
The Davenport Constant of
Finite Abelian Groups

Thesis submitted for the degree of
Doctor of Philosophy in Mathematics by

Aleen Sheikh
aleen.sheikh.2013@live.rhul.ac.uk

Supervisor : Professor Simon R. Blackburn

Department of Mathematics
Royal Holloway, University of London

May 2017

1

Declaration of Authorship

I Aleen Sheikh hereby declare that this thesis and the work presented in it is

entirely my own. Where I have consulted the work of others, this is always

clearly stated.

Signed:

Date: May 2017

2

Acknowledgements

I express my deepest gratitude to Professor Simon R. Blackburn for being the

ideal supervisor. I thank him for all the encouragement and guidance without

which it would have been difficult to complete the PhD programme. I was

always amazed at how he deciphered my questions and proposed construc-

tive ideas and techniques that helped me look at the subject from different

perspectives. I also appreciate the many detailed comments from Simon on

my written work and theoretical ideas, which have helped me develop from

an undergraduate into a researcher. I am deeply grateful to Simon for moti-

vating me at every step of the course and for being a huge inspiration!

I thank the Mathematics department at Royal Holloway for granting me

the Reid Scholarship Maintenance and Fee Award, and for giving me the

opportunity to run workshops. I would also like to thank the libraries at UCL,

Birkbeck, Imperial College, and Senate House for providing study spaces

where I spent most of the last 4 years.

Finally, I am forever obliged to my mother Kishwar and my sister Atiqa for

supporting me. I am indebted to my mother for all the love, encouragement,

and packed lunches, all of which have helped ease my busy schedule. I thank

Atiqa for all the times we spent discussing maths, for helping me keep up

with vocal and dance practices, and for helping me get to sleep at night! I

also thank my friends Parisa and Nisha for helping me relax on fun days out.

Thank-you to everyone who has helped me complete my PhD and turn

what was once a dream, into a reality! Special thanks to my late father, Fayyaz.

3

Abstract

Let G be a finite abelian group. The Davenport constant of G, denoted D(G),

is the smallest integer d such that every sequence over G of length d has a

non-empty zero-sum subsequence. The problem of finding the Davenport

constant of an arbitrary finite abelian group is a well-known problem in

combinatorial number theory.

It is known that

D(G) ≥ 1 + d∗(G),

where d∗(G) is a certain constant that is computed using the invariant factor

decomposition of G. There was a conjecture that this bound is always tight,

but counterexamples are now known for many groups G of rank 4 or more.

However, the conjecture has been established for many classes of groups, in

particular Olson proved in 1969 that D(G) = 1 + d∗(G) when G has rank

at most 2. Whether the conjecture holds when G has rank 3 is still an open

problem.

The main results of the thesis are as follows. We prove the equality

D(G) = 1 +d∗(G) for G ∼= Z5⊕Z5⊕Z10, the smallest group of rank 3 where

this equality was not known. We provide a detailed proof of a result of

Bhowmik and Schlage-Puchta from 2007, which shows that D(G) = 1+d∗(G)

holds for groups G of the form G ∼= Z3⊕Z3⊕Z3d. Our proof removes some

of the obscurities in their original approach. Finally, we establish new upper

bounds on D(G) in terms of d∗(G), including a general quadratic upper

bound and a linear upper bound in the case when G ∼= Z5⊕Z5⊕Z5d.

4

Contents

1 Introduction 10

1.1 Fundamental concepts . 10

1.2 Motivation . 13

2 A survey of the Davenport constant 16

2.1 The trivial lower bound . 16

2.2 The smallest unsolved case of rank 3 19

3 A result about d∗(H) for subgroups H 23

4 The Davenport constant of Z3⊕Z3⊕Z3d 26

4.1 Motivation . 26

4.2 Preparatory material . 27

4.3 Preliminary results about Z3
3 29

4.4 The equality D(G) = 1 + d∗(G) 41

5 Some results on sequences over Zp⊕Zp⊕Z2p 45

5.1 Motivation . 45

5.2 Preparatory material . 46

5.3 A result on sequences of length 1 + d∗(G) 52

5.4 A property about zero-sum free sequences 58

6 The Davenport constant of Z5⊕Z5⊕Z10 64

5

CONTENTS 6

7 An upper bound on the Davenport constant of Z5⊕Z5⊕Z5d 69

7.1 Motivation . 69

7.2 Some results about Z3
5 . 70

7.3 The upper bound . 80

8 Programming searches through sequences over Z3
3 and Z3

5 82

8.1 Searches in Z3
3 . 82

8.1.1 CPT9 . 83

8.1.2 CPT10 . 87

8.1.3 CPT10CNTR . 88

8.1.4 CPT10F . 90

8.1.5 CPT13 . 91

8.1.6 CPT13CNTR . 92

8.1.7 CPT16 . 92

8.2 Searches in Z3
5 . 94

8.2.1 Representing and manipulating elements in Z3
5 94

8.2.2 Groups and sequences as objects in Java 97

8.2.3 CPF6 . 99

8.2.4 CPF14 . 100

8.2.5 CPF14EXT . 104

8.2.6 CPF12 . 108

8.2.7 CPF12EXT . 108

8.2.8 CPF5U*, CPF6U*, CPF7U* and CPF8U* 109

8.2.9 CPF6U1 and CPF6U2 111

8.2.10 CPF7U1, CPF7U2, CPF7U3 and CPF7U4 115

8.2.11 CPF8U1, CPF8U2, CPF8U3 and CPF8U4 115

8.2.12 CPF9U1, CPF9U2, CPF9U3 and CPF9U4 116

8.2.13 CPF10U1, CPF10U2 and CPF10U3 116

8.2.14 CPF11U1, CPF11U2 and CPF11U3 117

8.2.15 CPF5L*, CPF6L*, CPF7L* and CPF8L* 117

8.2.16 CPF6L, CPF7L, CPF8L, CPF9L, CPF10L and CPF12L118

CONTENTS 7

8.2.17 CPF19 . 120

9 Upper bounds on D(G) in terms of d∗(G) 121

9.1 Motivation . 121

9.2 An elementary upper bound on |G| 123

9.3 An improved upper bound on |G| 126

9.4 A polynomial upper bound on D(G) 127

9.5 Special polynomial upper bounds on D(G) 129

10 Open problems 133

List of Figures

8.1 CPT9 . 84

8.2 hasZeroSum(S, G, n) . 85

8.3 extractSubsequence(S, J) . 86

8.4 calculateValue(S, G) . 86

8.5 CPT10CNTR . 89

8.6 zeroSumSubsequencesIndices(X, G, n) 90

8.7 generateAdditionTable . 96

8.8 inverse(i) . 97

8.9 updateSubsums(S, g) . 99

8.10 CPF6 . 101

8.11 CPF14 . 103

8.12 CPF14EXT . 107

8.13 CPF5U* . 110

8.14 CPF6U1 . 114

8.15 CPF5L* . 118

8

List of Tables

2.1 Groups of rank 3 of order at most 249 which are not p-groups 22

9

Chapter 1

Introduction

1.1 Fundamental concepts

Throughout this text, all groups are assumed to be non-trivial, finite and

abelian and shall be written additively. We begin with some definitions that

form the foundations of what is known as the theory of zero-sum sequences

over finite abelian groups.

Definition 1.1.1. A sequence S = s1 · · · sn of length n ∈ N over a group

G is an unordered collection of elements s1, . . . , sn of G where repetition is

allowed.

Definition 1.1.2. A subsequence of a sequence S = s1 · · · sn over a group

G is a sequence over G of the form si1 · · · sij where i1, . . . , ij are pairwise

distinct elements in {1, . . . , n}.

Definition 1.1.3. The value |S| of a sequence S = s1 · · · sn over a group G

is defined to be s1 + · · ·+ sn ∈ G.

Definition 1.1.4. A sequence S over a group G is called zero-sum if |S|= 0G.

Example 1.1.5. Let G = Z5. Then S = 0111224 = 0112421 is an example of

a sequence over G of length 7 such that |S|= 1. The subsequence 1112 = 1121

of S is zero-sum.

10

Introduction 11

Remark 1.1.6. The empty sequence is zero-sum.

Definition 1.1.7. The Davenport constant D(G) of a group G is the smallest

d ∈ N such that every sequence over G of length d has a non-empty zero sum

subsequence.

Remark 1.1.8. It is widely known that Harold Davenport proposed the con-

stant defined in Definition 1.1.7 in a conference in 1966. However, it is

seldom mentioned that Kenneth Rogers proposed such a constant and its

applications in algebraic number theory in 1963 (see [27]).

The following trivial upper bound on the Davenport constant shows that

it is well defined.

Lemma 1.1.9. For all finite abelian groups G, we have

D(G) ≤ |G|.

Proof. Let G be a group. We show that every sequence over G of length

|G| contains a non-empty zero-sum subsequence. Suppose |G|= n and let

s1 . . . sn be a sequence over G. For each k ∈ [1, n], define bk := |s1 · · · sk|. If

bk = bj for some k < j then |sk+1 · · · sj|= bj − bk = 0G. If bk are all distinct

then we have n distinct elements of G and so one of them, say bj = |s1 · · · sj|,
must be 0G.

In general, given an arbitrary finite abelian group G, there is no known

efficient method for determining the Davenport constant of G. A broad aim

of the thesis is to determine the Davenport constant for as many finite abelian

groups as possible.

Definition 1.1.10. A sequence S over a group G is called zero-sum free if

the only zero-sum subsequence of S is the empty sequence.

Introduction 12

Remark 1.1.11. Note that

1. the maximal length of a zero-sum free sequence over a finite abelian

group G is equal to D(G)− 1;

2. the Davenport constant is preserved under isomorphism.

We shall represent elements of the group Zn1 ⊕ · · · ⊕ Znr as r-tuples

(a1, . . . , ar) where ai ∈ Zni
for all 1 ≤ i ≤ r, with component-wise addi-

tion as the group operation. Recall the invariant factor decomposition of a

finite abelian group.

Theorem 1.1.12 (Corollary 10.38 in [29]). For any non-trivial finite abelian

group G, there exist unique parameters 1 < n1 | · · · | nr ∈ N such that

G ∼= Zn1 ⊕ · · · ⊕ Znr .

Definition 1.1.13. For G ∼= Zn1 ⊕· · ·⊕Znr with 1 < n1 | · · · | nr, we define

• rank(G) := r;

• d∗(G) :=
∑r

i=1(ni − 1);

• exp(G) := nr.

Remark 1.1.14. For G ∼= Zn1 ⊕ · · · ⊕ Znr with 1 < n1 | · · · | nr, we have

d∗(G) = n1 + · · ·+ nr − r ≥ 2r − r = r

with equality if and only if G ∼= Zd2 for some d ∈ N.

The constant d∗(G) is significant in determining the value of the Daven-

port constant for many groups G as we will see in the next section.

Introduction 13

1.2 Motivation

The motivation for the main results in the thesis stems from a trivial lower

bound on the Davenport constant as we will now see.

Definition 1.2.1. The union of two non-empty sequences S = s1 · · · sm and

S ′ = s′1 · · · s′n over a group G, denoted S ∪ S ′, is defined to be the sequence

s1 · · · sms′1 · · · s′n over G.

Lemma 1.2.2. For all finite abelian groups G, we have

1 + d∗(G) ≤ D(G).

Proof. It is sufficient to let G = Zn1 ⊕ · · ·⊕Znr for some 1 < n1 | · · · | nr and

find a zero-sum free sequence over G of length d∗(G). Consider the sequence

S = S1∪· · ·∪Sr where for each i ∈ [1, r], Si is the sequence over G consisting

of (ni − 1) copies of ei, where ei denotes the r-tuple in G with 1 in the i-th

position and 0 elsewhere. Then S is a zero-sum free sequence over G of

length d∗(G).

After glancing over the sequence in the proof of Lemma 1.2.2, intuitively

it may seem like it is not possible to conceive a zero-sum free sequence over

a group G of length strictly greater than d∗(G) (in fact, it is mentioned in [4]

that this was conjectured by P.C. Baayen). This is the case for many classes

of groups however, this is not the case for all groups. More precisely, the

equality

D(G) = 1 + d∗(G) (1.1)

holds for many classes of groups G but there also exist many classes of groups

G for which D(G) > 1+d∗(G). There exist groups G with D(G) > 1+d∗(G)

for which the precise value of the Davenport constant is known (for example,

see [9] and [6]). There is no general conjecture regarding the precise value of

the Davenport constant for an arbitrary finite abelian group.

Introduction 14

Examples of classes of groups for which (1.1) holds include p-groups (see

[23]) and groups with rank at most 2 (see [24]). An example of a class of

groups G for which D(G) > 1 + d∗(G) is G ∼= Zm⊕Z2
n⊕Z2n where m and

n are odd with m ≥ 3 and m|n (see [15]). In fact, it has been shown that

for each r ≥ 4 there exist infinitely many groups G of rank r for which

D(G) > 1 + d∗(G). The interesting, and unsolved, case is when the rank of

the group is 3. The equality (1.1) has been shown to hold for many classes

of groups of rank 3. However, it is not known whether the equality holds for

all groups of rank 3. Some authors conjecture the following.

Conjecture 1.2.3 ([3], [13]). The equality D(G) = 1 + d∗(G) holds for all

finite abelian groups G of rank 3.

There are two main aims of the thesis. One of them is to prove Conjec-

ture 1.2.3 for as many groups as possible. The other aim is to find upper

bounds on D(G) in terms of d∗(G) for an arbitrary finite abelian group G.

Given the lower bound on the Davenport constant in Lemma 1.2.2 it seems

natural to enquire about such upper bounds. However, it is striking to dis-

cover that such upper bounds on the Davenport constant do not seem to

have been discussed in previous literature.

There are three key results in the thesis. We determine the Davenport

constant of the group Z5⊕Z5⊕Z10, which is the smallest abelian group of

rank 3 for which the Davenport constant was unknown. More precisely, we

show that the equality D(G) = 1 + d∗(G) holds for G ∼= Z5⊕Z5⊕Z10. In

2007, Bhowmik and Schlage-Puchta proved the equality D(G) = 1 + d∗(G)

for the class of groups G ∼= Z3⊕Z3⊕Z3d (see [3]). However, we believe that

their proof contains some obscurities. We reconstruct their proof to produce

a version which is less obscure. Finally, we find new upper bounds on D(G)

in terms of d∗(G) for finite abelian groups G, including a general quadratic

upper bound and a linear upper bound in the case when G ∼= Z5⊕Z5⊕Z5d.

The structure of the thesis is as follows. We start with a survey of the

literature on the Davenport constant in Chapter 2. In Chapter 3 we present

Introduction 15

a result which compares the constants d∗(G) and d∗(H) where G is a finite

abelian group with subgroup H. We reconstruct the proof of the equality

D(G) = 1 + d∗(G) for the class of groups G ∼= Z3⊕Z3⊕Z3d in Chapter 4.

In Chapter 5 we present some partial results aimed towards showing the

equality D(G) = 1 + d∗(G) for the class of groups G ∼= Zp⊕Zp⊕Z2p where

p is an arbitrary prime number. In Chapter 6 we determine the Davenport

constant of the group Z5⊕Z5⊕Z10. In Chapter 7 we prove a linear upper

bound on D(G) in terms of d∗(G) when G ∼= Z5⊕Z5⊕Z5d. The proofs of

some results in the thesis involve the use of computer programs which search

for sequences with particular properties over the groups Z3
3 and Z3

5. These

computer programs are detailed in Chapter 8. In Chapter 9 we present new

general upper bounds on D(G) in terms of d∗(G) for finite abelian groups G.

Finally, in Chapter 10 we briefly discuss some open problems relating to the

Davenport constant.

Chapter 2

A survey of the Davenport

constant

This chapter reviews previous literature on the Davenport constant with a

focus on results that show the Davenport constant of a group meets the

trivial lower bound of Lemma 1.2.2.

In Section 2.1 we list all finite abelian groups for which the trivial lower

bound is previously known to be tight and briefly mention the groups for

which the bound is known not to be tight. In Section 2.2 we find the smallest

abelian group of rank 3 for which the trivial lower bound is not previously

known to be tight.

2.1 The trivial lower bound

The aim of this section is to review finite abelian groups G for which the

equality D(G) = 1 + d∗(G) holds. We briefly mention groups for which the

equality does not hold.

In the 1960s, the following results emerged about the value of the Dav-

enport constant.

Theorem 2.1.1 ([23]). Let G be an abelian p-group. Then D(G) = 1+d∗(G).

16

A survey of the Davenport constant 17

Theorem 2.1.2 (Theorem 1 in [24]). Let G be a finite abelian group of rank

at most 2. Then D(G) = 1 + d∗(G).

As mentioned in Chapter 1, the authors of [3] and [13] conjecture that

D(G) = 1 + d∗(G) for all finite abelian groups G of rank 3. An example of

a group of rank 3 for which this equality was proven quite early on is the

following.

Theorem 2.1.3 (Lemma 1.1 in [5]). The equality D(G) = 1 + d∗(G) holds

when G ∼= Z3 ⊕ Z3 ⊕ Z6.

It is mentioned in [4] that in 1965 P.C. Baayen originally conjectured

that the equality D(G) = 1 + d∗(G) holds for all finite abelian groups G.

However, the theorem below shows that by 1969 P.C. Baayen had found a

counterexample.

Theorem 2.1.4 (Theorem 8.1 in [4]). Let G ∼= Z4k
2 ⊕Z4k+2 for some k ∈ N.

Then D(G) > 1 + d∗(G).

The inequality D(G) > 1 + d∗(G) is now known for lots of other classes

of groups G. In fact, it is known that for each r ≥ 4, there exist infinitely

many groups G of rank r such that D(G) > 1 + d∗(G). This is essentially

proved in [15] by combining Lemma 1 and Theorem 3 in [15]:

Theorem 2.1.5 (Theorem 3 in [15]). Let G ∼= Zm⊕Z2
n⊕Z2n where m and n

are odd with m ≥ 3 and m|n. Then D(G) > 1 + d∗(G).

Another open conjecture relating to the Davenport constant is the fol-

lowing.

Conjecture 2.1.6 ([13]). The equality D(G) = 1+d∗(G) holds when G ∼= Zrn
where n and r are arbitrary positive integers.

Next, we gather together an extensive list of finite abelian groups G for

which D(G) = 1 + d∗(G). To the best of our knowledge, this list covers all

finite abelian groups G so far known for which the equality holds.

A survey of the Davenport constant 18

List 2.1.7 (Groups G for which it is known that D(G) = 1 + d∗(G)).

1. p-groups G ([23]),

2. G with rank(G) ≤ 2 (Theorem 1 in [24]),

3. G ∼= Z3⊕Z3⊕Z3d where d ∈ N (Theorem 1 in [3]),

4. G ∼= Z3⊕Z3d⊕Z3d where gcd(d, 6) = 1 (combine Theorem 5 in [2] and

the result on page 3 in [25]),

5. G ∼= Z3.2t ⊕Z3.2u ⊕Z3.2v where v ≥ u ≥ t ≥ 0 (Corollary 1.5 in [5]),

6. G ∼= Z4⊕Z4⊕Z4d where d ∈ N (Theorem 4.1 in [28]),

7. G ∼= Z6⊕Z6⊕Z6d where d ∈ N (Theorem 4.1 in [28]),

8. G ∼= Zp⊕Zp⊕Zpnm where p is a prime, n ≥ 2 and gcd(m, pn) = 1

(Proposition 4.3 in [8]),

9. G ∼= Z2pt ⊕Z2pu ⊕Z2pv where p is a prime and v ≥ u ≥ t ≥ 0

(Corollary 4.3 in [4]),

10. G ∼= Z2⊕Z2na⊕Z2nb where n = 2t3u5v7w for some t, u, v, w ≥ 0, and

either a = 1 and b is arbitrary, or a = pr and b = ps with p prime and

s ≥ r ≥ 0 (Corollary 5.6 in [4]),

11. G ∼= Z3⊕Z6na⊕Z6nb where n, a, b are as in (10) (Corollary 1.5 in [5]),

12. G ∼= Z3
2⊕Z2d where d ∈ N ([1]),

13. G ∼= Z4
2⊕Z2d where d ≥ 70 is even (Theorem 5.8 in [6]).

Remark 2.1.8. Each class of groups in List 2.1.7 contains at least one group

which is not in any of the other classes.

A survey of the Davenport constant 19

2.2 The smallest unsolved case of rank 3

We can see from List 2.1.7 that there are various classes of groups G of rank 3

for which the equality D(G) = 1 + d∗(G) is known to hold. As mentioned

before, it is not known whether this equality holds for all groups of rank 3. In

this section we determine the smallest group of rank 3 for which the equality

has not yet been investigated. More precisely, we prove the following:

Theorem 2.2.1. The smallest abelian group of rank 3 for which the Daven-

port constant is unknown is Z5⊕Z5⊕Z10.

Remark 2.2.2. There are precisely three abelian groups of order less than

250 with rank strictly greater than 3 for which the Davenport constant is

unknown; they are Z4
2⊕Z12, Z2

2⊕Z4⊕Z12 and Z4
2⊕Z14.

This theorem updates the list on page 14 in [5] (see Remark 2.2.6). In

order to prove this theorem we shall need the following auxiliary results.

Lemma 2.2.3. Let H be a finite abelian group such that |H|= pk11 · · · pktt
where p1, . . . , pt are distinct primes and k1, . . . , kt > 0. Then rank(H) ≤ k

where k := max{k1, . . . , kt}.

Proof. Suppose H ∼= Zn1 ⊕ · · · ⊕ Znr where 1 < n1 | · · · | nr ∈ N. Pick a

prime divisor p of n1. Since n1|· · · |nr, we have that the multiplicity of p in

|H| is at least r. Hence, k ≥ r = rank(H).

Lemma 2.2.4 (Corollary of Theorem 2.14.3 in [18]). Given distinct prime

numbers p1, . . . , pt and integers k1, . . . , kt > 0, there are precisely p(k1) · · · p(kt)
abelian groups of order pk11 · · · pktt where p(n) denotes the number of partitions

of an integer n.

Example 2.2.5. Find all abelian groups of order 36: We have 36 = 2232.

Using Theorem 1.1.12 we can list the following 4 groups of order 36: Z36,

Z2⊕Z18, Z3⊕Z12, and Z6⊕Z6. Since 2p(2) = 4, we deduce by Lemma 2.2.4

that this list is complete up to isomorphism.

A survey of the Davenport constant 20

We can now prove the main theorem of this section.

Proof of Theorem 2.2.1. Define G := Z5⊕Z5⊕Z10. We claim that the

equality D(G) = 1 + d∗(G) is unknown. To show this, it is sufficient to

show that G does not belong to any of the classes of groups mentioned in

List 2.1.7. We have that G does not belong to (1) as the order of G is not

a prime power. We have that G does not belong to (2), (12), or (13) as

rank(G) = 3. We have that G does not belong to (3), (4), (5), (6), (7), (9),

(10), or (11) as the invariant factor decomposition of the groups in these

classes does not contain the factor Z5. Lastly, we have that G does not be-

long to (8) since 25 - 10. We now claim that the inequality D(G) > 1+d∗(G)

is unknown. Indeed this is the case else G is a counterexample to Conjec-

ture 1.2.3. Since it is widely known that Conjecture 1.2.3 has not yet been

proven false, the claim follows. Hence D(G) is unknown according to the

literature.

Let H be an arbitrary abelian group of rank 3 and order at most 249.

We show that D(H) = 1 + d∗(H). Define

A :=[2, 23] ∪ [25, 39] ∪ [41, 47] ∪ [49, 53] ∪ {55} ∪

[57, 71] ∪ [73, 79] ∪ [81, 87] ∪ [89, 95] ∪ [97, 103] ∪

[105, 107] ∪ [109, 111] ∪ [113, 119] ∪ [121, 134] ∪ [137, 151] ∪

[153, 159] ∪ {161} ∪ [163, 167] ∪ [169, 175] ∪ [177, 183] ∪

[185, 188] ∪ [190, 191] ∪ [193, 199] ∪ [201, 207] ∪ [209, 215] ∪

[217, 223] ∪ [225, 231] ∪ [233, 239] ∪ [241, 247] ∪ {249}.

Case (i): Suppose |H|∈ A. Then either |H| is a prime power or the

multiplicity of the most frequently occurring prime in the prime factorisa-

tion of |H| is at most 2. If the former holds then H belongs to (1) from

List 2.1.7. If the latter holds then Lemma 2.2.3 implies rank(H) < 3 which

is a contradiction.

