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Abstract

In the last few decades, the way humans engage in payment transactions and the

tools they use to transact with each other have evolved dramatically. Advancement

in cryptography, information security, computer networking, distributed computing,

etc. provides the required tools for modern day payment solution providers to design

payment technologies that can be used to carry out convenient payment transactions.

Yet, the financial loss associated with financial fraud, payment related attacks and

data breaches that directly affect the financial institutions, merchants and consumers

is significant. Because of this, an important development in the payment evolution is

the consideration towards security of payment transactions.

The main focus of this thesis is to enhance the security of both EMV (Europay

MasterCard Visa) based centralised payments and Bitcoin/blockchain based distributed

payments while showing more emphasis on new and emerging payment technologies

such as: mobile payments, tokenisation and distributed ledger technology.

EMV is a standard that provides interoperability to Chip & PIN, Contactless and

Tokenised payment transactions in a global scale. The thesis, investigates the current

EMV payment architectures to identify potential weaknesses that pose a threat to the

security of payment transactions. In our research, we were able to identify five main

issues related to EMV Online PIN Verification in two deployment methods and three

main issues related to EMV Tokenisation that raise security concerns. We discuss

potential attack scenarios, and propose solutions that address the identified issues and

enhance the security of payment transactions. The proposed solutions are subject to

mechanical formal analysis and practical implementation was carried out to obtain

performance measurements.

The thesis, also investigates payments in distributed payment systems such as Bit-

coin and blockchains. We identify issues such as fair-exchange related to distributed

payments and propose solutions to improve security and anonymity. Furthermore, we

explore how blockchain technology can be leveraged to enhance the security in other

payment transactions such as: donation payments, humanitarian aid and SMS-based

mobile payments. Finally, the thesis provides conclusion of this research and suggesting

future research directions.
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PKCS Public Key Cryptography Standards.
PDOL Processing Options Data Object List.
PSI-DSS Payment Card Industry-Data Security Standard.
RSA Rivest, Shamir and Adleman.
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SO Scheme Operator.
SE Secure Element.
SMS Short Message Service.
SHA Secure Hashing Algorithm.
SDA Static Data Authentication.
SBTC Smart Bitcoin Currency.
SPDL Security Protocol Description Language.
TC Transaction Certificate.
TTP Trusted Third Party.
TAR Token Authorisation Request.
TSP Token Service Provider.
TVR Terminal Verification Result.
UN Unpredictable Number.
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The innovation that comes out from payment technology not only helps im-

prove the economy but also enhances the quality and security of consumer-

merchant transactions. This chapter, sets the scene by explaining the mo-

tivation and challenges behind this thesis. Following this, the main contri-

butions on improving the security of payment transactions are briefly dis-

cussed. Finally, the chapter concludes by outlining the structure of the thesis

for the remaining chapters.
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1. Introduction

1.1 Motivation and Challenges

Modern technological advancements have dramatically boosted how technological knowl-

edge is shared globally within a very short period of time than it used to be. This has

led to introduction of systems that provide global interoperability. One industry that

has harnessed this opportunity is the payment industry.

In the last few decades, how humans engage in payment transactions and the tools

they use to transact have evolved dramatically. One significant development in the

payment evolution is the consideration towards security of payment transactions. Ad-

vancement in cryptography, information security, computer networking, distributed

computing, etc. provides the required tools for modern day payment solution providers

to design payment technologies that can be used to carry out convenient payment

transactions. Most of the widely used centralised payment systems are standardised

and regulated with stringent security controls. Yet, the financial loss associated with

financial fraud, payment related attacks and data breaches that directly affect the

financial institutions, merchants and consumers is significant. This applies to both

centralised and distributed payment systems.

Furthermore, planned/unplanned changes to payment architectures such as: intro-

duction of a large number of intermediaries to payment channels, technological ad-

vancements available to adversaries, identified vulnerabilities, etc. pose a new threat

to the security of payment technologies that were considered secure in the past. Tak-

ing these concerns into consideration, we raise the following research questions in this

thesis.

Are modern day payment transactions secure and provide the expected security

guarantees? Are there still shortcomings and weaknesses in widely used payment sys-

tems that we consider secure? Finally, is there still space for improvement to enhance

the security of both centralised and distributed payment transactions?

Investigating and finding answers to the aforementioned research questions will be

the main aim of the thesis. Even though, it is extremely difficult to provide absolute

security, every effort must be taken to address the current threat presented against

the security of a payment technology at a given time. Addressing such issues will

enhance the security of payment transactions and prevent unnecessary loss associated

with financial fraud.

The research carried out will explore current and emerging payment technologies

such as: EMV (Europay Mastercard Visa) Chip & PIN, Contactless Card/Mobile Pay-

ments, Tokenisation, Digital Currencies and Blockchain. In particular, current payment

technologies such as: Chip & PIN and Contactless Card/Mobile Payments were given
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1. Introduction

more emphasis then other payment technologies, because of global usage, industrial

adoption and the significance of the number of stakeholders that would benefit from

our proposed improvements, etc. Emerging payment technologies such as: EMV To-

kenisation, Digital Currencies and Blockchain were given more emphasis because of

innovative technologies used by these payment systems, increased adoption in the pay-

ment industry at the time of writing and the potential of being a disruptive technology

for providing secure payment transaction solutions, etc. In this thesis, a number of

payment technologies are investigated to identify weaknesses/vulnerabilities that could

potentially lead to security concerns and propose solutions that address the identified

issues and further enhance the security of payment transactions.

The proposed solutions are expected to strengthen the security of associate payment

protocols, in order to enhance the security of payment transactions.

1.2 Aim and Objectives

The main aim of the thesis is to enhance the security of centralised and distributed

payment transactions. This include finding answers to the research questions that were

raised in the previous Section 1.1 by investigating security aspects of both centralised

and distributed payment transactions and proposing improvements that address iden-

tified security concerns and limitations.

In order to achieve the main aim of the thesis, the following three main objectives

of the thesis are identified:

Objective-1: Investigate payment transactions in both centralised and distributed

payments while showing more emphasis on new/emerging payment technologies.

Objective-2 Identify potential weaknesses and concerns in payment technologies that

pose a threat to the security of payment transactions.

Objective-3 Propose improvements that address these identified weaknesses and con-

cerns to enhance the security of payment transactions.

1.3 Contributions

In this section, we briefly discuss our main contributions of the thesis.

In this thesis, we propose improvements to enhance the security of both EMV based

Centralised Payments and Bitcoin/Blockchain based Distributed Payments. In partic-

ular, we show more emphasis on current and emerging payment technologies. We first

investigate a number of payment technologies, their underlying payment architectures
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and operating environments. By doing so, the current mechanisms that provide secu-

rity guarantees of each payment system was established with the aim to understand

what aspects can potentially be enhanced.

The thesis provides six main contributions in subsequent discussions. The contribu-

tions are divided into two main categories: Improvements for EMV based Centralised

Payments and Improvements for Bitcoin/Blockchain based Distributed Payments. The

contributions of the thesis are presented in Part II to Part III of this thesis.

Under the Improvements for EMV based Centralised Payments in Part II, we first

investigated the EMV Online PIN Verification (OPV) process in the current payment

architecture. In the first OPV deployment method that we investigate, the OPV pro-

cess is carried out separately to the online transaction authorisation. We call this

the Segmented Authorisation. We were able to identify a number of potential attack

scenarios that pose a threat to the security of OPV process in the Segmented Autho-

risation method. Addressing the identified security concerns, our first contribution is

the proposed protocol and improvements that enhance the security of OPV process.

Following this, we extended our work on enhancing EMV OPV by investigating

another method that OPV process can be deployed in the current payment architec-

ture. We call this second method the Unified Authorisation method. We then identify

potential issues that can be used by an adversary to compromise the OPV process in

the Unified Authorisation method. As our second contribution, we propose improve-

ments and a protocol that addressed these issues to enhance the security of OPV in

the Unified Authorisation method.

Next, we focused our attention on another aspect of the EMV payment architecture,

which is the Transaction Authorisation. In our discussion, we explained about an

inherent weakness in the current payment architecture which is the Primary Account

Number (PAN) Compromise that has lead to significant financial loss for the financial

institutions, merchants and the consumers. EMV Tokenisation is increasingly being

adopted by the payments industry as a solution to PAN compromise. The background

research and introduction to Tokenisation was given in Section 2.1.4 of the thesis. In

our investigation of the current tokenisation architecture, however, we identified that

the lack of support for making offline tokenised payments as a significant bottleneck in

tokenised payment transactions. We then explained benefits of having the capability

of making and accepting tokenised payment in an offline enviornment for both the

merchants and the consumers. As our third contribution, we proposed a tokenisation

based payment protocol which provides capability of making tokenised payments in

offline environments.

Following on this, we extended our work on enhancing the security of tokenised
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payments by investigating the current tokenisation payment architecture. We were

able to identify five potential attack scenarios that raise security concerns on tokenised

payments, especially when a static-token is presented to the terminal during an EMV

transaction. The security concerns include: over charging for a payment, capturing

token related data, capturing the unpredictable number generated by the terminal,

replay attack on authorisation response sent by the issuing bank and replay attack on

the authorisation response even when the payment related data has been authorised

offline before reaching the issuing bank. For our fourth contribution, we proposed

a contactless mobile payment protocol that provides: mutual-authentication between

the terminal and the mobile, security against the identified attack scenarios by using a

proposed Dynamic Transaction Token (DTT) that is unique to a particular transaction

and end-to-end encryption between the terminal and the payment authorisation entity

as well as the terminal and the mobile. The improvements we proposed enhance the

security of tokenised payment transactions and provide control for the authorisation

entity to detect, prevent fraud and make informed payment authorisation decisions.

The proposed protocols under this category are subject to mechanical formal anal-

ysis for their security, where no feasible attacks were identified. Furthermore, a number

of proposed solutions were implemented to obtain performance measurements.

Under the Improvements for Bitcoin/Blockchain based Distributed Payments in

Part III of this thesis, we first explored the e-commerce market in an attempt to

understand current trends and increased use of alternative payment methods such as

digital cash that provide anonymity as an additional property. We then explained

why it is difficult to guarantee fair-exchange in an e-commerce payment transaction

compared to a traditional Point-of-Sale (PoS) payment transaction.

In our research, we identified a potential concern in anonymous payments such as

Bitcoin when it comes to guaranteeing fair-exchange between a merchant and a con-

sumer in an e-commerce transaction. The background research on anonymous payment

protocols, fair-exchange payment protocols, Bitcoin and blockchain technology was car-

ried out in Section 2.3 of the thesis. For our fifth contribution, we proposed a payment

protocol that guarantees true fair-exchange during an e-commerce transaction when

Bitcoin is used as an anonymous payment method. We then analyse the protocol for

its security and anonymity requirements. Following this we carried out a discussion

about Bitcoin transaction link-ability and explained how additional anonymity guar-

antees can be established. Finally, the proposed protocol was extended to support

other cryptocurrencies such as Zerocoin/Zerocash that provide improved security and

anonymity.

Next, we focused our attention onto other payment transaction scenarios that can
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leverage the blockchain technology. We identified the philanthropic sector as an indus-

try that can gain benefits by using blockchains. In particular, donation payments asso-

ciated with foreign or humanitarian aid activities. In our investigation to the current

philanthropic models we were able to identify issues such as: donation transparency,

transactional costs, speed of getting the donations to the beneficiaries, provisioning

the received donation to beneficiaries in disconnected environments, etc. as main chal-

lenges faced by charities. As our sixth and final contribution, we proposed a novel

philanthropic model that address these challenges by leveraging the Bitcoin blockchain

for donating foreign aid for humanitarian causes. We then proposed a SMS based

mobile payment solution to provision donations and to be used by beneficiaries in dis-

connected environments for their day-to-day payments. The solution is finally analysed

for its security requirements.

Our work in this thesis identifies issues and weaknesses in payment systems used in

real world that raise concerns regarding the security of centralised and distributed pay-

ment transactions. To address these issues, we carried out a background investigation

on each payment technology and their underlying payment architectures. Addressing

the identified security concerns, we proposed a number of solutions that improve the se-

curity of both centralised and distributed payments. Enhancing the security of payment

transactions is primarily the main contribution of the thesis. However, we also con-

sider improving privacy related to distributed payments. More specifically, anonymity

which is a property of most cryptocurrencies, is a privacy element that we consider

under distributed payments. In our proposed solutions, we discuss how anonymity is

guaranteed or enhanced while improving the security of these payment transactions.

Furthermore, the work carried out in this thesis has resulted in six academic submis-

sions in international conferences and journals.

1.4 Thesis Outline

The rest of the thesis is organised as follows.

The work carried out in Part I of the thesis, presents background work related to

both centralised and distributed payments. The beginning of Chapter 2 presents the

background related to EMV based Centralised Payments. The discussion starts by giv-

ing an introduction to EMV and its practical use in the payments industry. Then a num-

ber of payment technologies such as: Chip & PIN, Contactless Card/Mobile Payments

and Tokenisation are introduced. Following this, an investigation is carried out on each

technology to identify their underlying architectures and the operating environments.

Following this, Chapter 2 presents the background related to Bitcoin/Blockchain based
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Distributed Payments. First, an introduction to Bitcoin, its architecture and security

features is given. Afterwards, a discussion on the blockchain technology and key prop-

erties/aspects inherent with the technology is carried out. Following this, a number of

proposals that leverage the blockchain technology to provide security related solutions

are discussed. Chapter 2 then presents background related to Anonymous and Fair-

exchange Payment Protocols. Finally, the chapter carries out a discussion on formal

analysis of cryptographic protocols.

The work carried out in Part II of the thesis, present the proposed improvements for

EMV based Centralised Payments. In Chapter 3, we present our first contribution of

the thesis under centralised payments. In this chapter, the current EMV OPV process

is discussed and potential issues related to the security of OPV is identified. We then

propose solutions that addresses these issues and improve the security of OPV. The

proposed protocol is mechanically analysed and implemented to obtain performance

measurements. The research carried out in Chapter 3 has led to the publication of

academic paper number two under the title “Enhancing EMV Online PIN Verification”

in the list of publications.

In Chapter 4, we extend the work in our first contribution presented in Chapter 3

by introducing a second method that OPV can be deployed. Afterwards, we identify

potential security issues in this deployment method and propose solutions that improve

the security of OPV. Finally we analyse the proposed solution. Based on the research

carried out in Chapter 4, paper number six under the title “Enhancing EMV Online

PIN Verification For A Second Deployment Method” in the list of publications is under

review at an international journal.

In Chapter 5, we discuss an inherent weakness in the current EMV architecture and

introduce EMV Tokenisation which has been adopted as a solution. We then investigate

the EMV tokenisation architecture and identify a potential drawback related to offline

payments. Addressing this issue, we propose a tokenisation based payment protocol

that can be used in offline environments. The proposed protocol is then subject to me-

chanical formal analysis and implemented to obtain performance measurements. The

research carried out in Chapter 5 has led to the publication of academic paper number

three under the title “Extending EMV Tokenised Payments to Offline-Environments”

in the list of publications.

Chapter 6, investigates the security of tokenised payments. We identify a number of

potential attack scenarios that pose a threat to tokenised based payment transactions.

After this, we propose a contactless mobile payment protocol that is based on tokeni-

sation to address the potential issues and improve the security of tokenised payment

transactions. Finally, the proposed protocol is subject to mechanical formal analysis.
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The published academic paper number four under the title “Enhancing EMV Tokeni-

sation with Dynamic Transaction Tokens” in the list of publications was based on the

research carried out in Chapter 6.

The work carried out in Part III of the thesis, present the proposed improvements

for Bitcoin/Blockchain based Distributed Payments. More specifically in Chapter 7,

we present our fifth contribution of the thesis. The work carried out in this Chapter 7,

first discuss the e-commerce environment and introduce distributed payments. We

then investigate anonymous payment protocols and fair-exchange payment protocols.

Afterwards, we identify a potential issue when it comes to guaranteeing fairness in

anonymous payments such as Bitcoin. We then propose a protocol that guarantees true

fair exchange for Bitcoin payments in e-commerce. Finally, we analyse the protocol and

extend it to support other cryptocurrencies such as Zerocoin/Zerocash. The research

carried out in Chapter 7 has led to the publication of academic paper number one

under the title “Optimistic Fair-Exchange with Anonymity for Bitcoin Users” in the

list of publications.

Chapter 8, extends the work on Bitcoin/blockchain payment and explore other

payment scenarios that can be enhanced by leveraging the blockchain technology. In

particular, we focus our attention on donation payment involved with foreign/ human-

itarian aid activities. We first identify issues and challenges faced by charities and

then discuss the advantages of blockchain solutions. Following this, a novel philan-

thropic model that leverages the Bitcoin blockckchain was proposed. Furthermore, we

propose a SMS based mobile payment solution to provision donations and to be used

by beneficiaries in disconnected environments. The solution is finally analysed for its

security requirements. The research carried out in Chapter 8 has led to the publication

of academic paper number five under the title “Philanthropy On The Blockchain” in

the list of publications. Finally, Chapter 9, provides concluding remarks of the thesis

and outlines future research directions.
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In this chapter, we present the background work related to both EMV based

centralised payments and Bitcoin/blockchain based distributed payments.

We explore the underlying payment architectures, operating environments

and security features on a number of current and emerging payment tech-

nologies. Following this, we carry out background research related to anony-

mous and fair-exchange payment protocols. Finally, we discuss formal anal-

ysis of cryptographic protocols and introduce the chosen tools that will be

used to formally analyse our proposed protocols in subsequent chapters.
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2.1 EMV based Centralised Payments

Centralised payment systems are payment schemes that are controlled, owned, managed

or regulated by any financial service, bank or a government. A good example of this is

bank issued credit and debit card based payments. In the recent years there have been a

lot of academic research carried out in this particular area [146, 88, 89, 59, 60, 70] as well

as real world industrial solutions that has already been rolled out [13, 14, 15, 16, 24, 20].

A significant aspect is that due to the wide use of mobile phones, the traditional

payment card based payments are now been gradually migrated to mobile phones.

Compared to payment cards, mobile phones have added communication methods to

run innovative payment applications but this has also given new attack vectors for

perpetrators.

2.1.1 EMV

EMV (Europay MasterCard Visa) is a globally accepted standard, initially introduced

for Chip & PIN payment transactions [14, 15] and contactless transactions [24].

In smart card-based payment systems (credit and debit) [159], security sensitive

data related to both the payment system and the cardholder is securely stored on the

tamper-resistant chip in the smart card [146, 133]. The Personal Identification Number

(PIN) is used to establish an association between the smart card and its authorised

cardholder during a chip & PIN transaction. In the EMV payment scheme, the PIN

issued by a Card Issuing Bank (CIB) for a particular payment card is considered to be

known only by the authorised cardholder, the issued payment card and the CIB or the

payment authorisation entity.

In some scenarios the CIB will instruct the Scheme Operator (SO) which is a trusted

entity that manages the payment scheme (e.g. MasterCard, Visa or Amex) to authorise

EMV transactions on CIB’s behalf. This process is generally known as the stand-in-

process. In such situations, the PIN details are also shared with the SO. Furthermore,

the authorised cardholder may share their PIN with other users such as family members.

It must be noted that, in such scenarios, we consider that a payment transaction is

initiated with the cardholder’s consent.

During a EMV chip & PIN based payment transaction, the cardholder first inserts

the payment card into the Terminal. The payment terminal discussed throughout the

chapter is the payment acceptance device that is used to accept card-based payment

transactions. Note that this is not an Automated Teller Machine (ATM). We refer to

the terminal as CTPOS in this chapter.

Following this, the card and the terminal communicate with each other to engage
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in an EMV transaction. In EMV both the payment card and the terminal are set

with liability limits such as maximum payment amount, risk measures and predefined

parameters. The card and the terminal establish common parameters for the transac-

tion based on their risk assurance levels. If this established common parameter require

cardholder authentication, then the terminal requests the consumer to enter his/her

PIN.

Depending on the PIN authorisation environment the entered PIN is verified either

by the payment card or by the authorisation entity (i.e. scheme operator or CIB).

Depending on the PIN verification result, the cardholder is either authorised to proceed

with the transaction or not authorised. The PIN can be related to as an alternative

to a cardholder’s signature. The knowledge of the PIN entered by the cardholder

during a transaction provides some assurance that the genuine cardholder is initiating

the payment. The combination of using a smart card and its associated PIN can

significantly reduce payment card fraud [182, 123].

EMV supports both offline and online PIN verification methods. In offline PIN

verification the cardholder PIN is sent to the card either in plaintext or enciphered

format to be verified. In contrast to this, during an Online-PIN Verification (OPV)

the PIN needs to be sent to the authorisation entity (e.g. scheme operator or CIB) for

verification. This process is explained in detail in the next section.

2.1.2 EMV Online PIN Verification

In this section we expand our discussion on the EMV OPV process. We first carried

out a background research to understand how the OPV process works in the current

EMV payment architecture. For this, resources such as: the EMV specifications and

past literature was referred to.

We understood that the EMV specifications [13, 14, 15, 16] do not specify informa-

tion related to the OPV process that may be supported by CTPOS devices. Similarly,

to the best of our knowledge, there are no publicly available documentation that specifi-

cally detail the OPV process between the CTPOS and the authorising entity. However,

there are some documentation such as [49, 131, 65] that explains how OPV as a Card-

holder Verification Method is carried out during an Automated Teller Machine (ATM)

transaction. We outline the OPV process carried out in the current architecture by

considering what we have understood about the OPV process associated with ATM

transactions and referring to resources such as [195].

In the OPV process, there may be a number of intermediary entities in the pay-

ment communication channel between the CTPOS and the authorisation entity. These

intermediaries could be: the acquirer’s subcontractors that manages the CTPOS de-
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vices, third party Payment Terminal Operators (PTO) and other nodes engaged in the

key-translation mechanism (where messages are enciphered and deciphered from node

to node).

The current EMV architecture has placed an indelible trust assumption on the in-

termediaries involved. Most of these intermediaries are bound by contracts with either

the acquirer or SO/CIB, yet it is questionable whether this is sufficient to let intermedi-

aries handle sensitive data related to the cards and cardholders. The EMV specification

[16] states that “When the applicable Cardholder Verification Method (CVM) is online

PIN, the Interface Device (IFD) shall not issue a Verify command. Instead the PIN

pad shall encipher the PIN upon entry for transmission in the authorisation or financial

transaction request”.

Even though this indicates that the PIN is forwarded in encrypted format from

the CTPOS onwards, it does not specifically detail any information related to the

PIN encipherment for the OPV process. Neither does it mention whether the CTPOS

encrypts the PIN with a cryptographic key only shared with the authorisation entity

or with the next point of contact that engages in key-translation on the communication

path.

The CTPOS devices are deployed by the PTO. The PTOs that the merchants use

can be the acquiring banks and their subcontractors or even third parties (payment

providers). A single third party may deploy a large number of CTPOS devices at

different merchants or locations and manage them. Depending on the geographical

location, these third parties may differ and it is not practically feasible for issuers to

get in contact with all the third parties globally, in order to share secret keys with each

other.

Furthermore, an authorisation entity sharing a unique cryptographic key with each

individual CTPOS would be logistically impractical when considering the number of

different acquiring banks, subcontractors, third parties and the sheer number of CTPOS

devices out there in a global scale. After all, one of the objectives of introducing EMV,

was to achieve the interoperability between different entities without prior business

relationships.

We previously discussed the OPV mechanism used in ATM transactions. Taking

the involved intermediaries into consideration and the need of providing confidentiality

to the cardholder’s PIN when it passes through one intermediary to the other, it can be

assumed that a similar key-translation mechanism as in ATM transactions is used here.

However, it is important to outline a notable difference which is that the ATM com-

munication infrastructure (ATM Network) and the ATMs themselves are considered to

be trusted.
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Figure 2.1: Online PIN Verification Message Flow

The Figure 2.1 illustrates the entities and the message flow in the OPV process.

It shows how the involved intermediaries sharing unique cryptographic keys with each

other engage in the key-translation process. Considering the communication link be-

tween intermediary A and the issuer for instance, the PIN block which contains the

PIN is first enciphered by intermediary A using a shared key KAcq−A before it is sent

to the acquirer. Once received, acquirer deciphers the message to obtain the PIN block

and subsequently enciphers it using the shared key KAcq−B before forwarding to B.

This process continues with each intermediary node until the message is received by

the CIB or the authorisation entity.

2.1.3 Financial Fraud

According to a report published by the Financial Fraud Action UK (FFA) [93], the total

cost associated with Card Not Present (CNP) fraud, such as: fraudulent purchases

made using compromised card details, over the internet, telephone or by mail order

amounted to £432 million in 2016. CNP fraud is also referred to as Remote Purchase

fraud. The FFA report also outlines that the total international fraud losses on cards

that had been issued in the UK was £200 million in the same year [93]. A proportion

of the loss is due to Primary Account Number (PAN) compromise where counterfeit

cards with compromised PAN details are used in countries that have not fully rolled

out EMV Chip & PIN [150, 37].
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PAN Compromise

Amongst the plethora of advantages provided by EMV, there is an inherent weakness

associated with how PAN and related data is handled during a payment transaction

in the current EMV architecture. Fraudsters and organised crime groups have ex-

ploited this weakness over the past years which has led to a significant rise in financial

fraud [93, 150, 37, 174, 140, 181]. Regardless to whether it’s a contact or contactless

EMV transaction, in the current payment architecture, the PAN and related data is

transferred in clear to the payment terminal. This is because the PAN and related

data are processed in clear to complete a number of steps in an EMV PoS transaction

[150, 14, 13, 15, 16, 24].

PAN data are compromised by fraudsters during EMV transactions or by breaching

merchants’ databases that store consumer payment card details [165, 30]. Fraudulently

obtaining PAN and PAN related data to carry out financial fraud is also called PAN

compromise.

Following a PAN compromise, the fraudsters may take different routes in order to

make a profit, such as: selling the details on the black-market, making counterfeit cards

or carrying out Cross-channel fraud. In Cross-channel fraud, the compromised PAN

and related data, either during a PoS transaction or by breaching a database are used

in other payment channels such as e-commerce payments.

To understand the scale of financial loss associated with PAN compromise the fol-

lowing case study can be taken as an example. The US retail giant Target was hacked

by cyber criminals in 2013 [179]. The attackers used malware that infected PoS termi-

nals at more than 1800 branches to compromised payment card details [165, 179]. The

attackers compromised more then 40 million consumer credit/debit card details. The

total financial loss for the company associated with the breach has mounted to around

$202 million. In May 2017, Target settled an $18.5 million class action lawsuit related

to the data breach.

2.1.4 EMV Tokenisation

In PAN compromise, the harvested PAN-related data is then used to carry out cross-

channel fraud which includes Card Not Present (CNP) and Counterfeit Card transac-

tions via internet, telephone or mail order. Tokenisation is increasingly being adopted

by the payment industry as a method to prevent PAN compromise by mapping the

PAN with a substitute value.

The process that manages the conversion from a PAN to a token and vice-versa is

called tokenisation and the substitute value is called a token. Until recently, tokenisa-
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tion was used by merchants and payment processing service providers to store consumer

card details in a tokenised format to mitigate the risk of card data being hacked from

databases [179, 30, 165]. This chapter does not refer to independent tokenisation meth-

ods used by various merchants and their payment processors in order to manage and

store consumer payment card details in token format. The tokenisation discussed in

this study refers to replacing the PAN used during EMV transactions with a token

defined in EMV Tokenisation Specification [20]. The EMV Tokenisation Specification

details requirements to support payment tokenisation in EMV transactions [20].

Following the standardisation of EMV tokenisation specification [20], there has

been a dramatic move towards early adoption of this technology in contactless mobile

payment applications. One example is the release of Apple Pay [22, 83, 25].

Tokenisation, discussed in this chapter, is a method that replaces the sensitive PAN

used during an EMV transaction with a substitute value called the token. The token is

a 13-19 digit numeric value that passes validation checks set by the payment scheme.

A token is generated such that it does not reveal or conflict with the real PAN [20].

An adversary who captures the token cannot deduce the actual PAN.

EMV tokenisation is also in the interest of organisations that accept and handle

consumer payments. In the payments industry, organisations, merchants, retailers,

service providers, etc. that handle consumer payment card details are required to be

compliant with industrial standards such as the Payment Card Industry-Data Security

Standard (PCI-DSS). Compliance to such standards require adequate implementation

of security controls, routine audits and management which can be costly and time

consuming for organisations that accept and handle consumer payments. Therefore,

storing and managing tokens instead of PANs in their servers and databases can simplify

compliance audits such as PCI-DSS [155, 78, 39]. In addition to this, organisations that

store customer payment details for faster payment checkout in subsequent transactions,

can store tokenised payment details instead. This makes the payment details restricted

to a specific merchant and unusable elsewhere, making it an unattractive target for

cyber criminals.

2.1.5 Current Operating Environment of EMV Tokenisation

In this section, the current tokenisation online operating environment is presented. A

generic payment architecture and the transaction message flow for a tokenised contact-

less mobile payment are shown in Figure 2.2 and explained according to [20, 83].

At the start of an online tokenised EMV contactless mobile payment transaction,

the mobile device passes the payment token and token-related data to the terminal.

The terminal forwards the authorisation request to the acquirer, who then forwards it to
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Figure 2.2: Generic EMV Tokenised Payment Architecture

the payment network. The entities involved in this process engage in a key-translation

process, which means that two entities share a symmetric key to communicate, as

shown by connecting arrows on both ends in Figure 2.2. When a message is forwarded

to a particular entity, it is deciphered and enciphered using the shared symmetric key

with the next entity. The payment network then communicates with the Token Service

Provider (TSP) to de-tokenise the token in order to retrieve the PAN and validate the

cryptogram [20, 83]. Following this, the payment network forwards the authorisation

request with the mapped PAN details to the bank for authorisation. The bank, after

carrying out necessary validations, sends an Authorisation Response Code (ARC) to

the payment network in an authorisation response [20, 114]. The payment network

now forwards the authorisation response to the terminal. The payment network may

or may not send a TSP-generated response cryptogram in the authorisation response

message to the terminal via the acquirer [20]. The terminal then approves or declines

the transaction. As explained, the current architecture requires online connectivity

during transactions.

In this section we discussed EMV based centralised payment technologies and their

underlying payment architectures. In the next section, we introduce Bitcoin/blockchain

based distributed payment technologies and discuss how these technologies differ from

the centralised architecture.

2.2 Bitcoin/Blockchain based Distributed Payments

In the payment industry, digital ledgers are used to record details related to payment

transactions. In the previous section, we discussed a number of payment technologies

in the EMV based centralised payment architecture. In EMV based centralised pay-

ment technologies, digital ledgers are stored and shared in a centralised architecture.

However, there are other payment technologies that uses different methods to store and

share ledgers. In order to explain this clearly, we describe three architectures that can
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be used to share a digital ledger and identify their main differences. The architectures

are illustrated in Figure 2.3.

Figure 2.3: Architectures to share a Digital Ledger

A digital ledger that keeps a record of payment transaction details can be shared

in three main architectures. In Figure 2.3, the nodes that store and share the ledger is

highlighted in blue. The green nodes connect to a blue node to query the ledger. The

significant differences of these architectures are listed below.

• Centralised: Client Server architecture with the server as one central node keeping

the ledger.

• Decentralised: Distributed network of several centralised architectures connected

by the central nodes. The central nodes share the same ledger and each central

node serve a limited number of nodes. This way the network does not rely on a

single server but uses a number of servers.

• Distributed: No central server keeping the ledger but each node is connected to

various other nodes and all the nodes share the same copy of the ledger. Also

considered a public shared ledger.

Distributed payment systems are payment schemes that are not controlled or man-

aged by a single financial service, bank, payment network or a government. Instead,

the responsibilities of managing the payment system is distributed to a large network

of entities. Most of these payment systems work on a peer-to-peer basis and the nodes

joining as peers help run the payment system. The concept of recording payment trans-

action related data in a shared distributed ledger is also called blockchain technology.

32



2. Payment Systems and Formal Analysis Tools

Unlike the fiat currency based centralised payment technologies that we discussed

in Section 2.1, distributed payment systems are based on Cryptocurrencies which is a

subset of what is generally known as Digital currency [71, 113].

A good example of this is Bitcoin which is a widely used distributed payment

system to make anonymous payments [71, 147, 113]. Bitcoin is the first distributed

cryptocurrency that was proposed in 2008. At the time of writing, there are hundreds

of cryptocurrencies that have a market value [73, 71]. The common aspect of all

these cryptocurrencies is the distributed ledger also known as the blockchain shared

with participants in the payment system. Cryptocurrency falls under the category of

distributed and/or decentralised Digital Currency which is not managed by a central

payment scheme, financial institution, government, etc. but rather by the peers joining

the distributed system [71, 113].

In the recent years, consumers, businesses, financial institutions, governments, etc.

are starting to understand the benefits of using distributed payment methods to make

online purchases and at PoS transactions [104, 142, 196, 67, 202, 56, 113]. Furthermore,

a recent study estimates the current number of active cryptocurrency wallet holders

to be between 2.9 - 5.8 million and the total cryptocurrency market capitalisation in

April 2018 was $265 billion [104, 73].

In this section, we gave an introduction to distributed payment systems and dis-

cussed key features in regards to how these technologies operate. In the next section,

we extend our discussion on blockchain technology and Bitcoin by investigating the

underlying payment architectures.

2.2.1 Blockchain Technology

In the 1990’s, peer-to-peer networks were gaining rapid interest and the technology

was mainly used for the purpose of file sharing at the time. Peer-to-peer file sharing

services such as Napster and Gnutella were used to share multimedia files such as MP3

[50]. Raising intellectual property and copyright concerns, unregulated peer-to-peer

file sharing services were classed as earlier forms of darknets [50].

Just after the year 2000, innovations based on peer-to-peer networks found new

ground other than file sharing [177, 50]. One such example is the invention of the

Bitcoin peer-to-peer network [147, 52].

The blockchain technology as we know of today, is one of the significant innovative

outcomes that came from Bitcoin [147, 71, 113]. Bitcoin is a distributed cryptocur-

rency system that works on a peer-to-peer network. Unlike in a banking networks

where transactions are approved by dedicated servers, in distributed payment systems,

all transactions are approved by peers joining the peer-to-peer network. Transactions
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are represented in hash outputs and the ownerships of monetary value attached to

a public key (also known as the coin address) is transferred using digital signatures.

Transferring ownership of the value attached to a coin from one user to the other using

digital signatures creates a chain of signatures. The recipient can verify the ownership

of a coin using the signature chain [147]. The recipient, however, cannot check whether

the sender has already transferred the coins to another user and is trying to make a

duplicate payment with the same coins. This is referred to as the double-spending

problem and a payment system should support detection of any attempted double

spending. As there are no dedicated server or an authorisation entity to verify each

payment transaction, distributed payment systems solve the double spending problem

is by introducing a shared distributed ledger that permanently records all transactions

that have completed in the past [147, 113]. This innovative solution is also called the

blockchain. To provide a permanent record and an audit trail, past transactions are

included in blocks. A block is a record of sequences of digitally signed and verified

transactions. This provides a permanent record of a sequence of blocks from the very

first to the latest block which can be used by peers to prevent double spending. The

created blocks are timestamped and chained together in the order they appeared, de-

riving the term blockchain [147, 113]. A blockchain is shared and synchronised with

all the nodes connected to the peer-to-peer network in a global scale. The blockchain

can be referred to as a globally distributed cryptographic ledger.

Types of Blockchains

Blockchains can be categorised in to two main categories based on permissions, who

can recorded information on the blockchain and who can view recorded information,

etc. The two main types of blockchains are described below.

1. Unpermissioned: A unpermissioned blockchain is a distributed ledger shared

and synchronised with all the entities in a peer-to-peer network. The management

of the ledger, how and when things are recorded on to the ledger is not controlled

by a single entity. The ledger is visible to all the entities and any entity on the

peer-to-peer network can append or record a transaction as long as it is genuine.

The integrity of the ledger is agreeing upon by using a majority consensus. The

Bitcoin blockchain is a good example.

2. Permissioned: A permissioned blockchain is a distributed ledger that has one or

a given number of owners. Any records to the ledger can be only added by these

owners and not by any other nodes. The consensus in regard to the integrity of the

ledger is reached only by entities with pre-defined privileges. Due to the limited
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consensus, transactions are much faster compared to unpermissioned blockchains,

the owners have more control over the consensus mechanism and management of

the blockchain.

In the next section, we extend our discussion on Bitcoin, explain its underlying

blockchain based architecture.

2.2.2 Bitcoin

Bitcoin is a distributed digital cash system based on a peer to peer network architec-

ture. Satoshi Nakamoto which is a pseudonym (online identity - might not be the real

name) proposed and developed the payment system in October 2008. In January 2009,

the first hash block called the Genesis Block was created and a publically available

global ledger called the Blockchain was broadcast on the Bitcoin peer to peer network.

There after, the Bitcoin payment system is widely used to make anonymous payments

over the Internet. Payment transactions are broadcast to all the nodes in the peer to

peer network and are permanently recorded. Bitcoin transactions are represented in

SHA 256 hash outputs. There are two types of broadcasts; Transactions and Blocks.

The system is built to have a fixed number of Bitcoins in circulation; this amount is

roughly 21 Million Bitcoins. As of April 2018, there are about 16.9 Million Bitcoins in

circulation [55]. In Bitcoin mining is the process a group of nodes authorising trans-

actions and creating new blocks. On average, in the Bitcoin network a new block is

created every ten minutes. Verification of transactions is assigned randomly to network

peers and the verifying peers get a small portion of Bitcoins. However, the creation

of a valid new block pays the creator 12.5 Bitcoins at the current level which is also

known as Coinbase within the Bitcoin community [53, 52]. This amount halves every

four years to balance out the increase of computational power over time. A user can

start using Bitcoins by running Bitcoin wallet/client software. It can be used to man-

age Bitcoin addresses/keys and to make payments. Every user needs to have a Bitcoin

address to receive Bitcoins from other parties and a corresponding Secret Key is needed

to transfer Bitcoins to other parties.

A user can generate a unique Bitcoin address which is also called a Bitcoin public

key by using an Elliptic Curve Digital Signature Algorithm (ECDSA) key as given

below [53, 147].

Step 1: Generate Private ECDSA key. Step 2: Generate Public ECDSA key.

Step 3: Create a SHA-256 hash of step 2. Step 4: RIPEMD-160 hash of step 3.

Step 5: Add bytes 00 to the front of step 4. Step 6: SHA -256 hash of step 5.
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Step 7: SHA -256 hash again of step 6. Step 8: Take the first 4 bytes of step 7.

Step 9: Add these 4 bytes at the end of step 5. Step 10: Base58 encoding of step 8.

Each Bitcoin public key has a corresponding private key which is used by the payer

to generate a digital signature when making a payment.

Bitcoin works in a slightly different way from other digital currencies by having a

globally broadcasted transaction record that links ownership to a Bitcoin instead of a

unique string that represents a coin [69, 163, 151].

A Bitcoin transaction is the process of transferring the monetary value attached

to a particular Bitcoin address by digitally signing a hash of a previous transaction

together with the next owners public Bitcoin address and adding this record to the

shared ledger. The ownership is transferred from one address to the other by using this

chain of signatures. This links past transactions to the present ones.

The transaction verification and creating new blocks by the Bitcoin miners is made

a fair and non-trivial task by introducing a Proof of Work method, a concept first

introduced by Adam Back in 2002 as a counter-measure against unsolicited junk mail

and denial of service attacks [42]. Peers who engage in this process are called Bitcoin

miners and miners are rewarded for their computation. This concept was implemented

by Bitcoin making the peers to generate a hash less than a target value with a certain

number of zero bits at the beginning of the hash. Generating a hash that has a certain

number of zero bits at the beginning is a difficult task that takes computational time.

The work needed increases exponentially as the required number of zero bits in the

beginning increases. As a result, a constructed block cannot be easily changed [53, 147].

Based on the consensus mechanism, nodes in the network accept the longest blockchain.

Because of this, to include a manipulated block the attacker needs to re-perform the

proof-of-work for the modified block and all subsequent blocks that appeared chrono-

logically. This is considered practically infeasible.

The need for having continues relationship with past transaction hashes to the

present ones incurs the need for storage space to store all the hashes. The system over

comes this drawback by making the transactions hashed in a Merkle Tree [139]. This

makes the hash only needing to record the Root Hash [147, 139].

