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Abstract 

The discovery of hydrocarbons in Lower Cretaceous, non-marine carbonates in the South 

Atlantic has triggered much research into understanding how such complex strata form. 

Sedimentary facies and basin architecture are controlled by a range of environmental 

parameters (i.e. climate, hydrology and tectonic setting) but published facies models are few 

and limited in their predictive value. This study develops new depositional models for non-

marine microbialites and associated facies in a semi-arid climate setting in an extensional basin 

based on the Purbeck Limestone Group (Upper Jurassic – Lower Cretaceous) exposed in 

Dorset. 

Outcrop studies coupled with subsurface, petrographic and petrophysical studies 

constrain and improve published facies models and palaeogeographical maps of the 

microbialites deposited in the syn-rift phase of the Wessex Basin. Two and three-dimensional 

seismic data imaging the Lower-Upper Jurassic in south Dorset show east-west trending south-

dipping syndepositional extensional faults. These are linked via a relay ramp and new tectono-

sedimentary models indicate tectonic controls on facies distribution during propagation of 

extensional faults. Accumulation of strata occurred in half-grabens controlled by these east-

west extensional faults indicating that the facies within the Purbeck Limestone Group are, in 

part, controlled by this tectonic template. Outcrop study and remote sensing imaging (lidar) 

coupled with petrographic study is used to differentiate microbial mounds and bedded inter-

mound packstone-grainstone areas and to characterise a total of 9 facies. 

The limestones of the Mupe Member of the Purbeck Limestone Group represent four 

meter scale lacustrine cycles, deepening upwards and then shallowing upwards after a 

flooding surface, capped by emergent surfaces (paleosols). These sequences are characterised 

by accumulation of in-situ build-ups of highly porous microbial mounds that occur within less-

porous bedded inter-mound packstones-grainstones. The microbial mounds are located in 

three stratigraphic units (“Skull”, “Hard” and “Soft Caps”) separated by three paleosols 

(“Basal”, “Lower” and “Great Dirt Beds”). These microbial mounds vary in thickness from about 

0.2 to 3 m and preserve a high primary framework porosity. Many of the mounds developed 

around trees, tree trunks and branches which are preserved as moulds, or silicified wood and 

they comprise three sub-facies (Stromatolite, Thrombolite and Burrowed peloidal packstone). 

Horizontal stratification, onlapping and interdigitating of the inter-mound facies with the 

mounds suggest that deposition occurred contemporaneously with the development of the 

mounds and that they were low relief structures on the lake floor. Interpretation of high 

resolution ground-based lidar data collected from seven quarries in the Isle of Portland, 
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together with some 3-D outcrops enables a quantitative description of the morphology of the 

mounds and their relationship with the packstone-grainstone inter-mound facies. Most of the 

facies are weakly porous at micro and macroscales apart from microbial mounds. These exhibit 

a rather high micro and macro-porosity and the best potential reservoir unit, however as they 

are disconnected spatially and bounded by paleosols, the quality of the overall potential 

reservoir remains poor. 

The main goals of this project are to predict the controls on the location, shape and the 

size of microbial mounds and to constrain the facies models and palaeogeographies of the 

Mupe Member within the Wessex Basin. The main conclusions of this multi-scale study are (1) 

that the two main extensional faults in this part of the Wessex Basin were active during 

Purbeck time; (2) that the development of microbial mounds is tectonically controlled as 

indicated by their relationship with the relay ramp; (3) mound occurrence is controlled by 

palaeotopography generated on sub-aerial exposure surfaces, fossil soils and early conifer 

trees; (4) mounds are developed mainly on the shallowest area of the lake as indicated by their 

rounded to tabular shapes, and their relationship with the packstone-grainstone inter-mound 

facies and the paleosols; (5) petrographic, palaeontological and isotopic data indicate an open, 

through-flowing brackish water lacustrine system in a semi-arid, Mediterranean-type climatic 

setting; and the characterisation of potential reservoir shows (6) that reservoir qualities are 

overall relatively poor. 
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1. Research project overview 

 

Following the discovery of extensive hydrocarbon reservoirs in Lower Cretaceous non-

marine carbonate deposits in the South Atlantic, interest in improving our understanding of 

such complex systems have significantly increased. Triggered by these discoveries, this project 

has been funded by BP and Baker Hughes to study a possible outcrop analogue to these South 

Atlantic reservoirs: the Mupe Member of the Purbeck Limestone Group deposited during the 

syn-rift setting of the Wessex Basin and exposed in south Dorset, U.K.  

This research project involves the integration of traditional outcrop-based geological 

study and stratigraphic numerical forward modelling study involving two inter-related PhD 

studies. The outcrop-based study is presented in this thesis supervised by Dan Bosence and the 

modelling-based study is being undertaken by Estanislao Kozlowski (Kozlowski, in prep.) 

supervised by Pete Burgess. Although inter-related, the two theses have been written 

independently with the exception of Appendix 1 where joint field work on a modern analogue 

is presented. Where data or concepts from the inter-related PhD are used in this work then 

these are referred to as Kozlowski (in prep.). An overall aim of these PhD projects is to improve 

the predictive value of traditional studies on facies distribution and volume quantification of 

non-marine carbonates in extensional settings. 

In addition to the two PhD theses three independent MSc research projects supervised by 

Dan Bosence and Arnaud Gallois were undertaken by Royal Holloway MSc Petroleum 

Geoscience students, Fleckner (2014), Shigwedha (2014) and Dharmarajah (2015) and 

integrated into and referenced in this study where relevant. 

 

2. Problems to be addressed in this thesis 

 

Although the Purbeck Limestone Group outcrops of south Dorset are well known and 

have been visited by many geologists from the U.K. and abroad for more than 200 years (since 

Woodward, 1729), most of the published studies focus on the facies description (West, 1975; 

Francis 1982, 1986), fossil biotas (Anderson, 1973; Clements, 1973; Francis, 1983; Perry, 1994; 

Horne, 1995, 2002) and palaeoenvironmental reconstructions (West, 1975; Francis, 1984). 

However, little is known about the processes and controls involved in the deposition and 

distribution of these non-marine carbonates. As a consequence this thesis deals with and 

answers a broad range of research problems from basin-scale to micro-scale: 
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 Tectonics plays an important role in extensional basin settings and non-marine 

carbonate facies distribution. However, few studies are published on this topic, 

compared to facies in marine settings. This thesis documents if there were 

tectonic controls on the non-marine carbonate facies distribution in this 

extensional basin; and if there were, then how lacustrine carbonate deposits 

might evolve in this basin. 

 Syn-rift setting of the Wessex Basin is very well documented from the Permian to 

the mid-Cretaceous, and in particular in south Dorset where two extensional 

faults are known to be active during the deposition of the Jurassic rocks in general 

(Underhill, 1998). This thesis investigates these two extensional faults to see if 

they may have been active at Purbeck time; and if they were controlling the 

palaeotopographies, the palaeolandscapes and/or the palaeogeographies. 

 Non-marine carbonates have been previously described in the Mupe Member 

(see above), however little has been published on the controls on their deposition 

and distribution. This thesis reinvestigates the facies and the environments that 

they represent; and what the controls were on the facies deposition and 

distribution in this lacustrine basin. 

 Microbial mounds were previously described as stromatolites in the lower part of 

the Mupe Member (Webster, 1826; Pugh, 1968; West, 1975; Francis, 1982; Perry, 

1994) however the scale of these structures had not been appreciated and no 

studies were undertaken to assess the processes involved in their formation and 

distribution. This thesis reveals that microbial mounds were deposited in 

lacustrine sequences and describes how mounds develop in such sequences with 

a range of morphologies and sizes. These help to document the possible controls 

on the microbial growth and mound distribution and how they relate to bounding 

paleosols and evaporites. 

 Petrophysical characterisation of these limestones has not been previously 

undertaken. This thesis describes the different pore types and their connectivity 

and which units could potentially be reservoir or seal in the Mupe Member with 

an appraisal of the effectiveness of the reservoir units. 
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3. Overview of methods 

 

In this section only a brief overview of all the methods used in this study is provided as 

this study involves a wide range of methods that are detailed in each corresponding chapters. 

2-D seismic profiles (35 offshore and 22 onshore) and one 3-D block offshore were 

interpreted with Petrel© and calibrated with borehole data with the aim of characterising 

possible tectonic movements during the deposition of the Purbeck Limestone Group. 

22 sedimentary logs were recorded from outcrops with more than 300 samples collected. 

Classic microscopy (plain polarised light, cross polarised light and gypsum plate) and cathode-

luminesence are used to characterise each facies at micro-scale. These result in the definition 

of 9 facies into a new facies classification and 5 facies associations for the Mupe Member. 

These are then used to create two facies models that are integrated at a more regional scale to 

propose three tectono-sedimentary models for the Skull, Hard and Soft Cap beds within the 

Mupe Member.  

In this thesis salinity values are given in parts per thousand or ppt of total dissolved solids 

(TDS) following the Venice System (Oertli, 1964). This Venice System defines freshwater below 

0.5 ppt; brackish water between 0.5 and 30 ppt; saline (marine) between 30 and 40 ppt; and 

hypersaline over 40 ppt (Oertli, 1964). 

Lidar surveys were undertaken in 7 quarries on the Isle of Portland with Dr. Ken McCaffrey 

from Durham University (U.K.) and interpreted by the author with RiscanPro software. These 

2-D high-resolution surveys were used to characterise microbial mound morphologies and 

sizes and their relationships with the inter-mound facies. This method is also used to quantify 

microbial mound volumes versus inter-mound facies volumes.  

In addition two combined techniques were tested in order to assess their effectiveness in 

characterising these mounds in 3-D. Ground Penetrating Radar (GPR) surveys were undertaken 

with Dr. Julien Moreau from the University of Copenhagen (Denmark) in one quarry on the Isle 

of Portland; and hyperspectral imaging with Dr. Tobias Kurz from the University of Bergen 

(Norway) was tested on 5 samples sent to Bergen. However these two techniques were not 

used further in this study because in both cases the outcrops conditions were not good enough 

to obtain interpretable images. 
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4. Outline of the thesis 

 

Following the introduction of the project and the research questions posed in the 

Chapter 1 (this chapter), Chapter 2 summarises published works available in the literature on 

the Purbeck Limestone Group. In subsequent chapters many of these aspects are referred back 

to and incorporated into discussions.  

The next chapters (Chapters 3 to 6) constitute the main part of the thesis and present 

from large-scale (basin evolution) to small-scale (micro-facies and porosity) the data acquired 

and interpretations undertaken during this project. Chapter 3 presents the new results and 

interpretations of sub-surface data (2-D and 3-D seismic and borehole) to document the 

stratigraphic and tectonic setting of the western part of the Wessex Basin during Purbeck time. 

Chapter 4 focuses on the description of new macro- and micro-facies identified in the field and 

after thin section petrographic studies for the Mupe Member of the Purbeck Limestone Group. 

This chapter also proposes preliminary interpretation of palaeoenvironments for each defined 

facies. Chapter 5 concentrates on the work undertaken on microbial mounds and associated 

facies from the 3-D lidar surveys undertaken in quarries on the Isle of Portland. This chapter 

characterises microbial mound morphologies and sizes; relationships with the surrounded 

inter-mound facies; and establishes possible controls on the microbial growth. The lidar 

surveys and associated imaging techniques are presented in Appendix 2. Chapter 6 defines 

facies associations and presents vertical and lateral facies succession analyses qualitatively and 

quantitatively. Lateral correlations of the sedimentary logs recorded in the field provide 

valuable information of the facies distribution and help to define new palaeoenvironmental 

reconstructions after comparison with modern and ancient analogues. One modern analogue 

of the Purbeck, the freshwater lake of Laguna Bacalar in Mexico was visited in March 2015 and 

the main observations made during this trip are presented in Appendix 1. The measured 

sedimentary logs recorded along the Dorset coast in this project are presented in Appendix 3. 

Chapter 7 presents the integration of all the data acquired and interpreted in this study and 

proposes three tectono-sedimentary models corresponding to the three units (Skull, Hard and Soft 

Cap beds) of the Mupe Member where microbial deposits are identified. These are subsequently 

compared and discussed with general models for lacustrine carbonates from the literature. 

Finally, Chapter 8 summarises the main outcomes of this study in answering the research 

questions posed in Chapter 1 and emphasises the main advances of this study for each aspect 

presented in this thesis. 
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Chapter 2 

The Purbeck limestones 
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1. Introduction 

 

The Purbeck Limestone Group has been quarried (and exported to Europe) since Roman 

times (Dunning, 1949; Calkin, 1968; Edgar and Hinde, 1999) for walls, roofs, burial cists, 

loomweights and querns (Calkin, 1968). However it was first studied scientifically at the 

beginning of the 18th century by Woodward (1729) in his “Attempt towards a natural history of 

the fossils of England” where he recorded “sea-shells in Purbeck-Stone”. Since then it has been 

of importance for geological research and teaching by geologists from Great Britain and 

abroad who organise field trips to southern Dorset to explore the Fossil Forest area (next to 

Lulworth Cove). Here exceptionally well preserved, sometimes silicified cycads and tree trunks 

(Woodward, 1729) are found surrounded by microbialites. This was suggested for the first time 

by Arkell (1947) when he writes that “the tufa…may have been due to freshwater algae” and 

this aspect is described and discussed in detail in Chapter 4 of this thesis. These structures had 

already been described at the beginning of the 19th century as “burr stone” by Webster (1826) 

and later as “tufaceous and botryoidal limestone” by Arkell (1933). This chapter aims to give an 

overview of the state-of-the-art of the published information on the Purbeck Limestone Group 

of southern England (Fig. 2.1). In England the Purbeck Limestone Group is exposed in Wiltshire 

(Vale of Wardour near Swindon), south-west of England (Figs. 2.1 and 2.2; Sylvester-Bradley, 

1940; Needham, 2011), in south Dorset (detailed in the second section of this chapter) and in 

Kent, north-west of Hastings (Edmunds, 1938; Crosby and Fletcher, 1988). 

The equivalent of the Purbeck Limestone Group is also exposed in Germany, Switzerland 

and France (Fig. 2.1). In Germany the Purbeck deposits constitute the upper part of the 

Münder Formation with a Berriasian age (Elstner and Mutterlose, 1996; Arp and Mennerich, 

2008). These Purbeck deposits are exposed in the Lower Saxony Basin (Hils Syncline, northern 

Germany, Fig. 2.1), and are described as non-marine ostracod-rich limestone and marl deposits 

(Hoyer, 1965; Schönfeld, 1979; Schudack, 1994; Elstner and Mutterlose, 1996; Gramann et al., 

1997; Arp and Mennerich, 2008). In the Swiss and French Jura the Purbeck deposits are 

referred as Purbeckian or Purbeck limestones and constitute the Goldberg Formation, early 

Berriasian (Strasser and Davaud, 1983; Strasser, 1986, 1988). These deposits are described as 

non-marine carbonates with sequences or cycles capped by paleosols (Strasser and Davaud, 

1983; Strasser, 1986, 1988). In France the Purbeck deposits are exposed in three locations in 

the Charente region, western France (Fig. 2.1; Bousquet, 1967; Colin et al., 2004; Schnyder et 

al., 2012), in the Boulonnais region, northern France (Fig. 2.1; Jones, 1883; Ager and Wallace, 
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1966; Townson and Wimbledon, 1979; Deconinck et al., 2000) and in the Jura Mountains as 

described previously (Fig. 2.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Purbeck exposures in Europe (France, Switzerland, Germany and U.K.). 

 

2. Wessex Basin 

 

The Wessex Basin is located in southern England and northern France (Figs. 2.1 and 2.2). 

This basin is considered as an extensional sub-basin of a much larger system of intracratonic 

Mesozoic basins that covered north-western Europe (Ziegler, 1982; Underhill and Stoneley, 

1998). The possible extent of the basin during Purbeck time has been suggested by several 

authors but still remains unclear. The extent presented in figures 2.1 and 2.2 are a compilation 

of information from Lake (1985), Cope et al. (1980), West (1992) and Underhill (2002), 

following intense sub-surface data analysis and fieldwork in southern England and northern 

France. Most of published studies (Stoneley, 1982; Allen and Wimbledon, 1991; Hamblin et al., 
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1992; Allen et al., 1998; Hawkes et al., 1998; Underhill and Stoneley, 1998; Newell, 2000; 

Underhill, 2002) distinguished the Weald Basin from the Wessex Basin; the latter divided into 

two sub-basins, the Portland-Wight sub-basin to the south and Pewsey sub-basin to the north. 

The Weald and Wessex Basins were probably separated by the Hampshire-Dieppe High 

(Fig. 2.2). Some authors (Howitt, 1964; Lake, 1985; Chadwick, 1986; Cope et al., 1992; Hopson 

et al., 2008) integrate the Weald Basin as a sub-basin of the Wessex Basin (Fig. 2.2). In this 

study the Wessex Basin will be considered as being formed of three sub-basins; the Portland-

Wight to the south-west (the subject of the thesis), the Pewsey to the north-west and the 

Weald to the east. This definition results from the integration and initial correlation of 

fieldwork studies (refer to Chapter 6 and Appendix 3) and sub-surface data interpretation 

(refer to Chapter 3). 

Deposition in the Wessex Basin is recorded from the Permian, until the Cenozoic where 

deposits occur in the successor, Hampshire Basin, following Cenozoic inversion (Fig. 2.3; 

Underhill and Stoneley, 1998). The basin evolution can be deduced from tectonic and 

depositional settings recorded in these sedimentary rocks and Underhill and Stoneley (1998) 

defined three megasequences; the Permian-Lower Cretaceous, Upper Cretaceous and Tertiary 

megasequences (Fig. 2.3). The Permian-Lower Cretaceous megasequence corresponds to the 

syn-rift phase of the Wessex Basin and is bounded by the Variscan unconformity at the base 

and the Intra Aptian-Albian unconformity at the top (Fig. 2.3). This syn-rift phase is fault-

controlled (faults indicated in figure 2.2) and accommodated by regional flexural subsidence 

(Barton et al., 2011). The Upper Cretaceous megasequence corresponds to the post-rift phase 

of the Wessex Basin and is bounded by the Intra Albian-Aptian unconformity at the base and 

an Upper Cretaceous unconformity at the top (Fig. 2.3). This post-rift phase is controlled by 

regional flexural subsidence due to active seafloor spreading in the North Sea area (Barton et 

al., 2011). The Cenozoic megasequence corresponds to the Alpine Inversion phase of the 

Wessex Basin and is bounded by an Upper Cretaceous unconformity at the base (the 

uppermost half of the Oligocene and Neogene are not present in the Wessex Basin, Fig. 2.3). 

This inversion phase is due to the distant collision of the African and European plates inverting 

Mesozoic extensional structures (Fig. 2.2; Barton et al., 2011). 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Structural map of the Channel and Wessex Basins. The Wessex Basin is located in southern England and northern France. Extent of the Wessex Basin after 
Lake (1985), Cope et al. (1980), West (1992) and Underhill (2002). Note the thick lines identify the inverted extensional faults during the Alpine inversion (Cenozoic). 
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Figure 2.3 Lithostratigraphic column for the Wessex Basin. Modified after Underhill and Stoneley 
(1998). Note that the Purbeck Limestone Group is grouped with the Portland Group. 
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3. Review of the Purbeck Limestone Group 

3.1. Exposures in south Dorset 

 

In this chapter, only the exposures of south Dorset (SW England) will be detailed as they 

are the topic of this thesis and considered as the best and most complete exposures of the 

Purbeck Limestone Group found in England with the type-section located in Durlston Bay 

(Tab. 2.1; Fig. 2.4; Clements, 1993). 

Table 2.1 summarises, and figure 2.4 locates, the exposures of the Purbeck Limestone 

Group in south Dorset, southern England. The Purbeck rocks are particularly well exposed in 

south Dorset between Abbotsbury to the west and Swanage to the east (Tab. 2.1; Fig. 2.4). 

Although the south Dorset region is considered the best location to study the Purbeck 

Limestone Group, it is not continuously exposed. The accessible cliff exposures mainly result 

from erosion (i.e. cliff landslides) along the coast which has been classified as a World Heritage 

Site in 2001 (Dorset City Council, 2001). Apart from cliff exposures, most of the inshore 

outcrops are the result of quarrying either still active or at different periods in the past. 

Quarrying in south Dorset has occurred since Roman times (Dunning, 1949; Calkin, 1968; Edgar 

and Hinde, 1999; Godden, 2012) with very intense quarrying during the last millennium mainly 

of the underlying Portland Group (Freestone Member) for construction materials (Calkin, 1968; 

Godden, 2012). This quarrying provides relatively fresh surfaces through the Purbeck 

Limestone Group. These exposures are classified in four areas from east to west: Isle of 

Purbeck, Lulworth, Isle of Portland and north of Weymouth (Tab. 2.1). As a consequence the 

exposures studied in this project are for most of them either disused quarries or cliff faces 

(refer to Appendix 3 for more details). 
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Table 2.1 Purbeck Limestone Group exposures in south Dorset (southern England) studied in this 

thesis. 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Purbeck exposures in south Dorset with location of the Ridgeway and Purbeck extensional Faults and the relay ramp area. Dark zones are after 1:50000 
Geological Survey sheets 327 (Bridport), 328 (Dorchester), 341 and part of 342 (West Fleet and Weymouth) and 342 east and 343 (Swanage). 
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3.2. Lithostratigraphy 

 

Many geologists have defined stratigraphic units of the Purbeck rocks (Tab. 2.2) since the 

beginning of 19th century. Woodward in 1729 was the first to label these rocks as Purbeck 

Stone but without a description (Tab. 2.2). The very first time the Purbeck rocks were 

described was in 1811 by Thomas Webster in a letter he addressed to Sir Henry Englefield in 

1816 (republished and in more detail in 1826) and using some of the quarrymen’s terms. These 

were used in later work by Fitton (1836) and Buckland and De la Bèche (1836) with some 

modifications. Forbes (1850) was the first to define the Purbeck sub-divisions lower, middle 

and upper based on the biostratigraphy of ostracods and Austen (1852) was the very first one 

to define the lithostratigraphy based on lithology and fossils (mainly ostracods). This scheme 

was slightly modified by Bristow in 1857 and is still commonly used today (Tab. 2.2; Francis, 

1982, 1983, 1984, 1986; Ensom, 2010; Cope, 2012; West, 2013a).  

 

3.2.1. Group 

 

In the 19th century the Purbeck rocks were part of the Oolitic series or Portland Oolite or 

Portland Purbeck (Webster, 1811 in Englefield, 1816, 1826; Damon, 1860). Later the “Purbeck 

Strata” were defined as the base of the Wealden Group (Fitton, 1836; Lyell, 1855). It is only in 

1836 that Buckland and De la Bèche defined for the first time the Purbeck Beds as a separate 

stratigraphic unit. Since then the Purbeck rocks were defined either as a series as the 

“Purbeck” (Forbes, 1850; Brown, 1964) or the “Purbeck Beds” (Webster, 1826; Buckland and 

De la Bèche, 1836; Austen, 1852; Lyell, 1855; House, 1969, 1989) or the Purbeck Strata (Fitton, 

1836; Fisher, 1856; Bristow, 1857;  or the Purbeck Limestone (Forbes, 1850); or as a 

stratigraphic unit as the Purbeck Formation (Damon, 1860; Francis, 1983, 1984, 1986) or 

Purbeck Limestone Formation (Ensom, 1985; Cope et al., 1992); or as a lithostratigraphic group 

as the Purbeck Group (Strahan, 1898; Arkell, 1933, 1947; Townson, 1975; Anderson, 1985; 

Allen et al., 1998) or Purbeck Limestone Group (Clements, 1993; Westhead and Mather, 1996; 

Allen et al., 1998; Hopson et al., 2008; Ensom et al., 2009; Ensom, 2010; Cope, 2012). The 

latest review of lithostratigraphy of this unit is by Westhead and Mather (1996) who, following 

Clements (1993), used the term Purbeck Limestone Group and their lithostratigraphic terms 

are used in this thesis (Tab. 2.2). 
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3.2.2. Formations 

 

Casey (1963) defined the two main sub-divisions based on the position of the Jurassic-

Cretaceous boundary at the base of the Cinder Bed. The Lulworth Beds in the lowermost half 

and in the Jurassic part and the Durlston Beds in the uppermost half and in the Cretaceous part 

(Tab. 2.2). These were relabelled later by Townson (1975) as Lulworth Formation and Durlston 

Formation. The exact location of this boundary between the systems remains an important 

debate since the beginning of the 19th century. This is mainly due to the absence of 

biostratigraphically useful fossils (such as ammonites or brachiopods). The only fossils found in 

the Purbeck rocks are ostracods and molluscs, characteristic of Late Jurassic – Early Cretaceous 

times (refer to section 3.3 of this chapter for more detailed about Jurassic-Cretaceous 

boundary). The type-section is located in Durlston Bay and was described for the first time in 

details by Clements (1993) focusing on the middle and upper parts of the Purbeck rocks. 

 

3.2.3. Members 

 

Westhead and Mather (1996) defined five members (Tab. 2.2), three in the Lulworth 

Formation and two in the Durlston Formation, and based on lithological and palaeontological 

content to simplify correlation from the west to the east side of all of the Wessex Basin. The 

Lulworth Formation is divided into the Mupe Member, Ridgeway Member and Worbarrow 

Tout Member while the Durlston Formation is divided into the Stair Hole Member and the 

Peveril Point Member (Tab. 2.2). 

 

3.2.4. Beds 

 

Bristow (1857) was the first to name the individual beds, many of which are still in use 

today and in this study (Tab. 2.2). The integration of those bed names in Westhead and 

Mather’s (1996) Members is described here. The Mupe Member groups the Caps and Dirt 

Beds, Broken Beds and the lowermost half of the Cypris Freestone. The Ridgeway Member 

groups the uppermost half of the Cypris Freestone. The Worbarrow Tout Member groups the 

Hard Cockle Beds, Soft Cockle Beds, Marly Freshwater Beds and Cherty Freshwater Beds. The 

Stair Hole Member groups the Cinder Bed, Intermarine Beds, Scallop Beds, Corbula Beds and 

Chief Beef Beds. The Peveril Point Member regroups the Broken Shell Limestone, Unio Bed and 

Upper Cypris Clays and Shales. This scheme is followed in this thesis with integration of 
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Francis’ work (1982, 1983, 1984, 1986) on palaeosols of the lower part of the Mupe Member 

and West (2016) on the identification and definition of a Transition Bed located directly above 

the Portland Group and at the very base of the Purbeck Limestone Group. Francis (1982) 

defines for the lower part of the Mupe Member the Lower Skull Cap (Basal Cast Bed of Arkell, 

1941 and Transition Bed of West, 2013a), Basal Dirt Bed, Upper Skull Cap, Lower Dirt Bed, Hard 

Cap, Great Dirt Bed and Soft Cap (Tab. 2.2). Later Francis (1983, 1984, 1986) grouped the three 

first beds into the Skull Cap. 
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Table 2.2 Lithostratigraphical classification and comparison over time since the 19
th

 century until today. Note that the Purbeck Limestone Group was primarily divided into lower, middle and upper until Casey (1963), and considered to be part of 
the Portland Oolite (Webster, 1811 in Englefield, 1816) or Portland Group (Webster, 1826) and then part of the Wealden Group (Fitton, 1827 in Fitton, 1836; Lyell, 1855) until Fisher (1856) who defined the Purbeck Strata as a different unit. 
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 Table 2.2 Continued. Note the bed names to be used in this study are in the last column on the right. 
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3.3. Biostratigraphy 

 

The biostratigraphy of the Purbeck Limestone Group is mainly based on ostracods as they 

represent the more abundant microfossils identifiable in these beds with biostratigraphic value 

(Anderson and Bazley, 1971; Anderson, 1985; Clements, 1993; Horne, 1995, 2002). However 

other studies proposed biostratigraphy of the Purbeck Limestone Group based on less 

abundant fossils such as palynomorphs (Norris, 1969, 1970; Hunt, 1985, 2004).  

Ostracod biostratigraphy has been recognised for over more than a century with the first 

ostracods identified in the Purbeck limestones by Forbes (1850).  More recent studies, by 

Anderson (1985) and later revised by Horne (1995, 2002), defined more precisely the 

biostratigraphy of the Purbeck Limestone Group (Tabs. 2.3, 2.4 and 2.5). Anderson (1985) is 

the most prolific contributor with the definition of 4 ostracod zones, 6 assemblages and 40 

faunicycles for the Purbeck Limestone Group. Although this classification is strongly criticised 

by Horne (1995) due to the difficulty in identifying the stratigraphic horizons these 

assemblages and faunicycles correspond to, this scheme remains the most complete. 

Anderson’s (1985) ostracod zones are based on the dominant species found with, from bottom 

to top, the Cypridea dunkeri, Cypridea granulosa, Cypridea vidana and Cypridea setina zones 

(Tab. 2.3). Horne (1995) revised the ostracod biostratigraphy and defined new zones and 

subzones for the Purbeck-Wealden of England (Tab. 2.3). Horne’s (1995) biostratigraphy for 

the Purbeck consists of the Theriosynocum forbesi zone divided into three subzones from 

bottom to top: Cypridea dunkeri (Tab. 2.3; same as Anderson, 1985); Cypridea granulosa 

(Tab. 2.3; comprises Cypridea granulosa and the lowermost part of the Cypridea vidrana zone 

of Anderson, 1985); and Cypridea propunctata (Tab. 2.3; comprises uppermost part of 

Cypridea vidrana and Cypridea setina zones of Anderson, 1985). The assemblages are based on 

similar ostracod assemblages and are simply numbered from 1 for the lowermost to 7 for the 

uppermost (Tab. 2.3). The faunicycles are based on the association of Anderson’s definition of 

C-phase (for Cypridea species) and S-phase ostracods (for non-Cypridea species), and are both 

named and numbered (Tab. 2.3). According to Anderson (1985) the C-phase corresponds to a 

group of ostracod species living in mainly freshwater conditions (however not pure 

freshwater), while the S-phase corresponds to a group of ostracod species living rather more 

saline water conditions (however not fully marine). Even if not stated clearly by Anderson, the 

names given to each faunicycle seem to correspond to the place where the greatest quantity 

of ostracod carapaces was collected. The exact boundaries of stratigraphic horizons for each 

faunicycle remain unclear as no thickness or detailed lithostratigraphy are defined by 
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Anderson (1985). More recently Horne (2002) shows that the Purbeck ostracod faunas have 

modern day equivalents living in non-marine settings: the superfamilies Cypridoidea (Cypridea 

senus lato and Mantelliana), Cytheroida (Theriosynoecum and Timiriasevia) and Darwinuloidea 

(Darwinula). The Purbeck ostracods are since considered as non-marine species (Horne, 2002).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.3 Ostracod biostratigraphy of the Purbeck Limestone Group. Lithostratigraphy following 
the definition in table 2.1 and in use in this study. 
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Following Anderson’s (1985) definition, the assemblage and faunicycles corresponding to 

the Mupe Member, and of interest for this study, is the assemblage number 1 composed of 

the faunicycles 1 to 4 and the lower part of the assemblage number 2 with the faunicycle 5 

(Tabs. 2.3 and 2.5).  The assemblage 1 is mainly characterised by S-phase species such as 

Macrodentina and Wolburgia and rare occurrence of C-phase species such as Cypridea dunkeri, 

Cypridea primavera and Cypridea tumescens (Tabs. 2.3 and 2.5; Anderson and Bazley, 1961; 

Anderson, 1985). One of the main problems with Anderson’s faunicycle for this study is that 

the collected ostracods come mainly from locations outside of Dorset (see details below for 

each faunicycle relevant to this study). Even when ostracods constituting a faunicycle were 

collected from Dorset there is no quantitative indication on sampling locations. The faunicycle 

1 (Quainton) corresponds in the stratigraphy to the lowermost beds of the Mupe Member 

comprising the lowermost part of the Caps and Dirt Beds but there is no precision as to the 

exact beds considered (Tab. 2.3). This first faunicycle is based on collection and identification 

of 5485 specimens from the Wiltshire at Swindon and in the Buckinghamshire at Aylesbury 

(Anderson, 1985). The faunicycle 2 (Warren) comprises the uppermost Caps and Dirt Beds but 

again there is no exact location of the beds considered (Tabs. 2.3 and 2.5). This second 

faunicycle is based on collection and identification of 2814 specimens from Wiltshire at 

Swindon, Buckinghamshire at Aylesbury and Dorset at Poxwell Quarry and White Nothe 

(Tab. 2.5; Anderson, 1985). The faunicycle 3 (Ridgeway) comprises the lowermost part of the 

Broken Beds (Tabs. 2.3 and 2.5). This third faunicycle is based on collection and identification 

of 1107 specimens from Wiltshire at Swindon, Buckinghamshire at Aylesbury and Dorset at 

Poxwell Quarry (Anderson, 1985). The faunicycle 4 (Stair) comprises the uppermost part of the 

Broken Beds (Tab. 2.3). This fourth faunicycle is based on collection and identification of 72 

specimens from Wiltshire at Swindon, Sussex at Henfield borehole and Dorset at Poxwell 

Quarry, Portesham Quarry and White Nothe (Anderson, 1985). The assemblage 2 is mainly 

characterised by S-phase species and is made of 7 faunicycles (of which only the first one will 

be described here as it probably corresponds to the top of the Mupe Member; Tab. 2.3). The 

faunicycle 5 (Swindon) comprises the lowermost part of the Cypris Freestone. This faunicycle is 

made of S-phase species such as Fabanella boloniensis and Mantelliana purbeckensis 

(constituting 75% of the fauna) and rare occurrence of C-phase species such as Cypridea 

dunkeri, Cypridea primavera and Cypridea tumescens (Tab. 2.3; Anderson and Bazley, 1961; 

Anderson, 1985). This fifth faunicycle is based on collection and identification of 32 specimens 

from Sussex at Mountfield, Henfield borehole, Broadoak borehole and Fairlight borehole, and 

Dorset at Durlston Bay (Anderson, 1985). 
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Palynomorph studies and identification were first conducted by Couper (1958) and Lantz 

(1958) but their biostratigraphic value was first recognised by Norris (1969, 1970). Norris 

(1969) defined for the Upper Jurassic and Lower Cretaceous of southern England several 

assemblages, within three biozone suites named A, B and C (Tab. 2.4). Each suite is defined by 

appearance of a new species and these suites are recorded from the upper part of the 

Kimmeridge Clay Formation until the top of the Purbeck Limestone Group in Dorset. A 

limitation of this classification is in the difference between suites and assemblages. In fact 

Norris (1969, 1970) does not detail what assemblages are compared to suites as both are 

characterised by groups of palynomorph species. The only difference seems to lie in the 

number of species that is lower in the assemblages than in the suites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.4 Miospore biostratigraphy after Norris (1969, 1970) and Hunt (1985). Lithostratigraphy as 
defined in table 2.2. Note the boundary between suites A and B is well defined in Durlston Bay while in 
Mupe Bay the base of the suite B was not found due to rare occurrence of misopores (Norris, 1969). This 
boundary seems to be younger in Mupe Bay than in Durlston Bay. 
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The Purbeck Limestone Group comprises the very uppermost part of suite A and the 

whole suites B and C (Tab. 2.4; Norris, 1969). The relative abundance of palynomorph species 

in each suites is defined as persistent when a species constitutes more than 50% of the 

constituent samples in a suite; and spasmodic when a species constitutes less than 50% of the 

constituent samples in a suite (Norris, 1969, 1970). The samples studied by Norris (1969) are 

dominated by Classopollis torosus or Inaperturopollenites dubius that constitute together more 

than 70% of the total spore-pollen flora (Norris, 1969, 1970). These two species are recorded 

to dominate (up to 90%) of the assemblages in the lower part of the Mupe Member (i.e. 

gypsiferous beds according to Norris, 1970 lateral equivalent of the Caps and Dirt Beds in this 

study). The suite A is made of 32 species (11 persistent and 21 spasmodic) listed in table 2.5 

with assemblages containing between 10 and 15 species (Norris, 1969). This first suite is 

characterised essentially by coniferalean miospores with few occurrence of filicalean, lycopsid 

and petridophytic species (Norris, 1969, 1970). The suite B is made of 44 species (12 persistent 

and 32 spasmodic) listed in table 2.5 with assemblages containing normally less than 10 

species but can be up to 22 species (Norris, 1969). This second suite is essentially characterised 

by coniferalean spores still abundant, pteridophytic spores becoming more abundant and 

bryophytic spores decreasing (Norris, 1969, 1970). This reflects restricted flora diversity 

developing around lagoons and/or along coastal environments (Norris, 1969, 1970). This suite 

B differs from suite A with the appearance of rarely occurring 10 species also listed in table 2.5 

(Norris, 1969). The suite C is made of 77 species (24 persistent and 53 spasmodic) with 

assemblages containing normally between 15 and 30 species and can be down to 4 or up to 42 

species (Norris, 1969). This third suite is still essentially characterised by coniferalean, and 

pteridophytic spores remaining important as well (Norris, 1969, 1970). This suite differs from 

suite B with the appearance of rarely occurring 32 species also listed in table 2.5 (Norris, 1969). 

The other limitation of this classification concerns the palaeoecological value of these suites or 

assemblages. Norris (1969, 1970) did not detail palaeoenvironments where the plants were 

living that produced the pollen and spore.  

Norris’ classification was later revised, completed with new species and interpreted in 

terms of palaeoecology by Hunt (1985). Hunt defined three new biozones slightly different to 

that of Norris (1969, 1970) and based on first occurrence of taxa (Tab. 2.5). This was possible, 

due to low diversity of incoming taxa (Hunt, 1985). These are the Parvisaccites radiatus 

Biozone replacing suite A of Norris (1969), the Apiculatisporis verbitskayae Biozone and the 

Matonisporites elegans Biozone together replacing suite B of Norris (1969) (Hunt, 1985) and 

the characteristic taxa constituting these biozones are listed in table 2.5. The dominated 
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miospores in the upper part of the Parvisaccites radiatus Biozone (i.e. the Mupe Member, 

Tabs. 2.4 and 2.5) and the Apiculatisporis verbitskayae Biozone is Classopollis with the 

appearance of bisaccates in Apiculatisporis verbitskayae Biozone (Hunt, 1985). In the 

Matonisporites elegans Biozone the miospore diversity increases and is dominated by 

bisaccates, Inaperturopollenites, Spheripollenites, Classopollis, Cerebropollenites and spores 

(Hunt, 1985). According to Hunt (1985) assemblages dominated by Classopollis microfloras (in 

the Lulworth Formation) reflecting a regional xerophytic (i.e. semi-arid to arid) vegetation 

dominated by Cheirolepidiacaea (i.e. ancient conifers). This was also suggested by the 

identification of semi-arid climate sedimentological (West, 1975) and palaeontological features 

(Francis, 1983) in the lower part of the Muper Member. West (1975) interpreted semi-arid 

conditions with the formation of gypsum and halite from hypersaline brines (refer to section 

3.7.2 of this chapter for complete description). Francis (1983) identified the ancient conifers 

Protocupressinoxylon purbeckensis and interpreted their growth to have occurred under arid 

to semi-arid climate (refer to sections 3.5.1.1.3 and 3.7.1 of this chapter for complete 

description). Similarly Hunt (1985) interpreted assemblages dominated by Spheripollenites and 

Inaperturopollenites microfloras (in the Durlston Formation) to reflect still semi-arid conditions 

but more humid than the Lulworth Formation. This was suggested due to the concomitance of 

freshwater mollusca together with halite pseudomorphs and mudcracks (Hunt, 1985). This 

change from arid to semi-arid climate in the Lulworth Formation to arid but more humid 

climate in the Durlston Formation (Hunt, 1985) was previously suggested by Vakhrameev 

(1970) and Sladen and Batten (1984). 
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Table 2.5 Correlation of ostracod biostratigraphy and miospore biostratigraphy for the Mupe Member of the Purbeck Limestone Group of Dorset. Ostracod zones after Horne (1995) and ostracod subzones after Anderson (1985) and Horne (1995). 

Ostracod assemblages and faunicycles after Anderson (1985). Ranges of ostracod species after compilation of Anderson (1985) and Horne (1995) ostracod identification. Miospore suites after Norris (1969, 1970). Miospore biozones after Hunt (1985). 
In the ranges of ostracod species plain lines illustrate occurrence of the species while dashed lines correspond to likely occurrence. In the ranges of miospore species plain lines correspond to persistent species and dashed lines correspond to 
spasmodically occurring species (see text for details). 
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3.4. Chronostratigraphy 

 

The dating of the deposition time of the Purbeck Limestone Group is still controversial 

mainly due to the low faunal diversity with biostratigraphic value (ostracods, molluscs 

gastropods and bivalves, trees, cycads, and pollens). The top of the underlying Portland Group 

is dated from the Tithonian with Titanites giganteus ammonites (Spath, 1931) and the base of 

the overlying Wealden Group in the past was dated as Berriasian because of transgression 

recorded in Europe at that time (Kirkaldy, 1937; Arkell, 1947). This gives a Tithonian-Berriasian 

age for the deposition of the Purbeck rocks, and consequently somewhere within this Group 

lies the Jurassic-Cretaceous boundary. This boundary was long considered to be located at the 

base of the Cinder Bed, an oyster-rich deposit marking an important marine incursion in 

southern England into otherwise non-marine strata (Casey, 1963; Cope and Clements, 1969; 

Cope et al., 1980). This Cinder Bed is considered as synchronous to the deposition of nodule-

bed in Lincolnshire and East Anglia, the deposition of the Speeton Clay in Yorkshire, the 

Serpulite transgression in Poland and Germany and Ryazanian transgression of Russia (Casey, 

1963). However numerous authors during the colloquium on the Jurassic-Cretaceous boundary 

in 1973 (Mémoires du BRGM no.86, Anon, 1975) stated that the Jurassic-Cretaceous boundary 

should be approximately at the base of the Berriasella jacobi ammonite zone of the Berriasian 

as equivalent in Durlston Bay to the Cypris Freestone because palynomorphs and ostracods are 

equivalent of the Pseudosubalpines grandis ammonite subzone (at the base of the Berriasella 

jacobi zone).  Allen and Wimbledon (1991) used this definition and showed that the deposition 

of the Purbeck rocks occurred mainly during the Berriasian, lowering significantly the Jurassic-

Cretaceous boundary to the lower part (base of the Cypris Freestone) of the Purbeck 

Limestone Group. This is partly confirmed by Hunt (1985) and Wimbledon and Hunt (1983) 

with palynological studies that place the Berriasian-Valanginian boundary at the top of the Purbeck. 

The most recent studies were compiled by Wimbledon (2008) and Grabowski (2011) 

integrating magnetostratigraphy, palynomorphs and ostracod assemblages. The 

magnetostratigraphy of the Jurassic-Cretaceous boundary is defined in Berrias (Ardèche, 

France) to be between the M19r and M18n magnetic polarity zones (Galbrun et al., 1986). 

Palaeomagnetic measurements on samples from the type-section in Durlston Bay indicate that 

the M18n level (base of Berriasian) is located in the Worbarrow Tout Member in the lower 

part of the Soft Cockle Beds (Fig. 2.5; Wimbledon, 2008). The base of the Berriasian remains in 

the lower part of the Purbeck Limestone Group but moves the previous Jurassic-Cretaceous 
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boundary proposed by Allen and Wimbledon (1991), defined at the base of the Cypris Freestone, 

up to the lower part of the Soft Cockle Beds (Fig. 2.5). 

This study focuses on the lower part of the Mupe Member, consequently the 

determination of the time interval for deposition was done for the Mupe and Ridgeway 

Members (Tab. 2.2) because Wimbledon’s (2008) magnetostratigraphy takes into account the 

beds rather than the members (Fig. 2.5). Wimbledon’s (2008) magnetostratigraphy coupled 

with Grabowski’s (2011) detailed palaeomagnetic polarities for the western Tethys, and the 

Channell et al. (1995), Gradstein et al. (2004) and Tominaga and Sager (2010) dating of 

magnetic sequence intervals is presented in figure 2.5. This allows determination of deposition 

periods for the Purbeck Limestone Group of about 8 My (minimum of 6.7 My and maximum of 

9 My with a standard deviation of about 1.1 My, Fig. 2.5); the Caps and Dirt Beds together of 

about 415,000 years (minimum of 350,000 years and maximum of 515,000 years with a 

standard deviation of about 88,500 years, Fig. 2.5); the Cypris Freestone beds of about 465,000 

years (minimum of 300,000 years and maximum of 620,000 years with a standard deviation of about 

160,000 years, Fig. 2.5); and the Mupe and Ridgeway Member together of about 880,000 years 

(minimum of 650,000 years and maximum of 1.1 My with a standard deviation of about 245,00 years, 

Fig. 2.5). 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 2.5 Magnetostratigraphy and interval dating of the Purbeck Limestone Group. Stratigraphy and correlation with polarity after Wimbledon (2008); polarities 

after Grabowski (2011); and numerical time scales: CENT95 after Channell et al. (1995), GR2004 after Gradstein et al. (2004) and TS2010 after Tominaga and Sager (2010). 
Note on the bottom right a table summarising calculation of deposition times depending on the three timescales and used to calculate the averages in the column average 

deposition times. CDB: Cap beds and Dirt Beds, CF: Cypris Freestone, MRM: Mupe and Ridgeway Members and : standard deviation, Val.: Valanginian. Note that the 
periods and stages on the left are according to Wimbledon’s (2008, figure 1) magnetostratigraphy correlation. 
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3.5. Facies 

 

Facies in the Purbeck Limestone Group evolve generally from more marginal in the lower 

part to more basinal in the upper part of the succession. The previous descriptions of facies in 

these rocks are mainly based on the detailed studies by West (1975) along the south Dorset 

coast, Ensom (1985) at Worbarrow Tout, Clements (1993) in Durlston Bay, Westhead and 

Mather (1996) along the south Dorset coast and Ensom (2010) on the Isle of Purbeck and at 

Bacon Hole (Mupe Bay).  

 

3.5.1. Facies of the Lulworth Formation 

 

Facies in the Lulworth Formation were studied in details by many authors. The most 

detailed studies were done by West (1975) on the Skull, Hard and Soft Caps and the Cypris 

Freestone; and Francis (1982, 1983, 1984, 1986) on the paleosols (Basal, Lower and Great Dirt 

Beds) in between the Caps with the identification of ancient conifers and cycads. Concerning 

the biotas, Arkell (1941) remains the most detailed study on mollusc gastropods later revised 

by Clements (1973) and Radley (2002). Ostracods were very well described by Anderson (1985) 

later revised by Horne (1995, 2002), and Barker et al. (1975) although this study only focused 

on Portesham Quarry. Overall the facies and biotas found in the Lulworth Formation reflect 

hypersaline conditions (West, 1975) in shallow lakes or swamps (Arkell, 1933) or a large 

shallow lagoon (Strahan, 1898; Davies, 1935; West, 1975). 

 

3.5.1.1. Facies of the Mupe Member 

 

Westhead and Mather established this member in 1996 and summarised the lithologies to 

be mainly micritic algal limestones at the base and passing up to bedded coarse-grained 

ostracod-rich limestones that are locally brecciated. 

 

3.5.1.1.1. Facies of the Transition Bed 

 

Few authors described the facies of this bed located at the base of the Purbeck Limestone 

Group. Francis (1982) named this bed the lower part of the Skull Cap and described the facies 

as fossiliferous micrites, biopelmicrites and biopelsparites containing ostracods, foraminifers, 
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bivalves and turreted gastropods. West (2013a) named this bed the Transition Bed and 

described thin-bedded pelletoidal limestones. 

 

3.5.1.1.2. Facies of the Skull, Hard and Soft Cap beds 

 

The first time these beds were described was in 1826 by Webster who recognised tufas 

and called them “burrs” (named after quarrymen names of the bed encasing the tree trunks, 

Fig. 2.6A). These were later compared by Fitton (1835) to Italian travertines. In 1836, Buckland 

and De La Bèche described these “burrs” as “hemispherical concretions” but without giving any 

further explanations. Henslow (1835 in Buckland and De La Bèche, 1835) noticed that the “burr 

stone” was protruding through the Aish (first bed of the Cypris Freestone) and that the “burr 

stone” was made of “two circular ridges with intermediate circular depressions” (Fig. 2.6B). He 

interpreted these ridges and depressions to record waves in very shallow water (Henslow, 

1835 in Buckland and De La Bèche, 1835). In 1856 Fisher noticed that the surfaces of the Caps are 

very irregular and resemble “deposits from a petrifying spring on moss”.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 “Burrs” of the Soft Cap bed first description. A – The Soft Burr bed encasing the in-situ 
tree stumps at Lulworth Cove (drawing from Webster, 1826). B – “Burr stone” around an in-situ stump 
with the ridges and depressions from the Isle of Portland (drawing from Henslow, 1835 in Buckland and 
De La Bèche, 1835). 
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The first detailed study of these beds was made by Strahan in 1898 where he described 

granular limestones with pellets, oolitic grains and calcareous tufas (later revised by Arkell in 

1947, as pelletoidal to oolitic limestones). Strahan (1898) showed that such calcareous tufas 

are common in petrifying springs where calcification occurs preferentially around plant 

remains than around pebbles. He also demonstrated that these tufas of the Mupe Member 

were deposited contemporaneously with the surrounding “laminated Cyprid-limestones”. 

Although Strahan compared the Purbeck tufas to calcite coating in petrifying springs, he also 

inferred a possible filamentous freshwater algal origin due to circular ridges discovered by 

Buckland and De la Bèche (1836) on the surface.  

Pugh (1968) remains the most complete and detailed work done so far on the Cap 

deposits. Pugh (1968) focused on the algae found in the Hard Cap bed. She documented 

occurrence of filamentous red algae (Rhodophycophyta), green algae (Chlorophycophyta) and 

blue-green algae (Schizophyta). The red algae were the less common and only represented by 

one Genus Solenopora dybowski and found only at the base of the Hard Cap at Worbarrow Bay 

(Pugh, 1968). The green algae were represented by three genera from the same Family 

Codiaceae; Ortonella garwood (found at the base of the Hard Cap and in the Cypris Freestone 

between Mupe and Worbarrow Bays); Cayeuxia frollo found in the upper part of the Hard Cap 

at Perryfield Quarry); and Hedströemia rothpletz (found in the Hard Cap at Stair Hole; Pugh, 

1968). The most common were the blue-green algae (reinterpreted recently as cyanobacteria, 

Riding, 1991) represented by two Families Porostromata and Spongiostromata (Pugh, 1968). 

The former were represented by one Genus Girvanella Nicolson & Etheridge and found in the 

Cypris Freestone at Lulworth and in the Hard Cap at St. Aldhelm’s Head and Portesham; the 

latter were classified by their macro-morphologies because Spongiostromata grow in colonies 

(Pugh, 1968). Pugh (1968) defined three classes, Laterally Linked Hemispheres (LLH), Stacked 

Hemispheres (SH) and Spherical Structures (SS). The LLH are found mainly in the Hard Cap but 

can also be encountered in the Soft Cap (particularly abundant in the lower part) and are 

comparable as algal mats (Pugh, 1968). These algal mats are inter-bedded with pellet 

limestones or horizons with a clotted texture (Pugh, 1968). These LLH correspond to the 

tufaceous limestones described by earlier workers and abundant in the Hard Cap on the Isle of 

Portland and their surfaces are compared to cauliflowers (Pugh, 1968). At microscale these LLH 

are micritic with algal filaments (made of dense micritic walls with a diameter of about 80 µm) 

and/or patches of brown radial calcite of a diameter between 115 and 230 µm and that can be 

replaced by siliceous spherulites (Pugh, 1968). The SH compose algal colonies or burrs from 

earlier workers and can be found in the Soft Cap at Portesham, Mupe Bay and Fossil Forest as 
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well as at the base of the Hard Cap at Portland Bill (Pugh, 1968). At macro-scale these SH are 

found encrusting tree stumps, resulting in a depression in the centre of the hemispheres 

(Pugh, 1968). At micro-scale, textures are similar to LLH although clots are better defined 

between 60 and 200 µm organised in clusters within a micrite or microsparite (Pugh, 1968). 

The SS are found at the base of the Cypris Freestone at Mupe and Worbarrow Bays and 

organised nodules interpreted to be small isolated colonies of encrusting algae (Pugh, 1968). 

These colonies are between 114 and 850 µm in diameter with laminations of sparite or clotted 

micrite between 30 and 140 µm thick and the centre part of the nodules is made of either a 

pellet or a shell fragment (Pugh, 1968).  

West (1975) revised and updated by West (2016) presented a study of facies of the lower 

part of the Mupe Member and defined four facies associations separated by paleosols (dirt 

beds). West (1975) also inferred palaeosalinities for each facies based on biotas (molluscs and 

ostracods mainly) and quantity of evaporite pseudomorphs (presented in section 3.5.1.1.6 of this 

chapter). The facies associations are stratigraphically classified from base to top as facies A, B, C 

and D (Fig. 2.7). Facies A is a thin bedded fine grained pelletoidal or peloidal limestone with 

stromatolites (Spongiostromata-type), peloids, molluscs (bivalves, and Hydrobia and Valvata 

gastropods), foraminifera, crustaceans (Archaeoniscus), fish, calcispheres, ostracods (West, 1975) 

and also a red alga (Solenopora) documented by Pugh (1969, in West, 1975). This facies A is 

found in the Skull Cap and the first half of the Hard Cap beds (until appearance of evaporites) 

(West, 1975). Facies B is a pelletoidal limestone with stromatolites (Spongiostromata-type), small 

replaced lenticular gypsum, ooids, and few ostracods and bioclasts and is found in the second 

half of the Hard and Soft Cap beds (West, 1975). Facies C is a calcitised evaporite (secondary 

anhydrite), unfossiliferous and is found at the base of the Cypris Freestone beds (West, 1975). 

Rare and thin horizons of calcareous shales or pelletoidal limestones are found and chert nodules 

are commonly replacing calcium sulphate (West, 1975). Facies D is a limestone with ostracods, 

molluscs (Hydrobia and Valvata molluscs), crustaceans (Archaeoniscus), fish (Ichthyokentema 

purbeckensis, according to Griffith and Patterson, 1963), ooids, peloids and locally halite 

pseudomorphs filled with surrounding pelletoidal limestones (West, 1975). This facies is also 

characterised by sedimentary structures such as wave ripples and is only found in the Cypris 

Freestone beds (West, 1975). 

Francis (1982) described and detailed two facies for the Skull, Hard and Soft Cap beds, the 

algal limestones and the pelletoid limestones. Francis (1982) showed that these beds are 

mainly made of the algal limestones and sub-divided these into Porostromate (microbial 

filaments preserved) and Spongiostromate (microbial filaments not preserved) 
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microstructures. This classification is based on Pugh (1968) described above. However Francis 

(1982) determined that because of a lack of filamentous structures in the algal limestones of 

the Caps beds, those are mainly made of Spongiostromata-type stromatolites. Francis (1982) 

described the stromatolites of the Hard and Soft Cap as “hemispherical mounds linked by flat-

lying algal mat” and noticed that they form circular “burrs” in the Soft Cap while they form 

large mounds in the Hard Cap. These are surrounding silicified in-situ tree stumps in the Soft 

Cap and moulds of former tree trunks and branches in the Hard Cap (Francis, 1982). She 

described in the burrs of the Soft Cap to have, in addition to the bandings, circular concentric 

ridges about 10-20 cm wide that she interpreted to be due to an increasing growth of the algal 

colonies during their formation. The doming typical of the Soft Cap bed is said to be not very 

well understood although in Independent Quarry (Isle of Portland) and at Fossil Forest, burrs 

are found respectively doming on top of a short fossil tree stump and a boulder (Francis, 

1982).  In between the domes the stromatolites form horizontal structures (Francis, 1982). Fish 

scales and ostracods are often found in voids that are sometimes filled with geopetal pelletoid 

sediments within these mounds (Francis, 1982). At Mupe and Worbarrow Bays stromatolites 

are present in the Hard Cap but as algal mats (laminated micritic and pelletoidal layers) and 

often associated with calcitised gypsum pseudomorphs (Francis, 1982). The pelletoid 

limestones are closely associated with the algal limestones (Francis, 1982). The pellets are 

micritic rounded aggregates between 30 and 200 µm in diameter, when over 200 µm they are 

described as intraclasts of micritic algal limestones broken off from the stromatolites (Francis, 

1982). These were classified as inorganic pellets due to the wide range of sizes and can be 

originated from inorganic precipitation or micritisation of organic material (Francis, 1982). 

These can be a component of the stromatolitic laminae as well as infilling voids within the 

mounds or covering mounded structures (Francis, 1982). When the pellets were found in the 

algal mats, Francis (1982) described them as “mottled” or “clotted” because pelletoids have 

merged and formed clots of micrite. Francis (1982) interpreted the formation of these clots to 

be due to recrystallisation of the micritic matrix into spar cement leaving micritic patches (or 

clots) isolated; or due to patchy recrystallisation of the micritic matrix. Francis (1982) identified 

only in the clotted texture, pale brown calcite spherulites (radial calcite) of about 200 µm in 

diameter forming patches or replacing the micritic matrix, and their origin remains unknown. 

Bosence (1987) described and detailed two facies for the Skull, Hard and Soft Cap beds 

exposed on the Isle of Portland, bedded peloidal packstones to grainstones (depending on the 

bed) and tufas. The bedded pelodial packstones to grainstones contain ostracods, molluscs and 

ellipsoidal peloids (90 to 120 µm) cemented by a fine calcite spar cement (Bosence, 1987). 
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Locally this facies can be ostracod-rich or bivalve-rich (of Neomiodon) with intraclasts of tufas 

and Cayeuxia alga (Bosence, 1987). The tufas are composed of different facies and structures 

and divided into four components, framework, syndepositional cements, internal cements and 

post-depositional cements (Bosence, 1987). As also described by Francis (1982), tufas are 

found either around the base of former trees or around tree trunks and branches of fallen 

trees (Bosence, 1987). The framework is divided into burrowed thrombolites and skeletal 

stromatolites (Bosence, 1987). The burrowed thrombolites are found encasing the trees and 

form cauliflower-like buildups made of peloidal and clotted micrites (Bosence, 1987). These 

expand upwards and outwards concentrically from the trees and contain irregular and sinuous 

burrows of about 1 mm in diameter (Bosence, 1987). These burrows are compared to modern-

day cherinomoid larvae burrows and the Purbeck burrowed tufas are compared to 

cherinomoid tufas of Schwabisch Alps (Irion and Muller, 1968; Bosence, 1987). The skeletal 

stromatolites are part of the buildups but remain an occasional component (Bosence, 1987). 

These form small columns (up to 100 mm high) of Pycnoporidium and Cayeuxia filamentous 

algae and are found interbedded with the burrowed thrombolites (Bosence, 1987). The 

filaments are between 22 and 60 µm in diameter with micritic walls between 7 and 20 µm 

thick (Bosence, 1987). The syndepositional cements are found either as a thick fringe of brown 

fibrous calcite (between 100 and 200 µm thick) around thrombolites, stromatolites, reworked 

clasts and in cavities in tufas; or as an early coarse calcite spar in the tufas (Bosence, 1987). 

The internal sediments are found in the cavities of the tufas and after the syndepositional 

cements (Bosence, 1987). These are made either of the surrounding bedded peloidal 

packstones to grainstones with tufa intraclasts and ostracod debris; or calcisiltite forming 

laminated and inclined laminae infilling cavities within the tufas and similar to vadose silts of 

Dunham (1969), Grover and Read (1978) or Longman (1980) (Bosence, 1987). The 

postdepositional cements consist of gypsum pseudomorphs in the tufas and are thought to be 

formed after the deposition (Bosence, 1987). Other cements are blocky calcite spars present in 

all the facies described and barite crystals within cavities of the tufas (Bosence, 1987). 

Perry (1994) defined 3 facies occurring in the Cap beds based on locations on the Isle of 

Portland, those are subaerial stromatolites, tufaceous limestones (sub-divided into micro-

porous and macro-porous textures) and littoral grainstones. The subaerial stromatolite facies 

was found locally at the base of the Lower Dirt Bed and present a laminated texture with 

columnar structures. At microscale this facies have an alternance of light and dark micritic 

layers of about 100 µm thick (Perry, 1994). These bands overlie a micritic to peloidal sediment 

separated by a calcite fringe up to 400 µn thick (Perry, 1994). The tufaceous limestones were 
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found in the Skull, Hard and Soft Cap beds coarserly laminated (Perry, 1994). Those were 

found (as described by previous authors, see above) around former tree trunks and branches 

forming a micro-porous texture encasing the bores and a macro-porous texture encasing the 

micro-porous texture (Fig. 2.14; Perry, 1994). The micro-porous texture of the tufaceous 

limestones is mainly made of tubules and of three fabrics (Perry, 1994). The first fabric is a 

micritic matrix containing the randomly distributed tubules up to about 2 mm in diameter 

(Perry, 1994). Because these tubules are very tortuous and cross-cut the micritic matrix, Perry 

(1994) interpreted them to be due to microphytic or macrophytic growths, rather than larvae 

burrows as suggested by Bosence (1987, see above). These were later coated by micritic fringe 

cements (up to 100 µm thick) themselves coated by calcite fringe cements (up to 300 µm thick) 

and associated with peloids (up to 80 µm in diameter) and peloid aggregates (Perry, 1994). The 

second fabric is a white cement (up to 400 µm thick) coating the first fabric but not always 

present (Perry, 1994). The third fabric consists of the micritic to dense peloidal matrix 

surrounding the two previous fabrics (Perry, 1994). The macro-porous texture encases the 

micro-porous texture, presents a rather nodular structure and appears to be made of micritic 

to peloidal sediments coated by radiating calcite cements (up to 2 mm thick; Perry, 1994). The 

littoral grainstones were said to be overlying the tufaceous limestones in the Skull and Hard 

Cap beds although in the Skull Cap they were only found on the eastern side of the Isle of 

Portland (Perry, 1994). These lithologies were reported to contain of hypersaline to brackish 

water ostracods, isolated brackish water bivalves and freshwater gastropods, micrites, peloids 

and peloid aggregates (Perry, 1994). 

The latest study on the Caps beds of the Mupe Member was conducted by an MSc 

student Victoria Dharmarajah in Royal Holloway in September 2015. She studied the facies of 

the Skull and Hard Cap beds at Bowers, Perryfield and Broadcroft Quarries. Dharmarajah 

(2015) defined 6 facies grouped into 2 facies associations; the bedded lacustrine marginal 

carbonates facies association containing the peloidal bioclastic packstone to grainstone, 

bioclastic peloidal packstone, peloidal wackestone to grainstone, and pelodial bioclastic 

wackesone facies; and the mounded lacustrine marginal carbonates facies association 

containing the thrombolite mounds and intraclastic rudstone facies. All these facies contain 

similar components although in different quantities as indicated by their respective names. 

The components are ostracods, mollusc fragments, peloids, intraclasts of thrombolite mounds 

and micritic matrix (Dharmarajah, 2015). She used the facies analysis to interpret shallowing-

upward sequences in the Skull Cap at the three locations studied and in the Hard Cap at 

Bowers and Perryfield Quarries; and a deepening upwards sequence in the Hard Cap at 
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Broadcroft Quarry. In addition to she performed stable isotope analyses (C and O) to decipher 

the palaeoenvironments which are presented in section 3.7.1 of this chapter. 

 

3.5.1.1.3. Facies of the Basal, Lower and Great Dirt Beds 

 

Identically, although the Basal, Lower and Great Dirt Beds were identified for the first 

time by Fitton in 1827 (in Fitton, 1836) and already thought to be “earthly”, it was only in 1982 

that Francis studied these dirt beds in detail (and later in 1983, 1984 and 1986). These dirt 

beds are interpreted to be paleosols (Francis, 1982, 1986) and interbedded with the Skull, Hard 

and Soft Cap beds. These paleosols are made of carbonaceous marls either with limestone 

pebbles (Great Dirt Bed) or without limestone pebbles (Basal and Lower Dirt Beds; Francis, 

1982, 1986). The Great Dirt Bed is made of black carbonaceous marls with black and white 

limestone pebbles which accumulated alongside in-situ silicified tree trunks, stumps (Francis, 

1982, 1983, 1986) and roots (first observed by Fitton, 1836), and cycadophytes (Fitton, 1836; 

Buckland and De la Bèche, 1836). Francis (1982, 1986) determined that this palaeosol is a well-

developed carbonaceous A/C rendzina profile following the New Soil Classification of England 

and Wales (Curtis et al., 1976) and in the Mollisol Order (dark colour and organic-rich), Rendoll 

sub-order due to calcareous parent rocks following the US Comprehensive Soil Classification 

System (Soil Survey Staff, 1975; Francis, 1982, 1986). Strahan (1898) and Arkell (1947) had 

proposed earlier that the trees were coniferous but Francis (1982, 1983) demonstrated that 

the trees are Protocupressinoxylon purbeckensis wood, Cupressinocladus valdensis foliage, 

Classostrobus and Pararaucaria collinsonae cones and Classopollis pollen (also documented by 

Philippe & Bamford, 2008 and Philippe et al., 2010). The black and white limestone pebbles are 

reworked materials from the underlying Hard Cap during pedogenesis as they have the same 

composition as the lithologies found in the Hard Cap (peloidal packstone-grainstone and 

microbialites; Francis, 1982, 1986). The presence of these pebbles indicates also that the 

underlying beds were lithified before the pedogenesis (Francis, 1982, 1986). This was also 

noticed by West (1975) and Francis (1983). The white pebbles show interlocking, or fitted, 

shapes previously described by Francis (1982, 1983, 1986) and are due to the in-situ 

weathering of carbonate parent rocks. The black pebbles constitute 30-40% of all the pebbles 

(Francis, 1982, 1986) and their colour is due to incorporation of organic matter (Francis, 1982, 

1986). Black pebbles are often associated with calcrete deposits (Multer and Hoffmeister, 

1968; Ward et al., 1970; Wilson, 1967; Riding and Wright, 1981; Strasser and Davaud, 1983; 

Strasser, 1984) and are evidence of sub-aerial exposure, confirming the paleosol 
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interpretation. Similarly Francis (1982, 1986) described the Basal and Lower Dirt Beds to be 

made of brown carbonaceous marls with rare rooted tree stumps (although these were never 

found in the Basal Dirt Bed). The absence of large pebbles suggests that the underlying beds 

were not totally lithified before the pedogenesis (Francis, 1982, 1986). The occurrence of trees 

together with the high carbonate (CO3
2-) content and the calcareous parent rocks confirmed 

the interpretation of paleosols and showed that these paleosols were immature rendzina soil 

profiles (Francis, 1982, 1986). Because these paleosols are rendzina soil profiles but are thinner 

than the Great Dirt Bed, Francis (1982, 1986) suggested that they were most probably 

compacted or eroded after deposition. This can also be explained by the fact that trees stumps 

are rooted into the Lower Dirt Bed and a rather thick paleosol is needed to provide support for 

these trees. The integration of all these elements and features led Francis (1982, 1984, 1986) 

to interpret these paleosols as having been formed under a semi-arid climate of 

Mediterranean type. 

 

3.5.1.1.4. Facies of the Broken Beds and Cypris Freestone 

 

Above these cap and dirt beds are the Broken Beds (Tab. 2.2) which have been the centre 

of discussions about their formation since the beginning of the 19th century. The first time the 

Broken Beds were described was in 1811 by Webster (in Englefield, 1816) in Durlston Bay 

where he saw “the contorted and broken fragments of the series of Purbeck beds, as one would 

build a wall over rugged rocks”. After observing that laterally these contorted beds correspond 

to clays with gypsum, Webster (1811 in Englefield, 1816) proposed that the formation of the 

Broken Beds could be due to the dissolution of such clays where the “Purbeck beds” would 

have “fallen into their present position”. Forbes (1850) noticed similar features in Lulworth 

area where he saw that “the Cypridiferous shales […] are strangely contorted and broken up 

[…] at the west end of the Isle of Purbeck” but no further explanations were given. The first 

interpretation for the possible origin of these Broken Beds was done by Fisher in 1854 (in 

Fisher, 1856) where he proposed an accumulation in a lake of calcareous muds and sands 

above dead vegetation (trees and branches). The decay of this vegetated layer would have 

created voids and collapse of the carbonate muds and sands and resulted in the facies found 

today (Fisher, 1856). This idea was later supported by Strahan (1898) as the Broken Beds were 

identified, although much thinner than in Lulworth, on the Isle of Portland and as far as the 

Vale of Wardour (identified there by Andrews and Juke-Brown, 1894). The widespread 

occurrence led Strahan (1898) to conclude that the Broken Beds were formed during the 
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deposition through collapsing of a cavity that resulted from the decay of plant remains. 

Woodward in 1895 proposed a different interpretation than Fisher (1856) due to his belief that 

if forest decay (that developed in the Great Dirt Bed) caused the formation of the Broken Beds, 

on the Isle of Portland the Broken Beds are not found even though the Great Dirt Bed is much 

thicker than in Lulworth. Woodward (1895) proposed that the fragmentation of the limestones 

might have occurred long after the deposition contemporaneously to the formation of the 

Purbeck Anticline and the inversion of the Purbeck Fault. This was suggested because the 

breccia is made of broken consolidated strata and especially that the brecciation is not 

confined to one particular bed but affects stratigraphically higher beds locally (Woodward, 

1895). Following this observation Woodward (1895) proposed a tectonic origin of the breaking 

up of the Cypris Freestone related to the “tilting of the strata” orientated NNW with dip angles 

of 20° to 40°. This tilting accompanied with dissolution of calcite cement of sandstones, 

allowed bed-over-bed sliding of the weak carbonate layers, the toughness of the surface of the 

Soft Cap providing a décollement surface (Woodward, 1895). The irregular distribution of the 

Broken Beds is described by Woodward (1895) to be the result of irregular accumulation “over 

the terrestrial surfaces and hummocky burrs”. Following Woodward’s (1895) work, Arkell 

(1938) presented new interpretations of the formation of the Broken Beds. He agreed with 

Woodward’s explanation for a tectonic origin as no clear evidence has been found in support 

of the vegetation decay origin (Arkell, 1938). He emphasised that no remains of organic matter 

or plant moulds on blocks composing the Broken Beds had been found, the thicknesses of non-

deformed and deformed units are laterally the same, the folds found in the Broken Beds could 

not have been formed by collapsing beds, and no Broken Beds were actually identified in the 

Vale of Wardour (Arkell, 1938). However Arkell (1938) brought new data of the direction of 

tectonic forces, showing that northerly verging asymmetric folds are present on the beds of 

the Cypris Freestone (above the Broken Beds). According to Arkell (1938) this indicates a 

southward movement of the overlying beds and in accordance with the regional strike of 

Cenozoic folding. However a more recent study by Phillips (1964) disproved Arkell’s southerly 

dipping argument and said the opposite that the overturning of the northerly dipping limbs 

shows clearly northerly movement (i.e. towards the Purbeck Fault). Arkell (1938) concluded 

that the Broken Beds are an example of drag-folding structures related to the formation of the 

Purbeck Anticline. Later the same year Hollingworth (1938) commented on Arkell’s (1938) 

work highlighting that laterally in the same stratigraphic unit the occurrence of “botryoidal 

masses of gypsum” in Durlston Bay and thick anhydrite deposits in Portsdown and Henfield 

boreholes (East of Bournemouth). Following these facts Hollingworth (1938) proposed an 
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influence of the hydration of anhydrite and the solution of gypsum on the formation of the 

Broken Beds (this hypothesis was accepted by Arkell on a reply to Hollingworth’s 

correspondence, 1938). This last interpretation was supported by West (1975) after the 

discovery and detailed study of evaporite facies and their diagenesis at the base and below the 

Broken Beds (West, 1961, 1964). West proposed that the formerly interbedded evaporites at 

the base of the Broken Beds could be the cause of a collapse breccia, and that the plastic 

evaporite facies below the Broken Beds could have acted as an incompetent bed that was 

subsequently tectonically deformed and brecciated (West, 1975). 

Brown in 1961 and 1964 presented for the first time evidence of algal influence in the 

deposition of the Broken Beds and Cypris Freestone. Brown (1961, 1964) demonstrated that at 

macroscale, lumps of algal limestones are presents in the Broken Beds and that the Cypris 

Freestone preserve algal filaments at the microscale (Ortonella and Girvanella). 

 

3.5.1.1.5. Fossils of the Mupe Member 

 

In addition to Anderson (1985) and Horne (1995, 2002) biostratigraphic studies on 

ostracods presented in section 3.3 of this chapter, other authors identified and described 

ostracod species without a biostratigraphical value. Strahan (1898) identified three species in 

the “Lower Purbeck Beds”: Cypris purbeckensis, Candonna ansata and Candona bononiensis. 