A survey of the Davenport constant 21

Case (ii): Suppose |H|6∈ A. Then using Lemma 2.2.4 and Theorem 1.1.12

we construct a table consisting of each possible isomorphism class for H, and

the class in List 2.1.7 to which H belongs. See Table 2.1.

|H| Possibilities for H Class to which H belongs
24 Z2⊕Z2⊕Z6 10 (take n = a = 1 and b = 3)
40 Z2⊕Z2⊕Z10 10 (take n = a = 1 and b = 5)
48 Z2⊕Z2⊕Z12 10 (take n = a = 1 and b = 6)
54 Z3⊕Z3⊕Z6 3 (take d = 2)
56 Z2⊕Z2⊕Z14 10 (take n = a = 1 and b = 7)
72 Z2⊕Z2⊕Z18 10 (take n = a = 1 and b = 9)

Z2⊕Z6⊕Z6 10 (take n = 3 and a = b = 1)
80 Z2⊕Z2⊕Z20 10 (take n = a = 1 and b = 10)
88 Z2⊕Z2⊕Z22 10 (take n = a = 1 and b = 11)
96 Z2⊕Z2⊕Z24 10 (take n = a = 1 and b = 12)

Z2⊕Z4⊕Z12 10 (take n = 2, a = 1 and b = 3)
104 Z2⊕Z2⊕Z26 10 (take n = a = 1 and b = 13)
108 Z3⊕Z3⊕Z12 3 (take d = 4)

Z3⊕Z6⊕Z6 11 (take n = a = b = 1)
112 Z2⊕Z2⊕Z28 10 (take n = a = 1 and b = 14)
120 Z2⊕Z2⊕Z30 10 (take n = a = 1 and b = 15)
135 Z3⊕Z3⊕Z15 3 (take d = 5)
136 Z2⊕Z2⊕Z34 10 (take n = a = 1 and b = 17)
152 Z2⊕Z2⊕Z38 10 (take n = a = 1 and b = 19)
160 Z2⊕Z2⊕Z40 10 (take n = a = 1 and b = 20)

Z2⊕Z4⊕Z20 10 (take n = 2, a = 1 and b = 5)
162 Z3⊕Z3⊕Z18 3 (take d = 6)
168 Z2⊕Z2⊕Z42 10 (take n = a = 1 and b = 21)
176 Z2⊕Z2⊕Z44 10 (take n = a = 1 and b = 22)
184 Z2⊕Z2⊕Z46 10 (take n = a = 1 and b = 23)
189 Z3⊕Z3⊕Z21 3 (take d = 7)
192 Z2⊕Z2⊕Z48 10 (take n = a = 1 and b = 24)

Z2⊕Z4⊕Z24 10 (take n = 2, a = 1 and b = 6)
Z4⊕Z4⊕Z12 6 (take d = 3)

A survey of the Davenport constant 22

|H| Possibilities for H Class to which H belongs
200 Z2⊕Z2⊕Z50 10 (take n = a = 1 and b = 25)

Z2⊕Z10⊕Z10 10 (take n = 5 and a = b = 1)
208 Z2⊕Z2⊕Z52 10 (take n = a = 1 and b = 26)
216 Z2⊕Z2⊕Z54 10 (take n = a = 1 and b = 27)

Z2⊕Z6⊕Z18 10 (take n = 3, a = 1 and b = 3)
Z3⊕Z3⊕Z24 3 (take d = 8)
Z3⊕Z6⊕Z12 11 (take n = a = 1 and b = 2)
Z3

6 7 (take d = 1)
224 Z2⊕Z2⊕Z56 10 (take n = a = 1 and b = 28)

Z2⊕Z4⊕Z28 10 (take n = 2, a = 1 and b = 7)
232 Z2⊕Z2⊕Z58 10 (take n = a = 1 and b = 29)
240 Z2⊕Z2⊕Z60 10 (take n = a = 1 and b = 30)
248 Z2⊕Z2⊕Z62 10 (take n = a = 1 and b = 31)

Table 2.1: Groups of rank 3 of order at most 249 which are not p-groups

Now it remains to show that the Davenport constant of all abelian groups

different from G of order 250 is known. By Lemma 2.2.4 and Theorem 1.1.12

there are precisely two abelian groups order 250 other than G: they are

Z250 and Z5⊕Z50. As the rank of both of these groups is at most 2, their

Davenport constant is known by (2) in List 2.1.7. This completes the proof.

Remark 2.2.6. Page 14 in [5] lists the 13 abelian groups G with |G|≤ 500 and

rank(G) = 3 for which it was unknown whether D(G) = 1 + d∗(G). Using

(3) and (6) from List 2.1.7 we can update and shorten the list in [5] to the

following:

G |G|
Z5⊕Z5⊕Z10 250

Z5⊕Z5⊕Z15 375

Z3⊕Z9⊕Z18 486

Z5⊕Z5⊕Z20 500

Z5⊕Z10⊕Z10 500

Chapter 3

A result about d∗(H) for

subgroups H

Given a group G ∼=
⊕r

i=1 Zmi
where 1 < m1 | · · · | mr and given a subgroup

H of G, it is clear from the definition that d∗(H) ≤ d∗(G) if H ∼=
⊕

i∈I Zmi

for some subset I ⊂ {1, . . . , r}. In this chapter we show that the inequality

remains intact even when H is not of the previously described form. More

precisely we prove the following result:

Theorem 3.1. Let G be a finite abelian group and H a subgroup of G. Then

d∗(H) ≤ d∗(G)

where equality holds if and only if H = G.

In order to prove this result we need the following theorem.

Theorem 3.2 (Theorem 3.22 in [22]). Let G ∼=
⊕r

i=1 Zmi
for some integers

1 < m1 | · · · | mr. If H is a subgroup of G then H ∼=
⊕t

i=1 Zni
where t ≤ r,

ni|ni+1 for all 1 ≤ i ≤ t− 1 and ni | mr−t+i for all 1 ≤ i ≤ t.

Proof of Theorem 3.1. Let G ∼=
⊕r

i=1 Zmi
and H ∼=

⊕t
i=1 Zni

for some inte-

gers 1 < m1 | · · · | mr and 1 < n1 | · · · | nt. By Theorem 3.2 we have t ≤ r.

23

A result about d∗(H) for subgroups H 24

This means that t = r − α for some 0 ≤ α ≤ r − 1. Moreover, Theorem 3.2

tells us that ni | mr−t+i for all 1 ≤ i ≤ t which implies

mα+i ≥ ni

for all 1 ≤ i ≤ t. Hence

d∗(G) = m1 + · · ·+mr − r ≥ m1 + · · ·+mα + n1 + · · ·+ nt − r.

We have

m1 + · · ·+mα ≥ α

which implies

m1 + · · ·+mα + n1 + · · ·+ nt − r ≥ n1 + · · ·+ nt − t.

Noting that d∗(H) = n1 + · · · + nt − t, we find that d∗(H) ≤ d∗(G). Now

suppose d∗(H) = d∗(G). This implies

m1 + · · ·+mα = α.

Therefore α = 0 and hence t = r. From this we deduce that

m1 + · · ·+mr = n1 + · · ·+ nr.

Therefore, since mi ≥ ni for all i, we deduce that mi = ni for all i, and hence

G = H. This completes the proof.

Definition 3.3. Given a non-empty sequence S = s1 · · · sn over a group G,

define the group generated by S to be

〈S〉 := 〈s1, . . . , sn〉.

We can deduce the following corollary from Theorem 3.1.

A result about d∗(H) for subgroups H 25

Corollary 3.4. Let S be a sequence over a group G such that 〈S〉 = H for

some subgroup H of G with D(H) = 1 + d∗(H). If the length of S is at least

1 + d∗(G) then S is not zero-sum free.

Proof. Using Theorem 3.1, note that

D(H) = 1 + d∗(H) ≤ 1 + d∗(G).

Hence S is a sequence over H of length at least D(H). This means that S is

not zero-sum free by the definition of the Davenport constant.

Chapter 4

The Davenport constant of

Z3⊕Z3⊕Z3d

4.1 Motivation

In this chapter we reconstruct the proof of the equality D(G) = 1+d∗(G) for

G = Z3⊕Z3⊕Z3d where d is an arbitrary positive integer. This equality was

originally proved by Gautami Bhowmik and Jan-Christoph Schlage-Puchta

in [3]. There are a handful of places in their proof where we are unable to

convince ourselves of the detail of the argument. In particular, we believe

that their proof only explicitly deals with the case when gcd(d, 6) = 1. Since

there are extra complications when gcd(d, 6) 6= 1, we believe the general

case should be written down in detail. Furthermore, there is at least one

statement in the their proof which is incorrect (see Remark 4.3.11). We

follow the original proof but modify some aspects with new notation, rephrase

some concepts, and replace some preliminary material with new results to

produce a version of the proof which we hope convinces the reader that

D(Z3 ⊕ Z3 ⊕ Z3d) = 1 + d∗(Z3 ⊕ Z3 ⊕ Z3d) for all d ∈ N.

The structure of this chapter is as follows. In Section 4.2 we present

preliminary results applicable to an arbitrary finite abelian group that we

26

The Davenport constant of Z3⊕Z3⊕Z3d 27

need to reconstruct the proof. In Section 4.3 we present preliminary results

relating specifically to the group Z3
3 that we need to reconstruct the proof.

In Section 4.4 we present the reconstructed proof.

4.2 Preparatory material

In this section we present some preliminary material to be used later in the

chapter. These results all hold for arbitrary finite abelian groups.

Definition 4.2.1. Let S1, . . . , St be non-empty subsequences of a sequence

S = s1 · · · sn over a group G. For each i ∈ {1, . . . , t}, let Si = si1 · · · siji
for pairwise distinct elements i1, . . . , iji in {1, . . . , n}. We say S1, . . . , St are

disjoint if the collection

{i1, . . . , iji}i∈[1,t]

contains no repeated elements.

Definition 4.2.2. Given groups G and T and a map φ : G −→ T we define

• the image under φ of a non-empty sequence S = s1 · · · sn over G to be

the sequence φ(S) := φ(s1) · · ·φ(sn) over T ;

• a T -zero-sum sequence with respect to φ to be a non-empty sequence

S over G such that |φ(S)|= 0T .

Given G, T and φ as in Definition 4.2.2, we may omit the reference to

φ when talking about a T -zero-sum sequence with respect to φ if φ is clear

from the context.

Lemma 4.2.3. Let G be a finite abelian group and H a subgroup of G.

Define T := G/H and d := D(H). Let S be a sequence over G such that

S contains d disjoint T -zero-sum subsequences with respect to the canonical

homomorphism φ : G −→ T . Then S is not zero-sum free.

The Davenport constant of Z3⊕Z3⊕Z3d 28

Proof. Let S1, . . . , Sd be d disjoint T -zero-sum subsequences of S. Then for

each i ∈ [1, d] we have

0G +H = |φ(Si)|= φ(|Si|) = |Si|+H.

Hence U := |S1|· · · |Sd| is a sequence of length d over H. Since d = D(H), we

deduce that U contains a non-empty zero-sum subsequence |Si1|· · · |Sij |. Now

it remains to note that Si1 ∪ · · · ∪ Sij is a non-empty zero-sum subsequence

of S.

Proposition 4.2.4. Let H be a finite abelian group of order d ≥ 2 and let

S = s1 · · · sd−1 be a zero-sum free sequence of length d− 1 over H. Then

s1 = · · · = sd−1 = h

for some h ∈ H. In particular, H = 〈h〉.

Proof (derived from the proof of Proposition 1.7 in [4]). Suppose for a con-

tradiction that there exist i, j ∈ [1, d− 1] such that si 6= sj. Without loss of

generality suppose i = 1 and j = 2. Consider the following d − 1 elements

of H: s1, −s2, s1 +
∑k=k′

k=3 si where 3 ≤ k′ ≤ d− 1. Since S is zero-sum free,

these d − 1 elements are pairwise distinct and non-zero and hence form the

set H\{0H}. Now consider the element s1 − s2 ∈ H. If s1 − s2 = s1 then

s2 = 0H . If s1 − s2 = −s2 then s1 = 0H . If s1 − s2 = s1 +
∑k=k′

k=3 si for some

3 ≤ k′ ≤ d − 1 then s2 +
∑k=k′

k=3 si = 0H . All of these cases contradict the

assumption that S is zero-sum free. Therefore s1 − s2 6∈ H\{0H}. However

this contradicts the assumption that s1 6= s2. Hence s1 = · · · = sd−1 = h for

some h ∈ H.

As S is zero-sum free, we have that h 6= 0H , 2h 6= 0H , . . . , (d− 2)h 6= 0H ,

(d− 1)h 6= 0H . So h generates H. This completes the proof.

The Davenport constant of Z3⊕Z3⊕Z3d 29

Corollary 4.2.5. Let G be a finite abelian group and H a non-trivial sub-

group of G. Define T := G/H and d := |H|. Let S be a zero-sum free se-

quence over G containing d−1 disjoint T -zero-sum subsequences S1, . . . , Sd−1

with respect to the canonical homomorphism φ : G −→ T . Then H is cyclic

and

|S1|= · · · = |Sd−1|= h

for some generator h of H.

Proof. For each i ∈ [1, d− 1] we have

0G +H = |φ(Si)|= φ(|Si|) = |Si|+H.

Hence U := |S1|· · · |Sd−1| is a sequence of length d− 1 over H. Observe that

U is zero-sum free else S is not zero-sum free. The corollary now follows

from Proposition 4.2.4.

4.3 Preliminary results about Z3
3

In this section we present the preliminary results relating specifically to the

group Z3
3.

Lemma 4.3.1 (Lemma 3 in [3]). Let S = s1 · · · s5 be a sequence of 5 pairwise

distinct elements of Z3
3 without a non-empty zero-sum subsequence of length

at most 3. Then there exists a subsequence sisjsk of S such that si+sj = sk.

Proof (derived from the proof of Lemma 3 in [3]). Suppose for a contradic-

tion that the assertion in the statement of the lemma does not hold. Then,

viewing Z3
3 as a 3-dimensional vector space over Z3, we find that the elements

s1, s2 and s3 are linearly independent, and hence form a basis for Z3
3 over Z3.

Fix a representation for Z3
3 which comprises of representing all elements of Z3

3

as the set of coordinate vectors with respect to the ordered bases {s1, s2, s3}.
This means that s1 = (1, 0, 0), s2 = (0, 1, 0) and s3 = (0, 0, 1). Since S does

The Davenport constant of Z3⊕Z3⊕Z3d 30

not contain a non-empty zero-sum subsequence of length at most 3, we find

that

s4, s5 6∈ {(0, 0, 0), (0, 0, 2), (0, 2, 0), (0, 2, 2), (2, 0, 0), (2, 2, 0), (2, 0, 2)}.

Since we are supposing that there does not exist a subsequence sisjsk of S

such that si + sj = sk, we find that s4 and s5 cannot belong to the set

{(0, 1, 1), (0, 2, 1), (0, 1, 2), (1, 1, 0), (1, 2, 0), (1, 0, 1), (1, 0, 2), (2, 1, 0), (2, 0, 1)}.

Hence s4, s5 ∈ A ∪B ∪ C ∪D where

A = {(1, 1, 1), (1, 2, 2)}, B = {(1, 1, 2), (1, 2, 1)},

C = {(2, 1, 2), (2, 2, 1)}, D = {(2, 1, 1), (2, 2, 2)}.

We aim to prove the following claims for distinct i, j ∈ {4, 5}:

1. Each set A,B,C,D contains at most one out of si and sj.

2. If si ∈ A then sj 6∈ B ∪ C ∪D.

3. If si ∈ B then sj 6∈ C ∪D.

4. If si ∈ C then sj 6∈ D.

Before we prove these claims, let us show how we can use them to ob-

tain a contradiction. If s4 ∈ A then (1) and (2) imply a contradiction to

s5 ∈ A ∪B ∪ C ∪D. Suppose s4 ∈ B. Then (1) and (3) imply s5 6∈ B∪C∪D.

Now note that (2) implies s5 6∈ A in order to obtain a contradiction. Simi-

larly, if s4 ∈ C then (1) and (4) imply s5 6∈ C ∪ D, and (2) and (3) imply

s5 6∈ A ∪ B which again gives a contradiction. Now suppose s4 ∈ D. Then

we obtain a contradiction by noting that (2), (3), (4), and (1) respectively

imply that s5 cannot be in A, B, C, or D.

The Davenport constant of Z3⊕Z3⊕Z3d 31

It remains to prove the four claims above in order to complete the proof.

We prove (1) first. Noting that s4 and s5 are distinct and S does not contain

a zero-sum subsequence of length 3, we find that s4 and s5 cannot both be

in A and cannot both be in B. Since we are assuming the assertion in the

statement of the lemma does not hold, we find that s4 and s5 cannot both

be in C and cannot both be in D. This completes the proof of (1). Fix i 6= j

in {4, 5}. Noting that

(1, 1, 1) + (0, 0, 1) = (1, 1, 2), (1, 1, 1) + (0, 1, 0) = (1, 2, 1),

(1, 1, 2) + (0, 1, 0) = (1, 2, 2), (1, 2, 1) + (0, 0, 1) = (1, 2, 2),

we find that if si ∈ A then sj 6∈ B. Noting that

(1, 1, 1) + (2, 1, 2) + (0, 1, 0) = (0, 0, 0),

(1, 1, 1) + (2, 2, 1) + (0, 0, 1) = (0, 0, 0),

(1, 2, 2) + (2, 1, 2) = (0, 0, 1),

(1, 2, 2) + (2, 2, 1) = (0, 1, 0),

we find that if si ∈ A then sj 6∈ C. Noting that

(1, 1, 1) + (1, 0, 0) = (2, 1, 1), (1, 1, 1) + (2, 2, 2) = (0, 0, 0),

(1, 2, 2) + (2, 1, 1) = (0, 0, 0), (1, 2, 2) + (1, 0, 0) = (2, 2, 2),

we find that if si ∈ A then sj 6∈ D. This completes the proof of (2). Using

similar calculations we find that if si ∈ B then sj 6∈ C ∪D and if si ∈ C then

sj 6∈ D. So (3) and (4) follow and the lemma is proved.

Lemma 4.3.2 (Lemma 1 (3) in [3]). Every sequence of 9 pairwise distinct el-

ements of Z3
3 contains a non-empty zero-sum subsequence of length at most 3.

Proof. We prove this result by creating a computer program which generates

all sequences over Z3
3 of length 9 consisting of nine pairwise distinct elements

The Davenport constant of Z3⊕Z3⊕Z3d 32

and no non-empty zero-sum subsequence of length at most 3. We shall refer

to this computer program as CPT9 and describe it in Section 8.1.1. We

find that CPT9 does not generate a counterexample to the statement of the

lemma which completes the proof.

The following result allows us to avoid using Theorem 2 in [3] (the proof

of which is over 6 pages long) in the proof of the equality D(G) = 1 + d∗(G)

for G = Z3⊕Z3⊕Z3d.

Lemma 4.3.3. Let G and T be finite abelian groups with T ∼= Z3
3. Let S be

a sequence over G containing a subsequence Q of length 10. Let φ : G −→ T

be a map satisfying the following properties:

• There do not exist two disjoint T -zero-sum subsequences in Q with

respect to φ.

• Every T -zero-sum subsequence of Q with respect to φ has the same value

equal to some fixed element c ∈ G.

Then S is not zero-sum free.

Proof. Note that Q does not contain a T -zero-sum subsequence of length

l ∈ {1, 2, 3, 8, 9, 10}. Indeed, if Q contains a T -zero-sum subsequence of

length at most 3 then we can remove it from Q to obtain a sequence of

length at least 7. Since D(Z3
3) = 7, this sequence of 7 elements contains a

T -zero-sum subsequence. Hence we obtain two disjoint T -zero-sum subse-

quences in Q which contradicts our assumption. If Q contains a T -zero-sum

subsequence U of length l ∈ {8, 9, 10} then, since D(Z3
3) = 7, the sequence

U is the union of two disjoint T -zero-sum subsequences of Q which again

contradicts our assumption.

Let Q = q1 · · · q10. Since 9 pairwise distinct elements in Z3
3 contain a

non-empty zero-sum subsequence of length at most 3 (see Lemma 4.3.2), we

have φ(Q) contains at most 8 pairwise distinct elements. Hence Q contains

The Davenport constant of Z3⊕Z3⊕Z3d 33

a subsequence qiqjqmqn such that φ(qi) = φ(qj) and φ(qm) = φ(qn). Now

view Z3
3 as a 3-dimensional vector space over Z3 and note that φ(qi) and

φ(qm) are linearly independent. We claim that there exists an element qk in

Q such that

φ(qk) 6∈ SpanZ3
{φ(qi), φ(qm)}.

Suppose for a contradiction that φ(qk) ∈ SpanZ3
{φ(qi), φ(qm)} for all ele-

ments qk in Q. Then, we can consider φ(Q) as a sequence over 〈φ(qi), φ(qm)〉.
Now since 〈φ(qi), φ(qm)〉 ∼= Z2

3 and D(Z2
3) = 5 and Q is a sequence of

length 10, we can deduce that Q contains two disjoint T -zero-sum subse-

quences. This contradicts our assumption. Without loss of generality sup-

pose i = 1, j = 2,m = 3, n = 4, k = 5. Now fix a representation for Z3
3

which comprises of representing all elements of Z3
3 as the set of coordinate

vectors with respect to the ordered basis {φ(q1), φ(q3), φ(q5)}. This means

that φ(q1) = φ(q2) = (1, 0, 0), φ(q3) = φ(q4) = (0, 1, 0), and φ(q5) = (0, 0, 1).

We now create a computer program, which we call CPT10, to generate all

sequences over Z3
3 of length 10 which do not contain a zero-sum subsequence

of length l ∈ {1, 2, 3, 8, 9, 10} and which contain the subsequence

(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 0, 1).

We describe CPT10 in Section 8.1.2. We find that CPT10 generates 1173

sequences. Let X = x1 · · ·x10 be an arbitrary sequence from the 1173 se-

quences generated by CPT10. We present a method which shows that if

X = φ(Q) then S is not zero-sum free. After relabelling if necessary, fix

φ(q1) = x1, . . . , φ(q10) = x10. Now compute all T -zero-sum subsequences

of Q. Since every T -zero-sum subsequence of Q has the same value equal

to some fixed element c, each T -zero-sum subsequence gives us a linear ho-

mogenous equation in the 11 variables q1, . . . , q10 and c. Hence we obtain

a homogenous linear system of simultaneous equations in the 11 variables

q1, . . . , q10 and c. The idea now is to reduce this system of equations to a

The Davenport constant of Z3⊕Z3⊕Z3d 34

simpler one. To do this we put the coefficients of the 11 variables arising from

these T -zero-sum subsequences as the rows of a matrix AX with 11 columns

and find its row Hermite normal form. We automate this process to find the

row Hermite normal form of AX for all sequences X in a computer program

which we call CPT10CNTR. This program is described in Section 8.1.3. We

find that the row Hermite normal form of AX for each sequence X contains

the row (
0 0 0 0 0 0 0 0 0 0 1

)
.

This implies c = 0G and hence S is not zero-sum free in all 1173 possibilities

for φ(Q).

Remark 4.3.4. Computing the row Hermite normal form of a matrix A is

equivalent to performing a series of elementary unimodular row operations

on A consisting of:

• Interchanging two rows of A.

• Multiplying a row of A by −1.

• Adding an integer multiple of one row of A to another.

This can be deduced by combining the row analogues of Theorem 2.4.3 and

Algorithm 2.4.4 in [7].

Definition 4.3.5. Let S = s1 · · · sn be a sequence over a group G. Given

g ∈ G, the multiplicity of g in S is defined to be the number of times g occurs

in the multiset {s1, . . . , sn}.

Lemma 4.3.6. (Proposition 4 in [3]). Every sequence over Z3
3 of length 10

contains a non-empty zero-sum subsequence of length at most 4.

Proof. Let S = s1 · · · s10 be a sequence over Z3
3 of length 10 and suppose for

a contradiction that S does not contain a non-empty zero-sum subsequence

of length at most 4. If S does not contain five pairwise distinct elements

The Davenport constant of Z3⊕Z3⊕Z3d 35

then S contains an element with multiplicity at least 3 and hence a zero-sum

subsequence of length 3. So S must contain (at least) five pairwise distinct

elements. Consequently, Lemma 4.3.1 tells us that S contains a sequence

sisjsk of three pairwise distinct elements such that si + sj = sk. Without

loss of generality assume i = 1, j = 2 and k = 3. Viewing Z3
3 as a vector

space over Z3, we claim that s1 and s2 are linearly independent. Indeed this

is the case else s1 = s2 or s1s2 contains a zero-sum subsequence of length at

most 2. Now pick an element t ∈ Z3
3 such that t 6∈ SpanZ3

{s1, s2} and fix

a representation for Z3
3 which comprises of representing all elements of Z3

3

as the set of coordinate vectors with respect to the ordered basis {t, s1, s2}.
Hence, we have

s1 = (0, 1, 0), s2 = (0, 0, 1), s3 = (0, 1, 1).

The next step of the proof is to create a computer program which gener-

ates all sequences over Z3
3 of length 10 containing (0, 1, 0)(0, 0, 1)(0, 1, 1) as

a subsequence and no non-empty zero-sum subsequence of length at most 4.

We shall refer to this program as CPT10F and describe it in Section 8.1.4.

Using CPT10F we find there does not exist a sequence over Z3
3 of length 10

containing (0, 1, 0)(0, 0, 1)(0, 1, 1) as a subsequence and no non-empty zero-

sum subsequence of length at most 4. This completes the proof.

Corollary 4.3.7 (Proposition 5 in [3]). Every sequence over Z3
3 of length 11

contains 2 non-empty disjoint zero-sum subsequences.

Proof (derived from the proof of Proposition 5 in [3]). Let S be a sequence

over Z3
3 of length 11. By Lemma 4.3.6, we have that S contains a non-empty

zero-sum subsequence S1 of length at most 4. Remove S1 from S to obtain

a subsequence of S of length at least 7. Since D(Z3
3) = 7, this subsequence

contains a non-empty zero-sum subsequence, say S2. It remains to note that

S1 and S2 are two non-empty disjoint zero-sum subsequences of S.

The Davenport constant of Z3⊕Z3⊕Z3d 36

The authors of [3] refer to using part (i) of the proof of Theorem 2 in

[3] in their proof of the equality D(G) = 1 + d∗(G) for G = Z3⊕Z3⊕Z3d

(see the 3rd line from the bottom of page 19 in [3]). However, we cannot see

how the assumptions needed to use part (i) of the proof of Theorem 2 are

satisfied at the place where the authors of [3] claim it can be applied. The

following result allows us to avoid using part (i) of the proof of Theorem 2

in the proof of the equality D(G) = 1 + d∗(G) for G = Z3⊕Z3⊕Z3d.

Lemma 4.3.8. Let G and T be finite abelian groups with T ∼= Z3
3. Let S be

sequence over G containing a subsequence Q of length 13. Let φ : G −→ T

be a map satisfying the following properties:

• There does not exist a T -zero-sum subsequence in Q with respect to φ

of length at most 3.

• Every two disjoint T -zero-sum subsequences of Q with respect to φ have

the same value equal to some fixed element c ∈ G.

Then S is not zero-sum free.

Proof. If φ(Q) contains 9 pairwise distinct elements then Lemma 4.3.2 implies

Q contains a T -zero-sum subsequence of length at most 3. This contradicts

our assumption. So φ(Q) contains at most 8 pairwise distinct elements. This

means that we can assume Q = q1 · · · q13 with

φ(qi) = φ(qi+1)

and φ(qi) pairwise distinct for all i ∈ {1, 3, 5, 7, 9}. Using Lemma 4.3.1 we

deduce that there exist pairwise distinct m,n, p ∈ {1, 3, 5, 7, 9} such that

φ(qm) + φ(qn) = φ(qp).