Therefore, Bitcoin transaction security relies on the correctness of the Block Chain

[147, 53]. By looking at one’s Bitcoin address, the true identity of the user cannot

be revealed. However, due to the necessity of having to broadcast all transactions

publicly prevents the anonymity of Bitcoin payment transactions. This has become

a drawback and with the advancements in computational power and data analysis, it

may be possible to link Bitcoin transactions to real user identities [164, 44, 170, 203,
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124]. There have been several attempts to improve the security of Bitcoin recently.

These include techniques to address attacks on Bitcoin [44] and solutions to address

anonymity, such as Zerocoin which is a proposed distributed digital cash system that

acts as an extension to Bitcoin [141]. Furthermore, MasterCoin is a proposal to make

Bitcoin more stable and secure by adding a new protocol layer on top of Bitcoin to run

services [198].

2.2.3 Existing SMS Payment Systems and Bitcoin

In developing countries, SMS (Short Message Service) mobile payment systems have

been extremely successful. One such example is the popular M-PESA in Kenya [173].

The SMS approach has been extended to perform Bitcoin transactions e.g. Bitcoin

Currency (BTC) For SMS [28], where users can add Bitcoin to their online wallets using

SMS, and Coinapult Bitcoin SMS service [2] which a range of Bitcoin transactions can

be done1. However, the problem with these schemes is that all requires the users to

have online access to set up the Bitcoin wallets and to maintain them.

There have been attempts to integrate Bitcoin with SMS based payment systems

such as M-PESA in Kenya but failed because of business pressures [23, 205, 1]. However,

Bitwala offers a Bitcoin remittance transfer service to Uganda, Tanzania and Nigeria

that uses mobile money services [27], but again, the user needs online access to their

Bitcoin Wallet.

Other proposals to carry out Bitcoin transactions using mobile phones require the

users to download smartphone apps to interact with online Bitcoin wallets e.g. BTC

Wallet [96], which is not feasible for the environment under discussion, both in terms

of equipment available and online access.

2.3 Anonymous and Fair-exchange Payment Schemes

In the previous section, we introduced Bitcoin. Anonymous payment schemes such

as Bitcoin helps realise anonymity and user privacy during payment transactions are

called Anonymous Payment Protocols. Digital Cash is a variant of anonymous payment

protocols [113]. Protocols that are built to achieve fairness in e-commerce transactions

are called Fair-exchange Protocols. A combined solution that would realise fairness as

well as anonymity is called an Anonymous Fair-exchange Payment Protocol. In the

next two sections, we carry out a discussion to identify these schemes.

1The Coinbase SMS service was discontinued in March 2017 in favour of their smartphone apps
[148].
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2.3.1 Anonymous Payment Schemes

Anonymous Payment Protocols provides anonymity to the payer during a payment and

improves privacy of the payment transaction. There are two main types of anonymous

payment systems: on-line payment systems and off-line payment systems. In an on-

line scheme the payer, payee and the bank requires an online connection at least once

during the protocol to verify the digital cash. The first on-line anonymous payment

system was proposed in 1985 [68]. In 1989 a new payment scheme was introduced that

uses a special type of user account called ‘standard values’ to achieve anonymity [62].

Supporting this, a new scheme that considerably reduces the size of these databases

was proposed in 1994 [63].

The significant aspect in off-line schemes is the fact that the Trusted Third Party

(TTP) does not have to be on-line during the protocol run between the payer and

the payee. Instead, the TTP verifies whether digital cash has been double-spent when

the payee presents the digital cash to the TTP to be deposited in to his/her account.

Chaum et al. proposed one of the first off-line anonymous digital cash schemes in late

1980’s [69]. Ferguson scheme is a digital cash system that falls under the category

of transferable cash [92]. DigiCash was a real world implementation, founded 1990 by

Chaum. However, the company did not succeed. CyberCash founded in 1994, provided

a wallet application and a micropayment system called CyberCoin designed with the

use of Netbill protocol [154]. Mondex is a digital cash system that is based on Smart

Card technology. The project was initiated in 1991 and at present Mondex is part of

the MasterCard worldwide suite of smartcard products. Mondex at first achieved a

good start, but could not expand as expected in to wider deployment [132].

2.3.2 Fair-exchange Schemes

E-commerce transactions most of the time involve buying and selling of electronic con-

tent, goods and services between parties that have no prior trust-relationships with

each other. This requires e-commerce payment, contract signing, digital content ex-

change, certified delivery protocol schemes and implementations to improve fairness

between involved parties. Fairness in e-commerce can be categorised as Weak and

Strong fairness.

Weak fairness is when in an electronic transaction between two parties, the honest

party can prove to a third party after the transaction protocol-run, that he/she followed

the protocol even though the dishonest party did not send or pay to the honest party

or aborted the protocol [162].

On the other hand, Strong fairness or True fairness ensures that, the protocol itself
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tries to avoid disputes and misbehaving of parties and resolve any disputes within the

protocol without reaching an external judge. These protocols make sure that due to

the misbehaviour of a dishonest party, a honest party engaged in a transaction does

not get penalised [40]. Due to this, either both parties are guaranteed to receive their

items or none of them receive anything.

When it comes to e-commerce scenarios such as exchanging electronic content, only

a few Anonymous Fair-exchange Protocols have been proposed [109, 208, 209, 207].

Depending the involvement of a trusted third party, fair-exchange protocols can be

divided in to two main categories.

Two party based protocols (Gradual-exchange)

These protocols do not rely on a TTP to achieve fairness but employ a process of

gradual exchange of several messages between the transacting parties to augment the

probability of fairness over the rounds of exchanged messages. Proposals include a

protocol based on bit-by-bit information exchange [58] and a system called the “1-out-

of-2 oblivious transfer protocol” [162]. In the above protocols, the party with the most

computational power than the other could gain advantage by conducting brute-force

attacks on received message to compute the remainder [47]. In 1990 a probabilistic

protocol was proposed as a solution [47]. However, the protocols discussed above lack

simultaneity of exchange and during the protocol, involved parties could misbehave for

their own advantage [162].

Protocols based on a Trusted Third Party

TTP based protocols can be classified into three main types depending on the TTP’s

involvement.

In-line TTP based protocols, involve the TTP to collect exchanged items, check

their accuracy and finally forward them to the intended parties. Proposals include, the

Believers Protocol which guarantees confirmation of sending and receiving of certified

electronic mail [43] and a protocol which adopts a TTP as a non-repudiation server

[72]. Strong fairness is provided because of the involvement of the TTP. However, to

manage and maintain large amounts of communicated messages, the TTP is required

to be readily available any-time which is considered a bottleneck.

On-line TTP based protocols have proven to be more efficient than in-line TTP

protocols due to the fact that, the TTP involves in the protocol run but not in every

transmitted message. However, the involved TTP still engages in the protocol run to

guarantee fairness by validating, storing and generating transmitted messages. The
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Netbill Protocol was one of the first protocols which achieved strong fairness [79].

Another protocol was proposed aiming at Electronic Data Interchange (EDI) systems to

achieve non-repudiation [206]. Zhou and Gollmann proposed another on-line protocol

which tried to reduce the workload of the TTP [210]. The protocol was designed to

provide evidence for the sender and the receiver, during the protocol run as well as after

completion. Zhang et al. proposed another protocol which would provide fair-exchange,

user anonymity and privacy payments over the internet [209].

Off-line TTP based protocols lets the transacting parties exchange products with-

out the involvement of a TTP unless transacting party misbehaves, prematurely aborts

or a communication failure happens. These protocols are also called “Optimistic Pro-

tocols”. The first optimistic protocol was proposed in 1989 [62]. An improved protocol

which allows exchange of two digital content between two parties was another proposal

[41]. The TTP in this protocol gathers enough evidence of a dishonest party to present

in front of a judge. Furthermore, an Ambiguous Optimistic Fair Exchange Protocol

without Random Oracles has been proposed recently [106].

In this section, we carried out a background research on anonymous and fair-

exchange payment protocols. In the next section, we introduce formal analysis tools

that can be used to verify the security of cryptographic protocols.

2.4 Formal Analysis Tools

This section introduces formal analysis tools. Evaluating the security of a proposed

protocol is important to identify potential weaknesses and to improve the protocol by

addressing the identified weaknesses. The security requirements of a cryptographic

protocol can be evaluated using a formal analysis tools. These tools check for network

related attacks in the communication channel between the sender and the receiver.

Even though formal analysis is not the main focus of this thesis, we use it to show that

the protocols proposed in this thesis are secure and complete.

There are a number of formal analysis tools, such as: AVISPA, ProVerif, CasperFDR,

Tamarin and Scyther. Comparisons between a number of these tools are carried out

in [85, 82]. The comparisons in [85, 82], identified that, performance wise, ProVerif

was the fastest tools and Scyther came in close second but had the advantage of not

using approximations. Furthermore, Scyther also supported handling unbounded veri-

fications. The comparisons also found that, CasperFDR had an exponential behaviour

and was faster then AVISPA’s implementation called SAT-based Model Checker tool

(Sat-MC) for a smaller number of protocol runs. Furthermore, AVISPA was found to

be slower then other analysis tools and had the drawback of not being able to display
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an attack tree [85, 82]. We use CasperFDR and Scyther for formally analysing our

protocols in this thesis. Our choice of these two tools were mainly based on the usabil-

ity aspect. Both tools provide a Graphical User Interface (GUI), ease of modelling the

protocol and clear outputs. From the two selected tools, Scyther provides verification

of synchronisation as an additional security claim of a given protocol. Furthermore, we

found Scyther to be user friendly and provided easy installations for Microsoft, Linux

and Mac operating systems.

The combination of CasperFDR and Scyther used in this thesis for mechanical for-

mal analysis are sufficient to verify the security claims of the proposed protocols. More

specifically, the tools are capable of analysing security claims such as: Confidentiality,

Integrity, Aliveness (Alive), Weak agreement (Weakagree), Non-injective agreement

(Niagree) Non-injective synchronisation (Nisynch), Secrecy of data (Secret), etc. un-

der the Dolev-Yao adversarial model in associated protocols [87, 81, 80].

Another type of alternative formal analysis technique is called Probabilistic Model

Checking, mainly used for analysing quantitative properties such as: reliability, respon-

siveness or resource usage [127]. Tools developed to carry out quantitative analysis us-

ing probabilistic model checking include: PRISM [126, 128] and The Markov Reward

Model Checker (MRMC) [120, 119]. These tools are used for analysing quantitative

properties of systems that exhibit probabilistic behaviour such as: communication loss

in a wireless channel, identifying the probability of a component of a system (e.g airbag,

brakes, network sensor) failing, etc.

Our main objective of the thesis is to enhance the security of payment transactions.

Quantitative analysis is not the main focus of the thesis. Therefore, the selection of

formal analysis tools were based on the capability of verifying the security claims of

the proposed protocols. The CasperFDR and Scyther mechanical formal analysis tools

used in the thesis are suitable and capable of verifying the security requirements.

2.4.1 CasperFDR

The security requirements of a cryptographic protocol can be analysed using the process

algebra Communicating Sequential Processes (CSP) introduced in [105] to produce a

description of a protocol system and its model checker Failures-Divergence Refinement

(FDR) [171]. As the process of producing a description of a system in CSP is time

consuming, a combined solution which is called CasperFDR was proposed in [129].

CasperFDR uses the Dolev-Yao threat model in [87] for the security verification of

protocols. In Dolev-Yao threat model, the adversary is assumed to have full control

over the communication channel where, the adversary has capability to impersonate

other users, intercept and modify communicated messages.
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The security protocol can be modelled as an abstract using a text editor and pro-

vided as input to Casper. The tool then produces a CSP description of the protocol in

a .csp file. Then the .csp file can be verified by FDR which outputs potential attacks

and weaknesses if detected. CasperFDR uses Running and Commit events to verify

the authenticity of communication between two entities. The Running is executed by

the receiver after receiving a message by the sender and the Commit is executed by the

sender after receiving a reply by the receiver. When verifying security requirements,

CasperFDR uses the Claim event. For example, the secrecy of communicated data can

be verified using Claim Secret. This makes a protocol-run between the sender and the

receiver to complete.

When verifying the security of a protocol using CasperFDR, an input script that

has two main parts of the modelled protocol needs to be submitted. The first part

of this script provides the protocol definition. In more detail, this defines the com-

municating entities and their initial knowledge of components related to the protocol

messages. #Free variables is used to define users, variables and functions used in the

protocol. #Protocol description is used to model the protocol messages, their content

and the sequence they are transmitted. After this, the #Processes declares the roles of

different entities used in the CSP process (INITIATOR, RESPONDER, SERVER) and

provides their initial knowledge (using the term ‘knows’) of values at the beginning of

the protocol. The next input in the script is #Specifications which defines the security

requirement such as: agreement for authentication and secret for confidentiality of the

analysed protocol.

The second part provides the system definition. In more specifically, this defines

the actual entities in the system, attackers knowledge and capabilities. The #Actual

variables also referred to as #Type definitions defines the names of the entities to be

used in the FDR verification. They are similar to the ones listed in #Free variables.

Additionally the Intruder is also defined as a participant in the protocol. Next, the

functions such as public/private keys used by the entities of the protocol are defined

using #Functions. The #System is used to declare the entities of the protocol with

their actual names and knowledge. Finally, the name of the intruder and the intruder’s

knowledge of other entities in the protocol and values communicated are declared in

#Intruder.

2.4.2 Scyther

Scyther is a formal analysis tool that can be used to verify the security requirements

of a cryptographic protocol [80, 81]. Scyther is capable of analysing a protocol for an

unbounded number of instances compared to other formal analysis tools in [85, 82]. The
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Scyther tool can be installed in a number of operating systems including: Microsoft

Windows, Linux and Mac OSX, where as CasperFDR only supports Linux. The Scyther

tool has a user friendly GUI with menu tabs to run verifications from an input file,

read help information and change settings related to set the verification parameters.

Scyther mainly uses the Dolev-Yao threat model in [87] for the security verification of

protocols. However, Scyther can support other threat models.

The description of a protocol can be modelled and provided as input to Scyther

using the Security Protocol Description Language (SPDL) defined in [81]. In the input

.spdl file, the functions, variables and constants of the protocol are declared at the

beginning. The usertype command generate new data types. The spdl provides three

main protocol modelling features: roles, events and claims. The entities in a protocol

are described using a set of roles, which characterise events. The send and receive

operations are classed as send and recv events respectively; each corresponding send

and recv event has the same sequence number.

In the script roles is used to declare entities communicating in the protocol and

a role can execute multiple protocol-runs. The variables used to store received values

are defined in Var and newly generated parameters are declared by Fresh. The Macro

can be used to replace a set of values that are repeatedly used in a protocol by an

abbreviation. The Ticket can be used to replace an unknown value.

The security requirements and objectives of a protocol that require verification are

specified using claim events. More specifically, the secrecy of data is verified using se-

cret. Security requirements related to authentication are verified by: Alive for aliveness

of a protocol run, Weakagree for weak agreement, Niagree for non-injective agreement

and Nisynch for non-injective synchronisation [81, 80]. Aliveness means that, a re-

ceiver successfully completes a protocol with a sender, then the sender has previously

been running the protocol. Non-injective synchronisation means that the send and

receive events happens to the expected sequence. Non-injective agreement means that

the communicating entities agree with the communicated content at the end of the

protocol run.

After verification, an output summary is provided. If a potential attack is identified

by Scyther, it outputs a graph detailing the attack in addition to the summary.

2.5 Summary

In this Chapter we first presented the background research related to EMV based

centralised payment systems. More significantly, we introduced aspects in the EMV

payment architecture such as: EMV OPV process, Tokenisation and operating envi-
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ronments.

Following this, the background related to Bitcoin/blockchain based distributed pay-

ments was presented. Under this category, we gave an detailed introduction to Bitcoin

and blockchain technology. In both the centralised and distributed payments discussed

in this chapter, we investigated the main features/aspects inherent in each payment

architecture and explored their operating environments.

After this, we discussed anonymous and fair-exchange payment protocols. We car-

ried out a discussion to explain why these protocol are important in e-commerce based

payment transactions. Finally, we introduced mechanical formal analysis tools and how

these methods can be used to evaluate the security of our proposed protocols.
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In this chapter, we present our first contribution of the thesis under the

EMV based centralised payment category. We first discuss the EMV Online

PIN Verification (OPV) process and explain how OPV can be deployed in

two methods (Segmented and Unified Authorisation) in the current EMV

payment architecture. We then reflect upon the indelible trust assumptions

placed on the intermediaries in the EMV payment architecture. In this

chapter, we focus our attention on the Segmented Authorisation method

and identify potential attack scenarios that can compromise the security of

the OPV process when these trust assumptions are scrutinised. Addressing

these potential issues, we then propose a number of solutions that improve

the security of OPV process in Segmented Authorisation method.
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3.1 Introduction

In Section 2.1.1, a brief introduction to EMV and its architecture was given. The PIN

verification process in an online authorisation environment is called the Online-PIN

Verification (OPV). An introduction to OPV is given in Section 2.1.2. Investigating

the OPV process is the main focus of this chapter. In our investigation, we elaborate on

the indelible trust assumptions placed on the intermediaries (subcontractors) between a

payment terminal and the scheme operator/card issuing bank. This trust assumption,

makes rest of the participants in the payment architecture assume that the intermedi-

aries are trusted and secure. When this trust (assumption) is scrutinised, we discuss a

potential attack scenario that can be used by a financial fraudster to compromise PIN

related information.

We further discuss how this information can be used by the fraudster to carry out

an online PIN approved transaction without the involvement of the genuine cardholder

but with the correct PIN. We then propose three solutions based on the existing OPV

process that defend against these attacks. The proposed improvements are then imple-

mented to measure any incurred performance penalties. In our practical implementa-

tion as detailed in section 3.4.2, however, we implement and measure the performance

penalties of both symmetric and asymmetric encryption methods proposed in each of

our solutions. The results of performance measurements are included in Tables 3.7. Fi-

nally we subject the proposed protocol to mechanical formal analysis using CasperFDR

to evaluate the security guarantees.

In Section 3.1.2 we explain why securing the PIN is vital for all the stakeholders at

different levels of the payment architecture. To secure PIN and associated transaction

details, modern payment terminals are designed to be secure and tamper resistant

[159, 13, 133].

In section 2.1.1, we explained how EMV supports offline and online PIN verification

methods. In the offline PIN verification, the PIN is verified by the payment card and

in OPV the PIN is verified by the authorisation entity. The PIN verification carried

out by the authorisation entity is considered as having a higher assurance level then

the PIN verified by the payment card. This is because the CIB as the entity that issues

the payment card also sets the PIN and manages any PIN changes for each particular

customer. The main focus of this chapter is the PIN verification carried out by the

authorisation entity which is referred to as OPV.

The financial institutions especially the banks suffer significant financial loss due

to payment card fraud [93, 150, 37, 174, 140, 181]. The main focus of this Chapter

is to improve the security of OPV process which would help to prevent potential at-
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tack scenarios that we identify in our work. Preventing such attack scenarios would

significantly help improve the security of payment transactions and reduce the risk of

potential financial cost associated with such attacks if they are realised.

In the next section, we extend our discussion on EMV OPV and explain two different

methods how OPV process can be deployed in the current EMV payment architecture.

3.1.1 Two OPV Deployment Methods

In this section, we discuss the two different OPV methods that may be used in the

current EMV payment architecture. In our discussion, the two OPV methods are

differentiated based on whether OPV is carried out together with the online transaction

authorisation or as a separate authorisation. Then we explain how the OPV process

can be carried out at different stages of the overall EMV transaction, depending on the

selected deployment method.

Segmented Authorisation Method

In this section, the OPV process discussed in Chapter 3 is revisited. As explained

previously, in the Segmented Authorisation method, the OPV is carried out separately

to the online transaction authorisation. In order to explain this more clearly, we list

the transaction steps in this deployment method as follows:

1. The CTPOS first constructs the encrypted PIN block which contains the user’s

entered PIN.

2. The enciphered PIN block is then sent to the authorising entity to be verified.

The authorising entity could be the Scheme Operator (SO) or the Card Issuing

Bank (CIB).

3. If the PIN is verified correctly, the authorising entity sends a response message

back to the CTPOS confirming that the OPV was successful.

4. It is after this confirmation of the outcome of the OPV, that the CTPOS proceeds

to the online transaction authorisation.

5. The online transaction authorisation request contains the card generated Autho-

risation Request Cryptogram (ARQC).

6. The card generates a cryptogram and forwards it to the CTPOS.

7. The CTPOS sends the cryptogram in an online transaction authorisation request

to the authorising entity.
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8. The authorisation entity verifies the cryptogram and sends a response message

to the terminal indicating whether the transaction was approved or declined.

As we can see, in the Segmented Authorisation method, the OPV process initi-

ated and completed before the transaction authorisation. This separation of the two

processes raised a few security concerns that we discuss in subsequent sections. The

proposed solutions that addresses the potential attack scenarios related to the Seg-

mented Authorisation Method was previously presented in Section 3.3.

Unified Authorisation Method

In this section, we introduce the second deployment method which is different to the one

we discussed above. The differentiating factor is mainly related to the communication

sequence of the OPV and the transaction authorisation. In contrast to the Segmented

Authorisation method, in the Unified Authorisation method that we introduce here,

the OPV is carried out together with the online transaction authorisation. To explain

this more clearly, we list the transaction steps in this deployment method as follows:

1. Similar to the previous method, the CTPOS first constructs the encrypted PIN

block which contains the user’s entered PIN.

2. Instead of sending the enciphered PIN block to the authorising entity separately,

in this instance the CTPOS requests the ARQC from the card.

3. Once the ARQC is received, the CTPOS constructs a unified message which

includes the OPV and the online transaction authorisation requests.

4. The online transaction authorisation request contains the card generated ARQC.

5. The ARQC together with the enciphered PIN block is then sent to the SO/CIB.

6. After receiving the request messages, the SO/CIB conducts OPV and online

transaction authorisation. The outcomes of both verifications are then sent back

to the CTPOS in a response message.

As we can see, in the Unified Authorisation method, the OPV process and the

transaction authorisation is carried out together in the same message sequence. In this

section, we explained both the Segmented and Unified Authorisation methods. In the

next section, we explain a potential issue that raise concerns regarding the security of

OPV process.
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3.1.2 Problem Statement

In the current EMV architecture in which OPV process is carried out, there are a

number of intermediary entities in the communication path between the CTPOS and

the SO/CIB. The EVM Card Specification Book 4 recommends and outlines why this

communication should be adequately protected [16].

By examining the OPV process used in the ATM transaction architecture [195] and

referring the literature in [49, 131, 65], it is clear that first the CTPOS requests the

PIN from the cardholder. Once the PIN is received the CTPOS encrypts it before

forwarding the encrypted PIN details to the authorisation entity for verification.

During a transaction, the CTPOS encrypts the PIN using a symmetric key shared

between the terminal and the first point of contact (which is not necessarily the

SO/CIB) in the communication channel towards the SO/CIB. It must be noted that

the symmetric key used to encrypt the PIN between the CTPOS and the first point of

contact can also be a session key. We explain this process which is also termed as the

key-translation in Section 2.1.2. The same key-translation mechanism is used by the

first point of contact to forward the PIN to the next entity in the communication path

towards the SO/CIB.

We explained the EMV OPV process in section 2.1.2. There is another process in

EMV called the “transaction authorisation” which is used to decide whether a partic-

ular transaction can be authorised or declined. As part of this process, during a trans-

action the payment card generates a message to request authorisation to a particular

transaction by the authorization entity which is called the transaction authorisation

message. In the EMV specification, this authorisation request is called the ARQC.

However, the current payment process has no binding between the ARQC and the

OPV process [14, 13, 15, 16].

The ARQC is encrypted by a symmetric key shared between the payment card and

the authorisation entity. The encrypted fields include a number EMV tags that are

standardised parameters in the EMV specification. In EVM Card Specification Book

4, it details that one of these tags is the Cardholder Verification Method (CVM) which

indicates the method used to verify a cardholder during the transaction [16]. Normally

the cardholder verification is carried out before the transaction authorisation.

The CVM is a tag that is three bytes in length. The bytes indicates: the CVM

performed, CVM conditions and CVM results [16, see: p49]. When it comes to infor-

mation related to the OPV process in the CVM tag, the only information related to

the OPV is a single binary value that is set to 1 if CVM was performed at the start of

a payment transaction [15, see: p162]. As we can see in both the CVM or the ARQC,

there are no tags/parameters that binds the OPV process with the associated ARQC.
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Another key observation that we understand is that during an OPV, the PIN is

handled (creating a PIN block to be sent to the authorising entity for approval) only

on the PIN entry device which in this case the CTPOS and the payment card is not

informed about the PIN value entered on the CTPOS.

The risk associated with the weaknesses and shortcomings that we briefly outlined

above is realised if an adversary compromises one of the intermediaries that engage

in the key-translation process between the CTPOS and the authorisation entity. Such

compromise would lead to the adversary obtaining details such as PIN and associated

payment transaction related information to carry out further financial fraud.

The adversary at the compromised entity will be able to observe OPV messages

that include PINs and associated Primary Account Numbers (PAN). By obtaining such

information, the attacker is now in a position to carry out an OPV-based transaction

at a merchant’s premises with a stolen card for which the adversary has previously

obtained the relevant PIN. This way an attacker can perform an EMV transaction that

requires online approval at a CTPOS.

As indicated in reports [45, 117, 118], the notion of an attacker being able to

compromise an intermediary in the payment architecture is not hypothetical or too far-

fetched. It is important not to underestimate such scenarios for the overall improvement

of the payment system.

3.1.3 Contributions

In this chapter we propose solutions that enhance the security of EMV OPV process by

addressing the aforementioned security concerns that we briefly identified. Our main

contributions for this chapter are two fold. The first contribution is the proposed en-

hanced OPV process that proposes three separate solutions to protect the PIN details.

The second contribution is how we bind the OPV with the respective ARQC in an

online transaction authorisation scenario.

1. To protect the PIN we have proposed an enhanced OPV process using:

(a) Card-based solution with symmetric cryptography.

(b) Card-based solution with asymmetric cryptography.

(c) Payment terminal-based solution with asymmetric cryptography.

2. Binding each OPV with the associated ARQC.

The remainder of the chapter is structured as follows. In section 3.2 the payment

networks operating environment is outlined and the attacker’s capabilities and potential
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attack vectors for compromising the OPV process is discussed. In section 3.3, the

three potential countermeasures that address the security concerns are provided. The

proposed solutions are then analysed in section 3.4. Finally, concluding remarks are

provided in section 3.5.

3.2 Potential Concerns

In this section, we discuss the operating environment and make assumptions related to

the OPV process. Following this, we introduce our attack model, explain the attacker’s

capabilities and examine two potential risk scenarios.

3.2.1 Operating Environment and Assumptions

The operating environment of the OPV process is illustrated in Figure 3.1. As we

previously discussed, the PTO can represent a number of entities such as the acquiring

banks, subcontractors or third parties. In Figure 3.1, these intermediaries are outlined

with a dotted rectangle. In OPV, the communication path between the payment termi-

nal and the authorisation entity (i.e. SO/CIB) may consist of numerous intermediaries

such as: the acquirers’ subcontractors who operate CTPOS devices, third party PTO

and other entities that engage in key translation (where messages are enciphered and

deciphered from node to node).

A PTO might issue or lease their payment terminals to a number of customers

(merchants). In our operating environment, however, we assume all the scenarios: the

PTO is a third party that manages the terminals, subcontractor or it is an acquiring

bank. The choice of who is the PTO does not affect our operating environment and the

risk scenarios discussed later. It must be noted that it is more likely that there can be

some additional nodes between the PTO and the scheme operators. These additional

nodes can be a number of entities in the communication path to the SO. In the event

of the PTO is a third party, one of these additional nodes must be the acquiring bank.

Figure 3.1: OPV Operating Enviroment

52



3. Improving Online PIN Verification Security

As illustrated in Figure 3.1, the SO is directly connected with the CIB and has a

secure communication channel. The arrows connect two entities with each other and

the arrowhead indicated the direction of the message flow. Furthermore, each arrow

connecting two entities uses a unique session key to secure the communication between

those two entities.

The key-translation process is performed by each intermediary and SO until the

OPV message is received by the CIB. In some scenarios, the SO performs the OPV

verification on behalf of the CIB. However, in this chapter we are not considering such

scenarios. However, the risk scenarios that we discuss in this chapter is not affected

by this. The terminal, each intermediary node and scheme operator will perform key

translation until the OPV message is delivered to the CIB.

The following entities are considered to be trusted and secure in this study: the

smart cards, payment terminals, SO and the CIB. The rationale for this consideration

was discussed in Section 3.4.1. However, any intermediary that might be connected

to the public internet is considered to have the potential to be compromised. This

assumption can be considered reasonable by referring to past incident reports [45, 117,

118, 54, 110, 125]. In one incident attackers were able to successfully infiltrate sensitive

information from the banking sector [118].

Here, we gave an overview of the operating environment. In the next section, we

outline the capabilities of the attacker after taking into consideration the operating

environment, the assumptions made about the intermediaries and other entities in the

payment architecture.

3.2.2 Attacker’s Capability

The capabilities of the adversary are listed below:

1. Has the capability to compromise any of the intermediary nodes.

2. Has the capability to access the OPV communication in plaintext on the compro-

mised intermediary node. As in the operating environment discussed in section

3.2.1, individual intermediary nodes perform a key translation process, which in

essence decrypts the ingress message and then encrypts, with a new key, the

egress message.

3. Can not break the standard1 (strong) encryption algorithms.

4. Can not compromise the smart cards, payment terminals, scheme operator or

CIB.
1Standardised in the relevant up to date statement
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5. Might collude with other adversaries that steal smart cards from genuine card-

holders.

In the next subsequent sections, the report describe two potential risk scenarios.

The attacker capabilities identified above is taken into account in the discussion.

3.2.3 Two Potential Risk Scenarios

In this section, a discussion is carried out about two potential risk scenarios that

pose a threat to the security of payment transactions. In the identification of these

attacks the operating environment of the payment network, the assumptions made

and the capabilities of the adversary are taken into consideration. Successful attacks

that we describe below might result in compromise of the OPV process and the online

transaction authorisation.

It must be noted that for the authorisation entity or CIB, it might be extremely

challenging to detect the fraudulent transaction during the payment stage or even

after the transaction has taken place. This is because there is a trust assumption in

the payment network that numerous intermediary nodes are trusted and the adversary

compromises one of these intermediaries. Therefore, it is difficult to pinpoint where the

payment data was compromised and how. Furthermore, once the fraudulent transaction

appears in the bank statements the genuine cardholder will deny making any payment

and claim a refund from the CIB. There is a considerable financial loss associated with

this type of fraud for the CIB.

Correct PIN in OPV Message

The first risk scenario is outlined in this section. In the operating environment of

the payment architecture, we outlined that the adversary has complete access to the

compromised intermediary node and can observe all the transactional messages that

pass through the compromised node. The steps involved in the compromise of the

payment transaction in the first risk scenario is listed below.

1. First, the adversary observes the communication passing through the compro-

mised intermediary node and builds a database of PIN numbers. This database

contains the Primary Account Number (PAN) and associated PIN.

2. A malicious accomplice M of the adversary steals a smart card. The adversary

matches the cards PAN with the database. If a match is found then the adversary

and the accomplice know the associated PIN. Before the card gets blocked by the
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CIB, the accomplice presents the card to a (genuine) payment terminal, enters

the correct PIN and can perform online or offline payment transactions.

The risk associated with the compromise is exacerbated if the relevant compromised

details are cloned into a magnetic strip card and then used with the compromised

correct PIN. The cloned magmatic strip card are then used in countries that have not

yet fully migrated to the Chip & PIN payment scheme. This has led to a significant

increase in card payment fraud that has been carried out abroad on payment cards that

have been issued in countries already using the Chip & PIN scheme [93]. Most of the

countries that have not migrated to the Chip & PIN scheme are still using magnetic

stripe payment. Mostly all magnetic strip payment transactions are approved online

and this includes the OPV as well. As we have explained in this risk scenario, the

adversary is able to compromise the correct PIN and related data. With the correct

PIN already being compromised, an adversary is able to successfully prove knowledge

of the cardholder’s PIN to the authorisation entity during a fraudulent transaction

carried out by a cloned magnetic stripe card.

OPV Response Message

In the second risk scenario, a payment transaction may potentially be compromised in

the following manner:

1. A malicious accompliceM of the adversary steals a smart card and then presents

this card to a payment terminal that uses an intermediary node that is under total

control of the adversary.

2. M selects the payment terminal in a manner that will opt in for the OPV process.

3. The payment terminal requests the cardholder (M) to enter his PIN. M enters

any random sequence at the payment terminal. The terminal then encrypts this

entered PIN and sends it to the authorisation entity over the network.

4. The adversary captures this message. Whether it allows the message to go for-

ward to the authorisation entity or not makes no difference. Authorisation entities

(e.g. scheme operators and CIBs) do not link the OPV process with the online

transaction authorisation (i.e. ARQC [16]). The adversary then replays a suc-

cessful OPV verification response message generated by the CIB (observed in

previous genuine transactions) back to the terminal. The adversary has observed

this successful message in previous runs of the OPV process and can just replay

it to the payment terminal.
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5. The payment terminal will receive a successful PIN verification message and pro-

ceeds to request the smart card to generate an online transaction authorisation

message (i.e. ARQC) in the 1st GENERATE AC command [14]. The card gen-

erated ARQC is then sent to the authorisation entity. The authorisation entity

verifies the ARQC and does a credit check on the users account. If satisfied, the

authorisation entity generates an Authorisation Response Code (ARC). The ARC

is then XORed with the ARQC and then enciphered using the session key shared

with the card to construct an Authorisation Response Cryptogram (ARPC) to

approve the transaction. The ARPC is then sent back to the CTPOS. The ARPC

could also be in the form of a Message Authentication Code (MAC).

6. The CTPOS forwards the ARPC to the card and requests an outcome in the

2nd GENERATE AC command [14]. The card after verifying the valid ARPC,

generates a Transaction Certificate (TC) and sends it to the CTPOS.

7. CTPOS now accepts the card transaction and either sends the TC straight for

payment processing or stores it for payment processing at a later time. The attack

is possible due to lack of strong binding between the OPV and the ARQC.

In this section, we outlined two main risk scenarios and walked through each poten-

tial payment transaction compromise. The discussed risk scenarios defines the threat

model, in which our proposed solutions are based. The solutions that address the

security concerns discussed above are presented in the next section.

3.3 Proposed Solutions

In this section, we present three proposed solutions that address the aforementioned

risk scenarios that were discussed in Section 3.2. Overall the solutions are proposed to

guarantee the end-to-end security of OPV process between the payment card and the

issuing bank.

When constructing the solutions, we have taken into consideration the overhead

it adds on the intermediaries in a practical term. Therefore, the proposed solutions

introduce minimal or no changes to the operational/system architecture of the inter-

mediaries involved in the current EMV payment scheme between the payment terminal

and the SO/CIB. Another reason for this consideration is that the CIB has no control

over the intermediaries and enforcing a system/process update on the intermediaries is

a challenging task.

To meet our objective, the changes require to apply the proposed improvements

are only made to the payment cards, the CIB and the CTPOS devices. The CIB has
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Payment Card Payment Terminal Intermediary Authoriser

SKT

OPVrq

OPVrq

OPVrq

OPVrp

OPVrp

OPVrp

Terminal Generated Session Key (SKT
), Online PIN Verification Request (OPVrq), Online PIN Verification

Response (OPVrp)

Figure 3.2: Generic OPV Protocol Sequence Diagram

complete ownership of the payment cards that are being issued to customers and their

back-end authorisation systems. This means any changes to the payment cards and the

back-end systems are within the capability of the CIB. Furthermore, it is considered

possible to apply the security improvements to the CTPOS devices (this may be carried

out by a software/hardware update) by requesting an update via the payment scheme.

We first introduce a generic OPV model that lays the foundation on which our

three proposed solutions are based. The generic model also makes it easier to explain

and describe the three proposed solutions more clearly. The protocol message flow of

the generic OPV model is illustrated in the protocol sequence diagram in Figure 3.2.

In the generic protocol, first the CTPOS sends the payment card a session key SKT

generated by the CTPOS and the PIN entered by the cardholder. The PIN is either

sent in plaintext or in enciphered format.

In the event of the PIN being sent to the card in the enciphered format, the CTPOS

can choose one of the following two methods depending on the scenario. They are:

1) the CTPOS could use the card’s public key recovered from the card’s public key

certificate, 2) if the payment card contains a dedicated key pair for PIN encipherment,

the CTPOS may use a card owned PIN encipherment public key.

However, it must be noted that if the PIN is sent enciphered in a PIN block, the

purpose of this message is for the card to retrieve the PIN, but not to respond to a

VERIFY command carried out in offline PIN verification.

After successfully receiving the message from the CTPOS, the payment card con-

structs a PIN block which contains the PIN and details of the corresponding account
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number according to ISO-9564-1 & ISO-9564-2 [17, 9]. Table 3.1 lists the data included

in the OPV PIN Block.

The Unpredictable Numbers (UN) mentioned in this study have the same properties

as defined in the EMV specification [14]. A symmetric key shared with the authorisation

entity is used for the encipherment that is carried out inside the payment card. The

authorisation entity during a payment transaction could either be the SO or the CIB.

The encipherment is given a term called the OPV Encipherment PIN Block and has

the notation e{PB}.
In order to provide confidentiality to the PIN related data both OPV PIN Block

(PB) and the OPV PIN Result Block (PRB) are in the encrypted format. In the

encipherment of the PB and the PRB using a symmetric encryption algorithm, three

separate symmetric encipherment methods are used. The three encipherment methods

are listed and details given below;

1. Basic Encryption: Advanced Encryption Standard (AES) [115] as the sym-

metric encryption algorithm with Cipher Feedback Mode (CFB) as the mode of

operation.

2. Encrypt-then-MAC: AES as the symmetric encryption algorithm with CFB

as the mode of operation and a key based Message Authentication Code (MAC)

computed using SHA256 [149] to provide integrity.

3. Authenticated Encryption: AES as the symmetric encryption algorithm and

Galois/Counter Mode (GCM) [135, 90] as the mode of operation is used as a

combined single operation to provide authenticated encryption.

In this section, three separate messages that detail each of the symmetric encryption

process are not given. Instead, it must be noted that the symmetric encipherment

of the OPV PIN Block with the notation “e{PB}” represents any one of the three

cryptographic processes listed above depending on which method is selected. The

same symmetric encipherment algorithm used to create the e{PB} is selected by the

CIB to encipher the PRB to create the enciphered OPV PIN Result Block “e{PRB}”.

For the symmetric encipherment of the OPV PIN Block in the generic protocol, we

use the basic encryption mode with three blocks of 16 bytes each with a total length

(L) of 48 bytes. The first block includes, 1 byte data header and 15 bytes of the random

number (UN) generated by the smart card. The second block includes, the remaining

1 byte of the random number, 8 byte PIN Block and 7 bytes of the CTPOS generated

session key. The third block includes, remaining 9 bytes of the CTPOS generated
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session key and 7 bytes of random padding. In our practical implementation of this,

we used 128bit - AES [115] with CFB as the mode of operation.

Table 3.1: OPV PIN Block (PB) in Segmented Authorisation

Data Header : 1 Byte.

Card Unpredictable Number (CUN) : 16 Bytes.

PIN Block : 8 Bytes.

CTPOS Session Key (SKT
) : 16 Bytes.

Random Padding : 7 Bytes.

Following this an Online PIN Verification Request (OPVrq) message addressed to

the authorisation entity is constructed by the payment card. The message includes

a concatenation of the Primary Account Number (PAN) which is the long number

embossed on the payment card, and the encipherment of the OPV PIN Block e{PB}.
A session key shared between the payment card and the CIB is used to encipher the

e{PB}.

OPV rq = PAN ||e{PB}

The constructed OPVrq is then sent to the CTPOS. Once the message is received by

the CTPOS, it encrypts the PIN-related data by following the existing EMV process.

For this the CTPOS uses the key it shares with the next entity on the communication

path. This entity could be the acquiring bank or an intermediary in the EMV payment

architecture. In a similar manner the OPVrq is then forwarded from entity to entity

until the authoriser is reached.

