
Approximation of Controllability
Graphs via Power Dominating Set

Bader Alwasel

Thesis submitted to the University of London

for the degree of Doctor of Philosophy

2016

Approximation of Controllability Graphs
via Power Dominating Set

School of Mathematics and Information Security
Royal Holloway, University of London

Declaration of Authorship

I, Bader Alwasel, hereby declare that this thesis and the work presented
in it is entirely my own. Where I have consulted the work of others, this
is always clearly stated. This work has not been submitted for any other
degree or award in any other university or educational establishment.

Bader Alwasel
January, 20176

The starting point of all achievement is desire.

Napoleon Hill [1883-1970]

Acknowledgments

First and foremost, I am extremely grateful to Almighty God who has bestowed his

countless blessings on me to accomplish my doctoral studies.

I would like to express my deepest gratitude to my supervisor, Dr. Stephen D.

Wolthusen, for always giving me magnificent guidance, encouragement and sup-

port over these years. His versatile and profound knowledge provided me with

great suggestions and inspiration in conducting my research. Besides learning aca-

demic skills from him, his personality, attitude, positive thinking and perception

broadened my mind. Indeed, without his insightful ideas, invaluable comments

and precious feedback, this thesis would never have become reality.

I would also like to thank my external examiner prof. Miguel Correia of University

of Lisbon and my internal examiner Prof. Jason Crampton of Royal Holloway for

their insightful views and comments on my thesis.

Furthermore, I want to thank my parents who have always been my inspira-

tion. I have achieved everything only due to their prayers and efforts. I owe a lot

to them for their constant encouragement and support to finish this long journey

throughout the years of my studies. My gratitude extends also to my brothers and

sisters who encouraged and supported me in every possible way to complete this

work. I am very much indebted to my wife, Atheer, for her endless support, con-

tinued encouragement and great patience during my PhD studies. Finally, I would

like to thank my government for sponsoring and supporting me.

Abstract

The concept of controllability was introduced by R. Kalman, which requires that a

desired configuration can be forced from an arbitrary configuration in a finite num-

ber of steps. Controllability offers a comprehensive, rigorous and detailed frame-

work for the design and analysis of not only control systems, but also of networks

requiring a control relationship between vertices. The safe, secure, and effective

operation of critical infrastructures such as electric power relies on the ability to

monitor the state of a given system or network, or more formally the ability to ob-

serve the state and to estimate the state of a system. This is a pre-requisite for the

ability to force a system from one state to another within a pre-defined finite inter-

val, i.e. the problem of Kalman controllability, studied extensively in control theory.

The problem of structural controllability originally defined by Lin [69] offers a graph

theoretical interpretation for control systems as first described by Kalman, which

is particularly suitable for studying sets of nodes offering the ability to control an

entire system as represented by a control graph. The identification of minimum

Driver Nodes (DN) via the Maximum Matching was proposed by Liu et al. [71] as a

powerful mechanism, offering full control over the network and an obvious target

for attackers to disrupt these relations or compromise intermediate nodes, thereby

gaining partial or total control of a distributed system.

Both attackers and defenders can hence identify nodes of particular interest,

thereby strongly motivating the development of algorithms for identifying such

sets of DN , particularly after an attack or reconfiguration of the underlying net-

work. This offers a strong motivation to study the ability of such systems to recover

from deliberate attacks.

iii

This thesis studies the alternative approach based on the POWER DOMINATING

SET (PDS) problem, which gives an equivalent formulation for identifying mini-

mum Driver Nodes (ND). We also describe the problems of controllability and struc-

tural controllability as represented by the PDS problem and investigate different

attacks affecting control networks. We therefore review existing work on graph

classes, for which a PDS has been studied before, identifying a possible embedding

of such structures in Erdős-Rényi graphs of different density as well as the approx-

imation characteristics, which can be achieved in order to adapt them for solving

the DIRECTED POWER DOMINATING SET problem. This allows the rapid identifi-

cation of feasible alternative control structures where attackers have damaged or

compromised the original control network, and the recovering of partial controlla-

bility if a control network has been partitioned.

We therefore propose a reconstruction algorithm for (directed) control graphs

of bounded tree-width embedded in Erdős-Rényi random graphs based on recent

work by Aazami and Stilp as well as Guo et al. This algorithm considers the rapid

reconstruction of a PDS under attack as the more critical requirement relative to

optimising the resulting PDS and hence propose an approximation based on a dy-

namic programming approach for directed graphs, where a tree of bounded width

can be embedded in an Erdős-Rényi random graph.

We also study the case of sparse Erdős-Rényi graphs with directed control edges

and seek to reduce the average-case complexity of a reconstruction algorithm for

(directed) control graphs proposed in Chapter 4. We therefore obtain an enhanced

average-case complexity of the recovery algorithm based on a DFS structure af-

ter an event or attack leading to disrupt legitimate control and compromise con-

trollability of dependent nodes or disconnect parts of the control original graph.

This DFS-based approach reduces the average-case complexity of the recovery al-

gorithm by re-using remaining fragments of the original, efficient control graph

where possible and identifying previously un-used edges to minimise the number

of a PDS.

iv

Furthermore, we study the structural controllability properties of the control graph

in Linear Time-Invariant systems (LTI) via the PDS problem introduced by Haynes

for studying power networks, addressing the question of how to recover a control

graph as far as possible if the PDS or its dependent nodes have been partially com-

promised without complete re-computation. The approach is based on a BLOCK

DECOMPOSITION of a directed graph, allowing us to identify Cut-Vertices (or a ar-

ticulation point) and cut-edges. This results in faster re-construction of a minimal

PDS structure, and ultimately the re-gaining of control for operators of control sys-

tems by applying three phases.

In addition, we study the case of sparse Erdős-Rényi graphs with directed con-

trol edges and seek to investigate the effect of rewiring edges on the structural con-

trollability properties of directed Erdős-Rényi graphs in order to achieve a minimal

PDS while keeping the total number of edges unchanged. The approach is based

on a STAR DECOMPOSITION of a directed graph, allowing us to identify the number

of out-neighbours of a PDS, and ultimately achieving of a minimal PDS.

v

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 1

1.3 The Erdős-Rényi Model . 3

1.4 Research Questions . 4

1.5 Structure of the Thesis . 8

1.6 Publications . 9

2 Background 11

2.1 Overview . 11

2.2 Controllability Theory . 11

2.3 Structural Controllability . 15

2.4 Minimum Inputs Theorem . 25

2.5 Dominating Set (DS) . 30

2.6 Power Dominating Set (PDS) . 31

3 PDS Algorithms–Related Work 35

3.1 Overview . 35

3.2 NP-Completeness and Upper Bounds Results of Related Work . . . 35

3.3 PDS Algorithms . 39

3.4 Network Controllability under Vulnerability 45

3.5 Analysis of Embedding Structures in Directed Erdős-Rényi Graphs . 48

3.6 Summary . 49

vii

CONTENTS

4 A New Algorithm for a Power Dominating Set 51

4.1 Overview . 51

4.2 Problem Statement and Assumption 52

4.3 PDS Tree Decomposition . 53

4.4 Colouring and Repair Algorithms . 63

4.5 Dynamic Programming Algorithm . 68

4.6 Time Complexity . 77

4.7 Summary . 78

5 Updating a Power Dominating Set 79

5.1 Overview . 79

5.2 Problem Statement and Assumption 79

5.3 Depth-First Search (DFS) . 81

5.4 Reconstructing a Directed PDS via a DFS 82

5.5 Time Complexity . 94

5.6 Summary . 96

6 Recovering Structural Controllability in the Presence of Compromised

Nodes 97

6.1 Overview . 97

6.2 Problem Statement and Assumption 98

6.3 Reconstructing DPDS via Block Decomposition 99

6.4 The Process of Recovering Structural Controllability 105

6.5 Time Complexity . 114

6.6 Summary . 115

7 The Effect of Rewiring Edges on the Structural Controllability 117

7.1 Overview . 117

7.2 Problem Statement and Assumption 117

7.3 Reconstructing DPDS via Directed Star Decomposition 118

7.4 The Process of Rewiring Edges . 121

viii

CONTENTS

7.5 Time Complexity . 135

7.6 Summary . 136

8 Summary and Conclusions 137

8.1 Conclusion . 137

8.2 Directions for Future Work . 139

Bibliography 141

ix

List of Figures

2.1 The Representation of the System (A,B) in Graph 17

2.2 An Example of Controllability [73] . 18

2.3 An Example of a Cactus [71] . 20

2.4 Control a Simple Network (1) . 21

2.5 Control a Simple Network (2) . 22

2.6 Control a Simple Network (3) . 23

2.7 Control a Simple Network (4) . 24

2.8 An Example of The Maximum Matching 26

2.9 The Matching in a Directed Graph and its Bipartite Representation . . . 27

2.10 An Example of a Dominating Set . 30

2.11 An Example of a Power Dominating Set 32

3.1 A Block of Graph G [16] . 43

3.2 An Example of A Block-Star [16] . 43

3.3 An Example of the Graph of a Spider [16] 44

3.4 An Example of a Block-Spider [16] . 44

4.1 The Colouring of Vertices with in/out Red Edges in a Dependency Path . 57

4.2 The Colouring of Vertices with in/out Blue Edges in a Dependency Path . 57

4.3 The Colouring of Vertices with in/out Blue/Red edges in a Dependency

Path . 57

4.4 A Dependency Cycle . 62

4.5 The Detection of a Dependency Cycle . 67

4.6 The Computation of Forget Node in a Valid Colouring 70

xi

LIST OF FIGURES

4.7 The Computation of Origins of Introduce Node in a Valid Colouring . . . 72

4.8 The Computation of Origins of Join Node in a Valid Colouring 74

5.1 Articulation Points with Different Edge Types in a DFS 83

5.2 Case Enumeration for Colouring of the Neighbours of a PDS in a DFS . 89

5.3 Case Enumeration for Adding Red Edges to the Neighbours of a PDS in

a DFS . 92

6.1 Re-Construction of Blocks of a Directed graph via Red Edges 101

6.2 A Construction of a Block Cut-Vertex Tree (TB) of a Directed PDS 103

6.3 Case Enumeration for the Removal of a Blue Edge-Cut Set 105

6.4 Recovering Vertices of a Block via Internal Blue Edges in the Presence of

a Compromised Node (v 2 PDS) or (v /2 PDS) 106

6.5 Recovering Vertices of a Block via External Blue Edges in the Presence of

Compromised Nodes (v 2 PDS) or (v /2 PDS) 109

6.6 Recovering Vertices of a Block via Adding Red Edges in the Presence of

a Compromised Node (v 2 PDS) or (v /2 PDS) 110

7.1 Examples of Undirected Stars . 119

7.2 Decomposition of Directed Stars in a Valid Colouring of Directed Graph . 121

7.3 A Directed Graph . 123

7.4 The Case (1) of Colouring a Blue Edge in a Valid Colouring 126

7.5 The Case (2) of Colouring a Blue Edge in a Valid Colouring 127

7.6 The Case (3) of Colouring a Blue Edge in a Valid Colouring 128

7.7 The Case (4) of Colouring a Blue Edge in a Valid Colouring 129

7.8 An Example of Identification of the Number of Rewiring Red Edges in

a Valid Colouring . 131

7.9 Case Enumeration of Rewiring Red Edges Mechanism in a Valid Colouring133

7.10 Case Enumeration for Adding Red Edges in a Valid Colouring 135

xii

List of Tables

3.1 NP-Completeness on Different Graph Classes for DS and PDS Problems 37

3.2 The Approximate Upper Bounds for a Power Domination Set 38

4.1 The Summary of Time Complexity of the Algorithm 4.1 78

xiii

List of Theorems

2.1 Controllability of LTI Systems . 15

2.2 Structural Controllability, Lin [69] . 20

2.3 Minimum Inputs, Liu et al. [71] . 27

3.2 A PDS of Trees, Haynes et al. [52] . 40

3.6 A PDS on Undirected Graphs with Tree-Width, Guo et al. [49] 41

4.3 The 7-Colourings of a Dependency Path in a Valid Colouring 59

4.4 A Valid Colouring of a Directed Graph . 61

5.1 Cut-Vertex or an Articulation Point in a PDS 83

5.5 A PDS in a DFS Structure . 92

5.6 Partition Colouring in a DFS . 93

6.3 A PDS in a Block Cut-Vertex Tree . 104

7.2 The Impact of a Open Neighbours Set on Vertices in a PDS 123

7.7 The Impact of Rewiring Edges on Structural Controllability 132

xv

List of Lemmata

3.1 k Vertices of Degree of at Least 3 in a PDS, Haynes et al. [52] 39

3.3 The Spider Number of a Tree (T) by Haynes et al. [52] 40

3.4 The Relationship Between a Spider and a PDS by Haynes et al. [52] . . . 40

3.5 The Number of a PDS in Trees by Haynes et al. [52] 40

3.7 A PDS on Directed Graphs, Aazami and Stilp [2] 42

3.8 A PDS in Block Graphs, Atkins et al. [16] 44

3.9 A Cut-Vertex in Block (Undirected) Graphs, Xu et al. [107] 44

4.1 A Nice Tree Decomposition, Kloks [62] . 54

4.2 A Valid Colouring of a Directed Graph, Aazami and Stilp [2] 57

4.5 The Time Complexity of a Dependency Cycle 67

4.6 Time Complexity of a PDS for a Directed Graph 77

5.2 A Valid Orientation of an Undirected Graph, Guo et al. [49] 88

5.3 The Number of Dependency Paths in a Valid Colouring 88

5.4 The Addition of Red Edges to the Neighbours of a PDS in a DFS 90

5.7 Time Complexity of Re-using a Remaining PDS Structure 94

6.1 A Construction of a Block Cut-Vertex Tree 102

6.2 A Construction of a Block Cut-Vertex Tree of a Directed PDS 102

6.4 Recovering Vertices of a Block with Compromised Nodes v 2 PDS . . . 107

6.5 Recovering Vertices of a Block with Compromised Nodes v /2 PDS . . . 108

6.6 Colouring an External Blue Edge to a Red Edge in a Block 109

6.7 The Addition of Red Edge in a Compromised Block 111

6.8 The Number of a PDS in the Presence of a Compromised Node 112

6.9 The Relation between Dependency Paths and the Neighbours of a PDS . 113

xvii

LIST OF TABLES

6.10 Recovering Controllability in Presence of Compromised Nodes 114

6.11 Time Complexity of Recovering in Presence of Compromised Nodes . . 114

7.1 The Identification of a Directed Star in a Valid Colouring 122

7.3 Colouring Blue Edges in a Valid Colouring 124

7.4 Re-directing Blue Edges in a Valid Colouring 125

7.5 The Number of Rewiring Red Edges (RRE) 129

7.6 Rewiring Red Edges (RRE) Mechanism 131

7.8 The Addition of Red Edges in a Valid Colouring 134

7.9 Time Complexity of Rewiring Edges in Structural Controllability 135

xviii

List of Definitions

1.1 The Erdős-Rényi Model . 3

2.1 A Non-Accessible Node in Structural Controllability, Lin [69] 19

2.2 Dilation in Structural Controllability, Lin [69] 19

2.3 Elementary Paths and Cycles in Structural Controllability, Liu [71] 19

2.4 A Stem in Structural Controllability, Lin [69] 19

2.5 A Bud in Structural Controllability, Lin [69] 19

2.6 Cactus in Structural Controllability, Lin [69] 19

2.7 The Maximum Matching in a Directed Graph 26

2.8 Alternating Paths . 28

2.9 Augmenting Paths . 28

2.10 Properties of Augmenting Paths . 29

2.11 Hungarian Algorithm . 29

2.12 A Dominating Set . 30

2.13 A Power Dominating Set for a Graph . 31

2.14 A Power Dominating Set Problem . 32

2.15 A Directed Power Dominating Set Problem 32

2.16 A Directed PDS . 32

3.1 A PDS on Directed Graphs, Aazami and Stilp [2] 42

3.2 Cut-Vertex or Articulation Point . 42

3.3 A Block of a Graph, [51] . 43

3.4 An End-Block . 43

3.5 Block-Star . 43

3.6 A Spider Graph . 43

xix

LIST OF TABLES

3.7 A Block-Spider . 43

4.1 Tree Decomposition . 54

4.2 Tree-Width . 54

4.3 A Nice Tree Decomposition . 54

4.4 The Colouring of a Directed Graph . 55

4.5 A Valid Colouring, Aazami and Stilp [2] . 55

4.6 A Valid Colouring for a Directed Graph . 55

4.7 The Origins of a Valid Colouring for a Directed Graph 56

4.8 A Dependency Path in a Valid Colouring 56

4.9 The 7-Colourings of a Dependency Path 57

4.10 A Dependency Path in a Valid Colouring of a Directed Graph 58

4.11 The Computation of Forget Nodes in a Valid Colouring 69

4.12 The Computation of Introduce Nodes in a Valid Colouring 71

4.13 The Computation of Origins of Introduce Nodes in a Valid Colouring . . 72

4.14 The Computation of Join Nodes in a Valid Colouring 73

4.15 The Computation of Root r in a Valid Colouring 75

5.1 Depth First Search (DFS), Gibbons [46] . 81

5.2 DFS Edge Classification . 82

5.3 Cut-Vertex or Articulation Points in a DFS 82

5.4 A Colouring of a Directed Graph in a DFS 85

5.5 The Origins of a Valid Colouring in a DFS 85

5.6 A Valid Colouring of a Directed Graph in a DFS 85

5.7 A Dependency Path in a Valid Colouring of a DFS 86

5.8 Colouring of the Neighbours of a PDS in a DFS 87

5.9 Minimising a PDS by Colouring Forward and Cross Edges in a DFS . . . 89

6.1 A Compromised Node . 97

6.2 A Block . 99

6.3 A Cut-Vertex or an Articulation Point in a Block 100

6.4 A Weakly Red-Connected Component in a Valid Colouring 100

xx

LIST OF TABLES

6.5 A Set of Weakly Red-Connected Components 100

6.6 A Leaf and Tail of a Weakly Red Connected Component 100

6.7 A Blue Edge-Cut Set in a Valid Colouring 100

6.8 A Cut-Vertex (or an Articulation Point) in a Valid Colouring 101

6.9 A Block of a Directed PDS in a Valid Colouring 101

6.10 A Block Cut-Vertex Tree (TB) of a Directed PDS 102

7.1 An Internal Vertex . 118

7.2 An Undirected Star . 119

7.3 The Neighbourhoods of a Vertex . 119

7.4 A Dependency Path in a Valid Colouring 119

7.5 A Set of Dependency Paths in a Valid Colouring 119

7.6 The Diameter of a Graph . 119

7.7 A Blue Edge-Cut Set in a Valid Colouring 120

7.8 A Directed Star (DS) in a Valid Colouring 120

7.9 A Head and Tail of a Dependency Path 120

7.10 The Case Enumeration for Colouring and Re-directing Blue Edges 125

xxi

List of Algorithms

2.1 Finding The Maximum Matching Set in a Bipartite Graph [55]. 29

2.2 The Construction of a PDS by Haynes et al. 33

4.1 The Generation of a PDS for a Directed Graph H = (V,E) 76

5.1 Generation of a Minimum PDS via a DFS Structure 95

6.1 Recovering Vertices of a Block via Internal Blue Edges in the Presence

of Compromised Nodes . 108

6.2 Recovering Vertices of a Block via External Blue Edges in the Presence

of Compromised Nodes . 110

6.3 Recovering Vertices of a Block via Adding Red Edges Inside a Block in

the Presence of Compromised Nodes . 112

7.1 Colouring and Redirecting Blue Edges in Rewiring Red Edges Mech-

anism . 129

7.2 Rewiring Red Edges (RRE) Mechanism 134

xxiii

Chapter 1

Introduction

1.1 Overview

This chapter gives an overview of the research questions in this thesis. We provide

the motivation for the research and describe the contributions of this thesis. The

overall structure of the thesis is hereby presented.

1.2 Motivation

Control systems are ubiquitous in cyber-physical systems as employed in most crit-

ical infrastructure systems. Large-scale distributed control systems such as those

encountered in electric power networks or industrial control systems could be vul-

nerable to attacks, in which adversaries can take over control of at least part of the

control network by compromising a subset of nodes. The problem of controllability

of networks arises in different domains, including critical infrastructure systems

that are increasingly vulnerable to a dangerous mix of traditional and nontradi-

tional types of threats [35, 90]. The SCADA (Supervisory Control And Data Acqui-

sition) environment faces a unique challenge to secure physically the network itself,

as the nodes are scattered over a large geographical area. For instance, the Stuxnet

attack on the Iranian uranium-processing equipment galvanised researchers and

security professionals into focusing far more closely on the threats posed to the

critical infrastructure industries [41].

Controllability theory offers a comprehensive, rigorous and detailed framework

for the design and analysis of not only control systems but also of networks requir-

ing a control relationship between vertices. Controllability informally the ability to

1

1. INTRODUCTION

force a system into a desired state in a finite time or number of steps, is a fun-

damental problem studied extensively in control systems theory. In distributed

control systems, possible control relations between vertices are limited by the un-

derlying network (graph) transmitting the control signals from a single controller

or set of controllers. Attackers may seek to disrupt these relations or compromise

intermediate nodes, thereby gaining partial or total control.

For a defender to re-gain full or partial control, it is therefore critical to rapidly re-

construct the control graph as far as possible. Failing to achieve this may allow

the attacker to cause further disruptions, and may as in the case of electric power

networks also violate real-time constraints leading to catastrophic loss of control.

This offers a strong motivation to study the ability of such systems to recover from

deliberate attacks.

Recent work conducted by Liu et al. [71] has renewed interest in the seminal

work by Lin [69] on structural controllability, which provides a graph-theoretical in-

terpretation to Kalman algebraic criterion. This also allows the identification of

necessary and sufficient conditions for the identification of individual Driver Nodes

(DN) able to control a system with a given structure (topology). The ability to iden-

tify Driver Nodes must be considered crucial for both attackers and defenders in

control systems where Driver Nodes (DN) offer an obvious target for attackers to

disrupt the network control. There are several methods of identifying Driver Nodes,

but most attention has been paid to the Maximum Matching approach [71]; this ap-

proach by Liu et al. is based on a non-rigorous variant of the Maximum Matching

problem to identify a subset of Driver Nodes.

We study an alternative approach based on the POWER DOMINATING SET (PDS)

problem originally proposed by Haynes et al. [52] as a refinement of DOMINAT-

ING SET. This approach gives an equivalent formulation for identifying minimum

Driver Nodes. As electric power networks must be maintained continuously to mon-

itor the state of system as defined by a set of state variables, one method of monitor-

ing these variables is to place as few measurement devices, which measure the state

2

1.3 THE ERDŐS-RÉNYI MODEL

variables in these systems, as possible at some locations. Since the cost of these de-

vices is rather high, the ability to minimise their numbers is highly desirable while

monitoring the entire system [52]. However, the problem of locating the smallest

set of sensors to monitor the entire system is a graph theory problem introduced

by Haynes et al. as a model for studying electric power networks, and as an extension

to the well-known DOMINATING SET (DS) problem. Haynes et al. [52] showed that

a PDS is NP-complete even when restricted to bipartite graphs or chordal graphs.

However, there are some dynamic programming algorithms proposed by Aazami

and Stilp [1] as well as Guo et al. [49] that find approximation algorithms to solve

the PDS problem optimally in polynomial time on graphs of bounded tree-width,

where a PDS is only approximable with recent results by Aazami bounding this to

a factor of 2log
1�e n, unless NP ✓ DTIME(npolylog(n)

).

1.3 The Erdős-Rényi Model

Erdős-Rényi [40] published a seminal article in which they introduced the concept

of a random graph as defined in the following:

Definition 1.1 (The Erdős-Rényi Model)

Given a positive integer n and a probability value 0  p  1, define the graph G(n, p) to

be the undirected graph on n vertices whose edges have probability p of existing such that

for all pairs of vertices v, w there is an edge (vw) with probability p, where the number of

edges in a G(n, p) graph is a random variable with expected value
�

n
2

�

p.

As a baseline, we initially study directed Erdős-Rényi graphs on the basis that:

a. They represent a widely studied class of graphs that has been extensively con-

sidered in respect of various problems concerning graph theory, and

b. random graphs constitute an important and active research area, with numerous

models that have been applied to communication networks.

3

1. INTRODUCTION

1.4 Research Questions

The problem of defending a distributed system against subversion and external

attacks can be viewed in the light of recent studies in controllability theory. As struc-

tural controllability proposed by Lin [69] provides a graphical-theoretical interpre-

tation for Kalman algebraic criterion, we represent the solutions of the research

problems, set forth in this thesis, from a graphical-theoretical point of view and

not from an engineering perspective. We therefore design algorithms that have

the ability to regain or maintain approximate structural controllability for directed

Erdős-Rényi random graphs via the PDS formulation in the case of removing the

vertices or/and edges of a directed graph. The algorithms presented in this thesis

do not focus on how the control graph has been attacked; rather, we assume that a

given graph is subjected to intentional or random removal.

1.4.1 Preliminary Definitions and Notation

Erdős-Rényi (ER) is a model for generating random graphs. Let a graph G = (V,E),

generated by ER, represents a control network e.g. for a power network where a

vertex represents an electrical or control node (a substation bus where transmission

lines, loads, and generators are connected) and an edge may represent a transmis-

sion line or a communication link joining two electrical nodes. A vertex u is called

an out-neighbour of a vertex v if there is a directed edge from v to u in G. Similarly, u

is called an in-neighbour of v if the directed edge (uv) is present. The neighbourhood

of a vertex v in the graph G, denoted NG(v), is the set NG(v) = u 2 V : uv 2 E.

The members of NG(v) are called the neighbours of v. The closed neighbourhood of

a vertex v, denoted NG[v], is the set NG[v] = NG(v) [v. The degree of a vertex

v is denoted by d(v). The number of out-neighbours of v is called the out-degree

of v denoted by d+(v), the in-degree d�(v) is defined similarly. A directed edge

(vu) that points from vertex v to vertex u is said to be incident from v and incident

to u. A path in G from a vertex u to a vertex v is a sequence of distinct vertices

u = v
0

, v
1

, . . . , vt = v so that (vi, vi+1

), i = 0, . . . , t � 1, are in E(G). A path from u

4

1.4 RESEARCH QUESTIONS

to v together with the edge (vu) is called a cycle. A directed graph is weakly con-

nected if there is an undirected path between any pair of vertices in the underlying

undirected graph, which it is obtained by ignoring the directions of the edges of

the directed graph.

1.4.2 Assumptions

Throughout this thesis, the graph that we consider is a directed graph G = (V,E),

constructed as ER(n, p) with a set of vertices n, where each edge included in the

graph G is determined independently with the edge probability p such that each

pair of vertices u, v 2 n is connected with the same edge probability for each direc-

tion. We rely on a number of assumptions:

1. For the resulting instances of ER(n, p), we consider the directed graphs that

have no self-loops nor parallel edges, but may have two edges with different

directions on the same two end vertices (called antiparallel edges) and may

have directed cycles.

2. We consider the directed connected graphs such that the resulting instance

of ER(n, p) is denoted by G
0
= G \ M , where M = (VM , EM) denotes a set

of isolated vertices form G such that 8v 2 VM , the out-degree of a vertex v

is d+M (v) = 0 and the in-degree of a vertex v is d�M (v) = 0 (i.e. there is no

directed in-edge from u 2 G to v 2 VM). Similarly, no directed out-edge from

v 2 VM to u 2 G such that G0
= G \M denotes a set of connected vertices V

and a set of possible edges E.

3. G
0 is weakly connected, where the underlying undirected graph is connected,

such that there is an undirected path from u to v and a directed path from v

to u. Note that the implication of using weakly connected graphs is to avoid

the trivial solutions when assuming strongly connected graphs to reconstruct

a PDS.

4. The algorithms presented in this thesis assume a complete view of the status

of the graph after an attack, and the computation time of the algorithms is

related to time complexity and not real time.

5

1. INTRODUCTION

1.4.3 Structural Controllability Analysis via Embedding Power

Dominating Set Approximation in Erdős-Rényi Graphs

The first research question is to describe the problems of controllability and structural

controllability as represented by the PDS problem and investigate different attacks

affecting control networks. We therefore review existing work on graph classes, for

which a PDS has been studied before, identifying a possible embedding of such

structures in Erdős-Rényi graphs of different density as well as the approximation

characteristics, which can be achieved in order to adapt the ideas used for solving

the DIRECTED POWER DOMINATING SET problem. This allows the rapid identifi-

cation of feasible alternative control structures, where attackers have damaged or

compromised the original control network, and the recovering of partial controlla-

bility if a control network has been partitioned (see Chapter 3).

1.4.4 Reconstruction of Structural Controllability over Erdős-Rényi

Graphs via Power Dominating Sets

For the second research question, let G0
= (V,E) be a directed graph, reconstructed

as ER(n, p), and given an instance of a Directed PDS, defined by S
0 , for G

0 . As-

sume that attackers in a position to eliminate some vertices of G0 (i.e. in real-world

context when an electric actuator or industrial sensor in power systems are sub-

jected to intentional or random removal). This deletion of vertices may lead to a

disconnected component of a directed graph G
0 , defined by H = (V,E), where

H = (V,E) ⇢ G
0 is partitioned from the original graph G

0 such that V (H) /2 V (G
0
)

and E(H) /2 E(G
0
) (i.e. there exists no edge in H whose one end vertex is in G

0

and verse vice). As a result, a PDS of a directed graph H = (V,E) (i.e. a discon-

nected component of graph G
0) may have a different PDS from the remainder of

S
0 . The question is how to regain or maintain structural control of H (i.e. how to

recover a Directed PDS for a given directed graph H = (V,E) in the presence of

attackers in a position to eliminate vertices of the control graph). We therefore pro-

pose a reconstruction algorithm for (directed) control graphs of bounded tree-width

6

1.4 RESEARCH QUESTIONS

embedded in Erdős-Rényi random graphs based on recent work by Aazami and

Stilp as well as Guo et al. This approach supposes that a nice tree decomposition of a

directed graph H = (V,E) is given such that the underlying undirected graph has

bounded tree-width (see Chapter 4).

1.4.5 Recovering Structural Controllability on Erdős-Rényi Graphs via

Partial Control Structure Re-Use

The contribution of this research question is to study the case of sparse Erdős-Rényi

graphs with directed control edges and seek to reduce the average-case complex-

ity of a reconstruction algorithm for (directed) control graphs proposed in the re-

search question (1.4.4). While this does not improve the worst-case complexity,

we obtain an enhanced average-case complexity that offers a substantial improve-

ment where sufficient fragments of the original control graph remain, as would

be the case where an adversary could only take over regions of the network and

thereby achieve partial control. We therefore propose a novel algorithm based on

a DFS structure, which yields an improved average-case complexity over previous

research question (1.4.4), after an event or attack leading to disrupt legitimate con-

trol, and therefore, compromise controllability of dependent nodes or disconnect

parts of the control original graph. This DFS-based approach reduces the average-

case complexity of the recovery algorithm by re-using remaining fragments of the

original, efficient control graph where possible and identifying previously un-used

edges to minimise the number of a PDS (see Chapter 5).

1.4.6 Recovering Structural Controllability in the Presence of

Compromised Nodes

Large-scale distributed control systems such as those encountered in electric power

networks or industrial control systems could be vulnerable to attacks, in which

adversaries take over control of at least part of the whole network by compromising

a subset of nodes. Attackers may seek to disrupt these relations or compromise

7

1. INTRODUCTION

intermediate nodes, thereby gaining partial or total control of a distributed system.

The purpose of this research question is to investigate the structural controllability

of the control graph in LTI systems, and address the question of how to recover

a control graph as far as possible if the PDS or its dependent nodes have been

partially violated without complete re-computation. We therefore study the case

of sparse Erdős-Rényi graphs with directed control edges and seek to provide an

approximation of an efficient reconstructed control graph. The approach is based

on a BLOCK DECOMPOSITION of a directed graph, allowing the identification of its

Cut-Vertices and cut-edges, and ultimately the re-gaining of a PDS for a graph (see

Chapter 6).

1.4.7 The Effect of Rewiring Edges on Structural Controllability

Electric power networks must be maintained continuously to monitor their sys-

tems state by placing as few measurement devices as possible at strategic locations.

Because of the high cost of these devices, the ability to minimise their numbers

is highly desirable for monitoring the entire system. However, the problem of

monitoring an electric power system by placing as few measurement devices in

the system as possible is closely related to the well-known domination problem

in graphs. We therefore study the case of sparse Erdős-Rényi graphs with directed

control edges to achieve a minimal PDS without changing the total number of edges

while maintaining the structural controllability of a graph. The approach is based on

a DIRECTED STAR decomposition of a directed graph, allowing us to identify the

number of out-neighbours of a PDS, and ultimately achieving of a minimal PDS (see

Chapter 7).

1.5 Structure of the Thesis
This thesis is structured as follows: Chapter 2 introduces a literature review of con-

trollability and structural controllability as represented by the PDS problem. Chap-

ter 3 reviews existing work on graph classes, for which a PDS has been stud-

ied before, identifying a possible embedding of such structures in Erdős-Rényi

8

1.6 PUBLICATIONS

graphs of different density as well as the approximation characteristics, which can

be achieved in order to adapt them for solving the DIRECTED POWER DOMINAT-

ING SET problem. Chapters 4 to 6 are previously published papers as shown in the

following section.

1.6 Publications
The material of this thesis contains papers previously published in conjunction

with my academic supervisor Dr. Stephen D. Wolthusen, as follows:

• Chapter 3 [12]: Analysis of the structural controllability of the control graph

over directed Erdős-Rényi graphs via the POWER DOMINATING SET prob-

lem is undertaken in this paper reviewing existing work on graph classes

for which a PDS has been studied before in order to adapt the methods used

for solving the DIRECTED POWER DOMINATING SET problem.

• Chapter 4 [13]: This paper contributes to recovering the control graph via

computing a Directed PDS for a given graph when adversaries have the ability

to compromise controllability of dependent nodes or disconnect parts of the

original control network.

• Chapter 5 [14]: We propose a novel algorithm using a DFS-based approach,

which yields an improved average-case complexity of a reconstruction algo-

rithm for (directed) control graphs over the previous work [13].

• Chapter 6 [15]: The contribution of the paper is to investigate the structural

controllability of the control graph in LTI systems, and address the question

of how to restore a control graph as far as possible in the presence of such

compromised nodes without complete re-computation.

• Chapter 7 [submitted to review]: This paper studies the case of sparse Erdős-

Rényi graphs with directed control edges to achieve a minimal PDS without

changing the total number of edges while maintaining the structural controlla-

bility of a graph. The approach is based on a DIRECTED STAR decomposition

of a directed graph, allowing us to identify the number of out-neighbours of a

PDS, and ultimately achieving of a minimal PDS.

9

Chapter 2

Background

2.1 Overview

Controllability and observability represent two major concepts of modern control sys-

tem theory. Most attention is being paid from various fields such as statistics, math-

ematics, computer science, biology, control theory and physics. Thus, extensive re-

search has been proposed to show how control theory can be applied to network

controllability [71, 73]. This chapter elaborates the problems of controllability and

structural controllability as represented by the PDS problem with emphasis on Lin-

ear Time Invariant systems (LTI).