These species were previously described by Forbes (1850) however no interpretation in terms 

of palaeoenvironmental tolerance was ever provided. The only interpretation to determine the 

Purbeck beds of a freshwater origin is due to the change from the marine Portland Group to 

the fossil-poor Purbeck Limestone Group and the association with other freshwater animals 

(vertebrates and invertebrates; Webster, 1826; Forbes, 1850; Strahan, 1898). Barker et al. 

(1975) conducted a detailed palaeoenvironmental study on ostracods of the Mupe Member in 

Portesham Quarry. In this study they collected and identified ostracods in the Hard Cap bed 

and in the equivalent of the Great Dirt Bed, and used them to determine palaeosalinities 

rather than for their biostratigraphical value. They identified three ostracod groups based on 

the salinity preference: marine (Macrocypris sp., Macrodentina retirugata, Macrodentina 

rugulata, Paraschuleridea bulgensis, Wolbergia visceralis, Protocythere serpentine and 

Othonotacythere rimosa); euryhaline (Fabanella ansata, Fabanella polita and Mantelliana 

purbeckensis); and oligohaline (Klieana alata, Scabriculocypris acanthoides, Cypridea 

tumescens praecursor, Cypridea dunjkeri papulata and Theriosynoecum forbesii). The 

recognition of these groups lead to the conclusions that because of a mixture of all the species 
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in all the beds (apart from bed 1 where marine ostracods were found and bed 19 where only 

Cypridea dunkeri papulata was found, Barker et al., 1975), 1) marine ostracods were most 

likely transported from the sea nearby (Barker et al., 1975) and 2) that the water of the lake 

was brackish. Similarly they identified three euryhaline species: Fabanella ansata, Fabanella 

palita and Mantelliana purbeckensis in an equivalent bed of the Broken Beds (because absent 

in this area). Dharmarajah (2015) tried to collect and identify ostracods from selected locations 

from the Cap beds on the Isle of Portland. To identify the species, genera or family of an 

ostracod a preserved and unbroken shell is needed (David Horne, pers. comm., March 2015). 

The extraction of such preserved shells proved extremely difficult for this facies due to the 

hardness of the limestone and no clear conclusions could be drawn.  

Although mollusc gastropods are very well documented for the upper part of the Lulworth 

Formation and the Durlston Formation (J. de C. Sowerby, 1836; Arkell, 1941, Casey, 1955; 

Clements, 1973; Morter, 1978; Kelly, 1988; Cleevely and Morris, 1988; Radley, 2002); only a 

few authors documented gastropods from the Mupe Member of Dorset (Arkell, 1941; 

Clements, 1973; Radley, 2002). This is mainly due to the difficulty of collecting identifiable 

shells from such well lithified limestones. Strahan (1898) described an association for the 

“Lower Purbeck” (but unlocated) made of three oligohaline gastropods; Hydrobia, Limaea and 

Planorbis. Arkell (1941) described four gastropods species from Dorset: Valvata helicoides 

(Transition, Caps and Broken Beds, Ridgeway), Hydrobia chopardiana (Transition Bed, 

Osmington and Ringstead), Hydrobia forbesi (Transition Bed, Osmington reservoir) and Lymea 

physoides (Broken Beds, Upwey). Clements (1973) remains the most detailed study of 

gastropods of the Mupe Member. He studied three locations is south Dorset, Poxwell Quarry, 

Upwey Quarry and Durlston Bay, and found similar gastropod species. Clements (1973) 

identified the following in the Transition Bed Hydrobia, Loriolina, Valvata helicelloides and 

hydrobiid gastropods; in the Skull Cap Valvata sabaudiensis and Valvata helicelloides; in the 

Lower Dirt Bed Valvata sabaudiensis, Viviparus “inflatus”, Loriolina, Ceritella, Delphinula, 

Coelisdiscus swindonensis, Procerithium and hydrobiids; in the Hard Cap Valvata helicelloides, 

Valvata sabaudiensis, Physa bristovii, gastropod sp., Hydrobia and Hydrobiidae; and in the 

Broken Beds Valvata sabaudiensis, Hydrobia and Coelodiscus swindonensis. Following this 

identification and description, Clements (1973) determined salinity tolerances for each 

gastropod species (apart from Loriolina due to a lack of data) and if they were living in either 

open or closed lacustrine systems presented in table 2.6.  
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Table 2.6 Salinity tolerance and lake systems interpreted from gastropod species of the Mupe 
Member (data from Clements, 1973). 

 

 

Radley (2002) summarised Arkell’s (1941) work incorporating West’s (1961), Clements’ 

(1973) and Barker et al.’s (1975) studies and described two main assemblages. The first 

assemblage is made of Arkell’s (1941) Proauricula jaccardi (Maillard), Gyraulus loyri (Coquand), 

Prophysa bristovii (de Loriol) and Proauricula jaccardi (de Loriol), and Clement’s (1973) 

viviparids and hydrobiids. The second assemblage is made of Arkell’s (1941) Provalvata 

helicoides, Coelodiscus swindonensis and Clement’s (1973) hydrobiids and an unidentified 

spired taxon. Those assemblages helped Radley to determine variations of salinities and 

open/closed systems for and within each bed (detailed in section 3.7.1 of this chapter). 

However Clements (1973) also identified Delphinula sp., Turritella-like, procerithiids and 

ceritallids that are marine species. He considered that these marine species could be reworked 

from the underlying Portland Group. 

The bivalve molluscs are very poorly documented for the Mupe Member. Strahan (1898) 

described only one species: Cyrena or Cyclas media for the “Lower Purbeck” of Dorset. He 

noticed possible occurrences of this bivalve in the first bed of the Purbeck at Upway Quarry 

and Holworth House. West (1975) defined four facies in the lower part of the Mupe Member 

of Dorset and only cited occurrence of bivalves in his facies A although without descriptions. 

Similarly Radley (2002) described bivalves encountered in the same unit from Portesham 

Quarry. Even though he described one taxa (Corbula sp.) from the Cypris Freestone at 

Swanworth Quarry and Worth Matravers, he notified “the bivalves await documentation” for 

the Cap beds and Dirt Beds. 
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3.5.1.1.6. Lateral thickness and facies variations 

 

West (1975) defined four facies associations (refer to section 3.5.1.1.2 of this chapter) and 

inferred palaeosalinities based on comparison with modern environment salinities. The 

palaeosalinity of the facies A was compared to modern day Shark Bay and Persian Gulf lagoons 

presenting similar configurations (West, 1975) and was interpreted to have been deposited in 

moderately hypersaline water of about 50 to 70 part per thousands (ppt). The inferred 

palaeosalinity of the facies B was also deduced from Shark Bay and Persian Gulf modern day 

salinities of about 70 to 124 ppt (West, 1975; 2013b). This value was deduced from the absence 

of fauna and the precipitation of gypsum which, according to Friedman et al. (1973), reflects 

supersaturation around 124 ppt regarding gypsum (West, 1975; 2013b). The facies C was 

thought to be formed from nodular anhydrite as found in modern day sabkhas from the Persian 

Gulf (West, 1975) and was interpreted to reflect palaeosalinities of more than 124 ppt (West, 

1975; 2013b). The facies D, as for facies A, was compared to modern day Shark Bay and Persian 

Gulf and was interpreted to represent paleosalinities of about 50 to 70 ppt (West, 1975). West 

(1975) correlated those facies associations following an East-West sedimentary log panel 

(Fig. 2.7). The main features recognised from this log correlation panel are that facies A and B 

thin considerably eastward while thickness of facies C is very thin to the West and increases 

consequently eastward, basinward (West, 1975).  



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Facies thickness variation on an east-west section of the Mupe Member with inferred palaeosalinities. Each plain vertical line represents a log. Redrawn 
after West (1975).  
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Similarly Francis (1982) illustrated two log correlation panels showing lateral thickness 

and facies variations of the Cap beds and Dirt Beds north to south over the Isle of Portland (Fig. 

2.8) and west to east over south Dorset coast (Fig. 2.9). Francis (1982) distinguished a lower 

and an upper part of the Skull Cap separated by the Basal Dirt Bed (refer to section 3.2.4 of this 

chapter).  According to Francis (1982), the lower part of the Skull Cap is characterised by 

mudstones to wackestones with ostracods, foraminifers, bivalves and turreted gastropods 

between Portesham and Holworth House. This bed changes laterally into algal stromatolitic 

limestones at Lulworth area that are replaced by radial calcite in Bacon Hole (i.e. Mupe Bay) 

and disappears eastwards Worbarrow due the absence of the Basal Dirt Bed (Fig. 2.9; Francis, 

1982). The Basal Dirt Bed is characterised by thin and persistent carbonaceous marls best 

developed over the Isle of Portland, found from Portesham to Worbarrow with the exception 

of Durdle Door and Lulworth (Fig. 2.9; Francis, 1982). The upper part of the Skull Cap is 

characterised by micritic algal limestones with abundant fish bones, ostracods and algal 

intraclasts (Fig. 2.9; Francis, 1982). This upper part was found all along the studied area as an 

algal limestone and becoming slumped and brecciated at Mupe Bay and Worbarrow (Fig. 2.9; 

Francis, 1982). Francis (1982) also noted that the whole Skull Cap disappears at Dungy Head as 

the Lower Dirt Bed is resting directly on the Portland Group. The Lower Dirt Bed consists of 

persistent carbonaceous marl between Portesham and Mupe Bay (including the Isle of 

Portland) passing laterally to impersistent black and white shale from Worbarrow eastwards 

(Fig. 2.9; Francis, 1982). Silicified trees (ancient conifers), cycadophytes and lignitic material 

were found only on the upper part of this bed and mainly on the Isle of Portland (Fig. 2.9; 

Francis, 1982). The thickness of this Lower Dirt Bed changes rapidly (distances of few 

centimeters) thickening in depressions and thinning over highs (particularly over stromatolitic 

mounds of the Skull Cap; Francis, 1982). Francis (1982) noted a major change from 

carbonaceous marl in the west to shale to the east (from Worbarrow eastwards). The black 

laminae in the shales preserved fish remains, ostracods, vertebrate bones and carapaces of 

conchostracan branchiopods on the surfaces while the white laminae are coarser-grained 

(Francis, 1982). This suggested river or pond sediments rather than a true paleosol (Francis, 

1982; refer to section 3.7 of this chapter for reconstruction of palaeoenvironments). Between 

Portesham and Holworth House the upper limit of the Hard Cap bed was difficult to identity 

due to the poor exposures or the absence of the Great Dirt Bed (Fig. 2.9; Francis, 1982). 

Eastwards at Mupe Bay and Worbarrow, the stromatolitic mounds change for even 

stromatolitic pustular mats (Fig. 2.9; Francis, 1982). Further east stromatolitic limestones 

disappear because they are replaced by evaporites and correlation with western deposits was 
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more uncertain (Francis, 1982). The Great Dirt Bed is present and was interpreted as a paleosol 

only on the Isle of Portland and Lulworth area (Figs. 2.8 and 2.9; Francis, 1982). In all the other 

locations this bed is made of thin bands of clay locally with nodules of silicified woods such as 

at Upwey (Fig. 2.9). This bed was difficult to identify eastwards as most of the deposits are 

replaced by evaporites (Francis, 1982). The Soft Cap was described with algal stromatolites 

that are thicker in the Lulworth area and north of Portland (about 50 cm thick) while thinner to 

the south of the Isle of Portland (Fig. 2.8; Francis, 1982). To the west those “algal burrs” were 

described to become algal mats interbedded with wackestones with gypsum pseudomorphs 

while to the east of Lulworth area stromatolitic limestones were replaced by evaporites (up to 

Mupe Bay) and not recognisable further east (Fig. 2.9; Francis, 1982). 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Log correlation of the lower part of the Mupe Member on the Isle of Portland, modified after Francis (1982). 
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Figure 2.9 Log correlation panel of the lower part of the Mupe Member across south Dorset, modified after Francis (1982). 
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3.5.1.2. Facies of the Ridgeway Member 

 

The Ridgeway Member is made of bedded ostracod-rich limestones and corresponds to 

the uppermost half of the Cypris Freestone (Tab. 2.2) containing the same fossil assemblages 

as the lowermost half of the Cypris Freestone described in the previous section. The 

separation from the Mupe Member was made by Westhead and Mather (1996) because of 

significant appearance of dark grey and brown mudstone. 

 

3.5.1.3. Facies of the Worbarrow Tout Member 

 

The Worbarrow Tout Member comprises micritic limestones with detrital quartz passing 

up to interbedded clays and shales (Westhead and Mather, 1996). The Hard and Soft Cockle 

Beds consist of bedded micritic limestones containing evaporite pseudomorphs and detrital 

quartz (Westhead and Mather, 1996). The non-marine molluscs Protocardia purbecksensis, 

Provalva helicoides and Hydrobia sp. gastropods are recorded by Radley (2002) occurring in 

coquinas, and neomiodonid and corbulid bivalves are also found (Arkell, 1933). The Marly 

Freshwater Beds are made of interbedded calcareous clays and shales containing Hydrobia sp. 

and Provalvata helicoides (Clements, 1973). The last bed of this member, the Cherty 

Freshwater Bed is made of micritic limestones with cherts, charophytes, Ptychostylus 

harpaeformis (Koch and Dunker, 1837), Proauricula jaccardi, Ellobium sp. gastropods, 

neomiodontid and unionoid bivalves and ostracods (Arkell, 1933, 1941, 1947; Clements, 1969; 

Batten, 2002; Radley, 2002).  

 

3.5.2. Facies of the Durlston Formation 

 

The facies and biotas found in the Durlston Formation reflect a freshwater environment 

relatively stable with some marine incursions from time to time such as the deposition of the 

Cinder Bed (Arkell, 1947; Casey, 1963, 1973; Wimbledon and Hunt, 1983; Morter, 1984). The 

deposition occurred in a rather shallow lacustrine environment (Arkell, 1933), lagoon 

(Chadwick, 1985) or estuarine system (Strahan, 1898; Davies, 1935; Arkell, 1947). In addition 

Anderson (2004) provided a cyclostratigraphy study of the Durlston Formation with the 

recognition of four third-order sequences that comprise fourth- and fifth-order sequences.  
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3.5.2.1. Facies of the Stair Hole Member 

 

The lowermost unit, the Stair Hole Member comprises interbedded bioclastic with micritic 

limestones that are locally fossil-rich and forming coquinas, that have named beds, and shales 

towards the top (Tab. 2.2; Westhead and Mather, 1996). The Cinder Bed is an oyster-rich 

(Praeexogyra distorta, J. de C. Sowerby) blue-grey limestone (Morter, 1984; Batten, 2002). The 

Intermarine Beds are made of bioclastic (biosparudite to biomicrudite) limestones containing 

freshwater Viviparus gastropods and euryhaline Neomiodon bivalves (El Shahat and West, 

1983; Westhead and Mather, 1996), dinosaur footprints, reptile eggshells and crocodiles, 

turtles, shark and fish bones (West, 1979; Batten, 2002; Ensom, 2002; Evans and Searle, 2002; 

Norman and Barrett, 2002; Milner, 2002; Salisbury, 2002). The Scallop Beds are made of 

bioclastic limestones containing mainly Chalmys sp., pectinids, Modiolus sp., Gervillia obtusa 

Roemer, Praeexogyra distorta, Protocardia sp. and Corbula sp. bivalves (Arkell, 1933, 1947; 

Kelly, 1983; Radley, 2002); and Theodoxus fisheri, Ptychostylus harpaeformis, Hydrobia, 

Procerithium, Peverilia perisphincta Arkell and Viviparus sp. (Clements, 1969) . The Corbula 

Beds consist of bioclastic limestones with Corbula sp., Isognomon sp., Thracia sp., Protocardia 

purbeckensis, mytilid, pectinid and oyster bivalves (Arkell, 1933, 1947; Radley, 2002); and 

Theodoxus fisheri, Procerithium sp., Paraglauconia tricarinata (J. de C. Sowerby), Promathilda 

microbinaria Arkell, Juramarinula durlstonense, Ptychostylus harpaeformis, Viviparus sp. and 

Hydrobia sp. gastropods (Clements, 1969; Cleevely and Morris, 1988; Radley, 2002). The last 

bed in this member, the Chief Beef Member, is made of organic shales with fibrous calcite and 

bioclastic limestone bands containing neomiodontid and unionid bivalves; and the gastropods 

Viviparus sp., Hydrobia sp. and Gyraulus loryi (Arkell, 1933; Radley, 2002). 

 

3.5.2.2. Facies of the Peveril Point Member 

 

The Peveril Point Member comprises bioclastic limestones passing up to bioclastic marls 

and shales. The Broken Shell Limestone consists of bioclastic limestones with unionid and 

Neomiodon bivalves (Westhead and Mather, 1996; Batten, 2002) and Theodixus fisheri and 

Viviparus sp. gastropod fragments (Radley, 2002). The Unio Bed is also a bioclastic limestone 

made of accumulation of freshwater Unio bivalves (Westhead and Mather, 1996; Batten, 

2002). The Upper Cypris Clays and Shales are made of bioclastic marls and shales containing 

mainly freshwater Viviparus gastropods and Unio bivalves, and euryhaline Cypridea ostracods 

(Ensom, 1985; Batten, 2002). The Purbeck Marble, well known in UK for being a renowned 
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ornamental building stone, is included in the Upper Cypris Clays and Shales and comprises a 

Viviparus biomicrite (Batten, 2002). 

 

3.6. Tectonic setting 

 

As described previously (refer to section 2), the Purbeck Limestone Group was deposited 

during the latest stage of the syn-rift phase of the Wessex Basin (Fig. 2.3). Although syn-

depositional tectonic features are very well documented for the entire Jurassic deposits 

(Stoneley, 1982; Chadwick, 1986; Hamblin et al., 1992; Butler, 1998; Newell, 2000), no clear 

evidence has yet been documented for tectonic movements during the deposition of the 

Purbeck strata (refer to Chapter 3 for more details). Classical fieldwork on the coast of south 

Dorset since the 19th century (Buckland and De la Bèche, 1835; Strahan, 1898; Arkell, 1936, 

1947, Phillips, 1964; Cosgrove and Hearn, 1966), and more recent sub-surface data analysis 

(Stoneley, 1982; Lake, 1985; Hamblin et al., 1992; Butler, 1998; Harvey and Stewart, 1998; 

Underhill and Paterson, 1998; Underhill and Stoneley, 1998; Newell, 2000) both onshore south 

Dorset and offshore in Weymouth Bay and Bournemouth Bay documented tectonic features 

for the western margin of the Wessex Basin. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.10 Structural map of the western margin of the Wessex Basin showing the main 

extensional faults that affected Jurassic deposits (modified after Harvey and Stewart, 1998). 

 

Two important extensional faults that were subsequently inverted have been identified in 

south Dorset; the Purbeck Fault to the east and the Ridgeway or Abbotsbury-Ridgeway Fault to 

the west (Fig. 2.10; Underhill and Stoneley, 1998; Underhill, 2002). Sub-surface data image the 

type of faults (shape and length) and also show the tectonic history along these faults. The 
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Ridgeway Fault is about 4 km long, curvilinear and rooted in Triassic salt deposits (Fig. 2.10; 

Darton et al., 1981; Harvey and Stewart, 1998; Barton et al., 2011). The Purbeck Fault is much 

longer (about 60 km) finishing its onshore expression on the Isle of Wight and comprises 

several sub-planar en échelon faults (such as the Needles Fault, Fig. 2.10) that cut the Variscan 

basement (Fig. 2.10; Butler, 1998; Barton et al., 2011). These two fault systems are linked by a 

relay ramp area in the central part of the study area (Fig. 2.10). Their syn-depositional nature 

in the Jurassic was interpreted on the basis of the thickness increase of lithostratigraphic units 

in the hanging-wall block towards the faults than in the footwall blocks (Fig. 2.11; Colter and 

Havard, 1981; Stoneley, 1982; Hamblin et al., 1992; Harvey and Stewart, 1998; Hawkes et al., 

1998). After the syn-rift phase or prior to the deposition of the Gault Formation, there 

occurred an erosion phase creating an unconformity reaching locally down to Permian 

deposits (Fig. 2.11; Butler, 1998; Underhill and Stoneley, 1998). The post-rift phase of basin 

evolution started with the deposition of the Gault Formation and continued through the Chalk 

Group (Fig. 2.11; Butler, 1998; Underhill and Stoneley, 1998). The inversion of the extensional 

faults was interpreted from the reactivation of the faults into reverse faults and the formation 

of anticlines in the hanging-wall blocks of each fault with the Weymouth Anticline south of the 

Ridgeway Fault and the Lulworth Bank Anticline and the Purbeck Anticline south of the 

Purbeck Fault (Fig. 2.11; Chadwick, 1993; Harvey and Stewart, 1998; Smith and Hatton, 1998; 

Underhill and Paterson, 1998). 
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Figure 2.11 Sketch north-south cross-sections showing the structural evolution of the Purbeck and 
Ridgeway Faults, redrawn after Underhill and Paterson (1998).  
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3.7. Palaeoenvironments and palaeogeographies in the early Purbeck time 

3.7.1. Palaeoenvironments in the early Purbeck time 

 

Palaeoenvironments of the Purbeck Limestone Group have been debated since De la 

Bèche’s (1830) famous reconstruction of the environment for the Dorset Coast with all the 

fossils found along the Devon and Dorset coasts (Fig. 2.12A). Carol Roberts, a freelance artist 

from Dorset proposed two views for the lower and the upper part of the Mupe Member (Fig. 

2.12B-C) based on fossils recorded from these units (http://carolrobertsillustration.co.uk/). 
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Figure 2.12 Palaeoenvironmental reconstructions and artistic views of the Dorset Coast in early 
Purbeck time. A – “Duria Antiquior – a more ancient Dorsetshire” (De la Bèche, 1830). The Dorset Coast, 
note the cycads, turtles and crocodile on the left hand side as the only reported fossils to occur in the 
Purbeck Limestone Group (Durlston Formation). B – “Lacustrine” (© Carol Roberts). The lower part of 
the Mupe Member. Note the presence of the microbial mounds, cycads, ancient coniferous and mollusc 
shells however mixed with insects and dinosaurs recorded from the Durlston Formation. C – “Evaporite” 
(© Carol Roberts). The upper part of the Mupe Member where three-toes dinosaurs were living on 
shores of a hypersaline lake. 

 

 

West (1979) and later modified by Sellwood and Wilson (1990) proposed a 

palaeoenvironmental reconstruction for the lower part of the Mupe Member for the south 

Dorset area (Fig. 2.13). This palaeoenvironmental reconstruction is based on field data 

recorded by West (1979) taking into account the facies distribution both vertically and laterally 

at the location of the modern Isle of Portland looking North (Fig. 2.13). Concerning the lateral 

facies distribution, West (1979) locates the possible extent of the coniferous forest and the 
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distribution of the stromatolites around tree stumps and fallen trees on the shallow margins of 

a hypersaline lagoon (Fig. 2.13). Ephemeral coastal lakes either hypersaline or freshwater are 

depicted between the forest and the shore. Hypersaline lakes host precipitation of salt and 

gypsum and suggest a rather closed system (in the centre of figure 2.13). Freshwater lakes 

with insects and charophytes (discovered in Portesham Quarry, West, 1979) suggest both 

input via river systems or springs and output into the lagoon (on the top of figure 2.13). 

Concerning the vertical facies succession, at the bottom of figure 2.13, West (1979) proposed a 

facies model to document the relationship between the paleosols (i.e. Lower and Great Dirt 

Beds) and the Hard Cap bed. Both rendzina paleosols supported the ancient conifers identified 

by Francis (1982, 1983, 1984, 1986) and in between these paleosols, the peloidal limestones of 

the Hard Cap bed with stromatolites and lenticular gypsum (Fig. 2.13; West, 1979). In the 

background West (1979) positioned a slightly higher massif, the West Dorset and Cornubian 

uplands named by Sellwood and Wilson (1990), to document the initial inversion activity of the 

Ridgeway Fault (Fig. 2.13; West, 1979, 2013b). West (2013a) mentions the rare occurrence of 

dinosaurs (pteropauds and sauropods) because of harsh climate (dry and warm) that was 

present at that time. However there are no papers in the literature describing dinosaurs living 

at that time such as bone remains or footprints. West (2013a) had inferred the dinosaurs’ 

presence because of their occurrence in underlying and overlying beds of the Lulworth and 

Durlston Formations of the Purbeck limestones. 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13 Depositional environment reconstructions of the Dorset coast during the deposition of the lower part of the Mupe Member, modified after West (1979) 
and Sellwood and Wilson (1990). The dinosaurs (pterosaurs and sauropods) are inferred as they are found in the underlying and overlying deposits, but no direct evidence 
(bones or footprints) of such organisms living at that time was found yet in the Mupe Member deposits. Note occurrence of modern exposures in italics. 
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Francis (1982) worked at smaller scale and reconstructed possible series of events 

involved in the drowning of the forests and the formation of the algal limestones. Although 

Francis (1982) illustrated three steps, she provides a very brief explanation for each step 

(Fig. 2.14). The first step (Fig. 2.14A) illustrates the forests (associated with the Lower and the 

Great Dirt Beds) where ancient conifers (Protocupressinoxylon purbeckensis) formed a dense 

forest with some cycadophytes on the shores of a hypersaline lake (Francis, 1982). The second 

step (Fig. 2.14B) illustrates the deepening of the lake level (saline water) drowning the forest 

and killing the conifers and cycadophytes (Francis, 1982). The third step (Fig. 2.14C) illustrates 

post-deposition and after falling lake levels and the formation of algal-bound sediment over 

the remaining conifer trunks and fallen trees (Francis, 1982). In addition, Francis (1982) 

conducted a detailed study of the tree moulds left after the decay of the conifers in the algal 

limestones both of the Hard and Soft Cap beds. She measured the lengths, extents, aperture 

sizes and orientations of 58 three holes in the Hard Cap (57 on the Isle of Portland and 1 in 

Chalbury Camp) and lengths and orientations of 99 burrs in the Soft Cap (28 on the Isle of 

Portland and 71 at Fossil Forest; Francis, 1982). In the Hard Cap, the average lengths of the 

tree holes were measured about 53 cm although most commonly they were 10 to 20 cm long 

and were found between 20 cm and 2 m high from the Lower Dirt Bed (Francis, 1982). The tree 

hole apertures were measured on average about 9 x 11 cm (height x width) and ranging 

between 2.5 and 36 cm in diameter (Francis, 1982). The average dip of the tree holes was 20° 

but most commonly less than 5° with dip directions between N240 (south-west) and N100 

(south-east) with a more prominant direction at N190 (south) (Francis, 1982). However she 

demonstrated that only one tree trunk hole was found (in Portesham Quarry) as all the tree 

holes are rather small (9 x 11 cm) to be from a trunk. She considered the dip and dip direction 

measurements to correspond to branches and compared with modern conifers that have their 

branches with a 40° angle with the trunk. Subsequently she determined that with a main 

southerly dip direction of the holes, it reflected a north-south direction of the tree trunks. In 

the Soft Cap, the burr apertures were measured in average 46 cm ranging between 10 cm and 

1.02 m while silicified logs were between 5 and 30 cm in diameter (Francis, 1982). The length 

of these logs was measured in average about 10-15 cm ranging between 7 and 54 cm when 

exposed (Francis, 1982). Both logs and few burrs were preferentially orientated along a N000-

N005 (north-south) direction (Francis, 1982 as previously noted by Gray, 1861 and Hardy, 

1897). Francis (1982) interpreted this common preferential orientation north-south of tree 

holes of the Hard Cap and logs and burrs of the Soft Cap to indicate a northerly blowing wind. 

However she proposed different interpretations in the occurrence of conifers in the Hard and 
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the Soft Cap beds (Francis, 1982). Concerning the Hard Cap, one hypothesis was that the trees 

were growing in the Lower Dirt Bed (Francis, 1982). They were transported by floods or storms 

from a northern forested area in the lagoon and algal bounded on the floor of this lagoon at 

the location of the Isle of Portland today (Francis, 1982). This hypothesis was mainly driven by 

the non-occurrence of rooted trees in the Lower Dirt Bed (Francis, 1982). Alternatively she 

proposed that the trees did grow in the Lower Dirt Bed and were later affected by a strong 

northerly blowing wind or storm (Francis, 1982). The hypothesis originated from the recording 

of the north-south orientations of the tree holes (Francis, 1982). Concerning the Soft Cap and 

the Great Dirt Bed forest, the hypothesis was that the sudden flooding of the forest by 

hypersaline waters killed the trees (Francis, 1982). Algal-boundstones were then deposited 

around the in-situ trees consolidating the base while the rest of the trees outside of the waters 

were rotten and fallen off due to strong northerly winds before they were encased with algal 

deposits (Francis, 1982). 
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Figure 2.14 Sequence of events involved in the drowning of the Purbeck forests and the formation 
of algal limestones (modified after Francis, 1982). A – Ancient conifers forming a dense forest. B – 
Hypersaline to saline water rising drowning the forest. C – Post-deposition of the algal limestones 
covering in-situ conifer stumps and fallen trees in falling lake level. 
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In contrast Bosence (1987) interpreted the tufa deposits (as presented earlier in section 

3.5.1.1.2 of this chapter) as having formed in freshwaters as they are not associated with 

evaporites on the Isle of Portland. He also proposed a possible sequence of events involved in 

the formation of the mounds deposited around the trees. This interpretation is based on 

sedimentology of the mounds and associated facies. The concentric burrowed thrombolites all 

around the trees and with a rather similar thickness indicates that the trees were in upright 

position during the deposition (Bosence, 1987). The thrombolitic framework continued 

upwards mainly after the trees collapsed as indicated by the asymmetrical and greater 

thickness of the thrombolite on the upper surfaces (Bosence, 1987). The local fracturing of the 

burrowed thrombolite indicates that this facies was consolidated before collapsing (Bosence, 

1987). This sequence of events is also confirmed by geopetal infills in the growth cavities 

(Bosence, 1987). The inner burrowed thrombolites comprise two geopetal infills at right angle 

while the outer tufa frameworks comprise only one geopetal infill concordant with the sub-

horizontal position of the tree holes at present day (Bosence, 1987). Bosence (1987) noticed as 

well that tufas can be amalgamated and form a bioherm up to 5 m x 2 m high above the 

surrounding peloidal grainstones. 

Subsequently Perry (1994) proposed a reconstruction of events for the formation of the 

tufa stromatolites. Following the description of the different facies (refer to section 3.5.1.1.2 of 

this chapter) Perry (1994) concurred with Bosence’s view that the tufa stromatolites were of 

lacustrine freshwater origin. This was interpreted from the fabrics, the high porosity of the 

Purbeck tufas (typical from freshwater tufas, Pedley, 1990), the absence of evaporites and of 

intertidal sediments (specific of marine intertidal zone, Perry, 1994) and the fact that the trees 

were preserved at least during the deposition of the tufas (Perry, 1994). According to Perry 

(1994) if the environment was hypersaline or saline the trees would have been rotted away 

rapidly after the drowning and before the tufas could form around them. All this helped Perry 

(1994) to interpret a series of possible events in the deposition of the tufas stromatolites (Fig. 

2.15). The first step (Fig. 2.15A) illustrates the paleosols forming on top of a sub-aerial 

exposure, containing sub-aerial stromatolites that shows the influence of biogenic processes 

and supporting conifer forest and other vegetation (Perry, 1994). The second step (Fig. 2.15B) 

illustrates the rising of freshwater lake level drowning the forest and killing the conifers and 

associated vegetation (Perry, 1994). The high concentration of carbonate ions in the water 

together with the nutrients provided by the former vegetation helped the formation of a 

biofilm at the base of the trees and surrounding areas (Perry, 1994). The photosynthetic 

activity increased the carbon dioxide content of the water and triggered the precipitation of 
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carbonate (Fig. 2.15B; Perry, 1994). The third step (Fig. 2.15C) illustrates the deposition of the 

micro- and macro-textures subject to water level fluctuations (Perry, 1994). The micro-texture 

tufas was formed during the wet winter season when lake level was at its highest and was 

burrowed during the dry summer season when emergent and lake level at its lowest (Fig. 

2.15C; Perry, 1994). Similarly the macro-porous tufas were predominantly formed during the 

dry summer season (Fig. 2.15C; Perry, 1994). Their lack of burrows and high porosity were 

explained by the fact that they were never emergent (Perry, 1994). The fourth step (Fig. 2.15D) 

illustrates the rising of lake level, drowning of the tufas and the deposition of the littoral 

grainstones (Perry, 1994). 
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Figure 2.15 Sequence of events explaining the deposition of tufa stromatolites (modified after 

Perry, 1994). A – Ancient conifers growing on carbonaceous soil with sub-aerial stromatolites in the soil. 
B – Rising of the freshwater lake drowning the forest and offering conditions for tufa deposition 
seasonally. C – The lake level continues to rise causing the death of the conifers and to break down 
followed by a second generation of tufa deposition. D – The transgression of marine or saline waters 
drown the tufas that stopped their deposition and allowed sedimentation of the littoral grainstones 
facies with ostracods. 
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Radley’s (2002) review of the mollusc assemblages of the Purbeck Limestone Group of 

Dorset (refer to section 3.5.1.1.5 of this chapter) enabled him to infer palaeosalinities from 

gastropod assemblages mainly based on Fürsich’s (1994) work on salinity-controlled benthic 

macroinvertebrates. Radley (2002) compiled data from Arkell (1941), West (1961), Clements 

(1973), Barker et al. (1975) and his own work to interpret salinity fluctuations of the Purbeck 

Limestone Group (Fig. 2.16). During the deposition of the Cap beds and Dirt Beds, he inferred 

the low diversity of fresh- to brackish water (low-salinity) species to indicate a closed lake 

system. The mixing of low-salinities and marine species to indicate possible periodic marine 

input although Radley (2002) specified that the “precise environments remain unclear”. The 

low diversity of low-salinities species in the Broken Beds and Cypris Freestone to indicate a 

closed lake system with periodic hypersaline conditions (Fig. 2.16; Radley, 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 
 
Figure 2.16 Inferred palaeosalinity fluctuations of the Purbeck Limestone Group (modified after 

Radley, 2002). 
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As well as studying the facies, Dharmarajah (2015) conducted stable isotope (carbon and 

oxygen) analyses at three locations (Bowers, Perryfield and Broadcroft Quarries on the Isle of 

Portland) and in both the Skull and Hard Cap beds (Fig. 2.17). She compared these data to 

Talbot’s (1990) and Leng and Marshall’s (2004) general freshening trends from the Skull to the 

Hard Cap beds for lacustrine and open lake system. Altogether, facies and stable isotope data 

helped Dharmarajah (2015) to propose a depositional model for the lower part of the Mupe 

Member (Fig. 2.18). This depositional model presents an interpretation of facies distribution 

on a prograding margin of an open brackish water lake system with the coarser facies in the 

shallowest areas, the finer facies in the deepest areas and associated with thrombolite 

mounds (Fig. 2.18; Dharmarajah, 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.17 Cross-plot of carbon and oxgen isotope from the Skull and Hard Cap beds of the Mupe 
Member (modified after Dharmarajah, 2015). Values in the table on the top left corner are the average 
values for each bed and at each location. 
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Figure 2.18 Depositional model for the Cap beds of the Mupe Member (modified after 
Dharmarajah, 2015). 

 
 

3.7.2. Palaeogeographies in the early Purbeck time 

 

Palaeogeographical reconstructions for the Purbeck Limestone Group are of two scales, 

Wessex Basin scale (Fig. 2.19) and more local (i.e. Dorset) scale (Figs. 2.20 and 2.21).  

At the basin-scale, studies show facies distribution at the time of the Cypridea dunkeri 

ostracod biozone (Fig. 2.19A-B; Casey, 1963; Lake, 1985; Cope et al., 1992) and the Cypridea 

granulosa ostracod biozone (Fig. 2.19C; Casey, 1963). Figure 2.19A presents a 

palaeogeographical reconstruction of the south of England and north of France basins for the 

Cypridea dunkeri biozone after Cope et al. (1992). They showed that the margins of the basin 

were dominated by carbonates; while in the centre part of the basin, were deposited sulphate 

evaporites (Fig. 2.19A). What were likely to be present are the South Dorset High location and 

its influence on the deposition and facies distribution; and the occasional marine overspills 

from the Paris Basin to the south-east (Cope et al., 1992). Cope et al. (1992) showed that this 

palaeogeographical reconstruction is nevertheless partially based on speculations. The first 

main speculation they made concerned the occasional connection of the southern part of the 
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North Sea Basin to the Wessex Basin via marine overspill that was assumed from underlying 

Portland deposit settings (Fig. 2.19A). The second main speculation they made concerned the 

extent of the Channel Basin to the south due to a lack of data available (such as well data or 

seismic images) from the English Channel (Fig. 2.19A). Reconstructions B-C are from Casey 

(1963) and explain the separation between the freshwater deposits of a southern basin (i.e. 

Wessex Basin) and the marine deposits from a northern sea basin (i.e. Spilsby Sea; Fig. 2.19B); 

and to explain the deposition of the Cinder Bed (Fig. 2.19C). The northernmost exposures of 

the Wessex Basin located at Stewkley are about 25 miles away from the southernmost 

exposures of the Spilsby Sea at Potton (Fig. 2.19B-C). The proximity of these basin margins 

together with the increase of molluscs at the base of the Durlston Formation helped Casey 

(1962, 1963) to correlate the Cinder Bed with the marine mid-Spilsby nodule-bed deposited in 

the Spilsby Sea (Casey, 1963). Subsequently, this correlation helped him to propose the marine 

incursions from the Spilsby Sea into the Wessex Basin (Casey, 1962, 1963; Fig. 2.19C). 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19 Palaeogeographical reconstructions of the Wessex Basin at the time of the deposition of the Purbeck Limestone Group. A – For the Cypridea dunkeri 
biozone of the lower Mupe Member, redrawn after Cope et al. (1992). B – At the end of the Jurassic Period (probably Cypridea dunkeri biozone, redrawn after Casey, 
1963). C – At the beginning of the Cretaceous Period at the time of the Cinder Bed deposition (probably Cypridea granulosa biozone, redrawn after Casey, 1963). 
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Despite the intensive study of the Dorset area since the 19th century, there are only a few 

palaeogeographical reconstructions of the lower Purbeck Limestone Group in the literature 

(Figs. 2.20 and 2.21; West, 1975, 1979; Francis, 1982; Sellwood and Wilson, 1990; Underhill, 

2002). 

West (1975) proposed four palaeogeographies (Fig. 2.20) for the marginal facies at the 

time of the deposition of the Lower Dirt Bed (Fig. 2.20A), of the Hard Cap (Fig. 2.20B), of the 

Great Dirt Bed (Fig. 2.20C) and of the evaporites above the Soft Cap (Fig. 2.20D). In these 

palaeogeographies, West (1975) showed the facies distribution based on fieldwork on south 

Dorset Coast. The Lower Dirt Bed was interpreted by West (1975) to be deposited 

synchronously all along the Dorset coast (Fig. 2.20A). The Hard Cap was interpreted to be 

deposited in transgressive intertidal flats with algal stromatolites and an oolitic lagoon in the 

centre part with a NE-SW facies trend (Fig. 2.20B). The Great Dirt Bed was not deposited 

everywhere, but followed the same NE-SW trend of the underlying oolitic lagoon that formed 

a forested land with ancient coniferous trees and cycads surrounded by pebbly beaches 

(Fig. 2.20C). This paleosol was interpreted to be surrounded with a freshwater to hypersaline 

lagoon to the west and a shallow gulf to the east with possible evaporite precipitation 

(Fig. 2.20C). West (1975) showed that the evaporites (above the Soft Cap) were deposited 

synchronously in one regressive event with strata thickening to the east, to the centre of the 

basin (Fig. 2.20D). West (1975) proposed that the facies were organised in cycles, the base of 

each cycle being a paleosol (i.e. Lower Dirt Bed and Great Dirt Bed), overlain by stromatolitic 

and pelletoid limestones and capped by gypsum and limestone deposits. 
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Figure 2.20 Palaeogeography of the Dorset coast at the time of deposition of the Mupe Member 
modified after West (1975). A – During the deposition of the Lower Dirt Bed. B – During the deposition 
of the Hard Cap. C – During the deposition of the Great Dirt Bed. D – During the deposition of the 
evaporites just above the Soft Cap. G stands for Gypsum deposit. 
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Francis (1982) remains the most detailed study and reconstructions of depositional 

environments and palaeogeographies for the time of deposition of the lower part of the Mupe 

Member (Fig. 2.21). Following log correlation panels and comparison with modern day 

environments, Francis (1982) proposed a reconstruction of depositional environments for each 

bed (Fig. 2.22). The Skull Cap was interpreted to be formed during regression of sea level due 

to the change from marine environments (Portland Group) to non-marine determined by the 

appearance of stromatolites and non-marine fauna (Francis, 1982). Comparison of the lower 

part of the Skull Cap stromatolites to those of Shark Bay in Australia helped Francis (1982) to 

interpret moderately (because gypsum is absent) hypersaline lagoons to the west and the east 

separated by a swell. This swell passed through the Lulworth area with a NE-SW trend but its 

extent was difficult to determine due to lack of exposures beyond this area (Figs. 2.21 and 

2.22; Francis, 1982). The persistence of this regressive phase led to the formation of the Basal 

Dirt Bed to the west of the swell and a thinning and reduction of plant remains at Mupe Bay 

and Worbarrow suggests that this area was near the margin of a much denser forest to the 

north (Figs. 2.21 and 2.22; Francis, 1982). However to the east remained a hypersaline lagoon 

with stromatolites on the margins (Figs. 2.21 and 2.22; Francis, 1982). This was followed by a 

transgression and the Basal Dirt Bed was covered by a moderately hypersaline lagoon to the 

west and a hypersaline basin to the east (Figs. 2.21 and 2.22; Francis, 1982). The western 

lagoon was considered by Francis (1982) as part of an intertidal zone of the hypersaline basin 

with stromatolite developments (Figs. 2.21 and 2.22). The Lower Dirt Bed was the result of 

another rapid regression that led to a sub-aerial exposure and later development of a soil 

(Francis, 1982). To the west of Worbarrow the paleosol supported cycadophytes and ancient 

conifer trees, while to the east the paleosol disappeared and was replaced by evaporite 

deposits suggesting a hypersaline basin (Figs. 2.21 and 2.22; Francis, 1982). At Worbarrow this 

paleosol was replaced by shale suggesting an ephemeral pond on the margin of a saline basin 

that periodically dried up (Figs. 2.21 and 2.22; Francis, 1982). The depositional setting of the 

Lower Dirt Bed indicates a transition from a hypersaline basin to the east passing gradually to 

landed area to the west as observed in the modern day Persian Gulf (Figs. 2.21 and 2.22; 

Francis, 1982). The Hard Cap was the result of a rapid transgression that drowned the Lower 

Dirt Bed forest (Francis, 1982). The base of the Hard Cap was characterised to the west by 

large stromatolitic mounds that developed around tree stumps in an intertidal zone of a 

hypersaline lagoon (Figs. 2.21 and 2.22; Francis, 1982). The stromatolitic mounds were 

replaced by algal mats over the Lulworth area suggesting a high in the topography of the 

lagoon and separated it from a shallow evaporitic basin to the east (Figs. 2.21 and 2.22; 
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Francis, 1982). The top of the Hard Cap was characterised by an intertidal hypersaline 

evaporitic lagoon all along the studied area as suggested by the presence of evaporites 

(Francis, 1982). Evidence of exposure (calcrete textures and polygonal desiccation in algal 

mats) and deposition of oolitic shoal were found along a NE-SW trend between Lulworth area 

and the Isle of Portland (Figs. 2.21 and 2.22; Francis, 1982). This indicates that the swell 

identified in the previous reconstructions was still present and was influencing the deposition 

(Figs. 2.21 and 2.22; Francis, 1982). The Great Dirt Bed was the result of a regression that 

lasted longer than for previous soils (Francis, 1982). This led to the formation of a thick soil 

with large ancient conifers and pebbles derived from the underlying Hard Cap (Francis, 1982). 

However this soil developed only between Lulworth area and the Isle of Portland (Figs. 2.21 

and 2.22; Francis,  1982). To the west dark clays with plant material, freshwater fauna, land 

plants and evaporites indicated an ephemeral lake drying out in summer as per modern day 

coastal lagoons in South Australia (Figs. 2.21 and 2.22; Francis, 1982). To the east evaporite 

deposits suggested a hypersaline evaporitic basin (Figs. 2.21 and 2.22; Francis, 1982). The Soft 

Cap was the result of another rapid transgression that drowned the Great Dirt Bed forest 

(Francis, 1982). The soil and the in-situ conifer stumps were covered by algal-bound sediment 

in an intertidal hypersaline lagoon (Figs. 2.21 and 2.22; Francis, 1982). Thinner deposits on the 

south of the Isle of Portland where only algal mats with pelletoid silts were deposited, 

suggested shallower conditions (Francis, 1982). To the east this bed was characterised by 

evaporite deposits indicating the continuation of the transgression of the evaporitic basin 

triggered during the Skull Cap deposition (Figs. 2.21 and 2.22; Francis, 1982). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

93 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.21 Schematic palaeogeographic reconstructions of the Dorset coast area during 
deposition of the Cap beds and Dirt Beds, redrawn after Francis (1982). 
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Figure 2.22 Depositional environment reconstructions, redrawn after Francis (1982). 
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Underhill and Paterson’s (1998) regional study of onshore outcrops and offshore and 

onshore subsurface data provides the main depositional and tectonic settings of the Purbeck 

Limestone Group (Fig. 2.11). Underhill (2002) proposed a syn-sedimentary tectonic control on 

the facies distribution of the Mupe Member (Fig. 2.23). The facies were based on West’s 

(1975) facies belts and “other workers” together with generalised models for sedimentation 

around relay ramp zones to propose a structural and depositional model for the Mupe 

Member. He proposed that the Abbotsbury-Ridgeway and Purbeck Faults were linked by a 

relay ramp area to accommodate the displacement along the faulted zone (Fig. 2.23; Underhill, 

2002). He interpreted the relay ramp area to be the main pathway for sediment supply into 

the basin (Fig. 2.23; Underhill, 2002). He showed in his model syn-sedimentary faults active 

during the deposition of the Mupe Member deposits (as indicated with the thickness 

increasing towards the faults in figure 2.23). He inferred from published models that the 

deposition of a conglomeratic facies in the footwall blocks in the vicinity of the fault scarps 

surrounded by paleosols where the ancient cypress trees were rooted (Fig. 2.23). In addition 

he interpreted deeper facies to be deposited only on the eastern part of the studied area to be 

due to occasional marine incursions (Fig. 2.23; Underhill, 2002). 

 

 

 

 

 

 

 

 

 

 
Figure 2.23 Depositional model for the Mupe Member (redrawn after Underhill, 2002).
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1. Introduction 

 

Generations of geologists have studied the complexity of the structural evolution of the 

Wessex Basin (Bristow, 1889; Strahan, 1898; West, 1975; Lake, 1985; Butler, 1998; Underhill 

and Stoneley, 1998). This study examines the structural evolution for the western part of the 

Wessex Basin based on a new seismic interpretation of a 3-D block seismic data as well as 2-D 

seismic profiles onshore and from Bournemouth and Weymouth Bays. The main aim of this 

study is to identify the possible tectonic control of two main extensional faults on the 

deposition of the Purbeck Limestone Group (Late Jurassic-Early Cretaceous). Previous studies 

(Colter and Harvard, 1981; Stoneley and Selley, 1986; House, 1989; Butler and Pullan, 1990; 

Chadwick, 1993; Butler, 1998; Harvey and Stewart, 1998; Underhill and Stoneley, 1998; 

Underhill and Paterson, 2002) present clear evidence for synsedimentary tectonic structures 

during the Jurassic and the Early Cretaceous however it is still unclear whether the faults were 

active or not during Purbeck time (Tithonian-Berriasian). The seismic interpretation presented 

here indicates east-west syndepositional extensional faults (the Ridgeway and Purbeck Faults) 

with preferential accumulation in half grabens to the south that are linked by a relay ramp, 

emphasising a structural control on sediment accumulation during Purbeck time. 

  

2. Methodology 

2.1. Introduction 

 

In this project 2-D seismic profiles (onshore and offshore), a 3-D block offshore and wells with 

borehole data (Fig. 3.1) have been interpreted with the aim of understanding the relationship 

between the accumulation of strata and the structural evolution of the Wessex Basin. 

The geological interpretation has been carried out with Petrel™ Software (Schlumberger, 

version 2011). In addition a multi-beam radar acoustic survey of Weymouth Bay seafloor, the 

DORset Integrated Seabed Study (DORIS, Figs. 3.1; 3.2 and 3.21) acquired in 2008 acquired by 

Dorset Wildlife Trust, the Maritime and Coastguard Agency and Channel Coastal Observatory 

(with less than 1 m resolution) as well as the British Geological Survey geological map 1:50000 

onshore (1949) and the National Geographic world topographic map (public domain) have 

been combined within Petrel to tie the subsurface with surface data. All these data were 

georeferenced under ED50-UTM30 ("MENTOR: ED50-UTM30: European 1950 Based UTM, 

Zone 30 North, Meter") coordinate reference. 
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Two horizons have been interpreted in detail, Top Purbeck and Top Portland as well as a 

total of twenty-eight faults. Four correspond to the Ridgeway fault (named Ridgeway Faults 1; 

2; 3 and 4), one to the Purbeck fault (named Purbeck Fault) and twenty-three to subsidiary 

faults (named Subsidiary Faults 1 to 23) created either during the rifting phase or the inversion 

phase of the Wessex Basin.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Location map of wells and seismic profiles interpreted in this study. Dark grey area is the 
area covered by the 2-D seismic profiles (detailed in Fig. 3.2) and the light grey box corresponds to the 3-
D block (detailed in Fig. 3.4). DORIS seafloor data from Weymouth Bay and Portland area detailed in 
figure 3.21. Orange line locqtes well correlation of figure 3.7. Red line locates well correlation of figure 
3.12. Yellow line locates well correlation of figures 3.8 and 3.13. Blue line locates well correlation of 
figures 3.9 and 3.14.  

 

2.2. Details of 2-D seismic profiles 

 

Twenty-two 2-D profiles (178.36 km in total) located onshore (between Weymouth and 

Durlston Bays, Figs. 3.1 and 3.2; Tab. 3.1) have been obtained from the UK Onshore 

Geophysical Library (UKOGL) as well as thirty-five 2-D profiles (327.04 km in total) located 

offshore in Bournemouth Bay (Figs. 3.1 and 3.2; Tab. 3.1; public domain) have been studied. 

Different source types were used during the seismic acquisition such as dynamite, vibroseis, 

explosive powergel (for the onshore acquisition) and airgun (for the offshore acquisition) and 

these are summarised in Table 3.1. The frequency ranges between 10 and 85 Hz and the 

interval between two stations varies from 15 m to 61 m. This information is only available for 

the seismic profiles acquired partly or totally onshore and not for those acquired offshore. The 

quality of the profiles depends on the location of their acquisition either onshore or offshore. 

The seismic profiles acquired offshore in Bournemouth Bay are generally of good quality (Fig. 

3.3C). The seismic profiles acquired onshore have a poorer quality but improve away from the 
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fault zones, where the quality is poor (Fig. 3.3A). Four seismic profiles are of varying quality 

due to their position both onshore and offshore (i.e. AUK-94-AJ052, AUK-94-AJ053, AUK-94-

AJ059 and 81-291, Figs. 3.2 and 3.3B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1 List of the 2-D seismic profiles studied with source types used during acquisition. Empty 
cells: information unavailable. 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2 Location map of the 2-D seismic profiles both onshore and offshore. Coloured lines locate seismic profiles presented in detail in this chapter. Grey box 

locates the 3-D block. DORIS seafloor data located in Weymouth Bay and Portland area detailed in figure 3.21. 
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Figure 3.3 Example of 2-D profiles showing the quality of the seismic data. A – BP85-30 acquired 
onshore only. B – AUK-94-AJ053 acquired both offshore and onshore. C – GC821-33 acquired offshore 
only. Locations in figure 3.2. 
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2.3. Details of the 3-D block 

 

A 3-D seismic survey, 4 km wide, 7.3 km long, 3 km deep and with 12.5 m line spacing 

(inlines and crosslines), located offshore in Bournemouth Bay (Figs. 3.1, 3.2 and 3.4; public 

domain) has been studied. The quality of the profiles is relatively good (Fig. 3.4). The 3-D block 

consists of 582 in-lines, 325 cross-lines and 3000 time slice profiles. The source types and 

frequency of acquisition information are not available. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4 Details of the 3-D seismic block. Numbers in turquoise are the numbers of each profile 

studied (inlines from 202 to 784 and crosslines from 120 to 445). 
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2.4. Details of wells 

 

Thirteen offshore wells (Tab. 3.2) with borehole data have been purchased from 

Information Handling Service (IHS) and thirteen onshore wells (Tab. 3.2) have been gathered 

from the UKOGL website (public domain and without borehole data, just formation tops are 

available). The wells purchased came with the checkshot point files making their importation 

into Petrel© relatively straightforward. However, for the wells available from the public 

domain, the creation of the checkshot point files was needed before their importation into 

Petrel©. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 3.2 Location, depth and depth of tops interpreted of wells in south Dorset. KB: Kelly Bushing. 

TWT: Two Way Time. NI: Not identified. 0 value means that the Formation is exposed at the surface. 
Formation tops as recorded on the wireline logs. 

 

Borehole data are available only for the wells purchased, i.e. 97/19-1, 98/11-1, 98/11-2, 

98/11-4, 98/11-4Z, 98/12-1, 98/13-1, 98/16-1, 98/16-2, 98/18-1 and 99/16-1. For all of these 

wells caliper, gamma ray and sonic velocity logs are available, however the neutron/density log 

is only available for the 98/12-1, 98/16-1, 98/18-1 and 99/16-01 wells, the resistivity log only 

for the 98/12-01, 98/13-01, 98/16-01, 98/16-02, 98/18-01 and 99/16-01 wells and the cuttings 

were recorded only on the 97/19-1, 98/11-2, 98/12-1, 98/13-1, 98/16-1, 98/16-2, 98/18-1 and 

99/16-1 wells. In order to tie these with the seismic lines, each top interpretation done by 

operators was checked. The comparison of the wireline logs available for each well (Figs. 3.7; 
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3.8 and 3.9) allowed the identification of minor mistakes on the interpretation of the top 

Portland and Purbeck horizons and their correction in the checkshot point lists. 

The importation of stratigraphic surfaces or tops into Petrel© needed to be done by hand 

by entering the TWT value top by top (this information was obtained after identification of 

alteration required provided in the well data and described in sections 2.5 and 2.6 of this 

chapter). 

The identification of the horizons corresponding to the top of the Portland and Purbeck 

Limestone Groups was possible only in some wells. Top Portland was found in 98/11-1, 98/11-

2, 98/11-4, 98/11-4Z, 98/12-1, 98/13-1, 98/16-1, 98/16-2, 98/18-1, 99/16-1, Southard Quarry 

1, Chaldon Herring 1 and Chaldon Herring G3 wells (Tab. 3.2). Top Purbeck was found in 98/11-

1, 98/11-2, 98/11-4, 98/11-4Z, 98/12-1, 98/13-1, 98/16-1, 98/16-2, 98/18-1, 99/16-1, Chaldon 

Herring 1, Chaldon Herring G3 and Chaldon Herring G2 wells (Tab. 3.2). In the others wells, 

98/11-3, 97/19-1, Lulworth Banks 1, Chickerell 1, Encombe 1, Kimmeridge 5, Creech 1, Hewish 

1, Martinstown 1, West Stafford 1 and Coombe Keynes 1 (Tab. 3.2), none of the horizons have 

been identified and could be used in this study to calibrate the seismic profiles. Unfortunately 

the Purbeck interval was never cored, presumably because the Purbeck is not considered as a 

reservoir interval.  

 

2.5. Mapping of horizons in Petrel 

 

The interpretation started from the 3-D block in Bournemouth Bay where the recognition 

of the tops was easier due to the good quality of the seismic profiles and because it is 

constrained by five wells (98/11-1, 98/12-1, 98/12-4, 98/12-4Z and 98/13-1, Figs. 3.1; 3.5 and 

3.11). The interpretation started with every 10th crossline and inline profiles followed by a 3-D 

autotracking (relatively good due to the continuity of the markers) in between them. Finally 

the verification of the autotracking (correction of the possible mistakes) resulted in a complete 

interpretation of the studied interval in all the profiles of the 3-D block.  

These surfaces have been extended to the 2-D offshore profiles in Bournemouth Bay on 

the GC821-33 profile (orientated N-S, Fig. 3.5) as it cross-cuts the 3-D block. Following this the 

surfaces are extended to the other offshore profiles and finally to the onshore profiles. 

The picking of top Portland and top Purbeck horizons in the wells has been done with a 

combination of historically interpreted tops, cuttings and comparison of the different wireline 

logs (caliper, sonic velocity, gamma ray, neutron density and/or resistivity logs).  



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 3.5 Illustration of the interpretation method. A – 2-D profile (GC821-33) crosscutting the 3-D block, allowing the link between the 3-D block and the 2-D seismic 

profiles. B – GC821-33 profile illustrating the method used for the interpretation. Dashed lines are the projection of the interpretation of the 3-D block onto the 2-D profile. 
Blue line is the interpretation done on the 2-D lines for top Purbeck and yellow line for top Portland. C – Zoom in A illustrating how the interpretation has been extended to 
the other 2-D profiles. GC821-30 and GC821-32 crosscutting GC821-33 profile. Location in figure 3.2. 
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2.5.1. Top Portland 

 

In order to identify the Purbeck Limestone Group and to map possible thickness variations 

(Tab. 3.2), the top Portland pick has been identified on borehole data with the two way times. 

The boundary between the Portland and Purbeck Limestone Groups (i.e. top Portland horizon) 

is considered to be located at the base of the anhydrite unit (Figs. 3.7; 3.8 and 3.9) known 

inland to be located in the lower part of the Cypris Freestone of the Purbeck Limestone Group 

(such as the Broken Beds). The signals in the wireline logs are sharp and easily identifiable 

(Figs. 3.7; 3.8 and 3.9). The Gamma-ray log presents a decrease to lower value characteristic of 

anhydrite values. The sonic velocity log presents a drop to weaker values (less porous interval). 

The resistivity log presents an increase towards greater values, suggesting a change to less 

porous and less permeable interval. The density log presents higher values with a change from 

2.7 to 3. The combination of all these logs is consistent with a change from limestone 

(Freestone member of the Portland Group) to an evaporitic interval (anhydrite present in the 

lower part of the Purbeck). This marker appears in blue and is continuous. It is present all 

across the area south of the main faults apart from in the centre part of the Weymouth 

anticline (Fig. 3.10B) where its absence is due to post-inversion erosion in the core of the 

anticline. 

 

2.5.2. Top Purbeck 

 

The identification of the boundary between Purbeck Limestone and Wealden Groups (i.e. 

top Purbeck horizon) is clear and sharp (Figs. 3.7; 3.8 and 3.9) due to the change from 

limestone in the upper part of the Purbeck Limestone Group to claystones or sandstones 

typical of the lower part of the Wealden Group. The gamma-ray log shows an increase to 

higher value reflecting an increase in the argillaceous content. The sonic velocity log presents 

an increase to higher value (more porous interval) and a less stable signal (alternation between 

porous and less porous beds). The neutron-density log presents a decrease towards lower 

values down to 1.9 g/cm3 specific for claystone signature. However the resistivity log does not 

show any particular change in the signal data. This marker appears in blue and is continuous. It 

has been identified more or less everywhere across the area apart from the northern part of 

the 3-D block (Bournemouth Bay) and in the centre part of the Weymouth anticline 

(Weymouth Bay, Fig. 3.13A). As with the top Portland pick, its absence is mainly due to post-

inversion (Cenozoic) erosion of the core of the anticline and non-deposition or erosion north of 
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the main west-east faults prior to the deposition of the Lower Greensand Formation (Upper 

Cretaceous). 

 

2.6. Seismic and wireline log characteristics of the Purbeck interval 

 

Top Purbeck and top Portland horizons were well constrained on the wireline logs in order 

to tie the borehole data with the seismic lines. These horizons constrain the Purbeck interval 

defined by a seismic facies unit corresponding to the Purbeck Limestone Group (from the 

anhydrite unit upwards, see above). This facies is continuous, with a low frequency (defining 

the vertical space between two reflectors), a medium to high amplitude and a parallel 

configuration (Fig. 3.6; following concepts in Veeken, 2008). This interval is characterised by 

moderately serrate wireline log motifs, with three main signatures characterising three main 

intervals (Figs. 3.7; 3.8 and 3.9). It starts at the bottom with low gamma-ray values (anhydrite) 

associated with high resistivity (low water content), low value on the sonic velocity (low 

porosity) and density around 3 (anhydrite signature); consistent with an anhydrite rich interval 

characteristic of the base of the lower part of the Purbeck Limestone Group as seen in 

exposures on the coast and recording in the Portsdown well (West, 1975). In the wells, 

gamma-ray values become slightly higher (calcareous enrichment characteristic of limestone 

signature) associated with low resistivity (higher water content), higher values on the sonic 

velocity (higher porosity) and density fluctuating between 2.6 and 2.7 (calcite signature); 

consistent with a limestone interval. The third main interval is characterised by slightly higher 

gamma-ray values (argillaceous enrichment) associated with low resistivity (high water 

content), high sonic velocity values (higher porosity) and density fluctuating between 2.2 and 

2.5 (clay signature); consistent with a claystone interval, characteristic facies of the upper part 

of the Purbeck Limestone Group. 

Once the top Purbeck and top Portland horizons were identified on the wireline logs, the 

interpretation of the seismic profiles was possible and detailed in section 3 of this chapter. 

Even if the Purbeck Limestone Group looks thicker in the hanging-wall block of the Purbeck 

Fault on the seismic profiles (Fig. 3.7) the quality is not always good enough (refer to sections 

2.2 and 2.3 of this chapter) to draw conclusions concerning a possible lateral variation in 

thickness or in lithology of the Purbeck Limestone Group just from the seismic data. The 

combination with borehole data is clearly needed. 
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Figure 3.6 Interpreted seismic profile from the 3-D block (crossline 374). Location in Fig. 3.2. 

 
 
 

Well correlation panels were created to identify possible thickness and lithology 

variations and are presented in figures 3.7 (north-south transect), 3.8 and 3.9 (west-east 

transects). The three intervals defined with the wireline logs above (anhydrite, limestone and 

claystone) are all present and all along the studied area either on the north-south transect 

(Fig. 3.7) or on the west-east transects (Figs. 3.8 and 3.9). This shows that the entire Purbeck 

Limestone Group had been deposited everywhere and preserved (i.e. no erosion) at least 

across the area covered by the correlation panels (Fig. 3.1). Laterally the Purbeck Limestone 

Group and each interval change in thickness but this characteristic will be described and 

detailed in section 3.1 of this chapter with the interpretation of these well correlation panels. 
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Figure 3.7 Well correlation panel 1 illustrating the succession of lithologies within the study area of the Purbeck interval flattened at the top Purbeck horizon. CALI: caliper, GR: gamma-ray, ILD: resistivity, DT: sonic velocity, NPHI: neutron, DRHO: 

density. Fence location in figure 3.1. 
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Figure 3.8 Well correlation panel 2 illustrating the succession of lithologies within the study area of the Purbeck interval flattened at the top Purbeck horizon. CALI: caliper, GR: gamma-ray, ILD: resistivity, DT: sonic velocity, NPHI: neutron, DRHO: 
density. Fence location in figure 3.1. 
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Figure 3.9 Well correlation panel 3 illustrating the succession of lithologies within the study area of the Purbeck interval flattened at the top Purbeck horizon. CALI: caliper, GR: gamma-ray, ILD: resistivity, DT: sonic velocity, NPHI: neutron, DRHO: 
density. Fence location in figure 3.1. 
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In order to create and to interpret a time thickness map to constrain any thickness 

variations (in time values) of the Purbeck interval, the construction of top Portland and top 

Purbeck surface maps was carried out with Petrel© (Figs. 3.10 and 3.11). Each surface map 

takes into account the occurrence of top Portland and top Purbeck picks within the wells 

(identified on the wireline logs of the borehole data) and is tied with the interpretation of the 

seismic profiles (refer to previous sections of this chapter).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Coverage of the identified tops of the Portland and Purbeck. A – Top Purbeck: 
interpreted surface appears in light blue. B – Top Portland: interpreted surface appears in yellow. Red 
boxes locate the area used to create the surface maps (Fig. 3.11) and the time thickness map (Fig 3.15). 

 

To create the time thickness map the software calculates the difference between Portland 

and Purbeck surface maps (Figs. 3.11 and 3.15) in time values (because the depth/time 

conversion was not available for the seismic profiles studied). If horizons merge, the software 

simply allocates a value below 0 ms to the point, or the area, on the time thickness map. The 

red zones correspond to time value of 0 ms and below (due to surface overlaps) and the purple 

zones to time value of 2500 ms. When top Purbeck is absent the software will extrapolate a 

surface where it is lacking and it will result in a thick Purbeck interval. When both horizons are 

absent a 0 ms value will be attributed to the zone. 
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To solve those problems of interpolation, the time thickness map calculated by the 

software was edited manually. The integration of the onshore geological map together with 

interpreted MBES (Multi-Beam Echo Sounder, known as well as DORIS) data in Weymouth Bay 

(Fleckner, 2014) and the time thickness of the Purbeck Limestone Group on each seismic 

profile, helped to better constrain the time thickness map (Fig. 3.15). This resulted in a more 

geologically realistic map that takes into account field and borehole data. The edited map was 

also cropped to avoid any mis-interpolation to the area covered by seismic profiles, borehole 

data, geological maps and the MBES data of Weymouth Bay seafloor (Fig. 3.15). 
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Figure 3.11 Surface maps following the seismic interpretation and tie with borehole data. A – Portland surface map. Contour line each 30 ms. B – Purbeck surface map. Contour line each 30 ms. Red colour corresponds to shallow values (compare 

to the sea bed surface) and purple colour corresponds to deep value (value ranging from 0 to 2500 ms). Dashed lines position 2-D seismic profiles and black box positions the 3-D block. 
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3. Interpretation of well and seismic data 

3.1. Thickness variations in the Purbeck Limestone Group 

 

The interpretation of the well correlation panels is presented in figures 3.12 (north-south 

transect), 3.13 and 3.14 (west-east transects) and show lateral variations in thickness of the 

Purbeck Limestone Group across the area. In the first correlation panel (Fig. 3.12) a change 

from the north to the south with an increase in thickness can be seen from 40 m in 98/11-1 

well, 75 m in 98/11-2 well, 97 m in 98/11-4 well and up to 141 m in 98/12-1 well (Tab. 3.2). In 

the 98/13-1 well (located north of the Purbeck Fault) the Purbeck Limestone Group is absent 

as the Gault Formation is in contact with the Portland Group (Figs. 3.7 and 3.12). This 

highlights erosion prior to the deposition of the Gault Formation, known as the Albian 

unconformity (described in section 4.3 of this chapter). In the other wells (98/11-1, 98/11-2, 

98/11-4 and 98/12-1, located south of the Purbeck Fault) of this transect north-south the 

Purbeck Limestone Group is present and its thickness increases southwards (Tab. 3.2; Figs. 3.7 

and 3.12). Each well is located in a different fault block (three fault blocks in total, 98/13-1 in 

the footwall block, 98/11-1 in intermediate fault block and 98/11-4, 98/11-2 and 98/12-1 in 

the hanging-wall block of the Purbeck fault zone) and these are separated by three faults 

(which constitute the Purbeck fault zone). The 98/13-1 well is located in the footwall block and 

the 98/11-2, 98/11-4 and 98/12-1 wells in the hanging-wall block of the Purbeck fault zone 

(98/11-1 well is located is an intermediate fault block). The fact that the Purbeck Limestone 

Group is thicker in the hanging-wall block than in the footwall block (40 m in the footwall 

against 141 m in the hanging-wall) highlights fault activity during Purbeck time and the 

syndepositional setting of the Purbeck Fault. 

The second well correlation panel (Figs. 3.8 and 3.13) shows an increase in thickness of 

the Purbeck Limestone Group from the west to the east between Bournemouth Bay and the 

Isle of Wight (north of the studied area, Fig. 3.1). The thickness increases from 75 m in 98/11-2 

well in the northwest, 97 m in 98/11-4 well, 141 m in 98/12-1 well and up to 212 m in 98/13-1 

well in the southeast (Tab. 3.2). In this case the wells are not located in fault blocks separated 

by faults. This variation can reflect a basin profile with proximal areas in the west (i.e. littoral 

zone) and distal in the east (i.e. more basinal zone) of the studied area. It can also be 

interpreted as an increase in subsidence rate towards the east linked to active tectonics during 

the deposition.  

The third well correlation panel (Figs. 3.9 and 3.14) shows also an increase in thickness of 

the Purbeck Limestone Group but this time from the east to the west, south of Weymouth Bay 
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and the Isle of Wight (south of the studied area, Fig. 3.1). The thickness increases from 66 m in 

99/16-1 well in the southeast, 68 m in 98/18-1, 78 m in 98/16-1 and up to 157 m in 98/16-2 in 

the southwest (Tab. 3.2). In this case the wells are not located in different fault blocks 

separated by faults. This variation can reflect a basin profile with proximal areas in the east 

(i.e. littoral zone) and distal in the west (i.e. more basinal zone) of the studied area. This can 

also be interpreted as an increase in subsidence rate towards the west linked to active 

tectonics during the deposition. 
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Figure 3.12 Well correlation panel 1 flattened at the top Purbeck horizon. CALI: caliper, GR: gamma-ray, ILD: resistivity, DT: sonic velocity, NPHI: neutron, DRHO: density. Fence location in figure 3.1. Each division of scale is 10 m. 
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Figure 3.13 Well correlation panel 2 flattened at the top Purbeck horizon. CALI: caliper, GR: gamma-ray, ILD: resistivity, DT: sonic velocity, NPHI: neutron, DRHO: density. Fence location in figure 3.1. Each division of scale is 10 m. 

 

 

 

 

 

 



 

119 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Well correlation panel 3 flattened at the top Purbeck horizon. CALI: caliper, GR: gamma-ray, ILD: resistivity, DT: sonic velocity, NPHI: neutron, DRHO: density. Fence location in figure 3.1. Each division of scale is 10 m. 
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The time thickness map (Fig. 3.15) presents also variations in thickness of the Purbeck 

Limestone Group across the studied area however at a bigger scale (from Weymouth area to 

the Isle of Wight) than the well correlation panels (values range in general from 0 to 100 ms, 

from red to blue colour in figure 3.15). The Purbeck Limestone Group is absent in places as a 

result of an erosion or non-deposition. This is the case north of the Purbeck and Ridgeway 

Faults (Fig. 3.15), in the core of the Weymouth anticline (Figs. 3.10; 3.15) and south of Dancing 

Ledge cliffs (Durlston area, Fig. 3.15), where the map exhibits red colour. The absence of the 

Purbeck Limestone Group has been identified in the borehole data and especially with the 

98/11-3 well (north of Purbeck Fault, Figs. 3.1 and 3.15) where it is recorded that the Gault 

Formation is in contact with Portland Group (Figs. 3.7 and 3.12). This unconformity will be 

documented and described in section 4.3 of this chapter.  

The integration of the borehole data (well correlation panels described above and in 

section 2.6 of this chapter, Figs. 3.7; 3.8; 3.9; 3.12; 3.13 and 3.14) with the time thickness map 

(Fig. 3.15) highlights depositional and tectonic settings. The increase in thickness of the 

Purbeck Limestone Group in the first well correlation panel (Figs. 3.7 and 3.12) together with 

the location of the wells in different blocks separated by faults (Fig. 3.15) document the 

syndepositional setting of the Purbeck Fault during Purbeck time. The second (Figs. 3.8 and 

3.13) and the third (Figs. 3.9 and 3.14) well correlation panels combined with the time 

thickness map (Fig. 3.15) highlight two different orientations of thickness variations. This can 

document the possible location and orientation of the basin during the deposition of the 

Purbeck Limestone Group. The thinner areas were located in the shallowest part of the basin 

and the thickest areas in the deepest part of the basin (northeast-southwest orientation) and 

this can be accentuated with a more important subsidence in the centre part of the basin than 

in the borders. 

