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Abstract

In this Thesis we present a new method of theoretical studies of magnetic materials. The
method is based on the Fourier expansion of the magnetisation and then using this expansion
in order to minimise the free energy functional of a magnetic material, hence obtain the
optimal configuration of the system for a certain set of parameters. We also employ Lagrange

multiplier technique in order to satisfy the constraint of
∣∣∣ ~M ∣∣∣2 = 1 required by micromagnetics.

We have mainly applied this method to a system that obeys a skyrmionic order. Critical fields
corresponding to helical-skyrmion and skyrmion-ferromagnetic phase transitions were found
exactly. Also, new shapes of skyrmion lattice that have never been observed before were
obtained via our method. The method proved itself to be universal, i.e. applicable for any
micromagnetic system. As an example of an extended magnetic system, we considered a
bilayer of a magnet and a superconductor and used our method along with Brandt’s approach
to a superconductor, that we used as a guide for our method, in order to describe the combined
system and study the magnetic states obtained.
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Chapter 1

Introduction

People have been studying magnetism for centuries, ever since they first noticed that some
objects may attract the others without any visible reason. This must have been a great
mystery back those days. On the other hand, we grow up accepting the fact of existence
of fields around us. We ask our parents how phone and TV signals work and their answer
would definitely contain words “electromagnetic waves” in it, no matter of their background.
Probably every physicist remembers a demonstration back from high school of a magnet and
metal shavings that align along field lines. Magnetic effects became a part of our life long ago
and are not mysterious anymore. However, a scientist always tries to look deeper. If a man
observes two objects that attract each other, a scientist wants to know why they do. Although
magnetism is around us and we constantly use it in our everyday life, there are still mysteries
to be revealed, there are still questions to be answered.

We know now that magnetism in solids is induced by spins of charged particles with
electrons being the most common case. The magnetic moment of an electron is anti-parallel to
the spin angular momentum. The direction is spontaneously chosen from one of the degenerate
states with the same ground state energy. In presence of an external field the chosen direction
is between the direction of the external field and one of the directions preferred by magnetic
anisotropy. This is true for homogeneous states only, i.e. when the magnetisation direction
is not spatially varying within the sample. [1] An example of an inhomogeneous state is a
domain state in a ferromagnet. Such a state contains regions (domains) with all spins parallel
to each other, however the total domain spin is not parallel to other domains’ spins. So one
can say that a typical ferromagnet consists of homogeneous domains, but as spins are aligned
in the same direction within a single domain only, ferromagnet itself is an inhomogeneous
system as almost any system in nature. Schematic representation of magnetic domains is
demonstrated in Figure 1.1a and magnetic domains actually observed in a ferromagnet can be
found in Figure 1.1b.

While a single ferromagnetic domain is a special example of a homogeneous system, the
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CHAPTER 1. INTRODUCTION

(a) Schematic representation of magnetic do-
mains. [2]

(b) Magnetic domains observed in NdFeB. [3]

Figure 1.1: Schematic representation of magnetic domains along with the actual picture of
magnetic domains in NdFeB. Spins are aligned in the same direction within a single domain
only, though the total spins of domains are aligned in a random order with respect to each
other.

full bulk ferromagnet is inhomogeneous. Once a large enough external field is turned on, the
domain structure gets progressively destroyed and the whole system turns into a homogeneous
one with all the spins pointing in one direction, determined by the field. Magnetic domains are
separated by domain walls – regions where spins are smoothly rotating from one neighbouring
direction to another. One can distinguish between two main types of domain walls: Bloch wall
– the one that corresponds to the rotation of domain wall spins through the plane of the domain
wall, and Néel wall – the one that corresponds to the rotation within the domain wall plane.
Schematic representation of spin behaviour in both Bloch and Néel walls is demonstrated in
Figure 1.2. Note that other types of domain walls are possible, but they are less common and
are not to be discussed here.

Figure 1.2: Schematic representation of spin behaviour in Bloch (red) and Néel (green) domain
walls. In the Bloch case spin rotates from one terminal position (either “up” or “down”) to
another through the plane and in the Néel case the rotation occurs within the plane. [4]

12



CHAPTER 1. INTRODUCTION

Ferromagnets are permanent magnets, i.e. once magnetised by an external field, they
preserve their magnetisation even when the field is switched off. Typical examples of ferro-
magnets are iron, cobalt, nickel and their alloys. [5] Among the first studying ferromagnetism
was Aleksandr Stoletov who demonstrated a non-linear dependence between ~B and ~H. The
Bohr-van Leeuwen theorem [6] tells us that ferromagnetism is of pure quantum nature. [5]
The main quantum mechanic origin of (electronic) ferromagnets is the exchange interaction.
[7]