Once the request is received by the authorisation entity, it deciphers the e{PB} by

retrieving the shared session key it holds in its records. The authorisation entity then

verifies the recovered PIN with the PIN it holds for the cardholder in its record. If

the PIN validates successfully the outcome is included in an OPV PIN Result Block

(PRB). The data included in the PRB is listed in Table 3.2.

Table 3.2: OPV PIN Result Block (PRB) in Segmented Authorisation

Data Header : 1 Byte.

Cardholder V erification Result(CV R) : 5 Bytes.

Authoriser Unpredictable Number : 16 Bytes.

Card Unpredictable Number : 16 Bytes.

Random Padding : 10 Bytes.
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The Authoriser then constructs the OPVrp. This message is in enciphered format.

We use the basic encryption mode with three blocks of 16 bytes each for the encipher-

ment (128bit AES). Therefore, the last block was included with 10 bytes of random

padding. It is the encipherment of the PRB using the session key SKT
of the CTPOS.

The notation below is used to show the symmetric encryption of PRB using the key

SKT
.

OPV rp = e{PRB}

The constructed OPVrp is then sent to the same communication path, which may

go through the same acquirer and intermediaries in the current EMV architecture. The

OPVrp is pushed until it is reached by the CTPOS. The message is then deciphered

by the CTPOS to obtain the PIN verification result.

The CTPOS transfers this message to the payment card once the CTPOS is sat-

isfied with the OPVrp. Based on our threat model, the payment card, CTPOS and

scheme operator/CIB are assumed to be trusted entities. EMV transaction authorisa-

tion continues following the OPV process described above.

3.3.1 Card based Solutions

In this section, we discuss the proposed solutions that are mainly based on the payment

card. In the card-based solution, the encipherment of the PB happens inside the

payment card before it is forwarded to the CIB (Authoriser in our generic model) to be

verified. The card-based solutions are further sub-categorised, depending on whether

a symmetric or an asymmetric cryptographic key is used to encipher the PB.

Card uses an online-PIN encipherment symmetric key of the CIB

The solution described here introduces an online-PIN encipherment symmetric key

KOPV that the payment card shares with the CIB. From the KOPV , a session key

KSOPV
is derived using a key derivation function similar to the one specified in EMV

specification [14, see: p127 - p131] and also discussed in [133]. It is assumed that the

session key derivation between the card and the CIB is synchronised.

During a payment carried out using this solution, first the card is inserted to the

CTPOS. Then the cardholder entered PIN is sent to the payment card. The PIN is

sent either in clear or in encrypted format. The CTPOS also sends the session key

SKT
. The OPV process in this solution follows exactly the same steps as described in

the generic OPV model above. Considering the ownership of the payment card by the

CIB, the necessary changes are under the control of the CIB.
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Card uses an online-PIN encipherment public key of the CIB

Previously we described a solution that is based on a symmetric key. The solution

described here introduces an online-PIN encipherment public key POPVCIB
of the CIB.

It must be noted that this is not the CIB’s public key that is recovered from the CIB’s

public key certificate residing in the card during EMV transactions. The POPVCIB
in

this solution refers to a specific online-PIN encipherment public key introduced in our

construction.

This particular cryptographic key is stored in the payment card by the CIB during

card personalisation. It is in the format of a public key certificate that has been signed

by the CIB.

During a payment transaction in this solution, there are similar steps as in the

generic model. First, the CTPOS sends a session key SKT
and the PIN entered by

the cardholder either in plain text or in enciphered format to the card. The card then

constructs the PB-1. Table 3.3 lists the data included in the PB-1. In this occasion,

PB-1 is enciphered using the public key POPVCIB
to generate the enciphered OVP PIN

Block that has the notation z{PB-1}. For the implementation of the public key-based

solutions, we selected 1048bit RSA (Rivest, Shamir and Adleman) [176] with random

padding generated by the selected PRNG. The included random padding was based on

the Public-Key Cryptography Standards (PKCS #1 v1.5) for RSA [116]. The required

random padding of non-zero randomly generated bytes was calculated as follows: 256

bytes (the public key length) deducted by 44 bytes (the message length of 41 bytes and

3 bytes for separating the padding).

Table 3.3: OPV PIN Block -1 (PB-1) in Segmented Authorisation

Data Header : 1 Byte.

PIN Block : 8 Bytes.

Card Unpredictable Number (CUN) : 16 Bytes.

CTPOS Session Key (SKT
) : 16 Bytes.

Random Padding : 212 Bytes.

Following this, the OPVrq is constructed by the payment card. This message also

includes the PAN and the public key encipherment of PB-1.

OPV rq = PAN ||z{PB − 1}

The constructed OPVrq is then sent to the CTPOS. The CTPOS device now follows

the existing EMV process and encrypts the PIN-related data with the key it shares with
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the next entity on the communication path. This way the OPVrq is forwarded until

the CIB is reached.

Once the message is received by the CIB, it is deciphered to obtain the PIN related

data and verifies whether the PIN is correct. The outcome of the PIN verification is

included in an OPV PIN Result Block (PRB-1). The content of the (PRB-1) is listed

in Table 3.4

Table 3.4: OPV PIN Result Block -1 (PRB-1) in Segmented Authorisation

Data Header : 1 Byte.

Cardholder V erification Result(CV R) : 5 Bytes.

CIB Unpredictable Number : 16 Bytes.

Card Unpredictable Number : 16 Bytes.

Random Padding : 10 Bytes.

Following this, the OPVrp is constructed by the CIB. This is the encipherment of

the PRB-1 using the session key SKT
of CTPOS.

OPV rp = e{PRB − 1}

The constructed OPVrp is sent back via the same communication path until the

CTPOS is reached. Once the message reaches the CTPOS, the CTPOS deciphers the

e{PRB-1} to obtain the CVR. The CVR is then verified and if the verification is

successful, the CVR is passed to the payment card. EMV transaction authorisation

continues following the OPV process we described above.

3.3.2 Terminal based Solutions

In this section we present the terminal based solution that improves the security of the

OPV process. In this solution, before the PIN block is sent to the CIB, it is enciphered

at the CTPOS. This method is different to the previous two solutions that we discussed

as the PIN entered by the cardholder is not sent to the card but instead enciphered in

the CTPOS.

Terminal uses an online-PIN encipherment public key of the CIB

In order to carry out the OPV PIN Block encipherment in the CTPOS, this solution

introduces an online-PIN encipherment public key POPVCIB
of the CIB. A public key

certificate is used to store the POPVCIB
as in the previous Section 3.3.1. The certificate

is given to the CTPOS during a payment transaction.
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During a transaction, the card provides; the CIB’s public key certificate (also known

as the card key) signed by a Certification Authority (CA) and the CIB’s online-PIN

encipherment public key certificate signed by the CIB. To verify the authenticity of

the CIB’s public key to have been signed by the CA, the CTPOS uses the CA’s public

verification key. The CTPOS used the CIB’s public verification key to verify that the

POPVCIB
recovered by the certificate was signed by the CIB.

The CTPOS then uses the POPVCIB
to create the public key encipherment of PB-2

that has the notation z{PB-2}. Table 3.5 includes the data fields included in the OPV

PIN Block PB-2.

Table 3.5: OPV PIN Block -2 (PB-2) in Segmented Authorisation

Data Header : 1 Byte.

PIN Block : 8 Bytes.

CTPOS Unpredictable Number : 16 Bytes.

CTPOS Session Key (SKT
) : 16 Bytes.

Random Padding : 212 Bytes.

Following this the OPVrq is constructed by the CTPOS. The message includes the

PAN and the public key encipherment of the OPV PIN Block as detailed below.

OPV rq = PAN ||z{PB − 2}

Following the communication path towards the CIB, the OPVrq is then sent from

one entity to the other. Once the OPVrq is received by the CIB, the z{PB-2} is

deciphered and the PIN entered by the cardholder is verified whether to be correct

or not. The outcome of this verification is included in a CVR. Afterwards, the CIB

constructs the OPV PIN Result Block (PRB-2) as shown in Table 3.6 .

Table 3.6: OPV PIN Result Block -2 (PRB-2) in Segmented Authorisation

Data Header : 1 Byte.

Cardholder V erification Result(CV R) : 5 Bytes.

CIB Unpredictable Number : 16 Bytes.

CTPOS Unpredictable Number : 16 Bytes.

Random Padding : 10 Bytes.

The CIB uses the session key SKT
of CTPOS to encipher the PIN Result Block and

includes this in the OPVrp as shown below.
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OPV rp = e{PRB − 2}

The CIB uses the same communication path to send the OPVrp back to the CTPOS.

Once the message reaches the CTPOS, the PIN result block is deciphered and the CVR

is retrieved for verification. Once satisfied, the CTPOS will generate other commands

if the transaction proceeds to transaction authorisation.

3.3.3 Binding of OPV and Transaction Authorisation

In the current EMV process there seems to be no direct linkage between the OPV

process and the online transaction authorisation for a given EMV transaction. As

the two verifications are carried out separately in two different instances, this raises

a security concern. This leaves a space for replay attacks in which a harvested OPV

Response Message could be replayed or injected by the compromised intermediary

during an EMV transaction.

Both of our card-based and terminal-based proposals discussed in sections 3.3.1,

3.3.2 help to eliminate the aforementioned attacks by making a minor change to the

current EMV transaction authorisation message. In response to the GENERATE AC

command issued by the CTPOS in an EMV online transaction authorisation process,

the payment card generates an Authorisation Request Cryptogram (ARQC) [14, 15].

Here the payment card can include the Authoriser Unpredictable Number inside the

ARQC, which is a symmetric encipherment using the shared key between the card and

the Authoriser. The Authoriser Unpredictable Number is sent back to the CTPOS in

the OPV PIN Result Block (PRB) as discussed in our generic OPV model in Section 3.3

and shown in Table 3.2.

Once the ARQC is received, the authoriser deciphers it. The Authoriser can use

the Authoriser Unpredictable Number that it keeps a record of to link the previously

verified OPV to the received transaction authorisation request. This gives assurance to

the Authoriser that this is a genuine and timely transaction. The Authoriser may also

include a combined verification result inside the Authorisation Response Cryptogram

(ARPC) when the ARPC is sent back to the card.

3.3.4 Our Experience Related to EMV Specifications

The proposed solutions improves the security of the OPV process within the threat

model identified in Section 3.2.3. Improving the OPV would mean that the strong

trust assumptions that are placed on the intermediary nodes can now be relaxed. The
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solutions are categorised into card-based and terminal-based solutions depending on

which entity the PIN block encipherment occurs in during OPV.

We have carried out a thorough research and studied the EMV specifications to

learn and understand PIN block construction. The EMV specifications do not provide

any details in regard to the PIB block construction and encipherment of the OPV

[13, 14, 15, 16]. However, one of the EMV specifications details the process of PIN

block construction and encipherment that happens at the CTPOS during an offline PIN

verification process which is different to the OPV [14]. In an offline PIN verification,

the CTPOS sends the enciphered PIN to the card to be verified [14].

Furthermore, in our study, standards such as ISO-9564-1 & ISO-9564-1 and similar

guidelines given in [195, 17, 9] were referred. These documents make recommendations

on how PINs and associated account information need to be protected during trans-

mission from one system to another. Since there is no publicly available standard on

how PIN block construction and encipherment should be carried out in OPV, we have

made reasonable assumptions in our PIN block construction and encipherment.

3.4 Analysis

In this section, the proposed solutions presented in the previous section are evaluated

for their security and performance. Firstly, the security of the proposed solutions is

evaluated while taking into consideration the attacker’s capability. Afterwards, perfor-

mance measurements are taken to show the potential penalties for the existing process

if they are adopted.

3.4.1 Security Analysis

Before we begin are analysis the capabilities of the adversary outlined in section 3.2.2 is

revisited. According to this, a malicious user (adversary) has the capability of compro-

mising an intermediary entity. However, the adversary cannot compromise the smart

cards, payment terminals, scheme operator, or CIB. This limitation is imposed be-

cause if an adversary can successfully compromise any of these entities then almost no

protection mechanism would be strong enough to protect against attacks on the OPV

process. The rationale behind this is described below:

1. During an offline PIN-based transaction, the payment card uses the copy of the

cardholder PIN it securely stores in its tamper resistant chip to compare with the

value entered by the cardholder. If an adversary can break the tamper resistant

smart card to access the PIN, then he could potentially access any other infor-
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mation on it, thus rendering any countermeasure, including ours, redundant. In

such scenario, the attacker is able to clone a completely new card with the details

and perform a transaction with the correct PIN.

2. If an attacker has the capability of successfully compromising a payment terminal,

then the attacker can access authorised PIN at all instances a payment card is

being used at that particular compromised terminal. However, in this scenario,

the adversary will only capture the PINs of the cards used on a single payment

terminal.

3. An authorisation entity (e.g. scheme operator and CIB), similar to the payment

cards, has to store copies of authorised PINs for verification purposes. If an

adversary compromises the authorisation entity then it is challenging to protect

the PINs and the OPV process (even with our proposal).

In our proposed solutions, secure communication to the authorising entity is pro-

vided by using the OPVrq. In particularly, the payment card issued by the respective

CIB either encrypts the message itself or gives the encryption (public) key to the pay-

ment terminal to be used for encryption.

After receiving the OPVrq by the CIB, it is deciphered and the PIN is verified. The

response (OPVrp) which indicates whether the PIN verification was successful or not

is sent back to the payment terminal. The payment terminal generates the session key

that encrypts the OPVrp, which is included in the OPVrq by either the smart card

or the terminal. The OPVrp also guarantees message freshness. Depending on the

selected proposed solution, this is achieved by either the payment card or the terminal

generating an unpredictable number and including this in the OPVrp.

An adversary observing these messages can store them for the purpose of replaying

them at some later stage. For the solution based on the symmetric key and encryption

performed by the smart card, a replay of the OPVrq will be easily detected as the

session key used for encrypting (and successful decryption) this message would have

expired. Furthermore, the adversary cannot see the PIN in plaintext as he does not

have the capability of breaking a strong cryptographic algorithm.

However, for solutions based on an asymmetric cryptosystem (e.g. using public key

of the CIB) the smart card or the payment terminal generates a session (symmetric)

key. This key is later used by the CIB to encrypt the OPVrp. If the adversary replays

the OPVrq message, which is enciphered using the public key of the CIB, the session

key part of the replayed message would be different. As a result, when a OPVrp is

generated by the CIB, the payment terminal may not be able to decrypt this OPVrp

message properly. This would avoid a successful replay attempt of the OPVrq message.
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In section 3.3.3, we explained how our proposed solution binds the OPV process

with the online transaction authorisation process. This is achieved by including the

authorising entity generated Authoriser Unpredictable Number sent back in the PIN

Result Block in the online transaction authorisation. The authorising entity can use the

unpredictable number to link a particular OPV to its associated online transaction au-

thorisation. This provides a countermeasure against an adversary taking advantage of

the lack of binding between the OPV process and the online transaction authorisation.

Consider a potential scenario in which an adversary creates a “Yes” card [146]. A

“Yes” card is a fake payment card that replies to the terminal with a PIN verification

successful message regardless to whether the entered PIN is correct or not. In this

scenario, the OPV process has to execute the first two proposed solutions (based on

the smart card).

When a malicious user enters a PIN on the payment terminal, it is sent to the “Yes”

card. Following this, the “Yes” card generates an OPVrq message. The intention is

that when the authorisation entity tries to verify the OPVrq and fails, it will send a

PIN verification decline result back in the OPVrp. However, this response goes bank

to the “Yes” card which simply discards this message. Instead the “Yes” card sends

the payment terminal a message that indicates to the payment terminal that the PIN

verification was successful.

The success of this attack is dependent on the OPVrq completely being isolated from

the payment terminal. We remove this isolation in our proposed solution by using a

symmetric key generated by the payment terminal. After generating the symmetric key,

it is communicated to the authorisation entity in the OPVrq message. The symmetric

key is used by the authorisation entity to encipher the OPVrp. Therefore, once the

OPVrp is received at the payment terminal, it can also decrypt the message and verify

whether the PIN was verified or not. Hence, this potential scenario cannot circumvent

the protection provided by our proposals.

In our analysis, we consider another concern that could raise some security con-

cerns. That is the use of a standard Initialisation Vector (IV) [138] for the symmetric

cryptosystem. The reason why we discuss this is because of the potential patterns in

the ciphertext might reveal some information regarding the PIN. To avoid this (even

when the IV is a predefined value), in the OPVrq message, we append a random num-

ber generated by the smart card to the data header and then append the PIN value.

This way, the first 16 byte (plaintext) block to be used by the symmetric algorithm (i.e.

AES [115]) will have 15 random bytes and the first byte of the second block will also

be random (the 16 byte random number is spread over the first two plaintext blocks).

This randomness in the plaintext of the first block avoids any patterns being detected
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in the second block, which contains the PIN. Furthermore, the session keys are unique

per transaction for the symmetric key-based solutions. Which means that the same key

is not used in multiple transactions. The encryption makes it difficult for an adversary

to gain any additional information from the OPVrq or OPVrp message about the PIN

or the associated decision.

3.4.2 Practical Implementation

In this section, we describe our implementation of the proposed solutions. The main

aim of implementing the proposed solutions was to identify and measure potential per-

formance penalties the existing OPV process has to bear if our proposed improvements

were to be applied.

To implement our solutions, we used two 32bit Java Cards [12] connected with a

Microsoft Windows 7 machine running on 2.3GHz, 2GB RAM as our test bed. The

machine was used to represent the CTPOS and CIB (for OPVrp). For the symmetric

key based solution, we selected Advanced Encryption Standard (AES) [115] as the

encryption algorithm with a 128bit key.

Table 3.7: Performance Penalties associated with Each Solution
Proposed Solutions

Basic Encryption Encrypt-then-MAC Authenticated Encryption
Java Card 1 Java Card 2 Java Card 1 Java Card 2 Java Card 1 Java Card 2

Symmetric Key Card 64ms 86ms 138ms 156ms 122ms 136ms

Asymmetric Key Card 138ms 159ms 196ms 218ms - -

Asymmetric Key Payment Terminal2 34ms 48ms -

CIB OPVrp (footnote 7) 16ms 28ms 22ms

We used the Cipher Feedback Mode (CFB) as the mode of operation for both

basic encryption and Encrypt-then-MAC methods. Whereas, we opted for the Ga-

lois/Counter Mode (GCM) as the authenticated encryption method [135, 90]. For the

generation of the random number [35] we selected the HMAC-based Pseudorandom

Number Generator (PRNG)3 .

For the implementation of the public key-based solutions, we selected 1048bit RSA

(Rivest, Shamir and Adleman) [176] with random padding generated by the selected

PRNG. The same PRNG was used to generate the session keys used in this solution.

Table 3.7 lists the performance penalties incurred by our proposed solutions. All

measurements are given in milliseconds (ms). A point to note is that there is no

authenticated encryption mode (similar to GCM) for asymmetric cryptosystems (i.e.

RSA). Therefore, in Table 3.7 performance measurement for this is not included.

Our implementation does not emulate the complete EVM specifications. It only

3PRNGs based on different cryptographic algorithms can give different performances; a detailed
discussion of this can be found in [35]
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implements the proposed improvements to the OPVrq and OPVrp processes. The

performance measurement should be taken as an additional execution cost that the

EVM process has to bear to implement the proposed solutions in this chapter.

3.4.3 Mechanical Formal Analysis

In this section, the proposed improvements are subject to a mechanical formal analysis.

The analysis is based on the CasperFDR tool. The CasperFDR mechanical analysis

framework can be used to test the soundness of a security protocol under a set of defined

security properties. In this approach, the Casper compiler [129] takes a high-level

description of the protocol, together with its security requirements. It then translates

the description into the process algebra of Communicating Sequential Processes (CSP)

[105]. The CSP description of the protocol can be machine-verified using the Failures-

Divergence Refinement (FDR) model checker [172]. The intruder’s capability modelled

in the Casper script (appendices A.1.1 and A.1.2) for the proposed protocol is:

1. Intruder can masquerade any entity in the network

2. Intruders can read the messages transmitted in the network

3. Intruder cannot influence the internal process of an entity in the network

The security specification for which the CasperFDR evaluates the network is as

shown below. The listed specifications are defined in the #Specification section of

appendices A.1.1 and A.1.2:

1. The protocol run is fresh and both applications were alive,

2. The key used for encryption/decryption in the symmetric system and the private

key used for decryption in the asymmetric system, is not revealed to the adversary,

3. Long terms keys of communicating entities are not compromised, and

After successfully evaluation the proposed protocol, the CasperFDR tool did not

find any feasible attacks and weaknesses related to the protocol.

3.5 Summary

In this section, we conclude our discussion and summarise the key contributions of this

chapter.
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At the beginning of this chapter, the EMV OPV process, current payment ar-

chitecture and the online transaction authorisation process were discussed. We then

identified and described how certain aspects of the payment architecture and its asso-

ciated deployment methods open up a potential route for an adversary to compromise

payment transactions for fraudulent financial gains. Afterwards, assumptions related

to the payment network’s operating environment, the capabilities of an adversary and

potential attack scenarios were outlined.

Subsequently, we proposed three potential ways to enhance the OPV process and

a proposal of how to bind it to the online transaction authorisation. The proposed

solutions were then analysed with a discussion on their security in the context of the

adversary’s capabilities. We also provided the execution measurements for our proposed

modifications; this showed the potential performance penalty incurred by our proposals.

Furthermore, proposed modifications were then subjected to the mechnical formal

anlysis using the CasperFDR tool. The concerns raised by this chapter are considered to

be valid as the OPV and online transaction authorisation is considered the highest level

of trust in the card-based payment mechanism. It can differ based on laws/regulations

or the relationship between the cardholder and CIB, but if the correct PIN is used

in an OPV and online transaction authorisation then the liability of the payment is

either with the cardholder or the CIB. If attacks can successfully occur at this level

they could potentially cause substantial reputation damage to the overall card-based

payment scheme, along with causing financial loss to the cardholder/CIB.

Furthermore, such attacks could make it difficult to detect whether an OPV-based

transaction was actually made by the cardholder or the adversary, as the compromise

of the intermediary nodes might not be detected in time. Therefore, we consider this to

be a concern and suggest that a mandating rollout of an OPV process in a geographical

region should take into consideration these concerns and our potential solutions.
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In this Chapter, we extend our work on enhancing the EMV OPV process

deployed in the Unified Authorisation method in the current EMV architec-

ture. We then identify potential attack scenarios that an attacker can use to

gain access to the Personal Identification Number (PIN) data by compromis-

ing the OPV process. Addressing these concerns, we propose improvements

that enhance the security of the OPV process in the Unified Authorisation

method.
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4.1 Introduction

The EMV OPV process can be deployed in two different methods. When OPV is

carried out in a separate message from the online transaction authorisation, we named

that deployment method as Segmented Authorisation. In contrast to this, when OPV

is carried out in the same message together with the online transaction authorisation

we named that deployment method as Unified Authorisation. In Section 3.1.1, we

differentiated the two OPV deployment methods that could be used in the current

EMV architecture to carry out the OPV process.

The EMV OPV process we discussed in chapter 3 was the Segmented Authorisation

method. In this chapter, we extend our work carried out to enhance the EMV OPV

process in the Unified Authorisation method. The transaction steps in the segmented

authorisation method were discussed in Section 3.1.1 and in the unified authorisation

method were discussed in Section 3.1.1.

In Section 2.1.1, we first gave a detailed introduction to EMV payment scheme and

its architecture. We then introduced the EMV OPV process and showed how OPV

is carried out in a generic setting in Section 2.1.2. More emphasis is given on the

Unified Authorisation method as it is the main focus of this chapter. The operating

environment of the current EMV payment architecture and assumptions were discussed

in Section 3.2.1. A representation of the operating environment was illustrated in

Figure 3.1.

In the next section, we extend our discussion on the Unified Authorisation method

and investigate whether there are any security weaknesses or potential risk scenarios.

4.2 Potential Concerns

This section is more focused in identifying security weaknesses and potential attack

scenarios in the Unified Authorisation method. We begin the discussion by outlining

trust assumptions associated with the operating environment discussed in Section 3.2.1.

Afterwards, we detail the attacker’s capability in the current operating environment.

Subsequently, we examine two potential risk scenarios associated with the Unified Au-

thorisation OPV deployment method.

The current architecture shown in Figure 3.1, has placed an indelible trust assump-

tion on the intermediary entities that engage in key translation during OPV and trans-

action authorisation processes. Most of these intermediaries are bound by contracts

with either the acquirer or SO/CIB. Part of the contract may include information re-

lated to liability obligations and security requirements. Yet it is questionable whether
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this is sufficient to let intermediaries handle sensitive data related to the cards and

cardholders.

The CTPOS devices are deployed by Payment Terminal Operators (PTOs) as dis-

cussed in our operating environment in Section 3.2.1. It is not practically feasible

for an issuer to get in contact with all the PTOs globally, in order to share a secret

cryptographic key to make communication secure between the CTPOS and the issuer.

We also understood that given the number of different merchants’ acquirers, subcon-

tractors, third parties and the number of CTPOS devices, this would be logistically

impractical. After all, one of the objectives of introducing EMV, was to achieve the

interoperability between different entities without prior business relationships.

In this work, the smart cards, payment terminals, scheme operators and CIB are

considered to be secure and trusted. The rationale for this consideration was discussed

in Section 3.4.1. However the intermediaries are considered to have the potential to

be compromised. This assumption is based on recent reports and incidents where

banking sector services were successfully infiltrated by adversaries [45, 117, 118, 54, 110,

125]. Therefore, the assumption can be considered reasonable. Taking this operating

environment and our assumptions regarding the intermediary nodes and other entities,

we expand the discussion to the capabilities of our adversary in the next section.

4.2.1 Two Potential Risk Scenarios

As the operating environment and assumptions are similar to the one discussed in

Chapter 3, the attacker’s capabilities that we identify here are the same as discussed in

Section 3.2.2. Based on the payment-networks operating environment, our assumptions

and the adversary’s capabilities, two potential risk scenarios that pose a threat to the

OPV in the Unified Authorisation method are discussed here.

In Section 3.2.3, we identified two risk scenarios and discussed how the risks can

compromise the security of OPV in the Segmented Authorisation method. From these

two risk scenarios, only the first risk scenario (Correct PIN in OPV Message) discussed

in Section 3.2.3 is valid in the Unified Authorisation method. The second risk scenario

(OPV Response Message) discussed in Section 3.2.3 is not longer valid in the Unified

Authorisation method. The main reason for this is that the OPV and the online

transaction authorisation are being carried out together in the Unified Authorisation

method. For further explanation regarding why the second risk scenario is not valid in

the Unified Authorisation method, please refer to Section 4.4.1. However, a new risk

scenario has emerged that can potentially compromise the OPV process in the Unified

Authorisation method. The risk scenario is explained below.
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PIN Block Replay in OPV Request

Discussed below is another potential attack scenario that pose a threat to the security

of OPV. The risk scenario that we outline in this section shows how OPV can be com-

promised in the Unified Authorisation method. The compromise can be considered

as an attack carried out to cause financial and reputational damage to one or more

targeted financial institutions. The attack could also be used by criminals to black-

mail financial organisation for ransom. In this risk scenario, the payment transaction

compromise is carried out as follows:

1. In this attack, the adversary keeps a record of all the PAN and associated PIN

blocks passing through the compromised intermediary. The adversary in addition

to this, keeps a record of all the merchants by mapping the merchant IDs that are

associated to the transactions that pass through the compromised intermediary.

2. The adversary may threaten the financial institution for ransom or post a message

on online forums advertising that lost/stolen cards from the advertised geograph-

ical locations are more likely to be approved during transactions even by entering

a random sequence for the PIN at a number of listed merchants.

3. Whenever an online authorisation message in the Unified Authorisation Method

is received by the adversary at the compromised intermediary, it carries out a

database string search to retrieve the corresponding PIN block of the PAN. If the

PIN block is already in the adversary’s database, then the adversary removes the

existing PIN block part of the online authorisation message and replaces it with

the correct PIN block retrieved from the database.

4. This way the adversary replays the previously known correct PIN blocks by re-

placing the PIN block part of the online authorisation message but leaves the

ARQC part of the message unchanged. The message is then forwarded towards

the CIB.

5. The CIB after receiving the online authorisation message, which includes both

the OPV and the online transaction authorisation, first verifies the PIN and if

correct proceeds to online transaction authorisation. The CIB verifies the ARQC

and does a credit check on the user’s account. If satisfied, the CIB generates

an ARC. This is then Xored with the ARQC and enciphered using the shared

session key with the card to generate the ARPC.

6. The CIB then sends the OPV result and the ARPC to the terminal in a single

response message. The terminal checks the successful PIN verification result from
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the CIB. Upon successful OPV result, the terminal forwards the ARPC to the

card and request an outcome in the 2nd GENERATE AC command.

7. The card after verifying the validity of the ARPC, generates a Transaction Cer-

tificate (TC) and sends it to the terminal. The terminal then approves the trans-

action.

In this section, we identified two attack scenario that pose a significant threat to

the OPV process when it is deployed in the Unified Authorisation method. In the two

risk scenarios, due to the attacks being performed at the compromised intermediary,

it is difficult for the authorisation entity to detect a fraudulent transaction. We also

identified another potential attack scenario but discussed why it cannot be carried out in

the Unified Authorisation deployment method. Aiming to address the aforementioned

security concerns, we present our proposed solutions in the next Section.

4.3 Proposed Solutions

In this Section, we propose three solutions that address the aforementioned security

concerns and potentially guarantees end-to-end security of OPV between the payment

card and the CIB. In our approach we have also taken in to consideration the operating

environment of the payment architecture and attacker capability.

The proposed solutions are compatible with both OPV deployment methods. How-

ever, we have already presented the solutions for the Segmented Authorisation method

in Section 3.3. Therefore, in this section we only emphasise in presenting the solutions

that are relevant for the Unified Authorisation method.

When constructing the solutions for this deployment method, as before we have

taken into consideration the overhead it adds on the intermediaries in practical terms.

Therefore, the proposed solutions introduce minimal or no changes to the opera-

tional/system architecture of the intermediaries involved in the current EMV payment

scheme between the payment terminal and the SO/CIB. To guarantee this, the required

changes to apply the proposed improvements are only made to the payment cards, the

CIB and the CTPOS devices.

The proposed solutions remove the need for placing strong trust assumptions on the

intermediary entities. The solutions are categorised into card-based and terminal-based

solutions depending on which entity the PIN block encipherment occurs in during the

OPV process. For a generic construction of the OPV process and protocol diagram we

would direct the reader to Section 3.3 of the previous Chapter 3.
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In our construction, the EMV specifications, standards such as ISO-9564-1 & ISO-

9564-2 and similar guidelines were referred [13, 14, 15, 16, 195, 17, 9]. Since there

is no publicly available standard on how PIN block construction and encipherment

should be carried out in OPV, we have made reasonable assumptions in our PIN block

construction and encipherment.

4.3.1 Card Based Solutions

In this section, we present our solutions that are mainly based on the payment card.

In the payment card based solution, the PIN Block (PB) is enciphered inside the

payment card before it is forwarded to the CIB (Authoriser in our generic model) to be

verified. The card-based solutions are further sub-categorised, depending on whether

a symmetric or an asymmetric cryptographic key is used to encipher the PB.

Card uses an online-PIN encipherment symmetric key of the CIB

Here we present our first solution which introduces an online-PIN encipherment sym-

metric key KOPV that is shared between the payment card and the CIB. Based on the

KOPV , a session key KSOPV
is derived using a key derivation function similar to the one

specified in EMV specification [14, see: p127 - p131] and also discussed in [133]. It is

assumed that the session key derivation between the card and the CIB is synchronised.

During a transaction, the payment card is inserted to the CTPOS and the PIN is

entered. The PIN gets sent to the payment card either in plain text or in encrypted

format. The CTPOS also sends the session key SKT
. In the Segmented Authorisation

method, the proposed solution follows exactly the same process as described in the

generic OPV model in Section 3.3. Presented below is the proposed solution for the

Unified Authorisation method.

In the Unified Authorisation method, the PIN is enciphered by the card using the

online-PIN encipherment symmetric key in exactly the same process that is carried

out in the segmented authentication method. The only difference is due to the need

of transferring both the OPV and the online transaction authorisation messages in

the same message towards the CIB. The construction of the proposed solution in the

Unified Authorisation method is as follows:

The CTPOS first obtains the enciphered PIN block from the card, where as the card

constructs it exactly the same way as before in the segmented authorisation method.

The data included in the OPV PIN Block are shown in Table 4.1. The Unpredictable

Numbers (UN) mentioned in this study have the same properties as defined in the

EMV specification [14].
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Table 4.1: OPV PIN Block (PB) in Unified Authorisation

Data Header : 1 Byte.

PIN Block : 8 Bytes.

Card Unpredictable Number (CUN) : 16 Bytes.

CTPOS Session Key (SKT
) : 16 Bytes.

Random Padding : 10 Bytes.

However, the card generates a hash of the enciphered PIN block which has the

notation h(e{PB}) and keeps the hash on its records. The stored hash is later used in

the ARQC construction. The CTPOS instead of sending the OPV Request to the CIB,

requests an ARQC from the card by issuing the 1st GENERATE AC command. As

opposed to the ARQC generated by the card in the segmented authorisation method,

in the Unified Authorisation method the ARQC indicates that OPV is not carried

out and the PIN is not verified. Furthermore, the card also includes the h(e{PB}).
The hash of the enciphered PIN block provides an assurance that the associated PIN

block has a cryptographic binding with the received ARQC. Due to h(e{PB}) being

included in the ARQC and the cryptogram being enciphered with a shared symmetric

key shared between the card and the CIB, assurance to the integrity of the included

hash is given. This is further discussed in Section 4.4.1. For the generation of the hash,

we use SHA256 hash function [94].

The ARQC is then sent to the CTPOS. To meet the mandate of having both

parts in the same message, the CTPOS then constructs an Online PIN Verification

and Transaction Authorisation Request (OPVTArq) message, which includes the PAN,

enciphered PIN block and the ARQC. The message is then forwarded towards the CIB.

OPV TArq = PAN ||e{PB}||ARQC

The CIB, upon receiving the OPVTArq, uses the PAN to retrieve the shared session

key and deciphers the e{PB}. The CIB, in this instance, validates the PIN to be correct

before proceeding to transaction authorisation.

0Measurement was taken from a desktop computer.
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Table 4.2: OPV PIN Result Block (PRB) in Unified Authorisation

Data Header : 1 Byte.

Cardholder V erification Result(CV R) : 5 Bytes.

Authoriser Unpredictable Number : 16 Bytes.

Card Unpredictable Number : 16 Bytes.

Random Padding : 10 Bytes.

Only if the PIN is correct, then the CIB constructs the OPV PIN Results Block

(PRB), shown in Table 4.2 and encrypts it using the CTPOS’s session key SKT
to

create the enciphered PIN results block e{PRB}, but does not send it to the CTPOS

yet. Instead, it verifies whether the ARQC is genuine and has been generated by the

card. The fields in the ARQC also indicate to the CIB that OPV has not been carried

out prior to this stage. Furthermore, the CIB generates the hash of the enciphered PIN

block again and compares it with the recovered h(e{PB}) from the ARQC. If the two

hashes match, then the CIB has assurance that the received e{PB} is associated with

the ARQC in the transaction. The CIB also conducts an account level credit check

on the card holder, and if satisfied, constructs an ARPC. During the construction

of the ARPC, the CIB also includes an unpredictable number UNCIB in the ARQC.

After this process, the CIB constructs an Online PIN Verification and Transaction

Authorisation Response (OPVTArp) message, which includes the PAN, enciphered

PIN result block and the ARPC. The message is then sent towards the CTPOS.

OPV TArp = PAN ||e{PRB}||ARPC

The CTPOS deciphers the e{PRB} to obtain the PIN verification results. If sat-

isfied with the result of the PIN verification, the CTPOS forwards the message to the

card and request an outcome in the 2nd GENERATE AC command. The card, verifies

the validity of the ARPC and generates a Transaction Certificate (TC). During the

construction of the TC, the card includes CUN,UNCTPOS & UNCIB in the TC, cryp-

tographically binding the associated unpredictable numbers. This links the e{PB},
e{PRB}, ARQC & ARPC to the TC. The TC is then sent to the CTPOS, who then

approves the transaction. The CTPOS either forwards the TC for payment processing

straight away or keeps it in its record to be forwarded at a later time. In either way,

when the TC is received, the CIB can verify that the TC has a binding to OPV and

transaction authorisation processes.
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Card uses an online-PIN encipherment public key of the CIB

The solution we discussed above uses a symmetric key for the PIN Block encipher-

ment. The solution described here introduces an online-PIN encipherment public key

POPVCIB
of the CIB. It must be noted that this is not the CIB’s public key that is

recovered from the CIB’s public key certificate residing in the card during EMV trans-

actions. The POPVCIB
is a specific online-PIN encipherment public key introduced in

our construction which is in the format of a public key certificate that has been signed

by the CIB. The solution for the Segmented Authorisation method can be found in

Section 3.3.1 of the previous Chapter 3. Presented below is the proposed solution for

the Unified Authorisation method.

In the unified authentication method, similar to the segmented authorisation method,

the card enciphers the constructed PIN block PB-1 using POPVCIB
to generate the en-

ciphered PIN block that has the notation z{PB-1}. The data included in the PB-1 are

shown in Table 4.3.

Table 4.3: OPV PIN Block -1 (PB-1) in Unified Authorisation

Data Header : 1 Byte.

PIN Block : 8 Bytes.

Card Unpredictable Number (CUN) : 16 Bytes.

CTPOS Session Key (SKT
) : 16 Bytes.

Random Padding : 212 Bytes.

The z{PB-1} is sent to the CTPOS, who then instead of sending an OPV request to

the CIB, issues the 1st GENERATE AC command to the card requesting the ARQC.

The card then constructs an ARQC, the card also includes the hash of the public

key enciphered PIN block, which has the notation h(z{PB-1}). The ARQC is then

sent to the CTPOS. The CTPOS in possession with both the z{PB-1} and the ARQC:

constructs an Online PIN Verification and Transaction Authorisation Request (OPV-

TArq) message, which includes the PAN, enciphered PIN block and the ARQC. The

message is then forwarded towards the CIB.

OPV TArq = PAN ||z{PB − 1}||ARQC

The CIB, upon receiving the OPVTArq, deciphers the z{PB} and verifies whether

the PIN is correct. The outcome of this verification is constructed in an OPV PIN

Result Block (PRB-1) shown in Table 4.4
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Table 4.4: OPV PIN Result Block -1 (PRB-1) in Unified Authorisation

Data Header : 1 Byte.

Cardholder V erification Result(CV R) : 5 Bytes.

CIB Unpredictable Number : 16 Bytes.

Card Unpredictable Number : 16 Bytes.

Random Padding : 10 Bytes.

This is then enciphered using SKT
to create the enciphered PIN Result Block

e{PRB − 1}. If the PIN verification was successful, the CIB proceeds to transac-

tion authorisation by verifying the ARQC and doing an account credit check. During

the ARQC verification, the CIB generates the hash of the public key enciphered PIN

block and compares it with the hash h(z{PB-1}) recovered from the ARQC. If the

two hashes match, the CIB can verify that the received PIN block and ARQC are

associated with one another. The CIB then constructs the ARPC. Following this, the

CIB constructs an Online PIN Verification and Transaction Authorisation Response

(OPVTArp) message, which includes the PAN, enciphered PIN result block and the

ARPC. The message is then sent towards the CTPOS.

OPV TArp = PAN ||e{PRB − 1}||ARPC

The CTPOS deciphers the e{PRB − 1} to obtain the PIN verification result. If

satisfied, the CTPOS forwards the message to the card and requests an outcome in

the 2nd GENERATE AC command. The card verifies the validity of the ARPC and

generates a TC. During the construction of the TC, the card includes CUN,UNCTPOS

& UNCIB in the TC, cryptographically binding the associated unpredictable numbers.

This links the e{PB}, e{PRB}, ARQC & ARPC to the TC. The TC is sent to

the CTPOS, who then approves the transaction. When the CTPOS forwards the TC

for payment processing, the CIB can verify that the TC has a binding to OPV and

transaction authorisation processes.

