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Abstract

In a frequency hopping (FH) scheme users communicate simultaneously using FH se-

quences defined on the same set of frequency channels. An FH sequence specifies the

frequency channel to be used as communication progresses. An inherent problem for an

FH scheme is interference, unintentional and intentional. Much of the existing research

on the performance of FH schemes in the presence of interference is based on either

pairwise mutual or adversarial interference (jamming), but not both. In this thesis,

we develop a new model for evaluating the performance of an FH scheme with respect

to both group-wise mutual interference and jamming, bearing in mind that more than

two users may be transmitting simultaneously in the presence of a jammer.

We then analyse existing constructions of FH schemes in the new model proposed

in this thesis. The FH schemes considered are optimal in the well-known Lempel-

Greenberger or Peng-Fang bounds. We estimate the group-wise mutual interference

using pairwise mutual interference to determine the performance of these FH schemes.

Further, we note that these FH schemes do not withstand a jammer for a long period

of time.

An FH scheme in which we can determine the minimum number of places an FH

sequence can be successfully used in the presence of mutual interfering FH sequences

can be designed from a cover-free code. We study and specify a jammer model for

cover-free codes. We examine necessary and desirable additional properties of cover-

free codes that can mitigate against jamming. We conclude that while MDS codes are

ideal cover-free codes for mitigating against jamming, MDS codes also do not withstand

a jammer for an extended period.

Finally, we propose an efficient and secure FH scheme. We consider the use of pseu-

dorandomness in an FH scheme based on Latin squares and how it affects the resistance

of an FH scheme against a jammer. We conclude that in order to have a guarantee

of transmission, as well as withstand a jammer for a long time, FH schemes should

minimize group-wise mutual interference and possess some form of pseudorandomness.
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1.1. Spread spectrum techniques 1. Introduction and motivation

1.1 Spread spectrum techniques

Spread spectrum is a signal transmission technique where the signal occupies a wider

bandwidth than the information rate or original bandwidth. Bandwidth is the fre-

quency width used for transmitting a signal. Figure 1.1 is an illustration of a spread

spectrum communication system.

Channel
encoder Modulator Channel Demodulator Channel

decoder

Pseudorandom
sequence

Pseudorandom
sequence

Information
sequence

Output
data

Figure 1.1: Spread spectrum communication model [3].

A transmitter sends data (information sequence) on a frequency channel. It is

first encoded for the channel through the channel encoder. Spread spectrum signals

are modulated twice. Modulation is the process of adding information signal on to a

carrier signal (signal with constant amplitude and frequency). The first modulation

is done using narrowband techniques such as amplitude shift keying (ASK), frequency

shift keying (FSK) [96, 113], where the information is carried in a narrow band of

frequencies. It is then modulated again using spread spectrum techniques. A spread

spectrum technique uses pseudorandom sequence, called a spreading code, which is

shared by the transmitter and receiver. The pseudorandom sequence increases the

bandwidth over which the signal is to be transmitted. The modulated signal is then

transmitted through the frequency channel. A receiver then does the opposite of what

was done by the transmitter. To recover the information signal, the received signal is

extracted using the shared pseudorandom sequence. The demodulated signal is then

decoded using the channel decoder to obtain the transmitted data.

Spread spectrum communication techniques exploit the Shannon-Hartley theorem.

The Shannon-Hartley theorem C = B log2(1 + SNR), provides the maximum rate

14



1.1. Spread spectrum techniques 1. Introduction and motivation

at which data can be transmitted through a noisy channel (a communication channel

where information is distorted), where SNR is the signal-to-noise ratio, C is the channel

capacity and B is the bandwidth that the signal occupies [104]. The SNR is the measure

of signal strength against noise at the receiver. A large SNR means a better system,

that is the signal level is much higher than the noise. However, note that even if the

SNR is very low (the transmitted signal being below the noise level), communication

performance can still be increased by allowing the signal to occupy a larger bandwidth

than it would normally do, that is by increasing B. So, even though increasing the

bandwidth B has the effect of increasing the noise and thereby reducing the SNR,

the data can still be transmitted at the same channel capacity C as when B is not

increased.

Despite the inherent redundancy of these techniques on the bandwidth, they have

some advantages over conventional narrowband signal transmission. Some of the sig-

nificant benefits are as follows [79, 81]:

� Low probability of intercept: the signal is transmitted at low power thus making

it difficult to detect its presence.

� Message privacy: only intended receivers can retrieve transmitted signals because

of their knowledge of the pseudorandom spreading code.

� Interference rejection: the signal is spread/transmitted over a range of frequency

channels to avoid interference.

We are particularly interested in the interference rejection capabilities of spread spec-

trum techniques. Some of the sources of interference result from cross talk (other users

sharing the medium), multipath fading (self-jamming) and jamming by adversaries. We

will focus on mutual interference and jamming.

In Sections 1.1.1 and 1.1.2 a brief overview of the two fundamental spread spec-

trum techniques: direct sequence and frequency hopping spread spectrum are given

respectively.

15



1.1. Spread spectrum techniques 1. Introduction and motivation

1.1.1 Direct sequence spread spectrum (DSSS)

Direct sequence spread spectrum (DSSS) is a technique where data is spread directly by

combining it with a pseudorandom sequence called a spreading code [50]. The spreading

code defines redundant bits that are transmitted for each information data bit. This

improves the resistance of the transmitted data against interference, as well as the

reliability of the received data in the event that it is corrupted during transmission.

The combined signal is then used to modulate a radio frequency carrier. The size of

the spreading code determines the processing gain, which is a measure of performance

advantage of spread spectrum over ordinary narrowband signals. It is also defined as

the ratio of the spread signal to that of the unspread signal.

The IEEE 802.11b standard [5] defines 14 overlapping 22MHz channels for DSSS on

the 2.4GHz industrial, scientific and medical (ISM) band. Since the channels overlap,

they can cause co-channel interference. However the 2.4GHz ISM band can have a

maximum of three non-overlapping DSSS systems together, as shown in Figure 1.2.

2.4000
GHz

2.4835
GHzCh. 1 Ch. 6 Ch.11

Figure 1.2: Direct sequence spread spectrum model [1].

A set of transmitters, each employing a particular spreading code and using the

same communication channel simultaneously, form a code division multiple access (CDMA)

channel access system. The CDMA technology is used, for example, in global position-

ing systems (GPS) and the Universal Mobile Telecommunications System (UMTS), for

3rd generation mobile communication.

16



1.1. Spread spectrum techniques 1. Introduction and motivation

1.1.2 Frequency hopping spread spectrum (FHSS)

The second spread spectrum method considered, Frequency hopping spread spectrum

(FHSS), is where the spreading code is a frequency hopping (FH) sequence, that specifies

the frequency channels on which data is transmitted. Data is transmitted on different

radio frequency channels as transmission progresses.

A pseudorandom sequence can be used to generate an FH sequence. The main re-

quirement for a transmitter and receiver to communicate is that they need to be on the

same frequency channel at the same time. The receiver has to stay synchronised with

the sender to generate the pseudorandom sequence and eventually the FH sequence.

When both the sender and receiver derive the FH sequence, they can commence com-

munication. The receiver knows which channel to tune to and the dwelling time on

each channel, which is the amount of time spent on each radio frequency channel before

hopping onto the next channel in the FH sequence. The pseudorandom sequence being

used can be kept secret or not. In the latter case the choice of which FH sequence

being used is kept secret. Otherwise an attacker can establish the FH sequence and

jam subsequent transmissions.

Figure 1.3 shows FHSS signals of two communications A and B. The y-axis and

x-axis represent frequency channels and time respectively. In the first time period,

communications A and B are on channels seven and two respectively. In the fifth time

period both communications A and B are on channel one and the signals interfere.

17



1.1. FHSS and DSSS comparison 1. Introduction and motivation

Channel

Time

Communication A

Communication B

Collision

Figure 1.3: Frequency hopping spread spectrum example [2].

The IEEE 802.11 standard [5] employs 79 non-overlapping 1MHz channels for FH se-

quences in the 2.4GHz ISM band. It is widely used in signal transmission such as Wi-Fi,

Bluetooth and ultrawideband (UWB) communications [53, 33, 90]. Frequency hopping

spread spectrum can also be used in a multiple access system (see Section 1.1.4).

1.1.3 Comparison of frequency hopping and direct sequence spread

spectrum techniques

In this section we compare FHSS and DSSS techniques with respect to: narrowband

interference rejection, collocating systems, data rates, multipath immunity and finally

the near/far problem.

� Narrowband interference rejection: narrowband interference is unwanted signal

that is narrower than the wanted, ordinarily modulated signal. Consider a DSSS

system in the presence of narrowband interference. At the receiver, the interfering

signal is spread with the spreading code applied by the receiver while the trans-

mitter’s signal is despread. When both the interfering signal and the transmitted

data signal goes through a process of removing the interfering signal called filter-

ing, a small part of the interfering signal remains in the bandwidth of the data

signal [41]. The interfering signal now appears as noise. As long as the signal-
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1.1. FHSS and DSSS comparison 1. Introduction and motivation

to-noise ratio is above a defined threshold, the receiver will successfully retrieve

and demodulate the legitimate transmitted signal. The resistance of DSSS to a

narrowband interference is dependent on the strength of the interfering signal. In

FHSS when a channel hop is experiencing interference, then demodulation of a

signal may not be successful (depending on the interference-signal-ratio). How-

ever if there is no interference on the next jump then data can be successfully

retrieved. Further, FHSS was introduced to mitigate interference from unautho-

rised users of a communication system on the assumption that the unauthorised

users have no knowledge of the FH sequences being used [83]. Therefore it is

crucial that the interfering signal does not hop in synchronisation with the trans-

mitter’s signal. So, in DSSS there is narrowband interference suppression while

in FHSS we have interference avoidance.

� Collocating systems: applications that use FHSS have the advantage of putting

more systems in the same area than DSSS. By definition a DSSS signal occu-

pies a larger bandwidth compared to FHSS channels. The distance between

non-interfering wide band frequencies is also large in DSSS. As the total ISM

unlicensed band is 83.5MHz wide (2.4GHz - 2.4835GHz), the number of DSSS

systems that can be put together without causing interference with each other is

thus small, 3 for DSSS and 26 for FHSS.

� Data rates: in practice DSSS is often favoured over FHSS for its speed. The

data rate for FHSS, 2Mbps, is lower than that for DSSS, 7Mbps. So, users seek

applications that offer high data rates.

� Multipath immunity: DSSS systems are sensitive to delays as the signals are

transmitted at higher data rates than FHSS signals. Multiple copies of signals

are received, which are shifted versions of the transmitted signals. Therefore

receivers have more difficulty demodulating transmitted signals in DSSS systems.

However, there are ways in which the delayed spread signals can be controlled
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[93].

� Near/far problem: this is the ability of a receiver to be able to retrieve a signal

from the intended transmitter in the presence of other foreign transmitters in the

proximity of the receiver. The issue is how well can a receiver acquire signals

from the intended transmitters in the presence of other more powerful signals

from other transmitters. FHSS receivers operate well in such conditions where

the foreign transmitters only hop to some of the radio frequency channels visited

by legitimate transmitters. On the other hand DSSS systems fare less well.

In conclusion, the choice of which spread spectrum technology to use depends on

the environment in which it is deployed.

1.1.4 Frequency hopping in applications requiring multiple access

A set of FH sequences form a frequency hopping scheme (FH scheme). An FH scheme

is used in a frequency hopping multiple access1 (FHMA) system, where a number of

users employ FH sequences which are defined on the same set of frequency channels.

Each transmitter-receiver pair that are to communicate in an FHMA system share an

FH sequence and change the frequency channels in synchronisation. In this thesis we

use the term FH scheme to mean an FHMA.

Mutual interference occurs when two or more transmitters use the same frequency

channel simultaneously, which can result in signal loss. Pairwise mutual interference

is when two users mutually interfere with each other. When interference comes from

adversarial sources then it is called jamming. The adversary in this context is called a

jammer. It is desirable that an FH scheme be constructed such that interference from

both other users of the system, as well as adversaries, is minimised.

In Chapter 2 we describe the system model of an FH scheme, as well as the effect

of the presence of adversarial interference.

1Frequency hopping code-division multiple access (FH-CDMA) is a variant of FHMA that employs
both FHSS and DSSS. See [92, 105] for a description of FH-CDMA.
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1.1.5 Example: frequency hopping in IEEE 802.11 wireless LAN

In this section we look at how FH sequences are employed in IEEE 802.11 wireless

local area metworks (LAN) [5]. We consider the FH sequences in this standard for the

following reasons:

1. An FH sequence transmits at maximum transmission rate in the presence of other

FH sequences.

2. Although FH sequences in this standard of wireless LAN are labelled as obso-

lete, they are still being used in hybrid frequency hopping-direct sequence spread

spectrum systems [105].

3. The FH sequences in this standard provides a motivation for a scheme we consider

briefly in Section 1.2.3 and in more detail in Chapter 5, which also achieves the

maximum transmission capacity in the presence of other FH sequences.

The IEEE 802.11 wireless LAN standard [5] describes FH sequences and how they

are employed in wireless LANs in the unlicensed ISM bands. We mentioned in Sec-

tion 1.1.2 that the standard defines 79 non-overlapping frequency channels, each 1 MHz

wide. The IEEE standard defines the total number of frequency channels that can be

used in different geographical locations: 23 for Japan, 27 for Spain, 35 for France and

79 for China, North America, as well as Europe. However, to avoid co-channel inter-

ference it defines a minimum hop distance of 6 channels. Further, to minimise mutual

interference there are three sets of FH sequences, each comprised of 26 FH sequences.

Therefore, in terms of multiple access, a maximum of up to 26 users can be placed in

the same geographical area.

The standard describes four ways in which FH sequences can be determined. When

users are in a regulatory domain (channels in the 2.4 GHz spectrum that are regu-

lated by the country in which they are used) they can use a predefined FH scheme.

Otherwise, they use some algorithms known as hyperbolic congruence code (HCC) and
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the extended HCC (EHCC) [66, 75]. Lastly, randomly generated FH sequences shared

between a transmitter-receiver pair can also be used. We consider these FH schemes

in more detail in Chapter 3.

All but the randomly generated FH sequences have the following property. The

channels used at each point in time by all the FH sequences in the FH scheme are

distinct, that is a channel does not appear on more than one FH sequence at a time.

We will describe a similar FH scheme in Section 1.2.3 and Chapter 5.

1.2 Overview of existing constructions of frequency hop-

ping sequences

In this section we present a brief summary of some FH schemes that exist in the

literature. The goal of most of the existing constructions is either to minimise pair-

wise mutual interference or improve the resistance of adversarial interference of FH

sequences, but not both. This motivated us to identify the two interference aspects

of FH schemes, which we then incorporated into a combinatorial framework in order

to analyse the performance of FH schemes. Most of the FH schemes’ constructions

described in this section will be discussed in more detail in Chapter 3 by considering

them in our proposed model.

1.2.1 Constructions minimizing pairwise mutual interference

Much research in the literature focuses on mitigating the problem of pairwise mutual

interference. Optimality of FH sequences, and in general optimality of FH schemes, is

often defined in terms of the well-known bounds on Hamming correlation developed by

Lempel and Greenberger in [55], (Lemma 2.2.5) and by Peng and Fan in [77], (Theo-

rem 2.2.11). In their seminal paper Lempel and Greenberger developed the well-known

Lempel-Greenberger bound, a lower bound for maximum Hamming auto-correlation of

FH sequences. Peng and Fan on the other hand gave a lower bound for the maximum
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Hamming correlation of an FH scheme which takes into account both the Hamming

auto- and cross-correlation of FH sequences. We describe these bounds in Chapter 2.

Most of the existing constructions of FH sequences use mathematical structures

in algebra, combinatorial designs, codes, as well as recursive constructions from other

sets of FH schemes. We now consider a sample of such constructions, differing in the

mathematical structures they use, as well as giving different parameters with respect

to the length of the FH sequences and the number of channels used in the FH scheme.

Algebraic contructions. Several researchers have used the algebraic linear transfor-

mation of other sequences, theory of cyclotomy, as well as trace functions to construct

FH sequences.

Lempel and Greenberger [55] developed the well-known lower bound on Hamming

correlation. They also constructed an FH scheme using algebraic transformation of

m-sequences whose FH sequences achieve their bound.

Chu and Colbourn [19] provided some of the early work on construction of FH

sequences using cyclotomy. The authors developed FH sequences over a prime field

meeting the Lempel-Greenberger bound. Several researchers have since then generated

FH sequences over prime power fields and with different FH scheme parameters.

Ge, Miao and Yao [37] used trace functions to construct FH sequences optimal in

the Lempel-Greenberger bound.

Combinatorial constructions. Fuji-Hara, Miao and Mishima [35] provided several

combinatorial constructions of FH sequences optimal in the Lempel-Greenberger bound

using affine geometries, cyclic designs and difference families. The authors provided a

correspondence between FH sequences and partition type difference packings.

Codes. Sarwate [91] provided a correspondence between FH sequences and cyclic

codes. A cyclic code can be obtained from an FH scheme by taking all the FH sequences

in the FH scheme together with all the cyclic shifts of each FH sequence. On the other
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hand, an FH scheme can be obtained from a cyclic (linear) code by considering a single

codeword from each of the equivalence classes of the code.

Note that this construction based on obtaining a representative codeword from each

equivalence class of a code was also considered by Ding, Fuji-Hara, Fujiwara, Jimbo

and Mishima [27]. Further the authors provided upper bounds on the number of FH

sequences in an FH scheme from coding theory bounds: these are the Singleton, Plotkin,

sphere-packing and Johnson bounds on FH sequences. Optimality in these bounds does

not mean optimality in the Peng-Fan or Lempel-Greenberger bounds as the latter are

on the Hamming correlation of FH sequences. For instance, a [qm−1/q− 1, n−m, 3; q]-

linear code, q a prime power, m a positive integer with gcd(m, q) = 1, is optimal in the

sphere-packing bound for FH sequences but not optimal in the Lempel-Greenberger

bound.

Recursive constructions. Apart from constructing FH schemes using algebraic,

combinatorial structures and codes, some researchers have also explored using known

FH schemes to obtain new ones.

Chung, Han and Yang [21] used interleaving techniques to obtain FH sequences

optimal in the Peng-Fan bound.

Cyclic difference matrices have also been used by Ding et al. [27], as well as Fuji-

Hara et al. [35] to obtain an FH scheme by a recursive construction.

Pseudorandom construction. The Bluetooth 2010 standard [4] describes the gen-

eration of pseudorandom FH sequences. Bluetooth devices uses adaptive frequency

hopping (AFH) spread spectrum, where a controller can eliminate frequency channels

from the given set of frequency channels that are experiencing interference in the course

of communication. The goal of AFH spread spectrum is to improve the co-existence of

Bluetooth devices with other users, not using AFH spread spectrum, but operating on

the same ISM band. So, if there are no interfering devices, Bluetooth’s AFH spread

spectrum reverts back to an FH scheme with a full set of frequency channels.
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1.2.2 Constructions improving resistance against adversarial interfer-

ence

Interference originating from unauthorised entities where signals are deliberately trans-

mitted to interfere with legitimate transmission is called adversarial interference or

jamming. We discuss an adversarial interference model further in Chapter 2. Here we

briefly describe the work of Emek and Wattenhofer [31]. These researchers considered

FH sequences used in the presence of adversarial interference.

Emek and Wattenhofer [31] constructed FH sequences as random walks on an ex-

pander graph. The authors considered a single pairwise communication where subse-

quent channels for transmission are included in the data transmitted. An adversary

can eavesdrop and jam a fraction of the available frequency channels.

Two adversarial models were considered: in the first model, an adversary can only

acquire information about the channel that was used in previous time slots after a

certain number of time slots have lapsed, but not the transmitted data. In the second

model an adversary has knowledge of both. Knowledge of the transmitted messages is

vital since information of the subsequent frequency channels to be used is transmitted

in the messages. At any time slot, the transmitted data is guaranteed a successful

transmission with probability at least 1 − θ − ε where θ is the fraction of the chan-

nels an adversary jams and ε is a security parameter that defines the resilience of the

FH sequence. However, it is not clear what happens if more than one pair (transmit-

ter/receiver) of communication occurs simultaneously. We consider this construction

in more detail in Section 3.2.

1.2.3 Combined approach constructions

In Sections 1.2.1 and 1.2.2 we described constructions of FH schemes whose performance

measure considers minimizing either the pairwise mutual interference or improving

resistance against adversarial interference, but not both. In this section we consider

schemes that suggest a combined approach to analyse the performance of FH schemes.

25



1.2. Literature review 1. Introduction and motivation

Combinatorial construction. Bag, Ruj and Roy [9] used Latin squares with pseu-

dorandomness to obtain an FH scheme. We note that this scheme can be obtained

from the IEEE 802.11 FH sequences described in Section 1.1.5, with the added feature

of pseudorandomness. All legitimate FH sequences in this FH scheme share a single

pair of secret pseudorandom numbers (keys) before the start of communication which

are used for a specified number of time slots. The adversary can eavesdrop and jam

at most a certain number of the frequency channels in the frequency library. So, the

authors considered communication in the presence of both other mutual interfering

devices, as well as adversarial interference.

We point out that this construction has the following good features:

� The FH sequences constructed achieve a maximum transmission capacity without

adversarial interference. That is, in the presence of only mutual interference each

transmitter can communicate successfully at all time slots.

� The channels in the FH sequences are randomized by secret pseudorandom num-

bers which are then used for the entire duration (specified length) of the FH

sequences. Our study of cover-free codes in Chapter 4 shows that indeed we do

need pseudorandomness as it improves the resistance of an FH scheme against ad-

versarial interference. This scheme motivates our discussion in Chapter 5 where

we explore FH schemes with maximum transmission and improved resistance

against an adversary.

However, we note that the constructed FH scheme is unsatisfactory in several as-

pects:

� By using Latin squares to design the FH scheme, the number of FH sequences is

restricted by the number of frequency channels in the frequency library, that is,

the two must be the same. Therefore the maximum number of FH sequences to

be used in an FH scheme is restricted.
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� The authors assume that devices cannot leak information about the frequency

channels they are using and thus the adversary has no knowledge of active fre-

quency channels. However, in their adversarial model they state that the ad-

versary is capable of eavesdropping, inserting messages and jamming. It is not

clear what information the devices can leak and in turn what the adversary can

obtain from eavesdropping. In practice however it is assumed that an adversary

can acquire frequency channel information, and in some instances the messages

being transmitted on those frequency channels.

� In their analysis of the performance of the FH scheme Bag et al. [9] conclude

that FH sequences achieve maximum transmission capacity in the presence of an

adversary. It was shown in [73] that an adversary only needs to eavesdrop at a

single time slot to obtain the pair of secret shared pseudorandom keys. Acquiring

the secret keys enables the adversary to derive legitimate FH sequences and thus

interfere with any FH sequence of its choice. This is discussed in more detail in

Section 5.3.

Pseudorandom construction. In the FH sequences discussed thus far, a transmit-

ter and receiver need to share an FH sequence. Strasser, Pöpper, and Čapkun [102]

suggests uncoordinated FHSS. They propose using a random FH sequence between

a transmitter and a receiver, in the sense that the pair of communicating users do

not share an FH sequence but both randomly select a frequency channel to trans-

mit/receive independently. To improve successful communication, a transmitter hops

among frequency channels at a higher rate than a receiver. Further, the sender and

receiver do not use all the frequency channels in the frequency library to increase the

receiver’s chances of listening on a frequency channel being used by the transmitter. It

was shown that with positive probability the transmitter and receiver communicate in

the presence of both mutual interference, as well as an adversary that eavesdrops and

interferes on a subset of frequency channels in the given set of frequency channels.

27



1.3. Our contributions 1. Introduction and motivation

As mentioned in their research work, uncoordinated FHSS provides a way of es-

tablishing keys for the generation of FH sequences in situations where the transmitter

and receiver are not known to each other before commencing communication. After

establishing common FH sequences to be used, the transmitter and receiver then use

coordinated FHSS, that is, they follow the shared FH sequence to communicate. In

our work we make the assumption in Chapter 2 that a transmitter and receiver have

the means to establish a common FH sequence and only focus on its construction.

In an uncoordinated FH scheme as the transmitter has to hop among several fre-

quency channels within a specified time period, while the receiver dwells on a single

frequency channel within the same time period, they only transmit and listen success-

fully for a small fraction of the time when compared to coordinated FH schemes.

1.3 Our contributions

The majority of the research on the performance of FH schemes in the presence of

interference is based on pairwise mutual interference. We have considered briefly some

such FH schemes in Section 1.2.1. However, keeping in mind that in an FH scheme

more than two users can be transmitting simultaneously in the presence of an adversary,

this renders the pairwise mutual interference criterion inadequate. The inadequacy of

the pairwise criterion was discussed in Wang and Bhargava [110] in that possibly more

than one user can be using a frequency channel at the same time however the authors

did not consider adversarial interference. Further, Wang and Bhargava consider FH

sequences used in conjunction with error correcting codes. It was concluded that FH

schemes should be designed in such a way that the probability of more than one user

being at a particular frequency channel is minimised. Note that none of the FH schemes

considered in Section 1.2.1 consider adversarial interference. In this thesis, we evaluate

the performance of an FH scheme with respect to both group-wise mutual interference

and adversarial interference. This framework was introduced in [73].
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An overview of our four major contributions is as follows:

1. We develop a combinatorial framework for an FH scheme in Chapter 2. In this

model we consider the performance of an FH scheme in the presence of both

group-wise mutual interference and adversarial interference.

2. In Chapter 3 we investigate existing constructions of FH sequences in our model.

We study in detail the mathematics behind these FH schemes. We note that most

of these FH schemes are optimal in the well-known bounds developed by either

Lempel and Greenberger [55] or by Peng and Fan [77]. These bounds are based on

pair-wise Hamming correlation. However we want to explore the performance of

the existing FH schemes in the proposed model of Chapter 2 and determine con-

nections amongst some of them. We consider FH schemes constructions based on

the following: random walks, difference packing, m-sequences, cyclotomic classes,

trace functions, Reed-Solomon codes, Latin squares and we also consider recursive

constructions.

3. We discuss a correspondence between a cover-free code and an FH scheme in

Chapter 4. We note that when a cover-free code is considered as an FH scheme,

a user can successfully transmit in at least a specified fraction of time in the pres-

ence of a given number of interfering FH sequences. To the best of our knowledge,

this is the first time this correspondence has been highlighted. A cover-free code

however provides no additional information for use of the FH sequences in the

presence of adversarial interference. Therefore, we seek to determine these addi-

tional properties of cover-free codes that mitigate adversarial interference activi-

ties. Finally, we discuss the limitations of cover-free codes against a jammer, and

we propose the use of pseudorandomness to improve resistance against a jammer.

4. In Chapter 5 we discuss employing pseudorandomness in an FH scheme. From

the discussions of Chapter 3 and 4 we know that given an FH scheme we can

estimate the effect of mutual interference by using Hamming group-wise mutual
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interference or as given directly when the FH scheme is a cover-free code. However

in order to withstand an adversary for a longer time (period) FH sequences should

possess some form of pseudorandomness. So, we propose an efficient and secure

FH scheme that employs Latin squares with pseudorandomness.

1.4 Summary

In this chapter we introduced the theory of spread spectrum technologies. We looked

at some of the types of spread spectrum techniques, in particular direct sequence and

frequency hopping spread spectrum techniques. Further, we introduced a frequency

hopping multiple access system and a frequency hopping scheme. Finally, we consid-

ered some existing constructions of frequency hopping schemes and their performance

measures. We pointed out a deficiency of previous works: bearing in mind that more

than two users can be transmitting simultaneously in the presence of an adversary, the

pairwise mutual interference based analysis is inadequate. Therefore in our work we

evaluate the performance of a frequency hopping scheme with respect to both group-

wise mutual interference and adversarial interference.
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2.1 Introduction

Communication is a process that involves at least two entities, a transmitter and re-

ceiver, together with the medium through which they communicate. As presented in

Chapter 1, in the literature most researchers analyse the performance of FH sequences

in terms of pairwise mutual interference only, or adversarial interference, and very few

have considered both pairwise mutual and adversarial interference. We pointed out

that there exists a gap in the analysis of FH sequences, as well as giving the shortcom-

ings of some of the previous constructions. In this chapter we propose a new model of

analysing the performance of FH sequences.

In Section 2.2 we present the definitions and notation that will be used in this thesis.

We introduce a measure of pairwise mutual interference, the Hamming correlation,

which is the basis for analysing the performance of most FH sequences that exist in

the literature. Section 2.2 also presents a review of bounds that exist in the literature

which are based on the Hamming correlation of FH sequences. We consider the bounds

developed by Lempel and Greenberger [55], as well as those of Peng and Fan [77].

In analysing the Peng-Fan bounds in detail we make the observation that optimality

should be defined in terms of only one of the bounds and not both.

In Sections 2.3 through 2.5 we present the main contribution of this chapter: we

develop a combinatorial framework for analysing the performance of an FH scheme in

a multiple access communication system in the presence of a jammer. In Sections 2.3

and 2.4 we describe the system model where we consider only group-wise mutual in-

terference and its effect on an FH scheme. In Section 2.5 we introduce an adversary

into the system model, that is we describe the attacker model in an FH scheme. In

Section 2.5 we also provide the measures of the performance of an FH scheme in the

presence of both group-wise mutual and adversarial interference.

Finally, we summarise the chapter in Section 2.6.
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2.2 Hamming correlation

2.2.1 Definition

Let F = { f0, f1, . . . , fm−1 } be a set of m frequency channels; F is called a frequency

library. For simplicity, we assume a one-to-one mapping between the frequency channels

in F and a set of m elements, that is we write i for fi, 0 ≤ i ≤ m− 1.

Definition 2.2.1. A frequency hopping (FH) sequence over a frequency library F

is a sequence X = (xt)
v−1
t=0 (or X = (xt) if there is no ambiguity) of length v, xt ∈ F .

A FH sequence X = (x0, x1, . . . , xv−1) specifies that at time slot t a user of the FH

sequence transmits on frequency channel xt.

Definition 2.2.2. A (v, k,m)-frequency hopping scheme, denoted (v, k,m)-FHS,

is a set S = {Xi : 0 ≤ i ≤ k − 1 } of size k, where Xi is an FH sequence of length v

defined over a frequency library F of size m.

Given a (v, k,m)-FHS, the use of the same frequency channel at the same time

by two FH sequences (or more) causes interference. Pairwise mutual interference is

where two FH sequences in a (v, k,m)-FHS interfere with each other. Formally, Defi-

nition 2.2.3 describes pairwise mutual interference as pairwise Hamming correlation or

simply Hamming correlation.

Definition 2.2.3. Let S be a (v, k,m)-FHS and X,Y ∈ S, X = (x0, x1, . . . , xv−1)

and Y = (y0, y1, . . . , yv−1). The Hamming correlation HX,Y at relative time delay

τ between X and Y is:

HX,Y (τ) =
∑v−1

i=0 h(xi, yi+τ ), 0 ≤ τ < v, (2.1)

where

h(xi, yi) =


1 if xi = yi,

0 if xi 6= yi.
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Consider two FH sequences X,Y . At relative time delay τ there is mutual inter-

ference between X and Y when h(xi, yi) = 1 at time slot i and no mutual interference

otherwise. The Hamming correlation in Equation (2.1) gives the total number of posi-

tions at which the FH sequences X,Y interfere.