Now view Z3
3 as a 3-dimensional vector space over Z3 and note that φ(qm) and

φ(qn) are linearly independent. Pick t ∈ Z3
3 with t 6∈ SpanZ3

{φ(qm), φ(qn)}

The Davenport constant of Z3⊕Z3⊕Z3d 37

and form the ordered basis {t, φ(qm), φ(qn)} of Z3
3. Now fix a representation

for Z3
3 which comprises of representing all elements of Z3

3 as the set of coor-

dinate vectors with respect to this basis. This means that φ(qm) = (0, 1, 0),

φ(qn) = (0, 0, 1), φ(qp) = (0, 1, 1), and t = (1, 0, 0). Without loss of generality

suppose m = 1, n = 3 and p = 5. We claim that

φ(q7) 6∈ SpanZ3
{φ(q1), φ(q3)}.

Indeed, if φ(q7) ∈ SpanZ3
{φ(q1), φ(q3)} then it follows that φ(q7) = (0, a, b)

for some a, b ∈ {0, 1, 2}. Since φ(qi) are pairwise distinct for all i ∈ {1, 3, 5, 7},
we deduce that

φ(q7) ∈ {(0, 0, 0)(0, 2, 0)(0, 2, 1)(0, 2, 2)(0, 1, 2)(0, 0, 2)}.

If φ(q7) = (0, 0, 0) then Q contains a T -zero-sum subsequence of length 1. If

φ(q7) ∈ {(0, 2, 0), (0, 2, 2)(0, 0, 2)} then Q contains a T -zero-sum subsequence

of length 2. If φ(q7) ∈ {(0, 2, 1), (0, 1, 2)} then Q contains a T -zero-sum

subsequence of length 3. Each of the last three statements contradict our

assumption. This proves the claim. This means we can pick t = φ(q7).

We now create a computer program, which we call CPT13, to generate all

sequences over Z3
3 of length 13 without a non-empty zero-sum subsequence

of length at most 3 containing the subsequence

(0, 1, 0)(0, 1, 0)(0, 0, 1)(0, 0, 1)(0, 1, 1)(0, 1, 1)(1, 0, 0)(1, 0, 0).

We describe CPT13 in Section 8.1.5. We find that CPT13 generates 149 se-

quences. Let X = x1 · · ·x13 be an arbitrary sequence from the 149 sequences

generated by CPT13. Using the same method as in the proof of Lemma 4.3.3

we show that if X = φ(Q) then S is not zero-sum free. After relabelling if

necessary, fix φ(q1) = x1, . . . , φ(q13) = x13. Note that every T -zero-sum sub-

sequence of Q of length at most 6 has the same value equal to c. Indeed,

The Davenport constant of Z3⊕Z3⊕Z3d 38

if U is a T -zero-sum subsequence of Q of length at most 6 then remove U

from Q to obtain a sequence of at least 7 elements. Since D(Z3
3) = 7, these

7 elements contain a T -zero-sum subsequence, say U ′. Now U and U ′ are

two disjoint T -zero-sum subsequences of Q and hence have the same value

equal to c by assumption. Now compute all T -zero-sum subsequences of Q

of length at most 6. Since each such T -zero-sum subsequence of Q has the

same value equal to some fixed element c, each such T -zero-sum subsequence

gives us a linear homogenous equation in the 14 variables q1, . . . , q13 and c.

Hence we obtain a homogenous linear system of simultaneous equations in

the 14 variables q1, . . . , q13 and c. The idea now is to reduce this system of

equations to a simpler one. To do this we put the coefficients of the 14 vari-

ables arising from these T -zero-sum subsequences as the rows of a matrix AX

with 14 columns and find its row Hermite normal form. We automate this

process to find the row Hermite normal form of AX for all sequences X in

a computer program which we call CPT13CNTR. This program is described

in Section 8.1.6. We find that the row Hermite normal form of AX for each

sequence X contains the row(
0 0 0 0 0 0 0 0 0 0 0 0 0 1

)
.

This implies c = 0G and hence S is not zero-sum free in all 149 possibilities

for φ(Q).

Corollary 4.3.9 (Proposition 6 in [3]). Every sequence over Z3
3 of length 15

contains 3 non-empty disjoint zero-sum subsequences.

Proof (derived from the proof of Proposition 6 in [3]). Let S be a sequence

over Z3
3 of length 15. By Lemma 4.3.6, we have that S contains a non-empty

zero-sum subsequence S1 of length at most 4. Remove S1 from S to obtain a

subsequence of S of length at least 11. By Corollary 4.3.7 this subsequence

contains 2 non-empty disjoint zero-sum subsequences, say S2 and S3. It

remains to note that S1, S2 and S3 are three non-empty disjoint zero-sum

The Davenport constant of Z3⊕Z3⊕Z3d 39

subsequences of S.

Lemma 4.3.10. Let S be a sequence of 16 non-zero elements of Z3
3 con-

taining no zero-sum subsequence of length 3 and no pair of disjoint zero-sum

subsequences of length 2. Then S is zero-sum.

Proof. Firstly we note the following: any subsequence of S of length 9 con-

tains 5 pairwise distinct elements else S contains an element with multiplic-

ity at least 3 which contradicts the assumption that S does not contain a

zero-sum subsequence of length 3.

We now make a sequence of claims to determine four elements of S. Let

S = s1 · · · s16. We claim that S contains a subsequence sisjsk of pairwise

distinct elements such that si + sj = sk. We split the proof of this claim in

two cases. Suppose S does not contain a zero-sum subsequence of length 2.

In this case S does not contain a non-empty zero-sum subsequence of length

at most 3. Applying Lemma 4.3.1 to 5 pairwise distinct elements in S allows

us to prove the claim in this case. Now suppose S contains a zero-sum sub-

sequence of length 2. Removing this zero-sum subsequence of length 2 from

S leaves us with a sequence of length 14 containing no non-empty zero-sum

subsequence of length at most 3. Similar to the previous case, applying

Lemma 4.3.1 proves the claim in this case. Without loss of generality, let

i = 1, j = 2 and k = 3. Viewing Z3
3 as a vector space over Z3, we now claim

that s1 and s2 are linearly independent over Z3
3. Indeed this is the case,

otherwise we obtain a contradiction to the fact that s1 and s2 are distinct or

the assumption that S consists entirely of non-zero elements. Next we claim

that there exists an element sm in S such that sm 6∈ SpanZ3
{s1, s2}. In order

to prove this claim suppose for a contradiction that sm ∈ SpanZ3
{s1, s2} for

all elements sm of S. Note that for any element sm of S we have

sm 6∈ {(0, 0, 0), s1 + 2s2}

else S contains a zero-sum subsequence of length 1 or 3. Hence S contains

The Davenport constant of Z3⊕Z3⊕Z3d 40

at most 9 − 2 = 7 pairwise distinct elements. However this implies that

S contains an element with multiplicity at least 3 which contradicts the

assumption that S does not contain a zero-sum subsequence of length 3. This

proves the claim. Without loss of generality suppose s4 6∈ SpanZ3
{s1, s2}.

This means that we can represent elements of Z3
3 as the set of coordinate

vectors with respect to the ordered basis {s4, s1, s2}. Hence, we have that

s1 = (0, 1, 0), s2 = (0, 0, 1), s3 = (0, 1, 1), and s4 = (1, 0, 0).

The next step of the proof is to create a computer program which cuts

down on the number of possibilities for S given that we have determined

s1 · · · s4 as above. We shall refer to this program as CPT16. In simple terms,

CPT16 generates all sequences of 16 non-zero elements over Z3
3 containing

the subsequence

(0, 1, 0)(0, 0, 1)(0, 1, 1)(1, 0, 0),

which contain no zero-sum subsequence of length 3 and no subsequence from

a list of 19 sequences of length 4 over Z3
3 made up of the union of a pair of

zero-sum sequences of length 2. We describe CPT16 in detail in Section 8.1.7

and only present the use of its output here. We find that CPT16 generates

five sequences of length 16 over Z3
3 each consisting of 8 pairwise distinct

elements repeated twice; the sequences of 8 pairwise distinct elements are

the following:

1. (0,1,0) (0,0,1) (0,1,1) (1,0,0) (1,1,0) (1,2,1) (2,2,1) (1,2,2),

2. (0,1,0) (0,0,1) (0,1,1) (1,0,0) (2,1,0) (2,0,1) (2,2,1) (2,1,2),

3. (0,1,0) (0,0,1) (0,1,1) (1,0,0) (2,1,0) (1,2,1) (1,1,1) (1,0,2),

4. (0,1,0) (0,0,1) (0,1,1) (1,0,0) (1,2,0) (2,0,1) (1,1,1) (1,1,2)

5. (0,1,0) (0,0,1) (0,1,1) (1,0,0) (1,0,1) (2,1,2) (1,2,2) (1,1,2).

We deduce that the value of each of the five sequences generated by CPT16

is (0, 0, 0) which completes the proof. As a passing remark, it is not hard

The Davenport constant of Z3⊕Z3⊕Z3d 41

to show that the five sequences generated by CPT16 do not contain a pair

of disjoint zero-sum subsequences of length 2, which implies that those five

sequences are precisely the only possibilities for S.

Remark 4.3.11. The 10th line from the bottom of page 19 in [3] states that ev-

ery sequence of length 16 over Z3
3 without a zero-sum subsequence of length 3

is zero-sum. However, we find a counterexample to this statement as follows.

Define S to be the sequence over Z3
3 consisting of the following 8 elements

each repeated twice:

(0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 1, 1), (2, 1, 0), (2, 0, 1), (2, 0, 0).

Implementing the pseudocode of the function described in Figure 8.2 in the

computer algebra system Magma, one can easily check that S does not con-

tain a zero-sum subsequence of length 3. It turns out that |S|= (1, 2, 2).

The following lemma originates from [19]. Note that this article is not

easily available online: for a statement of the following result in an easily

available piece of published literature see Theorem 1.1 in [10].

Lemma 4.3.12 ([19]). Every sequence over Z3
3 of length 19 contains a zero-

sum subsequence of length 3.

4.4 The equality D(G) = 1 + d∗(G)

We present a proof of the equality D(G) = 1 + d∗(G) for G = Z3 ⊕ Z3 ⊕ Z3d

in this section.

Theorem 4.4.1 (Theorem 1 in [3]). Let G = Z3 ⊕ Z3 ⊕ Z3d where d is an

arbitrary positive integer. Then D(G) = 1 + d∗(G).

Proof (derived from the proof of Theorem 1 in [3]). If d ∈ {1, 3} then G is a

3-group and therefore the result is proved by Theorem 2.1.1. If d = 2 then

The Davenport constant of Z3⊕Z3⊕Z3d 42

G = Z3 ⊕ Z3 ⊕ Z6 and the result is proved by Theorem 2.1.3. So we can

assume d ≥ 4.

Let S be an arbitrary sequence of length 1 + d∗(G) = 3d + 4 over G.

We claim that S is not zero-sum free. We make the following observation in

order to prove this claim. Define

H := {(0, 0, z) ∈ G | z ≡ 0 mod 3} < G.

Then H ∼= Zd. Define T := G/H ∼= Z3
3. Since D(H) = d, by Lemma 4.2.3 it

is sufficient to find d disjoint T -zero-sum subsequences in S with respect to

the canonical homomorphism φ : G −→ T in order to prove the claim.

We start by searching for T -zero-sum subsequences of length 3 in S as

follows. Suppose there exists a T -zero-sum subsequence S ′ in S with length 3.

Remove S ′ from S to form a subsequence Q1 of S. Now repeat the search on

Q1 to form Q2 and so on until what remains is a subsequence Q of S without

any T -zero-sum subsequences of length 3. Note that since the length of S

is 3d + 4, the length of each Qi and hence Q, is of the form 3k + 1 for

some k ∈ N ∪ {0}. Now since any subsequence of S of length 19 contains a

T -zero-sum subsequence of length 3 (see Lemma 4.3.12), we have that the

length of Q is at most 18. That is, Q is a sequence of length 3k+ 1 for some

0 ≤ k ≤ 5. We compute the number of disjoint T -zero-sum subsequences of

length 3 removed from S to form Q to be

(3d+ 4)− (3k + 1)

3
= d− k + 1.

So we have that S contains d−k+1 disjoint T -zero-sum subsequences which

are not in Q (note that d − k + 1 ≥ 0 since d ≥ 4). Now we deal with the

cases k = 0, 1, 2, 3, 4, 5 separately.

Case (i): Suppose k ∈ {0, 1}. Then d−k+1 ≥ d and hence S contains at

least d disjoint T -zero-sum subsequences. The proof is complete in this case.

Case (ii): Suppose k = 2. Then S contains d − 1 disjoint T -zero-sum

The Davenport constant of Z3⊕Z3⊕Z3d 43

subsequences not in Q. However note that the length of Q in this case

is 7. Therefore, since D(Z3
3) = 7, we deduce that Q contains a T -zero-sum

subsequence. So S contains d disjoint T -zero-sum subsequences and the proof

is complete in this case.

Case (iii): Suppose k = 5. In this case Q is a sequence of length 16 and

S contains d − 4 disjoint T -zero-sum subsequences not in Q. If Q contains

a T -zero-sum subsequence of length 1 then removing it from Q leaves us

with a sequence of length 15 which by Corollary 4.3.9 contains 3 disjoint

T -zero-sum subsequences. Hence we can obtain 4 disjoint T -zero-sum sub-

sequences in Q in this instance. If Q contains a pair of disjoint T -zero-sum

subsequences of length 2 then we can remove them from Q to obtain a se-

quence of length 12 which, by Corollary 4.3.7, contains 2 disjoint T -zero-sum

subsequences. Hence we can obtain 4 disjoint T -zero-sum subsequences in Q

in this instance too. Now suppose Q does not contain a T -zero-sum subse-

quence of length 1 and contains no pair of disjoint T -zero-sum subsequences

of length 2. Then Lemma 4.3.10 implies Q is a T -zero-sum sequence. Hence

Corollary 4.3.9 implies Q is the union of 4 disjoint T -zero-sum subsequences.

So we conclude that S contains d disjoint T -zero-sum subsequences in all

scenarios which completes the proof in this case.

Case (iv): Suppose k = 3. In this case Q is a sequence of length 10

and S contains d − 2 disjoint T -zero-sum subsequences S1, . . . , Sd−2 not in

Q. Suppose for a contradiction that S is zero-sum free. Then we claim

that every T -zero-sum subsequence of Q has the same value equal to |Sd−2|.
Indeed, if Sd−1 is a T -zero-sum subsequence of Q then S contains d − 1

disjoint T -zero-sum subsequences. It remains to apply Corollary 4.2.5 whilst

noting that d− 2 ≥ 1 in order to prove the claim. If Q contains two disjoint

T -zero-sum subsequences then S contains d disjoint T -zero-sum subsequences

which contradicts the assumption that S is zero-sum free. If Q does not

contain two disjoint T -zero-sum subsequences then we can use Lemma 4.3.3

to deduce that S is not zero-sum free and hence obtain a contradiction. This

The Davenport constant of Z3⊕Z3⊕Z3d 44

completes the proof in this case.

Case (v): Suppose k = 4. In this case Q is a sequence of length 13 and

S contains d − 3 disjoint T -zero-sum subsequences S1, . . . , Sd−3 not in Q.

Suppose Q contains a T -zero-sum subsequence U of length at most 2. In this

case, remove U from Q to obtain a sequence U ′ of length at least 11. By

Corollary 4.3.7, the sequence U ′ contains 2 disjoint T -zero-sum subsequences,

and hence we obtain 3 disjoint T -zero-sum subsequences in Q. Thus S con-

tains d disjoint T -zero-sum subsequences and the proof is complete in this

case. Now suppose that Q does not contain a T -zero-sum subsequence of

length at most 3. Suppose for a contradiction that S is zero-sum free. Then

every two disjoint T -zero-sum subsequences of Q have the same value equal

to |Sd−3|. To see this, use Corollary 4.2.5 whilst noting that d− 3 ≥ 1 and S

contains d− 3 disjoint T -zero-sum subsequences not in Q. This means that

we can use Lemma 4.3.8 to deduce that S is not zero-sum free. This is a

contradiction. The proof is complete.

Chapter 5

Some results on sequences over

Zp⊕Zp⊕Z2p

5.1 Motivation

Let p > 2 be an arbitrary prime number. In this chapter we present three

results about sequences over the group Zp⊕Zp⊕Z2p. After a preliminaries

section (Section 5.2), the first result we present (Section 5.3) provides suf-

ficient conditions for sequences over Z3
p⊕Z2 of length 4p − 2 to contain a

non-empty zero-sum subsequence. Viewing elements of Z3
p⊕Z2 as 2-tuples,

the second and third results (Section 5.4) allow us to determine some of

the first components of elements of zero-sum free sequences over Z3
p⊕Z2 of

length 4p− 2 up to isomorphism.

The motivation for the results in this chapter stems from the problem of

finding the Davenport constant of the group Zp⊕Zp⊕Z2p for an arbitrary

prime number p > 2. The value of the Davenport constant of Zp⊕Zp⊕Z2p

is conjectured to be 1 + d∗(G) = 4p − 2 from Conjecture 1.2.3. It is there-

fore natural to investigate sufficient conditions for sequences over Z3
p⊕Z2 of

length 4p − 2 to contain a non-empty zero-sum subsequence as well as the

structure of sequences over Z3
p⊕Z2 which may give rise to a possible coun-

45

Some results on sequences over Zp⊕Zp⊕Z2p 46

terexample to Conjecture 1.2.3. The results in this chapter are not enough

to establish the conjecture for this class of groups. However, the results will

be used in Chapter 6 to establish the conjecture when p = 5. Moreover, we

hope these results will contribute to a general result in future.

5.2 Preparatory material

In this section we present the results that are used in Section 5.3 and Sec-

tion 5.4. The reader may notice that the results in this section generalise

some of the ideas used in the proof of the equality D(G) = 1 + d∗(G) for

G = Z3⊕Z3⊕Z3d in Chapter 4.

Definition 5.2.1. The set of subsums [S] of a sequence S over a group G

is defined to be the subset of G consisting of the values of all non-empty

subsequences of S.

Proposition 5.2.2 (Proposition 5.1.4 (1) in [14]). Let S be a zero-sum free

sequence over a finite abelian group G of length D(G)−1. Then [S] = G \ {0G}.

Proof. As S is zero-sum free, we have that [S] ⊆ G \ {0G}. So it remains to

show G \ {0G} ⊆ [S]. Pick g ∈ G \ {0G} and form the sequence

T := S ∪ −g

overG. Since the length of T isD(G), we deduce that it contains a non-empty

zero-sum subsequence U . Since S is zero-sum free and g 6= 0G, the sequence

U must be of the form

U = V ∪ −g

for some non-empty subsequence V of S. We have that

0G = |U |= |V |−g

Some results on sequences over Zp⊕Zp⊕Z2p 47

which implies that g = |V |. Now note that |V |∈ [S] as V is a non-empty

subsequence of S. This means that g ∈ [S]. The proof is complete.

Definition 5.2.3. Let G and H be finite abelian groups and let

S = (x1, y1) · · · (xl, yl)

be a sequence over G ⊕H. Given a non-empty subsequence T := xi1 · · ·xit
of x1 · · ·xl, we define the extension of T into S, denoted T S, to be the

subsequence

(xi1 , yi1) · · · (xit , yit)

of S. If T is the empty sequence then define T S to be the empty sequence

as well.

Lemma 5.2.4. Let H be a finite abelian group and define G := H ⊕Z2. Let

S := (x1, y1) · · · (xl, yl)

be a sequence over G. If either of the following hold then S is not zero-sum free:

(i) The sequence x1 · · ·xl contains two non-empty disjoint zero-sum subse-

quences;

(ii) The sequence x1 · · ·xl contains a non-empty zero-sum subsequence of

even length and y1 = · · · = yl.

Proof. Suppose x1 · · ·xl contains two non-empty disjoint zero-sum subse-

quences T1 := xi1 · · ·xiv and T2 := xj1 · · ·xjw . If |yi1 · · · yiv |= 0 then T S1

is a non-empty zero-sum subsequence of S. If |yj1 · · · yjw |= 0 then T S2 is a

non-empty zero-sum subsequence of S. If |yi1 · · · yiv |= |yj1 · · · yjw |= 1 then

(T1 ∪ T2)S is a non-empty zero-sum subsequence of S. Hence in all cases S

is not zero-sum free.

Some results on sequences over Zp⊕Zp⊕Z2p 48

Suppose T := xi1 · · ·xij is a non-empty zero-sum subsequence of x1 · · ·xl
of even length j and y1 = · · · = yl. We claim that T S is a non-empty zero-

sum subsequence of S, and hence S is not zero-sum free. If y1 = · · · = yl = 0

then the claim is obvious. Suppose y1 = · · · = yl = 1. Then the value of the

sequence T S is (0H , j). Since j is even, we have that j ≡ 0 (mod 2). Hence

T S is zero-sum.

Lemma 5.2.5. Let S be a sequence over a finite abelian group G and suppose

S contains a non-empty zero-sum subsequence T such that either

(i) there exists a positive integer e such that the length of T is at most e

and the length of S is at least e+D(G), or

(ii) the length of T is strictly greater than D(G).

Then S contains two non-empty disjoint zero-sum subsequences.

Proof. Suppose the length of S is at least e+D(G) and the length of T is at

most e for some fixed positive integer e. Then removing T from S we obtain

a sequence U over G of length at least D(G). We deduce that U contains

a non-empty zero-sum subsequence V . It remains to note that T and V are

two non-empty disjoint zero-sum subsequences of S in order to complete the

proof of this case.

Suppose the length of T is strictly greater than D(G). Then T contains

a non-empty zero-sum subsequence T1 of length at most D(G). Since T is

zero-sum, the sequence T2 obtained by removing T1 from T is a non-empty

sequence which is also zero-sum. Hence T1 and T2 are two non-empty disjoint

zero-sum subsequences of S. This completes the proof.

Definition 5.2.6. A subsequence T of a sequence S over a group is called

proper if T is not the empty sequence and the length of T is strictly smaller

than the length of S.

Some results on sequences over Zp⊕Zp⊕Z2p 49

Lemma 5.2.7. Let H be a finite abelian group and define G := H ⊕Z2. Let

S = (x1, y1) · · · (xn, yn)

be a sequence over G such that y1 = · · · = yr = 1 and yr+1 = · · · = yn = 0

for some odd r ≥ 1. Define t := −(x1 + · · · + xn). If the sequence S ∪ (t, 1)

over G contains a proper zero-sum subsequence then S is not zero-sum free.

Proof. Let T be a proper zero-sum subsequence of S ∪ (t, 1) and suppose for

a contradiction that S is zero-sum free. Then T must be of the form

T = U ∪ (t, 1)

for some proper subsequence U of S. Now note that since r is odd we have

|S ∪ (t, 1)|= (x1 + · · ·+ xn + t, r + 1) = (0H , 0) = |T |.

Hence

|S|= |U |.

Consequently, since U is a proper zero-sum subsequence of S, we find that

the subsequence of S formed by removing U from S is a non-empty zero-sum

sequence. This contradicts the assumption that S is zero-sum free and hence

proves the result.

The following theorem is a consequence of results proved by Weidong

Gao, Alfred Geroldinger and Christian Reiher (see Remark 5.2.9).

Theorem 5.2.8. Fix a prime number p and let S be a sequence of length

3p− 3 over a group G such that G ∼= Z2
p. If S does not contain a non-empty

zero-sum subsequence of length at most p then S must be of the form

S = a · · · ab · · · bc · · · c

Some results on sequences over Zp⊕Zp⊕Z2p 50

for some pairwise distinct elements a, b, c ∈ G each having multiplicity p− 1

in S.

Remark 5.2.9. We are unable to find an explicit body of text referring to

the proof of Theorem 5.2.8. The proof of Theorem 5.2.8 can be deduced as

follows. In the literature, a prime p satisfying the statement of the Theo-

rem 5.2.8 is often referred to as a prime which satisfies ‘Property C ’ (see [4]

and [12]). We say a prime p satisfies Property B if every zero-sum sequence

over a group G ∼= Z2
p of length 2p− 1 containing no proper zero-sum subse-

quence contains an element with multiplicity p − 1. In [12] it is shown that

if a prime p satisfies Property B then it satisfies Property C. In [25], Reiher

proved that every prime number satisfies Property B, which consequently

proves Theorem 5.2.8.

The following result does not concern sequences over groups - it is merely

a result about integers that we use in Section 5.4.

Lemma 5.2.10. Let p and x be integers such that 4 ≤ x ≤ p−1. Then there

exist integers y and z such that 1 ≤ y ≤ z ≤ p− 1 and xy = z + p.

Proof. Let z = xdp/(x− 1)e − p and y = dp/(x− 1)e. Then

xy = xdp/(x− 1)e = z + p.

Now x− 1 < p so p/(x− 1) > 0 hence y = dp/(x− 1)e ≥ 1. Moreover,

z − y = (x− 1)dp/(x− 1)e − p ≥ (x− 1)(p/(x− 1))− p = 0

which implies z ≥ y. So it remains to show that z ≤ p − 1. Suppose p = 5.

Then 4 ≤ x ≤ p− 1 implies x = 4 and hence

z = xdp/(x− 1)e − p = 4× d5/3e − 5 = 3 < 4 = p− 1.

Similarly, supposing p = 6, we observe that z < p − 1. Suppose x = p − 1.

Some results on sequences over Zp⊕Zp⊕Z2p 51

Then, noting that 1 < p/(p− 2) < 2, we deduce

z = (p− 1)dp/(p− 2)e − p = p− 2 < p− 1.

Now suppose p > 6 and x < p− 1. We have that

z = xdp/(x− 1)e − p < x(p/(x− 1) + 1)− p

since dp/(x− 1)e < p/(x− 1) + 1. Now

x(p/(x− 1) + 1)− p = (x− 1 + 1)(p/(x− 1)) + x− p

= p+ (p/(x− 1)) + x− p

= (p/(x− 1)) + (x− 1) + 1.

Now consider the function

ψ : [3, p− 3] −→ R>0

a 7→ p/a+ a.

We have that

z < ψ((x− 1)) + 1 ≤ max
a∈[3,p−3]

ψ(a) + 1.

Now we claim that maxa∈[3,p−3] ψ(a) = max{ψ(3), ψ(p − 3)}. Since ψ is

a continuous, real-valued function on the closed interval [3, p − 3], by the

Extreme Value Theorem we have that ψ achieves its maximum and minimum.

In order to show that ψ achieves its maximum at max{ψ(3), ψ(p−3)} we show

that ψ has at most one stationary point which is a minimum and therefore

it must achieve it maximum on one of its endpoints 3 and p− 3. Solving the

equation

ψ′(a) = 0

for a ∈ [3, p − 3] where ψ′ denotes the first derivative of ψ gives us the

Some results on sequences over Zp⊕Zp⊕Z2p 52

stationary points of ψ. We find that ψ has one stationary point at a =
√
p.

