system. It takes as input the server identity Si ∈ S along

with the master key and the public parameters. It outputs the server’s secret key,

which is used to sign computations carried out by that server.

• EKDi,Si
$← Certify(Si, Di, {`(xi,j)}xi,j∈Di ,Fi,MK,PP): A probabilistic algorithm

that takes as input a server identity, a set of data points Di and associated labels

{`(xi,j)}, the family of functions Fi and the master secret key. It outputs an

evaluation key EKDi,Si which enables server Si to compute all functions f ∈ Fi
on data Di, where Di = {xi,j}mij=1 is a set of mi data points each labelled `(xi,j).

• (σf,X , V Kf,X , RKf,X)
$← ProbGen(f, {xi,j}xi,j∈X , Si, PKf , PP): A probabilistic

algorithm that takes as input a function f , a set of data point labels {`(xi,j)}
belonging to server Si, the public delegation key PKf and the public parameters.

It outputs a value encoding the function f and the input values, denoted σf,X , a

public verification key V Kf,X and a retrieval key RKf,X .

• θf(X)
$← Compute(σf,X , EKDi,Si , SKSi , PP): A probabilistic algorithm that takes

as input the encoded input value σf,X , the evaluation key EKDi,Si, the server’s

secret key SKSi and the public parameters. It computes the function f on the

encoded inputs and outputs and produces an encoded result θf(X) for f(X).

30

2.5. Types of data

• yf(X) ← Verify(θf(X), V Kf(X), RKf(X), PP): This deterministic algorithm can be

run in two parts:

– (RTf(X), τθf(X)
) ← BVerif(θf(X), V Kf,X , PP): This algorithm takes as in-

put the encoded output θf(X) along with the verification key and the public

parameters. It outputs a retrieval token RTf(X) which encodes the output of

the computation f(X) and a token τθf(X)
which is assigned value 1 if θf(X)

is a valid encoding of the computation result, or 0 otherwise.

– yf(X) ← Retrieve(RTf(X), τθf(X)
, V Kf,X , RKf,X , PP): This algorithm takes

as input the retrieval token RTf(X), the encoded result τθf(X)
, the verification

key V Kf,X , the retrieval key RKf,X along with the public parameters. It

outputs the value yf(X) which is either the result of the computation f(X) if

the server performed correctly, or ⊥ otherwise.

Definition 2.4.4 (Correctness of VDC). A VDC scheme for a family of functions F
is correct if; for all Si ∈ S, for all Di and for all f ∈ F :

P[(PP,MK)
$← Setup(1κ,F),

PKf
$← FnInit(f,MK,PP),

SKSi
$← Register(Si,MK,PP),

EKDi,Si
$← Certify(Si, Di, {`(xi,j)}xi,j∈Di ,Fi,MK,PP),

(σf,X , V Kf,X , RKf,X)
$← ProbGen(f, {xi,j}xi,j∈X , PKf , PP),

θf(X)
$← Compute(σf,X , EKDi,Si , SKSi , PP),

(RTf(X),τθf(X)
)← BVerif(θf(X), V Kf,X , PP),

f(X)← Retrieve(RTf(X), τθf(X)
, V Kf,X , RKf,X , PP)] = 1.

2.5 Types of data

In this section we define the data types that we use in the thesis.

Definition 2.5.1 (Static). A static dataset is one that does not change over time.

That is, it is a fixed dataset in the sense that no data items can be added, removed or

updated in the dataset once initialised.

Definition 2.5.2 (Dynamic). A dynamic dataset is one that can change over time.

Data items can be added, removed or updated after the dataset has been initialised.

31

2.6. Methods of proof

2.6 Methods of proof

There are two main methods of proving the security of a cryptographic scheme: game-

based methods and simulation-based methods. In this section we outline both of these

methods.

2.6.1 Game-based security proofs

This method of proof is defined in terms of an attack game between two probabilistic

entities: an adversary and a challenger. The game is modelled as a probability space

and the security notion is related to the probability of some event in this probability

space occurring. The challenger can be thought of as a legitimate user and will usually

have access to the secret parameters in the system. The adversary models an entity

that wants to achieve something against the wishes of the legitimate user and has access

to the public parameters and usually some oracles.

An oracle is a system that the challenger provides to the adversary in order to give

them some extra information that would otherwise be unavailable to them. Oracles are

used to create a realistic environment for the adversary, in order to give them access

to all the information that an adversary attacking the scheme in the real world might

have. For example, an adverwsary might be able to observe the inputs and outputs

to an encryption algorithm in a real world system that requires a secret key as input.

However, if the adversary in the game does not have access to the secret key then they

cannot run this algorithm themselves, so an oracle is used to allow the adversary access

to this information. In this case the oracle gives the adversary the ability to encrypt

any plaintext of their choosing and receive a valid ciphertext without having access to

the secret key. We denote an adversary A having access to an oracle O that has fixed

inputs (x1, ..., xn) and computes a function F as AOF (·,...,·,x1,...,xn), where · denotes an

input that is chosen by the adversary.

2.6.2 Simulation-based security proofs

In a simulation-based proof there are two different worlds: an ideal world, where the

cryptographic scheme is secure by definition and in which an adversary interacts with

a simulated version of the cryptographic scheme, and a real world which reflects an ad-

versary interacting with the actual cryptographic scheme. The idea behind simulation-

based proof is that if the cryptographic scheme in question is secure, then the adversary

cannot tell which world it is in, i.e. whether it’s interacting with a simulation or the

actual scheme. The only information the simulator in the ideal world receives is that

which is assumed to be leaked to an adversary in the real world, so it cannot run any of

32

2.6. Methods of proof

the algorithms or know any secret parameters of the cryptographic scheme in question.

Using only the specified information, the simulator has to fulfil the following three tasks

[101]:

1. It must generate a view for the real adversary that is indistinguishable from its

real view in the real world;

2. It must extract the effective inputs used by the adversary in the execution; and

3. It must make the view generated be consistent with the output that is based on

this input.

A simulation-based proof shows that if an adversary cannot tell whether it is in-

teracting with a simulator or the real cryptographic scheme then the cryptographic

scheme does not leak any information other than that which is known to be leaked.

To illustrate this concept, take the example of a symmetric-key encryption scheme. In

the real world, the adversary issues a plaintext to the challenger and receives a genuine

ciphertext in return. In the ideal world, the adversary receives a simulated cipher-

text that the simulator generates without the secret key or access to the algorithms

of the cryptographic scheme. If the adversary cannot tell which world they are inter-

acting with then this shows that the real ciphertext leaks no secret information. This

is because the simulator is not in possession of any of the secret information, hence

it would be impossible for them to output a ciphertext that leaks this information or

any information that the adversary does not already know. If the adversary is unable

to distinguish between a simulated ciphertext (that leaks no information) and a real

ciphertext, then this implies that the real ciphertext also leaks no secret information,

because if it did then this would enable the adversary to distinguish which world it is

in. The inability of the adversary to distinguish which world it is operating in proves

the security of the cryptographic scheme.

Oracles can also be used in simulation-based proofs. However, if used, it needs to

be shown how their output can be simulated in the ideal world.

There are two main types of security associated with game-based and simulation-

based proofs in the SE literature: selective security and adaptive security. We discuss

the differences between these two notions of security in Definitions 2.6.1 and 2.6.2.

Definition 2.6.1 (Selective security). If a cryptographic scheme is selectively secure,

then the adversary must make all oracle queries and challenge selections in a batch

prior to receiving any inputs such as oracle query responses and public parameters.

33

2.6. Methods of proof

Definition 2.6.2 (Adaptive security). If a cryptographic scheme is adaptively secure

then the adversary is able to make oracle queries and select challenge values that depend

on the results of previous queries and any inputs they receive.

Adaptive security is considered to be the stronger, more desirable, notion of security,

since it more accurately reflects the abilities of a real-world adversary. However, these

types of proof can be hard to construct, so the notion of selective security is commonly

used.

We use game-based methods to define the security of our encryption schemes in

Chapters 5 and 6. Our verifiable searchable encryption scheme presented in Chapter 5

is constructed using attribute-based encryption and verifiable computation techniques.

It is standard practice in the literature surrounding these paradigms to use game-based

proofs. We used this method also to keep in line with the relevant literature and the

intuition behind our security notions were well represented using games. In Chapter 6

we explored both methods of proof for our construction. The simulation-based method

required the construction to have three random oracles in order to achieve adaptive

security and support a dynamic dataset. The issue with using the simulation-based

method for this construction came with simulating the index for the adversary ahead

of time whilst still being able to simulate consistent search results before and after the

addition of data items to the index. The random oracles allowed the challenger to alter

the content of the simulated index using the search queries and the tokens for adding

and deleting data items. Due to the complexity of our construction the simulation-

based method was very complex and difficult to follow. The game-based method was

more intuitive and easy to follow for the reader and allowed us to prove security in the

standard model without the use of random oracles.

In Section 2.3 we defined several types of encryption scheme and their associated

definitions of correctness. In Sections 2.6.3-2.6.7 we define the security of each of these

encryption schemes.

2.6.3 Security Model for Symmetric-Key Encryption

The two most widely adopted notions of security for SKE are that of indistinguisha-

bility under chosen plaintext attack (IND-CPA) and indistinguishability under chosen

ciphertext attack (IND-CCA). The notion of security that we use in this thesis is that

of IND-CPA, which ensures that the ciphertexts in an IND-CPA secure SKE scheme do

not leak any information about the underlying plaintext. We assume that an adversary

is able to obtain encryptions of arbitrary plaintexts, i.e. they are able to build up a

dictionary of plaintext-ciphertext pairs. However, when given a ciphertext, they are

34

2.6. Methods of proof

unable to distinguish the underlying plaintext from a choice of two possible plaintexts

that were chosen initially by the adversary. Let SKE = (KeyGen,Enc,Dec) and A be

any probabilistic polynomial-time adversary.

We formally define the notion of IND-CPA security in Game 2.1 and Definition 2.6.3.

The game is initialized with the challenger C generating a secret key SK and choosing

a random bit b. The adversary A is given the security parameter 1κ and access to the

LoR oracle. The LoR oracle takes as input a pair of plaintexts m0,m1 chosen by A.

The oracle firsts checks if the two plaintexts are the same size and, if so, returns the

encryption of plaintext mb under key SK to the adversary. If the two plaintexts are not

the same size, the oracle returns the failure symbol ⊥ and terminates. The adversary

eventually outputs a bit b′ as its guess for the value of b. If (b′ = b) then the challenger

outputs 1; and otherwise outputs 0.

ExpIND−CPA
A,SKE (1κ)

1 : SK
$← KeyGen(1κ)

2 : b
$← {0, 1}

3 : b′ ← AOLoR(·,·,1κ)

(1κ)

4 : if (b′ = b)

5 : return 1

6 : else

7 : return 0

OLoR(m0,m1, 1κ)

1 : if (|m0| 6= |m1|)
2 : return ⊥
3 : else return Enc(mb, SK)

Game 2.1: IND-CPA for symmetric-key encryption

Definition 2.6.3 (IND-CPA for Symmetric-Key Encryption). For a SKE scheme

SKE = (KeyGen,Enc,Dec) we define the advantage of a probabilistic polynomial time

adversary A as:

AdvIND-CPA
A,SKE (1κ) = P[ExpIND-CPA

A,SKE (1κ) = 1]− 1

2
.

A SKE scheme SKE is IND-CPA secure if for all probabilistic polynomial time

adversaries A we have:

AdvIND-CPA
A,SKE (1κ) ≤ negl(1κ).

2.6.4 Security Model for Public-Key Encryption

Analogously, the most widely adopted notions of security for PKE are that of IND-

CPA and IND-CCA. We define the notion of IND-CPA security for PKE formally in

35

2.6. Methods of proof

Game 2.2 and Definition 2.6.4. The IND-CPA games are defined similarly for SKE and

PKE, with the exception that a public key as well as a secret key is generated at the

start of the game in the PKE version. The public key is given to the adversary.

ExpIND−CPA
A,PKE (1κ)

1 : (SK,PK)
$← KeyGen(1κ)

2 : b
$← {0, 1}

3 : (m0,m1)← A(PK, 1κ)

4 : cb
$← Enc(mb, PK)

5 : b′ ← A(cb, 1κ)
6 : if (b′ = b)

7 : return 1

8 : else

9 : return 0

Game 2.2: IND-CPA for public-key encryption

Definition 2.6.4 (IND-CPA for Public-key-Encryption). For a PKE scheme

PKE = (KeyGen,Enc,Dec) we define the advantage of a probabilistic polynomial time

adversary A against a notion IND-CPA as:

AdvIND-CPA
A,PKE (1κ) = P[ExpIND-CPA

A,PKE (1κ) = 1]− 1

2
.

A PKE scheme PKE is IND-CPA secure if for all probabilistic polynomial time

adversaries A we have:

AdvIND-CPA
A,PKE (1κ) ≤ negl(1κ).

2.6.5 Security Model for Ciphertext-Policy Attribute-Based Encryp-

tion

The security for CP-ABE is similar to that of SKE. It is required that the ciphertexts

leak no information regarding the underlying plaintexts. As there are multiple users

in the CP-ABE scheme it is also required that the users cannot collude to learn more

information regarding the plaintexts outside the union of their access rights. To mimic

the collusion of users in the IND-CPA game for CP-ABE, the adversary is given access

to an oracle, KeyGen(·), which takes as input an attribute set of the adversary’s

choosing and outputs the secret key for that attribute set. This allows the adversary

in the game access to multiple decryption keys for different the attribute sets that they

query to KeyGen(·). We define a selective game (Game 2.3) and an adaptive game

(Game 2.4) for CP-ABE. We define the attribute universe as U .

36

2.6. Methods of proof

ExpsIND-CPA
A [CPABE, 1κ,U] :

1 : (A′, st) $← A(1κ,U)

2 : (PK,SK)
$← Setup(1κ,U)

3 : (m0,m1, st)
$← AKeyGen(·)(st, PK)

4 : if |m0| 6= |m1|
5 : return 0

6 : b
$← {0, 1}

7 : c′
$← Encrypt(mb,A′, PK)

8 : b′
$← AKeyGen(·)(c′, st)

9 : if b′ = b

10 : return 1

11 : else

12 : return 0

Oracle KeyGen(A)

1 : if A 6|= A′

2 : return Keygen(SK,A, PK)

3 : else

4 : return ⊥

Game 2.3: Selective IND-CPA game for CP-ABE.

In the selective game the adversary receives the security parameter and policy

universe as input and chooses their challenge policy A′ before any keys are generated.

The challenger then generates the master secret key SK and the public key PK and

gives PK to the adversary. The adversary is then allowed a polynomial number of

queries to query the oracle, KeyGen(·), for secret keys associated with any attribute

set A ⊆ U of their choosing, except for those such that A |= A′. The adversary then

outputs two plaintexts (m0,m1), the game is terminated if |m0| 6= |m1| to prevent a

trivial win for the adversary. The challenger chooses a bit b uniformly at random and

encrypts plaintext mb using the challenge policy chosen by the adversary as input to

the Encrypt algorithm. The adversary is then allowed to query KeyGen(·) under the

same conditions as previously and eventually outputs their guess b′ for b. The adversary

wins the game if b′ = b.

The adaptive game, Game 2.4, is run similarly to that of the selective game, except

that the adversary is allowed to query KeyGen(·) before selecting their challenge

policy. The KeyGen(·) oracle keeps track of which attribute sets have been queried

before the adversary selects the challenge policy. If the adversary chooses a policy A′

such that A |= A′ for some previously queried attribute set then the game terminates,

to avoid a trivial win for the adversary. The adaptive game then proceeds analogously

to the selective game.

Definition 2.6.5. For a CP-ABE scheme CPABE = (KeyGen,Encrypt,KeyGen,Decrypt)

we define the advantage of a probabilistic polynomial time adversary A against a notion

37

2.6. Methods of proof

ExpIND−CPA
A [CPABE, 1κ,U] :

1 : Q← {∅}

2 : (PK,SK)
$← Setup(1κ,U)

3 : (m0,m1,A′, st)
$← AKeyGen(·)(PK)

4 : if |m0| 6= |m1|
5 : return 0

6 : for all A ∈ Q do

7 : if A |= A′

8 : return 0

9 : b
$← {0, 1}

10 : c′
$← Encrypt(mb,A′, PK)

11 : b′
$← AKeyGen(·)(c′, st)

12 : if b′ = b

13 : return 1

14 : else

15 : return 0

Oracle KeyGen(A)

1 : if A 6|= A′

2 : Q← Q ∪ {A}
3 : return Keygen(SK,A, PK)

4 : else

5 : return ⊥

Game 2.4: Adaptive IND-CPA game for CP-ABE.

X ∈ {IND−CPA, sIND−CPA} as:

AdvXA,CPABE(1κ,U) = P[1← ExpXA,CPABE(1κ,U)]− 1

2
.

A CP-ABE scheme CPABE is secure with respect to a notion

X ∈ {IND−CPA, sIND−CPA} if for all probabilistic polynomial time adversaries

A we have:

AdvXA,CPABE(1κ,U) ≤ negl(1κ).

2.6.6 Security Model for Predicate-Based Encryption

The security of PBE is similar to that of CP-ABE, except that it also requires cipher-

texts to be attribute hiding as well as not leaking any information about the plaintext.

As in CP-ABE it is also required that colluding users cannot learn any information

from the encrypted data outside of the union of their access rights. In the security

game for PBE the adversary is given an oracle, KeyGen(·), to allow them to obtain

keys for any predicate p ∈ P of their choosing, subject to certain restrictions. The

predicate universe is denoted by P and the attribute universe by U .

In the selective game the adversary receives the security parameter, predicate uni-

verse and attribute universe as input and chooses their challenge attribute sets A0, A1

38

2.6. Methods of proof

ExpsIND−CPA
A [PBE, 1κ,U ,P] :

1 : µ← 0

2 : (A0, A1, st)
$← A(1κ,U ,P)

3 : (PK,SK)
$← Setup(1κ,P)

4 : (m0,m1, st)
$← AKeyGen(·)(st, PK)

5 : if |m0| 6= |m1|
6 : return 0

7 : if (µ = 1) ∧ (m0 6= m1)

8 : return 0

9 : b
$← {0, 1}

10 : c′
$← Encrypt(mb, Ab, PK)

11 : b′
$← AKeyGen(·)(c′, st)

12 : if b′ = b

13 : return 1

14 : else

15 : return 0

Oracle KeyGen(p)

1 : if p(A0) 6= p(A1)

2 : return ⊥
3 : if p(A0) = p(A1) = 1

4 : µ← 1

5 : else

6 : return Keygen(SK, p, PK)

Game 2.5: Selective IND-CPA game for PBE.

before any keys are generated. The challenger then generates the master secret key

SK and the public key PK and gives PK to the adversary. The adversary is then

allowed a polynomial number of queries to query the oracle, KeyGen(·), for secret

keys associated with any predicate p of their choosing, except for those such that

p(A0) 6= p(A1). The adversary then outputs two plaintexts, (m0,m1). The game is

terminated if |m0| 6= |m1| and also if the adversary has queried a predicate p to the or-

acle KeyGen(·) such that p(A0) = p(A1) = 1 and the chosen plaintexts are not equal,

to prevent a trivial win for the adversary. The challenger chooses a bit b uniformly at

random and encrypts plaintext mb using the challenge attribute set Ab chosen by the

adversary, as input to the Encrypt algorithm. The adversary is then allowed to query

KeyGen(·) under the same conditions as previously and eventually outputs their guess

b′ for b. The adversary wins the game if b′ = b.

The adaptive game, Game 2.6, is run similarly to that of the selective game, except

that the adversary is allowed to query KeyGen(·) before selecting their challenge

attribute set. The adversary is able to query KeyGen(·) for a key corresponding to

any predicate of their choosing. A set Q is generated by KeyGen(·) to keep track of

the queries the adversary has made to the oracle. After a polynomial number of queries

the adversary selects their challenge attribute sets, A0, A1, along with two plaintexts

m0,m1. If the sizes of the two plaintexts are not equal then the game terminates, to

39

2.6. Methods of proof

ExpIND−CPA
A [PBE, 1κ,U ,P] :

1 : Q← ∅, chall← 0

2 : (PK,SK)
$← Setup(1κ,P)

3 : (A0, A1,m0,m1, st)
$← AKeyGen(·)(1κ, PK)

4 : if |m0| 6= |m1|
5 : return 0

6 : if there exists p ∈ Q : p(A0) 6= p(A1)

7 : return 0

8 : if there exists p ∈ Q : (p(A0) = p(A1) = 1) ∧ (m0 6= m1)

9 : return 0

10 : b
$← {0, 1}

11 : chall← 1

12 : c′
$← Encrypt(mb, Ab, PK)

13 : b′
$← AKeyGen(·)(c′, st)

14 : if b′ = b

15 : return 1

16 : else

17 : return 0

Oracle KeyGen(p)

1 : if chall = 0

2 : Q← Q ∪ p

3 : return Keygen(SK, p, PK)

4 : else

5 : if p(A0) 6= p(A1)

6 : return ⊥
7 : if (p(A0) = p(A1) = 1) ∧ (m0 6= m1))

8 : return ⊥
9 : else

10 : return Keygen(SK, p, PK)

Game 2.6: Adaptive IND-CPA game for PBE.

prevent the adversary from a trivial win. There are two other conditions that also need

to be met, that is, for any predicate p ∈ Q it is required that p(A0) = p(A1). Lastly

it is required for any predicate p such that p(A0) = p(A1) = 1 we have that m0 = m1.

These requirements are to prevent a trivial win for the adversary. The adaptive game

then proceeds analogously to the selective game.

Definition 2.6.6. For a PBE scheme PBE = (Setup,Encrypt,KeyGen,Decrypt) we de-

fine the advantage of a probabilistic polynomial time adversary A against a notion

X ∈ {IND−CPA, sIND−CPA} as:

AdvXA,PBE(1κ,U ,P) = P[1← ExpXA,PBE(1κ,U ,P)]− 1

2
.

A PBE scheme PBE is secure with respect to a notion X ∈ {IND−CPA, sIND−CPA}
if for all probabilistic polynomial time adversaries A we have:

AdvXA,PBE(1κ,U ,P) ≤ negl(1κ).

40

2.6. Methods of proof

2.6.7 Security Model for Broadcast Encryption

The security of BE requires that a user be unable to distinguish ciphertexts that are

encrypted under a group of identities that the user does not belong to. In the security

game for BE the adversary is given access to an oracle, Add(·), to allow them to obtain

keys for any identity outside of the set of challenge identities. The identity universe is

denoted by U .

ExpIND−CPA
A [BE, 1κ,U] :

1 : chall← 0, U ← ∅

2 : (PK,SK)
$← KeyGen(1κ,U)

3 : (S∗,m0,m1, st)AAdd(·)(1κ, PK,U)

4 : b
$← {0, 1}

5 : c∗
$← Encrypt(mb, S

∗, PK)

6 : chall = 1

7 : b′
$← AAdd(·)(c∗, st)

8 : if b′ = b

9 : return 1

10 : else

11 : return 0

Oracle Add(u)

1 : if chall = 0

2 : U ← U ∪ u

3 : return SKu
$← Add(SK, u)

4 : else

5 : if u ∈ S∗

6 : return ⊥
7 : else

8 : return SKu
$← Add(SK,PK, u)

Game 2.7: Adaptive IND-CPA game for BE.

The game is initialized by setting the value of chall to 0. The challenger then runs

KeyGen to generate the keys for the system, (PK,SK). The public key PK is given to

the adversary, who is then also given access to the oracle, Add(·). The adversary can

make a polynomial number of queries to this oracle, before outputting their challenge

identity set, S∗, and a pair of plaintexts (m0,m1). The set U keeps track of the queries

made to the oracle, if there exists an identity u ∈ U such that u ∈ S∗ then the game

is terminated to prevent a trivial win for the adversary. The challenger selects a bit b

uniformly at random and encrypts the plaintext mb under the set of identities S∗, to

create the challenge ciphertext c∗, which is sent to the adversary. The adversary is then

allowed another round of queries to Add(·) subject to the same restrictions as before.

Eventually the adversary outputs their guess b′ for b and wins the game if b′ = b.

Definition 2.6.7. For a BE scheme BE = (KeyGen,Add,Encrypt,Decrypt) we define

the advantage of a probabilistic polynomial time adversary A against the notion IND-

CPA as:

AdvIND−CPA
A,BE (1κ,U) = P[1← ExpIND−CPA

A,BE (1κ,U)]− 1

2
.

41

2.6. Methods of proof

A BE scheme BE is secure with respect to the notion IND-CPA if for all probabilistic

polynomial time adversaries A we have:

AdvIND−CPA
A,BE (1κ,U) ≤ negl(1κ).

2.6.8 Security Model for Verifiable Computation

The security of VC requires that an incorrectly computed result cannot be verified as

a correct result by the client. In the security game for VC the adversary is given access

to an oracle ProbGen(·), to allow them to obtain the encoded inputs for a function f

and an input of their choosing.

ExpVERIFY
A [VC, 1κ, f] :

1 : (EKf , SKf)
$← KeyGen(1κ, f)

2 : (x, st)
$← AProbGen(·)(1κ, f, EKf)

3 : (σf,x, V Kf,x)
$← ProbGen(x, SKf)

4 : θf(x)
$← AProbGen(·)(σf,x, st)

5 : y ← Verify(θf(x), V Kf,x, SKf)

6 : if (y 6=⊥) ∧ (y 6= f(x))

7 : return 1

8 : else

9 : return 0

Oracle ProbGen(z)

1 : (σf,z, V Kf,z)
$← ProbGen(z, SKf)

2 : return σf,z

Game 2.8: Adaptive VERIFY game for VC.

The game is initialized by the challenger running Setup to generate key pair

(EKf , SKf) for a function f . The key EKf is given to the adversary, along with access

to oracle ProbGen(·). The adversary can make a polynomial number of queries to this

oracle before choosing a challenge input x. The challenger then runs ProbGen using the

challenge input x to generate the encoded input σf,x, which is given to the adversary.

This algorithm also generates the verification key V Kf,x, however this is withheld

from the adversary to prevent them from verifying their computations themselves.

The adversary is then allowed another round of queries to the oracle ProbGen(·),
and eventually outputs an encoded result, θf,x, that they believe to be an incorrect

computation of f(x) that will be verified as correct by the client. The adversary wins

the game if the experiment outputs 1, meaning θf,x encodes an incorrect result that is

accepted as correct.

Definition 2.6.8. For a VC scheme VC = (KeyGen,ProbGen,Compute,Verify) we de-

fine the advantage of a probabilistic polynomial time adversary A against the notion

42

2.6. Methods of proof

VERIFY as:

AdvVERIFY
A,VC (1κ, f) = P[1← ExpVERIFY

A,VC (1κ, f)]− 1

2
.

A VC scheme VC is secure with respect to the notion VERIFY if for all probabilistic

polynomial time adversaries A we have:

AdvVERIFY
A,VC (1κ, f) ≤ negl(1κ).

2.6.9 Security Model for Verifiable Delegable Computation

The security of VDC is described similarly to that of VC (Section 2.6.8). It ensures that

an incorrectly computed result by a server cannot be verified as correct. In this setting

the verification can be done publicly. In the security game for VDC the adversary is

given access to the following oracles: FnInit(·), Register(·) and Certify(·, ·, ·, ·),
which are run as per the algorithms FnInit,Register and Certify respectively. We denote

the adversary having access to these three oracles as AO.

ExpPUB−VERIFY
A [VDC, 1κ,F] :

1 : (MK,PP)
$← Setup(1κ,F)

2 : (f,X, {`(xj)}xj∈X , st)
$← AO(1κ,F , PP)

3 : PKf
$← FnInit(f,MK,PP)

4 : (σf,X , V Kf,X , RKf,X)
$← ProbGen(f, {`(xj))}xj∈X , PKf , PP)

5 : θ
$← AO(σf,X , V Kf,X , RKf,X , PKf , PP, st)

6 : (RTf,X , τθ)← BVerif(θ, V Kf,X , PP)

7 : yf(X) ← Retrieve(RTf(X), τθ, V Kf,X , RKf,X , PP)

8 : if ((yf(X), τθ) 6= (⊥, reject)) ∧ (yf(X) 6= f(X))

9 : return 1

10 : else

11 : return 0

Game 2.9: Adaptive PUB-VERIFY game for VDC.

The game is initialized by the challenger running Setup to generate the key MK

and the public parameters, PP . These public parameters are given to the adversary.

The adversary can then make a polynomial number of queries to the specified oracles

before outputting the challenge inputs: the function f , the input values X and the

labels `(xj) for each input value in X. The challenger then runs FnInit and ProbGen

to generate the key for the function, PKf and the encoded input σf,X , the verification

key V Kf,X and the retrieval key RKf,X . The adversary is given these four values

43

2.7. Summary

and access to the specified oracles. Eventually the adversary outputs their challenge

response θ, which they believe to be an incorrectly computed result for f(X) that will

be successfully verified. The challenger then runs BVerif and Retrieve to obtain yf(X),τθ .

The adversary wins if θ encodes an incorrect result that is verified as correct i.e. if

(yf(X), τθ) 6= (⊥, reject) and yf(X) 6= f(X).

Definition 2.6.9. For a VDC scheme

VDC = (Setup,FnInit,Register,Certify,ProbGen,Compute,Verify) we define the advan-

tage of a probabilistic polynomial time adversary A against the notion PUB-VERIFY

as:

AdvPUB−VERIFY
A,VDC (1κ,F) = P[1← ExpPUB−VERIFY

A,VDC (1κ,F)]− 1

2
.

A VDC scheme VDC is secure with respect to the notion PUB-VERIFY if for all

probabilistic polynomial time adversaries A we have:

AdvPUB−VERIFY
A,VDC (1κ,F) ≤ negl(1κ).

2.7 Summary

In this chapter we presented the notation that we use throughout the thesis. We also

define several encryption schemes, along with their security models, and cryptographic

primitives that we make use of in the remainder of the thesis.

44

Chapter 3

Searchable Encryption

Contents

3.1 Introduction . 45

3.2 Security of Searchable Encryption 52

3.3 Adversarial models . 53

3.4 Literature Review . 54

3.4.1 Oblivious RAM . 54

3.4.2 Public Key Searchable Encryption 55

3.4.3 Searchable Symmetric Encryption 60

3.5 Summary . 64

This chapter introduces searchable encryption and reviews the relevant lit-

erature.

3.1 Introduction

Searchable Encryption allows an entity to search over encrypted data that they have

outsourced to a remote server. In its simplest form, this involves locating encrypted

data items on the server that contain a specified keyword. A searchable encryption

scheme generally involves three entities:

• Server: A remote server (such as a pay-as-you-go cloud server) on which en-

crypted data is stored. We assume that the data stored on the server is of a

sensitive nature, so it is undesirable to reveal it to any third parties, including

the server. Note that in some cases, for example medical records, it may be illegal

45

3.1. Introduction

Figure 3.1: Searchable Encryption model.

to reveal the records. We thus assume that the data items remain encrypted at

all times when on the server.

• Data Owner: This entity initiates the scheme and holds the master secret key

(used to generate search queries in the single user case or user secret keys in the

multi-user case1). The data owner is always able to submit search queries to

the server2 (referred to as reading data), as well as encrypt data to be stored on

the server (referred to as writing data). The data owner is able to control which

additional users (if any) are able to read or write data in the scheme.

• User(s): SE schemes contain a varying numbers of users that have the capability

to either write data, read data, or do both of these tasks, as determined by the

data owner.

The data owner associates metadata with each data item to be encrypted, usually

consisting of keywords contained within the data item or keywords describing the data

item’s contents along with an identifier for the data item, and then creates an encrypted

index using this metadata. The set of data items is encrypted separately using a

standard encryption scheme, so the focus of searchable encryption is how the encrypted

index is created. In this work we do not consider the retrieval of the encrypted data

items from the server. The encrypted index and encrypted data items are outsourced

to the server and, in order to search for a keyword in the encrypted index, the data

owner (or a user) produces a search query which the server uses to locate the relevant

data items.

1In the multi-user setting the data owner is enrolled as user and generates a user secret key in order
to produce search queries.

2In the multi-user setting this is done by the owner enrolling as a user.

46

3.1. Introduction

Figure 3.1 depicts the basic architecture of an SE scheme, which consists of the following

five steps:

1. Data encryption. The data to be outsourced to the server is encrypted by the

data owner (or a user, depending on the scenario) and sent to the server. In

general the encrypted data will consist of two parts:

(a) Encrypted data items: The data items the data owner wishes to outsource to

the server are typically encrypted using symmetric key cryptography. Each

encrypted data item is identified by a unique identifier (ID).

(b) Secure index: A secure index is created which enables the server to use a

search token to learn the IDs of the relevant encrypted data items and locate

them on the server.

2. User’s secret key transfer. The data owner generates a secret key for a user

and transfers it to them. The user is able generate search queries using their

secret key.

3. Search query. A user (or data owner) generates a search token for a keyword ω

they wish to search for in the encrypted data and sends it to the server, allowing

it to ascertain which encrypted data items satisfy their query.

4. Search results. The search results returned to the user can take two forms:

(a) IDs of the encrypted data items that satisfy the query associated with the

search token;

(b) Encrypted data items that satisfy the query associated with the search token.

The former response is advantageous over the latter in situations where the user

does not require access to the actual data item (during statistical analysis of the

encrypted data, for example) since it involves lower communication costs. The

latter response involves the server locating the encrypted data items satisfying

the query by locating them using the set of IDs, which increases the search time.

In this thesis, we consider schemes which generate search results consisting of IDs

of encrypted data items that satisfy the query associated with the search token

only; the retrieval of the actual data items is beyond the scope of this thesis.

5. Decryption. If search results contain encrypted data items, a decryption key

needs to be obtained from the data owner in order to recover the data items.

47

3.1. Introduction

Many different SE schemes have been proposed, with a range of properties. There

are two main branches of research in the field of searchable encryption: symmetric

searchable encryption and public-key searchable encryption. In Section 3.4.3 and 3.4.2

we give a chronological overview of the SE schemes in the literature within these two

branches of research. Here we give some general definitions of SE schemes.

In these definitions we consider the model outlined in Section 3.1 where a data owner

is outsourcing some encrypted data to a server but wishes to maintain the ability to

search over the data, or control who is able to search the data.

Definition 3.1.1 (Symmetric Searchable Encryption (SSE)). Let K be the key space,

Ω be the keyword space, ID be the data item identifier space, ∆ = Ω × ID be the

metadata space and D ⊆ ∆ be the set of metadata associated with data items to be

indexed. A searchable symmetric encryption scheme typically consists of the following

four algorithms (we assume the data items themselves are encrypted separately using a

secure encryption scheme):

• SK $← KeyGen(1κ): A probabilistic algorithm run by the data owner that takes as

input the security parameter 1κ ∈ N and outputs a secret key, SK ∈ K.

• ID
$← BuildIndex(D, SK): This algorithm can be probabilistic or deterministic as

required and it is run by the data owner. It takes as input the set of metadata D
associated with each data item along with the secret key SK and outputs a secure

index ID.

• Tω ← Query(ω, SK): A deterministic algorithm run by the data owner to produce

a search query. It takes as input a keyword ω ∈ Ω along with SK and outputs a

search query Tω.

• Rω ← Search(ID, Tω): A deterministic algorithm run by the server to produce the

search results. It takes as input the secure index ID and a search query Tω and

outputs the search results Rω.

Definition 3.1.2 (Correctness of SSE). An SSE scheme, SSE = (KeyGen,BuildIndex,

Query,Search), is correct if for all κ ∈ N, for all SK
$← KeyGen(1κ), for all D ⊆ ∆,

for all ID ← BuildIndex(D, SK), for all ω ∈ Ω:

48

3.1. Introduction

P[SK
$← KeyGen(1κ),

ID
$← BuildIndex(D, SK),

Tω ← Query(ω, SK),

Rω ← Search(ID, Tω)] = 1.

In Defintion 3.1.1 we do not specify any additional users in the system. In the

literature it is standard for SSE to be defined for a single entity encrypting the data

and creating the search tokens, however for Public-Key Searchable Encryption (Def-

inition 3.1.3) it is standard to assume that more than one entity could be creating

the encrypted data because it is generated using a public key. The suitability for the

different types of searchable encryption to different scenarios and users are discussed

further in Chapter 4.

Definition 3.1.3 (Public Key Searchable Encryption (PKSE)). Let K be the key space,

Ω be the keyword space, ID be the data item identifier space and ∆ = Ω × ID be the

metadata space. A public key searchable encryption scheme typically consists of the

following four algorithms (we assume the data items themselves are encrypted separately

using a secure encryption scheme):

• (PK,SK)
$← KeyGen(1κ): A probabilistic algorithm run by the data owner that

takes as input the security parameter 1κ ∈ N and outputs a public and secret key

pair, (PK,SK) ∈ K.

• ID
$← BuildIndex(D, PK): This algorithm can be probabilistic or deterministic as

required and is run by either the data owner or an additional user. It takes as

input the set of metadata D ⊆ ∆ associated with each data item to be indexed

along with the public key PK and outputs a secure index ID.

• Tω ← Query(ω, SK): A probabilistic algorithm run by the data owner to produce

a search query. It takes as input a keyword ω ∈ Ω that the data owner or user

wishes to search for along with SK and outputs a search query Tω.

• Rω ← Search(PK, ID, Tω): A deterministic algorithm run by the server to produce

the search results. It takes as input the secure index ID and a search query Tω

and outputs the search results Rω.

Definition 3.1.4 (Correctness of PKSE). A PKSE scheme is correct if for all κ ∈ N,

for all (PK,SK)
$← KeyGen(1κ), for all D ⊆ ∆, for all ID

$← BuildIndex(D, SK), for

all ω ∈ Ω:

49

3.1. Introduction

P[(PK,SK)
$← KeyGen(1κ),

ID
$← BuildIndex(D, PK),

Tω ← Query(ω, SK),

Rω ← Search(ID, Tω)] = 1− negl(κ).

Multi-user searchable symmetric encryption (mSSE) was introduced by Curtmola

et al. [55]. Work in SSE previous to this considered the single-user setting where only

the data owner was able to query the encrypted data. The work of [55] considers the

extension of SSE to allow multiple users to query the encrypted data as determined by

the data owner. It supports a dynamic set of users where revocation and addition of

users is controlled by the data owner.

In the following definition we specify which entity runs each algorithm, we assume

a data owner that owns the data and sets up the system and additional users that are

able to generate search queries. These entities are defined in more detail in Section 3.1.

Here we assume an honest-but-curious model where the server is trusted to update the

server state, stS (see Definition 3.1.5), after a user is revoked.

Definition 3.1.5 (Multi-user Searchable Encryption (MSSE)). Let K be the keyspace,

Ω be the keyword space, ID be the data item identifier space, ∆ = Ω × ID be the

metadata space and U be the universe of users. An MSSE scheme consists of the

following six algorithms:

• SK $← KeyGen(1κ): A probabilistic algorithm run by the data owner that takes as

input the security parameter 1κ ∈ N and outputs a secret key SK ∈ K.

• (ID, stO, stS)
$← BuildIndex(D,G, SK): A probabilistic algorithm run by the data

owner. It takes as input the set of metadata D associated with each data item

along with the secret key SK and a set G ⊆ U of authorised users and outputs a

secure index ID along with a server state stS and a data owner state stO.