Note that in Definition 2.2.3 the operations on indices are performed modulo v.

When X = Y we write HX(τ) for HX,X(τ) and this is the Hamming auto-correlation

of X.

Definition 2.2.4. Let S be a (v, k,m)-FHS and X,Y ∈ S.

1. The maximum out-of-phase Hamming auto-correlation on an FH se-

quence X is:

H(X) = max
1≤τ<v

{HX(τ)}. (2.2)

2. The maximum Hamming cross-correlation between any two distinct FH

sequences X and Y is:

H(X,Y ) = max
0≤τ<v

{HXY (τ)}. (2.3)

3. The maximum Hamming correlation on FH sequences X,Y is:

M(X,Y ) = max{H(X), H(Y ), H(X,Y )}. (2.4)

2.2.2 Bounds

As discussed in Chapter 1, performance of FH sequences has mainly been analysed in

terms of Hamming correlation. Some researchers developed bounds on the measure of

Hamming correlation for FH schemes. We first look at one of the early notable work of

such bounds investigated in Lempel and Greenberger’s 1974 seminal paper [55]. Then

we consider a generalisation of Lempel and Greenberger’s bounds provided by Peng

and Fan [77].

34



2.2. Hamming correlation 2. System and attacker model

Lempel and Greenberger [55] defined optimality of FH sequences in the following

way.

1. X ∈ S is optimal if H(X) ≤ H(X ′) ∀ X ′ ∈ S.

2. X,Y ∈ S is an optimal pair if M(X,Y ) ≤M(X ′, Y ′) ∀ X ′, Y ′ ∈ S.

3. A subset C ⊂ S is an optimal family if every pair of distinct members of C is an

optimal pair.

Further, Lempel and Greenberger [55] developed a lower bound on H(X) for any

FH sequence X. We state the lemma and its proof. First, we need to define the

multiplicity of a frequency channel on an FH sequence. Let X be an FH sequence

defined over F . For any frequency channel fj ∈ F , we define the following. Define

µX(fj) =
v−1∑
i=0

h(xi, fj) (2.5)

where

h(xi, fj) =

 1 if xi = fj ,

0 if xi 6= fj .

to be the number of times that frequency channel fj appears on an FH sequence X ∈ S.

Lemma 2.2.5 (Lempel-Greenberger bound I, [55], Lemma 4). For every sequence

X = (xt) of length v over F , |F| = m,

H(X) ≥ (v − r)(v + r −m)

m(v − 1)
, (2.6)

where v ≡ r mod m.

Proof. The sum of the Hamming auto-correlation of the FH sequence X can be written
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in terms of its average out-of phase Hamming auto-correlation:

v−1∑
τ=0

HXX(τ) = v +
v−1∑
τ=1

HXX(τ) (2.7)

= v + (v − 1)H̄(Y ) (2.8)

with H̄(Y ) the average out-of phase Hamming auto-correlation.

Next, consider the sum of the Hamming auto-correlation of an FH sequence X in

terms of the multiplicity of frequency channel on X:

v−1∑
τ=0

HXX(τ) =

v−1∑
τ=0

v−1∑
j=0

h(xj , xj+τ )

=
∑
f∈F

[µX(f)]2. (2.9)

From Equations (2.7) and (2.9) we have:

H̄ =
1

v − 1

∑
f∈F

[µX(f)]2 − v

 .

Let

β = min
µX

∑
f∈F

[µX(f)]2

 (2.10)

where the minimization is over all non-negative integer-valued distribution sequences

µX = {µX(fi) : fi ∈ F , 0 ≤ i ≤ m− 1} on F that satisfy the constraint:

∑
f∈F

µX(f) = v. (2.11)

Without loss of generality, assume:

µX(f0) ≤ µX(f1) ≤ . . . ≤ µX(fm−1).
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Then µX is a distribution that minimises β if µX(fm−1)− µX(f0) ≤ 1.

Further, with constraint (2.11), the minimisation β can be achieved when the dis-

tribution µX is nearly uniform:

v = am+ r, 0 ≤ r < m, a ∈ Z+.

Then the following distribution can be used to obtain β:


µX(f0) = µX(f1) = . . . = µX(fm−r−1) = a,

µX(fm−r) = µX(fm−r+1) = . . . = µX(fm−1) = a+ 1.

(2.12)

We have:

β =
1

m
[(v − r)(v + r) +mr].

Therefore:

H(X) ≥ H̄(X)

≥ 1

v − 1
(β − v)

=
(v − r)(v + r −m)

m(v − 1)
.

Lempel and Greenberger [55] also developed a lower bound on M(X,Y ) for FH

sequences with particular parameters.

Lemma 2.2.6 (Lempel-Greenberger bound II, [55], Lemma 5). For every pair of se-

quences X,Y of length v = pn − 1 ≥ 2 over F , |F| = pi, 1 ≤ i ≤ n,

M(X,Y ) ≥ pn−i. (2.13)

There are also the Peng-Fan bounds which were developed in [77]. Before discussing
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the Peng-Fan bounds, we make further correlation definitions of an FH scheme.

Definition 2.2.7. Let S be a (v, k,m)-FHS and X,Y ∈ S.

1. The maximum Hamming auto-correlation of an FH scheme S is:

Ha(S) = max{H(X) : X ∈ S}.

2. The maximum Hamming cross-correlation of an FH scheme S is:

Hc(S) = max{H(X,Y ) : X,Y ∈ S, X 6= Y }.

3. The maximum Hamming correlation of an FH scheme S is:

Hm(S) = max{Ha(S), Hc(S)}. (2.14)

Peng and Fan [77] developed some bounds for the maximum Hamming correlation

of an FH scheme. We are going to give the proof of the bounds. We start with the

Lemmas that lead to Theorem 2.2.11 on the bounds. Let S be a (v, k,m)-FHS over

F , |F| = m. Consider the sum of the Hamming correlations of two FH sequences

X,Y ∈ S:

P (X,Y ) =
v−1∑
τ=0

HX,Y (τ) (2.15)

Lemma 2.2.8 gives an upper bound on
∑

X,Y ∈S P (X,Y ).

Lemma 2.2.8 ([77], Lemma 1). We have

∑
X,Y ∈S

P (X,Y ) ≤ vk + (v − 1)kHa + (k − 1)vkHc. (2.16)

See [77] for the proof of Lemma 2.2.8.

Lemma 2.2.9 gives the value of
∑

X,Y ∈S P (X,Y ) in terms of occurrences of fre-

quency channels on an FH sequence, Equation (2.5).
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Lemma 2.2.9 ([77], Lemma 2).

∑
X,Y ∈S

P (X,Y ) =
∑
f∈F

(∑
X∈S

µX(f)

)2

. (2.17)

For all integers 0, 1, 2, . . . ,m− 1, let

gi =
∑
X∈S

µX(fi) (2.18)

be the number of times that frequency channel fi ∈ F occurs in the FH scheme S.

By definition, an FH scheme S is non-empty. That is, there exists at least one FH

sequence in the FH scheme. Further, we can assume that each FH sequence in the

(v, k,m)-FHS has frequency channels from the frequency library. Therefore, gi ≥ 0 for

all 0 ≤ i ≤ m− 1. That is gi ∈ Z≥0, gi is a non-negative integer.

Next, we consider the lower bound on
∑

X,Y ∈S P (X,Y ).

Lemma 2.2.10 (Lemma 3, [77]). Let I = bvk/mc, we have:

∑
X,Y ∈S

P (X,Y ) ≥ v2k2

m
(2.19)

and ∑
X,Y ∈S

P (X,Y ) ≥ (2I + 1)vk − (I + 1)Im. (2.20)

Proof. From Equation (2.18) and Lemma 2.2.9 we have:

∑
X,Y ∈S

P (X,Y ) =

m−1∑
i=0

g2
i

and the following constraints: 
gi ≥ 0,

m−1∑
i=0

gi = vk.
(2.21)
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First, suppose all g0, g1, . . . , gm−1 are real numbers. We use the Lagrange’s method

to find the minimum on
∑

X,Y ∈S P (X,Y ). Let f(g0, g1, . . . , gm−1) =
∑m−1

i=0 g2
i and

g(g0, g1, . . . , gm−1) =
∑m−1

i=0 gi. Let λ be the Lagrange multiplier and consider the

Lagrange function:

L(g0, g1, . . . , gm−1, λ) = f(g0, g1, . . . , gm−1)− λ (g(g0, g1, . . . , gm−1)− vk)

=

m−1∑
i=0

g2
i − λ

(
m−1∑
i=0

gi − vk
)
.

Now we calculate the gradient:

5g0,g1,...,gm−1,λ L(g0, g1, . . . , gm−1, λ)

=

(
∂L
∂g0

,
∂L
∂g1

, · · · , ∂L
∂gm−1

,
∂L
∂λ

)
=

(
2g0 − λ, 2g1 − λ, . . . , 2gm−1 − λ,

m−1∑
i=0

gi − vk
)
.

Then:

5g0,g1,...,gm−1,λL(g0, g1, . . . , gm−1, λ) = 0⇔



2g0 − λ = 0

2g1 − λ = 0

...

2gm−1 − λ = 0

m−1∑
i=0

gi = vk.

We have:

g0 = g1 = . . . = gm−1 =
λ

2
.
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Substituting into
∑m−1

i=0 gi = vk, we have:

m−1∑
i=0

λ

2
= vk

mλ

2
= vk

λ =
2vk

m
.

So:

g0 = g1 = . . . = gm−1 =
vk

m
.

Therefore:

∑
X,Y ∈S

P (X,Y ) =

m−1∑
i=0

g2
i

≥ v2k2

m
.

Next, suppose all g0, g1, . . . , gm−1 are non-negative. Recall we want to find the minimum

of
∑

X,Y ∈S P (X,Y ). Let

β = min
g0,g1,...,gm−1

{
m−1∑
i=0

g2
i

}
. (2.22)

There exist a sequence of integers g0, g1, . . . , gm−1 such that the summand is minimum.

Without loss of generality, assume

g0 ≤ g1 ≤ . . . ≤ gm−1.

It can be seen that the sequence g0, g1, . . . , gm−1 minimizes
∑m−1

i=0 g2
i when gm−1−g0 ≤

1. Let

gi = Iim+ ri, 0 ≤ ri < m.
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Then:

vk =
m−1∑
i=0

Iim+ ri

= m
m−1∑
i=0

Ii +
m−1∑
i=0

ri.

Let
∑m−1

i=0 ri = ISm+ r. Then:

vk = (IS +
m−1∑
i=0

Ii)m+ r = Im+ r. (2.23)

From condition (2.21) and Equation (2.23) we have
∑m−1

i=0 gi = vk = Im+ r. Then the

following sequence minimizes
∑m−1

i=0 g2
i :

g0 = g1 = . . . = gr−1 = I + 1,

gr = gr+1 = . . . = gm−1 = I.

(2.24)

Given the sequence of non-negative integers in (2.24), the value of β is:

r(I + 1)2 + (m− r)I2 = mI2 + 2Ir + r

= (2I + 1)vk − (I + 1)Im.

Therefore, ∑
X,Y ∈S

P (X,Y ) ≥ (2I + 1)vk − (I + 1)Im.

Theorem 2.2.11 follows from Lemma 2.2.8 and 2.2.10 withHm(S) = max{Hc(S), Ha(S)}.

Theorem 2.2.11 (The Peng-Fan Bounds, [77], Corollary 1). Let S be a (v, k,m)-FHS.

Let I =
⌊
vk
m

⌋
. Then:

Hm(S) ≥
⌈

(vk −m)v

(vk − 1)m

⌉
(2.25)
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and

Hm(S) ≥
⌈

2Ivk − (I + 1)Im

(vk − 1)k

⌉
. (2.26)

Now, we discuss the two bounds given in Lemma 2.2.11. In particular, we note

that optimality should be defined only if the bound (2.26) is met. Normalising the

denominators in both bounds we have,

(vk −m)vk

(vk − 1)km
(2.27)

and

(2Ivk − (I + 1)Im)m

(vk − 1)km
. (2.28)

Substituting I =
⌊
vk
m

⌋
in the numerator of (2.28) we have,

2

⌊
vk

m

⌋
vkm−

{(⌊
vk

m

⌋
+ 1

)⌊
vk

m

⌋
m2

}
. (2.29)

Let ε denote the fractional part of vk
m . Then (2.29) becomes:

2vkm

(
vk

m
− ε
)
−
(
vk

m
− ε+ 1

)(
vk

m
ε

)
m2,

which reduces to:

(vk)2 − vkm−m2(ε2 − ε)

= (vk −m)vk −m2(ε2 − ε). (2.30)

Note that when m divides vk then ε = 0 in (2.30). Therefore (2.30) and the numerator

of (2.27) are the same. That is the two bounds (2.25) and (2.26) are the same when m

divides vk.

On the other hand, when m does not divide vk and thus ε 6= 0, then we have the

following. Note that ε2 − ε < 0 since 0 < ε < 1. Comparing the numerators of (2.27)
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and (2.28) (which has been reduced to (2.30)) we have:

(vk −m)vk < (vk −m)vk −m2(ε2 − ε).

We conclude that:

(vk −m)vk

(vk − 1)mk
≤ (vk −m)vk −m2(ε2 − ε)

(vk − 1)mk
.

So, ⌈
(vk −m)vk

(vk − 1)mk

⌉
≤
⌈

(vk −m)vk −m2(ε2 − ε)
(vk − 1)mk

⌉
.

Therefore the bound in (2.26) is better than that of (2.25).

Most researchers define optimality of FH sequences as follows.

Definition 2.2.12. An FH sequence X ∈ S is optimal in the Lempel-Greenberger

bound if the bound (2.6) is met.

Definition 2.2.13. A pair of FH sequences X,Y ∈ S is an optimal pair in the

Lempel-Greenberger bound if the bound (2.13) is met.

Definition 2.2.14. A (v, k,m)-FHS, is an optimal FH scheme in the Peng-Fan

bound if either of the bounds in Lemma 2.2.11 is met.

Peng and Fan [77] showed that the Lempel-Greenberger bounds are special cases of

the Peng-Fan bounds. Therefore optimality in the Peng-Fan bounds implies optimality

in the Lempel-Greenberger bounds.

Thus far we have looked at how other researchers analyse the performance of FH

sequences in terms of Hamming correlation, as well as how they define optimality of

FH schemes using the Lempel-Greenberger and Peng-Fan bounds. These well-known

bounds are indeed useful and simplify the question of what it means to have good FH

sequences in the presence of Hamming correlation: we only need to have FH sequences

such that the Hamming correlation is minimised with respect to those bounds. In our
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research, however, we consider group-wise mutual interference, which will be defined in

Section 2.3, and adversarial interference to be considered in Section 2.5. Our notion of

optimality considers transmission capacity of a user in the presence of both group-wise

mutual and adversarial interference.

2.3 System model

Consider an FHMA system. As has been previously described, in an FHMA system a

set of users communicate simultaneously using FH sequences defined on the same set

of frequency channels. In this thesis we consider a finite set of n users N = {Ni : 0 ≤

i ≤ n− 1 } communicating pairwise using a given (v, k,m)-FHS, S.

Consider S a (v, k,m)-FHS over F . The FH sequences in a (v, k,m)-FHS are used

periodically. By periodic we mean that given an FH sequence X = (x0, x1, . . . , xv−1),

then it can be used as X ′ = (x0, x1, . . . , xv−1, x0, x1, . . .). A user can be both a trans-

mitter and a receiver when sending and receiving data from another user respectively.

It is outside the scope of this thesis to address how users agree on the sending and

receiving FH sequences in S. In practice an FH sequence could simply be assigned by

some central controlling user, or the transmitters/receivers could have predistributed

keys allowing them to choose an FH sequence in S. So, we make the assumption that

a transmitter-receiver pair can pre-agree on an FH sequence to be used in a session. A

session is a number of pre-defined time slots. In this thesis we define a session as being

made up of v time slots, that is one full length of an FH sequence. We take a time slot

as a unit of time.

Let w, 0 ≤ w < k, be a positive integer. In any session there are w + 1 FH

sequences that are in use by legitimate users. We call these active FH sequences. Let

V ⊆ S be the set of w + 1 active FH sequences. At any time slot t, 0 ≤ t ≤ v − 1,

in a session, there are at most w + 1 frequency channels in use, which we call active

frequency channels. At any time slot t, let the multiset Ft = {x0
t , ..., x

k−1
t } denote all
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the frequency channels that appear in all the FH sequences at that time. The vector

Mt = {a0, ..., am−1} denotes the multiplicity of each frequency channel at time slot t,

where ai = |{j : xjt = i}|. Let Factivet = {xi0t , ..., xiwt } and Mactive
t = {a′0, ..., a′m−1}

denote the multisets of active frequency channels and multiplicity of active frequency

channels respectively. Note that a′i ≤ ai for all i, 0 ≤ i ≤ m− 1.

There is the issue of synchronisation, which is one of the challenges in an FH scheme.

We make the assumption that all users start at t = 0 at the same time. Shifts of an

FH sequence are treated as distinct FH sequences if needed.

In the literature a (v, k,m)-FHS is formed of FH sequences as follows. Some re-

searchers construct a single FH sequence of length v over a frequency library of size

m. Then, each transmitter-receiver pair starts at a particular time slot of the FH se-

quence. That is, a (v, k,m)-FHS contains all cyclic shifts of the single FH sequence

and a particular transmitter and receiver that wish to communicate use one of these

sequences [17, 23, 35, 36, 51, 55, 106]. Another way is to consider cyclic shifts of more

than one FH sequence [27, 91]. Finally, another approach is to obtain k distinct FH

sequences [39, 62, 72, 108]. Our analysis in this thesis covers all these ways of looking

at FH sequences. We treat a FH scheme simply as a collection of FH sequences.

2.4 Effect of mutual interference on an FH scheme

In this section we discuss the performance of an FH scheme in the presence of mutual

interference where an adversary is not present. As mentioned earlier, in an FH scheme

where more than two users can be transmitting at the same time, the Hamming pairwise

criterion which is widely used in the literature is inadequate [73, 110]. We thus introduce

the Hamming group correlation, a parameter that measure the performance of an FH

sequence in the presence of subsets of FH sequences.

Definition 2.4.1. Let S be a (v, k,m)-FHS, U ⊂ S, |U| = w, 0 ≤ w < k and X ∈ S\U .

The Hamming group correlation G(X,U) between the FH sequence X and the FH
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sequences in U , is defined as the number of coordinates in X that contain the same

symbols as the corresponding coordinates of some FH sequences in U :

G(X,U) = |{xt : ∃Y ∈ U such that xt = yt, 0 ≤ t ≤ v − 1 }|. (2.31)

Considering a (v, k,m)-FHS as a set of k codewords of length v over F , |F| = m,

then the Hamming group correlation, G(X,U), coincides with the notion of group

distance as defined by Jin and Blaum [46] in the context of traceability codes.

We now define the main performance measure of an FH scheme which is used

throughout the remainder of the thesis, the throughput of an FH sequence. We use the

basic throughput defined here to develop further throughput measures of an FH scheme.

In the remainder of this chapter we will use the following. Let S be a (v, k,m)-FHS,

U ⊂ S, |U| = w, V ⊆ S, |V| = w + 1, 0 ≤ w < k and X ∈ S \ U .

Definition 2.4.2. The w-throughput of an FH sequence X is the rate of successful

transmission in a session in the presence of FH sequences in U ,

ρw(X,U) = 1− G(X,U)

v
. (2.32)

Note that when w = 0 then there is only one FH sequence being used in the

communication system and the w-throughput is one. It is desirable that ρw(X,U) be

large, which means an FH sequence transmits at many time slots.

Ideally, we aim to construct a (v, k,m)-FHS that maximises throughput in both the

average case and worst-case.

2.4.1 Average throughput

Let S be a (v, k,m)-FHS. We define the average w-throughput of an FH sequence, of

a subset of an FH scheme and of an FH scheme.
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Definition 2.4.3. The average w-throughput of an FH sequence X ∈ S is:

ρ̄w(X,S) =
1(
k−1
w

)
 ∑
U⊆S\{X}

ρw(X,U)

 , (2.33)

|U| = w.

The average w-throughput of an FH sequence provides the average number of time

slots in which an FH sequence can successfully send information if w other FH sequences

in an FH scheme are being used.

Definition 2.4.4. The average w-throughput of a subset V is:

ρ̄w(V) =
1

w + 1

(∑
X∈V

ρw(X,V \ {X})
)
, (2.34)

|V| = w + 1.

Thus, given a (w + 1)-subset V of a (v, k,m)-FHS, S, (2.34) provides the aver-

age number of time slots in which an FH sequence X ∈ V can successfully transmit

information if the other w FH sequences in V are also transmitting.

Definition 2.4.5. The average w-throughput of an FH scheme S is the average

of ρ̄w(V), over all (w + 1)-subset V:

ρ̄w(S) =
1(
k

w+1

) ∑
V⊆S

ρ̄w(V). (2.35)

So, (2.35) provides the average number of time slots that an FH sequence can

transmit information successfully in the presence of any (w + 1)-subset of S.

2.4.2 Worst-case throughput

Consider S a (v, k,m)-FHS. We define the worst-case w-throughput of an FH sequence,

of a subset of an FH scheme and of an FH scheme. We first look at the case without an
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adversary. The worst-case w-throughput in the presence of an adversary will be dealt

with in Section 2.5.

Definition 2.4.6. The worst-case w-throughput of an FH sequence X is:

ρ̂w(X,S) = min
U⊆S\{X}

{
ρw(X,U)

}
, (2.36)

|U| = w.

So, given an FH sequence X ∈ S, (2.36) provides the minimum number of time

slots in which the FH sequence can transmit data if some w FH sequences in S are also

in use.

Definition 2.4.7. The worst-case w-throughput of a subset of an FH scheme,

V is:

ρ̂w(V) = min
X∈V

{
ρw(X,V \ {X})

}
, (2.37)

|V| = w + 1.

Equation (2.37) provides the minimum number of time slots in which an FH sequence

X ∈ V can transmit information if w FH sequences in V \ {X} are in use.

Definition 2.4.8. The worst-case w-throughput of an FH scheme, S is:

ρ̂w(S) = min
V⊆S

{
ρ̂w(V)

}
, (2.38)

|V| = w + 1.

Equation (2.38) provides the minimum of the values ρw(X,V \ {X}) for each possible

FH sequence X and the set of w FH sequences V \ {X} in S not containing X.

A (v, k,m)-FHS, S with worst-case w-throughput ρ̂w(S) will be denoted (v, k,m; ρ̂w(S))-

FHS.

Clearly ρw and all its associated variations takes on values in the interval [0, 1]. In

Chapter 5 we examine FH schemes with ρ̂w(S) = 1 for any w.
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2.5 Attacker model

In both wired and wireless networks, most security issues and data recovery can be

addressed by architectures in advanced higher layers of the Open Systems Interconnec-

tion (OSI) model, such as coding or cryptographic methods [13, 88, 98]. However, there

are problems that exist on the lower physical (PHY) layer that may not be addressed

by these higher layer solutions. In particular jamming is an example of such a threat

on the PHY layer.

2.5.1 Jamming definition

In the literature [47, 58, 82, 101, 103, 107], jamming has been defined as the action of

inserting, modifying or blocking messages. Interference occurs if the jamming signal

is transmitted on a frequency channel that is occupied by legitimate users. A mali-

cious user can replay or insert its own messages on the frequency channel. Further, a

malicious user can modify messages by flipping bits in the transmitted messages. The

receiver will get a different signal which is that of the modified message (a malicious

user’s signal) and not the original transmitted signal that was sent by the legitimate

transmitter. In either case, if the jamming signal has a higher power then the legit-

imate transmitter’s signal is overshadowed and this results in a modified message at

the receiver’s end. The actions of message inserting and modifications are executed in

the higher layers of the OSI reference model and we therefore assume that they can be

taken care of by higher-layer security mechanisms such as coding and cryptographic

methods. In this thesis we only consider signal jamming:

Definition 2.5.1. Jamming is defined as intentionally sending noisy signals on fre-

quency channels to block the signal transmissions of legitimate users. It is considered

as a denial-of-service attack on the physical layer. We call a malicious user that sends

jamming messages a jammer.

A jammer can further be classified according to its capabilities [78, 81, 84]:
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� A narrowband jammer concentrates its jamming signal on a narrowband stretch

of the communication spectrum.

� A broadband jammer generates a jamming signal that occupies a continuous set

of adjacent frequency channels simultaneously, stretching over frequency ranges

longer than those occupied by narrowband transmissions.

A jammer can also be classified according to its behaviour [69, 76, 112]:

� A constant jammer continuously sends jamming signals on the frequency chan-

nels.

� A random jammer switches between jamming and sleeping mode without a de-

fined strategy. This jammer saves energy when in sleeping mode.

� A reactive jammer is only active when a frequency channel is active with le-

gitimate transmissions. This jammer has to be actively eavesdropping to sense

ongoing transmissions on frequency channels. Therefore, it spends more energy

during eavesdropping.

2.5.2 Jamming strategy

We now describe the jamming model that is used in this thesis. Further, we develop

the measures of the performance of an FH scheme in the presence of a jammer and also

incorporate the presence of mutual interference.

The strategy of a jammer in this thesis is to eavesdrop and jam. It knows the

frequency library F , the (v, k,m)-FHS, S, the current time slot t, and thus it knows

Ft and Mt the multiset of all channels that appear in all the FH sequences and the

multiplicity of each channel at time slot t respectively. It also knows w′ = w + 1

( 0 ≤ w < k ), the number of FH sequences being used in a session. However, it has no

knowledge of the actual FH sequences being used if the number of active FH sequences

is less than k. In this case, at each time slot it has no knowledge of Factivet or Mactive
t .
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At each time slot a jammer has enough resources to eavesdrop on θ1m channels,

0 ≤ θ1 ≤ 1. In our model we assume that by eavesdropping a jammer only finds

out whether a channel is active or not, but does not acquire the information being

transmitted on an active channel. We will call a jammer that eavesdrops on an active

and inactive channel at a time slot, t, 0 ≤ t ≤ v − 1, a lucky and unlucky jammer

respectively. We assume that a jammer cannot jam all the frequency channels at each

time slot, but rather say it can jam θ2m channels, 0 ≤ θ2 < 1. A jammer can use

the information it acquires while eavesdropping to jam on frequency channels. This

adversary is denoted as a (θ1, θ2)-adaptive jammer.

Note that a (θ1, θ2)-adaptive jammer includes all the jammers that apply to an FH

scheme. For example, a narrowband jammer can be considered as a (θ1,
1
m)-adaptive

jammer, where it can eavesdrop on any number of frequency channels, 0 ≤ θ1 ≤ 1, but

can only jam on a single narrowband frequency channel. A broadband jammer can be

modelled as a (θ1, θ2)-adaptive jammer, where θ2 ≥ 1
m , with an additional condition

that it jams on fi, fi+1, . . . , fi+θ2m−1 and 0 ≤ θ1 ≤ 1.

At each time slot, a jammer will either send interfering signals on any random

channel(s) or will choose a particular channel such that its chances of jamming an

active FH sequence is improved.

A jammer can improve its chances of jamming an active frequency channel as fol-

lows. At each time slot, there are k FH sequences assumed to be equally likely over m

frequency channels, and for each frequency channel i there are ai FH sequences of that

frequency channel. The probability that frequency channel i is active is

Prob(i is active) = 1−
(
k − ai
w + 1

)
/

(
k

w + 1

)
. (2.39)

The probability in (2.39) is maximum when the jammer selects a frequency channel i

such that ai ≥ aj for all i 6= j. Therefore, if there exists some i such that ai ≥ aj for

all i 6= j, then a jammer will choose frequency channel i to jam. A jammer can follow
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this strategy at any time slot t, 0 ≤ t ≤ v − 1.

A jammer can also try to determine an active FH sequence. It aims to identify

an active FH sequence as quickly as possible. It can then reduce the worst-case w-

throughput to 0, or close to 0. We call the jammer’s search space the set of FH

sequences denoted S∗t , a subset of the (v, k,m; ρ̂w(S))-FHS, which the jammer needs

to look at to identify an active FH sequence at time slot t. Note that at the beginning

of a session, t = 0, the search space is the whole FH scheme, S∗0 = S. We will denote

the number of time slots it takes a jammer to determine an active FH sequence as γv,

0 ≤ γ ≤ 1. It is desirable that γ be large. The aim of a (v, k,m; ρ̂w(S))-FHS, S, is to

make the jammer’s advantage not much better than a random guess.

Note that knowledge of F and S is a standard security assumption. For example

in the IEEE 802.11 standard the frequency library and the FH scheme are publicly

known [6]. It is also possible for a jammer to eavesdrop on ongoing transmissions by a

communication system and learn F and S.

When a signal is jammed, legitimate users hear noise and acknowledge failure of

transmission. So we treat a jamming signal as an erasure.

We model a jammer’s channel selection strategy for jamming as a set of FH se-

quences J = {Yi|i = 0, . . . , θ2m − 1}, where Yi is an FH sequence of length v over

F .

Definition 2.5.2. Let S be a (v, k,m)-FHS. Let U ⊆ S, |U| = w, 0 ≤ w < k and

X ∈ S \ U . Consider the existence of a (θ1, θ2)-adaptive jammer. We now define the

throughput of an FH sequence in the presence of w mutual interfering FH sequences

from U , as well as jamming FH sequences from J similarly to Section 2.4:

1. The (w,J )-throughput of an FH sequence X ∈ S \ U :

ρw,J (X, {U ∪ J }) = 1− G(X, {U ∪ J })
v

, (2.40)

is the number of time slots an FH sequence X can successfully transmit in the
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presence of other w mutual interfering FH sequences from U and jamming FH

sequences from J .

2. The average (w,J )-throughput of an FH sequence X ∈ S \ U :

ρ̄w,J (X,S ∪ J ) =
1(
k−1
w

) ∑
U⊆S\{X}

ρw,J (X,U ∪ J ), (2.41)

is the average number of time slots in which X can successfully send information

in the presence of other w FH sequences from S, as well as jamming FH sequences

from J .

3. The average (w,J )-throughput of a subset V:

ρ̄w,J (V) =
1

w + 1

∑
X∈V

ρw,J (X,V \ {X} ∪ J ), (2.42)

is the mean number of time slots in which an FH sequence X from V can com-

municate successfully if other w FH sequences from V \ {X}, as well as jamming

FH sequences from J are present.

4. The average (w,J )-throughput of an FH scheme S:

ρ̄w,J (S) =
1(
k

w+1

) ∑
V⊆S

|V|=w+1

ρ̄w,J (V), (2.43)

is the overall average of time slots with respect to all (w + 1)-subsets, in which

an FH sequence can successfully transmit in the presence of other w mutual in-

terfering FH sequences from S and jamming FH sequences from J .

5. The worst-case (w,J )-throughput of an FH sequence X:

ρ̂w,J (X,S ∪ J ) = min
U⊆S\{X}

{ρw,J (X,U ∪ J )} , (2.44)
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is the lowest possible number of time slots in which an FH sequence X ∈ S

can communicate in the presence of w mutual interfering FH sequences from

U ⊆ S \ {X} and other jamming FH sequences from J .