In addition, four possible depocentres can be identified in figure 3.15 where the thickness 

of the Purbeck Limestone Group is greater (blue to purple colours). One in the hanging-wall 

block of the Ridgeway Fault to the west, one in the hanging-wall block of the Purbeck Fault to 

the east, one south of Weymouth Bay with a NE-SW axis to the south and a last one south of 

Bournemouth Bay with a NW-SE axis to the south-east (Fig. 3.15). The depocentres located in 

the hanging-wall blocks of the faults with a thinner Purbeck Limestone Group laterally highlight 

syndepositional activity of the Purbeck and Ridgeway Faults. This lenticular depositional 

feature (more developed in the hanging-wall block of the Ridgeway Fault, Fig. 3.15) is very well 

documented in the literature where the deposition occurs preferentially in the centre part in 

the hanging-wall block of the fault (Schlische, 1991; Withjack et al., 2002). The depocentres 
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located to the south of the studied area position two sub-basins, one towards the English 

Channel Basin to the south-west and another one towards the centre of the Wessex Basin to 

the south-east. These depocentres to the south are separated by a thinner Purbeck Limestone 

Group (greenish colours) south of Bournemouth Bay indicating a high in the palaeotopography 

possibly due to less subsidence than in the sub-basins (Fig. 3.15). 
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Figure 3.15 Thickness map of the Purbeck interval. Contour line each 20ms. Red colour corresponds to the absence of the Purbeck interval (either due to deposition and erosion or non-deposition) and purple colour to a thick Purbeck interval 
(values ranging from 0 to 100 ms). Dashed lines position 2-D seismic profiles and white box positions the 3-D block. 
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3.2. Faults 

3.2.1. Ridgeway Fault 

 

The Ridgeway Fault (also known as the Abbotsbury-Ridgeway Fault; Buchanan, 1998; 

Butler, 1998; Harvey and Stewart, 1998; Underhill and Paterson, 1998; Underhill and Stoneley, 

1998; Underhill, 2002; Barton et al., 2011) is an east-west trending fault and appears on the 

seismic profiles to be composed of four faults (Figs. 3.16, 3.18 and 3.19). These faults form a 

fault zone where the main fault is divided into two parallel east-west faults. They are sub-

vertical with an overall normal sense of movement, dipping south and tend to become more 

listric with depth with detachment in the Triassic salt décollement surface (Fig. 3.22; Butler, 

1998). The normal sense of movement (the hanging-wall block has moved downwards) of 

these faults shows their net extensional nature (Figs. 3.18 and 3.19). Associated with them, are 

two minor faults dipping north and forming a small graben structure (Figs. 3.18 and 3.19). 

Major (Fig. 3.19) and minor folds (Fig. 3.18) located in the hanging-wall block and close to the 

fault plans highlight a reverse displacement due to a later inversion phase on this fault 

following a north-south post-Cretaceous compression affecting the whole succession 

(Chadwick, 1993; Ziegler et al., 1995; Smith and Hatton, 1998; Blundell, 2002; Mansy et al., 

2003). 

 

3.2.2. Purbeck Fault 

 

The Purbeck Fault (also known as the Purbeck-Wight Fault, Buchanan, 1998; Butler, 1998; 

Harvey and Stewart, 1998; Underhill and Paterson, 1998; Underhill and Stoneley, 1998; Barton 

et al., 2011) is also east-west trending and four extensional faults have been identified 

(Figs. 3.6; 3.18; 3.19 and 3.22). The main fault is more or less vertical, dipping south with an 

overall normal component. It seems to affect the deposition (syndepositional setting) from the 

Permian with roots in the basement (Figs. 3.18 and 3.19; Butler, 1998). Eastwards, the 

association with two parallel normal faults dipping north and a shorter fault dipping south 

form the Purbeck fault zone (Figs. 3.6; 3.18; 3.19 and 3.22) also known as the Purbeck 

Disturbance in the literature (Underhill and Paterson, 1998). As with the Ridgeway Fault, the 

faults are extensional and the folds located in the hanging-wall block and close to the fault 

plans highlight a later reverse displacement due to an inversion phase following a north-south 

post-Cretaceous compression affecting the whole succession (Underhill and Paterson, 1998). 
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Figure 3.16 Location map showing the faults interpreted from the seismic profiles. 

 

3.2.3. Relay ramp area 

 

A relay ramp area is a zone located between two normal faults, linking the footwall block 

of one fault with the hanging-wall block of another fault and accommodating the displacement 

transfer of two segments of each fault (Chadwick, 1986; Ramsay and Huber, 1987; Larsen, 

1988; Peacock and Sanderson, 1991, 1994). The Ridgeway and Purbeck Faults are likely to be 

connected by a relay ramp area in Dorset as indicated with the offset of the faults and the area 

of low dips and broad outcrop in the relay ramp area (Underhill and Paterson, 1998; Underhill, 

2002). In order to identify a relay ramp area between two extensional faults, it is expected on 

a north-south transect through the relay ramp to find a thin interval in the footwall block, 

slightly thicker in the relay ramp area and tilted perpendicularly to the orientation of the faults 

(Peacock and Sanderson, 1991, 1994) and an increase in thickness towards the fault in the 

hanging-wall block (cross-section B1-B2 in Fig. 3.17A). On a transect north-south and ahead of 

the relay ramp it is expected to find an unconformity on the footwall block and an increase in 

thickness in the hanging-wall towards the fault (cross-section A1-A2 in Fig. 3.17A). On a 

transect north-south and at the start of the relay ramp it is expected to find a thin interval on 

the footwall block and a thick interval with an increase in thickness towards the fault in the 

hanging-wall block (cross-section C1-C2 in Fig. 3.17A). 
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Figure 3.17 Relay ramp. A – Simplified and idealised deposition model schemes in a relay ramp. B – 
GC86-V29 profile interpreted. Note the preservation of Purbeck Limestone Group in the relay ramp 
area. Location in figure 3.2. 
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The deposition of the Purbeck Limestone Group seems to have occurred in between 

Ridgeway and Purbeck Faults as it has been recognised on GC86-V29M and B92-43 profiles 

(Fig. 3.17B). It is difficult to see if the bedding is accentuated and tilted due the tectonic 

inversion (Cenozoic). Due to the poor quality of areas south of the relay ramp and north of the 

Ridgeway Fault on the seismic profiles (Fig. 3.17B), it has not been possible to identify 

(presence or absence) the Purbeck Limestone Group in the footwall block (as other top 

Formations, Fig. 3.17B). It is absent eastwards of the relay ramp area due to an unconformity 

(known as the Albian unconformity and detailed in section 4.3 of this chapter) as well as south 

of the Purbeck Fault (i.e. in the hanging-wall block, Fig. 3.17B) because of erosion post-

inversion (Cenozoic) of the Weymouth anticline or non-deposition within Weymouth Bay 

(Figs. 3.10; 3.15 and 3.22). 

 

3.2.4. Subsidiary faults 

 

These faults are shorter than the Purbeck and Ridgeway Faults and affect only part of the 

Jurassic and/or younger deposits (but not the Purbeck Limestone Group). They are twenty-

three in total and located both to the north and to the south of the two main inverted 

extensional faults (Figs. 3.18; 3.19 and 3.20). They developed under extensional settings 

highlighted by their normal component and were active only during Jurassic and Early 

Cretaceous as they do not affect Upper Cretaceous deposits (Fig. 3.20). 
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Figure 3.18 Geometry and occurrence of Ridgeway Fault following the seismic interpretation.
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Figure 3.19 Geometry of Purbeck Fault and Purbeck fault zone as seen in north-south profiles. 
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Figure 3.20 Subsidiary faults interpreted from seismic profiles. A - GC821-17 profile illustrated the 

stratigraphy in hanging-wall and footwall blocks of the Purbeck Fault. B - GC822-29 profile illustrating 
the stratigraphy in footwall block of the Purbeck Fault. C - GC821-31 profile illustrating the stratigraphy 
in the footwall block of the Purbeck Fault. Subsidiary faults only affect the deposition during the Jurassic 
and Early Cretaceous. Arrows show movement of the faults. They are normal and only the Purbeck Fault 
is inverted. Locations in figure 3.2. 
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4. Tectonic settings and stratigraphy 

4.1. Extensional settings 

 

Figures 3.5B; 3.6; 3.17B; 3.18; 3.19; 3.20 and 3.22 image the geometries of the Purbeck 

and Ridgeway Faults based on the seismic interpretation. Formation of tilted blocks associated 

with extensional faults affecting the Mesozoic strata has been previously identified (Butler, 

1998; Harvey and Stewart, 1998; Underhill and Stoneley, 1998) and they are the main 

characteristics of half-graben development in a rift setting (Gibbs, 1984; Wernicke, 1985; 

Davison and Underhill, 2012). This feature is also identified for the Purbeck interval, the increasing 

thickness on the well correlation panels (Figs. 3.7; 3.8; 3.9; 3.12; 3.13 and 3.14) from the footwall to 

the hanging-wall block documents the syndepositional setting of the Purbeck Fault. 

 

4.2. Inversion setting 

 

The tectonic inversion of the two main faults is highlighted by the formation of anticlines 

(possible reactivated roll-over anticlines) near and towards the faults (e.g. at a bigger scale: the 

Weymouth Anticline in Weymouth Bay, Figs. 3.5B; 3.18; 3.19; 3.21 and 3.22). The timing of this 

inversion is thought to have occurred from the Late Cretaceous to mid-Cenozoic with a 

maximum peak during the Miocene (Ziegler, 1981; Stoneley, 1982; Butler and Pullan, 1990; 

Chadwick, 1993; Butler, 1998; Underhill and Stoneley, 1998) and is linked to the regional alpine 

inversion phase recorded elsewhere in Europe (Phillips, 1964; Stoneley, 1982; Butler, 1998; 

Harvey and Stewart, 1998; Smith and Hatton, 1998; Underhill and Stoneley, 1998). 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 3.21 MBES (Multi-Beam Echo Sounder) data also known as DORIS data interpreted after 
Fleckner (2014). Note the Weymouth Anticline within Weymouth Bay with erosion down to the Corallian 
Group (Oxfordian) in the core of the anticline. 
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4.3. Stratigraphic features 

 

The focus of this study was the identification and interpretation of the Purbeck interval, 

therefore only the top surfaces of the Portland and Purbeck were interpreted. However other 

stratigraphic features can be extracted from the seismic profiles and the borehole data and are 

illustrated with the interpretation of the seismic profile presented in figure 3.22.  

The first feature identifiable is the syndepositional nature of the Purbeck Fault from the 

Early Jurassic until the Early Cretaceous (pre-Albian when the deposition of the Wealden 

Group occurred). This is highlighted by the extensional sense of movement on the fault 

(displacement downwards and to the south in the hanging-wall block of the faults). 

The second feature recognisable is an unconformity that occurred from the Early 

Cretaceous (Albian) until the Late Cretaceous (Campanian). This has been identified by 

previous authors (House, 1958; Lake, 1985; Garden, 1987, 1991; Butler, 1998; Hawkes et al., 

1998, McMahon and Turner, 1998; Underhill and Paterson, 1998; Underhill and Stoneley, 

1998) and the interpretation presented here brings more data to illustrate it. The 

unconformity (known as the Albian unconformity) can be seen prior to deposition of the Gault 

Formation (Albian) as the underlying beds (from the Kimmeridge Clay Formation to the 

Wealden Group) are eroded. Figure 3.22 shows two cases of erosion creating this 

unconformity. North of the Purbeck Fault, on the footwall block, the Lower Greensand 

Formation is in contact with the Kimmeridge Clay Formation while to the south it is in contact 

with the Wealden Group and even more south it is absent. This can be interpreted as an 

exposure or erosion of the footwall block down to the Kimmeridge Clay Formation after the 

deposition of the conglomeratic Wealden Group and prior to the deposition of the Greensand 

Formation. Garden (1987, 1991) studied the provenance of pebbles found in pebbly beds 

deposited during Early Jurassic to Late Cretaceous. He determined that most of the pebbles 

deposited during Albian and Aptian were detritus eroded mainly from Jurassic deposits 

exposed on the Cornubian massif and reworked into the Wessex Basin. Lake and Karner (1987) 

related this Albian unconformity to a major extension phase associated with thermal effects. 

The combination of these previous studies (Lake and Karner, 1987; Garden, 1991) and the 

seismic interpretation presented here indicates that this unconformity resulted most probably 

from an activity of the main faults during the Albian and Aptian. The footwall area was 

exposed to the north leading to erosion of rocks from the Wealden Group to locally the 

Kimmeridge Clay Formation while on the hanging-wall block to the south the erosion was less 

significant (Fig. 3.22). However no derived and reworked clasts from these Groups and 
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Formations were ever identified in the Purbeck Limestone Group deposits (refer to Chapters 2 

and 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.22 Seismic profile GC822-27. A: uninterpreted. B: interpreted. Note thickening of Purbeck 
Limestone Group in hanging-wall block of the Purbeck Fault, to the south and significant erosion/non 
deposition in footwall block of the Purbeck Fault, to the north (see text for description). Arrows show 
direction of movement of the faults. Location in figure 3.2. 
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5. Discussion 

 

The tectonic evolution of the Wessex Basin has been studied since the end of the 19th 

century (Bristow, 1889; Strahan, 1898), and more intensively using subsurface data since the 

discovery of the Wytch Farm oil field (located in Poole Harbour and Bournemouth Bay) in 1973 

(Hinde, 1980; Colter and Harvard, 1981). Although previous studies documented the 

syndepositional activity of the Ridgeway and the Purbeck Faults during the Jurassic and the 

Early Cretaceous (Bristow, 1889; Strahan, 1898; House, 1958, 1989; Phillips, 1964; Stoneley, 

1982; Lake, 1985; Butler, 1998; Harvey and Stewart, 1998;  Smith and Hatton, 1998; Underhill 

and Paterson, 1998; Underhill and Stoneley, 1998; Underhill, 2002), no clear evidence has 

been published concerning the possible syndepostional setting of these faults specifically 

during Purbeck time (Late Jurassic-Early Cretaceous). Underhill (2002) presented a diagram 

proposing a syndepositional setting of the Purbeck Fault during Purbeck time, however he did 

not provide clear data (field or seismic data) supporting his proposed interpreted depositional 

model.  

In this study integration of subsurface data (i.e. 2-D and 3-D seismic profiles and borehole 

data) provides documentation for an increase in thickness from north to south through fault 

blocks in Bournemouth Bay (Figs. 3.7; 3.12 and 3.15). This constitutes clear evidence for a 

syndepositional setting of the Ridgeway and Purbeck Faults during deposition of Purbeck 

sediments. Two other east-west well correlation panels (Figs. 3.7; 3.8; 3.13 and 3.14) together 

with the time thickness map (Fig. 3.15) have identified possibly position of two depocentres, 

one southeast of the studied area with a northwest-southeast trend orientation and one south 

with a northeast-southwest trend orientation during Purbeck time. 

In addition the absence of Purbeck rocks north of the faults and on the footwall blocks 

suggest either a non-deposition or deposition and subsequent erosion of the exposed land to 

the north either long after or penecontemporaneously with the deposition in the hanging-wall 

blocks. If this happened long after the deposition, and if the Purbeck Limestone Group was 

deposited, the subsequent erosion happened on the uplifted footwall blocks possibly during 

the intra Aptian-Albian unconformity (refer to Chapter 2) and prior the deposition of the Gault 

Formation; if the Purbeck Group were never deposited, areas north to the faults would have 

been exposed trhoughout the latest Jurassic and earliest Cretaceous with the deposition of the 

Purbeck Limestone Group in the hanging-wall blocks, this suggests syn-depositional fault 

activity that possibly allowed the area north of the faults to be exposed and eroded. 
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A relay ramp area is thought to be located in the centre part of the studied area and 

linking Ridgeway and Purbeck Faults (Underhill and Paterson, 1998; Underhill, 2002). The 2-D 

seismic data examined in this study seems to image this feature. The Purbeck Limestone Group 

has been identified in the seismic profiles within the relay ramp area although not all elements 

are imaged (Figs. 3.10; 3.16; 3.18 and 3.19) however it is difficult to identify a possible tilting 

(Peacok and Sanderson, 1991, 1994) due to over-print of the tectonic inversion (Cenozoic). The 

Purbeck Limestone Group is absent in footwall areas eastwards of the relay ramp area 

(Fig. 3.10) and in places south of the Purbeck Fault (Figs. 3.10 and 3.17) and the geological map 

(British Geological Survey, 2000) shows that the Purbeck Limestone Group is covered by 

Quaternary deposits in this area. However one exposure described by previous authors 

(Strahan, 1898; Arkell, 1933, 1947; House, 1989), Holworth House in Ringstead Bay (Fig. 3.1), is 

interpreted to contain lower Purbeck deposits in shallow environment (Strahan, 1898; Arkell, 

1947; Townson, 1975; House, 1993; West, 2013c) and constitute the only field exposure in the 

relay ramp area. Together with the seismic and well data presented here it is clear that the 

Ridgeway and Purbeck Faults were active and linked by a relay ramp area during Purbeck time. 

 

6. Conclusion 

 

This chapter presents results from the interpretation of seismic profiles of 2-D onshore 

and offshore seismic profiles and a 3-D block in south Dorset. Two seismic picks, top Purbeck 

and top Portland were targeted to identify possible thickness variations across the studied 

area. Integration of borehole data (both offshore and onshore) allowed the creation of a time 

thickness map and well correlation panels of the Purbeck interval (Purbeck Limestone Group) 

constrained by the Portland and Purbeck surfaces.  

Two east-west extensional faults dipping south, the Purbeck Fault (east part and rooted in 

the basement) and the Ridgeway Fault (west part and rooted in the Triassic salt) were imaged. 

These are linked by a relay ramp imaged on a few seismic profiles. Away from the relay ramp 

the faults evolve into fault zones (respectively Purbeck fault zone and Ridgeway fault zone). 

The better characterisation of the relay ramp area needs integration with field study and will 

be presented in Chapter 7.  

The identification and interpretation of top Portland and top Purbeck picks on the seismic 

lines provide data to create two surface maps, Portland surface map and Purbeck surface map. 

These were used to create a thickness map of the Purbeck interval and identification of 

thickness variations in the Purbeck Limestone Group. Together with well correlation panels 
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(one north-south, and two west-east transects) and seismic profiles it can be seen that the 

deposition seems to preferably occur in the centre part of two sub-basins (greater thickness 

southwards of Bournemouth Bay following a northeast-southwest trend and eastwards 

following a northwest-southeast trend) and in the hanging-wall blocks of the Purbeck and 

Ridgeway Faults rather than in the footwall blocks. The identification of the Purbeck Limestone 

Group within the relay ramp area shows also that the faults were active and propagating at 

this time. This indicates a syndepositional nature of the Purbeck and Ridgeway Faults during 

Purbeck time (Late Jurassic - Early Cretaceous). 

The extension of the seismic interpretation to the entire succession (Triassic to Cenozoic) 

brings new data for the syndepositional nature of the main faults from the Early Jurassic to the 

Early Cretaceous. The unconformity known regionally as the Albian unconformity is identifiable 

and erodes deposits from the Gault until the Kimmeridge Clay Formations. The seismic data 

also images the tectonic inversion highlighted by the reverse movement of the main faults due 

to north-south compression and linked to the alpine inversion phase (Cenozoic) registered all 

across Europe. 
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Chapter 4 

Facies of the Mupe Member, 

Purbeck Limestone Group 
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1. Introduction 

 

Many geologists have studied facies of the Purbeck Limestone Group, but most of them 

have focused on the middle and upper parts of the group, e.g. Durlston Bay (Clements, 1993). 

There have been fewer studies on the details of the lower part of the Mupe Member 

(Westhead and Mather, 1996) or “the Caps and Dirt Beds”, the “Broken Beds” and the “Cypris 

Freestone” of earlier authors (Austen, 1852; Arkell, 1933; House, 1969; Clements, 1993; review 

in Chapter 2). Notable exceptions are West (1975, 1979), Francis (1982, 1983, 1984, 1986) and 

Bosence (1987). In this chapter a new facies classification is proposed for the lower part of the 

Mupe Member of the Purbeck Limestone Group of Dorset (Tab. 4.1) and each of the facies are 

interpreted in terms of their depositional environments (Tab. 4.1). This work is based on 

examination and logging of successions at 22 localities described in Chapter 6 (all measured 

sections are given in Appendix 3), preparation of 228 slabbed specimens and thin sections. 

Classic petrography and microscopy (i.e. plain polarised light or PPL and cross-polarised light or 

XPL) was performed for all the thin sections. In addition to for selected facies the insertion of a 

gypsum plate with 530 nm retardation from the SE quadrant to identify uniaxial/biaxial crystals 

and fast/slow axis (the slow axis is NE-SW orientated gypsum plate used in this study). 

Cathodoluminescence (CL) was also used to identify diagenetic phases. From these analyses 9 

facies were established as listed in table 4.1. The depositional environments of the Mupe 

Member are described in Chapter 6 and the facies distributions across south Dorset are 

presented in Chapter 7. 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1 Facies classification of the lower part of the Mupe Member of the Purbeck Limestone Group and interpretation of depositional environments. Note that the 
numbering corresponds to the one used in the quantitative analysis for facies succession, presented in Chapter 6. 

 

1
38 
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2. Microbialite facies 

 

This facies can be encountered within three beds in the lower part of the Mupe Member, 

Skull Cap, Hard Cap and Soft Cap and sandwiched between three palaeosols, the Basal Dirt 

Bed, the Lower Dirt Bed and the Great Dirt Bed (refer to Chapter 2 for more details). This facies 

is present from the Isle of Portland in the west to Fishermen’s Ledge in the east although it 

tends to disappear eastwards, revealed by its absence in Durlston Bay and further east in 

Portsdown borehole (refer to Chapter 7 for facies distribution). This facies is divided into three 

sub-facies, thrombolite, stromatolite and burrowed peloidal packstone. Mounded structures 

constructed by the three sub-facies are abundant in these three beds. At macro-scale mounds 

are hard limestones containing crinkled laminations (Fig. 4.11), small columns (Fig. 4.8) and/or 

clotted macrofabric (Figs. 4.3B and 4.6). At the micro-scale laminations, alignment of grains 

(mainly peloids), micritic threads and micritic tube networks are common in all these sub-

facies (Figs. 4.4D, 4.5, 4.6, 4.7 and 4.12). The mounds can vary from a rather simple to more 

complicated shapes (Fig. 4.2) and their sizes vary between 50 cm and 20 m in width and 10 cm 

and 3 m in height (refer to Chapter 5 for more descriptions and analysis of shapes and sizes). 

Mounds commonly have cylindrical holes (Figs. 4.2, 4.3D, 4.13 and 4.15) from 5 to 40 cm in 

diameter which exhibits on their inner surfaces the imprints of trees and locally the remains of 

silicified logs, tree branches, tree roots or tree stumps.  

These rocks are interpreted as microbialites following the definition of Burne and Moore 

(1987) as “organosedimentary deposits that have accreted as a result of a benthic microbial 

community trapping and binding detrital sediment and/or forming the locus of mineral 

precipitation”. In addition to this, this thesis follows classifications based on their internal 

structures and the metabolism involved in their growth (Riding, 1977; Burne and Moore, 1987; 

Bosence et al., 2015). From the classification based on the internal structure (Fig. 4.1), only 

two were recognised in this study: stromatolites as “laminated benthic microbial deposits” 

(Kalkowski, 1908; Riding, 1991, 2011a) and thrombolites as “cryptalgal structures related to 

stromatolites, but lacking lamination and characterized by a microscopic clotted fabric” 

(Aitken, 1967; Riding, 2011a). From the classification based on processes involved in the 

growth (Fig. 4.1), trapping and binding, abiotic precipitation, biologically induced precipitation 

and biologically influenced precipitation were possibly identified (Riding 1977; Burne and 

Moore, 1987; Dupraz et al., 2009; Bosence et al., 2015). 
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Figure 4.1 Classification of microbialites. A – Relating to the internal structures (Riding, 2011a). B – 
Relating to the metabolisms/processes involved in microbial growth (redrawn after Riding, 1977; 
Bosence et al., 2015). 
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Figure 4.2 Mounds as seen in the field. Outlines of the mounds in white dashed lines in all the 

pictures. A – Mound showing a 50 cm hole with tree bark imprint in the inner part, plan view (Soft Cap, 
Fossil Forest). B – Six laterally stacked mounds, plan view (Soft Cap, Fossil Forest). C – Cross section of a 
mound showing the growth layers (Soft Cap, Lulworth Cove). D – Cross section across two mounds (Skull 
Cap, Tout Quarry, Isle of Portland). E – Cross section of a mound with 10 centimetre wide holes (white 
arrows) and inter-mound bedding (Hard Cap, God Nore, Isle of Portland). F – Cross section of a mound 
with silicified roots of ancient trees at the base (white arrows, Hard Cap, east coast of the Isle of 
Portland). G – Cross section of a mound around tree trunks and branches most probably in living 
position, the white arrows indicate tree moulds (Hard Cap, Freshwater Bay, Isle of Portland). 
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2.1. Thrombolite sub-facies 

2.1.1. Description 

 

This sub-facies is abundant in three beds, the Skull Cap, the Hard Cap and the Soft Cap and 

its thickness varies between 5 and 50 cm. This sub-facies is always found overgrowing the 

burrowed peloidal packstone sub-facies (Figs. 4.13A and 4.15) and/or the stromatolite sub-

facies (Figs. 4.11A and4.15). Tree moulds are commonly found associated with this sub-facies 

(Figs. 4.2, 4.3D and 4.15) and typically has greater thickness above than below the tree moulds 

(Fig. 4.3D). 

At macroscale this sub-facies is characterised by centimetre to decimetre scale growth 

layers (Fig. 4.3A-B) and is the main components of the mounded structures (Figs. 4.3D and 

4.15). The growth layers are made of a clotted macrofabric (Fig. 4.2B) and can contain 

occasionally millimetre scale columnar structures (Fig. 4.8A-B). In plan view, the external 

growth layer can exhibit a cerebroid texture (Fig. 4.3C) or just a bumpy surface (Fig. 4.1B). The 

macro-pores of this sub-facies may be filled with geopetal sediment (Fig. 4.3E). Locally on the 

Isle of Portland and only in the Hard Cap bed, brown to dark red radiating crystal aggregates 

are found on the walls of cavities (Fig. 4.3F). These aggregates crystals are between 1 mm and 

2 cm long made of about 500 µm flat and between 1 mm and 2 cm tabular to elongated 

crystals are interpreted to be barite (also found associated with the Burrowed peloidal 

packstone sub-facies presented in section 2.3 of this chapter). This sub-facies reveals shades of 

grey, white to pale yellow at the outcrop and pale grey or white when broken. 

At microscale the clotted macrofabric (Fig. 4.4C) exhibits mesoclots/lumps (1 to 2 mm) 

with micritic walled tubes (Figs. 4.4D, 4.5, 4.6 and 4.7) and micritic threads (Figs. 4.4D and 4.5) 

within a fine-grained, non-luminescent to micritic matrix (Fig. 4.4B). The tubes are radiated 

towards the external surface of the Thrombolite sub-facies (Figs. 4.7 and 4.8B) but at a 

smaller-scale they are usually circular in cross-section and can be found in all directions 

(Figs. 4.6 and 4.7A) or rather elongated and straight (Fig. 4.7C, E, G) in longitudinal sections. 

The diameters of the tubes are mainly between 30 and 40 µm but vary between 20 and 80 µm 

and the branching can show 3 different morphologies, dichotomous (Fig. 4.7C), right-angle 

(Fig. 4.7E) or group of acute angle branching (Fig. 4.7G). The clots are located in the external 

part of the mounded structures and the internal structure of the clots presents two distinctive 

layers. The internal layer is made of a finely laminated layer made of micritic laminae (from 50 

µm and up to 600 µm thick) non-luminescent under CL and the external layer comprises radial 

calcite crystals that alternate between dull and bright orange under CL although this layer is 
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not always present (from 0 and up to 500 µm thick, Fig. 4.7C-D). The external part of this 

thrombolite sub-facies (i.e. the mounds) and in contact with the Intraclastic peloidal 

packstone-grainstone facies (i.e. the inter-mound) is usually made of the small two-layer clots 

just described (Fig. 4.8C-D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.3 Macroscale thrombolite sub-facies. A – Clotted texture of a simple mound (Soft Cap, 

Fossil Forest). B – Zoom in square in A of the clotted texture. C – Cerebroid texture in plan view (Hard 
Cap, Fossil Forest). D – Mound with the tree mould, note the difference in thickness below the tree 
mould and above (Hard Cap, God Nore, Isle of Portland). E – Geopetal sediment (arrows) infilling the 
base of framework pores (SH1, Hard Cap, Sand Hole, Isle of Portland). F – Barite crystal aggregates 
(arrows) infilling pores (SH1, Hard Cap, Sand Hole, Isle of Portland). 

 

Ostracods (Fig. 4.4C) and molluscs (Fig. 4.4D) are found either in the micritic matrix or the 

inter-mound facies made of the Intraclastic peloidal packstone-grainstone facies described in 

section 3.1 of this chapter.  
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Commonly pale yellow to brown nodular crystals in PPL (Fig. 4.4E) with a first order (grey 

scale) radial extinction cross in XPL (Fig. 4.4F) interpreted to be chalcedony spherules are 

found in this sub-facies. When inserting a gypsum plate the NE and SW quadrants of the cross 

show a second order extinction (blue to green, positive retardation) and the NW and SE 

quadrants a first order (yellow, negative retardation, Fig. 4.4G). These crystals can be either 

tiny with a more spherical shape between 50 and 500 µm isolated in the matrix (Fig. 4.4A) or 

bigger up to 3 mm and with an irregular shape (framboid) and made of several smaller 

spherules about 2 µm in diameter (Fig. 4.4E-G). The internal structure of the spherules is made 

of alternation between dark and bright layers (between 10 and 20 µm thick, Fig. 4.4E) both 

non-luminescent under CL.  

Locally on the Isle of Portland and only in the Hard Cap bed, are found crystal aggregates 

of elongated and colourless to grey to pale yellow in PPL interpreted to be barite (Fig. 4.4H). 

These crystals can form botryoids and infilling the pore space (Fig. 4.4H). The crystals are 

between 1 and 2 mm long (Fig. 4.4H) and have a first order rolling extinction in XPL (Fig. 4.4I). 

When inserting a gypsum plate these crystals show a first order straight extinction of the 

elongated crystals perpendicular to the slow axis (negative retardation) and a second order 

straight extinction of the elongated crystals parallel to the slow axis (positive retardation, Fig. 

4.4J). 

The pore types are intrergranular, growth framework and microporosity. The pore space 

may be filled by a fine geopetal sediment dull orange under CL (when present, Fig. 4.4A-B) 

and/or a mosaic to blocky spar calcite cement (Fig. 4.4A) organised into two cements under CL 

(Fig. 4.4B). The first cement is isopachous, thin (50 to 100 µm), lining pores and fractures and is 

zoned (non-luminescent, bright and non-luminescent orange, Fig. 4.4B). The second cement is 

made of bigger calcite crystals (100 to 500 µm), that tend to occupy the remaining pore space 

and are zoned dull brown to orange (Fig. 4.4 B). 
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Figure 4.4 Microphotographs of the thrombolite sub-facies. A – Geopetal sediment infill of a tubular 
structure in a mound in PPL (CQ2, Skull Cap, Coombefield Quarry, Isle of Portland). B – CL image showing 
luminescence of silt sediment and spar blocky cement (CQ2, Skull Cap, Coombefield Quarry, Isle of 
Portland). C – Clots/lumps at the external border of mounded structure in PPL (BQ8, Hard Cap, 
Broadcroft Quarry, Isle of Portland), mound on the right and peloidal grainstone (i.e. inter-mound) on 
the left. D – Gastropod in microcrystalline fabric, micritic threads and walled tubes in PPL (GN6, Hard 
Cap, God Nore, Isle of Portland). E – Chalcedony spherules in micritic fabric in PPL (WLC3, Hard Cap, 
West Lulworth Cove). F — Same as E in XPL showing the extinction crosses centered in the spherules 
and the straight extinction in the microcrystalline silica. G — Same as E and F in XPL with gypsum plate 
showing a positive retardation in the NE and SW quadrants and negative in the NW and SE quadrants. H 
– Geopetal sediment and boytroid crystals of barite in the framework pores in PPL (SH1, Hard Cap, Sand 
Hole, Isle of Portland). I — Same as H in XPL showing the rolling first order extinction if the botryoids. J 
— Same as H and I in XPL with gypsum plate showing a positive retardation of the elongated crystals of 
barite perpendicular to the slow axis and negative retardation parallel to the slow axis. 
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2.1.2. Interpretation 

2.1.2.1. Clotted macrofabric 

 

The clotted macrofabric with micritic walled tubes and micritic threads at microscale is 

interpreted to be the result of microbial activity. Following Burne and Moore (1987) and Riding 

(1977) a clotted macrofabric in a microbial carbonate is classified as a thrombolite (Fig. 4.1). 

These thrombolites can develop in a wide range of environments (i.e. freshwater, brackish, 

alkaline water and continental or marine environments) and extreme conditions (such as high 

temperature or hypersaline conditions) so they are not be critical in the determination of the 

depositional environment. Thrombolites are very well documented all over the world both in 

the fossil record (Fisher, 1965; Aitken, 1967; Garrett, 1970; Awramik, 1971, 1982, 1992; 

Monty, 1973; Walter, 1976; Latham and Riding, 1988; Grotzinger, 1989; Riding, 1991, 2006, 

2011a, 2011b; Leinfelder and Schmid, 2000; Riding and Awramik, 2000; Awramik and 

Buccheim, 2015) and in modern environments (Logan, 1961; Vasconcelos and McKenzie, 1997; 

Arp et al., 1998, 1999a,b, 2003; Freytet and Verrecchia, 1998, 1999; Wright, 1999; Dupraz et 

al., 2004; Wright and Wacey, 2005; Dupraz and Visscher, 2005). In the fossil record, 

thrombolites are found for example in the Green River Formation, USA (Fig. 4.6 C, D; Bradley, 

1929; Eardley, 1938; Carozzi, 1962; Eugster and Surdam, 1973; Sandberg, 1975; Surdam and 

Wray, 1976; Leggitt et al., 2007; Bristow et al., 2012; Buchheim and Awramik, 2013; Sarg et al., 

2013). In modern environments lacustrine thrombolites are found for example in the Lake 

Thetis (Australia, Grey et al., 1990; Reitner et al., 1996; Grey and Planavsky, 2009), the Lake 

Clifton (Australia, Burne and Moore, 1993; Moore, 1993; Konishi et al., 2001; Luu et al., 2004), 

the Great Salt Lake (Utah, USA, refer to Chapter 6 for more description) and the Laguna 

Bacalár (Mexico, refer to Chapter 6 and Appendix 1 for description).  

 

2.1.2.2. Micritic walled tubes 

 

The tubes and threads composing this thrombolite sub-facies are consistent in size and 

shape with traces left by calcified microbial filaments (Fig. 4.6) as described by Golubić (1976) 

and Wright and Wright (1985). The micritic tubes being formed by calcification of the mucus 

sheath of filaments around the trichomes of the microbial filaments (Fig. 4.5). The micritic 

threads are considered to have formed by a micrite infill in empty threads (Fig. 4.5). In this 

study the main features encountered are the micrite-walled tubes that together with the 

clotted macrofabric and the clots/lumps that form the Thrombolite sub-facies in the mounds. 
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Figure 4.5 Schematic diagram of microbial filament organisation and calcification types and results 
(redrawn from Wright and Wright, 1985). Comparison between modern microbial filament on the left of 
the image and ancient with microphotographs of two samples for the Hard Cap bed on the right. 

 
 
During the growth of the thrombolites, microbial filaments can incorporate gastropods 

(Fig. 4.4D), peloids (Fig. 4.4C-D) and ostracods. The thrombolite growth direction is also 

identifiable thanks to the preferential orientation of the microbial filaments at microscale and 

the orientation of the clotted texture (small columns and clots, Fig. 4.7A, B). Figure 4.3D shows 

that the thrombolites are thicker above tree moulds than below. This indicates that 

thrombolites were preferentially growing upwards and towards light. It is also well known and 

well documented that there are cyanobacteria involved in the early calcification of the 

microbial filaments (Walcott, 1914; Aitken, 1967; Awramik and Margulis, 1974; Monty and 

Hardie, 1976; Krumbein et al., 1977; Dupraz et al., 2009). These cyanobacteria are 

photosynthetic organisms that are phototrophic. The thicker part of the thrombolites being 

above the tree moulds, shows that the microbial activity was mainly located above the tree 

moulds and that the microbes were most likely cyanobacteria growing upwards to catch as 

much light as they could for the photosynthetic process.  At a smaller scale the orientation of 

the small columns and clots perpendicular to the edges of the mounds (Fig. 4.8A, B) with 

convex-up layering (Figs. 4.3A, D and 4.8A) also implies an upwards growth direction 

(Gebelein, 1969; Kennard and James, 1986; Janhert and Collins, 2012). 
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Figure 4.6 Clotted microfabrics. A – Micritic walled tubes in PPL (SWB2, Skull Cap, South West 

Bowers, Isle of Portland). B – Clotted microstructure in PPL (WLC3, Hard Cap, West Lulworth Cove). C – 
Photomicrograph of tubular or filamentous texture from the Green River Formation in PPL (Utah, USA, 
from Chidsey et al., 2015). D – Photomicrograph of clotted texture from the Green River Formation in 
PPL (Utah, USA, from Chidsey et al., 2015). 

 
The morphologies, sizes and type of branching of the microbial filaments help to 

determine possible taxonomy (genus) of the fossil cyanobacteria (Wray, 1977). However this 

cannot be used as palaeoenvironmental indicators as no clear modern day equivalent can be proven. 

In this study the classification defined by Wray (1977) was used. The filaments that do not 

show any preferential orientation, no branching and found in all directions are considered to 

be Girvanella (Fig. 4.7A-B). Girvanella is very common in fossil records from the Cambrian to 

Cretaceous and is found worldwide (Klement and Toomay, 1967; Wray, 1977). The other types 

of filaments found in this study show some similar characteristics, they have more or less the 

same size about 30-40 µm in diameter and with an elongated and straight shape. As a 

consequence branching types will be critical to determine possible genera. Wray (1977) 

defined dichotomous branching to be representative of Ortonella genus (Fig. 4.7C-D); the 

right-angle branching of a single branch to be representative of Cayeuxia genus (Fig. 4.7E-F) 

and the branches that form groups of acute angles to be representative of Hedstroemia genus 
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(Fig. 4.7G-H). The four different morphologies described in the section above of this sub-facies are 

thought to corresponds to these four genera (Fig. 4.7). 
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Figure 4.7 Microbial filaments taxonomy. Typical branching on left bottom of C, E and G are after 
Wray (1977). A – Girvanella from the Skull Cap (HB6, Hell’s Bottom). B – Girvanella from the Simla-Blue 
Ridge Formation (Upper Devonian) of Alberta, Canada (from Scholle and Ulmer-Scholle, 2003). C – 
Ortonella from the Skull Cap (WT1B, Worbarrow Tout). D – Ortonella from the Mississipian of England 
(from Johnson, 1943). E – Cayeuxia from the Hard Cap (PQ6, Portesham Quarry). F – Cayeuxia from the 
Kesrouane Limestone (Upper Jurassic) of Jabal Jai, Mount Lebanon, Lebanon (from Basson and Edgell, 
1971). G – Hedstroemia from the Hard Cap (WT3, Worbarrow Tout). H – Hedstroemia from Ordovician 
deposits of the Tarim Basin, northwest of China (from Liu et al., 2016). 

 

As described in the previous section, the external part of the Thrombolite sub-facies is 

made of layered clots. The first layer made of micritic laminae (layer 1 in Fig. 4.8C-D) is a 

stromatolitic layer as observed in ancient and modern environment in the external part of a 

microbial mound (Fig. 4.8E-F; Wray, 1977, Fig. 78; Della Porta, 2015). The alternation between 

light and dark layers is the result of the trapping and binding process typical for stromatolite 

development (Monty, 1976; Riding, 1977, 1991; Pentecost, 1991; and described in section 2.2 

of this chapter). The second layer made of radial calcite (layer 2 in Fig. 4.8C-D) may be due to 

two mechanisms. Microbially induced calcite can explain it as the radial structures can be due 

to microbial filaments driving precipitation of calcite crystals (Monty, 1976; Cross and 

Klosterman, 1981; Monty and Mas, 1981; Riding, 1991; Freytet and Verrecchia, 1998). 

However the radial calcite cement found here does not show any clear evidence of microbial 

influence (i.e. microbial filament moulds nor laminations). This calcite cement is most likely 

due to physico-chemical (abiotic) precipitation and this is very common in lakes and ephemeral 

pond environments where it creates a calcite fringe or coating around pretty much everything 

present in the water (Pedley, 1990; Freytet and Verrecchia, 1998; Gierlowski-Kordesch, 2010; 

Della Porta, 2015). This kind of calcite cement has already been suggested and described for 

the Purbeck Limestone Group of Dorset by Perry (1994) (refer to Chapter 2). Perry calls these 

“freshwater tufas” and demonstrates that to obtain such fringe cement, a protected environment 

is needed with an overconcentration of carbonate ions in freshwater. It is likely that this 

mechanism took place at Purbeck time and is the origin of this calcite fringe cement. 
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Figure 4.8 Growth direction and clots. A – Mound showing columns in the external part with a 
round top surface. Black box locates B (Hard Cap, God Nore, Isle of Portland). B – Detail of columns with 
clots, note the very external layer of the clots visible at that scale and detailed in C, D (Hard Cap, God 
Nore, Isle of Portland). C – Details of one clot with layered organisation in PPL. Layer 1 is a laminated 
layer; Layer 2 is made of radial calcite crystals (HB6, Skull Cap, Hell’s Bottom). D – CL image of C showing 
luminescence of diagenetic phases. E – Archaeolithoporella encrusting laminae in PPL (Permian, Texas, 
USA Wray, 1977). F – Tight dense micrite laminae overlain by microsparite crusts in PPL (white arrow, 
Mono Lake, California, USA Della Porta, 2015). 
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2.1.2.3. Chalcedony spherules 

 

The pale yellow to brown radial crystals (Figs. 4.4E and 4.9A) show an extinction cross 

centered that indicates that they are uniaxial crystals (Figs. 4.9B and D; Gribble and Hall, 1985; 

Nelson, 2014), an increasing birefringence (blue) on the NE and SW quadrants (according to 

Michel-Lévy chart) and a decreasing birefringence (yellow) in the SE and NW quadrants 

(Fig. 4.9C, H). Because the birefringence increases in the quadrants parallel to the slow axis of 

the gypsum plate these crystals are positive (Fig. 4.9D; Gribble and Hall, 1985; Nelson, 2014). 

The aspect in PPL (Figs. 4.9A and G) and the cross extinction in XPL (Figs. 4.9B, D and E) show 

typical features of silica. The birefringence, when the gyspum plate is inserted, shows typical 

extinction of quartzine crystals or length-slow chalcedony (Fig. 4.9C, E , F). These can be found 

as spherules (Fig. 4.9A-C) and as microcrystalline (Fig. 4.9G-I). Boggs (2009) demonstrated that 

chaldecony often develops a spherulitic structure and that it is the main mineral for the 

formation of cherts. He also described that the brownish colour is due to water inclusions in 

layers. Because the spherules in this sub-facies are not colourless they are interpreted to result 

from recrystallisation of the micritic matrix and the dark and bright layers are growth layers 

maybe with some water inclusions. Folk and Pittman (1971) demonstrated the importance of 

identifying length-slow chalcedony as evidence of former evaporites and took as an example 

the quartzine described by West (1964) from the Purbecks in Durlston Bay. West (1973) in a 

discussion specified that length-slow chalcedony does not always indicate vanished evaporites. 

He explained that celestite and lutecite are positive evidence of former calcium sulphate 

evaporites (as West, 1964 and 1975 found in Durlston Bay). In this study length-slow 

chalcedony replaces micritic texture of the thrombolites and there is no clear evidence of 

former evaporites (such as evaporite pseudomorphs as found in overlying beds of the Cypris 

Freestone, see section 10 of this chapter). Bustillo (2010) proposed that the source of silica in 

lacustrine environments is mainly from redistributed biogenic silica (diatoms and phytoliths) 

because this is very unstable and easily dissolved. Bustillo (2010) also specified that 

microbialite carbonates are preferential sites for precipitation of this dissolved silica when the 

pore fluids become oversaturated with regard to silica. In fact the decomposition of organic 

matter of the biofilms lowers the pH due to increase in CO2 content that triggers calcite 

dissolution and favours silica precipitation (Siever, 1962; Knoll, 1985; Konhauser and Ferris, 

1996; Woodruff et al., 1999; Konhauser et al., 2004; Bustillo, 2010). This mechanism is thought 

to be responsible of the replacement of the micritic thrombolites in chalcedony rather than as a 

replacement of evaporites, because chalcedony spherules are only found within the thrombolites. 
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Figure 4.9 Microphotographs of chalcedony spherules. A – Replacing micrite in thrombolite sub-
facies with a core darker than the rims in PPL (TQ7, Hard Cap, Tout Quarry, Isle of Portland). B – Same as 
A in XPL showing the extinction crosses of the spherules. C – Same as A and B in XPL with gypsum plate 
showing a second order extinction (positive retardation) in the NE and SW quadrants and a first order 
extinction (negative retardation) in the NW and SE quadrants (see text for explanation). D – Expected 
extinctions for uniaxial crystals in XPL and positive crystals with gypsum plate (redrawn after Nelson, 
2014). E – Detail of a spherulite (Kerrouchene, Meknès-Tafilalet Region, Morocco, ©Amir Akhvan). F – 
Same as E in XPL with gypsum plate showing that length-fast chalcedony spherulite is surrounded by 
quartzine (length-slow chalcedony) which in turns is surrounded by length-fast chalcedony. G – 
Quartzine (length-slow chalcedony) aggregate replacing micritic matrix of the thrombolite (TQ7, Hard 
Cap, Tout Quarry, Isle of Portland). H – Same as G in XPL with gypsum plate showing that the aggregates 
display a microcrystalline texture rather than nodular. I – Microcrystalline quartz infilling pores in 
oncolitic limestone in XPL with gypsum plate of the Triassic Cerro Puntundo Formation (San Juan, 
Argentina, modified after Benavente et al., 2014). 

 

2.1.2.4. Barite crystal aggregates 

 

The crystal aggregates only found on the Isle of Portland that are brown to dark red 

radiating crystals at macro-scale correspond to the colourless to grey to pale yellow crystals 

described above at microscale (in PPL). They form elongated crystals (Figs. 4.3F and 4.10) that 

can form aggregates (Fig. 4.10A-B), twisted crosses (Fig. 4.10C-D) and botryoids (Fig. 4.10E-F). 

The morphologies and colours resemble barite crystals and aggregates found worldwide 

(Fig. 4.10). The red to brown colour is thought to be oxidised iron-rich barite. Petrographic 

analyses confirm this as these crystals are elongated, “dirty” and sometimes feather like in PPL 
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(Fig. 4.10G) and with rolling first order extinction in XPL due to the botryoidal morphology 

(Fig. 4.10H). The extinctions, after insertion of a gypsum plate from the SW quadrant, show 

that the crystals present a second order extinction perpendicular to the slow axis and a first 

order extinction parallel to the slow axis (Fig. 4.10I) which define negative crystals. 

Figure 4.10J to L (with gypsum plate inserted from the NE quadrant) show typical barite 

crystals extinctions that are similar to those found in the Purbeck. The study and comparison 

of these crystals both at macro- and micro-scale help the identification of oxidised barite 

crystals in this sub-facies. Barite crystals can be found either as sedimentary deposits (in which 

case it forms a solid solution series with Celestine; Hanor, 2000) or as a diagenetic feature 

(Hanor, 2000). In the former case stratiform barites are expected to deposit while in the latter 

case barite is expected to crystallise in pore space as dispersed cements or spherules (Gribble 

and Hall, 1985; Hanor, 2000). In the Hard Cap bed on the Isle of Portland, barite crystals and 

aggregates are found infilling pores and are clearly diagenetic features rather than 

sedimentary deposits.  Breit et al. (1990) studied dispersed barite cements of the Morrison 

Formation (Late Jurassic sandstone deposits) exposed in the Colorado Plateau (Colorado, USA) 

dispersed over a 250 by 250 km area. They found that barite crystallisation is located on a 

similar extent as underlying bedded evaporite deposits from the Hermosa Formation 

(Pennsylvanian) from 2 km below. They found high concentration of sulphate and strontium 

contents in the barite and suggested that ascending sulphate-rich fluids are at the origin of 

these barite cements. The fluids would have circulated through the Dolores fault zone in 

western Colorado and led to the formation of the dispersed barite cements in the sandstones 

of the Morrison Formation (Breit et al., 1990). In the Purbeck limestones, barite is found as 

cements however only precipitated in the Hard Cap bed on the Isle of Portland. Open joints are 

known by locals as “gullies”, “slyvers”, “southers”, “north-easters” or “rangers” depending on 

the direction, to cross-cut the Isle of Portland and create a complex joint network (Hounsell, 

1952; Godden, 2012) however no studies were undertaken to understand the timing of joint 

formations or their maximum depth extent. Thick evaporite deposits (about 500 m) of the 

Mercia Mudstone Group are found deeper below the Purbeck Limestone Group (about 1.5 km) 

in the Wessex Basin (Underhill and Stoneley, 1998). If a similar mechanism as the Morisson 

Formation of the Colorado Plateau was at the origin of the barite, dispersed cements would be 

expected in a much broader area and not only in one bed. Further analyses such as strontium 

isotopes and fluid inclusions are needed to decipher the source of the fluids that led to the 

precipitation of this barite. 
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Figure 4.10 Barite crystals and aggregates. A – Stereo zoom microscope photograph of barite 
aggregates (Hard Cap, Sand Hole, Isle of Portland). B – Cockscomb barite crystals from a quartz spherule 
(Calton Hill Quarry, Blackwell-in-the-Peak, Derbyshire, U.K., ©Andy Thompson). C – Barite crystals 
forming a twisted cross (Hard Cap, Sand Hole, Isle of Portland). D – Barite crystals and mimetite on 
fluorite (Montmeniers Mines, Beaujeau, Rhône-Alpes, France, ©Chollet Pascal). E – Botryoidal barite 
(Hard Cap, Sand Hole, Isle of Portland). F – Acicular barite crystals (Warden Point, Isle of Sheppey, Swale, 
Kent, U.K., ©Bill Dameron). G – Botryoidal barite overgrowing geopetal sediment in framework pores in 
PPL (TQ7, Hard Cap, Tout Quarry, Isle of Portland). H – Same as G in XPL. I – Same as G and H in XPL with 
gypsum plate showing the second order extinction of the elongated crystals parallel to the slow axis and 
first order perpendicular. J – Barite aggregate in PPL (from Jóźwiak-Niedźwiezka et al., 2015). K – Same 
as J in XPL. L – Same as J an K in XPL with gypsum plate inserted from the NE quadrant showing second 
order extinction parallel to the slow axis and first order perpendicular. 

 

 
 
The geopetal sediments at the base of the framework pores (Fig. 4.3E) specify the way up 

which corresponds to the present vertical position. This feature shows that most probably the 

thrombolite sub-facies has remained in the same position since its deposition. 

The rather coarse-grained texture (peloidal packstone-grainstone) of the interdigitated 

inter-mound facies indicates a high energy and the occurrence of brackish water ostracods 

(Strahan, 1898; Barker et al., 1975; Anderson, 1985; Horne, 2002) and gastropods (Strahan, 

1898; Arkell, 1941; Clements, 1973; Radley, 2002) suggest a brackish water condition (rather 

than freshwater condition suggested by Perry, 1994) in a shallow marginal lacustrine 

environment. 

 

2.2. Stromatolites 

2.2.1. Description 

 

This sub-facies is found very locally and only at the bottom of the Hard Cap bed 

(Fig. 4.11A) forming lenticular beds of about 5 to 10 cm thick. These lenticular beds are not 

always present but when they are, they are located below one of the mounds described in the 

previous section of this chapter. At macroscale this sub-facies exhibits crinkled laminations of 

about 2 to 5 mm thick (Fig. 4.11B). This sub-facies appears as shades of grey at the outcrop and 

white to grey when broken. 

At the microscale this sub-facies is made of a peloidal packstone to grainstone which 

presents alignment of vertically stacked peloids (Fig. 4.12A) and vertical micritic tubules 

(Fig. 4.12B), both normal to the laminations. Horizontal laminations can also be present, about 

1 mm thick and highlighted by micritic horizons.  

Peloids (Fig. 4.12A, B) and few ostracods (Fig. 4.12A) are found in this sub-facies. The 

porosity type is intergranular to vuggy (Fig. 4.12A, B). 
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Figure 4.11 Stromatolite facies in the field. A – Hard Cap from Portesham Quarry with stromatolitic 

bed at the bottom. B – Crinkled laminations, close-up view on white box from A. C – Crinkled 
laminations from the Cararra Formation (Early Cambrian, western USA, from Grotzinger, 2011). D – 
Crinkled laminations in a domal structure from the Lake Clifton (western Australia, from Phillips, 2009). 
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Figure 4.12 Stromatolite microfacies. A – Peloidal packstone with micritic tubules in PPL (SWB4, 
Hard Cap, South West Bowers, Isle of Portland). B – Peloidal grainstone with vertically stacked peloids in 
PPL (BQ4, Hard Cap, Broadcroft Quarry, Isle of Portland). C – Ancient stromatolite with micritic tubules 
from Mavor Formation in PPL (Paleoproterozoic) at Sanikiluaq, Belcher Islands (Qikiqtaaluk Region, 
Nunavut, Canada, from Hoffmann, 1977). D – Modern stromatolite with stacked peloids from Lee 
Stocking Island, Bahamas (from Browne et al., 2000). 

 

 

2.2.2. Interpretation 

 

The stromatolite sub-facies found at the base of the Hard Cap bed, either below or 

surrounded by thrombolite mounds shows that the development of these stromatolites can be 

either older or contemporaneous with initial thrombolite development. Following the Logan et 

al. (1964) classification these stromatolites can be classified as Spaced Laterally Linked 

Hemispheroid (LLH-S). 

Alignment of vertically stacked peloids and vertical micritic tubules are due to microbial 

activity and are relicts of erected microbial filaments trapping sediment (Gebelein, 1969; 

Burne and Moore, 1987; Pentecost, 1991). The micritic horizontal laminae are also relicts of 

microbial filaments binding grains trapped when the filaments are prostrate (Gebelein, 1969; 

Burne and Moore, 1987; Pentecost, 1991). Trapping and binding together with induced 

cementation are the principal mechanisms used by microbes and in particular cyanobacteria 
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(Awramik and Margulis, 1974) to form layered structures (Monty, 1965, 1976; Gebelein, 1969; 

Golubić, 1973; Riding, 1977, 1991; Pentecost, 1988, 1991; Riding, 1991, 2011a, 2011b; Dupraz 

and Visscher, 2005). 

Following the Burne and Moore (1987) and Riding (1991) classifications laminated 

macrofabrics together with trapping and binding process are typical features of stromatolites. 

Stromatolites are very well documented all over the world both in the fossil record (Fig. 4.12C; 

Kalkowsky, 1908; Vologdin, 1962; Hofmann, 1969, 1973, 1977, 2000; Walter, 1976; Grotzinger, 

1989; Grotzinger and Knoll, 1999; Awramik et al., 2000) and in modern environments 

(Fig. 4.12D; Browne et al., 2000, Jahnert and Collins, 2011, 2012; Baskin et al., 2012; Bosak et 

al., 2013; Della Porta, 2015). 

The peloidal micrograinstone with some ostracods indicates that these stromatolites most 

likely developed into rather quiet marginal lacustrine environment. 

 

2.3. Burrowed peloidal packstone sub-facies 

2.3.1. Description 

 

This sub-facies is found only in the Hard Cap and Soft Cap beds and associated with trees. 

It forms isopachous sub-circular casing or collar around trees and varies in thickness between 2 

and 15 cm (Fig. 4.13C). When this sub-facies is found on a plan-view horizontally around fallen 

trees or vertically around tree stumps (as for the Soft Cap bed) its length varies between 50 cm 

and 3 m. The inner surface of this casing preserves moulds of the longitudinally ribbed external 

surface of the trees (Fig. 4.13). These will be referred as tree moulds in this thesis. Within these 

tree moulds are commonly found geopetal sediments overlain by calcite cements (Fig. 4.13) and 

only on few locations on the Isle of Portland barite macro-crystals are also found (Fig. 4.13) as 

described in the previous section. In very rare locations (i.e. Chalbury disused quarry, Appendix 

3) this sub-facies is silicified along with the adjacent tree wood (Fig. 4.13). It appears with grey to 

beige colours at outcrop and white to beige when freshly broken. The casing is composed of a 

complex sinuous and irregular mm-scale tubular network within a fine peloidal packstone 

texture (Fig. 4.13B). The tubular structures can be orientated radially away from the trees 

(Fig. 4.13B) or do not show any preferential orientation (sinuous network). 
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Figure 4.13 Burrowed peloidal packstone macrofacies. A – Occurence of the burrowed peloidal 

pqckstone sub-facies around tree moulds and overlain by the thrombolite sub-facies (Hard Cap, God 
Nore, Isle of Portland). B – Burrows as seen in the field around tree moulds (Soft Cap, Fossil Forest, 
50°36’58.37”N; 2°14’23.09”W). C – Mound from God Nore with location of Thrombolite and Burrowed 
peloidal packstone macrofacies. Note the Burrowed peloidal packstone all around the tree mould (Hard 
Cap, God Nore, Isle of Portland). D – Close-up view on the Burrowed peloidal packstone sub-facies from 
the box in C. E – Partly silicified Burrowed peloidal packstone sub-facies around a branch mould (Hard 
Cap, Chalbury). 

 

 
 
 
 
 
 
 
 
 
 

 



 

161 
 

At the microscale the matrix is made of mudstone to wackestone with some peloids 

(Fig. 4.14B-F) and non-luminescent under CL as described previously. Chalcedony spherules are 

commonly found in the micritic matrix (Fig. 4.14D-I) and are similar to the chalcedony found in 

the Thrombolite sub-facies. They are yellow to brown in PPL with a first order cross extinction 

in XPL and with second order extinction in the NE and SW quadrants and first order in the NW 

and SE quadrants in XPL with gypsum plate (Fig. 4.14G-I). The tubular structures commonly 

show micritic laminated wall between 50 and 200 µm wide (Fig. 4.14A-F) and stacked peloids 

about 30 µm in diameter (Fig. 4.14B-F). Those tubular structures are sub-circular to oval in 

cross-section (Fig. 4.14B-F) and vary between 0.5 to 1 mm in diameter. Note that the walls and 

stacked peloids are not always present (Fig. 4.14C, F). The tubular structures are often filled in 

with geopetal sediments at the bottom overgrown by sparry calcite cements (Fig. 4.14C-E) that 

have the same luminescence under CL as described previously. The geopetal sediments show 

three different orientations: they either lie at the bottom of the tubular structures (Fig. 4.14C), 

or only on one side with a 90° angle from the present vertical (Fig. 4.14D), or with a 30 to 45° 

angle from the present vertical (Fig. 4.14E). The tubes are rarely completely filled in and 

intragranular porosity (tubular moulds) remains. Rarely microbial filaments (10 to 10 µm wide 

and up to 500 µm long, Fig. 4.14D) and vertically stacked peloids are observed (Fig. 4.14B). The 

other types of porosity identifiable are intergranular and vuggy (Fig. 4.14). 
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Figure 4.14 Burrowed peloidal packstone microfacies in the Hard Cap. A – Thin section scan 

illustrating the complex network, white box locates B (BQ6, Broadcroft Quarry, Isle of Portland). B – 
Peloidal packstone with cross sections of tubular structures in PPL (BQ6, Broadcroft Quarry, Isle of 
Portland). C – Geopetal sediment within a tubular structure, sediment darker at the bottom overgrown 
by calcite cement in PPL (CQ3, Coombefield Quarry, Isle of Portland). D – Geopetal sediment within a 
tubular structure with a 90° angle from present day horizontal in PPL (sample from O’Beirne, 2011; 
E251107, God Nore, Isle of Portland). E – Geopetal sediment within a tubular structure with a 45° angle 
from present day horizontal in PPL (TQ6A, Tout Quarry, Isle of Portland). F – Chalcedony spherules 
developing in the micritic matrix in PPL (sample from O’Beirne, 2011; E251107, God Nore, Isle of 
Portland). G – Detail of a slow-length chalcedony spherule in PPL (PB9, Portland Bill, Isle of Portland). H – 
Same as G in XPL showing first order cross extinction. I – Same as G and H in XPL with gypsum plate 
showing second order extinction in NE and SW quadrants and first order in NW and SE quadrants. 
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2.3.2. Interpretation 

 

The tubular structures network is interpreted to be the result of burrows, borings or 

rhizoliths and which involves organisms. Polychaetes, lamellibranchs, insect larvae, aquatic 

plant roots or rooting portion of algal thalli can create such a complex network for habitat, 

shelter or as a support to grow. They can develop into unconsolidated sediments (burrows, 

rhizoliths) or rocks (borings, rhizoliths). The tubular structures encountered here are not 

simple straight tubes but are rather very sinuous (Fig. 4.14A) which discard lamellibranch 

burrows and rhizoliths that are known to create straight walled tubes aligned to each other 

(Klappa, 1980; Ekdale et al., 1984; Bromley, 1996; Košir, 2004; Hasiotis, 2006; Alonso-Zarza and 

Wright, 2010; Knaust and Bromley, 2012) and caddisfly larvae cases that are known to create 

vertical and stratified tubes (Leggitt and Loewen, 2002; Paik, 2004; Dashtgard and Gingras, 

2012). Concentric laminations inside the tubes and on pseudo-circular walls with micritic 

laminations and stacked peloids (Fig.4.14C) show that the organism responsible constructed 

micritic lined walls, possibly to avoid collapse of the burrow network.  

Insect larvae are common in lacustrine sediments and found burrowing soft sediment, 

and they create tubes by accreting grains they can find close by. The tubes are constructed 

with micritic laminations that consolidate the wall (Leggitt and Loewen, 2002; Paik, 2004). Such 

tubes can be partially inside the substrate and partially outside. In ancient (Green River 

Formation, Eocene, Utah, USA) or modern environments, caddisfly larvae are known to burrow 

into sediment along lacustrine shores (Dashtgard and Gingras, 2012), and their oldest 

occurrence is dated from the Triassic (Howell et al., 1998; Grimaldi and Engel, 2005). However 

caddisfly larvae are unlikely to be at the origin of this sub-facies because the tubes they create 

form tiers of staked tubes perpendicular to the tier and more or less parallel with each other 

(Leggit and Loewen, 2002) and are usually bigger (between 3 and 5 mm) than those of the 

Purbecks.  

Polychaetes live in soft sediment where they can find shelter and habitat. They are found 

only in the oxygenated environments (Cohen, 1982; Kraus and Hasiotis, 2006) and the shape 

on the burrow is commonly related to water depth (Seilacher, 2007; Knaust and Bromley, 

2012; Prothero, 2013): random, very tortuous and deep in shallow areas while straight and 

shallow in deep areas  (Dashtgard and Gingras, 2012; Knaust and Bromley, 2012). Polychaetes 

can either create layered calcitic walls or not to their burrows (Ekdale et al., 1984; Bromley, 

1996; Knaust and Bromley, 2012).  
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Bosence (1987) interpreted these burrows to be very similar to modern-day chironomid 

larvae burrows. Such larvae like microbe-rich substrates, including calcareous tufas, and create 

tubes less than 3 mm in diameter in soft substrates (Scott et al., 2009). The tubes are vertical 

U-shaped and Y-shaped when the substrate is more than 10 mm thick and horizontal when 

less than 10 mm thick (McLachlan and Cantrell, 1976; Uchman and Álvaro, 2000; Gingras et al., 

2007; Scott et al., 2009). The larvae create their tubes gathering debris from the aperture and 

consolidate them with salivary secretion (Brennan and McLachlan, 1979; Scott et al., 2009). 

Apart from the size, the burrows found here are rather different than the ones created by 

modern day chironomid larvae and are not thought to be the organisms that created the 

burrows of this sub-facies.  

Only based on petrographic analysis and without any preserved body fossils the possible 

candidates for the originators of these burrows are either polychaetes or insect larvae. 

This burrowed peloidal packstone sub-facies is always found prior to the growth of the 

thrombolite facies (Figs. 4.13A-C and 4.15), either around tree trunks, branches and stumps or 

at the bottom of the corresponding bed. The peloidal packstone texture indicates a rather low 

energy, possibly in a protected area. Together all the aspects of this sub-facies indicates a 

brackish water condition in a shallow marginal lacustrine environment. The fact that it is found 

surround tree branches, trunks and stumps forming a more or less isopachous casing around 

them with occasional vertically stacked peloids and microbial filaments suggest a microbial 

mediation to bind peloidal sediments and preserve the casing around trees in a vertical 

position. This is confirmed with the identification in some locations of the deposition of the 

geopetal sediments in the burrows with 90° and 30° to 45° angles (Fig. 4.14C-E). The geopetal 

sediments found with a 90° angle with the present day horizontal indicates that this facies was 

originally orientated 90° from its present day orientation. Instead of being in current sub-

horizontal position, it was originally in a vertical position around the upright tree trunks, 

branches or stumps. Concerning the 30° to 45° angle geopetal sediments with the present day 

horizontal, this can indicate that the trees fell but did not reach the sub-horizontal position, 

only an angle between 30° and 45°. Later the tree trunks and/branches together with the 

burrowed peloidal packstone casing fell as indicated by the geopetal sediment deposited at 

the bottom of some tubes at the present day vertical. This is also documented by Bosence 

(1987) who identified in a sample from the Isle of Portland two geopetal sediments at right 

angle in the same facies that he labelled as a “Burrowed thrombolite” (refer to Chapter 2). He 

showed that the first geopetal sediments in the inner part (i.e. close to the tree) are at a right 

angle with the present day horizontal that shows that the trees were sub-vertical during the 
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deposition. The second geopetal sediments found in the outer part (i.e. close to the external 

border) are concordant with the present day vertical that shows that the trees fell in a sub-

horizontal position prior the deposition of the second geopetal sediments. In this study the 

two orientations of the geopetal sediments were not constrained to a specific location relating 

to the trees but disseminated everywhere, however they are not observed to overlie each 

other. 

 

2.4. Formation of the microbial mounds 

 

The previous sections detailed each sub-facies of the Microbialite facies and showed that 

they form microbial mounds around tree trunks, branches and/or stumps. These mounds are 

composed of the Stromatolite sub-facies found locally and always at the base of the mounds 

(Fig. 4.15A); the Burrowed peloidal packstone sub-facies that forms a more or less isopachous 

casing around the tree remains (see above, Fig. 4.15); and the Thrombolite sub-facies that 

forms an anisopachous coating around the Burrowed peloidal packstone sub-facies thicker on 

the upper part than on the lower part of the tree remains (Fig. 4.15). These mounds are 

surrounded by the Intraclastic peloidal packstone-grainstone facies detailed in the next section 

(refer to Chapter 5 for description of mound morphologies and relationship between the 

microbial mounds and associated facies). Palaeoenvironments with integration of 

palaeocurrents and water level estimation will be presented in Chapters 5 and 6. 
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Figure 4.15 Microbial mounds. A – Developed around a fallen tree or a tree branch (Hard Cap, 
Broadcroft Quarry, Isle of Portland). B – Developed around a tree stump in situ (Soft Cap, Fossil Forest, 
picture courtesy of Estanislao Kozlowski). 
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Silicified tree remains can be found in the Hard Cap and Soft Cap and that were rooted in 

the Lower Dirt Bed and the Great Dirt Bed. Francis (1982, 1983) described and identified the 

trees to be ancient cypress trees (Protocupressinoxylon purbeckensis) illustrated in 

figure 4.17A (refer to Chapter 2). The process that led to the silicification of wood appears to 

be very complex and a lot of uncertainties still remain. Leo and Barghoorn (1976) showed that 

wood acts as an active template for silica precipitation and that silicification might occur 

through the permineralisation process via infilling and impregnation. Similarly Renaut et al. 

(2002) showed that in small ponds downstream the Ngakoingora Ridge (Turkana Basin, Kenya) 

reeds are found silicified only on their lower part (Fig. 4.16B). In this setting the silica comes 

from the hot-spring ridge and feeds ponds where reeds and grasses grow (Fig. 4.16A; Renaut 

et al., 2002). The reeds and grasses are described as acting as a ”magnet” for the silica and due 

to evapotranspiration and/or capillarity, silica-rich water rises up the stems and silicifies the 

plants (Fig. 4.16B; Renaut et al., 2002). Only the lower part was silicified due to a lack of 

capillary forces and the remaining (unsilicified) upper parst have either decayed or broken off 

and fallen into the ponds (and probably later silicified; Renaut et al., 2002). This process was 

also suggested by Francis (1982) to be responsible for the silicification of the Purbeck trees in 

the Lower and Great Dirt Beds. She showed that the silicification occurred after drowning of 

the forests, soon after the death of the trees and before the decay of the wood in an anaerobic 

environment due to the very good preservation of the wood cells. She identified tree remains 

that are made of quartzine (length-slow chalcedony) that was most likely originally deposited 

as amorphous quartz which turned into chalcedony after a long period of time (107 to 108 

years according to Siever, 1962). Francis (1982) demonstrated that following Folk and 

Pittman’s (1971) study quartzine indicates evaporative conditions and is an indicator of semi-

arid alkaline environments. The source of the silica was most likely biogenic from planktonic 

organisms (such as diatoms) which are very common in modern day lacustrine environments 

(Francis, 1982). According to Francis (1982) these dissolved organisms would have formed a 

molecular silicic acid (H4SiO4) because it is the only form of soluble silica found in nature 

(Siever, 1962) and is the only agent able to penetrate fine wood cells (due to its hygroscopic 

particles). Francis (1982) found only one specimen with length-fast chalcedony in a tree from 

the Lower Dirt Bed at Chalbury Camp (north of Weymouth) and interpreted this silica type to 

reflect less alkaline conditions than the length-slow chalcedony. 
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Figure 4.16 Schematic model for the origin of the silicified plants on the western marginal slope of 
the Ngakoringora Ridge (Turkana Basin, Kenya, redrawn from Renaut et al., 2002). A – Terrace pool 
showing the inferred distribution of the plants and plant remains. B – Silicification process by 
evapotranspiration and/or capillarity of a reed stem. Note that the plants can be submerged and rooted 
in the pool base or exposed and rooted in warm groundwater. 

 

 

Figure 4.17 illustrates the sequence of possible events for the origin of the formation of 

the microbial mounds and the silicification of the trees (refer to Chapter 6 for interpretation of 

palaeoenvironments). The conifer forest was rooted on the Lower and Great Dirt Beds 

(Fig. 4.17A). Following the transgression of the brackish water lake, the soils were inundated, 

the trees waterlogged and killed (Fig. 4.17B, also proposed by West, 1975 and Francis, 1982). 

After the lake level reached a certain height the Burrowed peloidal packstone sub-facies 

accumulated all around the trees being stabilised by polychaetes or insect larvae burrowing 

(Fig. 4.17B). Contemporaneously with the deposition of the Burrowed peloidal packstone sub-

facies the silicification of the wood occurred before the decay of the wood material 

(Fig. 4.17B). The silica was most likely of biogenic origin (as interpreted by Francis, 1982) from 

the dissolution of planktonic organisms that were living in the brackish water lake. This 

dissolved silica was remobilised as a molecular silicic acid (Siever, 1962; Francis, 1982) and 
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attracted by the wood material as per the Renaut et al. (2002) capillarity model (Fig. 4.17B) to 

silicify in situ trees soon after their death (4.17C). In the meantime geopetal sediments were 

deposited in the tubular cavities of the Burrowed peloidal packstone sub-facies (Fig. 4.17C) 

and locally directly on the lake floor the Stromatolite sub-facies (Fig. 4.17C). Francis (1982) 

measured preferential orientations of the tree holes in the Hard Cap and Soft Cap (refer to 

Chapter 2) and interpreted northerly blowing winds due to their mainly north-south 

orientations. Relatively strong winds and/or wind-driven currents could have caused the 

broken-off upper part of the trees to fall on the lake floor (Fig. 4.17D). Due to the Burrowed 

peloidal packstone casing around the trees the broken-off portions are thought to be heavier 

than wood and avoided long distance drifts. These broken-off trees were then deposited not 

too far from their stumps (Fig. 4.17D). After their deposition the Thrombolite sub-facies 

accumulated and as the cyanobacteria are photosynthetic organisms, they developed mainly 

upwards (Fig. 4.17D). This explains the anisopachous morphology of the Thrombolite sub-

facies around the trees (Fig. 4.17D). In the meantime a second generation of geopetal 

sediments were deposited in the cavities of the Thrombolite sub-facies and in the tubes of the 

Burrowed peloidal packstone sub-facies (Fig. 4.17D).  Later during the burial the two calcite 

spar cements were deposited followed by the barite crystals (Fig. 4.17D). Bosence (1987) 

proposed a similar interpretation for the formation of the microbial mounds from the Hard 

Cap bed although he called them “tufas”. 