It is well known from basic quantum mechanics that two electrons in one shell (subshell)
cannot have the same spin. [8] When orbitals of the outer unpaired valence electrons overlap,
electrons with parallel spins would repel even more than electrons usually do, hence the total
spatial charge distribution would decrease, and therefore the total electrostatic energy would
become smaller. So it is actually energetically favourable for an electron to change its spin
to align with neighbouring atom’s electron’s spin in order to maintain the total minimal free
energy. In a simple way one may think about the exchange interaction this way: two electrons
of the same spins would never ever go to the same place, hence they would not need any energy
to repulse if they were not repulsing already. For a system of many particles in the case where
there are no other interactions present spins would tend to align with their neighbours until
all the spins are aligned in one direction. This explanation, though, does not take into account
on-site Coulomb interactions that would make the picture more complicated (favouring anti-
ferromagnetic alignment). Often one works with effective Hamiltonians, in which case the
effective exchange interactions includes a large part of on-site correlations due to Coulomb
interactions.

Ferromagnetic exchange interactions can be modelled by Heisenberg Hamiltonian for all
the atoms in a solid: [9]

ĤH = −
∑
ij

Jij ~Si · ~Sj , (1.1)

where ~Si and ~Sj are spins of electrons localised at sites i and j respectively, and Jij is the
exchange coupling. [10] However, it is often possible to set Jij = J = const for neighbouring
atoms and zero otherwise, as this would correspond to the exchange between nearest neigh-
bours only, that is often the most likely exchange to occur; in this case the summation then
goes over the nearest neighbour pairs only:

ĤH = −J
∑
〈ij〉

~Si · ~Sj , (1.2)

and J > 0 corresponds to a ferromagnet, whereas J < 0 corresponds to an anti-ferromagnet.
This classification rises from the fact that spins are parallel in a ferromagnet, just as they are
in the equal-spin triplet state and anti-parallel in an anti-ferromagnet and singlet state. J is
defined as J = Es − Et, hence its sign depends on whether the energy of a singlet state, Es,
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is lower (hence anti-ferromagnet is favourable) or the energy of a triplet state, Et, is lower
(ferromagnet is preferred in this case). [10] The full Hamiltonian of a ferromagnetic system
then writes as

ĤF = −J
∑
〈ij〉

~Si · ~Sj + gµB
∑
j

~Sj · ~B, (1.3)

where the last term is the Zeeman energy, that is nothing else but the energy of an electron
(a particle with spin Sj) in an external magnetic field. [7] More generally, under continuum
approximation (see later) the Zeeman energy can be written as

Ez = −µ0

∫
~M · ~HdV, (1.4)

where ~H is the external field and ~M is the local magnetisation. [5]
Let us now pay more attention to inhomogeneous magnetic states. The most famous in-

homogeneous state is the domain state in ferromagnets, with magnetic domains separated by
domain walls, just as we discussed earlier. Another typical source of inhomogeneity are spin
waves, or magnons, that are excited states of a typical Heisenberg magnet. [13] Inhomoge-
neous states can be also favoured by spin-orbit coupling, hence an anisotropic chiral exchange
interaction that is described by Dzyaloshinsky-Moriya Hamiltonian: [15]

ĤDM = −
∑
ij

~Dij ·
(
~Si × ~Sj

)
, (1.5)

where ~Dij is the Dzyaloshinsky-Moriya coupling vector. Clearly, for the case of parallel or
anti-parallel spins the whole term would be equal to zero due to the cross product. Schematic
representation of a two-spin system described by Hamiltonian (1.5) can be found in Figure 1.3.
In Figure 1.3 we see two spins suffering strong spin-orbit interaction; the vector ~D12 is per-
pendicular to the plane where the spins are located.

While the exchange interaction tends to align all the spins in one direction, Dzyaloshinsky-
Moriya interaction gives a spin a twist. This effect results from the fact that electron’s spin
interacts with the atom as well as with other electrons in the system. Spin-orbit interaction
then gives the shift to the direction of the spin with respect to its perfect alignment governed
by the exchange interaction only. It shall be noted, though, that this effect is significant in
non-centrosymmetric materials only.

This anisotropic interaction was first derived by Igor Dzyaloshinsky in 1958 [15] and clar-
ified by Toru Moriya in 1960 (spin-orbit coupling was used to explain the phenomenological
approach of Dzyaloshinsky). [16] The total Hamiltonian of a magnetic material (that is not
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Figure 1.3: Schematic representation of neighbouring spins behaviour under strong spin-orbit
coupling. [14]

necessarily homogeneous) would then be written as

ĤM = −J
∑
〈ij〉

~Si · ~Sj −
∑
ij

~Dij ·
(
~Si × ~Sj

)
+ gµB

∑
j

~Sj · ~B. (1.6)

When effects of Dzyaloshinsky-Moriya interaction are strong enough, thus cannot be ne-
glected, and the field is weak enough, hence Zeeman term cannot dominate, spins in a magnet
align in a helical order, as demonstrated in Figure 1.4.