2.2 Controllability Theory

The concept of controllability was introduced by R. Kalman in 1960, which offers a

comprehensive, rigorous and detailed framework for the design and analysis of not

only control systems but also of networks requiring a control relationship between

vertices. The safe, secure and effective operation of critical infrastructures such

as electric power, telecommunications and computer networks relies on the ability

to monitor the state of a given system or network, or more formally the ability to

observe the state, and where this is not possible directly, to estimate the state of

a system. This is a pre-requisite for the ability to force a system from one state

to another within a pre-defined finite interval. The notion of control in network

theory is described as the following: a directed network, N
2

is said to be controlled

by another N
1

, if there is a directed path from N
1

to N
2

. However, the concept of

controllability in control theory is defined as the behaviour of the network on the

11

2. BACKGROUND

basis of the dynamical model [73]. Informally, controllability requires that a desired

configuration can be forced from an arbitrary configuration in a finite number of

steps. More formally, Kalman controllability is defined (for the simple case of a Time-

dependent Linear Dynamical System) as:

ẋ(t) = Ax(t) +Bu(t), x(t
0

) = x
0

(2.1)

with x(t) = (x
1

(t), . . . , xn(t))T the current state of a system with n nodes at time

t, a n ⇥ n adjacency matrix A representing the network topology of interactions

among nodes, and B the n ⇥m input matrix (m  n), identifying the set of nodes

controlled by a time-dependent input vector u(t) = (u
1

(t), . . . , um(t)) which forces

the desired state. The system in equation (2.1) is controllable if and only if:

rank [B,AB,A2B, . . . ,An�1B] = n (Kalman rank criterion) (2.2)

giving the mathematical condition for controllability, where the rank of the control-

lability matrix provides the dimension of the controllable subspace of the system

(A,B). However, it is computationally hard to verify this criterion for large com-

plex networks, as the number of input combinations grows exponentially with the

number of nodes (⇠ 2

N) [71, 105]. Therefore, since verifying the condition is known

to be prohibitively expensive, approximations are required particularly for larger

graphs. Efficient ways to achieve structural controllability of LTI systems together

with robustness have been extensively studied in recent years [82, 89, 91].

2.2.1 The Formulations of Controllability

Continuous and discrete time systems that are both Linear and Time Invariant play

a central role in digital signal processing, communication engineering and control

applications. Therefore, the following shows how controllability of discrete-time

systems is given in terms of the controllability matrix. However, the continuous-

time system is not discussed in this thesis.

12

2.2 CONTROLLABILITY THEORY

2.2.1.1 Discrete Linear Time Invariant Systems

Consider a linear discrete time invariant control system defined by:

ẋ(k + 1) = Adx(k) +Bdu(k), x(0) = x
0

(2.3)

The system controllability is defined as an ability to transfer the system from any

initial state x(0) = x
0

to any desired final state x(k
1

) = xf in a finite time. In order

to find a control sequence u(0), u(1), . . . , u(n � 1), such that x(k) = xf , assuming

that the input u(k) is a scalar, i.e. the input matrix Bd is a vector denoted by bd.

Thus, we have:

ẋ(k + 1) = Adx(k) + bdu(k), x(0) = x
0

(2.4)

Taking k = 0, 1, 2, . . . , n in (equation: 2.4), we obtain the following set of equations:

x(1) = Adx(0) + bdu(0)

x(2) = Adx(1) + bdu(1) = A2

dx(0) +Adbdu(0) + bdu(1)

...

x(n) = An
dx(0) +An�1

d bdu(0) + . . .+ bdu(n� 1)

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

(2.5)

(equation: 2.5) can be written in a matrix form as:

x(n)�An
dx(0) =



bd
... Adbd

... . . .
... An�1

d bd

�

2

6

6

6

6

6

6

6

6

6

6

4

u(n� 1)

u(n� 2)

...

u(1)

u(0)

3

7

7

7

7

7

7

7

7

7

7

5

(2.6)

Note that [bd
... Adbd

... . . .
... An�1

d bd] is a square matrix. It is called the controllability

matrix and denoted by C. If the controllability matrix C is nonsingular, (equation:

13

2. BACKGROUND

2.6) produces the unique solution for the input sequence where:
2

6

6

6

6

6

6

6

6

6

6

4

u(n� 1)

u(n� 2)

...

u(1)

u(0)

3

7

7

7

7

7

7

7

7

7

7

5

= C�1

(x(n)�An
dx(0)) (2.7)

Thus, for any x(n) = xf , the expression in (equation: 2.6) determines the input

sequence that transfers the initial state x
0

to the desired state xf in n steps. In this

case, it follows that the controllability condition is equivalent to a non-singularity of

the controllability matrix C.

In a general case, when the input u(k) is a vector of dimension r, the repetition

of the same procedure as in (equation: 2.3) - (equation: 2.5) leads to:

x(n)�An
dx(0) =



Bd
... AdBd

... . . .
... An�1

d Bd

�

.

2

6

6

6

6

6

6

6

4

u(n� 1)

u(n� 2)

...

u(0)

3

7

7

7

7

7

7

7

5

(2.8)

Thus, the controllability matrix C, in the general vector input case, defined by:

C(Ad,Bd) =



Bd
... AdBd

... . . .
... An�1

d Bd

�

(2.9)

is of dimension (n ⇥ r.n). The corresponding system of linear algebraic equations

in r.n unknowns for n r-dimensional vector components of u(0), u(1), . . . , u(n� 1),

given by:

Cn⇥(n.r)

2

6

6

6

6

6

6

6

6

6

6

4

u(n� 1)

u(n� 2)

...

u(1)

u(0)

3

7

7

7

7

7

7

7

7

7

7

5

(n.r)⇥1

= x(n)�An
dx(0) = xf �An

dx(0) (2.10)

This equation (2.10) will have a solution for any xf if and only if the matrix C has

a full rank, i.e. C = n as defined in (equation: 2.9).

14

2.3 STRUCTURAL CONTROLLABILITY

Theorem 2.1 (Controllability of LTI Systems)

An linear discrete time system is controllable if and only if:

rank [C] = n (2.11)

2.3 Structural Controllability

As the Kalman rank criterion gives the mathematical condition for controllability,

where the rank of the controllability matrix provides the dimension of the control-

lable subspace of the system (A,B), the verification of the condition is prohibitively

expensive in particular for large complex networks [71, 105]. Therefore, the struc-

tural controllability of LTI systems has been studied extensively after seminal work

of Lin [33, 69, 71, 83]. The key contributions of Lin provided a graph-theoretical

interpretation for control systems as first described by Kalman [59], which is par-

ticularly suitable for studying sets of nodes offering the ability to control an entire

system as represented by a control graph.

The concept of structural controllability was first introduced by Lin in 1970s [69]

where the basic idea relies on the LTI system (equation: 2.12). The main result of

the seminal work by Lin shows that the system (A,B) is structurally controllable

if and only if the representation of a graph of (A,B) is spanned by a cactus [69].

The basic idea is that the set of all controllable pairs in the system (equation: 2.12)

is open and dense in the space of all pairs (A,B) with standard metric [69], such

that if a pair (A
0

,B
0

) is not controllable, then for every ✏ > 0, there exists a com-

pletely controllable pair (A,B) with ||A �A
0

|| < ✏ and ||B � B
0

|| < ✏ where ||.||
denotes matrix norm [69]. This result reflects a physical point of view. Practically,

for every pair (A,B), most of values of A and B are not known precisely except

the entries, which are equal to zero [69]. Thus, Lin assumes that some entries of

A and B are precisely zero, while all the entries are known approximately. So,

the system (A0,B0) is said to be structurally controllable if and only if there exists

a completely controllable (A,B) which has the same structure as (A0,B0). This

means that both the pair (A,B) and another pair (

˜A, ˜B), of the same dimensions

15

2. BACKGROUND

are the same structure, provided every fixed (zero) entry of the matrix (AB), the

corresponding entry of the matrix (˜A, ˜B) is a fixed (zero) and, at the same time, for

every fixed (zero) entry of (˜A, ˜B), the corresponding entry of (AB) is also a fixed

(zero) [69].

However, the matrices A and B in (equation: 2.12) are considered to be structured

ones, i.e. their elements are either fixed zeros or independent free parameters. This

reflects the fact that in reality the system parameters are often not known precisely

except the zeros that mark the absence of connections between components of the

system. Therefore, if no entry of (A,B) includes a fixed (zero), then the pair (A,B)

is structurally controllable. Conversely, if there are some entries of (A,B) with a

fixed (zero) then the pair may not be structurally controllable. So, the system (A,B)

is said to be structurally controllable, if the matrices A and B are structured. This

implies it is possible to fix the elements of A,B (free parameters) to certain values

in order to obtain the system (A,B) controllable, where the matrix rank [C] = n

[69, 71].

2.3.1 The Graph of Pair (A,B)

The factors A and B in (equation: 2.12) are matrices, where A 2 Rn⇥n is an adja-

cency matrix giving the network topology identifying interaction among vertices,

and A 2 Rn⇥m is the input matrix, where m  n, identifying the set of vertices con-

trolled by the input vector u(t). The structural controllability theorem gives the suf-

ficient and necessary condition for a system to be structurally controllable through

using graph-theoretical interpretations [69]. The whole system is defined by (A,B),

that can be represented by a directed graph G(A,B) = (V,E) as given in [71],

where V = VA [VB are the set of vertices and E = EA [EB are the set of edges.

In this representation, VB comprises vertices able to inject control signals into the

entire network, i.e. those constituting u(t) in (equation: 2.12).

ẋ(t) = Ax(t) +Bu(t), x(t
0

) = x
0

(2.12)

16

2.3 STRUCTURAL CONTROLLABILITY

u

x
1

x
6

x
7

x
8

x
2

x
4

x
9

x
10

x
11

x
12

x
13

x
3

x
14

x
15

x
16

x
5

x
17

Figure 2.1: The Representation of the System (A,B) in Graph where the system
is controlled by an input vertex (in the square form) and its edges are marked in
blue. The green vertices denote matched nodes, and an unmatched node (marked
in white) pointed by the input is called a controlled node (i.e. DN). The red and
black edges show Matching and non-Matching edges, respectively.

The system in (equation: 2.12) is denoted by (A,B), and it is represented by

a directed graph G(A,B) = (V,E) as given in [71], where V = VA [VB are the

vertex set and E = EA [EB are the edge set. The set of state vertices is defined

as VA = x
1

, . . . , xn := v
1

, . . . , vn, corresponding to the n nodes in the network. For

instance, all vertices {x
1

, . . . , x
17

} in Figure 2.1 are called state vertices and the set

of input vertices is defined as VB = u
1

, . . . , um := vn+1

, . . . , vn+m, corresponding to

the m inputs (e.g. u in Figure 2.1). The set of edges between state vertices is defined

as EA = (xj , xi)|aij 6= 0, i.e. the links in the network and the set of edges between

input vertices and state vertices as EB = (uj , xi)|bij 6= 0. The m input vertices are

also known as the origin of a directed graph G(A,B) and state vertices xi connected

to the origin u are called controlled nodes (e.g. x
1

, x
2

and x
3

in Figure 2.1). Note one

input vertex can be connected to multiple state vertices VA, where the number of

controlled nodes m0 � m. the controlled nodes that do not share the input vertices

u are defined by Driver Nodes (ND) (e.g. x
2

in Figure 2.1). Thus, the number of

Driver Nodes equals m, which is the number of inputs. So, if we control each node

individually, i.e. m = n, then we are able to obtain full control for a system.

17

2. BACKGROUND

u

x
1

x
2

x
3

x
4

a
21

a
12

a
13

a
41

a
14

a
34

a
24

(a) Uncontrolled network

u

x
1

x
2

x
3

x
4

a
21

a
12

a
13

a
41

a
14

a
34

a
24

(b) Uncontrolled network

u

x
1

x
2

x
3

x
4

a
21

a
12

a
13

a
41

a
14

a
34

a
42

(c) Controlled network

Figure 2.2: An Example of Controllability, from [73], where the green and white
vertices refer to matched and unmatched nodes, respectively. A square vertex im-
plies an input vertex u with a blue edge, where the unmatched vertex pointed by
the input vertex is called a controlled node (i.e. DN). The red and black edges
denote Matching and non-Matching edges, respectively.

The main goal of controllability is to control all nodes independently by a time-

dependent input u(t). For instance, Figure 2.2 represents the network with four

nodes {x
1

, x
2

, x
3

, x
4

} controlled by u, where the networks in Subfig 2.2.(a) and in

Subfig 2.2.(b) are uncontrollable systems, because if the control flow goes through

x
2

, then the node x
4

can not be controlled (i.e. no edge points from x
2

to x
4

) (see

Subfig 2.2.(a)). On the other hand, if the controllability direction goes through x
4

,

then the nodes x
2

and x
3

are sharing the same superior x
4

owing to the violation of

the controllability of a network (see Subfig 2.2.(b)). Hence, two or more subordinates

should not share one superior in order to fully control a network (i.e. each node

must be pointed by its own superior). However, a slight difference to the networks

in Subfig 2.2.(a) and Subfig 2.2.(b) can make the networks controlled, where the

edge between nodes x
1

and x
4

is reversed, hence the direction of controllability starts

from u! x
1

! x
2

! x
4

! x
3

, as in Subfig 2.2.(c).

2.3.2 Structural Controllability Theorem

The structural controllability of LTI systems has been well studied after the seminal

work by Lin [69]. Before we state the theorem of Lin, we introduce several defini-

tions.

18

2.3 STRUCTURAL CONTROLLABILITY

Definition 2.1 (A Non-Accessible Node in Structural Controllability, Lin [69])

In a general graph, any vertex (vi) (except the origin nodes) is called Non-Accessible if

and only if there are no directed paths reaching vi from the origin node vn+1

.

Definition 2.2 (Dilation in Structural Controllability, Lin [69])

Assuming that a set S is formed by k nodes (other than the origin vn+1

) in the vertex set

of a directed graph D(A,B), where S ⇢ VA. Whereby the set T (S) of a set S is defined

to be the set of all vertices vj with the property that there exists an oriented edge from vj

to a vertex in S, where T (S) = vj |(vj ! vi) 2 E(G), vi 2 S. A directed graph G(A,B)

contains a Dilation if and only if there is a subset S ⇢ VA such that |T (S)| < |S|, where

|S| or |T (S)| is the cardinality of set S or T (S), respectively.

Definition 2.3 (Elementary Paths and Cycles in Structural Controllability, Liu [71])

For a directed graph, the set of directed edges {(v1 ! v
2

), (v
2

! v
3

), . . . , (vk�1

! vk)}
where all vertices v

1

, v
2

, . . . , vk are distinct is called an elementary path (Stem), and

when vk is incident to v
1

, then it is named an elementary cycle (Bud).

Definition 2.4 (A Stem in Structural Controllability, Lin [69])

A Stem is an elementary path originating from an input vertex um 2 VB = u
1

, . . . , um.

The initial (or terminal) vertex of a Stem is called the root (or top) of the Stem.

Definition 2.5 (A Bud in Structural Controllability, Lin [69])

A Bud is an elementary cycle with an additional edge e that ends but not begins in a vertex

of the cycle. The additional edge e is called the distinguished edge of the Bud such that the

node vn+1

is called the origin of the Bud and the edge (vn+1

! vn) is the distinguished

edge of the Bud.

Definition 2.6 (Cactus in Structural Controllability, Lin [69])

A Cactus is a subgraph defined recursively as follows. A Stem is a Cactus. Given a Stem

S
0

and buds B
1

,B
2

, . . . ,Bl, then S
0

[B
1

[B
2

[. . . [Bl is a Cactus if for every i

(1  i  l) the initial vertex of the distinguished edge of Bi is not the top of S
0

and is the

only vertex belonging at the same time to Bi and S
0

[B [B
2

[. . . [Bi�1

.

19

2. BACKGROUND

The combination of Stems and Buds is called a Cactus (defined below); therefore, if a

graph of a pair D(A,B) is a Stem or a Bud, then the pair is structurally controllable

(see Figure 2.3).

x
2

x
3

x
10

x
12

x
11

u

x
7

x
8

x
9

x
1

x
4

x
5

x
6

Figure 2.3: An Example of a Cactus, from [71]. This system, represented by a Cac-
tus, is controlled by an input vertex u with blue edges. The green vertices denote
matched nodes, and an unmatched node (marked in white) pointed by the input
is called a controlled node (i.e. a Driver Node). The red and black edges represent
Matching and non-Matching edges, respectively.

Example 1 Consider Figure 2.3, the Cactus contains a Stem

{x
2

, x
7

, x
8

, x
9

} and two Buds {x
1

, x
4

, x
5

, x
6

} and {x
3

, x
10

, x
11

, x
12

}. Note that x
2

is

aDriver Node where x
1

and x
3

are not sharing the same starting vertex u. 2

Theorem 2.2 (Structural Controllability, Lin [69])

Any system (A,B) is said to be structurally controllable if a linear control system (A,B)

is structurally controllable, where a directed graph G(A,B) does not include any Non-

Accessible node or Dilation such that the G(A,B) is spanned by a Cactus.

2.3.3 Simple Examples of Controllability

The following examples, taken from [71], illustrate structural controllability:

20

2.3 STRUCTURAL CONTROLLABILITY

x
1

u
1

x
2

x
3

b
1

a
21

a
32

Figure 2.4: Control a Simple Network (1). This network is controlled by an input
vertex u with a blue edge. The green and white vertices denote matched and un-
matched nodes, respectively. The vertex pointed by u is called a controlled node
(i.e. a Driver Node). The red and black edges represent Matching and non-Matching
edges, respectively.

Example (a)

The corresponding state-transition matrix in Figure 2.4 can be written as:

2

6

6

6

6

4

ẋ
1

(t)

ẋ
2

(t)

ẋ
3

(t)

3

7

7

7

7

5

=

2

6

6

6

6

4

0 0 0

a
21

0 0

0 a
32

0

3

7

7

7

7

5

.

2

6

6

6

6

4

x
1

(t)

x
2

(t)

x
3

(t)

3

7

7

7

7

5

+

2

6

6

6

6

4

b
1

0

0

3

7

7

7

7

5

u(t) (2.13)

The controllability matrix is given by:

C = [B,AB,A2B, . . . ,An�1B] = b
1

2

6

6

6

6

4

1 0 0

0 a
21

0

0 0 a
32

a
21

3

7

7

7

7

5

(2.14)

As the rank of the controllability matrix (equation: 2.14) is C = 3 = n, this system

(equation: 2.13) is controllable where those weights (e.g. a
21

, a
32

and b
1

) are non-zero,

the system is always controllable. In other words, its controllability is independent of the

detailed values of a
21

, a
32

and b
1

.

21

2. BACKGROUND

x
1

u
1

x
3

x
2

b
1

a
21

a
31

a
33

Figure 2.5: Control a Simple Network (2). This network is controlled by an in-
put vertex u with a blue edge where the green and white vertices imply matched
and unmatched nodes. The unmatched node pointed by the input is called a con-
trolled node (i.e. a Driver Node). The red and black edges denote Matching and
non-Matching edges, respectively.

Example (b)

The corresponding state-transition matrix in Figure 2.5 can be written as:

2

6

6

6

6

4

ẋ
1

(t)

ẋ
2

(t)

ẋ
3

(t)

3

7

7

7

7

5

=

2

6

6

6

6

4

0 0 0

a
21

0 0

a
31

0 0

3

7

7

7

7

5

.

2

6

6

6

6

4

x
1

(t)

x
2

(t)

x
3

(t)

3

7

7

7

7

5

+

2

6

6

6

6

4

b
1

0

0

3

7

7

7

7

5

u(t) (2.15)

The controllability matrix is given by:

C = [B,AB,A2B, . . . ,An�1B] = b
1

2

6

6

6

6

4

1 0 0

0 a
21

0

0 a
31

0

3

7

7

7

7

5

(2.16)

This system in (equation: 2.15) is uncontrollable because the rank of the controllability

matrix (equation: 2.16) is C = 2 < n. Although, the controllability of the detailed

values of a
21

, a
31

, and b
1

are independent and non-zero, this system is uncontrollable, as it

contains a Dilation in the place a
31

x
2

(t) = a
21

x
3

(t) in the state space (i.e. fixed in a
31

x
2

(t)

= a
21

x
3

(t)).

22

2.3 STRUCTURAL CONTROLLABILITY

x
1

u
1

x
3

x
2

b
1

a
21

a
31

a
33

Figure 2.6: Control a Simple Network (3). This network is controlled by an input
vertex u with a blue edge. The matched nodes are marked in green vertices, and
an unmatched node (marked in white) pointed by the input is called a controlled
node (i.e. a Driver Node). The red and black edges show Matching and non-Matching
edges, respectively.

Example (c)

The corresponding state-transition matrix in Figure 2.6 can be written as:

2

6

6

6

6

4

ẋ
1

(t)

ẋ
2

(t)

ẋ
3

(t)

3

7

7

7

7

5

=

2

6

6

6

6

4

0 0 0

a
21

0 0

a
31

0 a
33

3

7

7

7

7

5

.

2

6

6

6

6

4

x
1

(t)

x
2

(t)

x
3

(t)

3

7

7

7

7

5

+

2

6

6

6

6

4

b
1

0

0

3

7

7

7

7

5

u(t) (2.17)

The controllability matrix is given by:

C = [B,AB,A2B, . . . ,An�1B] = b
1

2

6

6

6

6

4

1 0 0

0 a
21

0

0 a
31

a
33

a
31

3

7

7

7

7

5

(2.18)

As the rank of the controllability matrix (equation: 2.18) is C = 3 = n, this system

(equation: 2.17) is controllable. However, this example is similar to the example in Fig-

ure 2.5 with a slight difference, which is the presence of a self-edge. The alteration makes

this system is controllable. Note that as long as they are non-zero, the controllability of

the detailed values of a
21

, a
31

, a
33

, and b
1

are independent.

23

2. BACKGROUND

x
1

u
1

x
3

x
2

b
1

a
21

a
31

a
32

a
23

Figure 2.7: Control a Simple Network (4). This network is controlled by an input
vertex u with a blue edge where the green vertices denote matched nodes. An
unmatched node pointed by u is called a controlled node (i.e. a Driver Node). The
red and black edges represent Matching and non-Matching edges, respectively.

Example (d)

The corresponding state-transition matrix in Figure 2.7 can be written as:

2

6

6

6

6

4

ẋ
1

(t)

ẋ
2

(t)

ẋ
3

(t)

3

7

7

7

7

5

=

2

6

6

6

6

4

0 0 0

a
21

0 a
23

a
31

a
32

0

3

7

7

7

7

5

.

2

6

6

6

6

4

x
1

(t)

x
2

(t)

x
3

(t)

3

7

7

7

7

5

+

2

6

6

6

6

4

b
1

0

0

3

7

7

7

7

5

u(t) (2.19)

The controllability matrix is given by:

C = [B,AB,A2B, . . . ,An�1B] = b
1

2

6

6

6

6

4

1 0 0

0 a
21

a
23

a
31

0 a
31

a
32

a
21

3

7

7

7

7

5

(2.20)

This system (equation: 2.19) is controllable, because the rank of the controllability matrix

(2.20) is C = 3 = n. This system will be uncontrollable, in case of pathological situations,

where
�

a21
a31

� / �

a23a31
a32a21

�

(e.g. a
32

a2
21

= a
23

a2
31

), therefore rank (C) = 2 < n. However,

the system (equation: 2.19) can be controllable, if it should change the weight of link . As

a result, the system (equation: 2.19) can be structurally controllable as it is controllable for

almost all combinations of weights.

24

2.4 MINIMUM INPUTS THEOREM

2.4 Minimum Inputs Theorem

The ability to efficiently identify Driver Nodes (ND) results in certain assumptions as

identified recently by Liu et al. [71] who implicitly gives a criterion for both attack-

ers and defenders for vertices and edges to target. The identification of minimum

Driver Nodes (ND) via the Maximum Matching was proposed by Liu et al. [71] as a

powerful mechanism offering full control over the network and an obvious target

for attackers to disrupt these relations or compromise intermediate nodes, thereby

gaining partial or total control of a distributed system.

Two main approaches have been studied for determining VB (i.e. minimum

(ND)); most attention has been paid to the Maximum Matching approach [71] where

the Maximum Matching in a directed network is computed by mapping it to a bipar-

tite graph [71]. The contribution of Liu et al. enables us to find the size of Maximum

Matching in the corresponding directed graph G(A) in a large number of the differ-

ent classes of random directed graphs by assuming that the nodes are not dynamic.

2.4.1 Complexity of The Maximum Matching

According to Liu et al. in order to control a system, it should first identify the set

of nodes that, if driven by different signals, can offer full control over the network

(i.e. the set of Driver Nodes).

rank [B,AB,A2B, . . . ,An�1B] = n (Kalman rank criterion)

To compute Kalman rank criterion in an arbitrary network, it is important to know

the weight of each link which are either unknown for most real networks or are

known only approximately and are time dependent (for example Internet traffic)

[71]. However, even if all weights are known, a brute-force search is required to

compute the rank of [C] for (2N � 1) distinct combinations that is a prohibitively

expensive for large complex networks [71]. Therefore, to avoid the need to measure

the link weights, Liu et al. note that the system (A,B) is structurally controllable [69]

if it is possible to choose the non-zero weights in A and B such that the system

25

2. BACKGROUND

satisfies the rank of C = N. A structurally controllable system can be shown to be

controllable for almost all weight combinations, except for some pathological cases

with a zero measure that occur when the system parameters satisfy certain acciden-

tal constraints [69, 96]. Thus, structural controllability helps to overcome inherently

incomplete knowledge of the link weights in A. So, Liu et al. [71] proved that the

minimum number of Driver Nodes needed to maintain full control of the network is

determined by the Maximum Matching in the network as defined below.

2.4.2 The Maximum Matching

Liu et al. developed analytical tools to study the controllability of an arbitrary com-

plex directed network, identifying the set of DN with time-dependent control that

can guide the entire dynamics of the system. The number of DN is determined

mainly by the degree distribution allowing to calculate the analytical result by us-

ing the cavity method developed in statistical physics to predict DN from P (kin, kout)

analytically, where P (kin, kout) denotes the number of incoming and outgoing links.

Now we introduce basic definitions before giving the Minimum Inputs theorem:

Definition 2.7 (The Maximum Matching in a Directed Graph)

The Maximum Matching in a directed graph is the maximum set of edges that do not share

starting or ending nodes such that a vertex is matched if it is an ending vertex of an edge

in the Matching. Otherwise, it is unmatched. It is called perfect if all vertices are matched.

x
1

x
2

x
4

x
3

(a)

x
2

x
1

x
3

(b)

Figure 2.8: An example of the Maximum Matching. The green and white vertices
denote matched and unmatched nodes, respectively. The red edges show Matching
edges.

Note that the sufficient conditions to gain full control over a directed network as

stated in [71] are to directly control each unmatched node and there are directed

paths from the input signals to all matched nodes.

26

2.4 MINIMUM INPUTS THEOREM

Example 2 Subfig 2.8.(a) is a perfect matching in G(A) where any node can be chosen

as a Driver Node, while in Subfig 2.8.(b) the unmatched node (x
1

) is a Driver Node.2

In general, there may be different Maximum Matching for a given graph or digraph.

Therefore, the Maximum Matching of a directed graph G(A) can be found by map-

ping it to a bipartite representation where vertices can be divided into two disjoint

sets V and U such that every edge connects a vertex in V to one in U (see Fig-

ure 2.9).

x
1

x
3

x
2

(a)

x+
1

x+
2

x+
3

x�
1

x�
2

x�
3

(b)

Figure 2.9: The Matching in a directed graph and its bipartite representation. The
green and white vertices denote matched and unmatched nodes, respectively. In
Subfig (b), the bipartite representation of the digraph shown in a simple digraph
(a) has a unique Maximum Matching, which is shown in red edges. The black edges
represent non-Matching edges.

The bipartite graph is defined in the following way: H(A) = (V +

A [V �
A ,�), where

V +

A = (x+
1

, . . . , x+n) and V �
A = (x�

1

, . . . , x�n) are the set of vertices correspond-

ing to the n columns and rows of the State Matrix A, respectively. Edge set � =

(x+j , x
�
i)|aij 6= 0, such that any node i in a directed network of N nodes can have

two separate components i+ and i�. So, the number of nodes in the bipartite rep-

resentation is equal to 2n nodes [71]. If there is a directed edge from i to j in the

original network, then there will be a directed edge from i+ to j� in the bipartite

representation such that the Maximum Matching of bipartite representation is the

same as that of the directed network.

27

2. BACKGROUND

Theorem 2.3 (Minimum Inputs, Liu et al. [71])

The minimum number of inputs (NI) or equivalently the minimum number of Driver

Nodes (ND) needs to fully control a network G(A) is one if there is a perfect matching in

G(A), where any single node can be chosen as ND. Otherwise, it equals the number of un-

matched nodes with respect to any Maximum Matching, where ND is just the unmatched

nodes.

2.4.2.1 The Maximum Matching Algorithm

The Maximum Matching of a bipartite network can be identified by some standard

algorithms such as the Hungarian algorithm [64] and the Hopcrof-Karp algorithm

[79]. The basic idea underlying both algorithms is based on finding augmenting

paths that start at a free node, end at a free node, and alternate between unmatched

and matched edges on the path, where a free node is not the ending vertex of an

edge in some partial Matching. [105]. Now we introduce basic definitions [11]:

Definition 2.8 (Alternating Paths)

A Path P is said to be an alternating path with respect to a Matching M , if and only if

among every two consecutive edges along the path, only one belongs to M .

Definition 2.9 (Augmenting Paths)

Given a graph G = (V,E) and a Matching M ✓ E, a path P is called an augmenting

path for M if:

a. The two end points of P are unmatched by M .

b. The edges of P alternate between edges 2M and edges /2M .

In other words, an augmenting path is an alternating path that starts from and ends in

unmatched vertices.

The main part of the Hungarian algorithm is to find a single augmenting path per

iteration and it runs in time O(N3

) while the Hopcrof-Karp algorithm can produce

a maximal set of the shortest augmenting paths per iteration, (i.e. the Hopcrof-Karp

algorithm produces a set of as many edges as possible with the property that no

two edges share a common vertex).

28

2.4 MINIMUM INPUTS THEOREM

Definition 2.10 (Properties of Augmenting Paths)

1. The number of links in any augmenting path is odd.

2. The Matching number of an augmenting path can be increased by 1 if unmatched

and matched links are reversed.

3. A Matching is the Maximum Matching if and only if there is no augmenting

path with respect to the Matching.

Algorithm 2.1: Finding The Maximum Matching Set in a Bipartite Graph [55].
Input : A bipartite graph G = (U [V,E).
Output: Matching M ✓ E.

1 M ;;
2 repeat ;
3 P {P

1

, P
2

, . . . , Pk} a maximal set of vertex-disjoint shortest augmenting
paths ;

4 M M � (P
1

[P
2

[. . . [Pk);
5 until P = ; ;
6 return M ;

Definition 2.11 (Hungarian Algorithm)

a. Initially, set the Maximum Matching to be empty.

b. Find an augmenting path and then reverse all matched and unmatched links to obtain

a larger Matching.

c. Repeat step 2 until no more augmenting paths can be found.

29

2. BACKGROUND

2.5 Dominating Set (DS)

One of the major themes in graph theory is domination, and it is well known in

graph theory as the DOMINATING SET (DS) problem (or vertex covering) for a graph

[49, 52]. The basic problem is defined in the following definition:

Definition 2.12 (A Dominating Set)

A set S ✓ V is a Dominating Set in a graph G = (V,E) if every vertex in V \ S has at

least one neighbour in S, that is, NG[S] = V .

x
2

x
3

x
1

x
4

x
5

x
7

x
6

(a)

x
2

x
3

x
1

x
4

x
5

x
7

x
6

(b)

x
2

x
3

x
1

x
4

x
5

x
7

x
6

(c)

Figure 2.10: An example of a Dominating Set where the red vertices form a Domi-
nating Set while the white vertices are the neighbours of a vertex in a Dominating
Set

Consider Figure 2.10, a Dominating Set in each example can be different, implying

DS is not unique. Given a graph G = (V,E), where V denotes a set of vertices and

E shows edges, determine a minimum vertex set D ✓ V such that every vertex

v 2 V is contained in D or has at least one neighbour in D, i.e. every vertex not in

D is adjacent to at least one member of D [52]. The problem of finding a minimum

cardinality of a Dominating Set is a significant problem that has been extensively

studied [1, 49, 52]. The minimum cardinality of a Dominating Set of G, denoted by

�(G), is the number of vertices in the smallest Dominating Set for G. The basic deci-

sion problem DOMINATING SET is NP-complete and the parameterised intractabil-

ity results imply W [2]-completeness [49]. Unless NP-hard problems have slightly

super-polynomial time algorithms, DS is not polynomial time approximately better

than ⇥(log |V |) [42, 49].

30

2.6 POWER DOMINATING SET (PDS)

2.6 Power Dominating Set (PDS)

Electric power networks must be maintained continuously to monitor the state of

system as defined by a set of state variables. One method of monitoring these

variables is to place as few measurement devices as possible at some locations to

measure the state variables in electric power systems. Since the cost of these de-

vices is rather high, the ability to minimise their numbers is highly desirable while

monitoring the entire system [52]. However, the problem of locating the smallest

set of measurement devices is a graph theory problem introduced by Haynes et al.

as a model for studying electric power networks and as an extension to the well-

known DOMINATING SET problem, which is one of the classic decision problems

[52, 63, 107].

Non-trivial control systems and controlled networks are necessarily sparse, and

direct control of all nodes in such a network is not feasible as direct edges to these

would typically result in exorbitantly high costs as well as an out-degree of the

controller node that would be difficult to realise in larger networks. Instead, the

general case to be considered is for control to be indirect. As control systems will

seek to minimise parameters such as latency, the formulation for a PDS by Haynes

et al. [52] extended the classic DOMINATING SET problem to obtain a minimal Power

Dominating Set. The Power Domination in graphs can be summarised by two (sim-

plified) Observation Rules (OR) due to Kneis et al. [63]:

OR1 A vertex in the PDS observes itself and all of its neighbours.

OR2 If an observed vertex v of degree d � 2 is adjacent to d� 1 observed vertices,

then the remaining unobserved neighbour becomes observed as well.

Now, we define Power Dominating Set for a graph as follows:

Definition 2.13 (A Power Dominating Set for a Graph)

Input: An undirected graph G = (V,E) and an integer k � 0.

Question: Is there a set P ✓ V with |P |  k which observes all vertices in V with respect

to the two observation rules OR1 and OR2?

31

2. BACKGROUND

where P is called a PDS of G. Note the classical DOMINATING SET problem can be

defined by simply omitting OR2

Definition 2.14 (A Power Dominating Set Problem)

Given an undirected graph G = (V,E), find a minimum-size set P ✓ V such that all

vertices in V are observed by the vertices in P

Here we consider a straightforward extension to directed graphs:

Definition 2.15 (A Directed Power Dominating Set Problem)

Given a directed graph G = (V,E), find a minimum-size set P ✓ V such that all vertices

in V are observed by the vertices in P

Definition 2.16 (A Directed PDS)

Let G be a directed graph. Given a set of vertices S ✓ V (G), the set of vertices power-

dominated by S, denoted by P (S), is obtained as:

D1 If a vertex v is in S then v and all of its out-neighbours are in P (S);

D2 If a vertex v is in P (S), one of its out-neighbours denoted by w is not in P (S) and all

other out-neighbours of v are in P (S) then w is inserted into P (S). This condition

is called a Propagation rule.

PDS x
2

x
1

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

(a) Before modeling the rules of Directed PDS
(D1) and (D2) as stated in definition (2.16)

PDS x
2

x
1

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

(b) After applying the rules of Directed PDS
(D1), denoted by (dark-green) and (D2), shown
by (light-green)

Figure 2.11: An example of Power Dominating Set

Example 3 Consider Figure 2.11, Subfig 2.11.(a) shows a graph before applying the

first rule [D1] and Subfig 2.11.(b) represents a PDS obtained via applying the sec-

ond rule [D2] where the set {x
1

, x
2

, x
3

} is covered by [D1] and the set {x
4

, x
5

, x
6

} is

32

2.6 POWER DOMINATING SET (PDS)

power dominated by [D2]. However, the remaining vertices are still uncovered, as

each of {x
1

, x
6

} has two vertices that are not covered yet, meaning {x
1

, x
6

} should

be in a PDS. 2

Therefore, the POWER DOMINATING SET problem is defined by the following

question: Given a graph G = (V,E) and set of vertices P ✓ V , how to construct a

set of vertices C = V (G) that can be observed from P and a set of edges F = E(G)

are observed by P and also to minimise the size |P |. The following algorithm by

Haynes et al. determines the sets of (observed) vertices C and edges F [52]:

Algorithm 2.2: The Construction of a PDS by Haynes et al.
Input : Given a graph G = (V,E) and set of vertices P ✓ V
Output: Construct a set of vertices C = V (G) and edges F = E(G) observed

by P
1 Initialise C = P and F = {e 2 E(G)| e is incident to a vertex in P} ;
2 Add to C any vertex not already in C which is incident to an edge in F ;
3 Add to F any edge e not already in F which satisfies one of the following

conditions: ;
4 (a). both end-vertices of e are in C;
5 (b). e is incident to a vertex v of degree greater than one, for which all the

other edges incident to v are already in F ;
6 If steps 2 and 3 fail to locate any new edges or vertices for inclusion, stop.