6. The worst-case (w,J )-throughput of a subset V:

ρ̂w,J (V) = min
X∈V
{ρw,J (X,V \ {X} ∪ J )} , (2.45)

is the least achievable number of time slots for an FH sequences X ∈ S, with

respect to all (w+ 1)-subsets of S, to successfully transmit in the presence of both

mutual interfering FH sequences from V \ {X} and jamming FH sequences from

J .

7. The worst-case (w,J )-throughput of an FH scheme S:

ρ̂w,J (S) = min
V⊆S

|V|=w+1

{ρ̂w,J (V)} (2.46)

is the minimum number of time slots every FH sequence from S can transmit in

the presence of w FH sequences from S and jamming FH sequences of J ,

In this thesis, the goal of a jammer is to reduce the worst-case (w,J )-throughput

of a (v,m, k)-FHS, S.

2.5.3 Existing jamming countermeasures

In Sections 2.5.1 and 2.5.2 we have defined a jammer and its strategies. Before sum-

marising this chapter we review jamming countermeasures that exist in the literature.

There are three countermeasures to communication jamming [81, 85, 101]:

1. Jamming avoidance methods involve moving out of the jamming signal’s range

or changing the communication medium (switching from wireless to wired com-

munication).
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2. Jamming detection is the action of detecting the presence of jamming activity in

a communication system.

3. Jamming mitigation techniques minimises the effect of jamming in a communica-

tion system. Directional antennas and spread spectrum techniques are considered

as jamming mitigation techniques.

Bluetooth’s adaptive FHSS can be considered as a jamming detection and avoidance

mechanism. As described in Chapter 1, a master user in a Bluetooth network adaptively

changes the frequency library over which the FH sequences are defined by removing

channels on which it experiences interference.

Note that jamming detection and jamming avoidance may not be feasible in other

applications such as wired systems or wireless sensor networks. For example, moving

out of jamming range may not be practical for wired systems. Further, as wireless

sensors are energy constrained devices, detecting jamming will further need the use

of the already limited energy resource. Further, the geographical positions of some

wireless sensors cannot be changed once they have been deployed and thus not making

jamming avoidance viable. In this thesis, we consider FH sequences as a jamming

mitigation method.

2.6 Summary

In this chapter, we started with a review of the literature on Hamming correlation

and its related bounds. Next, we have presented a new framework for analysing the

performance of an FH scheme considering the presence of both mutual interference and

a jammer. We have taken into account more than two users transmitting simultaneously

and have considered the throughput in that setting. A jammer model was introduced

in an FH scheme. The metrics for the performance of an FH scheme given the presence

of both group-wise mutual interference and jamming signal were presented. We will

now use the new proposed model to analyse the performance of existing FH schemes in
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Chapter 3, as well as new FH schemes to be considered/proposed in Chapters 4 and 5.
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3.1 Introduction

In Chapter 1 we introduced some constructions of FH schemes that exist in the litera-

ture whose performance is measured with respect to the well-known Lempel-Greenberger

or Peng-Fan bounds. The bounds are based on Hamming correlation. In Chapter 2

we developed a new model for analysing the performance of FH schemes: provided an

FH scheme, we consider the successful transmission of an FH sequence in the presence

of group-wise mutual interference, as well as in the presence of an adaptive jammer.

In this chapter we investigate the performance of some of the existing FH schemes

constructions within the new model proposed in Chapter 2. For each FH scheme we:

1. Describe the FH scheme construction in detail;

2. Determine the Hamming group correlation and w-throughput of an FH sequence,

as well as the worst-case w-throughput of the FH scheme;

3. Examine the resistance of the FH scheme against a (θ1, θ2)-adaptive jammer.

We also explore possible relations between various FH schemes. Some of these

can be shown to be the same even though they have been constructed using different

mathematical structures.

The remainder of this chapter is structured as follows. We consider existing con-

structions of FH schemes which use the following structures: random walks on a graph
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in Section 3.2, difference packing in Section 3.3, m-sequences in Section 3.4, cyclo-

tomy in Section 3.5, trace functions in Section 3.6, Reed-Solomon codes in Section 3.7,

recursive constructions in Section 3.9. In Section 3.10 we compare the different con-

structions considered in this chapter with respect to their performance in the presence

of both group-wise mutual interference and jamming. We summarise the chapter in

Section 3.12.

3.2 Random walks on a Ramanujan graph

In [31] Emek and Wattenhofer constructed FH sequences as random walks on expander

graphs, in particular on Ramanujan graphs. The authors consider a single pairwise

communication where subsequent channels in an FH sequence for transmission are

included in the data transmitted. The FH scheme is analysed in the presence of an

adversary that can eavesdrop and jam a certain fraction of the available frequency

channels. However, it is not clear what happens if more than one pair of communication

occurs simultaneously. So, we consider their FH scheme in our model where we consider

both mutual (group-wise) and adversarial interference, where the adversary can also

eavesdrop and jam.

3.2.1 Random walks on a graph

Random walks are a combinatorial tool with many applications, such as models in

mathematics and physics (brownian motion of particles) [111], as well as in computer

science, where they are used in the generation of random samples [59]. In these ap-

plications they are attractive for their randomness. In [31] they are used to construct

pseudorandom FH sequences.

We start with the basic definitions of graphs and introduce random walks on graphs,

which are relevant for this construction. We refer the reader to [16, 42] for a detailed

introduction to this topic.

61



3.2. Random walks 3. Investigating existing FH schemes

Definition 3.2.1. A graph G = (V,E) is a set of vertices V = {u0, . . . , um−1} and

a set of edges E = {e0, . . . , en−1}, where eκ = (ui, uj) ∈ E, 0 ≤ κ ≤ n − 1, is an

edge between the vertices ui and uj, and we say that the edge (ui, uj) is incident to

its endpoints ui and uj. Wherever an edge (ui, uj) exists, ui and uj are said to be

adjacent.

The graphs considered in the construction of this section will be simple graphs.

Definition 3.2.2. A simple graph is an undirected graph where both multiple edges

and loops are not allowed.

Given a graph G = (V,E), a walk in G is a finite sequence alternating vertices

uij ∈ V and edges eij ∈ E in the form (ui0 , ei1 , ui1 , ei2 , ui2 , . . . , eiv , uiv), where for

1 ≤ j ≤ v, the edge eij is incident with the vertices uij−1 and uij . Less formally, a walk

describes a sequence of vertices (ui0 , ui1 , ui2 , . . ., uiv), where ui0 is called the initial

vertex and uiv the final vertex and uijuij+1 ∈ E, 0 ≤ j ≤ v− 1. The length of a walk is

the number of edges in a walk. So (ui0 , ei1 , ui1 , ei2 , ui2 , . . . , eiv , uiv) is a walk of length

v starting from vertex ui0 then goes through the edge ei1 to get to vertex ui1 etc. until

the final vertex uiv . A walk with distinct vertices is called a path.

A graph G = (V,E) is undirected if for all ui, uj ∈ V :

(ui, uj) ∈ E ⇔ (uj , ui) ∈ E,

implying that pairs of vertices in the set of edges are not ordered. Otherwise it is called

a directed graph. A graph is connected if for every pair of vertices there exist a path

on the graph joining them. The construction of Emek and Wattenhofer [31] uses a

connected, undirected graph.

Le G = (V,E) be a connected, undirected graph with m vertices. The degree d(ui)

of a vertex ui is the number of edges incident with that vertex. A graph is said to be

r-regular if each vertex has the same degree r. The neighbourhood of a vertex ui ∈ V ,
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denoted N (ui), is the set of adjacent vertices to ui, that is N (ui) = {uj ∈ V : (ui, uj) ∈

E}. We are now in a position to define a random walk on a graph.

Definition 3.2.3. Let G = (V,E) be a graph. A random walk is a sequence (ui0 , ui1 , ui2 , . . .)

at discrete time steps, where each uij ∈ V , the initial vertex ui0 is chosen randomly,

and suppose at time t the walk is on vertex uit−1, then a single succeeding vertex

uit ∈ N (uit−1) is chosen uniformly,

Pr(uit−1 , uit) =


1

deg(uit−1)
if uit ∈ N (uit−1),

0 otherwise.

(3.1)

The adjacency matrix, A ∈ {0, 1}m×m of a graph is used to analyse random walks

on a graph, where:

A(i, j) =


1 if (uj , ui) ∈ E,

0 otherwise.

Further, a walk matrix W of a graph is an m×m matrix provided by:

W (i, j) =


1

deg(uj)
if (uj , ui) ∈ E,

0 otherwise

If the graph is r-regular then W = 1
rA.

Example 3.2.4. Consider G = (V,E), |V | = 6, the 4-regular connected, undirected

graph provided in Figure 3.1

63



3.2. Random walks 3. Investigating existing FH schemes

3 2

1

4 5

6

Figure 3.1: A 4-regular, connected, undirected graph on 6 vertices.

The adjacency matrix A for the graph in Figure 3.1 is,

A =



0 1 1 1 1 0

1 0 1 0 1 1

1 1 0 1 0 1

1 0 1 0 1 1

1 1 0 1 0 1

0 1 1 1 1 0


,

and the walk matrix is,

W =



0 1/4 1/4 1/4 1/4 0

1/4 0 1/4 0 1/4 1/4

1/4 1/4 0 1/4 0 1/4

1/4 0 1/4 0 1/4 1/4

1/4 1/4 0 1/4 0 1/4

0 1/4 1/4 1/4 1/4 0


.

At time t the matrix W t(G) is described as follows. The (i, j)-entry of W t(G) is the
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probability that a random walk of length t starting at vertex uj ends at vertex ui. We

will denote this probability as W t(G)(i, j) = Prtuj (ui). At t = 0, Prtuj (ui) = 1/ deg(uj).

From the example graph in Figure 3.1, the matrix W 5(G) corresponding to random

walks of length 5 is,

W 5(G) =



0.157 0.173 0.173 0.173 0.173 0.157

0.173 0.157 0.173 0.157 0.173 0.173

0.173 0.173 0.157 0.173 0.157 0.173

0.173 0.157 0.173 0.157 0.173 0.173

0.173 0.173 0.157 0.173 0.157 0.173

0.157 0.173 0.173 0.173 0.173 0.157


.

So, a random walk of length 5 starting at vertex v6 will be at vertex v3 with probability

0.173.

We end this section by defining Ramanujan graphs, the graphs used by Emek et al.

[31] to construct random walks.

Definition 3.2.5. Let G(V,E) be an r-regular connected, undirected graph on m ver-

tices. Let

ω(G) = max{λ1, |λm−1|},

where λ0 ≥ λ1 ≥ . . . ≥ λm−1 are the eigenvalues of the adjacency matrix of G. If

ω(G) ≤ 2
√
r − 1 then G is a Ramanujan graph.

Ramanujan graphs belong to a class of important graphs called expander graphs.

Expander graphs are r- regular graphs that are highly connected while, at the same

time, sparse (having very few edges). A graph with m vertices is said to be highly

connected if the minimum number of edges whose deletion results in a disconnected

graph is greater than m/2. We will not provide a formal definition of expander graphs

because the details are outside our scope. For more information on expander graphs

and Ramanujan graphs we refer the reader to [24, 26, 45, 60].
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Several researchers have established the existence of Ramanujan graphs. Existence

of an infinite family of (p+1)-regular Ramanujan graphs, whenever p is a prime number

and p ≡ 1( mod 4) is shown by Lubotzky, Phillips and Sarnak [60]. It is also known

that d-regular complete graphs and and complete bipartite graphs are Ramanujan

graphs [64]. Marcus, Spielman and Srivastava [64] proved the existence of bipartite

Ramanujan graphs of every degree and every number of vertices. Further constructions

of Ramanujan graphs can be found in [18, 48, 63, 65, 68, 80].

3.2.2 Random walks as an FH scheme

We now describe the random walk in detail as an FH scheme.

Construction 3.2.6. Consider G = (V,E) an r-regular, connected, undirected graph

(not necessarily a Ramanujan graph) on m vertices. We consider vertices of the graph

as frequency channels. A transmitter and receiver start at some channel ui0 ∈ V chosen

deterministically and take a random walk of length v. As the graph is r-regular, at each

point in the walk there are r choices, uij such that uij ∈ N (uij−1), for a channel in

the succeeding point of the walk. However, note that uij 6= uij−1 since the graph has no

loops. Therefore, there are rv−1 sequences with ui0 as a first vertex to visit. Thus there

are m×rv−1 possible walks on G when considering all vertices ui ∈ V , 0 ≤ i ≤ m−1 as

the starting vertex of a random walk. Consider a random walk as an FH sequence, then

the set of all possible walks on G is a (v,m× rv−1,m)-FHS, S, where |S| = m× rv−1,

|F| = m.

The properties of the (v,m×rv−1,m)-FHS obtained using random walks on a graph

are as follows. Consider any v − 1 consecutive time slots, for simplicity, 0, . . . , v − 2.

Any frequency channel in F appear rv−1 number of times at time slot 0. Next consider

any rv−1 FH sequences with a particular frequency channel in F that appear at time

slot 0. Then at time slot 1, some r frequency channels in F each appears rv−2 number

of times on the rv−1 FH sequences of interest. If we continue in this manner, we have

that on the last time slot v − 1 we remain with r distinct frequency channels.
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Example 3.2.7. Consider the 4-vertex, 2-regular, connected, undirected graph in Fig-

ure 3.2:

1 2

34

Figure 3.2: A 2-regular, connected, undirected graph on 4 vertices.

We have F = {1, 2, 3, 4}. A (4, 32, 4)-FHS can be constructed using this graph.

Let vi0 = 1 be the initial vertex of walks, 0 ≤ i ≤ 7, then all the FH sequences of

length 4 starting with frequency channel 1 are: X0 = (1, 2, 3, 2), X1 = (1, 4, 3, 2),

X2 = (1, 2, 1, 2), X3 = (1, 4, 1, 2), X4 = (1, 2, 3, 4), X5 = (1, 2, 1, 4), X6 = (1, 4, 1, 4),

X7 = (1, 4, 3, 4).

Note that there are three other sets, each with 8 sequences, each set with frequency

channels 2, 3, 4 at the first time slot.

3.2.3 Correlation

Hamming correlation

In this section we consider the Hamming correlation of FH sequences on the graph

introduced in Section 3.2.2. We point out that Emek et al. [31] considered only adver-

sarial interference and not mutual interference.

Let G = (V,E) be an r-regular, connected, undirected graph on m vertices. Let

X = (x0, x1, . . . , xv−1) and Y = (y0, y1, . . . , yv−1) be two random walks on G. The

probability that these two random walks, X,Y , will start at the same vertex is:

Pr(x0 = y0) =
1

m
. (3.2)
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The probability that a pair of random walks X,Y will visit the same vertex at time

slot i, 1 ≤ i ≤ v − 1 satisfies,

Pr(xi = yi) =

Pr(xi−1 6= yi−1)Pr(xi = yi|xi−1 6= yi−1) + Pr(xi−1 = yi−1)Pr(xi = yi|xi−1 = yi−1).

(3.3)

Now, we impose further restrictions on G to determine Pr(xi = yi). We will

consider G a strongly regular graph.

Definition 3.2.8. ([15]) An m-vertex, r-regular graph G = (V,E) is called an (m, r;λ, µ)-

strongly-regular graph if:

� any two adjacent vertices have λ common neighbours;

� any two non-adjacent vertices have µ common neighbours.

In the handbook of combinatorial designs [25] the authors provide strongly-regular

graphs with different flexible parameters for m, r, λ and µ.

Notice that we lose some properties of expander graphs when we consider strongly

regular graphs. A random walk on an expander graph has the property that after a

finite number of steps the probability that it hits every vertex is uniform. So, we lose

this uniformity of elements on the random walk. However, both strongly regular graphs

and expander graphs are regular graphs. So, the probability of choosing the succeeding

vertex for a random walk is the same in either of the graphs.

Consider G an (m, r;λ, µ)-strongly-regular graph. Let X = (xi), Y = (yi) be a pair

of random walks on G. For any i, 1 ≤ i ≤ v−1 consider the three states for the random

walks X,Y :

� S1: xi = yi,

� S2: xi and yi are distinct and adjacent and
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� S3: xi and yi are distinct and non-adjacent.

Denote the probability of transitioning from state Sh to state Sk in one step by:

Ph,k = Pr(xi, yi are in state Sk|xi−1, yi−1 are in state Sh).

Given the three states for a pair of random walks, a transition matrix M is:

M =


P1,1 P1,2 P1,3

P2,1 P2,2 P2,3

P3,1 P3,2 P3,3

 . (3.4)

To derive Ph,k, h, k = {1, 2, 3} we do the following. We consider xi−1, yi−1 in state Sh.

Then we count the number of pairs xi, yi which satisfy the conditions of the state Sk.

The total number of possibilities xi, yi is r2. We consider the transition from each state

Sh separately.

We start by deriving the equations for the transition from state S1: P1,k, k =

{1, 2, 3}. In the state S1 we have the following. We have a pair of vertices xi−1, yi−1

such that xi−1 = yi−1. For each yi ∈ N(yi−1) we have N(yi) ∩N(yi−1) = λ.

1. From state S1 to state S1, P1,1.

Out of r2 possibilities xi, yi, we have r of them such that xi = yi. Therefore,

given the state S1, the total number of occurrences such that xi = yi is r. So:

P1,1 =
r

r2
. (3.5)

2. From state S1 to state S2, P1,2.

Out of r2 possibilities xi, yi, we have the total number of occurrences such that

given xi−1 = yi−1 then yi 6= xi and yi, xi are adjacent is λ · r. So:

P1,2 =
λ · r
r2

. (3.6)
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3. From state S1 to state S3, P1,3.

Each vertex yi has λ common neighbours with yi−1 and so has r − λ − 1 that

are not neighbours of yi−1. So each of the r neighbours yi of yi−1 contribute

r− λ− 1 pairs xi, yi such that xi 6= yi and xi, yi are non-adjacent. Therefore the

total number of occurrences such that given state S1 then xi 6= yi and xi, yi are

non-adjacent is r(r − λ− 1). So:

P1,3 =
r(r − λ− 1)

r2
. (3.7)

We now derive the equations for the transition from state S2: P2,k, k = {1, 2, 3}.

In the state S2 we have the following. Given xi−1, yi−1 such that xi−1 6= yi−1 and

xi−1, yi−1 are adjacent. Then xi−1 has λ vertices common with yi−1.

1. From state S2 to state S1.

Let xi−1, yi−1 be in state S2: xi−1 6= yi−1 and xi−1, yi−1 are adjacent. Then xi−1

has λ vertices common with yi−1. Then the total number of occurrences xi, yi

such that xi = yi is λ. Therefore the probability of transitioning from state S2 to

state S1 is:

P2,1 =
λ

r2
. (3.8)

2. From state S2 to state S2.

Suppose we are given xi−1, yi−1 in state S2. Here we consider three cases after

choosing yi ∈ N(yi−1) and count the pairs xi, yi, with xi ∈ N(xi−1) that satisfy

the condition of transitioning to state S2: yi ∈ N(yi−1) and yi = xi−1; yi ∈

N(yi−1), yi ∈ N(xi−1) and yi 6= xi−1; yi ∈ N(yi−1), yi /∈ N(xi−1) and yi 6= xi−1.

There is a vertex yi ∈ N(yi−1) such that yi = xi−1 and thus we have r pairs xi, yi

that are distinct and adjacent.

Next consider vertex yi ∈ N(xi−1) with yi 6= xi−1. Then yi, xi−1 have λ vertices

in common. So, there are λ vertices xi ∈ N(xi−1) such that yi 6= xi and yi, xi
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are adjacent. Now, since xi−1, yi−1 have λ vertices in common for being adjacent

vertices, then there are λ vertices yi ∈ N(yi−1) such that yi ∈ N(xi−1). Then

there are λ2 pairs xi, yi that are distinct and adjacent.

Now consider yi /∈ N(xi−1) and yi 6= xi−1. Then yi and xi−1 have µ vertices

in common in their neighbourhood. That is, there are µ vertices xi such that

yi 6= xi and yi, xi are adjacent. Then we have in total (r − λ− 1) · µ pairs xi, yi

that are distinct and adjacent.

Given xi−1, yi−1 in state S2, the total number of occurrences of xi, yi such that

yi 6= xi and yi, xi are adjacent is:

r + λ2 + (r − λ− 1) · µ.

The probability of transitioning from state S2 to state S2 is:

P2,2 =
r + λ2 + (r − λ− 1) · µ

r2
. (3.9)

3. From state S2 to state S3.

Suppose we are given xi−1, yi−1 in state S2. Here we consider two cases after

choosing yi ∈ N(yi−1) and count the pairs xi, yi, with xi ∈ N(xi−1) that satisfy

the condition of transitioning to state S3: yi ∈ N(yi−1) and yi ∈ N(xi−1); yi ∈

N(yi−1) and yi /∈ N(xi−1).

Consider yi ∈ N(xi−1). We have a pair xi, yi such yi = xi. Next, we know the

pair yi, xi−1 have λ vertices in common in their neighbourhood. Then we have λ

pairs xi, yi that are distinct and adjacent. So, r − λ − 1 pairs xi, yi are distinct

and non-adjacent. However, there are λ vertices yi such that yi ∈ N(xi−1). Then

the total number of occurrences of xi, yi such that yi ∈ N(xi−1), yi 6= xi and

xi, yi are non-adjacent is (r − λ− 1) · λ.

Next consider yi /∈ N(xi−1). The pair yi, xi−1 have µ vertices in common and
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(r − µ) not in common in their neighbourhood. There are r − λ − 1 vertices yi

such that yi /∈ N(xi−1). Then the total number of occurrences xi, yi such that

yi /∈ N(xi−1), yi 6= xi and yi, xi are non-adjacent is (r − λ− 1) · (r − µ).

Given the state S2, the total number of pairs xi, yi such that yi 6= xi and yi, xi

are non-adjacent is:

(r − λ− 1) · λ+ (r − λ− 1) · (r − µ) = (r − λ− 1) · (λ+ (r − µ)).

The probability of transitioning from state S2 to state S3 is:

P2,3 =
(r − λ− 1) · (λ+ (r − µ))

r2
. (3.10)

We now derive the equations for the transition from state S3: P3,k, k = {1, 2, 3}.

1. From state S3 to state S1.

Consider yi ∈ N(xi−1), there is a pair xi, yi such that yi = xi. Now, the vertices

yi−1 and xi−1 have µ vertices in common in their neighbourhood. So, there are

µ vertices yi such that yi ∈ N(xi−1). Therefore, given xi−1, yi−1 in state S3, the

total number of occurrences xi, yi such that xi = yi is µ.

So, the probability of transitioning from state S3 to state S1 is:

P3,1 =
µ

r2
. (3.11)

2. From state S3 to state S2.

Suppose we are given xi−1, yi−1 in state S3. Here we consider two cases after

choosing yi ∈ N(yi−1) and count the pairs xi, yi, with xi ∈ N(xi−1) that satisfy

the condition of transitioning to state S2: yi ∈ N(yi−1) and yi ∈ N(xi−1); yi ∈

N(yi−1) and yi /∈ N(xi−1).
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Consider yi ∈ N(xi−1). The vertices yi, xi−1 have λ common vertices in their

neighbourhoods. Then there are λ pairs xi, yi such that xi, yi are distinct and

adjacent. Now, the vertices yi, xi−1 have µ common vertices in their neighbour-

hoods. Therefore, the total number of occurrences xi, yi such that yi ∈ N(xi−1),

yi 6= xi and yi, xi are adjacent is λ · µ.

Consider yi /∈ N(xi−1). The vertices yi, xi−1 have µ vertices in their neighbour-

hoods. So there are r − µ vertices yi such that yi /∈ N(xi−1). The total number

of occurrences xi, yi such that yi /∈ N(xi−1), yi 6= xi and yi, xi are adjacent is

(r − µ) · µ.

Therefore, given the state S3, the total number of pairs xi, yi such that yi 6= xi

and yi, xi are adjacent is:

λ · µ+ (r − µ) · µ.

The probability of transitioning from the state S3 to the state S2 is:

P3,2 =
λ · µ+ (r − µ) · µ

r2
. (3.12)

3. From state S3 to state S3.

Suppose we are given xi−1, yi−1 in state S3. Here we consider two cases after

choosing yi ∈ N(yi−1) and count the pairs xi, yi, with xi ∈ N(xi−1) that satisfy

the condition of transitioning to state S3: yi ∈ N(yi−1) and yi ∈ N(xi−1); yi ∈

N(yi−1) and yi /∈ N(xi−1).

Consider yi ∈ N(xi−1). There is a pair xi, yi such that yi = xi. We know that

the vertices yi, xi−1 have λ common vertices in their neighbourhoods. Therefore,

we have r−λ− 1 pairs xi, yi where yi 6= xi and yi, xi are non-adjacent. Now, the

vertices yi, xi−1 have µ common vertices in their neighbourhoods. So the total

number of pairs xi, yi such that yi ∈ N(xi−1), yi 6= xi and yi, xi are non-adjacent

is (r − λ− 1) · µ.
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Consider yi /∈ N(xi−1). The vertices yi, xi−1 have µ and r − µ common and not

common vertices respectively in their neighbourhoods. We have r − µ vertices

yi such that yi /∈ N(xi−1). So, the total number of pairs xi, yi such that yi /∈

N(xi−1), yi 6= xi and yi, xi are non-adjacent is (r − µ)2.

Therefore, given the state S3, the total number of pairs xi, yi such that yi 6= xi

and yi, xi are non-adjacent is:

(r − λ− 1) · µ+ (r − µ)2.

The probability of transitioning from state S3 to state S3 is:

P3,3 =
(r − λ− 1) · µ+ (r − µ)2

r2
. (3.13)

We can now put together the transition matrix M as:

M =
1

r2


r λr r(r − λ− 1)

λ r + λ2 + (r − λ− 1)µ (r − λ− 1) · (λ+ (r − µ))

µ λ · µ+ (r − µ) · µ (r − λ− 1)µ+ (r − µ)2

 . (3.14)

Each row of M sum up to 1.

We now determine the initial distribution of the states.

1. The initial probability of being in state S1: Need to find the probability of ran-

domly picking a pair of vertices x0, y0 such that x0 = y0.

Pick a vertex x0 ∈ V at random. There is one way of picking y0 ∈ V such that

x0 = y0. Then,

Pr(x0 = y0) =
1

m
. (3.15)

2. The initial probability of being in state S2: Need to find the probability of ran-
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domly picking a pair of vertices x0, y0 such that x0 6= y0 and x0, y0 are adjacent.

Pick a vertex x0 ∈ V at random. There are r vertices y0 ∈ N(x0) with x0 6= y0,

therefore there are r choices of y0 ∈ V such that x0 6= y0 and x0, y0 are adjacent.

Then,

Pr(x0 6= y0 and adjacent) =
r

m
. (3.16)

3. The initial probability of being in state S3: Need to find the probability of ran-

domly picking a pair of vertices x0, y0 such that x0 6= y0 and x0, y0 are non-

adjacent.

Pick a vertex x0 ∈ V at random. Of the m vertices in V there are m − r − 1

vertices y0 such that y0 /∈ N(x0) and x0 6= y0. Then,

Pr(x0 6= y0 and non-adjacent) =
m− r − 1

m
. (3.17)

Let π0 denote the 1× 3 matrix where the jth entry is the initial probability that a

pair of vertices x0, y0 is in state Sj , j = 1, 2, 3. That is:

π0 =

(
1
m

r
m

m−r−1
m

)
. (3.18)

The probability that xi, yi, 1 ≤ i ≤ v− 1, are in state Sj , j = 1, 2, 3, is given by the

jth entry of the matrix π0 ·M i. In particular, the probability that the pair of random

walks X,Y will visit the same vertex at time slot i, Pr(xi = yi), 1 ≤ i ≤ v− 1, is given

by the first entry of the matrix π0 ·M i.

Lemma 3.2.9. Let G be an (m, r, λ, µ)-strongly regular graph. The transition and the

initial probabilities matrices of G satisfy π0 ·M i = π0

Proof. The parameters of G satisfy [15]:

(m− r − 1)µ = r(r − λ− 1). (3.19)
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Consider M and π0 given in (3.14) and (3.18) respectively. Then we compute π0 ·M .

The 1st entry of π0 ·M is:

1

m
· r
r2

+
r

m
· λ
r2

+
m− r − 1

m
· µ
r2

=
1

m
·
(
r

r2
+
rλ

r2
+
r(r − λ− 1)

r2

)
=

1

m
·
(
r + rλ+ r2 − rλ− r

r2

)
=

1

m
. (3.20)

The 2nd entry of π0 ·M is:

1

m
· rλ
r2

+
r

m
· (r + λ2 + (r − λ− 1)µ)

r2
+
m− r − 1

m
· λµ+ (r − µ)µ

r2

r

m

(
λ

r2
+
r + λ2 + (r − λ− 1)µ

r2
+
λ(r − λ− 1) + (r − µ)(r − λ− 1)

r2

)
=

r

m
. (3.21)

Finally, the 3rd entry of π0 ·M is:

1

m
· r(r − λ− 1)

r2
+

r

m
·
(

(r − λ− 1)(r + λ− µ)

r2

)
+
m− r − 1

m
·
(

(r − λ− 1)µ+ (r − µ)2

r2

)
=

1

m
· (m− r − 1)µ

r2
+

1

m
·
(

(m− r − 1)µ(r + λ− µ)

r2

)
+
m− r − 1

m
·
(

(r − λ− 1)µ+ (r − µ)2

r2

)
=
m− r − 1

m
·
(
µ

r2
+
µ(r + λ− µ)

r2
+

(r − λ− 1)µ+ (r − µ)2

r2

)
=
m− r − 1

m
. (3.22)

Therefore π0 ·M = π0. By the associative property of matrices we have π0 ·M i =

π0.

Lemma 3.2.10. Let G be an (m, r, λ, µ)-strongly regular graph. The probability Pr(xi =
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yi) that a pair of random walks X,Y will visit the same vertex at time slot i is:

Pr(xi = yi) =
1

m
, 0 ≤ i ≤ v − 1. (3.23)

Let pi = Pr(xi = yi) and H be the number of collisions between a pair of random

FH sequences X and Y . The probability of the event H = h is:

Pr(H = h) =

(
v

h

)
phi (1− pi)v−h (3.24)

The expected number of collisions between any two random sequences is given by:

E(H) =
v∑

h=0

h · Pr(H = h), (3.25)

where Pr[H = h] is provided by Equation (3.24).

Example 3.2.11. Consider a (9, 4, 1, 2)-strongly-regular graph G = (V,E) [25]. Con-

sider the set S of all random walks of length 10 on G, a (10, 9 × 49, 9)-FHS. For any

two random FH sequences X,Y , on G we have the following.

The initial probabilities matrix π0 is:

π0 =

(
1/9 4/9 4/9

)
.

The probability Pr(xi = yi), that a pair of random walks X,Y will visit the same vertex

at time slot i is:

Pr(xi = yi) =
1

9
. (3.26)

Using Equation (3.25), the expected number of collisions between any pair of random

walks on G is E(H) = 1.111.
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Hamming group correlation

Let S be a (v,m× rv−1,m)-FHS. We estimate the Hamming group correlation as,

G(X,U) ≤ wE,

where U ⊆ S, |U| = w, X ∈ S \U and E is the expected Hamming correlation provided

in Equation (3.25). So the w-throughput of X is,

ρw(X,U) ≥ 1− wE

v
.