Figure 1.4: Spin helix with a period of λH . By analogy to any wavelength, λH is defined as
the shortest non-zero distance between two spins aligned in the same direction.

It is also important to notice that the inversion symmetry gets broken when the Dzyaloshinsky-
Moriya term is dominant and the solution is in helical (like in Figure 1.4) or skyrmion (see
later) form.

From Figure 1.4 we also see that helices have their pitch period, λH , that is related to the
helical pitch vector, ~kH = kH êx, via

λH =
2π

kH
. (1.7)
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A typical way to describe the magnetisation of a helix is to parametrise it as

~M =


0

− sin
(
~kH · ~r

)
cos
(
~kH · ~r

)
 , (1.8)

where ~r = (x, y) and ~kH =
(
kHx , kHy

)
. [17]

If the field is large enough, however, the Zeeman term becomes the dominating one and
the system then collapses into a ferromagnetic (homogeneous) state.

So effects of Dzyaloshinsky-Moriya interaction, should they be strong enough, result into
inhomogeneous magnetic ordering, like spiral magnets or helimagnets. However, there is always
space for topological defects, and thus from the competition between exchange and anisotropic
terms new pattern may rise: magnetic skyrmions.

A magnetic skyrmion is a topologically stable field configuration that can be pictured as
spin helices of unit period length packed next to each other in circular direction, i.e. a side
view of a skyrmion is nothing more but a helix! An example of a single (Bloch) skyrmion can
be found in Figure 1.5 and a schematic spin-helix is demonstrated in Figure 1.6. We see then
that if we follow radial direction only within a skyrmion, we observe half a helix turn. Boxed
regions in Figure 1.5 and Figure 1.6 match exactly.

Figure 1.5: A single skyrmion with a radial direction emphasised and a unit period of a helix
boxed. [18]
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Figure 1.6: A spin helix with period boxed. [18]

One can then consider a skyrmion to be an intermediate state between helical state and
ferromagnetic state in a magnetic material as it rises from the competition between the ex-
change interaction that is responsible for the ferromagnetic state and the anisotropic exchange
that generates helical behaviour. Such states are demonstrated in Figure 1.7.

Figure 1.7: Schematic representation of possible spin configurations in a magnetic material
with Dzyaloshinsky-Moriya interaction for different values of an external field. Below Bc1 we
observe a helix, between Bc1 and Bc2 – skyrmion lattice, above Bc2 – ferromagnetic configu-
ration. Values of critical fields demonstrated in dimensionless units are claimed by Iwasaki et
al and we are to discuss them later. [19]

Experimentally observed phase diagrams of materials that exhibit skyrmion lattices under
certain conditions are demonstrated in Figure 1.8.

It might be found curious that skyrmions (the actual word “skyrmion” along with the
mathematical model it stands for, to be precise) came to condensed matter field from nuclear
physics. Originally, skyrmions are named after Tony Skyrme. [22] He was developing a non-
linear field theory for interacting pions and came up with quantised and topologically stable
solutions. He explained stability of particles by the fact that they are topologically protected.
[22] Tony Skyrme studied 3D systems and his original skyrmion solution is therefore 3D as
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(a) Phase diagram of MnSi. [20] (b) Phase diagram of Fe1−xCoxSi. [21]

Figure 1.8: Phase diagrams of magnetic materials that demonstrate skyrmion lattice under
certain conditions.

well. We are, however, interested in 2D skyrmions referred to as “baby skyrmions” by some
early researchers.

Having been introduced in nuclear physics, Skyrme model was exposed to other areas
where people were interested in multidimensional localised structures. People were looking for
localised solutions of non-linear field equations with particle-like properties. It was proven,
however, that these localised states are actually unstable in many areas of interest, [23] since in-
homogeneous states often appear as excitations, hence static configurations collapse into topo-
logical singularities. [24] Though, the instability of localised field configurations can be over-
come. In condensed matter systems the instability of localised states can be avoided by adding
chiral interactions to the functional, i.e. considering materials with broken inversion symme-
tries. The most obvious place to study would be magnetic non-centrosymmetric crystals, but
skyrmions are found as stable or metastable localised states also in non-centrosymmetric fer-
roelectrics, [25] multi-component ferromagnetic Bose-Einstein condensates, [26] quantum Hall
systems, [27] superfluid helium-A, [28] liquid crystals [29] and glasses. [30] Moreover, a 3D
skyrmion lattice is proposed for the dense nuclear matter of neutron stars [31] and neutron
stars themselves. [32]

In this research we are in the first place interested in 2D magnetic skyrmions that are
mainly found in cubic helimagnets, such as MnSi, [20] Fe1−xCoxSi, [21] FeGe, [33] Cr1−xMnxGe

alloys, [34] and also in easy-plane hexagonal magnets like CsCuCl3 [35] and RuCuCl3, [36]
polar magnetic semiconductor GaV4S8, [39] multiferroic films of Cu2OSeO3, [37] tetragonal
antiferromagnets [38] and other magnetically ordered crystals.