We now find the second derivative ψ′′ of ψ and note that ψ′′(
√
p) > 0. Hence

√
p is a minimum of ψ. So we come to the conclusion that

z < max{ψ(3), ψ(p− 3)}+ 1 = max{p/3 + 4, p/(p− 3) + p− 2}.

Now note that, since z is an integer, we have that

z ≤ max{p/3 + 4, bp/(p− 3) + p− 2c}.

We have that p > 6 implies p/3 + 4 < p. It remains to note that p > 6 also

implies 1 < p/(p− 3) < 2, and hence

bp/(p− 3) + p− 2c = p− 1.

This completes the proof.

5.3 A result on sequences of length 1 + d∗(G)

In this section we present a result which provides sufficient conditions for

sequences over Z3
p⊕Z2, where p is an arbitrary prime number, to contain a

non-empty zero-sum subsequence. More precisely, we prove the following:

Proposition 5.3.1. Fix a prime number p and define G := Z3
p⊕Z2. Let

x1 · · ·x4p−2 be a sequence over Z3
p and y1 · · · y4p−2 be a sequence over Z2 such

that y1 = · · · = yr = 1 and yr+1 = · · · = y4p−2 = 0 for some integer

r ∈ {0, . . . , 2p} ∪ {4p− 4, 4p− 3, 4p− 2}. Then the sequence

S = (x1, y1) · · · (x4p−2, y4p−2)

over G is not zero-sum free.

Some results on sequences over Zp⊕Zp⊕Z2p 53

The proof of Proposition 5.3.1 is based on the idea for the proof of

Lemma 1.1 in [5].

Proof of Proposition 5.3.1. We split the proof of this proposition into the

following four cases: r ∈ {0, . . . , p}, r ∈ {p + 1, . . . , 2p}, r = 4p − 4, and

r ≥ 4p− 3.

Case (i): Suppose r ∈ {0, . . . , p}. Define the sequence T := xr+1 · · ·x4p−2

over Z3
p. In this case T is a sequence over Z3

p of length 4p− 2− r ≥ 3p− 2.

Now note that D(Z3
p) = 3p − 2. Hence T contains a non-empty zero-sum

subsequence U := xi1 · · ·xit . Noting that yi1 = · · · = yit = 0, we deduce that

US is a non-empty zero-sum subsequence of S which completes the proof in

this case.

Case (ii): Suppose r ∈ {p + 1, . . . , 2p}. Since r 6= 1 we can pair the

elements x1, . . . , x4p−2 in the following way. Define t := br/2c and form the

sequence

T := (x1 + x2) · · · (x2t−1 + y2t)xr+1 · · ·x4p−2

over Z3
p. Note that the length of T is equal to 4p − 2 − r + t. Since

r ≤ 2p, we have that −r + t ≥ −p. Hence the length of T is greater

than or equal to 3p − 2. Since D(Z3
p) = 3p − 2, we deduce that T con-

tains a non-empty zero-sum subsequence T1 ∪ T2 where T1 and T2 are subse-

quences of (x1 + x2) · · · (x2t−1 + y2t) and xr+1 · · ·x4p−2 respectively. Suppose

T1 = xi1+xi1+1 · · ·xij+xij+1 and define the sequence U := xi1xi1+1 · · ·xijxij+1

over Z3
p. Since y1 + y2 = · · · = y2t−1 + y2t = yr+1 = · · · = y4p−2 = 0, we have

that US ∪ T S2 is a zero-sum subsequence of S. This completes the proof in

this case.

Case (iii): Suppose r ≥ 4p− 3. Define the embedding φ : Z3
p −→ Z4

p by

(x, y, z) 7→ (x, y, z, 0).

Some results on sequences over Zp⊕Zp⊕Z2p 54

Let g = (1, 1, 1, 1) ∈ Z4
p and consider the sequence

U := g + φ(x1) · · · g + φ(x4p−3)

over Z4
p. Since D(Z4

p) = 4p − 3, we deduce that U contains a non-empty

zero-sum subsequence, say

V := g + φ(xi1) · · · g + φ(xij).

We have that

(0, 0, 0, 0) = |V |= jg + φ(xi1 + · · ·+ xij) = (j, j, j, j) + φ(xi1 + · · ·+ xij).

Now since the last component of φ(xi1 + · · · + xij) is 0 we deduce that

j ≡ 0 (mod p). This implies that

φ(xi1 + · · ·+ xij) = (0, 0, 0, 0)

from which it follows that

T := xi1 · · ·xij

is a non-empty zero-sum subsequence of x1 · · ·x4p−3 of length j. Now j ≡ 0

(mod p) and 1 ≤ j ≤ 4p − 3 implies j ∈ {p, 2p, 3p}. We deal with the

different values j can take as follows.

• Suppose j = p. Then, noting that 4p − 2 = p + D(Z3
p), we find that

Lemma 5.2.5 (i) implies that x1 · · ·x4p−2 contains two non-empty dis-

joint zero-sum subsequences. Now, Lemma 5.2.4 (i) implies that S is

not zero-sum free.

• Suppose j = 2p. Then the length of T is even. So Lemma 5.2.4 (ii)

implies the subsequence of S obtained by removing (x4p−2, y4p−2) from

S is not zero-sum free. Hence S is not zero-sum free.

Some results on sequences over Zp⊕Zp⊕Z2p 55

• Suppose j = 3p. Then the length of T is strictly greater than D(Z3
p). So

Lemma 5.2.5 (ii) implies x1 · · ·x4p−2 contains two non-empty disjoint

zero-sum subsequences. Now, Lemma 5.2.4 (i) implies that S is not

zero-sum free.

Case (iv): Suppose r = 4p − 4. Define φ and g ∈ Z4
p as in case (iii) and

consider the sequence

U := g + φ(x1) · · · g + φ(x4p−4)

over Z4
p. Suppose U is not zero-sum free. Then by following the same ar-

gument as in case (iii) we deduce that the sequence x1 · · ·x4p−4 contains a

zero-sum subsequence of length j for some j ∈ {p, 2p, 3p}, and hence ei-

ther x1 · · ·x4p−2 contains two non-empty disjoint zero-sum subsequences or

x1 · · ·x4p−4 contains a non-empty zero-sum subsequence of even length. Using

Lemma 5.2.4 we deduce that S is not zero-sum free in both of the latter cases.

Now suppose that U is a zero-sum free sequence over Z4
p. Then Proposi-

tion 5.2.2 implies that

[U] = Z4
p \ {0}.

Let |x1 · · ·x4p−2|= (t1, t2, t3) for some t1, t2, t3 ∈ Zp and define

t := (t1 + p− 2, t2 + p− 2, t3 + p− 2, p− 2) ∈ Z4
p.

Now t ∈ Z4
p\{0} so t ∈ [U]. This means there exists a non-empty subsequence

V := g + φ(xm1) · · · g + φ(xmk
)

of U with |V |= t. More precisely,

t = |V |= kg + φ(xm1 + · · ·+ xmk
) = (k, k, k, k) + φ(xm1 + · · ·+ xmk

).

Now since the last component of φ(xm1 + · · · + xmk
) is 0, we deduce that

Some results on sequences over Zp⊕Zp⊕Z2p 56

k ≡ p− 2 (mod p) and hence

(t1, t2, t3, 0) = φ(xm1 + · · ·+ xmk
).

Since (t1, t2, t3, 0) = φ(t1, t2, t3), we deduce that the subsequence

W := xm1 + · · ·+ xmk

of x1 · · ·x4p−4 has value is equal to |x1 · · ·x4p−2|. Therefore we can re-

move W from x1 · · ·x4p−2 to obtain a non-empty zero-sum subsequence T of

x1 · · ·x4p−2 of length 4p− 2− k. Now k ≡ p− 2 (mod p) and 1 ≤ k ≤ 4p− 4

implies k ∈ {p−2, 2p−2, 3p−2}. We deal with these values of k individually.

• Suppose k = p − 2. Then the length of T is 3p > D(Z3
p). Hence

Lemma 5.2.5 (ii) implies that x1 · · ·x4p−2 contains two non-empty dis-

joint zero-sum subsequences. Therefore using Lemma 5.2.4 (i) we de-

duce that S is not zero-sum free.

• Suppose k = 2p − 2. Since k is even in this case, we observe that the

sequence T is the union of a subsequence of x1 · · ·x4p−4 of even length

and the sequence x4p−3x4p−2. Since y1 = · · · = y4p−4 = 1, this implies

that T S is a non-empty zero-sum subsequence of S.

• Suppose k = 3p − 2. Then the length of T is p. Hence, noting that

4p−2 = p+D(Z3
p), we find that Lemma 5.2.5 (i) implies that x1 · · ·x4p−2

contains two non-empty disjoint zero-sum subsequences. Therefore us-

ing Lemma 5.2.4 (i) we deduce that S is not zero-sum free.

The proof of the proposition is complete.

We now make a conjecture which, if proved for a prime number p ≥ 5,

will determine (by Theorem 5.3.3 below) the Davenport constant of the group

Zp⊕Zp⊕Z2p. We prove this conjecture for p = 5 in Chapter 6, and hence

Some results on sequences over Zp⊕Zp⊕Z2p 57

determine the Davenport constant of the group Z5⊕Z5⊕Z10 (see Theo-

rem 6.1).

Conjecture 5.3.2. Fix a prime number p ≥ 5 and define G := Z3
p⊕Z2. Let

x1 · · ·x4p−2 be a sequence over Z3
p and y1 · · · y4p−2 be a sequence over Z2 such

that y1 = · · · = yr = 1 and yr+1 = · · · = y4p−2 = 0 for some even integer

r ∈ {2p+ 2, . . . , 4p− 6}. Then the sequence

S = (x1, y1) · · · (x4p−2, y4p−2)

over G is not zero-sum free.

Theorem 5.3.3. Let p be a prime number for which Conjecture 5.3.2 holds.

Then the equality D(G) = 1 + d∗(G) holds for G := Z3
p⊕Z2.

Proof. We may assume that p ≥ 5 as the equality is known for all other values

of p. Observe that 1+d∗(G) = 4p−2. We show that any arbitrary sequence S

over G of length 4p−2 contains a non-empty zero-sum subsequence. Suppose

S = (x1, y1) · · · (x4p−2, y4p−2)

for sequences x1 · · ·x4p−2 and y1 · · · y4p−2 over Z3
p and Z2 respectively. With-

out loss of generality assume y1 = · · · = yr = 1 and yr+1 = · · · = y4p−2 = 0 for

some r ≥ 0. If r ∈ {0, . . . , 2p}∪{4p−4, 4p−3, 4p−2} then Proposition 5.3.1

implies S is not zero-sum free. If r is even and r ∈ {2p+ 2, . . . , 4p− 6} then,

since p is a prime number for which Conjecture 5.3.2 holds, we deduce that

S is not zero-sum free. It remains to show S is not zero-sum free in the

case when r is odd and r ∈ {2p + 1, . . . , 4p − 5} in order to complete the

proof. Suppose r is an odd integer in the set {2p + 1, . . . , 4p − 5}. Define

t := −|x1 · · ·x4p−2| and consider the sequence

T := (x1, 1) · · · (xr, 1), (t, 1), (xr+1, 0) · · · (x4p−3, 0)

Some results on sequences over Zp⊕Zp⊕Z2p 58

over Z3
p ⊕ Z2. We have that T is a sequence of length 4p − 2 and the last

components of precisely r + 1 elements of T are non-zero. If r 6= 4p − 5

then r + 1 is an even integer in the set {2p + 2, . . . , 4p − 6} and so since

Conjecture 5.3.2 holds for p, we deduce that T is not zero-sum free. If

r = 4p − 5 then r + 1 = 4p − 4 and so Proposition 5.3.1 implies T is not

zero-sum free. Now observe that T is a proper subsequence of the sequence

S∪(t, 1). Hence S∪(t, 1) contains a proper zero-sum subsequence. Therefore

Lemma 5.2.7 implies that S is not zero-sum free.

5.4 A property about zero-sum free sequences

Given a prime number p, in this section we view Z3
p as a 3-dimensional vector

space over Zp where appropriate. Given a prime number p > 2 and a zero-

sum free sequence

S = (x1, y1) · · · (xn, yn)

over Z3
p⊕Z2, what can we say about the sequence x1 · · ·xn over Z3

p? We

find that if n is sufficiently large then we can say that x1 · · ·xn contains a

basis for Z3
p over Zp. Using some fairly elementary techniques we deduce

that if n ≥ 3p − 1 then the sequence x1 · · ·xn contains a basis. With some

more analysis we find that, if we assume n ≥ 4p − 2 and y1 = · · · = y3p−3,

then x1 · · ·x3p−3 contains a basis for Z3
p over Zp. More precisely we show the

following two results:

Proposition 5.4.1. Given a prime number p > 2, define G := Z3
p⊕Z2. Let

S := (x1, y1) · · · (xn, yn)

be a zero-sum free sequence over G of length n = 3p− 1. Then the sequence

x1 · · ·xn contains a basis for Z3
p over Zp.

Some results on sequences over Zp⊕Zp⊕Z2p 59

Proposition 5.4.2. Given a prime number p > 2, define G := Z3
p⊕Z2. Let

S := (x1, y) · · · (x3p−3, y)(x3p−2, y3p−2) · · · (xn, yn)

be a zero-sum free sequence over G of length n = 4p − 2. (Note the second

components of the first 3p−3 terms are equal.) Then the sequence x1 · · ·x3p−3

contains a basis for Z3
p over Zp.

We shall prove Proposition 5.4.1 first, for which we need the following

preliminaries.

Theorem 5.4.3 (Theorem 3.10 (2) in [20]). If S is a spanning set for a

finite dimensional vector space V over a field F then S contains a basis for

V over F.

Lemma 5.4.4. Let S be a sequence over Z3
p such that

〈S〉 = Z3
p .

Then S contains a basis for Z3
p over Zp.

Proof. Let S = x1 · · ·xn where xi ∈ Z3
p for all i ∈ [1, n]. Then 〈S〉 = Z3

p

implies SpanZp
{x1, . . . , xn} = Z3

p. Therefore by Theorem 5.4.3 we deduce

that {x1, . . . , xn} contains a basis for Z3
p over Zp.

Proof of Proposition 5.4.1. We claim that

〈S〉 = G.

In order to prove the claim suppose for a contradiction that 〈S〉 = H for some

non-trivial proper subgroup H of G (note that 〈S〉 6= {0} else S contains the

element (0, 0) ∈ Z3
p⊕Z2). Using Theorem 3.2, we find that H is isomorphic

to one of Z2, Zp, Z2p, Z2
p, Zp⊕Z2p, or Z3

p. Hence by Theorem 2.1.1 and

Some results on sequences over Zp⊕Zp⊕Z2p 60

Theorem 2.1.2, we have that D(H) = 1 + d∗(H). Moreover, we deduce that

d∗(H) ∈ {1, p− 1, 2p− 1, 2p− 2, 3p− 2, 3p− 3}

and hence

D(H) < 3p− 1.

Hence S is a sequence over H of length at least D(H) which contradicts the

assumption that S is zero-sum free. This proves the claim. Observe that the

claim implies

〈x1 · · ·xn〉 = Z3
p .

It remains to apply Lemma 5.4.4 to complete the proof.

In order to prove Proposition 5.4.2 we require the following result.

Theorem 5.4.5. Given a prime number p > 2, define G := Z3
p ⊕ Z2. Let

S := (x1, y) · · · (x3p−3, y)(x3p−2, y3p−2) · · · (xn, yn)

be a zero-sum free sequence over G of length n = 4p− 2. Then

〈S ′〉 = Z3
p

where S ′ := x1 · · ·x3p−3.

Proof. We claim that the sequence x1 · · · x4p−2 over Z3
p does not contain a

non-empty zero-sum subsequence of length at most p. Suppose for a con-

tradiction that x1 · · ·x4p−2 contains a non-empty zero-sum subsequence of

length at most p. Then since 4p− 2 = p+D(Z3
p), we find that Lemma 5.2.5

(i) tells us that x1 · · ·x4p−2 contains two non-empty disjoint zero-sum subse-

quences. Hence Lemma 5.2.4 (i) implies that S is not zero-sum free which

contradicts our assumption.

We know that 〈S ′〉 is a subgroup of Z3
p, hence 〈S ′〉 ∼= Znp for some

n ∈ {1, 2, 3}. We show that n 6∈ {1, 2}.

Some results on sequences over Zp⊕Zp⊕Z2p 61

Suppose for a contradiction that 〈S ′〉 ∼= Zp. Then, since 3p − 3 > p and

p = D(Zp), we have that S ′ contains a non-empty zero-sum subsequence of

length at most p. This implies that x1 · · ·x4p−2 contains a zero-sum subse-

quence of length at most p which produces a contradiction.

Suppose for a contradiction that 〈S ′〉 ∼= Z2
p. Using Theorem 5.2.8 we

deduce that S ′ must be of the form

S ′ = a . . . ab . . . bc . . . c

for some pairwise distinct elements a, b, c ∈ Z3
p each having multiplicity p− 1

in S ′. Hence

Z2
p
∼= SpanZp

{a, b, c}.

By Theorem 5.4.3, we deduce that the set {a, b, c} contains a basis for

SpanZp
{a, b, c} over Zp. Without loss of generality suppose {a, b} is a basis

for SpanZp
{a, b, c} over Zp. Then there exist q1, q2 ∈ {0, . . . , p− 1} such that

q1a+ q2b+ c = 0. (5.1)

Consider the sequence

Q := a · · · ab · · · bc

in which the multiplicity of a is q1, the multiplicity of b is q2 and multiplicity

of c is 1. Note that equation (5.1) implies that Q is a non-empty zero-sum

subsequence of S ′ of length q1 + q2 + 1. Define l := q1 + q2 + 1. We shall

complete the rest of the proof by examining the range of values l can take.

Case (i): Suppose l ∈ {1, . . . , p}. Then Q is a non-empty zero-sum sub-

sequence of S ′ of length at most p. This is a contradiction.

Case (ii): Suppose l is even. Then Lemma 5.2.4 (ii) implies S is not

zero-sum free which is a contradiction.

Case (iii): Suppose l is an odd integer strictly greater than p. Since

Some results on sequences over Zp⊕Zp⊕Z2p 62

q1, q2 ∈ {0, . . . , p− 1}, we have that

p+ 1 ≤ l ≤ 2p− 1

which implies

1 ≤ l − p ≤ p− 1.

Now since both l and p are odd we must have that l − p = x for some even

integer 1 ≤ x ≤ p − 1. Now we proceed by examining the cases x = 2 and

x > 2.

Suppose x = 2. Then

l ≡ 2 (mod p).

Suppose (p− 1)q1 ≡ α (mod p) and (p− 1)q2 ≡ β (mod p) for some integers

α, β ∈ {0, . . . , p− 1} and consider the sequence

T := a · · · ab · · · bc · · · c

in which the multiplicity of a is α, the multiplicity of b is β and the multi-

plicity of c is p− 1. By equation (5.1) we have

|T |= αa+ βb+ (p− 1)c = (p− 1)(q1a+ q2b+ c) = 0.

Moreover, the length of T is equal to

α + β + p− 1 ≡ (p− 1)l ≡ 2p− 2 (mod p).

Now p − 1 ≤ α + β + p − 1 ≤ 3p − 3 implies α + β + p − 1 = 2p − 2.

Hence T is a non-empty zero-sum subsequence of S ′ of even length. There-

fore Lemma 5.2.4 (ii) implies S is not zero-sum free which contradicts our

assumption.

Suppose x > 2. Then by Lemma 5.2.10 there exist integers y and z such

that 1 ≤ y ≤ z ≤ p − 1 and xy = z + p. Suppose yq1 ≡ α′ (mod p) and

Some results on sequences over Zp⊕Zp⊕Z2p 63

yq2 ≡ β′ (mod p) for some α′, β′ ∈ {0, . . . , p− 1} and consider the sequence

T ′ := a · · · ab · · · bc · · · c

in which the multiplicity of a is α′, the multiplicity of b is β′ and the multi-

plicity of c is y. By equation (5.1) we have

|T ′|= α′a+ β′b+ yc = y(q1a+ q2b+ c) = 0.

Moreover, since l ≡ x (mod p), the length of T ′ is equal to

α′ + β′ + y ≡ yl ≡ xy ≡ z (mod p).

Now 1 ≤ α′+β′+ y ≤ 2p− 2 + z implies the length of T ′ is either z or z+ p.

Suppose the length of T ′ is z. Then, since z < p, we deduce that T ′ is a

non-empty zero-sum subsequence of S ′ of length at most p. This produces

a contradiction. Suppose the length of T ′ is z + p. Then, since z + p = xy

and x is even, we deduce that T ′ is a non-empty zero-sum subsequence of S ′

of even length. Hence Lemma 5.2.4 (ii) implies S is not zero-sum free which

contradicts our assumption. This completes the proof.

Proof of Proposition 5.4.2. By Theorem 5.4.5 we have 〈x1 · · ·x3p−3〉 = Z3
p.

Hence the result follows from Lemma 5.4.4.

Chapter 6

The Davenport constant of

Z5⊕Z5⊕Z10

The aim of this chapter is to determine the Davenport constant of the group

Z5⊕Z5⊕Z10. As discussed in Chapter 2 it is conjectured that the equality

D(G) = 1 + d∗(G) (6.1)

holds for all groups G of rank 3. The reason we are interested in finding the

Davenport constant of the group Z5⊕Z5⊕Z10 is because it is the smallest

group of rank 3 for which (6.1) is not known to hold (see Theorem 2.2.1).

We show that

D(Z5⊕Z5⊕Z10) = 1 + d∗(Z5⊕Z5⊕Z10) = 18.

A natural attempt to prove the equality (6.1) for G := Z5⊕Z5⊕Z10

would be to use Lemma 4.2.3 as follows. Define

H := {(0, 0, z) ∈ G | z ≡ 0 mod 5}

and F := G/H and note that H ∼= Z2. Then using Lemma 4.2.3 it is

64

The Davenport constant of Z5⊕Z5⊕Z10 65

sufficient to show that every sequence of length 18 over G contains 2 disjoint

F -zero-sum subsequences with respect to the canonical homomorphism from

G to F . Since F ∼= Z3
5, this is equivalent to showing that every sequence

over Z3
5 of length 18 contains two non-empty disjoint zero-sum subsequences.

Unfortunately, the sequence of length 18 over Z3
5 which contains each of

the elements (1, 0, 0), (0, 1, 0), and (0, 0, 1) with multiplicity 4, and each

of the elements (0, 1, 1), (1, 1, 0) and (1, 0, 1) with multiplicity 2 does not

contain two non-empty disjoint zero-sum subsequences; it is relatively simple

to verify this by writing a program in the computer algebra system Magma

(see Corollary 7.2.12). This means we cannot use Lemma 4.2.3 as described

above in order show D(G) = 18. We use a different approach to show

D(G) = 18 as described below.

Theorem 6.1. The equality D(G) = 1 + d∗(G) holds for G := Z3
5⊕Z2.

Proof. By Theorem 5.3.3 it is sufficient to prove Conjecture 5.3.2 for the

prime number 5 in order to prove the result. Let x1 · · ·x18 be a sequence

over Z3
5 and y1 · · · y18 be a sequence over Z2 such that y1 = · · · yr = 1 and

yr+1 = · · · = y18 = 0 for some r ∈ {12, 14}. Then we claim that the sequence

S = (x1, y1) · · · (x18, y18)

over G is not zero-sum free. Suppose for a contradiction that S is zero-sum

free. We start by making a few observations using this assumption.

Firstly observe that there does not exist a subsequence Z of xr+1 · · ·x18

such that −|Z|= |T | for some non-empty subsequence T of x1 · · ·xr of even

length. Indeed, if this is the case then (T ∪ Z)S is a non-empty zero-sum

subsequence of S which contradicts the assumption that S is zero-sum free.

Note that this observation implies that the sequence x1 · · ·xr does not contain

a non-empty zero-sum subsequence of even length.

Secondly, observe that the sequence x1 · · ·x18 does not contain a non-

empty zero-sum subsequence of length at most 5 or length at least 14. In-

The Davenport constant of Z5⊕Z5⊕Z10 66

deed, if this is the case then, noting that 18 = 5 + D(Z3
5), we deduce us-

ing Lemma 5.2.5 that x1 · · ·x18 contains two non-empty disjoint zero-sum

subsequences, hence S is not zero-sum free by Lemma 5.2.4 (i) which is a

contradiction.

Now we determine three elements of the sequence x1 · · · xr up to isomor-

phism. Since y1 = · · · = y12, we deduce that, viewing Z3
5 as a vector space

over Z5, Proposition 5.4.2 implies the sequence x1 · · ·xr contains a basis for

Z3
5 over Z5. Without loss of generality assume this basis comprises the el-

ements x1, x2 and x3. Now fix a representation for Z3
3 which comprises of

representing all elements of Z3
3 as the set of coordinate vectors with respect

to the ordered bases {x1, x2, x3}. This means that x1 = (1, 0, 0), x2 = (0, 1, 0)

and x3 = (0, 0, 1).

Now we claim that the sequence x1 · · ·x6 is zero-sum free. Indeed, this

is the case else x1 · · ·xr contains a non-empty zero-sum subsequence of even

length or length at most 5 both of which produce a contradiction. The next

step of the proof involves using a computer program to determine all possi-

bilities for the sequence x1 · · ·x6. We shall refer to this computer program

as CPF6. The program CPF6 generates all zero-sum free sequences over Z3
5

of length 6 containing the subsequence (1, 0, 0)(0, 1, 0)(0, 0, 1). We find that

there are 208334 such sequences. We describe CPF6 in detail in Section 8.2.3.

The idea now is to compute a set of possibilities for the sequence x1 · · ·x18

by extending each possibility for x1 · · ·x6 generated by CPF6. We do this as

follows. Suppose r = 14. In this case we create a computer program called

CPF14 which takes as input a possibility U for x1 · · ·x6 generated by CPF6

and outputs all sequences X over Z3
5 of length 14 subject to the following

conditions:

• The sequence X contains U as a subsequence;

• The sequence X does not contain a non-empty zero-sum subsequence

of even length or length at most 5.