Otherwise, go to step 2. The final state of the sets C and F give the set of
vertices and edges observed by the set P ;

33

Chapter 3

PDS Algorithms-Related Work

3.1 Overview

Following the description of the problems of controllability and structural control-

lability as represented by the PDS problem; this chapter reviews existing work on

graph classes, whereby a PDS has been studied prior in order to identify a poten-

tial embedding of such structures in Erdős-Rényi graphs for varied density and

approximation characteristics, which may be realised for the purposes of making

amendments to solve the DIRECTED PDS problem. This also allows the rapid identi-

fication of feasible alternative control structures where attackers have damaged or

compromised the original control network, and to recover partial controllability if a

control network has been partitioned.

3.2 NP-Completeness and Upper Bounds Results of

Related Work

One problem immediately arising from edge/vertex removal is the reconstruction

and recovery of control while obtaining a minimal PDS. In computational com-

plexity theory, NP-completeness is described as the complexity class of decision

problems, where NP stands for ”Non-deterministic Polynomial time”. Informally,

no polynomial solution to any of the NP-complete problems is available despite

decades of intensive research; however, it is solvable in polynomial time by a non-

deterministic turing machine [30].

35

3. PDS ALGORITHMS–RELATED WORK

The earliest publications on the PDS problem were by Brueni [28], Baldwin et al.

[18], and Mili et al. [80]. However, the study of the PDS problem in respect with

the graph theoretical representation was initiated by Haynes et al. [52] where they

proved that a PDS for a given graph G is NP-complete for general graphs even

when reduced to certain classes of graphs, such as bipartite graphs and chordal

graphs, and they proposed a linear time algorithm for the PDS problem in trees.

Guo et al. [49] showed that the PDS problem is also NP-complete for planar graphs,

circle graphs, and split graphs, and it cannot be better approximated than the

DOMINATION problem for general graphs. Parameterised results were given in

[63, 49] and they proved W [2]-complete-hardness if the parameter is the size of

the solution by reducing a Dominating Set to a PDS. Additionally, Guo et al. [49]

showed fixed-parameter tractability of a PDS with respect to a tree decomposi-

tion of bounded tree-width for the underlying graph and provided a concrete algo-

rithm transforming a PDS into an orientation problem on undirected graphs. For

the DIRECTED PDS problem, Aazami and Stilp [1] presented a linear time dynamic

programming algorithm when the underlying undirected graph has bounded tree-

width.

As the PDS problem is a generalisation of the Dominating Set (DS) problem, the

basic minimum DS problem is known to be NP-complete with a polynomial-time

approximation factor of ✓(log n) as shown by Feige [42]. Subsequently, Aazami

and Stilp [1] separated the approximation hardness of DOMINATING SET and PDS

problems. They proved that the PDS problem cannot be approximated better than

2

log

1�e n, unless NP ✓ DTIME(npolylog(n)
). In addition, they proposed an O(

p
n)-

approximation algorithm for the PDS problem in planar graphs. Liao and Lee [68]

showed a different NP-completeness proof for the PDS problem in split graphs,

and they also presented a polynomial time algorithm for solving a PDS optimally

on interval graphs. The PDS problem remains NP-hard on cubic graphs as proved

by Binkele-Raible and Fernau [24]. Furthermore, Guo et al. [49] proposed valid

orientations for optimally solving a PDS (over undirected graphs) on graphs of

36

3.2 NP-COMPLETENESS AND UPPER BOUNDS RESULTS OF RELATED WORK

bounded tree-width. Subsequently, Aazami and Stilp [2] reformulated the DIRECTED

PDS (DPDS) as Valid Colourings of edges and proposed a Dynamic Programming al-

gorithm for DPDS where the underlying undirected graph has bounded tree-width.

Graph Classes Dominating Set Power Dominating Set
Bipartite NP-complete NP-complete
Chordal NP-complete NP-complete
Circle NP-complete NP-complete
Comparability NP-complete NP-complete
Planar NP-complete NP-complete
Split NP-complete NP-complete
AT-free poly. time
Co-comparability poly. time
Distance hereditary poly. time
Dually chordal Linear time
Interval poly. time poly. time
k-polygon (k � 3) poly. time
Partial k-tree (k � 1) Linear time Linear time
Permutation Linear time
Strongly chordal poly. time
Block Linear time Linear time
Cubic NP-hard NP-hard
Series-parallel Linear time
Circular-arc Linear time Linear time

Table 3.1: The first part of the table is taken from [49] while the second part refers
to some recent results on solving the PDS problem where empty entries imply that
this has not been studied yet.

Some special classes of graphs have also been considered from an algorithmic point

of view as shown in Table 3.1. The PDS problem in block graphs has been stud-

ied in [16, 107] where they proposed linear time algorithms for a PDS. While Hon

et al. [54] proposed a linear time algorithm for the PDS problem on block-cactus

graphs. Dorfling and Henning [38] determined the power domination number in

grid graphs. Pai et al. [87] proposed a simpler algorithm for solving a PDS in grid

graphs, relying on earlier results of Dorfling and Henning [38]. Dorbec et al. [37]

37

3. PDS ALGORITHMS–RELATED WORK

determined the power domination number for all direct products of paths except

for the odd component of the direct product of two odd paths. Kao et al. [60] stud-

ied the PDS problem on honeycomb meshes and provided an algorithm to obtain a

minimum PDS. Liao and Lee [67] proposed a linear time algorithm to solve a PDS

in circular-arc graphs. Dean et al. [34] studied the Power Domination problem for a

hypercube.

3.2.1 Upper Bounds Results of a PDS

Several studies investigated upper bounds for the Power Domination number on the

different classes of graphs as shown in Table 3.2. In [109], Zhao et al. achieved an

upper bound for a connected claw-free cubic graph. Xu et al. [107] provided a sharp

upper bound for Power Domination number in block graphs and characterised the

extremal graphs. In [106] the upper bounds of the power domination number are

given for the generalised Petersen graphs, presenting both upper bounds for such

graphs and exact results for a subfamily of generalised Petersen graphs. While Bar-

rera and Ferrero [20] found upper bounds for the power domination number of

some families of Cartesian products of graphs, the cylinders and the tori.

Graph Classes Upper Bound

A connected claw-free cubic �p(G)  n/4

Block �p(G)  n/3, with order n � 3

Petersen �p(P (n, k))  min{dn/3e, k}, for n � 4

Cylinder �p(Pn⇤Cm)  min{dm+1

4

e, dn+1

2

e}

Tori �p(G) 
(

dn
2

e if n ⌘ 2 mod 4

dn+1

2

e otherwise

Table 3.2: The Approximate upper bounds for a Power Domination Set

Furthermore, Brueni and Heath [28, 29], and Zhao et al. [109] independently showed

that there exists a power dominating set of size at most (n/3) for any graph with

at least three vertices, and characterized the extremal graphs that attain the upper

38

3.3 PDS ALGORITHMS

bound. The Power Domination problem in Mycielskian and generalised Mycielskian

graphs was investigated by Varghese, and Vijayakumar [103], they obtained closed

formulae for the Power Domination number for Mycielskian of the complete graph,

the wheel, the n-fan and n-star. Moreover, closed formulae for the Power Domina-

tion number are obtained for the Cartesian product of paths and cycles [20], and

for direct product and strong product of path graphs are obtained in [37]. To the

best of our knowledge, no further results are known for solving the PDS problem,

either optimally or approximately.

3.3 PDS Algorithms

The basic problem of a PDS is a graph theory problem, which is related to the ver-

tex covering and domination problems Haynes et al. [52]. Thus, the PDS problem is

not related only to the power system industry, but also as a new problem in graph

theory as Haynes et al. pointed out.

A set S ✓ V of a given graph G = (V,E) is a Power Dominating Set, if every ver-

tex and edge in G are observed by S, by applying the observation rules of power

system monitoring. The minimum cardinality of a Power Dominating Set of G is

denoted by �p(G). The following reviews some PDS algorithms on different graph

classes.

3.3.1 A PDS of Trees

Haynes et al. [52] provided a linear-time algorithm to solve a PDS in trees, where

proved that if there is a tree T that has k vertices of degree of at least 3, then �p(G) �
(k + 2)/3. Furthermore, Haynes et al. showed that the following lemma is true:

Lemma 3.1 (k Vertices of Degree of at Least 3 in a PDS, Haynes et al. [52])

Every graph G having maximum degree of at least 3, there exists a �p(G)-set in which

every vertex has a degree of at least 3.

Guo et al. [49] improved the results shown by Haynes et al. via developing a simpler

linear-time algorithm for a PDS in trees. The theoretical properties of the Power

39

3. PDS ALGORITHMS–RELATED WORK

Dominating number in trees have been studied [52]. Their algorithm depends on

finding a spider tree, whereby a tree with one vertex of degree of at least 3 and all

others with a degree of at most 2.

Theorem 3.2 (A PDS of Trees, Haynes et al. [52])

For any tree T , �p(T) = 1 if and only if T is a spider.

Based on Theorem 3.2, another observation by Haynes et al. is that the number of

each set of the partition T into a spider is defined as the number of a PDS in T .

Hence:

Lemma 3.3 (The Spider Number of a Tree (T) by Haynes et al. [52])

The spider number of a tree T , denoted by sp(T), to be the minimum number of subsets

into which V (T) can be partitioned so that each subset induces a spider such that for any

tree T , sp(T)  �p(T).

Lemma 3.4 (The Relationship Between a Spider and a PDS by Haynes et al. [52])

For any tree T , �p(T)  sp(T).

Together with Lemma 3.3 and 3.4, Haynes et al. obtained Lemma 3.5, with an em-

phasis on the Power Dominating number of a tree is precisely equal to the spider

number of the tree:

Lemma 3.5 (The Number of a PDS in Trees by Haynes et al. [52])

The Power Dominating number of a tree is precisely the spider number of the tree such

that for any tree T , �p(T) = sp(T).

Guo et al. enhanced the algorithm of Haynes and offered a much simpler linear-

time algorithm, where their algorithm is based on a bottom-up strategy. All the

inner nodes of T are arranged in the list L according to a post-order traversal of

T ; and then if v has at least two unobserved children then P P [v. After that,

exhaustively apply the second observation rules to T . Finally, if r is unobserved

then P P [r.

40

3.3 PDS ALGORITHMS

3.3.2 A PDS on Undirected Graphs with Tree-Width

Haynes et al. solved a PDS on trees on graphs with tree-width of one, the general-

isation for a PDS in graphs of bounded tree-width has been left as an open ques-

tion by Haynes et al. Therefore, Guo et al. [48] proposed an efficient algorithm to

solve a PDS in polynomial time for input graphs that are “nearly” trees with a con-

stant number of additional edges k, where a tree with k edges added has tree-width

bounded by k + 1. Note that the class of graphs does not include all graphs with

tree-width of two. As a graph of bounded tree-width can be formulated in monadic

second-order logic and solvable in linear time as shown by Courcelle et al. [32],

Kneis et al. [63] obtained the general result that a PDS is solvable in linear time

for any fixed tree-width k, by formulating the PDS problem in the monadic second-

order logic.

Moreover, a PDS is Fixed-Parameter Tractable (FTP) with respect to the param-

eter tree-width as shown by Kneis et al. [63], whereby the complexity class FTP de-

notes the solution of the problem in in f(k)nc steps, where c is a constant and f

is an arbitrary function. As a result, Guo et al. [49] showed that the (undirected)

PDS problem can be solved in f(k).n time when k denotes the tree-width of the un-

derlying graph, and a tree decomposition is given. They designed a dynamic pro-

gramming algorithm to solve the PDS problem optimally in linear time on graphs

of bounded tree-width via applying a new formulation called valid orientation of the

edges. The algorithm is based on the following theorem:

Theorem 3.6 (A PDS on Undirected Graphs with Tree-Width, Guo et al. [49])

For a n-vertex graph with given width-k tree decomposition, a PDS can be solved in O(nck
2
)

time for a constant c.

Based on the formulation by Guo et al., Aazami [1] also provided a dynamic pro-

gramming algorithm depending on a tree decomposition for solving the `-round

(undirected) PDS problem optimally in polynomial time on graphs of bounded

tree-width, where the problem has the same observation rules of the PDS problem,

except OR2, which applies the domination rule in parallel in at most `� 1 rounds.

41

3. PDS ALGORITHMS–RELATED WORK

3.3.3 A PDS on Directed Graphs

The PDS problem of directed graphs has been studied by Aazami and Stilp [2],

where the DIRECTED PDS problem can be defined:

Definition 3.1 (A PDS on Directed Graphs, Aazami and Stilp [2])

Let G be a directed graph. Given a set of vertices S ✓ V (G), the set of vertices that are

power dominated by S, denoted by P (S), is obtained as follows:

D1: If a vertex v is in S, then v and all of its out-neighbours are in P (S).

D2: If a vertex v is in P (S), one of its out-neighbours w is not in P (S), and all other

out-neighbours of v are in P (S), then w is inserted into P (S). This condition is

called a Propagation rule.

The authors of [2] developed a linear time algorithm to solve the DIRECTED PDS

problem if the underlying undirected graph has bounded tree-width. The algorithm

is based on the extension of the formulation of a PDS on undirected graphs intro-

duced by Guo et al. [49]. Aazami and Stilp reformulated the notion of valid orien-

tations to obtain the reformulation of a Directed PDS in terms of Valid Colourings of

edges (similar to the formulation by [49], where blue and red edges play the same

role as unoriented and oriented edges, respectively). The dynamic programming

algorithm for a Directed PDS is based on the following lemma:

Lemma 3.7 (A PDS on Directed Graphs, Aazami and Stilp [2])

Given a directed graph G and S ✓ V (G), S power dominates G if and only if there is

a Valid Colouring of G with S as the set of origins, such that the running time of the

algorithm is O(nck
2
) where n denotes a set of tree nodes and c is a constant.

3.3.4 A PDS in Block Graphs

A PDS in block graphs has been studied in [16, 107]. In [16], Atkins et al. achieved

a bound of a PDS on block graphs by dividing a block graph into block spiders,

relying on earlier results of Haynes et al. [52] in respect of finding the number of

spiders. While in [107], Xu et al. applied a different way for solving the PDS prob-

lem through presenting a linear colour marking-based algorithm, which works on a

42

3.3 PDS ALGORITHMS

tree-like decomposition structure of a block graph. The following introduces basic

definitions that we relied on while proposing the algorithms in this thesis:

Definition 3.2 (Cut-Vertex or Articulation Point)

Given an undirected graph G, a vertex v 2 V (G) is called a Cut-Vertex or articulation

point of G if by removal of v (and all its edges) G becomes disconnected.

d

c

a

b e f

i

j

h

g

Figure 3.1: A Block of Graph G, taken from [16], where the two K
4

blocks {a, b, c, d}
and {g, h, i, j} are End-Blocks because both have only one Cut-Vertex, namely {c, g}

Definition 3.3 (A Block of a Graph, [51])

A block of a graph is a maximal non-separable subgraph. An example is given in Figure 3.1.

Definition 3.4 (An End-Block)

An End-Block of G is a block that contains only one Cut-Vertex of G.

Figure 3.2: An Example of A Block-Star, taken from [16], where white circles imply
vertices

Definition 3.5 (Block-Star)

Let G be a block graph. A graph G is called Block-Star if G itself is a block or if every block

of G is an End-Block. An example of a Block-Star graph is given in Figure 3.2.

Notice that a Star K
1,n where n � 1 is simply a Block-Star where every block is a

K
2

block.

Definition 3.6 (A Spider Graph)

The graph of a Spider is a tree T that has at most one vertex of degree 3 or more and all

others with degree at most 2. An example of the graph of a Spider is given in Figure 3.3.

43

3. PDS ALGORITHMS–RELATED WORK

Figure 3.3: An Example of a Spider Graph, taken from [16], where white circles
denote vertices

Definition 3.7 (A Block-Spider)

A Block-Spider is defined as a Block-Star, if assigned a path to all or to some of its vertices

so that the resulting paths are vertex-disjoint (see Figure 3.4).

Figure 3.4: An Example of a Block-Spider, taken from [16]

Therefore, a maximal connected induced subgraph without a Cut-Vertex is called a

block of G (i.e. every block in G is complete), where for each a block graph of G, if

there exists only one Cut-Vertex, then it is called an End-Block of G. The relationship

between a PDS and a block graph is studied in [16] where the main result is based

on the following lemma:

Lemma 3.8 (A PDS in Block Graphs, Atkins et al. [16])

For any block graph G, �p(G) = 1 if and only if G is a Block-Spider.

However, a linear time algorithm of finding a minimum PDS in block (undirected)

graphs has been designed by Xu et al. [107]. The authors of [107] proved that for

each Cut-Vertex of G there exists a PDS.

44

3.4 NETWORK CONTROLLABILITY UNDER VULNERABILITY

Lemma 3.9 (A Cut-Vertex in Block (Undirected) Graphs, Xu et al. [107])

Let G be a block graph, there exists a �p(G)-set in which every vertex is a Cut-Vertex of G.

The algorithm is based on a tree-like decomposition structure of a block graph,

using the Depth First Search method to build a cut-tree (an ordinary tree) of a block

graph in linear time. Note that the input of the problem is a cut-tree of a block

graph, and during the algorithm a Block-vertex is processed as a vertex, where

each Block-vertex contains a subset of vertices of the block graph.

3.4 Network Controllability under Vulnerability

The ability of an attacker to take over control of a distributed system or to deny

the defender is a general problem, but of particular significance in cyber-physical

systems where even temporary loss of view or loss of control can result in outright

failure and severe cascading effects. Moreover, many such cyber-physical systems

not only exhibit a safe fail-stop behaviour such that they can be brought to a halt in a

safe state, but also have hard real-time requirements such as in the case of electrical

power networks and their constituent elements. This offers a strong motivation to

study the ability of such systems to recover from deliberate attacks, leading to the

decrease of network performance due to a selected removal of vertices or edges.

Networks comprising nodes and edges represent the foundation of a variety of

social, environmental and technological systems. In complex networks, individuals

constitute the nodes, whereas the relationships between them constitute the edges.

The attack vulnerability of a range of complex network models such as the Erdős-

Rényi random graph, real world networks and in which a portion of the nodes or

edges was eliminated, was measured by a number of recent studies on random

failures and malicious attacks on complex networks [91, 6, 22, 104, 53, 45, 77]. The

effect of network controllability of directed Erdős-Rényi and scale-free networks un-

der attacks and cascading failures has been studied by Pu et al. [91]. The authors of

[81] reviewed two issues regarding the security of complex networks. The first is-

sue is related to the removal of vertices due to random or intentional attacks, which

45

3. PDS ALGORITHMS–RELATED WORK

can trigger a series of overload failures, leading to the partial or complete collapse

of the network. The second issue pertains to range-based attacks on edges, which

is especially relevant as the majority of complex network security studies have fo-

cused on attacks on nodes and not on edges.

Consequently, protection is the ultimate goal of studies on attack vulnerabil-

ity. In order to ensure network protection by shielding or a temporary isolation of

some vertices or edges, it is important to determine the key vertices or edges, the

elimination of which leads to the entire network malfunctioning. In addition, it is

necessary to learn how to create networks able to withstand attacks as well as to

maintain the capability to control the systems. The following reviews the most at-

tack vulnerabilities that have been extensively studied on some complex networks

with emphasis on (directed/undirected) Erdős-Rényi random graph in order to

show how the absence of key vertices and edges can impact on a control graph.

3.4.1 The Vulnerability under Vertex and Edge Attacks

Caused by random failures or malicious attacks, the malfunctioning of some net-

work vertices can result in the breakdown of the entire network into isolated parts.

As we focus on Erdős-Rényi random graph, in particular directed graphs, the most

important study was proposed by Pu et al. [91], where they investigated the control-

lability of directed Erdős-Rényi and scale-free networks under Single-node attack and

Cascading failure attack. The authors of [91] found that the efficiency of degree-based

attacks on network controllability is greater than that of random attacks on network

controllability for directed Erdős-Rényi and scale-free networks; at the same time,

network controllability is also adversely affected by cascade failures, even when in-

duced by a local node failure. The implications of eliminating vertices from various

networks when exposed to a range of types of attack were investigated by the au-

thors of [53], where they studied the attack vulnerability of six different complex

networks including Erdős-Rényi model of random networks. They also observed

that compared to original network-based attack strategies, elimination by the recal-

culated degrees and betweenness centralities was more deleterious.

46

3.4 NETWORK CONTROLLABILITY UNDER VULNERABILITY

However, Barthlemy [22] analysed the significance of the betweenness central-

ity of nodes in Erdős-Rényi and scale-free networks where the removal of between-

ness centrality of nodes results in the emergence of new disconnected components.

A novel method of improving network robustness against high-degree vertex re-

moval was proposed by Schneider et al. [95] who studied both Erdős-Rényi and

scale-free networks. The control centrality of single node in complex networks such

as directed Erdős-Rényi random graph was investigated by Liu et al. [72] where

the presented results proved that “randomly selected upstream (or downstream)

neighbours have more outgoing (or incoming) links than the node itself”. This,

however, allowed to understanding the controllability of complex networks and de-

sign an efficient attack strategy against network control.

In addition to vertices, it is also possible to attack edges. However, in computer

networks attacks on vertices may take the form of breakdowns of servers by mali-

cious attackers, attacks on edges involve disconnecting communication cables [53].

The other significant study based on the controllability of directed Erdős-Rényi was

carried out by Nie et al. [85]. The authors [85] investigated the robustness of the

controllability of directed Erdős-Rényi networks based on various points of the cas-

cading failures, as a result of the elimination of the highest load edge, and showed

that controllability for networks evolves during cascading failures in the case of two

distinct attack strategies, random and intentional.

A study on how susceptible different complex networks such as the Erdős-

Rényi model of random networks are to a range of edge attacks was undertaken

by the author of [53]. Another study by [75] explored the addition of edge direc-

tions, depending on the node residual degree, as a method of improving complex

network controllability; based on this, a technique of designating edge direction was

suggested to show the effectiveness of the proposed method on the two basic net-

work models Erdős-Rényi and scale-free networks. On the other hand, Wang [104]

conducted an investigation of how structural controllability can be maintained dur-

ing malicious attacks on directed networks, merging the issue of the control robust-

47

3. PDS ALGORITHMS–RELATED WORK

ness into the problem of transitivity maximisation for control routes and proposing

an efficient greedy algorithm to create transitive control routes.

3.5 Analysis of Embedding Structures in Directed

Erdős-Rényi Graphs

Most existing works in this chapter have been considered (undirected) graphs. Our

objective is to identify a possible embedding of such structures in directed Erdős-

Rényi graphs of different density (i.e. allowing for some removal of edges or nodes

owing to attacks or failures) in order to be adapted to solve the DIRECTED PDS

problem if a control network has been partitioned or damaged.

Guo et al. [49] developed a linear-time dynamic programming algorithm based

on valid orientations for optimally solving PDS on graphs of bounded tree-width,

introducing the notion of valid orientations for a new formulation of PDS (over

undirected graphs). Based on this orientation by Guo et al., Aazami and Stilp [2]

reformulated Directed PDS in terms of Valid Colouring of the edges in order to de-

velop an algorithm based on dynamic programming for a Directed PDS. The aim of

the Valid Colouring is to model the application of rules (D1) and (D2) of a Directed

PDS as defined in Definition 3.1. We therefore propose a reconstruction algorithm

based on recent work by Guo et al., Aazami and Stilp as well as for directed control

graphs in Erdős-Rényi graphs arising after attacks (more details in Chapter 4) . This

algorithm assumes that the underlying undirected graph has bounded tree-width

constructed as a nice tree decomposition yielding a best-case complexity of O(nck),

a worst-case complexity of O(nck
2
), and an average complexity of O(log nck

2
) [13].

The linear time algorithm for solving a PDS in Block graphs is developed by

Xu et al. [107] where it is based on a cut-tree of a block in undirected graphs con-

structed in linear time by Depth-First Search (DFS). Therefore, we could take the

advantage of DFS for constructing a tree-like structure on the directed Erdős-Rényi

graph, which gives equivalent characterisations of trees by considering tree edges,

and classifies the edges of a digraph into four edge types (i.e. a tree edge, a back

48

3.6 SUMMARY

edge, a forward edge and cross edge); this, however, requires a relatively high den-

sity. Subsequently we propose a novel algorithm [14] based on re-using as much

as possible of remaining fragments from the original control graph where permit-

ted whilst identifying unutilised edges to minimise the number of a PDS, offering

controllability after an event or attack leading to the partitioning of the original con-

trol network (further discussion in Chapter 5). This DFS-based approach yields an

improved average-case complexity over a reconstruction algorithm for (directed)

control graphs proposed in [13].

Furthermore, the linear time algorithm propose by [16, 107] for solving a PDS

in block (undirected) graphs is based on identifying a possible Cut-Vertex (or an ar-

ticulation point) where a Cut-Vertex or an articulation point is a vertex whose removal

(together with the removal of any incident edges) results in a disconnected graph.

Although the study of a PDS of block (directed) graphs introduces differences such

as directed edges that should be considered separately. Therefore, it is helpful to

build a tree-like decomposition structure of a block (directed) graph assuming that

given a weakly connected graph, such that the undirected underlying graph can

form an ordinary tree. This is regardless of the fact that every Block-Vertex is actu-

ally a subset of vertices of the original block graph. We therefore propose a novel

algorithm to re-construct a control graph as far as possible in the presence of com-

promised nodes. The approach is based on a BLOCK DECOMPOSITION of a directed

graph, allowing us to re-construct a PDS structure by applying three phases (fur-

ther details in Chapter 6).

3.6 Summary

This chapter reviewed the problems of controllability and structural controllability as

represented by the PDS problem and reviewed algorithms for specific classes of

graphs for which improved efficiency relative to the general case is known. Our

interest lies primarily in finding an efficient embedding for Erdős-Rényi graphs of

different density, and to adapt approaches discussed here for the case of a PDS over

directed Erdős-Rényi graphs.

49

Chapter 4

A New Algorithm for a Power

Dominating Set

4.1 Overview

We reviewed the problems of controllability and structural controllability as repre-

sented by the PDS problem in Chapter 2; followed by a summary of existing algo-

rithms for specific classes of graphs, for which a PDS has been studied before, to

identify a potential embedding of such structures in Erdős-Rényi graphs in Chap-

ter 3.

In this chapter we propose a reconstruction algorithm for (directed) control

graphs of bounded tree-width embedded in Erdős-Rényi random graphs particu-

larly in partitionings of the original graphs based on recent work by Aazami and

Stilp as well as Guo et al. We therefore design a new algorithm to compute a PDS for

a given directed graph when the controllability is compromised such as an adver-

sary with sufficient knowledge of the network distribution and its power domina-

tion can disconnect parts of the control original graph and leave parts of a system

uncontrolled. This dynamic programming algorithm is based on a nice tree decom-

position for a given graph, and therefore, we propose the 7-Colourings of a depen-

dency path reflecting the direction of edges and their colours in order to concatenate

dependency paths and detect dependency cycles while computing bags in a nice tree

decomposition. This also yields to reduce the number of combinations required to

compute a PDS at each bag where there are at most (7(k+1)

2 · 5k+1 · 2(k+1)

2
) states

for each bag Xi with |Xi|  (k + 1).

51

4. A NEW ALGORITHM FOR A POWER DOMINATING SET

4.2 Problem Statement and Assumption

Given a directed graph G
0
= (V,E), constructed as ER(n, p), where the underlying

undirected graph has bounded tree-width. We assume that G0 satisfies the assump-

tions (1,2 and 3) as shown in Subsection 1.4.2 in Chapter 1. A real-world scenario

related to this problem is precisely the industrial automation control systems (e.g.

SCADA systems) which deploy their elements following a mesh distribution to

monitor other critical infrastructures (e.g. power systems), where G
0
= (V,E) de-

picts the network distribution with V illustrating the elements (e.g. remote termi-

nal units, servers, etc.), and E representing the communication lines. In this con-

text, the interpretation of a PDS would be G
0
= (V,E) which represents a power

network containing a set of electrical or control vertices (a substation bus where

transmission lines, loads, and generators are connected) and a set of edges connect-

ing a transmission line or a communication link joining the two electrical vertices.

Let S0 be a given PDS of G0 and assume that attackers in a position to eliminate

some vertices of G0 (i.e. in real-world context when an electric actuator or industrial

sensor in power systems are subjected to intentional or random removal such as

attackers can control a subset of sensors or actuators that have the ability to control

more states, and therefore, act as Man-in-the-Middle between remote terminal units

and its elements in an electrical power network). This deletion of vertices may

result in a disconnected component of a directed graph G
0 , defined by H = (V,E),

where H = (V,E) ⇢ G
0 is partitioned from the original graph G

0 such that V (H) /2
V (G

0
) and E(H) /2 E(G

0
) (i.e. there exists no edge in H whose one end vertex is

in G
0 and verse vice). In this case, a PDS of a directed graph H = (V,E) (i.e. a

disconnected component of G0) may be different to the remainder of S0 .

Throughout this chapter, we design a dynamic programming algorithm, sat-

isfying the assumption (4) in Subsection 1.4.2 in Chapter 1, to reconstruct a PDS

for a given directed graph H = (V,E) when the underlying undirected graph has

bounded tree-width. Note that H = (V,E) is a disconnected component of G0 as a

result of the scenario mentioned above.

52

4.3 PDS TREE DECOMPOSITION

•Input:

As proved by Kloks [62], a tree decomposition of width k can be transformed to a

nice tree decomposition with k in linear time. Thus, we assume that a nice tree de-

composition of H is given where the underlying undirected graph has bounded tree-

width and H satisfies the same assumptions (1,2 and 3) as G0 mentioned in Subsec-

tion 1.4.2 in Chapter 1.

•Question:

Can we design an algorithm to reconstruct a PDS for H , denoted by S (e.g. in real-

world monitoring system, can we reconstruct as few measurement devices that

have the ability to control more states as possible in an electric power system when

an attacker able to affect the physical state of the system by compromising a subset

of sensors or actuators that can disconnect parts of the control graph).

•Output:

A minimal S ✓ V for H by applying a Valid Colouring of edges such that all vertices

in V 2 H are power dominated by the vertices in S.

4.3 PDS Tree Decomposition

Guo et al. [49] developed a linear-time dynamic programming algorithm based on

valid orientations for optimally solving a PDS on undirected graphs of bounded

tree-width, introducing the notion of valid orientations for a new formulation of a

PDS. Computational complexity is dominated by determination of the mapping

(Ai) for a join node, where for each bag state (s) it is required to consider all pairs

of compatible bag states of its two children. Therefore, the running time algorithm

proposed by Guo et al. is O(nck
2
) where n denotes a set of tree nodes and c is a

constant. Based on this orientation by Guo, Aazami and Stilp [2] reformulated a

Directed PDS in terms of a Valid Colouring of edges to develop an algorithm based

on dynamic programming for a Directed PDS. This algorithm is applied to directed

graphs such that the underlying undirected graph has bounded tree-width. The aim

of a Valid Colouring is to model the application of rules (D1) and (D2) of a Directed

PDS. Both algorithms are based on tree decompositions of graphs and their use

53

4. A NEW ALGORITHM FOR A POWER DOMINATING SET

with respect to dynamic programming. We now introduce some basic definitions:

Definition 4.1 (Tree Decomposition)

For G = (V,E), tree decomposition of G is a pair hXi|i 2 I, T i, where each Xi is a

subset of V , called a bag, and T is a tree with the elements of I as nodes satisfying:

a.
S

i2I Xi = V .

b. For every edge uv 2 E has both ends in some Xi such that {u, v} ✓ Xi.

c. 8i, j, k 2 I : If j is on the unique path from i to k in T , then Xi \Xk ✓ Xj .

Definition 4.2 (Tree-Width)

The width of a tree decomposition hXi|i 2 I, T i is defined as maxi2I |Xi| � 1. The

tree-width of G, denoted by tw(G), is defined as the minimum width k over all tree

decompositions such that G has a tree decomposition of width k. The nodes of T are

called T -nodes and Xi bags.

We subsequently rely on the special case of nice tree decompositions to simplify the

design of the dynamic programming algorithm.

Definition 4.3 (A Nice Tree Decomposition)

A nice tree decomposition hXi|i 2 I, T i for a graph G = (V,E), where T is a rooted

tree, is a tree decomposition for G if the following conditions are satisfied:

1. Every node of the tree T has at most 2 children.

2. The nodes i of T are one of four node types:

a. Leaf Nodes without children and corresponding leaf bags Xi have |Xi| = 1.

b. Forget Nodes have one child j with Xj = Xi [{v}.

c. Introduce Nodes with one child j where Xi = Xj [{v}.

d. Join Nodes i have two children j, k 2 I with Xi = Xj = Xk.

For a graph of width k, Lemma 4.1 due to Kloks [62] can be drawn as follows:

Lemma 4.1 (A Nice Tree Decomposition, Kloks [62])

Given a tree decomposition of a graph G = (V,E) of width k and O(n) nodes, where n

is the number of nodes in G, one can find a nice tree decomposition of G that has O(n)

nodes and the same width k in time O(n).

54

4.3 PDS TREE DECOMPOSITION

Based on the valid orientation of undirected graphs proposed by Guo et al. [49],

Aazami and Stilp [2] introduced the reformulation of a Directed PDS in terms of a

Valid Colouring of edges. Consequently, we reformulate a PDS of a directed graph

H = (V,E) in terms of a Valid Colouring, which is similar to the formulation by [49],

where blue and red edges play the same role as unoriented and oriented edges,

respectively. Our approach applies to a directed graph such that the underlying

undirected graph has bounded tree-width.

Definition 4.4 (The Colouring of a Directed Graph)

A colouring of a directed graph H = (V,E) is a partition of the edges in H into red and

blue edges. We denote a colouring by C = (V,Er [Eb) where Er is the set of red edges

and Eb is the set of blue edges.

Definition 4.5 (A Valid Colouring, Aazami and Stilp [2])

A Valid Coloring C = (V,Er [Eb) of a directed graph G = (V,E) is a coloring of G

with the following properties:

1. No two antiparallel edges can be coloured red.

2. The subgraph induced by the red edges, Gr = (V,Er), has the following properties:

a) 8v ✏ G : d�G
r

(v)  1, and

b) 8v ✏ G : d�G
r

(v) = 1 =) d+G
r

(v)  1.

3. G has no dependency cycle. A dependency cycle is a sequence of directed edges

whose underlying undirected graph forms a cycle such that all the red edges are in one

direction, all the blue edges are in the other direction, and there are no two consecutive

blue edges.

We now define a Valid Colouring for a directed graph H = (V,E) based on the refor-

mulation of the DIRECTED PDS problem proposed by Aazami and Stilp; informally

speaking, these colorings model the application of rules (D1) and (D2) of a Directed

PDS (see Definition 2.16):

Definition 4.6 (A Valid Colouring for a Directed Graph)

A Valid Coloring C = (V,Er [Eb) of a directed graph H = (V,E) is a coloring of H

with the following properties:

55

4. A NEW ALGORITHM FOR A POWER DOMINATING SET

1. No two antiparallel edges can be coloured red.

2. The subgraph induced by the red edges, Hr = (V,Er), has the following properties:

a) 8v ✏ H : d�H
r

(v)  1, and

b) 8v ✏ H : d�H
r

(v) = 1 =) d+H
r

(v)  1.

3. H has no dependency cycle. A dependency cycle is a sequence of directed edges

whose underlying undirected graph forms a cycle such that all the red edges are in one

direction, all the blue edges are in the other direction, and there are no two consecutive

blue edges.

We call a vertex with d�H
r

(v) = 0 in Hr = (V,Er) is an origin of C, where Hr is

denoted by the set of vertices with only red edges. Therefore, an origin of Valid

Colouring of H is defined as:

Definition 4.7 (The Origins of a Valid Colouring for a Directed Graph)

An origin vertex v of a Valid Coloring C = (V,Er [Eb) of a directed graph H = (V,E)

is said to be a vertex in a Directed PDS if:

1. It either has no in-degree in H , where v 2 H : d�(v) = 0, or

2. it has no red in-coming edges in Hr such that v 2 Hr
: d�(v) = 0, where Hr

denotes the set of vertices with only red edges.