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.17 Reconstruction of events at the origin of the formation of the microbial mounds. Not to scale. A – Protocupressinoxylon purbeckensis tree (after Francis, 

1982). B – Transgression of brackish water lake and death of the trees. Note that the silica input may be from lake or ground waters (as per Renaut et al., 2002 model) C – 
Deposition of the Burrowed peloidal packstone and Stromatolites sub-facies. Black line locates the cross-section on the top. D – In situ stump with broken off tree trunk 
and branch and deposition of Thrombolite sub-facies. Black line locates the cross section on top. 
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3. Intraclastic peloidal packstone-grainstone facies 

3.1. Description 

 

This facies is found only in the Skull Cap, Hard Cap and Soft Cap beds and throughout the 

studied area. It is always associated with microbial mounds (described in the previous section) 

surrounding and interdigitating with them (Fig. 4.18). The thickness of this facies varies very 

rapidly from 50 cm to up to 3 m because of its infilling of the irregular depositional topography 

associated with the microbial mounds (Figs. 4.17D and 4.18C; refer to Chapter 5 for further 

description of this relationship).  

At the macroscale few planar laminations are identified in this sub-facies but commonly 

there are no sedimentary structures. The texture can be either coarse grainstone (i.e. in 

Freshwater Bay) or fine grainstone sometimes packstone. Sub-rounded intraclasts between 5 

mm and 20 cm in diameter are found in the vicinity to the mounds resulting in coarser 

textured rudstones (Fig. 4.18D). The bases of the beds are scoured when deposited directly 

above paleosols and in few cases the bed bases are made of coarser material. This facies 

appears white to beige at the outcrop and when broken. Only at West Lulworth Cove at the 

top of the Hard Cap some cross-lamination were identified. Twelve orientation measurements 

were done and revealed one main direction at 190° and two secondary at 210° and 290° (Fig. 

4.18E). 

At microscale the texture varies between packstones and grainstones sometimes more 

bioclastic (Fig. 4.19B) sometimes more peloidal (Fig. 4.19C). Peloids are the most abundant 

grains in this facies. They are micritic, angular to sub-angular (Fig. 4.19), their diameter varies 

between 50 and 200 µm, they are well sorted (Fig. 4.19), and are non-luminescent under CL 

(Fig. 4.19H). Ostracod shells together with intraclasts are the second most abundant grains in 

this facies. They are either found scattered in the matrix or reworked into ostracod-rich 

horizons (about 0.5 cm thick, Fig. 4.19A-E). The thicknesses of the ostracod shells vary 

between 100 to 300 µm (Fig. 4.19) and they appear yellow to orange in PPL (Fig. 4.19) and dull 

to non-luminescent under CL (Fig. 4.19H). Molluscs are also common in this facies with 

gastropods (Fig. 4.19D) and bivalves (Fig. 4.19D, E) and are also non-luminescent under CL. 

Gastropod shell diameters vary between 1 and 1.5 mm with micritic envelopes (Fig. 4.19D). 

Bivalves are rare, usually replaced by calcite with a micritic envelope and are often broken up 

between 2 and 4 mm long and 200 to 500 µm thick (Fig. 4.19E). Lozenge-shaped grains with a 

micritic outer surface and filled with spar cement interpreted to be gypsum pseudomorphs 

(Fig. 4.19F, 4.21), are present only in the Hard and Soft Cap beds. These are mainly from 
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Lulworth area eastwards and at only two locations in the Isle of Portland: King Barrow Quarries 

and only in the Soft Cap at God Nore. Coated grains (Figs. 4.19E, F and 4.22) are found only in 

the Hard Cap at five locations on the Isle of Portland at Coombefield and Broadcroft Quarries; 

and in Lulworth area at West Lulworth Cove, Mupe Bay and Worbarrow Tout. These coated 

grains are made of a core surrounded by a calcitic coating and interpreted to be ooids (Fig. 

4.19E, F and 4.22). The core is usually made of an angular micritic grain with a clotted structure 

between 300 and 500 µm in diameter (Figs. 4.19E, F and 4.21). In the Soft Cap at Worbarrow 

Tout and in the Hard Cap at Mupe Bay the cores of the coated grains are made of the gypsum 

pseudomorphs with a micritic outer ring coated grains between 100 and 200 µm long 

(Fig. 4.21E, F). In addition to these types of cores in the Hard Cap at West Lulworth Cove the 

cores can be made of one or two coated grains between 100 and 200 µm in diameter each. 

The coating can be made of numerous concentric laminae with radial fabric and micritic 

laminae of yellow to brown calcite crystals between 30 and 100 µm thick (Figs. 4.19E and 

4.22C); or only one or two concentric laminae yellow calcite crystals about 30 µm thick (Figs. 

4.19F and 4.22A). Micritic intraclasts are common, with a clotted macrofabric and/or microbial 

filaments and vary between 100 µm and 2 mm in diameter (Fig. 4.19D, H). Rare rather 

elongated yellow grain in PPL and with a rolling extinction in XPL, and with internal concentric 

laminated structures are locally found (Fig. 4.19G). Very rare foraminifers are found in this 

facies and are made of several small chambers (about 10 µm each chamber) with a micritic 

envelope and are about 100 µm in diameter (Fig. 4.19D). The porosity types are intergranular 

to mouldic and both primary and secondary pores are very commonly filled with a mosaic to 

blocky spar cement with the same zoned luminescence described in the Thrombolite sub-

facies (Fig. 4.19H). 
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Figure 4.18 Intraclastic peloidal packstone-grainstone macrofacies. A – Interdigitation of a 
microbial mound and the Intraclastic peloidal packstone-grainstone facies without sedimentary 
structures, white box locates B, dashed line outlines the microbial mound (Hard Cap, Tout Quarry, Isle of 
Portland). B – Interdigitation of microbial mound and Intraclastic peloidal packstone-grainstone facies 
(close-up view from A), dashed line outlines the microbial mound. C – Onlaps of Intraclastic peloidal 
packstone-grainstone with planar laminations on microbial mound, dashed line outlines microbial 
mound, plain lines outline planar laminations (Hard Cap, Fossil Forest). E – Orientation and direction 
measurements of the cross-laminations at West Lulworth Cove with 12 measurements. 
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Figure 4.19 Intraclastic peloidal packstone-grainstone microfacies. A – Intraclastic peloidal 
grainstone within the Microbialite facies with ostracods and peloids in PPL (CQ2, Skull Cap, Coombefield 
Quarry, Isle of Portland). B – Intraclastic peloidal packstone-grainstone with ostracods, peloids, and 
intraclasts, note the ostracod rich horizon on top in PPL (PQ3, Skull Cap, Portesham Quarry). C – 
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Intraclastic peloidal packstone with irregular shapes of peloids and planar laminations in PPL (WT2, Hard 
Cap, Worbarrow Tout). D – Intraclastic peloidal grainstone with foraminifer, molluscs (gastropods and 
bivalves), intraclasts, peloids and ostracods in PPL (WT3, Hard Cap, Worbarrow Tout). E – Fine 
intraclastic peloidal grainstone with coated grains and peloids in PPL (WLC5, Hard Cap, West Lulworth 
Cove). F – Peloidal packstone with peloids, ooids and gypsum pseudomorphs in calcite (lozenge-shaped) 
(MB5A, Hard Cap, Mupe Bay). G – Peloidal packstone with a fish scale (yellow laminated grain), 
ostracods and peloids (PQ7, Soft Cap, Portesham Quarry). H – CL image of a peloidal grainstone with 
ostracods and microbial intraclasts; showing the luminescence of the micritic grains and the blocky spar 
cement (CQ1, Skull Cap, Coombefield Quarry, Isle of Portland).  

 
 

3.2. Interpretation 

3.2.1. Peloids 

 

The term peloid was introduced by McKee and Gutschick in 1969 to describe 

cryptocrystalline carbonate grains similar to pellets and does not imply a specific origin. Flügel 

(1982) described peloids as “well-rounded, non-laminated, structureless micritic particles of 

various origin”. Peloids are a very common and important constituent of carbonate deposits 

and are described by lots of authors in both ancient and modern and in both marine and non-

marine settings (Bathurst, 1971; Flügel, 1982; Tucker and Wright, 1990). Origin of peloids is 

difficult to determine because of their micritic aspect and the lack of structures within the 

grains. Their origin can be due to several processes: deposition of faecal pellets; reworked 

micritic clasts; micritisation of grains; or purely chemical nucleation (Bathurst, 1966; Tucker 

and Wright, 1990). Faecal pellets are produced by organisms (such as shrimps) and the 

resulted peloids are rather ovoid ellipsoidal and elongated (long axis 1.5 to 3 times their short 

diameter; Tucker and Wright, 1990) and usually between 40 and 300 µm in diameter 

(Bathurst, 1971). Peloids from mud clasts are reworked and rounded intraclasts or lithoclasts 

from pre-existing micritic substrates (mudstone deposits, Tucker and Wright, 1990 or algal 

remains, Wolf, 1965). The micritisation of grains can be due to micro-organism borings (algal 

or fungal) on all types of carbonate grains (mollusc shells, ostracod shells, calcareous algae, 

etc…) leading to the partial (micritic envelope) or complete (peloid) micritisation of the grains 

(Bathurst, 1966, 1971, 1975; Tucker and Wright, 1990; Scholle and Ulmer-Scholle, 2003). 

Peloids from chemical nucleation are actually micron-sized cements of very small calcite 

crystals around a nucleus (Bathurst, 1971; Macintyre, 1985; Tucker and Wright, 1990). 

The peloids found is this facies correspond completely to McKee and Gutschick’s (1969) 

definition as they are micritic, structureless, and angular to sub-angular as well as rounded 

(Fig. 4.19). Their origin can be due to a combination of many of the processes described above, 

however it is not possible to identify only one. The peloids can be from reworked algal 



 

176 
 

deposits (the surrounded microbial mounds would be the source), micritised broken-up 

crustacean and/or mollusc shells (found in great quantity in this facies). Nevertheless the 

peloids found here are much bigger than those that are usually generated by broken-up shells 

of ostracods or molluscs; are angular to sub-angular; and the different stages of micritisation 

of shells from partially to totally micritised were not observed. For these reasons they are 

thought to be mainly reworked from the surrounded microbial mounds. The micritic structure 

of these peloids (Fig. 4.19) may be due either to the original matrix they derived from or from 

the micritisation process (see above). West (1975) in his facies A (refer to Chapter 2) found 

pelletoids that are defined as “small rounded allochems of microcrystalline carbonate” but did 

not provide possible origins. Brown (1963) described pellets of the same facies from the Lower 

Purbeck of Dorset as anhydrite replacements because of straight outlines, rectangular re-

entrants and calcite spar filling. Such pellets were never found in this study and such an origin 

appears unlikely. 

 

3.2.2. Intraclasts 

 

The intraclasts are made of a clotted macrofabric (Fig. 4.19D) that indicates that they are 

microbial intraclasts and therefore derived from the adjacent mounds (Fig. 4.20).  This 

derivation may be due to different processes: storms may break up microbial mounds into 

intraclasts that are redeposited in the surrounding areas; high energy system (wind-driven 

currents) that can break up uncosolidated microbial mounds; or via bioerosion (Tucker and 

Wright, 1990). In this study the intraclasts are rather big (between few millimetres and up to 

20 cm) and there is no evidence of bioreosion (both at macro- and micro-scale). High energy 

system (storms or currents) is most likely to have created those intraclasts. Similar microbial 

intraclasts are found both in ancient (Green River Formation, Uinta Basin, Utah, USA, Chidsey 

et al., 2015) and modern day lakes (Laguna Bacalar, Yucatan Peninsula, refer to Appendix 1; 

Gischler et al., 2008, 2011; Great Salt Lake, Utah, USA; Eardley, 1938; Eby and Chidsey, 2013; 

Chidsey et al., 2015). 
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Figure 4.20 Intraclasts of the Intraclastic peloidal packstone-grainstone facies. A – Centimetre-sized 

microbial intraclasts next a microbial mound, dashed line outlines the microbial mound (Soft Cap, Fossil 
Forest). B – Decimetre-scale microbial intraclasts (orange to brown) surrounding a microbial mound (SW 
of Antelope Island, Great Salt Lake, Utah, USA). 

 

3.2.3. Ostracods 

 

The ostracods from the lower part of the Mupe Member of Dorset (Fig. 4.19) are reported 

to correspond to the lower part of the Cypridea dunkeri ostracod subzone (Strahan, 1898; 

Barker et al., 1975; Kilenyi and Neale, 1978; Anderson, 1967, 1973, 1985; Horne, 1995, 2002). 

Although lots of studies described ostracods from the lower part of the Purbeck Limestone 

Group there is no clear identification of the exact stratigraphic level or location of collection of 

the samples. Modern day non-marine equivalents of ostracod faunas of the Purbeck Limestone 

Group of Dorset was demonstrated by Horne (2002, refer to Chapter 2) and the Purbeck 

ostracods are therefore considered as non-marine species. Anderson’s (1985) assemblage 1 

(refer to Chapter 2) covers the Skull Cap to Broken Beds. This assemblage is made of 4 

faunicycles (refer to Chapter 2). Faunicycle 1 is based on ostracods collected in the Wiltshire 

(Swindon) and in the Buckinghamshire (Aylesbury) and therefore is not really relevant for this 

study. Although faunicycles 2 to 4 are partly constructed with ostracods collected from Dorset 

(White Nothe, Poxwell Quarry and Portesham Quarry) as well as from Wiltshire (Swindon), 

Buckinghamshire (Aylesbury) and Sussex (Henfield), Anderson did not detail the quantity of 

ostracods collected from each locations, it is then again difficult to interpret and conclude on 

the palaeoenvironments and palaeosalinities in a particular location such as Dorset. In general 

the assemblage 1 defined from between the Hard Cap and the Broken Beds contains the rare 

occurrence of Cypridea sp.. The rarity of this C-phase ostracods and the abundance of S-phase 

ostracod suggest a brackish water condition for the lower part of the Mupe Member 

(Anderson and Bazley, 1971; Anderson, 1985). Nevertheless Horne (1995) discussed 

Anderson’s (1985) interpretation and interpreted variations between C- and S-phases as a 
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change from close to open system rather than a change in the salinity.  Barker et al. (1975) 

identified ostracods in the Hard Cap bed and in the equivalent of the Great Dirt Bed at 

Portesham Quarry. They could identify marine, and brackish water (euryhaline and oligohaline) 

ostracod groups (refer to Chapter 2). Because of a mixture of different salinity tolerant species 

in all the beds Barker et al. (1975) interpreted that the water was brackish and that the marine 

ostracods were most likely reworked. In a related project conducted at RHUL Dharmarajah 

(2015) attempted to identify ostracods from three locations on the Isle of Portland. However 

this study was inconclusive due to the difficulty to extract unbroken carapaces (refer to 

Chapter 2). 

 

3.2.4. Molluscs 

 

The mollusc gastropods (Fig. 4.19D) from the lower part of the Mupe Member of Dorset 

are not very well documented in the literature (Arkell, 1941; Clements, 1973; Radley, 2002). 

However Arkell (1941) remains the only author to provide a detailed study on gastropods from 

the Purbeck of Dorset. He described in total four gastropod species and only one brackish to 

hypersaline water tolerant gastropod species was found in the Caps at Ridgeway (refer to 

Chapter 2). Radley (2002) described mollusc gastropod assemblages from cherty and 

conglomeratic marls about 4 m above the base of the Purbeck Limestone Group at Portesham 

Quarry. These assemblages are made of a mixture of freshwater and marine species and that 

were most likely deposited during periodic mixing of fresh- and marine waters (Radley, 2002). 

However Radley (2002) interpreted these species to reflect fresh- to brackish water conditions 

in a closed lake system. In addition Clements (1973) identified marine species in equivalent 

unit in Poxwell Quarry (refer to Chapter 2). However, these marine species could be reworked 

from the underlying Portland Group. 

The bivalve molluscs are also very poorly documented in the literature (refer to Chapter 

2). West (1975) only cites occurrence of bivalves in his facies A although without any 

descriptions and Radley (2002) only reports that “bivalves await documentation”. Strahan 

(1898) identified freshwater species in the Purbeck Limestone Group but did not indicate in 

which beds or members they were found. However they were most likely found in higher units 

(Marly Freshwater Beds onwards) as freshwater bivalves are documented from these beds. 

The nature and identification of bivalves found in this Intraclastic peloidal packstone-

grainstone facies remains unknown. 
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3.2.5. Gypsum pseudomorphs 

 

The micritic lozenge-shaped cavities are interpreted to correspond to pseudomorphs of 

gypsum crystals (Figs. 4.19F and 4.21), known to be unstable in marine and lower salinity 

waters and may dissolve away easily soon after their precipitation (Schreiber and Walter, 

1992; Scholle and Ulmer-Scholle, 2003; Flügel, 2010). The original gypsum crystals (now 

replaced by calcite) reflect former hypersaline water conditions (West, 1964, 1975; Schreiber 

and Walter, 1992; Scholle and Ulmer-Scholle, 2003; Flügel, 2010). An interesting feature of 

these gypsum pseudomorphs is that they have a micritic rim. This feature has never been 

published in the literature and it is not clear how these micritic envelopes can form around 

gypsum crystals or pseudomorphs. A possible origin is that these gypsum crystals were 

transported and micritised during the transport, however, in such situation the crystals are 

expected to be rounded while in this facies they are found intact. Another possible origin is 

that soon after their early replacement by calcite, micro-bores made by endolithic micro-

organisms such as algae, cyanobacteria or fungi may be filled with a micritic cement that 

resulted in the creation of a micritic envelope (as per Bathurst’s, 1966 definition). The latter 

situation is thought to be more likely to form these micritic envelopes given the complete 

lozenge shapes of the gypsum pseudomorphs. 

West (1975) described and detailed similar occasional lenticular replaced gypsum crystals 

in his facies B in the Cap beds of Dorset (Fig. 4.21C, refer to Chapter 2). He showed similarities 

of shapes and sizes of the Purbeck lenticular gypsum of Dorset with the modern day Persian 

Gulf hypersaline lagoons (documented by Shearman, 1966 and Butler, 1969) where lenticular 

gypsum crystals precipitate in the intertidal zone. West (1975) interpreted the gypsum to 

precipitate in the intertidal to supratidal zones of tidal flats and during a long regressive phase.  

As described earlier, these gypsum pseudomorphs are mainly found in the eastern part of 

the studied area (from Lulworth eastwards) and are rare on the Isle of Portland. This shows 

that conditions were more hypersaline to the east and less hypersaline (i.e. more brackish?) to 

the west. The two locations in the Isle of Portland (King Barrow Quarries and God Nore) where 

gypsum pseudomorphs are might reflect a change in the environment to a more protected or 

closed area very locally. 
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Figure 4.21 Gypsum pseudomorphs of the Intraclastic peloidal packstone-grainstone facies. A – 

Details of gypsum pseudomorphs, note the outer micritic surface in PPL (SQ9B, Soft Cap, Swanworth 
Quarry). B – Gypsum pseudomorphs in calcite from the Arroyo Peñasco Group of the Espiritu Santo 
Formation (Mississippian, Tournaisian), New Mexico in PPL (from Scholle and Ulmer-Scholle, 2003). C – 
Calcite pseudomorph after syngenetic gypsum lens in PPL (sample from the Soft Cap at Dungy Head, 
from West, 1964). Note the oolitic coating around the micritic outer surface. 

 

 

3.2.6. Ooids 

 

The coated grains (Fig. 4.19E, F) identified in this facies are made of a nucleus (i.e. the 

core) and a cortex (i.e. the coating) that are specific to ooids (Lyell, 1855; Flügel, 1978; 

Strasser, 1986; Tucker and Wright, 1990). Ooids can be found in marine and non-marine 

environments. The mineralogy of marine ooids can be predicted according to the mineralogy 

of the seas through time (Sandberg, 1983; Tucker and Wright, 1990). However the mineralogy 

of non-marine ooids is more complex and depends on water chemistry, hydrodynamics, 

palaeoclimate, etc… (Strasser, 1986; Tucker and Wright, 1990). Popp and Wilkinson (1983) 

suggested that non-marine ooid cortices are in aragonite when formed in hypersaline lakes 

(also documented by Khale, 1974; Sandberg, 1975 and Halley, 1977) and in calcite when 

formed in low-salinity lakes (also documented by Wilkinson et al., 1980; Geno and Chafetz, 
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1982; Richter, 1983; Tucker and Wright, 1990). The cortical microfabric can also indicate 

depositional processes such as hydrodynamics (Richter, 1983; Tucker and Wright, 1990). 

Although all types of cortical composition and organisation can be found in all kind of 

environments, tangential fabrics are commonly found in marine environments while radial 

fabrics are commonly found in non-marine environments and random fabrics are formed in 

many depositional settings (Davies et al., 1978; Tucker and Wright, 1990). In addition, ooids 

with tangential microstructures are typically found in high energy settings and radial 

microstructures are typically found in low energy settings (Loreau and Purser, 1973; Davies et 

al., 1978; Richter, 1983; Tucker and Wright, 1990). Rusnak (1960a) and Land et al. (1979) 

specified that tangential cortices are usually formed due to very slow precipitation in strong 

agitation; radial cortices due to slow precipitation in quiet waters; and micritic cortices due to 

rapid precipitation in quiet and agitated waters. The hydrodynamic effects on cortical 

microstructures is documented in ancient deposits (Richter, 1983) in the Cambrian Warrior 

Formation of Pennsylvania (Heller et al., 1980), in the Devonian of northern Spain (Reijers and 

Ten Have, 1983), in the Cambrian of Newfoundland (Chow and James, 1987), in the Purbeckian 

of Switzerland and France (Strasser, 1986); and in modern day in the Great Salt Lake, Utah, 

USA (Medwedeff and Wilkinson, 1983). 

The microfabric of the cortex of the Purbeck ooids is made of radial calcite that suggests a 

preservation of the original calcitic structure (according to Sorby, 1879 and Walter, 1976). 

According to Popp and Wilkinson’s (1983) proposal (above), the calcitic cortices of the Purbeck 

ooids might indicate that they were formed in fresh- to brackish water lakes. The ooids 

deposited in the Cap beds of the Mupe Member are made of two types of cortex 

microstructures (Fig. 4.22). The first type of cortex is made of one or two concentric laminae 

considered to be calcite (Fig. 4.22A, E) and was identified in all the locations where ooids were 

deposited. They are the only type to be found at Coombefield and Broadcroft Quarries (Isle of 

Portland). This type of ooid cortex is very similar to type 1 ooids defined by Strasser (1986) for 

the Purbeck of Jura (Fig. 4.22B). Strasser (1986) defined this type of ooids as superficial ooids 

and interpreted their thin laminae to have formed in quiet-water energy (also documented by 

Bathurst, 1967). He suggested that these type 1 ooids were deposited in low-energy lagoonal 

settings associated with cyanobacteria development because of the micritic aspect of the 

cortices. The second type of cortex found in this study is made of a mixture of two 

microstructures with radial and micritic with concentric and irregular laminae of calcite 

(Fig. 4.22C) and was identified at West Lulworth Cove and Worbarrow Tout. The second type 

of ooid cortex is similar to the Strasser’s (1986) type 6 (Fig. 4.22D) who interpreted this 
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mixture of microstructures to reflect rapid changes in water energy (also documented by 

Reijers and Ten Have, 1983; Poncet, 1984). Strasser (1986) deduced that the radial 

microstructure reflects rather quiet waters where the calcite crystals have time to develop on 

the surface of the nucleus. The radial fabric reflects abrasion during transport (Strasser, 1986). 

The micritic microstructure is interpreted by Strasser (1986) to indicate very rapid precipitation 

of calcite crystals due to abrasion during bedload transport dragging of the grains (Strasser, 

1986). He interpreted these type 6 ooids to have formed in different environments and that 

they characterised abrupt changes in depositional environments (Strasser, 1986). 

The nuclei of the ooids found in the Mupe Member of the Purbeck Limestone Group are 

of three types, described here in order of abundance. The most common type of nucleus is 

characterised by sub-angular micritic grains with clotted structures (Fig. 4.22A, C) and is found 

in all the locations where ooids were formed. They are interpreted to be microbial intraclasts 

(refer to section 3.2.2.) that derive from the surrounding microbial mounds. The second most 

common type of nucleus is the lozenge-shaped micrite coated grains interpreted as gypsum 

pseudomorphs in the previous section (Fig. 4.22E) and is found only in the Hard Cap at Mupe 

Bay and West Lulworth Cove and in the Soft Cap at Worbarrow Tout. This type of nucleus is 

thought to be reworked from a nearby in-situ source. The gypsum pseudomorphs appear to be 

wrapped by oolitic coating and never replace it (Fig. 4.22E) which would be expected if the 

gypsum crystals grew after the cortex. This shows that this type is similar to the first type in 

that the nucleus is reworked. These ooids were described by West (1964) as “oolitically coated 

spherules with calcite pseudomorphs after gypsum lenses” (Fig. 4.22F). These ooids were 

interpreted by West (1975) to have formed around gypsum in a shallow lagoon on the edge of 

a tidal flat after the precipitation of the gypsum in the sediment and still formed in waters 

saturated or supersaturated for gypsum. The less common type of nucleus is made of smaller 

ooids that show only one or two laminae in their cortex (Fig. 4.22G) and was only found in the 

Hard Cap at West Lulworth Cove. These form grapestones which were coated with an oolitic 

coating soon after their formation. This type of ooid is defined by Carozzi (1964) as compound 

reworked ooids with two or more nulcei (Fig. 4.22H); by Tucker and Wright (1990) as 

botryoidal lumps; and by Scholle and Ulmer-Scholle (2003) as composite ooids. They can be 

produced in agitated oolite shoals as well as protected environments (Tucker and Wright, 

1990). 

All the ooids found in this facies are interpreted to be originally in calcite with radial and 

micritic microfabrics. These ooids are thought to have formed in lacustrine settings 

contemporaneously with the microbial mound developments when microbial intraclasts are 
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found as nucleus, or transported from a close source when gypsum pseudomorphs, ooids or 

grapestones are found as nucleus. This helps to discount a possible reworked origin from the 

underlying Portland Group where complex ooids with a thicker cortex than those found in this 

facies are found in great quantity. Their cortical structures are rather similar to that of Purbeck 

(calcitic mineralogy both radial and tangential fabrics) but their nuclei are made of broken up 

mollusc shells (bivalves and gastropods) and quartz grains. The Purbeck ooids may also reflect 

the nature of the environment, such as hydrodynamics and/or the chemistry of the water 

body. The presence of radial together with micritic microstructures makes it difficult to 

determine a unique depositional environment for their formation. However the micritic fabric 

may reflect a high hydrodynamics while radial fabric may reflect a low hydrodynamics and the 

alternation between one and the other fabrics (i.e. random) can reflect abrupt changes in the 

hydrodynamics (as suggested by Strasser, 1986). 
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Figure 4.22 Ooids of the Intraclastic peloidal packstone-grainstone facies. A – Peloidal grainstone 

with superficial ooids in PPL (BQ10, Soft Cap, Broadcroft Quarry, Isle of Portland). B – Micritic well 
rounded ooids with micritic nucleus and fine concentric laminae with radial fabric cortex in PPL (type 1 
ooid, modified after Strasser, 1986). C – Mixed ooid showing concentric laminae with radial fabric and 
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micritic irregular laminae of the cortex around a microbial intraclasts nucleus in PPL (WLC5, Hard Cap, 
West LLulworth Cove). D – Mixed ooid with concentric laminae with radial fabric and micritic irregular 
laminae around a recrystallised nucleus in PPL (type 6 ooid, modified after Strasser, 1986). E – Gypsum 
pseudomorphs in nucleus of ooid with thin concentric laminae with radial fabric cortex in PPL (WT5B, 
Hard Cap, Worbarrow Tout). F – Sketch of thin section from the Caps at Worbarrow Tout with 
“oolitically coated spherules with calcite pseudomorphs after gypsum” (West, 1964) and celestite 
replacement of the micritic matrix (sample L.P. 148, redrawn after West, 1964). Note the radial 
microstructure of the cortices. G – Ooid made of grapestone as nucleus with two small ooids with one 
concentric laminae with radial fabric, and numerous concentric laminae with radial fabric cortex (WLC5, 
Hard Cap, West Lulworth Cove). H – Compound ooid with two nuclei from the Triassic lake deposits of 
Virginia, USA (from Carozzi, 1964). 

 

 

3.2.7. Fish scales 

 

The yellow grains are interpreted to be phosphatic fish scales that are either well 

preserved (Fig. 4.19G) or, most commonly, found as fragments. Fish in the Mupe Member 

were previously identified and described by Grifftih and Patterson (1963) as Ichthyokentema 

purbeckensis. They were later identified by West (1975) and Francis (1982) in the Skull and Hard 

Cap beds (refer to Chapter 2). 

 

3.2.8. Foraminifers 

 

Foraminifers in the Mupe Member of the Purbeck Limestone Group of Dorset have 

surprisingly never been studied in the literature. Most of authors note the occurrence of 

foraminifers but no attempt was ever done in their recognition. For example West (1975) 

defined his facies A as “Limestones with Foraminifera” but did not describe nor identify what 

kinds of foraminifera are encountered (refer to Chapter 2). The very rare foraminifers found in 

this facies were therefore not identified. Because very few foraminifers were found there is a 

possibility that they were either windblown transported from a nearby marine environment or 

reworked from the underlying Portland Group. 

 

3.2.9. Palaeocurrents 

 

The cross-laminations provide information on palaeocurrent directions and are very 

common in coastal environments. Tucker (2003) proposed that at least 30 measurements are 

necessary to be reliable to give a good interpretation of palaeocurrents. The cross-lamination 

orientation measurements performed in this facies were only 12 (Fig. 4.18E) and the 

measurements show a southerly prevalent palaeocurrent direction, which is consistent with 
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palaeocurrents interpreted by Francis (1982) on fallen tree and branch orientations (refer to 

Chapter 2). This aspect will be discussed further in Chapters 6 and 7. 

 

3.2.10. Summary 

 

The packstone to grainstone texture indicates moderate to high energy environment that 

is also supported with the occurrence of ooids. The presence of brackish water ostracods, 

gastropods and bivalves and the interdigitation with microbial mounds support an 

interpretation of brackish water conditions west of the Lulworth area. Furthermore the 

presence of gypsum pseudomorphs (even though transported) east of Lulworth area indicates 

a possible change in the water condition to hypersaline eastwards. The environmental setting 

of the Mupe Member is discussed further in Chapters 6 and 7. Overall the depositional 

environment was a brackish to hypersaline shallow marginal lacustrine system. 

 

4. Cross-bedded peloidal packstone-grainstone facies 

4.1. Description 

 

This facies is unique to and is the main lithology of the Cypris Freestone unit (refer to 

Chapter 2) and is present throughout the studied area from the Isle of Portland to Durlston Bay 

and north of Weymouth (i.e. Portesham Quarry) varying in thickness from 1 to 50 cm (Fig. 

4.23) in beds that can be either massive or laminated (Fig. 4.23). The laminations are planar 

cross-laminations and organised in sets (Fig. 4.23A) which measure between 1 and 6 cm in 

thickness. The base of the Cypris Freestone unit can be found locally broken up into centimetre 

to decimetre scale blocks to create the Evaporite breccia sub-facies of the Broken Beds 

described in section 10.2 of this chapter. 

At the macroscale this facies exhibits cross-bedded stratification, cross-lamination, wave 

ripple, herring bone stratification (Fig. 4.23B) and sometimes planar lamination (Fig. 4.23D). 

The texture varies between coarse and fine peloidal packstone to grainstone (Fig. 4.23B). On 

the surfaces of most of the beds mudcracks and cubic shapes between 1 and 2 cm long may be 

found and are interpreted to be halite pseudomoprhs (Fig. 4.23E). This facies appears beige at 

the outcrop and when broken. Measurements of cross-bedding stratification were performed 

in selected locations at Portesham Quarry, the Isle of Portland (South West Bowers and God 

Nore) and at Fossil Forest and reveal different palaeocurrent directions (Fig. 4.24D). At 

Portesham only 2 measurements were possible (Fig. 4.24A) giving a 270° direction. On the Isle 
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of Portland in South West Bowers (NE of the island) the main directions are 20°; 230° and 150° 

(Fig. 4.24C) and in God Nore (SW of the island) mainly N290 and with three secondary 

directions 30°; 130° and 230° (Fig. 4.24B). At South West Bowers location only 4 

measurements were possible (Fig. 4.24C; far from the 30 necessary to assess palaeocurrent 

directions more precisely, following Tucker, 2003). At God Nore, 31 measurements were taken 

(Fig. 4.24B) revealing a polymodal palaeocurrent pattern which reflect shoreline or shoreface 

environment where wave and storm processes are common (Tucker, 2003). At Fossil Forest 41 

measurements revealing a unique direction at 190° (Fig. 4.24D), this indicates a main current 

directed into the half graben basin (refer to Chapter 6 and 7). 

At the microscale the texture varies as at macroscale between a packstone to a grainstone 

with some wackestone horizons (Fig.4.25). The most abundant grains are micritic peloids, 

between 50 and 500 µm in diameter, usually poorly sorted. They are three types depending on 

internal structures, sizes and shapes: between 200 and 500 µm and sub-rounded with a rather 

clotted internal structure; between 50 and 200 µm sub-rounded and elongated with a micritic 

internal structure; and around 50 µm and sub-circular with a micritic internal structure (Fig. 

4.25). In addition, some peloids show an internal clotted structure (Fig. 4.25A-B). The second 

more abundant grains after the peloids in this facies are ostracods (Fig. 4.25A-B). These are 

very thin, yellow and between 100 and 500 µm long and 20-30 µm thick. The ostracods are 

most commonly intact but sparse fragments of about 20-50 µm can be found (Fig. 4.25A-B). 

Only in three locations (West Lulworth Cove, Mupe Bay and Worbarrow Tout) similar ooids as 

found in the Intraclastic peloidal packstone-grainstone facies are present in this facies in a 

great quantity. The nuclei are about 50 µm in diameter and the calcitic cortices are between 

10 and 50 µm thick (Figs. 4.25A-D and 4.26). As with the ooids of the previous facies the nuclei 

are made of peloids, microbial intraclasts or grapestones and the cortices are made of 

concentric laminae with radial fabric and micritic laminae to form superficial and mixed ooids 

(Figs. 4.25C-D and 4.26A-D). Some of the ooids are broken up (in half usually) and a new 

generation of calcite crystals developed around these broken up ooids (Figs. 4.25B and 4.26E). 

Molluscs are common in this facies (gastropods and bivalves) commonly with a micritic 

envelope (Fig. 4.25A-B). Micritic intraclasts with either a clotted microfabric or a peloidal 

packstone-grainstone texture are commonly found, sub-angular to sub-rounded and between 

50 µm and 1.5 mm in diameter (Figs. 4.25A-B and 4.27). Some angular clear crystals of detrital 

quartz are identifiable about 50-100 µm (Fig. 4.25) and with a first order straight extinction in 

XPL. Rare foraminifers are present with a conical shape of about 500 µm long and 200 µm wide 

and made of several chambers of about 50 µm in diameter (Fig. 4.25D). The pore types in this 
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facies are intergranular and intragranular to mouldic and are commonly filled only with the 

second kind of blocky spar cement described in the previous facies (blocky spar 2, dull orange 

to brown, Fig. 4.25F). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.23 Cross-bedded peloidal packstone-grainstone facies in the field. A – Planar cross-

lamination and wave ripple (cross-section, Pondfield Cove). B – Herring-bone cross-stratification (cross-
section, Fossil Forest). C – Current ripple on plan view (Pondfield Cove). D – Planar laminations (cross-
section, South West Bowers, Isle of Portland). E – Halite pseudomorphs in plan view on surface of bed 
(Broadcoft Quarry, Isle of Portland). 
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Figure 4.24 Orientation and direction measurements of the cross-laminations of the Cross-bedded 
peloidal packstone-grainstone facies. A – Portesham Quarry with 2 measurements. B – God Nore with 
31 measurements. C –. South West Bowers with 4 measurements.D – Fossil Forest with 41 
measurements.  
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Figure 4.25 Cross-bedded peloidal packstone-grainstone microfacies. A – Peloidal grainstone with 
peloids, ostracods, microbial intraclasts, superficial ooids, quartz grains and gastropods (WLC8, West 
Lulworth Cove). B – Peloidal grainstone with peloids, ooids, ostracods and microbial intraclasts (WT13, 
Worbarrow Tout). C – Peloidal grainstone with peloids, quartz grains and superficial ooids with microbial 
intraclasts and grapestone nuclei (WT12, Worbarrow Tout). D – Peloidal grainstone with peloids, ooids 
and foraminifers (WT12, Worbarrow Tout). E – Peloidal grainstone showing the blocky spar cement in 
PPL (WT14, Worbarrow Tout). F – CL image of E showing dull luminescence of the micritic peloids, weak 
luminescence of the blocky spar cement and the non-luminescence of quartz grains (WT14, Worbarrow 
Tout). 
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4.2. Interpretation 

4.2.1. Peloids 

 

The peloids found in this facies are generally considerably bigger (between 50 and 500 

µm) than the peloids found in the Intraclastic peloidal packstone-grainstone facies (between 

50 and 200 µm). Brown (1964) described peloids of the Cypris Freestone of the Lower Purbeck 

of Dorset to be rod-shaped, showing opaque inclusions (described by Illing, 1954 on modern 

faecal pellets) in their internal structure and with some remaining organic matter. These 

indication together with the evidence of increasing fauna in this unit helped Brown (1964) to 

interpret these as faecal pellets. West (1975) also described faecal pellets together with 

pelletoids, following the same definition presented in the previous facies. In this study the 

elongated sub-rounded peloids (between 50 and 200 µm) are thought to be faecal pellets as 

per Bathurst’s (1971) definition (internal structure and size) and as previously proposed by 

Brown (1964). However they are two other types of peloids from numerous possible origins. 

The biggest peloids (between 200 and 500 µm) that exhibit an internal clotted structure are 

thought to be reworked and rounded clasts from the microbial mounds deposited in the 

underlying beds as those are more sub-rounded than the faecal pellets (also described in the 

previous sections). The smallest peloids (around 50 µm in diameter) can be either inorganic 

precipitates, micritised shell fragments of molluscs (bivalves and gastropods) or crustaceans 

(ostracods) or mud clasts.  

 

4.2.2. Ostracods 

 

Ostracods are very abundant in this facies however due the hardness of the limestone 

their extraction is very difficult and their identification based only on thin section views is 

impossible (pers. comm., David Horne, May 2015). The Cypris Freestone beds where this facies 

was deposited have been interpreted to contain ostracods from the Cypridea dunkeri subzone 

(Strahan, 1898; Barker et al., 1975; Kilenyi and Neale, 1978; Anderson, 1967, 1973, 1985; 

Horne, 1995, 2002). As explained in the previous facies the ostracods of the Mupe Member are 

considered as non-marine species by comparison with modern-day equivalent species (Horne, 

2002). Strahan (1898) following interpretation of Forbes (1850) identified three species in his 

“Lower Purbeck Beds” (Cypris Freestone beds in this study) and were considered as freshwater 

species (refer to Chapter 2). Later Anderson (1985) defined ostracod assemblages and 

faunicycles (refer to Chapter 2) and determined that the faunicycles of the Cypris Freestone 
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are mainly made of S-phase ostracod species that are thought to live in saline to hypersaline 

waters. Barker et al. (1975) identified three other saline (euryhaline) species in equivalent beds 

of the Broken Beds at Portesham Quarry (refer to Chapter 2).  

 

4.2.3. Ooids 

 

The ooids are very abundant in this facies and because the concentric laminae with radial 

calcitic fabric structures of the cortex are visible, as for the previous facies with ooids, they are 

thought to have preserved the original calcitic mineralogy (Sorby, 1879; Walter, 1976). Most of 

the ooids found in this facies (Fig. 4.26) are very similar to the superficial (Fig. 4.22A) and 

mixed ooids (Fig. 4.22C) of the previous facies but a new morphology appears with broken-up 

ooids acting as nuclei (see below). 

 Superficial ooids have nulcei that may be peloids, microbial intraclasts and/or 

grapestones with cortices of one or two laminae of concentric laminae with radial calcite fabric 

(Fig. 4.26A). This type of ooids are also very common in the hypersaline Great Salt Lake (Utah, 

USA; Mathew, 1930). 

 Mixed ooids have nuclei usually made of only peloids and rarely grapestones with 

concentric with radial fabric and micritic irregular laminae cortices (Fig. 4.26B-C). One 

difference with the mixed ooids of the previous facies is that cortices of these mixed ooids are 

thicker and may be patchily more micritised (Fig. 4.26B-C). According to Strasser (1986), this 

might suggest longer reworking time and/or transport of the ooids on the lake floor. This type 

of ooids is also very common in the Great Salt Lake (Utah, USA; Chidsey et al., 2015).  

Ooids with nulcei made of broken-up ooids that are then recoated are only found in this 

facies (Fig. 4.26E). These types of ooids were described for the first time by Berg (1944) who 

defined them as hiatusooide. Flügel (1982) described them as broken or abraded ooids formed 

by the mechanical break-up in agitated waters in hypersaline environments. Carozzi (1961) 

when studying the ooids of the hypersaline Great Salt Lake (Utah, USA) redefined these types 

of ooids as regenerated ooids. They were also found in ancient environments in the lagoonal 

Keuper deposits of Poland (Labeci and Radwánski, 1967), Neocomian deposits of Yugoslavia 

(Radoičić, 1960) and shallow marine Miocene deposits of Italy (Roda, 1965); and in modern 

day environments such as the Great Salt Lake (Fig. 4.26F; Eby and Chidsey, 2013; Chidsey et al., 

2015 and refer to Chapter 6). 

A few ooids present in this facies and only found in Worbarrow Tout show a lateral 

change in the cortex microstructure from finely radial to coarsely radial within the same 
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laminae (Fig. 4.26D). This feature is not documented in the literature and an explanation of 

this may be a replacement of the original fine concentric laminae to a coarser fabric, as ghosts 

of concentric laminae persist a short way into the coarser radial calcite fabric. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26 Ooids of the Cross-bedded peloidal packstone-grainstone facies. A – Superficial ooids 
with peloids (WT10, Wrodarrow Tout). B – Mixed ooid with micritic nucleus and concentric calcitic 
laminae with radial fabric cortex. Note the micritisation mainly in the outer part (WLC8, West Lulworth 
Cove). C – Mixed ooid with micritic nucleus and concentric laminae with radial fabric and micritic 
irregular laminae. Note the micritisation on the extremities (arrows) and of the last laminae (WT13, 
Worbarrow Tout). D – Strange ooid with microbial intraclasts as nucleus and the replacement of the 
cortex from finely radial to coarsely radial concentric laminae. Arrow shows the concentirc laminae 
recognisable in the coarse radial fabric (WT13, Worbarrow Tout). E – Regenerated ooid with a mixed 
microstructure cortex concentric laminae with radial fabric (WLC8, West Lulworth Cove). F – 
Regenerated ooid with radial fabric from the Great Salt Lake, Utah, USA (from Chidsey et al., 2015). 
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4.2.4. Intraclasts 

 

The intraclasts with a clotted microfabric (Fig. 4.27A) as with the intraclasts of the 

previous facies (see previous section) are interpreted to originate from reworked material 

from microbial mounds of either underlying beds (Skull, Hard or Soft Cap beds) or adjacent 

accumulated microbial mounds.  

The intraclasts with a peloidal packstone-grainstone texture (Fig. 4.27B) are most likely 

reworked material from underlying beds within the Cypris Freestone unit. 

 

 

 

 

 

 

 
 
 
Figure 4.27 Intraclasts of the Cross-bedded peloidal packstone-grainstone facies. A – Microbial 

intraclast in a peloidal grainstone (WT14, Worbarrow Tout). B – Peloidal packstone with ostracod shells 
and ooids intraclast within a peloidal grainstone with ooids (WT13, Worbarrow Tout). 

 

4.2.5. Molluscs 

 

Gastropods present in this facies were observed only in thin section, are neomorphosed in 

a calcite spar, some filled with micrite (Fig. 4.25A), and have not been identified. From the 

Cypris Freestone Strahan (1898) described three fresh- to brackish water tolerant gastropod 

species; Arkell (1941) recorded two freshwater tolerant gastropod species; Clements (1973) 

described two other brackish water tolerant gastropod species; and more recently Radley 

(2002) described another brackish water tolerant species (refer to Chapter 2). Despite 

different findings from different authors the overall conclusion is that the low diversity of 

gastropod species indicates brackish to hypersaline conditions within an estuarine or lacustrine 

environment closed system (Radley, 2002). 

Similarly, the bivalves are neomorphosed in a mosaic or drusy calcite spar in well lithified 

limestones and have not been identified in this study. Strahan (1898) described only one 

freshwater tolerant species and Radley (2002) one marine tolerant species (refer to Chapter 2). 

As for the interpretation from the gastropod species, the low diversity of bivalve species 

indicates brackish to hypersaline conditions in a closed system (Radley, 2002). However the 
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environmental interpretation remains unclear due to the occurrence of marine species 

together with brackish and freshwater species that suggests a mixing of molluscan material 

(Radley, 2002). 

 

4.2.6. Foraminifers 

 

As explained for the previous facies, occurrence of foraminifers in the Mupe Member (and 

the Purbeck Limestone Group in general) is cited by most authors but no identification was 

ever published. This is also valid for the Cypris Freestone unit where this facies was deposited. 

 

4.2.7. Halite pseudomorphs 

 

Cubic shaped moulds are commonly found on the base surfaces of the bedding planes 

(Figs. 4.23E and 4.28A) and are commonly used as way-up structures (Collinson and 

Thompson, 1987). These moulds are filled with the surrounding sediments (i.e. the Cross-

bedded peloidal packstone-grainstone) indicating a very rapid dissolution after deposition. 

These are often referred to hopper crystal cast of halite cubes and are typical of evaporitic 

environments (Handford, 1991). Most of the published studies documenting halite 

deposition/crystallisation are for shallow marine environments but the same 

deposition/crystallisation processes can be applied to non-marine environments (Eugster and 

Hardie, 1978; Talbot and Allen, 1996). Processes of halite precipitation are due to intense 

evaporation of the water body leading to subaqueous growth of halite crystals at the water-air 

interface and/or directly on the lake floor (Arthurton, 1973; Lowestein and Hardie, 1985; 

Collinson and Thompson, 1987; Handford, 1991).  Halite pseudomorphs result from influx of 

slightly fresher waters into the lake that dissolve the halite crystals and create moulds on the 

lake floor (Collinson and Thompson, 1987). These moulds are then quickly filled with the 

surrounded sediments allowing their preservation (Collinson and Thompson, 1987). 

Hopper crystals of halite cubes are documented in modern day hypersaline Great Salt 

Lake (Baskin, 2014; Chidsey et al., 2015). In the northern part of the Great Salt Lake (Gunnison 

Bay) halite hoppers are forming at the surface of the hypersaline water (Fig. 4.28B) before 

sinking to the lake floor when too heavy as per Handford’s (1991) model. These can be 

deposited on the surface of the oolitic sediment or encrusting microbial mounds (Fig. 4.28C; 

Chidsey et al., 2015). 
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Figure 4.28 Hoppers of halite of the Cross-bedded peloidal packstone-grainstone facies. A – 

Hoppers of halite pseudomorphs on a surface of a bed (Broadcroft Quarry, Isle of Portland). B – Hoppers 
of halite (possibly forming a raft) nucleated at the water surface in the northern part of the Great Salt 
Lake (Utah, USA). Note in both pictures (B and C) the pinkish colour of the water due to sulphate 
reducing microbes. (from Baskin, 2014). C – Halite encrusting circular dead microbial mounds in the 
Great Salt Lake, Utah, USA (from Chidsey et al., 2015). 

 

 

The hoppers of halite pseudomorphs found in this facies are thought to have precipitated 

on the surface of hypersaline water before sinking and being deposited or to have grown from 

the lake floor (as per Handford’s, 1991, model). After a change in the water chemistry they 

may be dissolved away and filled with the surrounding sediment that preserved their moulds 

on the base of the bed surfaces (as per Collinson and Thompson, 1987, concept). 

 

4.2.8. Quartz grains 

 

The quartz grains are often present throughout the area although in small quantities that 

indicates some siliciclastic input to the system from time to time possibly from a freshwater 

input from the west or exposed footwall areas (refer to Chapter 6 for discussion). 
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4.2.9. Palaeocurrents 

 

As described in the previous facies cross-lamination and current ripples provide 

information on palaeocurrent directions (Tucker, 2003) and are very common in coastal 

environments (Tucker and Wright, 1990). In this facies the measurements done at Portesham 

cannot be really used as reliable palaeocurrent determination as only two directions were 

recorded (as per Tucker, 2003; see in previous section). However at Fossil Forest and South 

West Bowers enough measurements were recorded (see above) to indicate a prevalent 

southerly current direction in the Lulworth area (Fig. 4.24D), easterly direction in the 

Portesham area (Fig. 4.24A) and rather variable directions (although easterly directions appear 

to prevail, Fig. 4.24B-C) over the Isle of Portland area. Few authors have studied palaeocurrent 

directions within the Purbeck strata. Allen et al. (1998) determined palaeo-wind directions 

inferred from global simulations for the western Tethyan region and input into General 

Circulation Models (usually used in modern weather forecasts) for early Purbeck time. They 

showed that the prevailing winds were westerly during summers and easterly during winters. 

They also specified that there was an overall northeasterly wind direction during the whole 

Purbeck time that is in accordance with Francis (1982) works on fallen trees from the Cap beds 

(refer Chapter 2) . This will be detailed and discussed further in Chapters 6 and 7. 

Herring bone cross-stratifications are usually found in the tidally influenced zone in 

marine environments (Tucker and Wright, 1990), and to create such sedimentary structures in 

a lakes is only possible in certain conditions. They can occur in big lakes with a water body big 

enough to be influenced by gravitational forces (the moon and the sun) as in the Lake Superior 

(about 82.103 km2), Lake Erie (about 25.744 km2) or Lake Michigan (about 58.000 km2) in the 

Great Lakes region in northern America (Mortimer and Fee, 1976; Kennish, 1986; Mann and 

Lazier, 1991; Mortimer, 2004; Trebitz, 2006). Alternatively they can be wind-driven as 

documented by Rusnak (1960b) for a hypersaline lake Laguna Merida (about 1.230 km2) in 

Texas (USA), Ainsworth et al. (2012) in the Lake Eyre (9.500 km2) in Australia and by Illing et al. 

(1965) in the Dohat Faishakh lagoon (about 10 km2) in the Persian Gulf.  They can also be due 

to seiche event where two waves of opposite direction are combined to create a unique and 

bigger wave (Sager et al., 1985; Mortimer, 2004). The Wessex Basin being about 45.000 km2 

(refer to Chapter 2) tides or seiche events would be expected to create such herring bone 

stratification. However the Portland-Wight sub-basin is much smaller, about 12.000 km2 (refer 

to Chapter 2) having a similar area to Lake Eyre (see above) where wind-driven currents 
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control the formation of herring bone stratification. This will be discussed further in Chapters 6 

and 7. 

4.2.10. Summary 

 

The packstone to grainstone texture indicates a moderate to high energy environment 

supported by the sediment structures and the presence of intraclasts, ooids (in particular the 

broken-up and regenerated ooids) and grapestones. The presence of brackish to hypersaline 

ostracods indicates together with the occurrence of evaporite pseudomorphs, that hypersaline 

waters occurred at times. The association of all these features reveals a variably brackish to 

hypersaline shallow marginal lacustrine environment with a siliciclastic pulse from time to 

time. This lake was subject to winds of variable orientation based on the palaeocurrents and 

the herring-bone cross-stratifications. 

 

5. Wackestone to fine grainstone facies 

5.1. Description 

 

This facies is mainly present in the lowermost beds of the Mupe Member of the Purbeck 

Limestone Group, labelled by Francis (1982) and West (2015) as the Transition Bed. This facies 

erosionally overlies the Portland Group and is overlain by the Basal Dirt Bed paleosol (refer to 

Chapter 2 for lithostratigraphy; Fig. 4.29A). This facies is only found north of Weymouth at 

Portesham and Poxwell Quarries, to the east at Swanworth Quarry, Fishermen’s Ledge and 

Durlston Head and southwest of the Isle of Portland at God Nore, Lawnsheds Quarry and 

Portland Bill.  

At the macro-scale this facies is massive, organised in beds of 20 to 50 cm thick commonly 

with planar laminations (Fig. 4.29A). This fine grained-facies contains molluscs (bivalves and 

gastropods) and few ostracods (Fig. 4.29B). It weathers to shades of grey to white at the 

outcrop and also when broken. 

At the micro-scale three fine-grained textures characterise this facies; fine peloidal 

grainstone (Fig. 4.30B), peloidal packstone and wackestone (Fig. 4.30B). Rounded to well-

rounded micritic peloids are very common in this facies. They are relatively sorted with 

diameters varying from 10-20 µm to 50-100 µm. Ostracods are abundant can be broken up or 

intact and between 300 µm and 1 mm long. Gastropod shells were only found at Portland Bill 

on the Isle of Portland and replaced by calcite (Fig. 4.31C). These were found with both a flat 

helix and more elongated helicoidal shapes. Bivalves with two different shell microstructures 



 

199 
 

are found locally, yellow to beige fibrous and prismatic calcite (Fig. 4.31B) and sparite of calcite 

within a micritic envelope (Fig. 4.31A). The yellow to beige bivalve shells (whole or broken-up) 

are about 1 mm wide and 1 cm long with a fibrous calcite and a rolling extinction (Fig. 4.31B). 

Locally these bivalve shells can be silicified with small spherules replacing the fibrous shell 

(Fig. 4.31B). The bivalves with both prismatic and fibrous shells were only found at God Nore 

and Portland Bill. They are broken-up about 800 µm long and 400 µm wide and made of brown 

prismatic calcite crystals of about 150 µm long and 10-20 µm wide (Fig. 4.31B).  

Only at Broadcroft Quarry, God Nore and Portland Bill on the Isle of Portland are found 

ooids. The ooids are of two types: mixed and heavily micritised ooids (Figs. 4.31 and 4.32) 

between 100 and 700 µm in diameter with bioclast fragments or quartz grains as nucleus; or 

superficial ooids (Fig. 4.31) about 50 µm in diameter with peloids as nucleus.  

All the clasts described below are found very rarely and some cases only one occurrence 

was seen. Foraminifera were found only at Portland Bill and are about 200 µm wide and 300 

µm long (Fig. 4.31G). At God Nore and Broadcroft Quarry rounded microporous clasts were 

found, and occasionally some with a tubular internal microstructure of between 1 and 2 mm in 

diameter. Some clasts have concentric laminae preserved interpreted to be Solenopora 

fragments (Figs. 4.31E and 4.33). Only at Portland Bill were found more or less squared-sided 

brown calcitic clasts about 1 mm long and wide with a rugose aspect and showing 

birefringence in XPL interpreted to be echinoderm plates (Fig. 4.31F). Intraclasts of oolitic and 

peloidal grainstone were found at Broadcroft Quarry and Portland Bill. They are between 500 

µm and 1 mm in diameter coated with an oolitic coating (Fig. 4.31D). Only at God Nore was 

found a rectangular clast with cells in its internal structure interpreted as bryozoan fragment 

(Fig. 4.31G). This clast is about 1.5 mm long and 500 µm wide and the cells are more or less 

circular about 100 µm in diameter (Fig. 4.31G). 
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Figure 4.29 Wackestone to fine grainstone facies in the field. A – Transition between Portland 

Group and Purbeck Limestone Group (Portland Bill, Isle of Portland). B – Close-up view on wackestone 
to fine grainstone macrofacies laminated (God Nore, Isle of Portland). C – Close-up view of wackestone 
to fine grainstone facies with ostracods and molluscs (Pondfield Cove). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.30 Wackestone to fine grainstone microfacies. A – Wackestone with peloids and ostracods 

(GN2, God Nore, Isle of Portland). B – Fine peloidal packstone with peloids and ostracods (PB2, Portland 
Bill, Isle of Portland). 
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Figure 4.31 Clasts and fossils of the Wackestone to fine grainstone facies. A – Sparite and fibrous 

bivalve shells and micritised ooids in a fine peloidal grainstone (BQ1, Broadcroft Quarry, Isle of 
Portland). B – Bivalve shell showing both fibrous and prismatic structures and micritised ooids in a 
peloidal packstone (PB1, Portland Bill, Isle of Portland). C – Sparite gastropod shell, peloids and 

  



 

202 
 

superficial ooids in a fine peloidal grainstone (PB3, Portland Bill, Isle of Portland). D – Intraclast of oolitic 
grainstone with an oolitic coating, peloids and foraminifer in a fine peloidal grainstone (GN3, God Nore, 
Isle of Portland). E – Solenopora fragment, mixed ooids and fibrous bivalve shell fragments in a fine 
peloidal grainstone (GN3, God Nore, Isle of Portland). F – Echinoderm plate (with straight extinction in 
XPL), micritised ooids and ostracod shell fragments (PB1, Portland Bill, Isle of Portland). G – Bryozoan 
fragment, foraminifers, peloids and mixed and micritised ooids in a fine peloidal grainstone (GN3, God 
Nore, Isle of Portland). 

 

5.2. Interpretation 

5.2.1. Peloids 

 

The peloids found in this facies are significantly smaller than those found in previous 

facies (Intraclastic and Cross-bedded peloidal packstone-grainstones). Due to their small size 

and their homogenous micritic microstructure no clear origin can be drawn, however some 

origins can be discarded. As described earlier, faecal pellets are rather elongated and usually 

between 40 and 300 µm in diameter. The peloids found in this facies are rather spherical and 

much smaller than faecal pellets; as a consequence they are unlikely to be faecal pellets. 

Similarly they are too large to be micritised ostracod shell fragments. This origin can also be 

discarded. Other possible origins are micritised mollusc shell fragments, micritised microbial 

intraclasts, reworked mud clasts and/or reworked faecal pellets. Mollusc shells (bivalves and 

gastropods) are locally very abundant and can be easily broken-off micritised and reworked 

(similar origins were interpreted by Samankassou et al. 2005, for peloids from the Cinder Bed 

upwards). Microbial intraclasts are found in a few locations and can be derived from 

contemporaneously deposited microbial sediments laterally. There are no records in the 

literature of underlying mud deposits or from a source nearby; they are unlikely to be at the 

origin of the peloids. The most probable sources of the peloids found in this facies are 

micritised mollusc fragments, microbial deposits derived from a syn-depositional source 

and/or reworked faecal pellets. 

 

5.2.2. Ostracods 

 

The ostracods present here are difficult to identify for the same reasons presented earlier 

and no studies specifically refer to this unit. Anderson’s (1985) first faunicycle (Quainton 

faunicycle) might correspond stratigraphically to the beds where this facies is found however 

this faunicycle is only based on ostracods found in the Buckinghamshire (Aylesbury) and 

Wiltshire (Swindon). As this unit is locally developed in south Dorset it is unwise to make a long 

distance correlation to these occurrences. 
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5.2.3. Molluscs 

 

The molluscs are locally found with different characteristics, replaced by calcite 

gastropods (Fig. 4.31C), thick and long bivalve shells with fibrous calcite crystals often partially 

replaced by silica (Fig. 4.31B), bivalve shell fragments with prismatic calcite (Fig. 4.31B) and 

thick bivalve shells replaced by sparite of calcite (Fig. 4.31A). 

The gastropod shells were only found at Portland Bill where they are rather abundant and 

because they are replaced by sparite of calcite they are thought to be originally aragonitic. 

Arkell (1941) and Clements (1973) described four species in these transition beds (refer to 

Chapter 2). Only one of them has a flat helix shape Valvata helicoides, while the three others 

have a helicoidal elongated shape and belong to two generas Hydrobia and Loriolina. Clements 

(1973) determined that these species were brackish water tolerant in a relatively open system 

(refer to Chapter 2). Because gastropod shells are found intact, they are thought to be 

deposited in-situ in early Purbeck time. 

The three types of bivalve shells can possibly be three different species. In the Purbeck 

Limestone Group only one species of bivalve was identified from these beds by Strahan (1898) 

as freshwater Cyrena media that forms thick aragonitic shells (refer to Chapter 2). Similar 

aragonitic bivalve shells were identified by Townson (1971) in the underlying oolitic bed 

(Roach Bed) of the Portland Group. These belong to the Trigoniid, Pleuromyoid and Cardiid 

genera and are known to be found in marine settings (Townson, 1971). The intact (sometimes 

with both valves preserved) shells are thought to be deposited in-situ and to be Cyrena media 

bivalves. However, concerning the fragments of bivalves found replaced by calcite with a 

micritic envelop, these are thought to either be fragmented Cyrena media or reworked and 

redeposited bivalve shells from the underlying Roach Bed. The other types of bivalve shells are 

bigger and preserved their original calcitic microstructures as suggested by the fibrous and 

prismatic calcite crystals. Such thick and long bivalve shells have never been recorded in the 

Purbecks but similar shells have been identified in the underlying Roach Bed of the Portland 

Group. These were identified as marine species and to belong to the Pectinid, Isognomenida, 

Limida and ostreids genera and are very abundant in the Roach Bed (Arkell, 1947; Townson, 

1971, 1975). These are found in this facies as variable sized fragments indicating a possible 

transport and redeposition. For these reason these types of bivalve shells are thought to be 

reworked and redeposited from the underlying marine deposits of the Roach Bed. 
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5.2.4. Ooids 

 

The ooids are only found at three locations in the Transition Bed on the Isle of Portland 

and are of two types; either superficial ooids usually with a peloid as nucleus or mixed ooids 

and heavily micritised.  

The calcitic superficial ooids do not show any micritisation of their cortices and are 

preserved with their original concentric laminae with calcitic fabric microstructure. These are 

similar to the superficial ooids found in previous facies. The radial fabric of the concentric 

laminae may indicate quiet waters (Bathurst, 1967; Strasser, 1986). The nuclei are micritic 

peloids and do not show any internal structures. They are thought to be mainly sourced from 

the surrounding peloids. For these reasons these superficial ooids are thought to have formed 

in-situ in a rather quiet-water energy system consistent with the depositional textures. 

The mixed ooids (Fig. 4.32) have their cortices and nuclei heavily micritised (more so than 

the ooids described in previous facies). Few of them show one or two concentric laminae with 

radial calcitic fabric on the external part that tend to classify them as superficial ooids with 

reworked ooids as nucleus (Fig. 4.31D). According to Strasser (1986) micritic microstructure 

indicates strong-energy and transport of the ooids on the lake floor while Rusnak (1960a) and 

Land et al. (1979) interpret the micritic microstructure to be due to rapid precipitation (in 

either quiet or agitated waters). However the ooids of this facies are very similar to those 

found in the underlying oolitic bed (Roach bed) of the Portland Group (Fig. 4.32B). The 

micritisation of the ooids is usually not complete as some of the original microstructures of the 

nucleus are observable.  

 

 

 

 

 

 

 

 

Figure 4.32 Mixed ooids of the Wackestone to fine grainstone facies. A – Typical mixed ooid with 
concentric laminae with radial fabric and micritic laminae of the cortex and a micritic nucleus. Note the 
eroded cortex on the right bottom possibly showing erosion during transport (GN3, God Nore, Isle of 
Portland). B – Typical ooid of the Freestone Member of the Portland Group from the Central Area of 
Dorset with similar microstructures (from Townson, 1971). 
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Townson (1971) described ooids from the Portland Group to be 500 µm in diameter on 

average with concentric laminae or completely micritised (due to algal boring) cortices around 

quartz grains or skeletal fragments. For these reasons they are thought to be reworked from 

the underlying Roach Bed. These ooids were used as nuclei that were occasionally coated with 

a superficial oolitic coating of one or two laminae. In such case they have to be considered as 

superficial ooids deposited in-situ and most likely in a quiet-water energy system as the 

superficial ooids described above.  

 

5.2.5. Solenopora fragments 

 

These clasts are rare and only two were found, one at Broadcroft Quarry and one at God 

Nore on the Isle of Portland. They both show a microporous internal microstructure with radial 

cells organised in tangential zones between 500 µm and 1 mm thick. These are very similar to 

Solenopora red algae (Fig. 4.33) abundant and that form reefs in the underlying Freestone 

Member of the Portland Group on the Isle of Portland (Townson, 1971, 1975). Due to the rarity 

and roundness of these clasts in this facies, they are thought to have been reworked and 

redeposited from the underlying Freestone Member. 
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Figure 4.33 Solenopora? of the Wackestone to fine grainstone facies. A – Solenopora? clast with 
micritic and microporous structure that corresponds to the micritic structure of C (GN3, God Nore, Isle 
of Portland). B – Solenopora? clast with tubular structure organised in tangential laminae that 
corresponds to the upper part in C (BQ1, Broadcroft Quarry, Isle of Portland). C – Banded Solenopora 
from the Freestone Beds of the Portland Group showing both micritic and tubular structures organised 
in laminae (modified after Townson, 1971). 

 

5.2.6. Echinoderm plates 

 

These clasts are also rare and were only identified at Portland Bill. Their rather squared 

shape together with their rugose internal microstructure and their straight extinction in XPL 

are specific of echinoderm plate fragments (Fig. 4.34). No echinoderms were described from 

the Purbeck Limestone Group but echinoids and asterozoan-derived (Hemicidoroidea and 

Echinoidea) are found in the underlying Freestone Member of the Portland Group (Townson, 

1971). Due to their rarity and their roundness, they are thought to reworked and redeposited 

from the underlying Freestone Member. 
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Figure 4.34 Echinoderm plates of the Wackestone to fine grainstone facies. A – Fragment of 

echinoderm plate with rugose microstructure in a wackestone (PB1, Portland Bill, Isle of Portland). B – 
Echinodermal plate from the Bethel Formation, Chester Series, Upper Mississippian, Hardin County, 
Kentucky, USA (from Horowitz and Potter, 1971). 

 

5.2.7. Bryozoan fragment 

 

These clasts are again rare and few were found at Broadcroft Quarry and God Nore on the 

Isle of Portland. They show circular and elongated cells with micritic walls that are specific to 

bryozoan (Fig. 4.35). Bryozoans have never been recorded from the Purbeck Limestone Group 

but are common in the underlying Freestone Member of the Portland Group (Townson, 1971). 

These were identified as Diastoporida (order Cyclostomata) by Townson (1971). Due to their 

rarity and their broken-up aspect, they are thought to reworked and redeposited from the 

underlying Freestone Member. 

 

 

 

 

 

 

 

 

 
Figure 4.35 Bryozoan fragment of the Wackestone to fine grainstone facies. A – In a fine peloidal 

packstone, close-up view from figure 4.31G (GN3, God Nore, Isle of Portland). B – Bryozoan clast from 
the Jandaíra Formation of the Potiguar Basin from Mossoró Quary, Brasil, Turonian to Campanian (from 
Dias-Brito and Tibana, 2015). 
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5.2.8. Intraclasts 

 

The intraclasts found in this facies are again rare and only found at God Nore on the Isle of 

Portland. These are of two types either made of fine peloidal grainstone or oolitic grainstone 

(Fig. 4.36) and some of them are oolitic coated with a simple or two laminae of tangential 

calcite (Fig. 4.31D). The intraclasts with a fine peloidal grainstone texture are thought to be 

reworked and redeposited from an underlying or lateral bed of the Transition Bed of the 

Purbeck Limestone Group. While the intraclasts with the oolitic grainstone texture are thought 

to be reworked and redeposited from the underlying Roach Bed of the Portland Group where 

the beds are characterised by a similar texture (Fig. 4.37B; Townson, 1971). 

 

 

 

 

 

 

 

 

Figure 4.36 Intraclasts of the Wackestone to fine grainstone facies. A – Four oolitic grainstone 
intraclasts with a superficial oolitic coating in a fine peloidal grainstone (GN3, God Nore, Isle of 
Portland). B – Typical oolitic grainstone from the Lower Freestone Beds of the Portland Group from the 
east of the Isle of Purbeck that shows similar texture with the intraclasts found in this study (from 
Townson, 1971). 

 

5.2.9. Summary 

 

The rather fine grained textures of the sediments (wackestone to fine grainstone) with 

planar laminations indicate a low energy system suggesting a protected shallow or a deep 

environment. This low energy system is confirmed with the superficial ooids and the superficial 

oolitic coatings on some of the clasts. The brackish water tolerant ostracods and mollusc 

gsatropods indicate a change in the environment from marine of the underlying oolitic 

Portland Group to the non-marine of the Purbeck Limestone Group. This was also suggested by 

West (2015). The low diversity of ostracods and gastropods indicate a rather closed system as 

suggested by Radley (2002). Occurrences of reworked marine fossils and clasts (red algae, 

oolitic intraclasts, micritised ooids and bryozoans) from the underlying Freestone Member of 

the Portland Group indicate that the Portland Group was exposed and eroded prior the 
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deposition of this Transition Bed (refer to Chapters 6 and 7). Altogether these clasts plus the 

texture indicate brackish water condition in a deep setting in a rather closed lacustrine system. 

 

6. Gypsiferous peloidal packstone facies 

6.1. Description 

 

This facies is only found at the base of the Cypris Freestone unit (just above the Soft Cap 

bed, Fig. 4.37) and consists of beds of about 1 to 2 cm thick within a unit of about 50 cm thick 

(Fig. 4.37). This facies was only found on the Isle of Portland at Tout Quarry, Coombefield 

Quarry and South West Bowers. The absence elsewhere of this thin unit may be due to a non-

deposition or erosion or it does not crop out. 

At the macroscale the unit comprises fine-grained limestones that have planar 

laminations (Fig. 4.37). It weathers to shades of grey to white at the outcrop and similar tones 

are seen when broken. 

At the microscale this facies comprises poorly sorted calcite crystals that are sub-angular 

to rounded (Fig. 4.38, 4.39) and their morphologies are prismatic, lenticular (i.e. lozenge-

shaped), pyramidal and amorphous (Fig. 4.38). Most of the crystals are monocrystals although 

some are found made of two or three calcite crystals (Fig. 4.38D). Under CL they are non-

luminescent with rectangular (Fig. 4.39C-D) or lenticular (Fig. 4.39A-B) zonations and 

microfractures (Fig. 4.39) of orange laminae. These crystals are of silt and sand size (according 

to Wentworth’s, 1922, classification) between 20 and 300 µm in diameter with predominantly 

coarse silt size crystals (about 60% of the crystal diameters are between 30 and 60 µm, 

Figs. 4.38 and 4.39) within a micritic matrix (Figs. 4.38 and 4.39). Under CL the matrix reveals a 

dull luminescence orange (Figs. 4.38F and 4.39).  
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Figure 4.37 Gypsiferous peloidal packstone macrofacies. A – Location of the laminated beds just 
above the Soft Cap bed and at the base of the Cypris Freestone unit. Black box locates B and C (South 
West Bowers Quarry, Isle of Portland). B – Laminated beds (South West Bowers Quarry, Isle of Portland). 
C – Beds with planar laminations (South West Bowers Quarry, Isle of Portland). 
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Figure 4.38 Gypsiferous peloidal packstone microfacies. A – Prismatic calcite crystals and gypsum 

pseudomorphs within a mudstone matrix (CQ10, Coombefield Quarry, Isle of Portland). B – Details of 
gypsum pseudomorphs (highlighted with dashed lines) and prismatic calcite crystals within a mudstone 
matrix (TQ11, Tout Quarry, Isle of Portland). C –Prismatic, amorphous, pyramidal and lenticular calcite 
crystals within a mudstone matrix in PPL (TQ11, Tout Quarry, Isle of Portland). D – Aggregate of 
lenticular calcite crystals and pyramidal calcite crystal within a mudstone matrix (TQ11, Tout Quarry, Isle 
of Portland). E and F – Bright white amorphous, lenticular and pyramidal calcite crystals within a 
mudstone matrix in PPL and dull calcite crystals with microfractures in orange under CL (SWB7, South 
West Bowers, Isle of Portland). Note the lenticular orange laminae in the calcite crystal. 
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Figure 4.39 PPL and CL microphotographs of the calcite crystals. A and B – Lenticular calcite crystal 
showing a lenticular orange zonation in the center of the crystal under CL (CQ10, Coombefield Quarry, 
Isle of Portland). C and D – Amorphous calcite crystals showing a prismatic orange zonation in the 
crystals under CL (SWB7, South West Bowers, Isle of Portland). 