The Davenport constant of Z5⊕Z5⊕Z10 67

Inputting each sequence generated by CPF6 in the program CPF14, we ob-

tain a set of possibilities for the sequence x1 · · ·x14. We describe CPF14

in Section 8.2.4. We then create a computer program which we refer to as

CPF14EXT which takes as input a possibility X for x1 · · · x14 generated by

CPF14 and outputs all sequences X ∪ z15 · · · z18 over Z3
5 of length 18 subject

to the following conditions:

• The sequence X ∪ z15 · · · z18 does not contain a non-empty zero-sum

subsequence of length at most 5 or length at least 14;

• The inverse of the value of each of the following sequences does not

occur as the value of some subsequence of X of even length: z15, z16, z17,

z18, z15z16, z15z17, z15z18, z16z18, z17z18, z15z16z17, z16z17z18, z15z16z17z18.

Inputting each sequence generated by CPF14 in the program CPF14EXT,

we obtain a set of possibilities for the sequence x1 · · ·x18. We describe

CPF14EXT in Section 8.2.5. We find that CPF14EXT completes its run

without producing a possibility for x1 · · ·x18. This means that the assump-

tion that S is zero-sum free cannot hold.

Now suppose r = 12. To produce a contradiction in this case we cre-

ate computer programs CPF12 and CPF12EXT which work analogously to

CPF14 and CPF14EXT respectively - see Section 8.2.6 and Section 8.2.7.

We find that the total running time for CPF12 with the first 100 outputs of

CPF6 is approximately 4000 minutes. This is considerably longer as com-

pared to the total running time for CPF14 with the first 100 outputs of CPF6

which is approximately 9 minutes. For this reason, we input the sequence

U := (1, 0, 0)(1, 0, 0)(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 0, 1)

output from CPF6 into CPF12 and obtain as output all sequences over Z3
3

of length 12 containing the subsequence U and no non-empty zero-sum sub-

sequence of even length or length at most 5. We then run CPF12EXT on all

The Davenport constant of Z5⊕Z5⊕Z10 68

of these outputs and find that CPF12EXT completes its runs without pro-

ducing an output. From this we deduce that the sequence x1 · · ·x12 cannot

contain an element with multiplicity 4. Indeed, suppose x1 · · ·x12 contains

an element with multiplicity 4, say x9 = x10 = x11 = x12. Then, since

D(Z5) = 5 implies

〈x8 · · ·x12〉 6∼= Z5,

we deduce that the elements x8 and x9 are linearly independent if we view Z3
5

as a vector space over Z5. Now Theorem 5.4.5 implies that 〈x1 · · ·x12〉 ∼= Z3
5.

Hence there exists i ∈ {1, . . . , 7} such that the set {x9, x8, xi} forms a basis

for Z3
5 over Z5. Representing the elements of Z2

5 as coordinate vectors with re-

spect to this basis we can assume that x1 · · ·x12 contains U as a subsequence.

However we have previously deduced that if this is the case then there exist

no possibilities for x1 . . . x18 which is a contradiction. Now we run CPF12

over all outputs of CPF6 with the additional condition that x1 · · · x12 does

not contain an element with multiplicity 4 to obtain a set P of possibilities

for x1 · · ·x12. We then run CPF12EXT over all sequences in P and find that

there do not exist any possibilities for the sequence x1 · · ·x18. This implies

that S cannot be zero-sum free and hence completes the proof.

Chapter 7

An upper bound on the

Davenport constant of

Z5⊕Z5⊕Z5d

7.1 Motivation

Given that the equality D(G) = 1 + d∗(G) holds for G = Z5⊕Z5⊕Z10, it

is natural to ask whether the equality holds for all groups G of the form

G ∼= Z5⊕Z5⊕Z5d where d ∈ N. In this chapter we show that

D(Z5⊕Z5⊕Z5d) ≤ 1 + d∗(Z5⊕Z5⊕Z5d) + 4.

In order to prove this upper bound, we need some results about sequences

over the group Z3
5. We shall detail these results in Section 7.2. We present

the proof of the upper bound in Section 7.3.

69

An upper bound on the Davenport constant of Z5⊕Z5⊕Z5d 70

7.2 Some results about Z3
5

In this section, we present a selection of results about sequences over Z3
5. We

shall use some of these results to prove the upper bound on D(Z5⊕Z5⊕Z5d)

stated in the previous section.

Definition 7.2.1. Let k ∈ N. For a group G, define Dk(G) to be the smallest

n ∈ N such that every sequence over G of length n contains a non-empty

zero-sum subsequence of length at most k.

Remark 7.2.2. For a finite abelian group G, we shall write Dk(G) = ∞ if

for every n ∈ N, we can find a sequence over G of length n which does not

contain a non-empty zero-sum subsequence of length at most k.

Lemma 7.2.3. For all finite abelian groups G, we have Dk(G) = ∞ for

1 ≤ k < exp(G).

Proof. Fix 1 ≤ k < exp(G) and n ∈ N. We claim that we can find a sequence

over G of length n which does not contain a non-empty zero-sum subsequence

of length at most k. Let G ∼= Zn1 ⊕ · · · ⊕ Znr for some 1 < n1 | · · · | nr.
Define g to be the r-tuple in G with all entries equal to 1. Define S to be

the sequence over G of length n consisting of n copies of g. Then it is easy

to see that S does not contain a non-empty zero-sum subsequence of length

at most k.

Theorem 7.2.4 (Theorem 5.8.3 in [14]). Let G ∼= Zn1 ⊕Zn2 where 1 ≤ n1 | n2

be a finite abelian group of rank at most 2. Then

Dk(G) = 2n1 + n2 − 2,

where k := exp(G).

Definition 7.2.5. A sequence S over a group G is said to be square-free if

the multiplicity of g in S is at most 1 for all g ∈ G.

An upper bound on the Davenport constant of Z5⊕Z5⊕Z5d 71

Definition 7.2.6. Let k ∈ N. For a group G, define Dk∗(G) to be the

smallest n ∈ N such that every square-free sequence over G of length n

contains a non-empty zero-sum subsequence of length at most k.

Remark 7.2.7. Let G be a finite abelian group. Then Dk∗(G) ≤ Dk(G) for

all k ∈ N. Additionally, Dk∗(G) ≤ |G| for all k ∈ N. Furthermore, if k1 ≤ k2,

then Dk2(G) ≤ Dk1(G) and Dk2
∗
(G) ≤ Dk1

∗
(G).

Lemma 7.2.8. For all finite abelian groups G, we have D1∗(G) = |G|.

Proof. It is easy to see that D1∗(G) ≤ |G| as |G| distinct elements in G

always include 0G. In order to see |G|≤ D1∗(G), note that the sequence over

G of length |G|−1 containing all elements of G except for 0G does not contain

a zero-sum subsequence of length 1.

The following is the main result of this section. In the proof of this result,

we will view Z3
5 as a vector space over Z5 where needed.

Theorem 7.2.9. Define G := Z3
5. Then

D1∗(G) = 125, Dk(G) =∞ for 1 ≤ k ≤ 4,

D5∗(G) = 15, D5(G) = 33,

D6∗(G) = 14, D6(G) = 24,

D7∗(G) = 13, D7(G) = 19,

Dk∗(G) = 12 for k ≥ 8, D8(G) = 18,

D9(G) = 17,

D10(G) = 15,

D11(G) = 14,

D12(G) = 14,

Dk(G) = 13, for k ≥ 13.

An upper bound on the Davenport constant of Z5⊕Z5⊕Z5d 72

Proof. Note that D1∗(G) = 125 and Dk(G) = ∞ for 1 ≤ k ≤ 4 follow from

Lemma 7.2.8 and Lemma 7.2.3, respectively.

The result D5(G) = 33 can be deduced as a special case of Theorem 1.7

in [11].

We claim that 15 ≤ D5∗(G), 14 ≤ D6∗(G), and 13 ≤ D7∗(G). In order

to prove this claim, we find square-free sequences over G of lengths 14, 13,

and 12, which do not contain a non-empty zero-sum subsequence of length

at most 5, at most 6, and at most 7 respectively. They are as follows:

Length 14: (1, 0, 0)(0, 1, 0)(0, 0, 1)(2, 0, 0)(1, 1, 0)(2, 1, 0)(3, 1, 0)

(1, 0, 1)(2, 0, 1)(3, 0, 1)(0, 1, 1)(1, 1, 1)(2, 1, 1)(3, 1, 1)

Length 13: (1, 0, 0)(0, 1, 0)(0, 0, 1)(2, 0, 0)(1, 1, 0)(2, 1, 0)(3, 1, 0)

(1, 0, 1)(2, 0, 1)(3, 0, 1)(0, 1, 1)(1, 1, 1)(2, 1, 1)

Length 12: (1, 0, 0)(0, 1, 0)(0, 0, 1)(2, 0, 0)(1, 1, 0)(2, 1, 0)(3, 1, 0)

(1, 0, 1)(2, 0, 1)(3, 0, 1)(0, 1, 1)(1, 1, 1)

We build computer programs, which we name CPF5L*, CPF6L*, and CPF7L*,

to check that the above sequences have the previously described property. We

shall detail these computer programs in Section 8.2.15.

We show that 24 ≤ D6(G), 19 ≤ D7(G), 18 ≤ D8(G), 17 ≤ D9(G),

15 ≤ D10(G), and 14 ≤ D12(G) ≤ D11(G) in a similar way. More precisely,

we find sequences over G over lengths 23, 18, 17, 16, 14, and 13, which do

not contain a non-empty zero-sum subsequence of length at most 6, at most

7, at most 8, at most 9, at most 10, and at most 12 respectively. They are

An upper bound on the Davenport constant of Z5⊕Z5⊕Z5d 73

as follows:

Length 23: (1, 0, 0)(1, 0, 0)(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)

(0, 0, 1)(0, 0, 1)(0, 0, 1)(0, 0, 1)(4, 1, 1)(4, 1, 1)(4, 1, 1)(4, 1, 1)

(1, 1, 0)(1, 1, 0)(1, 1, 0)(1, 0, 1)(1, 0, 1)(1, 0, 1)(0, 1, 1)

Length 18: (1, 0, 0)(1, 0, 0)(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)

(0, 0, 1)(0, 0, 1)(0, 0, 1)(0, 0, 1)(4, 1, 1)(4, 1, 1)(4, 1, 1)(4, 1, 1)

(1, 1, 0)(1, 1, 0)

Length 17: (1, 0, 0)(1, 0, 0)(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)

(0, 0, 1)(0, 0, 1)(0, 0, 1)(0, 0, 1)(4, 1, 1)(4, 1, 1)(4, 1, 1)(4, 1, 1)

(1, 1, 0)

Length 16: (1, 0, 0)(1, 0, 0)(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)

(0, 0, 1)(0, 0, 1)(0, 0, 1)(0, 0, 1)(4, 1, 1)(4, 1, 1)(4, 1, 1)(4, 1, 1)

Length 14: (1, 0, 0)(1, 0, 0)(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)

(0, 0, 1)(0, 0, 1)(0, 0, 1)(0, 0, 1)(1, 1, 1)(1, 1, 1)

Length 13: (1, 0, 0)(1, 0, 0)(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)

(0, 0, 1)(0, 0, 1)(0, 0, 1)(0, 0, 1)(1, 1, 1)

We build computer programs, which we name CPF6L, CPF7L, CPF8L,

CPF9L, CPF10L, and CPF12L to check that the above sequences have the

previously described property. We shall detail these computer programs in

Section 8.2.16.

We now claim that D5∗(G) ≤ 15. Let S = g1 · · · g15 be an arbitrary

square-free sequence over G of length 15. Suppose for a contradiction that

S does not contain a non-empty zero-sum subsequence of length at most 5.

If 〈S〉 ∼= Z5 then we obtain a contradiction using D(Z5) = 5. If 〈S〉 ∼= Z2
5,

then we obtain a contradiction since Theorem 7.2.4 implies D5(Z2
5) = 13.

Hence 〈S〉 = Z3
5. Therefore, Lemma 5.4.4 implies that S contains a basis

An upper bound on the Davenport constant of Z5⊕Z5⊕Z5d 74

for Z3
5 over Z5. Representing the elements of Z3

5 with respect to this basis

we can assume that S contains (1, 0, 0)(0, 1, 0)(0, 0, 1) as a subsequence. We

now build a computer program, which we name CPF5U*, to generate all

square-free sequences over G of length 15 containing (1, 0, 0)(0, 1, 0)(0, 0, 1)

as a subsequence and no non-empty zero-sum subsequence of length at most

5. We detail CPF5U* in Section 8.2.8. We find that CPF5U* does not

generate any such sequences. This is a contradiction and the claim is proved.

We conclude that D5∗(G) = 15.

Similarly, we show that D6∗(G) ≤ 14 and D7∗(G) ≤ 13. We build com-

puter programs, which we name CPF6U* and CPF7U*, to generate all

square-free sequences over G of length 14 and 13 respectively, containing

(1, 0, 0)(0, 1, 0)(0, 0, 1) as a subsequence and no non-empty zero-sum subse-

quence of length at most 6 and at most 7 respectively. We detail these com-

puter programs in Section 8.2.8. We find that these programs do not generate

any output. Hence we conclude that D6∗(G) = 14 and D7∗(G) = 13.

Now we show that D8∗(G) = 12. Consider the following sequence over G

of length 11 :

(1, 0, 0)(0, 1, 0)(0, 0, 1)(2, 0, 0)(1, 1, 0)(1, 0, 1)(2, 1, 0)(3, 1, 0)

(2, 0, 1)(3, 0, 1)(4, 1, 1). (7.1)

We build a computer program, which we name CPF8L*, which shows that the

above sequence is zero-sum free. We detail CPF8L* in Section 8.2.15. This

shows that 12 ≤ D8∗(G). We now claim that D8∗(G) ≤ 12. Let S = g1 · · · g12

be an arbitrary square-free sequence over G of length 12. Suppose for a

contradiction that S does not contain a non-empty zero-sum subsequence of

length at most 8. If 〈S〉 ∼= Z5 then we obtain a contradiction usingD(Z5) = 5.

If 〈S〉 6∼= Z5, then S contains at least two linearly independent elements.

Therefore, we can assume that S contains (1, 0, 0)(0, 1, 0) as a subsequence.

We now build a computer program, which we name CPF8U*, to generate

An upper bound on the Davenport constant of Z5⊕Z5⊕Z5d 75

all square-free sequences over G of length 12 containing (1, 0, 0)(0, 1, 0) as

a subsequence and no non-empty zero-sum subsequence of length at most

8. We detail CPF8U* in Section 8.2.8. We find that CPF8U* does not

generate any such sequences. Hence the claim is proved and we conclude

that D8∗(G) = 12.

Let k ≥ 9 be an integer. By the sequence (7.1) above, we have 12 ≤ Dk∗(G).

Now note that Dk∗(G) ≤ D8∗(G) = 12. Hence Dk∗(G) = 12.

Now we show that D6(G) ≤ 24. Let S = g1 · · · g24 be an arbitrary

sequence over G of length 24. Suppose for a contradiction that S does

not contain a non-empty zero-sum subsequence of length at most 6. Since

D6∗(G) = 14, we have that S is not square-free. Without loss of general-

ity, assume g1 = g2. Similarly, the sequence g3 · · · g24 of length 22 cannot

be square-free. Without loss of generality assume g3 = g4. Continuing this

process we can assume that S is of the following form:

S = g1g1g3g3g5g5g7g7g9g9g11g11g13 · · · g24.

Define S ′ := g1g1g3g3g5g5g7g7g9g9g11g11g13. If 〈S ′〉 ∼= Z5, then we obtain a

contradiction using D(Z5) = 5. If 〈S ′〉 ∼= Z2
5, then we obtain contradiction

using D5(Z2
5) = 13. Hence 〈S ′〉 ∼= Z3

5. Therefore S ′ contains a basis B for Z3
5

over Z5. Depending on whether B contains the element g13, we deduce that

S must have one of the following two forms; either

S = (1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 0, 1)(0, 0, 1)g7g7g9g9g11g11g13 · · · g24

or

S = (1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 0, 1)g6g6g8g8g10g10g12g12g14 · · · g24.

Now we build two computer programs, which we name CPF6U1 and CPF6U2,

to generate all sequences over G of the first and second form respectively,

An upper bound on the Davenport constant of Z5⊕Z5⊕Z5d 76

which do not contain a non-empty zero-sum subsequence of length at most

6. We shall describe these programs in Section 8.2.9. We find that both

of these programs do not generate an output. This is a contradiction. We

conclude that D6(G) = 24.

Similarly, we show that D7(G) ≤ 19. Let S = g1 · · · g19 be an arbi-

trary sequence over G of length 19. Suppose for a contradiction that S does

not contain a non-empty zero-sum subsequence of length at most 7. Using

D7∗(G) = 13, we can assume that S is of the following form:

S = g1g1g3g3g5g5g7g7g9 · · · g19. (7.2)

Define S ′ := g1g1g3g3g5g5g7g7g9g10g11g12g13. As in the previous case, we

can narrow our focus to the case 〈S ′〉 ∼= Z3
5. In this case, we deduce that S ′

contains a basis for Z3
5 over Z5, and depending on whether this basis contains

0, 1, 2 or 3 elements from the sequence g9g10g11g12g13, we deduce that S must

have one of the following forms; either

S = (1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 0, 1)(0, 0, 1)g7g7g9 · · · g19 (7.3)

or

S = (1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 0, 1)g6g6g8g8g10 · · · g19 (7.4)

or

S = (1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 0, 1)g5g5g7g7g9g9g11 · · · g19 (7.5)

or

S = (1, 0, 0)(0, 1, 0)(0, 0, 1)g4g4g6g6g8g8g10g10g12 · · · g19. (7.6)

Now we build four computer programs to generate all sequences over G

of each of the four forms above respectively, which do not contain a non-

empty zero-sum subsequence of length at most 7. We shall name these

An upper bound on the Davenport constant of Z5⊕Z5⊕Z5d 77

programs CPF7U1, CPF7U2, CPF7U3, and CPF7U4 and detail them in

Section 8.2.10. We find that none of these programs generate an output,

which produces a contradiction. We conclude that D7(G) = 19.

Very similarly, we show that D8(G) ≤ 18. Let S = g1 · · · g18 be an

arbitrary sequence over G of length 18. Suppose for a contradiction that

S does not contain a non-empty zero-sum subsequence of length at most

8. Using D8∗(G) = 12, we can assume that S is of the form (7.2) with g19

removed. Define S ′ := g1g1g3g3g5g5g7g7g9g10g11g12g13 and consider the case

〈S ′〉 ∼= Z3
5. In this case S must be of the form (7.3), or (7.4), or (7.5), or

(7.6), with g19 removed. Similar to before, we build four computer programs,

which we name CPF8U1, CPF8U2 , CPF8U3, and CPF8U4, to generate

all sequences over G of length 18 of the four forms respectively, which do

not contain a non-empty zero-sum subsequence of length at most 8. We

detail these computer programs in Section 8.2.11. We find that none of the

programs produce an output. We conclude that D8(G) = 18.

We show D9(G) ≤ 17 in the same way. Let S = g1 · · · g17 be an arbi-

trary sequence over G of length 17. Suppose for a contradiction that S does

not contain a non-empty zero-sum subsequence of length at most 9. Using

D9∗(G) = 12, we can assume that S is of the following form:

S = g1g1g3g3g5g5g7 · · · g17.

Define S ′ := g1g1g3g3g5g5g7 · · · g13 and consider the case 〈S ′〉 ∼= Z3
5. In this

case, we deduce that S must have one of the following forms; either

S = (1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 0, 1)(0, 0, 1)g7 · · · g17

or

S = (1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 0, 1)g6g6g8 · · · g17

or

S = (1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 0, 1)g5g5g7g7g9 · · · g17

An upper bound on the Davenport constant of Z5⊕Z5⊕Z5d 78

or

S = (1, 0, 0)(0, 1, 0)(0, 0, 1)g4g4g6g6g8g8g10 · · · g17.

We build four computer programs, which we name CPF9U1, CPF9U2,

CPF9U3, and CPF9U4, to generate all sequences over G of length 17 of

the four forms above respectively, which do not contain a non-empty zero-

sum subsequence of length at most 9. We detail these computer programs in

Section 8.2.12. We find that none of the programs produce an output. This

is a contradiction. Therefore D9(G) = 17.

The proof for D10(G) ≤ 15 is analogous. Let S = g1 · · · g15 be an arbitrary

sequence over G of length 15. Suppose for a contradiction that S does not

contain a non-empty zero-sum subsequence of length at most 10. Using

D10∗(G) = 12, we can assume that S is of the following form:

S = g1g1g3g3g5 · · · g15. (7.7)

Define S ′ := g1g1g3g3g5 · · · g13 and consider the case 〈S ′〉 ∼= Z3
5. In this case,

we deduce that S must have one of the following forms; either

S = (1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 0, 1)g6 · · · g15 (7.8)

or

S = (1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 0, 1)g5g5g7 · · · g15 (7.9)

or

S = (1, 0, 0)(0, 1, 0)(0, 0, 1)g4g4g6g6g8 · · · g15. (7.10)

We build three computer programs, which we name CPF10U1, CPF10U2,

and CPF10U3, to generate all sequences over G of length 15 of the three

forms above respectively, which do not contain a non-empty zero-sum sub-

sequence of length at most 10. We detail these computer programs in Sec-

tion 8.2.13. We find that none of the programs produces an output, which is

a contradiction. Therefore D10(G) = 15.

An upper bound on the Davenport constant of Z5⊕Z5⊕Z5d 79

Very similarly, we show that D11(G) ≤ 14. Let S = g1 · · · g14 be an arbi-

trary sequence over G of length 14. Suppose for a contradiction that S does

not contain a non-empty zero-sum subsequence of length at most 11. Using

D11∗(G) = 12, we can assume that S is of the form (7.7) with g15 removed.

Define S ′ := g1g1g3g3g5 · · · g13 and consider the case 〈S ′〉 ∼= Z3
5. In this case

S must be of the form (7.8), or (7.9), or (7.10), with g15 removed. Simi-

lar to before, we build three computer programs, which we name CPF11U1,

CPF11U2 , CPF11U3, to generate all sequences over G of length 14 of the

three forms respectively, which do not contain a non-empty zero-sum sub-

sequence of length at most 11. We detail these computer programs in Sec-

tion 8.2.14. We find that none of the programs produces an output, which is

a contradiction. Therefore D11(G) = 14.

We have seen that 14 ≤ D12(G). Since D12(G) ≤ D11(G) = 14, we

conclude that D12(G) = 14.

Let k ≥ 13 be an integer. It is clear that the sequence over G of length 12

containing each of the elements (1, 0, 0), (0, 1, 0), (0, 0, 1) exactly four times

is zero-sum free. From this we deduce that 13 ≤ Dk(G). Now note that

Dk(G) ≤ 13 as D(G) = 13. Hence Dk(G) = 13.

Definition 7.2.10. Let k ∈ N. For a group G, define Dk(G) to be the

smallest n ∈ N such that every sequence over G of length n contains k non-

empty disjoint zero-sum subsequences.

Remark 7.2.11. Let G be a finite abelian group. Then Dk(G) ≤ kD(G) for

all k ∈ N. In particular, if k = 1, then Dk(G) = D(G).

Corollary 7.2.12. Define G := Z3
5. Then D2(Z3

5) = 20.

Proof. Consider the sequence S over G of length 19 which consists of the

elements (1, 0, 0), (0, 1, 0) and (0, 0, 1) each repeated four times, the element

(0, 1, 1) repeated three times, and the elements (1, 1, 0) and (1, 0, 1) each re-

peated twice. We build a computer program, which we name CPF19, to

show that S does not contain a non-empty zero-sum subsequence of length

An upper bound on the Davenport constant of Z5⊕Z5⊕Z5d 80

at most 6 or at least 14. We detail CPF19 in Section 8.2.17. We claim that

S does not contain two non-empty disjoint zero-sum subsequences. Suppose

for a contradiction that S contains two non-empty disjoint zero-sum subse-

quences S1 and S2. It must be that the length of each of these two sequences

is at least 7. Hence S1 ∪ S2 is a non-empty zero-sum subsequence of S of

length at least 14. This is a contradiction. We deduce that 20 ≤ D2(Z3
5).

Now we claim that D2(Z3
5) ≤ 20. Let T be an arbitrary sequence over G of

length 20. Since D7(G) = 19, we know that T contains a non-empty zero-

sum subsequence T1 of length at most 7. Removing T1 from T , we obtain

a sequence of length at least 13 = D(G), which contains a non-empty zero-

sum subsequence T2. It remains to note that T1 and T2 are two non-empty

disjoint zero-sum subsequences of T . This proves the claim and we deduce

that D2(Z3
5) = 20.

Definition 7.2.13. The Olson constant Ol(G) of a group G is the smallest

n ∈ N such that every square-free sequence over G of length n contains a

non-empty zero-sum subsequence.

Remark 7.2.14. We have Ol(G) ≤ D(G) for all finite abelian groups G.

Corollary 7.2.15. Define G := Z3
5. Then Ol(Z3

5) = 12.

Proof. By the sequence (7.1), we have that 12 ≤ Ol(Z3
5). Now note that

Ol(Z3
5) ≤ D8∗(G) = 12. Hence Ol(Z3

5) = 12.

7.3 The upper bound

In this chapter we prove the upper bound on D(Z5⊕Z5⊕Z5d) that we

claimed earlier. More precisely, we prove the following.

Theorem 7.3.1. Let G ∼= Z5⊕Z5⊕Z5d for some d ∈ N. Then

D(G) ≤ 1 + d∗(G) + 4.

An upper bound on the Davenport constant of Z5⊕Z5⊕Z5d 81

In order to prove this result we shall need the following lemma.

Lemma 7.3.2. Let d ∈ N. Then every sequence over Z3
5 of length 5d + 12

contains d non-empty disjoint zero-sum subsequences.

Proof. Let S be a sequence over Z3
5 of length 5d+12. We prove the result by

induction on d. Suppose d = 1. Then the length of S is 17 > 13 = D(Z3
5).