Existence of (2D or 3D) skyrmion solution in helimagnets as an alternative to (1D) helical
solutions of the field equations of Dzyaloshinsky theory was first introduced by A. N. Bogdanov
and D. A. Yablonsky in 1989 while studying anisotropic non-centrosymmetric magnetic ma-
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terials that experience the spin-orbit interaction subject to an external field. [40] They have,
however, pointed out that this skyrmion solution (they referred to skyrmions as “magnetic
vortices”) are thermodynamically metastable, i.e. the energy of helical states would always be
lower than that of skyrmion states. Despite that, stable skyrmion solutions were found later.

Since skyrmions were introduced to condensed matter physics, a lot of research has been
carried out in the field. For example, Bogdanov carried on with his research on single isolated
skyrmions, [41] ending up proving that skyrmion state might be thermodynamically stable
as well as metastable; [42] Han et al focused on skyrmion lattices in chiral magnets, [43]
Iwasaki et al dealt with magnon-skyrmion scattering, [19] Marcus Garst mainly focused on
the dynamics of skyrmions, [44] Leonov et al considered skyrmions in liquid crystals [45] and
many other skyrmion systems, T. Yokoyama and J. Linder studied Josephson effect through
magnetic skyrmion [46] and a lot more work has been put in the field.

Figure 1.9: Skyrmion lattice in FeGe
by high-resolution Lorentz transmis-
sion electron microscopy. In it ~M(~r)
observed that is demonstrated in the
Figure. Black regions correspond to
skyrmions. [50]

Finally, in 2009 skyrmions were first observed ex-
perimentally in MnSi. [20] With the aid of neutron
scattering Mühlbauer et al have observed a lattice of
two dimensional skyrmions that is perpendicular to
the external field itself. [20] In 2010 Yu et al observed
skyrmion lattice in Fe1−xCoxSi using Lorentz trans-
mission electron microscopy, [21] following up finding
skyrmions in FeGe. [33] An example of the skyrmion
lattice observed in FeGe can be found in Figure 1.9.
Spin-resolved scanning tunnelling microscopy helped
to find triangular skyrmion lattices in monolayer iron
on Ir(111). [47] Romming et al studied size and shape
of a single skyrmion. [48] Stable skyrmions have been even found at room temperature in ul-
trathin transition metal ferromagnets (Pt/Co/Ta and Pt/CoFeB/MgO) with magnetic trans-
mission soft X-ray microscopy. [49]

Figure 1.10: Schematic representation
of possible configuration of spins in a
bulk magnetic material. The magneti-
sation is translationally invariant in
the direction of an external field. [17]

Skyrmion structures in bulk materials have also
been observed. Those were found to be translation-
ally invariant along the field direction, hence one can
say that the magnetic texture of these materials con-
sists of skyrmion tubes aligned in the triangular lat-
tice. [17] Schematic representation of these structures
can be found in Figure 1.10. Later other types of 3D
skyrmion structures were found. [17]

It does not matter now if those theorists that used
to call 2D magnetic skyrmions “baby” had anything
ironic on their mind or not, 2D magnetic skyrmions
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are not “baby” anymore. Skyrmions have been researched a lot theoretically and stabilised
experimentally. People even see magnetic skyrmions as a perspective direction for data storage
devices. Romming et al have already managed to create (“write”) and destroy (“remove”) a
single skyrmion that seems to be a great step towards new generation of digital memory devices.
[51] It was also proposed to use magnetic skyrmions as logic gates [52] and transistors. [53]

The discussion of lattices of topological defects is rather incomplete should we study
skyrmion lattices only. There are other examples of topological defects to be considered even
in condensed matter physics. One of them is found in superconductors.