 

6.2. Interpretation 

 

The silt size calcite crystals found here in great quantity are poorly sorted and embedded 

in a micritic matrix that was neomorphosed to microsparite as revealed under CL (Figs. 4.38F 

and 4.39).  

As described above the lenticular crystals have the morphology of gypsum crystals and 

are interpreted as gypsum pseudomorphs replaced by calcite. In this facies the calcite crystals 

preserve the original internal structure of the former gypsum crystals due to the lozenge-

shaped growth lines as revealed under CL (Fig. 4.39B). However, these crystals appear to be 

broken up and/or abraded as the original lozenge shape of the gypsum crystals is often 

destroyed (Figs. 4.38 and 4.39). In addition, the corners of the crystals are often slightly 

rounded (Fig. 4.39A) and the borders are rough (Fig. 4.39A). These can be due to two 

processes, either a transport of gypsum crystals in hypersaline waters; or in situ displacive 

gypsum crystal growth in soft sediments locally incorporating micrite. In both cases, the 

gypsum crystals are thought to be later replaced during the early diagenesis during shallow 
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burial. The rough borders and smooth corners can be due to erosion of the original gypsum 

crystals during transport or partial dissolution of the crystals during the early diagenesis and 

the replacement with calcite. 

The pyramidal crystals are also interpreted as broken-up gypsum pseudomorphs as they 

show same aspect in PPL and same kind of luminescence in CL. This also supports the 

suggestion for the reworked origin of these gypsum pseudomorphs, as these pyramidal shapes 

would have formed during the transport. 

The prismatic shaped calcite crystals could be considered to have a different origin. Quine 

and Bosence (1991) described disarticulated prismatic crystal Inoceramid bivalve shells from 

Late Cretaceous of Normandy that had been eroded and redeposited. However such bivalves 

are not present in the underlying Purbeck beds or Portland Group. Bivalves such as Pectinid, 

Isognomenida, Limida, Ostreid, Triigonid, Pleuromyoid and Cardiid (Townson, 1971) are 

abundant in the underlying Freestone Beds of the Portland Group; however, several points 

argue against these as a possible source. First, most of these bivalves have fibrous calcitic 

shells and only a few have prismatic shells (Townson, 1971). This source is unlikely as a great 

amount of prismatic bivalve shells would have been needed to create such facies. Secondly, 

the Portland Group is too far stratigraphically from the beds made of this facies (about 4-5 m 

above, refer to Chapter 6) and no syndepositional faults have been identified nearby that 

could permit these bivalve shells to be reworked to a higher level in the stratigraphy. These 

crystals could also be reworked anhydrite pseudomorphs following the same process proposed 

for the gypsum pseudomorphs. Similarly as the gypsum pseudomorphs the calcite crystals 

preserved the original internal structure of the crystals as revealed by the rectangular orange 

laminae under CL (Fig. 4.39D). For the same reason as has been given for the gypsum 

pseudomorphs, anhydrite pseudomorphs might derive from penecontemporaneous deposits. 

However, the origin of the prismatic crystals is unlikely to be from anhydrite crystals as these 

are rarely found as primary crystals and are known to replace gypsum by dehydration in 

subsurface environments (Murray, 1964; West, 1964). Another argument against this origin is 

the luminescence under CL. These prismatic crystals have the same non-luminescence with 

orange zonation as the gypsum (Fig. 4.39). For these reasons these prismatic crystals are 

thought to be reworked, eroded and/or abraded and redeposited gypsum crystals. 

Similar facies was described by Sanz et al. (1994) in the lacustrine Miocene Intermediate 

Unit deposits of the Madrid Basin exposed in Spain. They described a facies made of broken-up 

and eroded (physically and chemically) gypsum crystals within a mudstone matrix (Sanz et al., 

1994). Although the sizes of the crystals appear to be greater than the crystals found in the 
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Gypsiferous peloidal packstone facies of this study, morphologies are very similar. The gypsum 

crystals found in the Madrid Basin have tabular hemipyramidal, lenticular, prismatic and 

rounded shapes, abraded and/or broken and between 60 µm and 1 cm (Sanz et al., 1994). 

They interpreted this facies to have formed due to reworked and redeposited gypsum crystals 

and they defined it as detrital gypsum (Sanz et al., 1994). This detrital gypsum is found in three 

different types of beds, infilling scour-based beds of 15 cm thick and 1 m wide; in beds with 

parallel laminations and low-angle cross-laminations in units of 20 to 170 cm thick and 

hundreds of meters wide and organised in beds of 2 mm to 5 cm thick; or in beds with trough 

and planar cross-stratification of 10 to 20 cm thick sometimes with an erosive base (Sanz et al., 

1994). According to this description the second type is similar to the Gypsiferous peloidal 

packstone beds in this study. They proposed two different models for the formation of these 

detrital gypsum beds with parallel laminations and low-angle cross-laminations; at the inner 

mudflat-lake margin transition or on the lake margins in both cases of a saline lake (Sanz et al., 

1994). In the former model the detrital gypsum beds are found after the deposition of gypsum-

rich mudstones where gypsum monocrystals are found displacive in the sediment (Sanz et al., 

1994). Each detrital gypsum bed would have formed due to several and episodic terrestrial 

flows or sheetfloods (episodic heavy rains typical of arid to semi-arid climate, Hardie et al., 

1978; Handford, 1982; Chen et al., 1991) of the saline mudflat that reworked and redeposited 

the gypsum (Sanz et al., 1994). In the latter model the detrital gypsum would have been 

formed after reworking of in-situ selenitic gypsum beds by waves on the lake beaches (Sanz et 

al., 1994). This model is supported by the occurrence of ripples, low-angle cross-laminations 

and parting lineation that are specific of beach environments (Elliot, 1986; Sanz et al., 1994). 

In this study only parallel laminations were identified at macro-scale within beds of 1 to 2 

cm thick on units of about 50 cm thick. Because these crystals are found in a micritic matrix 

and the beds show planar laminations, and there are no records of in-situ selenitic deposits in 

the area of the Isle of Portland (only recorded at Durlston Bay, see below), the first model 

proposed by Sanz et al. (1994) could be applied to the Gypsiferous peloidal packstone found in 

this study. The only difference with this model is the non-occurrence of the gypsum-rich beds 

deposited prior the detrital gypsum beds in the Madrid Basin (Sanz et al., 1994). This can be 

explained by the erosion of the entire gypsum-rich beds with all the gypsum crystals reworked 

and redeposited in the mudflat. As a consequence this facies is thought to have been 

deposited in a protected mudflat of a saline lake with episodic floods eroding gypsum-rich 

beds, reworking and redepositing almost in-situ the gypsum crystals. 
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7. Calcareous sandstone facies 

7.1. Description 

 

This facies is found within beds in the Cypris Freestone unit ranging between 30 and 80 

cm thick (Fig. 4.40A). These beds disappear laterally to the west as they are present only in 

West Lulworth Cove, Fossil Forest, Mupe Bay and Worbarrow Tout locations. Their absence 

can be explained because of non-deposition or lack of outcrop. 

At the macroscale this facies exhibits planar cross-laminations organised in sets ranging 

between 1 and 6 cm in thickness (Fig. 4.40B-C). This facies has a yellow to beige colour both at 

the outcrop and when broken. 33 measurements of orientation of cross-laminations were 

done at Fossil Forest where this bed is particularly well exposed and they reveal one main 

direction at 190° (Fig. 4.40D). 

At the microscale this facies is characterised by more than 50% of angular, well sorted silt 

and sand size (Wentworth, 1922) of transparent crystals ranging in size from 20 and 400 µm 

(with about 70% of grains between 60 and 150 µm, predominantly very fine sand size, 

Fig. 4.41). Those crystals have a straight extinction and first order colours (shades of grey) in 

XPL and are surrounded by equigranular microspar cement (Fig. 4.41). Sub-angular to rounded 

micritic peloids are the second most abundant grains in this facies (Fig. 4.41). They show 

elongated and spherical shapes and measure between 100 and 200 µm long and 50 to 100 µm 

wide (Fig. 4.41A). Few ostracod shell fragments are also present between 100 and 500 µm long 

(Fig. 4.41A). Only one mixed ooid was found (Fig. 4.41B) with a crystalline nucleus and 

brownish radial coating (Fig. 4.41B). 
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Figure 4.40 Calcareous sandstone facies. A – Location of calcareous sandstone facies in the field 
within Cypris Freestone unit (Fossil Forest). B – Herring-bone cross-stratifications in this bed. White 
square locates C (Fossil Forest). C – Calcareous sandstone facies in details with abundant quartz grains 
(Fossil Forest). D – Orientation and direction measurements of the cross-laminations at Fossil Forest 
with 33 measurements. 

 

 
 

 

 

 

 

Figure 4.41 Calcareous sandstone microfacies. A – Quartz grains, elongated and spherical peloids, 
ostracod shells and calcite cement (WLC9, West Lulworh Cove). B – Close-up view of the ooid with 
change of the fabric in the same laminae from finely to coarsely radial calcite crystals, elongated and 
spherical peloids and quartz grains (WLC9, West Lulworth Cove). 
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7.2. Interpretation 

 

The transparent crystals with a first order extinction are identified as quartz grains. The 

abundance of angular quartz grains (more than 50% compared to the next most abundant 

calcitic grain, peloids) suggests this facies was deposited not too far from a clastic supply into 

the system. This facies is found only in the relay ramp area as identified on seismic sections 

through the region (i.e. Lulworth Cove, refers to Chapter 3 and 7). The cross-bedded 

laminations, the sand size of the quartz grains together with the broken up ostracods indicate 

a high energy marginal lacustrine environment. 

The peloids are rather bigger than in previous facies and show a preferential elongated 

shape (Fig. 4.41A) that suggests they may be faecal pellets (according to Bathurst, 1971 and 

Flügel, 1982). 

The ostracods are not as abundant as in previous facies and are mainly found as 

fragments in this facies. The beds where this facies is found belong to the Cypris Freestone 

beds that were described previously to be within the Cypridea dunkeri subzone (Strahan, 1898; 

Barker et al., 1975; Kilenyi and Neale, 1978; Anderson, 1967, 1973, 1985; Horne, 1995, 2002). 

Similar interpretation as for the Cross-bedded peloidal packstone-grainstone facies may be 

applied for the ostracods found in this facies. They are non-marine species (Horne, 2002) and 

are saline to hypersaline waters tolerant species (refer to Chapter 2) as they are mainly S-

phase species found in the Cypris Freestone beds (Anderson, 1985). 

The mixed ooid found in this facies shows a crystalline nucleus that is thought to be 

microsparite of calcite (Fig. 4.41B). The change of crystal microstructures along the same 

laminae in the cortex suggests replacement of the fine into coarse radial fabric of the cortex 

(Fig. 4.41B). This is supported with the remains of fine fabric within the coarse radial fabric 

(Fig. 4.41B). 

Measurement of orientation and direction of cross-laminations help to interpret 

palaeocurrent directions (as for the Intraclastic peloidal packstone-grainstone facies). The 

measurements in this facies show a main direction at N190 that reflects a notherly direction of 

palaeocurrents. This is concordant with the palaeocurrent directions interpreted from previous 

facies at West Lulworth Cove (refer to Chapters 6 and 7) and the consistency of the 

palaeocurrents suggests a possible fluvial system running down the slope of the relay ramp 

and bringing siliciclastic material from the adjacent footwall block into the lacustrine system. 
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8. Conglomerate facies 

8.1. Description 

 

This facies is exclusively found in the Great Dirt Bed (ranging between 1 and 50 cm, 

Fig. 4.42) throughout the studied area. The base and the top of this bed are irregular 

(Fig. 4.42A, C) and more pronounced at the base than at the top of the Great Dirt Bed. The bed 

has a carbonaceous marl (brown to black) matrix containing approximately 60-70% of angular 

white limestone pebbles ranging between 100 µm and 25 cm (Fig. 4.42B) and angular black 

limestone pebbles ranging between 100 µm and 15 cm (Fig. 4.42B). These pebbles present 

similar lithologies to those in the underlying Hard Cap bed (peloidal packstone-grainstone and 

microbialites). In addition fossil plant remains ranging between 1 and 5 cm, silicified logs about 

15 cm long and 10 cm wide (Fig. 4.42C) and in situ silicified tree trunks with roots ranging 

between 10 and 50 cm in diameter (Fig. 4.42C) are commonly found in the Great Dirt Bed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.42 Conglomerate macrofacies. A – Location of the Great Dirt Bed with conglomerate facies 
(Penn’s Weare, Isle of Portland). B – Conglomerate facies with black pebbles and limestone pebbles 
(South West Bowers, Isle of Portland). C – Silicified tree roots remains (red arrows) within the Great Dirt 
Bed and stump silica cast just above and in the Soft Cap (West Cliff, Isle of Portland). 
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8.2. Interpretation 

 

The irregular base indicates an erosion phase of the underlying beds (i.e. the Hard Cap) 

prior to the deposition of this facies. The abundance of fossil plant remains and especially tree 

trunks found in live position with their roots in growth position are the most diagnostic 

features for the identification of this unit as a paleosol (Retallack, 1981, 2001; Francis, 1982, 

1986). The carbonaceous matrix is due to the calcareous underlying beds degraded into 

carbonaceous marl during pedogenesis. This palaeosol was studied in detail by Francis (1983, 

1984, 1986) as well as the fossil trees found rooted into it (refer to Chapter 2). She interpreted 

this paleosol to be a well-developed carbonaceous A/C rendzina soil profile and to have 

formed under semi-arid climate of Mediterranean type (refer to Chapter 2). Rendzina soil 

profiles observed in modern day environments are determined by the nature of the parent 

rocks rather than the climate (Francis, 1986). These are also found on Mediterranean 

limestones (Townsend, 1973), on Chalk in England (Townsend, 1973) or on coral limestones in 

the Seychelles (Lionnet, 1952). 

The black and white pebbles were also studied in detail by Francis (1982, 1983, 1986) and 

she described them as being made of the same lithologies and textures as the underlying Hard 

Cap bed (refer to Chapter 2). For this reason she interpreted these pebbles to have formed 

during the pedogenesis (refer to Chapter 2). In addition she noticed that the black colour is 

due to the presence of organic matter and that calcretes are often associated with black 

pebbles which are taken to be evidence for sub-aerial exposures (refer to Chapter 2). Similar 

pebbles can be observed in the rock record such as from the Purbeckian of Jura (Cotillon, 1960; 

Bläsi, 1980; Strasser and Davaud, 1983) as well as in modern day environment at Isla Mujeres, 

Quitana Roo, Mexico (Ward et al., 1970; Francis, 1986). 

 

9. Carbonaceous marl facies 

9.1. Description 

 

This facies is found only in Basal Dirt Bed (located between the Transition Bed and the 

Skull Cap bed) and the Lower Dirt Bed (located between the Skull Cap and the Hard Cap beds, 

Fig. 4.43A). These beds are present throughout the studied area with similar thicknesses 

ranging between 1 and 10 cm (Fig. 4.43) with an irregular base, although less pronounced than 

the Great Dirt Bed (Fig. 4.43). These brown to black carbonaceous marls exhibit dark planar to 
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undulated laminations (Fig. 4.43). Silicified logs, in situ silicified tree trunks and white 

limestone pebbles were found by Francis (1986). 

 

 

 

 

 

 

 

Figure 4.43 Carbonaceous marl macrofacies. A – Location of the Lower Dirt Bed and Basal Dirt Bed 
where the carbonaceous marl facies can be found (Tout Quarry, Isle of Portland). B – Close-up view on 
the Lower Dirt Bed, black and brown laminations can be seen (South West Bowers, Isle of Portland). 

 

9.2. Interpretation 

 

As with the Conglomerate facies, the Carbonaceous marl facies was studied in great detail 

by Francis (1982, 1986). Francis (1986) interpreted this facies to be a paleosol, however this 

interpretation was less straightforward than for the Great Dirt Bed (refer to Chapter 2). Francis 

(1986) also described tree stumps rooted in the Lower Dirt Bed but never observed these in 

the Basal Dirt Bed to confirm a palaeosol origin. The absence of large pebbles indicates that 

the underlying beds were not totally lithified before the pedogenesis (Francis, 1986). The high 

content of carbonate and the calcareous parent rocks show that these paleosols were 

immature probably compacted and eroded rendzina soil profiles (refer to Chapter 2).  

 

10. Evaporite facies 

 

This facies is subdivided into two sub-facies, vuggy and breccia. The former is mainly 

present directly on top of the Soft Cap and at the bottom of the Cypris Freestone unit 

(Figs. 4.44A and 4.47A) from Lulworth area eastwards (refer to Chapter 6 for discussion) and is 

equivalent to the thick anhydrite deposits described by West (1975) in Portsdown well near 

Portsmouth further east (refer to Chapter 3). The latter lies directly above the Evaporite vuggy 

sub-facies when present at the bottom of the Cypris Freestone unit (Figs. 4.44A and 4.47A). 

These two sub-facies are closely related to each other as the Evaporite breccia sub-facies is 

present only when the Evaporite vuggy sub-facies is also present. 
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10.1. Vuggy sub-facies 

10.1.1. Description 

 

This sub-facies is found in beds ranging between 10 and 30 cm thick overlying the Soft 

Cap. At macroscale this sub-facies appears crystalline with irregular planar laminations and 

mm to cm unfilled vugs (Figs. 4.44B and 4.45C). Chert spherules ranging between 5 and 10 cm 

are often found in this sub-facies (Figs. 4.45A, B and 4.46E, F) and the beds can be locally, 

entirely silicified. This sub-facies appears white, yellow to beige at the outcrop and white to 

beige when broken. 

At microscale the texture is crystalline with rare microcrystalline dark laminae (Fig. 4.45C). 

The crystals are calcite crystals ranging between 40 µm and 1 mm with different morphologies 

(Fig. 4.45). The small crystals (40-100 µm) form an anhedral mosaic cement (Fig. 4.46) and are 

bright orange, and sometimes zoned, under CL (Fig. 4.46). The large crystals (100 µm-1 mm) 

have prismatic shapes more or less elongated with triangular extremities and have a first order 

straight extinction in XPL (Fig. 4.45B) and are non-luminescent under CL (Fig. 4.45E-F) 

interpreted as quartz crystals. At Durlston Head only, crystals occur that have a euhedral 

elongated shape between 100 µm and 2 mm long and 30 and 200 µm wide (Figs. 4.45E and 

4.46A-D)  and a first order colours in XPL and non-luminescent under CL (Fig. 4.46A-D) 

interpreted as Celestine crystals. Vugs are also abundant ranging between 200 µm and 2mm 

and as observed at macroscale are unfilled (Fig. 4.46A-D). The only clasts found in this sub-

facies are very rare and are intraclasts either with a peloidal packstone-grainstone or a clotted 

microfabric (Fig. 4.45E). 

 

 

 

 

 

 

 

 

Figure 4.44 Evaporite vuggy macrofacies. A – Location of the evaporitic beds below the Broken 
Beds, white box locates B (Worbarrow Tout). B – Close-up view on A, note the vugs up to 1cm in 
diameter (Worbarrow Tout). 
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10.1.2. Interpretation 

 

The small calcite crystals composing the mosaic cement are most likely a diagenetic 

calcite formed after neomorphism of a precursor. 

The large prismatic calcite crystals are likely to be prismatic anhydrite crystal 

pseudomorphs replaced by calcite as suggested by West (1964, 1975). West (1964) presented 

evidence for a secondary calcite in replacements of anhydrite as chert spherules after 

anhydrite, a “net-texture” (anhedral crystalline cement) and ghosts of anhydrite crystals are 

commonly found.  

The large prismatic crystals with a first order extinction (Figs. 4.45A-B and 4.46E-F) are 

euhedral quartz crystals replacing either gypsum or anhydrite (West, 1964) which are 

commonly found associated with or replacing evaporites (Hanor, 2000, 2004). 

The vugs found at macro- and micro-scale in this sub-facies are likely to be dissolution 

vugs commonly occurring in evaporitic deposits from dissolution of anhydrite or gypsum 

spherules (Warren, 2006). Such dissolution vugs are formed in brackish water lakes where the 

more freshwater circulate into the evaporitic sediments and dissolve away gypsum or 

anhydrite crystals leading to the creation of vugs and sometimes pipes (Lowenstein and 

Hardie, 1985; Warren, 2006). 
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Figure 4.45 Evaporite vuggy microfacies. A and B – Quartz crystals (between 500 µm and 1 mm and 
first order colour with straight extinction in XPL) and calcite crystals (WT8). C – Thin section scan (partial) 
with 1-2 mm vugs in a crystalline texture (MB11). D – mm vugs in a crystalline (calcite) texture (MB11). E 
– Celestine crystals with few microbial intraclasts and peloids (DH1). 
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The crystals found mainly at Durlston Head were also found and described by West (1960) 

as celestine crystals. Celestine (SrSO4) is a common but minor diagenetic mineral in modern 

and ancient shallow marine (Wood and Shaw, 1976; Olaussen, 1981; Boyce et al., 1990; Scholle 

et al., 1990) and lacustrine environments (Murdock and Web, 1940; West, 1960; Andrew and 

Collins, 1991) and is known to form massive ore bodies (De Brodtkorb, 1989; Scholle et al., 

1990; Taberner et al., 2002; Hanor, 2004; García-Veigas et al., 2015). Celestine crystals 

precipitate following the reaction between hypersaline strontium-rich waters and gypsum 

and/or anhydrite crystal deposits (Hanor, 2000). Celestine is known to be precipitated 

following two main mechanisms: a syngenetic mechanism with precipitation of primary 

crystals from evaporated seawater (Müller and Puchelt, 1961; Müller 1962; De Brodtkorb et 

al., 1982) or an epigenetic mechanism with replacement of a carbonate or evaporitic precursor 

(Carlson, 1987; Scholle et al., 1990; Harnor, 2000, 2004; García-Veigas et al., 2015). In the case 

of the Purbeck Limestone Group, the celestine-bearing beds are sandwiched between 

lacustrine deposits (underlain by the Soft Cap and overlain by the Cypris Freestone) detailed in 

previous sections of this chapter, so a marine seawater rich in strontium origin is unlikely to 

have reacted with evaporites and most probably there were Sr-bearing lacustrine waters (as 

suggested by West, 1960). West (1960) argued for a syngenetic origin of the celestine crystals 

due to the common euhedral crystal shape, the distribution of the celestine crystals only in 

few beds between 10 and 30 cm thick in the basal Purbeck and the lenticular aspect of these 

celestine beds. Moreover the absence of evidence for replacement from an evaporitic 

precursor (ghosts of gypsum or anhydrite) and the large area of occurrence of celestine (at 

least until Mountfield Mine in Sussex, West, 1964) confirm the syngenetic origin proposed by 

West (1960). However, strontium isotope analyses are needed to distinguish between an 

origin from hypersaline fluids or an epigenetic origin (Hanor, 2004). 

The planar laminations might indicate a low-energy environment also highlighted by the 

microcrystalline laminae. The evaporite pseudomorphs and vugs suggest hypersaline water 

conditions most probably in a lacustrine environment. 
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Figure 4.46 CL images of Evaporite vuggy sub-facies. A – Crystalline microfabrics made of calcite 

and celestine crystals (DH6). B – CL image of A showing the zoned calcite crystals and non-luminescent 
celestine crystals (DH6). C – Crystalline microfabrics made of calcite and celestine crystals (DH5). D – CL 
image of C showing the non-zoned calcite crystals and non-luminescent celestine crystals (DH6). E - 
Crystalline microfabrics made of anhedral calcite and euhedral quartz crystals (WT8). F – CL image of E 
showing zoned calcite crystals and non-luminescent euhedral quartz crystals (DH6). 
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10.2. Breccia sub-facies 

10.2.1. Description 

 

This sub-facies is mainly present from the Lulworth area eastwards and is locally known as 

the Broken Beds. This sub-facies is a massive unit and its thickness ranges between 1 and 5 m 

while its lateral extent at outcrop is between 2 and 10 m. This sub-facies is composed of large 

angular clasts of very coarse sand to boulder size some of which are interlocking shapes 

(Figs. 4.47B and 4.48A; Wentworth, 1922). The clasts are made of the laminated beds from the 

base of Cypris Freestone unit (described in section 4 of this chapter, Fig. 4.47B). This sub-facies 

exhibits a wide range of colours due to the range of clasts but it is yellow, white to beige both 

at the outcrops and when broken. 

 

 

 

 

 

 

 

 

Figure 4.47 Evaporite breccia sub-facies. A – Location of the Broken Beds unit with the brecciated 
facies (Fossil Forest). B – Close-up view on the Broken Beds made of pluricentimetric blocks (West side 
of Lulworth Cove). 

 

At microscale the layered large clasts are made of the Cross-bedded peloidal packstone-

grainstone facies microfabric (detailed in section 4 of this chapter, Fig. 4.48). These large clasts 

are contained within a matrix of peloidal grainstone with some quartz grains (Fig. 4.48). The 

peloids are rounded, micritic and range between 10 and 200 µm, fine silt to fine sand size. The 

quartz grains are angular, present a first order colour in XPL and of silt size, between 4 and 10 

µm. 
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Figure 4.48 Evaporite breccia microfacies. A – Thin section scan showing large clasts of Cross-
bedded peloidal pakcstone-grainstone facies (WLC7, West Lulworth Cove). B – Close-up view on A, the 
matrix is composed of quartz grains and peloids (WLC7, West Lulworth Cove). C – Close-up view on A, 
smaller blocks can be identified within a matrix made of quartz grains and peloids. D – Close- view on C 
detailing the matrix (WLC7, West Lulworth Cove). 
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10.2.2. Interpretation 

 

A lot of debate and discussion (reviewed in Chapter 2) over the origin of this facies has 

taken place since its first description (Fisher, 1856). This breccia occurs locally at the bottom of 

the Cypris Freestone unit (Figs 4.47A and 4.49A) and in the vicinity of the Purbeck extensional 

Faults. The base of the Cypris Freestone unit is characterised by the Evaporite vuggy sub-facies 

beds (described in the previous section) that could have been partially dissolved after their 

deposition by circulation of freshwater, resulting in a collapse breccia (Figs. 4.47A and 4.49A). 

These units (undisturbed Cypris Freestone and collapse breccias) could have been modified by 

later tectonic events (possibly during the Cenozoic Alpine inversion) as suggested by the folded 

structures observable in Mupe Rocks Cove (Fig. 4.49B) orientated northwards so towards the 

faults. The remaining evaporites could have acted as a décollement surface. West (1960; 1964; 

1975) and D’el-Rey Silva (2001) interpreted this breccia to be the result of a combination of 

both tectonic and diagenetic events. They proposed that the dissolution of part of the 

Evaporite vuggy sub-facies beds (described in the previous section) resulted in a collapse 

breccia that was reworked by later tectonic movements later on. All the arguments presented 

in this study confirm West’s (1960; 1964; 1975) and D’el-Rey Silva’s (2001) interpretations. 

Similar structures were identified in the Madison Limestone of the Bighorn Nasin in Wyoming 

and Montana, USA (Sonnenfeld, 1996). 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.49 Large scale field view of the Evaporite breccia sub-facies. A – Laterally and abruptly facies change from in situ Cypris Freestone beds on the left to the 
Evaporite breccia sub-facies on the right (Fossil Forest). B – Folded structures orientated northwards (towards the faults) suggesting tectonic movement post-deposition 
with the Evaporite breccia sub-facies at the base of the folds (Mupe Bay). 
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11. Summary 

 

This chapter provides the description and palaeoenvironmental interpretations of nine 

facies identified in the Mupe Member of the Purbeck Limestone Group of south Dorset. The 

Microbialite facies composed of the Stromatolite, Thrombolite and Burrowed peloidal 

packstone sub-facies is closely associated with the Intraclastic peloidal packstone-grainstone 

facies and are exclusively found in the Skull, Hard and Soft Cap beds in the lower part of the 

Mupe Member. These facies are interpreted to represent shallow water deposits formed on 

the margins of a brackish water lake. These Cap beds are interbedded with the Carbonaceous 

marl and Conglomerate facies of the Basal, Lower and Great Dirt Bed paleosols, that were 

interpreted by Francis (1982, 1983, 1984, 1986) to be Rendzina paleosols developed under 

semi-arid climate Mediterranean type with cycadophytes and, sometimes rooted, ancient 

conifers (Protocupressinoxylon purbeckensis). The Cross-bedded peloidal packstone-grainstone 

facies constitutes the main facies of the Cypris Freestone beds and is interbedded with the 

Gypsiferous peloidal packstone and Calcareous sandstone facies. Together these facies were 

formed in a hypersaline shallow lacustrine margin environement. The Evaporite facies was sub-

divided into Vuggy and Breccia sub-facies and is locally found at the base of the Cypris 

Freestone beds. These facies were interpreted to represent shallow water deposits on a 

margin of a hypersaline lake. The Wackestone to fine grainstone facies is exclusive to the 

Transition Bed locally deposited at the bottom of the Mupe Member and was interpreted to 

represent deeper water deposits in a brackish water lake. 

Facies transition analyses have been undertaken to better understand the relationships 

between the facies presented in Chapter 6. Subsequently this analysis is used to define a 

sequence stratigraphy and to create facies models for the Mupe Member presented in Chapter 

6. Finally, these facies together with the tectonic settings (refer to Chapter 3) are used to 

create tectono-sedimentary models for the lower part of the Mupe Member presented in 

Chapter 7. 
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1. Introduction 

 

The previous chapter presented the facies of the lower part of the Mupe Member and 

their interpretation. This chapter will focus on two important facies and their relationships; the 

Microbialite facies (composed of stromatolite, thrombolite and burrowed peloidal packstone 

sub-facies) and the Intraclastic peloidal packstone-grainstone facies. As described in the 

previous chapter the Microbialite facies is the main facies constructing the mounds (i.e. 

microbial mounds). These mounds are surrounded by an inter-mound facies, the Intraclastic 

peloidal packstone-grainstone facies.  

Lidar (Light Detection and Ranging) scans were undertaken to image 2-D mound 

morphologies and sizes of the Skull and Hard Cap in seven quarries on the Isle of Portland 

(Fig. 5.1 and Tab. 5.1): King Barrow Quarries, Bower Quarry, South West Bowers, Coombefield 

Quarry, Freshwater Bay, God Nore and Sand Holes. These locations were chosen for their 

quality of outcrop, easy accessibility and to ensure good coverage of a range of spatial 

variations (from north to south and east to west) of mound shapes, sizes and distribution. Over 

the Isle of Portland the uppermost layer of mounds in the Soft Cap bed is poorly exposed and 

exhibits mounds only locally (refer to Chapter 6). As a consequence the Skull and Hard Cap 

beds were the main targets of the surveys while one survey of the top surface of the Soft Cap 

was undertaken in King Barrow Quarries.  

The integration of qualitative field geology is essential to characterise more precisely 

mound shapes and sizes and relationships between mound and inter-mound facies both in 2-D 

and 3-D. The appraisal of the 3-D is only possible locally when the surfaces of the mounds are 

exposed. This is case at Portland Bill (Isle of Portland) where some mounds of the Skull Cap are 

exposed in 3-D; on the east side of Lulworth Cove where three mounds of the Hard Cap are 

exposed in 3-D; and at Fossil Forest, King Barrow Quarries (Isle of Portland) and Mutton Cove 

(Isle of Portland) where lots of mounds of the Soft Cap are exposed in 3-D. 

 

 

 

 

 

 

 

Table 5.1 Locations and characteristics of lidar point clouds from north to south. 
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Figure 5.1 Location map of the lidar surveys acquired on the Isle of Portland (south 
Dorset). Map © 2016 GoogleEarth. 
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2. Methodology 

2.1. Light detection and ranging (lidar) principle 

 

A wide range of imaging techniques can be used to digitise outcrops depending on the 

scales of geological objects under study (Fig. 5.2). Figure 5.2 highlights the importance of 

terrestrial lidar (Light Detection And Ranging) system as it allows imaging of geological objects 

from sub-outcrop to reservoir model scales (Hodgetts, 2013). The lidar system is a remote 

sensing technique and has become very popular over the last few years in petroleum 

geoscience in the modelling of reservoir analogues (Hodgetts, 2013). This system is a relatively 

quick method to acquire 3-D data in the field and can be coupled with traditional techniques 

such as sedimentary logs or geological mapping (Hodgetts, 2013). In addition the technique 

can also be coupled to a wide range of digital data (multispectral and hyperspectral imagery or 

ground penetrating radar) and different attributes of the rocks and the rock surfaces can be 

imaged (intensity, colour, dip, azimuth, co-linearity, co-planarity, etc… Hodgetts, 2013). The 

principle of lidar is simple and based on reflectivity (scattered light) of laser (Light 

Amplification by the Stimulated Emission of Radiation) beams off rock surfaces (Heritage and 

Large, 2009). Laser beams are emitted from a transmitter and recorded on an adjacent 

receiver/recorder (Fig. 5.3; Heritage and Large, 2009). As photons travel at constant velocity 

(speed of light), the scanner records the time difference (T) between emission and reception 

of the laser beams and calculates the distance of the target from the equation d = ct/2 (where 

d = distance; c = speed of light; and t = T; Fig. 5.3). The advantage of using laser light is that, 

unlike natural light (i.e. sunlight), laser beams are emitted in a unique direction with a narrow 

divergence beam enabling measurements of small scale objects (Fig. 5.3). With such laser 

beams the energy frequency and wavelength are stable and coherent giving relatively accurate 

data (Heritage and Large, 2009). The emitted laser beams are backscattered and modified by 

rock surfaces dependant on the distance and rock properties (Heritage and Large, 2009). One 

of the main issues though is, that because the beam is unidirectional, shadows are frequent 

due to uneven surfaces and appear in the point cloud (Heritage and Large, 2009). The best 

solution to avoid those shadows is to realise numerous surveys with different positions along 

the outcrops/rock surfaces to obtain continuous point clouds. If shadows happen laterally (i.e. 

horizontally), the position of the scanner needs to be shifted all along the outcrop to cover the 

maximum scanned area. However if shadows happen vertically, airborne lidar are essential to 

avoid this problem (Heritage and Large, 2009). In this study relatively flat vertical quarry faces 

were surveyed therefore the scanner only needed to be moved laterally along the outcrops. 
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Figure 5.2 Comparison of size of geological objects, processes and imaging technologies. A – 
Technologies easily applicable to research projects. Note in red the application of terrestrial lidar and 
the typical size of geological features relevant to this study (redrawn after Hodgetts, 2013). B – Typical 
size of sedimentary structures and usual measurement techniques and reservoir models (redrawn after 
Enge et al., 2007). 
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Figure 5.3 Main characteristics of laser light (modified after Heritage and Large, 2009). A – 
Comparison of natural and laser lights. B – Electromagnetic spectrum and respective wavelength. Note 
the laser range extent from low frequencies of infrared to high frequencies of ultraviolet and including 
visible light wavelengths. C – Comparison of laser beam and radar beam. Note that with laser the beam 
is narrower and allow imaging of smaller objects than with the wider radar beam imaging bigger objects. 
D – Principle of lidar scanner (see text for explanation). E and F – Illustration of the shadow issue 
vertically (E) and horizontally (F). 
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2.2. Point clouds 

2.2.1. Acquisition with Leica ScanStation C10 

 

In this study the targets consist of vertical quarry faces between about 1 and 9 m high 

either without or with very few quarrying terraces. As a consequence terrestrial lidar was used 

as vertical shadows were not an important issue. The seven surveys were done in collaboration 

with Professor Ken McCaffrey and Doctor Vishal Bandugula from Durham University with a 

Leica ScanStation C10 (Fig. 5.4) over a week in July 2013. This scanner model contains a green 

pulsed laser with a wavelength of 532 nm that allows scanning from a distance between 0 and 

300 m away from rock faces (best resolution between 0 and 50 m away) of up to 50,000 

points/sec with a maximum horizontal and vertical resolution down to less than a millimetre. 

This scanner procures a field-of-view of 270° vertically and 360° horizontally and was mounted 

on top of a tripod to ensure its stability. Each scan position was recorded using a GPS into WGS 

84 UTM Zone 30N coordinate system with less than 1 cm error. This accuracy was achieved 

because of the close location of the Portland Bill ground control station (Royal Air Force base, 

50°30’56.24”N; 2°27’31.25”W).  

During scans, high resolution images were taken by an in-built camera (1920x1920, 4 

megapixels) and registered full 360° (horizontal) x 270° (vertical) hexagonal photographs. In 

each location several scans were necessary to avoid the shadow issue described above. The 

exact number dependant on the length of outcrops and sinuosity of rock faces in order to 

obtain one single point cloud for each location, exact geo-localisation between each scan 

position was essential. Local triangulation of the scanner was performed for each scan position 

by scanning in first instance three reflectors placed around the outcrop (Fig. 5.4). This 

triangulation allows the scanner to know where it is located in space compared to the last 

scanning position. This is essential in order to combine the different point clouds recorded at 

each position into one single point cloud. When the scanner was moved, ideally the 

triangulation had to be done with the reflectors at the exact same position. However 

commonly one or two reflectors were not reachable by the scanner due to topography. In such 

situation one or two reflectors needed to be moved, trying to keep at least one target at the 

exact same location as for the previous scan in order to increase the accuracy of the 

triangulation. Following the triangulation two types of scans were performed for each scan 

position. A low resolution scan covering 360° horizontally and a high resolution scan covering 

the actual rock face to be later interpreted in great detail.  
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Subsequently the point clouds were post-processed by Ken McCaffrey and Vishal 

Bandugula at Durham University. They assembled the different geo-referenced point clouds 

acquired at each scan position to create one single file for each location. In addition they 

textured the point clouds by assigning each point to the corresponding RGB colour value 

determined from the photographs. Ultimately they created projects with RiscanPro software 

(© 2005 RIEGL LMS GmbH) that was used for the cleaning and interpretation of the data by 

the author at RHUL (see below). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.4 Lidar scanner characteristics. A – Details of the Leica ScanStation C10. B – Detail of one 

reflector used for the triangulation. C – Example of triangulation at Freshwater Bay. 
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2.2.2. Workflow for interpretation 

 

In order to interpret the point clouds to obtain areas of the inter-mound facies as well as 

perimeters, areas, heights and widths of 2-D cross-sectional views of 3-D mounds, a rather 

complex and long workflow had to be followed.  

Although the laser scanning and pictures taken by the in-built camera were of high 

resolution, the texturing of the point clouds did not allow the tracing of the subtle boundaries 

between mounds and inter-mound facies. As a consequence the first step consisted in tracing 

the outline of the mounds with chalk in the field on the quarry faces (Fig. 5.5). The mound 

outline in 2-D was continued until the outline was closed. As a consequence two mounds very 

close to each other most likely connected in 3-D were considered as 2 unique mounds. The 

digitation of these outlines on high resolution pictures (taken by Kevin D’Souza) was done with 

the help of Adam Creaser (Master by research at RHUL at that time) who digitised the outlines 

with a tablet in the field (Fig. 5.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.5 Tracing out white chalk lines to indicate boundary between mound and inter-mound 

facies at God Nore. 
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The second step consisted in the cleaning of the point clouds prior to interpretation 

(Fig. 5.6A-B). The cleaning was done manually by deleting all the unnecessary points in 

RiscanPro (i.e. neighbouring rock faces, vegetation, loose rocks/blocks, underlying Portland 

Group and overlying beds). This resulted in a size reduction of the files that were then easier 

and quicker to interpret (less glitches or fixed images due to heavy files).  

The third step was the longest step and consisted in the manual digitisation of polylines 

on the point clouds in RiSCAN. These polylines were drawn as per chalk outlines of mounds 

recorded in the field. This resulted in the digitisation of mound–inter-mound surfaces and 

adjacent beds (i.e. Skull Cap or Hard Cap; Fig. 5.6C).  

The fourth step consisted in the geometrical measurements of mounds, inter-mounds and 

stratigraphic beds (Fig. 5.6D). Perimeters, heights and widths were measured from RiscanPro 

and recorded for each mound (refer to Appendix 2.1). While perimeters were directly recorded 

from the length of the polylines drawn in RiscanPro, widths and heights needed to be 

measured manually for each mound. These measurements were done according to the 

maximum width and maximum height that a unique mound has and disregarding its shape. 

This is illustrated in figure 5.6D where the blue line that depicts the maximum width, 

disregards the internal variations (the inter-mound facies within the mound) and the 

irregularities on the top surface of the mound (and identically for the yellow line that depicts 

the height). However RiscanPro does not allow calculation of areas. To obtain areas the 

exportation of the polylines onto .dxf files (autocad type) was necessary to be subsequently 

imported into GoCAD software (© 2013 Paradigm). With this software the calculation of areas 

were done after conversion of the polylines into three dimensional surfaces (also known as 

meshing). The determination of inter-mound areas was calculated by deduction of mound 

areas from the stratigraphic bed areas (Fig. 5.6C). 
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Figure 5.6 Workflow applied to interpret lidar point clouds. A – Raw data showing the high definition point cloud (God Nore). B – Same view as B after removing unnecessary imaged objects such as vegetation, loose blocks and the Portland 
Group beds. C – Interpreted lidar point cloud with outlines of mounds and stratigraphic beds. Note that the white box locates D and that the inter-mound was calculated by deducting mound areas to stratigraphic bed areas (God Nore). D – Example 
of measurement performed on mounds, here from God Nore (refer to Appendix 2.1 for full list of values). p: perimeter, A: area. 
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2.3. Additional combined techniques 

 

As previously explained, lidar point clouds can be coupled with other techniques to better 

characterise mound and inter-mound facies. In this study two other techniques were also 

tested to see if they could improve imaging of these complex 3-D structures: hyperspectral 

imaging and ground penetrated radar (GPR) surveys. 

Hyperspectral imaging is based on mineral reflectance spectra and allows automatic 

image mapping of areas of different mineralogies of an outcrop and in 3-D when coupled to 

lidar surveys (Kurz et al., 2012). The main aim of such scanning in this study was to see if this 

technique could differentiate automatically microbial mound (supposedly made of relatively 

pure calcite) and inter-mound facies (possibly containing “impurities” such as clay or quartz 

grain contents). Laboratory scans were done by Tobias Kurz and John Howell from Bergen 

University on five selected samples (refer to Appendix 2.2). The main outcome of this test was 

that although there were slight differences in the reflectance between the two facies this was 

not different enough to be visible when scanning at outcrop. Although this method looked 

promising, the outcome indicated that it would not work on these Purbeck rocks and this 

survey was not undertaken for this project. 

Ground penetrated radar (GPR) is a method providing images of the shallow subsurface 

geological features (Bristow and Jol, 2003). GPR is based on propagation of electromagnetic 

waves in the shallow subsurface responding to changes in the electromagnetic properties of 

the underground layers (Baker et al., 2007). This system is based on the relative permittivity 

contrast between layers and is measured in travel time units (i.e. time for the waves to travel 

down to an interface and to back up to the surface, Baker et al., 2007). The relative 

permittivity is the ability of a material to store and then release electromagnetic energy when 

a field is applied (Baker et al., 2007). In this study one test scan was done in South West 

Bowers disused quarry in collaboration with Julien Moreau and Trine Hansen from University 

of Copenhagen (Appendix 2.3). This location was chosen for its easy access with the survey 

machine, the location of an exposed portion of the top surface of the Hard Cap and because a 

sedimentary log and lidar data had been acquired there. Although the image from this test was 

considered to be good (refer to Appendix 2.3), to undertake an extensive survey it would have 

been necessary to the surface of the bed to be bare of any shaly deposits (i.e. modern soils or 

paleosols). Because such conditions are met in very few locations along the studied area and 

many of the interquarry sections are covered in dense shrub, it was decided to not proceed 

further with GPR. 



 

243 
 

3. Microbial mound shapes and sizes and inter-mound facies 

relationships 

 

This section details the main results from the lidar point cloud interpretation and 

documents the mound and inter-mound characteristics and their inter-relationships.  

 

3.1. Microbial mounds 

 

Microbial mounds are constructed by Microbialite facies composed of the Stromatolite, 

Thrombolite and Burrowed peloidal packstone sub-facies (refer to Chapter 4). The mounds are 

found in the Skull, Hard and Soft Cap beds and overlie paleosols. These mounds developed 

around tree branches and trunks in the Hard Cap, tree stumps and fallen trees in the Soft Cap 

but appear not to be related to any wood remains in the Skull Cap. As explained previously 

lidar surveys were mainly undertaken on the Isle of Portland that offers very good quality of 

outcrop along 2-D freshly exposed quarry faces. However mainly the Hard and Skull Cap were 

surveyed in detail cross-sectional views as the Soft Cap bed is poorly exposed over Portland 

and only its top surface was surveyed in King Barrow Quarries. The pseudo 3-D 

characterisation of the mounds was only possible in selected places, in the Hard Cap at 

Lulworth Cove and Portland Bill and the Soft Cap at King Barrow Quarries, Mutton Cove and 

Fossil Forest. Table 5.2 summarises the main size characteristics of the 2-D mounds and inter-

mound areas for each location as obtained from lidar scanning of the Skull and Hard Cap on 

the Isle of Portland. 
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Table 5.2 Mean size of Skull and Hard Cap mounds measured from the lidar point clouds over the 

Isle of Portland (from north to south). NI: not imaged; : standard deviation. Refer to text for further 
explanations. 

 

3.1.1. Size 

 

The maximum widths and heights for each mound were measured in RiscanPro, recorded 

and listed in tables (refer to Appendix 2.1). These helped to characterise their shape and to 

illustrate predominant morphologies (refer to next section). Figure 5.7 shows the distribution 

of widths and heights of all the mounds measured.  

In the Skull Cap the mounds vary between about 9 cm and 7.5 m in width and about 5 cm 

and 1.3 m in height (Fig. 5.7; Appendix 2.1). However they commonly exhibit widths between 

0.5 and 5 m and heights between 40 and 60 cm (Fig. 5.7). This shows that the mounds in the 

Skull Cap tend to be rather flat and elongated (see next section for morphological 

characterisation).  

In the Hard Cap the mounds vary between about 11 cm and 18 m in width and about 7 cm 

and 3.5 m in height (Fig. 5.7; Appendix 2.1). However they commonly exhibit widths between 

1.5 and 4 m and height between 40 cm and 1 m (Fig. 5.7). This shows that the mounds in the 

Hard Cap tend to be taller and narrower than in the Skull Cap (refer to next section for 

morphological characterisation). 
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Figure 5.7 Width and height measurements of all the mounds (refer to Appendix 2.1 for list per 
locations). Note that the mean values from table 5.2 are illustrated with the plain lines. 

 

Measurement of perimeters and calculation of areas are shown in figure 5.8 (and detailed 

for each location in Appendix 2.1).  

In the Skull Cap cross-sectional areas of mounds vary between about 40 cm2 and 5 m2 and 

perimeters between about 25 cm and 23.5 m (Fig. 5.8 and Appendix 2.1). However they are 

commonly between 50 dm2 and 1 m2 in area and with perimeters between 4 and 6 m (Fig. 5.8).  

In the Hard Cap areas of mounds vary between about 3 dm2 and 25 m2 and perimeters 

between about 8 cm and 60 m (Fig. 5.8 and Appendix 2.1). However the areas are commonly 

between 50 dm2 and 1 m2 and perimeters between 3 and 4 m (Fig. 5.8). 

Most of the mounds from both units are between 0.5 and 7.5 m in width, 0.2 and 1 m in 

height, and 50 dm2 and 5 m2 in area and 0.5 and 14 m in perimeter (Figs. 5.7, 5.8). This 

suggests first that the mounds appear to be rather similar in both Skull and Hard Cap; and 

second that small mounds are abundant in both bed units whilst big mounds are only found in 

the Hard Cap (Figs. 5.7 and 5.8). 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Distribution of areas and perimeters of all the mounds. Note that the mean values from table 5.2 are illustrated with the same plain lines. 
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3.1.2. Morphologies 

 

The characterisation of 2-D mound morphologies was done through field observations 

and interpretation of the measurements introduced in the previous section. The aspect ratio is 

used to determine preferential elongation of the height or width and the roundness parameter 

is used to characterise simple and complex or irregular shapes in 2-D (Merkus, 2009). The sizes 

of the mounds were also classified according to the orientations of the quarry faces, however 

no preferential alignment of the mounds was found in 2-D (refer to Appendix 2.1).  

The first parameter used was the aspect ratio which allows comparison of the major and 

minor axes of a shape to decipher a possible elongation in 2-D. In this study this parameter is 

used to illustrate the relationship between heights and widths of the mounds for the Skull and 

the Hard Cap by plotting heights against widths (Fig. 5.9). In the Skull Cap mound heights and 

widths are correlated with a 1:12 ratio meaning that an increase in height will be accompanied 

with a 12 times larger increase in width (Fig. 5.9). This indicates a rather simple tabular shape 

(wider than taller) which is also illustrated in figure 5.7. In addition this relationship shows that 

when the size of the mounds increases, the shape appears to remain tabular (Fig. 5.9). This 

shows that the mounds were expanding laterally (rather than vertically) and suggests that 

their growth was controlled by relatively shallow water depths of the lake. In the Hard Cap the 

relationship between height and width is more complex than for the Skull Cap. There is a 

similar simple relationship for small mounds (values up to about 1.5 in height and 3 m in width; 

Fig. 5.9) where heights and widths appear to be proportional following an approximate 1:3 

ratio. This shows that in the Hard Cap the mounds have a domal or bun shape when they are 

small (Fig. 5.9). However for mounds bigger than 3 m wide and 1.5 m high, they do not appear 

to follow this ratio anymore as shown with the scattered data points (Fig. 5.9) and these larger 

mounds are interpreted to have more complex and irregular morphologies. Because the 

mounds in the Hard Cap do not show tabular shapes and have rather domal shapes together 

with greater heights, they are interpreted to have grown in slightly deeper water depth than 

the mounds of the Skull Cap (see above) but still in shallow lake margin settings. This aspect of 

mound growth is discussed further in section 3.3.2. of this chapter and in Chapter 6 where 

compared with modern analogues. 
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Figure 5.9 Relationship between mound heights and widths. Note that the very big mound of 
about 18 m wide (from God Nore shown in Figs. 5.6, 5.7 and 5.8) is not shown in this figure to help to 
see relationship for smaller values. 

 

The second parameter used was the roundness to better characterise the complexity of 

the cross-sectional morphologies of the mounds. The roundness is defined as a ratio between 

areas and perimeters, and is expressed on a scale between 0 and 1 with 1 being a circular 

shape (Merkus, 2009). Numerous definitions exist (Merkus, 2009) and in this study the 

following equation was used: Roundness = 4πA/P2; where A = projected area and P = perimeter 

(Figs. 5.10 and 5.11; refer to Appendix 2.1 for full value lists). The four measurements recorded 

previously (i.e. widths, heights, perimeters and areas) were plotted against the roundness 

values (Fig. 5.10). The mounds in both units of the Caps have similar trends of widths, areas 

and perimeters when plotted against the roundness values. The roundness decreases as the 

size increases while the heights appear to be more scattered (Fig. 5.10). The Skull Cap mounds 

are poorly rounded as most of them show roundness values between 0 and 0.5 (Fig. 5.10). This 

is in accordance with the tabular shapes identified when plotting heights against widths 

(Fig. 5.9). They also present a gradient from small sizes with slightly better roundness (close to 

1) gradually increasing for bigger sizes with poorer roundness values (close to 0; Fig. 5.10). This 
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is also in accordance with the fact that mounds in the Skull Cap tend to grow laterally (see 

above). When height is plotted against roundness the points appear to be more scattered and 

this indicates that the shapes of the mounds are not influenced by heights. Note that most of 

the height values are between 20 and 60 cm and appear randomly distributed between 0.1 

and 0.5 roundness values (Fig. 5.10). For the Hard Cap, mound morphologies are more diverse 

from well to poorly rounded. Most of the small mounds (less than 2 m in width, 2.5 m2 in area 

and 10 m perimeter) show roundness values spread out between 0.3 and 0.9 (Fig. 5.10). This 

indicates that small mounds are preferentially well to moderately rounded while bigger 

mounds are poorly rounded (Fig. 5.10). As with the Skull Cap when height is plotted against 

roundness, the points are much scattered (Fig. 5.10). However in the Hard Cap shallow 

mounds (less than 1 m in height) appear to be spread between 0.1 and 0.9 roundness while 

taller mounds (more than 1 m) are mainly found between 0.1 and 0.3 (Fig. 5.10). This shows 

that for shallow mounds the height does not seem to control the morphology as appears to be 

the case for mounds in the Skull Cap. However for tall mounds the spread of height 

measurements might reflect an increasing complexity in mound shape. Overall these 

measurements suggest that the shape complexity of the mounds increases with mound size.  

In addition the perimeters were plotting against the root squares of the areas (as per 

equation presented above with a roundness of 1: P=2√π*√A, Fig.5.11). Each point was colour 

coded, according to the class of roundness value it belongs to, to illustrate evolution of the 

shape complexity with the size (Fig. 5.11). To help interpretation, the values of a circle (perfect 

circular shape) were also plotted (Fig. 5.11). For both bed units these plots show that the 

overall complexity of the mound shapes increase with size as illustrated with the well-rounded 

mounds (roundness of 0.8-0.9) close to the circle values and the poorly rounded mounds 

(roundness of 0.1-0.2) further from the circle values (Fig. 5.11). In the Skull Cap the shapes of 

the mounds appear to become gradually and slowly less rounded as their sizes increase 

(Fig. 5.11). Taking into account the width and height trends (Fig. 5.9) this is interpreted to 

highlight (as previously proposed, see above) that the lateral development of the mounds in 

the Skull Cap was maintained through different mound sizes and that this tabular shape may 

have been constrained by mound growth in shallow waters. In the Hard Cap, another 

interesting aspect is illustrated as for each class of roundness (Fig. 5.11) the perimeters and 

root squares of the areas appear to be correlated (each colour coded class in figure 5.11 

follows an approximate straight line). This is interpreted to show that mounds started to 

develop with a given shape and that they did not modify this original shape when they keep 

growing but only modified their size.  
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Figure 5.10 Roundness parameter plots for the Skull Cap (top) and Hard Cap (bottom) mounds. 

Note the correlation lines are located to the bottom of the graphs showing the better roundness for 
smaller values. 
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Figure 5.11 Relationships between perimeters and areas and roundness for both Skull and Hard 
Cap mounds (top), Skull Cap mounds only (middle) and Hard Cap mounds only (bottom). 
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3.2. Inter-mound facies 

 

The inter-mound facies is found in the Skull, Hard and Soft Cap beds and is described in 

Chapter 4 to be made exclusively of the Intraclastic peloidal packstone-grainstone facies. Due 

to the biotas (ostracods, gastropods and bivalves), the generally clean and coarse-grained 

texture mainly made of peloids, and microbial intraclasts derived from the microbial mounds 

and its very close association with the microbial mounds this facies was interpreted to be 

deposited in marginal inter-mound areas (shallow waters) of a brackish water lake (refer to 

Chapter 4). Only few planar laminations were identified in this facies. The lack of sedimentary 

structures is interpreted to be due to the fact that this facies was deposited between the 

mounds that were creating turbulent palaeocurrents. Evidences of increasing energy levels 

compared to the underlying beds (i.e. the paleosols) are in the formation of scours and 

erosional bases of the Skull, Hard and Soft Cap beds. 

 

3.3. Relationship between mound and inter-mound facies 

3.3.1. Mounds vs. inter-mounds coverage 

 

The cross-sectional surface areas of the inter-mound facies were recorded from the lidar 

point clouds by subtracting mound areas to the bed areas for scanned panels of the quarry 

face (Fig. 5.12; refer to Appendix 2.1 for exact values).  

For the Hard Cap the mounds occupy about 30% of surveyed surfaces to the north of 

Portland and 15% in the south of the surface areas while the respectively remaining 70% and 

85% are occupied by the inter-mound facies as illustrated with the regression lines (Fig. 5.12). 

This illustrates that the distribution of these proportions of mound and inter-mound facies 

over the Isle of Portland tends to decrease from the north (KBQ, King Barrow Quarries) to the 

south (SH, Sand Holes) (Fig. 5.12).  

For the Skull Cap the mounds occupy about 15-20% of the surface areas while the 

remaining 75-80% is occupied by the inter-mound facies everywhere. This illustrates that the 

distribution of these proportions of mounds and inter-mounds over the Isle of Portland is 

relatively similar from the north (KBQ, King Barrow Quarries) to the south (SH, Sand Holes) 

(Fig. 5.12). 
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Figure 5.12 Proportions of mound and inter-mound facies over the Isle of Portland from the north 

(left) to the south (right). Note the numbers in brackets correspond to the number of mounds identified 
at each location. 

 

3.3.2. Relationships between mound and inter-mound sediments 

 

As described in the previous sections the mounds have an overall tabular shape in the 

Skull Cap and a more domal shape in the Hard Cap (refer to section 3.1.2). However at a more 

detailed scale very commonly the mounds of the Hard Cap show the development of wings or 

extensions into the surrounding inter-mound sediments (Fig. 5.13). The result is an 

interdigitation of the mound and inter-mound facies and onlaps of these facies onto the 

mounds (Fig. 5.13, also described in Chapter 4, section 3 and figure 4.18). The study of all the 

mounds of the Hard Cap shows that when mounds form a tabular shape their top surface is on 

average always around 50 cm from the bottom of the bed (as illustrated in figure 5.13 with 

one mound, refer to Appendix 2.1); and when mounds form a more complex shape, they show 

3 main sets of interdigitations that are on average around 50 cm, 1 m and 1.50 m from the 

bottom of the bed (as illustrated in figure 5.13 with one mound, refer to Appendix 2.1). As 

these interdigitations are very common on the mounds throughout the Isle of Portland they 

may be used to indicate palaeo-lake level fluctuations (Trevor Burchette, pers. comm., March 

2016). If they were formed on selected mounds throughout the Isle of Portland, they would 

show local water depth variations. 
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Figure 5.13 Example of heights of top surfaces of tabular mound (right) and interdigitations of 

complex mound (left). Note that the top surface of the tabular mound on the right corresponds to the 
top surface of the first interdigitation of the complex shaped mound on the left. c. stands for circa. 

 

 

These interdigitations can be due to different processes that involve sedimentation rate 

and microbial growth rate both influenced by external controls (such as lake level fluctuations, 

tectonic or climate). If the sedimentation rate was higher than the mound growth rate, the 

sediment would cover the mounds killing the microbial community and stopping its 

development. If the microbial growth rate was higher than the sedimentation rate, the 

mounds would keep growing until they fill the accommodation space and constitute the main 

(maybe the only) deposit. If the growth rate was similar to the sedimentation rate, this would 

neither allow the mound to expand or to contract laterally but to aggrade vertically.  

In the example shown in figure 5.14 the mound shows expansions before contractions 

with a repetition of this pattern three times until the mound was completely covered with 

sediment or it reached the lake surface and stopped growing. In the Hard Cap this 

phenomenon is common as lots of mounds developed these interdigitations (refer to 

Appendix 2.1). In addition if there was one main current direction the interdigitations would 

expect to be situated always in the same direction when viewed in 3-D.  However no 

preferential direction of orientations in 3-D of the interdigitations is recorded. This indicates 

that there was no current, or that it was too slow, or that it was not unidirectional. In the 

Purbeck mounds, these lateral expansions/contractions are interpreted to reflect the balance 

between growth rate and sedimentation rate. In such a situation the mounds were partially 
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covered with sediment possibly during pulses of increased sedimentation and expanding 

laterally when sedimentation rates were reduced. Because shape of mounds and surrounding 

sediments remain similar these pulses of sediment input were most likely accompanied with 

constant lake level rise or subsidence increase or a combination of both. In addition because 

the mounds developed laterally and created the interdigitations with moderate to high energy 

sediments that show that they were most likely growing in shallow waters (as for the mounds 

of the Skull Cap). If they were growing in deep water they would be expected to develop more 

vertically to try to reach light and warmer waters.  
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Figure 5.14 Relationships between mound and inter-mound facies. A – Lidar point clouds 
interpreted showing interdigitations at South West Bowers. Note the stratigraphy on the right. PG: 
Portland Group, SkC: Skull Cap, LDB: Lower Dirt Bed, HC: Hard Cap, GDB: Great Dirt Bed. Note that this is 
the same mound as in figure 5.13. B – Cartoons depicting possible growth steps of one mound. 
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3.3.3. Distribution of microbial mounds 

 

Integration of outcrop studies and mapping along the studied area together with lidar 

interpretation over the Isle of Portland help to understand mound distribution. This was done 

for two scales, at regional scale to identify proximal and distal areas and at a more local scale 

to identify external factors influencing the microbial growth and mound distribution. In 

addition when no field evidence was identified on the mound distribution numerical modelling 

(3-D forward modelling) was used to propose possible external controls. The numerical 

modelling was undertaken by Kozlowski (in prep.) in a joint PhD project where different 

scenarios were modelled to attempt to constrain the distributions presented in this chapter. 

 

3.3.3.1. Regional scale 

 

At a regional scale (throughout the studied area in south Dorset) microbial mounds show 

lateral changes as well as vertical changes depending on the bed they are found in. As 

presented before, microbial mounds are found in three beds, the Skull, Hard and Soft Cap beds 

in the lower part of the Mupe Member. 

In the Skull Cap, mounds were never found associated with tree remains and have a 

tabular positive relief between 20 and 60 cm high (see section 3.1.1. of this chapter). Synoptic 

reliefs are commonly determined using onlaps on the sides of the mounds, domed and/or 

when buried by flat-topped beds with a different sediment (Hofmann, 1973; Hoffman, 1974). 

In the Skull Cap no onlaps were seen but mounds have tabular shapes (elongated or rounded) 

that may indicate a maximum synoptic relief of about 60 cm. The top surfaces of mounds of 

the Skull Cap are only exposed at Portland Bill on the Isle of Portland that allows the 

characterisation of the shapes and sizes in 3-D. There, mounds show rounded and elongated 

tabular shapes (Fig. 5.15A-B), however elongated tabular mounds are not very well exposed 

and only pseudo 3-D is seen (Fig. 5.15A). The rounded tabular mounds are about 50 cm in 

diameter and the elongated tabular are about 5 m long (Fig. 5.15A-B). This shows that 

although with the lidar scans mainly elongated shape are imaged, a few smaller rounded 

mounds are also present. Mounds in the Skull Cap are found all along the studied area and are 

rather morphologically similar apart from in Swanworth Quarry where they appear to change 

laterally to stromatolitic deposits (refer to Chapters 6 and 7 and Appendix 3). 

In the Hard Cap, mounds are commonly found associated with tree remains that left sub-

vertical to sub-horizontal moulds about 20 cm in diameter either empty or filled with silicified 
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tree trunks or branches (refer to Chapter 4). These mounds are bigger (between 20 cm and 

3 m) than in the Skull Cap (refer to section 3.1.1. of this chapter) and formed domal positive 

relief on the lake floor as suggested with the interdigitations (refer to previous section). These 

domes together with onlaps, locally observed (refer to Chapter 4, Fig. 4.18C), indicate synoptic 

reliefs from 20 to 60 cm. The top surfaces of three mounds of the Hard Cap are exposed on the 

eastern side of Lulworth Cove (Fig. 5.15C). There the mounds are domal and rounded and about 

6.50 m in diameter. This is in accordance with the lidar interpretation and measurements from 

the point clouds that show big and tall rounded shapes and widths of up to 6.5 m are common. 

Mounds in the Hard Cap are found throughout the studied area with the exceptions of Mupe 

Bay, Worbarrow Tout and Swanworth Quarry where they appear to change laterally for 

stromatolitic deposits (refer to Chapters 6 and 7 and Appendix 3). The tree holes in these 

mounds were studied in detail by Francis (1982) where she measured diameters and 

orientations (refer to Chapter 2). She determined that tree moulds are on average 10 cm in 

diameter and between 20 cm and 2 m long with an average dip of 5° to the south (refer to 

Chapter 2). However she interpreted this southerly direction to be mainly measured from 

branches that have 40° angle with the trunks in modern conifers and that cannot be used for 

interpretation of palaeowind directions but rather only a north-south orientation of the tree 

trunks (refer to Chapter 2). 

In the Soft Cap, mounds are also commonly associated with tree remains that left circular 

moulds or sub-horizontal elongated moulds (i.e. cylindrical) about 50 cm in diameter empty 

that corresponds to either in-situ tree stumps (circular) or fallen trees (sub-horizontal) (refer to 

Chapter 4). In addition when there is no association with tree remains, mounds have a domal 

shape (Fig. 5.15D). These mounds have similar heights as the Skull Cap mounds between 20 

and 60 cm positive relief with domal shapes. This indicates that a maximum synoptic relief of 

about 60 cm. The top surfaces of mounds of the Soft Cap are exposed at Fossil Forest, and 

Mutton Cove and King Barrow Quarries on the Isle of Portland (Fig. 5.15D-G). The doughnut-

shaped and rounded mounds have similar sizes and are around 1 m in diameter (Fig. 5.15E) 

while the cylindrical mounds are found between 2 and 3 m long (Fig. 5.15F-G).  Mounds in the 

Soft Cap are only present eastwards of the Isle of Portland-Lulworth zone with the best 

exposure at Fossil Forest (refer to Chapters 6 and 7 and Appendix 3). As for the mounds of the 

Hard Cap Francis (1982) studied in details the tree moulds of the Soft Cap mounds (refer to 

Chapter 2). She determined that the moulds in the mounds are in average around 46 cm in 

diameter and when elongated moulds are between 7 and 54 cm long when exposed (refer to 
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Chapter 2). She interpreted that the elongations were due to logs and preferentially orientated 

in a north-south direction that indicated a northerly blowing wind direction (refer to Chapter 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.15 Views of mounds in 3-D in the field. A – Elongated tabular mound from the Skull Cap at 

Portland Bill (Isle of Portland). B – Rounded tabular mound from the Skull Cap at Portland Bill (Isle of 
Portland). C – Big rounded domal mounds from the Hard Cap on the eastern side of Lulworth Cove. D – 
Domal rounded mounds from the Soft Cap at Fossil Forest. E – Doughnut-shaped mound with tree trunk 
mould from the Soft Cap at King Barrow Quarries (Isle of Portland). F – One cylindrical and two domal 
mounds from the Soft Cap at Fossil Forest. G – Cylindrical mound from the Soft Cap at Fossil Forest (photo 
courtesy of Sila Pla-Pueyo). 
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3.3.3.2. Local scale 

 

At a local scale over the Isle of Portland, figure 5.10 showed that the shapes of the 

mounds of the Skull Cap are flatter than in the Hard Cap (tabular against domal). Figure 5.11 

showed that the sizes of the mounds in the Skull Cap are smaller than in the Hard Cap with 

Skull Cap mounds rather similar to the small mounds of the Hard Cap. As explained above at a 

regional scale, field studies show that the mounds from the Skull and Hard Cap beds at a local 

scale also differ in their association with tree remains (trunks, branches or stumps). At a local 

scale and at outcrop no tree remains were ever found associated with the tabular mounds of 

the Skull Cap while numerous sub-horizontal tree moulds (dip angles average about 20° and 

generally less than 5°) were identified in the mounds of the Hard Cap on the Isle of Portland 

(refer to previous section and Chapter 2 as this feature was also noticed by Francis, 1982). 

Figure 5.16 shows the distribution of the average size (widths and heights), areas and 

perimeters of the mounds from the north to the south of the Isle of Portland. The mounds in 

the Skull Cap appear to be slightly bigger in the south than in the north (Fig. 5.16) while in the 

Hard Cap they appear to be rather similar over Portland. However as all the data are within the 

standard deviations of the size measurements, no clear conclusions on possible size variations 

and trends can be drawn. Outside of the Isle of Portland, although mounds were identified all 

along the studied area (see above), mounds similar to those characterised on the Isle of 

Portland are mainly found in Lulworth area (refer to Chapter 6 and Appendix 3). Mounds are 

interpreted to have developed overall in shallow waters (see above and refer to Chapters 4 

and 6) with the tabular shaped-mounds of the Skull Cap in the shallowest part of the margins;  

and the domal shaped-mounds of the Hard Cap in slightly deeper water of the margins. 

Consequently microbial mounds are preferentially developed either on the margins or on 

palaeohighs on the floor of a brackish water lake (refer to Chapters 4 and 6). This is a very 

common feature in modern day environments (refer to Chapter 6) such as Laguna Bacalar 

(Mexico) where flat-topped thrombolite mounds are only found on the margins of this 

freshwater lake growing from the shore and around mangrove trees in a shallow waters away 

from the shoreline (refer to Chapter 6 and Appendix 1). Similarly in the Great Salt Lake (Utah, 

USA) flat circular mounds that form rings are only found on the shallowest part of the margins 

of this hypersaline lake and change laterally in deeper waters to domal structures (refer to 

Chapter 6). In the Great Salt Lake, mounds develop on top of pebbles and sedimentary 

structures such as current ripples or dunes (refer to Chapter 6). 
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Figure 5.16 Mound sizes (widths and heights), areas and perimeters distributions over the Isle of 
Portland from the north to the south. KBQ: King Barrow Quarries, BQ: Bowers Quarry, SWB: South West 
Bowers, CQ: Coombefield Quarry, FB: Freshwater Bay, GN: God Nore, SH: Sand Holes. Note that the 
numbers in brackets correspond to the number of mounds and the plain lines are the error bars. 

 

3.3.3.3. Controls on mound morphologies 

 

Controls on microbial growth can be inferred from the shape of the mounds, the type of 

microbialites and from the type of substrate used by the microbial community to grow. This is 

well documented in the literature from modern (such as Laguna Bacalar or Great Salt Lake, 

described in Chapter 6) and in ancient (such as the Green River Formation) environments 

(more modern and ancient analogues are described in Chapter 6). In Laguna Bacalar (Mexico) 

thrombolite mounds use the shorelines (possibly previously indurated) and mangrove trees as 
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substrates (refer to Chapter 6 and Appendix 1). In the Great Salt Lake (Utah, USA) thrombolite 

mounds grow from indurated mud pebbles and positive sedimentary structures (current 

ripples and dunes) that formed in the littoral zone (refer to Chapter 6). In ancient 

environments Chidsey et al. (2015) showed that branching stromatolites used as a substrate 

indurated silt and mud in the Green River Formation (Eocene) exposed in Utah (USA). Such 

hard substrates were never identified at the base of the mounds in the Skull Cap from 

fieldwork (no trees, no pebbles or sedimentary structures were identified). In this bed the 

mounds appear to develop either above a paleosol (the Basal Dirt Bed) or directly on the 

micro-karstic top surface of the Portland Formation (Fig. 5.17).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17 Irregularities on the top surface of the Portland Group. A – Erosional surface showing 
small frequency and short amplitude irregularities (South West Bowers Quarry, Isle of Portland, photo 
courtesy of Estanislao Kozlowski). Note that the white substance is snow and that lows are highlighted 
with the ice that formed inside. B – Exposure surface showing greater frequency and amplitude 
irregularities on the upper surface of the Portland Group (Mupe Bay). 

 

Based on fieldwork and lidar interpretation mounds appear to grow in both lows and 

highs created on the palaeotopography although the original point of mound growth can never 

be ascertained in 2-D exposures. To assess the external controls involved in the growth and the 

distribution of the mounds, 3-D forward numerical modelling was used (Fig. 5.18). 