An estimation of the worst-case w-throughput of S can be obtained in a similar

manner,

ρ̂w(S) = min
V⊆S

{
min
X∈V
{ρw(X,V \ {X})}

}
= 1− wE

v
,

where X ∈ V, V = U ∪ {X} and ρw(X,V \ {X}) = 1− G(X,V\{X})
v .

3.2.4 Jamming resistance

Recall the (θ1, θ2)-adaptive jammer introduced in Section 2.5. The jammer eavesdrops

on θ1m channels 0 ≤ θ1 ≤ 1, and jams on θ2m channels 0 ≤ θ2 < 1. It changes its

channel jamming strategy according to information it can acquire from eavesdropping.

We now analyse how a jammer’s behaviour changes with respect to information of

the channel it was eavesdropping on a particular time slot. We consider the follow-

ing: eavesdropping on an active or inactive channel consecutively, and when a jammer

switches from eavesdropping on an active to an inactive channel. We consider the

situation where there is only one active FH sequence in use. We will provide details

of the case of more than one active FH sequence, for an FH scheme in Chapter 6,
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in the future work section. Now, introducing a (1/m, 1/m)-adaptive jammer in our

(v,m × rv−1,m)-FHS, S = {Xi : 0 ≤ i ≤ k − 1}, Xi a random walk on a graph, we

have the following:

J1 A jammer that eavesdrops on an active channel consecutively: At any time slot t

that a jammer has eavesdropped on an active channel, this jammer removes all

but the FH sequence containing the active channel at that particular time slot.

Let |S∗t | denote the size of the search space of a jammer at time slot t. With

respect to the (v,m× rv−1,m)-FHS properties described in Section 3.2.2, at time

slot t = 0 the jammer has mrv−1 = |S| = |S∗0 | FH sequences in its search space.

At any time slot t 6= 0, the jammer has rv−t. Therefore, on the last time slot

t = v − 1 there are r FH sequences in a jammer’s. So, the jammer does not

identify the active FH sequence.

J2 A jammer that eavesdrops on an inactive channel consecutively: At t = 0 we have

|S∗0 | = m · rv−1, all the FH sequences in the FH scheme. Suppose at t = 0

this jammer eavesdropped on channel f0. Recall each channel appears rv−1 at

each time slot in the FH scheme. So, discarding all inactive FH sequences with

xj0 = f0, 0 ≤ j ≤ k − 1 the jammer has |S∗1 | = (m − 1) · rv−1. Now suppose it

eavesdrops on an inactive channel f1 at time slot t = 1. If f1 /∈ N (f0) then f1

appears on rv−1 FH sequences in S∗1 . Otherwise, if f1 ∈ N (f0) then f1 appears

on rv−1 − rv−2 FH sequences in S∗1 . So, at any time slot t 6= 0, the jammer has

|S∗| ≤ mrv−1 −∑t
i=1 r

v−i. For m ≥ 2, r ≥ 2 then mrv−1 −∑t
i=1 r

v−i 6= 1 at

any time slot t, 1 ≤ t ≤ v − 1 and thus a jammer can not identify the active FH

sequence.

J3 Mixed fate jammer: From the discussions on J1 and J2 a jammer that eavesdrops

on an active channel consecutively reduces the search space at least as quickly as

when it eavesdrops on an inactive channel consecutively. Further, neither of these

jamming strategies enables a jammer to identify the active FH sequence. Now,
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suppose we have a change of fate from eavesdropping an active FH sequence to

that which is inactive. Then we still have rv−t ≤ |S∗| ≤ mrv−1 −∑t
i=1 r

v−i at

any time slot t, 1 ≤ t ≤ v − 1. That is a change of fate will not make a jammer

have a single FH sequence in |S∗|: the active FH sequence is not identified.

We conclude with the following proposition.

Proposition 3.2.12. Consider the set of all random walks as a (v,m× rv−1,m)-FHS

with one active FH sequence. Let m ≥ 2, r ≥ 2. At any time slot t, 1 ≤ t ≤ v − 1

the jammer’s search space S∗ has the following number of FH sequences rv−t ≤ |S∗| ≤

mrv−1 −∑t
i=1 r

v−i and does not identify the active FH sequence.

3.3 Difference packing

In this section we consider the construction by Fuji-Hara et al. [35, Section 4]. It is a

combinatorial construction based on difference packing and cyclic resolvable balanced

incomplete block designs. We point out that the authors provide several combinatorial

constructions of FH sequences and we only consider one of them in this section. Ng

and Paterson [70] showed that another construction [35, Section 3], based on projec-

tive geometry, provide the Lempel-Greenberger algebraic m-sequence transformation

sequences. The Lempel-Greenberger sequences will be considered in Section 3.4.

3.3.1 Preliminaries

We first introduce difference packing, a combinatorial object that will be used to obtain

an FH sequence.

Definition 3.3.1. A collection P = {B0, B1, . . . , Bm−1} of subsets of Zv form a dif-

ference packing over Zv, denoted m-DP(v,K, λ), where K = {|Bi| : 0 ≤ i ≤ m− 1},

if |{b − b′ (mod v) : b 6= b′, (b, b′) ∈ Bi × Bi, 0 ≤ i ≤ m − 1}| ≤ λ. It is denoted as

m-DP(v, κ, λ) when |Bi| = κ for all i = 0, . . . ,m− 1.
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A collection P is called a difference family when among the differences {b−b′ (mod v) :

b, b′ ∈ Bi, b 6= b′, i = 0, . . . ,m− 1} each nonzero g ∈ Zv occurs exactly λ times and it is

denoted (v,K, λ)-difference family, where K is as previously defined in Definition 3.3.1.

Definition 3.3.2. A difference packing over Zv that partitions Zv is called a partition

type difference packing.

Let X = (x0, x1, . . . , xv−1) be an FH sequence over F , |F| = m. Define m disjoint

sets B0, B1, . . . , Bm−1 using X, where each Bi is the support of i, i ∈ F , corresponding

to

Bi = suppX(i) = {t : xt = i, 0 ≤ t ≤ v − 1}. (3.27)

That is, each Bi specifies the position on which the frequency channel i appears in the

FH sequence X.

Next, we define the rotational closure of an FH scheme.

Let βiX denote the cyclic shift of an FH sequence X to the right by i places:

βiX = (xv−i, xv−i+1, . . . , xv−1x0, x1, . . . xv−i−2, xv−i−1). (3.28)

We have βiX = βi(xt) = (xt+i) and βi
′
(βiX) = βi

′+iX, i, i′ ∈ {0, 1, . . . , v − 1}, where

the operations of both the exponents and indices are conducted modulo v.

Definition 3.3.3. Let X = (xt)
v−1
t=0 be an FH sequence over F , |F| = m. Then X

form a (v, 1,m)-FHS, S. The rotational closure of S is the set:

⇔
S= {βiX : 0 ≤ i ≤ v − 1},

where βiX is as defined by Equation (3.28).

When we consider the rotational closure of a (v, 1,m)-FHS, S from Definition 3.3.3

as an FH scheme then we call
⇔
S a rotational closure (v, v,m)-FHS.

Fuji-Hara [35], Theorem 2.3, provide a correspondence between FH sequences and
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partition type difference packing. The authors provide several combinatorial construc-

tions of partition type difference packings and thus construct FH schemes.

Theorem 3.3.4 (Theorem 2.3, [35]). There exists an FH sequence of length v over a

frequency library of size m with maximum Hamming auto-correlation λ if and only if

there exists a partition type m-DP(v,K, λ), P = {B0, . . . , Bm−1}, over Zv, where Bi,

0 ≤ i ≤ m− 1, is the support of frequency channel i, K = {|Bi| : 0 ≤ i ≤ m− 1}.

To discuss the construction of a partition type m-DP(v,K, λ) we first need to intro-

duce block designs. We provide an introduction here to block designs and the relevant

preliminaries which will be needed for the construction considered in this section. For

references on block designs see [7, 12, 25, 97].

Definition 3.3.5. A design is a pair (X , B) such that the following properties are

satisfied:

1. X is a finite set of elements called points, and

2. B is a collection of nonempty subsets of X called blocks.

We are interested in balanced incomplete block designs.

Definition 3.3.6. Let v, κ, and λ be positive integers such that v > κ ≥ 2. A 2-

(v, κ, λ)-balanced incomplete block design, denoted 2-(v, κ, λ)-BIBD, is a design

(X ,B) such that the following properties are satisfied:

1. |X | = v,

2. each block contain exactly κ points, and

3. every pair of distinct points is contained in exactly λ blocks.

A 2-(v, κ, λ)-BIBD with λ = 1 is called a Steiner design. For simplicity we will

denote a 2-(v, κ, λ)-BIBD as (v, κ, λ)-BIBD. We define an automorphism on a (v, κ, λ)-

BIBD as follows.
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Definition 3.3.7. Suppose (X ,B) is a design. If there exists a bijection τ : X → X

such that if we apply τ to the elements of any block of B we obtain a block of B again

then the bijection τ is called an automorphism. The automorphism τ is a permutation

of X and B the multiset of blocks can be written as:

B = {{τ(x) : x ∈ B} : B ∈ B} ,

where {τ(x) : x ∈ B} denote a block in B.

The mapping τ(x) = x, x ∈ B, B ∈ B is a trivial automorphism.

In the construction considered in this section we will use a cyclic BIBD.

Definition 3.3.8. A (v, κ, λ)-BIBD design with an automorphism τ of order v is called

a cyclic (v, κ, λ)-BIBD.

The set of points of a cyclic (v, κ, λ)-BIBD can be identified with Zv. In this case

the BIBD has an automorphism τ : i → i + 1 (mod v). The orbit containing a block

B ∈ B is the set of the distinct blocks:

τ i(B) = B + i = {b1 + i, . . . , bκ + i} (mod v),

for i ∈ Zv. We sometimes denote an orbit containing a block B as Orb(B). The

development of a block B is the orbit containing the block. The length of an orbit

is its cardinality. A base block is a block chosen arbitrarily from an orbit. An orbit

containing a block of the form:

v

κ
Zκ =

{
0,
v

κ
, . . . , (κ− 1)

v

κ

}
, (3.29)

is called a regular short orbit. A base block of Equation (3.29) generate v
κ blocks that

are pairwise disjoint.

Consider a BIBD (X ,B). We now define partitions of the blocks called resolution

classes where each resolution class contains v distinct points: it forms a set of points X .
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This gets us closer to the correspondence between BIBD and partition type difference

packings.

Definition 3.3.9. A (v, κ, λ)-BIBD, (V,B), is resolvable if the blocks can be arranged

into r classes R0, . . . , Rr−1 such that the b
r = v

κ blocks ( where b = |B|) of each class are

disjoint and every point of point set V is contained in exactly one block in each class.

The classes Ri are called resolution classes. The set of resolution classes, R =

{R0, . . . , Rr−1}, is called a resolution.

Definition 3.3.10. Suppose we have a cyclic resolvable BIBD, (V,B), with resolution

R = {R0, . . . , Rr−1}. Consider a resolution class Ri ∈ R and let Ri + 1 = {B +

1 (mod V )|B ∈ Ri}. If R + 1 = {R0 + 1, . . . , Rr−1 + 1} = R then the design is called

a cyclically resolvable BIBD, denoted CRB-(v, κ, λ).

A necessary and sufficient condition for the existence of a CRB-(v, κ, 1) is that

v ≡ 1, κ (mod κ(κ− 1)), [61]. A CRB-(v, κ, 1) with v ≡ 1 (mod κ(κ− 1)) has no short

orbit while a CRB-(v, κ, 1) with v ≡ κ (mod κ(κ− 1)) has a single regular short orbit.

It is known [61] that a CRB-(v, κ, 1) with v ≡ κ (mod κ(κ− 1)) consists of v−κ
κ(κ−1) full

orbits and a single regular short orbit.

Example 3.3.11. The following is a CRB-(21, 3, 1):

R0 : {1, 4, 16} {8, 11, 2} {15, 18, 9} {19, 20, 3} {5, 6, 10} {12, 13, 17} {0, 7, 14}

R1 : {2, 5, 17} {9, 12, 3} {16, 19, 10} {20, 0, 4} {6, 7, 11} {13, 14, 18} {1, 8, 15}

R2 : {3, 6, 18} {10, 13, 4} {17, 20, 11} {0, 1, 5} {7, 8, 12} {14, 15, 19} {2, 9, 16}

R3 : {4, 7, 19} {11, 14, 5} {18, 0, 12} {1, 2, 6} {8, 9, 13} {15, 16, 20} {3, 10, 17}

R4 : {5, 8, 20} {12, 15, 6} {19, 1, 13} {2, 3, 7} {9, 10, 14} {16, 17, 0} {4, 11, 18}

R5 : {6, 9, 0} {13, 16, 7} {20, 2, 14} {3, 4, 8} {10, 11, 15} {17, 18, 1} {5, 12, 19}

R6 : {7, 10, 1} {14, 17, 8} {0, 3, 15} {4, 5, 9} {11, 12, 16} {18, 19, 2} {6, 13, 20}
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R7 : {1, 11, 9} {4, 14, 12} {7, 17, 15} {10, 20, 18} {13, 2, 0} {16, 5, 3} {19, 8, 6}

R8 : {2, 12, 10} {5, 15, 13} {8, 18, 16} {11, 0, 19} {14, 3, 1} {17, 6, 4} {20, 9, 7}

R9 : {3, 13, 11} {6, 16, 14} {9, 19, 17} {12, 1, 20} {15, 4, 2} {18, 7, 5} {0, 10, 8}

There are 10 resolution classes. Each box represent an orbit. So there are three full

orbits and one regular short orbit.

3.3.2 Construction of FH sequences using a difference packing

In this section we consider the construction of FH sequences proposed by Fuji-Hara

et al. [35] which use a CRB-(κm, κ, 1). We refer to Mishima and Jimbo [67] for the

specific type of CRB-(κm, κ, 1), simply referred to as type (T2) in the discussion of

this section. The classification of the CRB-(κm, κ, 1) made by Mishimo and Jimbo is

according to the relationship between the regular short orbit and the resolution classes

of the CRB-(κm, κ, 1). In particular, a type (T2) CRB-(κm, κ, 1) has a special property

that every block in a regular short orbit belongs to a distinct resolution class.

Example 3.3.12. The CRB-(21, 3, 1) of Example 3.3.11 is of type (T2).

Construction 3.3.13 (Construction 4.1, [35]). If there exists a CRB-(κm, κ, 1) of

type (T2), then there exists a rotational closure (κm, κm,m)-FHS with maximum out-

of-phase Hamming auto-correlation κ (see Definition 2.2.4), optimal in the Lempel-

Greenberger bound, derived from a partition type m-DP(κm, κ, κ) over Zκm.

Proof. A CRB-(v, κ, 1) consists of v−k
k(k−1) full orbits and a single regular short orbit.

Suppose we have a CRB-(v, κ, 1) of type (T2). We know that a CRB-(v, κ, 1) of this

type has the property that each block in the regular short block orbit is in a distinct

resolution class. There are m such resolution classes. The blocks of these m resolution

classes make up (m − 1)/κ full orbits and a single regular short orbit. Each of these

resolution classes with a block from a regular short orbit contain κ blocks from each of

the full orbits and a single block from the regular short orbit.
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Let B be a base block for an orbit Orb(B). Then the set of differences {b −

b′ (mod v) : b, b′ ∈ Bi} is the same for all Bi ∈ Orb(B). So, if each resolution class with

a block from a regular short orbit contain κ blocks from each of the full orbits and a

single block from the regular short orbit then each b − b′ ∈ Zv \ {0}, where b, b′ ∈ Bi
appears at most κ times in B0, . . . , Bv/κ. In particular some d = b − b′ ∈ Zv \ {0}

appears either exactly κ times from the κ blocks in a full orbit or appears once from

the block in the regular short orbit.

So, an arbitrary resolution class in a CRB-(κm, κ, 1) with a block from the regular

short orbit can be viewed as a partition type m-DP(κm, κ, κ). By Theorem 3.3.4 an

optimal rotational closure (κm, κm,m)-FHS can be derived from a partition type m-

DP(κm, κ, κ).

Example 3.3.14. Consider the CRB-(21, 3, 1) of Example 3.3.11. Any of the reso-

lution classes R0, R1, . . . , R6 can be taken as a partition type 7-DP(21, 3, 3) and thus

obtain a rotational closure (21, 21, 7)-FHS with maximum Hamming autocorrelation of

3.

Consider R0 as a 7-DP(21, 3, 3) over Z21. Then we have the following FH sequence

over Z7:

(7, 1, 2, 4, 1, 5, 5, 7, 2, 3, 5, 2, 6, 6, 7, 3, 1, 6, 3, 4, 4).

3.3.3 Correlation

Construction 3.3.13 provides an FH sequence of length κm over F , |F| = m, whose

maximum out-of-phase Hamming auto-correlation is κ. As was done in the previous

Construction 3.2.6 using random walks on a graph, we can estimate the Hamming

group correlation of a rotational closure (κm, κm,m)-FHS constructed using a CRB-

(κm, κ, 1) as:

G(X,U) ≤ wκ,
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where U ⊆ S, |U| = w and X ∈ S \ U . The w-throughput of an FH sequence X is:

ρw(X,U) = 1− G(X,U)

κm

≥ 1− wκ

κm

= 1− w

m
.

Likewise the worst-case w-throughput of the scheme is:

ρ̂w(S) = min
V⊆S

{
min
X∈V
{ρw(X,V \ {X})}

}
= 1− w

m
.

3.3.4 Jamming resistance

In this section we consider the presence of a ( 1
m ,

1
m)-adaptive jammer in a (κm, κm,m)-

FHS. We analyse the FH scheme’s resistance to a jammer with respect to the jammer’s

activity at a time slot: a jammer that listens on an active FH channel at each time

slot consecutively, listens on an inactive channel continuously and finally conclude

with what happens when the jammer switches from listening on an active channel to

listening on an inactive channel, and vice versa, between two consecutive time slots. We

consider the situation where there is only one active FH sequence in use. We determine

how long it takes a ( 1
m ,

1
m)-adaptive jammer to identify the active FH sequence in the

(κm, κm,m)-FHS.

� Lucky jammer at every time slot consecutively: Recall a CRB-(κm, κ, 1) of type

(T2) has the following property. A resolution class contains κ blocks from a

full orbit and a single block from a regular short orbit. Suppose that at time 0

a jammer listens on an active channel i, whose corresponding block of position

indices Bi belongs to the regular short orbit. At the first time slot 0, an active

channel i will be on κ FH sequences (the size of the blocks Bi, 0 ≤ i ≤ m− 1, is
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κ it means each channel i ∈ F appear κ times on the constructed FH sequence

and the FH scheme take all cyclic shifts of it). Then at time 1 all the frequency

channels appearing on the κ FH sequences with channel i from the previous time

slot are distinct. Next, suppose that at time 0 a jammer listens on an active

channel i whose block Bi belong to a full orbit. Further, suppose the resolution

class contain the blocks Bi + t, Bi + (t + 1), . . . , Bi + (t + κ − 1). Then for κ

time slots the jammer will be eavesdropping on an active channel appearing on

κ FH sequences. Therefore it needs κ + 1 time slots to identify the active FH

sequence. In conclusion, the worst case scenario for our FH scheme is that this

type of jammer only needs to listen on two time slots to identify the active FH

sequence.

� Unlucky jammer consecutively at each time slot. At any time slot t this jammer

will have |S∗t | = κm−κt, 1 ≤ t ≤ m− 1, FH sequences in its search space. So, to

force the jammer to be as fast as the jammer that listens on an active channels

consecutively at each time slot, we should have κm− κt active FH sequences for

2 ≤ t ≤ m− 1.

� Mixed fate jammer: If we have only one active FH sequence and such that 1 ≤

κm − κt, 2 ≤ t ≤ m − 1, then a mixed fate jammer will take at least two time

slots to identify the active FH sequence. A mixed fate jammer was defined in

terms of a jammer’s luck changing from eavesdropping on an active channel to

that which is inactive or vice versa.

3.4 Linear recurring sequences

In this section we consider an algebraic construction of an FH scheme provided by

Lempel and Greenberger [55]. In this construction, a transformation of a maximum

length sequence (m-sequence) provide optimal FH sequences in the Lempel-Greenberger

bound (2.6). As described in Section 1.2.1 this bound and the analysis of the perfor-
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mance of the FH sequences constructed by Lempel and Greenberger is based on Ham-

ming correlation. We explore the performance of this FH scheme in terms of group-wise

mutual interference. Further, we consider the effect of a (θ1, θ2)-adaptive jammer in

the FH scheme.

3.4.1 Construction of m-sequences

We start by describing linear feedback shift registers, which are the building blocks of

m-sequences. A linear feedback shift register (LFSR) is a device whose output value

depends on a preceding input called the state. An LFSR can be used to generate a

sequence satisfying a linear recurrence relation.

Definition 3.4.1. Let p be a prime power. A sequence (xt) of length pn − 1, defined

over GF (p) satisfying the n-order linear recurring condition,

xt+n = c0xt + c1xt+1 + · · ·+ cn−1xt+n−1, ci ∈ GF (p), cn−1 6= 0,

is called a maximum length sequence denoted m-sequence.

To generate an m-sequence of order n over a finite field GF (p) using a linear re-

curring sequence we need an initial state B0 = (b0, b1, . . . , bn−1) 6= (0, 0, . . . , 0), where

bi ∈ GF (p), 0 ≤ i ≤ n − 1. Note that if B0 = (b0, b1, . . . , bn−1) = (0, 0, . . . , 0) then we

get an all zero sequence since each output is a linear function of the previous state. An

m-sequence has a maximum length of pn− 1 with every n-state appearing once except

the all zero n-state.

A formal construction of an m-sequence is as follows. Let p be a prime number.

Let GF (p) be a finite field of p elements. An m-sequence of degree n and period

v = pn − 1 is provided by:

B = {bj}, (3.30)
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where 0 ≤ j ≤ v − 1 and bj satisfies the linear recurrence relation:

n∑
i=0

fibi+j = 0,

where the coefficients are taken from the primitive polynomial over GF (p):

f(z) =
n∑
i=0

fiz
i.

Figure 3.3 depicts a feedback shift register (it is linear if the feedback function f is

linear):

bj+n−1 bj+n−2 . . . bj+1 bj

f(bj , bj+1, . . . , bj+n−2, bj+n−1)

Figure 3.3: A feedback shift register.

Example 3.4.2. Consider f(z) = 1 + 2z2 + z3, a primitive polynomial over F3. Then

the linear recurrence of this primitive polynomial is:

bj + 2bj+2 + bj+3 = 0. (3.31)

Expressing bj+3 in Equation (3.31) in terms of preceding terms:

bj+3 = bj+2 + 2bj .

Let the string 100 be an initial state, that is b2 = 1, b1 = 0, b0 = 0. The m-sequence

over F3 of degree 3 and period 26 is shown in Table 3.1:

90



3.4. Linear recurring sequences 3. Investigating existing FH schemes

Time step, j State, (bj+2, bj+1, bj) bj

0 100 0

1 110 0

2 111 1

3 011 1

4 201 1

5 120 0

6 112 2

7 211 1

8 121 1

9 012 2

10 101 1

11 010 0

12 001 1

13 200 0

14 220 0

15 222 2

16 022 2

17 102 2

18 210 0

19 221 1

20 122 2

21 212 2

22 021 1

23 202 2

24 020 0

25 002 2

Table 3.1: Generating m-sequence of degree 3, period 26.
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The m-sequence generated in Table 3.1 is:

X = (00111021121010022201221202). (3.32)

Example 3.4.3. Consider f(z) = z2 + 2z + 3, a primitive polynomial over F5. An

m-sequence over F5 of degree 2 and length 24 with primitive polynomial f(z) is:

X = (013144134322042411021233). (3.33)

3.4.2 Frequency hopping sequence: transform of an m-sequence

We now consider a construction of FH sequences using m-sequences.

Construction 3.4.4. Let p be a prime number, n and v positive integers. Let X =

(x0, . . . , xv−1) be an m-sequence of degree n and length v = pn − 1 over a prime field

Zp. Let i be a positive integer such that 1 ≤ i ≤ n. Let Zpi = {0, 1, . . . , pi − 1} and let

Zip be the set of all words of length i over Zp. Let X(t, i) denote the i-tuple of successive

elements in X starting from xt, that is X(t, i) = xt, xt+1, . . . , xt+i−1. Define a sequence

Y = (yt) of length v = pn − 1 over Zpi as the σi-transform of an m-sequence X:

yt = X(t, i)σi =
i−1∑
k=0

xt+kp
k, (3.34)

where 0 ≤ t < v.

The σi-transform Y of an m-sequence X will be denoted by Y = Xσi.

Example 3.4.5. Consider the ternary m-sequence X of Equation (3.32). The σi-

transform, i = 2, 3, of X over Z32 and Z33 respectively are:

Y1 = Xσ2 = (0, 3, 4, 4, 1, 6, 5, 4, 7, 5, 1, 3, 1, 0, 6, 8, 8, 2, 3, 7, 8, 5, 7, 2, 6, 2), (3.35)
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Y2 = Xσ3 = (9, 12, 13, 4, 19, 15, 14, 22, 16, 5, 10, 3, 1, 18, 24, 26, 8, 11, 21, 25, 17, 23, 7, 20, 6, 2).

(3.36)

Construction 3.4.6. Let Y be a σi-transform, 1 ≤ i ≤ n, of an m-sequence of length

v = pn − 1. Then:

S =
⇔
Y , (3.37)

is a rotational closure (pn − 1, pn − 1,m)-FHS, where:

m =

 pi if i < n,

pi − 1 otherwise.

Example 3.4.7. Consider X to be the m-sequence of Equation (3.32). Given Y = Xσ2

of Equation (3.35), then
⇔
Y is a rotational closure (26, 26, 9)-FHS.

3.4.3 Correlation

Let X be an m-sequence of length v = pn − 1 over an alphabet of size p. For i ≥ n,

all the σi transforms of X provide sequences with distinct elements. So, cyclic shifts

of the σi transform sequence for i ≥ n provide an FH scheme which is equivalent to a

Latin square. A Latin square over an alphabet of size v is a square array such that each

symbol occurs exactly once in each row and exactly once in each column. In Section 3.8

we consider a construction of FH sequences which uses Latin squares and they trivially

satisfy the optimality criterion in terms of both Hamming correlation and Hamming

group correlation. Henceforth, we consider i ≤ n.

The multiplicity µX(x) of the i-tuple x = X(t, i) in X is defined as:

µX(x) = |{t : x = X(t, i) in X, 0 ≤ t < v}|.

That is µX(x) denotes the number of distinct positions t, for 0 ≤ t < v, where the

i-tuple x = X(t, i) appears in X.
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Lemma 3.4.8. (Lemple and Greenberger, Lemma 1, [55]). Consider an FH sequence

Y defined over Zpi, the σi transform of an m-sequence X, of length v = pn − 1, where

1 ≤ i ≤ n. Then each frequency fj ∈ Zpi appears the following number of times on Y :

µY (fj) =

 pn−i − 1 if fj = 0,

pn−i if fj 6= 0.
(3.38)

Proof. The proof is based on the fact that an m-sequence X has pn−i distinct n-tuples

x′ = x′0, x
′
1, . . . , x

′
n−1 with x = x′0, x

′
1, . . . , x

′
i−1 and that the all-zero n-tuple does not

exist on X.

Lemma 3.4.9. (Lempel and Greenberger, Lemma 3, [55]). Let Y be an FH sequence

as defined in Construction 3.4.4. Then the Hamming correlation is:

HY Y (t) =

 v if t = 0,

pn−i − 1 if t 6= 0.
(3.39)

Lemma 3.4.10. Let X = (xt) be an m-sequence of length v = pn − 1 over Zp, and let

Y = (yt) be the σi-transform of X, for some i ∈ {0, 1, 2, . . . , n − 1}. Let S =
⇔
Y be a

rotational closure (pn − 1, pn − 1, pi)-FHS. For Yj , Yj′ ∈ S, Yj 6= Yj′, we have:

G(Yj , {Yj′}) = pn−i − 1.

Proof. Consider any two sequences Yj , Yj′ ∈ S, j 6= j′. Then the number of places in
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which Yj and Yj′ are the same is provided by:

G(Yj , {Yj′}) = HYj ,Yj′ (0)

=
v−1∑
k=0

h[yk+j , yk+j′ ]

=

v−1∑
k=0

h[yk, yk+j′−j ]

= HY Y (j′ − j)

= pn−i − 1,

since j 6= j′ and from Equation (3.39), HY Y (t) = pn−i − 1 if t 6= 0. Therefore

G(Yj , {Yj′}) = pn−i − 1.

Theorem 3.4.11. Suppose S =
⇔
Y is a rotational closure (pn−1, pn−1, pi)-FHS, where

Yj is a σi-transform of an m-sequence of length v = pn − 1, 1 ≤ i < n. The worst-case

w-throughput of S is at least

1− w(pn−i − 1)

pn − 1
.

If ρ̂w(S) ≥ 0 then

w ≤ pn − 1

(pn−i − 1)
.

Proof. Suppose U ⊆ S, |U| = w and Yj ∈ S \ U . Then for any Yj′ ∈ U ,

G(Yj , {Yj′}) = pn−i − 1.

Then

G(Yj ,U) ≤ w(pn−i − 1).

The w-throughput of an FH sequence Yj in V, V = U ∪ {Yj} is:

ρw(Yj ,V \ {Yj}) = 1− G(Yj ,V \ {Yj})
v

≥ 1− w(pn−i − 1)

pn − 1
.
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Then the worst-case w-throughput of S is:

ρ̂w(S) = min
V⊆S

{
min
Yj∈V

{ρw(Yj ,V \ {Yj})}
}
,

= 1− w(pn−i − 1)

pn − 1
.

It must be the case that w ≤ pn−1
pn−i−1

, so that ρ̂w(S) ≥ 0.

3.4.4 Jamming resistance

In this section we look at how long it takes a ( 1
m ,

1
m)-adaptive jammer to identify an

active FH sequence in an m-sequence transformation FH scheme of Construction 3.4.6.

We divide the discussion of the jamming resistance of the FH scheme into three

parts. In Proposition 3.4.12 we consider a jammer that is lucky (listens on an active

frequency channel) at each and every time slot consecutively. In Proposition 3.4.13

we consider a jammer that is unlucky (listens on an inactive frequency channel) at

every time slot successively. Finally we conclude on the jamming resistance of the FH

scheme in Theorem 3.4.14. We consider the situation where there is only one active

FH sequence in use.

Proposition 3.4.12. Consider the Lempel-Greenberger FH scheme in Construction 3.4.6.

A jammer that is lucky at each and every time slot takes n− i+ 1 time slots to identify

the active sequence.

Proof. Let X be an m-sequence as previously defined. Without loss of generality we

will consider non-zero i-tuples on m-sequence X.

Consider bj = (bj0 , bj1 , . . . , bji−1), an i-tuple on X. Such an i-tuple appears pn−i

number of times on X if bj is not the zero i-tuple.