• (Ku, stO, stS)
$← AddUser(SK, stO, u): A probabilistic algorithm run by the data

owner to add a user to the system. It takes as input the new user’s identity u

and the data owner’s state stO along with the secret key SK and outputs the new

user’s cryptographic key Ku ∈ K.

• (stO, stS)← Revoke(SK, stO, u): A probabilistic algorithm run by the data owner

to revoke a user from the system. It takes as input the identity of the user that is

50

3.1. Introduction

to be revoked u and the data owner’s state stO along with the secret key SK and

outputs updated data owner and server states, stO, stS.

• Tω ← Query(ω,Ku): A deterministic algorithm run by a user (note that the data

owner can also be enrolled as a user) to produce a search query. It takes as input

a keyword ω ∈ Ω that the user wishes to search for along with their secret key Ku

and stS (which is retrieved from the server). It outputs a search query Tω.

• Rω ← Search(stS , ID, Tω): A deterministic algorithm run by the server to produce

the search results. It takes as input the secure index ID and a search query Tω

along with the server state stS and outputs the search results Rω, which is either

the set of data items containing the keyword ω, denoted Dω, or ⊥.

Definition 3.1.6 (Correctness of MSSE). An MSSE scheme is correct for all κ ∈ N, for

all G ⊆ U and u ∈ G, for all SK output by KeyGen(1κ), for all D ⊆ ∆, for all ID output

by Buildindex(D,G, SK), for all ω ∈ Ω, for all Ku output by AddUser(SK, stO, u), we

have that:

P[SK
$← KeyGen(1κ),

(ID, stO, stS)
$← BuildIndex(D, SK),

(Ku, stO, stS)
$← AddUser(SK, stO, u),

Tω ← Query(ω,Ku),

Dω ← Search(stS , ID, Tω)] = 1.

Definition 3.1.7 (Verifiable Searchable Encryption (VSE)). Let K be the keyspace, let

U be the universe of users and let A be the universe of attributes. We define a pre-index

δ(D) of a set of data items D as the set of attributes associated with each data item,

such as keywords contained in each data item. A VSE scheme comprises the following

algorithms:

• (SK,PP)
$← KeyGen(1κ, A) : A probabilistic algorithm run by the data owner and

takes as input the security parameter and a universe of attributes (keywords and

data values). It outputs the data owner’s master secret key SK that is used for

further administrative tasks and public parameters PP , both of which are provided

to the remaining algorithms where required.

• ID
$← BuildIndex(δ(D), SK, PP) : A probabilistic algorithm run by the data owner

that takes as input the pre-index of the data δ(D) ⊆ A, the master secret key SK,

and outputs a searchable index ID for the pre-index δ(D).

51

3.2. Security of Searchable Encryption

• Tω
$← Query(ω, SK,PP) : A deterministic or probabilistic algorithm run by a

data owner using its key SK. It generates a search query token Tω for a keyword

ω.

• Rω ← Search(ID, Tω, PP) : A deterministic algorithm run by the server to execute

a search query Tω on the index ID. It generates a result Rω which is returned to

the data owner.

• {0, 1} ← Verify(Rω) : A deterministic algorithm run by the data owner, which

outputs 0 or 1.

Definition 3.1.8 (Correctness of VSE). A VSE scheme is correct if for all κ ∈ N, for

all (SK,PP)
$← KeyGen(1κ, A), for all δ(D) ⊆ A, for all ID

$← BuildIndex(δ(D), SK, PP)

and for all Tω
$← Query(ω, SK,PP) we have that:

P[(SK,PP)
$← KeyGen(1κ, A),

ID
$← BuildIndex(δ(D), SK, PP),

Tω ← Query(ω, SK,PP),

Rω ← Search(stS , ID, Tω),

1← Verify(Dω)] = 1.

3.2 Security of Searchable Encryption

One of the main goals of any data encryption scheme is to provide confidentiality of the

encrypted data, that is given a ciphertext an adversary should be able to learn nothing

regarding the corresponding plaintext. This is called semantic security. A paradigm

called oblivious RAM (ORAM) [70] can be used to construct an SE scheme which leaks

nothing about the underlying plaintexts or the access pattern to an adversary, except

the volume of data returned per query. However, ORAM is not currently practical to

use on large datasets. SE schemes are generally designed to leak some information,

such as the access and search patterns, in order to achieve a more efficient scheme.

We define the access and search patterns for SE precisely as follows:

Definition 3.2.1. (Access pattern) For a sequence of search queries Ω = (Tω1 , ..., Tωq)

where ωi and ωj are not necessarily distinct for i 6= j, along with an index ID, the

access pattern is defined as:

AP (ID,Ω) = (Rω1 , ...,Rωq).

52

3.3. Adversarial models

The access pattern is the set of search results produced by the sequence of queries Ω.

Definition 3.2.2. (Search pattern) For a sequence of q search queries Ω = (Tω1 , ..., Tωq)

where 1 ≤ i, j ≤ q and ωi and ωj are not necessarily distinct for i 6= j, the search pattern

is defined as a q × q symmetric binary matrix SP (ID,Ω) where:

SP (ID,Ω)i,j = 1 ⇐⇒ Tωi = Tωj .

Intuitively, the search pattern reveals when the ith and jth queries are the same, which

happens when queries are issued for the same keyword.

Definition 3.2.3. (Setup leakage) For an index ID we define the setup leakage as:

Lsetup(ID) = |ID|,

(the size of the index). Intuitively the setup leakage is all the information that is

leaked from the index alone. This may include other leakage depending on the type of

encryption used.

Definition 3.2.4. (Search leakage) For an index ID along with q search queries Ω =

(Tω1 , ..., Tωq) we define the search leakage as:

Lsearch(ID,Ω) =
(
AP (ID,Ω), SP (ID,Ω)

)
.

Intuitively the search leakage represents all the information that is leaked from the index

and the search queries during the search procedure.

3.3 Adversarial models

There are three main adversarial models considered in the SE literature. The server

is viewed as the adversary in an SE scheme and the adversarial models are defined as

follows:

Definition 3.3.1 (Honest-but-curious). An honest-but-curious server will follow the

protocol set out for it but it may try and learn additional information about the en-

crypted data from the information it has access to. The server will not try to actively

manipulate the protocol in any way in order to gain access to more information outside

of what it is authorized to know.

Definition 3.3.2 (Semi honest-but-curious). A semi honest-but-curious server may

not follow the protocol that has been set out for it. For example, a server may only

53

3.4. Literature Review

compute a fraction of a search or return an incomplete set of search results in order to

conserve its own resources (such as computation power or bandwidth).

Definition 3.3.3 (Malicious). A malicious server may actively manipulate or deviate

from the protocol and return incorrect and/or incomplete search results to the user.

3.4 Literature Review

In this section we discuss the relevant literature in the area of searchable encryption.

For a detailed review of the literature in verifiable searchable encryption and multi-user

searchable encryption, please see Sections 5.1.1 and 6.1.1 respectively.

3.4.1 Oblivious RAM

Oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky [70], allows a user

to retrieve data items from a server without revealing to the server which data items

were retrieved (access pattern). In order to mask the access pattern each access to

the data is designed to be indistinguishable to an adversary. Suppose the user stores n

data items on the server, in order to achieve the masking of the access patterns the user

is required to store an extra
√
n dummy data items and a shelter storing another

√
n

data items. First off a random permutation π is applied to the data items at position

(1, ..., n +
√
n), i.e. everything but the shelter. In order to access the ith data item,

the shelter is scanned to check whether the ith data item is in the shelter (this will

not be the case on the first access, however after each access the contents of the access

is stored in the shelter). The items in the shelter are accessed in a predetermined

order, regardless of whether the desired data item has been located. If i is not found in

the shelter then it is retrieved by calculating π(i), which is the location of the desired

data item. If i was located in the shelter then the next dummy data item in the

permuted memory is accessed at π(n + j), where j is the current step in the access.

In either case the retrieved data item, the dummy one or the actual one, is written

to the shelter, by scanning all of the items in the shelter again. The contents of the

shelter is returned to the user. This ORAM solution is called the quadratic solution.

Many other methods for achieving ORAM have been put forward in order to enhance

its efficiency [29, 45, 56, 57, 66]. Using ORAM to achieve searchable encryption is

one of the most secure methods for searchable encryption. However, due to the high

computational costs incurred by the multiple accesses per search it does not scale well

to encrypted search over a large database.

54

3.4. Literature Review

3.4.2 Public Key Searchable Encryption

The first public key searchable encryption scheme was presented by Boneh et al. [33].

Their scheme, entitled public key encryption with keyword search (PEKS), allows many

users to encrypt data using the data owner’s public key, to be stored on a remote server.

The data owner is then able to use their private key to produce search tokens to locate

specific items of interest in the encrypted data. The motivating example given in the

paper is that of a secure email gateway. The gateway intercepts all incoming mail,

which has been encrypted using the data owner’s public key. The data owner generates

search queries which they give to the gateway to allow it to detect when a certain

encrypted message contains a specific keyword. The gateway can then route the email

accordingly. The encrypted data is made up of two parts, the first being a public key

encryption of the data item which is then appended to the second part which consists

of a list of m keywords that have been encrypted separately using the PEKS scheme

as follows, where PKA is the public key of the data owner and PEKS is the encrypt

algorithm of the PEKS scheme:

EPKA(M)||PEKS(PKA, ω1)||...||PEKS(PKA, ωm).

The specific PEKS scheme in [33] is based on a variant of the Decision Diffie-Hellman

assumption and uses a random oracle in the construction. They define an adaptive

notion of semantic security which ensures that an adversary cannot learn anything

from the PEKS ciphertexts without a search query, that is, given a PEKS ciphertext

and the choice of two keywords the adversary is unable to distinguish which keyword

is encrypted in the PEKS ciphertext with probability negligibly greater than that of

a random guess. We refer to this notion of security as IND-PEKS-CKA2. It is also

shown in this paper that given an IND-PEKS-CKA2 secure PEKS scheme one is able

to derive a chosen ciphertext secure identity based encryption (IBE) scheme, where the

keywords in PEKS can be viewed as the identities in the IBE scheme. The authors also

hypothesise that one can build an IND-PEKS-CKA2 secure PEKS from any anonymous

IBE scheme, this claim is confirmed in [2]. Following on from this Abdalla et al. [3]

conclude that the IBE scheme also needs to be robust, meaning that it is hard to

produce a ciphertext that is valid for two different users. This property was always

implicitly assumed in previous constructions.

Questions about the correctness of PEKS were raised by Adballa et al. [2]. In this

work the authors describe three new notions of correctness in terms of the advantage

of the adversary in a correctness security game:

• Perfect: The advantage of any computationally unbounded adversary is zero.

55

3.4. Literature Review

• Statistical: The advantage of any computationally unbounded adversary is neg-

ligible.

• Computational: The advantage of any polynomial time adversary is negligible.

The correctness requirement mentioned in Boneh et al’s work [33] is congruent to the

notion of perfect correctness as described above, but as the authors of [2] point out the

scheme does not meet this criterion due to the fact that there exist distinct keywords ω

and ω′ such that search algorithm outputs 1 given (PKA,PEKS(PKA, ω
′), Tω), where

Tω is the search query corresponding to ω, meaning, in the example scenario of the

email gateway, email may get routed incorrectly. They show that PEKS is in fact com-

putationally correct, meaning that in theory, incorrect routing of email is a possibility,

however it is unlikely to happen. So although the notion of correctness in the PEKS

scheme is slightly weaker than was initially intended, in practice it is still a useable

scheme. This work also recognizes an issue with the PEKS model in that a search

query from the data owner can be stored and used to search future ciphertexts which

may not be desirable by the data owner. They present a scheme, public key encryption

with temporary keyword search (PETKS) , where the trapdoors are only valid for a

limited period of time after which the trapdoor will expire and and can no longer be

used by the server to search the encrypted data. The security of PETKS is defined

analogously to that of PEKS with respect to a time period of the adversary’s choice.

The first PEKS scheme to be constructed from something other than bilinear maps

is due to Di Crescenzo and Saraswat [58]. The security of the scheme is based on the

hardness of computing quadratic residues modulo a large composite integer. Due to the

theorem proven in [33] regarding the relationship between IBE and PEKS, the PEKS

scheme of [58] gives rise to the first anonymous IBE scheme that is not built using

bilinear maps. The scheme is based on the IBE scheme due to Cocks [54]. The PEKS

scheme defined in this paper is IND-PEKS-CKA2 secure.

A paper by Baek, Safavi-Naini and Susilo [13] called attention to a major issue

inherent in PEKS which is the requirement of a secure channel for transferring the

trapdoors from the receiver to the server. Building and maintaining a secure channel is

costly which could make PEKS unsuitable in practice. They propose a scheme, secure-

channel free PEKS (SCF-PEKS), where the server has its own public and secret key

pair. A SCF-PEKS ciphertext is created using both the data owner public key and the

server public key, ensuring that, given a search query, only the server is able to carry

out the search. The security notion defined in this work is analogous to IND-PEKS-

CKA2 with the additional notion that an outside adversary, without the server’s secret

key, cannot learn anything from a SCF-PEKS ciphertext (except its size) even with

56

3.4. Literature Review

all possible search queries. These notions are collectively defined as IND-SCF-CKA2.

The security of the scheme defined in [13] holds in the random oracle model. Later

work presented in [61] presents a scheme where the security holds in the standard

model. Khader [91] presents a SCF-PEKS scheme based on K-resilient IBE, which is

also secure in the standard model. SCF-PEKS has more recently been investigated

in [60]. Work by Rhee at el. [95] points out weaknesses in the security of the scheme

in [13]. They point out that the ability of the adversary in the security game is too

weak to be realistic and extend the security to allow the adversary to obtain relations

between search queries and ciphertexts (excluding the challenge ciphertexts).

Work by Joong et al. [82] was the first to increase the expressiveness of the queries

in PEKS. There are potential solutions for conjunctive keyword search using single

keyword equality PEKS schemes, namely:

• Set Intersection. The data owner sends a separate search query to the server

for each keyword in the desired conjunction then computes the intersection of all

the search results. This is not an ideal solution in terms of security and efficiency

as it involves the server carrying out extra processing in the way of calculating

the intersection of the results and perhaps more importantly the server learns

more information than necessary as it will know which documents contain each

of the separate keywords, instead of just those that contain all the keywords.

• Meta Keywords. Meta keywords are created for every possible conjunctive

query. However a document containing n keywords will have associated with it

2n meta keywords, vastly increasing the amount of storage needed.

Due to the disadvantages of these trivial solutions Joong et al. present two schemes that

support conjunctive keyword searches over the encrypted data. Both of the schemes

are constructed using symmetric prime order pairings and require the encrypted data

to have m fixed keyword fields, some of which can be assigned null values, however no

two keyword fields for a data item can contain the same keyword. The second scheme

is more efficient than the first as it does not employ an admissible encoding scheme in

the construction, however both schemes have search queries whose size is dependent on

the number of keywords in each conjunctive search query. The security of each scheme

holds in the random oracle model and is similar to that of IND-PEKS-CKA2, however

insufficiencies in the proofs in this paper are pointed out in [76].

Boneh and Waters [34] extended the expressive of queries in PEKS to include sub-

set queries, range queries, equality queries and general conjunctions of each of these

types of queries. The construction in this paper uses hidden vector encryption [34].

The authors also present a framework that generalises the notion of a public key en-

57

3.4. Literature Review

cryption scheme that supports various queries over the encrypted data. The security

of this scheme is slightly weaker than that of IND-PEKS-CKA2 as it is only selectively

secure. This means that the challenger in the security game has to commit to their

challenge keywords before submitting any queries to the challenger, we denote this

form of security as SEL-PEKS-CKA. Bethencourt et al. [26] also present a conjunctive

range query scheme using binary interval trees over the integers. In this scheme each

encrypted data item can be represented as a point in multi-dimensional space and the

range query forms a hyper-rectangle in multi-dimensional space. The range query is

satisfied if the point lies within the hyper-rectangle. The scheme is constructed using

prime order bilinear maps (either symmetric or asymmetric) and achieves SEL-PEKS-

CKA security in the standard model. There is extra leakage in this scheme compared to

others described in this section, in that the attribute values are leaked if an encrypted

data item satisfies a query.

A generalisation of querying on encrypted data in the public key setting, named

predicate encryption, was introduced by Katz, Sahai and Waters [89]. The construction

uses inner products over ZN (where N is a large integer) to evaluate disjunctions,

polynomials, threshold predicates and arbitrary conjunctive/disjunction normal form

formulae. The main aim of the work was to achieve attribute hiding in the different

forms of queries, which is captured in the selective security definition. Each encrypted

data item and search query is associated with a vector. In order for an encrypted data

item to satisfy the search query the inner product of these two vectors must result in 0.

More specifically, viewing the ‘attributes’ as keywords, HVE can be used to construct

an SE scheme supporting queries containing conjunctions and disjunctions of keywords

for example.

Byun et al. [39] highlight a vulnerability present in public key based keyword search

schemes. These types of schemes are susceptible to an attack known as an offline

keyword guessing attack. In this attack an adversary is able to uncover the keyword(s)

that were used to generate the search query. An adversary is able to intercept search

queries as they are not sent through a secure channel to the server. The adversary is

also able to generate arbitrary indexes for keyword(s) of their choosing as these are

created using a public key. The adversary can then evaluate the intercepted search

queries on the arbitrarily generated indexes and if a search query generates a positive

result then the adversary will know which keyword the search query corresponds to as

it knows the keywords used to generate the index. Offline keyword guessing attacks

are also discussed in [69].

Work by Chen and Tang [48] presented a scheme which is not susceptible to the

offline keyword guessing attack called public key encryption with registered keyword

58

3.4. Literature Review

search (PERKS). They note that the existing security definition for PEKS, IND-PEKS-

CKA2, does not capture the vulnerability of PEKS to the offline keyword guessing

attack. Their scheme requires an extra round of communication between the user and

the data owner before the user can encrypt data using the data owner’s public key. The

user has to register each keyword used in the PERKS ciphertext with the data owner

prior to encryption, this prevents an adversary from being able to generate arbitrary

search queries, hence thwarting the offline keyword guessing attack. There are several

issues generated with this scheme that are noted in the paper. These include the

requirement of a secure channel between the user and the data owner and the need for

the extra round of communication between the user and data owner prior to encryption.

Their scheme is constructed using bilinear maps.

Other work by Wang et al. [49] present a scheme that is immune to the offline

keyword guessing attack but including an extra server in the PEKS system model.

The idea is that the search computation is split across two servers, while the security

against offline keyword guessing attacks holds so long as the two servers do not collude.

Katz et al. [88] investigate file injection attacks on searchable encryption schemes.

They conclude that these types of attack can completely reveal the search queries

in a searchable encryption scheme, but are only realistic in some scenarios, such as

email routing. In other scenarios, such as a single user storing and searching over the

encrypted data items, a file injection attack is not so realistic. Cash et al. [41] also

investigate some other leakage-abuse attacks which specifically exploit the information

leakage rather than the construction of the SE scheme.

Until the work by Baek et al. [12] the encryption of the data items was considered

separately to the PEKS ciphertexts and was encrypted using a standard PKE scheme.

The work of [12] looks at considering just one scheme, PKE/PEKS, to accomplish

both encryption of the data items and the encryption of the PEKS ciphertexts. They

consider a stronger adversary which may modify the encrypted data stored on the

server and conclude that there should be a mechanism that binds the PEKS ciphertext

to the encrypted data item to prevent the modification of the encrypted data. They

call this mechanism tagging. The scheme is secure against a chosen ciphertext attack in

the random oracle model. The notion of combining PKE and PEKS is also investigated

in [77, 50].

Most of the schemes that have been discussed so far leak the access pattern and

search patterns and achieve linear search times with respect to the number of encrypted

data items, which is deemed to be acceptable for SE schemes. Bellare et al. [20]

investigate deterministic PKE schemes and how they can used to achieve more efficient

SE schemes, whilst sacrificing some privacy.

59

3.4. Literature Review

Using deterministic encryption has ingrained limitations. Firstly if it is known that

the plaintext, x, has been drawn from a small space, X, then, given a ciphertext cx

and the public key it would be possible to work out which x ∈ X corresponds to

cx. This could be done computing the ciphertext for every x ∈ X and seeing which

one is equivalent to cx. Hence privacy can only be guaranteed if the plaintext comes

from a space that has large minimum entropy. It is noted that database fields are not

guaranteed to have a high minimum entropy, so it may be the case that no privacy is

achieved at all in some cases. Taking these limitations in to account, a new, weaker,

notion of privacy is defined for deterministic encryption which is called PRIV. They

define a scheme called encrypt-and-hash (EaH) which achieves fast search times and is

shown to be PRIV secure in the random oracle model. A process called bucketization

can help to increase privacy levels when database fields are not of large minimum

entropy. It works by increasing the number of hash collisions and thus the number of

false positives, generating noisy results. The user is then required to sift through the

noise in order to obtain the true result. Although this process increases the privacy it

also increases the cost of computation for the end user so is not an ideal solution.

The scheme of Hwang et al. [76] which we discussed in relation to conjunctive

keyword search, can also be extended to support multiple users. In order to send

encrypted data to multiple receivers using the single user PECKS scheme defined in

the paper, the user would have to generate multiple encryptions of the same data using

the public key of each of the recipients. Multi-receiver PKE schemes are investigated

in [19, 17]. The multi-user scheme presented in [76] combines multi-user PKE with

PECK. The multi-user PECK (mPECK) ciphertexts in this scheme are linear in size

with respect to n · `, where n is the number of receivers of the encrypted data and ` is

the number of keywords in the conjunctive query. The scheme is shown to be secure

against chosen keyword attacks in the random oracle model.

3.4.3 Searchable Symmetric Encryption

The first searchable encryption scheme, presented by Song et al. [126], was built using

symmetric-key primitives. The search in this scheme is carried out using a sequential

scan of the encrypted data. It is not an index-based scheme unlike the majority of

searchable encryption schemes. Each word in the data item is encrypted separately

and then this sequence of ciphertexts is post-encrypted using a stream cipher. The

weaknesses of this method include its incompatibility with existing encryption schemes

and the fact that it cannot be used on data that has been compressed. The search time

is also linear in the size of the data item collection. The security is defined in terms

of the standard IND-CPA security, however, there is no consideration for the search

60

3.4. Literature Review

queries in the security definition, hence the security in this work is not considered

adequate for searchable encryption.

The work of Goh [68] presents the notion of index-based searchable encryption. He

presents a method for secure indexing which he claims can be used for many purposes,

including searchable encryption. However, as this method is not specifically designed

for searchable encryption the security notion does not consider the security of the search

queries or the information that may be leaked during a search. This notion of security

is referred to as IND-CKA. This scheme is shown to be adaptively IND-CKA secure in

the standard model. The index is created using a Bloom filter [30] per data item and

keywords associated with the data item are inserted into the Bloom filter. This is an

example of a forward index as there is an entry in the index per data item, hence the

search time is linear in the total number of data items. Bloom filters can also produce

false positive results and can leak the number of keywords that they store. Padding the

Bloom filter with extra keywords can mitigate the leakage of the number of keywords,

however this comes at a cost of increasing the false positive rate.

Chang and Mitzenmacher [46] try to improve on the security definition of [68],

by considering the security of the search queries in addition to the encrypted index.

However, their notion of security was broken by the authors of [55]. The index in their

scheme is constructed using a bit string of length m per data item and a fixed dictionary

of keywords of size m. If a data item contains the ith keyword in the dictionary, then

the ith bit of the associated bit string is set to 1. The search time is linear in the

number of data items. They also specify an extension to their scheme that supports

updates (limited to the addition of data items only).

The work of Curtmola et al. [55] has been very influential in the field of searchable

encryption. It defines defines two notions of security IND-CKA1 and IND-CKA2 which

are selective and adaptive respectively. These definitions are accepted to be standard

notions of security for searchable symmetric encryption. A rigorous framework for

searchable symmetric encryption is also presented, which classifies the information

leakage that occurs during search. The index is constructed using a linked list of search

results per keyword, this is an example of an inverted index. The search query is used

by the server to locate the correct linked list and the search results are sequentially

decrypted. Hence, the search time is linear in the number of data items matching

the search query which the authors argue is optimal as the minimum amount of work

required to retrieve the data items from the server is also linear in the number of data

items retrieved.

Another scheme with the same search complexity as [55] is that of [100], which also

allows updates to the data. Two schemes are presented, the first requiring two rounds

61

3.4. Literature Review

of communication between the server and the user during the search phase (as well as

for the index generation and update phases), the second only requires one round of

communication for each of these phases but the search phase is more computationally

intensive. The search time is logarithmic in the number of distinct keywords in the

data items and both schemes are shown to be IND-CKA2 secure in the standard model.

Work by Chase and Kamara defined the notion of structured encryption, which

generalises searchable symmetric encryption and supports queries on arbitrarily struc-

tured data. It generalised the security notion presented by Curtmola et al. [55] for

arbitrarily structured data.

The strongest security model used in the SSE literature is that of universal compos-

ability, meaning the scheme remains secure when it is arbitrarily composed with other

protocols. The scheme presented by Kurosawa and Ohtaki [93], which is based on that

of Curtmola et al. [55], achieves UC-security.

The first SSE scheme to consider a dynamic data, where data items can be added,

deleted and updated, was that of Kamara et al. [86]. Their scheme is based on the linked

list construction of [55], which they extend to support dynamic data by augmenting

the index to include two additional data structures. The leakage is parameterized using

leakage functions to explicitly show the leakage that occurs during setup (before any

search queries), search and updates. Security is proven in the random oracle model and

under an extended notion of IND-CKA2 security, taking into account the dynamicity

of the data.

Due to the sequential nature of the search in [86] it is not possible to parallellize

the search to improve the search time. Further work by Kamara et al. [85] uses a

tree-based index which is parallellizable for a more efficient search. The index consists

of a keyword red-black (KRB) tree per keyword. A KRB tree is a dynamic data

structure that stores the data item identifiers at the leaf nodes and at each internal

node stores an m-bit vector. The ith bit of this vector is set to 1 if there is a path

from that node to a leaf node for data item dj such that dj contains the keyword ωi.

The search time complexity is O(D(ω) log n) where D(ω) is the number of data items

containing keyword ω and n is the total number of data items. This can be reduced to

O(D(ω)
p log n) where p is the number of processors computing the search. The scheme

is shown to be IND-CKA2 secure in the random oracle model.

All the schemes discussed so far only support keyword equality queries. Golle et al.

present the first conjunctive keyword search scheme in the symmetric-key setting [71].

They propose the method of assigning keyword fields to each data item in the index.

If we consider the data to be emails, for example, the keyword fields could be made up

of the sender’s email address, the date and the subject. The scheme requires that each

62

3.4. Literature Review

field needs to be assigned a value, however these values can be null values if required. A

disadvantage of this method is that the user needs to be aware of the keyword fields and

ensure that the keywords are in the correct position in the conjunctive search query.

They use the same security as that of [68] (IND-CKA) in the random oracle model

which they extend to encompass conjunctive queries. Two schemes are presented in this

paper, one which is more space efficient on the server but requires offline computation

to be sent to the server ahead of querying. In this scheme the search query is of constant

size. The second scheme requires twice the amount of storage on the server and the

size of the search queries is linear in the number keyword fields, however requires no

offline computations prior to querying.

A conjunctive scheme that is proven IND1-CKA secure in the standard model is

that of [14], which is constructed using Shamir’s Secret Sharing. Byun et al. [38] also

present a conjunctive SSE scheme which is made more efficient for large datasets with

the use of bilinear maps. This scheme is proven IND1-CKA secure in the random oracle

model.

The schemes of [14, 38, 71] all have search queries of size linear in the number of

terms in the conjunctive query. Work by Ryu and Takagi [124] reduces the size of the

search query to around the size of single keyword query. The scheme is shown to be

secure in the sense of IND1-CKA in the random oracle model, similary to the other

conjunctive schemes discussed.

All conjunctive SSE schemes discussed so far have required keyword fields in the

construction of the index. Pieprzyk et al [116] present a conjunctive scheme that does

not require keyword fields. The search queries also conceal the number of keywords

in the conjunctive query. The keyword fields are removed by using a different bilinear

map on each keyword for each index entry.

The work of [37] give a formal definition of security for the conjunctive keyword

search schemes based on a relational database. They also discuss some issues associated

with these schemes, such as the reusability of search queries.

Shen et al. [125] present a symmetric-key predicate encryption scheme which sup-

ports inner product queries and also achieves search query privacy. The work of Katz,

Sahai and Waters [89] in public-key predicate encryption showed that inner products

can be used to support a wide range of expressive queries, such as conjunctions, dis-

junctions, polynomial evaluate and conjunctive normal form and disjunctive normal

form formulae. Shen et al. define the notion of full security in terms of searchable

encryption, meaning that no information is leaked by the encrypted data items, the

search query or the search phase except the access pattern. The size of the search

query is dependant on the number of data items, meaning that this scheme would not

63

3.5. Summary

be suitable for large data sets.

Recent work of Cash et al. [43] describes an SSE scheme that supports conjunctive

and general Boolean queries. The emphasis on this work is that of practicality. They

present a scheme that adapts the schemes of [55] and [47] and is the first example of

a sub-linear conjunctive search. They define bounded leakage functions, which leak

more information than just the intersection of all the searched keywords, however,

this is sacrificed for greater efficiency. Futher work by Cash et al. [42] presents a

generalisation of the previous work [43] to support dynamic data and maintain search

efficiency in very large databases.

Range queries in the symmetric-key setting can be achieved using OPE (defini-

tion 2.3.12). OPE is a form of deterministic encryption that preserves the ordering of

the plaintexts in the corresponding ciphertexts, hence can achieve fast search times.

OPE was introduced by Agrawal et al. [4], yet Boldyreva et al. [31] were the first to

introduce a concrete implementation of an OPE scheme that satisfied their security no-

tion, POPF-CCA (pseudorandom order-preserving function against chosen-ciphertext

attack). This security notion requires an adversary cannot distinguish whether they are

have oracle access to an instance of the encryption scheme or a random order-preserving

function. In this paper the authors highlight their concerns about the security of using

this scheme in practice as there is no analysis regarding how the information leakage

from the index can be used by an adversary. This work is revisited in [32] where

the authors goal is to outline the security and functionality trade-offs associated with

OPE in order to help practitioners make informed decisions on implementing OPE. In

this work the authors also study some schemes that are not built using OPE, but yet

support efficient range queries over encrypted data along with an extension to OPE,

namely Modular OPE, that improves the security of OPE. More recent work by Ker-

schbaum [90] enhances the security of OPE by randomizing the ciphertexts to conceal

the frequency of the plaintexts. Work by Naveed et al. [105] demonstrate some attacks

on low entropy ciphertexts encrypted using OPE, where the plaintext can be recovered

using only the ciphertext and publicly available information.

The work of Ishai et al. [78] presents an SSE scheme using a two-server system

model, which is referred to as distributed SSE. It leaks no access pattern information

up to a certain threshold number of queries.

3.5 Summary

In this chapter we defined SE in the public-key and symmetric-key settings, as well as

presenting a general model for SE. In addition we defined multi-user SSE and verifiable

64

3.5. Summary

SE which feature prominently in the work in the following chapters. We outlined the

security and adversarial models associated with SE and give a literature review of

related work in the field of SE.

65

Chapter 4

Searchable Encryption in the

Real World

Contents

4.1 Introduction . 66

4.2 Architecture of Searchable Encryption 67

4.3 Application of searchable encryption to provide solutions

in the Scenarios . 68

4.3.1 Scenario 1: Only the data owner reads and writes all the data 68

4.3.2 Scenario 2: Data owner can read data, all users can write data 71

4.3.3 Scenario 3: Data owner can write data, many users can read

data . 73

4.3.4 Scenario 4: Many users can read and write data 74

4.4 Searchable Encryption in the Real World 76

4.5 Deployment challenges . 79

4.6 Summary . 81

This chapter was based on research conducted at Thales Research and Tech-

nology (UK), which appears in [120].

4.1 Introduction

The literature regarding SE is extensive (see Section 3.4), however SE is not widely

deployed in practice. This chapter identifies and analyses different scenarios to which

SE can be applied in the real world and investigates the suitability of certain types of

66

4.2. Architecture of Searchable Encryption

SE schemes for each scenario. We also explore the reasons as to why SE schemes are

not widely implemented and look at the security issues and functionality of protocols

that are currently being implemented that achieve some form of search over encrypted

data.

The inspiration and research for this chapter came from my internship at Thales

UK Research and Technology. One of the aims of the research was to introduce SE

as a new technology and demonstrate its uses. In this role at Thales we analyzed

practical scenarios that arose from combat situations, working with sensitive data and

controlling access to data with varying degrees of classification and looked at ways SE

could be used to solve problems within these scenarios. When analyzing the scenarios

we looked at features such as the number of users, the adversarial threat, sensitivity

of the data involved and whether static or dynamic data is used and assessed the

suitability of particular SE schemes to each scenario. We used this research to define

four basic scenarios to which SE could be applied based on the number of users and

the capabilities of each user. Within each of these basic scenarios we detailed a generic

method of SE that is well suited for use in that scenario and identified varying features

of these scenarios that occur in the real world. We then mapped specific SE schemes

into the different instances of the scenario depending on the varying features.

There is a comprehensive survey of provably secure searchable encryption schemes

that post-dates this research that can be found in [35]. The authors of [35] follow a

similar categorization of SE schemes, however their survey takes a theoretical approach

and does not consider the practical reasons behind the categorisation of the SE schemes.

We do not intend to provide a comprehensive survey of every SE scheme to date.

Rather, the intention here is to explore what features of a SE scheme might make it

more suitable for use in a particular scenario in order to facilitate the design of protocols

that use SE to provide solutions to real-world problems.

4.2 Architecture of Searchable Encryption

In this section four basic scenarios for searching over encrypted data in the cloud are

described, along with general methods of achieving SE that are potentially suitable for

these environments. This section analyses SE schemes that achieve a single keyword

equality search over encrypted data. The four basic scenarios are as follows:

1. Scenario 1: Only the data owner reads and writes all the data.

2. Scenario 2: Only the data owner can read the data, all users can write data.

67

4.3. Application of searchable encryption to provide solutions in the Scenarios

3. Scenario 3: Only the data owner can write the data, many users can read the

data.

4. Scenario 4: Many users (including the data owner) can both read and write

data.

In Section 4.3 we describe each of these scenarios in detail, give a practical example

of each scenario and present a generic method of SE that can be applied to each

scenario. In the real world each scenario will present a number of variables that can

affect which SE scheme would be best to use in each case. We consider the following

variables:

• Size and type of data (static or dynamic),

• Frequency of queries,

• Number of additional users (if any),

• Sensitivity of data,

• Type of search query (equality, conjunctive etc.),

• Available local storage.

For each of these variables we identify the most suitable SE scheme according to

its construction and features.

4.3 Application of searchable encryption to provide solu-

tions in the Scenarios

4.3.1 Scenario 1: Only the data owner reads and writes all the data

The simplest scenario is where only the data owner is involved in reading and writing

data and there are no additional users in the system. The data owner sets up the

system and generates the secret key. They create an encrypted index for the data

items using the secret key and outsource it to the remote server along with the set of

encrypted data items. The data owner generates search queries for the server using

their secret key which the server then uses to compute the search results satisfying the

search query. The search results are then transferred to the user.

In practice the data owner in this scenario could be the owner of a small business

who wishes to outsource their confidential client data to a public cloud server due to

an inadequate local storage capacity.

68

4.3. Application of searchable encryption to provide solutions in the Scenarios

Figure 4.1: Only the data owner reads and writes all the data.

As there is only one entity reading and writing the data in this scenario PKE does

not offer advantages over more efficient SKE schemes as no secret key distribution is

required. A generic method for performing SE in this scenario is SSE (Definition 3.1.1).

There are many different SSE schemes defined in the literature which support static

data [68, 46, 47, 55, 93, 100, 126] and dynamic data [86, 42, 43, 85, 106, 127, 114], to

provide a few notable examples.

• Size and type of data. If the dataset is very large it will be beneficial to choose

an SE scheme whose search time does not increase linearly with the size of the

data set. SSE schemes that achieve a sub-linear search time using a static dataset

are [47, 55]. The schemes of [47, 86] only require D(ω) symmetric decryptions

per search, where D(ω) is the number of data items satisfying the search query.

Examples of schemes that support a dynamic data set and sub-linear (with respect

to the number of data items) search are those of [43, 86, 85, 100]. The scheme

of [85] is also parallellizable so it can achieve a search complexity of O(D(ω)
p log n)

where n is the number of encrypted data items, and p is the number of processors.

The work of [42] has been designed specifically to support search over ‘very large’

databases.

• Frequency of queries. If a vast number of search queries will need to be

evaluated on the encrypted data, then choosing a scheme with efficient Query

and Search algorithms will be beneficial. Fast search times can be produced us-

ing deterministic and order-preserving encryption [20, 31]. Searchable encryption

schemes using deterministic encryption can produce very fast (logarithmic) search

times, however in order to achieve this some security is sacrificed. The index con-

sists of deterministically encrypted keywords, hence repetitions in these keywords

will be revealed to the server. Deterministic encryption in the symmetric-key

69

4.3. Application of searchable encryption to provide solutions in the Scenarios

setting is more secure against keyword guessing attacks than in the public-key

setting. When the ciphertexts are created using a public key an adversary is

able to create ciphertexts corresponding to arbitrary plaintexts of their choosing.

Hence, if an adversary obtains a ciphertext they can compare it to any of their

arbitrarily created ciphertexts in order to determine the associated plaintext. In

the symmetric-key setting an adversary is unable to mount an attack like this as

they do not have the secret key to generate any ciphertexts. For more expressive

queries, such as range queries, order-preserving encryption can be used to achieve

a fast search time. The security sacrifices for the faster search time using order

preserving encryption and similar to those for deterministic encryption. If the

data owner just wishes to minimize their computation requirements, it will be

beneficial to have a Query algorithm which is not so computationally intensive.

The schemes of [68, 85, 100] only require the evaluation of one PRF per search

query, which makes their Query algorithms very efficient.

• Number of additional users. Not applicable to this scenario.

• Sensitivity of data. As outlined in Section 3.4, ORAM can be used to perform

searches over encrypted data without leaking the access pattern, a downfall of

most SE schemes. However these types of schemes can be very computationally

expensive so will not be suitable for very large datasets. Several schemes have

been presented that improve the efficiency of the ORAM technique [29, 45, 56, 57,

66]. TWORAM, presented in [66], is the most promising ORAM-type searchable

encryption scheme that can conceal the search pattern, however, it requires that

the data items are stored in oblivious access memory in order to conceal the

access pattern. This scheme achieves a sub-linear search time.

• Type of search query. The searchable encryption scheme suitable for this

scenario with the most expressive queries is that of [125], which supports the

following types of queries: conjunctive, disjunctive, polynomial and conjunc-

tive/disjunctive normal formulae. This scheme uses bilinear maps in the con-

struction of the index and the search queries, which are fairly computationally

intensive for the user. Recent SSE schemes [42, 84] can support arbitrary dis-

junctive and Boolean queries, however the scheme of [84] is slightly more efficient

in terms of search time as in the worst case its searches are sublinear, whereas

for arbitrary disjunctive and Boolean queries using [42] these types of searches

are performed in linear time.