We define the connection between a directed path and a dependency path as follows:

Definition 4.8 (A Dependency Path in a Valid Colouring)

A dependency path, denoted by P , from u to v is a path where all red edges in P are

directed from u to v and all blue edges are directed from v to u. Therefore, a dependency

path from u to v is a directed path with only directed red edges.

We obtain a dependency path after applying a Valid Colouring to a directed graph;

informally speaking, these colorings model the application of rules (D1) and (D2) of

a Directed PDS (see Definition 2.16) which result in the formulation of the structural

controllability for a graph. The dynamic programming algorithm for a Directed PDS

is based on Lemma 4.2 due to Aazami and Stilp with valid orientations are replaced

by viewing blue edges as unoriented edges, and red edges as oriented edges.

56

4.3 PDS TREE DECOMPOSITION

Lemma 4.2 (A Valid Colouring of a Directed Graph, Aazami and Stilp [2])

Given a directed graph G and S ✓ V (G), S power dominates G if and only if there is a

Valid Colouring for G with S as the set of origins.

During executing a Valid Colouring, there is a possibility of existence a dependency

cycle. Therefore, we seek to reduce the number of combinations required to com-

pute a PDS at each bag through applying the 7-Colourings of a dependency path based

on the degree constraints of a Valid Colouring of a directed graph H = (V,E). This

7-Colourings approach yields to concatenate dependency paths and detect dependency

cycles when computing bags in a nice tree decomposition by colouring the vertices in

a dependency path as defined in the following definition:

F R

(a)

M R

(b)

E RR

(c)

Figure 4.1: The Colouring of Vertices with in/out Red Edges in a Dependency Path

W B

(a)

Z B

(b)

Q BB

(c)

Figure 4.2: The Colouring of Vertices with in/out Blue Edges in a Dependency Path

L BR

(a)

L RB

(b)

Figure 4.3: The Colouring of Vertices with in/out Blue/Red Edges. Note that two
different directions of (in/out) blue/red edges have the same colour

Definition 4.9 (The 7-Colourings of a Dependency Path)

To detect dependency cycles, we define seven colours for every vertex v 2 Hr/b in a

dependency path depending on the directions of in/out blue and red edges where Hr/b

denotes the set of vertices with red or edges respectively. A colouring of vertices in a

dependency path of a directed graph Hr/b
= (V,Er [Eb) is assigning one of the colours

{F , M, E} to each vertex with in/out red edges, and {W , Z , Q} to each vertex with in/out

blue edges and {L} to each vertex with in/out blue and red edges (or vice versa) such that a

vertex v is assigned to: (see Figures 4.1, 4.2 and 4.3, respectively.)

57

4. A NEW ALGORITHM FOR A POWER DOMINATING SET

1. F if there exists a vertex with no in-coming edge and at least one out-going red edge:

9v 2 Hr/b
:

⇣

(d�H(v) = 0

⌘

^
⇣

d+Hr

(v) = 1)

⌘

=) F .

2. M if there exists a vertex with one in-coming red edge and no out-going edge:

9v 2 Hr/b
:

⇣

(d�Hr

(v) = 1

⌘

^
⇣

d+H(v) = 0)

⌘

=)M.

3. E if there exists a vertex with one in-coming red edge and one out-going red edge:

9v 2 Hr/b
:

⇣

(d�Hr

(v) = 1

⌘

^
⇣

d�Hr

(v) = 1)

⌘

=) E .

4. W if there exists a vertex with no in-coming edge and one out-going blue edge:

9v 2 Hr/b
:

⇣

(d�H(v) = 0

⌘

^
⇣

d+
Hb

(v) = 1)

⌘

=)W .

5. Z if there exists a vertex with one in-coming blue edge and no out-going edge:

9v 2 Hr/b
:

⇣

(d�
Hb

(v) = 1

⌘

^
⇣

d+H(v) = 0)

⌘

=) Z .

6. Q if there exists a vertex with one in-coming blue edge and one out-going blue edge:

9v 2 Hr/b
:

⇣

(d�
Hb

(v) = 1

⌘

^
⇣

d�
Hb

(v) = 1)

⌘

=) Q, and

7. L if there exists a vertex with one in-coming red edge and one out-going blue edge or

with one in-coming blue edge and one out-going red edge:

9v 2 Hr/b
:

⇣

(d�Hr

(v) = 1) ^ (d+
Hb

(v) = 1)

⌘

_
⇣

(d�
Hb

(v) = 1) ^ (d+Hr

(v) = 1)

⌘

=) L.

Throughout this thesis, if there exists a blue/red edge between v and u, then both

vertices are connected. Therefore, we say that v is controlled (i.e. covered or power

dominated) by u if there is a red edge from u to v; however, if there exists a blue

edge u! v, then v is not controlled by u.

Together with Definition 4.9, we immediately define a dependency path in a Valid

Colouring of a directed graph H = (V,E) as:

Definition 4.10 (A Dependency Path in a Valid Colouring of a Directed Graph)

A dependency path (P) in a Valid Colouring of H is a sequence of vertices with colours

F , M and E (i.e. a sequence of red edges) such that P = v
1

, e
1

, v
2

, e
2

, . . . , ei�1

, v has no

vertex with the colour Q (i.e. no two consecutive blue edges) and P starts with a vertex

(v
1

) with the colour F and ends with a vertex (vi) with the colour M. Thus, all in-between

vertices v
2

, . . . , vi�1

in P are coloured with F . A dependency cycle in a directed graph is

a sequence of directed edges whose underlying undirected graph forms a cycle whose vertices

have the colours F , E and M (i.e. all red edges in one direction), and two vertices with the

58

4.3 PDS TREE DECOMPOSITION

colour L (i.e. all blue edges in the other direction). Consequently, there is no vertex with

colour Q (i.e. no two consecutive blue edges) (see Figure 4.4).

The following theorem shows that the number of colours required to check a de-

pendency cycle while applying a Valid Colouring is exactly seven colours:

Theorem 4.3 (The 7-Colourings of a Dependency Path in a Valid Colouring)

Given a dependency path P , one can decide if P is a path or has a cycle, by colouring the

vertices in the path with only seven colours.

Proof. Supposing that there are only six colours constructed as follows: there exists

a dependency path P , where P is a sequence of red edges P = v
1

, e
1

, v
2

, e
2

, . . . , ei�1

, vi

such that the first vertex v
1

of P has exactly one out-going red edge and the last ver-

tex vi has exactly one in-coming red edge and the in-between vertices have in/out

red edges. Note that the directions of red edges for each vertex in P are categorised

as three directions such that:

1. A vertex with an out-going red edge.

2. An in-coming/out-going red edge.

3. An in-coming red edge.

Thus, in order to distinguish between these three vertices, each vertex should be

coloured differently according to the direction of the red edge (see Figure 4.1).

Now we apply the same argument above taking into consideration that the path

given starts from an out-going blue edge, and ends with in-coming blue edges and

the in-between vertices have in/out red edges such that:

1. A vertex with an out-going blue edge.

2. An in-coming/out-going red edge.

3. An in-coming blue edge.

Consequently, there exists only two different directions of blue edges such that the

first vertex v
1

of P has exactly one out-going blue edge (see Subfig 4.2.(a)), and

the last vertex vi has exactly one in-coming blue edge (see Subfig 4.2.(b)). There-

fore, both vertices can be assigned with a different colour. Hence, the sum of

59

4. A NEW ALGORITHM FOR A POWER DOMINATING SET

colouring vertices is five so far if we exclude the duplication of an in-coming/out-

going red edge for each case. Now we prove by way of contradiction that five

colours is not sufficient to define dependency paths and detect dependency cycles.

Given two paths Pux and Pxv in order to concatenate them. Supposing that one

could colour vertices in each path with at most five colours such that the colour

of the first vertex has to be one of {F ,W} and the last vertex should be one of

{Z,M} based on the directions of in/out blue and red edges that are incident

from/to vertices, and in-between vertices should be coloured with {E}. Note that

v 2 pux _ pxv ✓ {F ,M, E ,W,Z}. After concatenating the two given paths, the

vertex x has three cases of in-coming and out-going edges:

i. d�(x) = blue ^ d+(x) = red,

ii. d�(x) = red ^ d+(x) = blue, or

iii. d�(x) = blue ^ d+(x) = blue.

Assuming that the obtained path is not a dependency path meaning the vertex x has

in/out blue edges. This is a contradiction, in reality, there is no colour in the set

above can reflect the direction of blue edges. Thus it could assign a colour Q to the

vertex (see Subfig 4.2.(c)).

On the other hand, supposing the obtained path is a dependency path meaning

the vertex x has in-blue and out-red edges or vice versa. This is also a contradic-

tion, since there is also no colour in the set above that can reflect the direction of

blue/red edges. Thus it could assign a colour L to the vertex (see Figure 4.3).

Hence, by combining all the colours for each vertex of P depending on each differ-

ent direction of blue and red edges, then there are exactly seven colours that can

determine whether P is a dependency path or has a dependency cycle. Thus seven

colours are required to sufficiently detect a dependency cycle to concatenate paths.

However, we define only one colour for in-blue/out-red edges or vice versa (

see Figure 4.3). Assuming that the edges of C are alternatively blue and red (starting

with blue edge or vice versa). As a vertex has in-blue and out-red or (vice versa),

the colour for both is the same. The reason is that a path is a cycle even if it has al-

ternatively blue and red or vice versa until it has a vertex with a colour Q (i.e. there

60

4.3 PDS TREE DECOMPOSITION

are no two consecutive blue edges) (see Figure 4.4). Therefore, it is not important

to have an independent colour for the different directions of in-blue and out-red

edges or vice versa.

We extend the result of Aazami and Stilp, which leads to the formulation of a dy-

namic programming algorithm for a directed graph H = (V,E):

Theorem 4.4 (A Valid Colouring of a Directed Graph)

Given a directed graph H = (V,E) and S ✓ V (H), S power dominates H if and only if

there is a Valid Colouring of H with S as the set of origins.

Proof. Supposing that S 2 V (H) is a solution to a PDS of a directed graph H =

(V,E), satisfying the same assumptions (1,2 and 3) as G0 shown in Subsection 1.4.2

in Chapter 1, such that the underlying undirected graph has bounded tree-width;

thus, P (S) = V (H). We apply a Valid Colouring C with S as the set of origins by

colouring the edges in H according to the degree constraints in Definition 4.6. We

colour an edge (uv) red from u toward v if:

1. v is covered by applying the domination rule (D1) to u where u 2 S, or

2. v is covered by applying the propagation rule (D2) to u.

Note the domination rules D1 and D2 should be in order (i.e. we first apply the rule

D1 on u to cover all neighbours of u that are not power dominated yet, and only

after that we apply the propagation rules D2). Moreover, we do not apply D1,D2

to cover previously covered vertices. Thus, it can be verified with this colouring the

degree constraints mentioned in Definition 4.6 are satisfied, where each vertex in

VD 2 S can control at least two out-going red edges, and each vertex in VS can

control at most one out-going red edge and the propagation rule can be applied to

a vertex v 2 V \ S and power dominates at most one of the neighbours of v.

We show by way of contradiction that there is no dependency cycle in a Valid

Colouring. Let u ! v denotes a vertex v is covered after a vertex u; assuming that

C = u
1

, u
2

, . . . , um is a dependency cycle and all red edges in C are in the same

direction, then the red edges (ui, ui+1

) imply that ui ! ui+1

for all i = 1, 2, . . . ,m�
1; thus we get u

1

! u
2

! · · · ! um, but this is a contradiction since the last red

61

4. A NEW ALGORITHM FOR A POWER DOMINATING SET

edge from um back to u
1

implies um ! u
1

. Hence, there is no dependency cycle with

all edges coloured red.

Supposing that the dependency cycle C has some blue edges (see Figure 4.4).

There exists a contradiction when there are no two consecutive blue edges. As-

suming that the dependency cycle C is even, and its edges are alternatively blue and

red (starting with a blue edge); when combining these dependencies, we find that

u
1

! u
3

! u
1

then we see that u
1

! u
1

and this gives the contradiction.

Now we prove that a directed graph H = (V,E) has a Valid Colouring C =

(V,Er [Eb) with S ✓ V (H) as the set of origins. Note that the vertices in S and

all vertices u 2 N(S) (i.e. their out-neighbours) in Hr
= (V,Er) are covered by

applying the rule (D1). We show that S will power dominate all vertices in H .

Assuming that S does not cover all vertices in H (i.e. P (S) 6= V (H)). Let X ⇢ V

be the maximal set of vertices that can be covered by S; that is, P (S) = X . We

claim that there is at least one red edge from X to V \X . Note that all of the origins

are in X , so each of the vertices in V \ X has an in-degree of 1 in Hr
= (V,Er).

Thus, if there is no red edge from X to V \ X , then there should be a directed

cycle of red edges in H[V \ X]. This is not possible since there are no dependency

cycles. Let e1 = (u
1

, v
1

), . . . , ek = (uk, vk) be all of the red edges from X to V \ X .

Supposing that there exists vi /2 X , then vi can be covered by applying rule (D2) to

ui. Owing to the maximality assumption of X this is not allowed. Therefore, each

ui has another out-neighbour, such as zi, in V \X . If (ui, zi) is a blue edge, then:

i. ui has an in-degree of 1 and zi is covered by applying (D2) to ui, or

ii. ui is a vertex with an out-degree of at most 1 (i.e. an origin) and zi would be

controlled by applying rule (D1) to ui.

Therefore, we have X = V , so S power dominates H .

u
2

u
3

u
1

u
4R B

R

B

Figure 4.4: A Dependency Cycle

62

4.4 COLOURING AND REPAIR ALGORITHMS

4.4 Colouring and Repair Algorithms

We describe the formal definition of the algorithm and proof of correctness for solv-

ing the DIRECTED PDS problem of H = (V,E). We rely on the nice tree decomposition

of Lemma 4.1 in linear time as we assume bounded tree-width embedding. Now

we commence by describing the state of the bags in our dynamic programming

algorithm.

Given a directed graph H = (V,E), where H ⇢ G
0 has been constructed as a

nice tree decomposition hXi|i 2 I, T i of H with tree-width k. Let Ti denotes the subtree

of T rooted at T-node i, and Yi = (

S

j2V (T
i

)

Xj) \ Xi. Also let Di be the subgraph

induced by the vertices in the bags of Ti, that is, Di = H[Yi[Xi], and let D0
i = H[Xi].

4.4.1 Definition States

During a bottom-up process the dynamic programming algorithm computes for

every bag Xi the possible Valid Colouring of the edges of the subgraph D
0
i and stores

the sizes of the origins of a Valid Colouring. To avoid dependency cycles in all the

possible colourings for D0
i when reaching bag Xi, we store the state of the bag Xi,

where a Valid Colouring of Di are characterized by the bag states. A bag state (s) of

a bag Xi is a combination of the following states:

a. The State of an Edge:

We define two edge states s(e) for the edges e = (uv) 2 E(H[Xi]) assigning the

colour to e in the colouring C:

i. s(e) = (uv): Red,

ii. s(e) = (vu): Blue.

b. The State of a Vertex:

According to Definition 4.6, we define four vertex degree states sd(v) in a bag

Xi for every vertex v 2 Xi showing the number of the in-coming red edges,

denoted by sd
�
(v), and the out-going red edges, denoted by sd

+
(v), between v

and Yi:

63

4. A NEW ALGORITHM FOR A POWER DOMINATING SET

i. s(v) = 1: There is exactly one in-coming red edge from Yi, and no out-going

red edge from v to Yi, where sd
�
(v) = 1 and sd

+
(v) = 0.

ii. s(v) = 2: There is exactly one in-coming red edge from Yi, and one out-

going red edge from v to Yi, where sd
�
(v) = 1 and sd

+
(v) = 1.

iii. s(v) = 3: There is no red edges between Yi and v.

iv. s(v) = 4: There is no in-coming red edge from Yi, and there are at least two

out-going red edges from v to Yi, where sd
�
(v) = 0 and sd

+
(v) � 2.

v. s(v) = 5: There is no in-coming red edge from Yi, and exactly one out-going

red edge from v to Yi, where sd
�
(v) = 0 and sd

+
(v) = 1.

Note that according to Definition 4.6, a vertex in a Valid Colouring cannot have

more than one in-coming red edge (i.e. d�(v) = 1), and a vertex with d�(v) = 1

cannot have more than one out-going red edge (i.e. d+(v) = 1). Hence, the

above list covers all possible cases that should be considered.

c. The State of a Coloured Vertex on a Path:

According to Definition 4.9, we define seven vertex states s(v) in a bag Xi for

every vertex v 2 Xi depending on the directions of in/out blue and red edges

in order to concatenate dependency paths and detect dependency cycles. For a path

(u, v) 2 Xi with (u 6= v), the state of (u, v) denoted by s(u, v) shows if (u, v) can

be concatenated with the other path in order to obtain a dependency path from

u to v in H[Yi [{u, v}] such that s(u, v) ✓ {F ,M, E ,W,Z,Q,L}, or there may

exist dependency cycles where (u = v); that is, s(u, v) ✓ {E ,Q,L}. Note that if

the state of a coloured vertex on a path s(u, v) = ; then it means that there is no

dependency path from u to v in H[Yi [{u, v}]. The vertex states s(v) is defined as

follows:

i. s(v) = F : If there is no in-coming edge and exactly one out-going red edge.

ii. s(v) = M: If there is exactly one in-coming red edge and no out-going edge.

iii. s(v) = E : If there is exactly one in-coming red edge and exactly one out-

going red edge.

iv. s(v) = W : If there is no in-coming edge and exactly one out-going blue

edge.

64

4.4 COLOURING AND REPAIR ALGORITHMS

v. s(v) = Z : If there is exactly one in-coming blue edge and no out-going edge.

vi. s(v) = Q: If there is exactly one in-coming blue edge and exactly one out-

going blue edge.

vii. s(v) = L: if there is exactly one in-coming red edge and exactly one out-

going blue edge or vice versa.

As a consequence, for a bag Xi with |Xi|  (k+1), we have at most (7k+1·5k+1·2k+1)

bag states; since the number of relevant edges, vertices, and coloured vertices on

a Path are less than equal to (k + 1), (k + 1), (k + 1), respectively. We say that C

is under the restriction of a bag state s of the bag Xi if C satisfies the following

conditions:

1. The colouring of an edge e 2 E(H[Xi]) coincides with a state given by s(e).

2. All coloured vertices on a path (u, v) 2 Xi, the type of the dependency paths

from u to v in H[Yi [{u, v}] in the colouring C coincides with s(u, v).

3. For each vertex u 2 Xi, the number of red edges in the colouring C between u

and Yi coincides with sd
�
(u) and sd

+
(u).

4.4.2 A Concatenation Function of Dependency Paths

Let pux be the first dependency path where u and x are the tail and the head endpoint,

respectively, and pxv is the second dependency path with x and v as the tail and the

head endpoint path, respectively. The task of the function is to take two given

paths and concatenate them depending on e�p
ux

(x) (i.e. an in-coming edge to x)

and e+p
xv

(x) (i.e. an out-going edge from x) in order to obtain the resulting path

puv = pux ⌦ pxv as follows:

• If (u 6= v) then

a. Take the edge e�p
ux

(x) and the edge e+p
xv

(x) and concatenate them.

b. Check the obtained colour; that is x 2 {E ,Q,L}.

c. If a vertex x is coloured with Q, then the obtained path is no longer a

dependency path.

d. Otherwise, the new dependency path puv is obtained by colouring a vertex

x either {E} or {L} depending on in/out blue-red edges.

65

4. A NEW ALGORITHM FOR A POWER DOMINATING SET

• Else if (u = v) then

a. Concatenate the head endpoint of pux (i.e. e�p
ux

(x)) and the tail endpoint

of pxv (i.e. e+p
xv

(x)) such that x 2 {E ,Q,L}.

b. If a vertex x is coloured with Q, then the obtained path is no longer a

dependency cycle.

c. Otherwise, the obtained path puv is a dependency cycle by colouring a

vertex x whether {E} or {L} depending on in/out blue-red edges.

The crucial point in the dynamic programming is to check the degree constraints

satisfying the properties in Definition 4.6 and detect dependency cycles in all possible

colourings for Di going through bag Xi.

4.4.3 Degree Constraints and Detecting Dependency Cycles

We use a procedure called valid (Xi, s) deciding if a colouring C of Di under the

restriction of (s) satisfies the degree constraints in Xi and also has no dependency

cycles when reaching bag Xi.

a. Degree Constraints:

We denote s�(u) and s+(u) the number of the in-coming and out-going red

edges (respectively) to/from u in the colouring of H[Xi] given by the state of

edges s(e). The total number of the in-coming red edges to a vertex u, denoted

by ↵in, in the colouring C of Di under the restriction of (s) is given by

↵in =

⇣

s�(u) + sd
�
(u)

⌘

where sd
�
(u) denotes the number of the in-coming red edges from Yi to u,

whereas the total number of out-going red edges s+(u) from a vertex u, denoted

by ↵out, in the colouring C of Di under the restriction of s is given by

↵out =

⇣

s+(u) + sd
+
(u)

⌘

where sd
+
(u) denotes the number of out-going red edges from u to Yi. Now we

check the degree constraints at vertex u 2 Xi according to Definition 4.6 such

that each u 2 PDS either:

i.
⇣

(↵in = 0) ^ (↵out � 2)

⌘

=) ↵out � 2, or

ii.
⇣

(↵in = 0) ^ (↵out  1)

⌘

=) ↵out  1

66

4.4 COLOURING AND REPAIR ALGORITHMS

Other vertices in H (i.e. u /2 PDS):

i. 8u /2 (VD [VS) =) ↵  1, ^/_
ii. if (↵in = 1) =) ↵out = 1.

b. Dependency Cycles:

Lemma 4.5 (The Time Complexity of a Dependency Cycle)

Given a dependency cycle C with length k and the colours of all vertices in the de-

pendency cycle. In the worst case, one can decide the dependency path is a cycle in

time O(k).

E EF

uj+1

M

um

R RR

(a) Y
i

= {u
j+1, . . . , um

}

E

uj

RR

(b) X
i

\ Y
i

= {u
j

}

E

uj+1

EE

uj

E E

um

R RR R

R

(c) As u
j

has an in-coming and out-going red edge. After applying
the concatenation function to Y

i

with u
j

, u
j

should be coloured by E ,
producing a dependency cycle.

Figure 4.5: The Detection of a Dependency Cycle

Proof. Let C be a dependency cycle u
1

, u
2

. . . . , um in Di passing through some ver-

tices in Yi, where Yi = {uj+1

, . . . , um} (see Subfig 4.5.(a)), and Xi \Yi = {uj} (see

Subfig 4.5.(b)). Note that every two consecutive vertices in Yi is connected such

that the direction is going from uj+1

to um. Supposing that a vertex uj has an

in-coming red edge that is incident from um to uj and has an out-going red edge

from uj to uj+1

; now the dependency cycle is built as shown in Subfig 4.5.(c). Ac-

cording to Definition 4.10, a cycle is formed by a sequence of directed edges such

that all the red edges are in one direction, and there is no vertex with the colour

Q (i.e. no two consecutive blue edges). As the colour of vertex uj and the colour

of vertices in the dependency paths from uj+1

to jm in H[Yi] are all stored in the

67

4. A NEW ALGORITHM FOR A POWER DOMINATING SET

bag state s. By applying the colouring vertices for each consecutive vertices in

H[Yi [Xi] based on in/out blue-red edges, one can check if there is a dependency

cycle going through vertices in Yi when applying the concatenation function by

searching for a vertex with only the colour Q. Hence, a worst-case scenario is to

visit all vertices in Xi, where |Xi|  (k + 1) and the number of dependency cycles

going through Xi is O((k + 1)!). Therefore, any one of the possible dependency

cycles can be verified in with O(k) time.

4.5 Dynamic Programming Algorithm

Let �i denotes the set of all possible states for the bag Xi. In a bottom-up dynamic

programming strategy, we use a mapping Ai : �i ! [{+1} for each bag Xi,

where a bag state s 2 �i is the minimum size Ai(s) of the origins in an optimal Valid

Colouring C of all possible colourings of Di under the restriction of si containing

the state of vertex degrees (i.e. incoming and outgoing red edges), and coloured

vertices in Xi.

4.5.1 The Initialisation Step

Our algorithm is initialised by setting a mapping Ai for each leaf node i of T . For

each bag state si 2 �i we set Ai(si) := {+1} if
⇣

9v 2 Xi : sd
�

i (v) + sd
+

i (v) 6= 0

⌘

_
⇣

9uv : (u 2 Xi) ^ (v 2 Xi) ^ (si(u, v) 6= ;)
⌘

_
⇣

(>[Xi], si) = ?
⌘

where there is directed edge between v and vertices in Yi or there is a dependency

path from u to v in Di[Yi [{u, v}] or if a Valid Colouring is false

Otherwise we define Ai(si) as the number of vertices with no in-coming red edges

in the colouring given by si:

Ai(si) := |{vu 2 Xi : 9e = {vu} 2 E(H[Xi]) =)si(e) = vu}|

Hence only those bag states are taken into consideration where the edge states a

Valid Colouring

68

4.5 DYNAMIC PROGRAMMING ALGORITHM

4.5.2 The Bottom-up Computation Step

Now we perform a bottom-up step at each bag Xi visiting bags of the decomposi-

tion for computing the corresponding mapping Ai to Xi, and combining colourings

(treating Forget, Introduce, Join nodes, and ultimately the Root node separately)

satisfying:

1. Each forget node where Xj = Xi[{x}, we compute a bag state sj of a bag Xj

that is compatible with a bag state si of Xi.

2. For introduce nodes where Xi contains more edges than Xj such that Xi =

Xj [{x}, we check whether a Valid Colouring of Xj under the restriction of sj

can be extended to a Valid Colouring for Xi under the restriction of si.

3. For join nodes i with two children (Xj ,Xk), we check whether a Valid Colour-

ing of Xj and Xk are combined with a Valid Colouring of Xi.

4.5.3 The Formal Definition of Compatibility

Now we define the formal definition of compatibility for each type of node sepa-

rately (Forget, Introduce, Join nodes):

4.5.3.1 Forget Node

Definition 4.11 (The Computation of Forget Nodes in a Valid Colouring)

Supposing that node i is a forget node with child node j, where Xj = Xi[{x}, both Di and

Dj have the same set of vertices, so each Valid Colouring of Dj is also a Valid Colouring

of Di. If there exists an edge between a vertex v 2 Xi, and a vertex x 2 Xj , then the state

of degrees of vertices and coloured vertices can be different between sdi (v) and sdj (v). So, we

say that sj is compatible with si if it satisfies:

1. 8v 2 Xi : if {xv} 2 E(H[Xj]) then 1

a. sd
�

i (v) = 1 such that sj({x, v}) = (xv); otherwise sd�i (v) = sd
�

j (v).

b. sd
+

i (v) � 2, where sd+i (v) = sd
+

j (v) + 1 such that sj({x, v}) = (vx).

c. Otherwise sd+i (v) � 2 such that sd+i (v) = sd
+

j (v).

1a,b and c (respectively) are illustrated in Figure 4.6

69

4. A NEW ALGORITHM FOR A POWER DOMINATING SET

2. If {xv} /2 E(H[Xj]) then
⇣

sd
�

i (v) = sd
�

j (v)
⌘

^
⇣

sd
+

i (v) = sd
+

j (v)
⌘

.

3. For each edge e 2 E(H[Xi]), si(e) = sj(e).

4. For each pair (u, v) 2 Xi, we define the compatibility of sj with respect to the state of

coloured vertices on a path by applying the concatenation function of path such that

si(u, v) = sj(u, x)⌦ sj(x, v).

Let (si) be the set of all bag states sj for Xj that are compatible with the bag state si

for Xi. The function Ai is computed for each bag state si as:

Ai(si) = min

s
j

2�(s
i

)

Aj(sj)

As Di and Dj have the same set of vertices, a Valid Colouring under the restriction

of sj is also a Valid Colouring under the restriction of si. Therefore, the computation

of Ai is correct. However, if �si = ; then, Ai(si) = +1.

x

sj

v

si

v
u

u

(a)
x

sj

v
v

si

u
u

(b)
x x

sj

v v

si

u u

z

(c)

Figure 4.6: The Computation of Forget Node in a Valid Colouring

70

4.5 DYNAMIC PROGRAMMING ALGORITHM

4.5.3.2 Introduce Node

Definition 4.12 (The Computation of Introduce Nodes in a Valid Colouring)

Supposing that a node i is an introduce node with a child j, where Xi = Xj [{x}. In order

to compute Ai(si) for a bag state si of the bag Xi, we compute the set of all bag states �(si)

of the node j that are compatible with si. Note that the introduced vertex x 2 Xi has no

neighbour in Yi (due to the consistency property of tree decompositions), so the vertex x

does not change the number of red edges between a vertex v 2 Xj and the vertices in Yi.

Therefore, sj is compatible with si, if a Valid Colouring C under the restriction of si is a

Valid Colouring under the restriction of sj .

Now we apply a procedure valid (Xi, s) deciding if there is an edge between a

vertex x 2 Xi and the vertices in Yi, such that (Xi, s) = ? if:

x 2 Xi :

⇣

sd
�

i (x) + sd
+

i (x) 6= 0

⌘

_
⇣

9v 2 Xj : (si(v, x) 6= ;) ^ (si(x, v) 6= ;)
⌘

Otherwise (�si) contains a bag state sj of Xj if:

8e 2 E(H[Xj]) :

⇣

si(e) = sj(e)
⌘

^
⇣

8v 2 Xj : sdi (v) = sdj (v)
⌘

^
⇣

8uv 2 Xj : si(u, v) = sj(u, v)
⌘

Note due to a new introduced vertex x, the degree constraints for a Valid Colouring

can be violated by a vertex in Xi \{x} (i.e. the edges incident to x in H[Xi]). Hence,

we should verify if there exists a dependency cycle passing through x.

a. Degree Constraints: as Xi \ {x} = Xj , all in/out red edges e in E(Dj) incident

to v can be verified by the information stored in sj(v) and sj(e) under the re-

striction of sj . Together with a given edge e = {v, x} by si(e), one can check

the in/out red edges of v in the colouring of Di under the restriction si(e) in

O(|(k+1)

2|) time as the number of edges in each bag has at most (|k+1|) edges

without self-loop.

b. Dependency Cycles: by applying the 7-Colourings vertices to a path with u, v 2
Xj , one can check if there is a dependency cycle passing through x in the colouring

of Di under the restriction of si, if there is no vertex with the colour Q.

71

4. A NEW ALGORITHM FOR A POWER DOMINATING SET

x

si

v
v

sj

u
u

(a)
x

si

v
v

sj

u
u

(b)

Figure 4.7: The Computation of Origins of Introduce Node in a Valid Colouring

Now we compute an origin in Ai(si) for a bag state si as follows:

Definition 4.13 (The Computation of Origins of Introduce Nodes in a Valid Colouring)

• First Case: a new introduced vertex x has edges that are incident from x to v 2 Xi,

then x is counted as an origin, where some of the origins in sj might not be origins

in si (see Subfig 4.7.(a)). Hence, the mapping Ai for Xi is computed as:

Ai(si) = min

s
j

2�(s
i

)

{Aj(sj) + |⇤s
i

(x)|}
where ⇤s

i

(x) denotes an introduced vertex x as an origin (i.e. x has at least two

edges e = {xu} and e
0
= {xv} in D[Xi] that are incident from x to the vertices in

Xi \ {x} with si(e) = xu and si(e
0
) = xv.

• Second Case: the origins in sj are also origins in si such that sd+i (v) = 2 where

there exists an edge e = {vx} in D[Xi] with si(e) = vx and the other edge e0 = {vu}
in D[Xj] with sj(e

0
) = vu in a Valid Colouring of Dj under the restriction of sj

(see Subfig 4.7.(b)). Thus, the mapping Ai for Xi is computed as follows:

Ai(si) = min

s
j

2�(s
i

)

{Aj(sj) + |�i(sj)|}
where �i(sj) denotes a vertex v as an origin (i.e. v has at least two edges e = {vx}
and e

0
= {vu} in D[Xi] that are incident from v to the vertices in Xi with si(e) = vx

and si(e
0
) = vu.

72

4.5 DYNAMIC PROGRAMMING ALGORITHM

4.5.3.3 Join Node

Definition 4.14 (The Computation of Join Nodes in a Valid Colouring)

Supposing that i is a join node with children j and l, where Xi = Xj = Xl. Let �(si) be

the set of the bag state pairs (sj , sl) that are compatible with si, where sj and sl denote bag

states of Xj and Xl, respectively. Note that, due to the properties of tree decompositions,

Yj \ Yl = ;, and thus we have Yi = Yj [Yl. The set, �(si), is compatible with sj and sl

with respect to vertex v 2 Xi if the following conditions are satisfied:

1. The sum of the in-coming edges of v in H[Yj [{v}] and in H[Yl [{v}] is equal to

the in-coming edges of v in H[Yi [{v}], and the sum of the out-going edges of v in

H[Yj [{v}] and in H[Yl [{v}] is equal to the out-going edges of v in H[Yi [{v}]
such that there are at least two red edges from a vertex v 2 Xi to a vertex in Yj and

Yl, respectively. Hence v 2 Xi :

a. sd
�

i (v) =
⇣

sd
�

j (v) + sd
�

l (v)
⌘

.

b. sd
+

i (v) � 2 such that sd+i (v) =
⇣

sd
+

j (v) + sd
+

l (v)
⌘

.

2. The edge state of sj(e) and sl(e) are compatible with the edge state given by si(e) for

each edge e 2 E(H[Xi]) such that

si(e) = sj(e) = sl(e)

3. By applying the 7-Colourings vertices to a path (u, v) 2 Xi, si is compatible with

sj and sl such that the concatenation of both dependency path are satisfied:

si(u, v) =
⇣

sj(u, v) [sl(u, v)
⌘

Note that the combination of the two colourings of Dj and Dl, which are under the

restrictions of sj and sl, respectively, should be coincided with a Valid Colouring of

Di under the restriction of si. Therefore, the combination of Dj and Dl results in

new origins in a Valid Colouring of Di (see Figure 4.8), where either:

a. A vertex v 2 Xi that is an origin in a Valid Colouring of Dj or Dl may not be an

origin in Di, or

b. a vertex v 2 Xi that is an origin in both Valid Colourings of Dj and Dl may be

counted twice in Di.

73

4. A NEW ALGORITHM FOR A POWER DOMINATING SET

With respect to the two conditions (a,b), we now compute the mapping Ai(si) for a

bag state si:

Ai(si) = min

(s
j

,s
l

)2�(s
i

)

{Aj(sj) +Al(sl) + |⇤s
i

(sj , sl)|� |(�si(sj , sl)|)}

where the set ⇤s
i

(sj , sl) contains the vertices v 2 Xi which satisfy the following

condition:

• A vertex v 2 Xi that is an origin in both Dj and Dl, and there is no edge

e = uv 2 E(H[Xi]) with si(e) = uv, such that

v 2 Xi :

⇣

(sd
�

j (v) = 0) ^ (sd
+

j (v) = 1)

⌘

^
⇣

(sd
�

l (v) = 0) ^ (sd
+

l (v) = 1)

⌘

^
⇣

(e = {uv} /2 E(H[Xi]) : si(e) = uv)
⌘

v

v v
Di

Dl Dj

x

x x

u

uu

(a)

v

v v
Di

Dl Dj

x

x x

u

uu

(b)

Figure 4.8: The Computation of Origins of Join Node in a Valid Colouring

Whereas the set �si(sj , sl) contains the vertices v 2 Xi which satisfy at least one of

the following conditions:

a. A vertex v 2 Xi that is an origin in Dj but not in Dl may not be an origin in Di

(see Subfig 4.8.(a)), such that

v 2 Xi :

⇣

(sd
�

j (v) = 0) ^ (sd
+

j (v) = 1)

⌘

^
⇣

e = {xv} 2 E(H[Xi]) : si(e) = xv
⌘

b. A vertex v 2 Xi that is an origin in Dl but not in Dj may not be an origin in Di,

such that
⇣

(sd
�

l (v) = 0) ^ (sd
+

l (v) = 1)

⌘

^
⇣

e = {xv} 2 E(H[Xi]) : si(e) = xv
⌘

74

4.5 DYNAMIC PROGRAMMING ALGORITHM

c. A vertex v 2 Xi that is an origin in both Dj and Dl may be counted twice in Di

(see Subfig 4.8.(b)), such that

v 2 Xi : sd
�

i (v) + s�i (v) = 0

where s�i (v) denotes the number of the in-coming red edges that are incident to v

in H[Xi], and sd
�

i (v) the number of the in-coming red edges that are incident from

Yi to v.