Suppose at t = 0 a jammer eavesdrops on an active channel x0 = fj , fj ∈ F , which

is mapped under σi from bj . From the relationship between X and Y , we know that at
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t = 1 a jammer has pn−i sequences in its search space, those with channel fj at t = 0.

The sequences discarded at this stage are inactive FH sequences.

Let bj+1 be the i-tuple succeeding bj on X, that is bj+1 = (bj1 , . . . , bji−1 , bji). There

are pn−i−1 distinct i-tuples bj+1 with bj as the preceding i-tuple. Then a jammer has

pn−i−1 sequences in its search space at time slot t = 2 with an active channel that

corresponds to bj+1 under σi. If we continue in this manner, at t = n− i the jammer

that is lucky at each of the n − i preceding time slots will have FH sequences with

distinct channels mapped from distinct i-tuples bj+n−i = (bn−i, . . . , bn−1).

Therefore a jammer that is lucky at each and every time slot can identify the active

FH sequence in n− i+ 1 time slots.

Proposition 3.4.13. If w+1 ≤ pn−1−∑n−i
j=0(p−1)jpn−i−j, a jammer that is unlucky

at each and every time slot takes at least n− i+ 1 time slots to identify the one active

FH sequence.

Proof. An unlucky jammer as previously described discards only sequences Xj with

inactive frequency channels xt at each time slot t. So,

at t = 0, |S∗0 | = pn − 1,

at t = 1, |S∗1 | = pn − 1− pn−i,

at t = 2, |S∗2 | = pn − 1− pn−i − (p− 1)pn−i−1,

at t = 3, |S∗3 | = pn − 1− pn−i − (p− 1)pn−i−1 − (p− 1)2pn−i−2.

If we continue in this manner such that a jammer has been unlucky at each of the

preceding κ time slots successively, κ ∈ {0, 1, . . . , v − 1} then at t = κ, |S∗κ| = pn − 1−∑κ−1
j=0 (p− 1)jpn−i−j .

If we consider one active FH sequence, then taking 1 ≤ pn−1−∑n−i
j=0(p−1)jpn−i−j

forces a jammer that is unlucky at each of the n− i preceding time slots to take at least

n− i+ 1 time slots, as long as the all lucky jammer (discussed in Proposition 3.4.12),

to identify an active FH sequence.

97



3.4. Linear recurring sequences 3. Investigating existing FH schemes

As discussed by Nyirenda, Ng and Martin [74], a mixed fate jammer will be as fast

as either a jammer that is lucky or one which is unlucky at each and every time slot.

A change in fate does not speed up things up for the (θ1, θ2)-adaptive jammer as it is

forced to behave as an all lucky jammer; that is it can only start jamming if and only

if there is one FH sequence in its search space.

We conclude the discussion of Propositions 3.4.12 and 3.4.13 with Theorem 3.4.14.

Theorem 3.4.14. Consider Y , the σi transform of an m-sequence X of length v =

pn − 1, where 1 ≤ i ≤ n. Consider S =
⇔
Y to be a rotational closure (pn − 1, pn − 1, pi)-

FHS. If we have one active FH sequence and 1 ≤ pn− 1−∑n−i
j=0(m− 1)jpn−i−j, then a

( 1
m ,

1
m)-adaptive jammer will identify an active sequence in at least n− i+ 1 time slots.

Example 3.4.15 illustrate Theorem 3.4.14.

Example 3.4.15. Let X be a ternary m-sequence of Equation (3.32). Let Y be the

σ2-transform of X and S =
⇔
Y be a rotational closure (26, 26, 9)-FHS made up of Y and

all its cyclic shifts. If we have one active FH sequence and since 1 < 26− 3 = 23, then

γv ≥ 2.

Consider a lucky jammer that eavesdrops on an active channel at each time slot

consecutively. Suppose the jammer picks any symbol f on Y , which occurs 3 times

(2 times if f = 0). However, the symbol that comes after f is always distinct. That

is, if f occurs at time t1, t2, t3, the symbols at time t1 + 1, t2 + 1, t3 + 1 are always

distinct. That means we can tell exactly where we are in a shift, that is we can tell

which shifted sequence is being used if we can find two consecutive slots with active

frequency channels.

Now we go further to determine the probability of identifying an active FH sequence

in at least two time slots.

The probability that a jammer’s first guess is active is:

Pr[ first guess is active ] = 1/26.
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Next, the probability that the ( 1
m ,

1
m)-adaptive jammer’s frequency channel guess on the

second time slot is active given that it guessed correctly at the first time slot is:

Pr[ second guess is active | first guess is active ] =

 1/3 if f 6= 0 at t0,

1/2 if f = 0 at t0.

Then the probability of identifying an active FH sequence in two time slots is:

Pr[ determining active sequence in 2 time slots ]

= Pr[ first guess is active ] ∗ Pr[ second guess is active ]

=

 1/26 ∗ 1/3 if f 6= 0 at t0,

1/26 ∗ 1/2 if f = 0 at t0.

That is Pr[ determining active sequence in 2 time slots ] ≥ 1/26 ∗ 1/3.

Therefore if we have one active FH sequence then γv ≥ 2 for a (1/m, 1/m)-adaptive

jammer, m = pi, with probability greater than 1
78 .

We conclude this section with a note on the worst-case w-throughput of a rotational

closure (v, v,m)-FHS based on m-sequences and resistance against a ( 1
m ,

1
m)-adaptive

jammer of an FH scheme. There is a trade-off between the worst-case w-throughput

of an FH scheme, which is an m-transform, and its resistance to a ( 1
m ,

1
m)-adaptive

jammer. From Theorem 3.4.11 we have ρ̂w(S) ≥ 1− w(pn−i−1)
pn−1 . So we would like i large

in order to maximise ρ̂w(S). On the other hand, we have the minimum number of time

slots to resist a ( 1
m ,

1
m)-adaptive jammer as n− i+ 1. Therefore we would like i to be

small so that the FH scheme resists the jammer longer.

3.5 Cyclotomy

In this section we consider the construction of FH schemes via cyclotomy.

The research that exists in the literature that employs cyclotomic numbers to con-
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struct FH sequences includes [19, 22, 29, 40, 57, 87, 116, 117]. Chu and Colbourn [19]

developed FH sequences over a prime field, Fp. Using interleaving techniques Chung

et al. [21] obtained FH sequences of twice the length of those obtained by Chu and

Colbourn [19]. Ding and Yin [29] generalised Chu and Colbourn’s construction to a

prime power field, Fpn . Han and Yang [40] provided corrections to some of Ding and

Yin’s constructions. Zhang [117] used cyclotomy over F2n and the Chinese remainder

theorem to construct FH sequences. Chung and Yang [22] obtained FH sequences with

odd prime length. Zeng, Cai, Tang and Yang [115] also constructed FH sequences of

odd length. Liu, Peng, Zhou and Tang [57] used generalized cyclotomy to construct FH

sequences. Ren, Fu and Zhou [87] used cyclotomy and the Chinese remainder theorem

to generalise some of the existing constructions [29] and [117]. Further, the authors of

[87] also constructed sets of FH sequences.

In this section we look at the construction by Chu and Colbourn [19] as this is

one of the early works employing cyclotomic numbers, and is a special case of most

of the constructions that use cyclotomy to obtain FH sequences. The authors first

construct FH sequences that meet the Lempel-Greenberger bound (2.6). That is, the

FH sequences are optimal with respect to the maximum Hamming auto-correlation.

3.5.1 Cyclotomic classes

Let v = mf + 1 be an odd prime. Let Fv be a finite field and F∗v the set of nonzero

elements of Fv.

Definition 3.5.1. Let α be a primitive element of Fv. The cyclotomic classes of Fv

of order m:

Ci = {αtm+i : 0 ≤ t ≤ f − 1}, i = 0, 1, . . . ,m− 1,

are the m disjoint subsets that partition F∗v.
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Definition 3.5.2. The cyclotomic numbers of order m are:

(i, j) = |(Ci + 1) ∩ Cj |,

where 0 ≤ i, j ≤ m− 1 and addition in a class is defined by:

Ci + 1 = {ci + 1 (mod v) : ci ∈ Ci}.

The cyclotomic numbers (i, j), 0 ≤ i, j ≤ m − 1, of order m, are the number of

solutions to the equation:

ci + 1 = cj , ci ∈ Ci, cj ∈ Cj .

That is, (i, j) is the number of ordered pairs s, t such that:

αms+i + 1 = αmt+j , 0 ≤ s, t ≤ f − 1.

For the interested reader see [100] for an introduction to cyclotomy.

3.5.2 Construction of FH sequences with cyclotomic classes

In this section we will use the combinatorial characterisation of an FH sequence which

was introduced in Section 3.3.1. We associate an FH sequence X = (x0, x1, . . . , xv−1)

defined over an alphabet F , |F| = m, with m disjoint sets B0, B1, . . . , Bm−1, where

each Bi is the support of i, i ∈ F defined in Equation (3.27).

Construction 3.5.3. Let v = mf + 1. Let F = Zm be a frequency library. Let

C0, C1, . . . , Cm−1 be the cyclotomic classes of Fv of order m. An FH sequence X =
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(x0, x1, . . . , xv−1) over F is given as:

B0 = C0 ∪ {0},

Bi = Ci, 1 ≤ i ≤ m− 1, (3.40)

with the sets B0, Bi, 1 ≤ i ≤ m − 1 as previously defined. The FH sequence together

with all its cyclic shifts form an (mf + 1,mf + 1,m)-FHS.

Note that the FH sequence X = (xt) can also be written as:

xt =

 0 if t = 0,

i if t ∈ Ci.

Example 3.5.4. Let |F| = 7 and v = 29. The cyclotomic classes of F29 of order 7

are:

C0 = {1, 12, 28, 17}, C1 = {2, 24, 27, 5}, C2 = {4, 19, 25, 10}, C3 = {8, 9, 21, 20},

C4 = {16, 18, 13, 11}, C5 = {3, 7, 26, 22}, C6 = {6, 14, 23, 15}.

An FH sequence of length 29 over F is:

X = (0, 0, 1, 5, 2, 1, 6, 5, 3, 3, 2, 4, 0, 4, 6, 6, 4, 0, 4, 2, 3, 3, 5, 6, 1, 2, 5, 1, 0).

Example 3.5.5. Let |F| = 23 and v = 47. The cyclotomic classes of F47 of order 23

are:

C0 = {1, 46}, C1 = {5, 42}, C2 = {22, 25}, C3 = {16, 31}, C4 = {14, 33},

C5 = {23, 24}, C6 = {21, 26}, C7 = {11, 36}, C8 = {8, 39}, C9 = {7, 40},

C10 = {12, 35}, C11 = {13, 34}, C12 = {18, 29}, C13 = {4, 43}, C14 = {20, 27},

C15 = {6, 41}, C16 = {17, 30}, C17 = {9, 38}, C18 = {2, 45}, C19 = {10, 37},

C20 = {3, 44}, C21 = {15, 32}, C22 = {19, 28}.
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Then an FH sequence of length 47 over an alphabet of size 23 is:

X =(0, 0, 18, 20, 13, 1, 15, 9, 8, 17, 19, 7, 10, 11, 4, 21, 3, 16, 12, 22, 14, 6, 2, 5, 5,

2, 6, 14, 22, 12, 16, 3, 21, 4, 11, 10, 7, 19, 17, 8, 9, 15, 1, 13, 20, 18, 0).

3.5.3 Correlation

Lemma 3.5.6 is used in the determination of the maximum Hamming auto-correlation

of an FH sequence constructed using cyclotomic techniques. Lemma 3.5.6 exists in the

literature [19] without proof, so we provide a proof here.

Lemma 3.5.6. Let Fv be a finite field, v = mf+1 an odd prime. The cyclotomic classes

Ci, 0 ≤ i ≤ m − 1, of Fv of order m satisfy the following property, |(Ci + w) ∩ Cj | =

|(w−1Ci + 1) ∩ w−1Cj |. If w−1 ∈ Ch, then:

|(Ci + w) ∩ Cj | = (i+ h, j + h).

Proof. For all 0 ≤ i ≤ m− 1, the cyclotomic classes Ci can be written in terms of the

cyclotomic class C0:

C0 = 〈αm〉

= {αmt : 0 ≤ t ≤ f − 1};

Ci = αiC0

= {αi · αmt : 0 ≤ t ≤ f − 1}

= {αmt+i : 0 ≤ t ≤ f − 1}.

If w−1 ∈ Ch then w−1 = αmt1+h for some t1 ∈ {0, . . . , f − 1}. Now,

w−1Cj = {αm(t1+t2)+h+j : 0 ≤ t2 ≤ f − 1},
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w−1Ci + 1 = {αm(t1+t3)+h+i + 1 : 0 ≤ t3 ≤ f − 1}.

Next,

Cj+h = {αmt4+h+j : 0 ≤ t4 ≤ f − 1},

Ci+h = {αmt5+h+i : 0 ≤ t5 ≤ f − 1}.

For any w−1 ∈ Ch we have w−1Cj = Cj+h. Therefore,

|(w−1Ci + 1) ∩ w−1Cj | = |(Ci+h + 1) ∩ Cj+h| = (i+ h, j + h).

The conclusion then follows:

|(Ci + w) ∩ Cj | = |(w−1Ci + 1) ∩ w−1Cj | = (i+ h, j + h).

Theorem 3.5.7 provide the maximum Hamming correlation of the FH sequence (3.40).

We make a correction on the lower limit of the summation for the formula of maximum

Hamming correlation provided by Chu et al. [19] and we provide a proof of the theorem.

Theorem 3.5.7. (Theorem 1, [19]). Let X be an FH sequence of length v = mf + 1

given in Construction 3.5.3. Then X is a Lempel-Greenberger optimal FH sequence

(Definition 2.2.12), where the maximum Hamming auto-correlation is:

H(X) =


∑m−1

i=1 (i, i) + 1 if f odd,∑m−1
i=1 (i, i) + 2 if f even.

(3.41)

Proof. The maximum Hamming auto-correlation is:

H(X) = max
1≤t≤v−1

{HX,X(t)} ,
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where HX,X(t) is the intersection of X and its t cyclic shift to the right given by:

HX,X(t) =
m−1∑
i=0

|(Bi + t) ∩Bi|

= |B0 ∩ (B0 + t)|+
m−1∑
i=1

|(Bi + t) ∩Bi|. (3.42)

By definition, from Equation (3.40), B0 = C0 ∪ {0}, Bi = Ci, 1 ≤ i ≤ m− 1.

The shifted version of B0 to the right by t places is B0 + t = (C0 + t)∪{0 + t}. The

number of places in which B0 + t and B0 intersect is:

(B0 + t) ∩B0 = |(C0 ∪ {0}) ∩ ((C0 + t) ∪ {0 + t})|

= |(C0 ∪ {0}) ∩ ((C0 + t) ∪ {t})|

= | ((C0 ∪ {0}) ∩ (C0 + t)) ∪ ((C0 ∪ {0}) ∩ {t}) |

= | ((C0 + t) ∩ C0) ∪ ((C0 + t) ∩ {0}) ∪ ({t} ∩ C0) ∪ ({t} ∩ {0}) |.

For all t 6= 0,

((C0 + t) ∩ C0) = ∅,

({t} ∩ {0}) = ∅,

and ((C0 + t) ∩ {0}) ∩ ({t} ∩ C0) = ∅.

So,

| ((C0 + t) ∩ {0}) ∪ ({t} ∩ C0) | = | ((C0 + t) ∩ {0}) |+ | ({t} ∩ C0) |.

Therefore,

(B0 + t) ∩B0 = | ((C0 + t) ∩ {0}) |+ | ({t} ∩ C0) |.

Then

HX,X(t) = |{t} ∩ C0|+ |{0} ∩ (C0 + t)|+
m−1∑
i=1

|(Ci + t) ∩ Ci|.
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From Lemma 3.5.6, if t−1 ∈ Ch then

m−1∑
i=1

|(Ci + t) ∩ Ci| =
m−1∑
i=1

(i+ h, i+ h) =
m−1∑
i=1

(i, i).

Finally, |{t} ∩ C0|+ |{0} ∩ (C0 + t)| is maximum when f is even where t,−t ∈ C0.

That is:

|{t} ∩ C0|+ |{0} ∩ (C0 + t)| = 2

when f is even. On the other hand when f is odd:

|{t} ∩ C0|+ |{0} ∩ (C0 + t)| = 1.

This completes the proof.

It was shown in [19] that the FH sequences in Construction 3.5.3 are optimal with

respect to the Lempel-Greenberger bound (2.6) on the maximum out-of-phase Ham-

ming auto-correlation.

Hamming Group correlation. Let S be a (mf + 1,mf + 1,m)-FHS of Construc-

tion 3.5.3. The Hamming group correlation can be estimated as:

G(X,U) ≤ wH(X),

where U ⊆ S, |U| = w, X ∈ S\U and H(X) is the maximum Hamming auto-correlation

given in Equation (3.41). Then the lower bound for the w-throughput of X is:

ρw(X,U) ≥ 1− wH(X)

mf + 1
.
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Further, the worst-case w-throughput of S is:

ρ̂w(S) = min
V⊆S

{
min
X∈V
{ρw(X,V \ {X})}

}
= 1− w(H(X))

mf + 1
,

where X ∈ V, V = U ∪ {X} and ρw(X,V \ {X}) = 1− G(X,V\{X})
v .

3.5.4 Jamming resistance

In the definition of an FH sequence, the size of the supports of frequency channels are

|B0| = f + 1 and |Bi| = f , 1 ≤ i ≤ m − 1, with B0, Bi as previously defined. That

is every frequency channel, except 0, appears f number of times in the FH sequence.

The 0 channel appears one time slot more than the others. Then the probability

that a ( 1
m ,

1
m)-adaptive jammer listens on an active frequency channel was given in

Equation (2.39):

Prob(i is active) = 1−
(
k − ai
w + 1

)
/

(
k

w + 1

)
,

where ai is the number of times that frequency channel i appears at a particular time

slot of interest, and w is the number of active FH sequences. For the FH scheme in

Construction 3.5.3 we have:

Prob(i is active) ≥ 1−
(
mf + 1− f
w + 1

)
/

(
mf + 1

w + 1

)
. (3.43)

3.6 Trace functions

A number of FH sequence constructions based on trace functions have been proposed

over the years, [27, 28, 37, 109]. In this section we consider a construction by Ge et

al. [37], which is a generalisation of some known FH sequences constructions that use

trace functions.
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3.6.1 Preliminaries

Definition 3.6.1. For β ∈ Fmn and Fmκ, κ|n, the trace function Trmn/mκ(β) of β

over Fmκ is the map defined by:

Trmn/mκ(β) = β + βm
κ

+ . . .+ βm
κ(nκ−1)

,

from Fmn to the subfield Fmκ. If Fmκ is the prime subfield of Fmn, then Trmn/mκ(β)

is called the absolute trace function, which will be simply called the trace function in

this section as it is the only trace function we consider and is denoted by Trmn(β).

A trace function is a map that enables a transfer of elements from a finite field to

its subfield.

Let F = Fmn and K = Fm. For the remainder of this section we will denote the

trace function as TrF/K(β). We state Lemmas 3.6.2 and 3.6.3 of properties of trace

functions [56], which will be used in the subsequent sections.

Lemma 3.6.2. The trace function satisfies the following properties:

i TrF/K(α+ β) = TrF/K(α) + TrF/K(β) for all α, β ∈ F ;

ii TrF/K(cα) = cTrF/K(α) for all c ∈ K, α ∈ F ;

iii TrF/K(c) = nc, for all c ∈ K;

iv TrF/K(αm) = TrF/K(α), for all α ∈ F .

Lemma 3.6.3. The trace function is an mn−1-to-1 map.

3.6.2 Frequency hopping sequences obtained using trace functions

In this section we consider the construction of Ge et al. [37, Section V] which provided

more parameters and is a generalization of many other constructions that use trace

functions.
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Construction 3.6.4. Let m = pr, p be a prime and r be some positive integer. Let n, l

be two positive integers such that l|(mn−1) and gcd(m
n−1
m−1 , l) = 1. Let α be a primitive

element of the field F = Fmn. Let s be a positive integer such that gcd(s,mn − 1) = 1

and β = αls. Let v = mn−1
l . An FH sequence over the field K = Fm of length v is

defined as

Xg = (TrF/K(g), T rF/K(gβ), . . . , T rF/K(gβv−1)), (3.44)

for all g ∈ F . The FH scheme defined by Equation (3.44):

S = {Xg : 0 ≤ g ≤ mn − 1},

form a rotational closure (m
n−1
l , m

n−1
l ,m)-FHS.

3.6.3 Correlation

Lemma 3.6.5 provides the Hamming correlation of the sequence defined in Equa-

tion (3.44).

Lemma 3.6.5. (Ge et al., [37],Lemma 4.3). Let Xg be an FH sequence defined in

Equation (3.44). Its maximum out-of-phase Hamming correlation is:

H(Xg) =
mn−1 − 1

l
, (3.45)

with g ∈ F∗mn.

Now we consider the maximum Hamming cross-correlation of two distinct FH se-

quences Xg, Xh.

Theorem 3.6.6. (Ge et al., [37],Theorem 4.5). If g, h belong to distinct cyclotomic

classes of order l in Fmn , then Xg and Xh constitute a Lempel-Greenberger optimal pair

(Definition 2.2.13) of FH sequences where the maximum Hamming cross-correlation is

mn−1−1
l .
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Note that if g, h as defined in Theorem 3.6.6 belong to the same cyclotomic classes

then H(Xg, Xh) = mn−1
l = v. Then Ge et al. [37] provided a revision of Construc-

tion 3.6.4 to consider a subset of the FH sequences so that the maximum Hamming

cross-correlation is improved.

Construction 3.6.7. (Ge et al., [37],Theorem 4.7). Let {g0, g1, . . . , gl−1} be a com-

plete set of representatives for the cyclotomic classes of order l in Fmn. Then:

S = {Xg0 , Xg1 , . . . , Xgl−1
},

is a (m
n−1
l , l,m)-FHS with maximum Hamming correlation mn−1−1

l .

Example 3.6.8. Let m = |F|, m ≡ 1 (mod 4), n = 2, l = 2(m − 1), v = m+1
2 . Then

Construction 3.6.7 provides a (m+1
2 ,m2,m)-FHS with Hamming correlation 1.

Theorem 3.6.9. For a (m
n−1
l , l,m)-FHS given by Equation (3.44), the worst-case

w-throughput is at least 1− w(mn−1−1)
mn−1 .

Example 3.6.10. Let m = p = 23. If n = 2 then consider l = 11 and v = 48. We

have a (48, 11, 23)-FHS with Hamming correlation 2 and a worst-case w-throughput of

at least 1− w
24 .

Hamming group correlation. Let S be a rotational closure (m
n−1
l , m

n−1
l ,m)-FHS

of Construction 3.6.4. The Hamming group correlation can be estimated as:

G(X,U) ≤ wH(X),

where U ⊆ S, |U| = w, X ∈ S\U and H(X) is the maximum Hamming auto-correlation

given in Equation (3.45). Then the lower bound for the w-throughput of X is:

ρw(X,U) ≥1− wH(X)

v
(3.46)

=1− w(mn−1 − 1)

mn − 1
. (3.47)
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Further, the worst-case w-throughput of S is:

ρ̂w(S) = min
V⊆S

{
min
X∈V
{ρw(X,V \ {X})}

}
= 1− w(H(X))

v

= 1− w(mn−1 − 1)

mn − 1

where X ∈ V, V = U ∪ {X} and ρw(X,V \ {X}) = 1− G(X,V\{X})
v .

3.6.4 Jamming resistance

Consider Construction 3.6.4. From Lemma 3.6.3 we deduce that each channel in F

appears mn−1 number of times at each time slot. We now consider how a ( 1
m ,

1
m)-

adaptive jammer will affect an FH scheme at a single time slot.

The probability that a ( 1
m ,

1
m)-adaptive jammer listens on an active channel was

given in Equation (2.39):

Prob(i is active) = 1−
(
k − ai
w + 1

)
/

(
k

w + 1

)
,

where ai is the number of times that frequency channel i appears at a particular time

slot of interest. For the construction considered in this section we have:

Prob(i is active) = 1−
(
mn −mn−1

w + 1

)
/

(
mn

w + 1

)
. (3.48)

Now consider the modified FH scheme of Construction 3.6.7, a (m
n−1
l , l,m)-FHS.

Recall that the l representatives for the cyclotomic classes of order l in Fmn are chosen

randomly. Then we have 1 ≤ ai ≤ min{mn−1, l} and Equation (3.48) can be modified

accordingly.
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3.6.5 Comparison with m-sequences

It is well known that m-sequences can be defined in terms of the trace function. Let

X = (xt) be an m-sequence of length v = mn − 1 over GF (mn). Let α be a primitive

element of the field GF (mn), that is an element of order mn − 1. Then xt = aαt +

(aαt)m + (aαt)m
2

+ . . . (aαt)m
n−1

and thus an i-tuple of X is given as:

(xt, xt+1, . . . , xt+i−1) = (Tr(δ), T r(δα), . . . , T r(δαi−1)),

where δ = aαt, a ∈ GF (mn) \ {0}.

Recall the FH sequence construction considered in this section, Construction 3.6.4,

provides the FH sequence:

Xg = (TrF/K(g), T rF/K(gβ), . . . , T rF/K(gβv−1)), (3.49)

where β = αls. Note that when l = 1 and s = 1, Equation (3.49) provides an m-

sequence.

Example 3.6.11. Let p = 3, n = 3 and F33 be an extension field of F3. Let α be a

primitive element of F33. Using Construction 3.6.4, we can obtain the following FH

sequence of length 26 defined over F3:

Xi = (Tr32/3(αt)),

where 0 ≤ t ≤ v − 1. Then:

Xi = (0, 0, 2, 0, 2, 1, 2, 2, 1, 0, 2, 2, 2, 0, 0, 1, 0, 1, 2, 1, 1, 2, 0, 1, 1, 1),

is an m-sequence.

112



3.7. Reed-Solomon codes 3. Investigating existing FH schemes

3.7 Reed-Solomon codes

In this section we consider FH scheme constructions which use Reed-Solomon codes

[27, 91, 94, 114]. The FH schemes obtained in this section are subcodes of Reed-Solomon

codes. A subcode is a code contained in another code.

3.7.1 Preliminaries

We first define a Reed-Solomon code.

Definition 3.7.1. Let v and κ be integers where v ≥ 2 and κ ≥ 2. Let m be a prime

power such that m ≥ v. Let F be the finite field of cardinality m and α a primitive

element. Let f(x) = f0 + f1x + . . . + fκ−1x
κ−1 be a polynomial, where fi ∈ F for all

0 ≤ i ≤ κ− 1. A length v and κ dimensional Reed-Solomon code, denoted (v, κ)-Reed-

Solomon code, S over F is:

S =
{(
f(1), f(α), f(α2), . . . , f(αv−1)

)}
, (3.50)

where the generator matrix of the code is represented as:

G =



1 1 1 · · · 1

1 α α2 · · · αv−1

1 α2 α4 · · · α2(v−1)

...
...

...
. . .

...

1 ακ−1 α2(κ−1) · · · α(κ−1)(v−1)


.

3.7.2 Subcode of Reed-Solomon code as an FH scheme

Consider a (v, κ)-Reed-Solomon code C. Define an equivalence relation on the code-

words of C such that two codewords X,Y are said to be equivalent if one codeword

can be obtained from the other by some cyclic shifts, that is Y = βiX and X = βjY ,

for some i, j ∈ {0, 1, . . . , v− 1} and where β is a cyclic permutation function defined in
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Equation (3.28). An equivalence class obtained by this relation contains all codewords

βiX, 0 ≤ i ≤ v−1, X ∈ C. The codewords in an equivalence class are said to be cyclic

equivalent codewords.

Let C be a (v, κ)-Reed-Solomon code with parameters as previously defined. By

choosing one codeword from each equivalence class of C, we can obtain a subcode of C,

which we denote C ′. The subcode C ′ has a property that any two distinct codewords

have the same symbols in at most κ− 1 corresponding coordinates.

We are interested in representative codewords with full period. A codeword is said

to have full period if βiX 6= βjX, for 0 ≤ i, j ≤ v − 1. So, we consider equivalence

classes of maximum size v. So, let C ′′ be a subset of C ′ containing codewords of full

period. In the literature the subcode C ′′ of C formed by picking one element from each

equivalence class of full order is called a cyclically permutable code. The subcode C ′′

has an additional property that any two distinct cyclic shifts of a single codeword have

the same symbols in at most κ− 1 corresponding coordinates. That is, the maximum

out-of-phase Hamming auto-correlation of a codeword is κ− 1.

Corollary 3.7.2 provides the size of the subcode C ′′.

Corollary 3.7.2. (Song and Golomb, [94], Corollary 2.1) Given m and κ such that

1 ≤ κ ≤ m− 2, let N = |{i : gcd(i,m− 1) = 1, 1 ≤ i ≤ κ}|. If m− 1 is a prime power

then:

|C ′′| = mκ −mκ−N

m− 1
. (3.51)

Construction 3.7.3. Consider a (v, κ)-Reed Solomon C with parameters as previously

defined. A subcode C ′′ of C made up of representative codewords from each equivalence

classes of maximum size v is considered as a (v, k,m)-FHS where v = m− 1 and k is

given by Equation (3.51).

Several authors have obtained FH schemes with Construction 3.7.3. Reed [86, 91]

obtained FH schemes using Construction 3.7.3 with k ≥ mκ−1 FH sequences. Ding et

al. [27] consider the same construction when m− 1 is a prime number and thus obtain
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a (v, m
κ−1
m−1 ,m)-FHS. Yang, Tang, Parampalli and Peng [114] used the same idea of

Construction 3.7.3 to obtain an FH scheme from punctured Reed-Solomon codes. For

the remainder of this section we consider Reed’s construction [86] since it does not put

any restriction on the length of the FH sequences or the size of the FH scheme (there

is no restriction on the alphabet on which the Reed-Solomon code is defined).

Example 3.7.4. Let C be a (m− 1, 2)-Reed-Solomon code with generator matrix

G =

1 1 1 · · · 1

1 α α2 · · · αm−2

 ,

where α is a primitive element of a field F , |F| = m. Using Reed’s construction [86],

we have m FH sequences:

Xi = (δi, δi, . . . , δi) + (1, α, α2, . . . , αm−2), (3.52)

for δi ∈ F and 0 ≤ i ≤ m− 1.