• Available local storage. In this setting, where only the data owner is reading

70

4.3. Application of searchable encryption to provide solutions in the Scenarios

Figure 4.2: Data owner can read data, all users can write data.

and writing data to the remote server, if the data owner has local storage available

then an index for the encrypted data could be stored locally, un-encrypted. This

would achieve the fastest possible search, as the data owner is searching on un-

encrypted data.

4.3.2 Scenario 2: Data owner can read data, all users can write data

In this scenario both the data owner and a number of arbitrary other users are able to

write data (Figure 4.2). The data owner, however, is the only party that can read the

data.

This scenario is well illustrated by an email routing system. Users send encrypted

emails to the data owner. To allow relevant routing of these emails the server receives

all the incoming emails and routes them according to the data owner’s preferences. In

order to ascertain how to route the encrypted emails they will be securely indexed with

keywords (these could be all words in the subject of the email, for example). The data

owner supplies the server with search queries to enable it to detect which emails con-

tain a specific keyword and then route them according to the data owner’s instructions

without revealing the plaintext email to the server.

As there is more than one party that can write data, SE schemes for this scenario need

to be able to support dynamic data as encrypted data will most likely be added to the

server at different times by different parties. In terms of encryption, PKE schemes are

well suited here. Using PKE allows simple key distribution to the users as encryption

can be done using the data owner’s public key. The secret key is used by the data

owner to generate search queries. This also ensures that only the data owner is able to

produce search queries and decrypt the data items.

• Size and type of data. As encrypted data items in this scenario are uploaded by

71

4.3. Application of searchable encryption to provide solutions in the Scenarios

different users, the index is necessarily a forward index, having an entry per data

item. Subsequently, the search times are linear in the number of encrypted data

items, which might not be suitable for practical systems. In addition most of the

public-key schemes suitable for this scenario use pairings and computationally

intensive group operations in the Search and BuildIndex algorithms, which for

large datasets may not be feasible for a practical system. The scheme of [91] does

not use pairings in the BuildIndex or Search, which may make it a more practical

choice.

• Frequency of queries. Due to the computationally intensive primitives used

in the algorithms in public-key searchable encryption schemes they might not

be suitable for use in scenarios where a high frequency of queries are issued to

the server. The schemes of [13, 58, 91] do not use group operations or pairings

in their Query algorithms, they use hash functions ([13, 58]) and polynomial

evaluation ([91]).

• Number of additional users. As the data is encrypted using a public key, no

secure channel is needed for key distribution, hence a large number of additional

users does not impact the efficiency of the scheme in this sense. However, more

users may imply more encrypted data being stored on the server so it could indi-

rectly affect the efficiency of the scheme due to the issues arising from searching

over very large datasets (see previous point regarding size and type of data).

• Sensitivity of data. Public-key searchable encryption schemes may be vul-

nerable to the offline keyword guessing attack described in Section 3.4.2. The

schemes of [48, 49] are not susceptible to this attack, however [48] involves a

user registering a keyword prior to encrypting data, so there is an extra round of

communication between the user and the data owner prior to encryption. The

scheme of [49] requires an extra server in order to prevent offline keyword guessing

attacks, with the assumption that the two servers do not collude.

• Type of search query. The most expressive searchable encryption schemes

for this scenario are that of [34, 89]. The scheme presented in [34] supports

conjunctive, subset and range queries, whereas [89] supports the following types of

queries: conjunctive, disjunctive, polynomial and conjunctive/disjunctive normal

formulae.

• Available local storage. As the encrypted data is sent straight to the server

by the users, in order to index the data locally the data owner will either need to

download the encrypted data in order to index it or allow the additional users to

72

4.3. Application of searchable encryption to provide solutions in the Scenarios

Figure 4.3: Data owner can write data, many users can read data.

upload the index information. This will need to be repeated every time encrypted

data is added by a user. Due to the large communication costs associated with

this method, we do not consider this a feasible option.

4.3.3 Scenario 3: Data owner can write data, many users can read

data

In this scenario, all the encrypted data stored on the server is written by the data

owner, who wishes to provide read capabilities to other users, whilst not allowing them

the ability to write data (Figure 4.3). As only the data owner is writing data, SKE is a

good choice for constructing SE schemes for this scenario and the data could be either

static or dynamic.

In practice a corporation may want to outsource some encrypted data to a remote

cloud server. In order to allow employees to read the data a SE scheme that supports

multiple readers is required. This group of users could also be dynamic meaning that

users may get their read capabilities revoked, when an employee is fired for example,

or new users maybe enrolled into the system when the corporation hires new employees.

Although this scenario seems to reflect many real-world instances of searching on en-

crypted data, the literature is not very extensive. In Section 6.3 we investigate generic

solutions to multi-user search on encrypted data some of which are applicable here.

• Size and type of data. Using broadcast encryption as a method for read-

only user addition and revocation was put forward in [55]. Using this method

a single user SSE scheme can be converted to a multi-user one, inheriting the

properties of the underlying single-user scheme. Choosing a suitable single-user

SSE scheme (see Section 4.3.1) and applying a broadcast encryption scheme to it

73

4.3. Application of searchable encryption to provide solutions in the Scenarios

would provide a good solution here, allowing only authorised parties to generate

valid search queries.

• Frequency of queries. The solution described in the point above also applies

here.

• Number of additional users. If there is a dynamic user group searching the

encrypted data then the user addition and revocation mechanisms will need to be

efficient. The scheme of [135] stores a unique key per user on the server which is

used together with a search query to search the encrypted data. To revoke a user

the user’s key is deleted from the server which prevents the server from being

able to execute the user’s search queries. The revocation in this scheme does not

affect the other authorised users.

• Sensitivity of data. There are no ORAM solutions specifically for this scenario.

One could use a broadcast encryption scheme along with single user ORAM in

order to allow multiple users to query the encrypted data.

• Type of search query. Using broadcast encryption extends a single-user SSE

scheme to multi-user one, hence the single-user schemes detailed in Section 4.3.1

are also applicable here when combined with a broadcast encryption scheme to

handle user revocation and addition.

• Available local storage. If users have available local storage then each one

could store an index locally, if trusted by the data owner. This would work most

efficiently when using a static dataset, as any updates to the data would require

the data owner to update all the user indexes. If the additional users do not have

equal access rights then it would be possible using this method to have a different

index for each user, so the user can only learn information regarding data items

they are authorized to search.

.

4.3.4 Scenario 4: Many users can read and write data

In this scenario many users including the data owner have read and write capabilities

(Figure 4.4).

An example of this scenario in the real world is the management of encrypted electronic

health records (EHRs). If you take just one hospital, there are numerous doctors, nurses

and other staff (which represent the users and data owners) that write information to

74

4.3. Application of searchable encryption to provide solutions in the Scenarios

Figure 4.4: Many users can read and write data.

the EHRs. Due to the sensitive nature of the data, access will be restricted to certain

users only. For example, a general practitioner may be authorised to read the records

of their patients only, whereas a heart specialist may be authorised to read all records

relating to heart conditions. All medical staff may need to write data to the records.

As there is more than one entity writing data, as in Section 4.3.2 we need to support

dynamic data. Both SKE and PKE are possible in this scenario but produce a subtle

difference in the SE schemes’ functionality. In a scheme that uses SKE a revoked user

will no longer be able to read or write data, whereas when using PKE a revoked user

will no longer have read capabilities, however they will still be able to write data to

the server as this is done using the public key. We shall look at PKE and SKE based

methods for building SE in this scenario.

• Size and type of data. For large datasets deterministic encryption [20] could

be used along with a proxy server that uses proxy re-encryption to transform

user’s queries to the correct form. Each user could encrypt data using their own

public key. In order to search other user’s encrypted data the proxy server can

convert search queries to the correct form depending on which user encrypted

the data. This could involve the proxy server computing many different search

queries in order for a user to search many different users’ data, so this method

might not scale well to a large number of users.

• Frequency of queries. A scheme by Bao et al. [15] allows multiple readers as

well as writers using SKE. It employs a trusted authority to generate keys and

enrol/revoke users in the system. The method used to add and revoke users is

similar to that using BE, however generating a search query and writing a data

item to the server requires a valid value which varies from user to user. The server

stores information regarding these values and authorized users in a dynamic list.

75

4.4. Searchable Encryption in the Real World

Using SKE makes the Query and Search algorithms more efficient, hence this

method might be suitable for a system with a high volume of queries.

• Number of additional users. Multi-receiver PEKS [13] extends the PEKS

scheme to a setting that allows multiple readers as well as writers. Each user in

the scheme has their own public key. For a large number of additional users this

scheme is suitable as user keys can be transferred to the users publicly.

• Sensitivity of data. If the data is very sensitive, then ORAM techniques may

be applicable. A multi-user ORAM scheme is presented in [81], which uses a

chain of proxy servers to protect the data access pattern of each user. Another

multi-user ORAM scheme is presented in [29], however, this involves an ORAM

per user and only supports a user reading data from their own ORAM, whereas

they can write data to other users’ ORAMs.

• Type of search query. Wang et al. [116] present a conjunctive scheme suitable

for this scenario. No other schemes supporting more expressive search queries are

detailed in the literature.

• Available local storage. As the encrypted data is sent straight to the server by

the users, in order to index the data locally the data owner will need to download

the encrypted data. This will need to be repeated every time a user submits

encrypted data, or otherwise the user could also submit indexing material along

with the encrypted data. Due to the large communication costs associated with

this method, we do not consider this a feasible option.

4.4 Searchable Encryption in the Real World

In this section we give a brief analysis of some products that claim to support searching

on outsourced encrypted data. We try to detail the type of encryption used and the

setup and search leakages, although as some of these products are proprietary full

details of the encryption method may not be available.

• CipherLocker: A product named CipherLocker which has been created by a

company called Private Machines Inc. claims to be ‘the first platform that lets

you securely search through files that are stored encrypted on the server, without

having to download the files’ [1]. The model used is different to that of standard

SE (Section 3.1) as the index is not kept on the server. The data items themselves

are encrypted using a semantically secure authenticated encryption scheme before

they are transferred to the server for storage. The searches are performed locally

76

4.4. Searchable Encryption in the Real World

by the user hence there is no related leakage from the searches to the server,

except for the list of data items retrieved. CipherLocker provides a secure way

to locate and retrieve encrypted data items from a server, but the model is very

different to that of SE that is discussed in this thesis. We can say that if every

SE scheme stored an index and performed the search locally then all schemes

would achieve this high level security. In the literature a standard assumption is

made that a data owner wishes to outsource sensitive data to a remote server due

to local storage restraints, hence CipherLocker may not be a suitable solution to

searching on encrypted data for everyone. Internal adversaries may also need to

be taken into consideration when using this method.

• CryptDB: CryptDB [118] was developed by Popa et al. and is one of the most

well-known and documented solutions to searching on encrypted data. The au-

thors are very transparent about the types of encryption used in CryptDB along

with the associated leakages, unlike other products discussed in this section. This

scheme works on data in SQL databases and allows the evaluation of SQL queries

over the encrypted data. Using CryptDB it is possible to encrypt different parts

of the database using different types of encryption, depending on what types of

queries will be evaluated on that part of the database. This scheme is a good

example of the relationship between functionality and security that is often con-

sidered when designing a SE scheme.

– Random (RND): This is the strongest form of encryption used in CryptDB

and produces ciphertexts that are IND-CPA secure. It does not allow any

computation on parts of the database encrypted with this form of encryption.

– Deterministic (DET): Deterministic encryption [20] leaks which values

are equal in the encrypted data, i.e. equal plaintexts produce equal cipher-

texts. Using this type of encryption one can perform equality checks on the

encrypted data which enables the user to locate encrypted data that matches

a target value. Work by Naveed et al. [105] has shown that the information

leakage from ciphertexts encrypted using this form of encryption could be

used to uncover the underlying plaintext.

– Order preserving encryption (OPE): OPE [32] leaks the order relations

between ciphertexts. If we have that a plaintext x is less that a plaintext

y then if using OPE the resulting ciphertexts cx, cy will retain this order

relation i.e. cx is less than cy. Using OPE to encrypt the data one can

perform range queries and determine the maximum and minimum values

within the encrypted data. Work by Cash et al. [59] has shown that when

77

4.4. Searchable Encryption in the Real World

there are multiple correlated columns in a database encrypted using OPE

then these columns can be used together to reveal more information about

the underlying plaintexts than previous attacks could reveal on each column

individually.

– Homomorphic encryption (HOM): Homomorphic encryption [113] pro-

duces ciphertexts that are IND-CPA secure and allow add queries to be

performed over the encrypted data. The leakage is limited to size of the

ciphertexts. The security for this form of encryption is similar to that of

RND.

– Word Search (SEARCH): The scheme that is used to perform text search

is that of [126]. The text is split into individual keywords and the repetitions

are removed and the words permuted. Each keyword is encrypted using

the scheme as defined in [126]. The ciphertexts are then padded to ensure

they are all the same size. The leakage is limited to which data matches

the search query. If there exists RND encryptions of the same data then an

adversary may be able to detect the number of distinct keywords in the data

by comparing the size of the SEARCH ciphertexts with the RND ciphertext.

CryptDB performs much more than keyword search as we have detailed. It also

provides flexibility for the user to assess what kind of security they need on their

data and whether they would like to sacrifice leaking some information to the

server in exchange for being able to evaluate more expressive queries. It requires

a proxy between the user and the server in order to translate the SQL queries to be

compatible with the encrypted data, as well as decrypt the query results before

transferring them to the user. CryptDB has been used by several companies

including Google, SAP, Lincoln Laboratory, Skyhigh and Microsoft [117].

• CipherCloud: CipherCloud market a type of encryption called Searchable Strong

Encryption, which is not the same as the notion of ‘SSE’ discussed in this thesis.

It involves a local index being stored by the user in order to support searching,

similarly to Cipherlocker. They also use tokenization to support search on en-

crypted data. They claim that in some countries which have strict data residency

laws, such as Singapore and Luxembourg, companies are not allowed to encrypt

their data, hence tokenization is used instead of encryption for clients in these

countries to comply with regulations whilst still somewhat protecting their data.

Although any form of encryption on the data is more secure than nothing at all it is

obvious that the claims of some companies that supply products that support searchable

encryption are slightly misleading for prospective clients.

78

4.5. Deployment challenges

4.5 Deployment challenges

Despite the existence of seemly practical searchable encryption schemes, there is still

scarce evidence of their deployment. Some companies claim that they can achieve

searchable encryption but with further investigation into their systems they are usu-

ally built using a technology called tokenization. Tokenization works by replacing a

plaintext string (a keyword for example) by a completely random string (token) before

uploading it to the server and storing a map of these replacements locally. Although

the tokens are chosen randomly, identical plaintext strings are mapped to the same

token meaning equality between plaintexts will be leaked. This will provide a fast

search (same as searching a plaintext) but requires a lot of data (the mapping) to be

stored locally meaning if the entirety of the data is tokenized then there will be just as

much data locally stored (excluding repeated keywords) as there is on the server. This

method of data confidentiality seems to be more suited to scenarios where only parts

of the outsourced data needs to be protected. For example in a database of customer

details, only the very sensitive portions of the data such as social security numbers

might need protecting. The level of security provided by tokenization is roughly equiv-

alent to that of DE yet it also has the requirement of local storage space, as the user

needs to store a dictionary for all the tokenized values. SSE although only achieving a

fairly coarse grained search is still able to achieve sub-linear search times and a high

level of security so why are companies and consumers not adopting these methods to

achieve data confidentiality in the cloud environment? We discuss several reasons that

we believe form barriers to the adoption of the cryptographic techniques for searching

on encrypted data detailed in this work.

Usability. Searching over data in the clear is an everyday task for most people. Users

are accustomed to the efficient and highly functional search facilities found with search

engines such as Google. As a result they expect the same levels of usability from an

encrypted search. Unfortunately the SE schemes in the literature do not offer this

combination of functionality with efficiency; they cannot compete with the search tools

that users are accustomed to in this respect. This ties in with the point regarding user

education, if users understood the security benefits of using SE compared with other

methods, such as tokenization, then it might make SE a more appealing choice.

Lack of prototypes. SE is a relatively new technology, and there exists few proto-

types or demonstrations to illustrate the successful adoption of SE in the real world.

This makes the implementation of SE into new products or systems over established

79

4.5. Deployment challenges

methods highly risky for the user. Alongside this is the issue of the lack of standardised

algorithms and protocols relating to SE which make it harder to implement without

specialised knowledge in the area of SE. There are a wide variety of SE schemes avail-

able which are well suited to different scenarios yet without any evidence demonstrating

the suitability of a scheme to a particular scenario there is no motivation for the user

to choose this new technology over established methods. This ties into the next point

regarding user education.

User education. Users may not understand how SE can be used to solve their prob-

lem or the security benefits it provides over existing methods. Furthermore users may

not understand the security issues associated with using an alternative method such

as tokenization. Educating users on these issues will help them make a more informed

choice and prevent the implementation of a method that is not fit for their purpose.

Legal issues. The Investigatory Powers Bill (IPB) [109] gives new powers to law en-

forcement allowing them to issue subpoenas to cloud providers storing encrypted data

requiring them to break the encryption and release the plaintext data. In the case of

SE where the encrypted data stored on a company’s server is encrypted and outsourced

by a third party and not by the cloud provider itself they would be unable to provide

the plaintext data in this case. This could prevent the deployment of SE as the cloud

providers would be unable to store third party encrypted data as if requested by law

enforcement they would be unable to provide the plaintext data. There are many ques-

tions that arise from the passing of the IPB and what power it gives the government

to decrypt private data as the wording in some aspects of it is ambiguous. Hence, it

is hard to predict the effects it will have on peoples’ willingness to encrypt their data.

However, we acknowledge that it may affect how people choose to encrypt and store

their data.

Compliance. It is obvious that SE would be of great benefit to users or institutions

that handle a lot of sensitive data, such as banks. However new technologies such as

SE are effectively prevented from being deployed, as they do not comply with these

institution’s regulations which usually require the use of legacy systems. Institutions

also have policies in place regarding how data is to be handled and how their systems

are used. Failure to comply with these regulations by an employee would result in dis-

ciplinary or legal action against the employee. It is believed that this provides enough

of a deterrent to a potential inside adversary and provides a means for keeping sensitive

data confidential without the use of encryption. However data breaches are becoming

80

4.6. Summary

more frequent and severe [119] which motivates the need for provably secure methods

of data protection as opposed to ones that rely on trust and user compliance. There

are laws in place dictating that access to particular types of sensitive data, such as

medical records, should be restricted. The laws do not dictate how to enforce such a

restriction however. These laws should be updated to specify how the data should be

protected, to eliminate the reliance on compliance for data security.

Lack of communication between academia and industry. In researching for

this work we encountered first hand experience of this issue. There is a distinct lack of

dialogue between the academics that research in the area of SE and the practitioners

that would like to implement the technology. Without a conversation between these

two parties, academic researchers do not know which features of SE are most desirable

for a practitioner and hence may not focus on these features in their research. In order

to facilitate the development of SE schemes that meet the needs of practitioners there

needs to be a more open dialogue between academia and industry. Some companies

(Skyhigh, for example) have started to address this issue by appointing a cryptographic

advisory board consisting of five leading academic researchers. This gives the company

access to information regarding cutting edge technologies and specialised advice and

on the other hand gives the academic researchers problems and areas of research to

focus their work on.

4.6 Summary

In this chapter we defined four scenarios in the real world in which searchable encryp-

tion can be applied. We discussed various features of SE schemes and map suitable

SE schemes into the four scenarios. We hope that this work will help practitioners

design products that implement SE over less secure methods such as tokenization, by

highlighting suitable SE solutions and discussing the tradeoffs between security and

efficiency within these scenarios.

We discussed some SE products that are available to users along with their pros

and cons.

Lastly we discussed some issues we feel are preventing the deployment of SE schemes

in the real world.

81

Chapter 5

Extended Functionality in

Verifiable Searchable Encryption

Contents

5.1 Introduction . 83

5.1.1 Related work . 84

5.1.2 Organisation of chapter . 86

5.2 Extended Verifiable Searchable Encryption 86

5.2.1 System model . 86

5.2.2 Formal Definition . 88

5.2.3 Security Model . 90

5.3 Construction . 96

5.3.1 Overview . 96

5.3.2 Choosing a Broadcast Encryption scheme 98

5.3.3 Choosing a CP-ABE scheme 100

5.3.4 Data Encoding . 102

5.3.5 Formal Details . 104

5.3.6 Instantiation Details . 105

5.4 Proofs of Security . 110

5.4.1 Public verifiability . 110

5.4.2 Index privacy . 115

5.4.3 Query privacy . 120

5.5 Summary . 124

82

5.1. Introduction

In this chapter we employ the techniques of VDC (Section 2.4.3) to extend

the functionality of VSE (Definition 3.1.7). The scheme we present allows

the user to verify that search results are both correct and complete in addi-

tion to allowing more complex verifiable computations to be performed on

the encrypted data such as averaging and counting functions as well as the

standard keyword matching queries. The results of this chapter are published

in [6].

5.1 Introduction

The majority of existing work in SE focuses on achieving secure search over encrypted

data in the presence of an honest-but-curious adversary. The paradigm of Verifiable

Searchable Encryption (VSE) assumes a stronger semi honest-but-curious adversarial

model (Definition 3.3.2) where the server might execute only a fraction of the search

or return only a fraction of the search results to the user in order to conserve its own

computational resources or download bandwidth respectively. A VSE scheme allows

the user, who created the search query to verify that the search results it receives

in response to their search query from the server are both correct and complete. Our

scheme, extended VSE (eVSE), supports multiple users reading data with a single user,

the data owner, writing data (Scenario 3, Section 4.3.3). Verifiability of search results

is of particular interest in this scenario as users (other than the data owner) would most

likely not have seen the data prior to it being encrypted and outsourced to the server

as they do not own the data. We use a CPABE scheme (Definition 2.3.5) as the main

building block for eVSE : we encode the index for the encrypted data into a CPABE

secret key which is stored on the server along with the encrypted data and the search

queries are composed of two CPABE ciphertexts. Each user that is authorized to query

the data has their own secret key which is used in conjunction with the CPABE public

key to create the search queries.

Related work on VSE (as described in Section 5.1.1) does not allow very expressive

queries over the encrypted data and only permits the user that initiated the search

query to verify the correctness of the search results. Our scheme eVSE extends the

range of queries and computations that a VSE scheme can verifiably perform as well as

supporting the public verification of the search results. To summarise, our contributions

in this chapter are:

• More expressive queries: Our scheme supports search queries such as boolean

83

5.1. Introduction

formulae involving conjunctions, disjunctions and negations, threshold opera-

tions, polyomials, arbitrary CNF and DNF formulae (depending on the underly-

ing CPABE scheme used - see discussion in Section 5.3.1).

• Evaluation of computations: Our scheme supports some simple computations

such as averaging and counting on the encrypted data. This is achieved by in-

dexing the data items with keywords that represent binary data values as well as

the standard alphabetic keywords, see Section 5.3.4.

• Public verifiability of search results: Any user in the system is able to verify

the correctness and completeness of the search results.

5.1.1 Related work

Verifiable searchable encryption

The first VSE scheme was presented by Chai and Gong [44]. It supports verification of

search results from a single keyword equality query. This scheme uses a trie to index

the data items. A trie is a structure that efficiently stores words by reading each one

in from root to leaf, hence a word ω of length |ω| can be searched for in the trie in a

maximum of |ω| steps. The method of verification in this scheme involves producing a

proof value for every step in the search process as the server traverses the trie. This

concatenation of proof values is sent to the data owner along with the search results

to allow the data owner to verify that the server completed the search correctly. The

proof consists of a chain of hash values and a set of search results concatenated with

a hash of the search results. To check the completeness of the search results, the data

owner computes the hash of the received search results and compares it to the received

hash value. If these values are equal then the data owner can be sure the set of search

results is complete. To check that the correct search was carried out the data owner

decrypts the values in the concatenation and compares them with values in the search

query. Each proof value contains information regarding the previous node in the trie,

hence the path through the trie can be verified by the user. The size of the proof

received from the server leaks how many letters matched in the searched keyword. For

example, if a server returns a negative search result and the proof has size j, then this

tells the data owner that the first j − 1 letters matched, but there was a mismatch on

the jth letter.

Another verifiable search scheme that supports keyword equality search only is that

of [93]. They use a similar technique to [44] for the verification as they include a MAC

of the search results (instead of a hash of the search results). The data owner is able

84

5.1. Introduction

to verify if the MAC value included in the search results is correct by computing the

MAC of the search results themselves. This scheme is shown to be UC-secure, meaning

the scheme can be arbitrarily composed with instances of other schemes, or instances

of the same scheme.

A scheme by Kissel et al. [92] extends the construction in [44] to support multiple

groups of users searching over the encrypted data. It achieves a form of multi-level

access, where different users have different access privileges to the data. The users are

divided into groups, each one receiving a dictionary of keywords that it is allowed to

search for. The user’s search queries are restricted to this dictionary of keywords only,

hence the users are restricted to search over a portion of the encrypted data.

A scheme by Cheng et al. [51] is the first scheme to apply indistinguishability

obfuscation (IO) [16] in the SSE setting. The authors also show an extension to the

scheme which supports conjunctive queries. In this scheme the IO circuit is applied

to the index. Search queries are then put in to this IO circuit which produces the

search results. To verify search results a public verification circuit is created, into

which a verification key is embedded. IO is then applied to this verification circuit

which allows the data owner to verify the search results. The leakage of this scheme is

similar to that of [55].

Another approach in [102] extends a public key encryption with keyword search

scheme [33] to support verification of search results from a single keyword equality

query, where the indexes are created using a public key.

Several verifiable search schemes have been proposed that use ABE in their con-

struction [102, 129, 137]. The schemes use Bloom filters to perform the searches on

the encrypted data. A signed Bloom filter is included in the search results so the data

owner is able to verify whether the search was performed correctly or not. The ABE

scheme is used to control the access to the encrypted data, i.e. a user can only search

a file if they have the correct credentials. The scheme of [129] allows the user to verify

the freshness of the search results, which ensures the search results are from the latest

version of the data and have not been recycled from previous searches. It uses signed

Bloom filters similarly to [102] in order to achieve this.

Another dynamic scheme is presented in [36]. It extends the dynamic SSE scheme

of [127] to support verifiability of search results. The scheme uses verifiable hash tables

to allow the data owner to verify search results.

Following our work the notion of public verifiability has also been explored further

by Azraoui et al. [9]. The authors present a scheme that uses Cuckoo hashing to index

the encrypted data, which is authenticated using polynomial-based accumulators and

Merkle tree. The root of the Merkle tree is used to verify the search results.

85

5.2. Extended Verifiable Searchable Encryption

Verifiable computation

Verifiable computation allows a client with limited resources to efficiently outsource a

computation to a more powerful server, and to verify the correctness of results. Gennaro

et al. [67] considered the use of garbled circuits, whilst Parno et al. [115] introduced

publicly verifiable computation (PVC) built from key policy attribute based enryption

(KP-ABE), where a single client computes an evaluation key for the server and pub-

lishes information enabling other clients to outsource computation to the server. Any

client may verify the correctness of a result. Alderman et al. [5] considered an alterna-

tive system model that used ciphertext policy attribute based encryption (CP-ABE) to

allow clients to query computations on data held by the server (or initially outsourced

by a client) called Verifiable Delegable Computation (VDC). This can naturally be ap-

plied to problems like querying on remote data, as well as MapReduce. Data remains

statically stored on the server and may be embedded in a server’s secret key, whilst the

computation of many different functions can be requested by creating ciphertexts using

only public information. Other notable approaches in the realm of querying remote

data can be found in [8, 11, 10, 23, 24, 28, 53].

5.1.2 Organisation of chapter

In Section 5.2 we describe the system model and give a formal definition of eVSE,

we also describe the types of search queries eVSE supports. Section 5.2.3 defines our

notions of security along with the respective security games. In Section 5.3 we give the

construction of our eVSE scheme and Section 5.4 details the security proofs to show

that eVSE is secure according to our security notions defined in Section 5.2.3. Finally,

Section 5.5 summarises and concludes the chapter.

5.2 Extended Verifiable Searchable Encryption

This section describes our system model and gives a formal definition for eVSE .

5.2.1 System model

We consider a system model comprising a data owner, a remote storage server, and

a set of authorised users as described in Section 3.1. The architecture of our scheme

makes it suitable for use in Scenario 3 (Section 4.3.3). The data owner sets up the

system to generate a master secret key and holds a set of data items (e.g. a database or

a set of data items) that they wish to encrypt and outsource to the remote server. The

data owner creates the index by assigning meta-data in the form of keywords or numeric

86

5.2. Extended Verifiable Searchable Encryption

values to the data items and encoding these values to form the encrypted index. The

data owner can also control which users are able to search over the encrypted data

by issuing user secret keys to authorized users which are necessary to construct the

search queries. The users form the search queries using the same encoding of keywords

and numeric values as the data used to construct the encrypted index. Queries can

be formulated to locate a set of data items associated with specified keywords as in

standard SE schemes, however eVSE also permits computational queries of functions

in the class NC1 which consists of Boolean functions computable by circuits of depth

O(log n) where each gate has a fan-in of two (where n is the number of data items), over

encoded data values. The query is sent to the server who performs the query on the

encoded index to generate a result. We allow any entity to verify the correctness and

completeness of the result (public verifiability, Section 5.2.3). The reason we permit

the server to verify correctness is to avoid the rejection problem, where a server may

learn some useful information by observing if results are accepted, but we restrict the

ability to read the value of the result to only authorised data users (holding a retrieval

key). We assume a separation between the server entity and the user and data owners

entities as we do not allow the server to issue queries. This prevents the server from

trivially learning the encoding used for keywords to create the encrypted index. Users

that are authorized to query the encrypted data must know this encoding in order to

form their queries.

Users are added and revoked from the system using broadcast encryption. When

enrolled each user is given a secret key related to the broadcast encryption scheme

which allows them to create valid search queries.

As a practical example consider workgroups within an organisation. The manager

or system administrator acts as the data owner for the organisation and outsources a

shared database to a remote server. Authorisation is granted by issuing a secret key to

each user. This key is used when creating a query token for a particular query Q. As

well as each user being able to generate their queries at will using their secret key, the

data owner is also able to generate queries and issue them to particular workgroups

based on their roles and responsibilities. Each workgroup would then be authorised to

query the encrypted data using only the queries generated for them by the data owner.

This allows the data owner to restrict what information is released from the encrypted

data to that particular workgroup. This is a form of multi-level access (MLA) (see

Chapter 6).

87

5.2. Extended Verifiable Searchable Encryption

5.2.2 Formal Definition

We now formally define our eVSE scheme. We use the following notation. Data to be

outsourced is denoted D and is considered to be a collection of n data items. Prior to

outsourcing, the data owner specifies a pre-index for D, denoted δ(D), which assigns

a set of descriptive labels to each data item, e.g. keywords contained in the data item

or specific data values that may be computed upon. The encoded form of the data,

including the descriptive labels, is referred to as the index of D, denoted ID, and is

stored by the server. Queries for functions in the class NC1 are denoted by Q and to

make such a query, a user creates a query token QTQ for Q, a verification key V KQ

which allows any entity to blindly verify the result, R, of the query, and a retrieval key

RKQ which is issued to authorised data users to enable the query result r to be learnt.

We consider a broader range of verifiable queries than many prior VSE schemes. In

particular, we consider two main types:

• Keyword matching queries: Queries of this type have formed the basis of most

prior work in SE. Suppose there exists a universe (dictionary) of keywords. Each

encrypted data item is associated with an index of one or more keywords which

describe its contents. Queries are formed over the same universe of keywords. In

this work, we permit Boolean formulae over sets of keywords (e.g. ((a ∧ b) ∨ c)

where a, b, c are keywords). Thus we can perform very expressive search queries

over keywords.

• Computational queries: Queries of this type are similar to the operations com-

monly discussed in the context of outsourced computation. We allow statistical

queries over keywords (e.g. counting the number of data items that satisfy a key-

word matching query), as well as operations over selected data values that have

been encoded using additional portions of the keyword universe. It is possible

to encode the entire database in such a way as to enable computations over all

data fields, but it would usually be more efficient to select a (small) subset of

fields that are most useful or most frequently queried. Clearly, keyword matching

queries can be seen as a special case of computational queries where the function

operator is equality testing.

• Mixed queries: Queries of this type combine both the functionalities of the

aforementioned query types (e.g. finding the average of data values contained in

all data items associated with a particular keyword).

All types of query are performed in a verifiable manner to ensure that results are

correct and complete.

88

5.2. Extended Verifiable Searchable Encryption

Definition 5.2.1 (Extended Verifiable Searchable Encryption (eVSE)). An eVSE

scheme comprises the following algorithms:

• (KO,KS , PP)
$← KeyGen(1κ,Ω, S) : Run by the data owner and takes as input

the unary representation of the security parameter κ, and a universe of attributes

Ω (keywords and data values) along with the server identity, S. It outputs the

data owner’s secret key KO that is used for further administrative tasks, the

server secret key KS and public parameters PP .

• (ID)
$← BuildIndex(δ(D),KO, PP) : Run by the data owner and takes as input

the pre-index of the data δ(D) and the data owner’s secret key KO. It outputs a

searchable index ID for the data D.

• (Ku,KO)
$← AddUser(u,KO, PP) : Run by the data owner to authorise a user

with identity u to produce queries by issuing them a secret key Ku and updates

the data owner’s key KO.

• (QTQ, V KQ, RKQ)
$← Query(Q,Ku, PP) : Run by a user using its secret key to

generate a query token QTQ for a query Q, a verification key V KQ and an output

retrieval key RKQ.

• R $← Search(ID, QTQ,KS , PP) : Run by the server to execute a query given in

the query token QTQ on the index ID. It generates a result R which can be

returned to the querying user or published.

• RTQ ← Verify(R, V KQ, PP) : Run by any party to verify the correctness and

completeness of the result R. It takes the verification key V KQ and, if the result

is accepted, it outputs a retrieval token RTQ which can be used to learn the

result. Otherwise a distinguished failure symbol RTQ =⊥ is returned.

• r ← Retrieve(V KQ, RTQ, RKQ, PP) : Run by a data user to read the value of the

result. It takes as input the retrieval token RTQ, the retrieval key RKQ and the

user’s secret key. If the user holds a valid retrieval key for Q and the computation

was performed correctly, then it returns the actual result r = Q(ID), otherwise

it returns r =⊥.

• (KO)
$← RevokeUser(u,KO, PP) : Run by the data owner using its secret key

to revoke a user’s authorisation to make queries and read results. It does so by

updating the server’s and data owner’s key.

Definition 5.2.2 (Correctness of eVSE). An eVSE scheme is correct if for all κ ∈ N,

for all (MK,PP)
$← KeyGen(1κ,Ω, S), for all u there is a negligible probability that

89

5.2. Extended Verifiable Searchable Encryption

verification does not succeed when all algorithms are run honestly. A formal definition

follows.

An Extended Verifiable Searchable Encryption scheme is correct for a family of

queries Q if for all queries Q ∈ Q and for all data sets D:

P[(KO,KS , PP)
$← KeyGen(1κ,Ω, S),

ID
$← BuildIndex(δ(D),KO, PP),

(Ku,KO)
$← AddUser(u,KO, PP),

(QTQ, V KQ, RKQ)
$← Query(Q,Ku, PP),

R
$← Search(ID, QTQ,KS , PP),

RTQ ← Verify(R, V KQ, PP),

Q(ID)← Retrieve(V KQ, RTQ, RKQ, PP)]

= 1− negl(κ)

5.2.3 Security Model

We now formalise several notions of security for eVSE as a series of cryptographic

games. The adversary against each notion is modelled as a probabilistic polynomial

time (PPT) algorithm A run by a challenger, with input parameters chosen to represent

the knowledge of a real attacker as well as the security parameter κ. The adversary A
may maintain state and be multi-stage; we refer to each stage as A for ease of notation.

The Public Verifiability game (Game 5.1), the index privacy game (Game 5.2) and the

query privacy game (Game 5.3) all have the eVSE scheme eVSE as defined in Section 5.3

as input, along with the following additional inputs: the security parameter 1κ, the

universe of attributes Ω and the server identity S. We denote this additional set of

inputs as X. We assume that oracle queries are performed in a logical order such that

all required information is generated from previous queries.

Public Verifiability.

In Game 5.1, we capture the notion of public verifiability such that a server may not

cheat by only executing a fraction of the specified query and/or returning an incorrect

or incomplete result without being detected.

The notation AO denotes the adversary being provided with oracle access to the fol-

lowing oracles: BuildIndex(·,KO, PP), AddUser(·,KO, PP), Query(·, ·, PP) and

Search(·, ·, ·, PP) as follows:

• The BuildIndex(·,KO, PP) oracle allows the adversary to create indexes of their

90

5.2. Extended Verifiable Searchable Encryption

choosing. It simply runs BuildIndex on the adversary’s chosen input (a pre-index

δ(D) and returns the output to the adversary.

• The AddUser(·,KO, PP) oracle allows the adversary to request a user be added

to the system, and the adversary corrupts this user by receiving their user key.

The AddUser algorithm is run on the adversary’s chosen input, a user identity u

and the output is returned to the adversary.

• The Query(·, ·, PP) oracle allows the adversary to generate search queries. The

Query algorithm is run on the adversary’s input, a user secret key and a query of

their choosing. The output is returned to the adversary.

• The Search(·, ·, ·, PP) oracle allows the adversary to evaluate search queries over

an index of their choosing. The Search algorithm is run on the adversary’s chosen

inputs and the results returned to the adversary.

This is a selective notion of security where, at the beginning of the game, the

adversary chooses the challenge query and set of data items. The challenger runs

KeyGen to generate the data owner key, the server key and the public parameters. The

challenger then chooses a user identity at random from the universe of user identities

U and authorises this user to search the encrypted data by running AddUser using

the identity u as input. The challenger then encodes the adversary’s challenge data

item set and runs BuildIndex and Query on the inputs selected by the adversary at the

beginning of the game to generate the index and the query for the adversary. The query

is generated using the authorised user identity generated previously. The adversary is

then given oracle access along with the outputs from BuildIndex and Query, which are

I∗D and (QTQ∗ , V KQ∗ , RKQ∗) respectively, the server key KS and the public parameters

PP . The adversary eventually outputs a result R∗ which it believes to be an incorrect

result that will, nevertheless, be accepted by the verifier. The challenger runs the Verify

algorithm using R∗ as input and following this runs Retrieve. The adversary wins if

verification succeeds, yet the result, r∗ generated by Retrieve, is not Q(ID?).

Definition 5.2.3. The advantage of a PPT adversary A in the public verifiability

game (Game 5.1) is defined as follows:

AdvPublicVerifiability
A (eVSE, X) =

∣∣P[ExpPublicVerifiability
A [eVSE, X] = 1]− 1

2

∣∣.
eVSE is secure in terms of public verifiability if for all PPT adversaries A:

AdvPublicVerifiability
A (eVSE, X) ≤ negl(κ)

where negl is a negligible function.