4.3.2 Terminal based Solution

In this solution, we present our third solution that is based on the terminal which is

also referred to as the CTPOS in this Chapter. Here the PIN Block is enciphered at

the CTPOS before it is sent to the CIB for verification. A noticeable difference in this

method is that the PIN entered by the cardholder is not sent to the payment card but

instead enciphered by the CTPOS.
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Terminal uses an online-PIN encipherment public key of the CIB

In this solution an online-PIN encipherment public key POPVCIB
of the CIB is in-

troduced. This cryptographic key is mainly used to carry out the OPV PIN Block

encipherment at the CTPOS. The public key is stored in the payment card in a pub-

lic key certificate, similar to the proposal in Section 4.3.1, and during a transaction

the certificate is given to the CTPOS. The solution for the Segmented Authorisation

method can be found in Section 3.3.2 of the previous Chapter 3. Presented below is

the proposed solution for the Unified Authorisation method.

Our third solution under the Unified Authorisation method, does not send the card

holder entered PIN to the card, instead it is enciphered by the CTPOS. First the

CTPOS, includes the PIN in to a OPV PIN Block (PB-2). The OPV PIN Block PB-2

includes data mentioned in Table 4.5.

Table 4.5: OPV PIN Block -2 (PB-2) in Unified Authorisation

Data Header : 1 Byte.

PIN Block : 8 Bytes.

CTPOS Unpredictable Number : 16 Bytes.

CTPOS Session Key (SKT
) : 16 Bytes.

Random Padding : 212 Bytes.

It must be noted that, the unpredictable number included in is generated by the

CTPOS but not the card as in the previous two solutions. The CTPOS then uses

POPVCIB
to create the public key encipherment of PB-2 that has the notation z{PB-

2}. As opposed to the third solution in the Segmented Authorisation method, the CIB

does not send the z{PB-2} to the CIB for OPV but instead request the card for an

ARQC by issuing the 1st GENERATE AC command.

The card as in the previous two solutions in the Unified Authorisation method,

includes a field inside the ARQC stating that the OPV process is not carried out and

the PIN is not verified. Furthermore, the card also includes the hash of the public key

enciphered PIN block h(z({PB-2}) in the ARQC. The ARQC is then sent to the CT-

POS. The CTPOS now in possession with the z{PB-2} and the ARQC constructs an

Online PIN Verification and Transaction Authorisation Request (OPVTArq) message,

which includes the PAN, enciphered PIN block and the ARQC. The message is then

forwarded towards the CIB.

OPV TArq = PAN ||z{PB − 2}||ARQC

Once the message is received, the CIB deciphers the z{PB-2} and verifies the
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PIN. The outcome is included in an OPV PIN Result Block (PRB-2). The CIB then

constructs a OPV PIN Result Block (PRB-2) shown in Table 4.6

Table 4.6: OPV PIN Result Block -2 (PRB-2) in Unified Authorisation

Data Header : 1 Byte.

Cardholder V erification Result(CV R) : 5 Bytes.

CIB Unpredictable Number : 16 Bytes.

CTPOS Unpredictable Number : 16 Bytes.

Random Padding : 10 Bytes.

This is then enciphered using SKT
to create the enciphered PIN Result Block

e{PRB − 2}.
If the PIN verification is successful, the CIB verifies the ARQC and does an account

level credit check. During the ARQC verification, the CIB generates the hash of the

public key enciphered PIN block and compares it with the h(z({PB-2}) recovered

from the ARQC. The two hashes must match for the CIB to complete transaction

authorisation. Once transaction authorisation is completed the CIB generates the

ARPC, which is then included in the OPVTArp message together with the PAN and

the e{PRB − 2} before sending the message to the CTPOS.

OPV TArp = PAN ||e{PRB − 2}||ARPC

The CTPOS deciphers the e{PRB − 2} to obtain the PIN verification result. If

satisfied, it forwards the message to the card and requests an outcome by issuing the

2nd GENERATE AC command. The card after verifying the validity of the ARPC,

generates the TC. Similar to the previous two solutions in the unified authentication

method, the card includes CUN,UNCTPOS & UNCIB in the TC. This links the e{PB},
e{PRB}, ARQC & ARPC to the TC. The TC is sent to the CTPOS, who then

approves the transaction. When the CTPOS forwards the TC for payment processing,

the CIB can verify that the TC has a binding to OPV and transaction authorisation

processes.

4.3.3 Binding of OPV and Transaction Authorisation

As we have detailed before, in the Segmented Authorisation method there seems to be

no direct linkage between the online PIN verification and the online transaction autho-

risation for a given EMV transaction. The two verifications are carried out separately,

leaving space for replay attacks in which a harvested OPV Response Message could be
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replayed or injected by the compromised intermediary during an EMV transaction.

In the Unified Authorisation method, due to the mandate of both the enciphered

PIN block and the ARQC being received by the CIB at the same time makes the attack

discussed in Section 3.2.3 invalid for the Unified Authorisation method. However, this

leaves an opportunity for adversaries to carry out other alternative attacks, such as the

attack scenario we identified in Section 4.2.1.

In contrast to the solution we outlined to bind both the enciphered PIN block

and the ARQC in the Segmented Authorisation method, in the Unified Authorisation

method, we do not introduce a separate solution. This is due to both the enciphered

PIN block and the ARQC being received by the CIB simultaneously. However, in our

construction for all the three solutions in the Unified Authorisation method, we achieve

the same required binding.

This is achieved by, the card generation a hash of the enciphered PIB block and

including this in the next generated ARQC. At the point of examination of the ARQC,

the CIB generates a hash of the received enciphered PIN block and compares it with

the hash recovered from the ARQC. If the two hashes match, it gives assurance to the

CIB that the corresponding PIN block is associated with the received ARQC. This is

explained in more detail, when we have explained each of our solution.

In this Section, we presented our three solutions that enhance the security of OPV

process especially when it is deployed in the Unified Authorisation method. We also

discussed how we achieve the required binding between OPV and the transaction au-

thorisation in all three of our proposed solutions.

In the next subsequent sections, we analyse our proposed solutions, discuss our

implementation experience and provide mechanical formal analysis results.

4.4 Analysis

In this Section, the proposed solutions are evaluated for their security and performance.

The security of the proposed solutions is analytically evaluated in relation to the at-

tacker’s capability. The performance measurements are taken to show the potential

penalties for the existing process if they are adopted. We also subject the protocol for

mechanical formal analysis and provide results.

4.4.1 Security Analysis

We first provide a analytical analysis of the proposed solutions mainly based on Unified

Authorisation method. The analysis carried out here is short compared to the analysis
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in chapter 3 to avoid any overlaps. A detailed analysis on common points can be found

in Section 3.4.1.

In our analysis, we take the adversary capability and operating environment as-

sumptions in to consideration. According to this, the adversary can compromise an

intermediary entity but cannot compromise the smart cards, payment terminals, scheme

operator, or CIB. The rationale behind identifying the entities that cannot be compro-

mised by the adversary is because, if an adversary can successfully compromise any of

these entities then almost no protection mechanism would be strong enough to protect

against attacks on the OPV process. A detailed explanation for this rational can be

found in Section 3.4.1.

In our proposed solutions, the OPVrq is encrypted to provide end-to-end security.

Before sending the PIN related data to the CIB, it is encrypted either by the smart card

or the CTPOS. Furthermore, the OPVrp is also encrypted by the CIB using a session

key included in the OPVrq by either the smart card or the terminal. The response

message also includes a random number generated by the smart card or payment ter-

minal (depending upon which proposed solution is selected), providing assurance of the

freshness of the OPVrp message.

In the card based solution where a symmetric key is used for the encipherment, any

attempts of replying the OPVrq by an adversary will be detected as the session key

used to encipher this message would have expired.

Furthermore, in the solution that uses a asymmetric key (public key of the CIB),

the payment card or the CTPOS generates a symmetric session key which is used by the

CIB to encipher the OPVrp message. If an old OPVrp is replayed the terminal/payment

card would not be able to decrypt the message due to the session key being wrong. As

a result any replay attempts of the OPVrp can be detected.

In Section 4.3.3 we also explained why certain attack scenarios are circumvented

because both the enciphered PIN block and the ARQC are being received by the

CIB simultaneously. The OPV Response Message, attack scenario that we discussed in

Section 3.2.3 is only valid for the Segmented Authorisation method but the compromise

cannot be carried out in the Unified Authorisation method. Here we explain why it is

not possible to carry out the attack in the Unified Authorisation deployment method.

We would like to direct the reader to Section 3.2.3 for further details related to the

steps involved in the compromise.

The main reason why this particular attack scenario cannot be carried out in the

Unified Authorisation method is because the CIB receiving the PIN block and the

ARQC in the same message during a EMV transaction. In the Segmented Authorisation

method, when the terminal requests the card to generate the ARQC, it also sends details
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of successful OPV result. Following the terminal’s request, when the card generates

the ARQC, the fact that OPV has been successfully carried out beforehand is indicated

in the ARQC. Furthermore, the card also includes a hash of the enciphered PIN block

in association to the particular transaction which acts as a binding between the PIN

block and the ARQC.

As opposed to the ARQC generated in the Segmented Authorisation method, in the

Unified Authorisation method, the card indicates in the generated ARQC that OPV is

not carried out. In addition to this, the card also includes a hash of the enciphered PIN

block in the generated ARQC. With these details, the CIB gets to know that OPV is

not carried out by examining the ARQC, hence the CIB always carries out OPV before

proceeding to transaction authorisation. Due to this reason, the adversary at the

compromised intermediary cannot change the OPV response message. The adversary

also cannot remove the PIN block part of the request message and only send the ARQC

to the CIB as during examination of the ARQC the CIB will indeed get to know that

OPV has not been carried out.

As explained above, we provide binding between the OPV and online transaction

authorisation in all three proposed solutions by including the authorising entity gener-

ated Authoriser Unpredictable Number sent back in the PIN Result Block in the online

transaction authorisation. This lets the CIB link a particular OPV to its associated

online transaction authorisation.

The solutions also prevent “Yes” card [146] attacks by using a symmetric key gen-

erated by the payment terminal. More details related to this can be found in Sec-

tion 3.4.1. Furthermore, we consider another concern that could raise some security

concerns. That is the use of a standard Initialisation Vector (IV) [138] for the symmet-

ric cryptosystem. We detail how our solution overcomes this by using recommended

block size and random numbers in Section 3.4.1.

In the next section, we discuss our implementation experience and approach taken.

4.4.2 Practical Implementation

In this section, we describe our implementation of the proposed solutions with the

aim of providing potential performance penalties the existing OPV process has to bear

if our improvements are adopted. For comparison purposes, we provide performance

measurements of both Segmented Authorisation method and the Unified Authorisation

method in Table 4.7.

1Measurement was taken from a desktop computer.
2Measurement was taken from a desktop computer.

85



4. Improving OPV Security in Unified Authorisation Method

Table 4.7: Performance Penalties associated with Each Solution
Proposed Solutions

Basic Encryption Encrypt-then-MAC Authenticated Encryption
Java Card 1 Java Card 2 Java Card 1 Java Card 2 Java Card 1 Java Card 2

Performance penalties imposed by proposed solutions on the segmented authorisation method

Symmetric Key Card 64ms 86ms 138ms 156ms 122ms 136ms

Asymmetric Key Card 138ms 159ms 196ms 218ms - -

Asymmetric Key Payment Terminal1 34ms 48ms -

CIB OPVrp 16ms 28ms 22ms

Performance penalties imposed by proposed solutions on the unified authorisation method

Symmetric Key Card 71ms 92ms 143ms 160ms 128ms 141ms

Asymmetric Key Card 143ms 164ms 202ms 225ms - -

Asymmetric Key Payment Terminal2 36ms 52ms -

We use the same test-bed described in Section 3.4.2, for our implementation. Ta-

ble 3.7 lists the performance measurements given in milliseconds (ms).

Our implementation does not emulate the complete EVM specifications but only

implements the proposed improvements. The performance measurement should be

taken as an additional execution cost that the EVM process has to bear to implement

the proposed solutions in this chapter.

In the next Section, we subject our proposed solution to mechanical formal analysis.

4.4.3 Mechanical Formal Analysis

In this section, we subject the proposed modifications to a mechanical formal analysis

based on the CasperFDR tool.

The CasperFDR mechanical analysis framework can be used to test the soundness

of a security protocol under a set of defined security properties. We do not evalu-

ate the solutions related to the Unified Authorisation method, as they only differ in

hash generation and verification. Whereas, the remaining aspects are more or less

the same as for the evaluated protocol in the Segmented Authorisation method. The

attacker model and a detailed explanation during the construction of the Segmented

Authorisation method of the formal analysis can be found in Section 3.4.3. The listed

specifications are defined in the #Specification section of appendices A.1.1 and A.1.2

After successfully evaluating the proposed protocol, the CasperFDR tool did not find

any feasible attacks and weaknesses related to the protocol.

4.5 Summary

In this section, we conclude our discussion and summarise the key contributions of this

chapter.

This Chapter is an extension to our contributions in Chapter 3 which investigated

the Segmented Authorisation OPV deployment method and proposed solutions. The

second OPV deployment method which we investigate in this chapter is referred to
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as the Unified Authorisation method. We then described how certain aspects of this

deployment method open up a potential route for an adversary to compromise pay-

ment transactions for fraudulent financial gains. Following this, assumptions related

to the payment network’s operating environment, the capabilities of an adversary and

potential attack scenarios were outlined.

Subsequently, we proposed three potential ways to enhance the security of OPV

when deployed in the Unified Authorisation method. We also discussed how we bind

the OPV process with the online transaction authorisation. Proposed solutions were

then analysed for their security and results of potential performance penalty incurred

by our proposals were listed. Furthermore, the protocol was then subjected to the

mechanical formal analysis using the CasperFDR tool.

The attacks we discuss in this Chapter can be considered to be difficult to detect

whether an OPV-based transaction was actually made by the cardholder or the ad-

versary, as the compromise of the intermediary nodes might not be detected in time.

Therefore, we consider this to be a concern and suggest that a mandating roll-out of

an OPV process in a geographical region should take into consideration these concerns

and our potential solutions.
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In this chapter, we focus our attention on Transaction Authorisation which

is another important aspect of the EMV payment architecture. We first

introduce the EMV Primary Account Number (PAN) based payment archi-

tecture and outline an inherent weakness associated with the payments. We

then introduce EMV Tokenisation which has been adopted to solve this prob-

lem and further identify a bottleneck in this new architecture. Afterwards,

we propose a solution that extends the usability of tokenised payments in of-

fline environments. Finally, we mechanically analyse our proposed protocol

and implement the solution to obtain performance measurements.
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5.1 Introduction

Unlike a contactless smart card, a mobile1 has additional capabilities including in-

creased computing ability, a greater variety of accessible Application Programming

Interfaces (API), and readily available communication channels via a Mobile Network

Operator (MNO) or Wi-Fi. Furthermore, modern mobile devices typically feature NFC

and hardware or software Secure Element (SE) technologies that provide secure execu-

tion environments in which to execute sensitive applications [3, 19, 21]. Hardware SEs

provide a secure storage environment for credentials and offer tamper resistance against

physical attacks [11]. Mobile payment applications provide additional features includ-

ing having a number of virtual contactless payment cards issued by different financial

institutions in one place; passcode unlocking mechanisms to access virtual payment

cards; and the ability to block such cards if a mobile is lost or stolen.

The above properties and features of mobile devices are beneficial for running

mobile-based payment solutions. Due to the additional capabilities of the mobile-

platform, a payment application that runs on a mobile platform can be integrated with

more advanced features compared to a payment applet that runs on a smart card.

The common parameters in which a mobile device that runs a contactless payment

application and a payment terminal communicates are standardised under the EMV

contactless specification [24]. This provides interoperability between participating pay-

ment terminal and contactless mobile payment applications.

An introduction to EMV Tokenisation was given in Section 2.1.4. EMV Tokenisa-

tion is increasingly being adopted by the payments industry to prevent PAN compro-

mise as explained in Section 2.1.3 of the thesis.

5.1.1 Problem Statement

The EMV Tokenisation Specification details the requirements for supporting payment

tokenisation in EMV transactions [20]. Even though tokenisation provides security

against PAN compromise, there are many challenges yet to be addressed in the tokeni-

sation landscape [83]. The lack of support for making or accepting tokenised payments

in an offline transaction environment is a shortcoming in this payment architecture.

Finding a solution to this shortcoming is the main focus of this chapter. The

current tokenisation architecture requires online connectivity on the terminal in order

to reach the payment authorisation entity during a tokenised transaction. However, it

is not always possible to have online connectivity in certain transaction scenarios. In

1In this chapter, the payer’s contactless mobile payment device that emulates a contactless smart
card is referred to as the mobile.
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this chapter, we identify three scenarios where a fully offline transaction capability is

considered beneficial for both the merchant and the consumer.

1. Connectivity is not possible due to the geographical location of a transaction,

such as purchases made on aeroplanes and underground subway systems.

2. Steady/continuous connectivity is not guaranteed. If a business is operating in a

non-stationary environment, it is most unlikely that the merchant’s portable pay-

ment acceptance terminal has continuous connectivity to the payment network;

for example, a merchant who sells snacks on a fast-moving train using a portable

payment terminal. If the merchant is able to accept payments from customers

wanting to make tokenised payments, accepting and storing tokenised payments

has significantly lower financial loss associated with payment card breaches as we

explained in Section 2.1.4. Further more, this may also help improve the mer-

chant’s turnover. More significantly, the consumers would be protected by the

security of being able to make tokenised payments.

3. It is significantly cheaper to carry out offline transactions due to the commu-

nication and processing costs involved with establishing each online transaction

individually. An example is carrying out a number of transactions offline and then

forwarding all the transactions simultaneously for batch payment processing at a

later time.

From the above discussion and example scenarios, the inability to make/accept

tokenised payments in an offline environment may act as a deterrent for both consumers

and merchants. This could hinder the potential adoption of contactless mobile payment

solutions based on tokenisation with in the payments industry.

5.1.2 Contributions

In this chapter, we propose a contactless mobile payment protocol based on EMV to-

kenisation that allows offline token payments when no online connectivity is present

on either the terminal or the mobile. The proposed solution also provides end-to-end

encryption between the secure element of the mobile and the terminal. This provides

security for transaction data other than the token. The protocol is analysed against

protocol objectives and subjected to mechanical formal analysis using Scyther. In

our analysis, we show that while tokenised payments prevent PAN compromise dur-

ing transactions, they are still susceptible to token relay attacks. A discussion related

to token relay attacks is carried out in Section 5.4.1. We then discuss how the pro-

posed protocol can be extended to detect and prevent potential token relay attacks
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using ambient sensing. Finally we implement the protocol and provide performance

measurements. The main contributions of this chapter are the following:

1. The protocol introduces the Offline Transaction Token (OTT), providing the

ability to make fully offline tokenised payments

2. End-to-end encryption between the secure element of the mobile and terminal

provides additional security for transaction data other than the Token

The remainder of the chapter is structured as follows. In Section 5.2, the prospec-

tive offline operating environment and the adversary’s capability are discussed. The

proposed protocol is presented in Section 5.3. A security analysis of the protocol is

carried out in Section 5.4 and the protocol is subjected to mechanical formal analysis

in Section 5.4.2. The practical implementation of the protocol and performance mea-

surements are given in Section 5.4.3. Finally, in Section 5.5, the discussion is concluded

and further research directions are identified.

5.2 Offline Operating Environment and Adversary’s Ca-

pability

The current EMV tokenisation online operating environment was presented in Sec-

tion 2.1.5 of the thesis. A generic payment architecture and the transaction message

flow for a tokenised contactless mobile payment was illustrated in Figure 2.2 in Sec-

tion 2.1.5. In this section, we briefly discuss the prospective offline operating envi-

ronment in order to provide offline payments based on EMV tokenisation. Then the

capabilities of the adversary in this environment and potential risk concerns are dis-

cussed.

In the offline transaction environment considered in this chapter, online connectivity

to reach the authorising entity is not available on either the secure element or the

terminal. The secure element and the terminal are the only two parties involved during

the transaction. Therefore, in such a scenario the terminal needs to decide whether

to accept or decline a tokenised transaction. As the payment transaction is carried

out offline, it is paramount to secure the payment and the communication between the

secure element and the terminal. The payment settlement phase is carried out when

the terminal has online connectivity at a later time.

Taking the prospective offline-based operating environment as discussed above into

consideration, the capabilities of the potential adversary who may compromise the

tokenisation-based payment system are listed below:
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• Cannot break the standardised (strong) encryption algorithms.

• Has the capability to eavesdrop unencrypted messages passed between the secure

element and the terminal.

• Cannot compromise the terminal’s public key certificate introduced in Section 5.3.1.

In Section 5.4.2, we discuss why the terminal’s public key certificate is not in the

adversary knowledge in the adversary model.

• Cannot compromise the secure element, terminal, scheme operator, token service

provider or the issuing bank.

Based on the adversary’s capability and the current operating environment, an ad-

versary who compromises token transaction data during an offline transaction scenario

may carry out fraudulent transactions. The risk scenarios involved may include the

adversary changing the transaction amount to a new value, capturing the OTT, or

replaying the same OTT to carry out multiple offline transactions with different termi-

nals. Therefore, as well as providing offline token transaction capability, it is vital to

secure the sensitive token transaction data communicated between the secure element

and the terminal.

In order to store the OTT securely on the mobile phone for offline use and to prevent

the OTT being compromised, tamper resistant storage and secure execution are needed.

In our threat model for the complete offline payment environment, the OTT needs to

be protected from the adversary. A mobile phone with a card emulation environment

such as Host Card Emulation (HCE) does not offer tamper resistance [38, 180, 158].

Therefore, we consider a mobile phone with an embedded secure element which offers

both security guarantees in our proposal. In the next section, we take these concerns

into consideration and propose our protocol.

5.3 Proposed Solution

In this section, an offline contactless mobile payment protocol based on EMV tokeni-

sation is proposed. The payment protocol is used to make offline payments when

there is no online connectivity on either the terminal or the mobile during a tokenised

transaction. The objectives of the proposed protocol are listed below.

1. The protocol should be able to make secure offline payment transactions.

2. End-to-end encryption should be provided between the SE and terminal. This

offers additional security to protect transaction data other than the Token.
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5.3.1 Protocol Assumptions

The assumptions made in the proposed solution are listed below:

• The Token Service Provider (TSP) is a trusted entity that securely generates,

issues and de-tokenise transaction tokens on behalf of the bank.

• The TSP in the proposed protocol takes part in the same payment scheme and the

TSP generated signatures can be verified by the terminal following the certificate

hierarchy shown in Figure 5.2.

• The terminal has been issued with a public key certificate signed by the scheme

operator.

• The Offline Transaction Token (OTT) and security-sensitive data including the

cryptographic keys are securely stored in the secure element. It is not possible

for an adversary to steal/compromise the OTT or data residing in the secure

element.

• The nonces generated by the terminal are random and unpredictable. An adver-

sary cannot deduce the second nonce by examining the first nonce.

The notation used in the proposed solution is included in Table 5.1. The tokenised

contactless mobile payment architecture of the proposed protocol is illustrated in Fig-

ure 5.1. The protocol proposed in this chapter comprises a setup phase, a payment

phase and a settlement phase. In the Setup Phase, the payment app and the OTT

are securely provisioned to the secure element of the mobile. The payment phase can

be used to make an offline tokenised payment when there is no online connectivity on

either the terminal or the mobile.

5.3.2 Setup Phase

During the setup phase, the personalisation of the payment application and provision-

ing of OTT related data is accomplished. The provision of payment application and

security-sensitive data to the secure element is carried out using a secure Over-The-Air

(OTA) channel [18]. Following application personalisation, the payment application’s

sensitive data elements reside in the secure element and its user interface is located in

the mobile platform. The components that reside in the secure element consist of all

cryptographic keys needed by the mobile, i.e. Smobile and Pmobile. The secure element

also stores: Certbank(TSP ), Certbank(SE), Token Application Transaction Counter

(TATC), OTT and the token service provider’s digital signature on the hash of Static

Token Data (STD) which has the notation sSTSP [h(STD)]. The OTT is generated by
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TSP

Bank
Acquirer NodesPayment Terminal

 OperatorTerminal

Mobile

Scheme Operator

Intermediaries

Figure 5.1: Tokenised Contactless Mobile Payment Architecture of the Proposed Pro-
tocol

Table 5.1: Notation used in the Proposed Protocol
T/SE/SO/x : Terminal/Secure Element/Scheme Operator/Identity of X.
TSP/OTT : Token Service Provider/Offline Transaction Token.
TATC : Token Application Transaction Counter, count of token transac-

tions since personalisation. It is shared between mobile, bank &
TSP and used during key derivations.

MaxV alue : Maximum value of the total offline token transactions allowed per
OTT. Predefined value set by the bank.

Tlimit : Transaction Limit is a record kept in the secure element. It is the
total value of previous offline token transactions.

KTo′ : Token Cryptogram Generation Symmetric Session Key derived by
a key derivation function used by TSP.

K : SE generated Symmetric Session Key.
EK{Z} : Symmetric Encryption of data string Z using key K.
SX : Private Signature Key of entity X.
sSX [Z] : Digital signature outcome (without message recovery) from apply-

ing the private signature transformation on data string Z using SX
of X.

PX , P
−1
X : Public Encryption/Decryption Key Pair of entity X.

ePX{Z} : Encryption of data string Z using a public algorithm with PX .
CertY (X) : Public Key Certificate of X issued and certified by Y .
aX : Ambient sensor details issued by entity X.
h(Z) : Hash of data string Z.
nX / n2X : First / second nonce issued by entity X.
A||B : Concatenation of A and B in that order.
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the TSP and has a strong cryptographic binding with the bank, TSP , Token and ntsp.

The OTT consists of a TokenData part and an encrypted part (Token Cryptogram).

The construction of the OTT is shown below.

OTT = TokenData||TokenCryptogram
TokenData = Token||TokenExpiry||TokenR-ID2

TokenCryptogram = EKTo′{TokenData||MaxV alue ||CurrencyCode||ntsp}

The OTT is securely provisioned to the secure element using an OTA channel.

Once the OTA is provisioned the secure element keeps a record of the MaxV alue

and the Tlimit. The MaxV alue is the total offline token transactions value allowed

for a particular OTT. This is a predefined value set by the issuing bank, taking the

liability involved in offline transactions into consideration. The Tlimit is the total value

of previous offline token transactions carried out using a particular OTT. In a given

transaction scenario, the secure element adds the prospective transaction value to the

Tlimit to check whether the combined value exceeds the MaxV alue. The secure element

only presents the OTT to a terminal if the prospective transaction does not exceed the

MaxV alue.

However, whenever there is online capability and the MaxV alue of a particular

OTT has been reached, a new OTT is provisioned automatically to the secure element

using an OTA channel. The provisioning of the new token simultaneously resets the

Tlimit.

Following personalisation of the payment application, the user is required to enter

a passcode for secure access to the payment application. The passcode is stored in the

secure element for future authentication of the user with the payment application.

Figure 5.2: Certificate Hierarchy used in the Proposed Architecture

The certificate hierarchy used to verify the public encryption keys and signature

verification keys of the entities is shown in Figure 5.2. The scheme operator is at

2Token Requester ID: 11-digit unique numeric value, positions 1-3 indicating TSP and positions
4-11 indicating the requester and token domain [20].
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the top level of the certificate hierarchy used in the proposal. Terminals and secure

elements participating in the payment scheme can verify certificates issued by the

scheme operator or entities that have been certified to be trusted in the certificate

hierarchy. The TSP also takes part in the payment scheme. As illustrated in Figure 5.2,

the secure element’s public key is certified by the bank and the terminal’s public key is

certified directly by the scheme operator. We have constructed the certificate hierarchy

in this manner because the number of secure elements that need certifying is greater

than the number of terminals. In the current payment architecture, a terminal is

deployed by the merchant’s acquiring bank or by a subcontractor of the acquiring bank.

In our proposal, the scheme operator certifies the terminal’s public key. However, on

a practical note, in the current payment architecture, terminal manufacturers need to

have their terminals certified by a scheme operator. Therefore, it is within the capability

of the scheme operator to certify each terminal’s public key directly, probably at the

same time.

5.3.3 Payment Phase

The protocol messages of the proposal are illustrated in Table 5.2 and explained as

follows. To make a contactless mobile payment, the user access the payment application

by entering the passcode and holds the mobile device at close proximity to the terminal

(the NFC range of the terminal).

Table 5.2: Offline Transaction Token Protocol.

1. T → SE : t||nt||CertSO(T )

2. SE → T : ePT {se||t||nse||nt||PDOL||K}

3. T → SE : EK{t||se||nse||n2t||amount||CurrencyCode}

4. SE → T : EK{se||t||n2se||n2t||OTT}||sSTSP [h(STD)] ||
sSSE [h(DAD)] ||Certbank(SE)

STD = se||OTT
DAD = n2t||n2se||OTT

a. T : SE read complete
b. T : offline token & dynamic data authentication
c. T : approved/declined - post-transaction clearing request

Message 1: In the first transaction message, the terminal provides its identity,
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terminal-generated first nonce and the terminal’s public key certificate to the secure

element.

Message 2: The secure element then verifies CertSO(T ) and recovers PT . Only

a genuine terminal can provide a public key certificate that verifies correctly. The

second message includes; the identities, nSE , received nonce, the Processing Options

Data Object List (PDOL) [24] and the session key. The message is enciphered using

PT before sending to the terminal. The PDOL instructs the terminal what information

to transmit back to the secure element.

Message 3: The terminal first deciphers the received message and prepares to

send the data requested in the PDOL. The prepared message includes the identities,

the secure element’s nonce received previously, a fresh nonce, and the amount and

the currency code of the transaction. The message is then enciphered using K before

sending it to the secure element.

Message 4: The secure element deciphers the previous message and then carries

out the following verification steps before constructing message 4:

• The secure element checks whether it has received the expected nSE in order to

detect any replay attempts.

• The secure element examines the prospective transaction amount to check it is

within the maximum value of a single offline token transaction set by the issuer.

If the transaction amount exceeds the maximum value the secure element declines

the transaction, otherwise it proceeds to the next verification.

• The secure element then verifies whether the amount of the transaction is with the

required limits. This is done by examining the Transaction Limit Tlimit kept in

the secure element’s record. The Tlimit includes the total value of previous offline

token transactions. The secure element adds the prospective transaction amount

to the value in the Tlimit and checks to see whether the final amount exceeds

the MaxValue, which is the total offline token transaction value allowed for a

particular OTT. If the MaxValue has been reached, the secure element declines

the transaction; otherwise the secure element proceeds to construct message 4.

The secure element updates the Tlimit record when message 4 is successfully

issued.

The secure element uses the Offline Transaction Token (OTT ) for the payment

transaction and includes the following data in the constructed message: the identities;

n2se; n2t; and the OTT . The message is enciphered using K. The n2t forms part of the

Dynamic Application Data (DAD) used by the terminal to detect any replay attempts.
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Message 4 also includes the sSTSP [h(STD)], sSSE [h(DAD)] and the public key

certificate. The TSP ′s signature on static token data can be used by the terminal

to carry out offline token data authentication to verify the authenticity of the OTT

related data offline. The SE′s signature on the DAD can be used by the terminal to

carry out offline dynamic data authentication to verify that it is communicating with

a genuine secure element. Finally the public key certificate can be used to verify the

signature through the certificate hierarchy.

Once message 4 is successfully sent, the secure element may leave the NFC field

of communication. The terminal then carries out the following four verification steps

before the OTT transaction is approved or declined:

• The terminal verifies sSTSP [h(STD)] by generating h(SE||OTT ) and comparing

it with the hash recovered from sSTSP [h(STD)]. If the two hashes match, this

verifies that the TSP has signed the STD presented to the terminal by the secure

element. This provides assurance to the terminal regarding the authenticity of

the OTT . If offline token data authentication fails, the terminal declines the

transaction.

• The terminal then verifies the sSSE [h(DAD)] produced by the secure element.

The terminal generates the hash of the DAD received in message 4 and then

compares this with the hash recovered in the sSSE [h(DAD)]. If the two hashes

match, offline dynamic data authentication is verified successfully, otherwise the

transaction is declined due to the potential of a replay attack. A replay of OTT

can be detected by the terminal due to a replayed message 4 not having the

terminal-generated n2t in the sSSE [h(DAD)].

If the verification steps are completed successfully, then the terminal approves the

offline token transaction. If they fail, then the transaction is declined. In both cases, the

outcome is displayed to the user on the terminal and a printed transaction receipt may

be produced. The terminal issues a token payment clearing request when the terminal

is online capable at a later time, following a successful transaction of an offline token

payment. In the event of an unsuccessful offline token payment, the terminal declines

the transaction, displays a decline message on the terminal and a token payment clearing

request is not sent. The token payment clearing request starts the settlement phase.

The settlement process of the offline token payment may follow the same transaction

processing channel as specified in the EMV tokenisation specification [20] and discussed

in section 2.1.5. The terminal may forward the token payment clearing requests which

include: OTTs and transaction details from a number of transactions, in bulk to the

acquirer. The acquiring bank then forwards the request to the scheme operator who
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then communicates with the TSP. The TSP is able to detokenise and validate the

OTTs. The retrieved PAN and transaction details are forwarded to the issuing bank

for payment clearing. The acquiring bank is settled via the scheme operator.

5.4 Analysis

In this section, the proposed solution is evaluated to see whether it achieves the protocol

objectives. The analysis discusses how the protocol can be extended to prevent token

relay attacks.

The analysis takes into consideration the operating environments outlined in Sec-

tion 2.1.5, protocol assumptions outlined in Section 5.3.1 and those described during

the setup stage in Section 5.3.2.

1. Secure offline payment transactions: Achieving offline transaction capabil-

ity during a tokenised payment was the main focus of the chapter. The proposed

contactless mobile payment protocol based on EMV tokenisation provides capa-

bility of making tokenised payments in a fully offline environment. The proposed

protocol, in order to achieve the objective of making offline token payments, uses

the OTT which includes STD as payment data.

The terminal carries out four verification steps to verify whether the offline trans-

action is genuine. The terminal carries out offline token data authentication, by

verifying sSTSP [h(STD)]. This gives an assurance regarding the authenticity of

the OTT . The terminal does offline dynamic data authentication by verifying

the sSSE [h(DAD)]. By doing this, a replay of OTT is detected by the terminal

as the message would not include n2t if it is not genuine. If these verifications

fail, the terminal declines the transaction.

2. End-to-end encryption to protect transaction data: The protocol provides

end-to-end encryption between the terminal and the secure element. This pro-

vides confidentiality by preventing adversaries from eavesdropping on sensitive

token transaction-related data during transactions. The end-to-end encryption

provides security for transaction-related data other than the token. We further

establish this in Section 5.4.2 where we analyse the protocol in Scyther. Scyther

did not find any feasible attacks including attacks on the secrecy of transaction

data.
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5.4.1 Token Relay Attack

Relay attacks during EMV contactless payment transactions have been examined in

[102, 103, 122, 95, 169, 70]. Even though tokenisation prevents PAN compromise during

an EMV transaction, the current EMV tokenisation architecture specified in [20] does

not address concerns about relaying EMV tokenised payments. Consider the example of

a token relay attack where a genuine consumer makes a token-based contactless mobile

payment at a compromised terminal. The transaction is then relayed to a rogue secure

element elsewhere, which makes a payment at a genuine terminal simultaneously.

Investigating relay attacks is not the main focus of this chapter, however, as an

additional security feature to prevent or detect potential attempts of relay attacks

based on tokenised payments, we carry out the following discussion. We show how

our proposed protocol can be extended to detect and prevent token relay attacks by

adopting ambient sensing, as discussed and illustrated in Figure 5.3. An introduction

to ambient sensing and the explanation of how this can be used is given in Section 5.4.1.

Ambient Sensing

Figure 5.3 illustrates how ambient sensing can be used in the proposed EMV tokenisation-

based offline contactless mobile payment protocol to detect and prevent token relay

attacks. Previous work related to relay attacks detection using ambient sensing can be

found in [136, 175, 100, 178]. Analysis on different sensors and recommendations on

selecting different sensors available on mobile devices can be found in [99]. Considering

two different ambient environments, AE1 and AE2, a token relay from a genuine mobile

in AE1 to a genuine terminal in AE2 via a rogue terminal and mobile can be detected

by the genuine terminal or a Trusted Third Party acting as a comparing entity.

Rogue
Terminal

Genuine
Mobile

Genuine
Terminal

Rogue
Mobile

a terminal =AE2

a mobile = AE1a mobile = AE1

Ambient 
Environment 1

(AE1) 

Ambient 
Environment 2

(AE2) 

a mobile = AE1

Figure 5.3: Ambient Sensing as a Token Relay Attack Prevention Countermeasure
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As illustrated in Figure 5.3, this detection is possible due to ambient sensor data

aterminal generated by the genuine terminal in AE2 being significantly different to the

relayed amobile produced by the genuine mobile in AE1. The difference in ambient

sensor data is detected when the comparison is made. The attributes collected as

ambient sensor data may include atmospheric pressure, ambient noise, ambient light,

Global Positioning System (GPS) data, and others [178].

A mobile device and a supported terminal capture their own ambient environment-

related data on each device using on-board sensors. In the protocol, the mobile sends

its ambient sensor data amobile in message 4 as shown below.

Table 5.3: Extended Protocol Messages.

4. SE → T : EK{SE||n2se||n2t||OTT ||amobile}||
sSTSP [h(STD)] ||sSSE [h(DAD)]

DAD = n2t||n2se||OTT ||amobile

b. T : offline token relay detection

In the protocol stage, any attempted token relay attacks are detected offline by the

terminal. This is due to the transaction being offline and a trusted third party, such

as the TSP , being unavailable to act as a comparing party. To this end, the terminal

generates its own ambient sensor data aterminal and compares it with the amobile received

in message 4. This verification can be completed in step b of the protocol. As amobile

forms part of the DAD, it provides data origin authentication of amobile and other

dynamic application data to the terminal by verifying sSSE [h(DAD)]. If the two

components match or meet the expected threshold, then the terminal proceeds to the

next verification stage; otherwise the terminal declines the offline token transaction

because of the potential of a token relay attack.

5.4.2 Mechanical Formal Analysis

In this section, the proposed protocol is subjected to mechanical formal analysis using

Scyther [80].

The adversarial model used in this analysis is the Dolev-Yao model in [87]. The

following security claims are verified in the analysis: Secrecy of data (Secret), Aliveness

(Alive), Weak agreement (Weakagree), Non-injective agreement (Niagree) and Non-

injective synchronisation (Nisynch) [81, 80]. In addition to the claim types defined

above, the verify automatic claims feature on Scyther was used to verify other claims

[80]. In the adversary model, we have excluded the terminal’s public key certificate

from the adversary’s knowledge. This is because only a genuine terminal is able to
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provide its public key certificate to the secure element and the adversary is unable to

compromise a genuine public key certificate that follows a certificate hierarchy.

Following successful execution of the script, the security of data in the claim events

were verified and Scyther did not find any feasible attacks. In our analysis, we do

not consider the secrecy of the terminal’s first generated nonce (nt) sent in Message

1 as a security concern. This is because, according to the protocol assumptions in

Section 5.3.1, nonces are random and unpredictable. Therefore, an adversary cannot

deduce the second generated nonce (nt2) by examining (nt). As a result, knowledge of

(nt) is of no value to the adversary because for the construction of the DAD, only the

second nonce (nt2) is used. The Scyther script is available in Appendix A.2 and can

be downloaded from [8].

5.4.3 Practical Implementation

In this section, we provide details of the protocol implementation, our experience, and

performance measurements for the protocol.

The protocol was implemented to obtain performance measurements and to provide

a comparison with other protocols. In our implementation, a Java application was

developed to run as the terminal on a Microsoft Windows 7 PC with a 3.2GHz processor

and an 8GB RAM. Then a separate Java card applet was developed to run the payment

application on the mobile. The applet was provisioned to the 16-bit hardware secure

element of a Nokia 6131 mobile phone. For our implementation, obtaining a mobile

phone with an embedded secure element that gave read/write permissions to the secure

element was a challenging task. The only mobile phone with an embedded secure

element with read/write access to provision our payment applet that was available at

the time was the Nokia 6131 mobile phone. In our applet development phase, we found

that Java card frameworks v2.2.2 or above were not supported by the secure element.

In order to provide compatibility with the secure element, the Java card applet was

compiled using Java card framework v2.2.1.

All four messages of our proposed protocol detailed in Table 5.2 were implemented.