As a specific case of Construction 3.7.3, we have the following FH sequences over

an alphabet of size 23, using a (22, 2)-Reed-Solomon code, where a random codeword

was selected from each equivalence class of maximum size:

(1, 5, 2, 10, 4, 20, 8, 17, 16, 11, 9, 22, 18, 21, 13, 19, 3, 15, 6, 7, 12, 14),

(2, 6, 3, 11, 5, 21, 9, 18, 17, 12, 10, 0, 19, 22, 14, 20, 4, 16, 7, 8, 13, 15),

(3, 7, 4, 12, 6, 22, 10, 19, 18, 13, 11, 1, 20, 0, 15, 21, 5, 17, 8, 9, 14, 16),

(4, 8, 5, 13, 7, 0, 11, 20, 19, 14, 12, 2, 21, 1, 16, 22, 6, 18, 9, 10, 15, 17),

(5, 9, 6, 14, 8, 1, 12, 21, 20, 15, 13, 3, 22, 2, 17, 0, 7, 19, 10, 11, 16, 18),

(6, 10, 7, 15, 9, 2, 13, 22, 21, 16, 14, 4, 0, 3, 18, 1, 8, 20, 11, 12, 17, 19),

(7, 11, 8, 16, 10, 3, 14, 0, 22, 17, 15, 5, 1, 4, 19, 2, 9, 21, 12, 13, 18, 20),

(8, 12, 9, 17, 11, 4, 15, 1, 0, 18, 16, 6, 2, 5, 20, 3, 10, 22, 13, 14, 19, 21),

(9, 13, 10, 18, 12, 5, 16, 2, 1, 19, 17, 7, 3, 6, 21, 4, 11, 0, 14, 15, 20, 22),

(10, 14, 11, 19, 13, 6, 17, 3, 2, 20, 18, 8, 4, 7, 22, 5, 12, 1, 15, 16, 21, 0),
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(11, 15, 12, 20, 14, 7, 18, 4, 3, 21, 19, 9, 5, 8, 0, 6, 13, 2, 16, 17, 22, 1),

(12, 16, 13, 21, 15, 8, 19, 5, 4, 22, 20, 10, 6, 9, 1, 7, 14, 3, 17, 18, 0, 2),

(13, 17, 14, 22, 16, 9, 20, 6, 5, 0, 21, 11, 7, 10, 2, 8, 15, 4, 18, 19, 1, 3),

(14, 18, 15, 0, 17, 10, 21, 7, 6, 1, 22, 12, 8, 11, 3, 9, 16, 5, 19, 20, 2, 4),

(15, 19, 16, 1, 18, 11, 22, 8, 7, 2, 0, 13, 9, 12, 4, 10, 17, 6, 20, 21, 3, 5),

(16, 20, 17, 2, 19, 12, 0, 9, 8, 3, 1, 14, 10, 13, 5, 11, 18, 7, 21, 22, 4, 6),

(17, 21, 18, 3, 20, 13, 1, 10, 9, 4, 2, 15, 11, 14, 6, 12, 19, 8, 22, 0, 5, 7),

(18, 22, 19, 4, 21, 14, 2, 11, 10, 5, 3, 16, 12, 15, 7, 13, 20, 9, 0, 1, 6, 8),

(19, 0, 20, 5, 22, 15, 3, 12, 11, 6, 4, 17, 13, 16, 8, 14, 21, 10, 1, 2, 7, 9),

(20, 1, 21, 6, 0, 16, 4, 13, 12, 7, 5, 18, 14, 17, 9, 15, 22, 11, 2, 3, 8, 10),

(21, 2, 22, 7, 1, 17, 5, 14, 13, 8, 6, 19, 15, 18, 10, 16, 0, 12, 3, 4, 9, 11),

(0, 4, 1, 9, 3, 19, 7, 16, 15, 10, 8, 21, 17, 20, 12, 18, 2, 14, 5, 6, 11, 13).

Note that taking C ′′, the FH scheme using Construction 3.7.3, together with the

cyclic shifts of the FH sequences in the set, we do not get the Reed-Solomon code back.

3.7.3 Correlation

Hamming correlation: The notion of Hamming correlation is related to the Ham-

ming distance when we consider codes (or their subcodes) as FH schemes, as is shown

in Proposition 3.7.5.

Proposition 3.7.5. Given C a (v, κ)-MDS code and C ′′ as previously defined. The

maximum Hamming correlation of C ′′ is at most κ− 1.

Proof. The code C has the following codewords. Constant codewords, X = (c, . . . , c),

where c ∈ F . Constant codewords have the property βiX = X, ∀1 ≤ i ≤ v − 1. Next,

there are codewords with non-full period, Cn1 =
⇔
X, where 1 < |Cn1 | < v. Finally, there

are codewords with full period, Cn2 =
⇔
X, where |Cn2 | = v. Any two codewords in Cn2

are not the same.
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We know that the minimum distance of a [v, κ,m]-MDS code is d(C) = v − κ+ 1.

That is d(X,Y ) ≥ d(C) = v − κ+ 1, ∀ X,Y ∈ C. Therefore the Hamming correlation

is h(X,Y ) ≤ v− (v−κ+1) = κ−1 ∀ X,Y ∈ C. By definition, the FH sequences in C ′′

(Construction 3.7.3) are obtained as representative codewords from each each subcode

Cn2 . Consider X ∈ C ′′. Then there exist X ′ ∈ Cn2 , for some Cn2 ⊂ C, such that X ′ =

βiX ∀1 ≤ i ≤ v − 1, because codewords in C ′′ have full period. Therefore we can find

the maximum out-of-phase Hamming auto-correlation of each FH sequence X ∈ C ′′,

H(X) ≤ κ− 1. Further, for any two distinct codewords X,Y ∈ C ′′, d(X,Y ) ≥ d(C) =

v− κ+ 1 and the maximum Hamming cross-correlation is H(X,Y ) ≤ κ− 1. Then the

maximum Hamming correlation Hm(S) = maxX,Y ∈C′′{H(X), H(Y ), H(X,Y )} ≤ κ−1.

Hamming group correlation The maximum Hamming correlation given in Propo-

sition 3.7.5, Hm(S) ≤ κ− 1, allows us to estimate the throughput measures of an FH

scheme based on Reed-Solomon codes considered in this section.

Let C be a Reed-Solomon code and C ′′ its subcode as previously defined. The

Hamming group correlation of a Reed-Solomon code based FH scheme C ′′ is:

G(X,U) ≤ w(κ− 1),

where U ⊆ C ′′, |U| = w and X ∈ C ′′ \ U . Then the w-throughput of an FH sequence

X is:

ρw(X,U) = 1− G(X,U)

v

≥ 1− w(κ− 1)

v
,
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and the worst-case w-throughput of the scheme is:

ρ̂w(S) = min
V⊆S

{
min
Xi∈V

{ρw(Xi,V \ {Xi})}
}

= 1− w(κ− 1)

v
.

3.7.4 Jamming resistance

Recall that the FH sequences in C ′′ are randomly chosen from the code C. An explicit

way of obtaining the subcode C ′′ is difficult to present. So, the resistance of the FH

scheme against a ( 1
m ,

1
m)-adaptive jammer will depend on the FH sequences obtained

from the code. However, we consider Proposition 3.7.6.

Proposition 3.7.6. If w+ 1 6= |C ′′| then a ( 1
m ,

1
m)-adaptive jammer will need at least

a single time slot to determine an active FH sequence.

Proof. The proof is based on the fact that if only a fraction of the codewords are active,

then a ( 1
m ,

1
m)-adaptive jammer is forced to eavesdrop on at least one time slot.

Consider a (22, 2)-Reed-Solomon code. In the remainder of this section we use this

code as an illustration to determine its resistance against a ( 1
m ,

1
m)-adaptive jammer.

Example 3.7.7. Consider C a (22, 2)-Reed-Solomon code from Example 3.7.4. Let C ′′

be a (22, 22, 22)-FHS obtained using Construction 3.7.3. A ( 1
m ,

1
m)-adaptive jammer

takes at least two time slots to establish an active codeword.

We know that any two codewords X,Y in C ′′, X 6= Y are distinct, that is X 6= βiY

for all 0 ≤ i ≤ 21. However, for any channel xt on codeword X, there exist some

Y ∈ C ′′ such that xt = yt′, 0 ≤ t, t′ ≤ 21. In fact there exist some βiY ∈ C, where

t = i + t′ (mod v). As the codewords in C ′′ are randomly selected from the Reed-

Solomon code we have the following. Suppose xt 6= yt for all codewords in C ′′. In this

case a ( 1
m ,

1
m)-adaptive jammer only needs to eavesdrop on at least a single time slot

to identify an active codeword. On the other hand suppose xt = yt for all codewords in
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C ′′. That is all the codewords have the same frequency channel at time slot t. However,

for any two consecutive time slots (xt, xt+1) 6= (yt′ , yt′+1), 0 ≤ t, t′ ≤ v − 1. Therefore

in the worst-case scenario, it can take a ( 1
m ,

1
m)-adaptive jammer at least two time slots

to establish an active codeword.

3.8 Bag-Ruj-Roy scheme

In this section we discuss the Bag-Ruj-Roy (BRR) scheme constructed by Bag et al.

[9]. The FH sequences in the BRR scheme are derived using a pair of orthogonal Latin

squares. We provide an interpretation of the BRR scheme in our model. The FH

sequences are pseudorandom and form another FH scheme that provides maximum

throughput of one for any FH sequence in the presence of other mutual interfering FH

sequences. However, they can withstand an adversary for only one time slot.

3.8.1 Preliminaries

The FH schemes considered in this section use a combinatorial structure called a Latin

square, which is described using a v × v array.

Definition 3.8.1. Let Z be a set of size v. A Latin square of order v defined over

Z is a v × v array L such that no element of Z appears more than once in any row or

in any column of L.

Example 3.8.2. Consider the group Z7, integers modulo 7. The following is a Latin

square of order 7 over Z7:
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0 1 2 3 4 5 6

6 0 1 2 3 4 5

5 6 0 1 2 3 4

4 5 6 0 1 2 3

3 4 5 6 0 1 2

2 3 4 5 6 0 1

1 2 3 4 5 6 0

.

Note that a Latin square defined over Zv is equivalent to a (v, v, v)-MDS code up

to renaming the alphabet symbols if necessary and a combination of permutation of

alphabet symbols in a particular coordinate position and/or permuting the coordinate

positions of the codewords.

Lemma 3.8.3 shows that adding an element from the set defining a Latin square

to all the entries of the Latin square returns a Latin square. In other words it is a

permutation of the original Latin square.

Lemma 3.8.3. Let L = [αij ]v×v be a Latin square of order v over Zv. Suppose x ∈ Zv.

Let L+ x = [βij ]v×v, where βij = αij + x (mod v). Then L+ x is also a Latin square.

Next we define orthogonality of a pair of Latin squares.

Definition 3.8.4. Let L1 = [αij ]v×v is a Latin square of order v with entries from a

set Z1 of cardinality v and L2 = [βij ]v×v be a Latin square of order v with entries from

a set Z2 of cardinality v. We say that L1 and L2 are orthogonal Latin squares if

the v2 ordered pairs (αij , βij) are distinct.

Example 3.8.5. A pair of orthogonal Latin squares, L1, L2 of order 7:
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L1 =

0 1 2 3 4 5 6

1 2 3 4 5 6 0

2 3 4 5 6 0 1

3 4 5 6 0 1 2

4 5 6 0 1 2 3

5 6 0 1 2 3 4

6 0 1 2 3 4 5

, L2 =

0 6 5 4 3 2 1

1 0 6 5 4 3 2

2 1 0 6 5 4 3

3 2 1 0 6 5 4

4 3 2 1 0 6 5

5 4 3 2 1 0 6

6 5 4 3 2 1 0

.

Lemma 3.8.6 extends Lemma 3.8.3 in that adding an element from the set on which

the orthogonal Latin squares are defined to all the entries in the Latin squares preserves

their orthogonality.

Lemma 3.8.6. Let L1 = [αij ]v×v and L2 = [βij ]v×v be a pair of orthogonal Latin

squares of order v over Zv. Suppose x, y ∈ Zv. Then L1 + x and L2 + y are orthogonal

Latin squares.

The existence of orthogonal Latin squares is assured in Theorem 3.8.7.

Theorem 3.8.7. For every odd integer v > 1, there exists a pair of orthogonal Latin

squares of order v.

A set of s Latin squares of order v, any pair of which are orthogonal, is called a set

of mutually orthogonal Latin squares denoted MOLS(v, s) (in other literature they are

sometimes referred to as pairwise orthogonal Latin squares, abbreviated POL(v, s)).

Theorem 3.8.8. Let N(v) denote the maximum number of MOLS(v, s), v ≥ 2.

1. N(6) = 1. If v 6= 2, 6, then N(v) ≥ 2.

2. N(v) ≤ v − 1, with equality if and only if there exists a projective plane of order

v.

3. N(v) = v − 1, if v is a prime power number.

For construction of orthogonal Latin squares we refer the reader to [43, 97].
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3.8.2 Construction

The Bag-Ruj-Roy (BRR) [9] scheme is as follows.

Consider an FH scheme with m users {N0, . . . , Nm−1} and a frequency library of

size m. We can identify the frequency channels with F = Zm. Let F1 and F2 be

pseudo-random functions where the input-output of an instance is computationally

indistinguishable from that of a random function. The two-input functions F1 and F2

takes K, s, a long term key and a session number respectively. As defined in Section 2.3,

a session is a number of pre-defined time slots and made up of v time slots, each the

length of a single sequence. The values K and s are shared by all users. All users

generate shared session keys x, y ∈ Zm which are the outputs of the pseudo-random

function denoted x = F1(K, s) and y = F2(K, s).

The BRR FH scheme is modelled for unicast communication at each time slot.

In more detail, at each time slot a single user (otherwise termed as a device) sends

information on frequency channels to a particular receiver in the system. In a single

session each user transmits to every other user in the system. A single user is equipped

with both a sending and a receiving sequence. On each time slot a sending sequence

defines the channel and the recipient of data to be sent. On the other hand a receiving

sequence defines a channel and the sender of information at each time slot.

Construction 3.8.9. (BRR FH scheme) Let L1 = [αij ]m×m and L2 = [βij ]m×m be a

pair of orthogonal Latin squares of order m. Let L3 = [(L1(i, j), L2(i, j))]m×m be a Latin

square that is the superposition of L1 and L2. From L3 user Ni is given ith row Ri =

{(αi0, βi0), (αi1, βi1), . . . , (αim−1, βim−1)} and ith column Ci = {(α0j , β0j), (α1j , β1j), . . . ,

(αm−1j , βm−1j)} for 1 ≤ i ≤ m. A row and column (Ri, Ci) are used to derive

the sending and receiving FH sequences respectively. Let x, y be session keys and

L4 = [(L1(i, j) + x, L2(i, j) + y)]m×m be an array which is L1 + x superimposed (see

Example 3.8.10) with L2 + y. At each session, the sending FH sequences of length m
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over F = Zm are derived from:

R∗i = {(αij + x, βij + y, j) : 0 ≤ j ≤ m− 1},

where (αij + x, βij + y, j) corresponds to the (frequency channel, time slot, identity of

receiver). For a sending FH sequence the entry (αij + x, βij + y, j) means that user Ni

transmits to user Nj on frequency channel αij + x at time slot βij + y. The receiving

FH sequence is obtained likewise using:

C∗i = {(αij + x, βij + y, j) : 0 ≤ j ≤ m− 1}.

User Ni receives data from user Nj on frequency channel αij + x at time slot βij + y.

The sender and receiver both have the same (αij + x, βij). Therefore the receiver-

sender pair will be on the same channel at the same time.

We use Example 3.8.10 to illustrate Construction 3.8.9 in the model of Section 2.3

used in this thesis.

Example 3.8.10. Consider L1, L2, the pair of orthogonal Latin squares in Exam-

ple 3.8.5. The Latin square L3 is the superposition of L1 and L2:

L3 =

( 0, 0 ) ( 1, 6 ) ( 2, 5 ) ( 3, 4 ) ( 4, 3 ) ( 5, 2 ) ( 6, 1 )

( 1, 1 ) ( 2, 0 ) ( 3, 6 ) ( 4, 5 ) ( 5, 4 ) ( 6, 3 ) ( 0, 2 )

( 2, 2 ) ( 3, 1 ) ( 4, 0 ) ( 5, 6 ) ( 6, 5 ) ( 0, 4 ) ( 1, 3 )

( 3, 3 ) ( 4, 2 ) ( 5, 1 ) ( 6, 0 ) ( 0, 6 ) ( 1, 5 ) ( 2, 4 )

( 4, 4 ) ( 5, 3 ) ( 6, 2 ) ( 0, 1 ) ( 1, 0 ) ( 2, 6 ) ( 3, 5 )

( 5, 5 ) ( 6, 4 ) ( 0, 3 ) ( 1, 2 ) ( 2, 1 ) ( 3, 0 ) ( 4, 6 )

( 6, 6 ) ( 0, 5 ) ( 1, 4 ) ( 2, 3 ) ( 3, 2 ) ( 4, 1 ) ( 5, 0 )

.

Let x = 4 and y = 6 be the session keys. Then the Latin square L4 is the superposition

of the pair of orthogonal Latin squares L1 + x and L2 + y:
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L4 =

( 4, 6 ) ( 5, 5 ) ( 6, 4 ) ( 0, 3 ) ( 1, 2 ) ( 2, 1 ) ( 3, 0 )

( 5, 0 ) ( 6, 6 ) ( 0, 5 ) ( 1, 4 ) ( 2, 3 ) ( 3, 2 ) ( 4, 1 )

( 6, 1 ) ( 0, 0 ) ( 1, 6 ) ( 2, 5 ) ( 3, 4 ) ( 4, 3 ) ( 5, 2 )

( 0, 2 ) ( 1, 1 ) ( 2, 0 ) ( 3, 6 ) ( 4, 5 ) ( 5, 4 ) ( 6, 3 )

( 1, 3 ) ( 2, 2 ) ( 3, 1 ) ( 4, 0 ) ( 5, 6 ) ( 6, 5 ) ( 0, 4 )

( 2, 4 ) ( 3, 3 ) ( 4, 2 ) ( 5, 1 ) ( 6, 0 ) ( 0, 6 ) ( 1, 5 )

( 3, 5 ) ( 4, 4 ) ( 5, 3 ) ( 6, 2 ) ( 0, 1 ) ( 1, 0 ) ( 2, 6 )

.

Table 3.3 provides the sending and receiving FH sequences for N0 and N6:

N0 N6

R∗i {(4, 6, 0), (5, 5, 1), (6, 4, 2), (0, 3, 3), (1, 2, 4), (2, 1, 5), (3, 0, 6)}
{

(3, 5, 0), (4, 4, 1), (5, 3, 2), (6, 2, 3), (0, 1, 4), (1, 0, 5), (2, 6, 6)
}

C∗i

{
(4, 6, 0), (5, 0, 1), (6, 1, 2), (0, 2, 3), (1, 3, 4), (2, 4, 5), (3, 5, 6)

}
{(3, 0, 0), (4, 1, 1), (5, 2, 2), (6, 3, 3), (0, 4, 4), (1, 5, 5), (2, 6, 6)}

FH sequence

for sending (3, 2, 1, 0, 6, 5, 4) (1, 0, 6, 5, 4, 3, 2)

FH sequence

for receiving (5, 6, 0, 1, 2, 3, 4) (3, 4, 5, 6, 0, 1, 2)
.

Table 3.3: Sending and receiving FH sequences for users N0 and N6 in a Latin square

based FH scheme.

From Table 3.3, (3, 0, 6) ∈ R∗i for N0 means N0 will send data on channel 3 at time

0 to N6, and (3, 0, 0) ∈ C∗i for N6 means N6 will switch to channel 3 at time 0 to receive

data from N0. Likewise for (3, 5, 0) ∈ R∗i for N6, N6 will be transmitting on channel

3 at time slot 5 to N0, and (3, 5, 6) ∈ C∗i for N0, N0 will be listening on channel 3 at

time slot 5 for messages from N6.

Note that the FH sequences for sending and receiving are arranged in the format

used in this thesis (x0, x1, . . . , xv−1), where the indices are time slots in R∗i and C∗i

accordingly.

In the system model of this thesis (Section 2.3) we consider only sending FH se-

quences. Therefore the FH scheme in Construction 3.8.9 is considered as an (m,m,m)-

FHS.

124



3.8. Bag-Ruj-Roy scheme 3. Investigating existing FH schemes

3.8.3 Correlation

In this section we consider the correlation and throughput of the (m,m,m)-FHS ob-

tained from Construction 3.8.9.

Theorem 3.8.11. Consider S to be the (m,m,m)-FHS obtained from Construction 3.8.9.

The w-throughput of any FH sequence in S is 1 for any w, 0 ≤ w < m.

Proof. Let S be an (m,m,m)-FHS with FH sequences from Construction 3.8.9. Con-

sider L1 and L2, a pair of orthogonal Latin squares of order m defined over Zm. From

Lemma 3.8.6 we have: L1+x and L2+y are orthogonal Latin squares for any x, y ∈ Zm.

Consider the superposition of a pair of orthogonal Latin squares L1 + x = [α′ij ]m×m,

L2 +y = [β′ij ]m×m, where α′ij = αij+x and β′ij = βij+y. There exist a unique cell (i, j)

with the ordered pair (αij +x, βij + y). Therefore, for all FH sequences Xi ∈ S derived

using X∗i , 0 ≤ i ≤ m−1, all the frequency channels at each time slot are distinct. That

is, at any time slot t, the multiset Ft has distinct channels and ai = 1 for all i ∈ F .

This implies that there is no mutual interference at each time slot for any FH sequence

Xi ∈ S in the presence of other FH sequences Xi′ ∈ S, i 6= i′. Hence the w-throughput

of any FH sequence Xi in the presence of other FH sequences Xi′ ∈ U ⊂ S is

ρw(Xi,U) = 1.

From Theorem 3.8.11, we can deduce that the worst-case w-throughput of S is:

ρ̂w(S) = 1.

Therefore S is an (m,m,m; 1)-FHS.

Despite the fact that FH sequences in S, the (m,m,m; 1)-FHS, achieve maximum

w-throughput of one, this does not resist a ( 1
m ,

1
m)-adaptive jammer. In Section 3.8.4

125



3.8. Bag-Ruj-Roy scheme 3. Investigating existing FH schemes

it will be shown that a ( 1
m ,

1
m)-adaptive jammer eavesdropping at one time slot will be

able to identify all the FH sequences of the FH scheme.

3.8.4 Jamming resistance

Using the jammer model introduced in Chapter 2, a ( 1
m ,

1
m)-adaptive jammer knows

N , F and the Latin square L3 is public. Further we can assume that a ( 1
m ,

1
m)-adaptive

jammer knows time zero of the FH scheme, t = 0.

As observed in all the previous FH schemes that have been considered thus far in

this thesis, when all the FH sequences are active a jammer can jam any FH sequence

from the start and thus reduce the worst-case w-throughput of the FH scheme to zero.

We have Theorem 3.8.12 for the case when the number of active FH sequences is less

than the size of the FH scheme.

Theorem 3.8.12. Consider S to be the (m,m,m)-FHS obtained from Construction 3.8.9.

If w+1 ≤ m−1 then a ( 1
m ,

1
m)-adaptive jammer needs at least one time slot to identify

an active FH sequence.

Proof. Let S be the (m,m,m)-FHS obtained from Construction 3.8.9. From the dis-

cussion in the proof of Theorem 3.8.11, we have that at any time slot t, the multiset

Ft has distinct channels and so ai = 1 for all i ∈ F .

Suppose that at time slot t = 0 the ( 1
m ,

1
m)-adaptive jammer eavesdrops on an

active channel. Since the channels are distinct, then the jammer has found an active

FH sequences. Hence it starts jamming this particular active FH sequence from time

slot t = 1 and onwards.

On the other hand, suppose at time slot t = 0 the ( 1
m ,

1
m)-adaptive jammer eaves-

drops on an inactive channel. If w + 1 = m − 1, the jammer will have all the active

FH sequences in its search space after removing the single inactive FH sequence from

its search space. However, if w + 1 < m − 1, then the jammer is forced to continue

eavesdropping on the succeeding time slot t = 1.
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We conclude that if w + 1 ≤ m − 1 then a ( 1
m ,

1
m)-adaptive jammer needs at least

1 time slot to identify an active FH sequence.

We now show how a ( 1
m ,

1
m)-adaptive jammer can trivially construct any FH se-

quence of the FH scheme.

Suppose a ( 1
m ,

1
m)-adaptive jammer eavesdrops on frequency α′ at time slot β′,

where user Ni was transmitting to user Nj . The jammer discovers one hop element,

(α′, β′, j) = (αij + x, βij + y, j). Then the jammer can retrieve the session keys x and

y as follows:

α′ij = αij + x

β′ij = βij + y

x = (α′ij − αij) (mod n)

y = (β′ij − βij) (mod n).

The values αij and βij are obtained from L3.

Knowledge of x, y enables the jammer to derive subsequent hops, or in fact the

whole FH sequence of any user and then jam accordingly. A jammer can pick αij+1

and βij+1 from the public Latin square L3, to compute α′ij+1 and β′ij+1 as follows:

α′ij+1 = αij+1 + (α′ij − αij)

β′ij+1 = βij+1 + (β′ij − βij).

Suppose a ( 1
m ,

1
m)-adaptive jammer obtains the session keys x, y on the first time slot.

Then the BRR FH scheme has thus γv = 1 resistance against a ( 1
m ,

1
m)-adaptive jam-

mer.

In Chapter 5 we provide a fix to the problem observed with the BRR FH scheme:

that the BRR FH scheme can not withstand a ( 1
m ,

1
m)-adaptive jammer for more than
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a single time slot.

3.8.5 IEEE 802.11: Latin square based FH scheme, a practical exam-

ple

Recall that in Section 1.1.5 we described frequency hopping spread spectrum as defined

in the IEEE 802.11 wireless LAN [5]. The standard provides four ways in which FH

sequences can be obtained: HCC, EHCC, random generation and using FH sequences

in a fixed table.

The HCC method defines an FH sequence Xi = (xt) of length v over a frequency

library of size v as

xt =
i

t
(mod (v + 1)),

where v + 1 is a prime number, 1 ≤ i, t ≤ v. So, the HCC method provides a (v, v, v)-

FHS.

The EHCC FH sequences are obtained by deleting the diagonal entries of the FH

sequences given by the HCC method. So, the EHCC method provide a (v−1, v, v−1)-

FHS.

It can be observed that the FH sequences obtained using the HCC, EHCC and the

fixed table methods form an FH scheme that is equivalent to a Latin square. So each

of the FH schemes achieve a maximum throughput of one as for the BRR FH scheme.

Note that the generation of the FH sequences do not use pseudorandom numbers,

but rather fixed parameters. Suppose the number of active FH sequences is less than

the size of the FH scheme. Then the resistance of the FH schemes is based on the fact

that a (θ1, θ2)-adaptive jammer has no knowledge of the active FH sequences. However,

as was the case with the BRR FH scheme, it should take a ( 1
m ,

1
m)-adaptive jammer at

least a single time slot to identify an active FH sequence in the HCC, EHCC and the

fixed table.
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3.9 Recursive combinatorial construction

Several authors have constructed FH schemes from existing ones. Fuji-Hara et al.

[35] obtain an FH sequence using difference matrices and difference packing. The new

FH sequence is of composite length, v1v2, where v1 and v2 are the lengths of old FH

sequences. Ding et al. [27] extend the construction of Fuji-Hara et al. [35]. The authors

use two FH schemes to obtain a new FH scheme of composite length with the size of

the new FH scheme as the minimum of the sizes of the two old FH schemes. Chung

et al. [21] use interleaving techniques to obtain a new FH scheme from another FH

scheme. In this construction the new FH scheme is defined on the same frequency

library as the old one and the size is the minimum of the sizes of the old FH schemes.

Zeng et al. [115] (interleaving technique) get new FH schemes with a preserved number

of FH sequences but increased frequency library size. Chung, Gong and Yang [20] use

the Chinese remainder theorem to present an FH scheme with preserved maximum

Hamming correlation but increased length and size of the frequency library.

The recursive constructions mentioned thus far, each provide new parameters that

could not be otherwise obtained using the old FH schemes. In this section we consider

Ding et al. [27] recursive construction, which is a generalisation of the Fuji-Hara et

al. [35] construction. The construction uses a combinatorial matrix called the cyclic

difference matrix.

3.9.1 Difference matrices

Definition 3.9.1. Let G be an abelian group of order p. A difference matrix, denoted

(p, n;λ)-DM, is an n× λp matrix A = [αij ] such that αij ∈ G and for each pair of two

distinct rows i and i′, 1 ≤ i, i′ ≤ n, every element of G occurs exactly λ times among

the differences {(αij−αi′j) (mod p) : 1 ≤ j ≤ λp}. If G = Zp then the difference matrix

is called a cyclic difference matrix, denoted (p, n;λ)-CDM.

Theorem 3.9.2 (Existence theorem, Theorem 2.2, [49]). Let D be a (p, n, λ)-difference
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matrix. Then n ≤ λp.

Removing a row from a (p, n, λ)-difference matrix provides a (p, n− 1, λ)-difference

matrix. A difference matrix with all zero first row is said to be normalized. A homo-

geneous difference matrix is obtained from a normalized difference matrix by deleting

the all zero row. A homogeneous difference matrix has the property that every element

of Zp appears in every row exactly λ times.

Lemma 3.9.1 is a construction of a homogeneous (p, n; 1)-DM.

Lemma 3.9.3 (Lemma 1.2, [8]). Let p and n be positive integers such that gcd(p, (n−

1)!) = 1, and let αij = ij (mod p) for 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ p− 1. Then D = [αij ]

is a normalized (p, n; 1)-difference matrix. In particular, if p is an odd prime number,

then there exists a (p, n; 1)-difference matrix for any integer n ≤ p− 1.

We consider the recursive construction of Ding et al. [27]. The authors use cyclic

difference matrices with λ = 1.

Let S be a (v, k,m)-FHS with the property that for each X ∈ S, there exists f such

that xt = f for precisely one single time slot t.

Let µX(f) denote the multiplicity of frequency channel f on FH sequence X. Let

µS(f) =
∑

X∈S µX(f), the number of occurrences of frequency channel f in the FH

scheme S. Finally, the maximum occurrence of frequency channels in S the (v, k,m)-

FHS is denoted µ̄S = maxf∈F µS(f).

The authors also use S, a (v, k,m)-FHS with the following property. The frequency

channel 0 appears only at the first time slot on all the FH sequences in S. Further, for

any pair of FH sequences X,Y ∈ S, h(xi, yi) = 0 for i = 1, . . . , v−1, where h(xt, yt) is as

previously defined for Hamming correlation in Definition 2.2.3. Therefore HX,Y (0) = 1.

Let λa = H(X) and λc = H(X,Y ) denote the maximum out-of-phase Hamming

auto-correlation and maximum Hamming cross-correlation defined in Equations (2.2) and (2.3)

respectively. Construction 3.9.4 follows closely [27, Theorem 13]. We have additional

conditions for the use of a particular FH scheme and we have also clear notation on
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the construction of support blocks for ease of understanding.

Construction 3.9.4. Let v ≡ 1 (mod k(k − 1)). Let V be a (v, k,m)-FHS defined

over Fm, with correlation values λa and λc. Further, for any X,Y ∈ V, x0 = y0 = 0,

h(x0, y0) = 1 and h(xi, yi) = 0 for i = 1, . . . , v − 1. Let U be a (v′, k′,m′)-FHS defined

over Fm′, and given its correlation values λ′a and λ′c. Further, for any X,Y ∈ U ,

h(xi, yi) = 0 for i = 0, . . . , v − 1. If there exists a homogeneous cyclic difference

matrix (v′, µ̄V ; 1)-CDM, then there exists S a (vv′,min{k, k′}, (m − 1)v′ + m′)-FHS

with maximum out-of-phase Hamming auto-correlation and maximum cross-correlation

max{λa, λ′a} and max{λc, λ′c} respectively.