91

5.2. Extended Verifiable Searchable Encryption

ExpPublicVerifiability
A [eVSE, X]

1 : (Q∗,D?)← A(1κ,Ω)

2 : (KO,KS , PP)
$← KeyGen(1κ,Ω, S)

3 : u
$← U

4 : (Ku,KO)
$← AddUser(u,KO, PP)

5 : δ(D∗) $← Encode(D∗)

6 : ID?
$← BuildIndex(δ(D?),KO, PP)

7 : (QTQ∗ , V KQ∗ , RKQ∗)
$← Query(Q∗,Ku, PP)

8 : R? ← AO(QTQ∗ , V KQ∗ , RKQ∗ , ID? ,KS , PP)

9 : RTQ∗ ← Verify(R?, V KQ∗ , PP)

10 : r∗ ← Retrieve(V KQ∗ , RTQ∗ , RKQ∗ , PP)

11 : if r∗ 6=⊥ and r∗ 6= Q∗(ID?) then

12 : return 1

13 : else

14 : return 0

Game 5.1: Selective public verifiability game for eVSE

Index Privacy.

In Game 5.2, we formalise the notion of index indistinguishability against a selective

chosen keyword attack, which ensures no information regarding the keywords is leaked

from the index.

The notation AO denotes the adversary being provided with oracle access to the fol-

lowing oracles: BuildIndex(·,KO, PP), Search(·, ·, ·, PP), Verify(·, ·, ·, ·, PP) and

Retrieve(·, ·, ·, PP) as follows:

• The BuildIndex oracle allows the adversary to create indexes of their choosing.

It runs BuildIndex on the adversary’s chosen input. As the adversary is modelled

as the server in our security model it does not have access to the encoded set

of attributes Ω̃. Hence, this oracle has to execute Encode on the adversary’s

chosen data set prior to generating the index for that data set. The resulting

index generated using the encoded data set as input to the BuildIndex algorithm

is returned to the adversary.

• The Query oracle allows the adversary to generate search queries of their choos-

ing. It runs Query on the adversary’s input to generate the corresponding query

token, QTQ, verification key, V KQ and retrieval key, RKQ. It is required that

92

5.2. Extended Verifiable Searchable Encryption

these search queries produce the same search results when evaluated on either of

the challenge indexes i.e. for any Q submitted to Query it is required that if

R0 ← Search(ID0 , QTQ,KS , PP) and R1 ← Search(ID1 , QTQ,KS , PP) then we

need R0 = R1. If this is not the case then Query outputs 0, otherwise QTQ,

V KQ and RKQ are returned to the adversary.

• The Search algorithm evaluates search queries of the adversary’s choosing over

an index chosen by the adversary. The oracle runs Search on the adversary’s

chosen inputs and outputs the search results R.

• The Verify oracle allows the adversary to verify search results. The oracle runs

Verify on the adversary’s inputs and returns the results to the adversary.

• The Retrieve oracle allows the adversary to retrieve search results from the

encoded versions output by Verify. The oracle runs Retrieve on the adversary’s

inputs and returns the results to the adversary.

The game (Game 5.2) begins with the adversary outputting two data sets (D0,D1 ⊆
Ω) that they wish to be challenged on, with the restriction that |D0| = |D1| (this is

required as the CP-ABE scheme that will be used to produce the index does not

conceal the index length). The challenger runs KeyGen to produce the public and

secret parameters and selects a bit b ∈ {0, 1} uniformly at random to determine which

data set to encode into the index. Before the index is created, the challenger needs to

create the pre-index corresponding to the data set Db. This is done using an Encode

mechanism that takes the elements of Db as input and outputs the pre-index δ(Db).
Encode is not required in our instantiation as the pre-indexes can be chosen directly

from Ω̃ as the user is able to encode the data set using its secret key which the adversary

does not have access to. The challenger then runs BuildIndex using δ(Db) to produce

the index IDb . The challenger then chooses a user identity u from the userspace and

authorises that identity to search over the encrypted data by running AddUser with

u as input. The adversary is then given the index IDb along with the server key KS

and the public parameters PP and allowed oracle access as specified. After this query

phase, A outputs a guess b′ and wins the game if the game returns 1 which indicates

that b′ = b. Hence A wins the game if they can identify which attribute set (D0 or D1)

was encoded into the index IDb .

Definition 5.2.4. The advantage of a PPT adversary A in the index privacy game

(Game 5.2) is defined as follows:

AdvIndexPrivacy
A (eVSE, X) =

∣∣P[ExpIndexPrivacy
A [eVSE, X] = 1]− 1

2

∣∣.
93

5.2. Extended Verifiable Searchable Encryption

ExpIndexPrivacy
A [eVSE, X]

1 : (D0,D1)← A(1κ,Ω)

2 : if |D0| 6= |D1|
3 : return 0

4 : (KO,KS , PP)
$← KeyGen(1κ,Ω, S)

5 : b
$← {0, 1}

6 : δ(Db)
$← Encode(Db)

7 : IDb

$← BuildIndex(δ(Db),KO, PP)

8 : u
$← U

9 : (Ku,KO)
$← AddUser(u,KO, PP)

10 : b′ ← AO(IDb
,KS , PP)

11 : if b′ = b then

12 : return 1

13 : else

14 : return 0

Game 5.2: Selective index privacy game for eVSE

eVSE is secure in terms of index privacy if for all PPT adversaries A:

AdvIndexPrivacy
A (eVSE, X) ≤ negl(κ)

where negl is a negligible function.

Query Privacy.

The queries themselves should not leak any information about the corresponding key-

words that make up the query. Our construction of the queries leaks the gates in the

query (i.e. whether ∨, ∧ etc.), but not the keywords themselves. This notion of query

indistinguishability against a selective chosen query attack is formalised in Game 5.3.

The game runs similarly to that of Game 5.2, subject to the following restrictions: the

challenge queries (Q0, Q1) must use the same gates. We denote the gate structure of a

query Q by GQ, and hence require that GQ0 = GQ1 .

The notation AO denotes the adversary being provided with oracle access to the fol-

lowing oracles: BuildIndex(·,KO, PP), Search(·, ·, ·, PP), Verify(·, ·, ·, ·, PP) and

Retrieve(·, ·, ·, PP) as follows:

• The BuildIndex oracle allows the adversary to create indexes of their choosing.

It is required that the two challenge search queriesQ0, Q1 produce the same search

94

5.2. Extended Verifiable Searchable Encryption

ExpQueryPrivacy
A [eVSE, X]

1 : (Q0, Q1)← A(1κ,Ω)

2 : if GQ0
6= GQ1

3 : return 0

4 : (KO,KS , PP)
$← KeyGen(1κ,Ω, S)

5 : u
$← U

6 : (Ku,KO)
$← AddUser(u,KO, PP)

7 : b
$← {0, 1}

8 : (QTQb
, V KQb

, RKQb
)

$← Query(Qb,Ku, PP)

9 : b′ ← AO(QTQb
, V KQb

, RKQb
,KS , PP)

10 : if b′ = b then

11 : return 1

12 : else

13 : return 0

Game 5.3: Selective query privacy game for eVSE

results when evaluated on any index produced by BuildIndex i.e. for any D
submitted to BuildIndex it is required that if R0 ← Search(ID, QTQ0 ,KS , PP)

and R1 ← Search(ID, QTQ1 ,KS , PP) then we need R0 = R1. The oracle runs

BuildIndex on the adversary’s chosen input. As the adversary is modelled as the

server in our security model it does not have access to the encoded set of attributes

Ω̃. Hence, this oracle has to execute Encode on the adversary’s chosen data set

prior to generating the index for that data set. The resulting index generated

using the encoded data set as input to the BuildIndex algorithm is returned to the

adversary if we have that both challenge queries produce the same search results

when evaluated over the index. Otherwise the oracle returns 0.

• The Search,Verify and Retrieve oracles are run as described for the index

privacy game (Game 5.2).

The adversary chooses their challenge queries. The challenger returns 0 if the

gates are not equal on these queries, if they are equal then the game proceeds. The

challenger runs KeyGen to produce the public and secret parameters and then selects a

user identity randomly from the userspace. This user identity is then used as input to

AddUser by the challenger to authorise that user identity to search over the encrypted

data. The challenger then selects a bit b uniformly at random and creates the challenge

query for the adversary by running Query(Qb,Ku, PP). This query, Qb is given to the

95

5.3. Construction

adversary, along with the server key KS and the public parameters. The adversary is

given access to the oracles as specified. The adversary eventually outputs a bit b′ and

wins the game if b′ = b. Hence the adversary wins the game if they can identify which

query was given to them by the challenger.

Definition 5.2.5. The advantage of a PPT adversary A in the query privacy game

(Game 5.3) is defined as follows:

AdvQueryPrivacy
A (eVSE, X) =

∣∣P[ExpQueryPrivacy
A [eVSE, X] = 1]− 1

2

∣∣.
eVSE is secure in terms of query privacy if for all PPT adversaries A:

AdvQueryPrivacy
A (eVSE, X) ≤ negl(κ)

where negl is a negligible function.

5.3 Construction

5.3.1 Overview

We base our instantiation on a CP-ABE scheme. As shown in [6], CP-ABE can be used

to verifiably request computations to be performed on data held by a server, referred

to as VDC (see Section 2.4.3). In VDC, a trusted Key Distribution Center (KDC)

initialises the system and issues a CP-ABE decryption key to the server pertaining to

the data it holds. We use a similar technique, but have the data owner act as the KDC

(so the data items need not be revealed to an external KDC, as in VDC). The index for

a set of data items is a CP-ABE decryption key for a set of attributes encoding the pre-

index, and is sent to the server. The method of encoding is described in Section 5.3.4,

we require this encoding as CP-ABE is not by definition attribute hiding hence we need

to encode the keywords and attributes used into the pre-index first before using them

to generate the CP-ABE secret key (index). This ensures the privacy of the index.

A query Q is represented as a Boolean function of encoded keywords and com-

putational data points. We consider the family B of Boolean functions closed under

complement – that is, if F ∈ B then F , where F (x) = F (x)⊕1, is also in B. A function

F : {0, 1}n → {0, 1} is monotonic (specifically montonic increasing) if x 6 y implies

F (x) 6 F (y), where x = (x1, . . . , xn) ≤ y = (y1, . . . , yn) if and only if xi 6 yi for all i

(for a monotonic decreasing function we have that x 6 y implies F (x) > F (y)). In the

context of CP-ABE, this means that if a user has a set of attributes X that satisfies

F (i.e. F (X) = 1) then any user with an attribute set Y : X ⊆ Y will also satisfy F .

96

5.3. Construction

For a monotonic function F , the set AF = {x : F (x) = 1} defines a monotonic access

structure (the set of all sets of attributes that satisfy F).

If a monotonic CP-ABE scheme is used then queries can be comprised of AND and

OR gates (and negation can inefficiently be handled by including both a positively and

negatively labelled attribute in the universe and requiring the presence of exactly one

of them). To see why a CP-ABE scheme with a monotonic access structure cannot

support queries comprising of NOT gates is shown by the following example: consider

three users with attribute sets A = {a1, a2, a3, a4}, B = {a1, a2, a3} and C = {a1}. Let

the Boolean function F = (a2∧¬a4); we have that B ⊆ A and F (B) = 1 and F (A) = 0

i.e. F (B) ≥ F (A) however C ⊆ B but F (C) = 0 and F (B) = 1 hence F (C) ≤ F (B).

This shows that the function F , which contains a negation, is not monotonic.

A non-monotonic CP-ABE scheme enables queries formed from AND, OR and NOT

gates, which is a universal set of gates, as they permit the queries to be formed from

non-monotonic functions. We can achieve all functions in the class NC1, which includes

common arithmetic and comparison operators useful in queries. An n-bit result can

be formed by performing n Boolean queries, each of which returns the ith bit of the

output, see Section 5.3.4.

The query token for a Boolean function Q ∈ B comprises two CP-ABE ciphertexts

for access structures representing Q and Q ∈ B respectively. The user chooses two

random plaintexts m0 and m1 from the plaintext space which will act as verification

tokens. The user also chooses a random bit b which is used to permute the ciphertexts.

The plaintexts mb and m1−b are encrypted under the queries Q ∈ B and Q ∈ B
respectively and the resulting ciphertexts are sent to the server as the query token

QTQ. The user also generates a verification key V KQ by applying a one-way function

g to each plaintext, and the bit b forms an output retrieval key RKQ. To perform

the search, the server attempts to decrypt each ciphertext under the secret key (which

forms the index). Now, by definition, the data attributes in the key will satisfy precisely

one of Q or Q. Thus, precisely one plaintext will be correctly decrypted and the other

decryption will return ⊥. This pair of decryptions is returned as the encoded result R.

Any entity may perform the verification operation using the verification key V KQ.

To determine correctness of the result, the same one-way function g is applied to the

returned results and compared to those values contained in V KQ. If either matches,

then this value is output as the retrieval token RTQ and the result is accepted; otherwise

the verifier rejects the result.

Finally, an authorised entity that has been granted access to the retrieval key RKQ

may apply this to the token RTQ to determine the permutation of the ciphertexts and

thus whether the returned plaintext corresponds to Q or to Q. If m0 is the returned

97

5.3. Construction

plaintext then the result r is set to 1, and r = 0 otherwise.

5.3.2 Choosing a Broadcast Encryption scheme

Our scheme, eVSE (also our multi-level symmetric searchable encryption scheme de-

tailed in Chapter 6), uses a BE scheme as a black box. There are many types of

BE schemes described in the literature, in this section we discuss which types of BE

schemes are most suited to our applications.

We require a BE scheme which supports just one entity, the data owner in our

case, who is able to create the BE ciphertexts. The data owner updates the value

of stO (the data owner state) each time a user is revoked from the system and then

encrypts it using BE to create the server state, stS . When choosing a BE scheme that

is suitable for this purpose we have to consider variables such as the number of users

(both authorised and revoked), bandwidth required to transfer the BE ciphertexts and

the storage required by a user.

BE schemes allow encrypted data to be delivered to a large set of users, so that

only a particular subset of privileged users can decrypt it. There are two main types

of BE scheme: stateless and stateful. A stateful BE scheme provides users with keys

that may be updated when a user is either revoked or added to the system. These

schemes require users to be online in order to receive update messages. A stateless BE

scheme provides users with long term keys that do not change over the lifespan of the

system, a user can be revoked without having to change or update the keys of currently

authorised users.

BE schemes can also be either public key or symmetric key. Public key BE schemes

are more suited to scenarios where more than one user is creating the BE ciphertexts,

as the encryption key distribution is simplified by the use of public keys. Symmetric

key BE schemes are more suited to scenarios where just one entity is creating the BE

ciphertexts.

In our scenario users may not be online at all times, so a stateless BE scheme seems

more practical, and as there is just one entity creating the BE ciphertexts, a symmetric

key BE scheme would be well-suited.

Stateless BE was first investigated by Naor, Naor and Lotspiech. The complete

subtree (CS) method for achieving BE was proposed by Naor et al. [104]. It models

each user as a leaf of a binary tree (hence it is required that the total amount of users

is a power of 2). Every node in this tree is associated with a distinct key, and a user

receives each key associated with each node from the root to their leaf node. In order to

encrypt a message for only authorised users, several ciphertexts need to be created. To

determine the keys needed to create these ciphertexts the minimal cover of authorised

98

5.3. Construction

users’ leaves in the binary tree needs to be calculated. The keys associated with these

nodes that provide the minimum cover are used to create the ciphertexts.

Another method of BE known is known as the Subset Difference (SD) method,

which was also presented by Naor et al. [104]. In this method the data owner (more

generally known as the sender in BE) generates independent keys for each node in the

tree (as in the CS method). Subsets of these keys are then distributed to the users.

Instead of using the minimal cover to determine which keys to use to create the BE

ciphertexts, the number of subsets is increased significantly to O(n2), where n is the

total number of users. The set of subsets is defined as follows:

S = {Si,j |vi is an ancestor of vj},

where:

Si,j = {Descendants of vi} \ {Descendants of vj}.

Defining the subsets in this way allows a message to be encrypted for n\r authorised

users (where r is the number of revoked users) with at most 2r − 1 subsets (with the

average number of subsets required being 1.25).

The SD method was improved by [74] which presents another method for achieving

BE called the Least Subset Difference (LSD) method. This method is also tree-based

and reduces the amount of keys that each user needs to store by nearly a square root

factor. The BE schemes detailed in [27, 72] also improve on the work of [104] with

Goodrich et al. [72] producing a scheme that reduces the storage required by the users,

however this is at the cost of an increase in computation for the user.

There are two main types of tradeoff in BE schemes: reduced message length usually

implies an increase in user storage and reduced user storage usually implies an increased

message length. The type of scenario our scheme is implemented in will affect the

choice of BE scheme. If the users have resource constrained devices then schemes that

minimize the user storage might be preferable such as [72, 74]. Whereas for applications

where the users’ storage space is not limited, choosing a scheme with a smaller message

length may be preferable, such as [133].

BE can be achieved trivially by encrypting the plaintext a number of times so

there is a different BE ciphertext for each authorised user. These ciphertexts are

then broadcast to all users, who each have a distinct key to decrypt their respective

ciphertext. The aim of most BE schemes is improve on the efficiency of this trivial

scheme. However, in some scenarios when the number of users is low, using the trivial

BE scheme might be feasible. In eVSE (also our multi-level symmetric searchable

99

5.3. Construction

Scheme Average message length Storage per user Computation per user, prior to decryption

- (n \ r) O(1) O(1)

[104] r log(nr) log n O(log log n)

[104] 1.38r 1
2 log2 n+ 1

2 log n+ 1 O(log n)

[74] 2r O(log1+ε n) O(log n)

[27] 2r − 1 O(log2 n) O(log n)

[72] 1.25r O(log n) O(n)

[133] < 1.38r O(2λ log n) O(log n)

[80] O(rp + n−r
c) O(cp) O(c− 1)

Table 5.1: Comparison of Broadcast Encryption Schemes

encryption scheme detailed in Chapter 6) it is only required that one k−bit value (stO)

is encrypted in the BE ciphertext, meaning the BE ciphertexts are not very large.

Hence, requiring a number of BE ciphertexts linear in n (where n is the number of

authorised users) might be feasible in a scenario where n is small.

5.3.3 Choosing a CP-ABE scheme

Our scheme, eVSE, uses a CP-ABE scheme as a black box. We have discussed a few

requirements of the CP-ABE scheme previously, however here we discuss which CP-

ABE schemes would be well suited for use with eVSE. We also discuss the features of

our scheme that effect the choice of CP-ABE scheme used.

Due to the way the attribute universe is defined eVSE requires a large universe CP-

ABE scheme. Large universe CP-ABE was first explored by Okamoto and Takashima [111].

This scheme is based on the dual pairing vector spaces framework and each attribute

can take on several values chosen from a space of exponential size. There is a bound on

the number of times each space can be used in a policy which is chosen when setting up

the system and remains fixed throughout the life span of the system. Rouselakis and

Waters [122] claim that as this bound increases the scheme becomes less efficient. In

this same paper [122], Rouselakis and Waters present a large universe CP-ABE scheme

which has no restriction on the attributes used in the policies and has constant size

public parameters.The authors extended their scheme to a multi-authority one in [123].

This construction uses bilinear groups of prime order which optimizes the computation

of the pairings used in the construction [73].

Other work [107] which uses techniques from [122], details a large universe CP-ABE

scheme with white-box traceability.

100

5.3. Construction

Scheme Encryption Decryption Storage per user (key size) Monotonic/Non-monotonic

[122] (5|`|+ 2)E |I|E + (3|I|+ 1)P O(|k|) Yes

[107] (3 + 5|`|)E (2 + |I|)E + (3|I|+ 1)P O(|k|) Yes

Table 5.2: Comparison of Large Universe CP-ABE schemes

When choosing a CP-ABE scheme to implement eVSE we consider the following to

be important for optimizing the efficiency of our scheme: fast search query generation,

search time and verification, and minimal storage per user. These features are all

related to the user and streamlining their experience. We look at the following large

universe CP-ABE schemes [107, 122] as discussed above and consider how they perform

when considering these features. We omit the scheme of [111] due to the issues discussed

in [122].

Looking at the Query algorithm in eVSE we can see that it requires the generation

of n pairs of CP-ABE ciphertexts (where n is the number of encrypted data items). In

order to optimize the query generation for the user a CP-ABE with the most efficient

encryption algorithm would be preferable. In the Search algorithm the main bottleneck

is the n pairs of CP-ABE decryptions, hence a CP-ABE scheme with the most efficient

decryption algorithm would be preferable. Each user has to store their secret user

key which consists of a CP-ABE user key (along with a secret key for a symmetric

encryption scheme and a PRF and its key). Hence, choosing a CP-ABE with the

shortest user keys would be recommended. The CP-ABE scheme is not used in the

verification steps in eVSE, hence this can be omitted from our analysis.

Overall, the scheme of [122] is more efficient in the encryption and decryption

algorithms, and both schemes have the same storage requirements for the user, hence

this scheme would be recommended for use with eVSE, as it is also a large universe

CP-ABE.

eVSE supports both monotonic and non-monotonic functions in the policies. If a

monotonic CP-ABE scheme is used then negative attributes need to be included in the

attribute universe, effectively doubling its size. An open area of research here would

be to investigate possible large universe, non-montonic CP-ABE schemes.

101

5.3. Construction

5.3.4 Data Encoding

Defining the Index.

Suppose the data D to be outsourced comprises n data items. We now discuss how

to form a pre-index δ(D), which represents the keywords and data fields that may be

queried over.

Let ∆ be a dictionary of keywords that describe the data items. ∆ alone suffices

for keyword matching queries but for computational queries, we also need to be able

to encode data values such that they can be input to queries represented as access

structures encoding Boolean functions.

For each data field x that may be input to a computational query, let the maximum

size of the data value bemx bits. We definemx additional attributesAx,1, Ax,2, . . . , Ax,mx ,

and define the universe C =
⋃
x∈D ∪

mx
i=1Ax,i to be the union of these attributes over all

data fields. Let y be a value stored in the data field x and let the binary representation

of y be y1, . . . , ymx . We view y as a characteristic tuple of an attribute set Ay ⊆ C,
where Ay = {Ax,i : yi = 1} – we include an attribute for position i in the set if and

only if the ith bit of y is 1.

Finally, to enable the index for all n data items to be encoded within a single

CP-ABE key (and hence for computations to be performed simultaneously on all data

items), and to ensure that the correct index data is used for each query, we must encode

a labelling of the data item that each attribute pertains to. We define our attribute

universe Ω for the CP-ABE scheme to be Ω = {∆∪ C}× [n]. That is, we take n copies

of ∆ and C. Each element of Ω describes a particular keyword or data value, and each

copy relates to a different data item in D: if we index each copy of an attribute w ∈ Ω

as {wi}ni=1, then wi denotes the presence of w in data item i. In practice, it may be

desirable to use a ‘large universe’ CP-ABE scheme, wherein arbitrary textual strings

are mapped to attributes (group elements), e.g. using a hash function H. Thus, for a

keyword or data value w in data item i, the attribute could be defined as H(w||i).1

The pre-index of the data D is a set of attributes δ(D) ⊆ Ω and represent the sets

of keywords and data values associated with the set of data items D. We define an

algorithm δ(D)← Encode(D) that encodes a data set D in to the pre-index δ(D). The

index that is outsourced will be a CP-ABE key generated over this attribute set in the

pre-index.

Here we provide a simple example that shows how we define the index. Suppose we

have three data items with the following characteristics:

1In this case, it may be possible to avoid the use of symmetric encryption in our construction by
letting the secret k be the key for this cryptographic hash function.

102

5.3. Construction

• Document 1: Keywords: Male, Vaccinated. Data: Age = 7 = 1112.

• Document 2: Keywords: Female. Data: Age = 4 = 1002.

• Document 3: Keywords: Male, Vaccinated. Data: -

Then we define the index for these three data items as follows:

∆ ={Male, Female, Vaccinated},

C ={AAge,1, AAge,2, AAge,3},

Ω ={MaleDoc1, MaleDoc2, MaleDoc3,

FemaleDoc1, FemaleDoc2, FemaleDoc3,

VaccinatedDoc1, VaccinatedDoc2, VaccinatedDoc3,

A(Age,1),Doc1, A(Age,1),Doc2, A(Age,1),Doc3,

A(Age,2),Doc1, A(Age,2),Doc2, A(Age,2),Doc3,

A(Age,3),Doc1, A(Age,3),Doc2, A(Age,3),Doc3},

δ(D) ={MaleDoc1, VaccinatedDoc1, A(Age,1),Doc1, A(Age,2),Doc1, A(Age,3),Doc1,

FemaleDoc2, A(Age,3),Doc2,

MaleDoc3, VaccinatedDoc3}.

Hiding the Index.

In general, CP-ABE schemes do not hide the attributes within the decryption key. This

is usually expected behaviour since CP-ABE is often used to cryptographically enforce

access control policies and it is natural to assume that an entity is aware of their access

rights.

However, in this setting we are using CP-ABE not to protect objects from unau-

thorised access, but instead to prove the outcome of a function evaluation. The keys

in our setting are formed over attributes encoding the index of outsourced data, as

opposed to encoding access rights. Since the server should not learn any information

about the data items, including the index, we must implement a mechanism by which

the CP-ABE decryption key hides the attributes associated with it.

In many CP-ABE schemes, and in particular in that proposed by Waters et al. [134],

the public parameters comprise an ordered set of group elements, each associated with

an attribute from the universe; that is, ∀i ∈ Ω, choose ti
$← Zp, then form the encoded

attribute set {gti}i∈Ω. Thus, given a key (or ciphertext) that comprises gti , it is possible,

based on the ordering of this set, to determine the attribute i ∈ Ω it relates to. In

addition, the attributes may be listed in the clear, and attached to keys and ciphertexts

103

5.3. Construction

to indicate which group elements should be applied at each point. Clearly, this is

unsuitable for our requirement for a hidden index.

To this end, we first apply a random permutation to Ω such that the position of

the group elements within the ordered set does not reveal the attribute string (unless

the permutation is known). We then use a symmetric encryption scheme to encrypt

each attribute x ∈ Ω under a key k, and then instantiate the CP-ABE scheme on this

universe of encrypted attributes. Thus, without knowledge of the key k, the server

should be unable to determine the attribute x that a given group element corresponds

to. We assume that only the keywords or data items being computed over are considered

sensitive, and not the logical makeup of the Boolean function (in terms of gates).

5.3.5 Formal Details

The data owner initialises the system and encodes the data as an index which is pushed

to the server. Each (authorised) user will be issued with a personalised secret key

enabling them to form queries. Suppose that to make a query Q, a user chooses

a random plaintext from the plaintext space M to act as a verification token, and

encrypts this using the CP-ABE scheme under the access structure encoding Q. The

server attempts to decrypt the ciphertext and recovers the chosen plaintext if and only

if Q(ID) = 1. By the indistinguishability security of the CP-ABE scheme, the server

learns nothing about the plaintext if Q(ID) = 0 since this corresponds to an access

structure not being satisfied. Thus, if a server returns the correct plaintext, the user

is assured that the query evaluated to 1 on the data. If, however, Q(ID) = 0, then

decryption will return ⊥. This is insufficient for verification purposes since the server

can return ⊥ to convince a user of a false negative query result. Thus, the user must, in

fact, produce two CP-ABE ciphertexts. As described in Section 5.3.1, one corresponds

to the function Q, whilst the other corresponds to Q, the complement query of Q.

Hence, the CP-ABE secret key that forms the index will decrypt exactly one ciphertext

and the returned plaintext will distinguish whether Q or Q was satisfied, and therefore

the value of Q(ID). A well-formed response (d0, d1) from a server, therefore, satisfies

the following:

(d0, d1) =

(mb,⊥), if Q(ID) = 1

(⊥,m1−b), if Q(ID) = 0.
(5.1)

Public Verifiability is achieved by publishing a token comprising a one-way function

g applied to both plaintexts. Any entity can apply g to the server’s response and

compare with this token to check correctness. To achieve blind verification, a random

bit b permutes the order of the ciphertexts. Thus, verifiers that do not know b cannot

104

5.3. Construction

determine whether a plaintext is associated with Q or Q.

Our adversarial model can allow the adversary (and hence server in our system) to

hold more than one key (for multiple datasets); if this is the case we must ensure that

a key cannot produce a valid looking response to a query on a different index. We can

achieve this by labelling each pre-index with a label l(δ(D)) and define an attribute for

each label. Then, for a pre-index δ(D), the decryption key is formed over the attribute

set (δ(D) ∪ l(δ(D))). Recall that encoded data stored in the server side index is a

collection of n sets of attributes, each one corresponding to a data item, which we label

D1, . . . , Dn. When making a query Q(ID), a sub-query Qi may be formed for each

attribute set (e.g. to check if a given keyword is contained in each data item). In this

case, the encryption algorithm takes the access structure encoding of the conjunction

(Di ∧ l(δ(D))) for i ∈ [n]. A valid result can only be formed by applying the sub-

query to the specified attribute set. Decryption succeeds if and only if the function is

satisfied and the label l(δ(D)) is matched in the key and ciphertext. Note that a key

for a different pre-index will not include the correct label. For ease of notation we omit

the labels from our construction, but we note that our scheme can be extended in this

way to support a server that holds multiple datasets.

5.3.6 Instantiation Details

Let CPABE = (ABE.Setup, ABE.KeyGen, ABE.Encrypt, ABE.Decrypt) define a CP-

ABE encryption scheme over the universe Ω. Let SKE = (SKE.KeyGen, SKE.Encrypt,

SKE.Decrypt) be an authenticated symmetric encryption scheme secure in the sense of

IND-CPA. Let BE = (BE.KeyGen, BE.Encrypt, BE.Add, BE.Decrypt) be a broadcast

encryption scheme that retains IND-CPA security against a coalition of revoked users.

Finally, let g be a one-way function and let Π and φ be pseudo-random permutations

(PRPs) (with keys kΠ and stO respectively). Then Algorithms 5.1–5.8 define an eVSE

scheme for a class of queries Q.

The KeyGen algorithm sets up the system and produces the secret key for the

data owner and the public parameters. The data owner’s secret key consists of seven

parts: a secret key for CPABE, a secret key for BE, a secret key for SKE, a PRP Π,

a key for Π, the data owner’s state and the authorised user group. KeyGen starts by

generating the initial two parts of the data owner’s secret key by running BE.KeyGen

and SKE.KeyGen to generate kBE and kSKE respectively. The algorithm then encrypts

each element in the attribute universe using SKE, this encrypted set of attributes is

denoted Ω′. A key for the PRP Π is generated and Ω′ is then permuted using Π to

generate the set Ω̃. The key generation algorithm, ABE.KeyGen, is then run on input

Ω̃ to produce the public and secret key pair for CPABE, (kABE, PPCPABE). The secret

105

5.3. Construction

(KO,KS , PP)←$KeyGen(1κ,Ω, S)

1 : (kBE, PPBE)←$BE.KeyGen(1κ, |U|)
2 : kSKE ←$SKE.KeyGen(1κ)

3 : for i ∈ Ω

4 : ωi ←$SKE.Encrypt(i, kSKE)

5 : endfor

6 : Ω′ ← {ωi}i∈[1,|Ω|]

7 : kΠ ←$ {0, 1}κ

8 : Ω̃← ΠkΠ(Ω′)

9 : (kABE, PPABE)←$ABE.KeyGen(1κ, Ω̃)

10 : stO ←$ {0, 1}κ

11 : kS ←$BE.Add(kBE, S)

12 : G ← {S}
13 : stS ←$BE.Encrypt(stO,G, kBE)

14 : return

15 : KS ← (kS , stS)

16 : KO ← (kABE, kBE, kSKE,Π, kΠ, stO,G)

17 : PP ← (PPABE, PPBE, Ω̃)

Algorithm 5.1: KeyGen algorithm for eVSE

key for CPABE along with the PRP Π and its key form the next parts of the data

owner’s secret key. The data owner’s state is generated by choosing a κ−bit binary

string string uniformly at random, stO. The server’s secret key is then generated by

running BE.Add using the server’s identity as input. The authorised user group G is

initialised as a set containing the server’s identity. Finally the server state is generated

by encrypting the data owner’s state, stO using BE.Encrypt. The two states, stO and

stS are used for adding and revoking user’s querying rights. The authorised user group

along with stO form the final parts of the data owner’s secret key which is output as

KO = (kCPABE, kBE, kSKE,Π, stO,G). The server’s secret key is made up of the BE user

key generated using the server’s identity, along with the server state: KS = (kS , stS).

The public parameters are: PP = (PPABE, PPBE, Ω̃).

ID ←$Buildindex(δ(D),KO, PP)

1 : ID ←$ABE.KeyGen(δ(D), kABE, PPABE)

Algorithm 5.2: Buildindex algorithm for eVSE

The BuildIndex algorithm generates the index for the encrypted data The index,

ID is generated using the ABE.KeyGen algorithm with the preindex δ(D) as input

along with the public and secret key pair for CPABE. The δ(D) corresponds to the

106

5.3. Construction

attribute set that is input into into ABE.KeyGen algorithm in the standard definition

(see Definition 2.3.5). The output of the ABE.KeyGen algorithm is the CPABE secret

key corresponding to the set of attributes in δ(D) and is referred to as the index ID.

(Ku,KO)←$AddUser(u,KO, PP)

1 : G ← G ∪ {u}
2 : ku ← BE.Add(u, kBE)

3 : st′O ←$ {0, 1}κ

4 : stO ← st′O

5 : st′S ←$BE.Encrypt(stO,G, kBE)

6 : stS ← st′S

7 : Update server key with current value of stS

8 : return

9 : Ku ← (ku, kSKE,Π)

10 : KO ← (kABE, kBE, kSKE,Π, stO,G)

Algorithm 5.3: AddUser algorithm for eVSE

The AddUser algorithm authorizes users new users to allow them to query the

encrypted data. The new user’s identity u is added to the authorised user group G
and a user key is generated using BE.Add using the new user’s identity as input. A

new data owner state is then generated and the old value of the data owner’s state

is updated. The new server state is created by encrypting the new data owner state

using BE.Encrypt with the updated authorised user group as input. The server’s key

is then updated so it holds the new value for stS . The new user’s secret key is output

as: Ku = (ku, kSKE,Π). The key kSKE and the permutation Π are given to the user to

allow them to read the encoded attributes and generate search queries.

The Query algorithm generates the search queries which users can send to the server.

Initially the user retrieves the current server state, stS from the server and decrypts

it using their user key. Only users that were authorised to search on the encrypted

data when the server state was created will be able to decrypt the server state. If the

user was not a member of the authorised user group then decryption will fail and the

algorithm will return ⊥. If the user is authorised to search on the encrypted data, the

query is formed by encrypting pairs of plaintexts using CPABE, with the search query

and the complement of the search query as input respectively. A bit b is chosen prior

to encryption and used to permute the plaintexts.The query token is formed by the

ciphertext pairs concatenated and then used as input to the permutation φ, using stO

as the key. The verification token is created by applying the one-way function g to

each plaintext and the retrieval token is the bit b.

The Search algorithm evaluates the search query over the encrypted data in the

107

5.3. Construction

(QTQ, V KQ, RKQ)← Query(Q = {Qi},Ku, PP)

1 : Retrieve stS from server

2 : st′O ← BE.Decrypt(stS , ku)

3 : if st′O =⊥ then

4 : return ⊥
5 : else

6 : stO ← st′O

7 : for i = 1, ..., |Q| do
8 : (m0i ,m1i)

$←M×M
9 : bi

$← {0, 1}
10 : cbi ← ABE.Encrypt(mbi , Qi, PPABE)

11 : c1−bi ← ABE.Encrypt(m1−bi , Qi, PPABE)

12 : QTQi ← (cbi , c1−bi)

13 : γi ← φstO (cbi‖c1−bi)

14 : V KQi ← (g(m0i), g(m1i))

15 : RKQi ← bi

16 : endfor

17 : QTQ ← {γi}, V KQ ← {V KQi}, RKQ ← {RKQi}

Algorithm 5.4: Query algorithm for eVSE

R← Search(ID, QTQ = {γi},KS , PP)

1 : st′O ← BE.Decrypt(stS , kS)

2 : for i = 1, ..., |Q| do
3 : (cbi‖c1−bi)← φ−1

st′
O
(γi)

4 : dbi ← ABE.Decrypt(cbi , ID, PPABE)

5 : d1−bi ← ABE.Decrypt(c1−bi , ID, PPABE)

6 : Ri = (dbi , d1−bi)

7 : endfor

8 : R = {Ri}

Algorithm 5.5: Search algorithm for eVSE

index ID. It outputs a result R which can then be verified by the user. The server

initially decrypts the current value of the server state and uses this as the key for the

inversion of the PRP φ to reveal the pairs of CPABE ciphertexts that make up the

query token. The index is then used to decrypt these pairs of ciphertexts. As one of

each pair was encrypted using the search query and the other using the complement

of the query exactly one of each pair will decrypt successfully to the original plaintext.

These pairs of decryptions form the search results R.

108

5.3. Construction

RTQ ← Verify(R = {(di, d′i)}, V KQ = {(V Ki, V K′
i)}, PP)

1 : for i = 1, ..., |Q| do
2 : if V Ki = g(di) then

3 : RTQi = di

4 : elseif V K′
i = g(d′i) then

5 : RTQi = d′i

6 : else RTQi =⊥
7 : endfor

8 : RTQ = {RTQi}

Algorithm 5.6: Verify algorithm for eVSE

The Verify algorithm checks the correctness and completeness of the search result,

R, using the verification key, V KQ. The one-way function g is applied to the results

which are then compared to the relevant parts in the verification key V KQ. One of

these pairs from R should match the verification key, this part is added to the retrieval

token RTQ. If neither match then this tells the verifier that the search has not been

performed honestly and the relevant part of the retrieval token is set to ⊥.

R← Retrieve(V KQ = {(g(mbi), g(m1−bi))}, RTQ = {RTQi
}, RKQ = {bi}, PP)

1 : for i = 1, ..., |Q| do
2 : if g(RTQi) = g(m0) then

3 : ri = 1

4 : elseif g(RTQi) = g(m1) then

5 : ri = 0

6 : else ri =⊥
7 : endfor

8 : r = {ri}

Algorithm 5.7: Verify algorithm for eVSE

The Retrieve algorithm reveals the final search results using the retrieval key RKQ.

The retrieval key enables the user to determine whether the ciphertext encrypted with

the search query or the ciphertext encrypted with the complement of the search query

decrypted correctly and hence, for each data item the user can tell whether it satisfies

the search query or not. The final search results are output as a bit string of length

n, with an entry corresponding to each data item. An entry of 1 implies that the data

item satisfied the search query and an entry of 0 tells the user that the data item did

not satisfy the search query.

The RevokeUser algorithm removes a user’s capability to produce search queries,

109

5.4. Proofs of Security

KO ← RevokeUser(u,KO, PP)

G ← G \ {u}
st′O ←$ {0, 1}κ

stO ← st′O

st′S ←$BE.Encrypt(stO,G, kBE)

stS ← st′S

Update server key with current value of stS

return

KO ← (kABE, kBE, kSKE,Π, stO,G)

Algorithm 5.8: RevokeUser algorithm for eVSE

and hence search the encrypted data. The revoked user’s identity is first removed from

the authorised user set G. A new data owner state is then created and encrypted

using the BE scheme with the updated authorised user set as input. The resulting BE

ciphertext is the updated server state, stS . The server key is updated with this new

value for stS and the data owner’s key is updated with the new value of the data owner

state, stO.