Hence S contains a non-empty zero-sum subsequence. Suppose d = 2. Then

the length of S is 22 > 20 = D2(Z3
5). Hence S contains two non-empty

disjoint zero-sum subsequences. Suppose d = 3. Then the length of S is

27. Since D6(Z3
5) = 24, we can remove a non-empty zero-sum subsequence

of length at most 6 from S to obtain a sequence of length at least 21, which

contains two non-empty disjoint zero-sum subsequences. Hence we can obtain

three non-empty disjoint zero-sum subsequences in S. Suppose d = 4. Then

the length of S is 32. In this case we can remove two non-empty disjoint zero-

sum subsequences of length at most 6 from S to obtain a sequence of length

at least 20, which contains two non-empty disjoint zero-sum subsequences.

Hence we can obtain four non-empty disjoint zero-sum subsequences in S.

Now let d = k ≥ 5 and suppose the result holds for d = k− 1. We have that

S is a sequence of length 5k + 12 ≥ 37 > 33 = D5(Z3
5). Hence S contains a

non-empty zero-sum subsequence of length at most 5 which we can remove

to obtain at least 5(k − 1) + 12 elements. By the inductive hypothesis, a

sequence of length 5(k − 1) + 12 over Z3
5 contains k − 1 non-empty disjoint

zero-sum subsequences. Hence we can obtain k non-empty disjoint zero-sum

subsequences in S. This completes the proof.

Proof of Theorem 7.3.1. Let S be an arbitrary sequence over G of length

1 + d∗(G) + 4 = 5d + 12. We claim that S is not zero-sum free. There

exists a subgroup H of G such that H ∼= Zd. Define F := G/H ∼= Z3
5.

Since D(H) = d, by Lemma 4.2.3 it is sufficient to find d disjoint F -zero-sum

subsequences in S with respect to the canonical homomorphism φ : G −→ F

in order to prove the claim. It remains to apply Lemma 7.3.2.

Chapter 8

Programming searches through

sequences over Z3
3 and Z3

5

In this chapter we detail the computer programs mentioned in earlier chap-

ters. These programs involve searching for sequences either over Z3
3 or over

Z3
5 with specific properties.

We split this chapter in two sections. In Section 8.1 we detail the algo-

rithms used to search for specific sequences over Z3
3. The algorithms used to

search for specific sequences over Z3
5 are detailed in Section 8.2.

8.1 Searches in Z3
3

In this section we describe the programs mentioned in earlier chapters that

search for sequences over Z3
3 with specific properties. These programs are

coded using the computer algebra system Magma and their source codes

can be found in the additional files made available with the thesis. When

examining the pseudocode in this section, bear in mind that the computer

algebra system Magma is equipped with predefined structures such as abelian

groups.

82

Programming searches through sequences over Z3
3 and Z3

5 83

8.1.1 CPT9

In this section we describe the computer program CPT9 used in the proof of

Lemma 4.3.2. The aim of this program is to generate all sequences over Z3
3

of length 9 consisting of nine pairwise distinct elements and no non-empty

zero-sum subsequence of length at most 3.

The pseudocode for CPT9 can be found in Figure 8.1. Let us explain the

algorithm in this pseudocode. The algorithm executes nine for-loops. The

first for-loop defines an array of size 1 consisting of an element in Z3
3. Each

subsequent for-loop then defines an array which extends the array created in

the preceding for-loop by one element of Z3
3 subject to an if-condition. The

array created in the i-th for-loop represents the sequence of length i over Z3
3

consisting of the i element(s) determined by the earlier i for-loops.

Now let us explain the if-conditions in the algorithm. Observe that lines

3 and 4 assign a unique number between 1 and 26 to each element in Z3
3\{0}.

This means that we can associate an ordered string of numbers to each array

as illustrated by the following example: If the numbers associated to the

elements (1, 0, 0), (0, 0, 1), (0, 1, 1) are 7, 9 and 4 respectively, then associate

the ordered string of numbers 479 to the array (0, 1, 1)(1, 0, 0)(0, 0, 1). The

if-condition preceding the creation of an array ensures the ordered string

of numbers associated to each array as above consists of pairwise distinct

numbers ordered in a strictly increasing fashion. There are two purposes of

this. Firstly, the strict inequality between the numbers obtained from the

elements in each array ensures the arrays contain pairwise distinct elements

of Z3
3. Secondly, the increasing order of the string of numbers ensures that

two arrays do not represent the same sequence over Z3
3 which makes the

algorithm more efficient.

The if-condition on line 18 calls the boolean function hasZeroSum(·, ·, ·)
(see Figure 8.2) in order decide whether or not to output the array defined

in the 9th for-loop. For an array S, a group G and an integer n ≥ 0,

the function hasZeroSum(S, G, n) returns the boolean value ‘true’ if and

Programming searches through sequences over Z3
3 and Z3

5 84

Pseudocode 1 CPT9

1: define G := Z3
3

2: remove the element (0, 0, 0) from G
3: define an empty list L of size 26
4: store each element g of G in a unique position Lg in L
5: for g1 in L do
6: define array S1 := g1

7: for g2 in L do
8: if Lg2 > Lg1 then
9: define array S2 := S1 ∪ g2

10: for g3 in L do
11: if Lg3 > Lg2 then
12: define array S3 := S2 ∪ g3

13: for g4 in L do

14:
...

15: for g9 in L do
16: if Lg9 > Lg8 then
17: define array S9 := S8 ∪ g9

18: if hasZeroSum(S9, G, 2) is false and
hasZeroSum(S9, G, 3) is false then

19: output S9

20: end if
21: end if
22: end for

23:
...

24: end for
25: end if
26: end for
27: end if
28: end for
29: end for

Figure 8.1: CPT9

Programming searches through sequences over Z3
3 and Z3

5 85

Pseudocode 2 hasZeroSum(S, G, n)

1: input an array S of size l, a group G, an integer n ≥ 0
2: define I := {1, . . . , l}
3: define I ′ to be the set of all subsets of I of length n
4: for J in I ′ do
5: if calculateValue(extractSubsequence(S, J), G) equals 0G then
6: return true
7: end if
8: end for
9: return false

Figure 8.2: hasZeroSum(S, G, n)

only if the sequence over G represented by the array S contains a zero-sum

subsequence of length n. Hence, the calls to this function for each n ∈ {2, 3}
with G = Z3

3 and S as the array defined in the 9th for-loop mean that

the algorithm outputs all sequences over Z3
3 of length 9 consisting of nine

pairwise distinct elements and no non-empty zero-sum subsequence of length

at most 3.

The pseudocode for the function hasZeroSum(·, ·, ·) can be found in

Figure 8.2. Given an array S, a group G and an integer n ≥ 0, the pur-

pose of the function hasZeroSum(S, G, n) is to check whether or not the

sequence over G represented by the array S contains a zero-sum subsequence

of length n. The algorithm of this function uses the following naive method-

ology. Let l denote the size of the array S. For each subset J of size n of the

set {1, . . . , l}, the algorithm extracts the subarray of S whose elements are

indexed by J , computes its value as a sequence over G and checks whether or

not the value is equal to 0G. If a subset of size n of the set {1, . . . , l} is found

which indexes a subarray of S whose value is equal to 0G when considered as

a sequence over G then the algorithm returns the boolean value ‘true’. If no

such subset of size n of {1, . . . , l} is found the algorithm returns the boolean

Programming searches through sequences over Z3
3 and Z3

5 86

value ‘false’. Hence the algorithm returns the boolean value ‘true’ if and

only if the sequence over G represented by the array S contains a zero-sum

subsequence of length n.

Given an array S and a set J , the function extractSubsequence(S, J)

described in Figure 8.3 is used to extract the subarray of S indexed by J .

The pseudocode for this function is self-explanatory.

Pseudocode 3 extractSubsequence(S, J)

1: input an array S = s1 · · · sl and a subset J of {1, . . . , l}
2: define an empty array S ′

3: for j in J do
4: set S ′ = S ′ ∪ sj
5: end for
6: return S ′

Figure 8.3: extractSubsequence(S, J)

Given an array S and a group G, the function calculateValue(S, G) de-

scribed in Figure 8.4 returns the value of S considered as a sequence over G.

The pseudocode for this function is also self-explanatory.

Pseudocode 4 calculateValue(S, G)

1: input an array S and group G
2: define v := 0G
3: for s in S do
4: set v = v + s
5: end for
6: return v

Figure 8.4: calculateValue(S, G)

Programming searches through sequences over Z3
3 and Z3

5 87

8.1.2 CPT10

In this section we describe the computer program CPT10 used in the proof

of Lemma 4.3.3. The aim of this program is to generate all sequences over

Z3
3 of length 10 which do not contain a zero-sum subsequence of length

l ∈ {1, 2, 3, 8, 9, 10} and which contain the subsequence

(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 0, 1).

The algorithm for CPT10 is similar to that of CPT9. We discuss the

similarities and differences between the algorithms here. The first four steps

of the algorithm for CPT10 consist of executing the steps on the first four

lines of Pseudocode 1. The next step in the algorithm for CPT10 is to define

an initial array

S := (1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 0, 1).

After this the algorithm executes 5 for-loops. The first for-loop is as follows:

Pseudocode 5 CPT10

1:
...

2: for g6 in L do
3: define array S6 = S ∪ g6

4: if hasZeroSum(S6, G, 2) is false and hasZeroSum(S6, G, 3) is false
then

5: for g7 in L do

6:
...

7: end for
8: end if
9: end for

These next 4 for-loops behave in a similar fashion to the last 8 for-loops

in the algorithm for CPT9 except the following three differences. Firstly, the

Programming searches through sequences over Z3
3 and Z3

5 88

if-condition preceding the creation of an array in each for-loop contains the

inequality ≥ instead of >. Secondly, each for-loop is directly preceded by an

if-condition which ensures the most recently created array does not contain

a non-empty zero-sum subsequence of length at most 3 when viewed as a

sequence over Z3
3 (for example see line 4 in Pseudocode 5). The purpose of

this if-condition is to speed up the algorithm. Lastly, the if-condition directly

before the output command in the last for-loop ensures the array which is

output does not contain a zero-sum subsequence of length l ∈ {1, 2, 3, 8, 9, 10}
when viewed as a sequence over Z3

3.

8.1.3 CPT10CNTR

In this section we describe the computer program CPT10CNTR used in the

proof of Lemma 4.3.3. Given a sequence X = x1 · · ·x10 over Z3
3 generated by

CPT10, the aims of CPT10CNTR are as follows. Firstly, for each non-empty

zero-sum subsequence Y of X, CPT10CNTR computes a (1, 11) matrix XY

whose (1, j)th entry is 
1 if xj occurs in Y,

−1 if j = 11,

0 otherwise.

Secondly, CPT10CNTR vertically concatenates all matrices XY to produce a

zX × 11 matrix AX where zX is defined to be the total number of non-empty

zero-sum subsequences of X. Thirdly, CPT10CNTR decides whether or not

the row Hermite normal of the matrix AX contains a row of the form(
0 0 0 0 0 0 0 0 0 0 1

)
.

The pseudocode for CPT10CNTR is presented in Figure 8.5. Given the

aims of CPT10CNTR as above, the pseudocode is self-explanatory.

Programming searches through sequences over Z3
3 and Z3

5 89

Pseudocode 6 CPT10CNTR

1: define G := Z3
3

2: input an array X from the output of CPT10
3: define c := false
4: define AX to be a 0× 11 matrix
5: for n ∈ {4, 5, 6, 7} do
6: define Z :=zeroSumSubsequencesIndices(X, G, n)
7: for Y ∈ Z do
8: define XY to be the 1× 11 zero matrix
9: set XY1,11 = −1

10: for y ∈ Y do
11: set XY1,y = 1
12: end for
13: Add XY as a row of AX
14: end for
15: end for
16: put AX in row Hermite normal form
17: remove all zero rows from AX
18: define r to be the numbers of rows in AX
19: if AXr,1 = 0 and · · · and AXr,10 = 0 and AXr,11 = 1 then
20: set c = true
21: end if
22: return c

Figure 8.5: CPT10CNTR

Programming searches through sequences over Z3
3 and Z3

5 90

Pseudocode 7 zeroSumSubsequencesIndices(X, G, n)

1: input an array X of size l, a group G, an integer n ≥ 0
2: define I := {1, . . . , l}
3: define I ′ to be set of all subsets of I of length n
4: define C = ∅
5: for J ∈ I ′ do
6: if calculateValue(extractSubsequence(X, J), G) equals 0G then
7: include J in C
8: end if
9: end for
10: return C

Figure 8.6: zeroSumSubsequencesIndices(X, G, n)

8.1.4 CPT10F

In this section we outline the computer program CPT10F used in the proof

of Lemma 4.3.6. The aim of this program is to generate all sequences over

Z3
3 of length 10 containing (0, 1, 0)(0, 0, 1)(0, 1, 1) as a subsequence and no

non-empty zero-sum subsequence of length at most 4.

The algorithm for CPT10F is the same as the algorithm for CPT9 with

7 for-loops except the if-condition preceding the creation of an array in each

for-loop which contains the inequality ≥ instead of >, the first and last

for-loops, and an extra command defining an initial array as follows:

Programming searches through sequences over Z3
3 and Z3

5 91

Pseudocode 8 CPT10F

1:
...

2: define array S := (0, 1, 0)(0, 0, 1)(0, 1, 1)
3: for g4 in L do
4: define array S4 := S ∪ g4

5: for g5 in L do

6:
...

7: for g10 in L do
8: if Lg10 ≥ Lg9 then
9: define array S10 := S9 ∪ g10

10: if hasZeroSum(S10, G, 2) is false and
hasZeroSum(S10, G, 3) is false and
hasZeroSum(S10, G, 4) is false then

11: output S10

12: end if
13: end if
14: end for

15:
...

16: end for
17: end for

8.1.5 CPT13

In this section we outline the computer program CPT13 used in the proof of

Lemma 4.3.8. The aim of this program is to generate all sequences over Z3
3

of length 13 without a non-empty zero-sum subsequence of length at most 3

containing the subsequence

(0, 1, 0)(0, 1, 0)(0, 0, 1)(0, 0, 1)(0, 1, 1)(0, 1, 1)(1, 0, 0)(1, 0, 0). (8.1)

The algorithm for CPT13 is the same as the algorithm for CPT10 with

the initial array (8.1) except that the if-condition directly before the output

command in the last for-loop only ensures the array which is output does not

contain a non-empty zero-sum subsequence of length at most 3 when viewed

Programming searches through sequences over Z3
3 and Z3

5 92

as a sequence over Z3
3.

8.1.6 CPT13CNTR

In this section we describe the computer program CPT13CNTR used in the

proof of Lemma 4.3.8. Given a sequence X = x1 · · ·x13 over Z3
3 generated by

CPT13, the aims of CPT13CNTR are similar to the aims of CPT10CNTR as

follows. Firstly, for each non-empty zero-sum subsequence Y of X of length

at most 6, CPT13CNTR computes a (1, 14) matrix XY whose (1, j)th entry is
1 if xj occurs in Y,

−1 if j = 14,

0 otherwise.

Secondly, CPT13CNTR vertically concatenates all matrices XY to produce a

zX × 14 matrix AX where zX is defined to be the total number of non-empty

zero-sum subsequences of X of length at most 6. Thirdly, CPT13CNTR de-

cides whether or not the row Hermite normal form of the matrix AX contains

a row of the form(
0 0 0 0 0 0 0 0 0 0 0 0 0 1

)
.

It is simple to see how the pseudocode for CPT10CNTR can be adapted

to program CPT13CNTR.

8.1.7 CPT16

In this section we describe the computer program CPT16 used in the proof of

Lemma 4.3.10. The aim of CPT16 is to generate all sequences of 16 non-zero

elements over Z3
3 containing the subsequence

(0, 1, 0)(0, 0, 1)(0, 1, 1)(1, 0, 0), (8.2)

Programming searches through sequences over Z3
3 and Z3

5 93

which contain no zero-sum subsequence of length 3 and no subsequence from

the following list of 19 sequences which are the union of a pair of zero-sum

sequences of length 2 over Z3
3:

(1, 0, 0)(2, 0, 0)(1, 0, 0)(2, 0, 0), (1, 0, 0)(2, 0, 0)(2, 2, 1)(1, 1, 2),

(1, 0, 0)(2, 0, 0)(0, 0, 1)(0, 0, 2), (1, 0, 0)(2, 0, 0)(1, 2, 1)(2, 1, 2),

(1, 0, 0)(2, 0, 0)(0, 1, 0)(0, 2, 0), (0, 1, 0)(0, 2, 0)(0, 1, 0)(0, 2, 0),

(2, 0, 1)(1, 0, 2)(2, 0, 1)(1, 0, 2), (2, 1, 0)(1, 2, 0)(2, 1, 0)(1, 2, 0),

(0, 0, 1)(0, 0, 2)(0, 0, 1)(0, 0, 2), (2, 1, 0)(1, 2, 0)(0, 0, 1)(0, 0, 2),

(0, 1, 0)(0, 2, 0)(1, 2, 1)(2, 1, 2), (1, 1, 2)(2, 2, 1)(0, 0, 1)(0, 0, 2),

(2, 1, 1)(1, 2, 2)(2, 1, 1)(1, 2, 2), (2, 1, 1)(1, 2, 2)(0, 1, 0)(0, 2, 0),

(2, 2, 1)(1, 1, 2)(2, 2, 1)(1, 1, 2), (1, 2, 1)(2, 1, 2)(1, 2, 1)(2, 1, 2),

(2, 0, 1)(1, 0, 2)(0, 1, 0)(0, 2, 0), (2, 1, 1)(1, 2, 2)(0, 0, 1)(0, 0, 2),

(1, 2, 0)(2, 1, 0)(2, 0, 1)(1, 0, 2).

The algorithm for CPT16 is the same as the algorithm for CPT13 with the

initial array (8.2) except the following differences. Firstly, CPT16 contains

12 for-loops instead of 5. Secondly, the if-condition directly preceding each

of the last 11 for-loops ensures the most recently created array does not

contain a zero-sum subsequence of length exactly 3 when viewed as a sequence

over Z3
3. Lastly, the if-condition directly before the output command in the

last for-loop ensures the array which is output does not contain a zero-sum

subsequence of length exactly 3 and that it does not contain any of the 19

sequences above as a subsequence, when viewed as a sequence over Z3
3.

Programming searches through sequences over Z3
3 and Z3

5 94

8.2 Searches in Z3
5

In this section we describe the programs mentioned in earlier chapters that

search for sequences over Z3
5 with specific properties. These programs are

coded using Magma as well as the Java programming language and their

source codes can be found in the additional files made available with the

thesis. We shall detail the Java programs first and then the Magma programs.

Java programs

We represent elements of Z3
5 as integers between 0 and 124 in these programs.

We detail this and describe the methods we use to add and find the inverse

of elements in Z3
5 when given as integers between 0 and 124 in Section 8.2.1.

We bundle the methods used to manipulate elements of Z3
5 as integers in

an instance of a class also known as an object in Java. We also represent

a sequence over Z3
5 as an object in Java. We describe the attributes of the

classes associated with each of these objects in Section 8.2.2. The subse-

quent sections contain the pseudocode for the programs mentioned in earlier

chapters that search for sequences over Z3
5. These programs make use of the

algorithms described in Section 8.2.1 and Section 8.2.2.

8.2.1 Representing and manipulating elements in Z3
5

Representing elements in Z3
5

We represent each element of Z3
5 as a unique integer between 0 and 124 in the

computer programs described in this chapter. More precisely, we represent

the element (a, b, c) ∈ Z3
5 as f((a, b, c)) where f is defined as the following

Programming searches through sequences over Z3
3 and Z3

5 95

bijective mapping:

f : Z3
5 −→ {0, . . . , 124}

(a, b, c) 7→ a+ 5b+ 52c.

Let us show that f is injective. Let (a, b, c) and (a′, b′, c′) be distinct elements

in Z3
5 and suppose f((a, b, c)) = f((a′, b′, c′)). Then a+5b+52c = a′+5b′+52c′

which implies a ≡ a′ (mod 5). Since a, a′ ∈ [0, 4], we obtain that a = a′.

This means that b + 52c = b′ + 52c′ and therefore, applying a similar logic,

we deduce that b = b′ and c = c′. This contradicts the fact that (a, b, c) and

(a′, b′, c′) are distinct.

Addition in Z3
5

The operation of addition on two elements in Z3
5 represented as integers

between 0 and 124 occurs in various places in the computer programs de-

scribed in the subsequent sections. To carry out this operation efficiently, we

use a one-time generated addition table to look up the representation of the

sum of any two elements in Z3
5 as an integer between 0 and 124. In order

to generate this table we use a method which takes as input two integers

x, y ∈ {0, . . . , 124}, finds (a, b, c), (a′, b′, c′) ∈ Z3
5 such that x = f((a, b, c))

and y = f((a′, b′, c′)) and outputs the integer f((a, b, c) + (a′, b′, c′)). Before

we define this method we recall a definition and make an observation.

Definition 8.2.1. Let a be a non-negative integer. Given n ∈ N, we define

the base n representation of a, denoted a(n), to be the string of non-negative

integers aqaq−1 · · · a1a0 such that

a = aqn
q + aq−1n

q−1 + · · ·+ a1n+ a0,

where q is the highest power of n that divides a.

Programming searches through sequences over Z3
3 and Z3

5 96

Let x ∈ {0, . . . , 124} and note that the number of elements in the string

x(5) is at most 3. Suppose x(5) = x2−i · · ·x0 for some i ∈ {0, 1, 2}. Then we

observe that

x =


f((x0, x1, x2)) if i = 0,

f((x0, x1, 0)) if i = 1,

f((x0, 0, 0)) if i = 2.

The pseudocode for generating the addition table is described in Figure 8.7.

Pseudocode 9 generateAdditionTable

1: input x, y ∈ {0, . . . , 124}
2: compute x(5) and y(5)

3: define two empty lists lx(5) , ly(5) of size 3 each
4: for α ∈ {x(5), y(5)} do
5: if number of characters in α equals 1 then
6: set lα = (α, 0, 0)
7: end if
8: if number of characters in α equals 2 then
9: set lα = (α0, α1, 0) where α = α1α0

10: end if
11: if number of characters in α equals 3 then
12: set lα = (α0, α1, α2) where α = α2α1α0

13: end if
14: end for
15: add lx(5) and ly(5) component-wise and denote the result by lx(5) + ly(5)
16: reduce each component of lx(5) + ly(5) to the least non-negative residue

modulo 5
17: return a+ 5b+ 52c where lx(5) + ly(5) = (a, b, c)

Figure 8.7: generateAdditionTable

Given x, y ∈ {0, . . . , 124}, we shall use the notation additionTable(x, y)

to refer to the integer f((a, b, c) + (a′, b′, c′)) where x = f((a, b, c)) and

y = f((a′, b′, c′)).

Programming searches through sequences over Z3
3 and Z3

5 97

Computing inverses in Z3
5

The operation of finding the additive inverse of an element in Z3
5 occurs very

frequently in the computer programs we use to search for sequences over

Z3
5. In order to carry out this operation efficiently we retrieve the inverse

of an element in Z3
5 from a one-time generated list of size 125 indexed by

the integers 0, . . . , 124. In this list, the entry indexed by i is the inverse

of the element (a, b, c) ∈ Z3
5 such that f((a, b, c)) = i. The pseudocode for

generating this list is described in Figure 8.8.

Pseudocode 10 inverse(i)

1: input an integer i ∈ {0, . . . , 124}
2: for integers j ∈ {0, . . . , 124} do
3: if additionTable(i, j)=0 then
4: return j
5: end if
6: end for

Figure 8.8: inverse(i)

8.2.2 Groups and sequences as objects in Java

Each program described in subsequent sections consists of three Java classes.

One of these classes is the class which contains the main method. The

pseudocode of this method is what is described in the subsequent sections for

each program. The other two classes are Group.java and GroupSequence.java

as described below.

Group.java

We implement a group in the Java programming language as a class called

Group.java. We create Z3
5 as an instance of this class. All the methods

Programming searches through sequences over Z3
3 and Z3

5 98

described in Section 8.2.1 are placed in Group.java as can be seen in the

source codes of the programs.

GroupSequence.java

We implement a sequence in the Java programming language as a class called

GroupSequence.java. We create a particular sequence as an instance of this

class. The class GroupSequence has the following attributes:

• A list L, the purpose of which is to store elements of the sequence.

• An integer l which refers to the length of the sequence.

• A 125 × l grid with boolean entries with rows indexed by 0, . . . , 124

and columns indexed by 1, · · · , l in which the (i, j)-th entry is ‘true’ if

and only if the element (a, b, c) ∈ Z3
5 such that i = f((a, b, c)) satisfies

(a, b, c) = t1 + · · ·+ tj for some sublist t1 · · · tj of L of length j. In plain

words, this grid stores the set of subsums of the sequence along with

the lengths of the (non-empty) subsequences from which the subsums

arise. We shall refer to this grid as the grid of subsums of this sequence.

Given a sequence S over Z3
5 as an instance of the class GroupSequence.java,

we shall denote its grid of subsums by GS and the (i, j)-th entry of GS by

GS(i, j). Each entry in GS is initialised to ‘false’ at the time the sequence S

is created as an instance of GroupSequence.java.

There are many occurrences in the computer programs that we mention

in subsequent sections where, given a sequence S over Z3
5 and an element

g ∈ Z3
5, the grid of subsums of the sequence S∪g needs to be computed. The

class GroupSequence.java contains a method called updateSubsums(·, ·), as

described in Figure 8.9, for this purpose. We only apply this method given

that each entry in GS∪g is initialised to ‘false’.

The attributes of the class GroupSeqeunce.java are as described above for

all computer programs described in the subsequent sections except CPF6.

The differences in this class for CPF6 are described in the Section 8.2.3.

Programming searches through sequences over Z3
3 and Z3

5 99

Pseudocode 11 updateSubsums(S, g)

1: input a sequence S of length l and an element g ∈ Z3
5

2: set GS∪g(f(g), 1) to true
3: for integers i ∈ {0, . . . , 124} do
4: for integers j ∈ {1, . . . , l} do
5: if GS(i, j) is true then
6: set GS∪g(i, j) to true
7: set GS∪g(additionTable(i, f(g)), j + 1) to true
8: end if
9: end for

10: end for

Figure 8.9: updateSubsums(S, g)

8.2.3 CPF6

In this section we describe the computer program CPF6 used in the proof

of Theorem 6.1. The aim of CPF6 is to generate all zero-sum free sequences

over Z3
5 of length 6 containing the subsequence (1, 0, 0)(0, 1, 0)(0, 0, 1).