The phenomenon of superconductivity was discovered by a master of low temperatures
Heike Kamerlingh Onnes in mercury below 4.12K in 1911. [54] In his experiment at T = 4.12K

the resistivity spontaneously jumped down to zero (immeasurably small quantity at least).
The state of zero resistance was called to be superconducting and the state above the critical
temperature – normal. This discovery had a huge impact on the scientific community and in
following years many other materials proved to be superconducting at certain circumstances.
In fact, it was demonstrated that almost half of the known metals exhibit superconductivity
at low temperatures with niobium being high-temperature champion – its critical temperature
is Tc = 9.3K, that is the highest result for a pure metal – and there are of course thousands
of superconducting alloys as well. [5] The highest Tc reached at the moment of writing this
Thesis is Tc ∼ 133K at normal pressure and it is HgBa2Ca2Cu3O8 that demonstrates it. [55]
Overall, the highest Tc reached is Tc ∼ 203K in H2S under pressure of 150GPa. [56]

Superconductors are well-known for their perfect conductance, hence zero resistance at
low temperatures. However, according to the modern definition, the main characteristic of a
superconducting state is its ability to completely repel an external magnetic field, should it
be below the critical field, Bc. [57] If the applied field is higher than Bc (that depends on
temperature itself) superconductivity is destroyed. The state of complete field repulsion and
perfect conductivity is called to be a Meissner phase – after Walther Meissner who discovered
this complete repulsion of an external field by a superconductor in 1933 along with Robert
Ochsenfeld. [57] The Meissner state is a thermodynamic state that depends uniquely on the
applied field and temperature (i.e. there is no difference, whether we first cool the sample
down or turn the field on), but not on the previous configuration of the system. [58]

By analogy to ferromagnets, one can describe superconductors by an order parameter,
that is zero for a non-superconducting (normal) state, but is non-zero in the superconducting
(Meissner) phase. This was first done by Vitaly Ginzburg and Lev Landau in 1952. [59]
For a superconductor the order parameter is a macroscopic wave function of Cooper pairs
condensate, ψ = |ψ|eiθ. Then the free energy functional is expanded around the critical point
in powers of the order parameter and hence the macroscopic wave function can be found
by minimising the obtained functional with respect to |ψ|. The famous Ginzburg-Landau
functional per unit volume for a superconductor in an external magnetic field is then written

20



CHAPTER 1. INTRODUCTION

as

Fs = Fn +

∫ α|ψ|2 +
β

2
|ψ|2 +

∣∣∣(−i~∇− q ~A)ψ∣∣∣2
2m

+
| ~B|2

2µ0

 d3r

V
, (1.9)

where Fn is the free energy density of a normal state averaged over the volume V , ~B is the
internal field of a superconductor (zero in the bulk), ~A is the corresponding vector potential
and α and β are phenomenological constants.1 It is also often convenient to define F = Fs−Fn
and study the difference only.

Notice that in Meissner state |ψ| = const and θ = const, hence it follows that the Meissner
state is homogeneous, as the ferromagnetic state in a single domain is.

However, as there are inhomogeneous magnetic states in magnets, there are inhomogeneous
states in superconductors as well, when magnetic field can partially penetrate a sample without
destroying superconductivity. This can be an intermediate state that is formed near the surface
of a superconductor (so the field is not exactly zero there, but decays towards zero on some
penetration depth depending on the geometry of a sample) [60, 61] or a superconducting vortex
lattice.

In 1935 Wander Johannes de Haas and Josina Maria Casimir-Jonker discovered a smooth
transition from the normal state to the Meissner state with two critical fields. [62] They
thought, though, that the effect was due to bad quality of their samples and did not pay much
attention to it. In 1937 Lev Shubnikov considered material with not doubtable quality and
discovered the same effect: some materials demonstrated a mixed state between normal and
Meissner states. [64]

Hence one can distinguish between superconductors that change their phase from normal
to Meissner directly – call them “type-I superconductors” – that have one critical field, and
superconductors that exhibit a mixed state between normal and Meissner states – “type-II
superconductors”2 – that have two critical fields: Bc1 for Meissner-mixed state transition
and Bc2 for mixed-normal phase transition. Both Bc1 and Bc2 depend on temperature. It
was found later that most of the known superconductors, especially high-temperature ones,
i.e. those of particular interest of the scientific community, are type-II superconductors. A
comparison between phase diagrams of a magnetic material and a type-II superconductor is
demonstrated in Figure 1.11.

Nonetheless, the true nature of the mixed state had not been discovered until in 1957
Alexei Abrikosov predicted its existence theoretically. [63] In his work he suggested that “flux
tubes” may be present in a superconductor when an external field lies between Bc1 and Bc2 .
The field would then penetrate the superconductor through these flux tubes, but in the bulk

1The are constant with respect to spatial coordinates, though might depend on other parameters, such as
temperature, pressure, etc.

2In fact, formal classification is based on the value of Ginzburg-Landau parameter, κ, that we would discuss
later.
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(a) Phase diagram of a magnetic material exhibit-
ing helical, skyrmion, ferromagnetic and paramagnetic
states. Pictures of phases are taken from [19].
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(b) Phase diagram of a type-II superconductor exhibit-
ing Meissner, mixed and normal states. In Meissner
state a superconductor completely repells the field,
while in the mixed state some field can penetrate.