Theorem 5.3.1. Given a selective IND-CPA secure CP-ABE scheme, a symmetric

encryption scheme and a broadcast encryption scheme, both secure in the sense of

IND-CPA, pseudo-random permutations Π and φ, and a one-way function g, let eVSE

be the extended verifiable searchable encryption scheme defined in Algorithms 5.1–5.8.

Then eVSE is secure in the sense of Public Verifiability, Index Privacy and Query

Privacy.

Note that we can add additional contextual access control following Alderman et

al. [5] by replacing φ with a key assignment scheme.

5.4 Proofs of Security

5.4.1 Public verifiability

Lemma 5.4.1. An eVSE scheme eVSE as defined in Algorithms 5.1–5.8 is secure

against Public Verifiability (Game 5.1) under the same assumptions as in Theorem 5.3.1.

Proof. Suppose AeVSE is an adversary with non-negligible advantage against the selec-

tive Public Verifiability game (Game 5.1) when instantiated with Algorithms 5.1–5.8.

We begin by defining the following three games:

• Game 0. This is the selective Public Verifiability game as defined in Game 5.1.

110

5.4. Proofs of Security

• Game 1. This is the same as Game 0 with the modification that in Query, we

no longer return an encryption of m0 and m1.

Instead, we choose another random plaintext m′ 6= m0,m1 and, if Q(ID∗) =

1, we replace c1 by ABE.Encrypt(Q,m′, PPABE). Otherwise, we replace c0 by

ABE.Encrypt(Q,m′, PPABE). In other words, we replace the ciphertext associated

with the unsatisfied function with the encryption of a separate random plaintext

unrelated to the other system parameters, and in particular to the verification

keys.

• Game 2. This is the same as Game 1 with the exception that instead of choosing

a random plaintext m′, we implicitly set m′ to be the challenge input w in the

one-way function game.

We show that an adversary with non-negligible advantage against the selective Public

Verifiability game can be used to construct an adversary that may invert the one-way

function g.

Game 0 to Game 1. We begin by showing that there is a negligible distinguishing

advantage between Game 0 and Game 1.

Suppose otherwise, that AeVSE can distinguish the two games with non-negligible

advantage δ. We then construct an adversary AABE that uses AeVSE as a sub-routine

to break the selective IND-CPA security of the CP-ABE scheme. We consider a

challenger C playing the IND-CPA game with AABE, who in turn acts as a challenger

in the public verifiability game (Game 5.1) for AeVSE:

1. AeVSE is given the security parameter and Ω by the environment, and declares

(to AABE) its choice of data set D? and the query Q∗.

2. AABE uses oracle calls to C in order to obtain the encrypted-then-permuted uni-

verse Ω̃. C runs kSKE ← SKE.KeyGen(1κ) and uses the symmetric key k to sym-

metrically encrypt each element of Ω and therefore obtain Ω′. C then applies

the permutation Π to the set Ω′ that results in the permuted set Ω̃. Further-

more C runs kBE ← BE.KeyGen(1κ) from the broadcast encryption scheme to

produce (kBE, PPBE) and ABE.KeyGen(1κ, Ω̃) from the ABE scheme to produce

(kABE, PPABE). It then chooses an authorised user group G ∈ U , a data owner

state stO
$← {0, 1}κ and encrypts it to produce stS . C also generates components

of the server key by running BE.Add using the server identity S as input.

3. C sets the public parameters to be PP = (PPABE, PPBE, Ω̃) and gives them to

AABE, who shares them with AeVSE.

111

5.4. Proofs of Security

4. C sets the master key to be KO = (kABE, kBE, kSKE,Π, stO,G) and keeps it private,

except for kBE, stO,Π,G that it shares with AABE.

5. The server key is set as KS = (ks, stS) and shared with AABE.

6. AABE chooses a random user u authorised user group G which is then used as

input for AddUser, which generates the secret key for user u. AABE possesses all

parameters to run this algorithm. It sends the updated values of stO and G to C.

7. AABE proceeds to create the index. It does so by sending the challenge data set

D∗ to C who then runs Encode to produce the pre-index δ(D∗). It then runs

BuildIndex using the pre-index as input to produce ID∗ .

8. AABE must send a challenge access structure to the challenger. It first computes

r∗ = Q∗(ID?), that is, the outcome of the challenge query Q∗ applied to the

challenge index. If r∗ = 1, AABE sets A? = FQ? , where FQ? is the query Q∗
represented as a function. Else, r = 0 and A? = FQ? . The challenge access

structure, A∗ is sent to C.

9. AABE sends stS to C who runs j̃ ← BE.Decrypt(stS,uku) and returns j̃ to AABE

in the Query stage. It checks whether j̃ = j. If so it proceeds with the next step,

otherwise the game aborts.

10. Each query Q can comprise multiple subqueries Qi. Therefore the following is

done for all i ∈ [|Q|] = {1, . . . , |Q|}:

• To generate the challenge input, AABE begins by choosing a random bit

bi, three random plaintexts m0i , m1i and m′i from the plaintext space, and

another random bit ti.

AABE sends the plaintexts m0i and m1i to C as the challenge plaintexts

for the CP-ABE game. C chooses a random bit ci and returns CT ? ←
Encrypt(mci ,A?, PPABE).

– If r = 1, AABE generates cbi ← Encrypt(Q∗i ,m
′
i, PPABE) and sets c1−bi =

CT ? (formed over A? by C). It also sets V Kbi = g(m′i) and V K1−bi =

g(mti).

– Else r = 0, andAABE sets cbi = CT ? and computes c1−bi ← Encrypt(Q∗i ,m
′
i, PPABE).

It sets V Kbi = g(mti) and V K1−bi = g(m′i).

AABE sets QTQ∗i = (cbi , c1−bi), V KQ∗i = (V Kbi , V K1−bi) and RKQ∗i = bi.

Finally, AABE computes γi ← φstO(cbi‖c1−bi) and sets for all i ∈ [|Q∗|]
QT ∗Q = {γi}, V KQ = {V KQ∗i }, and RK∗Q = {RKQ∗i }.

112

5.4. Proofs of Security

11. AABE sends the output from Query along with the public information to AeVSE,

who is also given oracle access to which AABE responds as follows:

• BuildIndex(·,KO, PP): To generate the evaluation key for the queried pre-

index δ(D), AABE makes use of the KeyGen oracle in the CP-ABE game.

AABE then makes an oracle query to C for OKeyGen(δ(D), kABE, PPABE). C
shall generate a CP-ABE decryption key for δ(D) if and only if δ(D) 6∈ A?.

• All other oracles are run as described in Section 5.2.3.

12. Eventually, AeVSE outputs R? which it believes is a valid forgery (i.e. that it will

be accepted yet does not correspond to the correct value of Q(ID?)).

13. AABE parses R? as {R?i } for all i ∈ [|Q∗|]. For each i ∈ [|Q∗|] AABE does the

following: AABE parses R?i as (dbi , d1−bi) and using the retrieval key RKQi = bi,

finds d0i and d1i . One of d0i and d1i will be ⊥ (by construction) and we denote

the other value by Yi.

Observe that, sinceAeVSE is assumed to be a successful adversary against selective

public verifiability, the non-⊥ value, Yi, that it will return will be the plaintext

mci since the challenge access structure was always set to be unsatisfied on the

challenge input.

Thus, if g(Yi) = g(mti), AABE outputs a guess c′i = ti and otherwise guesses

c′i = (1− ti).

If ti = ci (the challenge bit chosen by C), we observe that the above corresponds

to Game 0 (since the verification key comprises g(m′i) where m′i is the plaintext

a legitimate server could recover, and g(mci) where mci is the other plaintext).

Alternatively, ti = 1−ci and the distribution of the above experiment is identical

to Game 1 (since the verification key comprises the legitimate plaintext and a

random plaintext m1−ci that is unrelated to the ciphertext).

Now, we consider the advantage of this constructed adversary AABE playing the

selective IND-CPA game for CP-ABE. Recall that by assumption, AeVSE has

a non-negligible advantage δ in distinguishing between Game 0 and Game 1,

that is:

|P(1← ExpGame 0
AeVSE

[eVSE , X])− P(1← ExpGame 1
AeVSE

[eVSE , X])| > δ,

The probability of AABE guessing ci correctly is:

113

5.4. Proofs of Security

P(c′i = ci) = P(ti = ci)P(c′i = ci|ti = ci) + P(ti 6= ci)P(c′i = ci|ti 6= ci)

=
1

2
P(g(Yi) = g(mti)|ti = ci) +

1

2
P(g(Yi) 6= g(mti)|ti 6= ci)

=
1

2
P(1← ExpGame 0

AeVSE
[eVSE , X]) +

1

2
(1− P(g(Yi) = g(mti)|ti 6= ci))

=
1

2
P(1← ExpGame 0

AeVSE
[eVSE , X]) +

1

2

(
1− P(1← ExpGame 1

AeVSE
[eVSE , X])

)
=

1

2

(
P(1← ExpGame 0

AeVSE
[eVSE , X])− P(1← ExpGame 1

AeVSE
[eVSE , X]) + 1

)
> 1

2
(δ + 1)

Hence,

AdvAABE
>
∣∣∣∣P(ci = c′i)−

1

2

∣∣∣∣
>
∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
=
δ

2

14. Overall the above is done for all i ∈ [|Q∗|] and therefore we have n·AdvAABE
> n· δ2 .

Hence, if AeVSE has advantage δ at distinguishing these games then AABE can

win the selective IND-CPA game for CP-ABE with non-negligible probability. Thus

since we assumed the CP-ABE scheme to be secure, we conclude that AeVSE cannot

distinguish Game 0 from Game 1 with non-negligible probability.

Game 1 to Game 2. The transition from Game 1 to Game 2 is simply to set the

value of m′i to no longer be random but instead to correspond to the challenge w in the

one-way function inversion game. The game basically formalizes that it is infeasible for

any probabilistic polynomial-time algorithm to invert the one-way function g, i.e. to

find a pre-image of a given value z. We argue that the adversary has no distinguishing

advantage between these games since the new value is independent of anything else

in the system bar the verification key g(w) and hence looks random to an adversary

with no additional information (in particular, AeVSE does not see the challenge for the

one-way function as this is played between C and AABE).

Final Proof. We now show that using AeVSE in Game 2, AABE can invert the one-

way function g. That is, given a challenge z = g(w) we can recover w. (The following

114

5.4. Proofs of Security

can be done analogous for all i ∈ [|Q∗|].) Specifically wlog, during Query, we choose

the plaintexts as follows:

• if Q∗(ID∗) = 1, we implicitly set m1−bi to be w and set the verification key

component V K1−bi = z. We choose mbi and V Kbi randomly as usual.

• if Q∗(ID∗) = 0, we implicitly set mbi to be w and set the verification key compo-

nent V Kbi = z. We choose m1−bi and V K1−bi randomly as usual.

Now, since AeVSE is assumed to be successful, it will output a forgery comprising the

plaintext encrypted under the unsatisfied query (Q∗ or Q∗). By construction, this will

be w (and the adversary’s view is consistent since the verification key is simulated

correctly using z). AABE can therefore forward this result to C in order to invert the

one-way function with the same non-negligible probability that AeVSE has against the

public verifiability game.

We conclude that if the CPABE scheme is selectively IND-CPA secure and the one-

way function is hard-to-invert, then eVSE as defined by Algorithms 5.1–5.8 is secure in

the sense of selective Public Verifiability.

5.4.2 Index privacy

Lemma 5.4.2. eVSE as defined in Algorithms 5.1–5.8 is secure against Index Privacy

(Game 5.2) under the same assumptions as in Theorem 5.3.1.

Proof. Suppose AeVSE is an adversary with non-negligible advantage against the Index

Privacy game (Game 5.2) when instantiated with Algorithms 5.1–5.8. We begin by

defining the following two games:

• Game 0: Fix an adversary AeVSE we define Game 0 to be the selective Index

Privacy game as defined in Game 5.2.

• Game 1: This is the same as Game 0 with the modification that we use a

random permutation in Algorithm 5.1 to construct Ω̃. We re-label Ω̃ as Ω̃′ to

differentiate it from the Ω̃ generated using a PRP in Game 0. This means that

in Game 1, PP will contain a randomly permuted set Ω̃′ instead of one generated

using a PRP, as in Game 0.

We show that an adversary with non-negligible advantage against the selective

Index Privacy game can be used to construct an adversary ASKE which may break

the IND-CPA security (Definition 2.6.3) of a symmetric key encryption scheme SKE

= (SKE.KeyGen, SKE.Encrypt,SKE.Decrypt).

115

5.4. Proofs of Security

Game 0 to Game 1. The PRP-assumption [22] is formulated as follows. Let D be

a distinguisher algorithm that takes as input a permutation (which is either pseudo-

random or truly random) and outputs a bit, b. In the following, let Π be a random

permutation, Π′ be a PRP and S be a set. We define the PRP-advantage of D to be:

∣∣P[S̃
$← Π(S) : D(S̃) = 1]− P[S̃ ← Π′(S) : D(S̃) = 1]

∣∣.
The PRP-assumption states that for any efficient algorithm D, the PRP-advantage

is negligible.

• Fix an adversary AeVSE that is able to distinguish between Game 0 and Game

1 with non-negligible advantage δ. That is, AeVSE’s probability of success in one

game is non-negligibly different to their probability of success in the other game

(suppose the probability of success in Game 0 is higher than that of Game 1,

without loss of generality). We can build a distinguisher D that is able to distin-

guish whether a permutation is either truly random or pseudorandom with non-

negligible probability, by using AeVSE as a subroutine (hence has non-negligible

PRP-advantage), leading to a contradiction.

• Given a permutation π, D instantiates AeVSE in Game 5.2 using π to permute

the universe of attributes instead of Π. Note that if π is a PRP then AeVSE is

acting in Game 0 and if π is a truly random permutation then AeVSE is acting

in Game 1.

• AeVSE outputs a bit b′ at the end of their game.

• If AeVSE wins their game then D outputs 1, indicating that they believe π is a

PRP and 0 otherwise.

• D will be able to distinguish π with exactly AeVSE’s (non-negligible) advantage, δ

contradicting the PRP-assumption. Thus we conclude that AeVSE cannot distin-

guish Game 0 from Game 1 with non-negligible probability. Hence we continue

the proof using Game 1 and assume that AeVSE can only gain at most an extra

negligible advantage γ from hopping from Game 0 to Game 1.

Reduction to IND-CPA. Now let AeVSE be an adversary with non-negligible ad-

vantage δ against Game 1. We now show that using AeVSE as a subroutine in Game 1,

ASKE is able to break the IND-CPA security of SKE. That is, given a challenge ci-

phertext c which is an encryption mb where b
$← {0, 1}, ASKE can distinguish whether

c is an encryption of m0 or m1.

116

5.4. Proofs of Security

Fix an adversary AeVSE that is able to break the index privacy of eVSE with non-

negligible advantage γ. Let C be the challenger forASKE in the proof, ASKE will act as

the challenger for AeVSE.

1. AeVSE chooses their challenge sets: D0 = (d0,1, d0,2, ..., d0,q) andD1 = (d1,1, d1,2, ..., d1,q) ⊆
U such that |D0| = |D1|. Note that a rational adversary will always choose

D0 6= D1 i.e. D0 and D1 differ by at least one element. AeVSE submits these

challenge sets to ASKE.

2. The challenger C chooses a bit b
$← {0, 1}.

3. KeyGen is run between C and ASKE:

• ASKE generates the secret key for the broadcast encryption scheme BE =

(BE.KeyGen,BE.Encrypt,BE.Add,BE.Decrypt):

kBE ← BE.KeyGen(1κ, |U|),

which is retained by ASKE and shared with C.

• C generates the secret key for the symmetric encryption scheme SKE =

(SKE.KeyGen, SKE.Encrypt,SKE.Decrypt):

kSKE ← SKE.KeyGen(1κ),

which is retained by C.

• C provides ASKE with access to the following oracles SKE.Encrypt(·, k):

which takes as input a plaintext m and returns its symmetric encryption

under kSKE and LR(·, ·, kSKE, b) which takes as input two plaintexts m0,m1

and a bit b and outputs the symmetric encryption of mb under kSKE.

• For all d0,j 6= d1,j , ASKE submits the pair (d0,j , d1,j) (where such pairs exist

as the challenge sets are not equal) to LR(·, ·, kSKE, b) and receives challenge

ciphertexts, cj , in return.

• These challenge ciphertexts are included in Ω′. To compute the rest of

Ω′ ASKE submits every other pair (d0,i, d1,i) ∈ {D0,D1} : d0,i = d1,i, to

SKE.Encrypt(·, kSKE) and includes the output in Ω′. To ensure Ω′ con-

tains an encryption of each attribute in Ω, ASKE submits the remaining

attributes of Ω: an /∈ (D0 ∪D1) to SKE.Encrypt(·, kSKE) and includes the

output in Ω′. Ω′ now contains an encryption of every element in Ω. To map

elements from Ω to Ω′ (which is required to run Encode), every attribute

117

5.4. Proofs of Security

in Ω needs to have a corresponding ciphertext in Ω′ which is defined as fol-

lows: for each pair of attributes that were submitted to LR(·, ·, kSKE, b) we

let the output denote the corresponding element in Ω′ for the attribute on

the left hand side of the submitted pair. For all attributes in Ω submitted

to SKE.Encrypt(·, kSKE) the output is the corresponding element in Ω′

for that attribute. This defines a bijective mapping of attributes in Ω to

elements in Ω′ as required.

• ASKE defines the set Ω̃ ← Π(Ω′), where Π is a random permutation and

runs:

(kABE, PPABE)← ABE.KeyGen(1κ, Ω̃).

• ASKE chooses the data owner state uniformly at random: stO
$← {0, 1}κ and

then generates the first part of the sever key:

kS
$← BE.Add(kBE, S).

• The authorised user group G is initialised as the set containing the server

identity and the server state, stS is generated:

stS
$← BE.Encrypt(stO,G, kBE).

• The server key is set as KS = (ks, stS), and given to AeVSE.

• ASKE retains kABE, kBE and stO and sets PP = (PPABE, PPBE, Ω̃) which is

given to AeVSE.

4. The challenge bit for AeVSE, b̂, is set to b.

5. ASKE creates a pre-index δ(Db) to encode into the challenge index for AeVSE. This

is done using Encode, which takes as input the elements from the challenge set Db
and maps them to elements in Ω′. Due to the way the mapping is defined using

LR(·, ·, kSKE, b), this will produce a preindex containing encryptions of elements

from the challenge set Db. If b = 0 then LR(·, ·, kSKE, b) would have been used for

encryption hence the attributes in D0 would have been encrypted and be included

in the preindex, wheres if b = 1 then LR(·, ·, kSKE, b) would have been used for

encryption hence the attributes in D1 would have been encrypted and be included

in the preindex.

6. ASKE runs BuildIndex using the pre-index created in step 5 to create the challenge

index IDb for AeVSE. Note that although BuildIndex takes KO as input, it does

118

5.4. Proofs of Security

not require kSKE or Π. The only part of KO that is required is kABE which is

generated and retained by ASKE in step 3.

7. ASKE choses a user from the userspace and authorises the user identity by running

AddUser. They then generate a series of queries that produce the same results

when evaluated over the challenge index and return these queries to AeVSE.

8. AeVSE is given oracle access to BuildIndex(·,KO, PP), Search(·, ·,KS , PP),

Verify(·, ·, PP) and Retrieve(·, ·, ·, PP). To query BuildIndex AeVSE sub-

mits a set of attributes (with the restriction that no attributes from either chal-

lenge set are used) to ASKE. ASKE responds to BuildIndex(·,KO, PP) queries

using Encode to produce the pre-index from the set of attributes then runs

ABE.KeyGen to produce the relevant index. To query Search(·, ·,KS , PP) AeVSE

submits their challenge index IDb and QTQ to ASKE which runs Search using these

values along with KS and PP to produce search results R which are returned to

AeVSE. To allow verification of search results AeVSE can query Verify(·, ·, PP)

which is run by ASKE. AeVSE submits the result R along with the verification

token V KQ to ASKE which runs Algorithm 5.6 and returns RTQ to AeVSE. Calls

to Retrieve(·, ·, ·, PP) are answered by ASKE by running Algorithm 5.7 and

returning the output to AeVSE.

9. AeVSE outputs their guess b̂′ for b̂.

10. AIND-CPA outputs their guess b′ = b̂′ as their guess for b.

11. As we have assumed that AeVSE has a non-negligible advantage, δ, in the Index

Privacy game:

AdvAeVSE
= δ,

we have that:

P[b̂′ = b̂] = δ +
1

2
.

Using these assumptions we now calculate the advantage of ASKE against the

challenger, C, in their game. We start by calculating the probability of ASKE

winning their game, P[b′ = b], as follows:

P[b′ = b] = P[b′ = b|b̂′ = b̂]P[b̂′ = b̂] + P[b′ = b|b̂′ 6= b̂]P[b̂′ 6= b̂]

= 1 · P[b̂′ = b̂] + 0 · P[b̂′ 6= b̂]

= δ +
1

2
.

119

5.4. Proofs of Security

Hence,

AdvASKE
=

∣∣∣∣P[b′ = b]− 1

2

∣∣∣∣
=

∣∣∣∣(δ +
1

2
)− 1

2

∣∣∣∣
= δ

As we fixed δ to be non-negligible we have that the advantage of ASKE is also non-

negligible which contradicts the IND-CPA security of the symmetric encryption

scheme SKE. We conclude that if the symmetric encryption scheme SKE is IND-

CPA secure then eVSE as defined in Algorithms 5.1-5.8 is secure in the sense of

Index Privacy.

5.4.3 Query privacy

Lemma 5.4.3. eVSE as defined in Algorithms 5.1–5.8 is secure against Query Privacy

(Game 5.3) under the same assumptions as in Theorem 5.3.1.

Proof. Suppose AeVSE is an adversary with non-negligible advantage against the Query

Privacy game (Game 5.3) when instantiated with Algorithms 5.1–5.8. We begin by

defining two games:

• Game 0: This is the selective Query Privacy game as defined in Game 5.2.

• Game 1: This is the same as Game 0 with the modification that we use a

pseudorandom permutation in Algorithm 5.1 to construct Ω̃.

We show that an adversary with non-negligible advantage against the selective

Query Privacy game can be used to construct an adversary, ASKE, which may break

the IND-CPA security of a symmetric key encryption scheme SKE = (SKE.KeyGen,

SKE.Encrypt, SKE.Decrypt).

Game 0 to Game 1. See Game 0 to Game 1 in proof of Lemma 5.4.2 for details.

Reduction to IND-CPA. We now show that using AeVSE in Game 1, ASKE can

break the IND-CPA security of a symmetric key encryption scheme SKE. That is,

given a challenge ciphertext c which is an encryption mb where b
$← {0, 1}, ASKE can

distinguish whether c is an encryption of m0 or m1.

120

5.4. Proofs of Security

This proof follows in the spirit of the proof of Lemma 5.4.2. Let C be the challenger

for ASKE and ASKE will act as the challenger for AeVSE.

1. AeVSE chooses their challenge queries: Q0, Q1 with the restriction that all gates

match in both queries (the gates are denoted by GQ0 forQ0 and GQ1 forQ1). Note

that a rational adversary will always choose queries where the input attributes

differ in at least one position. We denote the sets of attributes contained in the

queries as (q0,1, q0,2, ..., q0,t), (q1,1, q1,2, ..., q1,t) ⊆ Ω for Q0 and Q1 respectively

(note that if all the (binary) gates in each query match the two sets of attributes

will be the same size). AeVSE submits Q0 and Q1 to ASKE.

2. The challenger C chooses a bit b
$← {0, 1}.

3. KeyGen is run between C and ASKE:

• ASKE generates the secret key for the broadcast encryption scheme BE =

(BE.KeyGen,BE.Encrypt,BE.Add,BE.Decrypt):

kBE ← BE.KeyGen(1κ, |U|).

• C generates the secret key for the symmetric encryption scheme SKE:

kSKE ← SKE.KeyGen(1κ).

• C provides ASKE with access to the following oracles SKE.Encrypt(·, kSKE):

which takes as input a plaintext m and returns its symmetric encryption

under kSKE and LR(·, ·, kSKE, b) which takes as input two plaintexts m0,m1

and a bit b and outputs the symmetric encryption of mb under kSKE.

• For all d0,j 6= d1,j , ASKE submits the pair (d0,j , d1,j) (where such pairs exist

as the challenge sets are not equal) to LR(·, ·, kSKE, b) and receives challenge

ciphertexts, cj , in return.

• ASKE now computes Ω′. For every pair (q0,i, q1,i) : q0,i 6= q1,i, ASKE submits

the pairs (q0,i, q1,i) and (q1,i, q0,i) to LR(·, ·, kSKE, b). For all other pairs

(q0,t, q1,t) we have that q0,t = q1,t, hence ASKE submits q0,t to

SKE.Encrypt(·, kSKE) and includes the output in Ω′. To ensure Ω′ contains

an encryption of each attribute in Ω, ASKE submits the remaining attributes

of Ω: an /∈ (Q0 ∪Q1) to SKE.Encrypt(·, kSKE) and includes the output in

Ω′. Ω′ now contains an encryption of every element in Ω. In order to map

121

5.4. Proofs of Security

elements from Ω to Ω′ (which is required to run Encode), every attribute

in Ω needs to have a corresponding ciphertext in Ω′ which is defined as

follows: for each pair of attibutes that were submitted to LR(·, ·, kSKE, b) we

let the output denote the corresponding element in Ω′ for the attribute on

the left hand side of the submitted pair. For all attributes in Ω submitted

to SKE.Encrypt(·, kSKE) the output is the corresponding element in Ω′

for that attribute. This defines a bijective mapping of attributes in Ω to

elements in Ω′ as required.

• ASKE defines the set Ω̃← Π(Ω′), where Π is a pseudorandom function, and

runs:

(kABE, PPABE)← ABE.KeyGen(1κ, Ω̃).

• ASKE selects the data owner state: stO
$← {0, 1}κ and then runs:

kS
$← BE.Add(kBE, S),

to produce the first part of the server key.

• The authorised user group is initialised as: G ← {S}.

• ASKE generates the server state by encrypting the data owner state using

the BE scheme:

stS
$← BE.Encrypt(stO,G, kBE).

• The public parameters are set to: PP = (PPABE, PPBE, Ω̃) and the server

key is set to KS = (kS , stS). These are both given to AeVSE.

4. A user, u, is selected at random by ASKE and enrolled as an authorised user:

ku
$← BE.Add(kBE, u).

5. The challenge bit for AeVSE, b̂, is set to b.

6. ASKE creates a pre-query Q̃b to encode into the challenge query for AeVSE. This

is done using Encode, which takes as input the elements from set of attributes

corresponding to the challenge query Qb and maps them to elements in Ω′. Due

to the way the mapping is defined using LR(·, ·, kSKE, b), this will produce a pre-

query containing encryptions of attributes corresponding to the challenge query

Qb. If b = 0 then then LR(·, ·, kSKE, 0) would have been used for encryption hence

the attributes in Q0 would have been encrypted and be included in the pre-query,

wheres if b = 1 then LR(·, ·, kSKE, 1) would have been used for encryption hence

122

5.4. Proofs of Security

the attributes corresponding to Q1 would have been encrypted and be included

in the pre-query.

7. ASKE runs Query using the pre-query created in step 4 to create the challenge

query (QTQb , V KQb , RKQb) for AeVSE.

8. AeVSE is given oracle access to BuildIndex(·,MK,PP), Search(·, ·, ·, PP),

Verify(·, ·, ·, ·, PP) and Retrieve(·, ·, ·, PP). To query BuildIndex(·,MK,PP),

AeVSE submits a set of attributes to ASKE (with the restriction that the search

results produced when searching the corresponding index cannot be used to dis-

tinguish the two challenge sets, i.e. the search results have to be the same).

ASKE responds to BuildIndex queries using Encode to produce the pre-query

from the set of attributes then runs BuildIndex to produce the relevant index.

ASKE responds to queries to Search,Verify,Retrieve by running the rele-

vant algorithms using the adversary’s input.

9. AeVSE outputs their guess b̂′ for b̂.

10. ASKE outputs their guess b′ = b̂′ as it’s guess for b.

11. As we have assumed that AeVSE has a non-negligible advantage, δ, in the Query

Privacy game:

AdvAeVSE
= δ,

we have that:

P[b̂′ = b̂] = δ +
1

2
.

Using these assumptions we now calculate the advantage of ASKE against the

challenger, C, in their game. We start by calculating the probability of ASKE

winning their game, P[b′ = b], as follows:

P[b′ = b] = P[b′ = b|b̂′ = b̂]P[b̂′ = b̂] + P[b′ = b|b̂′ 6= b̂]P[b̂′ 6= b̂]

= 1 · P[b̂′ = b̂] + 0 · P[b̂′ 6= b̂]

= δ +
1

2
.

123

5.5. Summary

Hence,

AdvASKE
=

∣∣∣∣P[b′ = b]− 1

2

∣∣∣∣
=

∣∣∣∣(δ +
1

2
)− 1

2

∣∣∣∣
= δ

As we fixed δ to be non-negligible we have that the advantage of ASKE is also

non-negligible which contradicts the security of the IND-CPA security of the

symmetric encryption scheme SKE. We conclude that if the symmetric encryption

scheme SKE is IND-CPA secure then eVSE as defined in Algorithms 5.1-5.8 is

secure in the sense of Query Privacy.

5.5 Summary

Our scheme extends the expressiveness of queries that can be achieved in VSE. No

other VSE schemes to our knowledge are able to perform the range of search queries

or include negation of keywords in their search queries. Additionally our scheme leaks

neither the access nor the search pattern to the server whilst executing a search. Our

combination of search queries with computational queries is also a novel functionality

in the field of VSE.

The search time, and size of the queries and search results are linear in n (the

number of data items stored on the remote server). Due to this eVSE may be more

suited to smaller databases to prevent these features from being prohibitively expensive.

The VSE scheme of [44] has a search time that is linear in the number of letters in

the queried keyword (which is usually much smaller than n). This faster search is

achieved using a tree-based index, however only a single keyword equality search can

be performed. Another scheme that uses ABE primitives in the construction, as we

do, is that of [137]. This scheme is able to achieve multi-level access, where users can

be restricted to searching only certain parts of the database. Keywords are grouped

with respect to their access control policies, and the search time is linear in the number

of groups. However, this scheme also only achieves a single keyword equality search.

The scheme of Wang et al. [132] achieves verifiable fuzzy keyword search with a search

time that is linear in the size of the fuzzy keyword set (which varies depending on the

level of fuzziness required i.e. searching for data items that contain keywords of edit

distance two will require a larger fuzzy keyword set than searching for keywords with

124

5.5. Summary

an edit distance of one from the queried keyword [97]). The scheme by Kurosawa et al.

[94] uses an SSE scheme along with a MAC on the search results to achieve verification

and adding a new data item requires time linear in the number of keywords associated

with the new data item. In [127], a scheme by Stefanov et al., adding a new data

item takes time O(log2N) and this scheme, similarly to [94], also uses a MAC to verify

the search results. Both [94, 127] only achieve single keyword equality search in the

symmetric key setting. A dynamic scheme that can support conjunctive queries (the

most expressive query type of all the dynamic schemes in Table 5.3) is that of [128]

which is constructed using public key primitives, namely ABE, to create the indexes.

Each user in the system has a separate public key to create their indexes which can be

added to the server at anytime. This scheme uses a combination of Bloom filters and

signatures to achieve verifiability of search results. Cheng et al. [51] construct a VSSE

from indistinguishability obfuscation that can handle boolean and conjunctive queries.

Their scheme is able to achieve public verifiability by implementing a specific public

verification circuit.

In terms of the number of rounds of communication required per search, our scheme

is optimal requiring only one round of communication. The size of the search results

in our scheme is also linear in n. Most VSE schemes in the literature return results

of a size that is linear in the number of data items that match the query, however

this method leaks the access pattern which in turn may leak information about the

query. Our scheme hides the access pattern as all search results are of the same form,

regardless of what query was submitted.

In terms of security, as illustrated in our security games, our scheme achieves public

verifiability, index privacy and query privacy (in terms of the keywords searched for),

which is comparable to other VSE schemes that have been discussed. Overall, our

scheme sacrifices efficiency when compared to existing VSE schemes, but gains much

increased functionality and query expressiveness. Furthermore, our scheme currently

only supports static data and future work will be needed to extend our scheme to

support a dynamic data set as in the schemes in [94, 127, 128].

Table 5.3 gives a brief comparison between our scheme and those in the literature

as discussed above and throughout the chapter. The abbreviation AP stands for access

pattern and SP stands for search pattern.

125

5.5. Summary

Table 5.3: Comparison of Verifiable Searchable Encryption Schemes

Scheme Data type Query type Publicly
Verifiable

Leakage Computations

[130] Static Ranked equality No AP,SP No

[94] Dynamic Equality No AP No

[128] Static Conjunctive, Disjunctive No AP No

[129] Dynamic Equality No AP No

[127] Dynamic Equality No AP, SP No

[137] Static Equality No AP No

[131] Static Fuzzy No AP, SP No

[65] Static Semantic No AP, SP No

[44] Static Equality No AP, SP No

[51] Static Conjunctive Yes AP, SP No

Our
scheme

Conjunctive, Disjunctive,
Static Arbitrary CNF/DNF Yes None Yes

formulae, NC1

126

Chapter 6

Multi-level Searchable

Encryption

Contents

6.1 Introduction . 128

6.1.1 Related work . 129

6.1.2 Organisation of chapter . 133

6.2 Searchable Symmetric Encryption 133

6.2.1 Types of index . 133

6.2.2 Classifying leakage . 134

6.3 Generic solutions for MLSSE using SSE as a black box . . 135

6.3.1 Augmented Index . 136

6.3.2 Encrypted/labelled Search Results 138

6.3.3 Using a trusted third party (TTP) 139

6.3.4 Expanding the Keyword Dictionary 140

6.4 Multi-level Searchable Symmetric Encryption 142

6.4.1 System Model . 142

6.4.2 Formal Definition . 144

6.4.3 Security Model . 145

6.5 Construction . 152

6.6 Proofs of Security . 157

6.6.1 Achieving dynamicity . 165

6.7 Performance . 166

6.8 Summary . 167

127

6.1. Introduction

In this chapter we extend the paradigm of searchable symmetric encryption

to support multiple users with different access levels. We call this multi-level

access. We look at general methods that can take any single-user search-

able symmetric encryption scheme as a black box and extend it to support

multi-level access as well as a specific searchable symmetric scheme that

supports multi-level access. The results of this chapter have appeared in the

proceedings of Financial Cryptography and Data Security 2017.

6.1 Introduction

Many searchable symmetric encryption (SSE) schemes, single user and multi-user, in

the literature only consider the scenario where a querier is either authorised to search

over the entirety of the encrypted data or not at all [33, 39, 55, 126], in which case

(ideally) the querier should learn nothing about the outsourced data. In practice,

however, outsourced data sets could be large and the access control requirements of such

data sets are likely to be more fine-grained than the binary ‘all or nothing’ approach

above; hence existing schemes do not suffice.

We study the problem of enforcing a multi-level access control policy (MLA), or

information flow policy, in the context of searchable symmetric encryption, where the

data items are classified at different levels (which may or may not be hierarchal) and

users are assigned access rights corresponding to the data items they are authorised to

view. A notable example of this type of data classification is government data. In the

UK the government uses three levels of classification for its data: official, secret and

top secret [110]. Employees are assigned an access level that determines which data

items they are authorised to view. In our model, a user with ‘secret’ clearance, should

be unable to learn any information about data items classified as ‘top secret’, such as

whether they contain searched keywords or not. This is an example of an information

flow policy with a total order of security labels [18]. The SE model in Section 3.1 needs

to be adapted so that users can only receive search results corresponding to encrypted

data items that they are authorised to view, to prevent any leakage of information

to unauthorised users. We provide a rigorous definitional framework for Multi-level

Searchable Symmetric Encryption (MLSSE), introduce appropriate security notions

and present several generic solutions to MLSSE using SSE as a black box as well as a

provably secure construction.

We focus on SKE solutions to MLA in SE to produce schemes that are easy to

deploy and efficient to use in real world scenarios. This branch of SE with access

control has, up to now, received little to no attention in the literature.

128

6.1. Introduction

6.1.1 Related work

Kissel et al. [92] present a scheme supporting multiple groups of users searching over

encrypted data where each group has a specified dictionary of keywords they are allowed

to search over. These groups are arranged hierarchically so that users at one level in

the hierarchy are able to search for all keywords in dictionaries assigned to groups at

lower levels in the hierarchy. Although this scheme presents a form of hierarchal access

in SSE, the user is still able to search over the entire data set. In most access control

scenarios, we are concerned with protecting a data item (i.e. the complete content

of a data item), not just a single keyword describing the data item. Furthermore,

we believe that expressing an access control policy in terms of authorised keywords

can potentially be difficult to administer correctly. Sensitive data items may well gain

their classification level due to semantic meaning regarding their contents (for example,

the subject to which they pertain), which may not trivially be captured through the

associated keywords. For example, consider two data items that contain information

about company spending; one data item contains a public report of company-wide

spending, whilst the other pertains specifically to the research department. Clearly,

both data items may be labelled by a keyword such as ‘finance’, but detailed knowledge

of the research spending alone may be more sensitive than a generalised report of

the entire company. Thus, simply authorising users to search for keywords, such as

‘finance’, does not suffice in this instance as not all users that can search the public

report should be able to view the specific report. The access control policy in this

case must be managed carefully — perhaps additional, more granular, keywords must

be defined e.g. ‘finance-public’ (leading to an increase in the size of the searchable

encryption index and a subsequent loss of efficiency) or a (less efficient) SE scheme

that supports ‘conjunctive keyword-only access control’ would be required such that

one can be authorised to search for (‘finance’ AND ‘public’) and only data items with

both keywords would be returned. In this work, we consider the problem of fine-grained

classification of data items directly and gain a more efficient solution.

There are solutions to multi-level access (MLA) in the area of PKE. In particular

functional encryption, has been used to achieve MLA in SE [25, 83, 99, 136]. PKE, in

general, is computationally more intensive and harder to implement than SKE which

is often built using much simpler operations, perhaps making PKE less suitable for

systems required for real world deployment.

The notion of multi-user SSE was introduced by Curtmola et al. [55]. In this work

they combine a single-user SSE scheme with a broadcast encryption scheme that is

used to add and revoke users in the system. They define the security of their multi-

user SSE scheme similarly to that of the single-user SSE scheme with the additional

129

6.1. Introduction

security notion of revocation, which requires that a revoked user is no longer able to

perform searches on the index stored on the server. In order to produce a search

query a user needs to be authorised by the data owner. This is done by adding the

user to an authorised user set. Initially a random value is chosen by the data owner,

which is referred to as the data owner state. This value is then encrypted using the

broadcast encryption scheme, so that only the authorized users are able to decrypt it,

and broadcast to all users. The data owner state is then used as a key for a PRP that

is applied to the search query before it is sent to the server. During the search phase

the server checks if the search query was correctly formed by applying the inverse of

the PRP. If it is not, then the server outputs a failure symbol ⊥ and the search is not

performed. As only authorised users have access to the data owner state this means

that only authorised users are able to form valid search queries. Each time a user is

revoked the data owner state is renewed and re-encrypted according to the updated

authorised user set. The access control to the data in this scheme is very coarse grained,

meaning either a user is authorised to search over all of the index or none at all.