The communication between the terminal and the secure element was carried out by

command and response Application Protocol Data Units (APDU) [160, 191]. In our

implementation for asymmetric encryption, we used plain RSA [176] with 1024-bit key

and recommended padding. We used MD5 [167] as the hashing algorithm and the RSA

Digital Signature Algorithm for signatures [46].

During our implementation, we found that even though the Java card framework

v2.2.1 specification [10] supports Advanced Encryption Standard (AES), the secure

element we used did not support AES. Because of this limitation on the secure element,
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we used double-length key Triple DES [121] in Electronic Codebook mode for symmetric

encryption. The algorithm was also supported by the Java card framework v2.2.1 [10].

It is important to note that, double-length key Triple DES is an approved cryptographic

algorithm and electronic codebook is an approved mode of operation in the EMV

specification [14, see: p135-145].

The protocol is scalable to use other advanced algorithms, modes of operations and

hashing algorithms. If the implementation had been carried out on a modern mobile

phone with an embedded secure element, we would have used AES for symmetric

encryption and SHA256 as the hashing algorithm.

Table 5.4: Performance Measurements Comparison in Milliseconds

Measures
Proposed Protocol SSL [193] TLS [194] P-STCP [34] STCP [36]

OTT

Specification 16bit 32bit 32bit 16bit 16bit

Time to complete 3971ms 4200ms 4300ms 4344ms 3875ms

A performance measurements comparison between the proposed OTT protocol and

some other protocols implemented on smart cards is shown in Table 5.4. At the time of

writing, we could not find any offline token protocols or their timing measurements in

published literature to enable us to carry out a more accurate comparison. In order for

us to understand the performance of the protocol, we choose performance measurements

from four different protocols available in the literature. The chosen protocols were also

implemented on smart cards for measurements in their corresponding papers.

Three different timing measurements were obtained from our implemented protocol.

We recorded timing measurements for Message 2, Message 4 and the total time for the

protocol to complete. For Messages 2 and 4, timing was measured from the time

the command APDU [160] was sent from the terminal to the time it received the

response APDU [160] from the secure element. The overall protocol completion time

was measured from the time the applet selection command APDU was sent from the

terminal to the time it completed all the verifications after receiving Message 4. The

measurements for Message 2 and Message 4 were 751 milliseconds and 3086 milliseconds

respectively. The overall protocol completed in 3971 milliseconds. The overall time

it took to complete the protocol fell in the same performance range as the compared

protocols in Table 5.4. Another point to note is that, the 16bit hardware secure element

on the Nokia 6131 mobile phone used in our implementation was released in 2006. A

more recent 32bit secure element on a modern smart phone would most probably give

improved performance measurements.
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5.5 Summary

In this chapter, an OTT protocol based on EMV tokenisation was proposed. The

proposed solution achieves the two main objectives of the protocol: to be able to

make secure offline token transactions and to provide end-to-end security between the

terminal and the secure element. The proposal was analysed and we further identified

how the protocol could be extended to prevent potential token relay attacks. Finally,

we subjected the protocol to mechanical formal analysis using Scyther and provided

performance measurements from a practical implementation. At the time of writing,

apart from [77, 152], there is no publicly available academic research based on EMV

tokenisation. To the author’s knowledge, the work carried out here is the first to

propose an offline transaction token protocol with mechanical formal analysis, practical

implementation and performance measurements.
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In this chapter, we further investigate the current tokenisation architecture

and identify a number of weaknesses that pose a few security threats to to-

kenised payments. We identify five potential attack scenarios in the current

architecture, especially when a particular implementation of EMV tokeni-

sation uses a static-token which is passed onto payment terminals during

every transaction. We then propose a contactless payment protocol that

addresses these security concerns and enhances the security of tokenised

payment transactions.
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6.1 Introduction

EMV provides a number of benefits for both merchants and consumers such as: provid-

ing the capability of making a payment transaction at a supporting terminal anywhere

in the world. However, in Section 2.1.3, we discussed why, compromising the Primary

Account Number (PAN) sent during EMV transactions to be used in card-holder not

present or magnetic-stripe transactions is a problem. EMV Tokenisation was adopted

as a countermeasure to PAN compromise[20]. Tokenisation replaces the PAN by a

substitutive value called the Token which is a 13-19 digit numeric value that does not

reveal the PAN and passes validation checks set by the payment scheme[20]. Since its

introduction, EMV tokenisation has seen early adoption in contactless mobile payment

applications[22, 83, 25].

Near Field Communication (NFC) modules in smart phones and portable devices

enable users to carry out close proximity communication which also include contactless

payments. Here the mobile emulates a contactless smart card. In this chapter, the

payment device that emulates a contactless smart card is referred to as a mobile. Mo-

biles let users store a number of payment applications in one place and have hardware

or software secure element technologies. Secure elements provide a secure execution

environment to carry out sensitive executions. Compared to a contactless smart card,

one of the additional capabilities of a mobile is the readily available communication

channels via the network operator or Wi-Fi.

In Section 2.1.4, an introduction to EMV tokenisation was given and the tokenised

payment architecture was discussed. The Scheme Operator (SO) was referred to as

the Payment Network in Chapter 2.1.4. The numerous intermediaries involved in the

payment communication channel between the terminal and the SO include: third party

terminal providers that the acquiring bank may have used as sub-contractors to process

merchant payments, nodes that carry out key-translation at different locations in the

payment channel. The payment architecture and the transaction message flow of a

generic EMV contactless mobile transaction based on tokenisation is illustrated in

Figure 6.1. The intermediaries are outlined in a dotted rectangle.

We explained the transaction message flow during a generic EMV tokenised pay-

ment transaction in Section 2.1.5. The only additional message flow that we elaborate

upon here is the communication between the intermediaries. After receiving the token

and token related data, the terminal sends the additional token related data in the

transaction authorisation message to the Scheme Operator (SO)/ Card Issuing Bank

(CIB) via a number of intermediaries for approval. These intermediaries also engage

in same key-translation process.
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Figure 6.1: Generic EMV Tokenised Payment Architecture

In the payment architecture, the SO has a direct communication channel to the TSP

and the bank. The payment terminal operator supplies terminals or rents out terminals

to a number of merchants. It also engages in collecting transactions originating from

the merchant’s terminals and forwards them towards the SO/CIB. A payment terminal

operator can either be a third party, or an acquirer’s subcontractor. However, whether

it’s a third party payment service provider or an acquirer’s subcontractor does not

change our attack scenarios discussed later. A key translation mechanism is used for

communication of transaction data between the terminal and the SO in both directions.

The same communication path between the terminal and the SO that was taken to send

the transaction authorisation request is also taken in reverse to send the transaction

authorisation response back to the terminal.

The bank, SO, mobile and TSP are considered as secure and trusted entities. In

contrast to this, we consider that the terminal has the potential to be compromised.

This is evident from reports and research shown in [183, 74, 89, 60]. The compromised

terminal could also represent a rogue NFC enabled mobile phone acting as a terminal

[91]. We also consider that the intermediaries have the potential to be compromised.

This assumption is not too far fetched due to reports and research shown in [45, 117,

118, 114] which makes our assumptions reasonable. Taking this operating environment

into consideration, we expand the discussion to outline potential attack scenarios in

the next section.

6.1.1 Problem Statement

In this section, we discuss two problem areas that raise concerns about the security

of tokenised contactless mobile payments. The first problem area that we identify

is related to the process where the terminal and the mobile is authenticated during
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a transaction. During a payment transaction, the terminal always authenticates the

card/mobile but the card/mobile does not authenticate the terminal. There is a general

assumption that the terminal is a trusted and a secure device. An adversary at a rogue

terminal can carry out a number of attacks during a tokenised payment transaction

because of this lack of mutual authentication.

The second problem area we identify in our work is the fact that similar indelible

trust assumptions are placed on the intermediary entities between the terminal and

the SO / CIB in the EMV payment architecture. When this trust assumption is

disregarded, an adversary compromising one of the intermediary entities is able to

compromise payment transaction details and carry out fraudulent transaction. The

acronyms used in this chapter are listed in Table 6.1.

Table 6.1: Acronyms used in the Chapter
ARC : Authorisation Response Code
CDA : Combined Data Authentication
CIB : Card Issuing Bank
DDA : Dynamic Data Authentication
DTD : Dynamic Token Data
DTT : Dynamic Transaction Token
EMV : Europay MasterCard Visa
NFC : Near Field Communication
PAN : Primary Account Number
SDA : Static Data Authentication
SO : Scheme Operator
SPDL : Security Protocol Description Language
TAR : Token Authorisation Request
TSP : Token Service Provider
TVR : Terminal Verification Result

6.1.2 Contributions

The chapter provides three main contributions. These are: 1) Providing mutual-

authentication between the terminal and the mobile in the proposed solution, so that

both entities are able to authenticate to each other. 2) To address the security concerns

that arise form using static-token, the proposed solution uses a Dynamic Transaction

Token (DTT) that is unique to a particular transaction. 3) To eliminate the indelible

trust assumptions placed on the intermediaries, the proposed protocol provides end-to-

end encryption between the terminal and the Token Service Provider (TSP) as well as

the terminal and the mobile.

The rest of the chapter is structured as follows. In Section 6.2 the two potential
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problem areas and the corresponding attack scenarios are discussed. The proposed

protocol is introduced in Section 6.3 and evaluated in Section 6.4 against protocol

objectives. Finally the protocol is subject to mechanical formal analysis in Section 6.4.1.

6.2 Potential Attacks

In this section, we outline potential attack scenarios associated with two main problem

areas in tokenised contactless mobile payments.

6.2.1 Adversary Compromises a Terminal

In this problem area, there are three different potential attacks. The attack scenarios

are outlined and discussed in Attacks 1, 2 & 3 given below. The terminal is considered

to be a trusted device. Even though, a contactless card/mobile is authenticated to the

terminal, the cardholder cannot authenticate or verify the terminal to be genuine device,

meaning there is no mutual-authentication between the terminal and the card/mobile.

When the trust assumption is taken out, a rogue terminal controlled by an adversary

could be included in EMV contactless payment process. For these attacks, we assume

an adversary with the following capabilities. An adversary:

• can gain full control of the terminal including what is displayed on screen for the

payer.

• can change transaction related details such as the amount.

• cannot break standardised encryption algorithms.

• might collude with another adversary that compromises and controls an interme-

diary between the terminal and the SO/CIB.

Attack 1: Over Charging

In this attack scenario, the adversary fraudulently enters a large payment amount

(within the contactless limit) for a transaction but displays the correct purchasing

product price on the terminal screen for the consumer. Due to the terminal not being

authenticated by the mobile, at the time of making the payment, It is not possible for

the mobile to detect whether the terminal is genuine or rogue. Also, the transaction

amount is not displayed on the mobile. Therefore the user does not have any alternative

option other than to believe the amount displayed on the merchants terminal is true.

So the consumer, unaware of the fraudulently over charged amount, continues to make

a payment. At the time of writing, there are a number of mobile banking applications
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that send Short Message Service (SMS) notifications or in-app push notifications for

mobile/card base contactless payments [22, 31, 32]. However, these notifications are

generated post payment and not before making a payment.

Attack 2: Capturing Static Token & Related Data

The second attack scenario we outline is a static token and token related data cap-

turing attack. In this attack scenario, an accomplice controlling the rogue terminal

transacts with a genuine mobile making a tokenised contactless mobile payment. The

genuine mobile sends the static token and token cryptogram to the rogue terminal. The

accomplice captures the static token, its associated cryptogram and other transaction

related data. The rogue terminal may display an authentication failed message on the

terminal and refuse purchase for the consumer. The captured details are used by the

adversary in Attack 4.

Attack 3: Capturing The Unpredictable Number

The attack we describe here is a Unpredictable Number capturing attack. The EMV

Specification defines the Unpredictable Number as a “Value to provide variability and

uniqueness to the generation of a cryptogram [15]”. In this chapter we refer to this

as the terminal nonce. Even though the attack is not a direct compromise of the

terminal, the captured Unpredictable Numbers are generated by the terminal, hence

we list this attack under this category. The EMV tokenisation specification does not

specify whether offline data authentication needs to be carried out by the terminal [20].

Because tokenised payments operate in an online setting, at first, it is not apparent as

to why offline data authentication is actually needed. However, we highlight why failing

to carrying out offline data authentication aggravates the identified security concern.

The attack steps are described below.

1. An adversary attempts a payment at a genuine terminal to obtain the unpre-

dictable number generated by the genuine terminal.

2. At the absence of offline data authentication, the terminal is unable to verify

whether the payment application related data presented by the mobile is genuine.

3. Therefore, the terminal nonce is sent to the mobile as a challenge to be signed by

the mobile in order to carry out dynamic data authentication.

4. The nonce forms part of the dynamic application data which is later signed by

the mobile to generate the digital signature expected by the terminal.

5. Soon as the nonce is received by the rogue mobile, the adversary captures the

nonce and halts any further communication with the terminal.
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In some instances, even if Static Data Authentication (SDA) is carried out by the

terminal, it may still be possible to compromise the terminal nonce if SDA is not

carried out before the nonce is sent. For example, as explained in [70], Visa’s payWave

qVSDC protocol sends the terminal generated nonce before SDA. This would enable

an adversary to obtain the terminal unpredictable number. Potential attacks and other

security concerns related to compromising terminal unpredictable numbers are shown

in [59, 60].

6.2.2 Adversary Compromises an Intermediary

In this section, we discuss the second problem area that raise security concerns in

tokenised contactless mobile payments. In the current EMV architecture, indelible trust

assumptions are placed on the intermediaries between the terminal and the SO/CIB.

When this trust assumption is disregarded, an adversary compromising one of the

intermediaries has a potential attack scenario to infiltrate transaction details and make

fraudulent transactions. The adversary at the compromised intermediary observes

all transaction data passing through it, which also include transaction authorisation

requests, tokens and token related data. For these attacks, we assume the following

adversary’s capabilities. An adversary:

• can compromise any of the intermediaries.

• can gain access to transaction data at the compromised intermediary.

• cannot break standardised and strong encryption algorithms.

• cannot compromise smart cards, the SO or the CIB.

• might collude with the adversary that compromises a terminal.

Attack 4: Adversary Replays An Authorisation Response For Cloned Token

Data

The attack scenario is realised when the transacting terminal fails to carry out adequate

offline data authentication method such as Dynamic Data Authentication (DDA) or

Combined Data Authentication (CDA) [14], but sends the transaction data for online

transaction authorisation. We highlight why failing to carrying out adequate offline

data authentication methods such as DDA or CDA aggravates the identified security

concern. The adversary at the compromised intermediary is able to observe all trans-

action data passing through it which also includes: transaction authorisation requests

intended for the SO/CIB. The attack steps are described below.
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1. The adversary works together with the accomplice, who captured the static token

and the corresponding token data in the previously discussed Attack 2.

2. The accomplice chooses a terminal that has an established communication path to

the SO/CIB via the compromised intermediary and makes a contactless payment

with the captured static token data.

3. The terminal carries out SDA on the presented static token data. As the data

were captured from a genuine mobile, the SDA verification at the terminal com-

pletes successfully. However, without DDA or CDA where a dynamic signature

is generated by the mobile and verified by the terminal, the terminal is not able

to detect the cloned data.

4. The terminal sends the transaction data online for transaction authorisation.

5. The adversary, instead of passing the transaction authorisation request to the

authorising entity, stops the request from reaching the authorising entity. The

particular transaction can be identified by the adversary using the static token

included in the message.

6. Instead, the adversary replays an Authorisation Response Code (ARC) pretend-

ing to have come from the authorising entity and indicates that the transaction

was successfully authorised. Once the authorisation response is received, the

terminal approves the transaction.

7. Unlike in a contact-based EMV transaction, the transaction authorisation re-

sponse cryptogram is not sent to the contactless card/mobile [14]. One of the

reasons for this is that in contactless EMV, there is no assurance that the card is

kept in the reader’s field by a cardholder. Because of this reason, the transaction

authorisation response is not enciphered by the bank with a key shared between

the card/mobile and the bank.

Attack 5: Replaying An Authorisation Response For DDA/CDA

In Attack 4, we explained that the EMV tokenisation specification does not specify

whether offline data authentication needs to be carried out [20] as tokenisation operates

on an online environment and showed how this was realised when the terminal did not

carry out DDA/ CDA as offline data authentication. However, from our understanding,

it is still possible to provide offline data authentication for tokenised payments for

additional security before a transaction is sent online for authorisation. In this attack
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scenario, we assume that the terminal is carrying out DDA/CDA and identify another

weakness that could lead to a potential compromise. The attack steps are described

below.

1. The adversary works together with an accomplice, who is in possession of a

number of lost & stolen contactless mobiles. The attack is carried out during

the time-slot between the cards/mobiles are lost/stolen and the relevant issuing

banks are notified by the owners.

2. The accomplice chooses a terminal that has an established communication path to

the SO/CIB via the compromised intermediary and makes a contactless payment.

3. The terminal carries out the dynamic offline data verification. As the dynamic

signature is generated by a genuine mobile, the terminal verification finishes suc-

cessfully. The terminal then sends the transaction data online for authorisation.

4. The adversary, instead of passing the transaction authorisation request to the

authorising entity, captures it.

5. The adversary replays a previously communicated ARC generated by the autho-

rising entity. Once the authorisation response is received, the terminal approves

the transaction.

6.3 Proposed Solution

In this section, we propose a solution that addresses the security concerns discussed in

Section 6.2. The main objectives of the protocol are listed below.

1. Should prevent Attacks 1, 2, 3, 4 & 5.

2. There should be a process to carry out mutual authentication between the ter-

minal and the mobile.

3. End-to-end encryption should be provided between the secure element and the

terminal, as well as between the terminal and the TSP.

6.3.1 Protocol Assumptions

We have made the following assumptions in our proposed solution:

• A secure channel is used for the communication between the mobile and the TSP

(SO in this instance).
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• The TSP is a trusted entity that provides transaction token issuing, de-tokenisation,

token updates and management on behalf of the CIB in a secure manner.

• The SO acts as the TSP in the payment architecture discussed in the proposed

solution.

The notation used in the proposed solution is given in Table 6.2. The tokenised

contactless mobile payment architecture of the proposed protocol is illustrated in Fig-

ure 6.2. The proposed protocol has a setup stage and a payment stage. In the Setup

Stage, involves securely provisioning the payment app and related data to the mo-

bile. The Payment Stage is initiated when making a contactless mobile payment. The

transaction scenario in this chapter is when both the terminal and the mobile are online

capable to reach the TSP. Providing offline tokenised payments is not the focus of this

chapter and related work on this was carried out in the previous chapter 5.

Table 6.2: Notation used in the Proposed Protocols
T/SE/x : Terminal/Secure Element/Identity of X.
TATC : Token Application Transaction Counter, count of token

transactions since personalisation. It is shared between
mobile, bank & TSP and used during key derivations.

K : SE generated Symmetric Session Key.
Ks1 : Symmetric Encryption Session Key shared between TSP

and SE.
Ks2 : TSP generated Symmetric Encryption Session Key used by

the terminal to communicate with the TSP .
KTo′ : Token Cryptogram Generation Symmetric Session Key de-

rived by a key derivation function used by TSP.
EK{Z} : Symmetric Encryption of data string Z using key K.
SX : Private Signature Key of entity X.
sSX [Z] : Digital signature outcome (without message recovery) from

applying the private signature transformation on data string
Z using SX of X.

PX , P
−1
X : Public Encryption/Decryption Key Pair of entity X.

ePX{Z} : Encryption of data string Z using a public algorithm with
PX .

CertY (X) : Public Key Certificate of X issued and certified by Y .
h(Z) : Hash of data string Z.
nX / n2X : First / second nonce issued by entity X.
A||B : Concatenation of A and B in that order.
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Figure 6.2: Tokenised Contactless Mobile Payment Architecture of the Proposed Pro-
tocol

6.3.2 Setup Stage

During the setup phase of the protocol, the personalisation of the payment applica-

tion and provisioning of security sensitive data elements of the payment application

and credentials are carried out using a secure channel. Following the application per-

sonalisation, the security sensitive data elements of the payment application reside in

the SE and the user interface part of the payment application reside in the mobile

platform. The data elements stored in the SE includes, all cryptographic keys needed

by the mobile eg: KSE , Ks1, SSE & PSE/P
−1
SE . The SE also stores: Certbank(TSP ),

Certbank(SE), Token Application Transaction Counter (TATC). Following successful

personalisation of the payment app, on the first use, the user is required to enter a

strong pass-code on first access which is then used for future authentication to login to

the payment app. The subsequent transaction protocols are constructed based upon

the above mentioned data elements.

Terminals and secure elements participating in the payment scheme can verify cer-

tificates issued by the SO or entities that have been certified to be trusted in the

certificate hierarchy. The TSP also takes part in the payment scheme.

6.3.3 Payment Phase

To make a payment during the payment phase of the protocol, the user opens the

payment application by entering the pass-code and taps the device on the terminal. The

protocol messages of the proposed solution are illustrated in Table 6.3 and explained

as follows.
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Table 6.3: Dynamic Transaction Token Protocol Messages.

1. T → SE : t||nt||CertSO(T )

2. SE → T : V ||sSSE [h(V )] ||CertBank(SE)
V = ePT {se||t||nse||nt||PDOL||K||tsp}

3. T → SE : W ||sST [h(W )]
W = EK{t||se||nse||n2t||amount||ePTSP {t||amount||n3t}}

4. SE → TSP : EKs1{se||tsp||n2se||TokenR-ID||amount||
TATC||CertSO(T )||ePTSP {t||amount||n3t}}

5. TSP → SE : EKs1{tsp||se||n2se||ntsp||ePT {DTD}||sSTSP [h(DTD)]}
DTD = tsp||se||t||n2tsp||n3t||DTT ||Ks2

6. SE → T : EK{se||t||n3se||n2t||ePT {DTD}||sSTSP [h(DTD)]}

7. T → TSP : Token||EKs2{t||tsp||Token||n2tsp||n4t||DTT ||
POSem||TV R}

8. TSP → T : Token||EKs2{tsp||t||n3tsp||n4t||Token||
TokenAssuranceLevel|| PANlast4digits||ARC}

Message 1: At the start of the protocol, the T provides its identity, nt and CertSO(T )

to the SE.

Message 2: The SE obtains PT after verifying CertSO(T ). The SE constructs a

message that includes: both identities, nse, nt, the Processing Options Data Object

List (PDOL) that instructs the T what information to send back to the T[24], a session

key generated by the SE to be used in further communication between the T and the

identity of the TSP. The SE enciphers the message using PT . A digital signature of the

message is generated by the SE and both the enciphered part and the digital signature

is sent to the T. The SE’s public key certificate is also sent in the same message.

Message 3: Using the certificate hierarchy, the T verifies the signature of the secure

element in order to authenticate the device that is making the payment. Once the SE

is authenticated, the T deciphers the message. Afterwards, the T encrypts and signs

a message which includes: the identities, nse, n2t, the amount of the transaction and

an encipherment carried out using PTSP on the T’s identity, amount and n3t. The full

message and the signature is then sent to the SE.

Message 4: Using the certificate hierarchy, the SE verifies the signature, authenticates
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the T and deciphers message 3 to obtain transaction related information. Now the SE

prepares to request a token from the TSP by constructing a message. The message

includes: the identities, n2se, Token Requester ID, amount, the Token Application

Transaction Counter (TATC), CertSO(T ) and ePTSP {t||amount||n3t}. The message

is then encrypted using the symmetric key Ks1 shared between the TSP and the SE

before sending.

Message 5: The TSP, first verifies the CertSO(T ) and obtains the T’s public key.

The TSP deciphers ePTSP {t||amount||n3t} and checks whether the amount recovered

from this matches the amount requested by the SE. If satisfied, the TSP queries the

CIB and verifies the user eligibility to be issued a new token. Once this process is

carried out, a DTT and a session key Ks2 is generated by the TSP. The TSP then

creates Dynamic Token Data (DTD) which includes: the identities, n2tsp, DTT and

Ks2. The TSP signs the hash of DTD. The DTD is then enciphered using PT . The

TSP then creates a message that includes: the identities, n2se, ntsp, ePT {DTD} and

sSTSP [h(DTD)]. The message is then enciphered using Ks1 before sending. DTT is

constructed as follows;

DTT = TokenData||TokenCryptogram
TokenData = TokenID||TokenExpiry||TokenR-ID

TokenCryptogram = EKTo′{TokenData||amount||n3t}

Message 6: The SE, prepares a message to send the ePT {DTD} and

sSTSP [h(DTD)] to the T. The message includes: the identities, n3se, n2t,

ePT {DTD} and sSTSP [h(DTD)]. The message is then enciphered using K before

sending. If the SE is not in the NFC field, the user taps the SE on the T again to

transmit the message. Once the message is successfully sent to the T, the SE may leave

the NFC field.

Message 7: After deciphering the message received from the SE, first the nonce is

examined by the T to detect any replay attempts. The T then deciphers the ePT {DTD}
to obtain DTD and verifies sSTSP [h(DTD)] to have been generated by the TSP . Once

satisfied, the T carries out dynamic token data authentication to verify the authenticity

of the presented data. For this the T generates the hash of the DTD received in the

previous message and compares this with the hash recovered in the sSTSP [h(DTD)].

If the two hashes match, dynamic token data authentication is verified successfully,

otherwise the transaction is declined due to the potential of a replay attack.

Depending on the outcome of the dynamic token data authentication, the T con-

structs a Token Authorisation Request (TAR) and forwards it to the TSP for payment

authorisation. To construct the payment authorisation message, the T first constructs a
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message which includes: identities, Token, n2tsp, n4t, DTT , Point-Of-Sale Entry Mode

(POSem)1 and the Terminal Verification Result (TVR) indicating the outcome of the

offline dynamic token data verification. This message is then enciphered using Ks2.

The T also appends the Token to the encipherment before forwarding the message to

the TSP . The existing key translation mechanism is used by the T to forward the

TAR to the TSP via the Intermediaries, for financial transaction authorisation.

The only data sent in the clear is the Token, which on its own cannot be used by

the Intermediary to obtain any useful information corresponding to the PAN . In the

operating environment of the proposed solution, the SO acts as the TSP, therefore the

message is received at the TSP. However in a scenario where the scheme operator is not

taking the role of the TSP , the scheme operator by observing the Token can identify

which TSP it needs to forward the token to.

Message 8: After receiving the TAR, the TSP carries out the following checks to

validate the token:

• queries its database records in-relation to the issued tokens and checks details

such as: expiry, requester ID, amount and the token cryptogram.

• if the token related data is validated properly, the TSP conducts payment token

de-tokenisation to map the token details into PAN details.

Following these verifications the TSP retrieves the PAN details and contacts the

CIB to obtain an ARC. The TSP provides information such as: the PAN, PAN ex-

piry date, amount, POSem, token, token expiry, token requester ID and the Token

Authorisation Request Result (TARresult) in order to obtain the ARC. The TARresult

contains three main components. These are: the outcome of TSP’s token verifica-

tion has passed or failed, TokenAssuranceLevel which indicates the level of assurance

that the TSP has assigned to the token depending on the confidence of the TSP and

TokenAssuranceData which indicates the data used by the TSP to assign a token

assurance level. The CIB before issuing the ARC carries out the following account

level validations:

• retrieve account details corresponding to the PAN.

• check whether there are sufficient funds available and no account restrictions.

• verify POSem and the token has not been presented for authorisation before.

1The POSem acts as a Token Domain Restriction Control [20] to prevent other cross channel fraud
by restricting the tokens to a specific payment channel (contactless mobile payments in this scenario).
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• check the outcome of the TARresult validation carried out by the TSP.

Following all the validation steps, the ARC is issued to the TSP by the CIB.

Afterwards, the TSP constructs a message that includes: the identities, n3tsp, n4t the

Token, Token Assurance Level, the last 4 digits of the PAN and the ARC generated

by the CIB. The message is then enciphered using Ks2. The TSP also appends the

Token to the encipherment before the message is sent to the T via the Intermediaries.

The Intermediary cannot deduce any information corresponding to the PAN or the

authorisation response other then the Token.

Once the message is received, the T deciphers the message using the session key

and examines the results in order to approve/decline the transaction. The outcome

is displayed on the T. The merchant may produce a receipt that includes transaction

details such as the amount, last 4 digits of the PAN, date, time and ARC to be given

to the user upon request.

6.4 Analysis

In this section, the protocol proposed in this chapter is analysed for its security and

protocol objectives. In our analysis we have taken the following into consideration:

the operating environments outlined in Section 2.1.5, adversary capabilities outlined in

Sections 6.2.1 & 6.2.2 and protocol assumptions outlined in Section 6.3.1.

At the beginning of the protocol, both the secure element and the terminal are

authenticated to each other. The established mutual-authentication between the two

entities provides a strong security assurance before security sensitive transaction data

are communicated. Due to the unforgeability of the digital signature used, only a

genuine secure element and the terminal is able to generate their own signatures. The

signatures can be verified using the certificate hierarchy.

The proposed protocol provides end-to-end encryption between the terminal and

the secure element. This provides confidentiality to token transaction related data

by preventing adversaries from eavesdropping. The protocol also provides end-to-end

encryption for the communication between the terminal and the TSP which provides

confidentiality to the communicated information and eliminates the need for placing

indelible trust assumptions on the intermediaries. Below we analyse how the identified

attacks that compromise token transaction data in Section 6.2 are prevented in the

proposed protocol. Table 6.4 categorises different countermeasures used for each attack.

Attack 1 (Over Charging): In the proposed protocol, message 3 sent by the ter-

minal to the secure element has transaction related data including the amount which

is displayed on the users mobile. The request to obtain the dynamic transaction token
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is requested by the mobile device from the TSP, only after the user authorises the

amount displayed on the user’s mobile screen. Any attempts taken by the merchant to

overcharge the user will be detected and the transaction cancelled. Furthermore, the

corresponding token is requested by the mobile using the data received in message 3,

hence a rogue merchant is not in a position to change the amount to a different value.

Further more, any amendments to the transaction amount can be detected due to the

DTD having the transaction amount in it.

Attack 2 (Capturing Static Token & Related Data): In the proposed protocol,

a mutual-authentication process is carried out between the terminal and the mobile

device before the token and token related data is given to the terminal. The nse is sent

by the mobile device as a challenge in message 2 for the terminal to sign with other

related data. After receiving message 3, the mobile verifies the digital signature and

authenticates the terminal to be a genuine device. The mobile aborts the protocol if

the terminal is not successfully authenticated at this stage.

Furthermore, due to the dynamic nature of the transaction token issued by the TSP,

it is unique to a particular transaction and can only be used once. A replay of DTT

can be detected by a genuine terminal due to a replayed message 6 not having the

terminal-generated n3t in the sSTSP [h(DTD)]. Any attempts to carry out Attack 2 is

prevented by these countermeasures. If a particular transaction token is compromised

by an adversary and tried to replay it in another fraudulent transaction, the TSP

would not authorise the transaction for the second time. As the mobile requests a

DTT for every transaction, the TSP is aware of a transaction even before a payment

authorisation request is made by a terminal. This introduces an additional layer of

security to prevent unauthorised transactions, as well as facilitating accurate approvals

& risk assurance levels for the tokenised payment transaction.

Attack 3 (Capturing The Unpredictable Number): The terminal can verify the

authenticity of the digital signature generated by the mobile device due to the unforge-

ability of the digital signature algorithm used. In addition to this, any attempts of

replaying the digital signature is prevented by the nt included in the digital signature.

This provides an assurance regarding the freshness of the message and the signature. If

the verification fails, then the terminal declines the overall transaction which prevents

the terminal from generating the third nonce n3t which is used in the DTT . Further-

more, the protocol prevents any malicious entity from compromising the n3t by using

end-to-end encryption between the terminal and the SO.

Attack 4 (Adversary Replays An Authorisation Response For Cloned Token

Data): The proposed protocol uses the following countermeasures to defend against

this attack. Firstly, at the start of the protocol, mutual authentication is established
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between the terminal and the secure element. By taking this approach, only if the

secure element is authenticated in message 2, the terminal proceeds to the transaction

by sending transaction related data in message 3. Secondly, the proposed solution

uses a DTT rather than a static token. This means that because the DTT includes

both the terminal’s and the TSP’s nonces which makes the token specifically unique

to a particular transaction. A replay of DTT can be detected by the terminal due to

a replayed message 6 not having the terminal-generated n3t in the sSTSP [h(DTD)].

Furthermore, the protocol provides end-to-end encryption for the communication be-

tween the terminal and the TSP . This prevents the adversary at the compromised

intermediary from replaying an authorisation response back to the terminal and any

such attempts are detected by the terminal.

Attack 5 (Replaying An Authorisation Response For DDA/CDA): Unlike

Attack 4 where only SDA is carried out, this attack scenario is even possible when

DDA/CDA is carried out by the terminal. The attack is prevented in the proposed

solution by providing end-to-end encryption for the communication between the two

entities. This provides confidentiality which prevents the adversary at the compromised

intermediary from learning any useful financial payment information related to the

communicated data. Furthermore, nonces generated from both the terminal and the

TSP are included in messages communicated between each other as well as in the

DTT. This makes any replay attempts detectable for the terminal in the event of any

authorisation response replay. Furthermore, the payment application needs the user to

enter a passcode before use. It must be also noted that, if the mobile device is lost,

stolen or damaged, the user is able to inform the CIB in order to restrict access to the

mobile app and to deny access to the token requests.

Table 6.4: Attacks and Countermeasures used in the Proposed Protocol

Attack
Mutual End-To-End DTT Other

Authentication Encryption

1:Over Charging X X Amount displayed on mobile

2:Capturing Static Token & Related Data X X
3:Capturing The Unpredictable Number X X X
4:Adversary Replays An Authorisation X X X
Response For Cloned Token Data

5:Replaying An Authorisation X X X Passcode for payment app
Response For DDA/CDA

6.4.1 Mechanical Formal Analysis

In the previous section we analysed our proposed solution against the security and

objectives of the protocol. Having carried out this informal analysis, in this section, we

subject the protocol to mechanical formal analysis using Scyther [80]. The proposed
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protocol was modelled and provided as input to Scyther using the Security Protocol

Description Language (spdl) defined in[81]. The spdl provides three main protocol

modelling features: roles, events and claims. The roles define the entities in a protocol,

which characterise events. The send and receive operations are classed as send and

recv events respectively; each corresponding send and recv event has the same sequence

number. The security goals and objectives of a protocol that require verification are

specified using claim events. We used the Dolev-Yao model as the adversarial model

used in this analysis[87]. The following security claims are verified in the analysis:

Aliveness (Alive), Weak agreement (Weakagree), Non-injective agreement (Niagree)

Non-injective synchronisation (Nisynch) and Secrecy of data (Secret) for: DTT , ARC,

K, Ks2 [81, 80].

The script was run on an Intel CORE-i7 2GHz machine with 8GB of RAM. When

the security claim events were run together during protocol analysis, Scyther tool was

crashing. We identified that the reason for this was the RAM getting full after a few

hours of protocol analysis. To overcome this issue, the security claims were analysed

one after the other. A point to note that is, running these security claims all together

or separately, does not effect the outcome of the security analysis. Following successful

execution of the script, the security of data in the claim events were verified and Scyther

did not find any feasible attacks within the bounded state space. The Scyther script is

available in Appendix A.3 and can be downloaded from[5].

6.5 Summary

In this chapter of the thesis, we extended our discussion of the current EMV tokenised

payment architecture. We then identified five potential attack scenarios in two problem

areas of the current architecture that would lead to a transaction compromise. A

contactless mobile payment protocol based on dynamic tokens was proposed to address

the identified security concerns and to guarantee the protocol objectives. The protocol

was then analysed for its security and objectives. Finally the protocol was subject to

mechanical formal analysis which did not find any feasible attacks within bounds.
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The e-commerce market is growing rapidly as well as the number of trans-

actions carried out each second globally. Another aspect is that, consumers’

growing interest in alternative payment methods other than credit/debit card

based payments. This is valid in both traditional Point of Sale environments

and e-commerce environments. In this chapter, we identify that establishing

fair-exchange while using an anonymous payment method such as Bitcoin is

difficult. Addressing this issue, we then propose a protocol that guarantees

strong/true fair-exchange while preserving the anonymity of the transacting

parties when Bitcoin is used as the payment method in e-commerce trans-

actions. Finally the solution is analysed for its security requirements.
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7.1 Introduction

Anonymity prevents merchants, payment processors, third party payment providers,

subcontractors, adversaries that compromise payment transactions, etc. from learning

consumer personal information, spending habits and financial details. This would also

help reduce fraudulent activity related to identity theft by not revealing any personally

identifiable information during a payment transaction. Currently the majority of pay-

ment methods used for e-commerce transactions do not provide guaranteed anonymity

for both the customer and the merchant at the same time. Although services such as

PayPal can be used to hide personal financial details from the merchants and Tokeni-

sation as we discussed in Section 2.1.4 can be used to replace the PAN with a surrogate

value.

Modern technological advancements have given a dramatic boost towards the evo-

lution of the Internet. A strong outcome of this global expansion of inter-networked

technology is the emergence of e-commerce. The e-commerce market is growing and is

expected to reach $4.058 trillion in 2020 [33]. In the last few decades there have been

a significant increase in the number of consumers opting in for online shopping as well

as the number of e-commerce transactions carried out globally every day [40, 200].

While Credit/Debit card payment schemes dominate a majority of the e-commerce

payment transactions, there are other alternative payment schemes such as Real Time

Bank Transfers, Offline Credit, Direct Debit, eWallets, Mobile Payments and Digital

Cash which also provide a way to complete payment transactions at present [84, 200].

In a traditional Point-of-Sale (POS) transaction, the parties involved do not have to

be concerned much regarding the guaranteed delivery of the purchased product or the

guaranteed payment for the sold product and vice-versa. This is due to the fact that

the transaction is carried out in a face to face environment in a physical shop. Even

though, there is the possibility of misleading or misrepresentation of the physical goods

by the seller, adequate checks and visual observations can be carried out to identify

such issues. Furthermore, the consumer can make a simple payment by using cash for

the goods and services he/she purchased without handing in their personal or financial

details to the merchant and other third parties.

However, a buying and selling transaction in e-commerce is much different from

the previously explained. In an e-commerce environment there are issues related to

anonymity and fairness of transactions. In an e-commerce environment where trans-

acting parties do not see each other physically makes it possible for a dishonest party to

misbehave. In one hand, a merchant could simply not deliver the goods to a consumer

once the payment is received or claim the payment was never received. On the other

125



7. Establishing True Fair-Exchange in Anonymous Bitcoin Payments

hand, a consumer could simply disappear without paying a merchant once goods have

been received or deceivingly claim that the content was never received.

Therefore, a merchant may ask a consumer to provide personal identifiable infor-

mation such as: name, address, contact number, prior payment or even identity copies

before a product is delivered. This information would help the merchant for any dispute

resolution, take legal action for non payment or to minimise any financial loss. In such

an e-commerce transaction, a consumer might lose privacy by having needed to provide

personal and financial information to merchants, payment processors, third party pay-

ment providers, etc. Furthermore, most of widely used e-commerce payment methods

are also linked to personal identity of the account holder. Similarly, a consumer might

ask the merchant to provide contact details, business registration documents, etc. that

can be used in a dispute resolution for non delivery of product. The consumer may in-

volve his/her financial organisation to establish some sort of liability and accountability

of the merchant to prove that a payment was made to the merchant’s bank account.

Most of the current electronic payment methods, neither provide anonymity of

consumer to protect consumer privacy nor security of financial information to guarantee

the security of the transferred value at the same time. Instead, there is a trade-off

between these two aspects [84]. The concerns discussed above have led attempts to

finding a solution to give e-commerce users the freedom of making anonymous payments

without having to reveal personal details and to guarantee fair-exchange [208, 209, 207,

161].

Protocols that help realise anonymity and user privacy during payment transac-

tions are called Anonymous Payment Protocols which was introduced and discussed

in Section 2.3.1. Protocols that helps to establish fairness in e-commerce transactions

are called Fair-exchange Protocols. A discussion on fair-exchange protocols and intro-

duction of Weak and Strong fairness in e-commerce were given in Section 2.3.2. A

combined solution that would realise fairness as well as anonymity is called an Anony-

mous Fair-exchange Payment Protocol.

In the next section, we extend our discussion on anonymous fair-exchange and

identify an issue with using Bitcoin in e-commerce transactions.