4.5.3.4 The Computation of Root

Definition 4.15 (The Computation of Root r in a Valid Colouring)

As the dynamic programming algorithm is a bottom-up strategy. Now we compute the

minimum origins in a Valid Colouring of H at the root r of the tree decomposition T :

�(H) = min

s2�
r

{Ar(s)}

We give this result also in constructive form in the following algorithm:

75

4. A NEW ALGORITHM FOR A POWER DOMINATING SET

Algorithm 4.1: The Generation of a PDS for a Directed Graph H = (V,E)

Input : Given a nice tree decomposition hXi|i 2 I, T i of H = (V,E), where
the underlying undirected graph has bounded tree-width

Output: A set of origins (S) for H , where S 2 PDS
1 S ;;
2 Let d be the maximum distance from the root r 2 T ;
3 Let Ai(si) be a mapping for each bag Xi;
4 forall the leaves nodes Xi of T do
5 if (Xi, si) = ? then
6 Ai(si) {+1};
7 else
8 • Apply Valid Colouring (Xi, si), and compute

Ai(si) := {vu 2 Xi : 9e = {v, u} 2 E(H[Xi]) =) si(e) = vu};

9 for i= d to 0 do
10 if Xi is a Forget node then
11 • Compute all sj for Xj that are compatible with si;
12 • Set Ai(si) = min

s
j

2�(s
i

)

Aj(sj);

13 else if Xi is an Introduce node then
14 • Check a new introduced vertex sdi (x);
15 • Check Dependency Cycles passing through x;
16 • Compute A set of the node j that are compatible with si;
17 if x is counted as an origin where x has edges that are incident to v 2 Xi,

then
18 Ai(si) = min

s
j

2�(s
i

)

{Aj(sj) + |⇤s
i

(x)|};

19 else
20 The origins in sj are also origins in si:
21 Ai(si) = min

s
j

2�(s
i

)

{Aj(sj) + |�i(sj)|};

22 else
23 • Xi is a Join node
24 • Compute the set pairs (sj , sl) that are compatible with si;
25 • Check the origin v 2 S;
26 if

�

v 2 Dj ^ v /2 Dl

� _ �

v 2 Dl ^ v /2 Dj

� _ �

v 2 Dj ^ v 2 Dl

�

then
27 Ai(si) = min

(s
j

,s
l

)2�(s
i

)

{Aj(sj) +Al(sl) + |⇤s
i

(sj , sl)|� |�si(sj , sl)|};

28 Compute the minimum origins at r, �(H) = min

s2�
r

, {Ar(s)};

29 S �(H);
30 return S;

76

4.6 TIME COMPLEXITY

4.6 Time Complexity

Lemma 4.6 (Time Complexity of a PDS for a Directed Graph)

Given a tree decomposition of width k for a directed graph H = (V,E), where the un-

derlying undirected graph has bounded tree-width, one can solve a PDS in O(nck
2
) time

for a constant c.

Proof. Let H = (V,E) be a directed graph satisfying the same assumptions (1,2 and

3) as G
0 shown in Subsection 1.4.2 in Chapter 1, where the underlying undirected

graph has bounded tree-width. The analysis of the presented algorithm, satisfying

the assumption (4) in Subsection 1.4.2 in Chapter 1, in terms of time complexity can

be classified as Best case, Worst case and Average case.

Assuming that there exists uncovered vertices denoted by W of H and the ver-

tices of W are not included in join nodes. Thus, the resulting algorithm will have a

best-case complexity of O(nck). Now, assuming that a PDS of H is completely dif-

ferent to the remainder of the original G0 . This requires the reconstruction of a new

PDS for H from scratch and thus the resulting algorithm will have a worst case of

O(nck
2
), where the most time-consuming part of the algorithm is to determine the

mapping Ai at a join node i. Therefore, we compute all possible bag states once for

each child bag such that there are at most (7k+1 · 5k+1 · 2k+1) states for each bag Xi

with |Xi|  (k + 1). Hence, there can be (7(k+1)

2 · 5(k+1) · 2(k+1)

2
) states which are

compatible to si.

For the time complexity of the average case, suppose given H has the remaining

PDS of the original G0 . This means that the uncovered vertices of H are included in

at most the half bags of tree n/2. Hence, there may exist some uncovered vertices in

join nodes; if this is the case, then the most time-consuming part of the algorithm is

to compute the mapping Ai at a join node i where the resulting algorithm will have

an average complexity of the time of computation Ai at each bag Xi is O(log nck
2
)

for a constant c. However, if the vertices of W do not exist in join nodes, then the

running time of the algorithm in the average case is O(log nck). The summary of

the time complexity of the algorithm is illustrated in the following table:

77

4. A NEW ALGORITHM FOR A POWER DOMINATING SET

Case Time Complexity Given Input

Best-case O(n ck) The uncovered vertices W /2 join nodes
Average-case O(log n ck

2
) The remainder of a PDS in G

0 and W 2 n/2

Worst-case O(n ck
2
) a PDS of H is different to a PDS of G0

Table 4.1: The summary of time complexity of the Algorithm 4.1

4.7 Summary

The resilience of control structures and the rapid ability to recover controllability

after compromise, and other attacks resulting particularly in partitionings of the

original graphs is a significant problem in control systems. This also means that

an adversary with sufficient knowledge of the network distribution and its power

domination can disconnect parts of the control graph and leave parts of a system

uncontrolled.

In this chapter, we proposed a reconstruction algorithm for (directed) control

graphs of bounded tree-width embedded in Erdős-Rényi random graphs after an

event or attack leading to a degradation of the control of the network and a sig-

nificant reduction of its observability. We also presented the 7-Colourings of a de-

pendency path to determine the direction of edges and their colours to concatenate

dependency paths and detect dependency cycles while computing bags in a nice tree

decomposition. Our result reduces the number combinations by reducing c, where

there are at most (7(k+1)

2 · 5k+1 · 2(k+1)

2
) states for each bag Xi with |Xi|  (k + 1),

also reducing the time complexity required to compute a Valid Colouring at each

bag owing to a reduction in the number of colours required. This also allows faster

a re-construction of a PDS, and ultimately the re-gaining of control for operators of

control systems.

78

Chapter 5

Updating a Power Dominating Set

5.1 Overview

As the underlying POWER DOMINATING SET problem does not permit efficient re-

computation, this chapter proposes to reduce the average-case complexity of a re-

construction algorithm for (directed) control graphs proposed in the previous chap-

ter by re-using remaining fragments of the original graph where possible and iden-

tifying previously un-used edges to minimise the number of a PDS. This algorithm

relies on Depth-First Search approach (DFS) which yields improved average-case

complexity over previous algorithm, where an average-case complexity of com-

puting a PDS is O(|V +

n

Et [Ef

⇥

N(v)
⇤ [Ec

⇥

N(v)
⇤

o

\Eb|) time, where v 2 PDS.

5.2 Problem Statement and Assumption

The aim of this algorithm is to reduce the average-case complexity of a reconstruc-

tion algorithm proposed in Chapter 4. Recall that the problem statement in this

chapter is exactly the same as the previous chapter, where G
0
= (V,E) is a directed

graph, generated by ER(n, p), such that G0 satisfies the assumptions (1,2 and 3) as

shown in Subsection 1.4.2 in Chapter 1.

Let S
0 be a given PDS of G

0 , we assume that G
0
= (V,E) is subjected to in-

tentional or random removal, where an adversary with knowledge of the network

distribution and its power domination can disconnect parts the of control graph

and leave parts of a system uncontrolled (e.g. when an attacker has physical ac-

cess to the actuator and able to install its own actuators or corrupt all the actuator

channels).

79

5. UPDATING A POWER DOMINATING SET

Therefore, the deletion of vertices of G0 may result in a disconnected compo-

nent of a directed graph G
0 , defined by H = (V,E), where H = (V,E) ⇢ G

0 is

partitioned from the original graph G
0 such that V (H) /2 V (G

0
) and E(H) /2 E(G

0
)

(i.e. there exists no edge in H whose one end vertex is in G
0 and verse vice). For

the disconnected component H that satisfies the same assumptions (1,2 and 3) as

G
0 mentioned in Subsection 1.4.2 in Chapter 1, we suppose that H has a remaining

structures of the original graph G
0 and un-used edges. While designing the algo-

rithm, we assume a complete view of the status of the graph after an attack, and

suppose the computation time of the algorithm is related to time complexity and

not real time.

The contribution of this chapter compared to the previous one is to enhance the

time complexity of a reconstruction algorithm proposed in Chapter 4 after an event

or attack leading to the partitioning of the original control network by re-using re-

maining structures of the original where possible to recover a control graph and

identifying previously un-used edges to minimise a PDS for H = (V,E).

•Input:

We are given a Depth-First Search (DFS) structure for a disconnected component

H = (V,E) of the original graph G
0 where H = (V,E) ⇢ G

0 .

•Question:

Can we design an algorithm to enhanced the average-case complexity of a recon-

struction algorithm in the previous chapter to compute a PDS for H , denoted by

S, after the original graph has been modified (e.g. in real scenarios, when an at-

tacker able to estimate the state of the system and corrupt the actuator channels by

launch a false-data injection attack). A particular scenario of the reconstruction of

the PDS problem in the context of electrical power network control is to reconstruct

a minimum-sized set of measurement devices when the system under attack.

•Output:

A minimal S ✓ V for H by using tree, forward and cross edges in a DFS structure

such that all vertices in V are controlled by the vertices in S.

80

5.3 DEPTH-FIRST SEARCH (DFS)

5.3 Depth-First Search (DFS)

This algorithm assumes a Depth First Search for H is giving; we now define a DFS:

Definition 5.1 (Depth First Search (DFS), Gibbons [46])

DFS is a systematic method of visiting the vertices of a graph (i.e. a directed oran undirected

graph). Its general step requires that if we are currently visiting vertex u, then we next

visit a vertex adjacent to u that has not yet been visited. If no such vertex exists then we

return to the vertex visited just before u and the search is repeated until every vertex in that

component of the graph has been visited.

5.3.1 DFS Algorithm

The DFS procedure takes as input a graph G, and outputs its predecessor sub-

graph in the form of a depth-first forest. In addition, it assigns two timestamps

to each vertex: discovery and finishing time. The algorithm initialises each ver-

tex to “white” to indicate that they are not discovered yet. It also sets each parent

of vertex to null. The procedure begins by selecting one vertex u from the graph,

setting its color to “grey” to indicate that the vertex is now discovered (but not fin-

ished) and assigning to it discovery time 0. For each vertex v that belongs to the set

Adj[u], and is still marked as “white”, DFS-Visit is called recursively, assigning to

each vertex the appropriate discovery time d[v] (the time variable is incremented at

each step). If no white descendant of v exists, then v becomes black and is assigned

the appropriate finishing time, and the algorithm returns to the exploration of the

ancestor of a vertex ⇡(v). If all of u's descendants are black, u becomes black and

if there are no other white vertices in the graph, the algorithm reaches a finishing

state, otherwise a new “source” vertex is selected, from the remaining white ver-

tices, and the procedure continues as before [70, 100].

The initialisation part of DFS has time complexity ⇥(n), as every vertex must be

visited once so as to mark it as “white”. The main (recursive) part of the algorithm

has time complexity ⇥(m), as every edge must be crossed (twice) during the ex-

amination of the adjacent vertices of every vertex. In total, the time complexity of

algorithm is ⇥(n+m).

81

5. UPDATING A POWER DOMINATING SET

5.4 Reconstructing a Directed PDS via a DFS

DFS can be used to seek edges of a given directed graph H = (V,E), identify-

ing articulation points and constructing the H as a tree-like structure, which gives

equivalent characterisations of trees. DFS separates edges into groups revealing

information on H = (V,E), and articulation points or (Cut-Vertices) giving an equiv-

alent formulation for identifying a PDS in undirected graphs as shown by [107]

for block graphs. An articulation point or Cut-Vertex is a vertex whose removal (to-

gether with the removal of any incident edges) results in a disconnected graph.

There are several well-known efficient algorithms for a construction based on DFS

in O(V + E) time [70, 100]. We now can define four edge types, including tree edge

(Et), forward edge (Ef), cross edge (Ec) and back edge (Eb), produced by DFS on a

given directed graph H = (V,E) as follows:

Definition 5.2 (DFS Edge Classification)

During executing DFS on graph H , we select the existing PDS as the root to traverse an

entire graph. Therefore, edges can be classified by type:

1. If v is visited for the first time as we traverse the edge (uv), then the edge is a tree

edge describing a relation between a vertex and one of its direct descendants.

2. If v has already been visited:

a. If v is an ancestor of u, then edge (uv) is a back edge (i.e. connecting a vertex u

to an ancestor v in DFS tree (self-loop), which may occur in directed graphs).

b. If v is a descendant of u, then edge (uv) is a forward edge (i.e. non-tree edges

(uv) connecting a vertex u to a descendant v in DFS tree).

c. If v is neither an ancestor nor descendant of u, then edge (uv) a cross edge.

When drawing diagrams, we represent edges {Et, Eb, Ef , Ec} by line types as shown

in Figure 5.1, where a solid line (Et) represents a tree edge , a dotted line (Eb) a

back edge , a dashed line (Ef) a forward edge , and a dash-dotted line (Ec)

a cross edge , respectively. Now we identify articulation points on a Directed

PDS as follows:

82

5.4 RECONSTRUCTING A DIRECTED PDS VIA A DFS

x
1

x
2

x
3

x
5

x
4

x
6

(a) Back edge

x
1

x
2

x
3

x
5

x
4

x
6

(b) Forward edge

x
1

x
2

x
3

x
5

x
4

x
6

(c) Cross edge

Figure 5.1: Articulation Points with Different Edge Types in a DFS

Definition 5.3 (Cut-Vertex or Articulation Points in a DFS)

Given a directed graph H = (V,E) constructed by a DFS, an articulation point u is said

to be in a PDS if it satisfies

a. The root r of the tree in DFS is an articulation if d+(r) � 2 is connected by a tree edge,

and no cross edges between the subtrees of the root.

b. Any other internal vertex v in the tree (other than the root) is an articulation point if

it has a subtree rooted at a child of v such that there is no back edge from any vertex in

this subtree connected to a higher level vertex than v and d+(v) � 2.

c. A vertex v is in a PDS if d+(v) � 2 connected by a tree edge, and there exists a cross

edge that is incident from the subtrees of v to neither an ancestor or descendant of v (or

inversely), or a back edge connected to a higher level vertex than v,

d. If a vertex v has only one child (i.e. d+(v) � 1 and d�(v) = 0), then v 2 PDS.

e. A leaf vertex is not an articulation point as its removal from a tree does not affect the

remainder of the tree, thus the tree remains connected.

83

5. UPDATING A POWER DOMINATING SET

Theorem 5.1 (Cut-Vertex or an Articulation Point in a PDS)

Given a DFS for a directed graph H = (V,E), v 2 PDS is said to be an articulation

point (or Cut-Vertex) if it satisfies

1. v has more than one child connected through a tree edge where d+E
t

(v) � 2.

2. There is no back edge that is incident from any child x in the subtrees of v such that

x is connected to a higher level vertex than v (see Subfig 5.1.(a)).

3. There is no forward edge that is incident from an ancestor of v to any child in the

subtrees of v (see Subfig 5.1.(b)).

4. There is no cross edge that is incident from the subtrees of v to neither an ancestor

or descendant of v (or vice versa) (see Subfig 5.1.(c)).

Proof. Let H = (V,E) be a directed graph, satisfying the same assumptions (1,2

and 3) as G
0 shown in Subsection 1.4.2 in Chapter 1. Assume a DFS structure for

H is given where it contains {x
1

, x
2

, . . . , xn} rooted at x
1

, and supposing that there

exists a vertex x
3

with more than one child, where d+(x
3

) � 2, and one of its chil-

dren is connected to the ancestor of x
3

by a back edge (x
4

, x
1

) (see Subfig 5.1.(a)).

The Proof is by contradiction in three cases (we use Figure 5.1 to demonstrate the

construction):

1. If one of the subtrees (here: x
4

) of x
3

are connected to an ancestor of x
3

by a

back edge (see Subfig 5.1.(a)), then a vertex x
4

is still connected to an ancestor

of x
3

by a back edge after omitting x
3

. Therefore, x
3

is not an articulation point.

2. If there exists a vertex x
6

of the subtrees of x
3

connected to the ancestor of

x
3

by a forward edge (see Subfig 5.1.(b)), then x
6

is still connected to H after

omitting x
3

, thus x
3

is not an articulation point.

3. If there exists a vertex x
6

of the subtrees of x
3

connected to neither an ancestor

or descendant of x
3

by a cross edge (see Subfig 5.1.(c)), then after removing x
3

,

x
6

will be connected to H , thus x
3

is not an articulation point.

We can now reformulate a colouring of a directed graph H = (V,E) constructed by

a DFS. This reformulation is based on a Valid Colouring as defined in Definition 4.6

in Chapter 4. Our approach applies to a directed graph H = (V,E) such that H is

structured by a DFS:

84

5.4 RECONSTRUCTING A DIRECTED PDS VIA A DFS

Definition 5.4 (A Colouring of a Directed Graph in a DFS)

Given a DFS for a directed graph H = (V,E), a colouring of H = (V,E) is a partition

of the edges of H into red and blue edges. We denote the colouring by C = (V,Er
) where

Er is the set of red edges.

Before introducing a Valid Colouring of a directed graph in a DFS structure, we

now define an origin of a Valid Colouring in a DFS:

Definition 5.5 (The Origins of a Valid Colouring in a DFS)

Given a DFS for H = (V,E), we refer to a vertex v as an origin of the colouring of H in

a DFS if it satisfies:

1. It is an articulation point (or a Cut-Vertex).

2. It has no in-edge in H , where v 2 H : d�(v) = 0.

3. It has no red in-edges in Hr such that v 2 Hr
: d�(v) = 0, where Hr denotes the

set of vertices with red edges.

Definition 5.6 (A Valid Colouring of a Directed Graph in a DFS)

A Valid Colouring of edges of H = (V,E) is a colouring of H into red and blue edges

satisfying:

1. An origin of the colouring in Hr
= (V,Er

) satisfies:

a. The root of a DFS may exist a Cut-Vertex, denoted by (vR
ct

), with out-degree

of at least 2 and no in-edge incident to (vR
ct

) with no cross edge between the

subtrees of (vR
ct

), has at least 2 out-red edges:

9v 2 V (H) :

⇣

�

d�H(vR
ct

) = 0

�^�d+H(vR
ct

) � 2

�^�8 child x of (vR
ct

) :

Ec(x) = ;
�

⌘

=) d+Hr

(vR
ct

) � 2

b. The root of a DFS, denoted by vR, with out-degree of at least 2 and no in-edge

incident to vR and there is at least one cross edge between the subtrees of vR, has

at least 2 out-red edges (i.e. vR is not Cut-Vertex):

9v 2 V (H) :

⇣

�

d�H(vR) = 0

�^�d+H(vR) � 2

�^�9 child x of vR : Ec(x) � 1

�

⌘

=)
d+Hr

(vR) � 2

c. There may exist a Cut-Vertex, denoted by vct, with out-degree of at least 2 and no

in-red edge incident to EHr

(vct) and no cross edges between the subtrees of vct

and no back edge incident to an ancestor of vct, has at least 2 out-red edges:

85

5. UPDATING A POWER DOMINATING SET

9v 2 V (H) :

⇣

�

d�Hr

(vct) = 0

�^�d+H(vct) � 2

�^�8 child x of vct :

Ec(x) = ; ^ Eb(x) = 0

�

⌘

=) d+Hr

(vct) � 2

d. There may exist a domination vertex, denoted by vD, with out-degree of at least

2 and no in-red edge incident to EHr

(vD) and there is at least one cross edge

between the subtrees of vD or back edge incident to an ancestor of vD, has at

least 2 out-red edges (i.e. VD is no Cut-Vertex):

9v 2 V (H) :

⇣

�

d�Hr

(vD) = 0

�^�d+H(vD) � 2

�^�9 child x 2 vD : Ec(x) � 1 _
Eb(x)geq1

�

⌘

=) d+Hr

(vD) � 2

e. There may exist a simple vertex, denoted by vS , with no in-degree and at least

out-degree of exactly one, has at least one out-red edge:

9v 2 V (H) :

⇣

�

d�H(vS) = 0

�^�d+H(vS) � 1

�

⌘

=) d+Hr

(vS) � 1

2. The remaining vertices in {H \ (vR
ct

[vR [vct [vD [vS)} covered by the red edges

in Hr
= (V,Er

) have the following properties:

i. 8v 2 H : d�Hr

(v)  1 , and

ii. 8v 2 H : d�Hr

(v) = 1 =) d+Hr

(v)  1.

3. H has no dependency cycle. A dependency cycle is a sequence of directed edges

whose underlying undirected graph forms a cycle such that all the red edges are in one

direction, all the blue edges are in the other direction, and there are no two consecutive

blue edges.

Note a vertex with d�Hr

(v) = 0 in Hr
= (V,Er

) is an origin, denoted by �, of C.

Definition 5.7 (A Dependency Path in a Valid Colouring of a DFS)

Given a DFS for H = (V,E) and a Valid Colouring of H , a dependency path in a Valid

Colouring is a sequence of red edges, where P = v
1

, e
1

, v
2

, e
2

, . . . , ei�1

, vi, such that P

has no back edge coloured red (i.e. all red edges are directed away from the start vertex

(v
1

) of P and ends with a vertex (vi)). The length of a dependency path is defined as the

number of red edges in the path. A dependency cycle in a DFS of a directed graph is a

sequence of directed edges whose underlying undirected graph forms a cycle such that all

the red edges are in one direction, and a red back edge in the other direction.

86

5.4 RECONSTRUCTING A DIRECTED PDS VIA A DFS

We can now define the colouring of neighbours vertices of a PDS:

Definition 5.8 (Colouring of the Neighbours of a PDS in a DFS)

In order to obtain a minimal PDS in H , we define two colours for N(v) where v 2 PDS

depending on forward and cross edges which are incident from u 2 PDS to N(v),

such that a colouring of the neighbours of a PDS in H = (V,E) is a colouring of N(v)

satisfying:

1. A gray colour is assigned to each neighbour VH(w) of v 2 PDS that has a forward

edge incident from v to w 2 N(u) where u 2 PDS (see Subfig 5.2.(a)):

9v, u 2 PDS :

⇣

9w 2 N(u) : Ef (vw)
⌘

2. An orange colour is assigned to each neighbour VH(w) of v 2 PDS with a cross

edge satisfying:

a. There exists a cross edge (vw) that is incident from v 2 PDS to w 2 N(u)

where u 2 PDS (see Subfig 5.2.(b)):

9(vw) 2 Ec :

⇣

(v, u 2 PDS) ^ (w 2 N(u))
⌘

b. There exists a cross edge (uw) between the subtrees of an ancestor v 2 PDS

incident from u 2 N(v) to w 2 N(v) and the vertex u is a leaf or has no out-red

edge (see Subfig 5.2.(c)):

9(uw) 2 Ec :

⇣

(v 2 PDS) ^ (u,w 2 N(v)) ^ (d+E(u) = 0 _ d+Er

(u) = 0)

⌘

c. There exists a cross edge (vw) incident from a leaf vertex v such that E+

t (v) = 0

to w 2 N(u) where u 2 PDS (see Subfig 5.2.(d)):

9(vw) 2 Ec :

⇣

(u 2 PDS) ^ (w 2 N(u)) ^ (E+

t (v) = 0)

⌘

d. There exists a cross edge (vw) incident from a vertex v with no out-red edge such

that d+Hr

(v) = 0 to a vertex w 2 N(u) where u 2 PDS (see Subfig 5.2.(e)):

9(vw) 2 Ec :

⇣

(u 2 PDS) ^ (d+Hr

(v) = 0) ^ (w 2 N(u))
⌘

We observe that we have at most 2N(v) colouring states for the neighbours of

the v 2 PDS. We therefore seek to employ a Valid Colouring of N(v) to reduce the

state space by utilising forward and cross edges drawing on the following lemma due

to Guo [49].

87

5. UPDATING A POWER DOMINATING SET

Lemma 5.2 (A Valid Orientation of an Undirected Graph, Guo et al. [49])

Let C = (V,Er
) be a Valid Colouring of a directed graph G with origin � ✓ V :

1. For each v 2 V \ �, there is exactly one directed path from the vertices in � to v.

2. Two directed paths from � to distinct vertices in V \ � are vertex-disjoint with the

possible exception of their tail endpoints in �.

Together with Lemma 5.2, we prove the following lemma:

Lemma 5.3 (The Number of Dependency Paths in a Valid Colouring)

Given a PDS for H where S ✓ V in H(V), the number of dependency paths of v 2 S is

equal to the number of neighbours of v.

Proof. Given a PDS for H = (V,E), satisfying the same assumptions (1,2 and 3)

as G
0 shown in Subsection 1.4.2 in Chapter 1, where S ✓ V in H(V). Supposing

that v 2 S, by applying the first Directed rule D1, defined in Definition 2.16, to a

PDS, all neighbours of v are power dominated such that for each vertex u 2 N(v),

there is exactly one directed edge from the vertex v to u. For instance, if v 2 S has

the out-degree of 3 (i.e. d+(v) = 3), then the number of dependency paths that are

incident from v is also 3.

Assuming that there exists w 2 N(v) that is not covered yet. In this case, w should

be power dominated in two ways:

a. There exists en edge (zw) incident from z 2 S to w. Since there is no another

edge incident to w except the one coming from v, w is still not controlled, or

b. there exists x 2 V \ S, where x is already controlled, that has an edge (e = xw)

to w, and that would imply d+(x) > 1 which is not allowed by Definition 5.6.

Thus, all the neighbours of v should be controlled by v, meaning the number of

directed paths that are incident from v is the same as the number of the neighbours

of v. As a result, the minimisation of the covered neighbours by v results in the

reduction of dependency paths, and therefore it leads to reduce a PDS in H .

88

5.4 RECONSTRUCTING A DIRECTED PDS VIA A DFS

x
1

x
2

x
3

x
4

x
5

(a) Forward edge

x
1

x
2

x
6

x
7

x
3

x
4

x
5

(b) Cross edge (1)

x
1

x
2

x
3

x
5

x
4

(c) Cross edge (2)

x
1

x
2

x
3

x
4

x
6

(d) Cross edge (3)

x
1

x
2

x
6

x
7

x
8

x
3

x
4

x
5

(e) Cross edge (4)

Figure 5.2: Case Enumeration for Colouring of the Neighbours of a PDS in a DFS

Definition 5.9 (Minimising a PDS by Colouring Forward and Cross Edges in a DFS)

Edges (uw) are coloured red if and only if:

1. It is a forward edge (uw) incident from u 2 PDS to w 2 N(v) where v 2 PDS

(see Subfig 5.2.(a)) such that 9e = (uw) 2 Ef :

⇣

(u, v 2 PDS) ^ (w 2 N(v))
⌘

2. It is a cross edge (uw) incident from u 2 PDS to w 2 N(v) where v 2 PDS (see

Subfig 5.2.(b)) such that 9e = (uw) 2 Ec :

⇣

(u, v 2 PDS) ^ (w 2 N(v))
⌘

3. It is a cross edge (uw) between the subtrees of an ancestor v 2 PDS incident

from u 2 N(v) to w 2 N(v), and the vertex u is a leaf or has no out-red edge (see

Subfig 5.2.(e)):

89

5. UPDATING A POWER DOMINATING SET

9(uw) 2 Ec :

⇣

(v 2 PDS) ^ (u,w 2 N(v)) ^ (d+E(u) = 0 _ d+Er

(u) = 0)

⌘

4. It is a cross edge (uw) incident from a leaf vertex (E+

t (u) = 0) to w 2 N(v), where

v 2 PDS (see Subfig 5.2.(d)):

9e = (uw) 2 Ec :

⇣

(E+

t (u) = 0) ^ (v 2 PDS) ^ (w 2 N(v))
⌘

5. There exists a cross edge (uw) incident from a vertex u with no out-red edge such

that d+Hr

(u) = 0 to a vertex w 2 N(v) where v 2 PDS (see Subfig 5.2.(e)):

9(uw) 2 Ec :

⇣

(v 2 PDS) ^ (d+Hr

(u) = 0) ^ (w 2 N(v))
⌘

Because of insufficient forward/cross edges that are incident to the neighbours of a

PDS, it is necessary to identify a criterion of addition red edges from a PDS to its

neighbours as stated in the following lemma:

Lemma 5.4 (The Addition of Red Edges to the Neighbours of a PDS in a DFS)

Given a DFS and Valid Colouring for H = (V,E). If there is a lack of forward/cross

edges that are incident to the neighbours of a PDS, then one can add a red edge to obtain a

minimal PDS in H satisfying:

1. A red forward edge is assigned from v 2 PDS to each neighbour VH(w) of u 2
PDS such that there is a red edge directed from v to w 2 N(u) (see Subfig 5.3.(a)).

2. A red cross edge is assigned from v 2 PDS to each neighbour VH(w) of u 2 PDS

where a cross edge satisfies:

a. A red cross edge (vw) is assigned from v 2 PDS to w 2 N(u) where u 2 PDS

(see Subfig 5.3.(b)).

b. A red cross edge (uw) is assigned between the subtrees of an ancestor v 2 PDS

that is incident from u 2 N(v) to w 2 N(v) and the vertex u is a leaf or has no

out-red edge that is incident to the neighbours of a PDS (see Subfig 5.3.(c)).

c. A red cross edge (vw) is assigned from a leaf vertex v such that E+

t (v) = 0 to

w 2 N(u) where u 2 PDS (see Subfig 5.3.(d)).

d. A red cross edge (vw) is assigned from a vertex v with no out-red edge such that

d+Hr

(v) = 0 to a vertex w 2 N(u) where u 2 PDS (see Subfig 5.3.(e)).

Proof. We are assume that a DFS for H = (V,E), satisfying the same assumptions

(1,2 and 3) as G
0 mentioned Subsection 1.4.2 in Chapter 1, and a Valid Colouring

90

5.4 RECONSTRUCTING A DIRECTED PDS VIA A DFS

of a Directed PDS for H are given. We prove that the above constraints in this

lemma, applied to the neighbours of a PDS through adding forward/cross edges to

its neighbours, result in the minimisation of a PDS.

Let a vertex xj 2 PDS is a subtree of the root of a DFS, denoted by xi 2 PDS.

We claim that a forward edge (Ef) should be directed from xi to the neighbours of a

vertex xj (i.e. xi ! w 2 N(xj)) in order to minimise the number of a PDS as stated

in the first constraint of this lemma. Let Ef is not assigned from xi to w. Instead, Ef

is directed from xi to any vertices except those in N(xj). Therefore, the neighbours

of xj are still power dominated by a vertex xj . Hence, there is no change in the

number of a PDS and Ef should be assigned from xi to vertices in N(xj).

Now let xj and xk are the subtrees of xi and {xi, xj , xk} 2 PDS. We claim that

a cross edge (Ec) should be assigned from a vertex xj to each neighbour of xk in

order to minimise the number of a PDS as stated in the second constraint of this

lemma. Now we apply the same argument above to a cross edge (Ec) and suppose

that Ec is directed from xj to the vertices in the subtree xk except its neighbours

(i.e. xj ! w /2 N(xk)). Thus, the neighbours of xk are still controlled by a vertex

xk. Hence, there is no difference in the number of a PDS and Ec should be directed

from xj to vertices in N(xk) to obtain a minimal PDS.

Let assume there is Ec between the neighbours of the subtree xj as shown in

Subfig (5.3.c). Therefore, if Ec is coloured by red and there exists another cross edge

incident to the neighbours of xj is also coloured by red, then the vertices that are

downstream of N(xj) will no be longer controlled (i.e. V \N [xj]). Hence, Ec should

be directed to the neighbour of xj that is a leaf vertex or has no out-red edge that is

incident to the neighbours of xj as stated in the third constraint of this lemma.

Now let consider Subfig (5.3.d), and suppose that Ec is incident from a vertex

w 2 xi, where w is not a leaf to a vertex z 2 xj (i.e. it has an out-red edge incident

to anther vertex). By colouring Ec to red, a vertex w is already power dominated

another vertex meaning w should be in a PDS; hence Ec should be assigned from

a leaf vertex in order to avoid the increase of the number of a PDS as stated in the

91

5. UPDATING A POWER DOMINATING SET

forth constraint of this lemma. However, if w has an out-edge that is incident to a

vertex in a PDS, then Ec can be coloured and directed from w to z as stated in the

last constraint of this lemma and shown in Subfig (5.3.e).

x
1

x
2

x
3

x
4

x
5

(a) Forward red edge

x
1

x
2

x
6

x
7

x
3

x
4

x
5

(b) Cross red edge (1)

x
1

x
2

x
3

x
5

x
4

(c) Cross red edge (2)

x
1

x
2

x
3

x
4

x
6

(d) Cross red edge (3)

x
1

x
2

x
6

x
7

x
8

x
3

x
4

x
5

(e) Cross red edge (4)

Figure 5.3: Case Enumeration for Adding Red Edges to the Neighbours of a PDS in
a DFS

We can now formulate the relationship between a DFS tree and a PDS:

Theorem 5.5 (A PDS in a DFS Structure)

Given a DFS for H = (V,E), a colouring of the neighbours of v 2 PDS depending on

the forward and cross edges will yield improved average-case complexity of a PDS in H .

92

5.4 RECONSTRUCTING A DIRECTED PDS VIA A DFS

Proof. Let H = (V,E) be a directed graph satisfying the same assumptions (1,2 and

3) as G
0 shown in Subsection 1.4.2 in Chapter 1. We are given a DFS structure for

H = (V,E) and its a Valid Colouring matching Subfig 5.2.(a).

If we apply the rules of a PDS to H , regardless of forward and cross edges, then

{x
1

, x
3

} are a PDS in H . Since there is a forward edge that is incident from x
1

2 PDS

to a neighbour x
5

of x
3

, then one can take an advantage of the edge to minimise

the number of a PDS to become one. Thus, x
5

should be coloured to achieve a

minimum PDS in H .

Now, supposing there exists a cross edge in H . According to Definition 5.9, there

are four cases of colouring a cross edge. Consider only the first case matching Sub-

fig 5.2.(b), by applying the same argument above, the number of a PDS in H can

be {x
1

, x
2

, x
3

}. Because of the cross edge (x
2

x
5

), the vertices in a PDS are reduced

to {x
1

, x
2

}, hence in this case, a vertex x
5

that a cross edge is incident to it should

be coloured. We observe that a directed graph has a cycle if and only if there is a

back edge; as a result, it can form a dependency cycle in H . Thus, a back edge is not

considered in a Valid Colouring of H (see Subfig 5.2.(a), where colouring the back edge

(x
4

x
1

) leads to a dependency cycle in H). Hence, a Valid Colouring of H = (V,E) has

no dependency cycle (see Definition 5.6).

We now formulate a bottom-up dynamic programming algorithm generating a PDS

for H = (V,E) based on earlier results [2, 49, 13] and the following theorem:

Theorem 5.6 (Partition Colouring in a DFS)

Given a directed graph H = (V,E) constructed by a DFS and S ✓ V (H), S power

dominates H if and only if there is a Valid Colouring of H with S as the set of origins.

Proof. Given a DFS structure for a directed graph H = (V,E), satisfying the same

assumptions (1,2 and 3) as G
0 shown in Subsection 1.4.2 in Chapter 1. Assuming

that S 2 V (H) is a Directed PDS of H = (V,E); thus, P (S) = V (H). Let apply a

Valid Colouring C with S as the set of sources by colouring the edges in H accord-

ing to the degree constraints in Definition 5.6. We colour an edge (uv) red from

93

5. UPDATING A POWER DOMINATING SET

u toward v if either u is a domination vertex and v is controlled by applying the

first rule D1 to u, or vertex v is controlled by applying the second rule D2 to u, as

defined in Definition 2.16. Note all possible domination and the propagation rules

to S should be in order. Moreover, we do not apply D1 or D2 to control previously

covered vertices. It is easy to check that with this colouring the degree constraints

of Definition 5.6 are satisfied.