Work by Yang [135] introduce the concept of query accountability within multi-user

SSE, by issuing a unique query key to each authorised user. For each of these unique

query keys the server holds a corresponding helper key which is related to the user’s

query key: the helper key is a group element g whose exponent contains the inverse of

the user’s query key. Their scheme uses bilinear maps to mask information in the index

and compute the search. The index entries and queries are constructed in such a way

that when the search query is combined with the helper key we get a cancellation in

the exponent of a bilinear map and can use the hash of the resulting group element to

check whether a particular index entry contains the keyword associated with the search

query. The major drawback of this scheme is that each data item is only indexed by

one searchable keyword, which does not support a very fine grained search. In order to

retrieve relevant search results using only one keyword in the index for each data item

may require the user to know some information a priori regarding the data set. This

might not be realistic in this multi-user scenario (Scenario 3) as the users searching

the data items do not own the data. An extension to the main scheme is detailed that

permits a form of multi-level access where each user is granted a set of keywords they are

authorised to search for. This is different to our definition of multi-level access where

a user’s search is restricted to the set of data items that they are authorized to view.

Only restricting the set of keywords a user is authorised to search for still permits the

user to search all the data items. The scheme of [15], which the scheme of [135] is based

on, supports users writing data to the server as well as just reading it (Scenario 4). The

revocation of users in both [15] and [135] is accomplished by instructing the server to

130

6.1. Introduction

delete the helper key that they posses for the revoked user. This method of revocation

relies on the server being at most honest-but-curious (Definition 3.3.1) in order to

guarantee that the helper keys are actually erased by the server. A scheme by Kissel

et al. [92] also achieves a form of multi-level search by restricting the set of keywords

that a user can search for similarly to [135]. This scheme uses key regression [64] and

broadcast encryption to add and revoke users from the system. The data owner state

as described above in relation to [55] is produced using the key regression scheme and

renewed using the same process when a new user is enrolled or revoked. The new

values are distributed to the users using a broadcast channel. In terms of revocation

the security notion guarantees that revoked users are not able to issue successful queries

after they are revoked, as in [55].

A paper by Cao et al. [40] presents a multi-user scheme where the users can perform

ranked searches, where the search results are ranked by the server according to their

relevance to the search query. They do not explicitly detail the user addition and

revocation procedures but state that they use broadcast encryption to achieve these

tasks as in [55].

There are a few solutions to multi-level search in the public key setting where users

are able to both read and write data (Scenario 4). Hattori et al. [75] present a scheme

which supports a hierarchy of users that can perform conjunctive keyword searches on

the index. They define the new notion of ciphertext-policy hidden vector encryption

(CP-HVE). Hidden vector encryption (HVE) was previously only defined in the key

policy setting (KP-HVE) where a secret key is associated with a vector that defines

a policy and a ciphertext associated with a vector of attributes. It was first defined

for searchable encryption by Katz et al. in their seminal paper [89]. The secret keys

that define policies are used as search tokens and the index entries are ciphertexts

associated with a vector of attributes, this method of SE is known as predicate-based

encryption (Definition 2.3.7). It is very similar to the notion of ABE (Definition 2.3.5)

which associates a ciphertext with a policy and a secret key with attributes but PBE

requires that the policies are hidden. The new notion of CP-HVE is the dual concept of

KP-HVE where the secret keys are associated with hidden policies and the ciphertexts

associated with attributes. In this scheme a search result is only returned if the policy

on the ciphertext is fulfilled by the attributes associated with the user that generated

the search query and the keyword(s) in the search query are contained in the data

item. There is no revocation mechanism for users defined in this scheme. The scheme

of [76] presents a public key conjunctive keyword search scheme that supports multiple

users, but also does not consider the revocation of users. An extension is discussed that

allows the data owner to choose which users can search their data items when creating

131

6.1. Introduction

an index, however this involves making multiple indexes if the data owner wishes their

data to be searchable by multiple users. It also requires the data owner to know the

public key of each user they wish to authorise.

The majority of multi-level search schemes that support multiple users searching the

data but not writing data (Scenario 3) involve some from of attribute based encryption

(ABE) in the construction. The scheme of [83] is based on the linked list construction of

Curtmola et al. [55], but the concept behind their construction could be applied to most

single user SSE schemes. It is an example of one of our generic solutions to multi-level

search which is defined in Section 6.3.2, and achieves multi-level search by encrypting

the search results with ABE. Usually in an SE scheme, the search results consist of

identifiers of data items that satisfy the search query, the user does not need to process

these search results any further. Encrypting the search results with ABE ensures that

the user can only view search results that they are authorised to by the policy defined

on their ABE secret key. However this scheme reveals the total number of search

results, even when the user is not authorised to decrypt all of them. To prevent this

leakage, they propose another scheme using a trusted third party, another one of our

generic methods outlined in Section 6.3.3, that intercepts the search results and sorts

them according the user’s access rights before sending the final set of search results

to the user. The work of [52] points out the high computational overheads of ABE

and presents a scheme that outsources the key generation and decryption processes

associated with the ABE scheme. A solution that uses the techniques of [52] for multi-

level search in Scenario 3 is that of [62]. To reduce the computational overheads of ABE

in this scheme the data owner and users are able to outsource their ABE computations

to a proxy server. Another extra entity is also introduced into the system model: a

trusted authority (TA) which is used to setup the system and revoke users. The user

revocation mechanism is similar in this scheme to that of [15, 135] as a helper key is

stored on the server for each user. When a user is revoked from the system the TA

instructs the server to delete the relevant helper keys. The search query generation is

a two step process in this scheme as a user needs to send a search query request to the

proxy server before they are able to generate a search query. The search is also a two

step process as the server first verifies that the user’s attribute set associated with the

search query is genuine. The server does this by creating a CP-ABE ciphertext from a

random plaintext m with the policy of the ciphertext being the intersection of all the

users attributes. The user then attempts to decrypt this ciphertext using their secret

key (which is associated with their attributes) and sends the resulting plaintext back to

the server. If this plaintext matches the original plaintext m that the server encrypted

then this verifies that the user does in fact possess the attributes that it claims to have.

132

6.2. Searchable Symmetric Encryption

As the attributes in this scheme are not encrypted the server identifies which set of

data items the user is authorised to search and performs the search over those data

items only. The scheme of Ye et al. [98] adds another server into the system model

and considers the additional security notion of a revoked user colluding with one of the

servers. The index is duplicated across the two servers. Each server stores helper keys

similarly to other schemes discussed above, which are then deleted by the servers when

a user is revoked. This scheme provides a verification mechanism for the search which

compares the two sets of search results, if they are equal then the search is verified as

correct and if not then the search results are rejected. The fine-grained access control

is implemented as a threshold check on the users attributes before search. If the user’s

attribute set contains a fixed amount (or greater) of matching attributes to that of the

data item, then they are allowed to search that data item.

6.1.2 Organisation of chapter

In Section 6.2 we outline the notion of SSE along with descriptions of the type of

indexes that are used in SSE and the type of leakage that can occur. In Section 6.3 we

describe some methods of achieving multi-level access using a single-user SSE scheme

as a black box. In Section 6.4 we define the system and security models of our multi-

level SSE scheme, and our construction is defined in Section 6.5. Our security proofs

are given in Section 6.6. We conclude the chapter in Section 6.8 by summarising the

findings of the chapter.

6.2 Searchable Symmetric Encryption

This section gives an overview of Searchable Symmetric Encryption (SSE). The defini-

tion of SSE can be found in Definition 3.1.1, here we discuss some finer details of SSE

such as the different types of index used and the leakage associated with SSE.

6.2.1 Types of index

There are three main types of index used in SSE schemes in the literature: forward

index, inverted index and tree based index. Each of these types of indexes have advan-

tages and disadvantages and the choice of index will depend on the data that needs

to be indexed e.g. dynamic or static data and any restrictions imposed by the data

owner, such as a fast search time.

1. Forward Index A forward index contains an entry per data item and lists the

set of keywords (or attributes) associated with each data item. It is relatively

133

6.2. Searchable Symmetric Encryption

straightforward to accommodate dynamic data sets using a forward index; when

adding an encrypted data item to the server one can just create a new entry in

the index for that data item. Furthermore, deleting or amending a data item

on the server only affects the part of the index associated with that data item

and does not require changes to any other part of the index. The search time

on a forward index will be linear in the number of data items, so this type of

index may not be suitable for large data sets. However, this process could be

parallelized to improve the search time, say we use p processors then the search

time complexity is reduced to O(np). Some examples of SSE schemes employing

a forward index are [46, 68, 71].

2. Inverted index An inverted index (also referred to as a postings list) contains

an entry per keyword (or attribute) and lists the set of data items that contain

each keyword. An inverted index can produce a search time linear in the number

of data items that match the search query which is optimal since the amount of

work to retrieve the encrypted data items is linear in the number of data items

that match the search query, hence this is the minimal amount of work that needs

to be done. However, these indexes are not so well suited for use with dynamic

data sets as the update process has been shown to be very complex and leak

extra information from the indexes [85]. The scheme of [85] also shows that an

SSE scheme that uses an inverted index may not permit a parallel search. Some

examples of SSE schemes employing an inverted index are [55, 86].

3. Tree-based index In a tree-based index the characters of the keywords in the

data items are inserted into a tree sequentially from root to leaf and the identifiers

for the data items containing that keyword are stored in the leaves of the tree at

the end of this path. A tree-based index provides a sub-linear search time and

can also be parallelized. This type of index can also handle updates efficiently,

however has a higher space complexity then the other two types of index. An

example of SSE schemes employing a tree-based index is [85].

6.2.2 Classifying leakage

Almost all schemes designed for efficient search over encrypted data leak some form

of information from the encrypted data items stored on the server. Until recently the

possible attacks on the queries and the index that could be mounted using the available

leakage in a SE had not been investigated, however there have been several recent papers

that investigate this [41, 59, 79, 102]. Classifying the leakage in SE is an important

feature of the security definition of a SE scheme as it tells the user what information

134

6.3. Generic solutions for MLSSE using SSE as a black box

will be available to a potential adversary. This will help the user to decide which SE

scheme is most fit for purpose when implementing a scheme. The information leakage

in a SSE scheme can be sorted into four categories, each one relating to a specific phase

in the scheme (the add and delete leakage only corresponds to dynamic SSE schemes):

1. Setup leakage The setup leakage (see Definition 3.2.3) is the information leaked

to the server from the index. This will include information such as the size of the

index. Depending on how the information in the index is encrypted and padded

this information may also include the total number of data items indexed or the

total number of distinct keywords in all the data items.

2. Search leakage The search leakage (see Definition 3.2.4) is the information

leaked as the product of a search query being evaluated over the index. This will

include information such as the access pattern and the search pattern (Defini-

tion 3.2.1 and Definition 3.2.2 respectively).

3. Add leakage This is the information leaked to the server when a new data item

is added to the index. This could include information such as the encryptions

of the keywords contained in the new data item (these are usually deterministic)

and the number of keywords associated with the new data item. If the search is

sequential (as in [86]) then information such as the location of the previous or

next data item in the sequence could be revealed.

4. Delete leakage This is the information leaked to the server when a data item

is deleted from the index. The information here is similar to that leaked when

adding a data item. Note that depending on the type of index then it is possible

to not leak any information when adding or deleting a data item. If you consider

a forward index then you will simply need to add or remove the row in the index

that corresponds to that data item.

6.3 Generic solutions for MLSSE using SSE as a black

box

In this section we describe methods of achieving multi-level access in searchable sym-

metric encryption using any generic single user SSE scheme in a black box manner.

These methods can all be applied to any single user SSE scheme. Whether the scheme

is able to accommodate dynamic data or not will be determined by the underlying SSE

scheme.

135

6.3. Generic solutions for MLSSE using SSE as a black box

For each method we look at two scenarios: one where the access levels of the data

items are hidden and one where they are not. We analyse the following factors in each

scenario and compare them to those of the underlying SSE scheme:

• How much storage space is needed on the server.

• Time required for index generation and search.

• Computation required for index generation and search.

• Leakage during setup and search.

In terms of leakage, each scheme leaks the access pattern, which is standard in

most SSE schemes. One can assume an IND-CPA secure symmetric encryption scheme

is used to encrypt the data items themselves, so no information is leaked from the

ciphertexts, except their size (the size can also be hidden if required by padding each

ciphertexts to the same size). However, we consider a structure only searchable encryp-

tion scheme, which does not detail the retrieval and decryption of the encrypted data

items. We also assume that in the “non-hidden access levels” method the access levels

of both the user and the data items are revealed to the server. Hence, in relation to

this variant we only discuss the leakages associated with the search pattern and index

information.

6.3.1 Augmented Index

• Non-hidden access levels: Multi-level access can be supported by augmenting

the index in an SSE scheme. Users in each access level will share a secret key that

is used to generate search queries. A separate index, labelled with the relevant

access level will be created for each access level using the associated secret key.

A user can derive their search queries using their secret key and send them to the

server along with their access level to allow the server to determine which index

to search. The data items only need to be encrypted once and stored on the

server, along with the set of indexes. This method relies on the server to enforce

access control, so is only suitable for honest and honest-but-curious adversarial

models.

• Hidden access levels: This works similarly to the non-hidden access levels case,

however this method is only compatible with SSE schemes that use either forward

or inverted indexes. The indexes are generated as above using the relevant secret

keys and concatenated to create the rows of the indexes and then randomly

shuffled using a pseudo-random permutation, to create one large index. The data

136

6.3. Generic solutions for MLSSE using SSE as a black box

items only need to be encrypted once and stored on the server, along with the

(set of) indexes. Each secret key will only be able to produce valid search queries

for the rows of the index that were generated using that secret key (due to the

robustness of the encryption), hence users will only be able to search over and

retrieve search results corresponding to their access level. Due to the permutation

of the rows in the indexes the server will not know whether a row in the index

produced ⊥ in response to the search query not being satisfied or if the search

query was not valid for that row’s access level. This conceals the access level of

the user from the server.

Storage

The storage required for both hidden and non-hidden access level schemes is increased

by a factor of ` (where ` is the number of access levels) compared with the underlying

SSE scheme. If we have hierarchal access levels there will be repetitions in the indexes

(for example if a data item can be viewed by more than one access level, which is

typical in hierarchal access), this will require more entries in the indexes if using forward

indexes that have entries per data item.

Time

The time required for the index generation phase will be greater by a factor of l than

that of the underlying SSE scheme as multiple indexes need to be produced. The search

time for the non-hidden access level method will be the same as that of the underlying

SSE scheme as the server only searches one of the indexes, whereas the hidden access

levels method requires the server to traverse the entirety of the augmented index in

order to compute the complete search, increasing the search time by a factor of `. The

efficiency of this method could be enhanced by searching the index in parallel. If there

were ` processors then the search could be performed in the same time as using one

processor to search one index.

Computation

The computation required for the index generation phase will be greater by a factor of `

than that of the underlying SSE scheme as multiple indexes need to be produced. The

computation required during the search phase in the non-hidden access levels method

will be the same as the underlying SSE scheme as only one index is searched, whereas

the search computation will increase by a factor of ` in the hidden access levels method.

137

6.3. Generic solutions for MLSSE using SSE as a black box

Leakage

Both methods achieve search pattern privacy across access levels, that is only repeated

queries for a keyword at the same access level is detectable, search queries for the

keyword at a different access level will be indistinguishable. However it might be

possible to link search queries together using the information in the search results. For

example if one set of search results is the subset of another set of search results then

this may indicate that the search queries that generated these search results are for the

same keyword, just at different access levels. There is no additional index information

leakage than that of the underlying SSE scheme. There is no other additional leakage

(other than the assumed leakage as stated at the beginning of the section).

6.3.2 Encrypted/labelled Search Results

• Non-hidden access levels: The scheme is set up analogously to the single user

SSE scheme with one secret key used to create the index and shared between

users. Each identifier in the set of search results is labelled with the relevant

access level. A user submits their access level along with their search query

(computed using the secret key). The server returns only the search results that

satisfy the search query and that the user is authorised to view according to the

labels on the search results. This method requires that the server computes the

results honestly so is only suitable for an honest or honest-but-curious adversarial

model.

• Hidden access levels: The scheme is set up analogously to the single user SSE

scheme in addition to a secret key being generated for each user (not necessarily

distinct). The search results could be encrypted using CP-ABE and each user

would have a CP-ABE secret key corresponding to their access level policy. Al-

ternatively the search results can be encrypted using symmetric encryption with

a different key per access level and a key assignment scheme could also be used so

the user is able to derive all keys at lower access levels to enable them to decrypt

all relevant search results. This could also be done without using a key assign-

ment scheme, however if a search result is viewable by more than one access level

then it would have to be copied and encrypted several times according to the

access levels that are able to access it. The server will return all encrypted search

results that satisfy the user’s search query, however the user will only be able to

decrypt search results corresponding to their access level. This will prevent any

user that is not authorised to view a particular data item from seeing a search

result relating to that data item.

138

6.3. Generic solutions for MLSSE using SSE as a black box

Storage

The size of the indexes themselves is the same as the underlying SSE scheme however

the data stored in the index might increase in size according to the type of encryption

used.

Time

In the hidden access levels method more time will be required by the data owner to

encrypt the search results and the search becomes a two step process for the user as

they need to decrypt the search results they receive from the server.

Computation

There will be extra computation needed in order to encrypt and label the search results

when compared with the costs of the underlying SSE scheme. In the case of hidden

access levels, the user will also be required to decrypt the search results, which increases

the computation required. If a key assignment scheme is used a user will be require to

derive additional decryption keys from their own secret key in order to be able to view

all relevant search results.

Leakage

In the hidden access levels method there is index information leakage as the server and

the user see a full set of encrypted search results (as opposed to only seeing results cor-

responding to the user’s access level). If the sets of encrypted search results are padded

to be of equal size then a user will not be able to tell whether any results they cannot

decrypt are beyond their access level or just padding. This requires extra computation

in the index generation phase and higher communication costs when transferring the

search results to the user, but will leak less information to the user regarding the size

of the search results they are unauthorised to view. In the non-hidden access levels

method there is also index information leakage as the server sees a full set of search

results. The search pattern is revealed to the server in both cases.

6.3.3 Using a trusted third party (TTP)

• Non-hidden access levels: The sorting of the search results is done by the

TTP (see the hidden access levels method) hence there is no benefit to revealing

the access levels to the server.

139

6.3. Generic solutions for MLSSE using SSE as a black box

• Hidden access levels: This is set up in the same way as the single user SSE

scheme with the exception of a TTP that intercepts the search query and the

search results between the user and the server. The secret key used to generate

the index is distributed to each user and used to generate the search tokens. A

user submits their search queries along with their access level to the TTP who

keeps the access level information and transfers the search query to the server.

The server computes the search results as per the single user SSE scheme and

then sends the results to the TTP. The TTP holds information regarding the

access levels of the search results and sorts them according to the user’s access

level. All search results that the user is authorised to view are then returned to

the user.

Storage

No extra storage on the server is needed.

Time

The search time for the user will increase as the results need to filtered by the TTP

before they can be returned to the user. Setting up the TTP will require extra time

when initialising the scheme.

Computation

No extra computation is required for the data owner or server. Extra computation will

be required to set up and maintain the TTP.

Leakage

There is index information leakage in the hidden access levels method as a full set of

search results will be revealed to the server. The access levels and full search results

are revealed to the TTP, however this entity is assumed to be fully trusted. The search

pattern is also revealed to the server and the TTP.

6.3.4 Expanding the Keyword Dictionary

• Non-hidden access levels: The method described below, in the hidden access

levels method, of incorporating the access level into the keywords themselves

conceals the access level, hence this does not apply to the non-hidden access level

setting.

140

6.3. Generic solutions for MLSSE using SSE as a black box

• Hidden access levels: The set of keywords that can be queried over (keyword

dictionary) in a single user SSE can be expanded to include a codeword per access

level for each distinct keyword in the original dictionary. This could be done by

concatenating the access level to the keyword and using this codeword in the

search query, for example. The access level would form part of the user’s secret

key which would prevent users from searching at access levels other than their

own. The index will contain the relevant codewords depending on the data item’s

access level, hence a data item will only satisfy a search query if the access level

and the keyword match those of the search query. The search queries and index

are generated using the same secret key which is distributed to all users. Each

user also receives an access level which they can use to generate the codewords

to compute the search queries, this should be kept secret to each user.

Storage

If a data item can be accessed by several access levels then the number of keywords

used to index that data item will be increased by a factor of l, hence more storage will

be required for the index on the server compared with the single user SSE scheme. If

using an inverted index the index will have more entries as this type of index has an

entry per keyword.

Time

The search time will not be affected by using more keywords, however the time needed

to generate the index will increase by a factor of l.

Computation

Additional computation is needed to create the index due to the additional keywords

that need to be indexed. The user will be required to compute the codeword for each

search query by concatenating their access level with the search keyword before creating

the search query.

Leakage

This method will achieve search pattern privacy between access levels as search queries

for the same keyword at different access levels will be indistinguishable. However as

in Section 6.3.1 the search results may reveal which search queries correspond to the

same keyword. There is no other additional leakage.

141

6.4. Multi-level Searchable Symmetric Encryption

6.4 Multi-level Searchable Symmetric Encryption

In this section we describe our system model and give a formal definition for MLSSE.

Our new construction is based on the ground-breaking work of Curtmola et al. [55] that

uses linked lists to store the identifiers of the data items in an array. Our scheme does

not use an SSE scheme as a black box as in the generic solutions of Section 6.3. The

index in this construction is an inverted index as it stores a linked list per keyword.

Each linked list stores the identifiers of all data items that contain a specific keyword

in an array where each node contains an identifier, a pointer to the next node in the

linked list and a key that is used to decrypt the next node in the list. The server uses

the search query along with a lookup table to locate the starting node of the linked list

in the array and the key used to decrypt this node. This construction lends itself well to

the multi-level access setting as the array does not need to be augmented. There only

needs to be one linked list per keyword, as in the single user scenario, however during

a search the lookup table points the server to the node in the linked list depending on

the access level of the user that submitted the search query. For example a user at a

higher access level will be pointed to a node nearer the start of the linked list, whereas

a user at a lower access level will be pointed to a node further down the linked list.

The nodes at the higher access level cannot be accessed by the server using a search

query at the lower access level as the list can only be traversed in one direction.

6.4.1 System Model

We consider a system model comprising a data owner O, a remote server S, and a set of

m data users U = (u1, ..., um), where m is arbitrarily fixed. The data owner possesses

a set of n data items D = (d1, ..., dn) which they wish to encrypt and outsource to S

whilst authorising other users to search over some data items within D. We present a

structure only multi-level SE system model meaning we only consider the data structure

(index) and we do not encrypt any associated data items. The encryption of the data

items can be carried out separately using a suitable SKE or PKE scheme. The search

results in our model consist of a set of data item identifiers which fulfil the query; these

identifiers can be used to locate the encrypted data items themselves.

To support searching over the encrypted data items, O uploads some encrypted

meta data to the server along with the ciphertexts. It defines a dictionary of key-

words, denoted ∆ = {ω1, ..., ω|∆|}. Each data item can be associated with one or more

keywords in ∆ over which searches can be performed; we denote the plaintext set of

keywords as δD = (δd1 , ..., δdn) where δdi ⊆ ∆ is the set of keywords associated with the

data item di. The data owner produces an encrypted index ID based on δD, over which

142

6.4. Multi-level Searchable Symmetric Encryption

keyword searches are performed by S. Some schemes such as [55] use all distinct key-

words within a word document as the set of keywords associated with the document,

however we present a more generic scheme where the objects to encrypt and search

over are not necessarily word documents but could be an image or video for example,

we refer to these objects as data items. The set of keywords associated with each data

item can be arbitrarily chosen by O and do not necessarily correspond to the actual

words in a word document hence this minimises the risk of a statistical attack on the

index as the frequency of a certain word in a document is not necessarily reflected in

the set of keywords chosen to index the data item.

To prevent authorized users from receiving search results relating to all documents,

O defines an information flow policy P with a labelling function λ mapping each user

u and data item d to an access level, denoted λ(u) and λ(d) respectively, in the totally

ordered set L = {a1, ..., al}. A user with clearance λ(ui) is authorised to search over a

data item with classification λ(dj) if and only if λ(dj) ≤ λ(ui). Note that the access

control in our model is enforced at data item level, meaning that users are restricted

in which data items they are authorised to search over as opposed to restricting the

keywords a user can search for [92]. This is an extension of the standard MSSE system

model [55] where each user is able to search over and receive search results from the

entire set of data items.

Each user that has been authorised by O can submit a search query to the server.

All authorised users are added to the authorised user group G, which is input into the

key generation algorithm initially as an empty set. The group G forms part of the data

owner’s secret key. Note that O can also be enrolled as a ‘user’ in the system. Suppose

user ui with clearance λ(u) wants to search for the keyword ω ∈ ∆; we denote the

generated search query by Tω,λ(u). Let us define Dω to be the set of identifiers of all

data items that contain the keyword ω, and denote by Dω,λ(u) ⊆ Dω the search results

that u is authorised to view — that is, the set of identifiers of all data items idd that

contain ω and where λ(d) ≤ λ(u).

The addition and revocation of users in our model is handled using broadcast en-

cryption (Definition 2.3.9). A user is only able to produce a valid search query if they

are an authorized user in terms of the BE scheme.

To ease notation, let us define the tuple di
aug = (di, idi, δdi , λ(di)) to completely

describe a data item di ∈ D (being the data itself, the identifier, the associated keywords

and the security classification). We denote the information regarding all data items by

Daug = {d1
aug, ..., dn

aug}.

143

6.4. Multi-level Searchable Symmetric Encryption

6.4.2 Formal Definition

Definition 6.4.1. An MLSSE scheme consists of six algorithms defined as follows:

• (KO,KS , PP)
$← KeyGen(1κ, S,P,U ,G): A probabilistic algorithm run by the

data owner O that takes the security parameter κ, server identity S and infor-

mation flow policy P. It produces O’s secret key KO, a server key KS and public

parameters PP .

• ID
$← BuildIndex(Daug,KO, PP): A probabilistic algorithm run by O. It takes the

set Daug and the data owner’s secret key, and outputs the index ID.

• Kui
$← AddUser(ui, λ(ui),KO, PP): A probabilistic algorithm run by O to enrol

a new user into the system. It takes the new user’s identity and access level, and

outputs a secret key for the new user.

• Tω,λ(ui) ← Query(ω,Kui): A deterministic algorithm run by a user with clearance

λ(ui) to generate a search query. It takes as input a keyword ω ∈ Ω (where Ω is

the set of keywords) and the user’s secret key and outputs a search query Tω,λ(ui).

• Rω,λ(ui) ← Search(Tω,λ(ui), ID,KS): A deterministic algorithm run by S to search

the index for data items containing a keyword ω. It takes as input the index and

a search query submitted by a user and returns the search results Rω,λ(ui) which

consists of either a set of identifiers of ciphertexts Dω,λ(ui) containing ω such that

λ(dj) ≤ λ(ui) (where λ(ui) is the access level of the user that submitted the search

query) or ⊥.

• (KO,KS)
$← RevokeUser(ui,KO, PP): A probabilistic algorithm run by O to re-

voke a user from the system. It takes the user’s id, the data owner’s and server’s

secret keys, and outputs updated owner and server keys.

An MLSSE scheme is correct if for all κ ∈ N, for all policies in P, for all KO,KS

output by KeyGen(1κ,P), for all Daug, for all ID output by Buildindex(Daug,KO), for

all ω ∈ ∆, for all u ∈ U , for all Ku output by AddUser(KO, u, λ(u), PP), we have that

Search(ID, Tω,λ(u)) = Dω,λ(u).

If G = ∅ along with the restrictions above then we have correctness if:

Search(ID, Tω,λ(um)) =⊥ .

144

6.4. Multi-level Searchable Symmetric Encryption

6.4.3 Security Model

In terms of security for SSE schemes it is ideally required that given the outsourced

metadata ID, an adversary playing the role of the server cannot learn any information

regarding the data set D (i.e. a curious server cannot learn information about the data

it stores). However, most SSE schemes in the literature leak some information in a

trade off for increased efficiency. For example, for a set of search queries {T1, ..., Tq},
the outcomes of these searches {R1, ..., Rq} could be leaked to an adversary, which is

the server in our case; this is referred to as the access pattern (Definition 3.2.1). The

access pattern defines the link between a search query and the search results it produces

and can be thought of as a database where each row stores two values: a search query

and a corresponding data item identifier of a data item that satisfies the search query.

As well as the access pattern most efficient SSE schemes also leak the search pattern

(Definition 3.2.2) which reveals repetitions in the set of search queries made to the

server. In most single user SSE schemes, [46, 47, 55, 68, 85, 86], search queries are

formed deterministically which enables the server to ascertain whether a particular

search query has been used previously.

In our scheme search queries for the same keyword that are produced by users

with different access levels are indistinguishable from one another. That is, a search

query for a keyword ω from a user ui with access level λ(ui) is indistinguishable from

a search query for ω from a user uj with access level λ(uj) for λ(ui) 6= λ(uj). This

means that from the queries alone an adversary is unable to deduce how many times a

certain keyword has been searched for overall, it can only deduce how many times the

same keyword has been searched for within each access level. We alter the definition

of search pattern to reflect this:

Definition 6.4.2. (Search pattern (multi-level access)) For a sequence of q search

queries {Tω1,λ(u1), ..., Tω1,λ(uq)} where ωi and ωj or λ(ui) and λ(uj) are not necessarily

distinct for i 6= j, and λ(ui) is the access level of the user submitting the ith query,

along with an index ID, the search pattern is defined as a q×q symmetric binary matrix

SP (ID, q) such that for 1 ≤ i, j ≤ q:

SP (ID, q)i,j = 1 ⇐⇒ Tωi,λ(ui) = Tωj ,λ(uj).

Intuitively, the search pattern reveals when the ith and jth queries are the same, which

happens when queries are issued for the same keyword by users with the same access

level.

In terms of access pattern we also reduce the amount of information leakage com-

pared with standard single user or multi-user SSE schemes such as [46, 47, 55, 68,

145

6.4. Multi-level Searchable Symmetric Encryption

85, 86]. In particular we do not reveal whether a data item contains the keyword ωi

associated with a search query unless the access level of that data item is less than or

equal to that of the user ui that generated the search query, meaning that an adversary

cannot see a full set of search results. We alter the definition of access pattern to reflect

this:

Definition 6.4.3. (Access pattern (multi-level access)) For a sequence of q search

queries {Tω1,λ(u1), ..., Tωq ,λ(uq)} where ωi and ωj or ai and aj are not necessarily distinct

for i 6= j, and λ(ui) is the access level of the user submitting the ith query, the access

pattern is:

AP = {R1, ...,Rq}.

Where Ri =⊥ if λ(ui) < λ(dj) for all dj ∈ D, or Ri = Rωi,λ(ui) otherwise. The access

pattern is the set of search results produced by the sequence of q queries.

However when a search query is paired with the search results it generates (the

access pattern) then an adversary may be able to correlate which search queries are for

the same keyword by looking at the intersections of the search results. For example if

one set of search results is a subset of another set of search results then this may imply

that the two search queries used to generate these results are for the same keyword.

An adversary may eventually be able to build up a complete set of search results for a

particular keyword, which is equivalent to the leakage produced by a search query in a

single user SSE scheme.

The hierarchal relationships between the data item identifiers i.e. which identifiers

represent data items at higher access level than others could also be leaked in the same

way. If an adversary has ascertained that two sets of search results Rω,ai ⊂ Rω,aj
represent searches for the same keyword ω, then an adversary will be able to conclude

that identifiers in the set Rω,aj \Rω,ai are at a higher access level than those in Rω,ai .
We note that unless the search results are padded in some way this leakage is

inevitable. Padding search results is not standard in SSE schemes as it requires post-

processing of the search results by the user. Hence we do not pad the search results in

our system model in order to maintain an efficient scheme.

From this we can see that initially our scheme leaks less information about the

search pattern and access pattern than a single user SSE scheme, however over time as

more queries are generated the information leakage tends to that of a single user SSE

scheme. The information leakage relating to a keyword ω, i.e. the access patterns for

search queries corresponding to ω, only reaches that of a single user SSE scheme once a

search query has been generated at each possible access level, and our leakage remains

lower up until this point.

146

6.4. Multi-level Searchable Symmetric Encryption

Leakage functions

In MLSSE we also need to consider the leakage of information from data items during a

search that do not correspond to the user’s access level associated with the search query,

in particular we do not reveal whether a data item contains the keyword associated

with a search query unless the access level of that data item is less than or equal to

that of the user that generated the search query. We define the following two leakage

functions to precisely capture the leakage of information in MLSSE, from the output

of the setup phase (KeyGen and BuildIndex) and the search phase (Query and Search):

1. LMLSSE
Setup (ID) = {|ID|, id(ω, a)}

2. LMLSSE
Search (ID, Tωi,λ(ui)) = {id(ωi, λ(ui)), AP (ID, Tωi,λ(ui), SP (ID, Tωi,λ(ui))}

During the setup phase the only information we expect to be leaked is the size

of the index and a codeword for each keyword and access level pair, which we denote

id(ω, a). This codeword is a ciphertext that is unique for each each keyword and access

level pair. During the search phase we have additional leakage in the form of the access

pattern and search pattern (Definition 6.4.3 and Definition 6.4.2 respectively) along

with the codeword associated with each search query.

We define an additional notion of search leakage called the maximal search leakage

with respect to an index ID, which we use to define the notion of multi-level security.

This is the leakage resulting from every possible keyword search on ID with a given

access level λmax, as follows:

Definition 6.4.4 (Maximal search leakage). Consider an access level λmax. The max-

imal search leakage on an index ID associated with access level λmax is:

LλmaxSearch(ID) = LSearch(ID, {Tωi,λmax}∀ωi∈∆).

We now formalise the notions of security we require in MLSSE. We consider security

against chosen keyword attacks and secure revocation of users such that the ability to

perform searches can be removed. We use cryptographic games to formalise our notions

of security. The adversary A for each game is run by a challenger C. The adversary is

modelled as a probabilistic polynomial time (PPT) entity whose inputs are chosen to

reflect the information available to a realistic adversary, this information is defined by

the leakage functions.

The multi-level access game (Game 6.1) and the revocation game (Game 6.2) have

the following inputs: the multi-level access scheme defined in Definition 6.4.1, which

we denote by MLSSE along with a set of other inputs: the security parameter 1κ, the

147

6.4. Multi-level Searchable Symmetric Encryption

universe of user identities U , the access policy P, the function λ and ∆ (all as defined

in Section 6.4.1). We denote this set of inputs as X. The set Daug represents the set

of meta-data used to construct the index as defined in Section 6.4.1 and LλmaxSearch(ID)

represents the maximal search leakage as defined in Definition 6.4.4.

Multi-level Access

Our first security notion, in Game 6.1, is that of multi-level access which requires that

a user, u, cannot receive search results or learn information relating to data items di

such that λ(u) < λ(di). More specifically, a server colluding with several users cannot

learn anything about the index beyond the specified leakage according to the corrupt

users’ access rights. This notion is similar to the benchmark notion of security called

IND2-CKA which was established by Curtmola et al. in [55].

The challenger sets up the system, including instantiating several global variables

(which the challenger can use in the main game and in oracle functions, but which the

adversary cannot see): λmax is the maximum access level of any corrupted user and

chall is a Boolean flag to show whether the challenge parameters have been generated

yet. The adversary is given the security parameter, access control policy, server key and

the public parameters, as well as access to the following oracles, where the parameters

represented by · are provided by the adversary, and the adversary is given the resulting

user keys and search results:

• The AddUser(·, λ(·),KO, PP) oracle allows the adversary to request that a user

is added to the system, and the adversary corrupts this user by receiving the user

key. If the challenge has not yet been generated, then the challenger adds the

requested user, checks if λmax needs updating and runs the AddUser algorithm.

Otherwise, if the challenge has been generated, the above procedure is carried

out only if the new user’s access level is less than or equal to λmax. This oracle

is described in Game 6.1.

• The RevokeUser(·,KO, PP) oracle allows the adversary to revoke a user from

the system. The oracle simply runs the RevokeUser algorithm on the inputs

supplied by the adversary. We note that querying RevokeUser could potentially

alter the value of λmax in Game 6.1. We do not consider this option as revoking a

user would reduce the amount of access that the adversary has, hence a rational

adversary would have no interest in doing this.

• The BuildIndex(·,KO, PP) oracle allows the adversary to create indexes of

their choosing. It simply runs BuildIndex on the adversary’s input and returns

the output to the adversary.

148

6.4. Multi-level Searchable Symmetric Encryption

We denote the adversary A as having access to oracles AddUser(·, λ(·),KO, PP),

RevokeUser(·,KO, PP) and BuildIndex(·,KO, PP) as AO.

After a polynomial number of queries, the adversary outputs two data sets (Daug0 ,Daug1)

which must have identical maximal search leakage for the maximal access level, λmax,

of any corrupted user — the adversary cannot choose data sets where a user that it has

corrupted could make any query that legitimately distinguishes the data sets as this

would count as a trivial win. Whilst this may appear to be a strong assumption, we

believe it to be the minimal assumption necessary to avoid trivial wins in the multi-

user setting. The main issue is that, unlike Curtmola et al. [55], in the multi-user

setting, it is necessary to consider the server colluding with a set of users (but not the

data owner); as such, the adversary is able to perform the roles of the server and of

an authorised user and therefore may produce arbitrary queries and perform searches

himself. Thus, the challenger in the game is unable to monitor which searches have

been performed and hence cannot determine whether the traces of the actual queries

on both data sets are equal, and instead must rely on the stronger assumption that

no possible authorised query can distinguish the data sets. Note that Van Rompay et

al. [112] deal with the multi-user case without this assumption since they deal with

single word indexes and have a proxy through which all queries are made.

The challenger sets the challenge flag to true and chooses a random bit b which

determines the data set used to form an index. The adversary is given the index and

oracle access AO as defined above and must determine which data set was used.

Definition 6.4.5. (Multi-level Access (MLA)) Let MLSSE be a multi-level searchable

symmetric encryption scheme where κ ∈ N is the security parameter, for an information

flow policy P, and A a PPT adversary. The advantage of A is:

AdvMLA
A (MLSSE, X) = |P[ExpMLA

A [MLSSE, X] = 1]− 1

2
|,

where ExpMLA
A [X] is defined in Game 6.1. We say that MLSSE is secure against non-

adaptive chosen keyword attacks in the sense of Game 6.1 if for all A, all k ∈ N and

all P:

AdvMLA
A (MLSSE, X) ≤ negl(k),

for a negligible function negl.