Kozlowski (in prep.) specified that at the small scale microbial growth, shape and the 

relationship with the inter-mound facies are controlled by a balance between microbial growth 

rate and the sedimentation rate (as also stated with fieldwork studies, see above). The main 

outcome of importance for this study is that it allows the determination of the controls of the 

palaeotopography on the distribution of the type of mounds found in the Skull Cap. Figure 5.18 

shows one possible model in 3-D and a 2-D cross-section of the current level of work by 
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Kozlowski (in prep.). This model shows that the mounds preferentially start to develop on highs 

present on the palaeotopography and with time develop laterally over lows and the inter-

mound facies. Depending on where the cross-section (or cliff faces) is taken the point of 

origination can either be imaged or not. As a conclusion for the mounds of the Skull Cap, their 

distribution could be controlled by the micro-karst that formed on the top surface of the underlying 

Portland Group; or the irregularities of the top surface of the Basal Dirt Bed paleosol.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18 Small-scale 3-D forward numerical model from Kozlowski (in prep.). This model 
represents 50 years of accumulation (one iteration per year) following these characteristics: vertical 
growth of 0.01 m/yr; lateral growth of 0.05 m/yr; maximum rate of deposition of 4 cm/yr; a repose 
angle for the coarse sediment of 10°; a maximum erosion rate for the coarse sediment of 1 cm/yr; lake 
level rise with a period of 300,000 years and an amplitude of 5 m. The initial topography (in grey) is 
based on the amplitude and frequency of the surface of the Portland Group as recorded in the field (as 
in figure 5.17). Note that the fine and coarse sediments represent the Intraclastic peloidal packstone-
grainstone facies. A – 3-D block model with the red plain line that locates the cross-section in B. B – 2-D 
cross-section following red line in A that shows that mounds preferentially start to grow on highs (white 
arrows) and develop both vertically and laterally over lows (red arrows) over time. 
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In the Hard Cap, most of the mounds are found around tree remains (branches, trunks or 

stumps; refer to Chapter 4) in sub-horizontal position (dip angles average around 20°). This is 

interpreted to indicate that the main control on the mound distribution in the Hard Cap is the 

occurrence of tree remains. However in several occasions mounds do not appear to be 

associated with tree remains in 2-D (as mound 2 in Fig. 5.19). This can be explained due to the 

same process described for the mounds of the Skull Cap and their actual distribution in 3-D 

(Fig. 5.18). The mounds of the Hard Cap used tree remains as substrates in addition to 

palaeotopographic highs due to irregularities on the top surface of the Lower Dirt Bed 

paleosol. When a mound does not appear to be associated with trees, it was probably located 

somewhere near tree remains but with the mainly 2-D views (i.e. cliff faces) it may appear that 

a mound is isolated from trees within the inter-mound facies (as for mound 2 in Fig. 5.19). In 

such situation only part of the mound is seen while its actual extent in 3-D is much greater 

than the limited 2-D extent seen at outcrop. In addition the development around sub-vertical 

tree remains justifies the difference in size between the mounds of the Skull and Hard Cap. In 

the Hard Cap the mounds used the sub-horizontal trees as substrates for the growth that were 

most likely creating overhangs above the lake floor. These overhangs would allow mounds to 

reach greater heights and widths than in the Skull Cap where the mounds remained tabular. 

Another important characteristic only identified in the Hard Cap is the lateral coalescence of 

mounds (as in mound 1 in Fig. 5.19). Very commonly mounds appear to form “bridges” in 2-D 

that appears to result from the lateral coalescence of two interdigitations, accompanied with 

significant increase of the lateral extent over the inter-mound facies (Fig. 5.19). These 

“bridges” can be of two origins when the 3-D is considered; it could be two neighbouring 

mounds that created interdigitations (as previously described) and coalesced when extended 

laterally; or it could be the interdigitations of a same mound that extended separately and re-

joined. 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.19 Lateral extent of mounds in the Hard Cap illustrated from the interpretation of the lidar point clouds at King Barrow Quarries. The stratigraphy is notified 

on the left. Note that shape of mound 1 appears to be controlled by the position of the trees that also controls the possibility of coalescence. 
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4. Conclusion 

 

Interpretation of lidar point clouds coupled with qualitative outcrop studies enabled the 

definition of two main shapes of microbial mounds; short tabular and wide in the Skull Cap and 

a mixture of short tabular and domal shapes and tall and wide complex shapes in the Hard 

Cap. In addition measurements (widths, heights, surface areas and perimeters) illustrated that 

the mounds of the Skull Cap are generally smaller than of the Hard Cap. Although the Hard Cap 

mounds exhibit a wide range of sizes, the small mounds have similar sizes than the mounds of 

the Skull Cap. This is interpreted to indicate shallow waters for the Skull Cap mounds as the 

tabular mounds tend to extend laterally (constrained with the water depth) rather than 

vertically as is seen in the Hard Cap mounds. In addition maximum synoptic reliefs of the 

mounds appear to be similar in the three units (up to 60 cm) and down to 20 cm in the Hard 

Cap. 

The identification and characterisation of interdigitations of mounds with the inter-

mound facies helped to determine the complex relationships between mound growth and 

sedimentation rate. In addition the lake level was most likely fluctuating due to pulses either 

due to a lake level rise, increasing subsidence or a combination of both. In most of the big 

mounds a maximum of 3 interdigitations were identified more or less at the same distance 

from the base of the bed (differences may be due to the uneven erosional surface of the 

underlying paleosols). This shows that 3 palaeo-lake fluctuations occurred more or less 

simultaneously over the area of the Isle of Portland. 

The integration of 3-D forward modelling together with outcrop studies helped to 

determine possible controls of the mound distribution and on microbial growth. Numerical 

modelling showed that mounds are preferentially growing above highs on the 

palaeotopographty and developed laterally. In addition the greater thickness of the mounds of 

the Hard Cap is due to the position of sub-vertical tree remains that provided substrates for 

the microbial growth. Outcrop studies and numerical modelling also show that mounds can 

coalesce in 3-D and that this increases their lateral extent (i.e. connectivity) and that mounds 

that appear laterally close to each other are most likely connected in 3-D. 

These features (vertical growth around tree remains and coalescence between mounds) 

have important implications in the interpretation of the connectivity of the mounds in 3-D. In 

Chapter 4 the Thrombolite sub-facies (i.e. main facies of the mounds) was described to be 

highly porous providing a potential good hydrocarbon reservoir although surrounded by a 

poorly porous facies (the Intraclastic peloidal packstone-grainstone facies). The integration of 
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outcrop studies and numerical forward modelling helps to predict mound distribution and 

connectivity in 3-D which can be valuable information in the production process in a petroleum 

system.
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Chapter 6 

Palaeoenvironments of the 

Mupe Member: logs, facies 

associations and facies models 
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1. Introduction 

 

This chapter and accompanying Appendix 3 present graphic logs through the Mupe 

Member and four facies associations, comprising the facies defined in Chapter 4. Graphic logs 

are also used to identify facies transitions and thickness variations, both spatially (laterally) 

and stratigraphically (vertically). This chapter also presents a sequence stratigraphic analysis of 

the Mupe Member. The integration of all these investigations together with the analyses of 

shape and size of the microbial mounds (refer to Chapter 5) enables the definition of two 

facies models; an earlier brackish water lake and later hypersaline water lake as the 

depositional environments for the Mupe Member. 

 

2. Sedimentary logs 

 

Purbeck exposures in south of England are described in Chapter 2, and because this study 

focuses on the Mupe Member in south Dorset, 22 locations were chosen to cover the greatest 

area possible and to document the controls on the facies distribution (refer to Chapters 3 and 

7 for more details). These sedimentary logs are located in three critical regions and well 

exposed (Tab.6.1; Fig. 6.1), to the west and close to the Ridgeway Fault; to the east and close 

to the Purbeck Fault; and to the south on the southern limb of the Weymouth Anticline (i.e. 

the Isle of Portland). These logs were recorded from the uppermost bed of the Portland Group 

to the lowermost bed of the Hard Cockle Beds (Fig. 6.2, Appendix 3).  

The sedimentary log thicknesses depend on stratigraphic thickness and also on outcrop 

quality and accessibility and vary between about 1.80 m (Chalbury) and 24.5 m (Mupe Bay). In 

each location samples were collected in each bed (when possible) and were used to define and 

classify facies presented in Chapter 4. Table 6.1 presents main characteristics of all the 

sedimentary logs and the logs are presented in Appendix 3.  
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Table 6.1 Main characteristics of sedimentary logs undertaken for this study. TB: Transition Bed; 

BDB: Basal Dirt Bed; SkC: Skull Cap; LDB: Lower Dirt Bed; HC: Hard Cap; GDB: Great Dirt Bed; SoC: Soft 
Cap; BB: Broken Beds; CF: Cypris Freestone; HCB: Hard Cockle Bed. Note that at Chalbury the beds 
between the Transition Bed and the Skull Cap were not exposed (refer to Appendix 3). 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Simplified geological map of south Dorset with locations of sedimentary logs measured in this study (white disks) and presented in Appendix 3. Note 
outcrops of Purbeck Limestone Group shown in red. Grey lines illustrate the correlation panels of sedimentary logs presented in this chapter in figures 6.5, 6.6 and 6.7. 
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3. Facies succession and bed transition 

3.1. Qualitative description 

 

The generalised log presented in figure 6.2 is for the Mupe Member of south Dorset and 

gives the characteristic facies of each bed. The facies succession and bed transitions are 

described below in stratigraphic order. The Transition Bed is located at the base of the Purbeck 

Limestone Group and is only made of the Wackestone to fine grainstone facies with an 

erosional surface at the base (Fig. 6.2). This erosional surface marks the contact between 

Portland Group and Purbeck Limestone Group. The Basal Dirt Bed is an immature rendzina 

paleosol made of Carbonaceous marl facies with an erosional surface at its base (Fig. 6.2). The 

Skull Cap bed comprises the Thrombolite sub-facies and the Intraclastic peloidal packstone-

grainstone facies (Fig. 6.2). The base of the Skull Cap is made of tabular microbial mounds and 

the transition with the underlying Basal Dirt Bed is planar (Fig. 6.2). The middle part of the 

Skull Cap is usually made only of the Intraclastic peloidal packstone-grainstone facies overlain 

by tabular microbial mounds (Fig. 6.2, refer to Chapter 5). The Lower Dirt Bed is an immature 

rendzina paleosol made of the Carbonaceous marl facies with an erosional surface at the base 

(Fig. 6.2). The Hard Cap bed comprises the Microbialite facies (Stromatolite, Burrowed peloidal 

packstone and Thrombolite sub-facies interdigitated with the Intraclastic peloidal packstone-

grainstone facies and the transition with the underlying Lower Dirt Bed is planar (Fig. 6.2). This 

bed comprises in-situ microbial mounds (refer to Chapter 5) mostly developed around tree 

trunks and branches in places interdigitated with the Intraclastic peloidal packstone-grainstone 

facies in its lower part (Fig. 6.2). The transition between the lower and upper part of this bed is 

marked by a finer packstone texture which can onlap onto the sides of large microbial mounds. 

The Great Dirt Bed is a rendzina paleosol made of the Conglomerate facies with an erosional 

surface at the base (Fig. 6.2). The Soft Cap bed comprises the Microbialite facies and the 

Intraclastic peloidal packstone-grainstone facies with a planar surface at the base (Fig. 6.2). In 

this bed the microbial mounds developed around fallen trees and in-situ tree stumps with a 

domed or doughnut shape interdigitated with the Intraclastic peloidal packstone-grainstone 

facies (refer to Chapter 5). The overlying Cypris Freestone beds comprise mainly the Cross-

bedded peloidal packstone grainstone facies with intercalations of Gypsiferous peloidal 

packstone and Calcareous sandstone facies beds (Fig. 6.2, Appendix 3). The basal surface is 

planar, overlying the Soft Cap. The Cypris Freestone beds are overlain by the Hard Cockle Beds, 

the top of the Mupe Member being located within the Cypris Freestone beds (Appendix 3). In 

some locations the base of the Cypris Freestone is made of the Broken Beds that comprise the 
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Evaporite (Breccia and Vuggy sub-facies) facies with a planar surface at the base (Fig. 6.2, refer 

to Appendix 3). The lower part of these beds are made of the Evaporite vuggy sub-facies, 

covering the microbial mounds of the underlying Soft Cap bed, and overlain by the Evaporite 

breccia sub-facies (Tab. 2.2, refer to Appendix 3). The lateral correlation and distribution of 

these facies is described in section 5. 
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Figure 6.2 Idealised log for the Mupe Member of the study area drawn with average thickness of 

each bed (refer to Annexe 3 to consult the 22 sedimentary logs used to create this idealised log). 
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3.2. Quantitative analysis 

 

A facies succession analysis as presented in Walker (1979) was used in this study to 

understand the relationships between facies and to aid in the interpretation of depositional 

environments. This analysis involves counting each transition between each facies from the 

recorded logs and this is listed in a matrix (Appendix 3). The result of this facies succession 

analysis is a facies relationship diagram (Fig. 6.3) that illustrates which transitions of facies are 

more likely to occur, if facies transitions are not random, according to the difference of 

probability values (Walker, 1979).  

The facies relationship diagram presented in figure 6.3 together with description and 

interpretation of facies presented in Chapter 4 helps in the definition of five facies associations 

characterising two main depositional environments (defined and detailed in sections 4 and 5 of 

this chapter). From the bottom to the top of the lower half of the facies relationship diagram 

(Fig. 6.3), the Wackestone to fine grainstone facies (facies 4) is always found prior the 

deposition of the Conglomerate and Carbonaceous marls facies (respectively facies 7 and 8). 

This is also identified in the sedimentary logs, the Wackestone to fine grainstone facies (facies 

4) is mainly found in the Transition Bed at the base of the Mupe Member and overlain by a 

paleosol (either Conglomerate or Carbonaceous marl facies). The Carbonaceous marl (facies 8) 

occurs prior the deposition of the Stromatolite sub-facies (facies 1b). The Conglomerate facies 

(facies 7) is found either prior to the deposition of the Thrombolite sub-facies (facies 1a) or 

after the deposition of the Intraclastic peloidal packstone-grainstone facies (facies 2). The 

Thrombolite sub-facies (facies 1a) is found either after the deposition of the Stromatolite sub-

facies (facies 1b) and/or interbedded with the Burrowed peloidal packstone sub-facies (facies 

1c) and/or interbedded with the Intraclastic peloidal packstone-grainstone sub-facies (facies 

2). All of these indicate a succession of strata where microbial mounds (facies 1a, b and c) 

occur interbedded with the Intraclastic peloidal packstone-grainstone facies (facies 2) and are 

intercalated between either paleosols, usually overlying the Carbonaceous marl facies and 

capped by the Conglomerate facies (Fig. 6.3). The Conglomerate facies is found prior to the 

deposition of the Thrombolite facies which itself is interbedded with the Intraclastic peloidal 

packstone-grainstone facies and prior the deposition of the Conglomerate facies. This indicates 

a repetition of succession with this group of strata (Fig. 6.3). This diagram shows that facies 

transitions are more likely between the Thrombolite and the Burrowed peloidal packstone 

sub-facies and Intraclastic peloidal packstone grainstone facies (Fig.6.3). The Stromatolite sub-

facies is less common and found at the bottom of the succession, if present (Fig.6.3). 
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Concerning the upper half of the facies relationship diagram (Fig.6.3), the most commonly 

occurring facies is the Cross-bedded peloidal packstone-grainstone facies (facies 3) as all the 

other facies transition into this one. As described in Chapter 4, this facies is the most abundant 

facies of the Cypris Freestone beds (also documented by West, 1975; Anderson, 1985; Horne, 

2002). The Carbonaceous marl facies (facies 8), the Gypsiferous peloidal packstone facies 

(facies 5) and the Evaporite vuggy sub-facies (facies 9a) are all interbedded with the Cross-

bedded peloidal packstone-grainstone facies (facies 3). The Evaporite breccia sub-facies (facies 

9b) occurs either prior the deposition of the Cross-bedded peloidal packstone-grainstone 

facies (facies 3) or interbedded with the Evaporite vuggy sub-facies (facies 9a). This indicates a 

non-random succession with the Evaporite vuggy sub-facies at the bottom, overlain by the 

Evaporite breccia sub-facies and capped by the Cross-bedded peloidal packstone-grainstone 

facies on top (Fig. 6.3). The Calcareous sandstone facies (facies 6) is found prior the deposition 

of the Cross-bedded peloidal packstone-grainstone facies or the Evaporite vuggy facies. This 

indicates that this facies is rather uncommon and less likely to be deposited than the other 

facies which is confirmed by the recorded sedimentary logs (Fig. 6.3 and refer to Annexe 3 for 

more details). 

The link between the lower and upper halves (Fig. 6.3) is made via the Conglomerate 

facies (facies 7, paleosol). This facies is found prior the deposition of the Cross-bedded peloidal 

packstone-grainstone facies (facies 3) and after the deposition of the Wackestone to fine 

grainstone facies (facies 4) or the Intraclastic peloidal packstone-grainstone facies (facies 2). 

This facies relationship diagram (Fig. 6.3) illustrates the commonest facies successions 

observed in the field and reported in the sedimentary logs and helps to predict which facies 

are most likely to occur after a given facies (Fig. 6.3; refer to Annexe 3 for more details). In the 

lower part of the diagram the thrombolites appear to form: after the deposition of 

stromatolites above a carbonaceous marl paleosol; directly on top of a conglomeratic paleosol 

without prior deposition of stromatolites; or exclusively inter-related with the Burrowed 

peloidal packstone sub-facies (Fig. 6.3). This suggests that the thrombolites need an indurated 

substrate to grow, the pebbles of the conglomeratic paleosol, the Stromatolite sub-facies 

and/or the Burrowed peloidal packstone sub-facies were used as solid substratum for the 

Thrombolite sub-facies to develop, as does overgrowth around trees. 

 In the upper part of the diagram the Cross-bedded peloidal packstone grainstone facies 

appears to be the most abundant facies and the Calcareous sandstone, Gypsiferous peloidal 

packstone and Evaporites facies are inter-bedded within it.  
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Figure 6.3 Facies relationship diagram for the Mupe Member in south Dorset illustrating facies 
successions more common than would be expected if the facies transitions were random. 

 
 

 

4. Facies associations 

 

Five facies associations are defined on basis of the interpretations of their facies (refer to 

Chapter 4), the facies transition analysis and their occurrence in the field. These facies 

associations are: Deep lacustrine, Emergent, Mounded marginal lacustrine, Hypersaline 

lacustrine and Bedded marginal lacustrine. Table 6.2 presents the main characteristics of each 

facies association arranged from stratigraphically oldest at base to youngest at top. 
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Table 6.2 Main characteristics of facies associations in stratigraphic order from base to top. The 

colours used are those that identify the facies associations throughout the figures in the thesis. 

 

 

4.1. Deep lacustrine 

 

The Deep lacustrine facies association comprises just one, rather distinct, facies, the 

Wackestone to fine grainstone facies. This facies association is found at the base of the Mupe 

Member in the Transition Bed (West, 2013a) and its occurrence is shown in table 6.2. The 

thickness of this facies association varies between 1 cm and 1.20 m with an average thickness 

of 60 cm (Tab. 6.2).  The Wackestone to fine-grainstone facies is made of peloids and ostracods 

and no sedimentary structures such as wave induced features are preserved apart from some 

planar laminations locally (refer to Chapter 4 for complete description). Because of the fine-

grained texture and the absence of sedimentary structures, this facies association is 

interpreted to be deposited in a deep lake setting, below wave base between meters and tens 

of meters water depth and in what is interpreted as a brackish water lacustrine environment 

on basis of the biotas. The local erosion of the shallow marine Portland limestones results in 

the presence of intraclasts and also marine bioclasts (bivalves, gastropods and echinoids) 

reworked into this facies. This hypothesis is supported by the observation that the top surface 

of the Portland Group throughout the studied area is very irregular and eroded (refer to 

sections 3 and 5 of this chapter).  
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4.2. Emergent 

 

The Emergent facies association comprises the Carbonaceous marl and the Conglomerate 

facies. This facies association is found in the three paleosols; Basal Dirt Bed, Lower Dirt Bed 

and Great Dirt Bed (Tab. 6.2) and as described and interpreted in Chapter 4. The thickness of 

this facies association varies between 1 and 60 cm with an average thickness of about 15 cm 

(Tab. 6.2). The paleosols and their contents were documented by Francis (1983, 1984, 1986) as 

reviewed in Chapters 2 and 4. Francis (1986) demonstrated that these paleosols have a 

Rendzina profile (mature with profiles A/C for the Great Dirt Bed and immature for the Basal 

and Lower Dirt Beds). The paleosols contain rooted and fallen/drifted ancient conifers 

(Protocupressinoxylon purbeckensis, Francis, 1983) together with cycadophytes (Fitton, 1827; 

Buckland and De la Bèche, 1836). The type of soil and the occurrence of conifers and cycads 

were used as evidence by Francis (1986) to interpret these paleosols to have formed under a 

semi-arid Mediterranean type climate. 

 

4.3. Mounded marginal lacustrine 

 

The Mounded marginal lacustrine facies association comprises the Microbialite and the 

Intraclastic peloidal packstone-grainstone facies. This facies association is found in all the 

locations studied, in the Skull Cap, Hard Cap and Soft Cap beds (Tab. 6.2) and the thickness 

varies between 1 cm and 5.90 m with an average thickness of 3.50 m (Tab. 6.2). The coarse-

grained texture of the facies (refer to Chapter 4) indicates a rather high energy environment 

following Dunham’s (1962) concepts and classification and consequently a marginal 

depositional environment interpretation. This is supported by its association with paleosols 

(Fig. 6.3) and the presence of tabular and mounded low synoptic relief microbial mounds 

which are interpreted to have grown to lake level in a shallow margin (refer to Chapter 5). The 

presence of non-marine brackish water ostracods (refer to Chapter 2, according to Anderson, 

1985) and gastropods (refer to Chapter 2, according to Clements, 1973 and Radley, 2002) 

suggests that this facies association represents a brackish water lacustrine (i.e. non-marine) 

environment. This is confirmed by stable isotope (carbon and oxygen) geochemistry analyses, 

showing signatures of brackish water open lacustrine system (refer to Chapters 2 and 4, 

Dharmarajah, 2015). The Microbialite facies on their own are not thought to be diagnostic of 

specific environments (discussed in section 7 of this chapter). The combination of all these 
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features indicates that this facies association was deposited along the margins of a shallow 

brackish water lake that flooded over coniferous vegetated shorelines.  

 

4.4. Hypersaline lacustrine 

 

The Hypersaline lacustrine facies association comprises the Evaporite facies and the 

Gypsiferous peloidal packstone (Tab. 6.2) and is found at Dungy Head, West Lulworth Cove, 

Fossil Forest, Mupe Bay, Worbarrow Tout, Fishermen’s Ledge and Durlston Head (Tab. 6.2). 

This facies association is located in and adjacent to the Breccia sub-facies in the Broken Beds at 

the base of the Cypris Freestone (Tab. 6.2) and its thickness varies between 3.20 and 8.70 m 

with an average thickness of 2.75 m (Tab. 6.1). The presence of sulphate evaporite crystal 

pseudomorphs (anhydrite and gypsum) infilled with sediments reflects hypersaline conditions. 

Because the underlying (Mounded marginal lacustrine) and overlying (Bedded marginal 

lacustrine) facies associations reflect lacustrine environments; this facies association was most 

likely deposited in a hypersaline lacustrine system. The important change between the 

previous facies association and this one is detailed later in sections 5 and 6 of this chapter. 

 

4.5. Bedded marginal lacustrine 

 

The Bedded marginal lacustrine facies association is composed of the Cross-bedded 

peloidal packstone-grainstone and Calcareous sandstone facies (Tab. 6.2). This facies 

association is unique to the Cypris Freestone and is found at all the locations studied. Its true 

thickness could be measured only at five locations where the Hard Cockle Beds was completely 

exposed (Tabs. 6.1, 6.2, Appendix 3) and varies between 4.5 and 10 m with an average 

thickness of 6 m (Tab. 6.2). The occurrence of non-marine biotas such as hypersaline tolerant 

S-phase ostracods (Anderson, 1985; Horne, 2002), brackish to hypersaline tolerant mollusc 

gastropods living in a closed system (Clements, 1973) and halite pseudomorphs indicate non-

marine hypersaline conditions. This coarse-grained facies with high energy sedimentary 

structures such as cross-lamination, cross-stratification and herring-bone cross-stratification 

indicate a shallow marginal environment. Altogether these features suggest a marginal shallow 

hypersaline lacustrine (i.e. non-marine) environment.  
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4.6. Facies association successions 

 

The insertion of these five facies associations into the vertical facies transition diagram 

(Fig. 6.3) allows the identification of successions and vertical relationships between the facies 

associations (Fig. 6.4). The Deep lacustrine facies association is found at the bottom of the 

succession and is overlain by the Emergent facies association. Figure 6.4 shows that the latter 

is closely related to the Mounded marginal lacustrine facies association as it is mainly found in 

between paleosols (Fig. 6.4). The Emergent facies association is more likely to be overlain by 

the Bedded marginal lacustrine facies association as indicated in the centre of figure 6.4. The 

Hypersaline and Emergent (partially) facies associations are interbedded with the Bedded 

marginal lacustrine facies association (Fig. 6.4). In addition this facies relationship diagram 

enables the identification of two main depositional environments, brackish water condition at 

the bottom and evaporitic condition at the top and that are expected to be separated by a 

paleosol and a flooding surface (Fig. 6.4). The transition between the brackish and the 

hypersaline water environments is found between the Soft Cap and the Cypris Freestone 

(Fig. 6.4). 

Interpretations of depositional environments of the Mupe Member were proposed by 

previous authors (refer to Chapter 2).  The most important contributors remain West (1975), 

Francis (1982) and Bosence (1987). West (1975) compared the lack of fossil remains and 

especially the occurrence of stromatolites in the Skull, Hard and Soft Cap beds of the Purbeck 

limestones to be very similar to those found in the Persian Gulf hypersaline lagoons.  This 

interpretation was supported by the semi-arid climate Mediterranean type interpreted by 

Francis (1982, 1983, 1984, 1986) from her study on the paleosols and ancient conifers (refer to 

Chapter 2). This interpretation was questioned by Bosence (1987) who proposed that the 

palaeosalinites for the microbialite Cap beds were rather freshwater (refer to Chapter 2). He 

based his interpretation on occurrence of brackish water bivalves and ostracods, cheironomid 

larvae burrows (typical in modern day fresh water tufas), trace fossils, ancient conifers, early 

cements and absence of evaporites (refer to Chapter 2). The data presented in this study do 

not support the interpretations of West (1975) and Francis (1982, 1983, 1984, 1986) and 

partially validate Bosence (1987) proposal. In this study it is demonstrated that the 

microbialites and associated peloidal packstones-grainstones and their close relationship with 

paleosols bring evidence for marginal lacustrine environment (refer to Chapter 4 and 5) but 

not on palaeosalinities. However the geochemistry on stable isotopes (carbon and oxygen 

show typical values of fresh to brackish water conditions (refer to section 7.2 of this chapter). 
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This together with the brackish water faunas (molluscs and ostracods, refer to Chapters 2 and 

4) and the general absence of evaporite pseudomorphs and charophytes indicate marginal 

lacustrine brackish water conditions for the lower part of the Mupe Member.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.4 Facies relationship diagram with facies association and depositional environments 

together with the generalised log. Note that the environmental change is found between the Soft Cap 
and the Cypris Freestone. 

 

5. Sedimentary log correlations 

 

Three sedimentary log correlation panels, named Isle of Portland (Fig. 6.5), Ridgeway 

(Fig. 6.6) and Purbeck (Fig. 6.7) correlations, were created in order to illustrate the lateral 

thickness variation of the facies associations. These correlation panels are flattened at the base 

of the Bedded marginal lacustrine facies association (i.e. Cypris Freestone beds) to illustrate 

thickness variations in the underlying Cap beds and Dirt Beds. If a facies association was only 

partially exposed, the flattening was done at the top of the nearest previous fully exposed 

facies association (Figs. 6.5, 6.6, 6.7). Some of the correlation panels include sedimentary logs 

from the literature for sections no longer accessible and from borehole data. This integration 

of logs from the literature was possible because the facies described by previous authors can 

be adapted to those defined in this study and because each bed corresponds to a unique facies 
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association throughout the studied area. As a consequence the stratigraphic interpretations 

(i.e. beds recognition) of previous authors were used to correlate their sections with those 

proposed in this study. These correlation panels were used to create the south Dorset fence 

diagram presented in figure 6.8. 

 

5.1. Isle of Portland correlation 

 

This north-south correlation panel (Fig. 6.5) is located in the southern limb of the 

Weymouth Anticline on the east coast of the Isle of Portland, and is far from the faults in the 

northern part of the area (Fig. 6.1). This panel is made of sedimentary logs recorded from 

north to south in King Barrow Quarries, Broadcroft Quarry, Penn’s Weare, Perryfield Quarry, 

Coombefield Quarry, God Nore, Lawnsheds Quarry and Portland Bill (Fig. 6.5). In this 

correlation panel the Hypersaline lacustrine facies association was not identified (Fig. 6.5) 

providing evidence for more open lacustrine waters in their area. Purbeck exposures in 

Lawnsheds Quarry and Portland Bill are near the present day soil and are cut into by 

Quaternary beach deposits so it is not certain if the top of the Mounded marginal lacustrine 

facies association was reached or not (Fig. 6.5). The Deep lacustrine facies association is 

present only in Broadcroft Quarry to the north and in God Nore, Lawnsheds Quarry and 

Portland Bill to the south (Fig. 6.5). This may be explained as either a lateral facies transition or 

a deposition and subsequent erosion of this bed. In the former case, this might represent the 

transition between shallower areas to the north and the west and deeper areas to the south 

and to the east of the Isle of Portland (refer to Chapter 7). In the latter case, differential 

erosion of this bed may have occurred prior to, or part of the development of the overlying 

paleosol (Basal Dirt Bed) as reworked clasts (mainly from Portland Group, refer to Chapter 4) 

are common in this facies and that the base and top bed contacts are erosional. The Mounded 

marginal lacustrine facies association is present everywhere over the Isle of Portland with a 

thickness between 3.50 and 5.50 m, however no significant thickness variations are 

identifiable (Fig. 6.5).  

An important feature for the facies distribution of this correlation panel is that individual 

beds such as the Skull Cap, Lower Dirt Bed, Hard Cap, Great Dirt Bed and Cypris Freestone can 

be traced over the Isle of Portland and are laterally extensive at this scale (Fig. 6.5). These are 

opposed to the Transition Bed, Basal Dirt Bed and Soft Cap that appear to be more irregularly 

present and less laterally extensive (Fig. 6.5). 
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Figure 6.5 North to south Isle of Portland correlation panel of sedimentary logs. Note that logs are spaced evenly for presentation. In the stratigraphic column (on the left of each log) are the names of the beds where PG: Portland Group; TB: 
Transition Bed; BDB: Basal Dirt Bed; SkC: Skull Cap; LDB: Lower Dirt Bed; HC: Hard Cap; GDB: Great Dirt Bed; SC: Soft Cap and CF: Cypris Freestone. The texture at the bottom of each log correspond to Dunham (1962) classification with M: Mudstone, 
W: Wackestone, F: Floatstone, P: Packstone, G: Grainstone, R: Rudstone, B: Boundstone and C: Crystalline. Location of the panel in figure 6.1. 
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5.2. Ridgeway correlation 

 

This panel (Fig. 6.6) is located on the northern limb of the Weymouth Anticline, into the 

north-west of the studied area, south of the Ridgeway Fault and with an east-west trend 

(Fig. 6.1). This correlation panel is made of sedimentary logs recorded in Portesham Quarry, 

Chalbury and Poxwell Quarry (Fig. 6.6). In addition published sedimentary logs from Holworth 

House (50°38'1.00"N; 2°20'16.94"W) from West (1975), Friar Waddon well (50°40'14.85"N; 

2°29'35.44"W) from West et al. (2013), Weymouth relief road (50°39'54.88"N; 2°27'41.94"W) 

from West et al. (2013) are included. This correlation panel shows that the four facies 

associations are present in the six locations, apart from the Hypersaline lacustrine facies 

association which is absent from Portesham Quarry (Fig. 6.6). Purbeck exposures in Chalbury 

and Poxwell Quarry are limited in extent and it is not certain if the top of the Mounded 

marginal facies association was reached or not (Fig. 6.6).  

The Deep lacustrine facies association (Transition Bed of West, 2013a) is between 25 and 

50 cm thick, is present at the six locations and does not show significant thickness variation 

along this transect (Fig. 6.6).  

The Mounded marginal lacustrine facies association is present at the six locations 

although microbial mounds are less abundant compared with the Isle of Portland. Here (just 

south of the Ridgeway Fault, Fig. 6.6) deposits reflect more freshwater conditions as evidenced 

by freshwater gastropods, ostracods and charophytes in a chert (West, 1961; Barker et al., 

1975). Friar Waddon well log presents the greatest thickness (about 8.5 m) for the Mounded 

marginal facies association followed by Portesham Quarry (about 5.5 m) and Weymouth Relief 

Road (about 6.5 m) logs; whilst the Holworth House section is slightly thinner (about 3.70 m). 

Portesham Quarry, Friar Waddon and Weymouth Relief sections are located in the central part 

of the Ridgeway Fault (Figs. 6.1 and 6.6) and have greater thickness of the Mounded marginal 

facies association compared to locations near the tips of the fault (i.e. Holworth House). This 

evidence supports the interpretation of fault activity during the deposition of the Mounded 

marginal lacustrine facies association. Moreover the occurrence of more freshwater conditions 

(West, 1961; Barker et al., 1975) provides evidence for a fluvial input to this area (refer to 

Chapter 7).   

As for the previous correlation panel an important feature for the facies distribution is 

that all the beds (apart from the Skull Cap and the Basal Dirt Bed in Friar Waddon well and 

Weymouth Relief Road) can be traced throughout this panel (Fig. 6.6). 
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Figure 6.6 Ridgeway correlation of sedimentary logs both recorded and from the literature; Friar Waddon well (West et al., 2013), Weymouth Relief Road (West et al., 2013) and Holworth House (West, 1975). Correlation between the logs 
recorded in this study and the ones from the literature was done using interpretation from authors. In the stratigraphic column (on the left of each log) are the names of the beds where PG: Portland Group; TB: Transition Bed; BDB: Basal Dirt Bed; SkC: 
Skull Cap; LDB: Lower Dirt Bed; HC: Hard Cap; GDB: Great Dirt Bed; SC: Soft Cap and CF: Cypris Freestone. The texture at the bottom of each log correspond to Dunham (1962) classification with M: Mudstone, W: Wackestone, F: Floatstone, P: 
Packstone, G: Grainstone, R: Rudstone, B: Boundstone and C: Crystalline. Location of the panel in figure 6.1. 
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5.3. Purbeck correlation 

 

This panel (Fig. 6.7) is located also in the northern limb of the Weymouth Anticline 

comprising coastal sections, to the east of the studied area, south of the Purbeck Fault and 

with an east-west trend (Fig. 6.1). This correlation panel is made of sedimentary logs recorded 

in Dungy Head, West Lulworth Cove, Fossil Forest, Mupe Bay, Worbarrow Tout, Hell’s Bottom, 

Swanworth Quarry, Fishermen’s Ledge and Durlston Head (Fig. 6.7). In addition London Door 

Quarry (50°36'44.68"N; 50°36'44.68"N) and Durdle Door sedimentary logs from West (1975) 

were also included. Purbeck exposures are limited at Dungy Head and London Door Quarry as 

the top of the Hypersaline lacustrine facies association is no longer exposed (Fig. 6.7). Similarly 

in Hell’s Bottom the top of the Mounded marginal lacustrine facies association was not 

exposed (Fig. 6.7).  

The Deep lacustrine facies association is present in Fossil Forest, although it is very thin 

(about 10 cm thick) and eastwards in Hell’s Bottom, London Quarry, Swanworth Quarry, 

Fishermen’s Ledge and Durlston (Fig. 6.7). This facies association is rather thin and relatively 

constant between 20 and 50 cm at these locations (Fig. 6.7). The contained clasts were 

partially eroded from the underlying Portland Group as shown by the occurrence of bivalves, 

gastropods, echinoid plates, ooids, and other marine fossils typical the Portland Group (refer 

to Chapter 4).  

The Mounded marginal lacustrine facies association is present everywhere and is between 

about 2 and 6.75 m to the west of this panel and between about 80 cm and 1.25 m to the east 

(Fig. 6.7). The thickest areas are located in the hanging-wall block of the Purbeck Fault and 

close to the fault (Fig. 6.1) and indicate greater accommodation during deposition (Fig. 6.7). 

From London Door Quarry eastwards (Figs. 6.1 and 6.7), the measured sections are recorded 

progressively further away from Purbeck Fault (Figs. 6.1 and 6.7) and have a much thinner 

Mounded marginal lacustrine facies association. This can be explained with two scenarios: 1) 

less fault-related subsidence leading to less accommodation space and resulting in much 

thinner shallow lacustrine deposits; or 2) deeper water would imply thinning out of shallow 

facies accompanied with loss of both mound developments and paleosols. The Skull Cap at 

Dungy Head presents a feature that was never found anywhere else in the studied area. This 

bed together with the Basal Dirt Bed paleosol are observed to onlap on the top of the Portland 

Group and to be capped by the Lower Dirt Bed paleosol (Fig. 6.7). This is interpreted to show 

the position of a portion of a palaeoshoreline. However the Skull Cap was deposited laterally 

as indicated by its occurrence to the west at Durdle Door and to the east at Lulworth Cove that 
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implies that this feature is very localised (Fig. 6.7). This palaeohigh might locate the position of 

an island or a peninsula of eroded Portland limestones (refer to Chapter 7). 

The Hypersaline lacustrine facies association is present in all the locations except Hell’s 

Bottom (due to exposures limitation) and Swanworth Quarry (Fig 6.7). Although deposited at 

Dungy Head and London Door Quarry, the top of the Hypersaline lacustrine facies association 

was not accessible in the field (Fig. 6.7). Where deposited, the thickness is more or less similar, 

but varying between 4.50 and 6.50 m, except at Durdle Door where the thickness is about 2 m. 

This thickness variation is similar to that of the Mounded marginal lacustrine facies association 

for these locations. As argued above, this is thought to be controlled by syn-tectonic setting 

associated movement of the Purbeck Fault in this area (Lulworth Cove to Worbarrow Bay, 

Fig. 6.7). Because this facies association is thinner at Durdle Door than the other eastwards 

locations, it is thought that the subsidence was greater in the central part of the Purbeck Fault 

compared to the fault tips (Fig. 6.7). 

As for the previous panels, similar conclusion can be drawn in the extent of the facies 

associations throughout the eastern part of the studied area (Fig. 6.7). Most of individual beds 

can be traced along the panel apart from the Transition Bed and the Soft Cap (Fig. 6.7). 
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Figure 6.7 Purbeck correlation of sedimentary logs both recorded and from the literature. Durdle Door and London Door Quarry logs are from West (2015). Correlation between the logs recorded in this study and the ones from the literature was 
done using interpretation from authors. In the stratigraphic column (on the left of each log) are the names of the beds where PG: Portland Group; TB: Transition Bed; BDB: Basal Dirt Bed; SkC: Skull Cap; LDB: Lower Dirt Bed; HC: Hard Cap; GDB: Great 
Dirt Bed; SC: Soft Cap, BB: Broken Beds and CF: Cypris Freestone. The texture at the bottom of each log correspond to Dunham (1962) classification with M: Mudstone, W: Wackestone, F: Floatstone, P: Packstone, G: Grainstone, R: Rudstone, B: 
Boundstone and C: Crystalline. Location of the panel in figure 6.1. 
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5.4. Summary 

 

The three correlation panels of sedimentary logs show that the beds and facies 

associations can be traced throughout the studied area. This is also depicted in figure 6.8 

where a fence diagram over the studied area shows similar thickness variations. The Deep 

lacustrine and Emergent facies associations show more or less consistent thicknesses when 

exposed, both between 10 and 50 cm. Concerning the Mounded marginal lacustrine facies 

association, its thickness varies depending on the bed considered. In the Skull Cap this facies 

association is thicker over the Isle of Portland (around 1 m thick), in the Soft Cap around 

Lulworth area (around 1 m thick) and in the Hard Cap to the north and close to the faults 

(around 5-6 m thick). To the west the Mounded marginal lacustrine facies association makes 

up the section due to the absence of the Hypersaline lacustrine facies association in the Isle of 

Portland (refer to Chapter 7). However to the north-west both Mounded marginal lacustrine 

and Hypersaline lacustrine facies associations were deposited, although the Hypersaline 

lacustrine facies association is very thin (less than 50cm) between Friar Waddon well and 

Holworth House (Figs. 6.6 and 6.8). In the centre part of the studied area (east side of the 

Purbeck correlation) there is a similar thickness of the Mounded marginal and Hypersaline 

lacustrine facies associations (Figs. 6.5 and 6.8). To the east the Mounded marginal lacustrine 

facies association thins and the Hypersaline lacustrine facies association thickens and this 

represents a more basinward direction (Figs. 6.7 and 6.8). This facies change is interpreted to 

reflect more brackish water conditions in the margins of the basin to the west and more 

hypersaline water conditions towards the centre of the basin to the east. This suggests two 

different lacustrine systems, an open system also shown by stable isotope measurements 

done in the inter-mound facies on the Isle of Portland (refer to Chapter 4 and section 7.2 of 

this chapter) to the west and a closed system to the east. This spatial change may be due to a 

geographical barrier as illustrated by a high on the lake floor due to fault-controlled offset 

separating naturally the lake into two sub-basins in the Great Salt Lake (Utah, USA); or it could 

be due to an isolation of two or more hydrologically different lakes as Rottnest Island lakes 

(Western Australia) illustrates. This will be detailed in Chapter 7 with integration of all the data 

presented in this project. 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 Fence diagram of the facies associations throughout the studied area. Note that on the Isle of Portland God Nore log summarises all the logs of the island. 
C: Chalbury, DuH: Dungy Head, DH: Durlston Head, FL: Fishermen’s Ledge, FF: Fossil Forest, GN: God Nore, HB: Hell’s Bottom, MB: Mup Bay, PQ: Portesham Quarry, POQ: 
Poxwell Quarry, SQ: Swanworth Quarry, WLC: West Lulworth Cove, WB: Worbarrow Bay. In the stratigraphic columns are the names of the beds where PG: Portland Group; 
TB: Transition Bed; BDB: Basal Dirt Bed; SkC: Skull Cap; LDB: Lower Dirt Bed; HC: Hard Cap; GDB: Great Dirt Bed; SC: Soft Cap, BB: Broken Beds and CF: Cypris Freestone. 
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6. Sequence stratigraphy of the Mupe Member 

 

A sequence was defined by Sloss et al. (1949) as a stratigraphic unit (later redefined as 

genetically related strata by Mitchum, 1977) bounded by subaerial unconformities. This 

definition was later retaken by Posamentier (1988), Galloway (1989), Catuneanu (2006) and 

Miall (2010). Sequences may be subdivided into systems tracts that group strata deposited 

during a similar shoreline shift due to rise and fall of water (sea or lake) levels (Brown and 

Fisher, 1977; Catuneanu, 2006). As demonstrated by Catuneanu (2006), sequences and 

systems tracts are independent of scale (time, thickness or lateral extent). This important point 

makes the sequence stratigraphic analysis applicable in this study. Strasser (1994) presented 

high-resolution sequence stratigraphy and interpretation of sea-level change for peritidal 

deposits (Fig. 6.9). These deposits are from the Tidalites-de-Vouglans and Goldberg Formations 

deposited during late Tithonian and early Berriasian and exposed in the French Jura 

Mountains. These deposits are time-equivalents to the Purbeck Limestone Group of south of 

England but were deposited in different depositional settings. The model for how depositional 

sequences and system tracts may be controlled by sea-level change as presented by Strasser 

(1994) is used in this study to interpret depositional sequences of the Mupe Member deposits 

(Fig. 6.10). Strasser (1994) defined depositional systems that compose sequences (bounded by 

unconformities) where each depositional system corresponds to a systems tract (Fig. 6.9; after 

Vail et al., 1984; Vail, 1987; Sarg, 1988). Strasser’s (1994) depositional sequences illustrate 

shallowing-upward trends indicated by progressive change from deeper to shallower facies 

(Fig. 6.9). Another important point, that is relevant to this study, is the interpretation of the 

paleosols as lowstand deposits bounded by subaerial unconformities at their base and by 

transgressive surfaces at their tops (Fig. 6.9; Strasser, 1994). The rise of sea-level results in the 

deposition of deepening-upward deposits due to increasing of accommodation space as the 

shoreline moves landwards (Fig. 6.9; Strasser, 1994). These transgressive deposits are top-

bounded by a maximum flooding surface that corresponds to the maximum water depth in the 

sequence (Fig. 6.9; Strasser, 1994). Note that if a unique flooding surface is not clearly 

identifiable, Strasser et al. (1999) defined maximum-flooding zones. This flooding results in the 

deposition of highstand deposits that either prograde or aggrade towards the centre of the 

basin due to a decreasing rate of rise of sea-level (Fig. 6.9;  Strasser, 1994). These highstand 

deposits are terminated by a subsequent sea-level fall and creation of a new subaerial 

exposure surface that defines the top sequence boundary (Fig. 6.9; Strasser, 1994). 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 6.9 Hypothetical model to illustrate how depositional systems can be related to cyclic changes in water depth. Peritidal deposits of Tidalites-de-Vouglans and 

Goldberg Formations (Upper Tithonian-Lower Berriasian) from French Jura Mountains (modified after Strasser, 1994 and Strasser et al., 1999). HD: Highstand Deposits; LD: 
Lowstand Deposits; TD: Transgressive Deposits. 
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The Skull Cap and Hard Cap and the intervening Dirt Beds of the Purbeck limestones are 

interpreted using this model. In the Purbeck limestones, sequence boundaries correspond to 

subaerial exposure surfaces on top of previous deposits and are characterised by irregular 

erosion surfaces interpreted to result from drop of the lake level (Fig. 6.10). The overlying 

lowstand deposits correspond to soil development in the Emergent facies association with 

reworked limestone and black pebbles from the underlying beds, in-situ or fallen tree trunks 

and cycadophytes (refer to Chapter 4). The top of the lowstand deposits is marked by a 

transgressive surface followed by transgressive deposits topped by a flooding zone when the 

system reaches its maximum water depth (Fig. 6.10). The flooding zone is interpreted to 

correspond to the maximum depth but where a flooding surface cannot be determined 

precisely. This flooding zone is commonly a finer-grained (packstone) than the underlying 

transgressive and overlying highstand deposits that indicate a reduction of the carbonate 

production interpreted to represent slightly deeper and/or calmer water. The transgressive 

deposits are characterised by deepening-upwards trends in the Microbialite facies 

interdigitated with the Intraclastic peloidal packstone-grainstone facies (Fig. 6.10). The 

overlying highstand deposits are characterised by shallowing-upward trends capped by 

irregular erosional surface indicating the top sequence boundary and defines the top of these 

two depositional sequences (Fig. 6.10). These highstand deposits are characterised either by 

the Wackestone to fine grainstone facies in the Deep lacustrine facies association (Transition 

Bed, blue area in figure 6.10); or the Intraclastic peloidal packstone-grainstone facies in the 

Mounded marginal lacustrine facies association (red areas in figure 6.6); or the Cross-bedded 

peloidal packstone-grainstone facies in the Bedded marginal lacustrine facies association 

(green area in figure 6.10); or the Evaporite facies in the Hypersaline lacustrine facies 

association (yellow area in figure 6.10). 

Figure 6.10 presents an idealised sedimentary log with the most representative and best 

expression of facies for each bed. This results in the identification and definition of four, 

meter-scale lacustrine cycles that are deepening-upward and then shallowing-upward, and 

depositional systems in the Mupe Member (refer to Appendix 3). These cycles are bounded by 

subaerial exposure surfaces prior development of paleosols that can therefore be named 

sequences (Fig. 6.10). Sequences 2 and 3 are symmetrical while sequences 1 and 4 appear to 

be asymmetric (Fig. 6.10). 
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Figure 6.10 Idealised log with interpretation of depositional cycles. Red triangles are for 
shallowing-upward trends and blue triangles are for deepening-upward trends. The coloured areas in 
the facies column correspond to the facies association and are the same as in table 6.2. SB: Sequence 
Boundary; FS: Flooding Surface; FZ: Flooding zone; HD: Highstand Deposits; LD: Lowstand Deposits; TD: 
Transgressive Deposits; TS: Transgressive Surface. Numbering in the right column corresponds to 
detailed steps in figure 6.12. 
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The first depositional sequence corresponds to the Transition Bed and is bounded by two 

subaerial surfaces (Fig. 6.10). The bottom subaerial surface corresponds to the exposed and 

eroded top of the Portland Group and the top subaerial exposure corresponds to the top of 

the Transition Bed when it was exposed and eroded (Fig. 6.12). In this sequence the sequence 

boundary and transgressive surface are expressed with only one surface. This surface is 

overlain by transgressive deposits characterised by fine grainstone facies of the Deep 

lacustrine facies association that can locally contain reworked material from the Portland 

Group (refer to Chapter 4). This transgressive system is bounded on top by flooding zone due 

to a rise in lake level to its maximum depth in this sequence, characterised by finer-grained 

facies such as wackestones of the Deep lacustrine facies association (Fig. 6.10). This flooding 

surface zone is overlain by highstand deposits composed of fine grainstone facies of the Deep 

lacustrine facies association (Fig. 6.10). The overall fine-grained texture indicates a rather low 

energy environment and the lowest in the entire depositional system of the Mupe Member. 

The second depositional sequence corresponds to the Basal Dirt Bed and the Skull Cap 

bed and is bounded by two subaerial exposure surfaces (Fig. 6.12). The underlying surface 

corresponds to the eroded surface of the previous sequence (i.e. the top of the Transition Bed) 

and the top subaerial surface corresponds to the upper part of the Skull Cap bed when it was 

exposed and eroded (Figs. 6.10 and 6.12). The Basal Dirt Bed is interpreted as a lowstand 

deposit represented by Carbonaceous marl facies. This paleosol is bounded by a transgressive 

surface due to a rising lake level. This resulted in the deposition of the first part of the Skull 

Cap bed as transgressive deposits made of tabular thrombolitic microbial mounds and capped 

by a flooding zone (sensu Strasser et al., 1999). This flooding zone is composed of the 

Intraclastic peloidal packstone-grainstone facies that indicates that the carbonate production 

and/or the energy in the system remained the same as the underlying bed but without the 

microbial mounds. This flooding zone is capped by highstand deposits made of more tabular 

thrombolitic microbial mounds indicating shallowing-upwards and subsequent subaerial 

exposure of the overlying erosion surface and sequence boundary (Fig. 6.10). In this sequence, 

only shallow facies were deposited indicating that the water depth remained shallow during 

the transgression and illustrating a catch-up phase (Catuneanu, 2006) prior a second forced 

regression resulting from a drop of the lake level, the exposure and erosion of the tabular 

microbial mounds (Fig. 6.12). 

The third depositional sequence corresponds to the Lower Dirt Bed and the Hard Cap bed 

and is bounded by two subaerial surfaces (Fig. 6.10). The bottom subaerial surface 

corresponds to the eroded surface on top of the previous sequence exposures (i.e. the top of 
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the Skull Cap bed; Figs. 6.10 and 6.12). The top subaerial surface corresponds to where the 

Hard Cap bed was exposed and eroded (Figs. 6.10 and 6.12). The Lower Dirt Bed is interpreted 

as a lowstand depositional system represented by Carbonaceous marl facies bounded on top 

by a transgressive surface (Figs. 6.10 and 6.12). This transgressive surface is overlain by 

transgressive deposits characterised by the Microbialite facies interdigitated with the 

Intraclastic peloidal packstone-grainstone facies (Fig. 6.10). These microbialite deposits are 

locally stromatolitic but more often they are large and with complex shaped thrombolitic 

mounds deposited around tree trunks and branches (refer to Chapter 5 for description of 

mound sizes and shapes). This transgressive system is bounded on top by a flooding zone due 

to a rise in lake level to its maximum depth in this sequence. This flooding surface is overlain 

by what are interpreted as highstand deposits characterised by the Intraclastic peloidal 

packstone-grainstone facies and bounded by a subaerial surface due to a drop in the lake level 

and a forced regression (Figs. 6.10 and 6.12). The finer-grained texture (packstone) at the 

bottom of the highstand deposits (Fig. 6.10) indicates a reduction of the carbonate production 

interpreted to represent slightly deeper and/or calmer water. Note that these highstand 

deposits are commonly onlapping on the large domed microbial mounds (Fig. 6.12 and refer to 

Chapter 4 Fig. 4.18 and Chapter 5, Fig. 5.14) that indicates that the microbial growth stopped. 

There is no clear indication of why mound growth stopped but this could have been caused 

due to change in environmental factors such as water chemistry, energy, water depth or a 

combination of two or more (see below for further discussion). Termination of mound growth 

is also suggested by the absence of inter-digitation of the highstand deposits (refer to Chapter 

5, Fig. 5.18). These are very common in the transgressive deposits prior to the finer grained 

packstones of the flooding zone. 

The fourth depositional sequence corresponds to the Great Dirt Bed, the Soft Cap and the 

Cypris Freestone beds and is bounded at the bottom by a subaerial exposure surface that 

corresponds to the eroded surface of the previous sequence (i.e. the surface of the Hard Cap 

bed; Fig. 6.10). As for the previous sequences, the paleosol is interpreted as a lowstand deposit 

represented in this sequence by Conglomerate facies in the Emergent facies association (Fig. 

6.10). These lowstand deposits are bounded on top by a transgressive surface due to a rise in 

lake level accompanied by an increase of the carbonate production. The overlying 

transgressive deposits are characterised by tabular and domed microbial mounds that 

developed around in situ tree stumps and fallen trees (Fig. 6.10; refer to Chapter 5 for 

description of mound sizes and shapes). These transgressive deposits are bounded on top by a 

flooding surface (Fig. 6.10) associated with a break in the deposition as in the overlying 
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deposits neither mound nor inter-mound facies were deposited (Fig. 6.12). The overlying 

highstand deposits correspond to the lower part of the Cypris Freestone characterised by the 

Cross-bedded peloidal packstone-grainstone and/or the Evaporite facies (Fig. 6.10). As in the 

previous sequence a change in environmental factors occurred that led to a break-down of 

microbial growth due to either a rise in the lake level or a change in water chemistry of a 

combination of both (see below for more explanation).  However in this sequence the 

hypersalinity suggested with the deposition of halite and gypsum pseudomorphs might 

indicate predominantly a change in water chemistry possibly associated with a change in water 

energy and water depth. Because the beds in this highstand deposits (i.e. the Cypris Freestone) 

do not change significantly in terms of facies and thicknesses these deposits are thought to be 

deposited with a rather constant subsidence and/or rise of lake level keeping the 

accommodation space rather constant. 

In section 4 of this chapter are presented the sedimentary log correlations along the 

studied area and that shows that the facies associations are more or less consistent and can be 

correlated at least over that distance. West (1975) demonstrated similar correlations and 

showed that deposits can be correlated at a regional-scale. This implies that the sequence 

stratigraphy proposed here can also be traced regionally indicating that one lake or system of 

interconnected lakes was present. 

Environmental factors controlling the microbial growth are of particular interest for this 

study. The sequence stratigraphy defined above shows that microbial mounds are preferably 

growing as transgressive (deepening-upward) or highstand (shallowing-upward) deposits 

(Fig. 6.10). In few locations in the Hard Cap (such as God Nore on the Isle of Portland), domed 

microbial mounds are present in the highstand deposits but do not present the typical inter-

digitation of the microbialite with the Intraclastic peloidal packstone-grainstone facies in the 

underlying transgressive system. This is interpreted as evidence for a reduction of microbial 

growth penecontemporaneous of the highstand deposits (Fig. 6.11). The packstone interval at 

the base of the highstand deposits onlapping these domed mounds supports quieter water 

deposition which appears to be coinciding with the termination of microbial growth (Fig. 6.11). 
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Figure 6.11 Cartoons depicting the transgressive and highstand deposits. A and B are redrawn from 

figure 5.14 where the mounds inter-digitate with the inter-mound facies. C – Last step of the 
transgressive deposits followed by the flooding surface with the termination of mound growth. D – 
Highstand deposits where the inter-mound facies onlaps on the dead mounds. SB: Sequence Boundary, 
TS: Transgressive Surface, FS: Flooding surface, LD: Lowstand Deposits, TD: Transgressive Deposits, HD: 
Highstand Deposits. 

 
 

At the top of the preserved highstand deposits the microbial growth is stopped due to a 

drop of the lake level that resulted in the emergence of the microbial mounds that would have 

killed the microbial community. 

When deposited in a transgressive system the termination of the microbial growth is 

interpreted from a flooding due to a rise of the lake level. However this flooding surface can 

reflect several processes all resulting in the break-down of microbialite growth due to the 

death of the microbial community. Pentecost (1991) and Merz-Preiß (2000) showed that 

supersaturation with respect to calcium carbonate in the waters (as in Laguna Bacalar, refer to 

Appendix 1) is essential for the microbial calcification to occur (also demonstrated by Dupraz 

et al., 2009). According to this, a change in the saturation with respect to the calcium 

carbonate of the water will result either a slow-down or a termination in microbial growth. 

Alternatively if the sedimentation rate is greater than the growth rate of the microbial 

community, the microbialite will be killed because it will be covered with sediments. Della 

Porta (2015) added that microbial developments are also influenced by hydrodynamic energy, 

the stability of the substrate, water depth (calcification of cyanobacteria is driven in part by 

photosynthesis) and/or the sediment supply. In the Purbeck outcrops the Intraclastic peloidal 

packstone-grainstone facies of the inter-mound areas is similar below and above the flooding 

surfaces. This indicates that the hydrodynamic energy was relatively similar before and after 

the flooding and therefore was probably not the mechanism responsible for the death of the 

microbialites. Similarly, the substrate the microbial community was using was the previous 
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generation of microbial community and this did not change from the transgressive to the 

highstand deposits. The mound facies are the same in both units. Consequently the main 

processes thought to be responsible for the termination of microbial growth are a change in 

the water chemistry or of water depth or a combination of both. As microbialites occur in a 

range of salinities (refer to section 7), a modification of the salinity is not thought to be 

responsible in the death of a microbial community. However a change in the water chemistry 

through a modification of the saturation in calcium carbonates and/or of the pH appears to be 

the main process for the preservation of microbialites (Dupraz and Visscher, 2005). The lack of 

dissolved carbonate may not necessarily kill the microbial community but the calcification of 

the microbial filaments and their preservation may no longer be possible (Dupraz and Visscher, 

2005). This mechanism potentially occurred in the Skull, Hard and Soft Cap beds with two 

different consequences to sediment accumulation. In the Skull and Hard Cap beds the 

Intraclastic peloidal packstone-grainstone facies covers the microbial mounds and remains the 

same below and above the flooding zones. This suggests a slight decrease of the saturation in 

respect to calcium carbonate of the waters that resulted in the termination of the microbial 

filament calcification but did not influence other carbonate factories (biotas, intraclasts and 

peloids). In the Soft Cap the facies surrounding the microbial mounds changes from the 

Intraclastic peloidal packstone-grainstone to the Evaporite or Cross-bedded peloidal 

packstone-grainstone facies (both hypersaline indicators) that covers the mounds (Figs. 6.10, 

6.12). This indicates a modification in both the saturation in respect to calcium carbonate that 

terminated the microbial growth and the salinity of the waters that resulted in the covering of 

the mounds with evaporites. 

Another possible process that has an impact on microbial growth can be the 

eutrophication of the lake waters. Hallock and Schlager (1986) demonstrated that an excess of 

nutrients into reef systems causes a decrease of carbonate production and the death of the 

reef community. This can be due to an overfeeding stress, increasing competition for space, 

crystal poisoning, bioerosion and/or reduction of light penetration (Hallock and Schlager, 

1986). Anoxia is often associated with such increase of nutrient contents in waters (Hallock 

and Schlager, 1986). In such systems the carbonate production would decrease or stop due to 

a lack of oxygen necessary for carbonate producers to proliferate. Although based on marine 

environments, Hallock and Schlager (1986) study shows that the overall carbonate production 

of a system decreases when quantity of nutrients increase. Similarly Smith et al. (1999) 

showed that eutrophication in lacustrine systems is accompanied by algal bloom 

(cyanobacteria) due to an enrichment of nutrients. Algal blooms in lakes have also negative 
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effect such as decrease of the clarity of the water, dead of other animals or plants, increase of 

pH and decrease of oxygen content (Smith et al., 1999). In this case eutrophication appears to 

favour microbial growth as possible competitors (i.e. other carbonate producers) are removed. 

The application of these general rules to this study would involve a radical change of the 

nature and the components of the sediments as the carbonate producers (such as ostroacods 

and molluscs) would not be able to grow in nutrient-rich, higher pH and oxygen-poor waters. 

However in the Skull, Hard and Soft Cap beds, the inter-mound facies remains similar if found 

deposited contemporaneously with or after the death of the microbial mounds, as similar 

organisms (ostracods and molluscs) are found in rather similar quantities. As a consequence 

the possible eutrophication of lake waters is not thought to be responsible for the death of the 

microbial community in this study. 

A change in the water depth involves a decreasing carbonate production due to 

diminution of temperature, light (impacting on the photosynthesis) and energy, and results in 

the deposition of fine-grained carbonate sediments (Bathurst, 1975). This mechanism 

potentially caused the death of the microbial community in the Hard Cap bed as in this bed the 

mounds are covered and onlapped by a muddier interval (Fig. 6.10, 6.12). The increased depth 

might cause a diminution of the light penetration that resulted in a slow-down or a 

termination of the photosynthesis followed by the death of the microbial community. This 

death could be due to a lack of light that stopped the photosynthesis and killed the microbial 

community; or caused a decrease in the growth rate that became lower than the 

sedimentation rate and resulted in the covering of the mounds with sediments. 

In conclusion the process responsible for the termination of microbial growth of the 

microbial mounds in the Skull, Hard and Soft Cap beds is thought to be a modification in the 

saturation in respect to calcium carbonate of the waters. This process was most likely 

accompanied with an increase of lake level in the Hard Cap as the overlying beds are onlapping 

on the mounds; and with an increase of salinity for the Soft Cap mounds as they are covered 

with hypersaline deposits (the Evaporite or Cross-bedded peloidal packstone-grainstone 

facies). Following termination of mound growth in the Skull and Hard Cap beds lake level fall 

resulted in erosion of the tops of the mounds at the sequence boundaries. 
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Figure 6.12 Generalised depositional reconstruction and lake level fluctuations. Numbering 

corresponds to depositional systems and surfaces in figure 6.10. 
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7. Facies models 

 

This section presents the integration of all the work presented in this chapter and 

comparisons with eight analogues (ancient and modern) to propose two facies models for the 

Mupe Member. Two main depositional environments were identified above; a brackish water 

lake in the lowermost part of the Mupe Member and a hypersaline water lake in the 

uppermost part (Fig. 6.4). The generalised log (Fig. 6.10) illustrates this vertical facies 

succession. The sequence stratigraphy (Fig. 6.10) and depositional reconstruction (Fig. 6.12) 

show the sequence of events leading to the accumulation of the succession.  

The lower part of the Mupe Member was an open lacustrine system with through-flowing 

freshwater with a fluvial and/or groundwater input as suggested by the sustained brackish 

water conditions until the flooding surface in depositional sequence 4 overlying the Soft Cap 

bed (Fig. 6.10). Microbial mounds are identified in this lower part of the Mupe Member and 

described in Chapter 4 (sedimentology), in Chapter 5 (shape and size) and in section 4 of this 

chapter (depositional settings). The upper part of the Mupe Member was a more restricted 

lacustrine system as indicated by the sustained indicators of hypersaline water conditions after 

the flooding surface in depositional sequence 4 (Fig. 6.10). Comparison with theoretical 

models of lake depositional systems (Figs. 6.13, 6.14), modern (Figs. 6.15 to 6.20) and ancient 

(Figs. 6.21) analogues helps to interpret facies distribution in the Mupe Member. Ultimately 

the original field data and all these comparisons have been used to build facies models for the 

Mupe Member (Figs. 6.23, 6.24). 

Bohacs et al. (2000) defined three lake types based on the water flow through a lacustrine 

system: overfilled, when the water input exceeds the evaporation rates and these are 

characterised by fluvio-lacustrine facies associations; balanced-fill, when water input and 

evaporation reach an equilibrium characterised by fluctuating-profundal facies associations; 

and underfilled lakes, when evaporation exceeds water input and these are characterised by 

evaporite facies associations (Fig. 6.13). Each of these lake types is characterised by a specific 

stacking pattern: maximum progradation with poorly defined parasequences or sequences 

(Van Wagoner, 1995) for overfilled lakes (Fig. 6.13); progradation and aggradation with well-

defined parasequences or sequences for balanced-fill lakes (Fig. 6.13); and maximum 

aggradation with either poorly- or well-defined parasequences or sequences for underfilled 

lakes (Fig. 6.13; Bohacs et al., 2000). 
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Figure 6.13 Characteristics of lake types (redrawn after Bohacs et al., 2000). On the left are the 

relationships between water input and evaporation. On the right are the expected corresponding 
stacking patterns. 

 

Figures 6.14 shows general lithology trends proposed by Bohacs et al. (2000) for 

balanced-fill (Fig. 6.14A) and underfilled (Fig. 6.14B) lake types based on observed modern 

lakes and depending on margin slopes (low-relief margins to the left and high-relief margins to 

the right).  

In balanced-fill lake types (Fig. 6.14A) the system reaches an equilibrium between 

(fresh)water input (via river systems or groundwater), accommodation and evaporation 

(Bohacs et al., 2000). Lake shores are relatively stable through time and climatic controls on 

water level fluctuation are common (Bohacs et al., 2000). In their model the deposition is 

organised into cycles usually with progradation of clastic sediments and aggradation of 

“chemical” sediments (such as carbonates; Bohacs et al., 2000). Highstand deposits are 

characterised by carbonates (or clastics) in relatively open or through-flowing systems where 

microbially mediated deposits are common (Bohacs et al., 2000). Lowstand deposits are 

restricted to basinal areas in shallow lakes due to rapid lake level changes according to Bohacs 

et al. (2000). These are characterised by carbonate (or clastic) deposits with aggradational 

parasequences or sequences (Van Wagoner, 1995) showing evidence of desiccation (Bohacs et 

al., 2000). Talbot and Allen (1996) had already described this type of lake as an open lake 

characterised by a relative stability of the shorelines. In such open lakes smaller-scale 
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sequences commonly reflect expansion-contraction of lake margins while larger-scale sequences 

reflect hydrological fluctuations of the entire lacustrine system (Talbot and Allen, 1996).  

In underfilled lake types (Fig. 6.14B), highstand deposition is characterised by a general 

stability of lake shores (i.e. perennial lakes) and low accommodation. Coarse-grained facies 

(clastic and carbonates) are usually deposited in shallow areas and fine-grained facies (clastic) 

in deep areas (Fig. 6.14B; Bohacs et al., 2000). Gypsum, halite or anhydrite can deposit in both 

shallow and deep areas due to evaporation and very low freshwater (fluvial) input under arid 

climatic conditions (Fig. 6.43B, Bohacs et al., 2000). In strong evaporative settings, thickening 

of evaporitic deposits basinward is common (Bohacs et al., 2000). Highstand deposits are 

rather thick and normally made of one or two parasequences (sensu Van Wagoner, 1995 

according to Bohacs et al., 2000). Lowstand deposition is characterised by instability of the 

lake shores (i.e. ephemeral lakes) due to strong cyclicity between wetter and dryer periods 

(Bohacs et al., 2000). These lowstand deposits are usually covered by basinal deposits marking 

a major and rapid flooding of the shallow lake (Bohacs et al., 2000). Talbot and Allen (1996) 

had already described this type of lake as a closed lake characterised by unstable shorelines. In 

such closed lakes transgressive-regressive cycles are common due to frequent rise and fall of 

the lake level (Talbot and Allen, 1996). 

The implications for the Mupe Member when applying Bohacs’ et al. (2000) models 

(Figs. 6.13, 6.14) concern the facies and their distribution. The main differences of both models 

are that in the Purbeck limestones, although clastic deposits are interpreted to be to the east 

(see below), there are little clastic deposits (few sandstone but no conglomerate deposits) and 

little direct evidence of freshwater input via river systems. However these models are 

comparable to the Mupe Member for most of the other features described above. Particularly 

relevant to the Purbeck limestones is the distribution of coarse-grained carbonate deposits 

with development of stromatolites in the shallowest part of the lake (i.e. the margins) and fine-

grained abiotic facies in the deepest part of the lake (i.e. basinal areas). Vegetated soils are 

more likely to form in low-relief margins rather than high-relief margins as depicted by Bohacs 

et al. (2000) (Fig. 6.14). 

In the lower part of the Mupe Member, characterised by brackish water conditions, the 

absence of evaporites and conglomerate-size facies (despite the presence of the extensional 

faults nearby); together with the abundance of sand-size carbonate facies, microbial buildups 

and paleosols with conifer forests suggest a low-relief lake margins profile of a balanced-fill or 

open lake.  
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In the upper part of the Mupe Member, characterised by hypersaline conditions, the 

abundance of sand-size carbonate facies with evaporite pseudomorphs; together with the 

absence of microbial build-ups and paleosols suggest a low-relief lake margins profile of an 

underfilled or closed lake.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.14 Lake type models (redrawn after Bohacs et al., 2000). A – Balanced-fill lake type model. 

Note facies distribution with fine-grained facies (mudstone in grey) in deep areas and carbonates with 
stromatolites (in dark blue) on the margins. This figure represents low-relief margins to the left and 
high-relief margins to the right. B – Underfilled lake type model. Note facies distribution with fine-
grained facies (mudstone) and evaporites in the deep area and carbonates and sandstones on the 
margins. This figure represents low-relief margins to the left and high-relief margins to the right. 
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7.1. Analogues 

7.1.1. Introduction 

 

This section describes and compares possible analogues for the lower part of the Mupe 

Member. Because of the occurrence of thrombolite mounds associated with soils and 

developed around trees and their inter-digitation with shallow lacustrine peloidal packstone-

grainstones, only shallow water modern and ancient lakes are described here. In this section 

lake size, climate, hydrology, facies and facies distribution of six modern day lakes (freshwater, 

brackish and hypersaline) and one ancient brackish water lacustrine are described. Two of 

them were visited during this study, the hypersaline Great Salt Lake in Utah (USA) in October 

2013 and the freshwater Laguna Bacalar in the Yucatan Peninsula (Mexico) in March 2015. The 

others described are based on literature with the hypersaline marine lagoon of Hamelin Pool 

(Shark Bay), hypersaline lakes of Rottnest Island, hypersaline Lake Thetis, the brackish water 

Lake Clifton and the freshwater Lake Richmond all being located on the western coast of 

Australia. The ancient brackish water lacustrine system is the Green River Formation of the 

Piceance Basin exposed in Utah (USA) is also presented as a possible analogue. 

 

7.1.2. Laguna Bacalar, Mexico 

 

Laguna Bacalar (Quintana Roo, Mexico) is a groundwater-fed freshwater lake about 50 km 

long, 1-2 km wide and 20 m deep maximum under tropical climate (Gischler et al., 2008; 2011). 

On the shores, thrombolite mounds occur with a wide range of shape and sizes (refer to 

Appendix 1 for description). A trip of one week in March 2015 to Laguna Bacalar was 

undertaken to study the mounds and their inter-mound sediments as a possible analogue for 

the Purbeck mounds. This trip enabled observation and recording of thrombolite mounds, 

coarse-grained facies (grainstones with mollusc shells, Fig. 6.15) deposited in the shallow 

margins of the lake and inter-mound coarse-grained facies both in between mounds and on 

top of tabular mounds (Fig. 6.15C1, flat-topped ledges of Gischler et al., 2008). These 

thrombolite mounds were mainly observed on the southern part of the lake (south of Bacalar 

town) and are absent on the northern half (Gischler et al., 2008). However Gischler et al. 

(2011) described microbial mats to develop on all the northern and eastern margins of the 

lake. They also showed that thrombolite mounds and microbial mats distribution is controlled 

by the carbonate concentration of the water. In fact to the south, where thrombolite mounds 

are developing a high carbonate concentration was recorded, while to the north, where 
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thrombolite mounds disappear and microbial mats develop, a much lower carbonate 

concentration was recorded (Gischler et al., 2011 and Appendix 1). In deeper areas finer 

carbonate sediments made of silt and mud sized carbonate sediment occurs but no mounds 

are recorded from sonar data (as reported by Gischler et al., 2008). The microbialites of Laguna 

Bacalar were described as thrombolites because of “inhomogeneous internal structure” that 

comprise finely laminated and upward radiating filament areas (Gischler et al., 2011). Both 

areas are composed of calcified moulds of Homeothrix filaments, the difference between the 

laminated and radiating areas is in the diameter of these filaments (greater in the latter, 

Gischler et al., 2008, 2011). In both microstructures molluscs, ostracods and diatoms are 

incorporated and on the external surface are usually found mussels attached in the microbial 

mat (as observed during our visit and as reported by Gischler et al., 2008, 2011). 