Figure 1.11: Comparison between phase diagrams of a magnetic material and a typpe-II
superconductor. Both have two critical temperatures, hence two phase transitions, and a
mixed state between two states of a completely different order.

superconductor magnetic induction would still remain zero. Abrikosov identified these flux
tubes as superconducting vortices and the corresponding state as a vortex state. This state
would of course be inhomogeneous, hence the order parameter, ψ, shall acquire some spatial
dependence. The order parameter is still constant in the bulk superconductor, but then decays
down to zero when approaching the vortex core. Abrikosov also suggested a vortex lattice
(called sometimes “Abrikosov lattice” or “Abrikosov vortex lattice” nowadays) as a solution of
Ginzburg-Landau equations derived from the functional (1.9) for a system in the mixed state.
[63] Later it was calculated that for a system to maintain the minimal free energy the lattice
has to be triangular. [65]

A vortex lattice was first observed in niobium in 1964 by D. Criber et al via neutron
diffraction [66] and later directly – using electron microscopy – by U. Essman and H. Träuble.
[67] The actual lattice found was triangular and periodic, as it had been predicted, though
it might be deformed by defects in the crystal lattice. Examples of superconducting vortex
lattices observed can be found in Figure 1.12.

Since a superconducting vortex lattice was predicted theoretically and observed experi-
mentally a lot of research has been carried out in the field. Many research groups around the
world have been focusing on finding high Tc superconductivity, grinding microscopic expla-
nation of unconventional superconductivity, studying effects of lattice defects on Abrikosov
vortices and unvealing other mysteries of this fascinating phenomena. Extensive theoretical
studies of vortex lattices have been carried out by, for example, Daniel Agterberg [70] and
Ernst Helmut Brandt [71]. We shall focus on the methods and results of the last one later on
the go.
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(a) Abrikosov vortex lattice ob-
served in Pb− 4at%In by U. Es-
sman and H. Träuble in 1967 us-
ing electron microscopy. [67]

(b) Abrikosov vortex lattice ob-
served in NbSe2 by H. F. Hess et
al in 1989 via scanning tunnel mi-
croscopy. [68]

(c) Abrikosov vortex lattice ob-
served inMgB2 by L. Y. Vinnikov
et al in 2003 by bitter decoration.
[69]

Figure 1.12: Examples of superconducting vortex lattices observed in different materials by
different techniques.

Many people that used to work with skyrmions have noticed similarities between skyrmion
lattice and Abrikosov vortex lattice: lattice structure, topological nature, requirement of an
external field to exist, etc. [43]

Skyrmions had been studied in conjunction with superconductors. For example, Agterberg
et al have considered magnetic superconductors, [72] Knigavko et al focused on skyrmions in
triplet superconductors. [73]

In this Thesis we investigate the case of a superconducting vortex lattice next to the
skyrmion lattice (i.e. the bilayer of a magnetic material and a type-II superconductor) and
see if the ground state of both systems is to change; as we are mainly focused on magnetic
materials and skyrmion lattices in this Thesis, our main goal is to see if we can stabilise
metastable magnetic states found in the skyrmion material by presence of a superconductor
next to the magnet.

We will combine the two systems via electromagnetic coupling; i.e. an external field that
penetrates the vortex in a superconductor would not be uniform anymore, but rather stand as
a combination of the uniform external field and the magnetisation stray field of the skyrmion
lattice. On the other hand, the field external to the skyrmion lattice would not remain uniform
either, as it would be the field that penetrated a superconductor, and had been modified
therefore.

We start off with Brandt’s approach to type-II superconductors [71] and extend it to the
combined system.

In this Thesis we first discuss single skyrmions, then, in chapter 2 turn to skyrmion lattices
and study their stable and metastable states, emphasising energies of these states with respect
to each other, size and shape of skyrmions and critical magnetic fields that were found exactly.
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Being inspired by Brandt’s approach, we consider Fourier representation of the magnetisation.
The method introduced in chapter 2 proved to be very efficient, universal and more accurate
than any other known technique. In chapter 3 we recall type-II superconductors and super-
conducting vortices, and henceforth in chapter 4 consider a bilayer of a skyrmion material
and type-II superconductor. We then see if one can use a superconductor in order to stabilise
magnetic states that used to be metastable in pure magnetic material.
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Chapter 2

Skyrmion Lattice

2.1 Introduction and Motivation

Skyrmion lattices were first introduced by Igor Klebanov [79] in 1985 for neutron crystals.
Bogdanov and Yablonskii [40] then introduced the skyrmion lattice model for magnetic mate-
rials (they referred to skyrmions as “magnetic vortices”, though) in 1989, and in 2009 (after a
period of twenty years!) a skyrmion lattice was finally spotted experimentally by Mühlbauer
et al [20] in MnSi and by Yu et al [21] in Fe1−xCoxSi (these materials were predicted by
Bogdanov and Hubert in 1994 to support skyrmion lattices [42]).