Revocation

In MLSSE, as with other multi-user SSE schemes, we need to consider user revocation to

remove a user’s ability to submit valid search queries to the server, and hence receive

149

6.4. Multi-level Searchable Symmetric Encryption

ExpMLA
A [MLSSE, X]:

1 : λmax ←⊥
2 : chall← false

3 : (KO,KS , PP)←$KeyGen(1κ, S,P,U ,L)
4 : (Daug0 ,Daug1 , st)←$AO(X,KS , PP)

5 : ID0 ←$BuildIndex(Daug0 ,KO, PP)

6 : ID1 ←$BuildIndex(Daug1 ,KO, PP)

7 : if Lλmax

Search(ID0) 6=Lλ
max

Search(ID1)

8 : return 0

9 : chall← true

10 : b←$ {0, 1}
11 : b′ ←$AO(IDb , st)

12 : if b′ = b return 1

13 : else return 0

Oracle AddUser(u, λ(u),KO, PP)

1 : if chall = false

2 : if λ(u) > λmax

3 : λmax ← λ(u)

4 : return AddUser(u, λ(u),KO, PP)

5 : else if λ(u) > λmax

6 : return ⊥
7 : else return AddUser(u, λ(u),KO, PP)

Game 6.1: Adaptive multi-level access game for MLSSE

search results. We capture this in Game 6.2. The challenger sets up the system,

by running KeyGen to produce the data owner’s key, the server key and the public

parameters. The adversary is given the input X along with the public parameters and

the server key KS and selects a data set (along with associated access levels, keywords

and identifiers). The challenger then creates the index which is transferred to the

adversary. The adversary is given access to the following oracles where the parameters

represented by · are provided by the adversary, and the adversary is given the resulting

user keys and search results.

• The AddUser(·, λ(·),KO, PP) oracle allows the adversary to add a user to the

system. It runs AddUser on the adversary’s inputs u, λ(u) and returns either the

output of AddUser(u, λ(U),KO, PP) if user u is not already an authorised user

or ⊥ if the user is already authorised. The oracle is run as depicted in Game 6.2.

• The Search(·, ID,KS) oracle allows the adversary to search the index for a

particular keyword. The adversary computes the search query for the particular

keyword using Query and sends it to the oracle as input.

• The RevokeUser(·,KO, PP) allows the adversary to revoke a user from the

system. The oracle runs the RevokeUser algorithm on the input u supplied by the

adversary if u is an authorised user; otherwise it outputs ⊥. The oracle is run as

depicted in Game 6.2.

• The BuildIndex(·,KO, PP) oracle allows the adversary to create indexes of

their choosing. It simply runs BuildIndex on the adversary’s input and returns

the output to the adversary.

150

6.4. Multi-level Searchable Symmetric Encryption

ExpRevoke
A [MLSSE, X]:

1 : (KO,KS , PP)←$KeyGen(1k, S,P,U ,L)
2 : (Daug, st)← AO(X,PP)

3 : ID ←$BuildIndex(Daug,KO, PP)

4 : st←$AO(st)

5 : for u ∈ G
6 : (KO, PP)←$RevokeUser(u,KO, PP)

7 : Tω ←$AO(st, PP)

8 : R← Search(Tω, ID,KS)

9 : if R 6=⊥
10 : return 1

11 : else

12 : return 0

Oracle AddUser(u, λ(u),KO, PP)

1 : if u ∈ G
2 : return ⊥
3 : else

4 : G ← G ∪ u
5 : return

6 : AddUser(u, λ(u),KO, PP)

Oracle RevokeUser(u,KO, PP)

1 : if u ∈ G
2 : G ← G\u
3 : return

4 : RevokeUser(u,KO, PP)

5 : else

6 : if u /∈ G
7 : return

8 : ⊥

Game 6.2: Adaptive revocation game for MLSSE

We denote the adversary A as having access to oracles AddUser(·, λ(·,KO, PP),

RevokeUser(·,KO, PP), Search(·, ID,KS) and BuildIndex(·,KO, PP) as AO. Af-

ter a polynomial number of queries, the challenger revokes all users that were queried

to the AddUser(·, λ(·),KO, PP) oracle but were not subsequently queried to the

RevokeUser(·,KO, PP) oracle (i.e. all users for which the adversary holds a valid user

key). The adversary must then produce a search token Tω which, when used as input

to the Search algorithm, does not produce ⊥, i.e. the adversary must produce a valid

search query even though it does not hold a non-revoked key.

Definition 6.4.6. (Revocation) Let MLSSE be a multi-level searchable symmetric en-

cryption scheme where k ∈ N is the security parameter, for an information flow policy

P, and A a PPT adversary. We define the advantage of A in Game 6.2 as:

AdvRevoke
A (MLSSE, X) =

∣∣P[ExpRevoke
A [MLSSE, X] = 1]

∣∣.
We say that MLSSE achieves revocation if for all A, all k ∈ N and all P:

AdvRevokeA (X) ≤ negl(k).

151

6.5. Construction

6.5 Construction

Our construction MLSSE is an adaptation of the scheme of Kamara et al. [86], which is

based on the construction of the influential inverted index scheme SSE-1 by Curtmola

et al. [55].

Informally, MLSSE uses an array A of linked lists, along with a look-up table T
to index the encrypted data. This produces a sequential search that lends itself well

to the hierarchical access rights on the data items that we require. For each keyword

ωi ∈ ∆, we define a list Lωi which stores the identifiers for all data items containing

that keyword and is ordered according to the access level of the data items — data

items with the highest classification are placed at the beginning of the list, and those

with the lowest classification at the end. Each list Lωi is encrypted and stored in A as

a linked list. During the search phase the look-up table T is used to point the server

to the correct node in the array depending on the information in the search query i.e.

which keyword was searched for and what access rights the user that submitted the

search query has. This node is decrypted using information in the search query and

the node itself, revealing the address of the next node in the linked list. The server

may continue to decrypt all other relevant nodes in the linked list, obtaining the set of

search results relevant to the user’s searched keyword and access level.

The key difference between our scheme and that of [86] is that, rather than pointing

to the beginning of each linked list, the entry in T will point to the appropriate position

within the linked list according to the access rights of the querier (recall that the list

is ordered by access levels). Since it is not possible to move backwards through the

encrypted lists, as only a pointer and decryption key are provided for the next node

in the current node, the only search results available are those contained beyond this

point in this list — that is, identifiers for those documents containing the keyword and

whose classification is at most that of the querier, as required by the information flow

policy.

Let BE be an IND-CPA secure broadcast encryption scheme. We define the fol-

lowing pseudorandom functions (PRFs), where the keys are represented by the first

entry:

F : {0, 1}κ × {0, 1}∗ → {0, 1}k,

G : {0, 1}κ × {0, 1}∗ → {0, 1}∗,

P : {0, 1}κ × {0, 1}∗ → {0, 1}k,

H : {0, 1}κ × {0, 1}∗ → {0, 1}∗,

152

6.5. Construction

and a strong pseudorandom permutation (PRP), where the key is the first entry:

φ : {0, 1}κ × {0, 1}κ × {0, 1}∗ × {0, 1}κ × {0, 1}κ → {0, 1}κ × {0, 1}∗ × {0, 1}κ,

A is a |∆| × |L| array and T is a dictionary of size |∆| · |L|. We denote the address of

a node N in A as addrA(N).

Let λ : {U ∪ D} → L map users and data items to their relevant access levels as

described in Section 6.4.1. We define a function γ which outputs three ordered lists

Lωi ,Xωi and Nωi given the set of identifiers Daug and the array A. We refer to the nth

item in a list Lωi as Lωi [n]. The list Lωi contains identifiers of data items in Dωi ordered

from the identifiers with the highest to the lowest access levels, the list Nωi contains

the addresses of |Lωi | empty nodes chosen randomly from A and the list Xωi contains

the indices of the identifiers in Lωi where each access level starts. For example, suppose

we have an ordered list of identifiers Lωi = (id1, id2, id3, id4, id5) where:

a1 = λ(id1) = λ(id2) = λ(id3) > λ(id4) = λ(id5) = a3.

Then we have that Xωi [3] = 4, which says that the list of nodes with access level at

most a3 starts at the fourth entry in Lωi . There is an entry per each access level in

Xωi , even if two access levels have the same starting point in Lωi ; from the example

above we can see that Xωi [2] = Xωi [3] = 4. If an access level is not authorised to view

any data items in Dωi then the entry corresponding to that access level (as well as the

entries corresponding to all access levels below it) in Xωi is set to ⊥. An identifier of

a data item di ∈ Dωi will inherit the access level label of the respective data item, i.e.

λ(iddi) = λ(di).

The KeyGen algorithm of MLSSE initialises the system and generates the keys

KO,KS , along with the public parameters, PP. The key KO includes the secret key for

the BE scheme and the sets of |L| keys for each pseudo-random function: F,G and P

and the key for the pseudo-random permutation φ (referred to as the data owner’s

state, stO) as well as the authorized user group G. The server is enrolled and its se-

cret key is also generated. PP includes the information flow policy Pand the public

parameters for BE, PPBE.

The BuildIndex algorithm initializes a set free which consists of all nodes in the

array A. BuildIndex considers each keyword contained in the dataset in turn. For each

keyword ωi, the function γ generates Lωi ,Xωi and Nωi . The free list is then updated

according to which nodes have been chosen by γ. The nodes in the array that form the

linked lists consist of the identifier from Lωi of a data item containing ωi, the address

153

6.5. Construction

(KO,KS , PP)←$KeyGen(1k, S,P,U ,L,G)

1 : for i ∈ |L|
2 : kai,1, kai,2, kai,3 ←$ {0, 1}k

3 : (PPBE, kBE)←$BE.KeyGen(1k, |U|)
4 : stO ←$ {0, 1}k

5 : kS ←$BE.Add(kBE, S)

6 : G ← {S}
7 : stS ←$BE.Enc(stO,G, kBE)
8 : return

9 : KS ← (ks, stS)

10 : KO ← ({kai,1}i∈[|L|], {kai,2}i∈[|L|], {kai,3}i∈[|L|], kBE, stO,G)
11 : PP ← (P, PPBE)

Algorithm 6.1: KeyGen algorithm for MLSSE

ID ←$BuildIndex(Daug ,KO, PP)

1 : free← {addr(Ni)}[i∈|A|]

2 : for 1 ≤ i ≤ |W|
3 : (Lωi ,Xωi ,Nωi)← γ(Dωi)

4 : free← free \ Nωi

5 : for 1 ≤ j ≤ |Nωi | − 1

6 : rj ←$ {0, 1}k

7 : A[Nωi [j]]←
((

Lωi [j],Nωi [j + 1], Pkλ(Lωi [j+1]),3
(ωi)

)
⊕H

(
Pkλ(Lωi [j]),3

(ωi), rj
)
, rj

)

8 : r|Nωi | ←$ {0, 1}k

9 : A[Nωi [|Nωi |]]←
((

Lωi [|Nωi |], 0, 0)⊕H
(
Pkλ(Lωi [|Nωi |]),3

(ωi), r|Nωi |
)
, r|Nωi |

)

10 : for 1 6 ` 6 |L|
11 : if Xωi [a`] 6=⊥
12 : T[Fka`,1

(ωi)]←
(
Nωi

[
Xωi [a`]

]
⊕Gka`,2

(ωi)
)

13 : else

14 : T[Fka`,1
(ωi)]←⊥

15 : return

16 : ID ← (A,T)

Algorithm 6.2: BuildIndex algorithm for MLSSE

in the array of the next node in the linked list, the key used to decrypt the following

node in the linked list and a random bit string ri ∈ {0, 1}κ. The identifier, address

of the next node and the key used to decrypt the following node in the linked list are

XORed with the output of a PRF H in order to encrypt this information. For the first

154

6.5. Construction

node in the linked list the input of H is the decryption key for the current node (which

corresponds to an access level and keyword and forms part of the search query) along

with ri), hence the information stored in the node can only be decrypted by the server

if the server has a search query generated by a user who is authorized to view the data

item whose identifier is stored at that node. The decryption key for all subsequent

nodes is contained in the previous node of the linked list. BuildIndex then proceeds to

create the look-up table T. Unlike prior schemes [55], each user may have a different

access level and thus the starting points for search results within the linked lists may

vary; a search query made by a user with a higher access level should traverse more of

the list than that of a user with lower access rights (the user is authorised to search

more data items). Table T has an entry for each access level/keyword pair containing

the address of a node in A, which is the node in the linked list Lωi from which the user

with a specified access level is authorised to decrypt. If an access level is not authorised

to view any part of the linked list then the value in T is set to ⊥. Finally the index

ID = (A,T) is returned.

Tω,λ(u) ← Query(ω,Ku)

1 : Retrieve stS from server

2 : st′O ← BE.Dec(ku, stS)

3 : if st′O =⊥
4 : return ⊥
5 : tω,λ(u) ← (Fkλ(u),1(ω), Gkλ(u),2(ω), Pkλ(u),3(ω), 0

32)

6 : return

7 : Tω,λ(u) ← φst′
O
(tω,λ(u))

Algorithm 6.3: Query generation algorithm for MLSSE

The Query algorithm for MLSSE generates a search query for a user u to search for

a keyword w. The user first retrieves the current server state, stS , from the server and

attempts to decrypt the current server state stS using their secret key ku; we denote

the output of the decryption by st′O. Note that if u is not authorised then decryption

will return ⊥, if this is the case Query outputs ⊥. The query itself comprises four parts.

The first is the output of the PRF F applied to the keyword ω, keyed with the secret

key for F associated with the user’s access level kλ(u),1. This part of the query is used

to locate the relevant entry in T. The second part is the output of the PRF G applied

to the keyword ω and is used to mask the entry in T in order to locate the user’s

relevant starting position in the linked list corresponding to ω in A. The third part is

the output of the PRF P applied to the keyword ω, which is used to decrypt the first

relevant node in A according to the user’s access level. The fourth part of the query

155

6.5. Construction

is composed of κ 0-bits, this is to ensure that under valid inputs the set of possible

outputs of the PRP is always sparse. The PRP φ is applied to the search query, using

st′O as the key.

Rω,λ(u) ← Search(Tω,λ(u), ID,KS)

1 : st′O ← BE.Dec(KS , stS)

2 : Parse φ−1
st′

O
(Tω,λ(u)) as (τ1, τ2, τ3, τ4)

3 : if τ4 6= 0

4 : return ⊥
5 : Rω,λ(u) ← ∅
6 : if T[τ1] = ⊥
7 : return ⊥
8 : v2 ← 1

9 : while v2 6= 0

10 : Parse T[τ1]⊕ τ2 as y

11 : Parse A[y] as (z1, z2)
12 : Parse z1 ⊕H(τ3, z2) as (v1, v2)

13 : Rω,λ(u) ← Rω,λ(u) ∪ {v1}
14 : return Rω,λ(u)

Algorithm 6.4: Search algorithm for MLSSE

The Search algorithm finds data item identifiers associated with the searched key-

word from the subset of data item identifiers the user is authorized to search. The

server decrypts stS and applies the inverse of the PRP φ to the query it received; it

parses the result as (τ1, τ2, τ3, τ4). The server then looks up entry T[π1] and if that

entry is not equal to ⊥, the server XORs the value with π2 and parses the resulting

value as y. The server looks up the node at A[y] and decrypts it using the output of

H (which takes as input π3 along with z2).

The AddUser algorithm grants a user u the ability to search the index at a specific

access level. The user is added to the set G of authorized users and a BE key, ku, is

derived for the new user. A new value for stO is created and encrypted using the BE

scheme to create a new server state, stS . The server key is updated to include the

current value of stS . The new user is given their user secret key Ku which consists of

their BE user key, ku, and the secret keys associated with their access level kλ(u),1, kλ(u),2

and kλ(u),3. The data owner’s key, KO is updated to include the current version of stO.

The RevokeUser algorithm revokes a user’s search privileges. The user is removed

from G and a new value for stO is selected and encrypted using the current version of

G to form the new server state stS . The server key is updated to include the current

version of stS and the updated version of KO is output.

156

6.6. Proofs of Security

(Ku)←$AddUser(u, λ(u),KO, PP)

1 : G ← G ∪ {u}
2 : ku ←$BE.Add(kBE, u)

3 : st′O
$← {0, 1}κ

4 : stO ← st′O

5 : st′S ←$BE.Enc(stO,G, kBE)
6 : stS ← st′S

7 : Update server key with current value of stS

8 : return

9 : Ku ← (ku, kλ(u),1, kλ(u),2, kλ(u),3)

10 : KO ← ({kai,1}i∈[|L|], {kai,2}i∈[|L|], {kai,3}i∈[|L|], kBE, stO,G)

Algorithm 6.5: Add user algorithm for MLSSE

(KO)←$RevokeUser(u,KO)

1 : G ← G \ {u}

2 : st′O
$← {0, 1}κ

3 : stO ← st′O

4 : st′S ←$BE.Enc(stO,G, kBE)
5 : stS ← st′S

6 : Update server key with current value of stS

7 : return

8 : KO ← ({kai,1}i∈[|L|], {kai,2}i∈[|L|], {kai,3}i∈[|L|], kBE, stO,G)

Algorithm 6.6: Revoke user algorithm for MLSSE

Theorem 6.5.1. Let MLSSE be the multi-level access SSE scheme defined in Algo-

rithms 6.1-6.6. Given an IND-CPA secure broadcast encryption scheme BE, the pseu-

dorandom functions F,G, P,H and a pseudorandom permutation φ, then MLA is secure

in the sense of multi-level access (Definition 6.4.5) and revocation (Definition 6.4.6).

6.6 Proofs of Security

In this section we give the proofs of security for our construction in Section 6.5.

Lemma 6.6.1. MLSSE as defined in Algorithms 6.1-6.6 is secure against chosen key-

word attacks (Game 6.1) under the same assumptions as in Theorem 6.5.1.

Proof. Suppose AMLA is an adversary with non-negligible advantage against Game 6.1

when instantiated with Algorithms 6.1-6.6. We shall reduce the MLA security to the

157

6.6. Proofs of Security

IND-CPA security of a symmetric encryption scheme Θ, which is defined as follows [87]:

Definition 6.6.2. Let F : {0, 1}κ×{0, 1}∗ → {0, 1}k, be a PRF. We define a symmetric

key encryption Θ scheme for messages of length k as follows:

• K $← Θ.KeyGen(1κ): A probabilistic algorithm that takes as input a security

parameter κ and generates a key K
$← {0, 1}κ.

• c $← Θ.Enc(K,m): A probabilistic algorithm that takes as input the key K and

a message m ∈ {0, 1}κ. It chooses a value r
$← {0, 1}κ and outputs a ciphertext

c =< r, FK(r)⊕m >.

• m ← Θ.Dec(c,K): A deterministic algorithm that takes as input a ciphertext

c =< r, s > and the key K, and outputs the plaintext message m = FK(r)⊕ s.

Theorem 6.6.3. If F is a PRF, then Θ is a fixed-length symmetric key encryption

scheme for messages of length k that has indistinguishable encryptions under a chosen

plaintext attack.

Proof. The proof for theorem 6.6.3 is in the textbook Introduction to Modern Cryp-

tography by Katz and Lindell [87]. The ciphertext in this scheme is made up of two

parts: the output of a PRF and a random k-bit value. Intuitively the security of the

scheme holds, since the output of a PRF is indistinguishable from random to an adver-

sary who observes a ciphertext, hence this scheme is similar to the one-time pad. The

security relies on the value r not being used in a previous encryption, but since r is

chosen at random every time a ciphertext is created, the probability of this happening

is negligible in κ.

Theorem 6.6.4. If F is a PRF then Θ is a fixed-length symmetric key encryption

scheme for messages of length k that has anonymous encryptions under a chosen plain-

text attack, meaning given two ciphertexts one cannot ascertain whether they were en-

crypted under the same key or not.

Proof. This result can be found in [63]. The anonymity of Θ follows directly from the

pseudorandomness of F .

In our construction, we use an instance of Θ to encrypt the nodes of the array. Since

there is only a single encryption key K in the IND-CPA game associated with Θ, and

because we use multiple keys for the instance of Θ in our construction, we must first

define a sequence of games that interpolate from Game 6.1 to a modified game where

all encryptions of index components that differ between the two challenge pre-indexes

are performed under the same encryption key.

158

6.6. Proofs of Security

Let G0 be the real multi-level access game (Game 6.1). Now, observe that a rational

adversary in Game 6.1 (that gains a non-negligible advantage) will certainly choose

Daug0 and Daug1 such that there exists at least one element that is both different in

each data set (to permit distinguishing) and which is labeled by λ? > λmax (since the

maximal query leakage must be equal up to λmax). Let us denote by X = {(x0,i, x1,i)}
the set of pairs of data item identifiers (x0,i, x1,i), where xj,i ∈ Daugj , that are labelled

by any label λ? > λmax, and where xj,i 6∈ Daug1−j . Let us denote each pair in X by

Xi = (x0,i, x1,i). Informally, X is the set of pairs of identifiers which differ in the

challenge data sets. When BuildIndex is run, γ creates a list of identifiers of data items

that contain a keyword ω. A separate list is created for every keyword. These lists

are then ordered from the identifiers with the highest access levels to those with the

lowest; these ordered lists are called Lωi , i ∈ [|∆|]. A set of nodes is then chosen at

random from A to store each of these identifiers (along with other data). Let yb,i

denote the set of nodes holding the identifiers in xb,i. We have that |yb,i| is equal to the

number of distinct keywords in the data item associated with the identifier in xb,i. Let

Z = {yb,1, ..., yb,|X|}, hence |Z| =
∑|X|

i=1 |yb,i|. We can thus also represent Z as follows:

Z = {zb,1, ..., zb,|Z|}.
We define a sequence of |Z| games, denoted Gi for i = 1, ..., |Z|. Game Gi is defined

in exactly the same way as Game Gi−1, with the exception that, for a random bit b,

the node zb,i ∈ Z is encrypted under a fixed key k? rather than the key defined by the

output of the PRF P during BuildIndex. For k = 1 to |Z|, we show that no efficient

distinguisher exists that can distinguish Gk from Gk−1.

Suppose, in search for a contradiction, that such a distinguisher Dk does exist with

non-negligible advantage δ. We show that, using Dk as a subroutine, one can construct

an efficient adversary Aanon that can break the anonymity of Θ.

For the anonymity game, the challenger Canon generates two keys, k and k′, where

k
$← {0, 1}κ and k′ is the output generated by the PRF P in BuildIndex that is used as

the key for the PRF H associated with node zb,i. Canon also chooses a random bit b?.

It then offers Aanon access to two encryption oracles, Enc1 and Enc2: if b? = 0, then

each oracle uses a different encryption key (k or k′); if b? = 1, both oracles use the

same key k.

Aanon simulates either Game Gk−1 or Game Gk for Dk. To do so, Aanon creates

the Game Gk−1, with the following modification. Let Y = {zb,i for i < k}. When

running BuildIndex and encrypting the node in Y , Aanon does not derive the key for

the PRF H using the PRF P or perform the symmetric encryption. Instead, the node

to be encrypted is sent to the oracle Enc1. The challenger returns an encryption under

a fixed key k, and this ciphertext is used in the index.

159

6.6. Proofs of Security

When running BuildIndex and encrypting the identifier relating to item zb,k, Aanon
does not derive the key for the PRF H using the PRF P or perform the symmetric

encryption. In this case, the plaintext is sent to the oracle Enc2. Aanon receives back

either an encryption under key k (if b? = 0) or key k′ (if b? = 1).

Note that, if b? = 0, then Gk is identical to Gk−1. Otherwise, the difference between

the games is precisely that the encryption of zb,k is performed under a different key k′ to

all items in Y which are encrypted under k. Thus, if Dk can distinguish Gk from Gk−1,

they are able to identify whether zb,k is encrypted under the same key as all items in

Y , or not. Since all of these encryptions were performed using the oracles provided

by the anonymity game, Aanon can forward Dk’s output to break the anonymity of

the symmetric encryption scheme with the same non-negligible advantage δ. Clearly,

since we assume that the encryption scheme is anonymous, such a distinguisher cannot

exist and all possible efficient distinguishers must have at most a negligible advantage

AdvDk .

Now, given that each of the above game hops has a negligible distinguishing ad-

vantage, the total game hop from G0 to Gk has negligible distinguishing advantage

(
∑κ

i=1AdvDi). We can therefore run an adversary against Game 6.1 against Game Gk

instead, and it will fail with at most a negligible probability. We hence reduce Game

Gk to the IND-CPA security of the symmetric key encryption scheme Θ.

Let C be a challenger for an adversary AINDCPA in the IND-CPA security game

of the symmetric encryption scheme Θ = (Θ.KeyGen,Θ.Dec,Θ.Dec). AINDCPA will in

turn act as the challenger in the multi-level access game against an adversary AMLA.

SupposeAMLA is an adversary that can win Game Gk for a policy P with non-negligible

probability δ. We construct an adversary AINDCPA that uses AMLA as a subroutine

that can break the IND-CPA security of Θ as follows:

• C runs Θ.KeyGen to generate a symmetric key k?, chooses a bit b uniformly at

random, and gives the security parameter 1κ to AINDCPA.

• AINDCPA sets up the multi-level access game by initialising L = ∅, λmax =⊥
and chall = false. It runs KeyGen(1κ, S,P) to generate (KO,KS , PP), and gives

AMLA the values (1κ,P,KS ,PP).

• AMLA may now make oracle queries to AINDCPA. Each oracle is run as specified

in Game 6.1.

• Eventually, AMLA will output its choice of two data sets such that the maximal

query leakage for the highest security label, λmax, queried to AddUser is equal

for both data sets (note that this is necessarily true for a successful adversary).

AINDCPA sets chall to be true and chooses a random bit b.

160

6.6. Proofs of Security

Now, observe that a rational adversary (that gains a non-negligible advantage)

will certainly choose Daug0 and Daug1 such that there exists at least one element

that is both different in each data set (to permit distinguishing) and which is

labeled by λ? > λmax (since the maximal traces must be equal up to λmax). Note

that, by definition of λmax, λ? has not been queried to the AddUser oracle.

Let us denote by X = {(x0, x1)} the set of pairs of elements (x0, x1), where

xi ∈ Daugi , which are labelled by any λ(x) > λ? and where xi 6∈ Daug1−i. Informally,

X is the set of pairs of elements which differ in the challenge data sets.

• Set b̂ = b.

• AINDCPA must now build a challenger index for AMLA, Daug
b̂

, which embeds a

challenge for the IND-CPA game. To build the challenge index, AINDCPA follows

the BuildIndex algorithm as written, with the exception that, whenever an item

xb ∈ X is to be encrypted using the key Ki,j to form the entry in A, the plaintexts

associated with x0 and x1 are instead sent to the LoR oracle of C. It receives

back an encryption of xb under key k?.

• The index is given to AMLA, who can make oracle queries as follows:

– AddUser is run as written in Game 6.1. If the maximal trace of both

challenge data sets are equal given the new user’s security label, then the

elements of the data sets are not in X and can be treated normally.

– RevokeUser is run as written in Game 6.1.

– BuildIndex: each run of BuildIndex should generate and use new keys,

therefore it can be run as written.

• Eventually, AMLA outputs a guess b̂′ for which data set was encoded in the index.

• AINDCPA outputs their guess b′ = b̂′ to C as their guess for b.

Observe that both data sets are identical, except for those elements contained in

X. Each pair (x0, x1) of differing elements in X are sent to the LoR oracle of C, who

always encrypts xb. Thus, if b = 0, then data set Daug0 is encoded; otherwise data set

Daug1 is encoded.

If AMLA can distinguish the datatset that was chosen with non-negligible advantage

δ in the multi-level access game, we have that:

AdvAMLA
= δ,

161

6.6. Proofs of Security

hence:

P[b̂′ = b̂] = δ +
1

2
.

Using these assumptions we can calculate the advantage of AINDCPA against the chal-

lenger, C, in their game. We start by calculating the probability of AINDCPA winning

their game:

P[b′ = b] = P[b′ = b|b̂′ = b̂]P[b̂′ = b̂] + P[b′ = b|b̂′ 6= b̂]P[b̂′ 6= b̂]

= 1 · P[b̂′ = b̂] + 0 · P[b̂′ 6= b̂]

= δ +
1

2
.

Hence,

AdvAIND-CPA
=

∣∣∣∣P[b′ = b]− 1

2

∣∣∣∣
=

∣∣∣∣(δ +
1

2
)− 1

2

∣∣∣∣
= δ

As we fixed δ to be non-negligible we have that the advantage of AIND-CPA is

also non-negligible which contradicts the security of the INDCPA-secure symmetric

encryption scheme. We conclude that if the symmetric encryption scheme SE is IND-

CPA secure then MLSSE as defined in Algorithms 6.1-6.6 is secure in the sense of

multi-level access.

Lemma 6.6.5. MLSSE, as defined in Algorithms 6.1 - 6.6, is secure against revocation

(Game 6.2) under the same assumptions as for Theorem 6.5.1.

Proof. Assume AMLA is an adversary with non-negligible advantage δ in Game 6.2

when instantiated with the Algorithms 6.1 − 6.6. We will show that if AMLA has

non-negligible advantage in Game 6.2, then we can construct an adversary ABE that

uses AMLA as a subroutine to break the security of a broadcast encryption scheme

BE = (BE.KeyGen,BE.Encrypt,BE.Decrypt), as defined in Game 2.7.

In order for Game 6.2 to output 1, it is required that the adversary produce a valid

search query. To produce a valid search query, the user is required to know stO, which

is the value of the key for the PRP used to produce the search query. As A new value

of stO is randomly selected and encrypted each time a user is revoked from the system

162

6.6. Proofs of Security

using BE.Enc(KBE,G \ ui, stO) (Revoke), where G \ ui is the new group of authorised

users. This encrypted value is then broadcast to all users. The security of the BE

scheme ensures that only authorised users can decrypt this ciphertext to obtain stO

with overwhelming probability. Hence the adversary is only able to create a valid search

query if they are an authorized user, or if they are able to break the security of the BE

scheme. We note that an adversary could potentially win the game if they output a bit

string for Tω that by chance leads to some output other than the failure symbol. This

is prevented by including the fourth input to the search query which is a κ-bit zero

string to encode the search query. We use this method of adding redundancy to the

string, described by Bellare and Rogaway [21], to turn our application of the PRP to

the search query into an authenticated encryption scheme. Encoding the search query

by adding κ-bit zero string ensures the encodings are sparse. That is, the probability

that a random bit string is valid is 2−κ if the bit string is at least κ bits long. This

means that the adversary will not be able to produce a valid PRP ciphertext will all

but negligible probability. Let C be the challenger for the adversary ABE against the

broadcast encryption scheme, ABE will act as the challenger for AMLA.

1. The KeyGen algorithm is run by ABE (with the exception of the generation of

BE.KeyGen). The secret key for the broadcast encryption scheme (kBE) is gener-

ated and held by C: kBE ← BE.KeyGen(1κ) (this is equivalent to running line 3 of

KeyGen). ABE then initiates ∅ ← G and chooses stO
$← {0, 1} and submits these

values to C, who runs BE.Enc(stO,G, kBE) to produce stS , which is sent to ABE.

ABE then proceeds to run the rest of KeyGen. This generates the keys KO,KS

which are held by ABE, and the public parameters PP (with the exception that

KO does not contain kBE). AMLA is given inputs X

2. ABE issues a query to C for the secret key of uAMLA
. In response, C runs:

kuAMLA
← BE.AddUser(kBE) and sends kuAMLA

to ABE. To fully enrol uAMLA

as an authorized user the server state also needs to be updated. This is done by

submitting G and a newly generated stO to C who runs BE.Enc(stO,G, kBE) to

generate stS . ABE is now able to form AMLA’s secret key KuAMLA
. This step is

equivalent to running AddUser.

3. ABE runs BuildIndex to produce the index and the ciphertexts (ID, C), and these

values are sent to AMLA along with KuAMLA
.

4. AMLA is given access to oracles AddUser(·, λ(·),KO, PP) and RevokeUser(·,KO,PP)

as described in Game 6.2.

163

6.6. Proofs of Security

5. ABE revokes AMLA from the system by running RevokeUser. ABE runs line 1 of

Revoke a second time in order to produce two values for stO : θ0, θ1. These values

act as the challenge plaintexts for ABE, which are submitted to C along with a

set of users G ⊂ U (such that no revoked user is in G).

6. C selects a bit b
$← {0, 1}.

7. C encrypts θb using the encryption algorithm of the BE scheme:

(stS)b ← BE.Enc(θb,G, kBE). C sends (stS)b to ABE as their challenge ciphertext.

ABE then transfers it to AMLA.

8. AMLA then outputs a query that they believe to be valid (in other words, will

produce a search result not equal to ⊥): Tω. This happens with non-negligible

probability δ, due to our assumptions that A has non-negligible advantage δ in

Game 6.2. AMLA sends this to ABE.

9. ABE runs line 2 of Search twice; once using stO0 as the key for the inverted PRP,

and once using stO1 as the key for the inverted PRP. The possible outputs are:

φ−1
stO0

(Tω) = (tω
0 ∨ ⊥); and

φ−1
stO1

(Tω) = (t1ω, ∨ ⊥).

10. If t0ω = t1ω = ⊥, then we have that Search(stS , ID, Tω,λ(A)) =⊥, and ABE outputs

their guess for b as b′ $← {0, 1}.

11. If t0ω 6=⊥, this tells ABE that (stS)0 was used to generate the query, and ABE
outputs their guess for b as b′ = 0. If t1ω 6=⊥, this tells ABE that (stS)1 was used

to generate the query, and outputs their guess for b as b′ = 1. We note here that

Search can also output ⊥ on line 5. However, the adversary has all the information

to form this part of the query correctly hence, for a rational adversary, this line

should never output ⊥. Thus we assume that this line will not output ⊥ in our

game. As we have assumed that AMLA has non-negligible advantage δ in their

game, we calculate the advantage of ABE to be:

|
[(

P
[
((t0ω ∨ t1ω) 6=⊥)

]
· 1− 1

2

)
+

(
P
[
((t0ω ∧ t1ω) =⊥)

]
· 1

2
− 1

2

)]
|

= |
[
δ · 1 + (1− δ) · 1

2

]
− 1

2
| = |

[
(δ + 1)

2

]
− 1

2
| = δ

2
.

164

6.6. Proofs of Security

As we have assumed that δ is non-negligible, we have that δ
2 is also non-neglible.

From this we conclude that there cannot exist an adversary A with non-negligible

probability against Game 6.2.

6.6.1 Achieving dynamicity

We can extend MLSSE to support multi-level access on a dynamic data set by adding

two new data structures to the index: a deletion table (Td) and a deletion array (Ad).
There are also four additional algorithms: AddToken,Add,DeleteToken,Delete. Array

Ad stores a list of nodes for each data item which point to nodes in A that would need

to be removed if the corresponding data item was deleted. This means that every node

in A will have a corresponding node in Ad, which is called its dual node. Td is a table

with an entry for each data item which points to the start of the corresponding linked

list in Ad, given a valid delete token for that data item. In addition to these two new

structures the index consists of a search array As and a search table Ts (as in the

original construction) and a free list that keeps track of all the unused space in As.
In the dynamic scheme searching for a keyword is done similarly to the static

construction in Section 6.5 and follows the concept of linked lists presented by [55].

To add a data item to the index, changes need to be made to Td,As and Ad. The

data owner creates an add token using AddToken and sends this to the server. The

server then determines the free space available in As using the free list and adds the

relevant information to the free nodes and updates the free list. When adding a new

data item the relevant nodes cannot be added to the end of each linked list; instead we

have to insert in the appropriate place in the linked list according to the access level

of the new data item. Information in the add token will allow the server to locate the

correct point at which to insert the nodes in each linked list, so instead of the entry in

Ts just pointing to the end node of each linked list this is altered so that it points to the

correct node in the linked list according to the access level of the new data item. The

respective predecessor of each new node is modified to point to the new node instead

of its previous ancestor.

In order to remove a data item, a deletion token is created which allows the server

to locate and delete the correct entries in Td. This, in turn, allows the server to locate

and delete the correct entries in As. Some nodes will need to be updated in As (as

some of the linked lists will have nodes which point to nodes that have been deleted)

and this is done using homomorphic encryption.

165

6.7. Performance

Scheme Index size Search time Query comp. Search comp.

Single user [55] O(|∆|) +O(|∆|) O(1) +O(|δω|) 1PRP +1PRF 1XOR+ |δω| · (DecSKE)

MLSSE O(|∆| · ||L|) +O(|∆|) O(1) +O(|δω,λ(u)|) 1PRP + 3PRF 1PRP + |δω,λ(u)| · (1PRF + 2XOR)

[83] O(|∆|) +O(|∆|) O(1) +O(|δω|) +O(|δω|) 1PRF + 1PRP |δω| · (DecSKE + DecCPABE)

[98] O|∆| O(|∆|) 3E |∆| · (9P)

Table 6.1: Performance of MLSSE

6.7 Performance

In this section we discuss the performance of our multi-level SSE scheme and make

some comparisons to schemes in the literature that are most similar to ours.

The features we will look at to evaluate performance are the search time and search

computation, query computation time and index size. We feel these features contribute

greatly to providing a useable scheme in practice. A compact index means less server

storage needs to be used and fast query and search times make querying efficient for

the user.

Our scheme is built using symmetric key primitives, which are widely known to be

more efficient than their public key counterparts. Table 6.1 summarises the operations

required for the specified algorithms in our scheme, where E denotes group exponen-

tiation, P denotes a group pairing, XOR denotes an XOR operation, PRP denotes

evaluation of a PRP and PRF denotes evaluation of a PRF.

Comparing our multi-level user scheme to a single user scheme (without multi-level

access) we can see that adding the multi-level user functionality does not hamper the

performance of the scheme to a great degree. The lookup table T is larger by a factor

of |L|, where |L| is the number of access levels, and 2 extra PRPs are required when

generating a query. The search time of our multi-level scheme is less than that of a

single user scheme as it linear in the size of the search results. Using a single user

scheme without multiple access levels results in the user receiving all search results

matching a keyword, whereas in our multi-level access scheme the user only receives a

portion of these search results, namely, the ones that are relevant to their access level.

The only situation where the search times will be the same for these two schemes is

when the user is at the highest access level and is authorised to receive all search results

containing a specified keyword. The same applies to the search computation for these

two schemes.

The other two schemes in our comparison that support multi-level access both

require more computationally intensive operations in their search algorithms, such as

CP-ABE decryptions or pairings of group elements.

166

6.8. Summary

6.8 Summary

In this chapter, we present a new notion of searchable symmetric encryption with

multi-level access. The notion of multi-level access to encrypted data accurately re-

flects many real-world scenarios where multiple users have varying levels of access to

a central outsourced data set; a few examples being: classified government documents,

subscription services and corporate data.

We present a new system model, along with a new security model that extends the

previous notions of security in SSE to fulfil our new definitional framework.

This work is a useful first step in making SSE more suitable for deployment, since

the multi-level user notion more accurately reflects a group of users in a real world data-

sharing scenario than that of the standard SSE scheme notion, which only supports a

homogeneous user group.

167

Chapter 7

Conclusion and Future Work

In this thesis we have considered the role of searchable encryption in the real world as

opposed to only being an interesting theoretical concept. This thesis is partially about

the need for more functional schemes in some areas of searchable encryption in order

to match the expectations of potential users.