This lake is located in the equatorial zone and with freshwater conditions supplied by 

groundwater through-flow, however the carbonate factories and microbial mound sizes, 

morphologies and internal microstructures are similar to those in the lower part of the Mupe 

Member. The main features comparable with the interpreted environments of the Purbeck 

limestones are the depositional system (fully carbonate) with thrombolite mounds only in the 

shallowest part of the lake and associated with peloidal grainstone facies with ostracods and 

molluscs (Fig. 6.15). The internal microstructure of the thrombolites is similar to that of the 

Purbeck as both have heads of upward radiating filament moulds incorporating the 

surrounding sediments and fossils. These thrombolites exhibit several sizes and morphologies, 

microbial mats, small tabular mounds, flat-topped ledges and large mounds (up to 2 m high, 

Fig. 6.11 and Appendix 1). The mounds develop along the shores and grow towards the lake 

basin and are commonly found growing around roots of mangrove trees. The microbialites 

show very rapid growth rates of up to 1 cm/year as measured during the March trip (refer to 

Appendix 1 for description). In basinal areas (i.e. deep part of the lake) peloidal fine-grained 

carbonates are deposited (Gischler et al., 2008, 2011). 



 

 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.15 Laguna Bacalar, Yucatan Peninsula, Mexico. A – Map of the lake with microbialite occurrence in red (after Gischler et al., 2008, 2011). B – Facies model 

with an east-west section showing microbial mound distribution. C – Field images illustrating microbial mounds and distribution; C1-3 – Flat-topped ledge mounds, south of 
The Rapids; C4 – Flat-topped ledge mounds underwater, south of The Rapids; C5 – Short tabular mounds, west of Isla de los Parajos; C6 – Tall tabular mounds, Coccalitos 
balneario; C7 – Domed mounds in deep areas underwater, south of the Rapids; C8 – Shallow microbial mats, west shores; C9 – Deeper lacustrine microbial mats. 
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7.1.3. Great Salt Lake, Utah, USA 

 

The Great Salt Lake (Utah, USA) is a hypersaline lake divided into Gunnison Bay (240-260 

ppt) and Gilbert Bay (120-140 ppt) (Chidsey et al., 2015) (Fig. 6.16A). The lake was visited in 

September 2013 where flat circular microbial mounds that form rings were observed on the 

margins of Antelope Island in Gilbert Bay. This lake is 10 m maximum deep with microbial 

mounds on the margins that develop on top of crusts composed of lithified oolites and muds 

(Chidsey et al., 2015). The internal microstructure of the microbialites varies from leoilites to 

thrombolites (Della Porta, 2015) and comprises abundant calcitic spherulites linked with acicular 

cements and/or microbial filaments (Chidsey et al., 2015). These microbialites can incorporate 

peloids, detrital grains, ooids or even bird feathers and the external part is usually encrusted with 

tubes of brine fly larvae (Post, 1977; Chidsey et al., 2015; Della Porta, 2015). The surrounding 

sediment is made of grainstones with peloids (including faecal pellets), detrital grains, ooids and 

microbial intraclasts (Della Porta, 2015). The 2013 visit also allowed the identification of ooidal 

carbonate sands and carbonate muds forming wave ripples around thrombolitic mounds in the 

southern part of the lake (Gilbert Bay). Locally the microbial mounds can be surrounded by 

microbial intraclasts forming low-relief linear dunes (Fig. 6.16; also described by Chidsey et al., 

2015). Deeper in the lake the amount of microbial mounds decreases considerably as water 

depth increases (Chidsey et al., 2015) while their size increases (pers. comm. Robert Baskin, 

September 2013). In the deepest part of the lake fine-grained sediments such as muds and fine 

carbonate sands are deposited and microbial mounds are absent (Baskin, 2014). In Gunnison Bay 

there is a higher salinity (240 to 260 ppt) than Gilbert Bay that results in a pink coloration of the 

water due to Dunaliella salina bacteria creating -caroten in hypersaline waters (Post, 1977), 

identifiable from the satellite images. The northern half of the lake has been closed by a railroad 

causeway built between 1953 and 1959 creating a closed hypersaline system with freshwater 

input via four major river systems located in the southern part (Fig. 6.16; Chidsey et al., 2015). In 

this northern part, microbialites are present but because of the extreme salinity (close to the 

salt-saturation point, Chidsey et al., 2015), they are dead and lithified. These microbialites are 

covered by hypersaline ooids and microbial intraclasts. Additionally, halite hopper crystals are 

crystallising on the surface water, sinking when too heavy to float and are deposited on the lake 

floor as cm-thick salt deposits in deep waters (Fig. 6.16; Baskin, 2014 and refer to Chapter 4 for 

description). Consequently halite crystals can be found encrusted in the dead microbialites (Fig. 

6.16B ; Chidsey et al., 2015). 
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As for previous examples, the Great Salt Lake differs in water chemistry from that 

interpreted for the lower part of the Mupe Member of the Purbeck limestones. However this 

lake is similar to that of the upper part (refer to section 4 and Fig. 6.4) as both bays are 

hypersaline and Gunnison Bay is close to the halite saturation point. Similar features are lake 

margins with microbial thrombolitic mounds that show similar morphologies (such as the flat 

circular mounds in figure 6.16D5 similar to mounds of the Soft Cap, refer to Chapter 5) and 

microstructures. Both examples have mounds that are surrounded by coarse-grained 

carbonate facies in the shallowest part of the lake and by fine-grained deposits in the deepest 

part. In the Great Salt Lake microbial mounds tend to increase their size with the depth before 

disappearing completely beyond 4 m of water depth (Fig. 6.16D2). The ooids found in the 

Great Salt Lake are partially similar to those of the Purbeck. They differ in the microstructure of 

the cortex as in the Great Salt Lake the ooids show radial calcite crystals while in the Purbeck 

they have mixed cortices but tend to show more tangential microstructure (refer to Chapter 

4). However one type of ooids is similar in both lakes, the regenerated ooids where the 

nucleus consist of a broken ooid (refer to Chapter 4). Microbialites are nowadays dead due to 

the extremely high salinity in Gunnison Bay and covered with evaporitic deposits (halite 

crusts). A similar process might be responsible for the locally death of the Soft Cap microbial 

mounds of the Mupe Member. In fact from Durdle Door eastwards (refer to section 4.6 of this 

chapter) rounded mounds are covered with evaporites (gypsum and anhydrite). The restriction 

of this part of the lake might have induced higher salinity that killed the microbial community 

and stopped the thrombolite development.  



 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.16 Great Salt Lake, Utah, USA. A – Map of the lake with microbial occurrence in red and location of extensional faults. B – Digital elevation model of the lake 

bathymetry showing fault-controlled offset due to the Carington Fault (white is shallow and black is deep). Note that microbial mounds at this location are located in the 
shallow part. C – Facies model showing mound morphologies and their distribution, data compiled from Baskin (2014) and Chidsey et al. (2015). D – Field and sonar images 
illustrating microbial mounds and distribution; D1 – Eroded and dead flat rounded mounds on the lake shore (image from Chidsey et al., 2015); ; D2 – Side-scan (CHIRP) 
sonar image showing distribution of mounds. Note the increasing sparse mounds distributed basinward (image compiled from Baskin, 2014); D3 – Low-relief linear dunes 
formed of reworked microbial intraclasts; D4-5 – Circular domed mounds in shallow margins. 
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7.1.4. Hamelin Pool, Shark Bay, Australia 

 

Hamelin Pool (Shark Bay, western Australia) is a restricted hypersaline (about 56-70 ppt; 

Jahnert and Collins, 2012) marine embayment partially disconnected from the sea to the north 

by a seagrass bank (Fig. 6.17; Jahnert and Collins, 2011). This embayment is 10 m deep 

maximum with supratidal, intertidal, subtidal and embayment plain zones (Fig. 6.17B ; Logan et 

al., 1974; Jahnert and Collins, 2011, 2012). Microbial development occurs in the shallow areas 

down to 6 m depth (in the intertidal and subtidal zones; Fig. 6.17) and surrounded by bioclastic 

sand and mud or ooidal sand (Jahnert and Collins, 2012). Microbial mounds are found under 

five distinct morphologies related to water depth: pustular domes, smooth, colloform, 

cerebroid and microbial pavement (Fig. 6.17; Jahnert and Collins, 2011, 2012). Their internal 

microstructures vary depending on water depth and environmental conditions (Jahnert and 

Collins, 2012). Clotted fabrics that consist of coccoid cyanobacteria are found in the pustular 

domes; laminated stromatolites due to trapping and binding of peloids and bioclasts are found 

in the smooth and colloform mounds; non-laminated fabrics that result from micritisation and 

coalescence of peloids are found in the cerebroid mounds; and lithified bioclastic grainstone 

are found in the microbial pavement (Jahnert and Collins, 2012). In the supratidal zone, dead 

rounded microbial mounds are found (Fig. 6.17B-C, spherical eroded mounds of Janhert and 

Collins, 2011, 2012), and flat-topped mounds in the intertidal zone (Fig. 6.17B-C, smooth 

pustular forms of Jahnert and Collins, 2011, 2012). In the subtidal zone the mounds tend to be 

columnar, more massive until about 6 m water depth where only microbial pavements are 

found (Fig. 6.17B-C, Jahnert and Collins, 2011, 2012). In the deepest areas (beyond 6-7 m 

water depth and in the embayment plain; Fig. 6.17) fine-grained facies (bivalve shells with 

muds) are deposited. 

As with the previous examples, the water chemistry is rather different from that 

interpreted for the Mupe Member of the Purbeck limestones. However microbial mound 

morphologies and associated carbonate facies show some similarities. In this example mounds 

are restricted to water depth of 2 to 6 m (intertidal to subtidal zones) and the morphologies 

tend to flatten and shorten basinwards (pustular coalescent to pavement, Fig. 6.17B). The 

laminated microfabrics of the smooth and colloform mounds are very similar to the 

stromatolites of the Purbeck and the clotted fabrics of the pustular domes are very similar to 

those of the thrombolites of the Purbeck limestones at thin section scale. The facies 

surrounding microbial mounds are coarse-grained, as in the Skull, Hard and Soft Cap beds of 
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the Purbeck limestones; whilst in the embayment plain muds with bivalve shells occur, as in 

the Transition Bed of the Purbeck limestones (refer to Chapter 4 for description). 



 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.17 Hamelin Pool, Shark Bay, Australia. A – Map of the lagoon with microbialite occurrence in red. B – Facies model showing mound morphologies and 

distribution (from Jahnert and Collins, 2011). C – Field images illustrating microbial mounds and distribution (from Playford et al., 2013); C1 – Eroded and dead mounds on 
the shores; C2 – Pustular domed mounds; C3 – Smooth mounds; C4 – Columnar colloform mounds; C5 – Cerebroid mounds; C6 – Microbial pavement. 
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7.1.5. Rottnest Island, Australia 

 

Rottnest Island (western Australia) is a 10.5 km long and 4.5 km wide island in the 

southern Pacific Ocean (Fig. 6.18). On this island microbial deposits occur in 10 shallow 

(between 250 m and 1 km long, 100 to 750 m wide and down to 8.5 m deep) permanent 

hypersaline lakes (minimum of 68 ppt in Lake Timperley and exceeding 200 ppt in bigger lakes; 

Playford and Leech, 1977; Playford, 1988; John et al., 2009). This island is characterised by a 

Mediterranean type climate (wet winters and extremely dry summers) with growth of cypress 

trees (Callitri preissii, Fig. 6.18; Pen and Green, 1983; Playford, 1988). In these lakes, microbial 

mounds are developed in association with gypsum and lime mud (Hassell and Kneebone, 1960) 

and occur in the shallowest areas between 20 cm and 3 m depth (Fig. 6.18B). The mounds are 

5 to 10 cm high with a maximum of 20 cm with nodular, branching columns and smooth 

undulous morphologies (Playford, 1988) and can develop around water-logged tree branches 

(Playford, 1988). Few information are available in the literature relating to their 

microstructures but they were described by John et al. (2009) as being made of coccoid 

cyanobacteria forming gel-like mats. 

All the lakes on Rottnest Island are hypersaline so the water chemistry differs to that 

inferred for the lower part of the Mupe Member of the Purbeck limestones but are similar to 

that for the upper part. However the lakes of Rottnest Island present some other similar 

features to that of the lower part of the Mupe Member. The Mediterranean climate type with 

cypress trees growing on the shores of the lakes can be compared to the lower part of the 

Mupe Member. Microbial mounds are relatively small (up to 20 cm thick), restricted to the 

shallowest areas down to 3 m depth and even found growing on logs. These comparisons were 

also made by Francis (1983) when she studied the Purbeck soils and trees (refer to Chapter 2). 



 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.18 Rottnest Island, western Australia. A – Map of the island showing distribution of lakes. B – Facies model showing typical mound morphologies and 

distribution (data compiled from Playford, 1988). C – Field images illustrating microbial mound morphologies and distribution; C1 – Ephemeral hypersaline ponds 
illustrating landscape with Callitri preissii cypress trees in the background (image from virtualtourist.com); C2 – Eroded and dead domed stromatolites on the shores (image 
from © MMIX Paul R. Weaver); C3-4 – Domed stromatolites of shallow lake margins (image from © MMIX Paul R. Weaver). C5 – Domed stromatolites (smooth undulous) in 
deep lake margins (image from Playford, 1988); C6 – View from small brackish water Timperley Lake to big hypersaline Serpentine Lake (image from Playford, 1988). 
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7.1.6. Lake Thetis, Australia 

 

Lake Thetis (Cervantes, western Australia) is a hypersaline lake with salinities varying 

between 39 and 53 ppt and under a Mediterranean type climate (Grey et al., 1990). This lake is 

about 450 m long and 300 m wide with a maximum depth of 2.25 m (Grey and Planavsky, 

2009; Fig. 6.19). In this lake (Fig. 6.19), microbialites are domed and crenulated along the 

southern coast (the leeward shore) and “platy” in the northern coast (the windward shore). 

Mounds are 5 to 10 cm thick (Reitner et al., 1996) and surrounded by a carbonate mud 

containing shell fragments (Grey et al., 1990). In the deepest part of the lake a flocculent 

sulphur bacterial mat is found overlain by a filamentous bacterial mat (Fig. 6.19B; Grey et al., 

1990). The crenulate mat is characterised by filamentous and coccoid bacteria layers 

intercalated with calcareous mud, the crenulate aspect is due to frequent desiccation of the 

microbial mat (Grey et al., 1990). The domed mounds show two internal microfabrics, the 

inner part made of thrombolitic fabric and the outer part made of laminated stromatolites 

with columnar elements (Grey et al., 1990). The columnar structures are only found in quiet 

areas of the lake (i.e. to the south) and are between 5 and 10 cm long and 1 to 5 cm in 

diameter (Grey et al., 1990). The stromatolitic layer is made of fibrous fan-like to botryoidal 

aragonite lithifying microbial filament sheaths (Reitner et al, 1996). The lithified stromatolite 

platform is characterised by a crust between 1 and 5 cm thick that consists of an undulated 

surface and a fenestral inner part (Grey et al., 1990). 

This lake shows mainly differences with the Purbeck limestones such as the water 

chemistry, the size extension of the lake and the muddy sediments surrounding microbialites. 

However this lake presents microbial mounds on the shores only. An interesting feature in this 

lake is that the morphology of the mounds is controlled by the water energy that is wind-

driven. In the wind-protected shore domed mounds occur while in the wind-exposed shore 

mounds are more like a crust (Fig. 6.19). The internal structures of the domed mounds 

composed of thrombolite core rimmed by stromatolitic columns is very similar to the 

laminated external part of the Purbeck thrombolites that locally show small columns (refer to 

Chapter 4).  



 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.19 Lake Thetis, Cervantes, western Australia. A – Map of the lake with microbialite occurrence in red. B – Facies model showing microbial mound 

morphologies and their distribution (data compiled from Grey et al., 1990 and Grey and Planavsky, 2009). C – Field images illustrating microbial mound morphologies 
(images from Grey and Planavsky, 2009); C1 – Crenulate mat on the south shore; C2-3 – Domed tabular mounds on shallow south shore. Note the purplish colour of the 
water due to sulphate reducing bacterial mats. 
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7.1.7. Lake Clifton, Australia 

 

Lake Clifton (Rockingham, western Australia) is a brackish water lake with salinities 

varying between 15 and 32 ppt and under a Mediterranean type climate (Moore, 1993). This 

lake is 21.5 km long and 1.5 km wide maximum with a maximum depth of 3.5 m (Burne and 

Moore, 1993; Moore and Burne, 1994; Luu et al., 2004). Luu et al. (2004) noticed that the 

salinity increased between 1985 and 2005 from 15 to 34 ppt due to a decrease of rainfall 

caused by climate change. In this lake, microbialites are found mainly on the eastern shore 

forming a “reef”. Those mounds develop in an area about 30 m wide from the shore and down 

to 3 m depth (Moore and Burne, 1994; Fig. 6.20). The main morphologies of the microbial 

mounds are conical, domed, discoidal and tabular, can be up to 1.3 m high. These mounds are 

surrounded by a carbonate mud containing ostracods, gastropods, peloids, charophytes and 

microbialite intraclasts (Moore and Burne, 1994; Fig. 6.20). The internal microstructure of the 

microbial mounds is made of clots classifying them as thrombolite mounds (Moore, 1993; 

Burne et al., 1994). These have an external stromatolitic part (2 to 5 mm thick) made of 

radiating microbial filaments diatoms and gastropods (Moore, 1993; Burne et al., 1994). 

This lake is most similar to the lower part of the Mupe Member of the Purbeck limestones 

as it is a brackish water lake with microbial mounds growing on its shallow shores under a 

Mediterranean type climate. The only difference here consists in the muddy sediment 

deposited around the mounds and in the deep part of the lake that indicate rather low energy 

while in the Purbeck, microbial mounds are always associated with coarse-grained sediments 

that is interpreted to document high energy. However the morphologies of the thrombolitic 

mounds are very similar to that of Purbeck and Burne and Moore (1993) have already 

compared these with the Soft Cap mounds from Dorset. These thrombolites also exhibit 

similar internal microfabric to those of Purbeck with the clotted inner part and the 

stromatolitic outer part. As with the previously described western Australian lakes the 

development of mounds is controlled by the water energy (wind-driven) as microbial mounds 

are mainly found on the windward shore. 



 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.20 Lake Clifton, western Australia. A – Map of the lake with microbialite occurrence in red. B – Facies model showing microbial mound morphologies and 

distribution (redrawn after Burne and Moore, 1993). C – Field images illustrating microbial mound morphologies; C1 – Domed thrombolites on shallow margins exposed in 
summer (image from McNamara, 2012); C2 – Close-up view of domed thrombolite mounds (image from McNamara, 2009); C3 – Concentric structured mounds in 
intermediate depth (image from Burne and Moore, 1993); C4 – Tabular composite mounds (image from Burne and Moore, 1993); C5 – Conical shape mounds in deeper 
area of lake (image from Burne et al., 1994). 
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7.1.8. Lake Richmond, Australia 

 

Lake Richmond (Rockingham, western Australia) is a freshwater lake (salinities varying 

between 0.14 and 0.56 ppt) under a Mediterranean type climate (Kenneally et al., 1987; 

Ecoscape, 2009) that is 1 km long and 600 m wide with a maximum depth of 15 m (Fig. 6.21; 

Kenneally et al., 1987; Ecoscape, 2009). Ecoscape (2009) noticed that before the installation of 

drains in the 1960s the salinity was about 2 to 3.5 ppt (slightly brackish) and that has since 

dropped to 0.3-0.4 ppt. In this lake, microbialites are located in a 150 m band on the 

shallowest part (down to 4 m depth) with the best development on the windward side (i.e. 

eastern side) of the lake (Ecoscape, 2009; Guerreiro et al., 2015; Fig. 6.21). Microbialites 

developed as a thrombolitic pavement occur in most of the lake and this is overlain by 

mounded structures forming gentle domes, sub-spherical, discoidal and flat-topped structures 

(Guerreiro et al., 2015). Guerreiro et al. (2015) also described the internal microfabrics of 

these mounds as thrombolitic and coarse laminoid. The clots of the thrombolites are formed 

by calcified bacterial sheaths and associated with radial microcrystalline aragonite aggregates 

and peloids (Guerreiro et al., 2015). 

This lake differs again in water chemistry compared to the Purbeck limestones although 

before the 1960s, brackish waters were dominant. However this freshwater lake presents 

similar mound morphologies and internal thrombolitic microfabrics but differ in sizes 

compared to the Purbeck thrombolites. As with the previously described western Australian 

lakes there is a control of water energy (wind-driven) as mounds are growing preferentially on 

the windward shores. 



 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 6.21 Lake Richmond, Rockingham, western Australia. A – Map of the lake with microbialite occurrence in red and maximum extent of water level with the 

black line. B – Facies model showing microbial mound morphologies and distribution (data compiled from Kenneally et al.,1987; Ecoscape, 2009 and Guerreiro et al., 2015). 
C – Field images illustrating microbial mound morphologies; C1 – Thrombolite pavement on the shores (image from © 2015 Nabipon); C2 – Flat-topped thrombolites 
(image © Perdita Phillips); C3 – Gentle domed thrombolites in shallow magins (image from Vogwill, 2012); C4 – Sub-spherical to discoidal mounds in temporary exposed 
margins (image from Vogwill, 2012). 
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7.1.9. Green River Formation (Piceance Basin) from Utah, USA 

 

Possibly the best analogue from the fossil record for the Purbeck carbonates comes from 

the Piceance Basin of the Green River Formation (Eocene, Fig. 6.22; Sarg et al., 2013). In this 

shallow lake (Moncure and Surdam, 1980; Cole, 1985) microbial development (stromatolites 

and thrombolites) occurred on the margins (littoral to lower sublittoral zones) and associated 

with coarse-grained facies (oolitic-peloidal-quartz packstones and grainstones; Fig. 6.22C; Sarg 

et al., 2013). Microbial mound developments appear to have occurred in rather wet climate 

and rising lake level (Tanavsuu-Milkeviciene et al., 2012). In addition Tanavsuu-Milkeviciene 

and Sarg (2012) interpreted this lake to be a balanced-fill lake with fluctuating salinities 

although the Sarg et al. (2013) study suggests rather saline waters. Mound morphologies 

change from small domes in the upper sublittoral zone, to flatter laterally linked 

hemispheroids in the lower sublittoral zone (Fig. 6.22B-C; Sarg et al., 2013). In the basinal 

areas fine-grained facies including laminated oil shales that occur below the thermocline 

(Fig. 6.22B; Sarg et al., 2013; Feng et al., 2014). These deposits are organised in deepening-

upward sequences due to lake level rises with initial deposition of lake marginal facies that 

serve as substrate for microbial mounds that are capped by deeper water mudstone 

(Fig. 6.22B; Sarg et al., 2013). The microbialites show four main internal microstructures, 

stromatolitic agglutinated, stromatolitic agglutinated dendritic, stromatolitic fine-grained, and 

thrombolitic microfabrics (Sarg et al., 2013). The stromatolite agglutinated microfabrics are 

made of irregular coarse-grained (peloids, quartz grains and intraclasts) laminae (Sarg et al., 

2013). The stromatolite agglutinated dendritic are composed of alternation of coarse-grained 

(as for the previous fabric) and dendritic laminae (Sarg et al., 2013). The fine-grained 

stromatolites are composed of laterally extensive laminae (from meters to tens of meters) and 

were interpreted to have formed in deeper water where the microbial community expand 

laterally to catch light (Sarg et al., 2013). The thrombolites are characterised by clotted 

structure with a micritic matrix incorporating ooids, peloids and quartz grains (Sarg et al., 

2013). 

Analogies with Purbeck limestones are the balanced-fill lake type, the microbial mound 

morphologies and sizes which are similar to those of the Purbeck and in both cases form domed 

mounds. Another similar feature here is the distribution of the mounds in littoral and sublittoral 

zones (i.e. on shallow margins). However this lake differs in salinities and climate from that of the 

Purbeck. The microfabrics of the fine-grained stromatolites (as deep expression of microbial 

growth) and the thrombolites (as marginal) are also very similar to those of the Purbeck 
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limestones. Although the deposits are organised in deepening-upward cycles the environmental 

interpretation of the deposits are similar to those of the Purbeck limestones. Sarg et al. (2013) 

defined the shallowest facies to be made of packstone-grainstone; the intermediate water depth 

facies to be made of bindstone to boundstone (microbialites) that are organised from the 

agglutinated stromatolites as the shallowest, passing to thrombolites as intermediate and the 

fine-grained stromatolites as the deepest; and the carbonate mudstone as the deepest facies.   



 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 6.22 Piceance Basin, Eocene Green River Formation, Utah, USA. A – Possible extent of the palaeolake with occurrence of microbialite in red (from 

Tanavsuu-Milkeviciene and Sarg, 2012; Sarg et al., 2013). B – Facies model showing microbial mound morphologies and distribution (from data compiled from Tanavsuu-
Milkiviciene and Sarg, 2012 and Sarg et al., 2013). C – Typical sequence (C1; from Sarg et al., 2013) and illustrations of microbial mound morphologies (C2-5; from Sarg et 
al., 2013); C2 – Domed stromatolites with rudstone; C3 – Domed stromatolites; C4 – Domed thrombolites surrounded by fine-grained laminated shale; C5 – Coalesced 
thrombolites and stromatolites. 
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7.1.10. Summary 

 

The description of these analogues shows that the water chemistry and the climate do not 

appear to have any influence on microbial mound shapes as similar mounds are found in a 

range of environments under different climates: in freshwater lakes with a tropical climate 

such as at Laguna Bacalar (Mexico) and Mediterranean at Lake Richmond (Australia); in 

brackish water lakes with Mediterranean climate as Lake Clifton (Australia); in hypersaline 

lakes with continental climate as Great Salt Lake (USA); and in hypersaline marine water with 

Mediterranean climate such as at Shark Bay (Australia). However the lake depth seems to be a 

limiting factor to microbial growth as none of these microbial mounds are found beyond 3 to 4 

m water depth in the examples above (albeit taken from those with shallow water mounds). 

Despite the variations in water chemistries and climates, all these examples above present 

similar facies and sedimentology to the Mupe Member and are used to understand facies 

distribution in the models presented below. In all the examples described above, on the 

margins are deposited peloidal to oolitic grainstones with ostracod carapaces and mollusc 

shells (gastropods and bivalves) associated with microbial mounds, while in the deepest part 

mudstones are deposited (sometimes with ostracods and mollusc shells). Microbial mound 

internal microstructures and morphologies are also very similar when compared to that of the 

Mupe Member. The microstructures described in these possible analogues do not appear to 

be important in the type of microfabrics as filamentous and coccoid cyanobacteria are found in 

both thrombolitic and stromatolitic fabrics. However the water depth appears to play an 

important role as coarse stromatolitic and thrombolitic fabrics are preferentially found in the 

shallowest areas while fine-grained stromatolitic fabric are found in the deepest areas. 

Similarly the morphologies seem to follow a continuum from very thin and tabular mounds in 

the shallowest part passing through domes in intermediate-deeper water depth to flat and 

thin pavement areas in the deepest parts of the lakes (apart from Great Salt Lake where the 

mound size keeps increasing before they disappear suddenly).  

An important conclusion that can be drawn after describing all these analogues is that in 

ancient systems thrombolite mounds on their own will only be critical in the recognition of 

marginal versus basinal areas but will not give too much information in terms of 

palaeosalinities or palaeoclimate (as they are found in all sorts of depositional settings and 

climates in modern day environments). However the careful study of sediments associated 

with microbial mounds as well as the underlying and overlying beds will be more critical in the 

assessment of palaeosalinities and palaeoclimate. Concerning the associated sediments, the 
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fossils and their salinity tolerance (such as ostracods, molluscs or plant remains) and clasts 

(such as ooid types and presence/absence of evaporite pseudomorphs), coupled with 

geochemistry analyses (stable isotopes of carbon and oxygen) will bring more valuable 

information on the palaeosalinities. Concerning the underlying and overlying beds the types of 

sediments deposited will bring valuable information on both the palaeosalinities and 

palaeoclimate. If paleosols were deposited, the type of paleosol can indicate what type of 

climate was prevailing. If sediments were deposited, the nature of the components as 

explained above will bring information on palaeosalinity variations through time. 

 

7.2. Facies models for the Mupe Member 

 

Integration of the features illustrated with ancient and modern analogues in the previous 

section together with facies interpretations of Chapter 4 and the sequence stratigraphy of 

section 6 of this chapter has been used to create two facies models for the earlier brackish and 

later hypersaline water lake margins of the Mupe Member (Figs. 6.23 and 6.25). 

The lower part of the Mupe Member is interpreted to be brackish water, open lake 

system of Talbot and Allen (1996) or balanced-fill lake type of Bohacs et al. (2000) based on 

their facies, biotas (Chapter 4) and stable isotope analyses (Chapter 2). Figure 6.23 illustrates 

the proposed depositional setting of an idealised depositional sequence on a low-relief 

prograding margin of this lake system based on the integration of work in this thesis and 

general facies models from ancient and modern settings.  

 

 

 

 

 

 

 

 

 

 
Figure 6.23 Facies model for prograding brackish water open lake margin for the lower part of the 

Mupe Member. Note that 1.5 sequences are illustrated in this model. 

 

This facies model comprises the Deep lacustrine and Mounded marginal lacustrine facies 

associations as one complete depositional sequence between two sub-paleosol erosion 
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surfaces overlain by the transgressive deposits of a second sequence. The paleosols were 

deposited after a drop in lake level and erosion of underlying deposits (Fig. 6.12). The erosional 

surface (sequence boundary) cuts into either the Portland Group (for the Basal Dirt Bed) or the 

previous sequence (for the Lower and Great Dirt Beds, Figs. 6.10 and 6.23). After a rise of the 

lake level indicated by the transgressive surfaces on top of the paleosols, the transgressive 

deposits were deposited. On the emergent lake margins the paleosols supported vegetation of 

ancient cypress trees and cycadophytes.  In the littoral zone and shallowest parts of the lake 

small tabular microbial mounds occurred either around tree stumps, or associated with trees, 

and surrounded by inter-mound coarse-grained facies (Intraclastic peloidal packstone-

grainstone). Where the accommodation space is greater in slightly deeper waters the mounds 

are higher, more irregularly shaped, thicker and developed around tree trunks and branches 

(as suggested by the domed mounds found in intermediate depth in modern day 

environments). These are surrounded by an inter-mound coarse-grained facies with mound-

derived intraclasts. Deeper into the lake in the sub-littoral zone microbial activity formed mats 

alternating with horizons of coarse-grained facies as suggested by the rather flat and thin 

pavements found in the deepest part of the margins in modern day environments (refer to 

Chapter 5 for description of size and shapes of mounds versus water depth). These deeper 

water mats did not develop into tabular or complex mounds due to either a lack of light and/or 

a lack of or excess of sediments (Dupraz et al., 2009), or a lack of dissolved carbonate (Dupraz 

et al., 2009) or due to a subsidence rate too high that resulted in the drowning of the mounds 

(as suggested by Jahnert and Collins, 2012), or a combination of all these external parameters. 

In the deepest part of the lake, in the profundal zone, the fine-grained facies of the Deep 

lacustrine facies association occurs with no associated microbial build-ups. As suggested by 

studying modern day environments (see previous section) and general lacustrine facies models 

(Figs. 6.13 and 6.14), the Purbeck brackish water lake of this study was most likely with low-

relief margins and with microbial development constrained in the littoral zone (sensu Platt and 

Wright, 1991). 

Depositional environments of the Cap beds and Dirt Beds have been debated since Arkell 

(1947) who was the very first one to propose freshwater environment because of the trees 

and the interpretation of tufa deposits. Later West (1975) proposed a lagoonal environment 

with hypersaline waters with algal limestones based on inferred palaeosalinities from biotas 

and comparison with Persian Gulf salinities (refer to Chapter 2). This idea was proposed earlier 

by Brown’s (1963, 1964) work on the algal limestones and later supported by Francis’s (1982, 

1982, 1984, 1986) work on the Dirt Beds (i.e. the paleosols). Brown (1963, 1964) detailed the 
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types of algae associated with the algal deposits in hypersaline environments (refer to 

Chapter 2). Francis (1982, 1983, 1984, 1986) demonstrated that the paleosols were rendzina 

profiles at different stages of maturity that supported conifer and cycadophyte forests that 

developed under semi-arid climate Mediterranean type (refer to Chapter 2). According to 

Francis (1982) the hypersalinity of the waters is concordant with this type of climate and with 

the rapid death and preservation of the trees when drowned. It was only with Bosence’s 

(1987) work on facies of the Cap beds and Dirt Beds and Perry’s (1994) work on the tufa 

deposits that the freshwater origin was reconsidered. Bosence (1987) demonstrated that 

stromatolites are a minor component of the “algal limestones” of previous workers and 

therefore have to be referred to as thrombolites originating in freshwater environments (refer 

to Chapter 2). Perry (1994) supported this idea and interpreted freshwater calcitic cements 

coating phytoclasts that brings more evidence for freshwater origin of the environment (refer 

to Chapter 2). Radley’s (2002) work on mollusc assemblages showed that due to the low 

diversity of gastropod species and the mixing of low-salinities and marine species the 

environment was most likely a closed brackish water system periodically hypersaline (refer to 

Chapter 2).  

Biotic assemblages (ostracods and molluscs) identified by previous workers (such as 

Arkell, 1941; Clements, 1973; Anderson, 1985; Horne, 1995, 2002; reviewed in Chapter 2) 

indicate fresh to brackish water tolerant species. This is possibly supported by the stable 

isotope (carbon and oxygen) data acquired during this project (Fig. 6.24) on bulk rock samples 

in the Intraclastic peloidal packstone-grainstone facies. These were sampled in the Skull and 

Hard Cap beds at three locations on the Isle of Portland, Perryfield, Broadcroft and Bowers 

Quarries (refer to Chapter 2). The 13C data vary between -4.63 and -0.72 ‰ (with a precision 

of 0.03 ‰) and the 18O data between -2.71 and 7.20 ‰ (with a precision of 0.12 ‰; Fig. 

6.24). As the stable isotope analyses achieved during this project were performed on bulk rock 

samples, this means that the signatures measured do not directly reflect palaeosalinities but a 

mixture of palaeosalinities, diagenetic modifications and/or vital effects. As a consequence 

further investigations and more detailed analyses are needed to fully characterise the 

palaeosalinities of the lake waters. However general trends can be drawn as these data fall in 

the general trends for lake waters defined by Leng and Marshall (2004) that showed that the 

carbon and oxygen isotopic signatures of freshwater lakes are slightly negative while in saline 

lakes they are slightly positive. In this study carbon and oxygen isotopic signatures are slightly 

negative that indicates a deposition in fresher lakes rather than more saline. The data from the 

Hard Cap suggests more negative values than in the Skull Cap that may suggest a slight 
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freshening in the Hard Cap than in the Skull Cap (Dharmarajah, 2015). In addition Talbot (1990) 

stated that the co-variance between carbon and oxygen data is more common in closed lakes 

than in open lakes. He proposed that closed lakes show typical regression coefficients (r) 

greater than 0.8 and that open lakes show smaller values. In this study the regression 

coefficients are about r=0.11 for the Skull Cap (Fig. 6.24A) and r=0.24 for the Hard Cap (Fig. 

6.24A) suggesting rather open lake systems. Taken together with the petrographic evidence of 

a general absence of evaporites and charophytes these data all indicate brackish water 

conditions in an open lacustrine system (refer to Chapter 2). This invalidates West’s (1975) and 

Francis’ (1982, 1983, 1984, 1986) hypersaline lagoon, Perry’s (1994) freshwater origin and of 

Radley’s (2002) closed system; and validates Bosence’s (1987) interpretation of brackish water 

lacustrine system. Moreover the recognition of microbialite deposits around trees provides 

detail in support of Bosence’s (1987) and Perry’s (1994) interpretation of tufa deposits as 

complex thrombolite mounds.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.24 Plot diagram of the 

18
O vs. 

13
C stable isotope data of the Intraclastic peloidal 

packstone-grainstone facies. 
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The upper part of the Mupe Member is considered to have been deposited in a more 

closed lacustrine system of Talbot and Allen (1996) or underfilled lake type of Bohacs et al. 

(2000) as indicated by the evaporites and the biota. Figure 6.25 illustrates the depositional 

setting of low-relief margin of this hypersaline water, closed-lake based on facies 

interpretations in Chapter 4 and comparison with modern day analogues.  

 

 

 

 

 

 

 

 
Figure 6.25 Facies model for regressive hypersaline water lake margin for the upper part of the 

Mupe Member. Note that the upper paleosol is only locally developed compared with the previous 
model for the lower part of the Mupe Member. 

 
 

The main analogue for this depositional setting is taken as the northern arm (Gunnison 

Bay) of the Great Salt Lake (Utah, USA). This facies model indicates the depositional sequence 

of the Cypris Freestone beds (as described in section 6 of this chapter) with all the facies 

preserved in a prograding lake margin. This facies model comprises the Hypersaline lacustrine 

and Bedded marginal lacustrine facies associations as highstand deposits and the Emergent 

facies association as lowstand deposits conformably overlying the previous deposits in a 

normal regression. As the paleosols are interpreted as lowstand deposits, they accumulated on 

the eroded surface (SB) on the previous sequence. Note that these paleosols are rare 

throughout the studied area (refer to section 5 of this chapter). In the littoral to sub-littoral 

zones of the lake, cross-bedded, coarse-grained facies accumulated in rather high energy 

conditions as indicated by the ripples and cross-laminations, the peloidal grainstones and the 

presence of well sorted intraclasts and ooids (refer to Chapter 4). These are organised in dunes 

and ripples aligned with the coast as suggested by the palaeocurrent measurements (refer to 

Chapter 4). The presence of evaporite crystals (calcite or sediment pseudomorphs after 

gypsum, anhydrite and halite) in this peloidal packstone-grainstone indicates arid climatic 

conditions and hypersaline waters. The presence of halite pseudomorphs in calcite only on the 

top surfaces of the beds suggests more arid conditions and desiccation towards to the top of 

the beds (Talbot and Allen, 1996). Possible temporary and local freshwater input via river 

systems provided occasional clastic material from the land and led to the deposition of a 
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quartz rich facies (the Calcareous sandstone facies). Rather more localised and closed areas 

within this lake provided the conditions for the formation of true evaporite facies. In the 

deepest part (i.e. profundal zone) of the lake the deposition of fine-grained facies (Deep 

lacustrine facies association) occurs as in the previous facies model. The absence of microbial 

activity can be explained by two possible processes: either a rise in lake level (i.e. flooding) that 

stopped microbial growth due to a higher sedimentation rate (sediment input became greater 

than the growth rate); or a change in the chemistry of the water due to geographical barriers 

that reduced flows, increased salinities and resulted in the death of the microbial community. 

In the first case this is interpreted from the observations that microbialites are never found 

beyond 4 m of water depth in modern day environments. The second case is interpreted from 

Dupraz et al. (2009) work that proposed that a lack of dissolved carbonates associated with 

either a lack or excess of sediments are deleterious for microbial health and growth. However 

the peloidal packstones-grainstones facies described in this study (refer to Chapter 4) are also 

typical of marginal areas. As a consequence an increase in salinity as indicated by the 

appearance of evaporite pseudomorphs is the more likely cause for the death of the 

microbialites. Contrarily to the previous facies model (Fig. 6.23), the hypersaline model (Fig. 

6.25) is concordant with most of the previous interpretations of depositional environment and 

especially West’s (1975) hypersaline conditions. Radley’s (2002) interpretation of closed 

lacustrine system is also concordant with data presented in this study and the hypersaline 

facies model of figure 6.25. 

 

8. Conclusion 

 

The definition of five facies associations grouping facies defined in Chapter 4 allowed the 

interpretation of two main depositional environments and facies models: brackish water lake 

facies model and hypersaline water lake facies model. This change in depositional environment 

occurs up-section in the stratigraphy as well as spatially and will be detailed in Chapter 7. 

Integration of new stable isotope data previously acquired for the lower part of the Mupe 

Member helps to invalidate most of the previous studies and shows a brackish lacustrine open 

system during the deposition of the Skull and Hard Cap beds. Facies analysis and sequence 

stratigraphy helps to identify 4 sequences during the deposition of the Mupe Member 

bounded by sub-aerial exposure surfaces on the tops of the Portland Group, Transition Bed, Skull 

Cap and Hard Cap. 
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The correlation panels indicate a change from brackish water lake to the west to hypersaline 

to the east possibly due to a high in the palaeotopography. This was previously interpreted and 

described by West (1975) and Francis (1982) and will be used and discussed in Chapter 7 to build 

tectono-sedimentary models of the Mupe Member. 

The comparison of the facies models created in this study with modern day environments 

helps to reach an understanding of the facies distribution and to draw some general 

conclusions. As is the case in marine environments, coarse-grained facies are deposited in the 

shallowest areas above wave base on the margins of lakes but in this lacustrine setting these 

are closely associated with microbialites. Fine-grained facies are deposited in more protected 

areas or in the deepest parts of the lakes. Microbialites are found only on the margins and 

their shapes and sizes are dependent on water depth while the salinity does not appear to be a 

limiting factor in modern day environments for mound shapes and internal fabrics (from 

freshwater to hypersaline; including hypersaline marine waters). An important control though 

appears to be the carbonate concentration in the waters that has to be high enough for the 

microbial communities to calcify (as observed in Laguna Bacalar by Gischler et al., 2011, 2012; 

refer to Appendix 1). 

The stratigraphical (vertical) change in depositional environments from open (brackish 

waters) lake system to closed (hypersaline waters) lake system may be due to different 

external factors. A modification in the climate, subsidence rate, fault activity, hydrology or a 

combination of all those parameters could be responsible for such a change in depositional 

environments. This is illustrated and discussed in Chapter 7 where the integration of all the 

data acquired during this project is used to establish tectono-sedimentary models for the Skull, 

Hard and Soft Cap beds of the lower part of the Mupe Member. 
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1. Introduction 

 

This chapter presents the integration of work on seismo-stratigraphy and sedimentology 

undertaken during this study to propose three new tectono-sedimentary models for the Mupe 

Member. The sub-surface data analysis and interpretation provides the syn-sedimentary 

setting of the Purbeck and Ridgeway Faults as well as the traces of the faults and their 

maximum lateral extent (Chapter 3). The definition of 9 facies (Chapter 4) and their 

interpretation in terms of depositional environments and facies models (Chapters 4 and 6) 

provide the depositional settings of the Mupe Member deposits with the interpretation of the 

marginal and basinal areas. This is supported with the facies association distribution and the 

correlation panels of sedimentary logs that show that all the beds and facies associations are 

traceable along the studied area with a greater thickness of deposits close to faults in hanging-

wall depocentres (Chapter 6). The morphological characterisation of the microbial mounds 

that are summarised and integrated together with the facies distribution in the two facies 

models (Chapters 5 and 6) helps to constrain the depositional settings. All these have resulted 

in the revision of palaeogeographies proposed by previous authors (West, 1975; Francis, 1982; 

Underhill, 2002) and are here integrated with the tectonic setting to propose three new 

tectono-sedimentary models for the Skull, Hard and Soft Cap beds. Despite the fact that 

although the study area is well exposed and has a considerable amount of subsurface data the 

contouring of the facies and thicknesses could not produce one solution. As a result of 

integration of published models for extensional faults in rift basins and for lacustrine facies has 

enabled the construction of two scenarios: 1) influenced by the relay ramp; and 2) with two, 

partially isolated, E-W hanging-wall depocenters. 

 

2. Controls on non-marine carbonate sedimentation 

 

Facies distribution in lacustrine environments is mainly controlled by tectonics and 

climate that influence the hydrology, sediment input and temperature changes (Wright, 1990; 

Platt and Wright, 1991; Gierlowski-Kordesch, 2010).  

Generalised published models provide main depositional trends influenced by tectonics 

that can be applied to marine and non-marine (lacustrine) settings. In extensional rift systems 

normal faulting can create symmetric grabens and/or horsts if the basin is bounded by two 

antithetic normal faults (Fig. 7.1A-B); or asymmetric grabens, also called half-grabens, if the 

basin is only bounded by one normal fault (Fig. 7.1C; Fossen, 2010). In these rift basin systems, 
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carbonate facies will be distributed parallel to the faults when the basin is bordered by one 

single normal fault (Fig. 7.1A-C); and both parallel and perpendicular or oblique to the faults 

where faults are linked by a relay ramp system or transfer zone (Fig. 7.1D; Cross and Bosence, 

2008; Wilson et al., 2000). In a horst system shallow or emergent areas will be expected on top 

of the horst (i.e. on the footwall block, Fig. 7.1A). In a graben system shallow areas will be 

located adjacent to the fault scarps on the footwall blocks with deep facies in hanging-wall 

depocentres (Fig. 7.1B).  In half-graben systems roll-over anticlines are commonly created due 

to the asymmetry (Fossen, 2010) and shallow areas will be located on the fault scarp on the 

footwall blocks and on top of the roll-over anticline (Fig. 7.1C). In relay ramp system or transfer 

zone shallow areas are aligned with the relay ramp area in the hanging-wall depocentre in 

addition to the sites previously mentioned (Fig. 7.1D). 
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Figure 7.1 General tectono-sedimentary models in rift settings. A –Horst system model on the left 
(redrawn after Fossen, 2010) and general depositional trends on the right from Dorobek (2008). B –
Graben system model on the left (redrawn after Fossen, 2010) and general depositional trends on the 
right from Dorobek (2008) C – Half-graben or roll-over system on the left (redrawn after Fossen, 2010) 
and general depositional trends on the right from Dorobek (2008). D – Relay ramp system (redrawn after 
Gawthorpe and Hurst, 1993) and simplified block diagram of the Tonasa Formation during the Oligocene in 
central Pangkajene, northern Barru in Indonesia on the right (redrawn after Wilson et al., 2000). 
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Platt and Wright (1991) proposed a tectono-sedimentary model for lacustrine carbonate 

facies distribution in a half-graben system (Fig. 7.2). Although this model shows facies 

distribution in 3-D, it is only based on 2-D vertical succession (the third dimension was inferred 

from this 2-D vertical succession). As a consequence this model has a very limited predictive 

value of facies distribution in the three dimensions. They showed that lakes are likely to form 

on hanging-wall areas parallel to the fault trace with a depocentre close to the fault (Fig. 7.2). 

They also showed that shallow-water bioherm deposition would occur on the margins of the 

lakes with deep facies such as laminites in the centre part of the lake in basinal areas (Fig. 7.2). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 Lacustrine carbonate facies in a half-graben system (redrawn from Platt and Wright, 
1991). Note that the colours of the facies are the same as in figure 7.1. 

 

 

Another important aspect for this study is in the preferential accumulation sites and 

tectonic controls on facies distribution in rift systems that are very well documented in the 

literature. Anders and Schlische (1994) and Gawthorpe et al. (1994) demonstrated that in 

extensional systems, the accommodation space is the greatest in the centre part of the 

hanging-wall blocks of normal faults and decreases gradually towards the tips (Fig. 7.3A). 

Cowie and Scholz (1992) and Kim and Sanderson (2005) additionally demonstrated that there 

is a linear relationship between the maximum vertical displacement (that can be approximated 

to accommodation space) and the length of the fault. An average ratio can be determined 

where the length equals 100 times the maximum vertical displacement of a fault (Kim and 

Sanderson, 2005). All these mean that for example for 5 m thick deposits deposited close to a 

fault, the length of the fault needs to be at least 500 m long.  
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Trudgill (2002) and Athmer and Luthi (2011) demonstrated that preferential drainage in a 

relay ramp system occurs through the relay ramp area and the fault scarps; and subsequent 

deposition occurs respectively downstream on the relay ramp and on the hanging-wall blocks 

of the faults (Fig. 7.3B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 Relay ramp depositional zones and main drainage routes. A – Schematic normal faults 
illustrating the accommodation space created during the formation of relay ramp area (redrawn after 
Gawthorpe et al., 1994). B – Schematic evolution of a relay ramp area with preferential drainage route 
(redrawn after Athmer and Luthi, 2011 and Trudgill, 2002). 

 

Surprisingly little has been published on the preferential sites for accumulation of 

carbonate in lacustrine extensional basins. Gawthorpe and Hurst (1993) showed that in marine 

settings relay ramp zones are preferential input of clastic sediments into hanging-wall 

depocentres and that carbonate platforms can develop in shallow ramp sites but only if the 

clastic input is very low. Cross and Bosence (2008) added that the initial low-relief topography 

favours carbonate platform development that becomes steeper and might form an 

intrabasinal high with time. Wilson et al. (2000) demonstrated that carbonate deposition in 

this type of system is mainly the result of shallow water carbonates redeposited as illustrated 

in figure 7.1D. They found that in the Oligocene deposits of the Tonasa Formation of Indonesia 

a carbonate platform developed on the footwall with redeposited carbonate facies in the 

hanging-wall depocentres and reworked through a relay ramp area (Fig. 7.1D). Most 

importantly for this study they showed that there was a main depositional area that developed 

oblique to the relay ramp mainly and located on top of a palaeohigh on the seafloor (called 

“overlap” in figure 7.1D). 
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3. Tectono-sedimentary models of the Mupe Member 

 

This section describes three tectono-sedimentary models for each of the Skull, Hard and 

Soft Cap beds (Figs. 7.4, 7.5, 7.7 and 7.8). As a consequence of the uneven distribution of 

logged sections, and despite the extent of the outcrops and the subsurface data some key 

areas have missing data. Therefore two different scenarios are presented for each of these 

three units. The contouring of the data points lead to palaeogeographies that can be 

interpreted as in scenario 1 where two sub-basins/lakes are separated by a lake floor high 

(Figs. 7.4 and 7.5) or as in scenario 2 where one elongated and narrow lake basin formed 

(Figs. 7.7 and 7.8). In addition, as the Deep lacustrine facies association was never observed to 

be deposited laterally to the Mounded marginal lacustrine facies association, two versions for 

each model are illustrated, with and without the Deep lacustrine facies association deposited. 

Because of the resolution of the seismic data (the entire Purbeck Limestone Group is 

contained within two reflectors; refer to Chapter 3) the traces of the Ridgeway and Purbeck 

Faults are kept the same in both sets of models.  In the models the dots locate the position of 

the sedimentary logs and the colours (dots and polygons) correspond to the facies associations 

defined in Chapter 6. In all the models, exposed land is interpreted to be located north of the 

faults (Figs. 7.4, 7.5, 7.7 and 7.8) due to the absence (non-deposition or deposition and 

subsequent erosion) in both sub-surface data and field exposures of the Purbeck Limestone 

Group (refer to Chapter 3). Consequently, the traces of faults are considered to locate the 

palaeoshorelines (Figs. 7.4, 7.5, 7.7 and 7.8). However there are more uncertainties to the south 

as only limited data are available in this area. 

 

3.1. Scenario 1 

3.1.1. Models 

 

This first scenario is driven by the possible influence of the relay ramp area identified in 

the sub-surface data (refer to Chapter 3) and by previous authors (refer to Chapter 2). In 

addition this scenario follows the general depositional model in relay ramp setting as 

presented in the previous section (Fig. 1C; Wilson et al., 2000; Fossen, 2010).  

In this scenario shallower areas (i.e. the margins in red in figures 7.4 and 7.5) are located 

on the hanging-wall blocks and along the faults and following a NE-SW facies trend in the 

centre part of the studied area connecting the Lulworth region, located on the fault scarp, to 

the Isle of Portland exposures, located over the dip slope (Figs. 7.4 and 7.5). Consequently 
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deeper areas (in blue and/or orange in figures 7.4 and 7.5) were most likely located to the east 

and to the west of this NE-SW facies trend (Figs. 7.4 and 7.5). 

The three models for the Skull, Hard and Soft Cap beds do not show significant changes 

through time in the facies distribution with this NE-SW trend located at the same position 

(Figs. 7.4 and 7.5). This facies trend appears to be located in the centre part of the area and 

aligned with the relay ramp area (Figs. 7.4 and 7.5; refer to Chapter 3). The main emergent 

areas are seen at the Ridgeway relief road cutting, Friar Waddon well and Dungy Head at the 

time of the deposition of the Skull Cap (Figs. 7.4C and 7.5C); and at Broadcroft Quarry, 

Perryfield Quarry and Holworth House at the time of the deposition of the Soft Cap (Figs. 7.4A 

and Fig. 7.5A) where lacustrine facies are absent. These areas are interpreted to locate 

emergent areas with soils. 

The main changes between the three models for of the Cap beds are in the locations of 

the interpreted depocentres. At the time of the Skull Cap deposition, thicknesses do not 

exceed 1.50 m and one depocentre is interpreted to be located following the NE-SW facies 

trend with the thickest deposits over the Isle of Portland (Figs. 7.4C and 7.5C). At the time of 

the Hard Cap deposition thicknesses do not exceed 7 m and with or without the Deep 

lacustrine facies association, two depocentres are interpreted (Figs. 7.4B and 7.5B); one 

located on the hanging-wall block in the centre of the Ridgeway Fault; and one that coincides 

with the NE-SW facies trend. To the east of the studied area less than 2 m of strata was 

deposited (Figs. 7.4B and 7.5B). Similarly, at the time of the Soft Cap an important feature is 

the emergent area between Lulworth and the Isle of Portland that might separate a basin to 

the west from a basin to the east (Figs. 7.4A and 7.5A). Therefore two depocentres are also 

interpreted at that time; one in the hanging-block of the Ridgeway Fault; and one east of the 

NE-SW facies trend in the central part of the studied area (Figs. 7.4A and 7.5A).  
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Figure 7.4 Tectono-sedimentary models of the Mupe Member following scenario 1 with the Deep 
lacustrine facies association. A – At the time of the Soft Cap bed deposition. B – At the time of the Hard 
Cap bed deposition. C – At the time of the Skull Cap bed deposition. Note that the western part of the 
Ridgeway Fault trace in dashed line was not imaged with seismic data and is after Harvey and Stewart 
(1998). Note that the red areas correspond to the shallow microbial mounds (tabular and small, refer to 
Chapter 5) and the orange areas correspond to the deeper expression of the microbial mounds (the big 
and complex shaped mounds and stromatolites, refer to Chapter 5). 
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Figure 7.5 Tectono-sedimentary models of the Mupe Member following scenario 1 without the 
Deep lacustrine facies association. A – At the time of the Soft Cap bed deposition. B – At the time of the 
Hard Cap bed deposition. C – At the time of the Skull Cap bed deposition. Note that the western part of 
the Ridgeway Fault trace in dashed line was not imaged with seismic data and is after Harvey and 
Stewart (1998). Note that the red areas correspond to the shallow microbial mounds (tabular and small, 
refer to Chapter 5) and the orange areas correspond to the deeper expression of the microbial mounds 
(the big and complex shaped mounds and stromatolites, refer to Chapter 5). 
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3.1.2. Validity of the scenario 1 models 

 

The facies trends interpreted in the three models proposed in this study show that the 

shallowest areas are on (1) the hanging-wall blocks of the faults; and (2) aligned with the relay 

ramp area with a NE-SW trend. Due to their vicinity and relationship with tectonic features 

(fault traces and relay ramp area) these facies trends suggest a tectonic control on the facies 

distribution.  

The application of these general principles presented in the previous section helps in the 

interpretation of the possible controls on the facies distribution of the Skull, Hard and Soft Cap 

beds. Facies are only found in the hanging-wall depocentres that indicate a non-deposition or a 

deposition and subsequent erosion on the footwall blocks (refer to Chapter 3). This suggests 

that the lower part of the Mupe Member most probably deposited in graben or half-graben 

system (as per description in the previous section). Due to the limitation of the sub-surface 

data coverage publically available, no information is available south of the Isle of Portland. 

Consequently in this study the half-graben system will be considered as the most appropriate 

tectonic model. In such condition the application of Platt and Wright’s (1991) model for 

lacustrine environments in half-graben setting appears to be the most relevant for this study 

(as per figure 7.2). However other authors interpreted one long (Butler, 1998) or two or three 

shorter (Lake, 1985; Harvey and Stewart, 1998; Underhill and Stoneley, 1998) north-dipping 

faults south of the Isle of Portland (refer to figure 2.2 in Chapter 2). If such faults were formed 

and were active at the time of the deposition of the Skull, Hard and Soft Cap beds, a graben 

system was more likely to occur than half-graben.  

The location of the depocentre in the centre part of the Ridgeway Fault (to the west) and 

absence of strata on the footwall blocks, suggests that there was a tectonic control during the 

deposition (Figs. 7.4 and 7.5). Moreover the maximum thickness recorded in these 

depocentres is around 5 m in the Hard Cap and 2.50 m in the Soft Cap (refer to Chapter 6) 

which means that the fault was respectively at least 500 m and 250 m long. The seismic 

interpretation and published works resulted in the recognition of the Ridgeway Fault over at 

least 40 km, which is compatible with this result. Concerning the northern part of the 

depocentre located near the NE-SW facies trend (around Lulworth area, Figs. 7.4 and 7.5), its 

location and the rapid thickness changes (refer to Chapter 6) suggest that there was also a 

tectonic control on the deposition. The maximum thickness recorded is about 5.50 m in the 

Hard Cap and 1.50 m in the Soft Cap meaning that the fault was respectively at least about 550 

m and 150 m long. The seismic interpretation helps to identify the Purbeck Fault over at least 
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40 km, however this depocentre appears to be located only on the western tip of the fault. 

This suggests that only a short portion of the Purbeck Fault was active during the deposition of 

the Hard Cap. As defined above, the maximum thickness recorded suggests that the fault was 

about 550 m long minimum. However the sedimentary logs where the thickest Hard Cap is 

recorded are West Lulworth Cove (±3.50 m), Fossil Forest (±5 m) and Mupe Bay (±5.50 m) with 

consequent thinning at Dungy Head (±1.70 m) to the west and Worbarrow Tout (±2 m) to the 

east (refer to Chapter 6). These locations are spread over about 5.5 km that suggest that the 

portion of the Purbeck fault active at the time of the Hard Cap deposition was centred more or 

less in Lulworth Cove and extended over this same length.  

The preferential deposition in the hanging-wall blocks of the faults was also suggested by 

Underhill (2002). However his depositional model is driven by application of general models of 

relay ramp systems to the facies of the Mupe Member limestones defined by West (1975) 

(refer to Chapter 2). In his model, Underhill (2002) proposed the deposition of conglomeratic 

fans in the vicinity of the faults and resulting from the erosion of the exposed Portland Group. 

However such a facies has never been found either by previous authors (Strahan, 1898; Arkell, 

1933, 1947; West, 1975; Francis, 1982, 1983, 1984, 1986) or in this study (field observations 

coupled with subsurface data analysis). Two possible reasons can explain the absence of this 

facies in Dorset; (1) as defined by Davison and Underhill (2012) the conglomeratic supply 

probably never reached the volume needed to deposit such coarse-grained alluvial fans in the 

hanging-wall blocks; or (2) the deposition of the eroded materials from the footwalls was 

routed away from the hanging-wall blocks possibly through relay ramp (Peacock and 

Sanderson, 1991); or 3) the faults did not break through to the surface and created a fault 

scarp necessary to create fans; or 4) if the eroded land was mainly limestone then most 

erosion would have been by dissolution rather than physical processes. If the two latter cases 

occurred, it will be impossible to find such facies as the supposed deposition area would have 

been eroded after the formation of the Weymouth Anticline (submarine outcrop of Oxford Clay 

in Weymouth Bay; refer to Chapter 3). 

Concerning the depocentres that coincide with shallow areas following a NE-SW facies 

trend in the Skull and Hard Cap beds, they appear to be aligned with the relay ramp area 

(Figs. 7.4 and 7.5). The relay ramp could have been the main water input via rivers into the 

lake (according to general models previously described, Fig. 7.3B). The running waters were 

presumably enriched in calcium carbonate through erosion and dissolution of exposed older 

carbonate deposits (such as the Portland limestones) and transported to the lake. This resulted 

in a saturation in respect of the calcium carbonate of the lake waters which is necessary for 
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the calcification of the microbial filaments to occur (as discussed in Chapter 6). Townson 

(1971) described and detailed facies and palaeoenvironment reconstructions of the underlying 

Portland Group and specifically the location of a NE-SW trend, or swell, in the central part of 

the area (Fig. 7.6). Townson (1971) showed that this swell had already formed during the 

deposition of the uppermost beds of the underlying Kimmeridge Clay Formation and that it 

persisted through to the uppermost beds of the Portland Group (the Freestone Beds). He 

showed that in the uppermost part of the Freestone Beds an oolitic shoal was deposited with a 

NE-SW trend that connected coastal outcrops at Lulworth area between Durdle Door and 

Mupe Bay with those of the west side of the Isle of Portland and that it was surrounded by 

carbonate mudstone to wackestone in deeper areas (Fig. 7.6). He showed that the shelly lime 

muds to the west of the oolitic shoal were deposited in a lagoon with the land located further 

to west; and to the east in deeper areas in a basinward direction (Fig. 7.6). However and 

although syn-rift tectonic settings are very well documented from the Permian to the mid-

Cretaceous (refer to Chapter 2), Townson (1971) did not take into account possible tectonic 

controls on the facies distribution and on the position of the swell. Nevertheless, this NE-SW 

oolitic shoal might have created a high with respect to areas accumulating lime mud and this 

high might have been inherited through to the NE-SW trend in the Skull, Hard and Soft Cap 

beds.  

 

 

 

 

 

 

 

 

 

Figure 7.6 Palaeoenvironmental reconstruction of the uppermost part of the Freestone Beds of the 
Portland Group (redrawn after Townson, 1971). The oolitic shoal in the centre part with a NE-SW trend 
is surrounded by shelly lime mud (the Top Grey Micrite). 

 
 
Another implication of the interpretation of this high on the palaeotopography is in the 

possible isolation of two sub-basins with different hydrologies. In Chapter 4 gypsum 

pseudomorphs are found in the Intraclastic peloidal packstone-grainstone facies in the Hard 

Cap sections eastwards from West Lulworth Cove and in the nucleus of ooids in the Soft Cap at 
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Mupe Bay and Worbarrow Tout; whereas evaporites are absent from sections to the west. The 

position of such high in the Hard Cap and the emergent land in the Soft Cap west of Lulworth 

(Figs. 7.4A-B and 7.5A-B) may have acted as a barrier to fluid flow and mixing. Following this 

scenario, the principal water input into the lake was most likely via the relay ramp area 

(Figs. 7.4 and 7.5). Such a situation would involve a more brackish condition to the west and 

more saline or hypersaline condition to the east consistent with the field data on the 

occurrence of evaporites. Similar depositional settings are observed in the Great Salt Lake 

(Utah, USA) where an extensional fault crosscuts the lake from Hat Island to Promontory Point 

and separates a north basin from a south basin (refer to Chapter 6; Baskin, 2014). Most of the 

freshwater input (95%) is into the south basin via four river systems, creating local variation of 

water conditions in the south and in the north due to variability in freshwater input, physical 

barrier, evaporation, currents and wind (Hahl and Langford, 1964; Baskin, 2014).  

This facies trend or “swell” was previously described by other authors such as West (1975) 

and Francis (1982) and was considered to be present through Purbeck time (refer to Chapter 

2). These studies focused on the palaeoenvironmental reconstructions of the Mupe Member 

deposits through comparisons with modern day environments such as the Persian Gulf or 

Shark Bay (Australia; refer to Chapter 2) and did not take into account the tectonic setting of 

the study area. Although both authors interpreted hypersaline waters throughout the area, 

they considered that this “swell” in the central part of the area might define western and 

eastern sub-basins that could explain the slight difference of salinity from west to east (refer to 

Chapter 2). If the extensional faults and the relay ramp area were taken into consideration (see 

above) then this provided a possible explanation for the NE-SW facies belts of West (1975). 

Underhill (2002) did take into account the tectonic settings and in addition to the preferential 

sediment accumulation in hanging-wall blocks, he demonstrated that sediment supply could 

have occurred through the relay ramp (refer to Chapter 2).  

 

3.2. Scenario 2 

3.2.1. Models 

 

This second scenario is driven by the possible influence of normal fault features and 

geometries as imaged on the sub-surface data (refer to Chapter 3) that are also very common 

in half-grabens in rift systems (Fossen, 2010). 

In this scenario the same data points are contoured into two shallower areas (i.e. the 

margins in red in figures 7.7 and 7.8). These shallow areas are interpreted to show an E-W 
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trend, located along the faults to the north and in a potential shallow area to the south that 

correspond to the dip slope of the hanging-wall block. Consequently deeper areas (in blue 

and/or orange in figures 7.7 and 7.8) are located in the central part of the study area with the 

same E-W trend as the margins. Therefore with this scenario the lake appears to be rather 

elongated E-W and parallel to the shoreline and the relay ramp has insignificant topography 

(Figs. 7.7 and 7.8). 

With this scenario the facies trends appear to be similar in the three Cap beds apart from 

the same exposed areas described in the previous models and the interpreted isopachytes (see 

above). The isopachs can also be contoured to match the E-W facies trends. At the time of the 

Skull Cap deposition only one depocentre is interpreted to be located to the south area around 

Portland (Figs. 7.7C and 7.8C). At the time of the Hard Cap deposition the isopachs are 

interpreted to have E-W facies trends, however, two main depocentres appear to be located at 

the same position as per previous scenarios (Figs. 7.7B and 7.8B): one on the hanging-wall 

block of the Ridgeway Fault and one in the central part of the area near the Purbeck Fault with 

a NE-SW trend (Figs. 7.7B and 7.8B). At the time of the Soft Cap deposition only one main 

depocentre can be contoured which is centered on the hanging-wall block and in the centre 

area of the Ridgeway Fault (Figs. 7.7A and 7.8A). 
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Figure 7.7 Tectono-sedimentary models of the Mupe Member following scenario 2 with the Deep 
lacustrine facies association. A – At the time of the Soft Cap bed deposition. B – At the time of the Hard 
Cap bed deposition. C – At the time of the Skull Cap bed deposition. Note that the western part of the 
Ridgeway Fault trace in dashed line was not imaged with seismic data and is after Harvey and Stewart 
(1998). Note that the red areas correspond to the shallow microbial mounds (tabular and small, refer to 
Chapter 5) and the orange areas correspond to the deeper expression of the microbial mounds (the big 
and complex shaped mounds and stromatolites, refer to Chapter 5). 
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Figure 7.8 Tectono-sedimentary models of the Mupe Member following scenario 2 without the 
Deep lacustrine facies association. A – At the time of the Soft Cap bed deposition. B – At the time of the 
Hard Cap bed deposition. C – At the time of the Skull Cap bed deposition. Note that the western part of 
the Ridgeway Fault trace in dashed line was not imaged with seismic data and is after Harvey and 
Stewart (1998). Note that the red areas correspond to the shallow microbial mounds (tabular and small, 
refer to Chapter 5) and the orange areas correspond to the deeper expression of the microbial mounds 
(the big and complex shaped mounds and stromatolites, refer to Chapter 5). 
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3.2.2. Validity of the scenario 2 models 

 

The facies trends interpreted in this second scenario for the Skull, Hard and Soft Cap beds 

show two E-W trends to the north along the faults and to the south crossing the Isle of 

Portland (Figs. 7.7 and 7.8). The depocentres were re-contoured with this scenario for the 

facies distribution but remain more or less similar and at similar position to those shown for 

the previous models with the exception of the Skull Cap (Figs. 7.7 and 7.8). In this second 

scenario the Skull Cap depocentre appears to be to the south of the area rather than with a 

NE-SW direction in the central part (Figs. 7.7C and 7.8C). 

The application of the general models for deposition in rift systems presented above help 

to support the second scenario models. First of all in this study the horst model is not thought 

to have occurred as the Ridgeway and the Purbeck Faults are both south-dipping and no faults 

were imaged south of the Isle of Portland (refer to Chapter 3). According to this scenario the 

half-graben system is the most appropriate tectonic model as it is not possible to know if there 

is a fault south of the Isle of Portland as for the previous scenario. This half-graben system was 

previously proposed by Underhill and Paterson (1998). 

During the deposition of the Skull Cap bed, the one depocentre is further to the south 

compared to the previous models (Figs. 7.7C and 7.8C). This can be interpreted due to a 

tectonic control following the half-graben system model or with no fault-related control. In the 

case of a half-graben system control the activity of the normal fault south of the Isle of 

Portland identified by previous authors is critical as the roll-over anticline with the greatest 

accommodation space may have been located on the hanging-wall block of this fault. In the 

case of no fault-related controls, the facies trends and the depocentre location show that the 

deposition occurred on a margin of a gently southerly sloping basin floor (with local and lateral 

variation of facies) with the depocentre located in a southern basinward direction. 

During the deposition of the Hard and Soft Cap beds, the E-W facies trends and the 

depocentres are relatively similar showing a preferential accumulation overall in the central 

part (Figs. 7.7A-B and 7.8A-B). Two slightly more important sites for the accumulation appear 

to be located in the hanging-wall block of the Ridgeway Fault to the west and in the central 

part of the studied area between the Isle of Portland and Lulworth area (Figs. 7.7A-B and 7.8A-

B). With this scenario, if a fault to the south of the Isle of Portland exists and was active then a 

graben can be thought to control the facies trends. If the fault does not exist then a half-

graben system is more likely. In the case of a graben system, the shallow margins were located 

to the north and to the south on the fault scarps separated by a deeper area in between (as 
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per facies trends in figures 7.7A-B and 7.8A-B). Following this model, the graben will control 

the shape and size of the lake. However in such a model, the deposition is more likely to occur 

on top of the footwall of the faults (as per general models in figure 7.1B).  

These scenario models appear to be closer to the Platt and Wright (1991) general model 

for lacustrine carbonate deposition in graben system (Fig. 7.2) where the size and shape of the 

lake is controlled by the size of the roll-over anticline. However in the Hard Cap the depocentre 

with a NE-SW trend in the central part of the area indicates that the relay ramp was most likely 

developing at the same time. The relay ramp would be the main route for water input as 

suggested by the shallow and thick deposits (as per previous scenario). 

 

4. Summary and conclusion 

 

The two scenarios presented in this chapter show slightly different interpretations of the 

same data on facies distribution and thickness variations. However the first scenario with a NE-

SW facies trend in the central part of the area is thought to better illustrate the depositional 

and tectonic settings at the time of the deposition of the Skull, Hard and Soft Cap beds.  The 

integration of field data, facies distribution and depositional settings (as defined in previous 

Chapters) appears to be better constrained with the first scenario. The lateral correlation of 

facies trends and the location of the depocentres suggest tectonic controls on the hydrology, 

water flow and deposition. In addition this scenario is constrained with the possible 

palaeotopography inherited from the palaeogeographies of the uppermost part of the 

Freestone Beds of the Portland Group. This scenario is also comparable to previous 

palaeogeographies for the Mupe Member (West, 1975 and Francis, 1982) even if these differ 

in depositional settings with the models proposed in this study. 

According to these models the Hard and Soft Cap facies distributions are similar and 

different from that of the Skull Cap. The southern location of the interpreted depocentre in the 

Skull Cap suggests that there were no tectonic controls on the facies distribution at the time of 

the deposition of this bed. This suggests a rather gently south-dipping margin with very minor 

variations in thickness. With respect to the Hard and Soft Cap beds, the facies distribution and 

location of the depocentres indicate clear tectonic controls. However as no deep facies were 

recorded in the field, the occurrence of the Deep lacustrine facies association can only be 

inferred from the facies models and its occurrence in the lowest part of the Mupe Member 

(refer to Chapter 6). 
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Tectonics are also thought to control the deposition at a larger scale where the relay ramp 

influenced the sediment routes and preferential accumulation at the more local scale that 

overall occurred on top of a roll-over anticline within the half-graben system. The thicknesses 

of the Hard Cap in the hanging-wall depocentres near the Ridgeway and Purbeck Faults 

possibly supplies information of fault activity. The Ridgeway Fault was most likely the main 

fault active during the deposition of the Hard Cap while a shorter section (about 5.5 km long 

and centered in Lulworth area) of the Purbeck Fault was active at that time. 

Concerning the controls on the deposition of the whole Mupe Member (in particular for 

the Cypris Freestone beds and including the Broken Beds) an important variation of facies is 

observed from west to east. To the west the facies and biotas reflect a more brackish water 

lake while they reflect a more hypersaline water lake to the east (refer to Chapter 6). This 

suggests that either the NE-SW facies trend persisted through from the Cypris Freestone beds; 

or that it controlled the creation of a lake floor high separating two sub-lakes with different 

hydrology as per Hard and Soft Cap beds deposition. As proposed above for the Skull, Hard and 

Soft Cap beds the relay ramp might have provided a freshwater input into the system, that was 

running and eroded exposed carbonate rocks of underlying beds. This water input coming 

from the land would have promoted carbonate sediment production in the shallow waters of 

the relay ramp that would then have built up the interpreted NE-SW high (refer to Chapter 6). 
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Chapter 8 

Synthesis and conclusions 
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1. Introduction 

 

This thesis describes and discusses, from basin- to local-scale, the origin of the lacustrine 

carbonates of the Mupe Member of the Purbeck Limestone Group that are extensively 

exposed along the south Dorset coast. As a conclusion this chapter aims to answer the 

research questions posed in the introduction (Chapter 1) and to summarise the main findings 

that have been presented in each chapter. This highlights the new findings of this study and 

the importance of studying lacustrine carbonate analogues, such as the Mupe Member 

deposits, to reduce uncertainty in petroleum exploration and development. 