We can now show by contradiction that there is no dependency cycle in a Valid

Colouring. Let u ! v denote a vertex v power dominated by a vertex u, supposing

further that C = u
1

, u
2

, . . . , um is a dependency cycle and all red edges in C are in the

same direction. Red edges (ui, ui+1

) imply that ui ! ui+1

for all i = 1, 2, . . . ,m� 1;

then we obtain u
1

! u
2

! · · · ! um, but this is a contradiction since the last

red edge from um back to u
1

implies that um ! u
1

. Note that back edges are not

considered in a Valid Colouring of a DFS; therefore, back edges are not coloured red.

Hence, there is no dependency cycle with all edges coloured red. The final result is

that H has a Valid Colouring C = (V,Er
) with S ✓ V (H) as the set of origins.

Together with Theorem 5.6, we immediately obtain our main result as follows:

5.5 Time Complexity

Lemma 5.7 (Time Complexity of Re-using a Remaining PDS Structure)

Given a Valid Colouring of a DFS for H = (V,E), one can improve an average-case

complexity of computing a PDS in O(|V +

n

Et [Ef

⇥

N(v)
⇤ [Ec

⇥

N(v)
⇤

o

\ Eb|) time,

where v 2 PDS.

Proof. We are given a Valid Colouring of a DFS for a directed graph H = (V,E), sat-

isfying the same assumptions (1,2 and 3) as G
0 shown in Subsection 1.4.2 in Chap-

ter 1. The time complexity of the algorithm, satisfying the assumption (4) as shown

in Subsection 1.4.2 in Chapter 1, is to compute a PDS for H by re-using remaining

fragments of the original graph where possible and identifying previously un-used

edges to minimise the number of a PDS.

94

5.5 TIME COMPLEXITY

For the best case, the running time is to traverse only tree edges in a given

DFS, where there are at most |V +

�

Et}
�

� edges. In the average case, as back edges

Eb are not computed while applying a Valid Colouring to a given DFS structure.

Therefore, the most running time of this algorithm is to consider only all possi-

ble cases for colouring the neighbours of a PDS with existence forward/cross edges

which are incident to the neighbours of a PDS, as set forth in Definition 5.8. Con-

sequently, the number of forward/cross edges that should be traversed is at most

|V +

�

(Ef

⇥

N(v)
⇤ [Ec

⇥

N(v)}⇤) \ Eb| edges.

We give this result also in constructive form in the following algorithm:

Algorithm 5.1: Generation of a Minimum PDS via a DFS Structure
Input : Given a DFS for H = (V,E), with a DFS traversal resulting in tree T

based on tree edges
Output: A minimum PDS of H

1 Let the inner vertices of T be sorted as L based on tree edges in post-order
traversal of T , where r is a root of T and bottom-up DP from leaves to root;

2 Let S ;;
3 while L 6= r do
4 v the first vertex in L; L L \ {v};
5 if d+(v) � 2 has uncovered children then
6 if (v) is a cut-vertex then
7 S S [{vct};
8 Apply a Valid Colouring for all vertices that are reachable from v;
9 else

10 S S [{v};
11 Apply a Valid Colouring for H = (V,E) in a DFS;

12 forall the v 2 PDS do
13 if w 2 N(v) then
14 Minimising S by colouring w and its forward and cross edges;

15 if r is uncovered then
16 while r has e 2 Ef or e 2 Ec that is incident to N(S) do
17 Applying a Valid Colouring for H = (V,E) in a DFS;
18 Minimising S;

19 S S [{r};

20 return S;

95

5. UPDATING A POWER DOMINATING SET

5.6 Summary

The timely recovery of control as represented by structural controllability (for LTI

systems) after a control graph has been damaged such as following an attack is

a significant problem in control systems. If control can be recovered entirely or

to the largest extent possible, the potential service degradation or damage caused

by an attacker can be reduced substantially, or attackers can be kept from taking

over a network and control over it entirely. This, however, requires the ability to

recover controllability as fast as possible since adversaries may — particularly where

such attacks occur after a substantial period of intelligence-gathering — repeatedly

attack even while recovery operations are still in progress.

In this chapter we therefore proposed a novel algorithm based on a DFS struc-

ture, which yields an improved average-case complexity over previous work in

Chapter 4, after an event or attack leading to a degradation of the control of the

network and a significant reduction of its observability. This DFS-based approach

reduces the average-case complexity of the recovery algorithm by re-using remain-

ing fragments of the original, efficient control graph where permitted whilst iden-

tifying previously un-used edges to minimise the number of a PDS.

96

Chapter 6

Recovering Structural Controllability

in the Presence of Compromised Nodes

6.1 Overview

Large-scale distributed control systems such as those encountered in electric power

networks or industrial control systems could be vulnerable to attacks, in which ad-

versaries can compromise controllability of dependent nodes, and therefore, dis-

connect parts the of control graph.

In this chapter we address the question of how to recover a control graph as

far as possible in the presence of such compromised nodes. The proposed approach

is based on a BLOCK DECOMPOSITION of a directed graph, allowing us to identify

Cut-Vertices (or articulation points) and cut-edges, where structural controllability for

a given G
0 can be restored in the presence of compromised nodes in O(ncW) time

for a constant c, where W denotes dependency paths that are the remainder of a

compromised node (i.e. dependent nodes). This algorithm results in the recovery of

a PDS structure, and ultimately the re-gaining of control for operators of control

systems by applying three phases.

Definition 6.1 (A Compromised Node)

A vertex v /2 PDS in a Valid Colouring is said to be a compromised node, if there

is no red in-edge incident to it such that d�
G0

r

(v) = 0, where G
0
r denotes a directed graph

with only red in/out-edges. Otherwise, a vertex v 2 PDS in a Valid Colouring is a

compromised node where there is no red in/out-edge incident to v such that d�
G0

r

(v) = 0

and d+
G0

r

(v) = 0.

97

6. RECOVERING STRUCTURAL CONTROLLABILITY IN THE PRESENCE OF
COMPROMISED NODES

6.2 Problem Statement and Assumption

In real-world context, the logical structures of PDS-based networks and real-world

monitoring systems have a remarkable similarity, where driver nodes (as repre-

sented by a PDS in in the context of electrical power network control) can represent

e.g. control terminal units that control industrial sensors or actuators. This chap-

ter only considers a directed graph G
0
= (V,E), generated by ER(n, p), where

G
0
= (V,E) represents e.g. an electrical power system including a set of nodes

(buses) and a set of edges (transmission lines) connecting the buses. A bus is a sub-

station where transmission lines are joined. A power system also includes a set of

generators, supplying power and a set of loads, into which the power is directed.

We assume that G0 satisfies the assumptions (1,2 and 3) as shown in Subsec-

tion 1.4.2 in Chapter 1. Let S0 be a given Directed PDS of G0 that is constructed by

applying a Valid Colouring approach in terms of colouring edges to blue and red.

Assume an adversary with sufficient knowledge of the network distribution is able

to compromise a subset of nodes in G
0 (e.g. v 2 PDS or v /2 PDS). In real sce-

narios, suppose the actuators that have the ability to control more states in a power

network are the most valuable targets for the attacker, where the failure of these

components may have serious consequences for collecting data from certain sen-

sors or the information flow of the actuators); in the context of the PDS problem,

we call the failures of the most valuable nodes or its dependents (e.g. remote ter-

minal units that control industrial sensors or actuators) in this chapter compromised

nodes. Therefore, a PDS-based network should be repaired more efficiently by re-

computing a PDS for G0 when the leftover nodes are not power dominated after the

detection of compromised nodes without re-applying a Valid Colouring to the whole

G
0 from the beginning.

•Input:

Given a Valid Colouring for a Directed PDS in G
0 and compromised nodes such as

v 2 PDS or v /2 PDS

98

6.3 RECONSTRUCTING DPDS VIA BLOCK DECOMPOSITION

•Question:

Can we recover a control graph as far as possible in the presence of such compro-

mised nodes if the PDS or its dependent nodes have been partially compromised

without re-applying a Valid Colouring to G
0 from the beginning?. A real world sce-

nario related to this problem is how to restore overall controllability of an electric

power system if remote terminal units that control industrial sensors or actuators

have been partially violated without complete re-computation.

•Output:

Recovering the leftover vertices of compromised nodes in case of v 2 PDS or v /2
PDS after an attack on a control graph through:

i. Decomposing a directed graph G
0 into k-separable set of Blocks based on blue

and red edges (see Section 6.3):

a. Finding Edge-Cut Set via considering blue edges.

b. Identifying Cut-Vertices (or articulation points) giving an equivalent formula-

tion for a PDS in directed graphs as in [14] via considering red edges.

ii. Re-using blue edges existing in a compromised Block, allowing us to recover

structural controllability of a control graph (see Subsection 6.4.1), or

iii. using blue edges that are incident to the compromised Block, allowing us to re-

construct the control graph as far as possible (see Subsection 6.4.2), or

iv. identifying criteria for the efficient addition of red edges into a compromised

Block, (see Subsection 6.4.3).

6.3 Reconstructing DPDS via Block Decomposition

A BLOCK DECOMPOSITION of a graph, denoted by B(G
0
), can be used to give

equivalent characterisations of trees through identifying Cut-Vertices (or articula-

tion points) which its removal (together with the removal of any incident edges)

result in a disconnected graph, and identifying Blocks of a directed graph.

Definition 6.2 (A Block)

A Block is a maximal connected subgraph with no Cut-Vertex.

99

6. RECOVERING STRUCTURAL CONTROLLABILITY IN THE PRESENCE OF
COMPROMISED NODES

Definition 6.3 (A Cut-Vertex or an Articulation Point in a Block)

Let G0 be a graph with k(G
0
) components. A vertex v of G0 is called a Cut-Vertex or an

articulation point (C) of G0 if k(G0 � v) > k(G
0
).

Definition 6.4 (A Weakly Red-Connected Component in a Valid Colouring)

Red-Connected Component, denoted by X , is defined as exactly one directed Path (P)

weakly connected by red edges (er) with no directed cycle X = {v
1

, er
1

, v
2

, er
2

, . . . , eri�1

, vi} =

P such that for every pair vertices of X , there is an undirected path from vi to v
1

such that

all the edges in P are directed from v
1

to vi and coloured by red.

Definition 6.5 (A Set of Weakly Red-Connected Components)

In a Block, a set of Red-Connected Components, denoted by S, is defined as a set of di-

rected paths connected by red edges with no directed cycle, such that S = {X
1

, X
2

, . . . , Xi}.

We call a set of S that shares the same tail endpoint v 2 PDS as a Block, where each Block

has at least one Red-Connected Component.

Definition 6.6 (A Leaf and Tail of a Weakly Red Connected Component)

A leaf vertex (i.e. a head vertex) is the vertex with no red out-edge, whereas the tail

vertex is the vertex with a red in-edge that is incident from v 2 PDS to the tail vertex.

Example 4 Consider Figure 6.1, a Block with x
13

2 PDS has two RCCs starting

from x
13

, P
1

= {x
14

, x
17

} and P
2

= {x
15

, x
16

}, where (x
14

,x
15

) are the tails of P
1

and

P
2

respectively and (x
16

,x
17

) are the leaves (heads) of P
1

and P
2

respectively. 2

Definition 6.7 (A Blue Edge-Cut Set in a Valid Colouring)

Given a Valid Colouring for a Directed PDS in G
0 . A Blue Edge-Cut Set, denoted by

Y , of G0 is a set of blue edges satisfying (see Subfig 6.3.(a)):

1. The removal of all blue edges in Y disconnects G0 to k-separable set of Blocks such

that each Block is connected by red edges.

2. The removal of some (but not all) of blue edges in Y does not disconnect G0 .

Note that there may some blue edges that are not belonging to a Blue Edge-Cut Set

since they are not satisfying the constraints in Y such as the edge (x
15

x
14

) and (x
8

x
1

)

100

6.3 RECONSTRUCTING DPDS VIA BLOCK DECOMPOSITION

in Figure 6.1. Therefore, they do not consider when computing a Blue Edge-Cut Set

in a Valid Colouring.

x

1

x

3

x

4

x

2

x

5

x

9

x

10

x

11

x

12

x

7

x

8

x

13

x

14

x

15

x

6

x

16

x

17

(a) The valid colouring of a directed graph

(b) Blocks of a directed graph

Figure 6.1: Re-Construction of Blocks of a Directed graph via Red Edges

Definition 6.8 (A Cut-Vertex (or an Articulation Point) in a Valid Colouring)

Given a Valid Colouring for a Directed PDS in G
0 . A vertex v 2 PDS of G0 is called a

Cut-Vertex (or an articulation point) (C) of G0 if the removal of v with addition of a Blue

Edge-Cut Set Y disconnects G0 to k-separable set of Blocks (see Subfig 6.3.(a)).

Definition 6.9 (A Block of a Directed PDS in a Valid Colouring)

A Block-Vertex (B) of a directed graph is a maximal connected subgraph by red edges such

that a set of Red-Connected Components with no Y , that is reachable from a vertex in a

PDS, such that a sequence of vertices connected by red edges forming a dependency path

starts from v
1

2 PDS where B = {v
1

, er
1

, v
2

, er
2

, . . . , eri�1

, vi}.

101

6. RECOVERING STRUCTURAL CONTROLLABILITY IN THE PRESENCE OF
COMPROMISED NODES

Definition 6.10 (A Block Cut-Vertex Tree (TB) of a Directed PDS)

Suppose a Valid Colouring for a Directed PDS in G
0 is given. Let Bk be the set of

Blocks and Ck be the set of Cut-Vertices of G0 . Constructing a graph TB with vertex set

Ck[Bk as an ordinary tree regardless of the fact that every Block-Vertex is actually subset

of vertices of the original graph such that ci 2 C is adjacent to bj 2 B if and only if the

Block bj of G0 contains the Cut-Vertex ci of G0 .

Lemma 6.1 (A Construction of a Block Cut-Vertex Tree)

Given a Valid Colouring for a Directed PDS in G
0 , reconstructed in terms of red and blue

edges, one can construct a Block Cut-Vertex Tree (TB) of a Directed PDS by identifying

Cut-Vertices and Blocks of a Directed PDS.

Proof. Given a Valid Colouring for a Directed PDS in G
0 , satisfying the assumptions

(1,2 and 3) as shown in Subsection 1.4.2 in Chapter 1. According to Definition 6.10,

TB
(G

0
) = Ck [Bk. We show how to obtain (Bk). A Block (B) of a Directed PDS is

identified by applying Definition 6.7, where the removal of a Blue Edge-Cut Set will

disconnect G0 into a set of Red-Connected Components (S), that are reachable from

v 2 PDS, as in Definition 6.5 (i.e. a maximal connected subgraph by red edges)

(see Subfig 6.3.(a)). Therefore, each S is as Block.

Now we define Ck; according to the constraints in Definition 4.6, each vertex

in a Valid Colouring has at most one red in-edge except a vertex u 2 PDS that

may have at least one blue in-edge eb(wu) 2 Y such that the removal eb(wu) will

disconnect G
0 (see green vertices in Subfig 6.3.(a)), hence, u is a Cut-Vertex. By

way of contradiction, assuming that not all of a Blue Edge-Cut Set are omitted (see

Subfig 6.3.(b)). Thus, there may exist some Blocks that are still connected to G
0 via

blue edges in S which contradicts Definitions 6.7 and 6.9.

The proof of the following lemma is similar to the proof of Lemma 6.1.

Lemma 6.2 (A Construction of a Block Cut-Vertex Tree of a Directed PDS)

Given a Valid Colouring for a Directed PDS in G
0 . When drawing Block Cut-Vertex

Tree (TB) of a Directed PDS, we represent (see Figure 6.2):

1. Cut-Vertex, which has an equivalent formulation for a PDS by green colour.

102

6.3 RECONSTRUCTING DPDS VIA BLOCK DECOMPOSITION

2. A tree red/blue edge, which describes a relation between a vertex and one of its direct

descendants, by a solid line satisfying:

i. Each Cut-Vertex has exactly one solid red out-edge.

ii. Each Cut-Vertex may have at most one solid blue in-edge or may have no solid

blue in-edge.

iii. Each Block may have at least one solid blue out-edge which is incident to Ck, or

have no solid blue out-edge.

iv. Each Block has exactly one solid red in-edge.

3. The remaining blue in/out edges are represented by a dashed line

x

1

B

1

x

13

x

10

B

2

B

3

Figure 6.2: A Construction of a Block Cut-Vertex Tree (TB) of a Directed PDS

Example 5 Consider a graph in Figure 6.1 and how is reconstructed as Block Cut-

Vertex Tree as shown in Figure 6.2. The Blocks are

• B
1

= {x
2

, x
3

, x
4

, x
5

, x
6

, x
7

, x
8

, x
9

}.

• B
2

= {x
14

, x
15

, x
16

, x
17

}.

• B
3

= {x
11

, x
12

}.

Furthermore, Cut-Vertices which have the equivalent formulation for a PDS are

• C
1

= {x
1

}.

• C
2

= {x
13

}.

• C
3

= {x
10

}.

According to Lemma 6.2, there is only one solid red out-edge that is incident from

Ck ! Bk such as {(x
1

! B
1

), (x
13

! B
2

), (x
10

! B
3

)}, or may have at most

one solid blue in-edge such as {x
10

, x
13

} or no solid blue in-edge such as {x
1

}.

103

6. RECOVERING STRUCTURAL CONTROLLABILITY IN THE PRESENCE OF
COMPROMISED NODES

Moreover, there may have at least one solid blue out-edge that is incident from

Bk ! Ck such as {(B
1

! x
13

), (B
1

! x
10

)}, or have no solid blue out-edge such as

{B
2

, B
3

}. Note that blue in/out edges have no effect on the structural controllability

of G
0 as we only consider red edges for obtaining full control of G

0 . Thus, blue

in/out edges are still existing in G
0 as a part of connectivity. This, however, helps

to use blue in/out edges (represented by a dashed line) to recover the structural

controllability of a graph. 2

We formulate the relationship between TB and a PDS together with Lemma 6.1:

Theorem 6.3 (A PDS in a Block Cut-Vertex Tree)

Given a Valid Colouring for a Directed PDS in G
0 , reconstructed as a Block Cut-Vertex

Tree (TB), a Cut-Vertex (C) is said to be in a PDS if and only if:

1. The removal of all blue edges in Y disconnects G0 to k-separable set of Blocks con-

necting by red edges.

2. There is no dependency cycle in each Block such that there is no a red edge (vi+1

, vi) 2
Bk incident from any head endpoint vi+1

to the vertex vi 2 PDS in the same Block.

3. A vertex v
1

2 PDS has at least one RCC i.e. {v
1

, er
1

, v
2

, er
2

, . . . , eri�1

, vi} = P .

Proof. We are given a Valid Colouring for a Directed PDS in G
0 reconstructed as a

Block Cut-Vertex Tree, satisfying the assumptions (1,2 and 3) as shown in Subsec-

tion 1.4.2 in Chapter 1. We prove the theorem by introducing three cases as follows:

1. Condition (1): Consider Figure 6.3, we prove that a PDS will be changed in

case of not all of Y are omitted. By applying the propagation rule as defined

in Definition 2.16; the blue edge (x
8

, x
13

) should be coloured to a red edge in

order to control {x
13

, x
15

, x
16

} in sequence. However, x
13

will no longer be

in a PDS; thus, x
14

should be controlled by x
2

that will be in a PDS in order

to control {x
6

, x
14

} simultaneously. Hence, a PDS has changed to become

{x
1

, x
10

, x
2

}.

2. Condition (2): We show by way of contradiction that there is no dependency

cycle in TB . Let u ! v denotes a vertex v is covered after u; assuming that

X = u
1

, u
2

, . . . , um is a dependency cycle such that all red edges in X are

104

6.4 THE PROCESS OF RECOVERING STRUCTURAL CONTROLLABILITY

in the same direction and u
1

2 PDS has a red in-edge which is incident

from um. Therefore, the red edge (ui, ui+1

) implies that ui ! ui+1

for all

i = 1, 2, . . . ,m � 1; thus we get u
1

! u
2

! · · · ! um, but this contradicts

with the covering rules as the head um has a red edge that is incident to u
1

implying um ! u
1

. Consequently, we prove Condition (3), where vertices in

a PDS must have no red in-edge according to Definition 4.6. As proved that

there is no dependency cycle in TB (as shown in Condition 2), then all vertices

in X are reachable from u
1

2 PDS; thus, X is power dominated by u
1

.

x

1

x

3

x

4

x

2

x

5

x

9

x

10

x

11

x

12

x

7

x

8

x

13

x

14

x

15

x

6

x

16

x

17

(a) Removal of Blue Edge-Cut set

x

1

x

3

x

4

x

2

x

5

x

9

x

10

x

11

x

12

x

7

x

8

x

13

x

14

x

15

x

6

x

16

x

17

(b) Removal of some Blue Edge-Cut set

Figure 6.3: Case Enumeration for the Removal of a Blue Edge-Cut Set

6.4 The Process of Recovering Structural Controllability
The algorithm is divided into three phases for recovering structural controllability

in the presence of compromised nodes. We consider (in order of priority) the blue

edges that are inside a compromised Block itself, or incident to a compromised Block.

105

6. RECOVERING STRUCTURAL CONTROLLABILITY IN THE PRESENCE OF
COMPROMISED NODES

We recall each Block has at least one RCC, where X = {v
1

, er
1

, . . . , eri�1

, vi} or a set

of RCCs, where S = {X
1

, X
2

, . . . , Xi}. The tail and head vertices of X are denoted

by t(v) and h(v), respectively. A sequence of vertices that are reachable from a

compromised node in X is denoted by W , where a compromised node may be v 2 PDS

or v /2 PDS; thus, there are two cases of recovering structural controllability via

internal blue edges of a Block.

compromised node

𝑾𝒊

𝒉𝒊

𝒕𝒊

(a)

compromised node

𝑾𝒊

𝒉𝒊

𝒕𝒊

(b)

compromised node

𝑾𝒊

𝒉𝒊

𝒕𝒊

(c)

A compromised node

𝑿𝒊

𝒉𝒊

𝒕𝒊
PDS

𝑾𝒊

𝒉𝒊

𝒕𝒊

(d)

Figure 6.4: Recovering Vertices of a Block via Internal Blue Edges in the Presence of
a Compromised Node (v 2 PDS) or (v /2 PDS)

6.4.1 First Phase: Recovering Vertices of a Block via Internal Blue Edges

in the Presence of Compromised Nodes

We seek to take the advantage of existing blue edges inside a compromised Block to

repair the structural controllability. Because of the lack of the number of blue edges

that exist in inside a Block, it is necessary to consider the external blue edges that are

106

6.4 THE PROCESS OF RECOVERING STRUCTURAL CONTROLLABILITY

incident to a Block. However, if both approaches are not helpful, then the addition

of red edges inside a compromised Block is required.

Lemma 6.4 (Recovering Vertices of a Block with Compromised Nodes v 2 PDS)

Given a Valid Colouring for a Directed PDS in G
0 . Assuming that a Block has a com-

promised node v 2 PDS and there exists internal blue edges, then a blue edge can be

coloured to red edge if it satisfies:

1. There is a blue edge that is incident from each hi(v) to each ti+1

(v) then ti(v) that

has no in-edge should be in a PDS in a Block (see Subfig 6.4.(a)).

2. There is a blue edge which is incident from any ti(v) to each ti+1

(v) then ti(v) that

has no in-edge should be in a PDS in a Block (see Subfig 6.4.(b)).

3. There is a blue edge that is incident from any ti(v) to exactly one (or all) ti+1

(v)

and/or a blue edge that is incident from hi(v) to the remaining t(v) that is not covered

yet then ti(v), that has no in-edge, should be in a PDS in a Block, Subfig 6.4.(c).

4. Otherwise, applying any previous condition without placing a PDS and go to the

second phase.

Proof. Let G0
= (V,E) be a directed graph, satisfying the assumptions (1,2 and 3) as

shown in Subsection 1.4.2 in Chapter 1. Assume that a Valid Colouring for a Directed

PDS in G
0 and a compromised node v 2 PDS are given as shown in Subfig 6.4.a.

According to Lemma 5.2, For each u 2 G
0
(V) except vertices in PDS, there is ex-

actly one directed path (p) from the vertices in v to u such that all the edges in p

are coloured by red. We call this path as Red-Connected Component,denoted by X ,

as defined in 6.4. Therefore, if a vertex v has been compromised, then all a set of

Red-Connected Components will be partitioned. According to the constraints in Defi-

nition 4.6, each vertex in G
0
(V) \ v 2 PDS has at most one red in-edge and one red

out-edge except head vertices in each X that have no red out-edges. Hence, it is not

allowed to employ red edges in each X in order to recover vertices in a Block. Thus,

only blue edges are able to control all Red-Connected Components partitioned from a

compromised node v 2 PDS. Note that tail vertices ti in each X have no red in-edges

incident to the tails after v has been compromised. Moreover, head vertices hi in

107

6. RECOVERING STRUCTURAL CONTROLLABILITY IN THE PRESENCE OF
COMPROMISED NODES

each X have no red out-edges incident to another vertex as well. Consequently,

the only blue edges that are incident from hi ! ti or ti ! hi can power dominated

each X by applying the constraints in this lemma.

Now we introduce the recovering vertices of a Block in the case of a compromised

node is v /2 PDS. The proof of the following lemma is similar to the proof of

Lemma 6.4, and we skip it here.

Lemma 6.5 (Recovering Vertices of a Block with Compromised Nodes v /2 PDS)

Given a Valid Colouring for a Directed PDS in G
0 . Supposing that a Block has a com-

promised v /2 PDS and internal blue edges, then a blue edge is coloured to red if there is

a blue edge that is incident from hi(v) 2 Xi to ti(v) 2 Wi, where W denotes the depen-

dency path that is leftover of a compromised node, or from u 2 PDS to ti(v) 2Wi (see

Subfig 6.4.(d)); otherwise go to the second phase.

We give this result, in particular (Lemmata 6.4 and 6.5), in a constructive form:

Algorithm 6.1: Recovering Vertices of a Block via Internal Blue Edges in the
Presence of Compromised Nodes

Input : Given a Valid Colouring of a Block Cut-Vertex Tree (TB) of a Directed
PDS for G0

Output: Recovering Structural Controllability via internal blue edges in a
compromised Block

1 if exists a compromised node v 2 PDS and a Block has internal blue edges then
2 if the number of S in a Block > 1 then
3 if there is eb incident from each hi(v) to each ti+1

(v) then
4 Colouring eb ! er and d�ti(v) = 0 is PDS in Bc

5 else if If there is eb incident from any ti(v) to each ti+1

(v) then
6 Colouring eb ! er and d�ti(v) = 0 is PDS in Bc

7 else if satisfies the constraint (3) in the definition (6.4) then
8 Colouring eb ! er and d�ti(v) = 0 is PDS in Bc

9 else
10 Apply any previous condition without placing a PDS and go to

the next phase.

11 else if the number of S is exactly one then
12 ti(v) 2W is PDS in Bc

13 else if exists a compromised node v /2 PDS and a Block has internal blue edges
then

14 Applying the constraint in lemma (6.5)

108

6.4 THE PROCESS OF RECOVERING STRUCTURAL CONTROLLABILITY

6.4.2 Second Phase: Recovering Vertices of a Block via External Blue

Edges in the Presence of Compromised Nodes

If (some/all) vertices are still not controlled in the presence of compromised nodes

via internal blue edges, then we recover structural controllability via the external

blue edges of a Block (Bex), that are incident to a compromised Block (Bc) including a

compromised node (or vertex).

The proof of the following lemma is similar to the proof of Lemma 6.4 with taking

into consideration that blue edges mentioned in the following lemma are incident

from an external Block and not from a compromised Block as stated in Lemma 6.4 for

the case of a compromised node either v 2 PDS or v /2 PDS v 2 PDS. Therefore, we

skip the proof here.

Lemma 6.6 (Colouring an External Blue Edge to a Red Edge in a Block)

Given a Valid Colouring for a Directed PDS in G
0 . Supposing that a Block has a com-

promised node either v 2 PDS or v /2 PDS and blue edges that are incident from Bex

to Bc, then a blue edge can be coloured to red edge if it satisfies (see Figure 6.5):

1. There is a blue edge incident from v 2 PDS in Bex to ti(v) 2Wi in Bc, and/or

2. there is a blue edge that is incident from hi(v) 2 Xi in Bex to ti(v) 2Wi in Bc.

𝑾𝒊

𝒉𝒊

𝒕𝒊
𝒕𝒊

𝑋௜

𝒉𝒊

PDS

a compromised Block (𝑩𝑪) a Block (𝑩𝒆𝒙)

Figure 6.5: Recovering Vertices of a Block via External Blue Edges in the Presence of
Compromised Nodes (v 2 PDS) or (v /2 PDS)

109

6. RECOVERING STRUCTURAL CONTROLLABILITY IN THE PRESENCE OF
COMPROMISED NODES

We give this result of second phase, in particular (Lemma 6.6) in a constructive

form in the following algorithm:

Algorithm 6.2: Recovering Vertices of a Block via External Blue Edges in the
Presence of Compromised Nodes

Input : Given a Valid Colouring of a Block Cut-Vertex Tree (TB) for a Directed
PDS in G

0

Output: Recovering Structural Controllability via external blue edges of a
Block

1 if exists compromised nodes that are not covered yet in the Algorithm (6.1) then
2 if there is eb incident from Bex

(v) 2 PDS to ti(v) 2Wi in Bc then
3 Colouring eb ! er
4 else if there is eb incident from hi(v) 2 Xi in Bex to ti(v) 2Wi in Bc then
5 Colouring eb ! er
6 else
7 compromised nodes are still not covered yet, then apply the

algorithm 6.3

6.4.3 Third Phase: Recovering Vertices of a Block via Adding Edges in

the Presence of Compromised Nodes

Because of the lack of blue edges that reside in Bc or are incident from Bex, more-

over, each red edge are already in use to control other vertices, we identify the

criteria of adding red edges inside a compromised Block.

compromised node

𝑾𝒊

𝒉𝒊

𝒕𝒊

(a)

 compromised node

𝑿𝒊

𝒉𝒊

𝒕𝒊
PDS

𝑾𝒊

𝒉𝒊

𝒕𝒊

(b)

Figure 6.6: Recovering Vertices of a Block via Adding Red Edges in the Presence of
a Compromised Node (v 2 PDS) or (v /2 PDS)

110

6.4 THE PROCESS OF RECOVERING STRUCTURAL CONTROLLABILITY

Lemma 6.7 (The Addition of Red Edge in a Compromised Block)

Given a Valid Colouring for a Directed PDS in G
0 . Supposing that a Block has a com-

promised node and there are no blue edges whether to reside in Bc or to be incident from

Bex to Bc, then each Wi should be controlled by a red edge such that (see Figure 6.6):

1. if v 2 PDS is a compromised, then a red edge is added from ti(v) to each ti+1

(v), or

from each hi(v) except one head vertex to each ti(v) except one tail vertex, and place

d�ti(v) = 0 or d�er ti(v) = 0 in a PDS (see Subfig 6.6.(a)).

2. if v /2 PDS is a compromised, then a red edge is added from v 2 PDS to ti(v) 2Wi,

or from hi 2 Xi to ti(v) 2Wi (see Subfig 6.6.(b)).

Proof. Let G0
= (V,E) be a directed graph, satisfying the assumptions (1,2 and 3) as

shown in Subsection 1.4.2 in Chapter 1. Assume that a Valid Colouring for a Directed

PDS in G
0 and a compromised node v 2 PDS or v /2 PDS are given.

We claim that if a compromised node is v 2 PDS, then a red edge can be assigned

from any tail ti(v) of a Red-Connected Component, denoted by X , to each ti+1

(v) of

X , and place d�ti(v) = 0 or d�er ti(v) = 0 in a PDS in a compromised Block as shown

in Subfig 6.6.(a). According to the rules of controllability defined in Definition 2.16,

only vertices in a PDS can have more than one out-edge incident from v 2 PDS to

any vertex in a graph. Therefore, one can place a red edge to a vertex u /2 PDS that

has no a red in-edge, provided a vertex that a red edge is coming from should be in

a PDS. It can be seen that the only tails of a set of Red-Connected Components,denoted

by S, have no red in-edges after v 2 PDS is compromised.

Now suppose for the sake of the contradiction that u is no a tail or head and a

red edge is added from u to any tails of S. Then, u should be in a PDS as it already

controls another vertex at the same time, and the number of red edges required to

place will increase as a red in-edge that is incident to u should be coloured to blue

in order to avoid breaching the constraints of a Valid Colouring as set forth herein

Definition 4.6. Therefore, red edges should be added from a tail vertex to each

tails of S as stated in the first constraint of this lemma. Now let a compromised node

v /2 PDS. The same argument is applied when v /2 PDS is a compromised node with

111

6. RECOVERING STRUCTURAL CONTROLLABILITY IN THE PRESENCE OF
COMPROMISED NODES

taking into consideration that a red edge is added from v 2 PDS to ti(v) 2 Wi, or

from hi 2 Xi to ti(v) 2Wi (see Subfig 6.6.(b)).

We give the result of third phase, in particular (Lemma 6.7) in a constructive

form in the following algorithm:

Algorithm 6.3: Recovering Vertices of a Block via Adding Red Edges Inside a
Block in the Presence of Compromised Nodes

Input : Given a Valid Colouring of a Block Cut-Vertex Tree (TB) for a Directed
PDS in G

0

Output: Recovering Structural Controllability via adding red edges in a
compromised Block

1 if exists compromised nodes that are not covered yet in the Algorithms (6.1) and
(6.2) then

2 if a compromised node v 2 PDS then
3 Adding a red edge from any ti(v) to each ti+1

(v);
4 Placing d�ti(v) = 0 or d�er ti(v) = 0 is PDS in Bc

5 else
6 Adding er from v 2 PDS to each ti(v) 2Wi or from hi 2 Xi to

ti(v) 2Wi

The motivation of the algorithm is not only reconstruction of the structure of

a PDS in the presence of compromised nodes but also the ability to minimise their

numbers while observing the entire system.

Lemma 6.8 (The Number of a PDS in the Presence of a Compromised Node)

Given a Directed PDS of G0 , reconstructed in terms of a Valid Colouring. Let G0 has a

compromised node. The cardinality of a PDS achieved by the proposed algorithm remains

the same as (or less than) the number of a given PDS.

Proof. We are given a Valid Colouring for a Directed PDS in G
0 , satisfying the as-

sumptions (1,2 and 3) as shown in Subsection 1.4.2 in Chapter 1. We prove that the

number of a PDS after applying the proposed algorithm is less than a given PDS.

By way of contradiction, assuming that a compromised Block has v, u 2 PDS, and

only v is a compromised node; then all the RCCs, denoted by Sv, that were connected

to v should be now controlled (see Figure 6.5). By applying the three phases pro-

posed, Sv is power dominated if and only if:

1. There is a blue edge that is incident from u 2 PDS to the tails of Sv, and/or

112

6.4 THE PROCESS OF RECOVERING STRUCTURAL CONTROLLABILITY

2. there is a blue edge that is incident from the heads of RCCs of u to the tails of

Sv, and/or

3. by adding red edges from u to the tails of Sv.

Hence, the cardinality of a PDS will become one (i.e. u 2 PDS), which is a contra-

diction to the assumption.

Let prove the equality of a PDS. The same argument is applied; supposing that a

Block has u 2 PDS and v /2 PDS is compromised. Then, the vertices that are reach-

able from v, denoted by wi, should be controlled (see Subfig 6.4.(d)). By applying

the same constraints above, wi is power dominated with the same of number of a

PDS, so the lemma is proved.

Note that in case of v 2 PDS is compromised, then all the neighbours of v should

be power dominated, meaning each RCC that were connected to v should have at

most one red in-edge by applying the three phase propose. Hence, we prove the

following lemma.