In Chapter 4 we present searchable encryption within the framework of four gen-

eral scenarios, which reflect settings where searchable encryption could be applied in

the real world. We provide a general method for performing encrypted search in each

scenario, as well as mapping specific searchable encryption schemes into each scenario,

and evaluating their applicability using several variable features. We further identified

several factors that we believe are preventing the widespread adoption of searchable

encryption, one of which is ‘user education’; that is, potential users of searchable en-

cryption, or developers of products, might not understand how the technology can

be used to solve a problem. The work in this chapter is intended to address this is-

sue, by providing informative guidance for potential adopters of searchable encryption

technology.

In Chapter 5 we focus on extending the functionality in verifiable searchable encryp-

tion. One of the factors we identified as affecting the adoption of searchable encryption

is that of ‘usability’, meaning that in order for searchable encryption to become a tech-

nology that people wish to use, its functionality needs to be similar to that of protocols

they are more familiar with. The expressiveness of queries in verifiable searchable en-

cryption was limited, compared with that of non-verifiable SE schemes, but verifiable

computation schemes can perform a wide variety of computations. We also noticed

that the system models for verifiable computation and searchable encryption are sim-

ilar. Furthermore, the attributes computed on in verifiable computation can be made

to correspond to the keywords used to describe data items in searchable encryption.

168

An extension which could be implemented for our construction in Section 5.3 is

to allow multiple users to store data on a shared server without having to initialise

their own scheme. In practice, this could result in a key distribution centre, which is

used in verifiable delegable computation, setting up the system and publishing public

parameters that any data owner can use, but enabling each data owner to generate their

own CP-ABE decryption keys for the data they hold. We would also like to investigate

ways of reducing the search query size in our construction, whilst maintaining their

expressiveness.

Through research undertaken at Thales Research and Technology, we learnt that

many potential application scenarios involve many users requiring access to a dataset,

where the users possess differing access rights to the data. There are few existing

solutions within the realm of searchable encryption that support this system model.

Existing solutions were primarily based on public-key cryptographic primitives, which

can be computationally intensive. This inspired our work in Chapter 6, which presents

a searchable encryption scheme with multi-level access, constructed using simple and

efficient symmetric-key primitives, such as pseudorandom functions and pseudorandom

permutations.

We identified several areas for future work during the development of our multi-

level SSE scheme. In Section 6.6.1, we describe an extension to our construction in

Section 6.5 that allows it to support a dynamic dataset. We aim to formally define

this dynamic extension with a full construction, along with a formal security proof.

Furthermore, our MLSSE construction is secure against colluding users that are autho-

rized to search over the encrypted data. It would be interesting to extend this notion

of security to provide security against the collusion of revoked users with the server.

Another area of interest is that of user addition and revocation. In our construction we

have used a broadcast encryption scheme as a black box to add and revoke users in the

system. In order to quantify the efficiency of our scheme, we would like to investigate

this method of revocation, and determine which broadcast encryption would produce

the most practical construction.

The addition and revocation of users in a multi-user SSE scheme is also of inde-

pendent interest. It would be interesting to investigate generic methods of achieving

user addition and revocation for multi-user SSE schemes that can be applied to any

single-user SSE scheme. In some practical scenarios it may be beneficial for the data

owner to know which users have issued which search queries; this is called user ac-

countability. If the data owner wanted to audit the scheme in our construction, they

would be able to tell the access level of the user submitting each search query, but

not the individual identities. This could be desirable in some cases, but we could also

169

investigate extending our construction to support user accountability.

As is common in the SSE literature, our construction leaks the access pattern and

search pattern (with respect to access levels). The standard system model is to use

one server to perform the search over the encrypted data. We hope to investigate

the security improvements we can achieve when distributing the index over multiple

servers. We hypothesise that this would also distribute the leakage, so one server only

learns a fraction of the leakage associated with the whole search.

170

Bibliography

[1] CipherlockerTM . https://cipherlocker.com/, 2017. 76

[2] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-

Lee, G. Neven, P. Paillier, and H. Shi. Searchable encryption revisited: Con-

sistency properties, relation to anonymous ibe, and extensions. In Advances in

Cryptology - CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science,

pages 205–222. Springer, 2005. 55, 56

[3] M. Abdalla, M. Bellare, and G. Neven. Robust encryption. In Theory of Cryp-

tography, 7th Theory of Cryptography Conference, TCC 2010, volume 5978 of

Lecture Notes in Computer Science, pages 480–497. Springer, 2010. 55

[4] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order-preserving encryption for

numeric data. In Proceedings of the ACM SIGMOD International Conference on

Management of Data, pages 563–574. ACM, 2004. 64

[5] J. Alderman, C. Janson, C. Cid, and J. Crampton. Hybrid publicly verifiable

computation. IACR Cryptology ePrint Archive, Report 2015/320, 2015. 86, 110

[6] J. Alderman, C. Janson, K. M. Martin, and S. L. Renwick. Extended functionality

in verifiable searchable encryption. In Cryptography and Information Security in

the Balkans - Second International Conference, BalkanCryptSec 2015, Lecture

Notes in Computer Science, pages 187–205. Springer, 2015. 29, 83, 96

[7] J. Alderman, K. M. Martin, and S. L. Renwick. Multi-level access in searchable

symmetric encryption. IACR Cryptology ePrint Archive, Report 2017/211, 2017.

15

[8] D. Apon, J. Katz, E. Shi, and A. Thiruvengadam. Verifiable oblivious storage. In

Public-Key Cryptography - PKC 2014 - 17th International Conference on Prac-

tice and Theory in Public-Key Cryptography, volume 8383 of Lecture Notes in

Computer Science, pages 131–148. Springer, 2014. 28, 86

171

[9] M. Azraoui, Elkhiyaoui, M. Önen, and R. Molva. Publicly verifiable conjunctive

keyword search in outsourced databases. In 2015 IEEE Conference on Commu-

nications and Network Security, CNS 2015, pages 619–627. IEEE, 2015. 85

[10] M. Backes, M. Barbosa, D. Fiore, and R. M. Reischuk. ADSNARK: nearly

practical and privacy-preserving proofs on authenticated data. In 2015 IEEE

Symposium on Security and Privacy, SP 2015, pages 271–286. IEEE Computer

Society, 2015. 28, 86

[11] M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation of computa-

tion on outsourced data. In 2013 ACM SIGSAC Conference on Computer and

Communications Security, CCS’13, pages 863–874. ACM, 2013. 28, 86

[12] J. Baek, R. Safavi-Naini, and W. Susilo. On the integration of public key data

encryption and public key encryption with keyword search. In Information Se-

curity, 9th International Conference, ISC 2006, volume 4176 of Lecture Notes in

Computer Science, pages 217–232. Springer, 2006. 59

[13] J. Baek, R. Safavi-Naini, and W. Susilo. Public key encryption with keyword

search revisited. In Computational Science and Its Applications - ICCSA 2008,

volume 5072 of Lecture Notes in Computer Science, pages 1249–1259. Springer,

2008. 56, 57, 72, 76

[14] L. Ballard, S. Kamara, and F. Monrose. Achieving efficient conjunctive keyword

searches over encrypted data. In Information and Communications Security, 7th

International Conference, ICICS 2005, volume 3783 of Lecture Notes in Com-

puter Science, pages 414–426. Springer, 2005. 63

[15] F. Bao, R. H. Deng, X. Ding, and Y. Yang. Private query on encrypted data in

multi-user settings. In Information Security Practice and Experience, 4th Inter-

national Conference, volume 4991 of Lecture Notes in Computer Science, pages

71–85. Springer, 2008. 75, 130, 132

[16] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan,

and K. Yang. On the (im)possibility of obfuscating programs. In Advances in

Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference,

volume 2139 of Lecture Notes in Computer Science, pages 1–18. Springer, 2001.

85

[17] O. Baudron, D. Pointcheval, and J. Stern. Extended notions of security for

multicast public key cryptosystems. In Automata, Languages and Programming,

172

27th International Colloquium, ICALP 2000, volume 1853 of Lecture Notes in

Computer Science, pages 499–511. Springer, 2000. 60

[18] E. Bell and L. La Padula. Secure computer system: Unified exposition and

multics interpretation. Technical report, Mitre Corporation, 1976. 128

[19] M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user

setting: Security proofs and improvements. In Advances in Cryptology - EU-

ROCRYPT 2000, International Conference on the Theory and Application of

Cryptographic Techniques, volume 1807 of Lecture Notes in Computer Science,

pages 259–274. Springer, 2000. 60

[20] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable

encryption. In Advances in Cryptology - CRYPTO 2007, volume 4622 of Lecture

Notes in Computer Science, pages 535–552. Springer, 2007. 59, 69, 75, 77

[21] M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to exploit

nonces or redundancy in plaintexts for efficient cryptography. In Advances in

Cryptology - ASIACRYPT 2000, 6th International Conference on the Theory

and Application of Cryptology and Information Security, volume 1976 of Lecture

Notes in Computer Science, pages 317–330. Springer, 2000. 163

[22] S. U. Ben Lynn. https://crypto.stanford.edu/pbc/notes/crypto/prp.html. 116

[23] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. Fast reductions from rams

to delegatable succinct constraint satisfaction problems: extended abstract. In

Innovations in Theoretical Computer Science, ITCS ’13, pages 401–414. ACM,

2013. 28, 86

[24] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation

over large datasets. In Advances in Cryptology - CRYPTO 2011 - 31st Annual

Cryptology Conference, volume 6841 of Lecture Notes in Computer Science, pages

111–131. Springer, 2011. 28, 86

[25] J. Benaloh, M. Chase, E. Horvitz, and K. E. Lauter. Patient controlled encryp-

tion: ensuring privacy of electronic medical records. In Proceedings of the first

ACM Cloud Computing Security Workshop, CCSW 2009, pages 103–114. ACM,

2009. 129

[26] J. Bethencourt, H. T. Chan, A. Perrig, E. Shi, and D. X. Song. Multi-dimensional

range query over encrypted data. In 2007 IEEE Symposium on Security and

Privacy (S&P 2007), pages 350–364. IEEE Computer Society, 2007. 58

173

[27] S. Bhattacherjee and P. Sarkar. Reducing communication overhead of the subset

difference scheme. IEEE Trans. Computers, 65:2575–2587, 2016. 99, 100

[28] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision

resistance to succinct non-interactive arguments of knowledge, and back again. In

Innovations in Theoretical Computer Science 2012, pages 326–349. ACM, 2012.

28, 86

[29] E. Blass, T. Mayberry, and G. Noubir. Multi-user oblivious ram secure against

malicious servers. IACR Cryptology ePrint Archive, Report 2015/121, 2015. 54,

70, 76

[30] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-

munications of the ACM, 13:422–426, 1970. 61

[31] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-preserving symmetric

encryption. In Advances in Cryptology - EUROCRYPT 2009, 28th Annual Inter-

national Conference on the Theory and Applications of Cryptographic Techniques,

volume 5479 of Lecture Notes in Computer Science, pages 224–241. Springer,

2009. 64, 69

[32] A. Boldyreva, N. Chenette, and A. O’Neill. Order-preserving encryption revisited:

Improved security analysis and alternative solutions. IACR Cryptology ePrint

Archive, Report 2012/625, 2012. 64, 77

[33] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption

with keyword search. In Advances in Cryptology - EUROCRYPT 2004, Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques,

volume 3027 of Lecture Notes in Computer Science, pages 506–522. Springer,

2004. 55, 56, 85, 128

[34] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted

data. In Theory of Cryptography, 4th Theory of Cryptography Conference,

TCC 2007, volume 4392 of Lecture Notes in Computer Science, pages 535–554.

Springer, 2007. 57, 72

[35] C. Bösch, P. H. Hartel, W. Jonker, and A. Peter. A survey of provably secure

searchable encryption. ACM Computing Surveys, 47:18:1–1851, 2014. 67

[36] R. Bost, P. Fouque, and D. Pointcheval. Verifiable dynamic symmetric searchable

encryption optimality and forward security. IACR Cryptology ePrint Archive,

Report 2016/062, 2016. 85

174

[37] J. W. Byun and D. H. Lee. On a security model of conjunctive keyword search

over encrypted relational database. Journal of Systems and Software, 84:1364–

1372, 2011. 63

[38] J. W. Byun, D. H. Lee, and J. Lim. Efficient conjunctive keyword search on

encrypted data storage system. In Public Key Infrastructure, Third European

PKI Workshop: Theory and Practice, EuroPKI 2006, volume 4043 of Lecture

Notes in Computer Science, pages 184–196. Springer, 2006. 63

[39] J. W. Byun, H. S. Rhee, H. Park, and D. H. Lee. Off-line keyword guessing

attacks on recent keyword search schemes over encrypted data. In Secure Data

Management, Third VLDB Workshop, SDM 2006, volume 4165 of Lecture Notes

in Computer Science, pages 75–83. Springer, 2006. 58, 128

[40] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou. Privacy-preserving multi-keyword

ranked search over encrypted cloud data. In INFOCOM 2011. 30th IEEE In-

ternational Conference on Computer Communications, Joint Conference of the

IEEE Computer and Communications Societies, pages 829–837. IEEE, 2011. 131

[41] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse attacks against

searchable encryption. In Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security, pages 668–679. ACM, 2015. 59, 134

[42] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner.

Dynamic searchable encryption in very-large databases: Data structures and

implementation. In 21st Annual Network and Distributed System Security Sym-

posium, NDSS 2014. The Internet Society, 2014. 64, 69, 70

[43] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Highly-

scalable searchable symmetric encryption with support for boolean queries. In

Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,

volume 8042 of Lecture Notes in Computer Science, pages 353–373. Springer,

2013. 64, 69

[44] Q. Chai and G. Gong. Verifiable symmetric searchable encryption for semi-

honest-but-curious cloud servers. In Proceedings of IEEE International Confer-

ence on Communications, ICC 2012, pages 917–922. IEEE, 2012. 84, 85, 124,

126

[45] H. T. Chan, E. Shi, and X. Wang. Circuit oram: On tightness of the goldreich-

ostrovsky lower bound. In Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security, pages 850–861. ACM, 2015. 54, 70

175

[46] Y. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote

encrypted data. In Applied Cryptography and Network Security, Third Inter-

national Conference, ACNS 2005, volume 3531 of Lecture Notes in Computer

Science, pages 442–455. Springer, 2005. 61, 69, 134, 145, 146

[47] M. Chase and S. Kamara. Structured encryption and controlled disclosure. In

Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference on

the Theory and Application of Cryptology and Information Security, volume 6477

of Lecture Notes in Computer Science, pages 577–594. Springer, 2010. 64, 69, 145,

146

[48] L. Chen and Q. Tang. Public-key encryption with registered keyword search. In

Public Key Infrastructures, Services and Applications - 6th European Workshop,

EuroPKI 2009, volume 6391 of Lecture Notes in Computer Science, pages 163–

178. Springer, 2009. 58, 72

[49] R. Chen, F. Guo, X. Wang, and G. Yang. A new general framework for secure

public key encryption with keyword search. In Information Security and Privacy

- 20th Australasian Conference, ACISP 2015, volume 9144 of Lecture Notes in

Computer Science, pages 59–76. Springer, 2015. 59, 72

[50] Y. Chen, D. Lin, J. Zhang, and Z. Zhang. Generic constructions of integrated

pke and peks. Designs, Codes and Cryptography, 78:493–526, 2016. 59

[51] R. Cheng, J. Yan, C. Guan, F. Zhang, and K. Ren. Verifiable searchable sym-

metric encryption from indistinguishability obfuscation. In Proceedings of the

10th ACM Symposium on Information, Computer and Communications Secu-

rity, ASIA CCS ’15, pages 621–626. ACM, 2015. 85, 125, 126

[52] J. Chi, D. Feng, Z. Lv, and M. Zhang. Efficiently attribute-based access control

for mobile cloud storage system. In 13th IEEE International Conference on Trust,

Security and Privacy in Computing and Communications, TrustCom 2014, pages

292–299. IEEE Computer Society, 2014. 132

[53] K. Chung, K. Yael Tauman, F. Liu, and R. Raz. Memory delegation. In Advances

in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, volume 6841

of Lecture Notes in Computer Science, pages 151–168. Springer, 2011. 28, 86

[54] C. Cocks. An identity based encryption scheme based on quadratic residues. In

Cryptography and Coding, 8th IMA International Conference, volume 2260 of

Lecture Notes in Computer Science, pages 360–363. Springer, 2001. 56

176

[55] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric

encryption: improved definitions and efficient constructions. In Proceedings of the

13th ACM Conference on Computer and Communications Security, CCS 2006,

pages 79–88. ACM, 2006. 50, 61, 62, 64, 69, 73, 85, 128, 129, 131, 132, 134, 142,

143, 145, 146, 148, 149, 152, 155, 165, 166

[56] S. Devadas, C. W. Fletcher, L. Ren, E. Shi, E. Stefanov, M. van Dijk, and

X. Yu. Path ORAM: an extremely simple oblivious RAM protocol. In 2013

ACM SIGSAC Conference on Computer and Communications Security, CCS’13,

pages 299–310. ACM, 2013. 54, 70

[57] S. Devadas, M. van Dijk, C. W. Fletcher, L. Ren, E. Shi, and D. Wichs. Onion

oram: A constant bandwidth blowup oblivious ram. In Theory of Cryptography

- 13th International Conference, TCC 2016-A, volume 9563 of Lecture Notes in

Computer Science, pages 145–174. Springer, 2016. 54, 70

[58] G. Di Crescenzo and V. Saraswat. Public key encryption with searchable key-

words based on jacobi symbols. In Progress in Cryptology - INDOCRYPT 2007,

8th International Conference on Cryptology, volume 4859 of Lecture Notes in

Computer Science, pages 282–296. Springer, 2007. 56, 72

[59] F. B. Durak, T. M. DuBuisson, and D. Cash. What else is revealed by order-

revealing encryption? In Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, pages 1155–1166. ACM, 2016. 77, 134

[60] K. Emura, A. Miyaji, and M. S. Rahman. IACR Cryptology ePrint Archive,

Report 2017/321, 2017. 57

[61] L. Fang, W. Susilo, C. Ge, and J. Wang. A secure channel free public key

encryption with keyword search scheme without random oracle. In Cryptology and

Network Security, 8th International Conference, volume 5888 of Lecture Notes in

Computer Science, pages 248–258. Springer, 2009. 57

[62] D. Feng, Z. Lv, and M. Zhang. Multi-user searchable encryption with efficient

access control for cloud storage. In IEEE 6th International Conference on Cloud

Computing Technology and Science, CloudCom 2014, pages 366–373. IEEE Com-

puter Society, 2014. 132

[63] M. Fischlin. Pseudorandom function tribe ensembles based on one-way permu-

tations: Improvements and applications. In Advances in Cryptology - EURO-

CRYPT ’99, International Conference on the Theory and Application of Cryp-

177

tographic Techniques, volume 1592 of Lecture Notes in Computer Science, pages

432–445. Springer, 1999. 158

[64] K. Fu, S. Kamara, and Y. Kohno. Key regression: Enabling efficient key distribu-

tion for secure distributed storage. In Proceedings of the Network and Distributed

System Security Symposium, NDSS 2006. The Internet Society, 2006. 131

[65] Z. Fu, J. Shu, X. Sun, and N. Linge. Smart cloud search services: verifiable

keyword-based semantic search over encrypted cloud data. Consumer Electronics,

IEEE Transactions on, 60(4):762–770, 2014. 126

[66] S. Garg, P. Mohassel, and C. Papamonthou. TWORAM: efficient oblivious RAM

in two rounds with applications to searchable encryption. In Advances in Cryptol-

ogy - CRYPTO 2016 - 36th Annual International Cryptology Conference, volume

9816 of Lecture Notes in Computer Science, pages 563–592. Springer, 2016. 54,

70

[67] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing:

Outsourcing computation to untrusted workers. In Advances in Cryptology -

CRYPTO 2010, 30th Annual Cryptology Conference, volume 6223 of Lecture

Notes in Computer Science, pages 465–482. Springer, 2010. 29, 86

[68] E.-J. Goh. Secure indexes. IACR Cryptology ePrint Archive, Report 2003/216,

2003. 61, 63, 69, 70, 134, 145, 146

[69] B. Goi, S. Heng, and W. Yau. Off-line keyword guessing attacks on recent public

key encryption with keyword search schemes. In Autonomic and Trusted Com-

puting, 5th International Conference, ATC 2008, volume 5060 of Lecture Notes

in Computer Science, pages 100–105. Springer, 2008. 58

[70] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious

rams. Journal of the Association for Computing Machinery, 43:431–473, 1996.

52, 54

[71] P. Golle, J. Staddon, and B. R. Waters. Secure conjunctive keyword search

over encrypted data. In Applied Cryptography and Network Security, Second

International Conference, ACNS 2004, volume 3089 of Lecture Notes in Computer

Science, pages 31–45. Springer, 2004. 62, 63, 134

[72] M. T. Goodrich, J. Z. Sun, and R. Tamassia. Efficient tree-based revocation in

groups of low-state devices. In Advances in Cryptology - CRYPTO 2004, 24th

178

Annual International Cryptology Conference, volume 3152 of Lecture Notes in

Computer Science, pages 511–527. Springer, 2004. 99, 100

[73] Guillevic. Comparing the pairing efficiency over composite-order and prime-order

elliptic curves. In Applied Cryptography and Network Security - 11th International

Conference, ACNS 2013, volume 7954 of Lecture Notes in Computer Science,

pages 357–372. Springer, 2013. 100

[74] D. Halevy and A. Shamir. The LSD broadcast encryption schem. In Advances in

Cryptology - CRYPTO 2002, 22nd Annual International Cryptology Conference,

volume 2442 of Lecture Notes in Computer Science, pages 47–60. Springer, 2002.

99, 100

[75] M. Hattori, T. Hirano, T. Ito, N. Matsuda, T. Mori, Y. Sakai, and K. Ohta.

Ciphertext policy delegatable hidden vector encryption and its application to

searchable encryption in the multi user setting. In Cryptography and Coding -

13th IMA International Conference, IMACC 2011, volume 7089 of Lecture Notes

in Computer Science, pages 190–209. Springer, 2011. 131

[76] Y. H. Hwang and P. J. Lee. Public key encryption with conjunctive keyword

search and its extension to a multi-user system. In Pairing-Based Cryptography

- Pairing 2007, First International Conference, volume 4575 of Lecture Notes in

Computer Science, pages 2–22. Springer, 2007. 57, 60, 131

[77] H. Imai and R. Zhang. Generic combination of public key encryption with key-

word search and public key encryption. In Cryptology and Network Security, 6th

International Conference, CANS 2007, volume 4856 of Lecture Notes in Com-

puter Science, pages 159–174. Springer, 2007. 59

[78] Y. Ishai, E. Kushilevitz, S. Lu, and R. Ostrovsky. Private large-scale databases

with distributed searchable symmetric encryption. In Topics in Cryptology - CT-

RSA 2016 - The Cryptographers’ Track at the RSA Conference 2016, volume

9610 of Lecture Notes in Computer Science, pages 90–107. Springer, 2016. 64

[79] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on search-

able encryption: Ramification, attack and mitigation. In 19th Annual Network

and Distributed System Security Symposium, NDSS. The Internet Society, 2012.

134

[80] N. Jho, J. Y. Hwang, J. H. Cheon, M. Kim, D. H. Lee, and E. S. Yoo. One-way

chain based broadcast encryption schemes. In Advances in Cryptology - EURO-

179

CRYPT 2005, 24th Annual International Conference on the Theory and Appli-

cations of Cryptographic Techniques, volume 3494 of Lecture Notes in Computer

Science, pages 559–574. Springer, 22005. 100

[81] Z. Jinsheng, Z. Wensheng, and D. Qiao. A multi-user oblivious ram for outsourced

data. Iowa State University Digital Repository, Computer Science Technical

Reports, 2014. 76

[82] P. Joong, K. Kim, and D. J. Park. Public key encryption with conjunctive

field keyword search. In Information Security Applications, 5th International

Workshop, WISA 2004, volume 3325 of Lecture Notes in Computer Science, pages

73–86. Springer, 2004. 57

[83] A. Kaci, T. Bouabana-Tebibel, and Z. Challal. Access control aware search on the

cloud computing. In 2014 International Conference on Advances in Computing,

Communications and Informatics, ICACCI 2014, pages 1258–1264. IEEE, 2014.

129, 132, 166

[84] S. Kamara and T. Moataz. Boolean searchable symmetric encryption with worst-

case sub-linear complexity. IACR Cryptology ePrint Archive, Report 2017/126,

2017. 70

[85] S. Kamara and C. Papamonthou. Parallel and dynamic searchable symmetric

encryption. In Financial Cryptography and Data Security - 17th International

Conference, FC 2013, volume 7859 of Lecture Notes in Computer Science, pages

258–274. Springer, 2013. 62, 69, 70, 134, 145, 146

[86] S. Kamara, C. Papamonthou, and T. Roeder. Dynamic searchable symmetric

encryption. In The ACM Conference on Computer and Communications Security,

CCS’12, pages 965–976. ACM, 2012. 62, 69, 134, 135, 145, 146, 152

[87] J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman and

Hall/CRC Press, 2007. 19, 20, 158

[88] J. Katz, C. Papamonthou, and Y. Zhang. All your queries are belong to us:

The power of file-injection attacks on searchable encryption. In 25th USENIX

Security Symposium, USENIX Security 16, pages 707–720. USENIX Association,

2016. 59

[89] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions,

polynomial equations, and inner products. In Advances in Cryptology - EURO-

180

CRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages 146–162.

Springer, 2008. 58, 63, 72, 131

[90] F. Kerschbaum. Frequency-hiding order-preserving encryption. In Proceedings of

the 22nd ACM SIGSAC Conference on Computer and Communications Security,

pages 656–667. ACM, 2015. 64

[91] D. Khader. Public key encryption with keyword search based on k-resilient IBE.

IACR Cryptology ePrint Archive, Report 2006/358, 2006. 57, 72

[92] Z. A. Kissel and J. Wang. Verifiable symmetric searchable encryption for multiple

groups of users. In Proceedings of the 2013 International Conference on Security

and Management, pages 179–185. CSREA Press, 2013. 85, 129, 131, 143

[93] K. Kurosawa and Y. Ohtaki. Uc-secure searchable symmetric encryption. In

Financial Cryptography and Data Security - 16th International Conference,

FC 2012, volume 7397 of Lecture Notes in Computer Science, pages 285–298.

Springer, 2012. 62, 69, 84

[94] K. Kurosawa and Y. Ohtaki. How to update documents verifiably in searchable

symmetric encryption. In Cryptology and Network Security - 12th International

Conference, CANS 2013, volume 8257 of Lecture Notes in Computer Science,

pages 309–328. Springer, 2013. 125, 126

[95] D. H. Lee, J. H. Park, H. S. Rhee, and W. Susilo. Improved searchable public key

encryption with designated tester. In Proceedings of the 2009 ACM Symposium

on Information, Computer and Communications Security, ASIACCS 2009, pages

376–379. ACM, 2009. 57

[96] J. Li, K. Ren, Z. Wan, and B. Zhu. Privacy-aware attribute-based encryption

with user accountability. In Information Security, 12th International Conference,

ISC 2009, volume 5735 of Lecture Notes in Computer Science, pages 347–362.

Springer, 2009. 25

[97] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou. Fuzzy keyword search

over encrypted data in cloud computing. In INFOCOM 2010, 29th IEEE In-

ternational Conference on Computer Communications, Joint Conference of the

IEEE Computer and Communications Societies, pages 441–445. IEEE, 2010. 125

[98] K.-C. Li, J. Shen, J. Wang, and J. Zhao. Fine-grained searchable encryption in

multi-user setting. Soft Computing, pages 1–12, 2016. 133, 166

181

[99] M. Li, S. Yu, N. Cao, and W. Lou. Authorized private keyword search over

encrypted data in cloud computing. In 2011 International Conference on Dis-

tributed Computing Systems, ICDCS, pages 383–392. IEEE Computer Society,

2011. 129

[100] P. V. Liesdonk, S. Sedghi, J. Doumen, P. H. Hartel, and W. Jonker. Computa-

tionally efficient searchable symmetric encryptio. In Secure Data Management,

7th VLDB Workshop, SDM 2010, volume 6358 of Lecture Notes in Computer

Science, pages 87–100. Springer, 2010. 61, 69, 70

[101] Y. Lindell. How to simulate it – a tutorial on the simulation proof technique.

IACR Cryptology ePrint Archive, Report 2016/046, 2016. 33

[102] C. Liu, L. Zhu, M. Wang, and Y. Tan. Search pattern leakage in searchable

encryption: Attacks and new construction. Information Sciences, 265:176–188,

2014. 85, 134

[103] I. Mori. Cyber security breaches survey 2017. Technical report, Ipsos Mori and

the University of Portsmouth, 2017. 13

[104] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless

receivers. In Advances in Cryptology - CRYPTO 2001, 21st Annual International

Cryptology Conference, volume 2139 of Lecture Notes in Computer Science, pages

41–62. Springer, 2001. 98, 99, 100

[105] M. Naveed, S. Kamara, and C. V. Wright. Inference attacks on property-

preserving encrypted databases. In Proceedings of the 22nd ACM SIGSAC Con-

ference on Computer and Communications Security, pages 644–655. ACM, 2015.

64, 77

[106] M. Naveed, M. Prabhakaran, and C. Gunter. Dynamic searchable encryption

via blind storage. In 2014 IEEE Symposium on Security and Privacy, SP 2014,

pages 639–654. IEEE Computer Society, 2014. 69

[107] J. Ning, Z. Cao, X. Dong, L. Wei, and X. Lin. Large universe ciphertext-policy

attribute-based encryption with white-box traceability. In Computer Security -

ESORICS 2014 - 19th European Symposium on Research in Computer Security,

volume 8713 of Lecture Notes in Computer Science, pages 55–72. Springer, 2014.

100, 101

[108] T. Nishide, K. Ohta, and K. Yoneyama. Attribute-based encryption with par-

tially hidden encryptor-specified access structures. In Applied Cryptography and

182

Network Security, 6th International Conference, ACNS 2008, volume 5037 of

Lecture Notes in Computer Science, pages 111–129. Springer, 2008. 25

[109] H. of Commons. Investigatory powers bill.

http://www.publications.parliament.uk/pa/bills/cbill/2015-

2016/0172/160172.pdf, 2016 (accessed 06.05.16). 80

[110] C. Office. Goverment security classifications. Technical report, 2013. 128

[111] T. Okamoto and K. Takashima. Fully secure unbounded inner-product and

attribute-based encryption. In Advances in Cryptology - ASIACRYPT 2012 -

18th International Conference on the Theory and Application of Cryptology and

Information Security, volume 7658 of Lecture Notes in Computer Science, pages

349–366. Springer, 2012. 100, 101

[112] M. Onen, R. Molva, and C. Van Rompay. Multi-user searchable encryption in

the cloud. In Information Security - 18th International Conference, ISC 2015,

volume 9290 of Lecture Notes in Computer Science, pages 299–316. Springer,

2015. 149

[113] P. Paillier. Public-key cryptosystems based on composite degree residuosity

classes. In Advances in Cryptology - EUROCRYPT ’99, International Confer-

ence on the Theory and Application of Cryptographic Techniques, volume 1592

of Lecture Notes in Computer Science, pages 223–238. Springer, 1999. 78

[114] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S. G. Choi, W. George,

A. Keromytis, and S. Bellovin. Blind seer: A scalable private DBMS. In 2014

IEEE Symposium on Security and Privacy, SP 2014, pages 359–374. IEEE Com-

puter Society, 2014. 69

[115] B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in

public: Verifiable computation from attribute-based encryption. In Theory of

Cryptography - 9th Theory of Cryptography Conference, TCC 2012, volume 7194

of Lecture Notes in Computer Science, pages 422–439. Springer, 2012. 29, 86

[116] J. Pieprzyk, H. Wang, and P. Wang. Keyword field-free conjunctive keyword

searches on encrypted data and extension for dynamic groups. In Cryptology

and Network Security, 7th International Conference, CANS 2008, volume 5339

of Lecture Notes in Computer Science, pages 178–195. Springer, 2008. 63, 76

183

[117] R. A. Popa, C. Redfield, S. Tu, H. Balakrishman, F. Kaashoek, S. Madden,

N. Zeldovich, and A. Burrows. CryptDB. https://css.csail.mit.edu/cryptdb, 2011

(accessed 06.06.16). 78

[118] R. A. Popa, C. Redfield, and N. Zeldovich. Cryptdb: protecting confidentiality

with encrypted query processing. In Proceedings of the 23rd ACM Symposium on

Operating Systems Principles 2011, SOSP 2011, volume 85–100. ACM, 2011. 77

[119] PwC. 2015 information security breaches survey. Technical report, 2015. 81

[120] S. L. Renwick. Predicate encryption scenarios. Technical report, Thales Research

and Technology (UK), 2014. 15, 66

[121] S. L. Renwick and K. M. Martin. Practical architectures for deployment of search-

able encryption in a cloud environment. 2015. 15

[122] Y. Rouselakis and B. Waters. Practical constructions and new proof methods for

large universe attribute-based encryption. In 2013 ACM SIGSAC Conference on

Computer and Communications Security, CCS’13, pages 463–474. ACM, 2013.

100, 101

[123] Y. Rouselakis and B. Waters. Efficient statically-secure large-universe multi-

authority attribute-based encryption. In Financial Cryptography and Data Secu-

rity - 19th International Conference, FC 2015, volume 8975 of Lecture Notes in

Computer Science, pages 315–332. Springer, 2015. 100

[124] E. Ryu and T. Takagi. Efficient conjunctive keyword-searchable encryption. In

21st International Conference on Advanced Information Networking and Appli-

cations (AINA 2007), pages 409–414. IEEE Computer Society, 2007. 63

[125] E. Shen, E. Shi, and B. Waters. Predicate privacy in encryption systems. In

Theory of Cryptography, 6th Theory of Cryptography Conference, volume 5444 of

Lecture Notes in Computer Science, pages 457–473. Springer, 2009. 63, 70

[126] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on

encrypted data. In 2000 IEEE Symposium on Security and Privacy, pages 44–

55. IEEE, 2000. 60, 69, 78, 128

[127] E. Stefanov, C. Papamonthou, and E. Shi. Practical dynamic searchable encryp-

tion with small leakage. In 21st Annual Network and Distributed System Security

Symposium, NDSS 2014. The Internet Society, 2014. 69, 85, 125, 126

184

[128] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and H. Li. Verifiable

privacy-preserving multi-keyword text search in the cloud supporting similarity-

based ranking. IEEE Transactions on Parallel Distributed Systems, 25(11):3025–

3035, 2014. 125, 126

[129] W. Sun, S. Yu, W. Lou, T. Hou, and H. Li. Protecting your right: Verifi-

able attribute-based keyword search with fine-grainedowner-enforced search au-

thorization in the cloud. IEEE Transactions on Parallel Distributed Systems,

27(4):1187–1198, 2016. 85, 126

[130] C. Wang, N. Cao, K. Ren, and W. Lou. Enabling secure and efficient ranked key-

word search over outsourced cloud data. IEEE Transactions Parallel Distributed

Systems, 23(8):1467–1479, 2012. 126

[131] J. Wang, H. Ma, J. Li, H. Zhu, S. Ma, and X. Chen. Efficient verifiable fuzzy

keyword search over encrypted data in cloud computing. Computer Science In-

formation Systems, 10(2):667–684, 2013. 126

[132] J. Wang, H. Ma, Q. Tang, J. Li, H. Zhu, S. Ma, and X. Chen. Efficient verifiable

fuzzy keyword search over encrypted data in cloud computing. Computer Science

Information Systems, 10(2):667–684, 2013. 124

[133] S. Wang, W. Yang, and Y. Lin. Balanced double subset difference broadcast

encryption scheme. Security and Communication Networks, 8:1447–1460, 2015.

99, 100

[134] B. Waters. Ciphertext-policy attribute-based encryption: an expressive, efficient,

and provably secure realization. In Public Key Cryptography - PKC 2011 - 14th

International Conference on Practice and Theory in Public Key Cryptography,

volume 6571 of Lecture Notes in Computer Science, pages 53–70. Springer, 2011.

103

[135] Y. Yang. Towards multi-user private keyword search for cloud computing. In

IEEE International Conference on Cloud Computing, CLOUD 2011, pages 758–

759. IEEE, 2011. 74, 130, 131, 132

[136] Y. Yang. Attribute-based data retrieval with semantic keyword search for e-

health cloud. Journal of Cloud Computing: Advances, Systems and Applications,

4, 2015. 129

185

[137] Q. Zheng, S. Xu, and G. Ateniese. VABKS: verifiable attribute-based keyword

search over outsourced encrypted data. In 2014 IEEE Conference on Computer

Communications, INFOCOM 2014, pages 522–530. IEEE, 2014. 85, 124, 126

186

	Introduction
	Motivation
	Thesis Outline and Contributions
	Author Contributions

	Background Material
	Notation
	Cryptographic Primitives
	Negligible functions
	Pseudorandom functions
	Pseudorandom permutations
	Hash functions
	One-way functions

	Encryption schemes
	Symmetric-key encryption
	Public-key encryption
	Attribute-based encryption
	Predicate-based encryption
	Broadcast encryption
	Order-Preserving Encryption

	Verifiable Computation
	Verifiable and publicly verifiable computation
	Verifiable delegable computation

	Types of data
	Methods of proof
	Game-based security proofs
	Simulation-based security proofs
	Security Model for Symmetric-Key Encryption
	Security Model for Public-Key Encryption
	Security Model for Ciphertext-Policy Attribute-Based Encryption
	Security Model for Predicate-Based Encryption
	Security Model for Broadcast Encryption
	Security Model for Verifiable Computation
	Security Model for Verifiable Delegable Computation

	Summary

	Searchable Encryption
	Introduction
	Security of Searchable Encryption
	Adversarial models
	Literature Review
	Oblivious RAM
	Public Key Searchable Encryption
	Searchable Symmetric Encryption

	Summary

	Searchable Encryption in the Real World
	Introduction
	Architecture of Searchable Encryption
	Application of searchable encryption to provide solutions in the Scenarios
	Scenario 1: Only the data owner reads and writes all the data
	Scenario 2: Data owner can read data, all users can write data
	Scenario 3: Data owner can write data, many users can read data
	Scenario 4: Many users can read and write data

	Searchable Encryption in the Real World
	Deployment challenges
	Summary

	Extended Functionality in Verifiable Searchable Encryption
	Introduction
	Related work
	Organisation of chapter

	Extended Verifiable Searchable Encryption
	System model
	Formal Definition
	Security Model

	Construction
	Overview
	Choosing a Broadcast Encryption scheme
	Choosing a CP-ABE scheme
	Data Encoding
	Formal Details
	Instantiation Details

	Proofs of Security
	Public verifiability
	Index privacy
	Query privacy

	Summary

	Multi-level Searchable Encryption
	Introduction
	Related work
	Organisation of chapter

	Searchable Symmetric Encryption
	Types of index
	Classifying leakage

	Generic solutions for MLSSE using SSE as a black box
	Augmented Index
	Encrypted/labelled Search Results
	Using a trusted third party (TTP)
	Expanding the Keyword Dictionary

	Multi-level Searchable Symmetric Encryption
	System Model
	Formal Definition
	Security Model

	Construction
	Proofs of Security
	Achieving dynamicity

	Performance
	Summary

	Conclusion and Future Work
	Bibliography