7.2 Problem Statement

When we consider industry wide adoption of Anonymous Fair-exchange Protocols,

even though protocol design may guarantee anonymity and fairness, when it comes to

making anonymous payments in the real world this is a big challenge. This is because

of a number of factors such as: a majority of existing financial service providers use
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EMV based centralised payment solutions that do not provide anonymity, distributed

payment solutions that provide anonymity (cryptocurrencies) are either not recognised

by consumers or don’t have a market trading value to be accepted as a method of

payment by merchants, lack of public awareness and confidence, etc.

In recent years, Bitcoin is one of the few cryptocurrencies that has gone through

nearly a decade of maturity and gained increased public interest as an alternative

payment method. An introduction to Bitcoin was given in Section 2.2.2 of the thesis.

Bitcoin payments are anonymous in the sense that they cannot be linked to a real

identity of a user but payments are irreversible. At the time of writing Bitcoin payments

cannot be retrieved or cancelled. Due to this reason and payments being anonymous

it is difficult to guarantee fairness between two parties engaged in an e-commerce

transaction using Bitcoin. This is a major concern for a genuine consumer or a merchant

who has or would like to make and receive payments using Bitcoin but is reluctant to

do so due to the uncertainty of receiving content for payment or payment for delivered

content and vice-versa [144, 61, 107, 204, 112].

Current solutions such as “e-Bay Guarantee” and “PayPal Buyer Protection” for

non-Bitcoin transactions aims to provide a level of peace of mind for consumers. How-

ever, these methods have capped transaction values or involve lengthy dispute reso-

lutions. For Bitcoin users, however, there are no such options available to give peace

of mind in e-commerce payments. Bitcoin has now become a competitive player for

alternative payment methods with a considerable market capitalisation of $62 billion

as of September 2017 [57]. At the time of writing, there are no specifically designed

e-commerce protocols for Bitcoin that addresses aforementioned concerns and the work

we carry out here is one of the first Bitcoin-specific proposals that guarantees strong-

fairness and anonymity. Our main contribution of this chapter is the proposed fair-

exchange protocol that guarantees strong fairness while preserving the anonymity of

the transacting parties in section 7.3.

The rest of the chapter is structured as follows. In Section 7.3, we propose our

protocol and in section 7.4, a security analysis of the protocol is carried out. In Sec-

tion 7.5, we add an extension to our protocol to support the improved Zerocash system

for Zerocoin. Finally in Section 7.6, we conclude our discussion.

In the next section we present our proposed solution.

7.3 Proposed Protocol

The main contribution of the paper is an anonymous fair-exchange payment protocol.

The proposed protocol guarantees fair-exchange and anonymity by using Bitcoin. The
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proposed protocol realises strong fair-exchange and anonymity within Bitcoin users.

The solution keeps the involvement of a TTP to a minimum by using an Off-line TTP.

This makes our proposed solution an optimistic protocol as defined in Section 2.3.2.

The notation used during the explanation of the protocol is listed in Table 7.1 and

the protocol message flow between the transacting parties are illustrated in Figure 7.1.

We identify our main objectives of the protocol as follows.

1. The protocol should achieve strong fair-exchange while preserving anonymity of

the consumer and the merchant.

2. TTP should not be able to see the exchanged product or store a copy of it.

3. Guarantee security properties such as; confidentiality, integrity, message freshness

and non-repudiation.

4. Keep the involvement of the TTP to a minimum.

5. Disputes should be resolved within the protocol.

6. The protocol should support similar digital cash systems.

Figure 7.1: Proposed Protocol Message Flow.

There are three main phases of our proposed protocol. During the first stage of

the protocol “Pre Protocol” a number of prerequisites such as product registration,

product/price negotiation, TTP selection and product encryption are carried out. In

the “Main Protocol” which is the second stage of the protocol, key processes such as

product delivery, Bitcoin payment and decryption key delivery are carried out. If non

of the processes fails and things go according to plan, the protocol completes in the

above two stages. However, if a transacting party misbehaves, prematurely aborts or

a communication failure happens the third stage “Extended Protocol” is executed with

the involvement of the TTP . We make a number of assumptions listed in Section 7.3.1

for a successful run of the protocol.
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Table 7.1: Notation used in the Proposed Protocols
C : Consumer.
M : The Merchant.
TTP : The Trusted Third Party.
PV : The Product Verifier.
BP2P : The Bitcoin Peer-to-Peer Network.
Ti : Purchase/delivery transaction of product m by C and M .
Pseudo-ID-M : Unique Pseudonym-Identity of M registered with the PV .
Pseudo-ID-iX : Unique Pseudonym-Identity of X registered with the TTP , only

used during Ti.
K1 : Public encryption key of the public/private key pair escrowed with

TTP , later used by PV to encrypt m.

K−1
1 : Private decryption key of the public/private key pair escrowed

with TTP . The key pair is generated by M .
eK1{Z} : Encryption of data string Z using a public algorithm with K1.
PX : Public Encryption Key of entity X.
ePX{Z} : Encryption of data string Z using a public algorithm with the

public encryption key PX of entity X.
SX : Private Signature Key of entity X.
sSX [Z] : Digital signature outcome (without message recovery) from apply-

ing the private signature transformation on data string Z using the
private signature key SX of entity X.

VX : Public Signature Verification Key of entity X.
PwM : Public Encryption Key of M advertised online with m.
PiX : Public Encryption Key of entity X used only during Ti.
ePiX{Z} : Encryption of data string Z using a public algorithm with the

public encryption key PiX of X used only during Ti.
SiX : Private Signature Key of entity X used only during Ti.
sSiX [Z] : Digital signature outcome (without message recovery) from apply-

ing the private signature transformation on data string Z using
SiX of X only during Ti.

ViX : Public Signature Verification Key of X only during Ti.
ViXcert : Public Signature Verification certificate issued by the TTP . It

includes ViX corresponding to the Pseudo-ID-iX of entity X used
only during Ti.

BPX : Bitcoin Public Key of entity X (X’s Bitcoin address).
BSX : Bitcoin Private Key of entity X (X’s Signature key).
sBSX{Z} : Digital Signature outcome (without message recovery) from ap-

plying the private signature transformation on data string Z using
BSX of X.
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T -info : Other information relevant to a particular Bitcoin transaction.

TX : Bitcoin transaction from C to M , in the formation of a hash.

TX = h(T(X−1)||BPC ||T -info).

TX−1 : Previous Bitcoin transaction that has occurred in the past but

directly linked to TX in the formation of a hash.

Encryptcert : Encryption certificate issued by the PV . It includes a hash of the

encrypted product which has been encrypted by the PV using the

key indicated in the certificate.

TTPcommit : Commitment certificate issued by the TTP indicating involvement

in the exchange.

TTP -Pool : A pool of different TTP s. C & M agrees between one TTP from

this list to be involved in Ti.

PVcert : Product verification certificate issued by the PV .

ú−payment : Predefined time-out for M to send the decryption key, includes

time needed for Bitcoin transaction processing.

ú : Predefined time-out period agreed by involved parties. If a re-

sponse is not received within the time-out the sending party will

resend once more, in case a no reply, the sending party aborts the

protocol or involve the TTP if necessary.

ú−resolve : Time-out given to M by TTP to respond with the requested key

before sending the escrowed product decryption key to C.

A||B : Concatenation of A and B in that order.

h(Z) : Hash of data string Z.

N1X / N2X : First & second nonce issued by entity X.

X → Y : Z : Entity X sends message Z to entity Y .

7.3.1 Assumptions in the Proposed Protocols

A1 : M registers with PV by giving a Pseudo-ID-M , PM and VM which are only used

in communication between M and PV . The PV is a trusted entity that certifies

M ’s public verification key VM and keep a record of it to verify M ’s messages

signed using SM in future communication.

A2 : Both C and M register with TTP by giving a per-transaction pseudonym-identity

Pseudo-ID-iC and Pseudo-ID-iM . The TTP makes sure that each Pseudo-ID

is unique and has not been registered before. It should not be possible for TTP ,

C, M or external parties to deduce the real identity of C and M by examining

the Pseudo-ID.
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A3 : C’s and M ’s public verification keys ViC and ViM are certified by the TTP to

their pseudonym-identities Pseudo-ID-iC and Pseudo-ID-iM respectively. The

public certificates ViCcert and ViMcert are issued to each owner by TTP and can

later be used to verify each other’s digital signatures.

A4 : C and M have access to a Bitcoin wallet. M generates a one-time Bitcoin address

to be presented to C to receive payments and only if needed, C generates a one-

time Bitcoin address to receive any change back from the transaction also known

as a change-address.

A5 : C andM , in addition to pseudonyms, maintain anonymity by setting up Anonymity

Channels (uses cryptographic processes to change message origin details and pre-

vent eavesdropping) for communication.

A6 : We also assume that the following guidelines are adhered to: all cryptographic

keys are checked for validity before use, a standardised public key algorithm

(e.g. RSA) is used for encryption, data is padded according to recommended

best practice before encryption, hashes are generated using standardised secure

hash functions (e.g. SHA) and messages are signed using a standardised digital

signature algorithm (e.g. DSA).

A7 : The TTP is a trusted entity and will not collude with the PV , the M or the C.

A8 : The PV is a trusted entity, will not misrepresent the certified digital content and

will not collude with either the TTP , the M or the C. The PV makes sure that

the advertised product and the product description by M is exactly the same as

that the product PV is certifying.

7.3.2 Pre Protocol Stage

The messages in the pre protocol stage are listed in Table 7.2 and described in detail

below.

Firstly, the unique product-ID generated by M , product-price, product-description

and a public key PwM is advertised by the M online. The M can use his/her own web-

site or a third party listing service to advertise these details. The TTP -Pool which is

a list of potential TTP s that could be used in the transaction is advertised by the M .

As per our assumption A2, a C who wish to purchase a product, selects a TTP from

TTP -Pool and registers with it. The TTP selection process gives control to the C for

choosing a TTP than relying on a particular TTP proposed by the M .
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Table 7.2: Pre Protocol Stage
a. C →M : encryption||sSiC [h(encryption)]

encryption=ePwM{product-ID||Order||sSiC [h(Order)]||PiC ||
N1C ||ViCcert}

Order=Pseudo-ID-iC||TTP ||payment-method||product-price

b. M → TTP : encryption||sSiM [h(encryption)]

encryption=ePTTP {Transaction-ID||K1||K−1
1 ||

Pseudo-ID-iM ||N1M}

c. TTP →M : encryption||sSTTP [h(encryption)]

encryption=ePiM{K1||TTP ||Pseudo-ID-iM ||
sSTTP [h(K1||TTP ||Pseudo-ID-iM)]||Transaction-ID||
N1M ||N1TTP }

d. M → PV : encryption||sSM [h(encryption)]

encryption=ePPV {pseudo-ID-M ||product-description||m||
PM ||product-ID||N2M ||K1||TTP ||Pseudo-ID-iM
||sSTTP [h(K1||TTP ||Pseudo-ID-iM)]}

e. PV →M : encryption||sSPV [h(encryption)]

encryption=ePM{PVcert||Encryptcert||N2M ||N1PV }

PVcert=X1||sSPV [h(X1)]
X1=product-ID||product-description||eK1{m}

Encryptcert=X2||sSPV [h(X2)]
X2 = h(eK1{m})||K1||TTP ||Pseudo-ID-iM

f. M → TTP : encryption||sSiM [h(encryption)]

encryption=ePTTP {Transaction-ID||Pseudo-ID-iM ||
Pseudo-ID-iC||Encryptcert||N1TTP ||N3M}
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g. TTP →M : encryption||sSTTP [h(encryption)]

encryption=ePiM{TTPcommit||N3M ||N2TTP }

TTPcommit=Y1||sSTTP [h(Y1)]
Y1=Transaction-ID||Pseudo-ID-iM ||
Pseudo-ID-iC||h(eK1{m})

Message a: The C registers with TTP and creates a concatenation which includes;

product-ID, Order, a digital signature on the hash of Order using SiC , PiC only used

in Ti, fresh nonce generated by C and the TTP issued public signature verification

certificate.

The C then encrypts the concatenation using M ’s advertised public key. Then the

hash of this encryption is signed by C using SiC to create sSiC [h(encryption)]. C

sends both the digital signature and the encryption to M . We use the same notation

to represent digital signatures sent in each subsequent message. The digital signatures

can be verified by the M using ViCcert .

The Order includes; Pseudo-ID-iC registered with TTP used only during Ti, TTP

chosen and registered by C, Payment-method to indicate which digital cash system to

use and product-price.

Message b: As detailed in our assumption A2, after receiving C’s message, M

registers with the same TTP . A concatenation is created by M which includes; a unique

transaction ID generated by M for Ti, public and private key pair to be escrowed with

TTP , Pseudo-ID-iM registered with TTP used only during Ti and a fresh nonce.

M encrypts the concatenation using PTTP and signs the hash of the encryption

using SiM . M then sends both parts to the TTP .

Message c: Once the message is received, TTP verifies whether the public/private

key pair to be escrowed is in the correct format. If satisfied, TTP then creates a con-

catenation which includes; K1 , TTP , Pseudo-ID-iM (we refer to these as “the three

components”), TTP ’s digital signature on the hash of the three components, the trans-

action ID, M ’s nonce and a new nonce. After this, TTP encrypts the concatenation

using PiM and signs the hash of the encryption using STTP . Both parts are then sent

to the M .

Message d: After receiving TTP ’s message and registering with PV according
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to our assumption A1, M now needs to get product m certified and encrypted by

the PV using K1 escrowed with TTP . For this, M creates a concatenation which in-

cludes; pseudo-ID-M , product-description, m, PM , product-ID, new nonce, the three

components & TTP ’s digital signature on the hash of the three components. The con-

catenation is encrypted by M using PPV and signs the hash of the encryption using

SM only used with PV according to A1. Both the encryption and the signature are

then sent to PV .

Message e: PV after receiving the message, checks whether the product matches

its product-description. If it matches, PV encrypts m using K1 and generates a product

verifier certificate PVcert which includes X1 and a signed hash of X1 using SPV . X1

consists of the product−ID, product−description and encrypted product.

At the same time, PV also verifies TTP ’s digital signature on the three components

received in the previous message. If satisfied, PV generates an Encryption Certificate.

The Encryptcert includes X2 and a digital signature on the hash of X2 using SPV . X2

consists of a hash of the encrypted product and the three components verified to have

come from TTP . PV then creates a concatenation which includes; PVcert, Encryptcert,

N2M and N1PV . The concatenation is then encrypted using PM which is shared only

with PV . PV signs the hash of the encryption using SPV and before sending both

parts to M .

Message f: After receiving the message, M now creates a concatenation which

includes; the Transaction-ID, Pseudo-ID-iM , Pseudo-ID-iC, Encryptcert, N1TTP

and a new nonce. The concatenation is then encrypted using PTTP and the hash of the

encryption is signed using SiM . Both parts are then sent to TTP . It must be noted

that, with the Encryptcert, the TTP only receives a hash of the encryption but not the

actual encrypted product.

Message g: Lastly, once the message is received, the Encryptcert is verified by the

TTP . The verification indicates that the product was encrypted using key K1 escrowed

with TTP . Following this, a commitment certificate called that TTPcommit is issued

by the TTP . The TTP then creates a concatenation which includes; the TTPcommit,

M ’s previous nonce and N2TTP . The concatenation is encrypted by PiM and a signed

hash of the encryption using STTP is appended before sending both parts to M . The

TTPcommit includes Y1 and a digital signature of TTP by signing the hash of Y1 using

STTP . Y1 consists of the Transaction-ID, Pseudo-ID-iM , Pseudo-ID-iC and a hash

of the encrypted product.
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7.3.3 Main Protocol Stage

After successful completion of the pre protocol stage and examining the received

TTPcommit, M initiates the main protocol. The messages communicated in the main

protocol stage are listed in Table 7.3 and described in detail below.

Table 7.3: Main Protocol Messages.
1. M → C : encryption||sSiM [h(encryption)]

encryption=ePiC{product-ID||Invoice||sSiM [h(Invoice)]||
N1C ||N4M ||PVcert||TTPcommit||ViMcert ||ú}

Invoice={Transaction-ID||product-price||payment-method||
Pseudo-ID-iC||Pseudo-ID-iM ||TTP ||BPM}

2. C →M : encryption||sSiC [h(encryption)]

encryption=ePiM{Invoice||sSiM [h(Invoice)]||
sSiC [h(sSiM [h(Invoice)])] ||N4M ||N2C ||h(eK1{m})||ú−payment}

3. C → BP2P : {amount||BPC ||BPM ||sBSC [TX ||BPM ] ||TX ||T -info}

TX = h(T(X−1)||BPC ||T -info)

4. M → C : encryption||sSiM [h(encryption)]

encryption=ePiC{Invoice||N2C ||N5M ||h(eK1{m})||K−1
1 ||ú}

Message 1: Firstly, M creates a concatenation which includes; the product-ID,

a newly created Invoice, a digital signature by signing the hash of the Invoice using

SiM to indicate that M agrees with the terms of the transaction, N1C , new nonce,

PVcert, TTPcommit, TTP issued public signature verification certificate and a prede-

fined time-out. The concatenation is encrypted using PiC and a signed hash of the en-

cryption using SiM is appended. M then sends both parts to C. The Invoice consists

of the Transaction-ID, product-price, payment-method, Pseudo-ID-iC, Pseudo-ID-

iM , TTP and M ’s one-time Bitcoin address.

Message 2: After receiving the message, C decrypts it and retrieves ViMcert to

verify M ’s digital signature. The authenticities of PVcert and TTPcommit is verified by

C using PV ’s digital signature and TTP ’s digital signature respectively. The latter

assures that TTP has confirmed involvement in the fair-exchange. Before continuing
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with the transaction process any further, C then carries out two main verification steps.

Advertised Details = Details found in PVcert——————– 1
Computed h(eK1{m}) = h(eK1{m}) found in TTPcommit ——– 2

Firstly, product-ID and product-description mentioned in the PVcert is cross

checked with the details of the product C is willing to purchase as advertised by M . If

condition 1 shown above is satisfied, then C is certain that the encrypted product m

and its details as certified by the PV is the intended product that he/she is about to

pay for.

Secondly, C generates a hash of the encrypted product eK1{m} and compares

it with the hash obtained from TTPcommit. If both hashes match, it confirms that

the hash of the encrypted product eK1{m} matches the hash TTP has confirmed to

have the corresponding decryption key for. Then condition 2 shown above is satisfied.

This gives assurance to C that after making a payment, if M misbehaves, prematurely

aborts or communication fails, the product decryption key can still be obtained by

initiating the extended protocol. If and only if conditions 1 & 2 are satisfied, C

proceeds to message 2 or else C aborts the protocol and informs both M & TTP the

reasons.

Following this, C creates a concatenation which includes; Invoice, M ’s digital sig-

nature on the invoice, a digital signature by signing the hash of M ’s digital signature

sSiM [h(Invoice)] using SiC to indicate that C agrees with the terms of the transaction,

N4M , new nonce, hash of the encrypted product and a predefined time-out ú−payment.

C then encrypts the concatenation using PiM and appends a signed hash of the en-

cryption using SiC before sending both parts to M .

Message 3: Immediately after sending message 2, a Bitcoin payment to M ’s

Bitcoin address BPM is made by C. TX is a hash output representing the Bitcoin

transaction from C to M . The hash includes the previous transaction hash linking to

this transaction, Bitcoin public key of C and other transaction information relevant to

this transaction. Key components in the message broadcast to the BP2P includes; the

transferring amount, C’s one-time Bitcoin public key, M ’s one-time Bitcoin public key,

digital signature created by signing the transaction hash TX using C’s Bitcoin private

signature key BSC , TX and other information related to the transaction.

The broadcast transaction is then received by the miners in the Bitcoin network,

who then start creating a new block with the transaction information as follows. A

detailed introduction to Bitcoin and the mining process was given in Section 2.2.2.
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In brief, a Bitcoin miner computes a new block which includes the hash T(X+1) from

this transaction. In BP2P every miner engages in computing blocks simultaneously.

Due to this reason only the first valid block created is verified by other peers to be

genuine and a new record is added to the Blockchain. The Bitcoin network at the same

time checks whether the Bitcoins have been spent previously to detect double spending.

Message 4: M waits for C’s Bitcoin payment to be confirmed in the Blockchain.

This process and the time required was discussed in Section 2.2.2. After receiving the

payment, M now needs to send the product decryption key K−1
1 to C. For this M

creates a concatenation which includes; the Invoice, N2C , a new nonce, h(eK1{m}),
K−1

1 and a time-out. M then encrypts the concatenation using PiC and appends a

signed hash of the encryption using SiM before sending both parts to the C.

If the main protocol messages complete successfully then C decrypts the product

and M updates Transaction-ID as completed in his/her record.

7.3.4 Extended Protocol Stage

The extended protocol is executed in the event that M misbehaves by sending an

incorrect decryption key, prematurely aborts or a communication failure happens after

C making a Bitcoin payment. The protocol messages are listed in Table 7.4 and

described below.

Table 7.4: Extended Protocol Messages.
I. C → TTP : encryption||sSiC [h(encryption)]

encryption=ePTTP {BlockchainEvidence||Invoice||
sSiM [h(Invoice)]||N3C ||h(eK1{m})||TTPcommit||ú}

II. TTP →M : encryption||sSTTP [h(encryption)]

encryption=ePiM{BlockchainEvidence||Invoice||
sSiM [h(Invoice)]||KeyRequest||N3TTP ||ú−resolve}

III.M → TTP : encryption||sSiM [h(encryption)]

encryption=ePTTP {Invoice||K−1
1 ||N3TTP ||N6M ||ú}

IV. TTP → C : encryption||sSTTP [h(encryption)]

encryption=ePiC{Invoice||K−1
1 ||N3C ||N4TTP ||ú}
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Message I: C initiates the protocol by creating a concatenation which includes;

evidence from the blockchain showing the Bitcoin payment from the C to M , Invoice,

M ’s digital signature on the hash of Invoice received in message 1, a new nonce, hash

of the encrypted product generated by C, TTPcommit and a predefined time-out. C

encrypts the message using PTTP and signs the hash of the encryption using SiC before

sending both parts to the TTP .

Message II: TTP examines the evidence produced by C in message I. The TTPcommit

confirms that TTP is involved in the particular transaction and sSiM [h(Invoice)] con-

firms that M has agreed to the terms of Ti. The BlockchainEvidence is verified by

TTP by examining the Bitcoin blockchain which should confirm the Bitcoin payment

made from C to M . As a response to this, TTP creates a concatenation which in-

cludes; the BlockchainEvidence, Invoice, sSiM [h(Invoice)], a KeyRequest from the

TTP requesting for K−1
1 , a new nonce and a predefined time-out ú−resolve. TTP en-

crypts the concatenation using PiM and appends a signed hash of the encryption using

STTP before sending both parts to M .

Message III: If M has not maliciously disappeared after receiving C’s payment,

misbehaved or deliberately refused to communicate, then as soon as TTP ’s key request

is received, M checks the status of the Transaction-ID. If it has not completed, M

creates a concatenation which includes; Invoice, the product decryption key, N3TTP , a

new nonce and a predefined time-out. M encrypts the concatenation using PTTP and

signs the hash of the encryption using SiM before sending it to TTP .

Message IV: TTP proceeds to message IV as normal if a response to the key

request is received within ú−resolve. However, if M ’s response is not received then TTP

retrieves the product decryption key escrowed with itself and creates message IV. In

either scenario, TTP creates a concatenation which includes; Invoice, K−1
1 , N3C , a new

nonce and a time-out. The concatenation is then encrypted using PiC and a signed

hash of the encryption using STTP is appended before both parts are sent to the C.

After receiving the message, C retrieves the decryption key which gives access for

the C to successfully decrypt the purchased product.

7.4 Security Analysis

In this section, we analyse our proposed protocol for its security requirements and to

see whether it achieves the objectives outlined in Section 7.3.
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7.4.1 Strong Fair-exchange

We start our analysis by evaluating the fairness guarantees provided by our proposed

protocol. It must be noted that, if a party aborts the proposed protocol before C makes

the Bitcoin payment in Message 3, fair-exchange is not affected as neither party gains

an advantage from the other. This means that M will not be made a Bitcoin payment

and C will not be able to decrypt the product.

In the particular transaction scenario where both C and M followed the protocol

without misbehaving or prematurely aborting, the protocol completes without an ex-

tended protocol stage. In our analysis we consider the following transaction scenarios

and evaluate the fairness of our proposal in such instances.

• M sends a wrong encrypted product: M gains no advantage by sending a

wrong product as C only proceeds to making a payment once conditions 1 &

2 are satisfied. C can detect any potential wrong products at this stage.

• M sends a wrong product decryption key: In this case, C initiates the

extended protocol by sending all relevant evidences to TTP as shown in Message

I to raise a dispute resolution. At the end of the extended protocol TTP forwards

C the correct decryption key.

• M after receiving payment demands more payment: In this instance,

C initiates the extended protocol. By looking in to evidence C has provided

in Message I, TTP would determine that M has agreed to the terms of the

transaction and the price by digitally signing the Invoice.

• M disappears after receiving payment or aborts: In such scenario, C

initiates the extended protocol to involve TTP for dispute resolution.

• C pays M less than the agreed amount: In this scenario, the decryption

key to the encrypted product is only sent to C if the full payment is received by

M . Due to this C doesn’t gain any advantage by making partial payments. If M

aborts the protocol at this stage where C has paid less then the agreed amount,

both parties have misbehaved. Therefore, both parties have failed to follow the

protocol and there is no fair-exchange to achieve. If C wants to raise a dispute

resolution with the TTP , then C needs to make the full payment.

• C pays M less and initiates the extended protocol: If C claims deceivingly

that the amount paid is what he/she agreed, then M could provide evidence upon
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enquiry by TTP in Message III. In this scenario, M provides the signed purchase

order sSiC [h(Order)] in Message c, and if received sSiC [h(sSiM [h(Invoice)])] in

Message 2, which both includes C’s digital signature agreeing to the terms of the

transaction. Therefore, the decryption key is not provided to the C.

• C collude with TTP : In A7 we assumed that the trusted TTP is a trusted

entity and will not collude with the C. Therefore, this concern is not realised

within our protocol assumptions. However, we discuss below the outcome if

the potential concern is realised. Since the choice of selecting a TTP from the

TTP − Pool is given to C, it is more likely for C to collude with TTP than M .

This may disadvantage M as TTP could send C the escrowed decryption key

before C’s Bitcoin payment to M . However, anonymity of M cannot be breached

this way as M never reveals the real identity to any of the parties involved in the

protocol.

• M collude with TTP : Similarly according to A7, this potential concern is

not realised within our protocol assumption. However, we discuss below the

outcome if the potential concern is realised. There is less chance for this to be

realised as the choice of selecting a TTP is given to the C. In such event, this

may disadvantage C as TTP could send C an incorrect decryption key in the

extended stage after C’s Bitcoin payment to M . However, anonymity of C is not

breached.

• C and M collude together: As both parties are dishonest there is no fair-

exchange to be achieved.

In our analysis above, it is evident that the protocol guarantees that in the event

of a transacting party misbehaving, the genuine party who follows the protocol doesn’t

incur any loss or have to go through a lengthy dispute resolution process with an ex-

ternal judge after the protocol. Instead, in our proposed protocol disputes are resolved

within the protocol run. All these properties constitute strong fair-exchange which is

established by our proposed protocol.

7.4.2 Anonymity

It must be noted that both C and M do not reveal their real identities or personal

details at any stage of the proposed protocol. Instead, per-transaction pseudo-IDs and

public/private key pairs are used by both parties. During the protocol, C communicates

with M and TTP using pseudo-ID-iC only used in Ti and does not communicate with
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PV . M communicates with C and TTP using Pseudo-ID-iM only used in Ti and with

PV using pseudo-ID-M for product registrations. Because of this reason anonymity

of C and M is not only guaranteed between each other but also to PV and TTP .

Attempts of collusion with PV or TTP to find the real identity of a party, would not

gain any benefit other than what they already know. e.g. C colluding with TTP to

identify M .

In addition to pseudonyms, according to our assumption in A5, both C and M

set-up anonymity channels for communication between each other and other parties.

This provides assurance that the communication channel that the protocol runs on

does not reveal any information related to the identities of the communicating parties.

It is common practise to use an anonymiser such as the TOR Browser while making

Bitcoin payments.

Furthermore, the payment made by C is sent to a one-time Bitcoin address gen-

erated by M . Similarly when making the payment, C generates a one-time Bitcoin

address to receive Bitcoins as change only if there are any. Another aspect to point out

is that any information related to Bitcoin transactions and addresses are not revealed

to the TTP unless the extended protocol is initiated.

Bitcoin addresses does not reveal the real identity of the user. However, as the

Bitcoin blockchain is a public ledger, all Bitcoin transactions are broadcast publicly,

which makes Bitcoin transactions completely transparent. This feature can be ex-

ploited in attempts to de-anonymise Bitcoin and to reveal the real identities of Bitcoin

users. For an example, with the advancements in computational power, machine learn-

ing and Data Analysis capabilities, it may be possible to link Bitcoin transactions to

real user identities [164, 137]. It must be noted that, none of these attempts has fully

broken the anonymity provided by the Bitcoin protocol. However, this raises a few con-

cerns over the anonymity of the users and the privacy of transactions in our proposed

protocol. Therefore, in Section 7.5, we add an extension to our protocol to support

Zerocoin/Zerocash system proposed in [141, 48] to provide improved privacy grantees

and full anonymity.

7.4.3 Privacy of Exchanged Product

In our protocol, neither product m is revealed nor given a copy to the TTP . Any in-

formation related to m is only revealed to the TTP after the execution of the extended

protocol. Even then the details included in Invoice are not sufficient for TTP to find

out what was exchanged.
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7.4.4 Security Properties

Confidentiality is guaranteed by using strong encryption on all protocol messages and

the use of nonces confirms message freshness. The unforgeability of the digital signa-

ture algorithm and the use of registered pseudonym-IDs provide non-repudiation. This

assures that a party cannot deny taking part in the protocol at a later stage. Mes-

sage integrity is provided by the digital signatures appended on each protocol message.

The predefined time-outs provide timeliness to the proposed protocol. This allows the

sender to resend a message once more if a response is not received, to complete the

protocol by aborting or to complete the protocol by resolving with the TTP without

letting the protocol go in to an infinite loop.

7.4.5 Other Properties

• Minimum involvement of TTP : Our proposed protocol uses an off-line TTP

by keeping its intervention to a minimum. The TTP is only involved with the

protocol if a transacting party misbehaves, prematurely aborts or a communica-

tion failure happens. This makes our proposed solution an optimistic protocol as

defined in Section 2.3.2.

• Dispute resolution: In our proposed protocol, any disputes related to the pay-

ment or exchange of digital content is resolved automatically within the protocol

run without manual intervention of an external judge or going through a long

dispute resolution process after the protocol run.

7.4.6 Support for Other Cryptocurrencies

In our proposed solution, we gave more emphasis on Bitcoin mainly because of the

identified problems in Section 7.2. Further more, other aspects such as the following

were also taken into consideration: at the time of writing, Bitcoin was the most popular,

widely used and the cryptocurrency that had the most market capitalisation. Even

though Bitcoin was selected as the payment method for the protocol, the protocol can

be extended to support other anonymous cryptocurrencies that are designed using a

public ledger/blockchain technology.

We now describe a generalised example of how the protocol can be extended to

support other cryptocurrencies designed with the concept of providing anonymity using

pseudonymous addresses and a public ledger.
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In Message a of the proposed protocol, C can inform M of the currency that he/she

would like to use in the payment-method. Following this, M can later send the relevant

address of the selected payment method in Message 1. C then makes a payment using

the selected payment system. If things go according to plan and M sends the decryption

key then the protocol completes successfully.

However, in the event of a party misbehaving, prematurely aborting the protocol

or in a communication failure, the extended protocol can be executed. Then C could

present evidence from the relevant cryptocurrency’s public ledger in Message I. This

evidence may include payment made from payer’s address to the address of the payee

available on the public ledger. This provides sufficient information for TTP to continue

with the dispute resolution without requiring further changes to the protocol.

In Section 7.5 we describe this further and extend our protocol to support Ze-

rocoin/Zerocash. There are a few differences in our extended protocol compared to

the generalised example. This is mainly because of how Zerocoin/Zerocash works to

provide increased anonymity as well as privacy of transaction details published in the

blockchain.

7.5 Extension to Support Zerocoin/Zerocash

The notation used in our extended protocol is listed in Table 7.5. To make cross-

referring easy for the reader, the notation we present is similar to the notation in

corresponding papers [48, 141].

Table 7.5: Notation used for Zerocoin/Zerocash Extension
ZP2P : Zerocash System integrated into Bitcoin P2P Network.
PRF : Pseudorandom function.
COMM : Statistically-hiding non-intractive commitment scheme.
zk-SNARK : zero-knowledge Succinct Non-interactive ARguments of Knowl-

edge.
rt : A root of Merkle tree at a given time.
apkx : Address Public Key of entity X (X’s Zerocoin address).
askx : Address Secret Key of entity X.
zx : A Zerocoin that is owned by entity X.
zoldx : A Zerocoin that is owned by entity X and is used to pour it’s value

to new coins.
vx : The value of entity X’s Zerocoin.
vpub : A non-negative public output value that can be used to pay a

target similar to a Bitcoin address as specified in a transaction
string info.
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ρx : A secret value that determines snx of entity X’s coin.
snx : A serial number derived as snx = PRF sn

askx
(ρx).

cmx : A coin commitment of entity X’s coin (a string that appears in
the public ledger) constructed as kx = COMMrx(apkx ||ρx) and
cmx = COMMsx(vx||kx) where rx & sx are random.

txMint : A mint transaction record; when a new coin z with commitment
cm and value v has been minted.

πPOUR : A zk-SNARK proof that states; “Given rt, old snx, new commit-
ments cmx and cmy, I know coins zold, new coins zx, zy and old
address secret key askx”.

txPour : A pour transaction is used to spend, split, merge or transfer own-
ership of anonymous coins to others. Pour records the pouring of
a old coin/two coins (zoldx ) with their corresponding serial num-
bers (snoldx ) into two new coins (zx, zy) with their commitments
(cmx, cmy) in the public ledger. It also records rt, vpub, info and
πPOUR.

In this section, we only present the changes in the protocol run that are required

to extend our protocol to support Zerocoin/Zerocash system. The modified protocol

messages are listed in Table 7.6 and described in detail below. The changes to our

previous protocol are shown in highlighted text.

Message f: At this protocol stage, M generates a new address key pair (apkm , askm)

and a secret value ρm in order for C to make a Zerocoin payment. After this, M

constructs a coin commitment cmm as:

km = COMMrm(apkm ||ρm) and cmm = COMMsm(vm||km) where rm & sm are ran-

dom. The coin commitment cmm is then included in Message f by M for TTP ’s record.

Message g: After receiving the message, TTP keeps a record of cmm and includes

the cmm in the commitment certificate TTPcommit generated by the TTP . By including

the cmm in TTPcommit gives assurance to C that TTP is aware of the corresponding

commitment of M ’s coin that is due to appear in the public ledger. The TTPcommit

is sent to C in Messages 1. C can also check the validity of cmm by reconstructing it

using secret values apkm , vm, ρm, rm, sm received in Messages 1.

Message 1: In the extended protocol, instead of including the Bitcoin address,

M now includes address public key apkm in the Invoice. Furthermore, secret values

vm, ρm, rm, sm are also included in the Invoice to provide required information for C

to make an anonymous payment to M .

In our protocol, we let M generate these details instead of C. There are two main

reasons for this approach. These are:
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Table 7.6: Protocol Extension to Zerocoin/Zerocash.
f. M → TTP : encryption||sSiM [h(encryption)]

encryption=ePTTP {Transaction-ID||Pseudo-ID-iM ||
Pseudo-ID-iC||Encryptcert||N1TTP ||N3M ||cmm}

g. TTP →M : TTPcommit=Y1||sSTTP [h(Y1)]
Y1=Transaction-ID||Pseudo-ID-iM ||Pseudo-ID-iC||
h(eK1{m})||cmm

1. M → C : Invoice={Transaction-ID||product-price||
payment-method||Pseudo-ID-iC||Pseudo-ID-iM ||
TTP ||apkm ||vm||ρm||rm||sm}

3. C → ZP2P : zm = (apkm ||vm||ρm||rm||sm||cmm)
zc = (apkc ||vc||ρc||rc||sc||cmc)
txPour = (rt||snold||cmm||cmc||πPOUR ||vpub||info)

I. C → TTP : encryption||sSiC [h(encryption)]

encryption=ePTTP {cmm||Invoice||sSiM [h(Invoice)]||
N3C ||h(eK1{m}) ||TTPcommit||ú}

II. TTP →M : encryption||sSTTP [h(encryption)]

encryption=ePiM{cmm||Invoice||sSiM [h(Invoice)]||
KeyRequest||N3TTP ||ú−resolve}

1. To keep the protocol simple by not requiring a key-private encryption scheme

to download these secret values in encrypted format from the public ledger as

specified in the paper [48]. The main reason for this is that we have already

established a secure channel in our protocol.

2. To make M generate the coin commitment and get it added to TTPcommit before

C makes a payment.

Message 3: Immediately after sending Messages 2, a Zerocoin payment using the

Zerocash system is made by C. Assuming C is a Bitcoin user, a new Zerocoin can be

minted by depositing a Bitcoin with a backing escrow pool in the Zerocash system. If

C is already a user that holds Zerocoins then the previous step of minting a coin is not

needed.
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Because C uses this newly minted coin to make new coins, we add the notation

old to it’s parameters. Firstly, C generates a new address key pair (aoldpkc
, aoldpkc

) and a

secret value ρoldc which determines coin zoldc ’s serial number snoldc = PRF sn
aoldskc

(ρoldc ). It

is assumed that these serial numbers are collision resistant.

C now generates cmold
c as:

koldc = COMMroldc
(aoldpkc

||ρoldc ) and cmold
c = COMMsoldc

(voldc ||koldc ) where roldc & soldc

are random.

The minting outputs a new coin and a mint transaction:

zoldc = (aoldpkc
||voldc ||ρoldc ||roldc ||soldc ||cmold

c )

txMint = (voldc ||koldc ||soldc ||cmold
c )

In the Zerocash system, to spend the newly created coin, C carries out a pour

operation which takes zoldc as input coin and pours it’s value into two fresh coins; zm

& zc.

C then uses zm to make M ’s payment and zc to pay any change back from the

transaction to him/her-self. To create these two coins C firstly, generates commitment

cmm for M ’s coin using the secret values received in Messages 1, such that; km =

COMMrm(apkm ||ρm) and cmm = COMMsm(vm||km).

C also at this point checks whether the constructed commitment matches the one

found in TTPcommit. C now generates the commitment for his/her own new coin such

that; kc = COMMrc(apkc ||ρc) and cmc = COMMsc(vc||kc) where rc & sc are random.

Following this, C produces a πPOUR proof according to [48] and the serial number snoldc

= PRF sn
aoldskc

(ρoldc ).

The pour operation outputs two new coins and a txPour that is appended to the

public ledger.

zm = (apkm ||vm||ρm||rm||sm||cmm)

zc = (apkc ||vc||ρc||rc||sc||cmc)

txPour = (rt||snold||cmm||cmc||πPOUR||vpub||info)

M who is expecting a Zerocoin payment from C can now start using the received

coin without having to scan the entire public ledger using the Receive algorithm be-

forehand as specified in [48]. This is possible because the cmm and the private values

was communicated to the M before receiving the payment.

After receiving the payment, M can now pour the value of the received coin to a

new coin owned by M using the pour operation. This makes the parameters related

to the coin such as the coin commitment only known to M . Furthermore the value

can be transferred to another owner in a similar way how C transferred the value to M .
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Messages I: If the payment is received successfully and the decryption key is

sent in Messages 4, then the protocol completes without going to an extended stage.

However, after C making a payment, if M misbehaves by sending an incorrect decryp-

tion key, prematurely aborts or a communication failure happens then the extended

protocol can be initiated. Here, C appends cmm and the new Invoice instead of

BlockchainEvidence in Messages I. It must be noted that the Invoice is only revealed

to the TTP if the extended protocol is initiated.

Messages II: After receiving C’s message, TTP verifies the cmm to see whether

it matches the one in TTPcommit.

Furthermore, TTP checks whether the cmm has appeared in the public ledger

already. For this task, TTP can use the secret values (vm, ρm, rm, sm) found in the

Invoice to query the blockchain.