Lemma 6.9 (The Relation between Dependency Paths and the Neighbours of a PDS)

The number of dependency paths of v 2 PDS in each Block is exactly equal to the

number of neighbours of v.
Proof. Given a Valid Colouring for a Directed PDS in G

0 , satisfying the assumptions

(1,2 and 3) as shown in Subsection 1.4.2 in Chapter 1. Let a Block has only one vertex

v 2 PDS that controls all vertices in a Block. By applying the first role (D1) to v, all

the neighbours of v are controlled by red edges that are incident from v. By way of

contradiction, supposing that the Block has w that is not controlled by v such that w

is a neighbour of v (i.e. eb = vw). Thus, either:

1. w should be controlled by u 2 PDS in other Block which contradicts the

assumption that a Block has only one vertex in a PDS that controls all vertices

in a Block, or

2. w is a vertex in a PDS, which also contradicts the assumption, or

3. w has a red edge that is incident from x /2 PDS in the Block of v by applying

the second role D2; thus, w is not a neighbour of v. This is a contradiction, so

the lemma is proved.

113

6. RECOVERING STRUCTURAL CONTROLLABILITY IN THE PRESENCE OF
COMPROMISED NODES

The following lemma completes the proof of Theorem 6.3. The proof is similar

to Lemma 6.1, and we skip it here.

Lemma 6.10 (Recovering Controllability in Presence of Compromised Nodes)

Given a Valid Colouring for a Directed PDS in G
0 , one can repair the structural con-

trollability of G0 in the presence of compromised nodes by reconstructing G
0 as a Block

Cut-Vertex Tree.

6.5 Time Complexity

Lemma 6.11 (Time Complexity of Recovering in Presence of Compromised Nodes)

Given a Valid Colouring for a Directed PDS in G
0 and compromised nodes such as

v 2 PDS or v /2 PDS, one can recover structural controllability of G0 in the presence

of compromised nodes in O(ncW) time for a constant c, where W denotes dependency

paths that are the remainder of a compromised node.

Proof. Let G0
= (V,E) be a directed graph, satisfying the assumptions (1,2 and 3)

as shown in Subsection 1.4.2 in Chapter 1. We assume that a Valid Colouring for a

Directed PDS in G
0 and a compromised node v 2 PDS or v /2 PDS are given. The

time complexity of the algorithm satisfies the assumption (4) as in Subsection 1.4.2

in Chapter 1, where the algorithm is classified based on three phases. The total

running time of the algorithm 6.1 is to utilise blue edges existing in Bc, hence in

the worst case, the most time-consuming part is to determine blue edges that are

incident to each tail of Wi in Bc in case of v 2 PDS where there are (4

W
) states.

For the average case, it considers only the path Wi that was leftover of a compro-

mised node v in case of v /2 PDS where there are (2

(W�1)

) states such that there are

at most {2(W�1).4W } states in the algorithm, where W denotes the number of de-

pendency paths that are reachable from a compromised node. Thus, the most running

time of the algorithm 6.1 is O(ncW). However, the most running time of the algo-

rithm 6.2 in the average case of a compromised v 2 PDS or v /2 PDS is O(ncW),

such that either Bex
(v) where v 2 PDS or the head of Xi 2 Bex has an blue in-edge

which is incident to Wi in Bc, where there are at most {2W .2(W�1)} states.

114

6.6 SUMMARY

On the other hand, the best case is to execute the algorithm 6.3 such that if a

compromised v 2 PDS then a red edge is added from any ti(v) to each ti+1

(v) or

if a compromised v /2 PDS then a red is added from v 2 PDS to ti(v) 2 Wi, such

that the running time is O(ncW), where there are at most {2(W�1).1W } states.

6.6 Summary

Structural controllability is a highly interesting concept for understanding vulner-

abilities to attack in critical infrastructures, in which adversaries with sufficient

knowledge of the network distribution can disrupt the power domination relation

by compromising a subset of nodes, and thus, disconnect parts of the control graph

and leave parts of a graph uncontrolled; this, however, requires the ability to re-

cover controllability as fast as possible since adversaries may repeatedly attack. This

chapter proposed a novel algorithm to restore a control graph as far as possible if

the PDS or its dependent nodes have been partially compromised without complete

re-computation. The approach is based on a BLOCK DECOMPOSITION of a directed

graph, allowing us to re-construct a PDS structure by applying three phases.

115

Chapter 7

The Effect of Rewiring Edges on the

Structural Controllability

7.1 Overview

The POWER DOMINATION problem arose in the context of monitoring electric power

networks by placing as few measurement devices in the system as possible; these

devices have the capability of monitoring remote elements via propagation as in

rule (D2) (see Definition 2.16). Due to the high cost of these devices, their number

should be minimised while monitoring the entire system.

This chapter studies the case of sparse Erdős-Rényi Graphs with directed con-

trol edges and seek to investigate the effect of rewiring edges on the structural con-

trollability of Erdős-Rényi graphs in order to achieve a minimal PDS while keeping

the total number of edges unchanged. The approach is based on a STAR DECOM-

POSITION of a directed graph, allowing us to identify the number of out-neighbours

of a PDS, and ultimately achieving of a minimal PDS. The main result is that a PDS

can be minimised without changing the number of edges in O(cE(b) · n) time for a

constant c, where E(b) denotes blue edges.

7.2 Problem Statement and Assumption

The PDS problem provides a plan for installing monitoring devices to monitor the

whole power network. Since the cost of placing a minimum-size set of these devices

is rather high, this algorithm aims to minimise the set of a PDS without changing

117

7. THE EFFECT OF REWIRING EDGES ON THE STRUCTURAL CONTROLLABILITY

the number of edges in a given graph. Recall that underlying this approach is the

modelling of large-scale cyber-physical systems as graphs with nodes (representing

physical variables, sensors, and actuators) and edges (representing physical inter-

actions or information flows between nodes). The glass of graphs that we consider

in this chapter is based on the number of assumptions as stated in Subsection 1.4.2

in Chapter 1. Let G0
= (V,E) be a directed graph, generated by ER(n, p). We as-

sume that a Valid Colouring for a Directed PDS in G
0 is given such that the edges in

G
0 are coloured by red and blue edges.

•Input:

Given a Valid Colouring for an instance of a Directed PDS in G
0 .

•Question:

Can we achieve a minimal PDS without changing the total number of edges while

maintaining the structural controllability of G0 (e.g. in the context of an electric power

system, can we minimise the number of sensors such as Phasor Measurement Units

(PMU) by re-linking transmission lines or a communication links joining two elec-

trical sensors or actuators while keeping the total number of links unchanged).

•Output:

Identifying Directed Stars of given G
0 and colouring each blue edge of Blue Edge-Cut

Set that is incident to vertices in a PDS to red and then rewiring a red in-edge that

is incident from v 2 PDS to its open neighbours.

7.3 Reconstructing DPDS via Directed Star Decomposition

Our interest lies primarily in studying the effect of rewiring directed edges of a

PDS structure in Erdős-Rényi graphs. Therefore, we seek to identify a directed star

of a Directed PDS structure in terms of a Valid Colouring, allowing us to define the

open neighbours of v 2 PDS. Consequently, the proposed algorithm can impact on

structural controllability of a directed graph, and therefore, minimise the number of

a PDS. Note that Directed Stars has a different definition in terms of direction of

edges compared to Undirected Stars. We now introduce some basic definitions:

118

7.3 RECONSTRUCTING DPDS VIA DIRECTED STAR DECOMPOSITION

Definition 7.1 (An Internal Vertex)

An internal vertex in undirected graph is a vertex of degree of at least 2.

Definition 7.2 (An Undirected Star)

A star Sk of undirected graph of order k, where k denotes a set of vertices in a star, is a tree

with one internal vertex having degree of |k�1| and the set of (k�1) vertices have degree

of 1 (see Figure 7.1).

(a) S3 (b) S4 (c) S5 (d) S6

Figure 7.1: Examples of Undirected Stars

Definition 7.3 (The Neighbourhoods of a Vertex)

A vertex u is called a neighbour of v if there is an edge between u and v in G
0 (i.e. {uv} 2

E). The open neighbourhood of a vertex v, denoted by N(v), is the set of all neighbours

of a vertex v. The closed neighbourhood of a vertex v, denoted by N [v], is defined as

{v} [N(v).

Definition 7.4 (A Dependency Path in a Valid Colouring)

A dependency path (P) from u to v in a Valid Colouring is a sequence of vertices such

that all red edges in P are directed from u to v and all blue edges are directed from v to u.

Therefore, a directed path is a dependency path with only directed red edges.

Definition 7.5 (A Set of Dependency Paths in a Valid Colouring)

A set of dependency paths, denoted by Pi, in a Valid Colouring of a Directed PDS

is more than one dependency path P that is incident from v 2 PDS to pi, such that

{v ! P
1

, . . . , v ! Pi}.

Definition 7.6 (The Diameter of a Graph)

The distance dG0
(u, v) between two vertices u and v is the length of shortest path joining

u and v in G
0 . The Diameter (D) of G0 is the greatest distance between any pair of vertices

(u, v).

119

7. THE EFFECT OF REWIRING EDGES ON THE STRUCTURAL CONTROLLABILITY

Definition 7.7 (A Blue Edge-Cut Set in a Valid Colouring)

Given a Valid Colouring for a Directed PDS in G
0 reconstructed in terms of red and

blue edges, a Blue Edge-Cut Set, denoted by Y , of G0 is a set of blue edges satisfying (see

Subfig 7.2.(b)):

1. The removal of all blue edges in Y disconnects G0 to sub-graphs such that all vertices

in each sub-graph that are reachable from v 2 PDS by red edges (see Subfig 7.2.(c)).

2. The removal of some (but not all) of blue edges in Y does not disconnects G0 .

Note that there may some blue edges that are not belonging to a Blue Edge-Cut

Set since they are not satisfying the constraints in Y such as the edge (x
11

x
13

) and

(x
7

x
8

) in Subfig 7.2.(b). Therefore, they do not consider when computing a Blue

Edge-Cut Set in a Valid Colouring.

Definition 7.8 (A Directed Star (DS) in a Valid Colouring)

Let k denotes a set of vertices in a star. A Directed Star DSk in Valid Colouring of order

k is a tree which consists of an internal vertex v in a PDS having a (red) out-edge of degree

|k � 1| and the other vertices of k \ v 2 PDS have a (red) in-edge of degree of 1 (i.e. the

diameter of underlying undirected graph is at most 2).

Example 6 Consider Subfig 7.2.(c), it shows a Directed Star where green vertices

imply vertices in a PDS and white ones to a set of open neighbours of v 2 PDS such

that a set of open neighbours of Directed Stars x
1

, x
9

2 PDS is NDS(x1) = {x
2

, . . . , x
5

}
and NDS(x9) = {x

10

, x
11

} respectively. However, the closed neighbours of v 2
PDS are NDS [x1] = NDS(x1)[x1 and NDS [x9] = NDS(x9)[x9, such that NDS [x1] =

{x
1

, x
2

, . . . , x
5

} and NDS [x9] = {x
9

, x
10

, x
11

} respectively. 2

Definition 7.9 (A Head and Tail of a Dependency Path)

A tail vertex of a dependency path (P) is defined as a vertex u with a red in-edge that

is incident from v 2 PDS to u (i.e. the first vertex after v), and a head vertex is the last

vertex of P with no red out-edge.

120

7.4 THE PROCESS OF REWIRING EDGES

x
1

x
3

x
4

x
2

x
5

x
7

x
8

x
14

x
9

x
10

x
11

x
6

x
12

x
13

(a) Valid Colouring of a directed graph

x
1

x
3

x
4

x
2

x
5

x
7

x
8

x
14

x
9

x
10

x
11

x
6

x
12

x
13

(b) The reomoval of Blue Edge-Cut Set

x
1

x
3

x
4

x
2

x
5

x
9

x
10

x
11

(c) Directed stars

Figure 7.2: Decomposition of Directed Stars in a Valid Colouring of Directed Graph

Example 7 Consider Subfig 7.2.(a), x
1

2 PDS has four dependency paths. For in-

stance, a tail and head vertices of the dependency path P
2

= {x
4

, x
8

, x
14

} is x
4

and x
14

,

respectively. However, in some cases, a tail vertex can be a head vertex at the same

time (and vice verse) such P
4

= {x
3

} of x
1

. 2

7.4 The Process of Rewiring Edges

The strategy of the algorithm is based on two stages, where the first stage aims to

identify Directed Stars of given G
0 . The second stage seeks to colour each blue edge

of Blue Edge-Cut Set Y that is incident to vertices in a PDS to red and then to rewire

a red in-edge that is incident from v 2 PDS to its open neighbours.

7.4.1 The First Stage

The importance of the stage is to define a set of open neighbours that have power to

minimise the number of a PDS in G
0 by identifying a Directed Star that forms a tree

with its root belonging to a PDS. According to Definition 4.6 in Chapter 4, we recall

that the rules of structural controllability:

121

7. THE EFFECT OF REWIRING EDGES ON THE STRUCTURAL CONTROLLABILITY

a. It is not allowed to have two vertices sharing the same their tail vertex except a

vertex in a PDS such vertex x
9

2 PDS in Figure 7.2 has two vertices {x
10

, x
11

}
sharing the same their tail vertex (x

9

).

b. Each vertex has at most one red in-edge and/or at most one red out-edge such

as x
10

, x
11

except a vertex in a PDS such as x
9

in Figure 7.2.

Therefore, it is required to find a way to control a set of open neighbours instead

of edges that are incident from a vertex in a PDS in order to affect the structural

controllability of Erdős-Rényi graphs, and thus, to minimise the number of a PDS.

Lemma 7.1 (The Identification of a Directed Star in a Valid Colouring)

Given a Valid Colouring for a directed graph G
0 , one can identify a Directed Star by:

a. Partitioning G
0 into sub-graphs through removing a Blue Edge-Cut Set Y of G0 , and

b. identifying vertices in a PDS and its open neighbours, then

c. decomposing a set of closed neighbours of vertices in a PDS, (i.e. ignoring all vertices of

dependency paths except open neighbours of vertices in a PDS).

Proof. Let G0
= (V,E) be a directed graph satisfying the assumptions (1,2 and 3) as

shown in Subsection 1.4.2 in Chapter 1. Assume a Valid Colouring for G
0 is given

(e.g. Figure 7.2), where G
0 has two PDS(s) {x

1

, x
9

} and each vertex in a PDS has

more than one dependency path that are incident from x
1

and x
9

such that x
1

has

P
1

= {x
2

, x
6

}, P
2

= {x
4

, x
8

, x
14

}, P
3

= {x
5

, x
7

} and P
4

= {x
3

}, while x
9

has

P
1

= {x
10

, x
13

} and P
2

= {x
11

, x
12

}. However, by eliminating a set of Blue Edge-Cut

that is a part of connectivity but does not affect the controllability of G0 , the graph

will be partitioned into sub-graphs such that each block is reachable from x
1

and

x
9

by red edges as shown in Subfig 7.2.(b). The last step is to decompose each sub-

graph into a Directed Star by only considering vertices in a PDS such x
1

, x
9

and its

open neighbours NDS(x1) and NDS(x9). According to Definitions 7.3, 7.6 and 7.8,

the diameter of a Directed Star should be at most 2 as illustrated in Subfig 7.2.(c).

Hence, Directed Stars of G0 can be a set of closed neighbours of x
1

and x
9

such that

a. NG0
[x

1

] = NG0
(x

1

) [x
1

) {x
1

, x
2

, x
3

, x
4

, x
5

}.

b. NG0
[x

9

] = NG0
(x

9

) [x
9

) {x
9

, x
10

, x
11

}.

122

7.4 THE PROCESS OF REWIRING EDGES

v

1

v

2

v

3

v

4

v

5

v

6

v

7

u

1

u

2

u

3

(a)

v

1

v

2

v

3

v

4

v

5

v

6

v

7

u

1

u

2

u

3

(b)

v

1

v

2

v

3

v

4

v

5

v

6

v

7

u

1

u

2

u

3

(c)

Figure 7.3: A Directed Graph

Theorem 7.2 (The Impact of a Open Neighbours Set on Vertices in a PDS)

A set of open neighbours of vertices in a PDS has power to minimise the number of a

PDS in a directed graph.

Proof. We are given a Valid Colouring for a Directed PDS in G
0 that satisfies the as-

sumptions (1,2 and 3) as stated in Subsection 1.4.2 in Chapter 1. Suppose v, u 2
PDS where each vertex has dependency paths. Therefore, we prove this theorem by

two ways:

a. We show that a vertex, which is not a set of open neighbours of v, u 2 PDS, will

not change the number of a PDS. By Definition 7.3, each vertex in G
0 except a

PDS should controlled by only one red in-edge. Therefore, if w /2 N(v) [N(u)

is controlled by z as d+E
r

(z) = 0 (i.e. has no red out-edge) such that a red edge is

incident from z ! w, then the number of a PDS is still the same as w is not in a

set of open neighbours of v and u (i.e. not a vertex-disjoint with the tail endpoints

in a PDS) (see Subfig 7.3.b).

123

7. THE EFFECT OF REWIRING EDGES ON THE STRUCTURAL CONTROLLABILITY

b. Now assuming that w 2 N(v) is controlled by z such that there is a red edge

incident from z ! w. Therefore, by assigning a red edge from u to v, then all

vertices in G
0 are controlled by one vertex u 2 PDS (see Subfig 7.3.c).

7.4.2 The Second Stage

The first mechanism is based colouring a blue edge to red as in Lemma 7.3, and the

other focuses on redirecting blue edges coloured to red as in Lemma 7.4:

7.4.2.1 Colouring and Re-directing Blue Edges Mechanism

As the proposed algorithm is based on a Valid Colouring in terms of a set of blue and

red edges set forth in Definition 4.6, the following lemmata re-formulate important

constraints for colouring and re-directing blue edges as follows:

Lemma 7.3 (Colouring Blue Edges in a Valid Colouring)

Given a Valid Colouring for a Directed PDS in G
0 , a blue edge is coloured to red if:

a. There exists (at least) one blue edge eb(vu) that is incident from a vertex v /2 PDS to a

vertex u 2 PDS, or

b. there exists (at least) one blue edge eb(vw) that is incident from a vertex v /2 PDS to a

vertex w /2 PDS.

Proof. Given a Valid Colouring for a Directed PDS in G
0 , satisfying the assumptions

(1,2 and 3) as stated in Subsection 1.4.2 in Chapter 1. Assume eb(vu) is a blue edge

that is incident from a vertex v /2 PDS to a vertex u 2 PDS. Then by applying

a Valid Colouring in Definition 4.6 a vertex v must not have a red in-edge incident

to it, but v may have a blue in-edge eb(vu). Therefore, this blue edge can be used

to control a vertex in a PDS (e.g. u) by colouring eb(vu) to red but; however, u

will no longer be a vertex in a PDS in order to avoid violating the constraints of

structural controllability as stated in Definition 2.16. When eb(vu) is coloured to red,

we can apply Rewiring Red Edges mechanism to u in order to meet the constraints

of a Valid Colouring approach as defined in Definition 4.6 (see Figure 7.4). Hence,

we can colour a blue edge eb(vu) to red as mentioned in the first constraint of this

lemma.

124

7.4 THE PROCESS OF REWIRING EDGES

The same argument is applying to prove the second constraint of this lemma.

Assume that a blue edge eb(vw) is incident from a vertex v /2 PDS to a vertex

w /2 PDS; for this case a vertex w is already power dominated by a vertex z by a

red out-edge that is incident from z to w. Therefore, eb(vw) can be coloured to red in

order to control a vertex u 2 PDS, provided this blue edge should redirected from

a vertex x which has no red in-edge, and Rewiring Red edges mechanism should be

applied to u as shown in Figure 7.6.

The following lemma completes the proof of Lemma 7.3. The proof is similar to

Lemma 7.3, and we skip it here.

Lemma 7.4 (Re-directing Blue Edges in a Valid Colouring)

Given a Valid Colouring for a Directed PDS in G
0 , a blue edge can be re-directed if and

only if:

a. There exists a blue out-edge that is incident from v /2 PDS to a vertex u 2 PDS,

provided v has a red out-edge which is incident to any vertex at the same time.

b. There exists a blue out-edge that is incident from v /2 PDS to a vertex u /2 PDS,

provided v has a red out-edge which is incident to any vertex at the same time.

c. There exists a blue out-edge that is incident from v /2 PDS to a vertex u /2 PDS,

provided v has no a red out-edge.

Now we illustrate the constraints mentioned in Lemmata 7.3 and 7.4:

Definition 7.10 (The Case Enumeration for Colouring and Re-directing Blue Edges)

Given a Valid Colouring for a Directed PDS in G
0 , Colouring and Re-directing blue edges

can be achieved by applying an exhaustive search to cover all the possible cases as follows:

Case (1): Consider Figure 7.4, according to Lemma 7.3, the only edge that should

be coloured to red is a blue edge that is incident from a vertex v /2 PDS to a vertex

u 2 PDS, provided there is no a red out-edge which is incident from v to any other

vertex (see Subfig 7.4.(a)). Note that a vertex v with the blue edge eb(v
5

u
1

), when

applying Rewiring Red edges mechanism (we will explain that in the following sec-

tion) to a vertex u
1

, v
5

must have no red out-edge incident to any vertex, otherwise

125

7. THE EFFECT OF REWIRING EDGES ON THE STRUCTURAL CONTROLLABILITY

it may lead to breach the rules of structural controllability, and therefore, disrupt the

control of a graph (an example of this in Case (2)).

As v
5

with the edge eb(v
5

u
1

) has no red out-edge, this edge should be coloured

to red with taking into consideration for applying Rewiring Red edges mechanism

(elaborated in Lemma 7.5 as shown in Subfig 7.4.(b). Note that Rewiring Red edges

in this case can result in:

(a.) u
1

! u
2

! u
3

! u
4

! u
5

, or

(b.) u
1

! u
4

! u
5

! u
2

! u
3

.

v

1

v

2

v

3

v

4

v

5

u

1

u

2

u

3

u

4

u

5

(a)

v

1

v

2

v

3

v

4

v

5

u

1

u

2

u

3

u

4

u

5

(b)

Figure 7.4: The Case (1) of Colouring a Blue Edge in a Valid Colouring

Case (2): Assuming that a vertex v
5

has a red out-edge which is incident to any

vertex in addition to a blue out-edge that is incident to u 2 PDS as illustrated in

Subfig 7.5.(a). By applying Rewiring Red edges mechanism to vertex u
1

, a blue edge

eb(v
5

u
1

) should be coloured to red (according to Lemma 7.3), however, at the same

time vertex v
5

has a red out-edge which is incident to vertex v
6

. This means v
5

should be in a PDS because it controls more than one vertex at the same time as

set forth in Definition 4.6. So, vertex u
1

will no longer in a PDS as shown in Sub-

fig 7.5.(b). Consequently, the number of a PDS of directed graph in Subfig 7.5.(b),

after applying Rewiring Red edges mechanism is still the same number with a slight

difference in a set of vertices {v
1

, v
5

} instead of {v
1

, u
1

}. Therefore, Rewiring Red

edges mechanism has no effect on the structural controllability a directed graph as

shown in Subfig 7.5.(b). However, to obtain the minimisation of a PDS in this case,

it should apply redirecting a blue edge in Lemma 7.4) to this blue out-edge eb(v
5

u
1

)

satisfying:

126

7.4 THE PROCESS OF REWIRING EDGES

a. The direction of a blue edge should be re-directed from a vertex that has no red

out-edge such as v
6

or v
3

to a vertex u
1

such that eb(v
6

u
1

) or eb(v
3

u
1

).

b. A blue edge should be coloured to red as in Subfig 7.5.(c) where er(v
6

u
1

).

c. Rewiring Red edges mechanism should be applied to a vertex u with a blue edge

incident to it such as u
1

(see Subfig 7.5.(c)).

Therefore, a vertex v
1

power dominates all vertices of a directed graph that

results in the minimisation of the number of a PDS to one vertex. Note that there is

no change in applying Rewiring Red edges mechanism to a vertex u
1

for each case,

however, the only difference is how to rewire a blue edge that is incident to a vertex

u
1

2 PDS while having a red out-edge which is incident to another vertex.

v

1

v

2

v

3

v

4

v

5

v

6

u

1

u

2

u

3

u

4

u

5

(a)

v

1

v

2

v

3

v

4

v

5

v

6

u

1

u

2

u

3

u

4

u

5

(b)

v

1

v

2

v

3

v

4

v

5

v

6

u

1

u

2

u

3

u

4

u

5

(c)

Figure 7.5: The Case (2) of Colouring a Blue Edge in a Valid Colouring

Case (3): Supposing that a vertex v
5

has a red out-edge which is incident to any

vertex in addition to a blue out-edge that is incident to u /2 PDS as illustrated in

Subfig 7.6.(a). It can be seen when colouring the blue out-edge eb(v
5

u
2

) to red, after

that applying Rewiring Red edges mechanism to the vertex u
1

; thus, u
1

is no longer

in a PDS and the red out-edge er(u
1

u
2

) should be re-directed from a vertex u
3

to u
1

127

7. THE EFFECT OF REWIRING EDGES ON THE STRUCTURAL CONTROLLABILITY

as shown in Subfig 7.6.(b). Therefore, there is no significant effect on the number

of a PDS. However, to obtain a positive result, it should rewire redirect a blue edge

from a vertex with no red out-edge to a vertex in a PDS such as v
6

! u
1

, and then

colour it to red as illustrated in Subfig 7.6.(c). Consequently, Rewiring Red edges

mechanism can be applied to vertex u
1

in order to affect the number of a PDS (see

Subfig 7.6.(c)).

v

1

v

2

v

3

v

4

v

5

v

6

u

1

u

2

u

3

u

4

u

5

(a)

v

1

v

2

v

3

v

4

v

5

v

6

u

1

u

2

u

3

u

4

u

5

(b)

v

1

v

2

v

3

v

4

v

5

v

6

u

1

u

2

u

3

u

4

u

5

(c)

Figure 7.6: The Case (3) of Colouring a Blue Edge in a Valid Colouring

Case (4): On the other hand, assuming that a blue out-edge which is incident to

u /2 PDS and there is no red-out-edge that is incident from v
5

to any vertex as

shown in Subfig 7.7.(a). Thus, as long as there is no red out-edge sharing the same

tail vertex with the blue edge, then eb(v
5

u
2

) should be re-directed from v
5

to u
1

and

coloured to red while applying Rewiring Red edges mechanism to vertex u
1

in order

to minimise the number of a PDS as represented in Subfig 7.7.(b). Note that this

case is similar to case (1) in terms of applying Rewiring Red edges mechanism to u
1

,

but with a difference in how rewiring a blue out-edge is applied.

128

7.4 THE PROCESS OF REWIRING EDGES

v

1

v

2

v

3

v

4

v

5

u

1

u

2

u

3

u

4

u

5

(a)

v

1

v

2

v

3

v

4

v

5

u

1

u

2

u

3

u

4

u

5

(b)

Figure 7.7: The Case (4) of Colouring a Blue Edge in a Valid Colouring

We give the result of Lemmata 7.3 and 7.4 in a constructive form in the following

algorithm:

Algorithm 7.1: Colouring and Redirecting Blue Edges in Rewiring Red Edges
Mechanism

Input : Given a directed PDS of G0 , reconstructed in terms of Valid Colouring
Output: Colouring and Redirecting blue edges to red edges

1 A blue edge eb = vu is redirected and coloured to red if and only if
satisfying:;

2 if v /2 PDS is incident to u 2 PDS, provided v has a red out-edge then
3 eb = vu) Red
4 else if v /2 PDS is incident to u 2 PDS, provided v has no a red out-edge then
5 eb = vu) Red
6 else if v /2 PDS is incident to u /2 PDS, provided v has a red out-edge then
7 eb = vu) Red
8 else if v /2 PDS is incident to u /2 PDS, provided v has no a red out-edge then
9 eb = vu) Red

10 else
11 Go to Subsection (7.4.3)

7.4.2.2 Rewiring Red Edges Mechanism

Together with the Lemmata 7.3 and 7.4, this third mechanism that identifies the

important constraints on how to obtain Rewiring Red Edges, denoted by (RRE). As

proved in Theorem 7.2, the open neighbours of a PDS have an ability to impact on

structural controllability of Erdős-Rényi graphs, in particular directed graphs.

129

7. THE EFFECT OF REWIRING EDGES ON THE STRUCTURAL CONTROLLABILITY

Lemma 7.5 (The Number of Rewiring Red Edges (RRE))

Let v 2 PDS be an internal vertex of a Directed Star in a Valid Colouring. The number

of red edges required to rewire is equal to the number of open neighbours N(v) except one

red edge such that RRE is |N(v)� 1|.

Proof. We are given a Valid Colouring for a Directed PDS in G
0 , satisfying the as-

sumptions (1,2 and 3) as stated in Subsection 1.4.2 in Chapter 1. Given a Directed

Star with an internal vertex v 2 PDS where its out-degree of 4. We show that the

number of red edges that should be re-directed is equal to the number of open neigh-

bours of v except one red edge by two cases.

Case (1): Assuming that the number of red edge required to rewire is exactly the

same of the number of N(v) where RRE is |N(v)| and a vertex v in a PDS has no

blue in-edge as shown in Subfig 7.8.(a). When Rewiring Red Edges that are incident

from v to its N(v), it results in a vertex v 2 PDS will be disconnected from a Di-

rected Star which contradicts with the given assumption, moreover, a vertex in a

PDS will be isolated from a directed graph (i.e. there is no directed edge incident

to it). However, the same argument is applied to the case of a vertex v 2 PDS has

a blue in-edge as shown in Subfig 7.8.(b). By applying Rewiring Red Edges, a vertex

with no red in-edge will be in a PDS and a vertex that was in a PDS with a blue

in-edge will be controlled by a vertex that is pointed to it. Therefore, there is no

difference in the number of a PDS as it has been replaced by another vertex.

Case (2): Now let the number of red edges is equal to the number of |N(v) � 2| as

shown in Subfig 7.8.(c). So, the number of red edges is equal to (|4�2|) where there

is only two red edges required to be rewired. Therefore, the remaining red edges

are still sharing the same tail vertex v 2 PDS, meaning it cannot obtain the minimi-

sation of a PDS, and therefore, there is no point of Rewiring Red Edges. Therefore,

the number of red edges required to rewire is equal to the number of open neighbours

N(v) except one red edge such that RRE is equal to |N(v) � 1| (see Subfig 7.9.(c)).

So, the lemma is proved.

130

7.4 THE PROCESS OF REWIRING EDGES

PDS

t

n

t2

h

n

h2

t3

h3

t1

h1

.
.
.

.
.
.

.
.
.

.
.
.

(a) The number of RRE is |N(v)|

PDS

t

n

t2

h

n

h2

t3

h3

PDS

h1

.
.
.

.
.
.

.
.
.

.
.
.

(b) RRE is |N(v)|, with blue in-edge
incident to a PDS

PDS

t

n

t2

h

n

h2

t3

h3

t1

h1

.
.
.

.
.
.

.
.
.

.
.
.

(c) RRE is |N(v)� 2|

Figure 7.8: An Example of Identification of the Number of Rewiring Red Edges in
a Valid Colouring

Together with the Lemma 7.5, we define the mechanism of Rewiring Red Edges.

Lemma 7.6 (Rewiring Red Edges (RRE) Mechanism)

Given a Valid Colouring for a Directed PDS in G
0 with an internal vertex v 2 PDS

such that d+(v) � 2. All red edges (Z) that are incident from v to vertices in a set of open

neighbours N(v) except exactly one red edge should be re-directed from head vertices

(hn) with no red out-edge, where d+er(hn) = 0, to all tail vertices (|tn � 1|) except one tail

vertex of each dependency path (as shown in Figure 7.9) such that

h
1

! t
2

, h
2

! t
3

, . . . , hn�1

! tn

Proof. Given a Valid Colouring for a Directed PDS in G
0 , satisfying the assumptions

(1,2 and 3) as shown in Subsection 1.4.2 in Chapter 1. This lemma shows how

Rewiring Red Edges mechanism is applied. Consider Directed Stars in Figure 7.9

with out-degree > 1; as proved in Lemma 7.5, the number of red edges required

131

7. THE EFFECT OF REWIRING EDGES ON THE STRUCTURAL CONTROLLABILITY

to rewire is equal to the number of open neighbours of a vertex in a PDS except

exactly one red edge. So, each red edge is incident to a set of open neighbours of a

PDS except one red edge that should be re-directed from each head vertex to each

tail vertex except one tail vertex which has a red in-edge incident from a vertex in

a PDS. Note a blue edge incident to a vertex in a PDS should be coloured in order

to minimise the number of a PDS by applying the first mechanism (i.e. Colouring

and Re-directing Blue Edges Mechanism). However, a vertex in a PDS may have no

blue in-edge, and therefore, we will explain how to solve the case in Section (7.4.3).

Theorem 7.7 (The Impact of Rewiring Edges on Structural Controllability)

Given a Valid Colouring for a Directed PDS in G
0 , one can minimise the number of a

PDS by rewiring (blue, red) edges while maintaining structural controllability of G0 .

Proof. Let G0
= (V,E) be a directed graph satisfying the assumptions (1,2 and 3) as

stated in Subsection 1.4.2 in Chapter 1. Assume a Valid Colouring for a Directed PDS

in G
0 is given. As the mechanisms above showed how to minimise the number of a

PDS while maintaining structural controllability of a digraph, we show that applying

one mechanism without the other has no effect on the control structure of a directed

graph, ultimately the process of minimisation of a PDS will not be achievable.

Suppose the Rewiring Red Edges mechanism is applied (i.e. the only third mech-

anism); therefore, the only result that can be obtained is to link each dependency path

with the other; this means instead of having more than one path connected to a ver-

tex in a PDS, there will be exactly one path which has no change in the number of a

PDS. Moreover, the Rewiring Red Edges mechanism concentrates on only red edges

that have no power to minimise a PDS without taking advantage of blue edges as

proved in Lemmata 7.3, 7.4 and 7.5 such as a directed graph in Subfig 7.9.(d), where

a vertex in a PDS has no blue in-edge. Now, assume the Rewiring Red edges mecha-

nism is applied, so the graph will still controlled by the same PDS with exactly one

dependency path instead of 5 dependency paths by joining each head vertex to tail vertex

except one tail. Hence, it is vital to apply all mechanisms in order to minimise a

PDS while reconfiguring structural controllability of a directed graph.

132

7.4 THE PROCESS OF REWIRING EDGES

PDS

t2 t1

h2 h1

.
.
.

.
.
.

t2 t1

h2 h1

.
.
.

.
.
.

(a) S3

PDS

t

n

t1

h

n

h1

t2

h2

.
.
.

.
.
.

.
.
.

t

n

t1

h

n

h1

t2

h2

.
.
.

.
.
.

.
.
.

(b) S4

PDS

t

n

t2

h

n

h2

t3

h3

t1

h1

.
.
.

.
.
.

.
.
.

.
.
.

t

n

t2

h

n

h2

t3

h3

t1

h1

.
.
.

.
.
.

.
.
.

.
.
.

(c) S5

PDS

t

n

t3

h

n

h3

t4

h4

t2

h2

t1

h1

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

PDS

t

n

t3

h

n

h3

t4

h4

t2

h2

t1

h1

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

(d) S6

Figure 7.9: Case Enumeration of Rewiring Red Edges Mechanism in a Valid Colour-
ing

133

7. THE EFFECT OF REWIRING EDGES ON THE STRUCTURAL CONTROLLABILITY

We give the result of Lemmata 7.5 and 7.6 also in a constructive form in the

following algorithm:

Algorithm 7.2: Rewiring Red Edges (RRE) Mechanism
Input : Given a Valid Colouring for a Directed PDS of out-degree > 1 with

internal vertex v 2 PDS in G
0

Output: Rewiring red edges
1 Z The number of red edges incident from v to in N(v) except one red edge;
2 for 1 to Z do
3 i the number of hn;
4 j the number of tn;
5 for 1 to i-1 do
6 for 2 to j do
7 hi ! tj . Redirecting each red edge in Z from each (hn) with no

red out-edge to each (tn � 1) of each dependency path

7.4.3 The Addition of Red Edges to a Vertex in a PDS

As mentioned above, the first mechanisms focus on re-directing and colouring blue

edges that collaborates with Rewiring Red Edges mechanism to have an impact on

structural controllability of Erdős-Rényi graphs. However, vertices in a PDS, in some

cases, have no blue in-edges. Therefore, it is necessary to add a red edge to a vertex

in a PDS, in case there is no blue in-edge that is incident to v /2 PDS, in order to

minimise the number of a PDS. This can lead to change the assumption mentioned

in Chapter 1 where the number of edges in a given directed graph G
0
= (V,E) will

be increased.