The class GroupSequence.java differs slightly for CPF6 from as it is de-

scribed previously in the sense that instead of a grid, we define a 125 × 1

list GS with boolean entries indexed by 0, . . . , 124, each time a sequence S

is created as an instance of the class. The i-th entry, GS(i), in this list is

‘true’ if and only if the element (a, b, c) ∈ Z3
5 such that i = f((a, b, c)) satisfies

(a, b, c) = t1 + · · ·+tj for some subsequence t1 · · · tj of S of some length j 6= 0.

The method updateSubsums(·, ·) is defined similarly. The main reason for

this difference is simply that the storage of lengths of the subsequences from

which the subsums arise is not necessary for the purposes of CPF6.

The pseudocode for CPF6 is as described in Figure 8.10. Let us explain

the algorithm in the pseudocode for CPTF6. We start with the initial (zero-

sum free) sequence (1, 0, 0)(0, 1, 0)(0, 0, 1) and aim to sequentially extend it

Programming searches through sequences over Z3
3 and Z3

5 100

by three more elements in Z3
5 whilst making sure the resulting sequence at

each step is zero-sum free. Each of these steps is executed by means of a for-

loop. Each for-loop contains an if-condition the purpose of which is to ensure

the sequence created in that for-loop is zero-sum free. More precisely, the

if-condition directly following the start of a for-loop ensures the inverse of the

element determined by that for-loop does not occur as a subsum of the most

recently created sequence. The following statement aids the explanation of

the if-condition: ‘Given a zero-sum free sequence S over a group G and an

element g ∈ S, the sequence S ∪ g is zero-sum free if and only if −g 6∈ [S].’

The purpose of the inequalities in the if-conditions is to ensure we do not

generate the same sequence more than once. The remaining pseudocode is

self-explanatory.

8.2.4 CPF14

In this section we describe the computer program CPF14 used in the proof

of Theorem 6.1. The aim of CPF14 is to take a possibility U generated by

CPF6 as input and output all sequences X over Z3
5 of length 14 subject to

the following conditions:

• The sequence X contains U as a subsequence;

• The sequence X does not contain a non-empty zero-sum subsequence

of even length or length at most 5.

The pseudocode for CPF14 is as described in Figure 8.11. Let us explain

the algorithm in the pseudocode for CPF14. We start with a sequence U

output from CPF6. We ensure that GU is updated to reflect the subsums

of U along with the lengths of the subsequences from which they arise. The

aim of the algorithm is to sequentially extend U by 8 more elements in Z3
5

whilst making sure the resulting sequence at each step does not contain a

non-empty zero-sum subsequence of even length or length at most 5. Similar

Programming searches through sequences over Z3
3 and Z3

5 101

Pseudocode 12 CPF6

1: create sequence S = (1, 0, 0)(0, 1, 0)(0, 0, 1)
2: set GS(i) = true for all i ∈ {1, 5, 6, 25, 26, 30, 31}
3: for g4 ∈ Z3

5 \{0} do
4: if GS(f(−g4)) is false then
5: create sequence S4 = S ∪ g4

6: call updateSubsums(S, g4)
7: for g5 ∈ Z3

5 \{0} do
8: if f(g5) ≥ f(g4) and GS4(f(−g5)) is false then
9: create sequence S5 = S4 ∪ g5

10: call updateSubsums(S4, g5)
11: for g6 ∈ Z3

5 \{0} do
12: if f(g6) ≥ f(g5) and GS5(f(−g6)) is false then
13: create sequence S6 = S5 ∪ g6

14: call updateSubsums(S5, g6)
15: output S6

16: end if
17: end for
18: end if
19: end for
20: end if
21: end for

Figure 8.10: CPF6

to the algorithm for CPF6, we use for-loops with if-conditions to achieve

this aim. The if-condition directly following the start of a for-loop ensures

the inverse of the element determined by that for-loop does not occur as

a subsum of length j ∈ {1, 2, 3, 4, 5, 7, 9, 11, 13} of the most recently created

sequence. This ensures the sequence created in that for-loop does not contain

a non-empty zero-sum subsequence of even length or length at most 5. We

conclude the explanation for the pseudocode of CPF14 here as the remaining

is either similar to that of CPF6 or self-explanatory.

P
rogram

m
in

g
search

es
th

rou
gh

seq
u
en

ces
over

Z
33

an
d
Z

35
102

Pseudocode 13 CPF14

1: input a sequence U output from CPF6 along with GU

2: for g7 ∈ Z3
5 \{0} do

3: if GU(f(−g7), j) is false for all j ∈ {1, 2, 3, 4, 5} then
4: create sequence S7 = U ∪ g7

5: call updateSubsums(U , g7)
6: for g8 ∈ Z3

5 \{0} do
7: if f(g8) ≥ f(g7) and GS7(f(−g8), j) is false for all j ∈ {1, 2, 3, 4, 5, 7} then
8: create sequence S8 = S7 ∪ g8

9: call updateSubsums(S7, g8)
10: for g9 ∈ Z3

5 \{0} do
11: if f(g9) ≥ f(g8) and GS8(f(−g9), j) is false for all j ∈ {1, 2, 3, 4, 5, 7} then
12: create sequence S9 = S8 ∪ g9

13: call updateSubsums(S8, g9)
14: for g10 ∈ Z3

5 \{0} do
15: if f(g10) ≥ f(g9) and GS9(f(−g10), j) is false for all j ∈ {1, 2, 3, 4, 5, 7, 9} then
16: create sequence S10 = S9 ∪ g10

17: call updateSubsums(S9, g10)
18: for g11 ∈ Z3

5 \{0} do
19: if f(g11) ≥ f(g10) and GS10(f(−g11), j) is false for

all j ∈ {1, 2, 3, 4, 5, 7, 9} then
20: create sequence S11 = S10 ∪ g11

21: call updateSubsums(S10, g11)
22: for g12 ∈ Z3

5 \{0} do
23: if f(g12) ≥ f(g11) and GS11(f(−g12), j) is false for

all j ∈ {1, 2, 3, 4, 5, 7, 9, 11} then
24: create sequence S12 = S11 ∪ g12

25: call updateSubsums(S11, g12)

P
rogram

m
in

g
search

es
th

rou
gh

seq
u
en

ces
over

Z
33

an
d
Z

35
103

26: for g13 ∈ Z3
5 \{0} do

27: if f(g13) ≥ f(g12) and GS12(f(−g13), j) is false for
all j ∈ {1, 2, 3, 4, 5, 7, 9, 11} then

28: create sequence S13 = S12 ∪ g13

29: call updateSubsums(S12, g13)
30: for g14 ∈ Z3

5 \{0} do
31: if f(g14) ≥ f(g13) and GS13(f(−g14), j) is false for

all j ∈ {1, 2, 3, 4, 5, 7, 9, 11, 13} then
32: create sequence S14 = S13 ∪ g14

33: call updateSubsums(S13, g14)
34: output S14

35: end if
36: end for
37: end if
38: end for
39: end if
40: end for
41: end if
42: end for
43: end if
44: end for
45: end if
46: end for
47: end if
48: end for
49: end if
50: end for

Figure 8.11: CPF14

Programming searches through sequences over Z3
3 and Z3

5 104

8.2.5 CPF14EXT

In this section we describe the computer program CPF14EXT used in the

proof of Theorem 6.1. The aim of CPF14EXT is to take as input a possibility

X for x1 · · ·x14 generated by CPF14 and output all sequences X ∪ z15 · · · z18

over Z3
5 of length 18 subject to the following conditions:

1. The sequence X ∪ z15 · · · z18 does not contain a non-empty zero-sum

subsequence of length at most 5 or length at least 14;

2. The inverse of the value of each of the following sequences does not

occur as the value of some subsequence of X of even length: z15, z16, z17,

z18, z15z16, z15z17, z15z18, z16z18, z17z18, z15z16z17, z16z17z18, z15z16z17z18.

The pseudocode for CPF14EXT is as described in Figure 8.12. In this

algorithm, the notation [S]L for a sequence S over Z3
5 and a set of natural

numbers L, denotes the set

{g ∈ Z3
5 | GS(f(g), j) is ‘true’ for some j ∈ L}.

In simpler terms, the set [S]L consists precisely of the elements of Z3
5 which

occur as a subsum of S arising from a subsequence of S of length j ∈ L.

The structure of the algorithm for CPF14EXT is somewhat similar to the

algorithm described previously. It contains four for-loops each of which ex-

tends the input sequence X by one element. Each for-loop determines an

element of the set Z3
5 \{0, [X]L1} where L1 := {1, 2, 3, 4, 6, 8, 10, 12, 13, 14}.

This reduces the number of candidates for the four elements to be appended

to X firstly by ensuring the inverse of each of the four elements appended to

X does not occur as the value of some subsequence of X of even length, and

secondly by ensuring the sequence to be created in the subsequent for-loop

does not contain a non-empty zero-sum subsequence of length at most 5 or

14 of a particular form. The last and-statement in each of the if-conditions

Programming searches through sequences over Z3
3 and Z3

5 105

directly following each for-loop ensures the output sequence does not contain

a non-empty zero-sum subsequence of length at most 5 or length at least 14

of any form. The last if-condition in the algorithm ensures (2) from the start

of this subsection is satisfied.

P
rogram

m
in

g
search

es
th

rou
gh

seq
u
en

ces
over

Z
33

an
d
Z

35
106

Pseudocode 14 CPF14EXT

1: input a sequence X output from CPF14 along with GX

2: if Z3
5 \{0, [X]L1} 6= ∅ for L1 := {1, 2, 3, 4, 6, 8, 10, 12, 13, 14} then

3: for z15 ∈ Z3
5 \{0, [X]L1} do

4: create sequence S15 = X ∪ −z15

5: call updateSubsums(X, −z15)
6: if Z3

5 \{0, [S15]L2} 6= ∅ for L2 := {1, 2, 3, 4, 13, 14, 15} then
7: for z16 ∈ Z3

5 \{0, [X]L1} do
8: if f(z16) ≥ f(z15) and z16 ∈ Z3

5 \{0, [S15]L2} then
9: create sequence S16 = S15 ∪ −z16

10: call updateSubsums(S15, −z16)
11: if Z3

5 \{0, [S16]L3} 6= ∅ for L3 := {1, 2, 3, 4, 13, 14, 15, 16} then
12: for z17 ∈ Z3

5 \{0, [X]L1} do
13: if f(z17) ≥ f(z18) and z17 ∈ Z3

5 \{0, [S15]L2} and z17 ∈ Z3
5 \{0, [S16]L3} then

14: create sequence S17 = S16 ∪ −z17

15: call updateSubsums(S16, −z17)
16: if Z3

5 \{0, [S17]L4} 6= ∅ for L4 := {1, 2, 3, 4, 13, 14, 15, 16, 17} then
17: for z18 ∈ Z3

5 \{0, [X]L1} do
18: if f(z18) ≥ f(z17) and z18 ∈ Z3

5 \{0, [S15]L2}
and z18 ∈ Z3

5 \{0, [S16]L3} and z18 ∈ Z3
5 \{0, [S17]L4} then

19: if g ∈ Z3
5 \[X]L5 for all g ∈ {z15 + z16, z15 + z17, z15 + z18,

z16+z18, z17+z18, z15+z16+z17, z16+z17+z18, z15+z16+z17+z18}
where L5 := {2, 4, 6, 8, 10, 12, 14} then

20: output S17,−z18

21: end if

P
rogram

m
in

g
search

es
th

rou
gh

seq
u
en

ces
over

Z
33

an
d
Z

35
107

22: end if
23: end for
24: end if
25: end if
26: end for
27: end if
28: end if
29: end for
30: end if
31: end for
32: end if

Figure 8.12: CPF14EXT

Programming searches through sequences over Z3
3 and Z3

5 108

8.2.6 CPF12

In this section we describe the computer program CPF12 used in the proof

of Theorem 6.1. The aim of CPF12 is to take a possibility U generated by

CPF6 as input and output all sequences X over Z3
5 of length 12 subject to

the following conditions:

• The sequence X contains U as a subsequence;

• The sequence X does not contain a non-empty zero-sum subsequence

of even length or length at most 5.

The algorithm used for CPF12 is the same as the algorithm for CPF14

with the obvious exception that we use 6 for-loops instead of 8.

8.2.7 CPF12EXT

In this section we describe the computer program CPF12EXT used in the

proof of Theorem 6.1. The aim of CPF12EXT is to take as input a possibility

X for x1 · · ·x12 generated by CPF12 and output all sequences X ∪ z13 · · · z18

over Z3
5 of length 18 subject to the following conditions:

1. The sequence X ∪ z13 · · · z18 does not contain a non-empty zero-sum

subsequence of length at most 5 or length at least 14;

2. The inverse of the value of each subsequence of z13 · · · z18 does not occur

as the value of some subsequence of X of even length.

The algorithm used for CPF12EXT is the same as the algorithm for

CPF14EXT with the exception that it contains 6 for-loops instead of 4 and

that the last if-condtion is modified to reflect (2) above.

Programming searches through sequences over Z3
3 and Z3

5 109

8.2.8 CPF5U*, CPF6U*, CPF7U* and CPF8U*

In this section we describe the computer programs CPF5U*, CPF6U*, CPF7U*

and CPF8U* used in the proof of Theorem 7.2.9.

The aim of CPF5U* is to generate all square-free sequences over Z3
5 of

length 15 containing (1, 0, 0)(0, 1, 0)(0, 0, 1) as a subsequence and no non-

empty zero-sum subsequence of length at most 5. The algorithm for CPF5U*

is similar to that of the program CPF14. We present the pseudocode of

CPF5U* in Figure 8.13 without further explanation.

The aim of CPF6U*, respectively CPF7U*, is to generate all square-free

sequences over Z3
5 of length 14, respectively 13, containing (1, 0, 0)(0, 1, 0)(0, 0, 1)

as a subsequence and no non-empty zero-sum subsequence of length at most

6, respectively at most 7. The algorithms for CPF6U* and CPF7U* are

analogous to that of the program CPF5U* with the set [1, 4] replaced with

[1, 5], respectively [1, 6], in each of the if-conditions.

The aim of CPF8U* is to generate all square-free sequences over Z3
5 of

length 12 containing (1, 0, 0)(0, 1, 0) as a subsequence and no non-empty zero-

sum subsequence of length at most 8. The algorithm for CPF8U* is also

similar to that of CPF5U* with the set [1, 4] replaced with [1, 7] in each of

the if-conditions.

P
rogram

m
in

g
search

es
th

rou
gh

seq
u
en

ces
over

Z
33

an
d
Z

35
110

Pseudocode 15 CPF5U*

1: create sequence S1 = (1, 0, 0)
2: set GS1(1, 1) to true
3: create sequence S2 = S1 ∪ (0, 1, 0)
4: call updateSubsums(S1, (0, 1, 0))
5: create sequence S3 = S2 ∪ (0, 0, 1)
6: call updateSubsums(S2, (0, 0, 1))
7: for g4 ∈ Z3

5 \{0, (1, 0, 0), (0, 1, 0), (0, 0, 1)} do
8: if GS3(f(−g4), j) is false for all j ∈ [1, 4] then
9: create sequence S4 = S3 ∪ g4

10: call updateSubsums(S3, g4)
11: for g5 ∈ Z3

5 \{0, (1, 0, 0), (0, 1, 0), (0, 0, 1)} do
12: if f(g5) > f(g4) and GS4(f(−g5), j) is false for all j ∈ [1, 4] then
13: create sequence S5 = S4 ∪ g5

14: call updateSubsums(S4, g5)

15:
...

16: for g15 ∈ Z3
5 \{0, (1, 0, 0), (0, 1, 0), (0, 0, 1)} do

17: if f(g15) > f(g14) and GS14(f(−g15), j) is false for all j ∈ [1, 4] then
18: create sequence S15 = S14 ∪ g15

19: output S15

20: end if
21: end for
22: end if
23: end for
24: end if
25: end for

Figure 8.13: CPF5U*

Programming searches through sequences over Z3
3 and Z3

5 111

8.2.9 CPF6U1 and CPF6U2

In this section we describe the computer programs CPF6U1 and CPF6U2

used in the proof of Theorem 7.2.9.

The aim of CPF6U1 is to generate all sequences over Z3
5 of the form

(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 0, 1)(0, 0, 1)g7g7g9g9g11g11g13 · · · g24,

which do not contain a non-empty zero-sum subsequence of length at most

6. We present the pseudocode of CPF6U1 in Figure 8.14.

The aim of CPF6U2 is to generate all sequences over Z3
5 of the form

(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 0, 1)g6g6g8g8g10g10g12g12g14 · · · g24,

which do not contain a non-empty zero-sum subsequence of length at most

6. The algorithm for CPF6U2 is similar to that of CPF6U1.

P
rogram

m
in

g
search

es
th

rou
gh

seq
u
en

ces
over

Z
33

an
d
Z

35
112

Pseudocode 16 CPF6U1

1: create sequence S1 = (1, 0, 0)
2: set GS1(1, 1) to true
3: create sequence S2 = S1 ∪ (1, 0, 0)
4: call updateSubsums(S1, (1, 0, 0))
5: create sequence S3 = S2 ∪ (0, 1, 0)
6: call updateSubsums(S2, (0, 1, 0))
7: create sequence S4 = S3 ∪ (0, 1, 0)
8: call updateSubsums(S3, (0, 1, 0))
9: create sequence S5 = S4 ∪ (0, 0, 1)

10: call updateSubsums(S4, (0, 0, 1))
11: create sequence S6 = S5 ∪ (0, 0, 1)
12: call updateSubsums(S5, (0, 0, 1))
13: for g7 ∈ Z3

5 \{0} do
14: if GS6(f(−g7), j) is false for all j ∈ [1, 5] then
15: create sequence S7 = S6 ∪ g7

16: call updateSubsums(S6, g7)
17: if GS7(f(−g7), j) is false for all j ∈ [1, 5] then
18: create sequence S8 = S7 ∪ g7

19: call updateSubsums(S7, g7)
20: for g9 ∈ Z3

5 \{0} do
21: if g9 ≥ g7 and GS8(f(−g9), j) is false for all j ∈ [1, 5] then
22: create sequence S9 = S8 ∪ g9

23: call updateSubsums(S8, g9)
24: if GS9(f(−g9), j) is false for all j ∈ [1, 5] then
25: create sequence S10 = S9 ∪ g9

26: call updateSubsums(S9, g9)

P
rogram

m
in

g
search

es
th

rou
gh

seq
u
en

ces
over

Z
33

an
d
Z

35
113

27: for g11 ∈ Z3
5 \{0} do

28: if g11 ≥ g9 and GS10(f(−g11), j) is false for all j ∈ [1, 5] then
29: create sequence S11 = S10 ∪ g11

30: call updateSubsums(S10, g11)
31: if GS11(f(−g11), j) is false for all j ∈ [1, 5] then
32: create sequence S12 = S11 ∪ g11

33: call updateSubsums(S11, gg11)
34: for g13 ∈ Z3

5 \{0} do
35: if GS12(f(−g13), j) is false for all j ∈ [1, 5] then
36: create sequence S13 = S12 ∪ g13

37: call updateSubsums(S12, gg13)
38: for g14 ∈ Z3

5 \{0} do
39: if g14 ≥ g13 and GS13(f(−g14), j) is false for all j ∈ [1, 5] then
40: create sequence S14 = S13 ∪ g14

41: call updateSubsums(S13, gg14)

42:
...

43: for g24 ∈ Z3
5 \{0} do

44: if g24 ≥ g23 and GS23(f(−g24), j) is false for all
j ∈ [1, 5] then

45: create sequence S24 = S23 ∪ g24

46: output S24

P
rogram

m
in

g
search

es
th

rou
gh

seq
u
en

ces
over

Z
33

an
d
Z

35
114

47: end if
48: end for
49: end if
50: end for
51: end if
52: end for
53: end if
54: end if
55: end for
56: end if
57: end if
58: end for
59: end if
60: end if
61: end for

Figure 8.14: CPF6U1

Programming searches through sequences over Z3
3 and Z3

5 115

8.2.10 CPF7U1, CPF7U2, CPF7U3 and CPF7U4

In this section we describe the computer programs CPF7U1, CPF7U2, CPF7U3

and CPF7U4 used in the proof of Theorem 7.2.9.

The respective aim of CPF7U1, CPF7U2, CPF7U3 and CPF7U4 is to

generate all sequences over Z3
5 of the four forms below, each of which do not

contain a non-empty zero-sum subsequence of length at most 7:

(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 0, 1)(0, 0, 1)g7g7g9 · · · g19,

(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 0, 1)g6g6g8g8g10 · · · g19,

(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 0, 1)g5g5g7g7g9g9g11 · · · g19,

(1, 0, 0)(0, 1, 0)(0, 0, 1)g4g4g6g6g8g8g10g10g12 · · · g19.

The algorithm for these programs is similar to that of CPF6U1 with the set

[1, 5] replaced with [1, 6] .

8.2.11 CPF8U1, CPF8U2, CPF8U3 and CPF8U4

In this section we describe the computer programs CPF8U1, CPF8U2, CPF8U3

and CPF8U4 used in the proof of Theorem 7.2.9.

The respective aim of CPF8U1, CPF8U2, CPF8U3 and CPF8U4 is to

generate all sequences over Z3
5 of the four forms in Section 8.2.10 with g19

removed, each of which do not contain a non-empty zero-sum subsequence

of length at most 8. It is easy to see how the algorithm for these programs

can be adapted from the algorithm for the programs in Section 8.2.10

Programming searches through sequences over Z3
3 and Z3

5 116

8.2.12 CPF9U1, CPF9U2, CPF9U3 and CPF9U4

In this section we describe the computer programs CPF9U1, CPF9U2, CPF9U3

and CPF9U4 used in the proof of Theorem 7.2.9.

The respective aim of CPF9U1, CPF9U2, CPF9U3 and CPF9U4 is to

generate all sequences S over Z3
5 of the four forms below, each of which do

not contain a non-empty zero-sum subsequence of length at most 9:

(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 0, 1)(0, 0, 1)g7 · · · g17,

(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 0, 1)g6g6g8 · · · g17,

(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 0, 1)g5g5g7g7g9 · · · g17,

(1, 0, 0)(0, 1, 0)(0, 0, 1)g4g4g6g6g8g8g10 · · · g17.

The algorithm for these programs is similar to that of CPF6U1 with the set

[1, 5] replaced with [1, 8] .

8.2.13 CPF10U1, CPF10U2 and CPF10U3

In this section we describe the computer programs CPF10U1, CPF10U2 and

CPF10U3 used in the proof of Theorem 7.2.9.

The respective aim of CPF10U1, CPF10U2 and CPF10U3 is to generate

all sequences over Z3
5 of the three forms below, each of which do not contain

a non-empty zero-sum subsequence of length at most 10:

(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 0, 1)g6 · · · g15,

Programming searches through sequences over Z3
3 and Z3

5 117

(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 0, 1)g5g5g7 · · · g15,

(1, 0, 0)(0, 1, 0)(0, 0, 1)g4g4g6g6g8 · · · g15.

The algorithm for these programs is similar to that of CPF6U1 with the set

[1, 5] replaced with [1, 9] .

8.2.14 CPF11U1, CPF11U2 and CPF11U3

In this section we describe the computer programs CPF11U1, CPF11U2 and

CPF11U3 used in the proof of Theorem 7.2.9.

The respective aim of CPF11U1, CPF11U2 and CPF11U3 is to generate

all sequences over Z3
5 of the three forms in Section 8.2.13 with g15 removed,

each of which do not contain a non-empty zero-sum subsequence of length

at most 11. It is easy to see how the algorithm for these programs can be

adapted from the algorithm for the programs in Section 8.2.13.

Magma programs

8.2.15 CPF5L*, CPF6L*, CPF7L* and CPF8L*

In this section we describe the computer programs CPF5L*, CPF6L*, CPF7L*

and CPF8L* used in the proof of Theorem 7.2.9.

The respective aim of CPF5L*, CPF6L*, CPF7L* and CPF8L* is to

verify that the following four sequences over Z3
5 do not contain a non-empty

zero-sum subsequence of length at most 5, at most 6, at most 7, and at most

11 respectively:

(1, 0, 0)(0, 1, 0)(0, 0, 1)(2, 0, 0)(1, 1, 0)(2, 1, 0)(3, 1, 0)(1, 0, 1)

(2, 0, 1)(3, 0, 1)(0, 1, 1)(1, 1, 1)(2, 1, 1)(3, 1, 1), (8.3)

Programming searches through sequences over Z3
3 and Z3

5 118

Pseudocode 17 CPF5L*

1: define G := Z3
5

2: define array S = (8.3)
3: if hasZeroSum(S, G, 1) is false and hasZeroSum(S, G, 2) is false and

hasZeroSum(S, G, 3) is false and hasZeroSum(S, G, 4) is false and
hasZeroSum(S, G, 5) is false then

4: output true
5: end if

Figure 8.15: CPF5L*

(1, 0, 0)(0, 1, 0)(0, 0, 1)(2, 0, 0)(1, 1, 0)(2, 1, 0)(3, 1, 0)(1, 0, 1)

(2, 0, 1)(3, 0, 1)(0, 1, 1)(1, 1, 1)(2, 1, 1),

(1, 0, 0)(0, 1, 0)(0, 0, 1)(2, 0, 0)(1, 1, 0)(2, 1, 0)(3, 1, 0)(1, 0, 1)

(2, 0, 1)(3, 0, 1)(0, 1, 1)(1, 1, 1),

(1, 0, 0)(0, 1, 0)(0, 0, 1)(2, 0, 0)(1, 1, 0)(1, 0, 1)(2, 1, 0)(3, 1, 0)

(2, 0, 1)(3, 0, 1)(4, 1, 1).

All of these programs follow a similar algorithm. Therefore, we only detail

the pseudocode for CPF5L*, which can be found in Figure 8.15.

8.2.16 CPF6L, CPF7L, CPF8L, CPF9L, CPF10L and

CPF12L

In this section we describe the computer programs CPF6L, CPF7L, CPF8L,

CPF9L, CPF10L and CPF12L used in the proof of Theorem 7.2.9.