If the cmm has been recorded in the blockchain, this gives assurance to TTP that

a payment was made to M ’s Zerocoin address corresponding to the coin’s commitment

cmm. If satisfied, TTP contacts the M as the next step in the dispute resolution by

sending the KeyRequest message which also includes cmm. In either scenario, whether

M forwards the product decryption key or not within the predefined time-out, TTP

retrieves the escrowed decryption key and forwards it to C.

7.5.1 Security and Anonymity

Our previous protocol was aimed at achieving strong fair-exchange while using Bitcoin

as the payment method. However, as identified in our analysis in Section 7.4, recent

work has shown that it may be possible to link Bitcoin transactions to real identities

[164, 137]. Addressing these concerns, our extended protocol supports Zerocash as a

payment method while providing improved transaction anonymity for users.

The protocol objectives as discussed in Section 7.4 are also achieved in our extended

protocol, even though a separate analysis is not mentioned here. In the extended

protocol, the corresponding payment transaction from C to M is not publicly available

in the ledger as in a Bitcoin transaction. It should also be noted that despite the fact

that C & TTP get to know M ’s secret values (vm, ρm, rm, sm) and commitment cmm,

coin zm cannot be spent by either of these two parties as address secret key askm is

only known by M . Furthermore, the output serial number snm = PRF sn
askm

(ρm) is not

revealed at any stage of our protocol and because of this when M spends zm, it still

cannot be traced which provides additional anonymity to the transaction.
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7.5.2 Mechanical Formal Analysis

The main protocol stage proposed in Table 7.3 and the extended protocol stage pro-

posed in Table 7.4 were subject to mechanical formal analysis using Scyther [80]. The

main reason for choosing the main and the extended protocol stages for mechanical for-

mal analysis was because, in the fair-exchange between the merchant and the customer,

these phases of the protocol are critical for guaranteeing the security requirements. It

includes security sensitive stages such as: delivery of the encrypted digital content

and delivery of the decryption key to the customer. Therefore, providing the required

security levels at these stages is important.

The protocol was analysed using the Dolev-Yao adversarial model [87]. The fol-

lowing security claims were successfully verified during the protocol analysis: Aliveness

(Alive), Weak agreement (Weakagree), Non-injective agreement (Niagree) Non-injective

synchronisation (Nisynch) of the transacting entities and Secrecy of data (Secret) for:

m and K [81, 80]. In addition to the claim types defined above, the verify automatic

claims feature on Scyther was used to verify other claims [80].

Following successful execution of the script, the security of data in the claim events

were verified and Scyther did not find any feasible attacks. The Scyther script is

available in Appendix A.4 and can be downloaded from [7] and [6].

7.6 Summary

The chapter identified a problem associated with established fair-exchange while using

anonymous payment such as Bitcoin in e-commerce environments. We then investi-

gated background work related to fair-exchange and anonymity. Following this, we

proposed a protocol that achieves strong fair-exchange while preserving anonymity of

the transacting parties. In the protocol the involvement of the TTP is kept to a min-

imum by using an off-line TTP that only intervenes if something goes wrong. Any

dispute that arise during the protocol is resolved within the protocol run.

Furthermore, the TTP agreed between C & M does not get to see the exchanged

product or store a copy of it. We also present an extended protocol that gives support of

using other cryptocurrencies based on public ledgers/blockchains. Finally we outline a

concern in Bitcoin that raises anonymity concerns and propose an extension to support

Zerocash which addresses this issue while providing improved transaction anonymity

for users.
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In this chapter we focus our attention on exploring other payment scenarios

that can be enhanced by leveraging blockchain technology. We identify the

philanthropic sector as an industry that has huge potential to improve dona-

tion payments associated with humanitarian aid activities using blockchain

technology. In our research we identify challenges faced by charities and

propose a novel philanthropic model for donating foreign aid using the Bit-

coin blockchain as an example. We then propose a SMS based mobile pay-

ment solution to provision donations and to be used by beneficiaries in dis-

connected environments. The solution is finally analysed for its security

requirements.
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8.1 Introduction

The blockchain technology is one of the main innovations that came out of Bitcoin.

Since its introduction, blockchain technology is gaining rapid interest due to its dis-

tributed nature and strong security properties [202, 199]. However, the use of blockchains

is not limited to constructing decentralised cryptocurrencies, but also can be applied to

other innovative ideas such as smart contracts, recording asset ownerships, cross-border

payment solutions, trade finance, etc. [199, 196].

In this chapter we explore how the blockchain technology can be leveraged to pro-

vide services in the philanthropic sector, which provides invaluable social and human-

itarian services. A report by the UK Charities Aid Foundation [67] identifies that for

charities, blockchain technology can increase transparency, openness and trust whilst

reducing transaction costs and providing new opportunities for fundraising. The sec-

tor is very large: according to the Charities Aid Foundation (CAF) - World Giving

Index 2015 report, around 1.4 Billion people donated money in that year [66]. The

findings were based on an ongoing research project that represents around 96% of the

world population in their study [66]. Furthermore, according to the Charity Commis-

sion Annual Report and Accounts 2015-16 (United Kingdom), the Charity Commission

regulated £70.93 Billion charity income [184], donated by governments, businesses and

individuals.

In the United Kingdom in 2015, the Charity Commission regulated £70.93 Billion

charity income [184], donated by governments, businesses and individuals. However,

public trust in charities is declining [108, 157, 75, 76, 197]. Former U.N. Secretary-

General Ban Ki-moon’s closing remarks at high-level panel on accountability, trans-

parency and sustainable development was “Last year, corruption prevented 30 per cent

of all development assistance from reaching its final destination. This is a failure of

accountability and transparency” [192]. Negative media stories about charity manage-

ment (such as the investigation into mismanagement at Kids’ Company [186, 75]); and

general worries about how charities collect and spend donations have impacted on the

confidence that the general public has in the charity sector [157]. As a result there is a

groundswell of opinion that charities need to do more to improve their accountability

and transparency to donors: these aspects could be enhanced greatly if charities used

blockchain technology in their donor transactions, because transparency is inherent in

a distributed ledger approach [156, 86, 108, 67].

There are existing cases where donations in cryptocurrencies have provided charities

with advantages. For example, the Royal National Lifeboat Institution (RNLI) in the

UK has accepted Bitcoin since August 2015, hoping to attract new donors from a
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different demographic to its typical supporters [51]. Another example is a donation

tracking service (called GiveTrack) set up by the BitGive Foundation, that allows

donors and third parties to trace transactions in real time: this shows how donations

are spent, and provides some trust that the funds reach their intended destination

[29]. This is built on the fact that the blockchain is a public ledger available globally:

as every donation is associated with a Bitcoin address, therefore anybody with this

address can easily obtain a transparent audit trail for a particular donation.

The chapter identifies challenges that charities and Non Profit Organisations (NPOs)

face which could be addressed by the use of blockchain technology. These are: dona-

tion transparency, uniqueness, and provisioning; and reducing transaction costs. To

this end, we introduce a blockchain based philanthropic model, that utilises a web-

based donation platform where donations can be made either using Bitcoin or fiat

currency1.

This donation platform allows individual and corporate donors to choose which ar-

eas of the charity’s operations they wish to support. As Bitcoin transactions are public

and unique, this provides audit trails and feedback about how each individual dona-

tion was used, improving transparency and trust in the charity. The back-end payment

transactions are carried out using multi-signature Bitcoin payments to enhance secu-

rity. More advanced services can be offered using Smart Contracts via the Rootstock

platform [4]. Furthermore, it allows the charity to provide feedback about how each

individual donation was used. This model provides the charity with the advantages of

speedy transactions at reduced cost, donation transparency (and hence higher trust in

the charity) and an infrastructure that can be used for donation provisioning.

This generic philanthropic model is then used in a case study of foreign aid distribu-

tion in a geographical environment with poor Internet infrastructure, lack of supported

devices and unbanked 2 beneficiaries. Here the priority is to get financial aid to ben-

eficiaries efficiently and securely, whilst minimising the potential for fraudulent trans-

actions. This case study illustrates how the proposed philanthropic model could work

even when the basic technological infrastructure necessary for a blockchain solution

(i.e. Internet connectivity and supported devices) is not available.

Examples of such disconnected environments include warzones, disaster areas, or

economically deprived areas of the world. There are many operational and security

problems in distributing financial aid in these challenging conditions as conventional

internet-based money transfer may not be possible and physical cash handling may be

fraught with danger [64]. In the proposed scheme, the charity will maintain hosted

1Fiat currency is a currency declared by government regulation as legal [130].
2Unbanked means not having access to a bank or financial institution [190].
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Bitcoin Wallets for charity workers, beneficiaries and merchants: Bitcoin transactions

can be done using low-cost security tokens (distributed per-user), basic mobile phones

and an SMS mobile payment system utilising an existing GSM network.

The main contributions of the chapter are: 1) a new philanthropic model that lever-

ages the Bitcoin blockchain for charitable donations / donation provisioning and 2) an

SMS based Bitcoin mobile payment system that can be used in an offline environment.

The chapter is structured as follows. Benefits of blockchains for a charity/NPO are

identified in Section 8.2 and a new philanthropic model that addressed these challenges

is introduced in Section 8.3. Constraints of blockchain solutions are discussed in Sec-

tion 8.4. In Section 8.5, a use case of applying the proposed philanthropic model to

provide humanitarian aid in a disconnected environment is discussed. The proposed

scheme is evaluated in Section 8.6. Finally in Section 8.7, the discussion is concluded..

8.2 Benefits of Blockchain Solutions for Charities/NPOs

and Donors

In this section, useful features that blockchain technology can bring to charities/NPOs

and donors are discussed. An introduction to Blockchain technology and Bitcoin was

given in Sections 2.2.1 and 2.2.2.

Charities need to do more to improve their accountability and transparency to

donors: these aspects could be enhanced greatly if charities used blockchain technol-

ogy in their donor transactions, because transparency is inherent in the distributed

ledger approach [86, 108, 67, 51, 29]. A blockchain solution would provide the follow-

ing benefits for charities and donors:

1. Donation transparency: We define this as the publicly available audit trail

of a particular donation made by an individual donor that details exactly where the

donation went and whether it reached the intended charitable activity. Every donation

is associated with a Bitcoin address, therefore anybody with this address can easily

obtain its publicly available audit trail detailing exactly where a particular donation

went. Currently, there is no mechanism for a donor to obtain an audit trail of their

donation. Providing donation transparency would help enhance the donor’s donation

experience and the trust that he/she has in the charity.

2. Reducing transaction costs: A global charity’s operational costs may involve

costly international transaction fees and interchange3 that may have to be passed on to

3Interchange fee is a cost that is paid by the acquirer to the card issuing bank. The transaction
value is paid to the merchant after deducting the interchange [187].
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the donor: donors may also incur additional international transaction fees from their

payment provider. This could negatively affect a potential donor’s willingness to make

donations. The global average cost for sending remittances worldwide was 7.42% in the

third quarter 2016 [188]: low transaction costs are a feature of blockchain payments

which can be seen when compared with other payment methods in Table 8.1, so this

would be beneficial for both donors and the charities.

Table 8.1: Comparison of Transaction Fees
Transaction Method Fee BTC Fee USD Fee GBP Speed

Bitcoin(average 645 bytes)a 0.0001 $0.25 £0.20 roughly 50 minutes [56]

Western Unionb - $14.83 £8.90 less then 1 hour

Western Unionb - $11.50 £6.90 next day

MoneyGramb - $16.50 £9.90 less then 1 hour

Riab - $10.00 £6.00 same day
a Bitcoin transaction fees are calculated on transaction size, not monetary value [53].
b Based on remittance transfer of 120 GBP from the United Kingdom to Uganda [189].

3. Donation speed: All Bitcoin transactions are broadcast immediately in the Bitcoin

peer-to-peer network. Each transaction that is included in a valid mined block and

added to the blockchain is called a confirmation. A single confirmation takes just over

seven minutes (also called median confirmation time) [53, 56]. With each subsequent

block mined, the number of confirmations for that particular transaction increases by

one. Confirmations prevent double spending: the more confirmations there are, the

more assurance is given to the transaction. It is common practice to wait until at least

six confirmations have been added to the blockchain [147], taking roughly fifty minutes

[56]. Depending on the nature of the transaction or the value, it may not be necessary to

wait for six confirmations: a transaction could be considered to be complete after only

one or two confirmations. This is fast compared to existing money transfer methods

which could take several days [202]: see Table 8.1 for examples. These confirmations

also provide a mechanism for the donor to be able to verify if and when a payment was

received.

4. Donation provisioning: Provisioning the donations to beneficiaries can be a ma-

jor challenge, especially in difficult environments. For example, humanitarian financial

aid distribution in warzones can be severely hampered if the country’s banking system

is subject to sanctions; the use of Bitcoins would bypass the need to involve the banking

system and ensure that donations reach their intended target, without requiring the

charity to transport large amounts of cash [67].

To capitalise on these benefits, and harness the desirable security properties of

blockchain solutions, we now discuss our proposal for a new blockchain philanthropic

model.
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8.2.1 Blockchain Properties

In addition to the benefits discussed above, the technology provides the following se-

curity features inherent to blockchains.

Immutability: Blockchains use cryptographic primitives such as: secure hashing and

digital signatures to chronologically record every transaction on the blockchain. This

security feature makes it practically impossible for an attacker to manipulate a record

that has already been recorded onto the blockchain, leaving an immutable historical

record of transactions.

Trust: In a blockchain based architecture, trust assumptions are not placed on one

particular entity, instead trust is placed on the underlying cryptography which keeps

the blockchain secure. This feature makes a blockchain an ideal platform to interact

with entities that do not have established trust relationships.

Reliability: Form a security point of view, a blockchain keeps a shared distributed

edger without storing the ledger in a centralised location. This prevents the ‘single point

of failure’ problem as the information recorded in the ledger is distributed throughout

the peer-to-peer network. This feature makes a blockchain reliable against denial of

service attacks. Furthermore, blockchains leverage consensus mechanisms to establish

a majority vote when it comes to updating the ledger with a new block. The shared

distributed ledger can be considered as a single record of truth.

Transparency: Blockchains such as the Bitcoin, publish every transaction on a public

ledger. This provides a transparent audit trail of transactions, ownership of assets, etc.

passing from one entity to another. This feature can be used to validate information

recorded on the blockchain, prevent double spending, etc.

8.3 The Blockchain Philanthropic Model

We propose a system where a donor can make their donation in Bitcoin via a Donor

Platform, direct to the Bitcoin addresses for individual charity projects. The charity

then uses these donated funds to allocate financial aid to individual beneficiaries using

hosted Bitcoin wallets that the charity maintains centrally. Beneficiaries can then

perform Bitcoin transactions for day-to-day activities. However, as we shall see later in

this chapter, not everyone will have the technical infrastructure available to use web-

based methods for transactions, and we will also extend the proposal for use in offline

geographical areas.
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8.3.1 Donor Platform

The web-based donor platform is a public interface between the charity and the blockchain.

We consider the charity to have expert understanding of how to efficiently utilise their

received donations, so the charity selects causes / projects for donors to choose from.

Donors select projects from this list before making a donation in Bitcoin or fiat cur-

rency: the charity can choose how ‘granular’ the web portal list can be: it could range

from one Bitcoin address per beneficiary through to a central Bitcoin address for the

charity as a whole. Whenever the expense target of a particular beneficiary or a group

is reached, the entry is removed and the advertised list is updated. An example list

for the donation platform is illustrated in Figure 8.1. Bitcoin donors can obtain the

Bitcoin address of the charity/ project then use any Bitcoin wallet/client to donate,

or use fiat currency that gets converted to Bitcoin automatically by using an online

exchange. Once a donation is made the donor can check the Bitcoin transaction cor-

responding to the donation on the Bitcoin blockchain. The donor can also query the

Bitcoin blockchain to find out whether the donated funds have been used or not.

Figure 8.1: Example List for the Donation Platform

We propose the use of two different methods for processing Bitcoin payments for the

charity: Multi-Signature Addresses and Smart Contracts. These will now be described.
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8.3.2 Bitcoin Transaction Methods

We propose that donations can be used by the charity for donation provisioning and

subsequent SMS payment processing via one of two Bitcoin payment methods: Multi-

Signature Addresses and Smart Contracts. When using the RSK Smart Contract, the

charity must convert Bitcoins to SmartBTC as described below.

8.3.3 Multi-Signature Addresses

In this option, the Bitcoin addresses of the charity / project are constructed using a

methods called multi-signature process. Here, in order to authorise a Bitcoin trans-

action more than one private key is needed. For example, a 2-of-3 multi-signature is

when a Bitcoin address is associated with three private keys and at least two out of

the three private keys are needed to authorise a Bitcoin transaction. In our proposal,

the multi-signatures are processed using ‘Pay To Script Hash’ (P2SH) transactions.

First, the multi-signature generation involves using a Full Redeem Script which

includes details of the three public keys. This is then hashed to generate a hashed

Redeem Script which becomes the P2SH multi-signature. The address the donor makes

a donation to is this multi-signature address. All the three key holding entities share

the Full Redeem Script between them. The Redeem Script can be used to verify the

correctness of the transferred amount and whether the transfer has been sent to the

correct multi-signature. Furthermore, the Redeem Script can be used to identify how

many signatures are needed to make a payment. To spend the received Bitcoins, the

recipient has to provide the full Redeem Script. Some services use this technique to

enhance security of hosted Bitcoin wallets e.g. Bitgo [26].

8.3.4 Smart Contracts

A Smart Contract can be defined as a set of instructions represented in computer

code published on a distributed network, that receives inputs, execute instructions

and provide outputs. The multi-signature scheme described above can be classed as a

very low level smart contract, but it doesn’t have the capability to carry out further

instructions in addition to simple Bitcoin payment transactions. A smart contract could

give the charity additional functionality to extend its offerings for both the beneficiaries

and donors through features such as: issuing donations to the beneficiaries routinely

or whenever they are low in cash, issuance of small micro-finance loans to certain

beneficiaries / merchants, record keeping of repayments, donation requests to donors

and sending automatically generated audit reports of a charity activity to a regular

donor is now possible with the smart contract.
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For this added functionality, a more advanced smart contract is needed, but as the

Bitcoin blockchain was initially invented as a distributed payment platform, running

advance smart contracts on the Bitcoin network is not possible. A suitable platform to

run smart contract would be Rootstock (RSK) [4]. RSK is a solution that adds func-

tionality to run advanced smart contracts on the Bitcoin network. RSK is a sidechain

that is based on a 2-way peg mechanism [4]. The 2-Way peg is a method to convert

Bitcoin Currency (BTC) into Smart Bitcoin Currency (SBTC) and vice-versa. When

a user intends to convert BTC to SBTC, some BTC are locked in Bitcoin and the same

amount of SBTC is unlocked in RSK and vice-versa [4]: this results in a major advan-

tage that it matches Bitcoin to its native currency SBTC in the sidechain, whereas in

other sidechains the native currency is not mapped to Bitcoin.

The instructions to be included in the RSK smart contract can be coded using So-

lidity which is an object-oriented programming language. The smart contract is then

published in the RSK network. This means that the contract exists on every node

joining the network, including miners. The instructions on the smart contract can be

executed by the charity by broadcasting a message to the RSK network. Similar to

the Bitcoin network, a small transaction fee is paid to execute the smart contract. The

charity can pre-define which party is liable for this transaction fee. To provide addi-

tional security and manageability of the donated funds, similar to the multi-signature

process in Bitcoin, a smart contract can also be instructed using programmable logic

to receive two or more signatures before a transaction can be executed and broadcast

to the peer to peer network.

8.4 Constraints in a Blockchain Based Solution

This section discusses potential constraints that need to be considered before using the

proposed blockchain philanthropic model in the real world.

Blockchain based schemes have two main constraints, such as: 1) requiring a well

established connection to the Internet as blockchain architectures are based on peer-

to-peer networking and new transactions are broadcast to the network. 2) requirement

for compatible devices such as computers, tablets or smart phones. This is because to

make a Bitcoin transaction a number of cryptographic processes needs to be completed.

These include: secure hash generation, generating digital signatures and also storing

cryptographic keys securely. So devices that are capable of carrying out at least these

functions are required.

There are online wallet providers who will keep the most up-to-date blockchain to

verify and forward transactions on behalf of registered users, using a multi-signature
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process for added security: these online wallets are also called Hosted Wallets. However,

a user who wants to make a payment needs to be online in order to access their online

wallet using a web browser or via a smart phone application.

People in a geographical area, community or even a country where there is not

sufficient network infrastructure to provide a reliable Internet facility would find it

difficult to use a hosted wallet. A report from the International Telecommunications

Union has identified that more than half of the world’s population is not using the

Internet [111]. Therefore, a solution that uses basic devices and an already existing

communication infrastructure (i.e the mobile phone network) is needed. This will have

the advantage that it does not require the users to have an Internet connection: there

is more GSM network coverage than Internet access in most countries around the

world [201, 111], and the use of mobile phones within the GSM network coverage is

considerably higher compared to other communication technologies [111]. Our proposal

is discussed in the next section.

8.5 The Philanthropic Model in a Disconnected Environ-

ment

In this section, we discuss how the blockchain philanthropic model can be applied to the

following use case: humanitarian aid in disconnected environments such as warzones,

disaster areas, or economically deprived areas of the world. A charity/NPO will face

many operational and security problems distributing financial aid in these challenging

conditions. In an environment with poor Internet infrastructure, resource-limited de-

vices and an unbanked community, conventional internet-based money transfer will not

be possible and physical cash handling is fraught with security issues.

In Section 2.2.3 of the thesis, we identified a few solutions that were attempting to

integrate Bitcoin payments to SMS based payment systems. As we can see, none of

these existing solutions is suitable for the offline environment under discussion. There-

fore, we propose a novel SMS based mobile payment system that gives capability of

making Bitcoin payments. The proposed payment system acts as a gateway to transact

with the blockchain, using Bitcoin wallets hosted on beneficiaries’ behalf by the charity.

Offline beneficiaries can then make and receive Bitcoin payments using SMS messaging

on basic “feature” phones along with a One Time Password (OTP) security token. The

use of the security tokens guarantees that only a authorised user can send an SMS to

make a payment, providing some assurance to the genuineness of the transaction.

Any payment system must meet basic security requirements and deal with potential

adversaries. Before the proposal is described in depth, these will now be discussed.
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8.5.1 Security Requirements of the Proposed System

We identify the below mentioned security requirements to be satisfied by the proposed

system.

1. Confidentiality: Sensitive information should not be disclosed to unauthorised

parties, whether during processing, in transit, or at rest.

2. Integrity: Information must not be tampered with by unauthorised parties when

it is in transit or at rest; the system must perform its tasks without unauthorised

manipulation.

3. Authentication: All participants in a transaction must be authorised and all

transaction data must be genuine.

4. Non-repudiation: None of the participants in a transaction can subsequently

deny taking part in it.

5. Availability: A service should not be denied to authorised entities: for example,

through Distributed Denial of Service (DDoS) attacks.

8.5.2 Adversarial Model

In a humanitarian aid setting, the adversarial model the proposed solution will en-

counter is as follows [98]:

1. State Level Attackers (SL): Adversaries with high level skills/resources em-

ployed by government agencies to attack commercial or government systems.

State sponsored cyber attacks on humanitarian operations have been recorded.

Depending on the political situation in the charity’s area of operation, these at-

tackers might aim to destabilise area/ disrupt operations by targeting the donor

platform, the LO/HQ/BPS or the SMS system via the MNO/ GSM attacks.

2. Cyber Criminals (CC): are organised groups who attack systems for money,

who also have high levels of skill and resources. These may wish to target the local

SMS system where transactions are initated, or the BPS where they are processed,

in order to make fraudulent transactions. Cyber criminals might also target the

web server where the donation platform is hosted to change published content

such as: inserting Bitcoin addresses belonging to the criminals by replacing the

charity’s Bitcoin addresses.
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3. Hacktivists (Ha): have moderate skills and resources and use digital tools to

mount attacks for ideological reasons. A hacktivist might not approve of the

charity’s ethos and objectives, so may aim to vandalise the donation platform,

but should not be able to affect the blockchain: they are unlikely to attack local

SMS system

4. Insiders (In): may have low levels of technical skill and resources, corrupt users,

charity workers or merchants can be particularly dangerous if they have privileged

access to data.

8.5.3 Proposed SMS based Bitcoin Payment Scheme

We now discuss the proposed SMS based payment scheme. The charity first creates

Hosted Wallets for the beneficiaries. During a secure registration process at the local

office, the beneficiaries are issued with OTP tokens that will be used to make payment

requests. The proposed scheme interacts with a number of entities that we describe

below. The relationship between entities is illustrated in Figure 8.2.

• Bitcoin Payment Server (BPS): this is part of the Charity’s technical in-

frastructure that manages the hosted Bitcoin Wallets on behalf of beneficiaries.

It securely holds Bitcoin keys for each account holder and is connected to the

Bitcoin/RSK peer-to-peer network. It also checks and signs payment requests

received from the SMS-Gateway, and once these have been authorised by one

of the other key holders, the BPS broadcasts them to the Bitcoin peer-to-peer

network.

• Blockchain: the distributed ledger shared between the nodes connected to the

Bitcoin peer-to-peer network.

• Charity Local Office (LO): the Charity has a local office in the disconnected

environment. The LO registers phone numbers of users during a secure registra-

tion process, and manages distribution of OTP security tokens.

• Charity Head Quarters (HQ): The Charity HQ may not be in the same

geographically area of the disconnected environment. It has connectivity to the

Internet and it is a secure server that holds relevant Bitcoin private keys for all

payers.

• Charity Head Quarters Backup Server (HQB): this is a secure backup

server which also holds relevant Bitcoin private keys for all payers.
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Figure 8.2: Philanthropic Model and SMS Payment System Architecture

• One Time Password (OTP) Token: this is a cheap Hash-based One Time

Password (HOTP) security token [134] that needs to be used every time an SMS

transaction is made. The algorithm that is used to generate the OTP is syn-

chronised between the BPS and each individual security token. Sample OTP

generation algorithms can be found in [143, 101].

• SMS-Gateway: server that sends and receives SMS transmissions to and from

the telecommunication network. All SMS messages used in the proposal are

within the standard 160 character length. The SMS-Gateway is connected to

the telecommunication network and the BPS, and the BPS is connected to the

Bitcoin peer-to-peer network.
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• Donor Platform Donors select Bitcoin addresses from a web based donor plat-

form, and can use a Bitcoin wallet/client or fiat currency to donate.

• Payer/ Recipient Users of the system can make payments (Payer) to any other

registered user (Recipient).

Additionally, we make the following assumptions in our proposed scheme:

1. Charity Head Quarters (HQ): The charity provides humanitarian aid for

beneficiaries in disconnected environments. The charity operates internationally

and revenue comes from donations made via a web-based donor platform. It is

a reputable and trusted entity, with secure premises and online access/ backup

servers which may be geographically distant from the aid environment.

2. Donors: Potential donors have capability of accessing the Internet in order to

make donations via the donor platform.

3. Donor Platform: Hosted on a secure web server adhering to industrial standard

security controls to prevent attacks such as: Denial of Service, website defacing,

content manipulation, etc.

4. Bitcoin Payment Server (BPS): Secure server dedicated to process Bitcoin

payments. The server prevents attacks by adhering to industrial standard security

controls. Strong encryption is used to securely store all the cryptographic keys

to minimise the risk of data breaches.

5. Phones: All users of the system possess simple mobile phones (‘feature phones’).

The knowledge of security code/access PINs to use the mobile phones are only

known to their associated owners. The local existing GSM network can be used

for SMS messages.

6. Secure Registration: During a secure registration process at the LO, the fol-

lowing procedures take place:

• employees, potential beneficiaries and local merchants will register their mo-

bile numbers and be issued with cheap Hash-based One Time Password

(HOTP) security tokens [134] to use with the proposed system. Sample

OTP generation algorithms can be found in [143, 101].

• Demonstrations and required training for using the payment system is pro-

vided to the beneficiaries during registration.
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• the mobile numbers and OTP security token IDs of the employees and ben-

eficiaries are passed on to the Bitcoin Payment Server (BPS) (via an SMS-

Gateway if necessary).

• mobile numbers are assigned a Bitcoin wallet (stored online on the BPS) to

be used in subsequent transactions.

• all registration details are forwarded to the BPS (encrypted using the LO’s

private key), in batches if the LO’s internet connection is intermittent

7. Security Token: This is a cheap hardware security token that is used every

time an SMS transaction is made. When the user requests (“event-driven”), the

token device generates a HMAC-Based (HOTP) passcodes. These codes remain

valid until used by the authenticating application. Time-Based (TOTP) tokens

generate new codes automatically after a set period of time: this approach is not

suitable for use with SMS messages that may be subject to potential delays in the

messaging system. Standardised HOTP algorithms such as RFC4226 [166] can

be used to generate OTPs. The OTPs are normally 8 digits or 6 alphanumeric

characters long. The same OTP of a user’s transaction can also be generated by

the BPS.

8. Trust: The SMS-Gateway and BPS are assumed to be trusted & secure. Mobile

phones are not.

9. Bitcoin Wallet Addresses: All the Bitcoin wallet addresses for users of the

system are generated and all the back-end payment transactions based on Bitcoin

are made using a 2-of-3 multi-signature transaction process. Three separate keys

from three different entities are used to create the Bitcoin address: the key holding

entities are the BPS, charity HQ and HQB. This ensures that a payment request

cannot be broadcast to the Bitcoin peer-to-peer network by the BPS on its own.

8.5.4 Processing a Bitcoin Payment Request

Payments can be made from charity worker to beneficiary, beneficiary to merchant,

or merchant to merchant. Merchants could use an existing Bitcoin address, registered

and associated with a short Merchant ID by the BPS, used instead of PhP / PhR in

transactions. The SMS payment message flow of the scheme is shown in Figure 8.3

and the notation used in the following descriptions is shown in Table 8.2. The security

credentials for each entity are shown in Table 8.3 and the content of each SMS messages

used is shown in Table 8.4. For simplicity of exposition, the following description shows
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Figure 8.3: SMS Payment Message Flow

the Head Office (HQ) providing the second Bitcoin key.

Stage 1: Payment Request: The Payer (P) types an SMS which includes payment

instructions (PayReq SMS ) in order to make a payment and sends it to the local phone

number provided by the charity. The same phone number is used by all the charity

workers, beneficiaries and merchants in the geographical area. When the GSM network

receives an SMS payment request, it is forwarded to the charity’s BPS via the SMS-

Gateway.

Once the message is received, the BPS retrieves Bitcoin wallets for both Payer

and Recipient. Following this the BPS checks whether the TrAmt is not greater than

BALP , pseudo-randomly generates a three-digit number, unique TrNo and requests

for the Payer’s OTP by sending AuthReq SMS.

To generate the OTP, the Payer presses a button on the OTP token. Following

this, the Payer sends the Auth SMS containing the newly generated OTP to authorise

164



8. Blockchain based Philanthropic Model and Payment System

Table 8.2: Notation used in Proposed SMS Payment Scheme
Notation Description

AddrX Bitcoin Multi-signature Address for entity X
BPS / PhX Bitcoin Payment Server(entity) Phone Number of entity X
BALX Bitcoin balance in Account ACX for entity X
EK(Z) Encryption of data Z with key K
X→Y Message sent from X to Y
HQ / HQB Head Quarters (entity) / Head Quarters Backup Location (en-

tity)
LO / P / R Local Office (entity) / Payer(entity) / Recipient(entity)
OTPX One Time Password generated by entity X
PKX/ SKX Public/ Secret Key pair of entity X
SX / TrHash Bitcoin Private Key of entity X (signing key) / Transaction

Hash
TrAmt / TrNo Transaction Amount / Transaction Number
TXID Unique Transaction ID of a transaction recorded in the

blockchain. Also referred to as the Transaction Hash (TrHash)
(Z)SignK Signature on data Z with signature key K
TrFee Transaction Fee paid to the Bitcoin miner
RawTr Raw Transaction created for signing
ParTr Partial Signed Transaction created after signing RawTr
ComTr Complete Signed Transaction created after signing ParTr
ReSc Full Redeem Script used for the Bitcoin multi-signature address
RSKHash Rootstock Transaction Hash
RSK-AddSC RSK Smart Contract Address, unique for the contract and never

changes
RSK-AddX−Y RSK public key (RSK address) of entity X kept securely with

entity Y
SRSK−X−Y RSK private key of entity X kept securely with entity Y
Gas Transaction fee paid to execute instructions on the smart con-

tract

the transaction.

Once the message is received by the BPS, it checks the TrNo to be correct and gen-

erates the OTPBPS and compares to the received OTPP . If the two OTPs match, then

the BPS checks that the transaction amount TrAmt is not greater than the Payer’s

balance BALP . If any the above mentioned checks fail, TransDenied SMS is sent to

the Payer declining the transaction. If all checks are passed then the BPS proceeds to

making a Bitcoin payment, using one of the two proposed options.

Stage 2: Bitcoin Transaction Processing

• Option 1: Multi-signature Process: We now discuss the first method how a
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Table 8.3: Credentials Used in Proposed SMS Payment Scheme
Entity Keys and Other Assets

Payer/ Recipient No keys, PIN for phone, HOTP token (no PIN) for making
payments

BPS SP−BPS ,AddrP−BPS , AddrR−BPS , PKLO, PhX , OTPX

HQ SP−HQ, SRSK−HQ, ReSc

HQB SP−HQB, SRSK−HQB, ReSc

LO SKLO, Physical OTP tokens, phone numbers (pay-
ers/recipients), plus registration details/ OTP allocation de-
tails

Donor SDonor/ VDonor

Donor Platform AddrProject

Table 8.4: SMS Payment Messages
Message Content

PayReq SMS PhP , TrAmt, PhR
AuthReq SMS TrNo, AuthReq

Auth SMS PhP , TrNo, OTPP

TransDenied SMS PhP , TrNo, PhR, Denied

PayConf SMS TrNo,TrAmt, PhR, BALP , TXID

RecConf SMS TrNo,TrAmt, PhP , BALR, TXID

PayConfRSK SMS TrNo,TrAmt, PhR, BALP , RskHash

RecConfRSK SMS TrNo,TrAmt, PhP , BALR, RskHash

Bitcoin transaction in our proposed payment scheme can be processed. To pro-

cess the payment request using multi-signature process, the BPS first constructs a

Raw Transaction (RawTr). The RawTr includes the Full Redeem Script (ReSc),

the receiver’s multi-signature address where the payment is going to, TrAmt and

TrFee. At least two key holding entities needs to sign the RawTr before a valid

transaction to be broadcast to the peer to peer network can be generated. The

RawTr is first signed by the BPS using the corresponding Payer’s private key

SP to generate the partially signed transaction (ParTr). The (ParTr) is then

forwarded to the to the HQ for signing.

BPS→HQ: ParTr = (ReSc,AddrR,TrAmt,TrFee)SignSP

Before authorising the payment request, the ParTr is first verified by the HQ

to validate whether the payment amount and the number of signatures needed

is correct. After these checks are successfully validated by the HQ, it signs the

ParTr using the private Bitcoin key SP−HQ to generate the Complete Signed
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Transaction ComTr, which is then sends this back to the BPS.

HQ→BPS: ComTr =(ParTr)SignSP−HQ

Once the message is receive, the BPS broadcast the ComTr to the Bitcoin peer

to peer network. Once broadcast, in order to trace the particular transaction

on the blockchain a unique transaction-id (TXID) can be used. The broadcast

transaction is then received by the network of Bitcoin miners and the first miner

that published the valid block in the Bitcoin blockchain which also includes the

transaction also gets paid the specified transaction fees TrFee for the payment.

The first block that gets added to the blockchain is the first confirmation of

the transaction. Before sending the confirmation SMSs, the BPS waits for the

transaction to be confirmed in the agreed number of blocks.

• Option 2: Smart Contract Process: The second method to process a Bitcoin

transaction in our proposed scheme is by using a smart contract. Here, we extend

the capability of the proposed system to show how the Bitcoin multi-signature

transaction process can be replaced by a Smart Contract for Bitcoin transac-

tion processing. The BPS calls the Smart Contract and authorises the TrAmt

and the fee for executing the transaction also called Gas is paid by using the

SRSK−P−BPS .

BPS→RSK: RSK-AddSC ,RSK-AddP ,RSK-AddR,TrAmt,Gas

After the message being broadcast in the RSK network, the HQ or the HQB calls

the smart contract. This acts as the second set of instructions needed by the smart

contract to execute the transaction. The paid amount TrAmt and the transaction

fee Gas is authorised by the HQ/HQB by using the SRSK−P−HQ/HQB.

HQ/HQB→RSK: RSK-AddSC ,RSK-AddP−HQ,RSK-AddR,TrAmt,Gas

The smart contract after successfully receiving instructions from both BPS and

HQ/HQB, executes the transaction to transfer the value TrAmt to the recipient.

As a result, unique transaction details related to the transaction are recorded

instantly on the RSK blockchain in the format of a hash (RskHash). Transactions

are recorded in the RSK blockchain instantly, therefore, the BPS does not need

to wait for a transaction confirmation.
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Stage 3: Payment Finalisation: Following successful processing of the Bitcoin

transaction using one of the methods we discussed above, the BPS updates the payer

and the recipient balances. Then the BPS sends confirmation messages via the SMS-

Gateway: PayConf SMS or PayConfRSK SMS to the Payer and RecConf SMS or

RecConfRSK SMS to the Recipient. Included in the confirmation SMSs are the unique

IDs: TXID or RskHash that can be used to trace the transaction on the Bitcoin or the

RSK blockchains.

8.6 Analysis

In Section 8.5.3 we discussed how the proposed SMS-based payment scheme can be used

by the charity to provision donations and how it can be used by the beneficiaries to

carry out friction-less day-to-day payment transactions in a disconnected environment.

In this Section, we discuss SMS security and analyse the proposed SMS-based payment

scheme against the security requirements identified in Section 8.5.2.

A summary of targets that adversaries may attack along with suggested counter-

measures is shown in Table 8.5.

8.6.1 SMS Security Issues

The SMS system has well documented security issues. The SMS service is vulnerable

to man-in-the-middle attacks and spoofing because SMS messages are not encrypted

by default. Interception/redirection using false base stations in GSM networks, eaves-

dropping at the Short Message Service Centre (SMSC), and SS7 hacking [97] are a few

attack methods. SMS fuzzing techniques (the “SMS of Death”) can also be used for

denial of service and other attacks [145]. Adversaries such as: SL, CC and In might

target the SMS system aiming to make fraudulent transactions. Even though these

issues are not addressed directly in our proposed scheme, measures have been included

which provide some deterrent to would-be attackers.

In the proposed scheme, the use of OTP prevents an attempts of replay attacks. Fur-

thermore, because the charity sends out the AuthReq SMS before any payment, alerts

the users of any potential fraudulent transaction. The TXID/RSKHash included in

the confirmation SMSs provide further assurance and can be used to cross check with

the Bitcoin/RSK blockchain. The inclusion of the TrNo on the confirmation messages

means that during a face-to-face transaction, Payer and Recipient can verbally compare

the value as an extra level of assurance that the transaction is correct. The methods

we use in our solution provides a higher level of security compared to other SMS based
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Table 8.5: Attack Targets, Adversaries and Countermeasures
Target SL CC Ha In Countermeasure

Donor Platform y y y Hosted on a secure web server adhering
to industrial standard security controls to
defend against : DDoS, website defacing,
content manipulation

HQ/HQB/BPS
(DDoS)

y y HQ/HQB has secure premises and backup
servers: BPS managed under industrial
standard security controls and best prac-
tices to prevent attacks.

HQ/HQB/BPS
(privilege esca-
lation)

y y y Use of security controls such as: access
control, routine web-application vulner-
ability assessment/patching and storing
keys encrypted

SMS
(MNO/GSM)

y y GSM/SMS security issues partially miti-
gated by OTP 2FA and TXID/RSKhash
on confirmations

SMS spoof y y y OTP/TXID/RSKhash gives some assur-
ance that payment is genuine

SMS replay y y y OTP prevents replay attacks

Blockchain/RSK
(DDoS)

y y DDoS attacks not viable in distributed
ledger, and integrity is innate in
blockchain solutions

Bitcoin schemes. For an example, the Coinapult SMS scheme requires the user to send

an SMS containing a security code sent by the payment service in a previous SMS

which provides limited assurance that the transaction is legitimate.