Let D = [αij ]µ̄V×v′ be a (v′, µ̄V ; 1)-CDM. For each block Bj
i = {bji1, . . . , b

j
ikj
}, a

support (see Equation (3.27)) for frequency channel i ∈ Fm \ {0}, on FH sequence

Xj ∈ V construct v′ blocks,

Bj
i (l) = {bji1 + α1lv, . . . , b

j
ikj

+ αkj lv}, 0 ≤ l ≤ v′ − 1.

For each block Cji′ = {cji′1, . . . , c
j
i′kj
}, a support block for frequency channel i′ ∈ Fm′ on

FH sequence Yj ∈ U construct a block,

Cji′v = {cji′1v, . . . , c
j
i′kj

v}.

Construct an FH sequence of length vv′ defined over a frequency library F , |F| =

(m − 1)v′ + m′ using the following set of support blocks P = {Bj
i (l), C

j
i′v : 0 ≤ j ≤

min{k − 1, k′ − 1}, 1 ≤ i ≤ m− 1, 0 ≤ i′ ≤ m′ − 1}.

Example 3.9.5 illustrates Construction 3.9.4.

Example 3.9.5. Consider V a (7, 3, 6)-FHS,

V = {(0, 1, 4, 5, 5, 2, 3), (0, 4, 1, 2, 2, 5, 1), (0, 2, 2, 1, 3, 4, 2)},
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U a (5, 2, 4)-FHS,

U = {(1, 3, 2, 3, 1), (0, 2, 1, 1, 3)},

and D a homogeneous (5, 3; 1)-CDM,

D =


0 1 2 3 4

0 2 4 1 3

0 3 1 4 2

 .

Then:

7D =


0 7 14 21 28

0 14 28 7 21

0 21 7 28 14

 .

Consider Y1 = (0, 1, 4, 5, 5, 2, 3). Then B1
1 = {1}, B1

2 = {5}, B1
3 = {6}, B1

4 = {2}, B1
5 =

{3, 4}. The 25 blocks from the B1
i , 1 ≤ i ≤ m− 1 are as follows:

B1
1(0) = {1}, B1

1(1) = {8}, B1
1(2) = {15}, B1

1(3) = {22}, B1
1(4) = {29},

B1
2(0) = {5}, B1

2(1) = {12}, B1
2(2) = {19}, B1

2(3) = {26}, B1
2(4) = {33},

B1
3(0) = {6}, B1

3(1) = {13}, B1
3(2) = {20}, B1

3(3) = {27}, B1
3(4) = {34},

B1
4(0) = {2}, B1

4(1) = {9}, B1
4(2) = {16}, B1

4(3) = {23}, B1
4(4) = {30},

B1
5(0) = {3, 4}, B1

5(1) = {10, 18}, B1
5(2) = {17, 32}, B1

5(3) = {24, 11}, B1
5(4) = {31, 25}.

Consider U1 = (1, 3, 2, 3, 1). We have

C1
0 = ∅, C1

1 = {0, 4}, C1
2 = {2}, C1

3 = {1, 3},

and

C1
0β = ∅, C1

1β = {0, 28}, C1
2β = {14}, C1

3β = {7, 21}.

Table 3.4 shows the support Bj
i (l) and Cji′ 0 ≤ j ≤ 1, 1 ≤ i ≤ 5, 0 ≤ i′ ≤ 3 with the

corresponding frequency channel number.
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Bj
i (l) B1

1(0) B1
1(1) B1

1(2) B1
1(3) B1

1(4)

No. 0 1 2 3 4

Bj
i (l) B1

2(0) B1
2(1) B1

2(2) B1
2(3) B1

2(4)

No. 5 6 7 8 9

Bj
i (l) B1

3(0) B1
3(1) B1

3(2) B1
3(3) B1

3(4)

No. 10 11 12 13 14

Bj
i (l) B1

4(0) B1
4(1) B1

4(2) B1
4(3) B1

4(4)

No. 15 16 17 18 19

Bj
i (l) B1

5(0) B1
5(1) B1

5(2) B1
5(3) B1

5(4)

No. 20 21 22 23 24

C1
i′β C1

0β C1
1β C1

2β C1
3β

No. 25 26 27 28

Table 3.4: Frequency channel assignment for a recursive FH scheme construction.

A new FH sequence of length 35 over a frequency library of size 29 is:

X = (26, 0, 15, 20, 20, 5, 10, 28, 1, 16, 21, 23, 6, 11, 27, 2, 17, 22, 21, 7, 12, 28,

3, 18, 23, 24, 8, 13, 26, 4, 19, 24, 22, 9, 14) (3.53)

3.9.2 Correlation

In this section we consider the Hamming correlation and Hamming group correlation

of the FH scheme of Construction 3.9.4.

Hamming correlation: Let V and U be FH schemes with parameters as given in

Construction 3.9.4. Let S be a (vv′,min{k, k′}, (m−1)v′+m′)-FHS be a recursively con-

structed FH scheme from Construction 3.9.4. Then S is an FH scheme with maximum

out-of-phase Hamming auto-correlation and maximum cross-correlation max{λa, λa′}
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and max{λc, λc′} respectively. Then the maximum Hamming correlation of the set S

is:

Hm(S) = max{max{λa, λa′},max{λc, λc′}}. (3.54)

Hamming group correlation: Let S be an FH scheme as previously defined. Then

the Hamming group correlation is:

G(X,U) ≤ wHm(S),

where U ⊆ S, |U| = w, X ∈ S \ U and H(S) is as given in Equation (3.54). Then the

w-throughput of an FH sequence X ∈ S, ρw(X,U), and the worst-case w-throughput

of the scheme, ρ̂w(S) can be defined in a similar manner to the previous constructions

considered in Sections 3.2.3, 3.3.3, 3.4.3, 3.5.3, 3.6.3, 3.7.3, where the Hamming

group correlation has been estimated using the maximum Hamming correlation.

3.9.3 Jamming resistance

We note that the channel number assignment for a frequency library used in Construc-

tion 3.9.4 is arbitrary. That is, any Aji (l) for 1 ≤ j ≤ k , 0 ≤ i ≤ m − 1 can be a

support set of any frequency channel in F(m−1)v′+m′ . Without loss of generality, we

assume that at time slot t there exists a frequency channel that appears at least once.

That is, ai ≥ 1 for any frequency channel i appearing on FH sequence(s) at time slot t.

So, to determine the jamming resistance of an FH scheme we take the probability that

a ( 1
m ,

1
m)-adaptive jammer is jamming on an active frequency channel i at a particular

time slot t as:

Prob(i is active) = 1−
(
k − ai
w + 1

)
/

(
k

w + 1

)
≥ 1−

(
k − 1

w + 1

)
/

(
k

w + 1

)
.
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3.10 Comparison of FH schemes

Having discussed a large number of FH schemes in the preceding sections, we now

present a comparison in terms of their performance in the presence of mutual interfering

FH sequences. We also compare the FH schemes according to the resistance against

a (θ1, θ2)-adaptive jammer. We compare FH schemes with approximately the same

frequency library size. It is reasonable to fix the size of the frequency library because

it is the parameter that is regulated and constrained in practice. Without loss of

generality, we consider the size of the frequency library comparable to those used for

IEEE 802.11 networks [5]. We consider the case |F| ≈ 23, 79. We have seen that

the parameters v, k,m for a (v, k,m)-FHS have constraints and can be related in most

cases. So, when we fix m, the choice of v and k will follow. However, it was mentioned

in Section 2.3 that FH sequences can be used periodically. Therefore for a fixed m, we

can define a (v, k,m)-FHS and then extend it to a (v′, k,m)-FHS, where v′ = v · n+ r,

where n, r are integers and v′ is the desired length. We mention this because due to

computational limitations we use a random walk of length three, a (3, 23 · 82, 23)-FHS,

in our comparison. However, the (3, 23 · 82, 23)-FHS can be used periodically until a

desired length is obtained.

Tables 3.5 and 3.6 show the parameters of the FH schemes that we use for the

comparison in Sections 3.10.1 and 3.10.2. Further, the tables also shows the sections

in which each FH scheme was described in this chapter.
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Mathematical tool Abbreviation Parameters

Random walks, Section 3.2 RW (3, 23 · 82, 23)-FHS

Difference packing, Section 3.3 DP (232, 232, 23)-FHS

m-sequences, Sections 3.4 LG (233 − 1, 233 − 1, 23)-FHS

Cyclotomy, Section 3.5 CC (47, 47, 23)-FHS

Trace functions, Section 3.6 TF (48, 11, 23)-FHS

Reed-Solomon code, Section 3.7 RS (23, 23, 23)-FHS

Latin square, Section 3.8 LS (23, 23, 23)-FHS

Recursive, Section 3.9 RC (65, 3, 23)-FHS

Table 3.5: Parameters of (v, k, 23)-FHS.

Mathematical tool Abbreviation Parameters

Random walks, Section 3.2 RW2 (3, 79 ∗ 222, 79)-FHS

Difference packing, Section 3.3 DP2 (792, 792, 79)-FHS

m-sequences, Section 3.4 LG2 (792 − 1, 792 − 1, 79)-FHS

Cyclotomic classes, Section 3.5 CC2 (79, 79, 78)-FHS

Trace functions, Section 3.6 TF2 (792 − 1, 39, 79)-FHS

Reed-Solomon code, Section 3.7 RS2 (79, 79, 79)-FHS

Latin square, Section 3.8 LS2 (79, 79, 79)-FHS

Recursive, Section 3.9 RC2 (844, 15, 79)

Table 3.6: Parameters of (v, k,≈ 79)-FHS.

3.10.1 Throughput comparison

In this section we compare the worst-case w-throughput of the (v, k,m)-FHS considered

in this chapter in the presence of mutual interference only. We will make a comparison

of the resistance of the (v, k,m)-FHS in the presence of a (θ1, θ2)-adaptive jammer in
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Section 3.10.2.

Recall the worst-case w-throughput for S a (v, k,m)-FHS defined by Equation (2.38):

ρ̂w(S) = min
V⊆S

{
min
Xi∈V

{ρw(Xi,V \ {Xi})}
}
,

where Xi ∈ V, V = U ∪ {Xi}, U ⊂ S and ρw(Xi,V \ {Xi}) = 1 − G(Xi,V\{Xi})
v .

The Hamming group correlation is G(Xi,V \ {Xi}) ≤ w · Hm(S), where Hm(S) is

the maximum Hamming correlation of a set, Equation (2.14). We approximate the

worst-case w-throughput of a set S using:

ρ̂w(S) ≥ 1− w ·Hm(S)

v
. (3.55)

With Equation (3.55), we suppose that the time slots on which each additional

mutual interfering FH sequence contributes towards Hamming group correlation are

distinct. Table 3.7 summarises the formulae of approximate worst-case w-throughput

for FH schemes from Table 3.5 with respect to the number of mutual interfering FH

sequences.

(v, k,m)-FHS, S Approximate ρ̂w(S)

RW, (3, 23 · 82, 23)-FHS 1− w/3

DP, (232, 232, 23)-FHS 1− w/23

LG, (233 − 1, 233 − 1, 23)-FHS 1− (232 − 1)w/233 − 1

CC, (47, 47, 23)-FHS 1− 2w/47

TF, (48, 11, 23)-FHS 1− 2w/48

RS, (23, 23, 23)-FHS 1− 2w/23

LS, (23, 23, 23)-FHS 1

RC, (65, 3, 23) 1− 3w/65

Table 3.7: Approximate worst-case throughput formula of (v, k, 23)-FHS.
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The results presented in Table 3.8 use the formulae in Table 3.7, where we have

considered the presence of at most 6 mutual interfering FH sequences in a (v, k,m)-

FHS. The results of RC (65, 3, 23)-FHS in Table 3.8 include up to two mutual interfering

FH sequences since there are only three FH sequences in the FH scheme. We also

approximate similarly the worst-case w-throughput for FH schemes from Table 3.6 and

provide the results in Table 3.9.

FHS\ w 1 2 3 4 5 6

RW 0.66667 0.33333 0 0 0 0

DP 0.95652 0.91304 0.86957 0.82609 0.78261 0.73913

LG 0.95660 0.9132 0.8698 0.8264 0.7830 0.7396

CC 0.957 0.915 0.872 0.83 0.787 0.745

TF 0.95833 0.91667 0.875 0.83333 0.79167 0.75

RS 0.91304 0.82609 0.73913 0.65217 0.56522 0.47826

LS 1 1 1 1 1 1

RC 0.95385 0.90769 - - - -

Table 3.8: Throughput of (v, k, 23)-FHS.

FHS\ w 1 2 3 4 5 6

RW2 0.66667 0.33333 0 0 0 0

DP2,CC2,RS2 0.98734 0.97468 0.96203 0.94937 0.93671 0.92405

LG2 0.9875 0.975 0.9625 0.9500 0.9375 0.9250

TF2 0.97468 0.94937 0.92405 0.89873 0.87342 0.84810

LS2 1 1 1 1 1 1

RC2 0.99882 0.99763 0.99645 0.99526 0.99408 0.99289

Table 3.9: Throughput of (v, k,≈ 79)-FHS.
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The results in Table 3.8 show that LS (23, 23, 23)-FHS achieves maximum worst-

case w-throughput of one for any w, 1 ≤ w ≤ 6. The TF (48, 11, 23)-FHS is the next

best in performance, while the RW (3, 23 · 82, 23)-FHS performs poorly.

For large m = 79, the LS (79, 79, 79)-FHS is still the best with maximum w-

throughput of one. However, the performance of TF2 (792 − 1, 39, 79)-FHS fare less

than its counterpart TF (48, 11, 23)-FHS. The RC2 (844, 15, 79)-FHS performance is

considerably better than the remaining FH schemes.

We also consider how many of the FH sequences in a (v, k,m)-FHS can be active

in a session such that the w-throughput of an FH sequence in the presence of mutual

interfering FH sequences is not zero. This is useful in defining the maximum size of

an FHMA. It can also be useful in instances where storage space is limited such as

wireless sensors. In this case not all the FH sequences need to be stored when only a

small fraction of them can be usable and active. A central controlling authority can be

used to distribute FH sequences to be used. Tables 3.10 and 3.11 provide the minimum

number of active FH sequences such that the worst-case throughput is not zero. This

information is also presented as a percentage of the total number of FH sequences in

the (v, k,m)-FHS.

FHS RW DP LG CC TF RS LS RC

Usable active

FH sequences 3 24 26 24 11 12 23 3

Percentage 0.203 4.54 0.21 51.06 100 52.17 100 100

Table 3.10: Approximate number of active FH sequences for positive worst-case

throughput for (v, k, 23)-FHS.

139



3.10. Comparison of FH schemes 3. Investigating existing FH schemes

FHS RW2 DP2 LG2 CC2 TF2 RS2 LS2 RC2

Usable active

FH sequences 3 80 81 79 39 79 79 15

Percentage 0.00784 1.28 1.3 100 100 100 100 100

Table 3.11: Approximate number of active FH sequences for positive worst-case

throughput for (v, k,≈ 79)-FHS.

Tables 3.10 and 3.11 shows that LG and LG2 can accommodate more active FH

sequences (26 and 81 respectively) than the rest of the FH schemes. Due to the nature

of shift registers, the elements of active FH sequences which are transformations of

m-sequences can be generated at a particular time slot. This makes LG and LG2 more

attractive as storage of all the FH sequences is not required. Now the FH schemes,

TF, LS, RC, CC2, TF2, RS2, LS2, RC2 can have all the FH sequences in them being

active in a session.

3.10.2 Comparing jamming resistance

Recall in Chapter 2 that we introduced a (θ1, θ2)-adaptive jammer. We considered

the jamming resistance of a (v, k,m)-FHS at a particular time slot. We gave the

probability that a ( 1
m ,

1
m)-adaptive jammer is eavesdropping on an active frequency

channel in Equation (2.39):

Prob(i is active) = 1−
(
k − ai
w + 1

)
/

(
k

w + 1

)
, (3.56)

where ai = |{j : xjt = i}|, the number of times that frequency channel i on which a

( 1
m ,

1
m)-adaptive jammer is jamming appears at a particular time slot t of interest in a

(v, k,m)-FHS, and w+ 1 is the number of active FH sequences. Note that at any time

slot t:

Prob(i is active) ≥ 1−
(
k − aj
w + 1

)
/

(
k

w + 1

)
,
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for i ∈ Ft = {x0
t , . . . , x

k−1
t }, the multiset of all frequency channels that appear in all

the FH sequences at time slot t and aj = min{ai : ai > 0, 0 ≤ i ≤ m− 1}. In some of

the FH schemes considered in this chapter we went on to find the minimum number of

time slots a ( 1
m ,

1
m)-adaptive jammer needs to identify an active FH sequence. However,

as this was not possible for all the FH schemes, in this section we compare jamming

resistance using Equation 3.56.

Figures 3.4 and 3.6 (with Figures 3.5 and 3.7 showing a magnification of Figures 3.4

and 3.6 respectively at some coordinate for clarity) compares Prob(i is active), denoted

PRai , with respect to w + 1, the number of active FH sequences, for the FH schemes

in Tables 3.5 and 3.6 respectively.
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Figure 3.4: Jamming resistance at a time slot for (v, k, 23)-FHS.
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Figure 3.5: Jamming resistance at a time slot for (v, k, 23)-FHS.
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Figure 3.7: Jamming resistance at a time slot for (v, k,≈ 79)-FHSs.
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The results in Figures 3.4 and 3.6 show that the resistance of (v, k,m)-FHS with

small k against a ( 1
m ,

1
m)-adaptive jammer is poor. This is because the jammer’s chances

of identifying an active FH sequence, given that there are only few FH sequences in

the scheme is high.

3.11 Conclusion on comparison of FH schemes

Numerous FH schemes exist in the literature. In this chapter we have discussed some

of these existing FH schemes. In Section 3.10 we have compared them with respect to

throughput and jamming resistance.

In Section 3.10.1 we compared the worst-case w-throughput of FH schemes. We note

that the size of the frequency library has an impact on the worst-case w-throughput of

an FH scheme. The FH schemes whose size is small, k ≤ m, perform well where there

are minimal interference at each time slot. For example the LS (23, 23, 23)-FHS have

k = m and each frequency channel appears once at each time slot making it achieve

maximum worst-case w-throughput of one.

In Section 3.10.2 we compared the jamming resstance of the FH schemes. In partic-

ular, we considered the probability of a (θ1, θ2)-adaptive jammer jamming on an active

frequency channel. We saw that a (v, k,m)-FHS’s jamming resistance is affected by ai,

the number of times that each frequency channel appears at a time slot in all the FH

sequences of the FH scheme. It was mentioned in Chapter 2 that a jammer can choose

i, where ai ≥ aj for all i 6= j, so that it maximises its chances of jamming an active

channel. However, if ai is uniform at each time slot, then each frequency channel is

equally likely to be an active channel and thus a jammer would not be at an advantage.

Now, ai creates a trade-off the between worst-case w-throughput and jamming

resistance of an FH scheme. When ai = 1 or small, then we have the best or better

w-throughput respectively. On the other hand, if ai = 1 or small then the jamming

resistance of an FH scheme against a (θ1, θ2)-adaptive jammer is poor. In Chapter 4
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we consider a (v, k,m)-FHS such that a (θ1, θ2)-adaptive jammer is forced to randomly

choose a frequency channel to jam, since each frequency channel appears the same

number of times at each time slot. Further, the (v, k,m)-FHS to be considered in

Chapter 4 has the property that we can tell the minimum number of time slots it

can withstand a (θ1, θ2)-adaptive jammer, as well as a lower bound on the worst-case

w-throughput.

3.12 Summary

In this chapter we have considered several existing FH schemes in the new model

developed in Chapter 2: FH schemes that use random walks in Section 3.2, difference

packing in Section 3.3, m-sequences in Section 3.4, cyclotomic classes in Section 3.5,

trace functions in Section 3.6, Reed-Solomon codes in Section 3.7, Latin squares in

Section 3.8 and we have also considered recursive constructions in Section 3.9. We

looked at the throughput of these FH schemes, in particular the throughput of FH

sequences and the worst-case throughput of the FH schemes in the presence of mutual

interference. We have also considered how long the FH schemes can withstand an

adaptive jammer. In instances where we were not able to determine a lower bound

on the number of time slots it can take an adaptive jammer to identify an active FH

sequence, we have considered the probability of jamming an active frequency channel

at a single time slot. In Section 3.10 we have compared the FH schemes: first with

respect to their worst-case throughput in the presence of mutual interference, and

second against their resistance to an adaptive jammer at each time slot. It is desirable

to determine the worst-case throughput of an FH scheme in the presence of mutual

interference, as well as its resistance against jamming, in particular the number of time

slots required to identify an active FH sequence. In Section 3.10 we have only dealt

with approximations. In Chapter 4 we introduce an FH scheme in which we can tell

the worst-case throughput in the presence of mutual interference, as well as how long
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it can withstand an adaptive jammer.
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Cover-free codes
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4.1 Introduction

In this chapter we make the third major contribution of this thesis: we discuss the

interpretation of cover-free codes as FH schemes. Preliminaries are covered in Sec-

tion 4.2. In Section 4.3 we point out a correspondence between a cover-free code and

an FH scheme. We note that when a cover-free code is considered as an FH scheme, a

user can successfully transmit in at least a specified fraction of time in the presence of

a given number of interfering FH sequences. To the best of our knowledge, we are the

first to make this observation. In Section 4.4 we introduce a jammer in the cover-free

code. We examine necessary and desirable additional properties of cover-free codes

such that they can be used in the presence of adversarial interference.
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4.2 Preliminaries

We begin with definitions and preliminaries on codes.

Definition 4.2.1. Let A = {a0, a1, . . . , am−1} be an alphabet. A code C of length v

over the alphabet A is a subset of Av. An element c ∈ C is called a codeword. The

size of the code, |C|, is the number of elements in the code C. A code C ⊆ Av of size k

is called a (v, k,m)-code.

A code of length v that is a linear vector space of dimension κ = logm k over a field

F , |F| = m is called a [v, κ,m]-code.

The Hamming distance of a code helps in analysing errors introduced in codewords.

That is, the Hamming distance is a measure of how different a codeword c that was

sent is from a word x that was received.

Definition 4.2.2. Let X = (x0, x1, . . . , xv−1) and Y = (y0, y1, . . . , yv−1). The Ham-

ming distance between X and Y is the number of coordinates in which they are

different:

d(X,Y ) =
v−1∑
i=0

d(xi, yi),

where

d(xi, yi) =


0 if xi = yi,

1 if xi 6= yi.

Definition 4.2.3. The minimum Hamming distance of a code C ⊆ Fv, F an

alphabet is:

d(C) = min{ d(X,Y ) : X,Y ∈ C, X 6= Y }.

Definition 4.2.4. A code C ⊆ Fv, |F| = m, with k codewords and minimum Hamming

distance d is denoted as a (v, k,m; d)-code, or as a (v, k,m)-code when d is unspecified.

Suppose we consider FH sequences as codewords. Then a (v, k,m)-FHS can be

treated as a (v, k,m)-code when the FH sequences are considered as codewords and

vice versa.
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In this chapter we consider a cover-free code as an FH scheme. Cover-free codes

have been used in numerous contexts. Several authors [30, 44, 54], and the references

therein, defined cover-free codes in the context of binary codes as follows.

Definition 4.2.5. An N × T binary matrix C is called a (w, r)-cover-free code if

for any pair of disjoint subsets J1, J2 ⊂ [T ], |J1| = w and |J2| = r, there exists a row

i ∈ [N ] such that cij = 1 for all j ∈ J1, and cij = 0 for all j ∈ J2.

Stinson and Wei [99] discuss a related concept to cover-free codes.

Definition 4.2.6. Let w, r and d be positive integers. A set system X,F is called a

(w, r, d)-cover-free family ( or (w, r, d)-CFF) provided that, for any w blocks B0, . . . , Bw−1 ∈

F and any other r blocks A0, . . . , Ar−1 ∈ F , we have that

∣∣∣∣∣∣
(
w−1⋂
i=0

Bi

)∖r−1⋃
j=0

Aj

∣∣∣∣∣∣ ≥ d.
Note that Definition 4.2.6 is defined in terms of a set system called a cover free

family and not codes.

In this thesis we use the definition of cover-free codes of Staddon, Stinson and Wei

[95] with a slight modification. The authors define a cover-free code as a code with a

property that any codeword of the code is not covered in more than αv coordinates by

a subset of w codewords of the code. As will be explained later, this definition provides

one of the measures of performance of a cover-free code.

Definition 4.2.7. Suppose that S is a (v, k,m)-code. For any subset S ′ ⊆ S and any

X ∈ Fv, define:

I (X,S ′) = {i : xi = yi for some Y ∈ S ′}. (4.1)

Then S is called (w,α)-cover-free code, denoted (w,α)-CFC, if |I(Z,S ′)| ≤ (1− α)v

for any S ′ ⊆ S, |S ′| = w and any Z ∈ S \ S ′.

The difference in Definition 4.2.7 to that of Staddon [95] (Definition 4.1) is that we
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have allowed equality at the size of the set of coordinates that covers a codeword for

reasons that will become apparent later.

Note that a (v, k,m; d)-code is a (1, d/v)-CFC. We are interested in the case where

w > 1.

The concept of cover-free codes as given by Staddon [95] has applications in black-

listing, traitor tracing schemes and digital fingerprinting [46, 52, 95].

4.3 Cover-free codes as FH schemes

There is a direct correspondence between an FH scheme with a given Hamming group

correlation and a cover-free code. Theorem 4.3.1 shows this correspondence.

Theorem 4.3.1. Suppose S is a (v, k,m)-code over F , |F| = m. Then S is a (w,α)-

CFC if and only if S is a (v,m, k)-FHS with worst-case w-throughput at least α.

Proof. Suppose S is a (w,α)-CFC. In a cover-free code any codeword agrees in at most

(1−α)v places with any other w codewords. Now, let us view the codewords of S as FH

sequences of a (v, k,m)-FHS. Then we have G(X,S ′) = |I(X,S ′)| ≤ (1 − α)v, for any

S ′ ⊆ S, |S ′| = w and any X ∈ S\S ′. That is, any FH sequence experiences interference

in at most (1 − α)v time slots from any other w FH sequences of the (v, k,m)-FHS.

Then ρ̂w(X,S ′) ≥ α for all X,S ′. Therefore the worst-case w-throughput of the FH

scheme is at least α, ρ̂w(S) ≥ α.

Conversely, suppose we have a (v, k,m)-FHS, S, such that ρ̂w(S) ≥ α. Clearly we

have ρw(X,S ′) ≥ α for any X ∈ S and any S ′ ⊆ S\{X}, |S ′| = w. Again, if we consider

the FH sequences in S as codewords, we have the following. Any codeword in S has at

most (1 − α)v positions in which corresponding symbols are the same as those of any

w codewords of the code, 1− G(X,S′)
v ≥ α,∀X,S ′. Then we have (1− α)v ≥ G(X,S ′).

This implies |I(X,S ′)| ≤ (1− α)v. Therefore S is a (w,α)-CFC.

The following trivial example illustrates Theorem 4.3.1.
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Example 4.3.2. Consider S ⊂ F v, the set of codewords of weight 1, that is the words

of F v with exactly one nonzero component. This is a (w, 1
5)-CFC for any w, it is a

(v, v(m− 1),m)-FHS with worst-case w-throughput at least 1
5 .

Suppose we have the alphabet F = {0, 1, 2, 3}. Then the code S defined over F5 has

the following codewords:

(0, 0, 0, 0, 1), (0, 0, 0, 0, 2), (0, 0, 0, 0, 3), (0, 0, 0, 1, 0), (0, 0, 0, 2, 0), (0, 0, 0, 3, 0),

(0, 0, 1, 0, 0), (0, 0, 2, 0, 0), (0, 0, 3, 0, 0), (0, 1, 0, 0, 0), (0, 2, 0, 0, 0), (0, 3, 0, 0, 0),

(1, 0, 0, 0, 0), (2, 0, 0, 0, 0), (3, 0, 0, 0, 0).

Note that for any number of interfering FH sequences w, any codeword will transmit in

one time slot. Therefore the worst-case w-throughput of S is 1
5 . Then S is a (w, 1

5)-CFC

for any w.

It was proved in [95] (Theorem 4.3) that codes with large minimum distance are

cover-free codes.

Theorem 4.3.3. Suppose that S is a (v, k,m; d)-code such that d ≥ v(1− 1
w2 ). Then

S is a (w, 1− 1
w )-CFC.

Proof. Suppose S is a (v, k,m; d)-code with minimum Hamming distance d ≥ v(1− 1
w2 ).

That is any pair of codewords have at least v(1− 1
w2 ) different corresponding coordinates

and that they are the same in at most v
w2 coordinates. Consider U ⊆ S, |U| = w. For

a codeword Z ∈ S \ U and for any Y ∈ S, Y 6= Z, then v(1 − 1
w2 ) ≤ d(S) ≤ d(Y, Z).

Let I denote the set of coordinates in which they agree:

I(Y,Z) ≤ v − v(1− 1

w2
) =

v

w2
.

Note that Z agrees in at most v
w2 coordinates with each codeword in U . Thus:

I(Z,U) ≤ w · v
w2

= (1− (1− 1

w
))v.

Hence S is a (w, 1− 1
w )-CFC.
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We have the following as a corollary of Theorems 4.3.1 and 4.3.3.

Corollary 4.3.4. A (v, k,m; d)-code with d ≥ v(1− 1
w2 ) provides a (v,m, k)-FHS with

worst-case w-throughput at least 1− 1/w.

Reed-Solomon codes are codes with large minimum distance and are described in

the following example to illustrate Corollary 4.3.4.

Example 4.3.5. Let v and w be integers where v ≥ 2 and w ≥ 2. Let m be a prime

power such that m ≥ v. Let F be a finite field of cardinality m and α a primitive

element. Define a length v and w dimensional Reed-Solomon code S over F by,

S =
{(
f(1), f(α), f(α2), . . . , f(αv−1)

)
: f ∈ F [x] and deg f <

⌈ v
w

⌉}
. (4.2)

The code S is a (w, 1− 1/w)-CFC code, which is a (v,m

⌈
v
w2

⌉
,m)-FHS with worst-case

w-throughput at least 1− 1/w.

Recall in Section 3.7, Construction 3.7.3, we considered a particular subcode of a

Reed-Solomon code as an FH scheme. Construction 3.7.3 is a special case of Exam-

ple 4.3.5 and thus of a cover-free code when v = m,m− 1,
⌈
v
w2

⌉
= 1.

4.4 Jamming resistance properties for cover-free codes

We now consider the throughput of cover free codes in the presence of both mutual

interference and a jammer. We delve into further properties that cover-free codes should

have to mitigate a (θ1, θ2)-adaptive jammer. For simplicity, we assume θ1m = θ2m = 1.

Consider S a (w,α)-CFC and V ⊆ S a set of active FH sequences. A ( 1
m ,

1
m)-

adaptive jammer can trivially reduce the worst-case w-throughput of S to 0 if V = S.