 

2. Syn-rift setting of the Wessex Basin 

 

Published tectonic models for non-marine carbonates in extensional basins setting, unlike 

their marine counterparts, are few and limited in their predictive value. General models for 

sediment accumulation within an extensional terrain propose that stratigraphic thicknesses 

are expected to be greater in hanging-wall depocentres, strata thicken through the basin 

towards the faults and also towards the central part of the fault traces (Withjack et al., 2002; 

Dorobek, 2008; Fossen, 2010). Although these models, in the main, are based either on 

fieldwork or on borehole data correlations, they are very generalised and do not contain 

enough details particularly concerning facies distribution in such extensional basins. The widely 

cited Platt and Wright (1991) model for half-graben system, as presented in figure 7.2 in 

Chapter 7, documents the expected location of lake formation to be in the hanging-wall blocks 

and near the fault with the footwall block exposed, and with thickness of lacustrine deposits 

increasing towards the fault. In addition these authors documented at the regional-scale, the 

facies distribution in these hanging-wall lakes, with laminites deposited in basinal areas and 

bioherms deposited in marginal areas. Although this model shows lake locations, it remains 

too generalised to decipher possible controls on facies distribution at the local-scale and in 

particular which facies are expected to be deposited and their relationships. Similarly Bohacs 

et al. (2000) models for underfilled and balanced-fill lake types, as presented in figure 6.14 in 

Chapter 6, illustrate a comparable scenario with lakes forming preferably in the hanging-wall 

blocks of extensional faults while the footwall area is exposed. They also documented that 

thickness of lacustrine deposits increases towards the faults and commonly show greater dips 

than on lakes without tectonic controls. In addition they illustrated the facies distribution at 

the same regional-scale as Platt and Wright (1991) with carbonates on the marginal areas and 
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mudstones in the basinal areas. However, as for previous models presented, very few details 

were brought on the different types of carbonates possibly deposited on the margins (only 

stromatolites expected in the shallowest parts and ooids in slightly deeper areas) and it 

appears that, according to these models, carbonates are not deposited in deeper areas. 

The seismic interpretation, undertaken in this study in Chapter 3, integrates 2-D and 3-D 

seismic profiles, from onshore and offshore, calibrated with borehole data and nearby coastal 

outcrop geology. Correlations of borehole data integrated to the seismic interpretation have 

enabled the production of a time thickness map for the Purbeck Limestone Group. This shows 

that the Ridgeway and Purbeck Faults were active during the deposition of the Purbeck 

Limestone Group as the thicknesses of the three units (anhydrite, limestone and claystone), 

very well documented onshore, are greater in hanging-wall depocentres and towards the 

faults. Within these hanging-wall depocentres, the facies distribution appears to be controlled by 

the lateral propagation of the syn-sedimentary extensional faults and the development of a relay 

ramp. 

Although the syn-rift setting of the Wessex Basin is very well documented from the 

Permian through to the mid-Cretaceous, nothing has previously been published for the time of 

the deposition of the Purbeck Limestone Group. The seismic interpretation undertaken in this 

study shows that during the deposition of the non-marine carbonates of the Mupe Member 

the Wessex Basin was in an active extensional setting. Consequently this study brings a new 

analogue for lacustrine deposition in extensional setting and emphasises the importance of the 

integration of seismic interpretation with borehole data correlations and field geology to 

better constrain and characterise tectonic setting of depositional successions. 

 

3. Non-marine carbonates of the Mupe Member 

 

The intensive fieldwork undertaken during this project resulted in the production of 22 

sedimentary logs: 3 located to the west near the Ridgeway Fault; 9 located to the east near the 

Purbeck Fault; and 10 located to the south over the Isle of Portland and far from the faults. The 

systematic sampling and thin section analysis of most beds enabled the definition of 9 facies 

grouped into 5 facies associations: the Deep lacustrine facies association composed of the 

Wackestone to fine grainstone facies; the Emergent facies association composed of the 

Conglomerate and Carbonaceous marl facies; the Mounded marginal lacustrine facies 

association composed of the Microbialite facies (sub-divided into the Thrombolite, 

Stromatolite and Burrowed peloidal packstone sub-facies) and the Intraclastic peloidal 
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packstone-grainstone facies; and the Hypersaline lacustrine facies association composed of the 

Cross-bedded peloidal packstone-grainstone, the Gypsiferous peloidal packstone, the 

Calcareous sandstone and the Evaporite facies (sub-divided into Vuggy and Breccia sub-facies). 

The integration of this facies classification with facies transition analysis, field observations and 

comparison with modern analogues results in the interpretation of 2 depositional 

environments and 2 facies models for the Mupe Member: an earlier brackish water lake and a 

later hypersaline water lake. In addition this illustrates a separation between a western area 

where more brackish waters existed and an eastern area that was more hypersaline, possibly 

due to a high in the palaeotopography aligned with the relay ramp area. 

This study indicates that the palaeoenvironments were initially brackish water lacustrine 

as opposed to the hypersaline lagoons as interpreted by West (1975, 1979) and by Francis 

(1982). In addition the 2 new facies models depicting the two depositional environments 

proposed in this study help to understand that the hypersaline conditions interpreted by West 

(1975) only appeared in the second half of the Mupe Member (from the Soft Cap upwards) 

and were mainly located to the east of the studied area (Lulworth eastwards).  

In a broader context, this study provides more detail to the generalised facies models for 

lacustrine carbonates defined by Platt and Wright (1991) and Bohacs et al. (2000) giving new 

perspectives on the importance of tectonic setting, on facies distribution at small-scale on 

shallow lacustrine margins, and in particular on microbial mound distribution.  

 

4. Microbial mounds 

 

A main focus of this project was on the morphologies, sizes and distribution of microbial 

mounds deposited in the Skull, Hard and Soft Cap beds in association with the inter-mound 

facies (the Intraclastic peloidal packstone-grainstone facies). The detailed study and 

interpretation of the lidar surveys over the Isle of Portland, with integration of fieldwork, 

resulted in the definition of two main mound types; tabular to domal. These latter mounds are 

also taller and more complex and can be developed around tree remains such as in-situ 

stumps, fallen trees and/or branches. In the Skull Cap bed, mounds are rather small, up to 50 

cm high and 1 m wide in 2-D with a tabular shape and are not associated with tree remains. In 

the Hard Cap bed, mounds exhibit a wide range of complex morphologies and sizes with 

tabular to domal mounds up to 50 cm high and 1 m wide; and tall mounds between 20 cm and 

3 m high with sub-circular plan views up to about 6.50 m in diameter with complex shapes in 2 

and 3-D. These mounds are very often associated with in-situ and transported tree trunks and 
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branches. In the Soft Cap bed the mounds are similar to those of the Skull Cap bed with the 

difference that they tend to be more domal shape and to develop around in-situ tree stumps 

and fallen trees that gives them an overall doughnut shape in 3-D.  

The study of the relationships between microbial mounds and inter-mound facies shows 

that when the mounds are tall with a complex shape, they developed interdigitations with the 

inter-mound facies. In total 3 interdigitations are identified in these mounds that are thought 

to form positive relief on the lake floor topography. These interdigitations are identified at 

about 50 cm, 1 m and 1.50 m from the base of the Hard Cap bed, that most likely reflect 

palaeo-lake level fluctuations. 

Geometrical characterisation of mound morphologies with shape and roundness 

parameters indicates that the mounds tend to be tabular to domal when small and evolving to 

more complex shapes with size; and that these differences are due to external physical 

controls such as sediment input, lake water level fluctuations and calcium carbonate 

saturation of the waters. Such morphological characterisation of microbial mounds using 

geometrical techniques (also called morphometrics) is surprisingly not commonly used in the 

literature as Hofmann’s (1976 and 1994) microbialite morphometric studies are the only 

available in the literature. As a consequence this study shows the importance of the 

geometrical characterisation of microbial mound morphologies and sizes in 2-D and 3-D 

(wherever possible). This can lead to interpretation of physical external controls on microbial 

growth and microbial mound shapes and sizes such as described above with water level 

fluctuations, sediment input, water chemistry and climate effect, and their inter-relationships. 

 

5. Lacustrine sequences in the Mupe Member 

 

The analysis of the sedimentary logs and upward facies transitions enables the 

identification of four meter-scale lacustrine cycles, that are deepening upward and then 

shallowing-upward after a flooding surface, during the deposition of the Mupe Member. These 

correspond to the Transition Bed, Skull Cap, Hard Cap, Soft Cap and Cypris Freestone beds. 

These cycles are bounded by sub-aerial exposure surfaces corresponding to the tops of the 

Portland Group, Transition Bed, Skull Cap and Hard Cap beds and can therefore be labelled as 

sequence. These sequences are composed from bottom to top of lowstand deposits made of 

paleosols with rooted trees; a transgressive surface; transgressive deposits made of microbial 

mounds and inter-mound facies; a flooding surface or zone exclusively made of the inter-

mound facies; and highstand deposits made of microbial mound and/or inter-mound facies or 
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the Evaporite facies and/or the Cross-bedded peloidal packstone-grainstone facies. Most 

importantly for this study is that microbial mounds appear to develop preferentially as 

transgressive deposits as lake margins expanded.  

In addition the sequence stratigraphic analysis proposed here helps to understand 

external controls on microbial growth and shows that the termination of growth was most 

likely due to a change in the calcium carbonate saturation of the lake waters when microbial 

mounds grow in a transgressive deposit system; and due to lake level fall consequently 

associated with exposure and erosion of microbial mounds that grew within lake highstands. 

This study is the first to identify depositional sequences and a sequence stratigraphic 

model for the Mupe Member of the Purbeck Limestone Group and shows that in lacustrine 

settings, carbonate deposition is highly variable with changes that can happen very rapidly 

through time and space. This is illustrated with the Deep lacustrine facies association of the 

Transition Bed that is bounded by two sub-aerial surfaces and paleosols; and with the 

termination of microbial growth due to rise of lake level and modification of water chemistry. 

In addition the transgressive microbial deposits in a deepening-upward trend is in 

accordance with published generalised models for lacustrine carbonates (Bohacs et al., 2000, 

2003; Hanneman and Wideman, 2010; Tänavsuu-Milkeviciene et al., 2012; Sarg et al., 2013). 

Particularly this study shows that lake type evolved from an earlier balanced-fill to a later 

underfilled model of Bohacs et al. (2000) where carbonate deposition is more likely to occur in 

these lake types. Bohacs et al. (2000) also specified that lacustrine carbonates are usually 

formed through vertical aggradation with flooding surfaces marked by distinct lithologic 

changes. Overall the sequence stratigraphic analysis proposed here helps to better understand 

the controls on the accumulation of lacustrine carbonates such as lake level fluctuations, 

subsidence, water chemistry, climate or sediment input (Platt and Wright, 1991; Gierlowski-

Kordesch, 2010; detailed below). 
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6. Controls on facies distribution 

 

Controls on lacustrine carbonates distribution are numerous and strongly inter-related, 

and can affect carbonate deposition at several scales. Platt and Wright (1991) and Gierlowski-

Kordesch (2010) summarised these controls and defined three main factors that control 

lacustrine carbonate deposition, hydrology, sediment input and temperature changes that are 

themselves impacted by tectonics and climate. Below these aspects are discussed at two 

scales. 

 

6.1. Basin-scale 

 

In this study, the Mounded marginal lacustrine facies were deposited in the shallowest 

parts of the lake in a half-graben basin in the hanging-wall depocentres and on the hanging-

wall dip slope over the Isle of Portland. The Deep lacustrine facies were deposited in the 

deepest parts of the lake possibly in the central area of the half-graben basins. The Hypersaline 

lacustrine facies were predominantly deposited eastwards of Lulworth area, away from the 

lake margins and towards the basin centre. The Bedded marginal lacustrine facies were 

deposited across the study area. Because the focus of this study was on the microbial mounds 

and associated facies, 3 tectono-sedimentary models for the Skull, Hard and Soft Cap beds are 

proposed according to 2 possible scenarios. However scenario 1 with the development of a NE-

SW facies trend aligned with the relay ramp is preferred because it better integrates all the 

data acquired (seismic interpretation, fieldwork, facies distribution and inherited structures 

from the underlying Portland Group).  

At the basin scale the deposition at Hard and Soft Cap times appear to be tectonically 

controlled: 1) by the lateral propagation of the extensional faults as illustrated with the 

locations of the depocentres in the hanging-wall blocks very close to the Ridgeway and 

Purbeck Fault traces; and 2) by the development of the relay ramp as illustrated with the NE-

SW facies trend aligned with the relay ramp area. In this system and at this scale, microbial 

mounds are found in the shallowest parts of the lake where their growth was most likely 

controlled by lake level fluctuations and calcium carbonate saturation of the waters. These 

were controlled either by tectonics that resulted in an increase of subsidence and 

accommodation space; or by the climate with which an increasing precipitation rate resulting 

in a rise of lake level and increase of accommodation space (see also below); or a combination 

of both. Contrarily, during the deposition of the Skull Cap bed no main depocentres or facies 
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trends were recorded. This indicates that the deposition was most likely occurring in gently 

south-dipping margins and it appears that at that time tectonics was not controlling lake level 

fluctuations but rather that the climate was an important influence on the water chemistry 

and sediment input. 

This study is in accordance with the published models for extensional non-marine basins 

that show that tectonics control the distribution, nature and thickness of deposits in hanging-

wall depocentres (Platt and Wright, 1991). Following these models, lakes are expected to form 

in the hanging-wall depocentres and with thicknesses of deposits expected to be greater close 

to and in the central part the fault traces (Platt and Wright, 1991). This is documented to be 

the case in the Purbecks but, in addition shows the important 3-D effect of a fault relay ramp 

and how specific facies occur in different parts of this basin. Platt and Wright’s (1991) models 

are mainly illustrating deposition in 2-D which limit their predictive value. This study shows the 

importance of integrating different techniques in 3-D in order to characterise basin-scale 

controls on lacustrine carbonate deposition and to increase the predictive value of such 

models.  

 

6.2. Small-scale 

 

At a smaller-scale the detailed study of the microbial mounds shows that they grew on 

the shallowest areas either around tree remains or when not associated with trees, they tend 

to prefer highs in palaeotopography inherited from the underlying irregular sub-aerial 

exposure surfaces and paleosols. In addition the integration of the sequence stratigraphic 

analysis, characterisation of mound morphologies and sizes and comparison with modern 

analogues help to define the main controls on the microbial mound growth. The tabular 

shapes of the mounds indicate that the microbial communities could not continue with 

upward growth due to water level limitations and consequently developed laterally. Domal 

mounds can locally be found together with tabular mounds and this suggests that most likely 

mounds start to form as domal shapes and, if unconstrained continue to grow with this 

morphology, but they may modify their shape to tabular if constrained by lake level. The three 

interdigitations of the tall and complex shaped mounds with inter-mound sediments indicate 

control of morphology by palaeo-lake levels. In addition the expansion and contraction of the 

wings of these complex shaped mounds suggest that the microbial growth was mainly 

controlled by sediment input rather than water level fluctuations. However the occurrence of 
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trees and the water chemistry can have additional important roles in the microbial growth and 

resulted morphologies.  

Concerning the occurrence of trees, in the Hard Cap bed, mounds are clearly associated 

with tree trunks and branches, in-situ or transported, that, together with deeper lake waters 

enabled the microbial community to grow higher than in the Skull and Soft Cap beds; and that 

resulted in the tall and complex shapes that are stratigraphically thicker units. In the Soft Cap 

bed, mounds are associated with in-situ tree stumps and large fallen trees but did not grow as 

in the Hard Cap bed and remained short, domal and tabular probably due to shallower lake 

waters than in the Hard Cap bed. Alternatively, in the Skull Cap bed, mounds were never 

identified associated with tree remains and with short and tabular shapes. This indicates that 

the morphology of these mounds was controlled by water level and in shallow water lake 

margins, rather than due to occurrence of tree remains. In addition, in this bed, mounds were 

preferentially growing from highs before growing over lows inherited from the erosional 

surface of the Portland Group (as imaged with the integration of 3-D forward modelling). 

These show that the occurrence of trees together with lake level fluctuations and sediment 

input lead to different morphologies. 

Concerning the water chemistry and in transgressive depositional systems, the inter-

mound sediments are either covering pre-existing mounds and/or onlapping onto domal 

mounds. This suggests that the mounds stopped growing before being covered with 

sediments. This termination of growth can be due to a decrease of the saturation in regards to 

calcium carbonate of the waters that reduced the calcification of microbial filaments; or to an 

increase of sediment input into the lake; or a combination of both processes. 

This study provides a valuable new case study of fossil microbial mounds that developed 

on the shallow margins of a brackish water lake and the importance of integrating a 

morphological characterisation of the mounds. This integration resulted in a characterisation 

of the external controls on the microbial growth and mound distribution such as the 

importance of palaeo-lake level fluctuations, water chemistry (in particular the calcium 

carbonate saturation), sediment input into the lake and topography of the lake floor (including 

occurrence of tree remains); and provided relevant information for palaeoenvironmental 

reconstructions. In addition the preliminary integration of 3-D forward modelling illustrates 

the importance of numerical modelling to further characterise these controls (Kozlowski, in 

prep.). This study also emphasises the high variability of non-marine carbonate deposition as 

illustrated with the rapid modifications in the facies distribution in a syn-rift setting through 

time and space. 
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7. Potential petroleum system 

 

Preliminary characterisation of the pore system using classic petrographic analyses 

coupled with fieldwork and lidar surveys at outcrop scale helped to propose potential reservoir 

and seal units.  

The main units that are potential reservoirs are the microbial mounds and inter-mound 

facies of the Skull Cap, Hard Cap, Soft Cap beds and the coarse-grained facies of the Cypris 

Freestone. The potential seal units or units that might be barriers to flow would be the fine-

grained facies of the Transition Bed, the paleosols of the Basal Dirt Bed, Lower Dirt Bed and 

Great Dirt Bed and the evaporites of the Broken Beds.  

The microbial mounds of the Cap beds show a very high macro-porosity inherited from 

the thrombolitic texture together with the tree moulds that create mm- to dm-scale cavities. 

This high porosity is also confirmed at micro-scale with high framework, intergranular and 

micro-porosity types characterising the Microbialite facies. As a consequence the microbial 

mounds are thought to be the best reservoir units in this potential petroleum system. However 

these highly porous mounds are surrounded by the inter-mound facies that does not appear to 

be porous at outcrop scale despite the coarse-grained texture. This low porosity is confirmed 

at micro-scale where the Intraclastic peloidal packstone-grainstone facies shows a rather low 

porosity with two main types intergranular and mouldic porosity types and both primary and 

secondary pores largely filled with mosaic to blocky calcite cements in samples obtained from 

outcrops. 

The Cap beds where microbial mounds are found are bounded by sub-aerial surfaces and 

deposition of low to impermeable paleosols. Moreover at outcrop and in 2-D view, the highly 

porous microbial mounds appear to be isolated within the less porous inter-mound facies. This 

illustrates the high lateral heterogeneity of such potential reservoir units and in such situation 

this petroleum system will be very risky to produce as the uncertainty will be very high. This 

uncertainty will be due to the non-predictive value of fieldwork-based study and numerous 

vertical wells would be needed to reach as many mounds as possible. However this study 

documents that these highly porous microbial mounds appear to be found in three extensive 

units at least in an area about 50 km long (from the Isle of Portland to Swanage) and 15-20 km 

wide (from Portesham to the Isle of Portland). This illustrates that although the reservoir units 

show a high lateral heterogeneity, this potential petroleum system appears to be layered and 

extensive. In such situation, horizontal wells along each of these reservoir units might be the 
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best solution to reduce the uncertainty and consequent risk in the production of this potential 

petroleum system. 

To reduce this uncertainty and improve the predictive value of this study, a multi-scale 

approach and the integration of stratigraphic 3-D numerical forward modelling is needed. This 

study was realised as part of a wider project that involves another PhD (Kozlowski, in prep.). In 

this inter-related study the third dimension was considered in order to test multiple scenarios 

of fault activity and carbonate production. This will help to predict the facies distribution at the 

regional scale and the mound distribution and the controls on microbial growth at a more local 

scale. This project shows the importance of inter-related multi-scale approach type of study to 

1) enhance the predictive value of purely field-based studies or purely numerical modelling 

studies; and 2) reduce the uncertainty and the effective cost in the production of similar 

petroleum systems such as the South Atlantic reservoirs as described in the introduction of 

this thesis. 
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8. Analogue of South Atlantic reservoirs 

 

The Purbeck Limestone Group is considered as a possible analogue for the South Atlantic 

basins as they share a number of similarities. The lacustrine deposits in the southeast Atlantic 

basins evolve from freshwater, brackish to alkaline lake waters with development of microbial 

build-ups on fault blocks in a syn-rift setting (Chaboureau et al., 2013; Saller, 2015; Saller et al., 

2016). Similarly in the Wessex Basin (southern England), the Purbeck limestones are 

interpreted to be deposited in brackish, saline and freshwater lakes. In this thesis it is shown 

that microbial mounds occurred in brackish water conditions overlain by sulphate evaporites 

(gypsum and anhydrite). The Atlantic margins are organised in several extensional basins 

(Campos offshore Brazil, and Namibe and Kwanza offshore Africa for example, Fig. 8.1) that are 

elongated and about 200-300 km long (Fig. 8.1). Similarly the Wessex Basin is about 400 km 

long, made of three extensional sub-basins (Fig. 8.1); the Portland-Wight, Pewsey and Weald 

and each of these is about 200 km long and rather elongate (refer to Chapter 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.1 Size comparison between the Wessex Basin (A) and South Atlantic basins (B, redrawn 

after Chaboureau et al., 2013). 
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The syn-rift phase of the Brazilian and West African margin basins is dated as Early 

Cretaceous (Mid-Hauterivian to Early Aptian, Fig. 8.2, Beglinger et al., 2012) and as Late 

Jurassic-Early Cretaceous for the Wessex Basin (Fig. 8.2). Syn-rift deposits in both cases 

occurred in basins created on the hanging-wall blocks of extensional faults along the margins 

of these basins (Norvick and Schaller, 1998; Calassou and Moretti, 2003; Dickson et al., 2003; 

Beglinger et al., 2012). Although deposition occurred in both cases in lacustrine environments, 

in the southeast Atlantic basins the water lake hydrology evolved from fresh to brackish to 

saline (Fig. 8.2); while in the Wessex Basin the water lake evolved from brackish to saline to 

freshwater (Fig. 8.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.2 Comparison of basin evolutions between Brazilian margin basins (modified after Moreira 

et al., 2007), the Wessex Basin of southern England (modified after Underhill, 1998) and West African 
margin basins (modified after Beglinger et al., 2012). Note that red areas highlight intervals of this study 
and their counterparts in the South Atlantic. 

 

 

Concerning facies at the macroscale little has been published on the South Atlantic 

lacustrine deposits. However the microbial build-ups found in the Kwanza Basin are similar to 

the microbial mounds found in the Purbeck Limestone Group of the Wessex Basin (Fig. 8.3). 

The microbialites of the Kwanza Basin are made of clotted to laminated branches (Fig. 8.3), 

very similar to the microbial heads and columns found in the external part of the microbial 

mounds in the Wessex Basin (Fig. 8.3). The main differences between West African and 

southern England deposits lie in the associated facies and the mineralogies. In the Kwanza 

Basin microbialites are made of original silica (Cazier et al., 2014) possibly precipitated from 
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silicifying coccoid cyanobacteria (Pleurocapsa) as found in the modern-day Lake Magadi 

(Kenya) (Saller et al., 2016); while in the Wessex Basin they are preserved as their original 

calcite. Concerning facies associated with microbialites, mudstone carbonates fill the 

framework porosity in the Kwanza Basin deposits (Fig. 8.3B); in the Wessex Basin peloidal 

packstones to grainstones are deposited around the microbial mounds and in the framework 

porosity (Fig. 1.3A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.3 Macrofacies comparison between a microbial mound from the Purbeck Limestone 
Group of the Wessex Basin (A, from the Isle of Portland) and the South Atlantic microbialites (B, Kwanza 
Basin well, from Saller et al., 2016). 

 

At a microscale many of the facies have similar textures but they differ in their 

mineralogies. In the Wessex Basin all the facies are preserved in their original calcite apart 

from chert nodules that are found replacing thrombolites (Fig. 8.4). In the Kwanza Basin the 

main mineralogy associated with the microbial mounds is original silica (together with shrubby 

calcite travertines, spherulites and stevensite) and stable isotope analysis (C and O) suggests 

the deposition occurred in fresh to moderately saline (alkaline) lake waters (Saller, 2015; Saller 

et al., 2016). These Kwanza microbial mounds are surrounded by packstones, grainstones or 

mudstones, however, these are commonly highly altered to dolomite (Cazier et al., 2014; Saller 

et al., 2016). The coarse-grained facies (grainstones) of the Kwanza Basin are interpreted as 

high-energy deposits (Cazier et al., 2014) as in the case with the Wessex Basin and thus reflect 

marginal lacustrine facies. Similarly, the fine-grained facies (mudstones) of the Kwanza Basin 
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are interpreted as low-energy deposits (Cazier et al., 2014) as for the wackestones to fine 

grainstones found in the Wessex Basin and thus reflect basinal deposits.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.4 Microfacies comparison between the lacustrine Purbeck Limestone Group of the Wessex 

Basin on the left and the lacustrine facies of the Kwanza Basin on the right (modified after Cazier et al., 
2014). 
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In conclusion the basins located on the south Atlantic eastern margins appear to be more 

similar to the Purbeck limestones rather than the western margins. The differences between 

the south Atlantic and the Wessex Basins are the hydrology evolution of the lakes; the 

mineralogies (dolomite, calcite and silica in the south Atlantic and only calcite in the Wessex 

Basin); and the associated facies to the microbialites that are mudstones in the Kwanza basin 

and grainstones to packstone in the Wessex Basin. However both basins present similarities 

with the basin sizes about 300-400 km accross; the basin evolution as the deposition occurred 

in lacustrine and syn-rift evolution of the basins; the occurrence of microbialites 

(thrombolites); and the facies distribution (coarse-grained In shallow areas and fine-grained in 

deeper areas).  
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Modern analogue: Laguna 

Bacalar, Yucatan Peninsula, 

Quintana Roo, Mexico 

(jointly written with 

Estanislao Kozlowski). 
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1. Introduction 

 

The Laguna Bacalar is a freshwater lake groundwater fed via cenotes about 50 km long 

and 2 km across at its widest, situated about 1.5 m above sea level with an area of about 3.1 

km² (Fig. 1B; Castro-Contreras et al., 2014). This lake is located in the south-east of the Yucatan 

Peninsula in Quintana Roo region in Mexico (Fig. 1). A one week trip was undertaken by the 

author and Estanislao Kozlowski in March 2015 during which a study of marginal thrombolitic 

deposits and associated facies was undertaken to characterise the controls on the mounds 

distribution and the relationship with the inter-mound facies in the Purbeck limestones. During 

this trip 10 locations were visited mainly on the south-western shore of the lake (Fig. 1C). This 

appendix aims to 1) describe the different morphologies of the microbial deposits; and 2) to 

define the controls on the microbial growth and microbial mound shapes, sizes and 

distribution in this lake. Ultimately these deposits are used as possible modern day lacustrine 

analogue to better characterise the Purbeck microbial mounds of the Skull, Hard and Soft Cap 

beds. 
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Figure 1 Location maps of the Laguna Bacalar (maps © 2016 GoogleEarth.). A – Regional map 

that locates Laguna Bacalar in the south-east of the Yucatan Peninsula in Mexico. B – Close-up 

view of Laguna Bacalar showing the narrow lake. C – Close-up view that locates the places 

visited during the trip in March 2015. 
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2. Geological context 

 

Laguna Bacalar is located in a lowland carbonate region composed of limestones, 

dolomites and evaporites that constitute the most extensive karstic area of the North 

American continent (Marshall, 2006; Perez et al., 2011). The southern part of the Yucatan 

Peninsula consists of a carbonate platform deposited from the Cretaceous to the Holocene 

(Perry et al., 2002; Castro-Contreras et al., 2014). Figure 2 shows the surface as well as the 

main tectonic settings in the south-east of the Yucatan Peninsula around Laguna Bacalar. This 

lake is located in a faulted basin, bounded to the west by the northern extension of the normal 

Rio Hondo Fault, the Bacalar Fault (Fig. 2; Kenkmann and Schönian, 2006; Gischler, 2011). 

Although the tectonic events that led to the origin of such basins are still debated, Lara (1993) 

demonstrated that distinct tectonic events over the Late Cretaceous to Pliocene during the 

formation of the Yucatan Basin were responsible for the formation of these faulted basins.



 

 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 Geological map, lithostratigraphy and a NW-SE cross-section illustrating the tectonic settings of the south-east region of the Yucatan Peninsula and around 

the Laguna Bacalar (modified after Lopez et al., 2005). 
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3. Lake settings 

3.1. Climate, hydrology and water chemistry 

 

The Yucatan Peninsula is located between the Tropic of Cancer and the equator, and in a 

humid tropical climate zone (Perez et al., 2011). This region has an annual average 

temperature of 26°C (Perez et al., 2011) and the southern part of the Yucatan Peninsula has a 

precipitation of more than 3,200 mm per year (Perez et al., 2011). 

Despite the high precipitation the water flows in the southern part of the Yucatan 

Peninsula, where Laguna Bacalar is located, consist mainly of groundwater circulation through 

an extensive karstic system with large  submerged caves and cenotes (Schmitter-Soto et al., 

2002; Perry et al., 2003; Suárez-Morales, 2003; Alcocer and Bernal-Brooks, 2010; Perez et al., 

2011).  

Laguna Bacalar is a freshwater lake and one of the numerous waterbodies that form on 

the Yucatan Peninsula. This lake is groundwater fed via five cenotes with the main water input 

via Xul-Ha Cenote to the south (Fig. 3) and four subsidiary cenotes, Azul (although 

disconnected from the surface circulation), Esmeraldo, Cocalitos and Negro located near the 

fault trace on the western shore of the lake (Fig. 3). Due to groundwaters flowing through the 

karstified carbonate rocks, the Laguna Bacalar waters show greater concentrations in 

carbonate ions (hydrogen-carbonate) than in marine environments even though they have 

slightly lower calcium concentrations than marine waters (Gischler et al., 2011). Figure 3 show 

concentrations of carbonate ions measured by Gischler et al. in 2008 (Fig. 3A) and 2011 

(Fig. 3B) across the lake. They found that the concentrations vary between 104 and 300 mg.l-1 

and Castro-Contreras et al. (2014) determined that the pH varies between 7.7 and 8.2. They 

also determined that concentrations are higher close to the cenotes (Fig. 3) with the highest 

values in the Cenote Xul-Ha (to the south of the lake) between 200 and 250 mg.l-1 and in 

Cenote Azul (south of Bacalar town) with more than 250 mg.l-1 (Fig. 3); and the lowest 

concentrations far from the Cenotes in the north of the lake with 110 mg.l-1 and in the Laguna 

Mariscal (to the east of Laguna Bacalar) with 104 mg.l-1 (Fig.3). In addition they found that the 

concentrations decrease both northwards and eastwards away from the cenotes (Fig. 3). 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 Maps of Laguna Bacalar with concentrations of carbonate ions. A – Redrawn after Gishler et al., 2008. B – Redrawn after Gischler et al., 2011. 
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3.2. Bathymetry, lake floor topography and currents 

 

Very few works are published on the bathymetry of the Laguna Bacalar as it has never 

been fully recorded and differences exist between different authors, with accounts maximum 

depths of 15 to 20 m by Carillo and Pereira (2003); 15 m by Gischler et al. (2008); and 20 m by 

Gischler et al. (2011). Gischler et al. (2011) added that according to local fishermen, the depth 

can reach down to 90 m in the cenotes. Sermanat (2008) is the only work available where a 

small portion of the bathymetry of the lake was recorded (Fig. 4). The survey is located to the 

north of the lake east of Buena Vista town and shows that the lake floor topography tends to be 

steepest on the western shore (Fig. 4).  

This tendency can also be seen on satellite images (Fig. 4) where the eastern margins 

appear to be with a low gradient as indicated with the occurrence of intermittently flooded 

zones and the light blue colours of the water (Fig. 4); and the western margins appear to be 

steeper as indicated with the predominantly dark blue colours of the waters (Fig. 4). These 

features were also observed during the 2015 trip where the western shore has cliffs while the 

eastern shores have a lower gradient (Fig. 4C-D). These are thought to be due to tectonics as 

the Bacalar Fault trace is located onland to the west of the lake (Fig. 2) and this may well have 

shaped the topography of the shores and the lake floor. 

Very few data are published concerning water current energy and direction. Gischler et al. 

(2008, 2011) are the only authors who noticed that there is strong current in the south of the 

lake with a northerly direction, particularly strong in The Rapids and in the Canal de los piratas. 

This northerly current direction was also noticed during the 2015 trip and in addition to was 

observed that wind appears to control current of at least superficial waters. The prevailing 

winds in the southern part of the Yucatan Peninsula are low intensity and blow from the E-SE 

to the W-NW (Sermanat, 2008). However this region is usually affected by tropical storms or 

cyclonic winds between August and November originated from the Caribbean Sea (Sermanat, 

2008). This was experienced by the authors during a small storm during which a strong wind 

blew in a westerly direction and created superficial waves in this direction.  
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Figure 4 Bathymetry and lake floor topography of Laguna Bacalar. A – Bathymetric survey in the 
northern part of the lake east of Buena Vista town that shows the steep gradient on the western 
margins (redrawn after Sermanat, 2008). B – Satellite image of Laguna Bacalar north of Bacalar town 
that shows the eastern low gradient shores and margins and western steep gradient margins (map © 
2016 GoogleEarth). C – Picture of the western shore that shows the steep gradient (cliffs). Location in B. 
D – Picture of the eastern shore that shows the low gradient. Location in B. 

 

3.3. Faunas and floras 

 

The Laguna Bacalar and its shores harbour numerous species of animals and plants. 

Typical tropical forests are found on the terrestrial areas (i.e. never submerged) composed of 

more than 50 species of evergreen and low deciduous trees and plants (Sermanat, 2008). In 

the intermittently flooded areas are also found typical vegetation of this type of environments 

with more than 30 species of trees and plants (Sermanat, 2008) with a predominance of 

mangrove trees that can be very found locally in great quantity. In the lake waters are found 

about 5 species of freshwater algae that grow on the lake floor as well as about 70 species of 

epilithic diatoms (Sermanat, 2008; Siqueiros-Beltrones, 2013). On the shallow margins grows 

only one freshwater plant Eleocharis cellulosa that can be temporary emerged (Sermenat, 2008). 
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Concerning terrestrial animals, about 8 species of reptiles mainly iguanas and snakes, 45 

species of birds and 15 species of mammals such as armadillos, badgers, rodents, foxes… are 

found around Laguna Bacalar (Sermanat, 2008). In terms of aquatic animals about 10 species 

of molluscs with predominantly Pomacea sp. gastropods and Dreissena sp. black-striped 

mussels and only one species of fish cichlid is found (Gamboa-Pérez and Schmitter-Soto, 1999; 

LaBuhn et al., 2012). In these freshwaters are also found 5 families of bacteria including 

Staphlococcus, Escherichia and Salmonella genders with and 2 divisions of fungi, 

Mastigomycota and Amastigomycota (Carrillo and Pereira, 2003). In addition, as mentioned 

previously and described in more details in the next section, in this lake grow thrombolitic 

mounds that are bioconstructions due to calcification of microbial filaments (Golubic, 1976). 

Gischler et al. (2011) have undertaken a detailed study of the microbial filaments found in the 

microbialites of the Laguna Bacalar and they have described three types of microbial mats. The 

filamentous Calothrix and Homeothrix which are the most abundant in this lake; the coccoid 

Scizothrix or Scytonema with two species Entophysalis and Gloeothece; and the filamentous 

Leptolyngbya mats (Gischler et al., 2008, 2011). 

 

3.4. Sediments 

 

The sediments in Laguna Bacalar are of two main types, microbial deposits that form 

mounded structures, crusts and oncolites and inter-mound facies (Gischler et al., 2011).  

The microbial deposits show most commonly clotted internal microfabric that classify 

them as thrombolites (as per Burne and Moore’s, 1993, classification); and laminated micro-

fabrics that classify them as stromatolites (as per Burne and Moore’s, 1993, classification) can 

also be found (Gischler et al., 2008, 2011; Castro-Contreras et al., 2014). These microbialites 

are made of calcified microbial filaments that form tubes of low magnesium calcite (Gischler at 

al., 2008), mainly for filaments of Calothrix, Homeothrix and Leptolyngbya (Gischler et al., 

2008). These authors also noticed that at the microscale the mats are made of a dense texture 

(mud?) that is often associated with mollusc fragments and diatom tests; and that at 

macroscale they found that the black mussels are very commonly encrusting the microbialites 

and can be locally densely packed. Castro-Contreras et al. (2014) showed that these mussels 

have little or no impact on the microbial growth that is mainly driven by the supersaturation of 

the waters with regard to calcium carbonate and the photosynthetic activity of the 

cyanobacteria. Sizes and morphologies of the mounded structures and crusts are detailed in 

the next section and mainly based on the 2015 visit. Gischler et al. (2008) determined 
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radiometric ages of these microbialites and found that they range between 9,135 ± 190 and 

6,790 ± 150 cal yr BP (calibrated year before present) which give them early Holocene ages. 

However they show a hard water effect that is a common problem in radiometric dating in 

calcareous environment. In the Laguna Bacalar the waters feeding the lake are highly 

concentrated in carbonate due to the dissolution of Neogene and Pleistocene limestones that 

tends to reduce the dated ages. As a consequence Gischler et al. (2008) think that the 

microbialites of the Laguna Bacalar started to form in the Late Holocene and that the living 

part consists only of the surface microbial mats between up to 1 cm thick. The distribution of 

the microbialites is presented in figure 5 and is based on observations during the 2015 trip, by 

Gischler et al. (2008, 2011) and by Castro-Contreras (2014). The main conclusions are that 

microbialites preferentially grow in the southern part of the lake with a predominance of the 

western coast (Fig. 5). This distribution is closely linked with the locations of the cenotes and 

the carbonate concentrations that are much higher in the south than in the north. 

Surprisingly very few studies described the lake sediments (other than microbialites) 

either found in the margins surrounding the microbialites (the inter-mound facies) or in the 

deepest part of the lake. Gischler et al. (2008) remains the only study that briefly described 

carbonate silt-sand with abundant mollusc shells (apple snail and black mussels) in the inter-

mound sediments; and silt to mud carbonate sediments in the deepest part of the lake. The 

2015 trip showed that marginal inter-mound sediment to be a coarse-grained texture with 

peloids, mollusc shells and microbial intraclasts. 
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Figure 5 Distribution map of the microbial deposits in the Laguna Bacalar. Data compiled from 
Gischler et al. (2008, 2011), Castro-Contreras et al. (2014) and the 2015 trip. 
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4. Microbial deposits 

4.1. Environmental controls on microbial growth 

 

The distribution and morphology of microbial deposits are a function of intrinsic and 

extrinsic processes. The microbialite growth interacts with the surroundings, modifying the 

existing conditions, adding complexity to the depositional system. The main environmental 

controls on the appearance and occurrence of microbialites in Laguna Bacalar appear to be: 

- Water depth 

- Topography 

- Energy 

- Carbonate concentration 

Figure 5 shows that microbialites are located along the lake shore. The maximum depth 

where these deposits were found vary according to the lake sector. In the south, in the rapids 

area, microbialites and oncoids were encountered down to 2 metres depth. In the northern 

part, their distribution is often concentrated above 1m depth. Gischler et al. (2008) recognised 

the importance of photosynthetic benthic communities in the precipitation on Bacalar 

carbonate deposits, therefore the correspondence between water depth and microbial sites 

can be partially explained with this process. 

Lake bottom topography has also been identified by Gischler et al. (2008, 2011) as a key 

element in controlling the morphology of these microbialites (Gischler et al., 2011, Fig. 3). 

Steep versus gentle slopes are often a function of the antecedent topography and the growing 

carbonates. Around the cenotes (sinkholes), vertical walls naturally occur due to the 

dissolution and collapse of the carbonate rock bottom. In the rapids area, fast-flowing water 

produced a narrow channel with steep edges. In other parts, the progradation of the shoreline 

due to coalescing mounds produce steep slopes. Areas of gentle slopes evolve where the initial 

topography and the growing potential of the carbonate system are not sufficient to produce 

substantial relief. In all cases, water depth is going to play a major role on the space available 

for mounds to grow.  

Energy in Laguna Bacalar is a function of wind intensity (with the corresponding wind 

generated waves) and currents due to the inflow of groundwater from sinkholes into the lake. 

The balance between erosion, sediment transport and trapping and binding of particles by the 

microbial mat is going to control the development of microbialites in addition to the 

concentration of carbonate ions. The stress patterns generated by moving water are a function 
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of the water depth and bathymetric features. Shore orientation regarding the westerly 

prevailing wind direction or northerly current direction is also important.  

The carbonate concentration map (Fig. 3) shows the direct link between water chemistry 

and the appearance of microbialites. In Bacalar, microbial mounds occur in areas where HCO3
- 

is over 175 mg.l-1 although less conspicuous microbial facies appear in areas of lower 

concentration. No microbialites were found at a HCO3
- concentration below 100mg.l-1. It is 

clear the the different environmental parameters described above tend to add up, giving rise 

to a number of combinations of suitable environments for microbialite growth. This produces a 

variety of microbial morphologies, some of which are characteristics to a certain type of 

environment, while others can exist under different conditions. 

 

4.2. Microbial deposit morphologies 

4.2.1. Flat microbial crusts 

 

Two distinct types of microbial deposits are found in Laguna Bacalar: mounds and crusts 

(Gischler et al., 2011). Crusts are mainly located in the eastern and northern part of the lake. In 

this area, carbonate concentration is lower due to the distance to the sink holes and the lake 

margins offers protection to wind-induced waves. The crusts consist of a semi-indurated layer 

sitting on soft, muddy sediment. They are most extensively developed in shallow, flat areas, 

down to a depth of 1 metre. The crust transitions into deeper, diatomaceous mud dominated 

areas (Fig. 7). In this deeper setting crusts commonly have cm-scale deep holes (Fig. 7). The 

thickness of the crust is about 10 cm, although the active microbial mat is located in the top 

centimetre. As recognised by Gischler et al. (2011), a yellow-orange sublayer serves as 

protection from UV light to the green photosynthetic layer (Fig. 6). Texturally, the can be 

classified as a thrombolite, with irregular cavities interfering with the layering. 
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Figure 6 Crust-type microbialites from the north-east coast of Laguna Bacalar (Location 7 in 

figure 1). A – The protected location allows the semi-indurated crust to develop from the coast to a 
depth of 1 m. B – On the shore, as patches, water saturated muddy diatomaceous carbonate sediment 
fails to support the weight of a standing person. C – The crust can be broken and the top centimetre 
contains green algae and microbial communities forming the active mat. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Crust-type microbialites from the north-east coast of Laguna Bacalar (Location 7 in 
figure 1). Underwater view of the crust at approximately 1 m depth. The deposit is softer than the one 
closer to the shore, and often exhibits "burrows" (holes filled with muddy sediment). 
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4.2.2. Encrustations 

 

A common feature observed in Laguna Bacalar is the encrustation of tree trunks, roots 

and branches by microbialites (Figs. 8B, 9 and 10E). This feature has been observed in a variety 

of environments and at different scales. The encrustation can be developed in contact with the 

substrate, or above it, always surrounding the vegetation. In many cases, the encrustations 

evolve to form mounds (Fig. 11A-B). Mangrove trees, often spanning numerous roots to the 

substrate, contribute to create metre-scale structures formed by the coalescence of smaller 

units. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Crust-type microbialites from the north-east coast of Laguna Bacalar (Location 7 in 
figure 1) and associated microbial facies. A and C: a 10-20 cm high mound developed near the lake 
shore. Close inspection shows that is covered by mytiloid bivalves of the genus Dreissena (Gischler et al., 
2008). B: occasionally, microbialites develop around mangrove trees, with a typical outer botryoidal 
texture enhanced by the occurrence of mussels. 
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Figure 9 Encrusted microbialites from the abandoned hotel, west coast of Laguna Bacalar (Location 
3 in figure 1). Twenty five years ago, posts were laid to serve as a pier. A – Large mounds around 
vegetation grow in a shallow lake margins. The flat shallow area is mainly covered by fine mud. In the 
distance, intense blue marks the deepening of the lake. Cracks developed when the mound was drilled 
to insert the posts. B – Inset of the crack shown in A, where microbialites were not able to fully fill the 
gap. Possible causes are discussed in the text. C – Lateral view of the mound. In this area, bivalves do 
not cover the mounds surface, a highly porous thrombolitic texture dominates. The fine mud from the 
lake bottom is easily disturbed. 

 

 

 

 

 

 

 

 

 

 

Figure 10 Encrusted microbialites from the abandoned hotel, west coast of Laguna Bacalar 
(Location 3 in figure 1). Twenty five year-old posts are now covered by microbialites. A – A maximum 
encrustation thickness of 25 cm in some posts evidence a growth rate of 1 cm per year. Internally, 
encrustations show high porosity and a thrombolitic texture. B – Underwater view of the encrustation 
around a post, showing typical protrusions. Note that growth is lower in the top, probably due to 
seasonal lake-level variations. C – Close view, with algae covering the surface. Holes within the 
encrustation are partially filled with mud, as part of a large-scale trapping and binding. 
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4.2.3. Low relief mounds 

 

The distinction between low relief and tall mounds is useful since the vertical 

development of microbialites is linked to the environmental conditions. In areas where the 

water depth is not enough for tall microbial structures to developed, or where the conditions 

are not appropriate for a fast and consistent growth of microbialites, low relief mounds are 

often the dominant feature. For the purpose of this work, low relief mounds are defined as 

being generally less than 50 cm high. They can appear isolated, at all depths investigated. They 

may also coalesce, forming a continuous topographic feature.  

Typically, mounds can grow up to lake level, therefore low relief mounds often occur on 

shallow areas (Figs. 8 and 11), where height is controlled by the accommodation. However, 

low relief mounds were also observed in deeper settings (Fig. 12), either coalesced or isolated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 Low relief mounds from the western part of Isla de los Pajaros, Laguna Bacalar (Location 
5 in figure 1). A – Low relief, individual and coalesced mounds develop in a shallow area (less than 20 
cm. depth). B – Close view of a flat-topped mound, the centre of the structures is deeper than the edge 
and exhibits erosional features. C – Underwater picture of the lateral of the flat-topped mound, showing 
the typical thrombolitic texture. D – Small isolated mounds, abundant mud and pebbly sediment derived 
from the microbialites. E – Some mounds are located over roots, remnants of old trees. 
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Figure 12 Low relief mounds from the southern part of Esmeralda Island, western Laguna Bacalar 
(Location 6 in figure 1). A – Closely spaced mounds, permanently under water, form a microbially-
dominated platform that quickly deepens to a mud dominated area. B – Close view of the coalesced 
mounds. Depth ranges from 20 cm to 1 metre. C – Isolated mounds typically occur in the deeper region, 
and are surrounded by mud or a microbial crust. D – Components of the inter-mound sediment from the 
deep area: mud, shells and microbialite intraclasts. 
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4.2.4. Tall mounds 

 

Under the "tall mounds" category are included microbial structures that managed to grow 

to heights of over 1 m. In the field, there are three types of structures, located in specific areas 

and with particular characteristics: 

- Microbialites forming steep edges and even exhibiting ledges (Fig. 13). These are located 

in the southern part of the lake, near cenotes. These mounds typically form a continuous belt 

of coalesced, rounded structures that build out into the lake. They produce an important 

hydraulic separation between the open lake area to the front and the calm, shallow, partially 

disconnected area in the back. The back area is dominated by mud deposition over older 

microbialites. However, small mounds and incrustations are also common. As the microbial 

activity shifts towards the outer region, relict structures such as gaps or bridges between 

coalesced microbial heads are left behind. As the shore progrades, soils develop over these 

structures. In the front of these structures, rounded microbial head of several metres of 

diameter can form ledges. Water depth in the open lake area can reach over 2 metres. 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Tall mounds near the Xul-Ha cenote (Location 1 in figure 1). A – Typical microbialite 
morphology found near the Rapids area. The semi-circular pan-shape mounds of metre to decametre in 
diameter coalesce to form an elongated barrier that separates the open lake to a restricted, low energy 
proximal area. B – In the back, soil develops over ancient mounds, showing the progradation of the 
system towards the west. C – The microbialites are covered by mussels. The ledges are prone to break, 
producing rubble towards the deep sector. 
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- Microbialites with smoother shapes (Fig. 14). These are located in the Rapids area. The 

hydraulic regime prevents the development of delicate ledges, more rounded shapes 

dominate. Microbialites developed in this region exhibit a hard, smooth surface. Mud 

deposition is restricted to locations where the current velocity falls significantly. Therefore, 

incorporation of particles to the microbialite structure is reduced to mussel shells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 Tall mounds from the Rapids, southern Laguna Bacalar (Location 2 in figure 1). A – 
General view of the Rapids area, with depths of over two metres. The current is generated by a 
potential difference between the Xul-Ha cenote and the Laguna Bacalar. B – Tall mounds of over two 
metres high form the edge of the stream. C and D – In places of high current velocity (>0.5 m.s−1), the 
surface of the microbialites is smooth and hard, and oncoids are common in the channel bottom. 
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- Microbialites in specific sites along the western coast of Laguna Bacalar are thought to 

be dead (Fig. 15). These large structures are interpreted as older microbial structures exposed 

as the western coast of the lake erodes. The spectacular rounded flat-topped mounds rise over 

1 metre above the surrounding sediment. They are found south of Bacalar Town, in the 

Cocalitos beach club and in the north, in Kuuch Kaanil. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15 Tall mounds from Cocalitos Beach Club (Location 4 in figure 1). The main structures are 

about 1000 yrs. old (Gischler et al., 2008) and are being exposed as the lake shore retreats. A – The 
mounds, similar to those observed near the rapids, for well-indurated semi-circular structures with 
ledges. B – Detail of the soil and carbonate breccia covering the microbialite. C – Underwater view of the 
mound. The walls are covered by mussels. The lake bottom consists of unconsolidated sediment 
composed by mud, valves and microbialite intraclasts. 

 

4.3. Microbial deposits distribution 

4.3.1. Windward and leeward deposition 

 

Small islands offer adequate setting for studying differences in deposition due to energy 

differences, since transitions between environments occur rapidly. Regional characteristics, 

such as water chemistry, are expected to remain fairly constant. Therefore, changes in the 

deposition can be correlated to wind-driven waves. Figure 16 shows the differences between 

microbialites on both sides of the Isla de los Pajaros (Bird’s Island). Although on both sides we 

can find the main types of deposits described in the previous section, there are some 

differences on the characteristics and abundance of the microbialite types. 
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The westerly dominant wind direction, implies that the leeward side is located in the 

western coast of the island. The beach profile shows a gentle slope. Low energy allows mud 

deposition throughout the coast. Low relief mounds mainly develop in the shallow area, either 

as individual or coalesced structures. However, the continuous mass extends only for a few 

meters from the coast towards the deeper area. Microbial crust develops are weakly 

developed. Microbial intraclasts are smaller and rarer than the ones observed in the windward 

area. 

Towards the east, high energy associated to the windward side of the island seems to 

increase overall carbonate production. An extensive micro-platform appears to prograde 

towards deeper settings. A flat-topped microbial system occupies the internal area and quickly 

changes to coalesced and individual mounds reaching depths under 0.5 m. Large intraclasts (or 

irregular mounds) of several decimetres long are found lying over the muddy and/or crusty 

bottom. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16 Cartoon showing the difference between windward and leeward microbial deposits. 

Based on Isla de los Pajaros and other associated islands. Top pictures, general views of the windward 
(left), internal and leeward (right) areas. Centre: sketch showing the location and characteristics of the 
deposits. Bottom pictures: Close look at some of the microbialites and associated facies. Low relief 
mounds and large intraclasts in deep settings appear exclusively on the windward area. 
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4.3.2. Bathymetry, microbial types and concentrations 

 

Earlier models for Bacalar microbialites suggest a link between the slope and type of 

microbialites (Gischler et al., 2011). Ledge type structures were consider to develop on near 

vertical coasts, and as the slope decreases, it evolves to mound type microbialites. Flat shallow 

bathymetries are dominated by crusts. Based on observations of depositional trends around 

the southern Laguna Bacalar, a new depositional model is proposed (Fig. 17). The microbial 

types are not just a response to the bathymetric profile, but they contribute to build the 

different slopes. The other two main forces controlling the type of microbialites are dissolved 

carbonate concentration in water and energy. The effect of high and low energy conditions on 

mound morphologies was explained in section 4.3.1. (Fig. 16). 

 

 

 

 

 

 

 

 

 

 

Figure 17 Proposed model illustrating the relationship between carbonate concentration in water, 
bathymetry and microbial types. Progradation of flat-topped microbial mounds are typical of areas with 
high dissolved carbonate concentration. Microbial crusts dominate in shallow, flat areas away from the 
source of dissolved carbonate. 

 

The new model (Fig. 17) explains the effect of carbonate concentration on microbial 

growth, suggesting that when water with high dissolved CaCO3 concentration reaches low 

depths, microbialites start developing. Under the right hydrological conditions, microbialites 

fill the available space and generate a steep prograding front. In this environment, ledge-type 

structures can develop, and they seem to play an important role on the progradation process. 

Protrusions are seen to break down, generating rubble that serves as inception points of new 

mounds in deeper settings. If the carbonate concentration in water decreases, the potential 

growth of microbialites is lowered and crusts are the main morphology. This can be explained 

because the microbial system is not growing fast enough to generate a synoptic relief above 

the lake bottom. Slow aggradation dominates over progradation. 
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5. Conclusion 

 

The 2015 visit enabled the authors to experience growth and accumulation of present day 

microbialites and to confirm the occurrence and distribution of microbial deposits mainly 

located to the south and to the western margins of the lake as observed by previous authors 

(Gischler et al., 2008, 2011). This trip also helped to identify and describe four main types of 

microbial deposits, with flat microbial crusts, encrustations are found on all the margins and 

exclusive to the eastern margins and to the north; and low relief and tall thrombolitic mounds 

are exclusive to the western margins and the south areas. Field observation also helped to 

characterise depositional controls on the microbial growth and morphology distributions. The 

concentration of carbonate ions appear to be very important as mounds are bigger and denser 

to the south and on the western margins adjacent to the cenotes. In addition the wind-driven 

current is also of importance as illustrated with the difference of mound morphologies on the 

windward side with bigger and more indurated mounds than on the leeward side. 
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Appendix 2 

Imaging techniques 

2.1. Lidar dataset 

2.2. Hyperspectral imaging 

2.3. Ground penetrated radar (GPR) 
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Appendix 2.1. Lidar dataset 

1 – Bowers Quarry 

2 – Coombefield Quarry 

3 – Freshwater Bay 

4 – God Nore 

5 – King Barrow Quarries 

6 – Sand Holes 

7 – South West Bowers 

8 – Analyses on orientation of quarry faces 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Location map of Bowers Quarry, scans positions and cliff areas scanned (red plain line). Yellow arrows indicate direction of presentation of scans in 

figure 1.2. Maps © 2016 GoogleEarth. 
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Figure 1.2 Lidar scans interpreted with height (yellow) and width (blue) measurements in meter (part 1). 
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Figure 1.2 (continued) Lidar scans interpreted with height (yellow) and width (blue) measurements in meter (part 2). 
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Figure 1.3 Measurements performed on mound and inter-mound areas in the Hard Cap at Bowers 
Quarry. Measurements in red indicate partially imaged mounds. 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Location map of Coombefield Quarry, scans positions and cliff areas scanned (red plain line). Yellow arrows indicate direction of presentation of scans in 

figure 2.2. Maps © 2016 GoogleEarth. 
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Figure 2.2 Lidar scans interpreted with height (yellow) and width (blue) measurements in meter. 
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Figure 2.3 Measurements performed on mound and inter-mound areas in the Hard Cap (left) and 

Skull Cap (right) at Coombefield Quarry. Measurements in red indicate partially imaged mounds. 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Location map of Freshwater Bay, scans positions and cliff areas scanned (red plain line). Yellow arrows indicate direction of presentation of scans in 

figure 3.2. Maps © 2016 GoogleEarth. 
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Figure 3.2 Lidar scans interpreted with height (yellow) and width (blue) measurements in meter. 
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Figure 3.3 Measurements performed on mound and inter-mound areas in the Hard Cap at 
Freshwater Bay. 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Location map of God Nore, scans positions and cliff areas scanned (red plain line). Yellow arrows indicate direction of presentation of scans in figure 4.2. 

Maps © 2016 GoogleEarth. 
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Figure 4.2 Lidar scans interpreted with height (yellow) and width (blue) measurements in meter (part 1). 
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Figure 4.2 (continued) Lidar scans interpreted with height (yellow) and width (blue) measurements in meter (part 2). 
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Figure 4.3 Measurements performed on mound and inter-mound areas in the Hard Cap (left) and 
Skull Cap (right) at God Nore. Measurements in red indicate partially imaged mounds. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5.1 Location map of King Barrow Quarries, scans positions and cliff areas scanned (red plain line and surface). Yellow arrows indicate direction of presentation 

of scans in figure 5.2. Maps © 2016 GoogleEarth. 
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Figure 5.2 Lidar scans interpreted with height (yellow) and width (blue) measurements in meter. 
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Figure 5.2 (continued) Lidar scans interpreted with height (yellow) and width (blue) measurements in meter. 
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Figure 5.3 Measurements performed on mound and inter-mound areas in the Hard Cap (left) and Skull Cap (right) at King Barrow Quarries. Measurements in red 
indicate partially imaged mounds. 
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Figure 6.1 Location map of Sand Holes, scans positions and cliff areas scanned (red plain line). Yellow arrows indicate direction of presentation of scans in figure 6.2. 

Maps © 2016 GoogleEarth. 
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Figure 6.2 Lidar scans interpreted with height (yellow) and width (blue) measurements in meter. 
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Figure 6.3 Measurements performed on mound and inter-mound areas in the Hard Cap (left) and 

Skull Cap (right) at Sand Holes. Measurements in red indicate partially imaged mounds. 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 Location map of South West Bowers, scans positions and cliff areas scanned (red plain line). Yellow arrows indicate direction of presentation of scans in 

figure 7.2. Maps © 2016 GoogleEarth. 

 

7
 – So

u
th

 W
e

st B
o

w
e

rs 

4
49 



 

450 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 Lidar scans interpreted with height (yellow) and width (blue) measurements in meter (part 1). 
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Figure 7.2 (continued) Lidar scans interpreted with height (yellow) and width (blue) measurements in meter (part 2). 
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Figure 7.2 (continued) Lidar scans interpreted with height (yellow) and width (blue) measurements in meter (part 3) 

 



 

453 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 Measurements performed on mound and inter-mound areas in the Hard Cap (left) and 
Skull Cap (right) at South West Bowers. Measurements in red indicate partially imaged mounds. 
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Figure 8.1 Histograms of widths of the mounds in either the Skull or the Hard Cap mounds, depending on the orientations of the quarry faces they are exposed. The main goal was to determine if there is a preferred direction of elongation of the 

mounds. However it appears that there are no such elongations. 
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Appendix 2.2. Hyperspectral imaging 

 

Hyperspectral imaging is a remote sensing application based on imaging spectrometry 

that measures the reflectance of rocks (ratio between the reflected and the incident light of a 

sample; Gaffrey, 1985; Kurz et al., 2012). The source of radiation is commonly the sunlight and 

the reflectance is usually recorded in the visible and nearly infrared (0.3 to 2.55 nm in 

wavelength) portion of the electromagnetic spectrum (Gaffrey, 1985; van der Meer and de 

Jong, 2002). The reflectance is a function of the wavelength, the chemical composition 

(mineralogy) of the rock and physical parameters such as grain size, sorting, surface roundness, 

porosity and mineral impurities (Kurz et al., 2012, 2013). Minerals absorb and reflect part of 

the spectrum of light differently and in a unique manner for each mineral which are possible to 

measure with a spectral imaging device (Kurz et al., 2012). The absorption that characterises 

each mineral is due to vibrational processes of the ions that either release or catch photons to 

compensate the energy gain or the loss on their external layers (Gaffrey, 1985; van der Meer 

and de Jong, 2002). Although hyperspectral imaging requires an large amount of post-

processing, this technique can measure a wider portion of the electromagnetic spectrum in a 

continuum than with conventional imaging techniques that record only red, green and blue 

(i.e. RGB; Hunt, 1980; Goetz et al., 1985; Clark et al., 1990; Kurz et al., 2012, 2013). 

This technique was chosen to try to quantify automatically the quantity of microbial 

mounds (considered as pure calcite) versus the inter-mound facies (containing impurities such 

as quartz grains). In this project 5 samples where scanned in laboratory conditions in Bergen 

University (Norway) by Tobias Kurz and John Howell. The samples are named by a letter A, B, 

C, D and E and the way up is marked by an arrow (Figs. 1, 2 and 3). Sample A corresponds to 

SWB2 (South West Bowers, Isle of Portland) and is characterised by the Intraclastic peloidal 

packstone-grainstone facies (inter-mound) facies; sample B corresponds to SWB3 (South West 

Bowers, Isle of Portland) and is characterised by the Thrombolite sub-facies (microbial mound 

facies); and C, D and E correspond to GN6 (God Nore, Isle of Portland) respectively 

characterised by the inter-mound facies, the mound sub-facies and the marked transition 

between microbial mound and inter-mound facies. These samples were scanned on three 

sides, a rough surface (fresh break, Fig. 1), a plane surface (saw surface, Fig. 2) and the top 

surface (Fig. 3). 

The following paragraphs are from the report sent together with the images and graphs 

by Tobias Kurz. 
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All images show the same results. The spectral properties of all 5 samples are quite similar 

and show the diagnostic absorption bands of carbonate ions at 2.33 nm, 2.14 nm, 1.99 nm and 

1.87 nm (Figs. 1, 2 and 3). The broad absorption between 1400-1550 nm and between 1800-

2050 nm is caused by the atmosphere mainly due to water vapour. 

Some spectra show very weak absorption at 2200 nm, 1900 nm and 1400 nm. The 

absorption bands at 2200 nm and 1400 nm are typical for hydroxyl bearing material whereas 

the 1900 nm band indicates the presence of water within a mineral. These spectral properties 

might indicate the present of hydroxyl and/or water bearing clays although with very low 

concentration. 

In the image of the fresh break surface (Fig. 1), the spectra of sample C (coloured in cyan) 

show pronounced absorption at 2200 nm, 1400 nm and less pronounced absorption at 1900 

nm. This indicates probably the presence of a significant amount of clay. However this 

observation was not confirmed by scanning the same sample from two other sides. This can 

either means that the sample consists of very heterogeneous material or the fresh break 

surface has been coated during sample preparation. 

Beside the analysis and interpretation of the spectra absorption features, some image 

classifications were tested (not shown in the report). However, the classification images could 

differentiate between the microbial mound and the inter-mound facies but this classification is 

not clear enough to be used in the field. The sample C was however noticeable in the 

classification images. It seems that sample C is somehow different although with weak 

evidence. 

In conclusion, all samples consist of nearly poor calcium carbonate. Some sample spectra 

indicate a very low concentration of impurities (most likely some clay minerals). It seems that 

the microbial mound and the inter-mound facies differ in texture but do not show significant 

differences in mineral / material composition. Therefore a separation between both facies 

using hyperspectral imaging did not seem possible and was not pursued further. 
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Figure 1 Fresh break surface scans. A – Picture of the samples. B – Hyperspectral image. C – 
Spectral curves. Note that Sample C shows, beside the carbonate absorption feature, pronounced 
abortion bands at 2200nm, 1900 nm and 1425 nm, absorption bands at 2200 nm, 1900 nm  and 1400 
nm that indicates presence of hydroxyl and/or water bearing minerals. 
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Figure 2 Saw surface scans. A – Picture of the samples. B – Hyperspectral image. C – Spectral 
curves. 
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Figure 3 Top surface scans. A – Picture of the samples. B – Hyperspectral image. C – Spectral 

curves. 
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Appendix 2.3. Ground penetrated radar (GPR) 

 

Ground penetrating radar (GPR) is based on propagation and reflection of 

electromagnetic waves in the sub-surface (Barker et al., 2007). The velocity of propagation is 

controlled by the relative permittivity contrasts between layers that depend on the ability of 

the layers to store and propagate electromagnetic wave energy (Barker et al., 2007). The 

recorded signal corresponds to electromagnetic waves refracted to the surface due to these 

permittivity contrasts between layers (Barker et al., 2007). The GPR system is typically made of 

a transmitting antenna that generates electromagnetic waves and a receiving antenna that 

records reflected waves (Barker et al., 2007). An important characteristic of electromagnetic 

waves is that their attenuation is dependent of the magnetic permeability (ability of a layer to 

be magnetised) and the electrical conductivity (ability of electrons to move when an electrical 

field is applied) of layers (Barker et al., 2007). The magnetic permeability value is commonly 

equal to 1 for most rock and soils and will not be the main factor influencing the attenuation 

(Barker et al., 2007). The electrical conductivity mainly depends on the water saturation of 

rocks or soils and the conductivity will be high when the water saturation is high (Barker et al., 

2007). As a consequence the attenuation of the electromagnetic waves is greatest when the 

conductivity and the water saturation are high (Barker et al., 2007). Barker et al. (2007) stated 

that commonly is GPR studies of clay soils show high conductivity resulting in significant 

attenuation of the encountered electromagnetic waves. 

In this project two profiles were attempted to be acquired and only one was actually 

recorded. Both were performed at South West Bowers disused quarry on the western side of 

the Isle of Portland (Fig. 1). The surveys were done in collaboration with Dr. Julien Moreau and 

Trine Hansen from the University of Copenhagen (Denmark) using 250 MHz antennae of the 

PulseEkko system of Sensors & Software Inc. (Mississauga, ON, Canada, Fig. 2). The first 

surveys was undertaken directly on top of a modern soil therefore, because of the high 

conductivity of soils as described above, the electromagnetic waves were attenuated within 

the soil and no profiles could be recorded. The second survey was done on top of the rock 

surface of the Hard Cap bed (Figs. 1 and 2) and the sub-surface could be imaged (Fig. 3).This 

space profile is about 19.5 m long for a maximum depth of clear image between 3 m (on the 

left) and 4.5 m (on the right, Fig. 3). No waves were reflected beyond these depths probably 

due to the Lower Dirt Bed paleosol that would be expected to have increased conductivity and 

a maximum attenuation and accompanied loss of image (Fig. 3). 
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Although the survey is very good quality and detailed mounds and inter-mound facies 

(Fig. 3), outcrop conditions good enough to record high quality surveys are met in few 

locations along the Dorset coast, it was decided to not proceed further with GPR surveys. 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Location map and path followed for acquisition of the profile (shown in figure 3). Maps © 2016 GoogleEarth. 
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Figure 2 GPR used in this study. A – Acquisition in South West Bowers by Dr. Julien Moreau (left) 
with the GPS unit and Trine Hansen (right) pulling the GPR unit. Note the path followed as per figure 1. 
B – Detail of the equipment used. 
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Figure 3 GPR profile acquired at South West Bowers from point A to point B of figure 1. A – 
Uninterpreted profile. B – Intrepreted profile. Note the white square locates the image in C. C – 
Interpretation from the field for comparison with GPR profile interpreted. Note the matching inter-
digitation to the right. 
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Appendix 3 

Sedimentary logs 
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1. Sedimentary logs 

1 – Legend 

2 – Broadcroft Quarry 

3 – Chalbury 

4 – Coombefield Quarry 

5 – Dungy Head 

6 – Durlston Head 

7 – Fishermen’s Ledge 

8 – Fossil Forest 

9 – God Nore 

10 – Hell’s Bottom 

11 – King Barrow Quarries 

12 – Lawnsheds Quarry 

13 – Mupe Bay 

14 – Penn’s Weare 

15 – Perryfield Quarry 

16 – Portesham Quarry 

17 – Portland Bill 

18 – Poxwell Quarry 

19 – South West Bowers 

20 – Swanworth Quarry 

21 – Tout Quarry 

22 – West Lulworth Cove 

23 – Worbarrow Bay 
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1 – Legend 
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2 – Broacroft Quarry 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 – Chalbury 
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4 – Coombefield Quarry 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 – Dungy Head 
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6 – Durlston Head 
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7 – Fishermen’s Ledge 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 – Fossil Forest 
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9 – God Nore 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10 – Hell’s Bottom 
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11 – King Barrow Quarries 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12 – Lawnsheds Quarry 
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13 – Mupe Bay  
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14 – Penn’s Weare 
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15 – Perryfield Quarry 
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16 – Portesham Quarry 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17 – Portland Bill 
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18 – Poxwell Quarry 
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19 – South West Bowers 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20 – Swanworth Quarry 
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21 – Tout Quarry 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22 – West Lulworth Cove 
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23 – Worbarrow Bay 
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2. Facies transition analysis 

The first step consists in counting each transition between each facies from the recorded 

logs and this is listed in a matrix. This matrix is read from the left to the right, the facies listed 

in the left column are overlain by the facies on the top row. The number in the corresponding 

box shows the number of transitions counted from all the sedimentary logs. Several counting 

methods are possible (Walker, 1979; Davis, 2002); either the facies thickness is counted at 

regular intervals or transitions between facies can be counted for each bed (usually used to 

identify cyclicity or sequencing in the stratigraphical column; Davis, 2002) or for each facies 

change (Walker, 1979; Davis, 2002). In this study the recording was done each time a new 

facies was encountered in the log and recorded in the “transition matrix”. This counting 

method results in a better representativeness of facies transitions and their relationships, the 

main aim of this excercise. The second step was to convert this transition matrix into a matrix 

of probabilities, showing which transitions are more likely to occur. The third step consists in 

the construction of another matrix of probabilities with the assumption that facies transitions 

are randomly organised (Walker, 1979). The probabilities in this matrix results simply from this 

equation: 

𝑟𝑖𝑗
𝑛𝑗

𝑁 − 𝑛𝑖
 

where  𝑟𝑖𝑗 is the random probability of transition from facies i to facies j, 𝑛𝑖 is the number 

of occurrence of facies i and 𝑛𝑗 the number of occurrence of facies j and N the total number of 

occurrence of all facies (Walker, 1979). The fourth step consisted in the calculation of the 

difference matrix, simply subtracting the random probabilities to the calculated probabilities 

(Walker, 1979). The resulting matrix shows plus and minus figures for each facies transition 

where values close to 0 indicate that transitions are random, high positive numbers where 

transitions are much common than if random and high negative if they are less common than 

if facies transitions were random (Walker, 1979). These differences of probabilities were used 

to create the facies relationship diagram. This diagram illustrates which transitions of facies 

are more likely to occur if facies are not random according to the difference of probability 

values (Walker, 1979). Walker (1979) showed that to determine which value (i.e. which 

transitions are more probable) in the difference matrix will be taken into account some trial-

and-error tests are necessary. In this study the minimum value taken into account in the 

construction of the facies relationship diagram was +0.050 because after some trial-and-error 

tests all the difference values greater than +0.050 are more representative of the transitions 

observed in the sedimentary logs. 
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Figure 2.1 Matrices realised for the facies transition analysis. 
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3. Stable isotope (carbon and oxygen) data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Stable isotope values and standard deviations. Note that sample numbers are increasing 

up section (1 at the bottom of the bed and the greatest numbers at the top). Data recorded by 

Dharmarajah, 2015. 
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Figure 3.2 Sedimentary log from Perryfield Quarry with locations of samples on the left and the 

evolution of 
13

C and 
18

O on the right. 
13

C and 
18

O are ‰.  Modified after Dharmarajah, 2015. 
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Figure 3.3 Sedimentary log from Brodcroft Quarry with locations of samples on the left and the 

evolution of 
13

C and 
18

O on the right. 
13

C and 
18

O are ‰. Modified afterDharmarajah, 2015. 
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Figure 3.4 Sedimentary log from Bowers Quarry with locations of samples on the left and the 

evolution of 
13

C and 
18

O on the right. 
13

C and 
18

O are ‰. Modified afterDharmarajah, 2015. 
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