The proof of the following lemma is similar to Lemma 6.7, and we skip it here.

Lemma 7.8 (The Addition of Red Edges in a Valid Colouring)

Given a Valid Colouring for a Directed PDS in G
0 . when there exist insufficient blue

edges in a given G
0 , then a red edge, as represented by dotted lines in Figure 7.10, should

be added from:

1. A vertex v 2 PDS to u 2 PDS (see Subfig 7.10.(b)).

2. A vertex w /2 PDS to u, provided w has no a red out-edge (see Subfig 7.10.(c)).

134

7.5 TIME COMPLEXITY

Note that once a red edge has been added as defined in Lemma 7.8, then Rewiring

Red Edges mechanism should be applied to u
1

, as represented by dashed lines in

Figure 7.10 , according to Definition 7.6.

v

1

w u

1

(a) Given a directed graph

v

1

w u

1

(b)

v

1

w u

1

(c)

Figure 7.10: Case Enumeration for Adding Red Edges in a Valid Colouring

7.5 Time Complexity

Lemma 7.9 (Time Complexity of Rewiring Edges in Structural Controllability)

Given a Valid Colouring for a Directed PDS in G
0 constructed as Directed Stars, one

can impact on the structural controllability of G0 to minimise the number of a PDS while

keeping the number of edges unchanged in O(cE(b) · n) time for a constant c, where E(b)

denotes blue edges.

Proof. Let G0
= (V,E) be a directed graph, satisfying the assumptions (1,2 and 3)

as shown in Subsection 1.4.2 in Chapter 1. We assume that a Valid Colouring for

a Directed PDS in G
0 is given and constructed as Directed Stars. The whole algo-

rithm presented in this chpater is divided into two sub-algorithms for an average

135

7. THE EFFECT OF REWIRING EDGES ON THE STRUCTURAL CONTROLLABILITY

case, where the time complexity of the algorithm satisfies the assumption (4) as in

Subsection 1.4.2 in Chapter 1.

The first one is concentrated on colouring and re-directing blue edges mecha-

nism as summarised in Algorithm 7.1. The main task of the Algorithm 7.1 is to

utilise blue edges that either are incident to vertices in a PDS or not; this, however,

allows us to apply the proposed mechanism set forth in Subsection 7.4.2.1. There-

fore, the most time-consuming part in the Algorithm 7.1 is to check blue edges in a

given directed graph (G0) such that there are at most 3E(b) states. The second Algo-

rithm 7.2 is based on Rewiring Red Edges between the open neighbours of v 2 PDS,

which is named in this chapter tails t(n) and heads h(n) of a dependency path (p).

Therefore, there are at most
�

hn+ |{tn�1}|� states. Consequently, the total running

time of the whole Algorithms 7.1 and 7.2 is O(cE(b) · n) where there are at most

3

E(b)
+

�

hn + |{tn � 1}|� states.

On the other hand, if there exist no sufficient blue edges that satisfy the cases

in Definition 7.10, then the addition of red edges in a Valid Colouring as defined

in Definition 7.8 should be applied for a worst case. This a lack of blue edges,

however, can lead to increase the number of edges in a given directed graph and

contradict with the main contribution of the chapter which is the study the effect of

rewiring edges on structural controllability in order to achieve a minimal PDS while

keeping the total number of edges unchanged.

7.6 Summary

This chapter proposed a reconstruction algorithm to attain a minimal PDS while

keeping the total number of edges unchanged by applying rewiring edges which

is based on DIRECTED STARS decomposition. This approach yields to the min-

imisation of the number of a PDS whilst still maintaining structural controllability

through determining the number of out-neighbours of a PDS, and therefore, rewiring

blue/red edges in terms of a Valid Colouring mechanism.

136

Chapter 8

Conclusions

8.1 Conclusion

Domination, a central topic in graph theory, becomes a relevant theme in the design

and analysis of control systems, as it is an equivalent problem to that of Kalman con-

trollability. There has been considerable interest in structural controllability originally

introduced by Lin, which provides a graph-theoretical interpretation of Kalman

controllability.

Structural controllability is a highly interesting concept for understanding vul-

nerabilities to attack in critical infrastructures, and recovery of (partial) controllabil-

ity is often time-critical. Analysis of the structural controllability of the control graph

over directed Erdős-Rényi graphs via the POWER DOMINATING SET problem was

undertaken in this thesis; this provides an equal means of determining the control

structure through identifying minimum Driver Nodes. The ability to identify Driver

Nodes must be considered crucial for both attackers and defenders in control sys-

tems, as it is an obvious target for attackers wishing to disrupt the network control.

We therefore study an alternative approach based on the POWER DOMINATING SET

problem, which gives an equivalent formulation for identifying minimum Driver

Nodes (ND). This offers a strong motivation to study the ability of such systems to

recover from deliberate attacks.

In Chapter 3, an overview of the problems of controllability and structural con-

trollability as represented by the PDS problem was given. Also, an overview of the

relevant literature was reviewed for different graph classes, whereby a PDS has

been studied prior in order to identify a potential embedding of such structures

137

8. SUMMARY AND CONCLUSIONS

in Erdős-Rényi graphs for varied density and approximation characteristics, which

may be realised for the purposes of making amendments to solve the DIRECTED

POWER DOMINATING SET problem. This facilitated a speedy determination of feasi-

ble alternative control structures where adversaries have intercepted and corrupted

the original control network as well as recovering of partial controllability should a

control network become partitioned.

Chapter 4 provided a reconstruction algorithm for (directed) control graphs

of bounded tree-width embedded in Erdős-Rényi random graphs based on recent

works by Aazami and Stilp as well Guo et al. The algorithm takes account of the

speedy redevelopment of a PDS facing threat as an elevated priority in light of

PDS outcome optimisation, and therefore, purports an approximation inclusive of

a dynamic programming approach for directed graphs, in which a tree of bounded

width may be embedded within an Erdős-Rényi random graph.

In the following chapter, we also suggested a novel algorithm based a DFS

structure, yielding an improved average-case complexity over previous work in

Chapter 4, where an adversary with sufficient knowledge of the distribution of the

network and the power domination relation can compromise controllability of de-

pendent nodes or disconnect parts of the control original graph. This entails a min-

imising of the average-case complexity of the recovery algorithm through re-using

of remaining fragments from the original control graph where permitted whilst

identifying unutilised edges to minimise the number of a PDS.

Additionally, in Chapter 6, the structural controllability of the control graph in

LTI via the PDS problem were studied. This addresses the question of how to

recover a control graph as far as possible when the PDS or its dependent nodes

are under adversarial attack without complete re-computation. Our method was

sourced from a BLOCK DECOMPOSITION of a directed graph, which allows for the

determination of both cut-vertices and cut-edges. This provides faster re-construction

of a minimal PDS structure, and ultimately the re-gaining of control for operators

of control systems through a three-step process.

138

8.2 DIRECTIONS FOR FUTURE WORK

Finally, In Chapter 7, we studied the instance of sparse Erdős-Rényi graphs

with directed control edges, with a view to ascertaining the effect of rewiring edges

on the structural controllability of directed Erdős-Rényi graphs so that a minimal

PDS could be obtained while simultaneously preserving the number of edges unaf-

fected. The approach lies in a DIRECTED STARS Decomposition of a directed graph,

which allows us to determine the number of out-neighbours of a PDS, with a view

to obtaining a minimal PDS.

8.2 Directions for Future Work

When it comes to the topic of constructing algorithms, specifically for the purpose

of approximation structural controllability graphs via a Power Dominating Set, re-

search efforts are needed to strengthen this area, particularly for the restoration

of the structural controllability of different classes of graphs via the PDS problem

when nodes are being attacke. There is a need for additional research if issues re-

lating to the structural controllability of complex networks are to be solved and pave

the way for the industry to adopt such approaches. Thus, our future investiga-

tions will focus on studying different classes of graphs and investigating cascading

failure attack on network controllability as follows:

8.2.1 Studying Different Classes of Graphs

This thesis initially studied directed Erdős-Rényi random graphs, where they rep-

resent a widely studied class of graphs that has been extensively considered in

respect of various problems concerning graph theory, and random graphs consti-

tute an important and active research area, with numerous models that have been

applied to communication networks.

However, further extensions will be conducted an investigation of how control

structures of different classes of graphs as well as the approximation characteristics

can be achieved to find solutions for directed graphs of different complex networks

based on a PDS. This, however, includes applying the algorithms outlined in this

thesis to adapt them for studying different classes of graphs.

139

8. SUMMARY AND CONCLUSIONS

8.2.2 Investigating Cascading Failure Attack on Network

Controllability

As stated in this thesis, our previous research relied on an assumption where a

given directed Erdős Renyi graph had been either randomly breakdown or inten-

tionally attacks. However, we have not considered how a controllability graph had

been partitioned or damaged. Thus, this further research shall focus on cascades

provoked by the removal of the vertices and edges, and how susceptible different

complex networks such as directed Erdős Renyi model of random networks are to

a range of vertex and edge attacks. This also will include consideration of how con-

trollability for networks evolves during cascading failures in the case of two distinct

attack strategies, random and intentional.

140

Bibliography

[1] AAZAMI, A. Domination in Graphs with Bounded Propagation: Algorithms,

Formulations and Hardness Results. Journal of Combinatorial Optimization 19,

4 (May 2012), 429–456. doi:10.1007/s10878-008-9176-7.

[2] AAZAMI, A., AND STILP, K. Approximation Algorithms and Hardness for

Domination with Propagation. SIAM Journal on Discrete Mathematics 23, 3

(September 2009), 1382–1399. doi:10.1137/06066672X.

[3] AHANGAR, H. A., AND PUSHPALATHA, L. The Forcing Domination Number

of Hamiltonian Cubic Graphs. International Journal of Mathematical Combina-

torics 2 (2009), 53–57.

[4] AHO, A. V., AND HOPCROFT, J. E. Design and Analysis of Computer Algo-

rithms. Pearson Education India, 1974.

[5] AHUJA, M., AND ZHU, Y. An Efficient Distributed Algorithm for Finding

Articulation Points, Bridges, and Biconnected Components in Asynchronous

Networks. In Foundations of Software Technology and Theoretical Computer Sci-

ence (1989), Springer-Verlag, pp. 99–108.

[6] ALBERT, R., JEONG, H., AND BARABÁSI, A.-L. Error and Attack Tolerance

of Complex Networks. Nature 406 (July 2000), 378–382. doi:10.1038/

35019019.

[7] ALCARAZ, C., ETCHEVÉS MICIOLINO, E., AND WOLTHUSEN, S. D. Multi-

Round Attacks on Structural Controllability Properties for Non-Complete

Random Graphs. In Proceedings of the 16th Information Security Conference

141

BIBLIOGRAPHY

(ISC 2013) (Dallas, TX, USA, Nov. 2013), Lecture Notes in Computer Science,

Springer-Verlag.

[8] ALCARAZ, C., ETCHEVÉS MICIOLINO, E., AND WOLTHUSEN, S. D. Struc-

tural Controllability of Networks for Non-interactive Adversarial Vertex Re-

moval. In Proceedings of the 8th International Workshop on Critical Information

Infrastructures Security (CRITIS 2013) (Amsterdam, The Netherlands, Sept.

2013), vol. 8328 of Lecture Notes in Computer Science, Springer-Verlag, pp. 120–

132. doi:10.1007/978-3-319-03964-0_11.

[9] ALCARAZ, C., AND WOLTHUSEN, S. Recovery of Structural Controllability for

Control Systems. Springer Berlin Heidelber, Berlin, Heidelberg, 2014, pp. 47–

63. doi:10.1007/978-3-662-45355-1_4.

[10] ALIMONTI, P., AND KANN, V. Hardness of Approximating Problems on

Cubic Graphs. In Algorithms and Complexity, vol. 1203 of Lecture Notes in Com-

puter Science. Springer Berlin Heidelberg, 1997, pp. 288–298. doi:10.1007/

3-540-62592-5_80.

[11] ALT, H., BLUM, N., MEHLHORN, K., AND PAUL, M. Computing a Max-

imum Cardinality Matching in a Bipartite Graph in Time O(n1.5mlog n).

Information Processing Letters 37, 4 (1991), 237–240. doi:10.1016/

0020-0190(91)90195-N.

[12] ALWASEL, B., AND WOLTHUSEN, S. Structural Controllability Analysis via

Embedding Power Dominating Set Approximation in Erdős-Rényi Graphs.

In the Proceedings of the 29th IEEE International Conference on Advanced Informa-

tion Networking and Applications (AINA-2015) (Gwangju, Korea, 2015), IEEE

Press, pp. 418–423. doi:10.1109/WAINA.2015.77.

[13] ALWASEL, B., AND WOLTHUSEN, S. D. Reconstruction of Structural Con-

trollability over Erdős-Rényi Graphs via Power Dominating Sets. In Proceed-

ings of the 9th Annual Cyber and Information Security Research Conference (April

2014), CISR ’14, ACM, pp. 57–60. doi:10.1145/2602087.2602095.

142

BIBLIOGRAPHY

[14] ALWASEL, B., AND WOLTHUSEN, S. D. Recovering Structural Controlla-

bility on Erdős-Rényi Graphs via Partial Control Structure Re-Use. In 9th

International Conference on Critical Information Infrastructures Security (CRITIS

2014) (Limassol, Cyprus, October 2014), Springer-Verlag, pp. 293–307. doi:

10.1007/978-3-319-31664-2_30.

[15] ALWASEL, B., AND WOLTHUSEN, S. D. Recovering Structural Control-

lability on Erdős-Rényi Graphs in the Presence of Compromised Nodes.

In 10th International Conference on Critical Information Infrastructures Security

(CRITIS 2015) (Berlin, Germany, October 2015), Springer-Verlag, pp. 105–119.

doi:10.1007/978-3-319-33331-1_9.

[16] ATKINS, D., HAYNES, T. W., AND HENNING, M. A. Placing Monitoring

Devices in Electric Power Networks Modelled by Block Graphs. Ars Combi-

natorica 79, 1 (Apr. 2006).

[17] BAI, L., HOU, L., AND LAO, S. A Method for Enhancing Controllability

with Adding Links in Directed Networks. In Systems and Informatics (ICSAI),

International Conference on (May 2012), IEEE Press, pp. 13–15. doi:10.1109/

ICSAI.2012.6223402.

[18] BALDWIN, T., MILI, L., BOISEN, M.B., J., AND ADAPA, R. Power System

Observability with Minimal Phasor Measurement Placement. Power Systems,

IEEE Transactions on 8, 2 (May 1993), 707–715. doi:10.1109/59.260810.

[19] BARRERA, R. On the Power Domination Problem in Graphs.

[20] BARRERA, R., AND FERRERO, D. Power Domination in Cylinders, Tori, and

Generalized Petersen Graphs. Networks 58, 1 (2011), 43–49. doi:10.1002/

net.20413.

[21] BARRETO, C., CÁRDENAS, A. A., AND QUIJANO, N. Controllability of Dynam-

ical Systems: Threat Models and Reactive Security. Springer International Pub-

lishing, Cham, 2013, pp. 45–64. doi:10.1007/978-3-319-02786-9_4.

143

BIBLIOGRAPHY

[22] BARTHÉLEMY, M. Betweenness Centrality in Large Complex Networks. The

European Physical Journal B: Condensed Matter and Complex Systems 38, 2 (Mar.

2004), 163–168. doi:10.1140/epjb/e2004-00111-4.

[23] BELUR, M., AND CHAKRABORTY, D. Graph Theoretic Methods in the Study

of Structural Issues in Control. In ICCAS-SICE, 2009 (August 2009), pp. 3940–

3944.

[24] BINKELE-RAIBLE, D., AND FERNAU, H. An Exact Exponential Time Algo-

rithm for POWER DOMINATING SET. Algorithmica 63, 1–2 (June 2012), 323–

346. doi:10.1007/s00453-011-9533-2.

[25] BOCCALETTI, S., LATORA, V., MORENO, Y., CHAVEZ, M., AND HWANG,

D.-U. Complex Networks: Structure and Dynamics. Physics Reports 424, 4

(2006), 175–308. doi:10.1016/j.physrep.2005.10.009.

[26] BOLLOBÁS, B. Random Graphs, 2nd ed., vol. 73 of Cambridge Studies in Ad-

vanced Mathematics. Cambridge University Press, Cambridge, UK, 2001.

[27] BOLLOBÁS, B., AND RIORDAN, O. Robustness and Vulnerability of Scale-

Free Random Graphs. Internet Mathematics 1, 1 (Jan. 2003), 1–35. doi:10.

1080/15427951.2004.10129080.

[28] BRUENI, D. J. Minimal PMU Placement for Graph Observability: A Decom-

position Approach.

[29] BRUENI, D. J., AND HEATH, L. S. The PMU Placement Problem. SIAM

Journal on Discrete Mathematics 19, 3 (2005), 744–761. doi:10.1137/

S0895480103432556.

[30] COOK, S. A. The Complexity of Theorem-Proving Procedures. In Proceed-

ings of the Third Annual ACM Symposium on Theory of Computing (1971), ACM,

pp. 151–158.

[31] COSTA, L. D. F., RODRIGUES, F. A., TRAVIESO, G., AND VILLAS BOAS,

P. R. Characterization of Complex Networks: A Survey of Measure-

144

BIBLIOGRAPHY

ments. Advances in Physics 56, 1 (May 2007), 167–242. doi:10.1080/

00018730601170527.

[32] COURCELLE, B., MAKOWSKY, J. A., AND ROTICS, U. Linear Time Solvable

Optimization Problems on Graphs of Bounded Clique-Width. Theory of Com-

puting Systems 33, 2 (Apr. 2000), 125–150. doi:10.1007/s002249910009.

[33] COWAN, N. J., CHASTAIN, E. J., VILHENA, D. A., FREUDENBERG, J. S., AND

BERGSTROM, C. T. Nodal Dynamics, Not Degree Distributions, Determine

the Structural Controllability of Complex Networks. Public Library of Science

ONE 7, 6 (June 2012), 1–5. doi:10.1371/journal.pone.0038398.

[34] DEAN, N., ILIC, A., RAMIREZ, I., SHEN, J., AND TIAN, K. On the Power

Dominating Sets of Hypercubes. In Computational Science and Engineer-

ing (CSE) IEEE 14th International Conference on (August 2011), pp. 488–491.

doi:10.1109/CSE.2011.89.

[35] DENNING, D. Information Warfare and Security. ACM Press Series. ACM Press,

1999.

[36] DIESTEL, R. Graph Theory, 2nd edition ed. Electronic Library of Mathematics.

Springer New York, 2000.

[37] DORBEC, P., MOLLARD, M., KLAVŽAR, S., AND ŠPACAPAN, S. Power Dom-

ination in Product Graphs. SIAM Journal on Discrete Mathematics 22, 2 (2008),

554–567. doi:10.1137/060661879.

[38] DORFLING, M., AND HENNING, M. A. A Note on Power Domination in Grid

Graphs. Discrete Applied Mathematics 154, 6 (Apr. 2006), 1023–1027. doi:

10.1016/j.dam.2005.08.006.

[39] DOWNEY, R. G., AND FELLOWS, M. R. Parameterized Complexity. Mono-

graphs in Computer Science. Springer-Verlag, Heidelberg, Germany, 1999.

[40] ERDŐS, P., AND RÉNYI, A. On Random Graphs. I. Publ. Math. Debrecen 6

(1959), 290–297.

145

BIBLIOGRAPHY

[41] FARWELL, J. P., AND ROHOZINSKI, R. Stuxnet and the Future of Cyber War.

Survival 53, 1 (2011), 23–40. doi:10.1080/00396338.2011.555586.

[42] FEIGE, U. A Threshold of lnn for Approximating Set Cover. Journal of the

ACM 45, 4 (July 1998), 634–652. doi:10.1145/285055.285059.

[43] FLUM, J., AND GROHE, M. Parameterized Complexity Theory. Texts in Theo-

retical Computer Science. Springer-Verlag, Berlin, Germany, 2006.

[44] FOSTER, J. G., FOSTER, D. V., GRASSBERGER, P., AND PACZUSKI, M.

Edge Direction and the Structure of Networks. Proceedings of the National

Academy of Sciences 107, 24 (Jan. 2010), 10815–10820. doi:10.1073/pnas.

0912671107.

[45] GALLOS, L. K., COHEN, R., LILJEROS, F., ARGYRAKIS, P., BUNDE, A., AND

HAVLIN, S. Attack Strategies on Complex Networks. In Proceedings of the 6th

International Conference on Computational Science (ICCS 2006 Part III) (Reading,

UK, May 2006), vol. 3993 of Lecture Notes in Computer Science, Springer-Verlag,

pp. 1048–1055. doi:10.1007/11758532_143.

[46] GIBBONS, A. Algorithmic Graph Theory. Cambridge University Press, 1985.

[47] GOLOMB, S. W., AND BAUMERT, L. D. Backtrack Programming. J. ACM 12,

4 (Oct. 1965), 516–524. doi:10.1145/321296.321300.

[48] GUO, J., HÜFFNER, F., AND NIEDERMEIER, R. A Structural View on Pa-

rameterizing Problems: Distance from Triviality. In Proceedings of the First

International Workshop on Parameterized and Exact Computation (IWPEC 2004)

(Bergen, Norway, Sept. 2004), vol. 3162 of Lecture Notes in Computer Science,

Springer-Verlag, pp. 162–173. doi:10.1007/978-3-540-28639-4_15.

[49] GUO, J., NIEDERMEIER, R., AND RAIBLE, D. Improved Algorithms and

Complexity Results for Power Domination in Graphs. Algorithmica 52, 2 (Oct.

2008), 177–202. doi:10.1007/s00453-007-9147-x.

146

BIBLIOGRAPHY

[50] HARANT, J., PRUCHNEWSKI, A., AND VOIGT, M. On Dominating Sets and

Independent Sets of Graphs. Combinatorics, Probability and Computing 8, 06

(1999), 547–553.

[51] HARARY, F. Graph Theory. Addison-Wesley Series in Mathematics. Perseus

Books, 1994.

[52] HAYNES, T. W., HEDETNIEMI, S. M., HEDETNIEMI, S. T., AND HENNING,

M. A. Domination in Graphs Applied to Electric Power Networks. SIAM

Journal on Discrete Mathematics 15, 4 (Aug. 2002), 519–529. doi:10.1137/

S0895480100375831.

[53] HOLME, P., KIM, B. J., YOON, C. N., AND HAN, S. K. Attack Vulnerability

of Complex Networks. Physical Review E 65, 5 (May 2002), 056109. doi:

10.1103/PhysRevE.65.056109.

[54] HON, W.-K., LIU, C.-S., PENG, S.-L., AND TANG, C. Y. Power Domination

on Block-Cactus Graphs. In The 24th Workshop on Combinatorial Mathematics

and Computation Theory (2007), pp. 280–284.

[55] HOPCROFT, J. E., AND KARP, R. M. A n5/2 Algorithm for Maximum Match-

ings in Bipartite Graphs. In Switching and Automata Theory, 12th Annual Sym-

posium on (October 1971), IEEE Press, pp. 122–125. doi:10.1109/SWAT.

1971.1.

[56] ITALIANO, G. Strong Bridges and Strong Articulation Points of Directed

Graphs. In SOFSEM 2012: Theory and Practice of Computer Science (2012),

vol. 7147 of Lecture Notes in Computer Science, Springer Berlin Heidelberg,

pp. 43–43. doi:10.1007/978-3-642-27660-6_4.

[57] JARCZYK, J., SVARICEK, F., AND ALT, B. Strong Structural Controllability

of Linear Systems Revisited. In Decision and Control and European Control

Conference (CDC-ECC) (December 2011), IEEE Press, pp. 1213–1218. doi:

10.1109/CDC.2011.6160392.

147

BIBLIOGRAPHY

[58] JI, M., AND EGERSTEDT, M. Distributed Coordination Control of Multiagent

Systems while Preserving Connectedness. Robotics, IEEE Transactions on 23, 4

(August 2007), 693–703. doi:10.1109/TRO.2007.900638.

[59] KALMAN, R. E. Mathematical Description of Linear Dynamical Systems.

Journal of the Society of Industrial and Applied Mathematics Control Series A 1

(1963), 152–192.

[60] KAO, K., CHANG, J.-M., WANG, Y., XU, S.-H., AND JUAN, J. S.-T. Power

Domination in Honeycomb Meshes. Journal of Information Science and Engi-

neering 29, 6 (2013), 1249–1263.

[61] KIKUNO, T., YOSHIDA, N., AND KAKUDA, Y. A Linear Algorithm for the

Domination Number of a Series-Parallel Graph. Discrete Applied Mathematics

5, 3 (1983), 299 – 311. doi:10.1016/0166-218X(83)90003-3.

[62] KLOKS, T. Treewidth: Computations and Approximations, vol. 842 of Lecture

Notes in Computer Science. Springer-Verlag, Heidelberg, Germany, 1994.

[63] KNEIS, J., MÖLLE, D., RICHTER, S., AND ROSSMANITH, P. Parameterized

Power Domination Complexity. Information Processing Letters 98, 4 (May

2006), 145–149. doi:10.1016/j.ipl.2006.01.007.

[64] KUHN, H. W. The Hungarian Method for the Assignment Problem. Naval

Research Logistics Quarterly 2, 1-2 (1955), 83–97.

[65] LAI, Y.-L., CHIEN, P.-K., CHOU, S.-C., AND KAO, Y.-K. On Power Domina-

tion of Generalized Petersen Graphs. In The 29th Workshop on Combinatorial

Mathematics and Computation Theory (2012), pp. 202–207.

[66] LANG, S. Linear Algebra. Springer Undergraduate Texts in Mathematics and

Technology. Springer, 1987.

[67] LIAO, C.-S., AND LEE, D. Power Domination in Circular-Arc Graphs. Algo-

rithmica 65, 2 (2013), 443–466. doi:10.1007/s00453-011-9599-x.

[68] LIAO, C.-S., AND LEE, D.-T. Power Domination Problem in Graphs. In

Proceedings of the 11th Annual International Conference on Computing and Com-

148

BIBLIOGRAPHY

binatorics (COCOON 2005) (Kunming, China, Aug. 2005), vol. 3595 of Lec-

ture Notes in Computer Science, Springer-Verlag, pp. 818–828. doi:10.1007/

11533719_83.

[69] LIN, C.-T. Structural Controllability. IEEE Transactions on Automatic Control

19, 3 (June 1974), 201–208. doi:10.1109/TAC.1974.1100557.

[70] LIOTTA, G., TAMASSIA, R., AND TOLLIS, I. Graph Algorithms and Applications

4. No. 4. World Scientific, 2006.

[71] LIU, Y.-Y., SLOTINE, J.-J., AND BARABÁSI, A.-L. Controllability of Complex

Networks. Nature 473 (May 2011), 167–173. doi:10.1038/nature10011.

[72] LIU, Y.-Y., SLOTINE, J.-J., AND BARABÁSI, A.-L. Control Centrality and

Hierarchical Structure in Complex Networks. Public Library of Science ONE 7,

9 (Sept. 2012), 1–7. doi:10.1371/journal.pone.0044459.

[73] LOMBARDI, A., AND HÖRNQUIST, M. Controllability Analysis of Networks.

Physical Review E 75, 5 (May 2007), 056110. doi:10.1103/PhysRevE.75.

056110.

[74] LOVÁSZ, L., AND PLUMMER, M. D. Matching Theory. American Mathemati-

cal Society, Providence, RI, USA, 2009.

[75] LV-LIN, H., SONG, L., GANG, L., AND LIANG, B. Controllability and Direc-

tionality in Complex Networks. Chinese Physics Letters 29, 10 (2012), 108901.

doi:10.1088/0256-307X/29/10/108901.

[76] LVLIN, H., SONGYANG, L., JIANG, B., AND LIANG, B. Enhancing Com-

plex Network Controllability by Rewiring Links. In Intelligent System Design

and Engineering Applications (ISDEA), Third International Conference on (Jan-

uary 2013), pp. 709–711. doi:10.1109/ISDEA.2012.168.

[77] MELCHIONNA, A., CALOCA, J., SQUIRES, S., ANTONSEN, T. M., OTT, E.,

AND GIRVAN, M. Impact of Imperfect Information on Network Attack. Phys.

Rev. E 91 (March 2015), 032807. doi:10.1103/PhysRevE.91.032807.

149

BIBLIOGRAPHY

[78] MESBAHI, M., AND EGERSTEDT, M. Graph Theoretic Methods in Multiagent

Networks. Princeton University Press, 2010.

[79] MICALI, S., AND VAZIRANI, V. V. An O(

p|V ||E|) Algorithm for Finding

Maximum Matching in General Graphs. In Proceedings of the 21st Annual Sym-

posium on Foundations of Computer Science (FOCS 1980) (Syracuse, NY, USA,

Oct. 1980), IEEE Press, pp. 17–27. doi:10.1109/SFCS.1980.12.

[80] MILI, L., BALDWIN, T., AND PHADKE, A. Phasor Measurements for Voltage

and Transient Stability Monitoring and Control. In Workshop on Application

of Advanced Mathematics to Power Systems (San Francisco, September 1991),

pp. 4–6.

[81] MOTTER, A. E., AND LAI, Y.-C. Cascade-Based Attacks on Complex Net-

works. Physical Review E – Statistical, Nonlinear, and Soft Matter Physics 66, 6

(July 2002), 378–382. doi:10.1103/PhysRevE.66.065102.

[82] NACHER, J. C., AND AKUTSU, T. Structural Controllability of Unidirectional

Bipartite Networks. Nature Scientific Reports 3, 1647 (Apr. 2013), 1–7. doi:

10.1038/srep01647.

[83] NEPUSZ, T., AND VICSEK, T. Controlling Edge Dynamics in Complex Net-

works. Nature Physics 8, 7 (July 2012), 568–573. doi:10.1038/nphys2327.

[84] NEWMAN, M. E. The Structure and Function of Complex Networks. SIAM

review 45, 2 (2003), 167–256.

[85] NIE, S., WANG, X., ZHANG, H., LI, Q., AND WANG, B. Robustness of Con-

trollability for Networks Based on Edge-Attack. Public Library of Science ONE

9, 2 (Feb. 2014), 1–8. doi:10.1371/journal.pone.0089066.

[86] OGATA, K. Modern Control Engineering, 4th ed. Prentice Hall PTR, Upper

Saddle River, NJ, USA, 2001.

[87] PAI, K.-J., CHANG, J.-M., AND WANG, Y.-L. A Simple Algorithm for Solv-

ing the Power Domination Problem on Grid Graphs. In Proc. the 24th Work-

shop Combin. Math. and Comput. Theory (2007), pp. 256–260.

150

BIBLIOGRAPHY

[88] PAI, K.-J., CHANG, J.-M., AND WANG, Y.-L. Restricted Power Domination

and Fault-Tolerant Power Domination on Grids. Discrete Applied Mathematics

158, 10 (2010), 1079–1089. doi:10.1016/j.dam.2010.03.001.

[89] PÓSFAI, M., LIU, Y.-Y., SLOTINE, J.-J., AND BARABÁSI, A.-L. Effect of Cor-

relations on Network Controllability. Nature Scientific Reports 3, 1067 (Jan.

2013), 1–7. doi:10.1038/srep01067.

[90] POWER, R. Tangled Web: Tales of Digital Crime from the Shadows of Cyberspace.

Macmillan Press Ltd, Basingstoke, UK, 2000.

[91] PU, C.-L., PEI, W.-J., AND MICHAELSON, A. Robustness Analysis of Net-

work Controllability. Physica A: Statistical Mechanics and its Applications 391,

18 (September 2012), 4420–4425. doi:10.1016/j.physa.2012.04.019.

[92] PUNTAMBEKAR, A. Advanced Data Structures and Algorithms. Technical Pub-

lications, 2008.

[93] ROBERTSON, N., AND SEYMOUR, P. Graph Minors. II. Algorithmic Aspects

of Tree-Width. Journal of Algorithms 7, 3 (1986), 309–322. doi:10.1016/

0196-6774(86)90023-4.

[94] RUTHS, J., AND RUTHS, D. Robustness of Network Controllability under

Edge Removal. In Complex Networks IV, vol. 476 of Studies in Computational

Intelligence. Springer Berlin Heidelberg, 2013, pp. 185–193. doi:10.1007/

978-3-642-36844-8_18.

[95] SCHNEIDER, C. M., MOREIRA, A. A., ANDRADE, JR., J. S., HAVLIN, S., AND

HERRMANN, H. J. Mitigation of Malicious Attacks on Networks. Proceedings

of the National Academy of Sciences of the United States of America 108, 10 (Mar.

2011), 3838–3841. doi:10.1073/pnas.1009440108.

[96] SHIELDS, R., AND PEARSON, J. Structural Controliability of Multi-Input

Linear Systems. In Decision and Control including the 14th Symposium on

Adaptive Processes, IEEE Conference on (December 1975), pp. 807–809. doi:

10.1109/CDC.1975.270615.

151

BIBLIOGRAPHY

[97] SLOTINE, J.-J., AND LIU, Y.-Y. Complex Networks: The Missing Link. Nat

Phys 8, 7 (2012), 512–513. doi:10.1038/nphys2342.

[98] SUDAKOV, B., AND VU, V. H. Local Resilience of Graphs. Random Structures

and Algorithms 33, 4 (Aug. 2008), 409–433. doi:10.1002/rsa.20235.

[99] TANNER, H. On the Controllability of Nearest Neighbor Interconnections. In

Decision and Control. CDC. 43rd IEEE Conference on (December 2004), vol. 3,

pp. 2467–2472. doi:10.1109/CDC.2004.1428782.

[100] TARJAN, R. Depth-First Search and Linear Graph Algorithms. SIAM Journal

on Computing 1, 2 (1972), 146–160.

[101] TEIXEIRA, A., PÉREZ, D., SANDBERG, H., AND JOHANSSON, K. H. Attack

Models and Scenarios for Networked Control Systems. In Proceedings of the

1st International Conference on High Confidence Networked Systems (New York,

NY, USA, 2012), HiCoNS ’12, ACM, pp. 55–64. doi:10.1145/2185505.

2185515.

[102] TERRELL, W. J. Some Fundamental Control Theory I: Controllability, Ob-

servability, and Duality. The American Mathematical Monthly 106, 8 (1999),

705–719.

[103] VARGHESE, S., AND VIJAYAKUMAR, A. Power Domination in Some Classes

of Graphs. EuroComb’11 (2011).

[104] WANG, B., GAO, L., GAO, Y., AND DENG, Y. Maintain the Structural Con-

trollability under Malicious Attacks on Directed Networks. Europhysics Let-

ters 101, 5 (Mar. 2013), 1–6. doi:10.1209/0295-5075/101/58003.

[105] WANG, W.-X., NI, X., LAI, Y.-C., AND GREBOGI, C. Optimizing Controlla-

bility of Complex Networks by Minimum Structural Perturbations. Physical

Review E 85, 2 (Feb. 2012), 026115. doi:10.1103/PhysRevE.85.026115.

[106] XU, G., AND KANG, L. On the Power Domination Number of the General-

ized Petersen Graphs. Journal of Combinatorial Optimization 22, 2 (2011), 282–

291. doi:10.1007/s10878-010-9293-y.

152

BIBLIOGRAPHY

[107] XU, G., KANG, L., SHAN, E., AND ZHAO, M. Power Domination in

Block Graphs. Theoretical Computer Science 1-3 (Aug. 2006), 299–305. doi:

10.1016/j.tcs.2006.04.011.

[108] ZABCZYK, J. Mathematical Control Theory: An Introduction. Modern

Birkhäuser Classics. Birkhäuser Boston, 2009.

[109] ZHAO, M., KANG, L., AND CHANG, G. J. Power Domination in Graphs.

Discrete Mathematics 15, 6 (Aug. 2006), 1812–1816. doi:10.1016/j.disc.

2006.03.037.

153