If V = S, then all codewords in the cover-free code are active codewords. A jammer

can choose any codeword X ∈ S and jam this codeword from the beginning of the

session until the end, at each and every time slot. As a mitigation strategy we have:
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M1 Use only a fraction of S, that is V ⊂ S.

Recall the jammer does not know Factivet or Mactive
t the multisets of active frequency

channels and multiplicity of active channels respectively. Then it can always guess

which frequency channel to eavesdrop on using Equation (2.39). Recall the probability

in (2.39) is maximum when the jammer selects a frequency channel i such that ai ≥ aj
for all i 6= j. Therefore, if there exists some i such that ai ≥ aj for all i 6= j, then a

jammer will choose frequency channel i to jam. A jammer follows the same strategy

at any time slot t, 0 ≤ t ≤ v − 1. As a mitigation strategy against a ( 1
m ,

1
m)-adaptive

jammer we propose that:

M2 A (v, k,m)-FHS should have the property that all frequency channels used at any

time slot t are uniformly distributed, that is we must have a0 = a1 = . . . = am−1.

Recall, for a ( 1
m ,

1
m)-adaptive jammer what happens at time t informs its next action

at time t+ 1, therefore we also propose that:

M3 For all FH sequences with frequency channel i at time slot t, all frequency channels

on the next time slot t+ 1 should be uniformly distributed. This forces a jammer

to guess randomly at any time slot.

Properties M2 and M3 describe an orthogonal array.

Definition 4.4.1 ( Hedayat, Sloane and Stufken, [43]). A k × v array A with entries

from F is said to be an orthogonal array with m levels, strength t′, 0 ≤ t′ ≤ v− 1,

and index λ if every k × t′ subarray of A contains each t′ tuple based on F exactly λ

times as a row and is denoted OAλ(k, v,m, t′).

It is well known that an orthogonal array of certain parameters are MDS codes as

given by Theorem 4.4.2.

Theorem 4.4.2 ( Hedayat, Sloane and Stufken, [43], Theorem 4.21). An OA1(mt′ , v,m, t′)

(or simply OA(mt′ , v,m, t′)), A, is a (v,mt′ ,m; v − t′ + 1)-MDS code.

152



4.4. Jamming resistance properties for cover-free codes 4. Cover-free codes

Suppose we treat our (v,mt′ ,m; v − t′ + 1) MDS code as a (v,m,mt′)-FHS. Then

the properties of the (v,m,mt′)-FHS are as follows. Consider any t′ consecutive time

slots, for simplicity, 0, . . . , t′−1. Any frequency channel in F appears mt′−1 number of

times at time slot 0. Next consider any mt′−1 FH sequences with a frequency channel

in F that appears at time slot 0. Then at time slot 1, any frequency channel in F

appears mt′−2 number of times on the mt′−1 FH sequences of interest. Finally, at time

slot t′− 1 any frequency channel in F appears once on FH sequences with a particular

frequency channel at time slot t′ − 2.

Now we introduce a ( 1
m ,

1
m)-jammer in our (v,mt′ ,m; v − t′ + 1)-MDS code. We

consider the situation where there is only one active FH sequence in use. At any time

slot t, 0 ≤ t ≤ v − 1, the number of times any symbol in F is used is uniform, a

jammer randomly guesses a symbol to eavesdrop on. For any active symbol in F that

it eavesdrops on, a jammer will have successfully identified an active codeword if the

multiplicity of that frequency channel is 1. Otherwise, at time slot t + 1 its search

is concentrated on the codewords with that particular symbol that appeared at the

previous time slot. However, for any inactive symbol in F that it eavesdrops on at any

time slot t, it removes from its search space the codewords with that specific symbol

and on t + 1 continues its search on the remaining codewords at time t. The jammer

continues this action until either of the following happens:

1. One active codeword is identified, or the size of its search space is at most the

number of active codewords.

2. The session ends.

Searching until the end of the session means the jammer failed to identify an active

codeword within the session.

Consider a (v,mt′ ,m; v − t′ + 1)-MDS code, S. Recall S∗t is the search space of a

jammer at time slot t. Suppose that at time slot t, 0 ≤ t ≤ t′, the jammer picks a

channel xjt to eavesdrop on for some Xj ∈ S∗t . If this channel is active then |S∗t+1| =
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1
m |S∗t |, where S∗t+1 has all FH sequences with the active channel xjt and the FH sequences

discarded at this stage are inactive FH sequences. On the other hand, if xjt is inactive

then |S∗t+1| = m−1
m |S∗t | and again inactive FH sequences with xjt are discarded at this

stage. Note that a lucky jammer always reduces the search space at least as quickly

as an unlucky jammer. At any time slot t, 0 ≤ t ≤ t′, |S∗t | = (m − 1)Bmt′−t, where

B, 0 ≤ B ≤ t ≤ t′, is the number of time slots on which a jammer has been unlucky.

Consider time slot t′. We now discuss what different values of B means with respect

to the size of the jammer’s search space and how long it takes to identify an active FH

sequence:

1. If B = 0, that is a jammer has been lucky at all the t′ time slots, then |S∗t′ | = 1.

Only one active FH sequence remains in the jammer’s search space at this time

slot, thereby successfully identifying the active FH sequence.

2. If B = t′, that is a jammer has been unlucky at all the t′ time slots, then

|S∗t′ | = (m− 1)t
′
. Inactive FH sequences are discarded from the jammer’s search

space at each of the t′ time slots.

3. For any other value of B such that B 6= 0, t′ we have |S∗t′ | = (m− 1)B > 1. So, a

change of luck does not speed up the time to identify an active FH sequence as

it will take at least as long as the jammer that is always lucky at every time slot.

Table 4.1 considers FH schemes defined over frequency libraries of sizes comparable

to those in the IEEE 802.11 standard [5]. It shows the performance of a (v, k,m)-FHS

when w + 1 FH sequences are used in the presence of mutual interferences and when

a single active FH sequence is used in the presence of adversarial interference from a

(1/m, 1/m)-adaptive jammer. We have a guaranteed worst-case w-throughput of at

least α and the FH scheme can withstand a (1/m, 1/m)-adaptive jammer for at least

γv time slots respectively.
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(v, k,m)-FHS (w,α) γv

(23, 233, 23) (3, 0.6667) 3

(23, 232, 23) (4, 0.75) 2

(23, 231, 23) (22, 1) 1

(37, 375, 37) (3, 0.6667) 5

(37, 373, 37) (4, 0.75) 3

(37, 372, 37) (5, 0.80) 2

(59, 597, 59) (3, 0.6667) 7

(59, 594, 59) (4, 0.75) 4

(59, 593, 59) (5, 0.80) 3

(79, 799, 79) (3, 0.6667) 9

(79, 795, 79) (4, 0.75) 5

(79, 794, 79) (5, 0.80) 4

Table 4.1: Performance of (v, k,m)-cover-free codes.

From Table 4.1 it can be seen that there is a trade-off between α, the lower bound

of the worst-case w-throughput in the presence of mutual interference, and γv, how

long it takes a jammer to identify an active FH sequence. Note that by increasing the

number of FH sequences, k, while the length, v, and the size of the frequency library, m,

is fixed, then α diminishes while the resistance of the FH scheme against an adaptive

jammer improves. However, the FH scheme does not withstand our jammer for long.

A solution to this dilemma would be to restart the FH scheme every γv time slots.

This will be elaborated further in Chapter 5, where an FH scheme is constructed that

guarantees a w-throughput of one in the presence of mutual interference and withstands

a jammer for an entire session.
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4.5 Summary

In this chapter cover-free codes have been considered as FH schemes. Further we

have seen that cover-free codes provide a defined lower bound on the worst-case w-

throughput of an FH scheme.

Further we considered mitigating strategies for cover-free codes to be used in the

presence of both mutual and adversarial interference. However, we showed that in

the presence of our adaptive adversary, the cover-free code based FH schemes do not

withstand the adaptive jammer for long. We will describe the secure Bag-Ruj-Roy (S-

BRR) scheme in Chapter 5 that can be viewed as a cover-free code used in conjunction

with pseudorandomness. This scheme provides an FH scheme with throughput one that

can be used in the presence of an adaptive jammer and can withstand the adaptive

jammer an entire session.
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A secure and efficient FH scheme
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5.1 Introduction

We have seen that an FH scheme with the property that every frequency channel

appears the same number of times at a single time slot has an improved resistance

against a (θ1, θ2)-adaptive jammer. However it has been shown that even a (v, k,m)-

FHS with this uniform number of channels at each time slot does not withstand a
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(θ1, θ2)-adaptive jammer for a very long time. In this chapter we propose FH schemes

that employ pseudorandomness.

In Section 5.2 we propose a secure-BRR (S-BRR) FH scheme. The S-BRR FH

scheme uses a pair of orthogonal Latin squares to derive FH sequences as in the BRR

FH scheme discussed in Section 3.8. The S-BRR FH scheme addresses the limitations

of the BRR FH scheme in that it is more resistant to a (θ1, θ2)-adaptive jammer than

the BRR FH scheme: it can withstand a (θ1, θ2)-adaptive jammer for the entire session

of the FH scheme. In Section 5.3 we propose a pseudorandom Latin square (PR-LS)

FH scheme. The PR-LS FH scheme uses a single Latin square to obtain FH sequences.

This PR-LS FH scheme not only has the maximum w-throughput of one but is also

secure in the presence of a (θ1, θ2)-adaptive jammer, as well as being attractive for use

in resource-constrained devices.

5.2 Secure Bag-Ruj-Roy (S-BRR) FH scheme

The (v, k,m)-FHS of this section can be considered as a BRR FH scheme that resists a

(θ1, θ2)-adaptive jammer for an entire session. We propose a desirable property, some

form of pseudorandomness, which is introduced in a BRR FH scheme such that it can

withstand the attack of a (θ1, θ2)-adaptive jammer.

Construction 5.2.1. (S-BRR FH scheme). Let F3 and F4 be pseudorandom functions

that take as input the long term key K, the session number s and the time slot t. The

K and s are shared among all the users of the FH scheme. All users generate new keys

at each time slot called slot keys: xt = F3(K, s, t) and yt = F4(K, s, t), 0 ≤ t ≤ m− 1.

Let L1 = [αij ]v×v and L2 = [βij ]v×v be a pair of orthogonal Latin squares of order

m defined over Zm. At each time slot t, 0 ≤ t ≤ m − 1, user Ni looks up row i in L2

to find the column j such that βij = yt. Then it will looks up αij in L1. Let L3 be

the superposition of L1 and L2. In each session a user Ni derives an FH sequence of
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length m over Zm from:

R∗i = {(αij , βij) : βij = yt, 0 ≤ t ≤ m− 1} ,

where (αij , βij) ∈ L3, αij ∈ L1 and βij ∈ L2. A frequency hop at each time slot t,

0 ≤ t ≤ m− 1, is given by αij + xt. That is the FH sequence is:

Xi = (αij + xt).

The (v, k,m)-FHS in Construction 5.2.1 is an (m,m,m)-FHS. Essentially this FH

scheme generates a new BRR FH scheme at each time slot.

Example 5.2.2. Consider L1 and L2 a pair of orthogonal Latin squares of order 7:

L1 =

0 1 2 3 4 5 6

1 2 3 4 5 6 0

2 3 4 5 6 0 1

3 4 5 6 0 1 2

4 5 6 0 1 2 3

5 6 0 1 2 3 4

6 0 1 2 3 4 5

, L2 =

0 6 5 4 3 2 1

1 0 6 5 4 3 2

2 1 0 6 5 4 3

3 2 1 0 6 5 4

4 3 2 1 0 6 5

5 4 3 2 1 0 6

6 5 4 3 2 1 0

.

Suppose we have the following slot keys:

t 0 1 2 3 4 5 6

xt 5 6 4 5 5 4 2

yt 3 2 6 6 4 4 0

.

Consider a Latin square L3, the superposition of L1 and L2:
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L3 =

( 0, 0 ) ( 1, 6 ) ( 2, 5 ) ( 3, 4 ) ( 4, 3 ) ( 5, 2 ) ( 6, 1 )

( 1, 1 ) ( 2, 0 ) ( 3, 6 ) ( 4, 5 ) ( 5, 4 ) ( 6, 3 ) ( 0, 2 )

( 2, 2 ) ( 3, 1 ) ( 4, 0 ) ( 5, 6 ) ( 6, 5 ) ( 0, 4 ) ( 1, 3 )

( 3, 3 ) ( 4, 2 ) ( 5, 1 ) ( 6, 0 ) ( 0, 6 ) ( 1, 5 ) ( 2, 4 )

( 4, 4 ) ( 5, 3 ) ( 6, 2 ) ( 0, 1 ) ( 1, 0 ) ( 2, 6 ) ( 3, 5 )

( 5, 5 ) ( 6, 4 ) ( 0, 3 ) ( 1, 2 ) ( 2, 1 ) ( 3, 0 ) ( 4, 6 )

( 6, 6 ) ( 0, 5 ) ( 1, 4 ) ( 2, 3 ) ( 3, 2 ) ( 4, 1 ) ( 5, 0 )

.

In L3 we have highlighted the entries that are used by all the users Ni, 0 ≤ i ≤ m−1,

on t = 0, the first time slot.

Consider user N0. To determine the frequency channel to be used on t = 0 it

employs (4, 3) the entry in row i = 0 with yt = 3. Then the frequency hop on t = 0 is:

4 + 5 ≡ 2 mod 7.

In a similar manner, we can determine the frequency channels employed by all users at

the first time slot. The frequency channels 2, 4, 6, 1, 3, 5, 0 are used during the first time

by users N0, N1, N2, N3, N4, N5, N6 respectively. Note that we have distinct frequency

channels at each time slot.

We now derive an FH sequence for N0:

User N0

R∗i {(4, 3, 5), (5, 2, 6), (1, 6, 2), (1, 6, 2), (3, 4, 4), (3, 4, 4), (0, 0, 1)}

FH sequence (2, 4, 5, 3, 3, 0, 2)

.

Therefore in our notation, an FH sequence for user N0 is (2, 4, 5, 3, 3, 0, 2).

5.2.1 Correlation

Consider S to be an S-BRR (m,m,m)-FHS of Construction 5.2.1. In the S-BRR FH

scheme we have introduced slot keys which are shared by all users of the FH scheme.

Let yt be a slot key for time slot t. By definition each Ni look up row i in L2 to find
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column j such that βij = yt. As L2 is a Latin square, βij appears on m distinct columns.

By the orthogonality property of L1 and L2, we have that all m tuples (αij , βij), where

αij ∈ L1, βij ∈ L2, are distinct. Therefore each frequency channel αij + xt used by

Ni is again distinct. So, for any FH sequences there is no mutual interference in the

presence of other users at each time slot. Therefore the S-BRR FH scheme has the same

throughput as the BRR FH scheme. That is, the w-throughput of any FH sequence

Xi in the presence of other FH sequences in U ⊂ S is:

ρw(Xi,U) = 1. (5.1)

It follows from Equation (5.1) that the worst-case w-throughput of S is ρ̂w(S) = 1.

5.2.2 Jamming resistance

Consider an S-BRR (m,m,m)-FHS of Construction 5.2.1. Assume that all the FH

sequences are active.

Without loss of generality, consider a ( 1
m ,

1
m)-adaptive jammer. Suppose a ( 1

m ,
1
m)-

adaptive jammer can identify αij+xt , an active channel at a particular time slot t,

0 ≤ t ≤ m − 1. Knowledge of αij+xt will not be used to derive any FH sequence

since the slot keys, xt, are updated at every time slot. Therefore a ( 1
m ,

1
m)-adaptive

jammer cannot derive any FH sequence as long as the pseudorandom number generator

is secure. Hence the S-BRR is secure for an entire session.

5.3 A secure and efficient FH scheme

The (v, k,m)-FHS discussed in Chapters 3 and 4 have been shown to be insecure when

used in the presence of a (θ1, θ2)-adaptive jammer. In Section 5.2 we proposed the

S-BRR FH scheme where a new BRR FH scheme (see Section 3.8) is generated at each

time slot. The S-BRR is better than the BRR FH scheme in that it not only achieve the

maximum worst-case w-throughput of one but is also secure when used in the presence
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of an adaptive jammer. However, the fact that the S-BRR FH scheme generates a new

BRR FH scheme renders it costly in terms of the additional computations to be done

by users, as well as storage resources since it stores two Latin squares. Therefore in

this section we propose a pseudorandom Latin square (PR-LS) FH scheme that is both

secure and efficient. The PR-LS attains a maximum worst-case w-throughput of one, it

can withstand a (θ1, θ2)-adaptive jammer for the entire session, and it is more efficient

than the S-BRR FH scheme.

5.3.1 Pseudorandom Latin square (PR-LS) FH scheme

Let F be a pseudorandom function that takes inputs K the long term key, s the session

number, and t the current time slot. The key K and s are shared by all legitimate

users. A slot key xt, 0 ≤ t ≤ m− 1, is generated at each time slot as xt = F (K, s, t).

Construction 5.3.1. (PR-LS FH scheme). Let L = [αij ]m×m be a Latin square

defined on Zm. The FH sequences of length m over F = Zm for a PR-LS FH scheme

are:

Xi = (βij),

where βij = αij + xt mod v, xt = F (K, s, t), and 0 ≤ i, j, t ≤ m− 1.

The FH scheme in Construction 5.3.1 is an (m,m,m)-FHS.

Unlike the S-BRR FH scheme the newly proposed PR-LS FH scheme has reduced

overhead in terms of the following:

1. Storage constraints: by definition the S-BRR FH scheme needs two Latin squares,

while the PR-LS FH scheme uses only one Latin square. Therefore the PR-LS FH

scheme is attractive for storage-constrained users, for example in wireless sensor

networks.

2. Computational costs: suppose the existence of a central controlling authority

(CA) that assigns FH sequences to each user in a network. In an S-BRR FH
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scheme, the CA computes a new BRR FH scheme at each time slot to assign a

frequency channel to each user and uses the pseudorandom function twice (for

generating xt and yt). In a PR-LS FH scheme, on the other hand, the CA only

calls the only pseudorandom function for generating xt. Therefore, it is expensive

to run the pseudorandom function for the S-BRR. If individual users generate

their own FH sequences then we consider the difference in the running time of

the FH scheme, which is described next.

3. Running time of the FH scheme: in the S-BRR FH scheme each user searches for

a column such that yt = βij , then finds αij . This is not the case with the PR-LS,

where only αij is needed. Therefore the PR-LS FH scheme has a better running

time.

We now provide an example of the construction of a PR-LS FH scheme.

Example 5.3.2. Consider L1 a Latin square of order 7 over Z7:

L1 =

0 1 2 3 4 5 6

6 0 1 2 3 4 5

5 6 0 1 2 3 4

4 5 6 0 1 2 3

3 4 5 6 0 1 2

2 3 4 5 6 0 1

1 2 3 4 5 6 0

.

Consider the following slot keys:

t 0 1 2 3 4 5 6

xt 5 6 4 5 5 4 2
.

An FH sequence for user N0 is X1 = (5, 0, 6, 1, 2, 2, 1).

It is interesting to note that a PR-LS FH scheme can also be interpreted in terms

of codes in two ways:
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1. A collection of m (m,m,m)-FHS, which are (m,m,m)-MDS codes of minimum

distance m, where each FH scheme is used only once.

2. An MDS code with minimum distance one, that is an (m,mm,m)-FHS. Only

m sequences are used and these are determined by the pseudorandom number

generator.

5.3.2 Correlation

Let S be a PR-LS FH scheme. It is easy to see that at each time slot t, 0 ≤ t ≤ m− 1,

all the frequency channels αit + xt, 0 ≤ i ≤ m− 1 are distinct. So, there is no mutual

group interference at each time slot. Therefore we have the maximum achievable w-

throughput of one for any w, 1 ≤ w < m,

ρw(Xi,U) = 1,

where Xi ∈ S and U ⊂ S. As in both the BRR and S-BRR FH schemes, the worst-case

w-throughput of S is ρ̂w(S) = 1.

5.3.3 Jamming resistance

Consider a PR-LS FH scheme. By definition, we have introduced pseudorandomness at

each time slot for all the FH sequences in the FH scheme. Suppose all the FH sequences

are active. Now, consider the presence of a ( 1
m ,

1
m)-adaptive jammer. The jammer has

no knowledge of K, the long term key, as it is shared by only the legitimate users.

Further, a fresh pseudorandom number xt is generated at each time slot, which means

a new Latin square is generated at each time slot. Suppose a ( 1
m ,

1
m)-adaptive jammer

eavesdrops on an active channel at time slot t. Then the jammer obtains αij+xt. Notice

that the jammer cannot use xt to derive any FH sequence since at the succeeding time

slot t+ 1 all users generate a new pseudorandom slot key xt+1 and use it to determine

the new hop αij +xt+1. Therefore a ( 1
m ,

1
m)-adaptive jammer cannot identify an active
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FH sequence for an entire session, where all the FH sequences in the FH scheme are

allowed to be active. So we have an FH scheme that achieves maximum w-throughput

of one and can withstand a ( 1
m ,

1
m)-adaptive jammer for an entire session.

5.4 Summary

In this chapter, we proposed two new FH schemes: S-BRR and PR-LS FH schemes.

These FH schemes use Latin squares to derive FH sequences. We have shown that Latin

squares can be used to derive FH schemes that achieve both maximum throughput

of one, as well as resist an adaptive jammer for an entire session at the expense of

computation. The S-BRR FH scheme, which can be considered as generating a new

BRR at each time slot, is efficient in terms of both throughput, as well as resistance

against an adaptive jammer. Finally, the PR-LS FH scheme, which is also efficient

in throughput and jamming resistance, is defined using a single Latin square, unlike

the BRR FH scheme and the S-BRR FH scheme, which use a pair of Latin squares.

By using a single Latin square, the PR-LS FH scheme may be desirable in resource-

constrained networks.
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6.1 Conclusion

In this thesis we have discussed frequency hopping schemes which are used in frequency

hopping multiple access systems.

In Chapter 1 we introduced the theory of spread spectrum techniques. In more

detail, we looked at direct sequence and frequency hopping spread spectrum techniques.

We considered some existing frequency hopping schemes and pointed out the deficiency

in the analysis of their performance.

In Chapter 2 we developed a new model of analysing the performance of a (v, k,m)-

FHS in the presence of interference. We showed that it is inadequate to consider the

performance of frequency hopping schemes based on either Hamming correlation or

jamming, but not both, as has been the case with most of the existing research in

the literature. So, in this thesis we have considered both group-wise mutual inter-

ference and adversarial interference (jamming), bearing in mind that more than two
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users can be transmitting simultaneously in the presence of an adversary. We defined

Hamming group correlation in Definition 2.4.1, from which many throughput measures

were developed. Further, we modelled a jammer’s strategy as frequency hopping se-

quences defined on the same frequency library as legitimate users. We then re-defined

the throughput measure, bearing in mind the presence of both mutual interfering fre-

quency hopping sequences, as well as jamming frequency hopping sequences.

In Chapter 3 we performed an extensive analysis of some of the existing fre-

quency hopping schemes in the new model proposed in Chapter 2. We considered

frequency hopping schemes constructed using the following mathematical structures:

random walks on a graph, difference packing, m-sequences, cyclotomy, trace functions,

Reed-Solomon codes, Latin squares, as well recursively constructed frequency hopping

schemes. These frequency hopping schemes are optimal in the bounds in which they

were analysed: Lempel and Greenberger, as well as Peng and Fan bounds. However,

we were interested in analysing them in the presence of group-wise mutual interference,

as well as jamming. For each of the frequency hopping schemes we investigated:

1. the w-throughput of a frequency hopping sequence in the presence of group-wise

mutual interference, as well as worst-case w-throughput of a frequency hopping

scheme.

2. the performance of a frequency hopping scheme in the presence of a (θ1, θ2)-

adaptive jammer. In some frequency hopping schemes it was possible to deter-

mine the minimum number of time slots a jammer can take to identify an active

frequency hopping sequence. In the BRR scheme, in particular, we showed that

it is insecure as a jammer only needs to listen on a single time slot to identify an

active frequency hopping sequence. Otherwise, we considered the probability of

jamming on a channel that is being used at a specific time slot.

Next we compared the performance of all the frequency hopping schemes in terms of

worst-case w-throughput. Then we considered the probability of jamming an active
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channel. The results of the comparison of worst-case w-throughput in the presence

of group-wise mutual interference showed that the frequency hopping scheme based

on Latin squares (BRR frequency hopping scheme) is overall good compared to the

other frequency hopping schemes as it achieve a maximum worst-case w-throughput

of one. Now, using the worst-case w-throughput formula, we estimated the minimum

number of active frequency hopping sequences that can be used in a frequency hopping

scheme such that a frequency hopping sequence can transmit with positive throughput

in the presence of other mutual interfering frequency hopping sequences. This result

can be used to determine a lower bound on the maximum size of a network (frequency

hopping multiple access system) such that each user has a positive throughput in the

presence of other legitimate users. On the other hand, the results of the performance

of the frequency hopping schemes in the presence of an adaptive jammer were that the

smaller the size of the frequency hopping scheme, the poorer the performance. Given a

frequency hopping scheme, we came to the conclusion that to minimise the probability

of jamming an active channel it is desirable to have each frequency channel appear the

same number of times at a time slot in the frequency hopping sequences.

In Chapter 4 we considered cover-free codes. When we design a frequency hop-

ping scheme from a cover-free code we note that every frequency channel appears the

same number of times at a time slot in the frequency hopping sequences. Further,

it was observed that by definition a cover-free code provides the minimum number of

time slots a frequency hopping sequence can transmit in the presence of group-wise

mutual interference. Next we introduced a jammer in a cover-free code. The combina-

torial properties of cover-free codes enabled us to determine the minimum number of

time slots a (θ1, θ2)-adaptive jammer can take to identify an active frequency hopping

sequence.

Thus far we have the BRR frequency hopping scheme that achieves worst-case w

throughput of one but is not secure. We also have the cover-free code, for which we

can determine a lower bound on its worst-case w-throughput, as well as the jamming
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resistance, but is also not secure in the presence of an adaptive jammer. In fact the

numerous frequency hopping schemes analysed in Chapters 3 and 4 are not secure

in the presence of jamming. So, in Chapter 5 we proposed two frequency hopping

schemes which use Latin square(s): S-BRR frequency hopping scheme and PR-LS

frequency hopping scheme. Both of the proposed frequency hopping schemes achieve a

throughput of one in the presence of group-wise mutual interference, as well as being

able to withstand jamming until the end of a session. The difference between the two

is that the S-BRR frequency hopping scheme uses a pair of orthogonal Latin squares,

while the PR-LS frequency hopping scheme uses a single Latin square. The latter is

thus both efficient and secure.

6.2 Future work

We now list possible future directions for our work.

� In this thesis we have assumed that users in a frequency hopping scheme can agree

on t = 0, that is users know at which point in a frequency hopping sequence to

start. We have also assumed that all users stay synchronised until the end of the

session, where a session is taken as the length of a frequency hopping sequence.

However, in practice this is not always the case. The length of the correlation

window can sometimes be less than the length of a frequency hopping sequence. It

is sometimes necessary to consider partial synchronisation in applications where

synchronisation time has to be minimized, or to minimize hardware complexity in

a receiver [10, 14, 32, 39, 71]. The question we now ask is how do we define group-

wise mutual interference in a partially synchronised setting where the window

length is less than the length of a frequency hopping sequence and can change

over time depending on channel conditions.

� In Chapter 2 we discussed some of the lower bounds on Hamming correlation that

exist in the literature, Lempel-Greenberger and Peng-Fan bounds. These bounds
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measure the theoretical performance of frequency hopping schemes and involve

some/all of the five parameters: the size of the frequency library, the length of

a frequency hopping sequence, the size of a frequency hopping scheme, the max-

imum Hamming auto-correlation and the maximum Hamming cross-correlation.

In Section 3.10.1 we have compared estimations of worst-case w-throughput of

frequency hopping schemes. To improve the comparison of the different frequency

hopping schemes we suggest determining a lower bound on the Hamming group

correlation of frequency hopping schemes. The bound will then be used in the

computation of the worst-case w-throughput and give a better comparison of the

frequency hopping schemes.

� In some of the FH schemes considered in Chapter 3 and the FH scheme of Chap-

ter 4 we discussed how the information about a channel a jammer eavesdrop on

can determine its action on a succeeding time slot. We pointed out that this

jamming strategy works when there is only one active FH sequence. In real life

applications, we could have more than one active FH sequence. The jammer can

exploit its knowledge of the number of active FH sequences as well as the infor-

mation it obtains from the channels it eavesdrop on, to modify the size of the

search space.

Consider an FH scheme, with w + 1, w + 1 ≥ 1, active sequences being used

in the presence of an adaptive jammer. We consider the information that an

adaptive jammer has, after eavesdropping on t time slots. The jammer uses the

information it learns from eavesdropping to restrict its search space.

At each time slot t ≥ 0, a jammer knows that the channel it was eavesdropping

on is either active or inactive. Further, the jammer has a partial sequence of

channels it has eavesdropped on thus far up to time slot t− 1.

Suppose on the current time slot t the jammer eavesdrop on an active channel.

The jammer creates all (w+1)-subsets from the current search space that are ca-
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pable of producing the partial sequence (including the current frequency channel):

we call these subsets the parent sets.

On the other hand, suppose on time slot t the channel is inactive. Then the

jammer discard from the search space all the FH sequences with the inactive

channel appearing on that time slot. This allows the jammer to restrict the

search space even further. The jammer again creates (w+1)-subsets, parent sets,

from the now smaller search space.

The jammer has identified at least one active FH sequence if the intersection of

all parent sets is non-empty. If the intersection is empty, then the jammer repeats

this algorithm again on time slot t+ 1. It stops when an active FH sequence has

been identified or the session has ended.

So, we would like an FH scheme to have the property that the intersection of all

the parent sets is empty for as large a t as possible.

Note that if an FH scheme is a (w + 1)-IPP code [11, 38, 95] then a jammer

that eavesdrops on an active channel in all v time slots can identify at least

one active FH sequence. However, the identifiable parent property does not

indicate whether it is possible to identify an active FH sequence in fewer time

slots. In addition, in the case of a mixed-fate jammer, the jammer would want

to identify an active sequence from a partial (eavesdropped) sequence. Modelling

this jammer may lead to interesting correspondence between FH schemes with

anti-jamming properties and IPP codes as well as other fingerprinting codes.

� In Chapter 5 we have mentioned that theoretically there is a trade-off between

the security and computation costs for the S-BRR and PR-LS frequency hopping

schemes. In both the S-BRR and PR-LS frequency hopping schemes we have more

computations than in the BRR frequency hopping scheme, however we have the

advantage of jamming resistance for an entire session. So, there is a need for

the construction of frequency hopping schemes whose computational complexity
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is reduced but at the same time is secure and has a worst-case w-throughput of

one.

� Last but not least, in this thesis we have not determined the minimum number

of time slots a jammer can take to identify an active frequency hopping sequence

in most of the frequency hopping schemes. Since the frequency hopping schemes

are diverse, in terms of the size of the frequency library, the length of the fre-

quency hopping sequences, the size of the frequency hopping scheme, a jamming

resistance comparison could be made through practical simulations. It is possible

to reasonably model and simulate a frequency hopping anti-jam system, using for

example SIMULINK.
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