Figure 2.1: Skyrmion lattice struc-
ture observed experimentally in
Fe1−xCoxSi for a weak magnetic field
(50mT ). Colour scheme and arrows
represent the magnetisation direction.
[21]

It is known from both theoretical predictions
[42] and experimental evidence [75] that skyrmions
form 2D triangular lattices1 that are perpendicu-
lar to the external field and translation invariant in
the parallel direction. Skyrmion lattices have been
observed in non-centrosymmetric magnets, such as
MnSi, Fe1−xCoxSi, FeGe, Mn1−xFexGe, and some
other materials. [75] An example of experimentally
observed skyrmion lattice can be found in Figure 2.1.

Clearly, being proposed back in 1989, skyrmion
lattices have been studied widely. Various methods
had been used: for example, Bogdanov introduced
analogy to the Abrikosov solution for a superconduct-
ing vortex lattice [40] in his first work and then con-
ducted the study of free energy functional of a magnetic material using polar coordinates and
tried the finite-difference method [42, 80] and Runge-Kutta method, [81] in order to solve Eu-

1Triangular lattice was first imposed for skyrmions due to the analogy to Abrikosov vortices in type-II
superconductors. [42]
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ler equation for helical-like structures obtained. Yu et al performed Monte-Carlo simulations,
[21] Han et al applied variational analysis of the free energy functional with the aid of CP 1

mapping and analogy of skyrmion lattice to the Abrikosov vortex lattice, [43] Karin Everschor
and Markus Garst solved Landau-Lifshitz-Gilbert equation [82] and many other approaches
have been carried out. In this survey we are going to apply a different method of investigation
of skyrmion lattices – as the skyrmion lattice is periodic, we will use the probably most con-
venient way of investigation for periodic structures: introduce Fourier decomposition of the
magnetisation on a triangular lattice and use it in order to minimise the free energy functional
of a magnetic system. We will start with the systems that have been already studied, for
example, by Han et al, [43] in order make sure our approach is consistent with the results
obtained before; then we would carry on the research to reveal unknown mysteries of this
piece of the microworld.

In this chapter we discuss single skyrmions and their origin, then introduce Fourier de-
composition of the magnetisation components, then with the aid of the Lagrange multiplier
we find optimal lattice spacing for a given field that minimises the free energy functional and
then investigate stable solutions, paying extra attention to transition points and determining
exact values of critical fields. Although the lattice of the stable system was confirmed to be
triangular during this research, another lattice type was found in metastable regions. It ap-
peared that some metastable skyrmion configurations follow honeycomb lattices in oppose to
their stable counterparts. However, if one compares free energy functionals of systems that
obey triangular and honeycomb lattices, one realises that they are close to each other near the
skyrmion-ferromagnet transition. We will study these honeycomb lattice solutions deeper in
comparison with triangular lattice solutions and thus think of their applications in the future.

2.2 Magnetic Skyrmions

As it was mentioned in the introduction, magnetic skyrmions mainly arise from the competition
between ferromagnetic exchange and anisotropic interaction. The exchange interaction tends
to bring all the spins to a single alignment, whereas Dzyaloshinsky-Moriya interaction tends
to curl spins in helices. So when these terms are of similar magnitude and the Zeeman term is
small enough, magnetic skyrmions can be formed. Typical length scale of magnetic skyrmions
is 5− 100nm, which is larger than the lattice constant,2 hence the continuum approximation
is valid for magnetic skyrmion systems. [75]

There are, however, other possible origins of skyrmions or skyrmion-like structures. Let
us briefly discuss several of them, though we would still focus on those resulting from the
competition between exchange and Dzyaloshinsky-Moriya interactions. The most popular
alternative origin of skyrmions is the long-ranged magnetic dipolar interaction. [76] These

2Lattice constant of a material, not to be confused with skyrmion lattice constant.
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are common in magnetic thin films with perpendicular easy-axis anisotropy. The dipolar
interaction in this case enhances an in-plane magnetisation, whereas the natural anisotropy
favours an out-of-plane magnetisation. So we have two competing interactions again, hence
the skyrmion state may arise. Typical length scale of skyrmions arising from the competition
of the dipolar interaction and the anisotropic interaction is in order of 100nm to 1µm, which
is larger than the length scale in the system of our interest. These skyrmions are often referred
to as “magnetic bubbles”. [77]

Figure 2.2: Single magnetic skyrmion in spin repre-
sentation.