The respective aim of CPF6L, CPF7L, CPF8L, CPF9L, CPF10L and

Programming searches through sequences over Z3
3 and Z3

5 119

CPF12L is to verify that the following six sequences over Z3
5 do not contain

a non-empty zero-sum subsequence of length at most 6, at most 7, at most

8, at most 9, at most 10 and at most 12 respectively:

(1, 0, 0)(1, 0, 0)(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)

(0, 0, 1)(0, 0, 1)(0, 0, 1)(0, 0, 1)(4, 1, 1)(4, 1, 1)(4, 1, 1)(4, 1, 1)

(1, 1, 0)(1, 1, 0)(1, 1, 0)(1, 0, 1)(1, 0, 1)(1, 0, 1)(0, 1, 1),

(1, 0, 0)(1, 0, 0)(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)

(0, 0, 1)(0, 0, 1)(0, 0, 1)(0, 0, 1)(4, 1, 1)(4, 1, 1)(4, 1, 1)(4, 1, 1)

(1, 1, 0)(1, 1, 0),

(1, 0, 0)(1, 0, 0)(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)

(0, 0, 1)(0, 0, 1)(0, 0, 1)(0, 0, 1)(4, 1, 1)(4, 1, 1)(4, 1, 1)(4, 1, 1)

(1, 1, 0),

(1, 0, 0)(1, 0, 0)(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)

(0, 0, 1)(0, 0, 1)(0, 0, 1)(0, 0, 1)(4, 1, 1)(4, 1, 1)(4, 1, 1)(4, 1, 1),

(1, 0, 0)(1, 0, 0)(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)

(0, 0, 1)(0, 0, 1)(0, 0, 1)(0, 0, 1)(1, 1, 1)(1, 1, 1),

(1, 0, 0)(1, 0, 0)(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)

(0, 0, 1)(0, 0, 1)(0, 0, 1)(0, 0, 1)(1, 1, 1).

All of these programs follow a similar algorithm to CPF5L*.

Programming searches through sequences over Z3
3 and Z3

5 120

8.2.17 CPF19

In this section we describe the computer program CPF19 used in the proof of

Corollary 7.2.12. The aim of CPF19 is to verify that the following sequence

over Z3
5 does not contain a non-empty zero-sum subsequence of length at

most 6 or at least 14:

(1, 0, 0)(1, 0, 0)(1, 0, 0)(1, 0, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)(0, 1, 0)

(0, 0, 1)(0, 0, 1)(0, 0, 1)(0, 0, 1)(0, 1, 1)(0, 1, 1)(0, 1, 1)(1, 1, 0)

(1, 1, 0)(1, 0, 1)(1, 0, 1).

It is easy to see how the algorithm for CPF5L* can be adapted for CPF19.

Chapter 9

Upper bounds on D(G) in terms

of d∗(G)

9.1 Motivation

Fix a group G and define d := d∗(G). Recall the following trivial lower bound

on D(G) from Lemma 1.2.2:

D(G) ≥ 1 + d.

This trivial lower bound motivates the following question: what is the best

upper bound on D(G) in terms of d? We address this question in this chapter.

Surprisingly, if G is not listed in List 2.1.7 then no such upper bound has

previously been proved, to the author’s knowledge. Using a result of P. van

Emde Boas and D. Kruyswijk, we find the following general polynomial upper

bound on D(G) in terms of d when G is not a p-group and rank(G) ≥ 3 (see

Section 9.4):

D(G) ≤ d2 ln 2 + (1− ln 12)d− 1 + ln 6. (9.1)

121

Upper bounds on D(G) in terms of d∗(G) 122

Using some further analysis, we manage to improve this upper bound to the

following when G is not a p-group and rank(G) ≥ 3 (see Section 9.4):

D(G) ≤ (d− 1)

(
1 + ln

((
d
d−4

+ 1
)d−4

6

))
. (9.2)

Remark 9.1.1. A tedious calculation shows that the bound in (9.2) is strictly

less than the bound in (9.1) when d ≥ 5 (if d ≤ 4 then G is a p-group - see

Lemma 9.3.3).

Under a specific condition on the representation of G as a direct sum

of cyclic groups of prime power, we find that we can improve the bound

even further to the following when G is not a p-group and rank(G) ≥ 3 (see

Section 9.5):

D(G) ≤

{
6d ln 2 + 6− 30 ln 2 if exp(G) ≤ 6,

d2 ln 2 + (1 + ln(5/3584))d− 1 + ln(1792/5) otherwise.

(9.3)

Remark 9.1.2. It is simple to check that the bounds in (9.3) are an improve-

ment on the bound in (9.2) when d ≤ 11. Notice that the second bound in

(9.3) is strictly greater than the first bound when d ≥ 12. For this reason,

it is enough to show that the second bound in (9.3) is strictly less than the

bound in (9.2) in order to show the improvement when d ≥ 12. Another

tedious calculation shows the latter.

We conjecture that the above bounds on D(G) can be improved further.

The following conjecture (deduced by combining Proposition 6.2.2 in [14]

and a conjecture of W ladys law Narkiewicz and Jan Śliwa stated in the last

paragraph of [21]) is presented in [13].

Upper bounds on D(G) in terms of d∗(G) 123

Conjecture 9.1.3 ([13]). For all finite abelian groups G, we have

D(G) ≤ d+ r,

where d := d∗(G) and r := rank(G).

Recall from Remark 1.1.14 that d ≥ rank(G). Hence, if Conjecture 9.1.3

holds, then D(G) ≤ 2d. We conjecture the following:

Conjecture 9.1.4. For all finite abelian groups G, we have

D(G) ≤ 2d,

where d := d∗(G).

Roughly speaking, the strategy we employ to find upper bounds on D(G)

in terms of d is to bound D(G) from above by an increasing function of |G|
and then bound |G| from above by a function of d. We shall find upper

bounds on |G| in terms of d in sections 9.2 and 9.3.

9.2 An elementary upper bound on |G|

There do not exist upper bounds on |G| in terms of d in the literature, to the

author’s knowledge. In this section, we find prove the following elementary

upper bound on |G| in terms of d.

Theorem 9.2.1. For all finite abelian groups G, we have

|G|≤ 2d,

where d := d∗(G).

Before we proceed to proving Theorem 9.2.1, let us present a simple

corollary and its proof.

Upper bounds on D(G) in terms of d∗(G) 124

Corollary 9.2.2. For all finite abelian groups G, we have

D(G) ≤ 2d,

where d := d∗(G).

Proof. Combining Lemma 1.1.9 and Theorem 9.2.1, we find that

D(G) ≤ |G|≤ 2d.

We obtain Theorem 9.2.1 as a corollary of a stronger result for which

require the following definitions.

Definition 9.2.3. Given d ∈ N, we define

• Ωd := {G | d∗(G) = d},

• md := maxG∈Ωd
|G|,

• Md := {G ∈ Ωd | |G|= md}.

Given d ∈ N, the integer md represents the maximal order of a group H

with d∗(H) = d. We are interested in finding md for an arbitrary d. More

strongly, we are interested in finding the set of all groups H with d∗(H) = d

which achieve this maximal order, namely the set Md. We determine Md

in the following theorem from which we can easily deduce the proof of The-

orem 9.2.1.

Theorem 9.2.4. Given d ∈ N, we have Md = {Zd2} (up to isomorphism).

For the proof of Theorem 9.2.4 we need the following two results.

Theorem 9.2.5 (AM-GM inequality, see page 151 in [17]). Let x1, . . . , xn

be n arbitrary positive real numbers. Then

(x1 + · · ·+ xn)/n ≥ (x1 · · ·xn)1/n

Upper bounds on D(G) in terms of d∗(G) 125

with equality if and only if x1 = · · · = xn.

Lemma 9.2.6. Given d ∈ N, the function

fd : N −→ R

x 7→ ((d+ x)/x)x

is strictly increasing.

Proof. It is sufficient to show fd(x) < fd(x+ 1) for all x ∈ N. Let x ∈ N and

note that

fd(x) < fd(x+ 1)

⇐⇒ ((d+ x)/x)x < ((d+ x+ 1)/(x+ 1))x+1

⇐⇒ ((d+ x)/x)x)1/(x+1) < (d+ x+ 1)/(x+ 1) = (1 + x(d+ x)/x)/(x+ 1).

We can deduce the last strict inequality by applying Theorem 9.2.5 to the

set of x + 1 positive real numbers consisting of 1 and x copies of (d + x)/x

and noting that d 6= 0 implies 1 6= (d+ x)/x .

Proof of Theorem 9.2.4. Let G ∈Md. Note that Zd2 ∈ Ωd hence

2d = |Zd2|≤ md = |G|. (9.4)

Let G ∼= Zn1 ⊕ · · ·⊕Znr for some 1 < n1 | · · · | nr. Then, using Theorem 9.2.5

and noting that r ≤ d (Remark 1.1.14), we find that

|G|= n1 · · ·nr ≤ ((n1 + · · ·+ nr)/r)
r = ((d+ r)/r)r = fd(r) ≤ fd(d) = 2d,

(9.5)

where fd is the increasing function defined in Lemma 9.2.6. Hence, combining

the inequalities (9.4) and (9.5) we find that

fd(r) = fd(d).

Upper bounds on D(G) in terms of d∗(G) 126

Therefore, since fd is strictly increasing we have r = d, and so by Re-

mark 1.1.14 we have G ∼= Zd2. This proves the theorem.

Proof of Theorem 9.2.1. We have G ∈ Ωd and therefore

|G|≤ md = |Zd2|= 2d.

9.3 An improved upper bound on |G|

In this section we prove the following improved upper bound on |G| when G

is not a p-group.

Theorem 9.3.1. For all finite abelian groups G which are not p-groups,

we have

|G|≤ (d/(d− 4) + 1)d−4,

where d := d∗(G).

Remark 9.3.2. To see why Theorem 9.3.1 is an improvement on Theorem 9.2.1

when G is not a p-group, observe that for all d ∈ N we have

(d/(d− 4) + 1)d−4 = fd(d− 4) < fd(d) = 2d,

where fd is as defined in Lemma 9.2.6.

We shall deduce Theorem 9.3.1 from the following lemma.

Lemma 9.3.3. For all finite abelian groups G which are not p-groups, we have

d ≥ r + 4,

where d := d∗(G) and r := rank(G). In particular, d ≥ 5.

Proof. Let G ∼= Zn1 ⊕ · · ·⊕Znr for some 1 < n1 | · · · | nr. Suppose d ≤ r+3.

Then 2r + 3 ≥ n1 + · · · + nr. If ni ≥ 6 for some i then we have that

Upper bounds on D(G) in terms of d∗(G) 127

n1 + · · · + nr ≥ 2(r − 1) + 6 = 2r + 4. Hence ni ≤ 5 for all i. If ni = 3

for some i then as nj | nj+1 for all j, we must have ni = 3 for all i, and

hence G is a 3-group. Similarly, if ni = 5 for some i then G is a 5-group.

If ni ∈ {2, 4} for some i then G is a 2-group. So we obtain a contradiction

to the assumption that G is not a p-group in all cases which means that

d ≥ r + 4.

Proof of Theorem 9.3.1. Define r := rank(G). By Lemma 9.3.3, we have

r ≤ d− 4. Therefore, as in the inequality (9.5), we obtain

|G|≤ fd(r) ≤ fd(d− 4) = (d/(d− 4) + 1)d−4,

where fd is the increasing function defined in Lemma 9.2.6.

9.4 A polynomial upper bound on D(G)

In this section we prove the following two theorems, the first of which utilises

the general elementary upper bound |G|≤ 2d, and the other which utilises the

more refined upper bound |G|≤ (d/(d− 4) + 1)d−4 when G is not a p-group.

Theorem 9.4.1. For all finite abelian groups G with rank(G) ≥ 3 which are

not p-groups, we have

D(G) ≤ d2 ln 2 + (1− ln 12)d− 1 + ln 6,

where d := d∗(G).

Theorem 9.4.2. For all finite abelian groups G with rank(G) ≥ 3 which are

not p-groups, we have

D(G) ≤ (d− 1)

(
1 + ln

((
d
d−4

+ 1
)d−4

6

))
,

where d := d∗(G).

Upper bounds on D(G) in terms of d∗(G) 128

Remark 9.4.3. It is obvious that the polynomial bound in Theorem 9.4.1

is better than the two exponential bounds D(G) ≤ 2d and D(G) ≤ |G|≤
(d/(d− 4) + 1)d−4.

In Section 9.2, we used the following strategy to obtain an upper bound

on D(G) in terms of d: bound D(G) from above by the trivial upper bound

|G|, and then bound |G| from above by a function of d. This strategy leads

to the question of whether there exist upper bounds on D(G) in terms of

|G| that would lead to an improved upper bound on D(G) in terms of d.

The answer to this question is yes. In order to establish the improved upper

bounds in Theorem 9.4.1 and Theorem 9.4.2, we bound D(G) from above

by the following upper bound on D(G) in terms of |G| proved by Boas and

Kruyswijk.

Theorem 9.4.4 (Theorem 7.1 in [5]). For all finite abelian groups G, we have

D(G) ≤ n

(
1 + ln

|G|
n

)
,

where n := exp(G).

Proof of Theorem 9.4.1. Define n := exp(G). Note that, since G is not a

p-group, we have n ≥ 6. Hence, the upper bound |G|≤ 2d from Theorem 9.2.1

implies that |G|
n
≤ 2d

6
. This implies that

n

(
1 + ln

|G|
n

)
≤ n

(
1 + ln

2d

6

)
.

Now note that, since rank(G) ≥ 3, we have n ≤ d − 1. Indeed, if G ∼=
Zn1 ⊕ · · · ⊕ Znr for some 1 < n1 | · · · | nr, then n = d− n1 − · · · − nr−1 + r.

Now, n1 + · · · + nr−1 ≥ 2(r − 1), hence n ≤ d − r + 2. Therefore, since

rank(G) ≥ 3, we deduce that n ≤ d− 1. Consequently, using Theorem 9.4.4,

Upper bounds on D(G) in terms of d∗(G) 129

we obtain

D(G) ≤ (d− 1)

(
1 + ln

2d

6

)
= d2 ln 2 + (1− ln 12)d− 1 + ln 6.

Proof of Theorem 9.4.2. Define n := exp(G). Similar to the proof of Theo-

rem 9.4.1, noting that 6 ≤ n ≤ d− 1 and using the bound in Theorem 9.4.4

with the upper bound |G|≤ (d/(d− 4) + 1)d−4 from Theorem 9.3.1, we find

that

D(G) ≤ n

(
1 + ln

|G|
n

)
≤ (d− 1)

(
1 + ln

(
(d/(d− 4) + 1)d−4

6

))
.

9.5 Special polynomial upper bounds on D(G)

The main theorem of this section requires the following preliminaries.

Theorem 9.5.1 (Theorem 3 on page 48 in [26]). For any non-trivial fi-

nite abelian group G, there exist prime numbers p1, . . . , pt (not necessarily

distinct) and l1, . . . , lt ∈ N such that

G ∼= Z
p
l1
1
⊕ · · · ⊕ Z

p
lt
t
.

This representation of G is unique (up to re-ordering of the summands).

Definition 9.5.2. For G ∼= Z
p
l1
1
⊕ · · · ⊕ Z

p
lt
t

with p1, . . . , pt primes, define

• DivG := {p | pi = pj = p for some distinct i, j ∈ {1, . . . , t}};

• pGmax := max DivG (given that DivG 6= ∅).

Remark 9.5.3. If G ∼= Z
p
l1
1
⊕ · · · ⊕Z

p
lt
t

with p1, . . . , pt distinct primes then G

is cyclic. Hence, for non-cyclic G we always have DivG 6= ∅.

Upper bounds on D(G) in terms of d∗(G) 130

The main theorem of this section is the following:

Theorem 9.5.4. For all finite abelian groups G with rank(G) ≥ 3 and

pGmax = 2 which are not p-groups, we have

D(G) ≤

{
6d ln 2 + 6− 30 ln 2 if exp(G) ≤ 6,

d2 ln 2 + (1 + ln(5/3584))d− 1 + ln(1792/5) otherwise,

where d := d∗(G).

We obtain Theorem 9.5.4 by improving on the upper bound on |G| given

in Theorem 9.3.1 in the case when pGmax = 2, as follows.

Theorem 9.5.5. For all finite abelian groups G which are not p-groups and

for which pGmax = 2, we have

|G|≤

6 · 2d−5 if exp(G) ≤ 6,

5
8
· 2d−5 otherwise,

where d := d∗(G).

Proof. Let p1, . . . , pt be primes such that

G ∼= Z
p
l1
1
⊕ · · · ⊕ Z

p
lt
t
.

Since pGmax = 2 and G is not a p-group, there exists r with t > r ≥ 2 such

that without loss of generality we may assume the following: pi = 2 for all

i ∈ [1, r]; pi ≥ 3 for all i ∈ [r + 1, t]; and pi are pairwise distinct for all

i ∈ [r + 1, t]. Hence we can write

G ∼= Z2l1 ⊕ · · · ⊕ Z2lr−1 ⊕Z2lrh,

where h := pl+1
r+1 · · · pltt ≥ 3 is odd and 1 ≤ l1 ≤ · · · ≤ lr. Further, we can

Upper bounds on D(G) in terms of d∗(G) 131

define nr := 2lrh and write

G ∼= Zβ12 ⊕Zβ222 ⊕ · · · ⊕ Zβlr
2lr
⊕Znr

for some βi ≥ 0 such that
∑

i βi = r − 1. Hence,

d = nr − 1 +
∑
i

βi(2
i − 1) = nr − 1 +

∑
i

βi(2
i − 2) + r − 1.

Moreover,

|G|= 2
∑

i iβinr = 2r−1+
∑

i βi(i−1)nr.

Furthermore,

|G|= 2d−nr+1−
∑

i βi(2
i−2)+

∑
i βi(i−1)nr = 2d−nr+1−

∑
i βi(2

i−1−i)nr.

Therefore,

|G|≤ 5

8
.2d−5

⇐⇒ nr ≤
5

8
.2nr−6+

∑
i βi(2

i−1−i).

We claim that if nr > 6 then nr ≤ 5
8
.2nr−6. This claim can be easily proved

by induction on nr whilst noting that if nr = 2lr .h > 6 then in fact nr ≥ 10

(since 2 - 7, since 8 does not contain an odd divisor strictly greater than 2,

and since 2 - 9). Using this claim and the fact that 2i ≥ i + 1 for all i ∈ N,

we deduce that
5

8
.2nr−6+

∑
i βi(2

i−1−i) ≥ 5

8
.2nr−6 ≥ nr

when nr > 6. This proves the second bound in the theorem. Similarly,

|G|≤ 6.2d−5

⇐⇒ nr ≤ 6.2nr−6+
∑

i βi(2
i−1−i)

Upper bounds on D(G) in terms of d∗(G) 132

which clearly holds if nr = 6. Noting that nr = 2lrh ≥ 6, the first bound in

the theorem is also proved.

Remark 9.5.6. It is simple to see that, in the case when G is not a p-group and

pGmax = 2, the upper bounds on |G| in Theorem 9.5.5 are an improvement on

the upper bound on |G| presented in Theorem 9.3.1. Indeed, for all integers

d ≥ 5 we have,

6.2d−5 ≤ (d/(d− 4) + 1)d−4

⇐⇒ 3.2d−4 ≤ 2d−4((d− 2)/(d− 4))d−4

⇐⇒ 31/(d−4) ≤ (d− 2)/(d− 4),

where the last inequality can be deduced by applying Theorem 9.2.5 to the

multiset of d− 4 positive real numbers consisting of 3 and d− 5 copies of 1.

Proof of Theorem 9.5.4. Define n := exp(G). Suppose n ≤ 6. Then in fact

n = 6. Hence, using the bound in Theorem 9.4.4 with the upper bound in

Theorem 9.5.5, we find that

D(G) ≤ n

(
1 + ln

|G|
n

)
≤ 6(1 + ln 2d−5) = 6d ln 2 + 6− 30 ln 2.

Suppose n ≥ 7. Then the upper bound in Theorem 9.5.5 along with the

property n ≤ d− 1, implies that

D(G) ≤ n

(
1 + ln

|G|
n

)
≤ (d− 1)

(
1 + ln

5 · 2d−8

7

)
.

Simplifying the right hand side of the above inequality, we obtain the required

bound.

Chapter 10

Open problems

In this chapter we present some open problems that seem to arise naturally

from the content in the rest of the thesis. It is obvious that proving or

disproving Conjecture 1.2.3, Conjecture 2.1.6, or Conjecture 9.1.3 would be

a great milestone in the subject area. We list some other (possibly easier)

open problems in the subject area that may give rise to ideas/techniques that

could be useful in proving or finding counterexamples for these conjectures.

Given Theorem 6.1, the smallest abelian group of rank 3 for which the

Davenport constant is unknown, now becomes Z5⊕Z5⊕Z15.

Problem 10.1. Find the Davenport constant of the group Z5⊕Z5⊕Z15.

Remark 10.2. A theoretical approach to Problem 10.1 leaves us with a num-

ber of open subcases. We have tried to deal with these subcases using a

computer assisted approach similar to the one used for the proof of Theo-

rem 6.1, however we find that our algorithms are not terminating in a feasible

amount of time.

Problem 10.3. Given an arbitrary positive integer d, find the Davenport

constant of the group Z5⊕Z5⊕Z5d.

Problem 10.4. Given an arbitrary prime number p, find the Davenport

constant of the group Zp⊕Zp⊕Z2p.

133

Open problems 134

Problem 10.5. Given an arbitrary finite abelian group G, find an upper

bound on D(G) which is a linear polynomial in d∗(G).

Problem 10.6. Prove or disprove Conjecture 9.1.4.

Bibliography

[1] P. C. Baayen. (C2⊕C2⊕C2⊕C2n)! Technical Report ZW 6/69, Centrum

Wiskunde & Informatica, 1969. http://oai.cwi.nl/oai/asset/7264/

7264A.pdf.

[2] Gautami Bhowmik, Immanuel Halupczok, and Jan-Christoph

Schlage-Puchta. Inductive methods and zero-sum free sequences.

Integers, 9:A40, 515–536, 2009.

[3] Gautami Bhowmik and Jan-Christoph Schlage-Puchta. Davenport’s

constant for groups of the form Z3 ⊕ Z3 ⊕ Z3d. In Additive combina-

torics, volume 43 of CRM Proc. Lecture Notes, pages 307–326. Amer.

Math. Soc., Providence, RI, 2007.

[4] P. van Emde Boas. A combinatorial problem on finite abelian groups II.

Technical Report ZW 7/69, Centrum Wiskunde & Informatica, 1969.

http://oai.cwi.nl/oai/asset/7240/7240A.pdf.

[5] P. van Emde Boas and D. Kruyswijk. A combinatorial problem on finite

abelian groups III. Technical Report ZW 8/69, Centrum Wiskunde &

Informatica, 1969. http://oai.cwi.nl/oai/asset/7217/7217A.pdf.

[6] Fang Chen and Svetoslav Savchev. Long minimal zero-sum sequences

in the groups Cr−1
2 ⊕ C2k. Integers, 14:Paper No. A23, 29, 2014.

[7] H. Cohen. A Course in Computational Algebraic Number Theory. Grad-

uate Texts in Mathematics. Springer Berlin Heidelberg, 2000.

135

BIBLIOGRAPHY 136

[8] Charles Delorme, Oscar Ordaz, and Domingo Quiroz. Some remarks on

Davenport constant. Discrete Math., 237(1-3):119–128, 2001.

[9] Bryson W. Finklea, Terri Moore, Vadim Ponomarenko, and Zachary J.

Turner. On block monoid atomic structure. Manuscript, May 2005.

[10] W. D. Gao. On zero-sum subsequences of restricted size. II. Discrete

Math., 271(1-3):51–59, 2003.

[11] W. D. Gao, Q. H. Hou, W. A. Schmid, and R. Thangadurai. On short

zero-sum subsequences. II. Integers, 7:A21, 22, 2007.

[12] Weidong Gao and Alfred Geroldinger. On long minimal zero sequences

in finite abelian groups. Period. Math. Hungar., 38(3):179–211, 1999.

[13] Weidong Gao and Alfred Geroldinger. Zero-sum problems in finite

abelian groups: a survey. Expo. Math., 24(4):337–369, 2006.

[14] A. Geroldinger and F. Halter-Koch. Non-Unique Factorizations: Alge-

braic, Combinatorial and Analytic Theory. Chapman & Hall/CRC Pure

and Applied Mathematics. CRC Press, 2006.

[15] Alfred Geroldinger and Rudolf Schneider. On Davenport’s constant.

J. Combin. Theory Ser. A, 61(1):147–152, 1992.

[16] Dongchun Han. The Erdős-Ginzburg-Ziv theorem for finite nilpotent

groups. Arch. Math. (Basel), 104(4):325–332, 2015.

[17] J. Herman, K. Dilcher, R. Kucera, and J. Simsa. Equations and In-

equalities: Elementary Problems and Theorems in Algebra and Number

Theory. CMS Books in Mathematics. Springer New York, 2012.

[18] I.N. Herstein. Topics in Algebra. Wiley, 1975.

[19] Arnfried Kemnitz. On a lattice point problem. Ars Combin.,

16(B):151–160, 1983.

BIBLIOGRAPHY 137

[20] J.H. Kwak and S. Hong. Linear Algebra. Birkhäuser Boston, 2013.

[21] W. Narkiewicz and J. Śliwa. Finite abelian groups and factorization

problems. II. Colloq. Math., 46(1):115–122, 1982.

[22] C. Norman. Finitely Generated Abelian Groups and Similarity of Matri-

ces over a Field. Springer Undergraduate Mathematics Series. Springer

London, 2012.

[23] John E. Olson. A combinatorial problem on finite Abelian groups. I.

J. Number Theory, 1:8–10, 1969.

[24] John E. Olson. A combinatorial problem on finite Abelian groups. II.

J. Number Theory, 1:195–199, 1969.

[25] Christian Reiher. A proof of the theorem according to which every prime

number possesses property B. PhD thesis, University of Rostock, 2010.

[26] P. Ribenboim. Classical Theory of Algebraic Numbers. Universitext.

Springer New York, 2013.

[27] Kenneth Rogers. A combinatorial problem in Abelian groups. Proc.

Cambridge Philos. Soc., 59:559–562, 1963.

[28] Wolfgang A. Schmid. The inverse problem associated to the Davenport

constant for C2 ⊕ C2 ⊕ C2n, and applications to the arithmetical char-

acterization of class groups. Electron. J. Combin., 18(1):Paper 33, 42,

2011.

[29] R.Y. Sharp. Steps in Commutative Algebra. London Mathematical So-

ciety Student Texts. Cambridge University Press, 1990.