8.6.2 Security Requirements

Confidentiality

• Security of Bitcoin private keys: The Bitcoin private key for a corresponding

Bitcoin address allows the private key holder to transfer those Bitcoins to any

new address. If this private key or the Bitcoin wallet that securely stores this key

is lost or not accessible, then the Bitcoin value recorded to that Bitcoin address

can be considered to be lost. This is because without the corresponding private

key the Bitcoins cannot be transferred. The proposed scheme uses 2-of-3 multi-

signature process. This avoids the risk involved in losing a Bitcoin private key

by allowing any two out of the three private key holders to generate a combined

signature in order to transfer the Bitcoins to another address.
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• Donor anonymity: Because the proposed scheme accepts donations in Bitcoin,

a donor who wishes to remain anonymous can make the donation in Bitcoin.

However, this may introduce management issues for the charity. This is because

some anonymous donations may need special reporting and investigation due to

possible money laundering/fraud regulations or other suspicious financial activity.

For example, in the UK, anonymous donations over £25,000 have to be reported

as a “serious incident” [185]. This could be resolved by a charity policy stating

that donations over a certain amount need personal identification to be registered

with the charity.

• Server attacks (HQ/HQB/BPS): As identified in our adversarial model in

Section 8.5.2, attackers such as SL and CC will aim at infiltrating security keys,

transaction data and identity information. Furthermore, Ha may wish to find

embarrassing data, manipulate content to cause reputational damage. The coun-

termeasures recommended for overcoming these threats are shown in Table 8.5.

Integrity

• Blockchain: All transactions are chronologically recorded in the blockchain us-

ing cryptography. If an attacker were to change any record in the blockchain

which is a globally shared distributed ledger, the attacker has to change the par-

ticular block where the transaction is recorded as well as all the consecutive blocks

that are recorded after that. This is considered practically impossible. Therefore,

it ensures the integrity by providing an immutable record of past transactions.

• RSK blockchain: One of the drawbacks of using new peer-to-peer networks is

getting wide spread adoption, which helps to improve robustness of the system.

The RSK blockchain, uses the existing miners in the most popular Bitcoin peer-

to-peer network mining. This provides reliability and robustness of the mining

process. Furthermore, the RSK blockchain is also based on proof-of-work similar

to Bitcoin to make the process of mining fair. Also, the distributed ledger uses

SHA256 hashing and chain of signatures to prevent double-spending similar to

Bitcoin. RSK uses a checkpointing service provided by a federation of well-known

and respected Bitcoin community members [4].

• Server attacks(HQ/HQB/BPS/Donor Platform): CC may target the do-

nation platform with the intention of changing the charity’s Bitcoin addresses

with addresses belonging to the criminals. The content of the servers may be

tampered and vandalised by Ha. There might be attempts of tampering content

by SL to undermine the credibility of the charity. Furthermore, CC, SL might
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tamper transaction records at the BPS to make fraudulent transactions. See

Table 8.5 for a list of countermeasures.

• SMS replay attacks: Potential attackers including: SL, CC and In might

attempt to replay SMS messages for fraudulent transactions. Our proposed so-

lution counters replay attempts by requesting the payer to include the OTP in

the Auth SMS message. Once received the BPS before authorising a payment

verifies whether the sent OTP is correct. Any attempts to replay previous OTPs

will fail.

• Unauthorised donation trading: If the donation made in Bitcoin is provi-

sioned directly to a wallet owned by the beneficiary, there may be the risk of the

beneficiary trading the received Bitcoins to gain financial profit, instead of using

it for spending the money on buying necessities. The donors would not want

this kind of use of their donations and it would also bring bad reputation to the

charity. The proposed SMS based payment system provides protection against

unauthorised trading of received donations by using not issuing the donations to

a Bitcoin address owned by the beneficiary. If the beneficiary wants to buy some-

thing or transfer some funds to another beneficiary the SMS payment process

must be used and the reconciliation is done by the BPS.

• Non-Repudiation: Every transaction is carried out using digital signatures and

confirmed transactions are recorded on the blockchain. The blockchain provides

an immutable audit-trail for every transaction, thus an entity that has partici-

pated in a transaction cannot deny involvement at a later stage.

Authentication

• Authenticating the payment request SMS: As the payment scheme is based

on SMS, additional authentication of the payer and the payment request is re-

quired: OTP security tokens are therefore used as a two-factor authentication

method. Only the rightful owners are able to operate the tokens as the tokens

are pass-code protected. The charity’s Bitcoin payment server authenticates the

user by verifying the OTP included in the SMS. This means that in the event of

a phone being lost or stolen, an attacker will not be able to make a valid trans-

action without having the security token and knowing its pass-code. Network

delays will not cause adverse effects on the authentication process as the OTP

is valid until the BPS receives and processes it. This provides some protection

against spoofing attacks by adversaries such as Sl, CC and In.
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• Mobile phones: As per our assumption, the handsets are protected by PIN

codes. This act as a barrier to attackers who steal the phone. Even a phone is

lost or stolen, to construct a valid transaction request the OTP token and the

knowledge of its passcode is needed.

• Transaction number: In a point-of-sale transaction, where a beneficiary is

purchasing a product from a merchant, both parties can compare the Transaction

Number received on confirmation messages before a purchased product is handed

out. This provides an additional layer of assurance to the users.

• Social engineering: This is a targetted attack that is aimed at obtaining priv-

ileged access to data at HQ/BPS. To defend against such attacks staff handling

systems or engage in day to day organisational processes are required to go

through security awareness training. However, in our proposed solution we use a

multi-signatures process for processing transactions and therefore, an insider at

the BPS/HQ/HQB is not able to transmit a transaction alone.

Availability

• Recovering lost Bitcoins: In our proposed solution a multi-signature transac-

tion processing mechanism is used. In the unfortunate event of any one of the

three Bitcoin private key holders losing their key the remaining two parties can

recover the Bitcoins by generating a combined signature and transferring those

Bitcoins to another address.

• DDoS attacks: For attackers such as SL and Ha, the donor platform, HQ/HQB

and BPS are attractive targets for carrying out DDoS attacks. The countermea-

sures we recommend can be found in Table 8.5. However, any DDoS attacks on

the blockchains are not viable because the architecture, proof-of-work and the

distributed nature of blockchain provides innate security against such attacks

[168, 52, 153, 147].

8.7 Summary

The work carried in this chapter first identified challenges faced by charities/NPOs

currently, in particular how strengthening public trust in charities and NPOs, could

increase donation revenues and help provide a better service for the targeted benefi-

ciaries. We then identified advantages of blockchain based solutions for charities and

discussed how these can be employed, even with their potential constraints.
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8. Blockchain based Philanthropic Model and Payment System

As our first contribution of this chapter, we proposed a new philanthropic model

that addresses the identified challenges while leveraging the Bitcoin blockchain through

use of a donation platform. For our second contribution of the chapter we proposed

a novel SMS based mobile payment system that can be used by charity workers and

beneficiaries in a challenging offline environment. A useful feature is that the SMS

based mobile payment system runs on the existing GSM network and does not require

an Internet connection.

It also uses a OTP based dual authentication method in order to provide assurance

that only a genuine payer can make a payment. The system also provides a payment

received and payment confirmation SMS messages for the payer and payee. The pay-

ment processing on the proposed scheme can be done by either a 2-of-3 multi-signature

transaction process with the Bitcoin network, or a smart contract for advanced func-

tionality utilising the RSK network. The use of multi-signature process addresses the

issues such as authorisation before payment and recovery of lost Bitcoins. The proposed

SMS-based payment scheme was then evaluated for its security.
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Chapter 9

Conclusion and Future Work
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The thesis investigated both the EMV based centralised payment and Bitcoin /

blockchain based distributed payment architectures. We were able to identify a number

of weakness and potential issues that raise payment security concerns. Addressing

these concerns in the previous chapters the thesis proposed a number of solutions that

improve the security of both centralised and distributed payment transactions. In this

chapter we summarise our main contributions of the thesis and conclude the discussion

by suggesting future directions.
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9.1 Summary and Conclusion

The main aim of the thesis was to enhance the security of centralised and distributed

payment transactions. This included, investigating security aspects of centralised and

distributed payments and proposing improvements to address identified security con-

cerns and limitations. To facilitate the main aim of the thesis, three main objectives

were identified in Section 1.2. The three main objectives of the thesis are:

Objective-1: Investigate payment transactions in both centralised and distributed

payments while showing more emphasis on new/emerging payment technologies.

Objective-2 Identify potential weaknesses and concerns in payment technologies that

pose a threat to the security of payment transactions.

Objective-3 Propose improvements that address these identified weaknesses and con-

cerns to enhance the security of payment transactions.

In this thesis, all three objectives were successfully achieved. We discuss below how

the objectives of the thesis were achieved in our six main contributions of the thesis.

To achieve Objective-1, the thesis explored new and emerging payment technolo-

gies used in both centralised and distributed payment systems. The payment technolo-

gies we investigated include: EMV Chip&PIN, Contactless Card/Mobile Payments,

Tokenisation, Digital Currencies and Blockchain. More specifically, in the first and

second contributions, the thesis investigated the EMV Chip&PIN and the EMV OPV

process. In the third and fourth contribution, the thesis investigated the EMV Tokeni-

sation used in Chip&PIN, Contactless Card and Mobile Payments. The investigation

in to payment technologies in contributions one, two, three and four were carried out

under improvements for EMV based centralised payments in the thesis.

The fifth contribution, investigated digital currencies, fair-exchange, anonymous

payments, bitcoin and blockchain. The sixth contribution, investigated blockchain

technologies, distributed ledger technologies, smart contracts, donation payments, in-

ternational remittance, mobile and SMS payments. The investigation in to payment

technologies in contributions five and six were carried out under improvements for

bitcoin/blockchain based distributed payments in the thesis.

The improvements proposed in this thesis are divided into two main categories. The

first main category that we explore is the EMV based centralised payments. Under

this category, we investigated the architectures of EMV based centralised payments,

identified potential weaknesses and proposed a number of improvements. The first
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payment technology that we investigated was the EMV OPV process used in card

based payment transactions.

In our first contribution, Objective-2 was achieved by identifying a number of

potential attack scenarios that pose a threat to the security OPV process. One of the

main reasons for these concerns is the indelible trust assumptions placed on a number

of entities in the payment architecture. Addressing these security concerns, we then

proposed a protocol and improvements that enhance the security of OPV process. Fur-

thermore, three encryption methods that can be used to protect the PIN and provide

end-to-end security between the payment card and the issuing bank were presented.

We also explained how the OPV process can be linked with the online transaction au-

thorisation process to prevent a type of replay attack that we identify. The proposed

improvements achieved Objective-3 in this contribution. We then subject our pro-

posed protocol to mechanical formal analysis and found no feasible attacks. Finally the

proposed improvements were implemented to obtain potential performance penalties

that the existing OPV process has to bear if our improvements were applied.

The OPV process that we discussed above is carried out in different instance to the

online transaction authorisation. However, in our second contribution, we extended our

work to explore a second method that the EMV OPV process can be deployed in. In the

second method, the OPV and the online transaction authorisation is carried out in the

same set of messages. We called this second method, Unified Authorisation. Achieving

Objective-2, in our research, we were also able to identify a number of potential attack

scenarios in the Unified Authorisation method that pose a threat to the security of OPV

process and the overall payment transaction. Addressing the security concerns in the

Unified Authorisation, we proposed a protocol that improve the security of OPV and

the associated payment transaction. The proposed improvements achieved Objective-

3 in this contribution. We then analysed our protocol and implemented the proposed

improvement in Unified Authorisation to identify potential performance penalties.

Our work on OPV has identified a number of potential attack scenarios that could

lead to significant financial loss if realised. Moreover, the attacks we described can be

considered difficult to detect. This is because the authorisation entity would not be able

to identify whether the OPV-based transaction was actually made by the cardholder

or the adversary at the compromised intermediary. This would mean that, by the

time that the compromise is detected, the adversary might be in a position to cause

significant damage in terms of financial fraud. Therefore, we strongly suggest that the

proposed improvements must be considered by financial institutions, payment schemes,

payment solution providers, etc. when deploying EMV OPV in a geographical region.

Another important aspect of EMV payment architecture is the transaction authori-
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sation. In this thesis, we introduced an inherent weakness associated with EMV trans-

actions and discussed how PAN compromise has led to significant financial losses for

financial institutions. We then introduced EMV Tokenisation which is being adopted

by the payment industry as a solution to PAN compromise. In our third contribu-

tion, Objective-2 is achieved by identifying a bottleneck in the new tokenisation

architecture which prevents the usability of secure tokenised payments in offline envi-

ronments. We also discussed scenarios where having the capability of carrying out fully

offline tokenised payments are beneficial for both merchants and consumers. Achieving

Objective-3 of the thesis, we proposed a contactless mobile payment protocol based

on EMV tokenisation that supports fully offline transactions while preserving security

guarantees. In addition to this, the protocol provides end-to-end encryption to the

tokenised payment transaction communication between the mobile and the payment

terminal. Furthermore, we extended our protocol to show how ambient sensing can

be used even in an offline environment to detect and prevent token relay attacks. The

proposed protocol was then subject to mechanical formal analysis for its security and

after a successful run of the analysis no feasible attacks were identified. Finally, a prac-

tical implementation of the proposed protocol was carried out to obtain performance

measurements. During our implementation, the mobile payment application was pro-

visioned to an embedded hardware secure element of a Nokia 6131 mobile phone.

Even though the primary use of EMV tokenisation is to prevent PAN compromise,

it also provides a number of other benefits such as: being able to use the token cryp-

togram for managing financial risks, confining a payment to a single payment channel,

appointing a TSP to authorise payments on behalf of the issuing bank, using features

such as ambient sensing to prevent relay attacks, etc. We believe that by using our

protocol to provide offline capability to secure tokenised payments, this payment tech-

nology can expand to untapped markets and improve wider adoption in the payments

industry. Besides this, to our knowledge the work carried out in this thesis is the first to

propose an offline contactless payment protocol based on tokenisation with mechanical

formal analysis and practical implementation, at the time of writing.

In our fourth contribution, we then focused our attention to the security aspects of

tokenised payments. After investigating the current tokenisation payment architecture,

we were able to identify five main attack scenarios that pose a threat to the security

of tokenised payments especially when a static-token is used in every transaction. By

identifying these attacks, we were able to achieve Objective-2 of the thesis under

this contribution. Addressing these security issues we propose a protocol that uses

Dynamic Transaction Tokens (DTT) to improve the security of payment transactions

that are based on EMV tokenisation. More significantly, the protocol provides mutual
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authentication between the mobile and the terminal, prevents the attacks by using DTT

that is unique to a particular transaction and provides end-to-end encryption between

the terminal and the TSP as well as the terminal and the mobile. The protocol was

then subject to mechanical formal analysis for its security and protocol weaknesses or

attacks were identified.

In our proposed DTT based solution, the authorisation entity can gain valuable

insights of a potential transaction even before a transaction request arrives at the TSP.

This is because a DTT is issued upon request of a particular transaction and due to

this the TSP can obtain accurate risk assurance levels for a transaction and detect

any fraudulent activity. Therefore, we suggest that our identified attack scenarios are

considered by payment solution provides, financial institutions, payment networks and

other relevant parties when rolling out static-token based solutions. By proposing an

improved protocol, we were able to achieve Objective-3 of the thesis under this con-

tribution. As an alternative, we suggest our proposed solution based on DTT to be

considered to provide improved security assurance to tokenised payment transactions.

The second main category that we explored in this thesis is the Bitcoin/blockchain

based distributed payments. In our fifth contribution, achieving Objective-2, we

investigated the architectures of distributed payment systems and identified potential

drawbacks in distributed payment transactions. In our research one of the issues we

identified is the problem of establishing fairness in anonymous payment transactions

in e-commerce environment. More significantly, Bitcoin is a cryptocurrency that is

widely used to provide anonymous payments and has the largest market capitalisation

at the time of writing. Because of the anonymous nature of Bitcoin payments, however,

guaranteeing fair-exchange during e-commerce transactions is a major problem.

The blockchain technology is expected to be a disruptive technology in the payments

industry by opening new pathways to payment innovation. In such times where the

market is looking forward for a wider adoption of payment solutions based on blockchain

technology, issues such as not being able to establish fair-exchange in e-commerce can

be considered a deterrent. Therefore, addressing the aforementioned issue, we proposed

an anonymous fair-exchange payment protocol that establishes strong-fairness in an e-

commerce transaction when anonymous Bitcoin is being used as a payment method.

The involvement of a TTP in certain scenarios can be considered a bottleneck. In

our proposed protocol we keep the involvement of a TTP to a minimum by using a

offline TTP that only intervenes in the protocol if a transacting party misbehaves,

prematurely aborts the protocol or a communication failure happens.

Furthermore, we then outlined a few issues related to the transaction link-ability in
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Bitcoin and showed how the protocol can be extended to support Zerocoin/zerocash to

provide improved anonymity and security guarantees. We explained how the protocol

can be used with other cryptocurrencies based on blockchains. By using our proto-

col to facilitate in an e-commerce transaction which involves anonymous payments,

transacting parties (both the merchant and the consumer) can engage in the payment

transaction with confidence as it provides a guaranteed fair-exchange and dispute res-

olution within the protocol run. The proposed improvements achieved Objective-3

in this contribution. We strongly believe that using methods such as our protocol can

remove reluctance/uncertainty of using cryptocurrencies as a method of payment in e-

commerce transactions and help achieve wide adoption of blockchain based payments.

The use of blockchain technology is not limited to e-commerce payment transac-

tions. The technology can be used in other payment related scenarios. In our research

we identified that the philanthropic sector as one of the potential industries to benefit

immensely by leveraging the blockchain technology. We then investigated the current

philanthropic sector and identified that the public trust on charities are declining and

negative media coverage such as [186] has impacted public confidence in charities. One

of the main reasons for this is lack of accountability and transparency on how charities

collect and spend donations[157].

Following this, in our last contribution, we carried out research to identify how

blockchain technology can help charities address these issues and improve donors’

trust in the charity sector. We then proposed a novel philanthropic model based on

blockchain technology which can be used by a charity to address challenges such as: do-

nation transparency, reduce transactional cost, donation speed, donation provisioning,

etc. The donation platform on the philanthropic model lets a donor make a donation

in Bitcoin or fiat currency to a selected charity activity. The donor has transparency to

his/her donation with the use of Bitcoin public ledger. Furthermore, distributed pay-

ment systems such as Bitcoin does not rely on third-party payment clearing services,

it can support lower transactional fees especially for cross-border payments. There-

fore, the philanthropic model significantly reduces the unnecessary transaction cost

of donations. By identifying these weaknesses and concerns, we were able to achieve

Objective-2 of the thesis under this contribution.

We then discuss how our novel philanthropic model can be applied for humanitarian

aid in a disconnected environment. We identified that poor Internet infrastructure and

resource-limited devices as main constraints in using a blockchain based solutions in

such an environment. Addressing these issues, we propose an SMS-based mobile pay-

ment system that uses the existing GSM network. We use OTPs generated by OTP

token devices to authenticate SMS-based transaction requests. The proposed payment
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system acts as a gateway to transact with the Bitcoin blockchain. The proposed sys-

tem provides the capability for the charity to provision the received donations to the

beneficiaries. Furthermore, the payment systems also allows the beneficiaries to make

secure Bitcoin payments for their day to day transactions by using feature phones,

issued OTP tokens and simple SMSs.

In our solution we describe two methods how Bitcoin transactions can be processed

in the SMS-based payment system. Firstly, we show how Bitcoin multi-signature pro-

cess can be used to process transactions. The 2-of-3 multi-signatures provides assurance

that a single key holder alone cannot generate a valid transaction. This provides a level

of authority as to how the charity could manage payment authorisations. Furthermore,

in the unfortunate event of a party losing their Bitcoin private key, the remaining two

parties are able to recover the Bitcoins. The second method we use to process Bit-

coin transactions is by using a smart contract. In our approach, we show how the

same multi-signature process can be applied in a smart contract. As the Bitcoin net-

work is initially invented as a distributed payment platform, it does not support smart

contracts. Therefore, we use the Rootstock network and show how Bitcoin payment

transactions originating from our SMS-based payment system can be processed. In

both processing methods, the payer and the payee receive payment confirmation SMSs

from the charity. The proposed solution is then analysed for its security requirements.

By proposing a novel philanthropic model and a SMS-based mobile payment system,

we were able to achieve Objective-3 of the thesis.

Another aspect that needs to be considered when it comes to cryptocurrencies based

solutions is the price volatility. It must be noted that the Bitcoin exchange value has

shown dramatic volatility since early 2013 where the Bitcoin market price has ranged

from $12 USD to an all time-high of $19,900 in December 2017. It can be considered

that the volatility of Bitcoin exchange value poses a financial risk for the charity.

However, using Bitcoin might be the only viable option in an environment where the

banking system/economy may have collapsed. The proposed payment system is aimed

at a closed eco-system where payments are made within a constrained geographical

environment. This to some extent minimises the effects of Bitcoin price volatility. As

a long-term solution to this problem, however, the charity can use a private blockchain

solution that replaces the Bitcoin blockchain to give more control over exchange rates.

In our conclusion, we discussed how the three main objectives of the thesis were

successfully achieved in each of our six main contribution of the thesis. A summary of

the key findings of each contribution is listed in Table 9.1.
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Table 9.1: Summary Table of Contributions
Contribution.
Payment
Technology

Identified Security Concerns,
Attacks and Limitations

Proposed Solutions and Improve-
ments

1. EMV OPV * Two potential attack scenarios
in segmented authorisation: correct
PIN in OPV message and OPV re-
sponse message.
* Indelible trust assumptions placed
on intermediaries.

* Protocol and improvements that en-
hance the security of OPV by address-
ing the identified attacks.
* Provided end-to-end encryption, re-
play prevention and other security
guarantees.

2. EMV OPV * Two potential attack scenarios
that compromise the security of
OPV in unified authorisation: cor-
rect PIN in OPV message and PIN
block replay in OPV request.

* Protocol and improvements that en-
hance the security of OPV by address-
ing the identified attacks.
* End-to-end encryption, binding of
OPV and transaction authorisation for
replay prevention

3. Tokenisation * limitations in making secure to-
kenised payments in offline environ-
ments.

* Protocol which provides capability of
making secure tokenised payments in
offline environments.

4. Tokenisation * Five potential attacks: over charg-
ing, capturing static token, captur-
ing unpredictable number, adver-
sary replays an authorisation and re-
playing an authorisation response.

* Contactless mobile payment protocol
that uses DTT to provides: security
against the five attacks.
* Provided end-to-end encryption, mu-
tual authentication and other security
guarantees.

5. Blockchain * Providing fair-exchange in e-
commerce when anonymous pay-
ment methods are used.
* Concerns related to Bitcoin trans-
action linkability.

* Protocol that guarantees true fair-
exchange when Bitcoin is used as an
anonymous payment method.
* Extended the protocol to provide im-
proved security and anonymity.

6. Blockchain * Issues in the current philanthropic
model: donation transparency, cost,
speed of getting the donations to
beneficiaries, provisioning received
donations to beneficiaries in discon-
nected environments.

* Novel philanthropic model that
address these challenges by using
blockchain technology.
* SMS based mobile payment systems
to provision donations and to be used
by the beneficiaries for day to day pay-
ments.

9.2 Suggestions for Future Research

In this section, the thesis makes suggestions for future work and research directions.

The potential suggestions are categorised under each contribution area. The sug-

gestions for future work and research directions related to enhancing the security of

OPV are as follows.

It would be beneficial to understand and evaluate the security of the current key

sharing schemes between the payment terminal providers and their payment terminals

(at merchants’ premisses). In the evaluation, aspects such as: trust assumptions,

liability guarantees, security solutions used and compliance with payment card industry
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standards should be taken in to account.

Furthermore, evaluating the payment architecture for contactless payment systems

with respect to issues similar to those presented in this study would be another area

for future work.

Our next recommendation for future research directions would be the investigation

of the proposed next generation EMV specification. The proposed new changes would

mean that there will be significant architectural and security framework changes to

how EMV based centralised payment are carried out. Understanding how the changes

would impact key entities in the payment industry would be beneficial.

The suggestions for future work and research directions related to enhancing the

security of tokenised payments are as follows. We would like to explore and evaluating

the security of other transaction scenarios related to tokenised based payments. One

such example would be: making an offline token payment while only the terminal

is online-capable. We would like to investigate how our protocol can be extended

to support such payment scenario. Another area is to include additional transaction

modes and expand our threat model to include the mobile being compromised by an

adversary.

Furthermore, we would like to implement the proposed fully offline protocol pro-

posed on a 32bit secure element on a modern smart phone to compare performance

variations. Another point to note is that, most modern smart phones with embedded

secure elements have access to their secure elements restricted by manufacturers and

finding a device that provides access to the secure element would be challenging. The

last research direction we identify is exploring how similar protocols can be designed

to work with Host Card Emulation.

The suggestions for future work and research directions related to enhancing the

security blockchain based payments and transactions are as follows. More significantly,

in relation to anonymous fair-exchange, we would like to make improvements to our

protocol in order to support exchange of physical products. In such research attempts,

a key challenge will be how to deliver the physical products to the recipient’s address

without compromising the user anonymity. While using centralised payment methods,

few e-commerce retailers including Amazon, provide public delivery cabinet services to

collect delivery items. Here, the recipients collect their delivered items using PIN codes

sent by the retailer.

As we have already explained in the thesis, providing strong fair-exchange without

any arbitration is considered extremely difficult or sometimes impossible. Therefore,

another viable area of research would be to investigate the possibility of further reducing

the involvement of a significant TTP by using distributed TTP s. Moreover, this aligns
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with the principles of distributed networks where no trust assumptions are placed on

a particular party, rather the trust is placed on the security and robustness of the

distributed network/blockchain.

Our next future directions are in relation to the use of blockchains in the philan-

thropic industry. We would like to investigate the possibility of applying our blockchain-

based philanthropic model in an ad-hoc network that replaces the existing GSM net-

work. This would further extend the benefits of using the payment system proposed

as part of the philanthropic model in an environment without GSM network coverage

or where the local communication system has collapsed.
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Appendix A

Source Code - Formal Analysis

Script

The scripts modeled for mechanical formal analysis in the thesis is included

in Appendix A.

A.1 CasperFDR Script in Chapter 3

The protocols proposed in Chapter 3 are modeled as follows:

A.1.1 Symmetric System

#Free variables
SC, CI: Agent
Dh, Pb, Rp, Cvr; Num
Cun, Aun: Nonce
InverseKeys = (EnMaKey, EnMaKey), (SessionEnMaKey, SessionEnMaKey)

#Protocol description
0. -> SC : SC [CI!=SC] <iMsg :={Dh, Pb, Cun,SessionEnMaKey,Rp}{EnMaKey}>
1. SC -> CI : SC, iMsg
2. CI -> SC : {DH,Cvr, Aun, Cun}{SessionEnMaKey}

#Actual variables
SCard, CIssuer, ME: Agent
DH, PB, RP, CVR: Num
CUN, AUN, NMalicious: Nonce

#Processes
INITIATOR(SC,CI, Cun) knows EnMaKey
RESPONDER(CI,SC, Aun) knows EnMaKey

#System
INITIATOR(SCard, SIssuer, CUN)
RESPONDER(SIssuer, SCard, AUN)

#Intruder Information
Intruder = ME
IntruderKnowledge = {SIssuer, SCard, ME,
GMalicious, NMalicious}
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#Specification
Aliveness(SI, SC)
Aliveness(SC, SI)
Secret(SC, EnMaKey, [CI])
Secret(Sc, SessionEnMaKey, [CI])

A.1.2 Asymmetric System

#Free variables
SC, CI: Agent
Dh, Pb, Rp, Cvr; Num
Cun, Aun: Nonce
EKey: Agent->PublicKey
DKey: Agent->SecretKey
InverseKeys = (VKey, SKey), (SessionEnMaKey, SessionEnMaKey)

#Protocol description
0. -> SC : SC [CI!=SC] <iMsg := {Dh, Pb, Cun, SessionEnMaKey, Rp}{EKey(CI)}>
1. SC -> CI : SC, iMsg
2. SC -> CI : {Dh, Cvr, Aun, Cun}{SessionEnMaKey}

#Actual variables
SCard, CIssuer, ME: Agent
DH, PB, RP, CVR: Num
CUN, AUN, NMalicious: Nonce

#Processes
INITIATOR(SC,CI, Cun)knows EKey
RESPONDER(SC,SI, Aun) knows DKey(CI), EKey

#System
INITIATOR(CIssuer, SCard, CUN)
RESPONDER(SCard, CIssuer, AUN)

#Functions
symbolic EKey, DKey

#Intruder Information
Intruder = ME
IntruderKnowledge = {CIssuer, SCard, ME, NMalicious, DKey(ME), EKey}

#Specification
Aliveness(CI, SC)
Aliveness(SC, CI)
Secret(SC, SessionEnMaKey, [CI])

A.2 Scyther Script in Chapter 5

The protocol proposed in Chapter 5 is modeled as follows:

usertype Data;
hashfunction h;
usertype SessionKey;
const Cert: Function;
secret Cert1: Function;

protocol ot2(SE,T)
{
role SE {
fresh nse: Nonce; fresh PDOL: Data;
var nt: Nonce;
fresh OTT: Data; fresh TSPsig: Data;
macro DAD = nt2, OTT;
fresh K: SessionKey; fresh nse2: Nonce;
var X: Ticket; var nt2: Nonce;
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recv_1(T,SE, T,nt,Cert1(T));
send_2(SE,T, {SE,T,nse,nt,PDOL,K}pk(T));
recv_3(T,SE, {T,SE,nse,nt2,X}K);
send_4(SE,T, {SE,T,nse2,nt2,DAD,TSPsig}K, {h(DAD)}sk(SE),Cert(SE) );

claim(SE, Alive);
claim(SE, Secret, K);
claim(SE, Niagree);
claim(SE, Nisynch);
claim(SE, Secret, OTT);
claim(SE, Secret, X);
}

role T {
var nse: Nonce; var PDOL: Data;
fresh nt: Nonce; fresh TTQ: Data;
fresh amount: Data; fresh nt2: Nonce;
fresh CurrencyCode: Data;
var K: SessionKey; var Y: Ticket;
macro m1 = amount,CurrencyCode;
var TSPsig: Data; var nse2: Nonce;

send_1(T,SE, T,nt,Cert1(T));
recv_2(SE,T, {SE,T,nse,nt,PDOL,K}pk(T));
send_3(T,SE, {T,SE,nse,nt2,m1}K);
recv_4(SE,T, {SE,T,nse2,nt2,Y,TSPsig}K, {h(Y)}sk(SE),Cert(SE) );

claim(T, Alive);
claim(T, Secret, K);
claim(T, Niagree);
claim(T, Nisynch);
claim(T, Secret, Y);
}
}

A.3 Scyther Script in Chapter 6

The protocol proposed in Chapter 6 is modeled as follows:

usertype Data;
hashfunction h;
usertype SessionKey;
const Cert: Function;
secret Cert1: Function;

protocol ot1(SE,T,TSP)
{
role SE
{
fresh nse: Nonce;
var nt: Nonce;
fresh K: SessionKey;
var nt2: Nonce;
fresh nse2: Nonce;
var ntsp: Nonce;
var W: Ticket;
var Y: Ticket;
fresh nse3: Nonce;;

recv_1(T,SE, T,nt, Cert1(T));
send_2(SE,T, {SE,T,nse,nt, K,TSP}pk(T),{h({SE,T,nse,nt, K,TSP}pk(T))}sk(SE),Cert1(SE));
recv_3(T,SE, {T,SE,nse,nt2,W}K,{h({T,SE,nse,nt2,W}K)}sk(T));
send_4(SE,TSP, {SE,TSP, nse2,Cert1(T),W}k(SE,TSP));
recv_5(TSP,SE, {TSP,SE, nse2,ntsp,Y}k(SE,TSP));
send_6(SE,T, {SE,T, nse3,nt2,Y}K);

205



claim(SE, Alive);
claim(SE, Secret, K);
claim(SE, Niagree);
claim(SE, Nisynch);
claim(SE, Weakagree);
}

role T {
fresh nt: Nonce;
var nse: Nonce;
var K: SessionKey;
fresh nt2: Nonce;
fresh nt3: Nonce;
var nse3: Nonce;
var ntsp2: Nonce;
var Token: Nonce;
var DTT: Data;
var Ks2: SessionKey;
macro DTD = TSP,T,ntsp2,nt3,Token,DTT,Ks2;
fresh nt4: Nonce;
var ARC: Data;
var ntsp3: Nonce;

send_1(T,SE, T,nt, Cert1(T));
recv_2(SE,T, {SE,T,nse,nt, K,TSP}pk(T),{h({SE,T,nse,nt, K,TSP}pk(T))}sk(SE),Cert1(SE));
send_3(T,SE, {T,SE,nse,nt2, {T,TSP,nt3}pk(TSP)}K,{h({T,SE,nse,nt2,{T,TSP,nt3}pk(TSP)}K)}sk(T));
recv_6(SE,T, {SE,T, nse3,nt2,{DTD}pk(T),{h(DTD)}sk(TSP)}K);
send_7(T,TSP, {T,TSP,ntsp2,nt4,DTT}Ks2);
recv_8(TSP,T, {TSP,T, ntsp3,nt4,ARC}Ks2);

claim(T, Alive);
claim(T, Secret, K);
claim(T, Niagree);
claim(T, Nisynch);
claim(T, Secret, DTT);
claim(T, Weakagree);
}

role TSP {
var nse2: Nonce;
var nt3: Nonce;
fresh ntsp: Nonce;
fresh Token: Data;
fresh DTT: Data;
fresh Ks2: SessionKey;
fresh ntsp2: Nonce;
macro DTD = TSP,T,ntsp2,nt3,Token,DTT,Ks2;
var nt4: Nonce;
fresh ntsp3: Nonce;
fresh ARC: Data;

recv_4(SE,TSP, {SE,TSP, nse2,Cert1(T),{T,TSP,nt3}pk(TSP)}k(SE,TSP));
send_5(TSP,SE, {TSP,SE, nse2,ntsp,{DTD}pk(T),{h(DTD)}sk(TSP)}k(SE,TSP));
recv_7(T,TSP, {T,TSP,ntsp2,nt4,DTT}Ks2);
send_8(TSP,T, {TSP,T,ntsp3,nt4,ARC}Ks2);

claim(TSP, Alive);
claim(TSP, Secret, Ks2);
claim(TSP, Secret, ARC);
claim(TSP, Niagree);
claim(TSP, Nisynch);
claim(TSP, Weakagree);
}
}
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A.4 Scyther Script in Chapter 7

The proposed main and extended protocol stages in Chapter 7 are modeled as follows:

A.4.1 Main Fair-exchange Protocol

usertype Data;
hashfunction h;
usertype SessionKey;
const Cert: Function;
secret Cert1: Function;

protocol fe(M,C)
{
role M
{
fresh nm1: Nonce;
fresh Pid: Data;
fresh Invoice: Data;
fresh PVc: Data;
fresh TTPcom: Data;
fresh t: Data;
fresh m: Data;
fresh K: SessionKey;
macro m1 = Pid,Invoice,{h(Invoice)}sk(M),nm1,PVc,{m}K,TTPcom,Cert1(M),t;
var nc: Nonce;
var tp: Data;
macro m2 = Invoice,{h(Invoice)}sk(M),{h({h(Invoice)}sk(M))}sk(C),nm1,nc,h({m}K),tp;
fresh nm2: Nonce;
macro m3 = Invoice,nc,nm2,h({m}K),K,t;

send_1(M,C, {m1}pk(C), {h({m1}pk(C))}sk(M));
recv_2(C,M, {m2}pk(M),{h({m2}pk(M))}sk(C));
send_3(M,C, {m3}pk(C), {h({m3}pk(C))}sk(M));

claim(M, Alive);
claim(M, Secret, K);
claim(M, Secret, m);
claim(M, Niagree);
claim(M, Nisynch);
claim(M, Weakagree);
}

role C
{
var nm1: Nonce;
var Pid: Data;
var PVc: Data;
var Invoice: Data;
var TTPcom: Data;
var m: Data;
var t: Data;
macro m1 = Pid,Invoice,{h(Invoice)}sk(M),nm1,PVc,{m}K,TTPcom,Cert1(M),t;
fresh nc: Nonce;
var m: Data;
fresh tp: Data;
macro m2 = Invoice,{h(Invoice)}sk(M),{h({h(Invoice)}sk(M))}sk(C),nm1,nc,h({m}K),tp;
var K: SessionKey;
var nm2: Nonce;
macro m3 = Invoice,nc,nm2,h({m}K),K,t;

recv_1(M,C, {m1}pk(C),{h({m1}pk(C))}sk(M));
send_2(C,M, {m2}pk(M),{h({m2}pk(M))}sk(C));
recv_3(M,C, {m3}pk(C), {h({m3}pk(C))}sk(M));

claim(C, Alive);
claim(C, Secret, K);
claim(C, Secret, m);
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claim(C, Niagree);
claim(C, Nisynch);
claim(C, Weakagree);
}
}

A.4.2 Extended Fair-exchange Protocol

usertype Data;
hashfunction h;
usertype SessionKey;
const Cert: Function;
secret Cert1: Function;

protocol fe(M,C,TTP)
{
role C
{
var nm0: Nonce;
var m: Data;
macro m0 = {m}K, nm0;
fresh nc1: Nonce;
fresh t: Data;
fresh BE: Data;
fresh Invoice: Data;
fresh TTPcom: Data;
fresh m: Data;
macro m1 = BE,Invoice,{h(Invoice)}sk(M),nc1,h({m}K),TTPcom,t;
var K: SessionKey;
var nttp2: Nonce;
var nc1: Nonce;
macro m4 = Invoice,K,nttp2,nc1,t;

recv_1(M,C, {m0}pk(C), {h({m0}pk(C))}sk(M));
send_2(C,TTP, {m1}pk(TTP),{h({m1}pk(TTP))}sk(M));
recv_5(TTP,C, {m4}pk(C), {h({m4}pk(C))}sk(TTP));

claim(C, Alive);
claim(C, Secret, K);
claim(C, Secret, m);
claim(C, Niagree);
claim(C, Nisynch);
claim(C, Weakagree);
}

role TTP
{
var nc1: Nonce;
var t: Data;
var Invoice: Data;
var TTPcom: Data;
var m: Data;
var BE: Data;
macro m1 = BE,Invoice,{h(Invoice)}sk(M),nc1,h({m}K),TTPcom,t;
fresh nttp1: Nonce;
fresh KR: Data;
fresh tr: Data;
macro m2 = BE,Invoice,{h(Invoice)}sk(M),KR,nttp1,tr;
var K: SessionKey;
var nm1: Nonce;
macro m3 = Invoice,K,nttp1,nm1,t;
fresh nttp2: Nonce;
macro m4 = Invoice,K,nttp2,nc1,t;

recv_2(C,TTP, {m1}pk(TTP),{h({m1}pk(TTP))}sk(M));
send_3(TTP,M, {m2}pk(M),{h({m2}pk(M))}sk(TTP));
recv_4(M,TTP, {m3}pk(TTP), {h({m3}pk(TTP))}sk(M));
send_5(TTP,C, {m4}pk(C), {h({m4}pk(C))}sk(TTP));
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claim(TTP, Alive);
claim(TTP, Secret, K);
claim(TTP, Secret, m);
claim(TTP, Niagree);
claim(TTP, Nisynch);
claim(TTP, Weakagree);
}
}

role M
{
fresh nm0: Nonce;
fresh m: Data;
fresh K: SessionKey;
macro m0 = {m}K, nm0;
macro m2 = BE,Invoice,{h(Invoice)}sk(M),KR,nttp1,tr;
var BE: Data;
var Invoice: Data;
var KR: Data;
var nttp1: Nonce;
var tr: Data;
fresh nm1: Nonce;
fresh t: Data;
macro m3 = Invoice,K,nttp1,nm1,t;

send_1(M,C, {m0}pk(C), {h({m0}pk(C))}sk(M));
recv_3(TTP,M, {m2}pk(M),{h({m2}pk(M))}sk(TTP));
send_4(M,TTP, {m3}pk(TTP), {h({m3}pk(TTP))}sk(M));

claim(M, Alive);
claim(M, Secret, K);
claim(M, Secret, m);
claim(M, Niagree);
claim(M, Nisynch);
claim(M, Weakagree);
}
}
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