Other skyrmion formation mecha-
nisms include frustrated exchange inter-
actions, [74] where one considers sec-
ond nearest neighbour interactions, and
four-spin exchange interactions, that
lead to square skyrmion lattices. [47] In
these cases the size of the skyrmion is of
order of 1nm, which is of order of the lat-
tice constant, hence the continuum ap-
proximation cannot be applied here. [75]
Luckily, here and later on we are going to
focus on skyrmions formed by the com-
petition between the exchange interac-
tion and anisotropic interaction, hence
shall not worry about the validity of the
continuum approximation.

Let us now consider a single skyrmion as depicted in Figure 2.2. We see that the spins are
in their “up” position at the edge of the skyrmion and in the “down” position in the centre of
a skyrmion. On the other hand, in polar coordinates, the component of the spins in circular
direction is independent of the polar angle, and thus we can claim that the direction of a spin
in a single skyrmion has the radial dependence only.

In continuum approximation a magnetic system is described by the following free energy
functional per unit area: [75]

F =

∫ {
J

2

∑
µ

(
∂µ ~M

)
·
(
∂µ ~M

)
+D ~M ·

(
∇× ~M

)
− ~B · ~M

}
dxdy

A
, (2.1)

where the integration goes over the unit cell with area A and ~M is the direction of the
magnetisation, hence must satisfy ∣∣∣ ~M ∣∣∣2 = 1. (2.2)
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We also introduce κ = D
2J and ~β =

~B
2J in order to simplify our functional to

F = 2J

∫ {
1

4

∑
µ

(
∂µ ~M

)
·
(
∂µ ~M

)
+ κ ~M ·

(
∇× ~M

)
− ~β · ~M

}
dxdy

A
. (2.3)

A single skyrmion is a magnetic system, hence it is convenient to describe it by the
functional (2.1). However, following the symmetries described above it is also convenient
to parametrise the magnetisation in polar coordinates:

~M = (cosφ sin θ, sinφ sin θ, cos θ) , (2.4)

with θ and φ angles demonstrated in Figure 2.3.

z

y

x

r

φ

θ

Figure 2.3: Definition of angles θ and φ for a spin within a skyrmion.

Combining this definition with the knowledge we obtained from Figure 2.2, conclude that
θ depends on the radial component only and φ – only on the angular one. So if one defines a
radius-vector in our new coordinate system as

~r = (r, ϕ) , 3 (2.5)

then θ = θ(r) only and φ = φ(ϕ) only. While the θ(r) dependence is non-trivial, φ(ϕ) can be
written as

φ(ϕ) = mϕ+ γ, (2.6)

where m = ±1 and γ = 0,±π
2 , π. Their values depend on the anisotropy and its origin. For

3This is in fact ~r = (r, ϑ, ϕ) in 3D, but we are working on a plane, hence with the case of ϑ = π
2
.
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the system of our interest (Bloch skyrmion) m = 1 and γ = π
2 . The sign of γ is determined

by the Dzyaloshinsky-Moriya constant, D. The form of φ(ϕ) stated in equation (2.6) comes
from the topological skyrmion number. [75] Topological skyrmion number is defined as

Nsk =
1

4π

∫ ∫
~M ·

(
∂ ~M

∂x
× ∂ ~M

∂y

)
dxdy, (2.7)

where ~M can be parametrised as in (2.4). The skyrmion number then turns into (see below
for the detailed conversion of the integral)

Nsk =
1

4π

∫ ∞
0

dr

∫ 2π

0
dϕ
dθ

dr

dφ

dϕ
sin θ =

1

4π

[
cos θ

]r=∞
r=0

[
φ(ϕ)

]2π

0
. (2.8)

Suppose now that all spins point up at r →∞ and all spins point down at r = 0. Then[
cos θ

]r=∞
r=0

= 2. (2.9)

One can define the vorticity, m, such that

Nsk = m (2.10)

once the condition r →∞ is fixed. Then obtain

m =
1

2π

[
φ(ϕ)

]2π

0
. (2.11)

Such a formulation then leads to
φ = mϕ, (2.12)

or
φ = mϕ+ γ. (2.13)

Let us now convert the functional (2.1) to the form that is consistent with our new
parametrisation of ~M . Notice that although we have parametrised our magnetisation in po-
lar coordinates, the derivatives involved in functional (2.1) still remain Cartesian. In the
representation of ~r = (r, ϑ, ϕ) the derivatives become4

∂x = cosϑ sinϕ∂r −
sinϑ

r sinϕ
∂ϑ +

cosϑ cosϕ

r
∂ϕ, (2.14)

∂y = sinϑ sinϕ∂r +
cosϑ

r sinϕ
∂ϑ +

sinϑ cosϕ

r
∂ϕ, (2.15)

and there is no z-dependence in our model. With the aid of transformations (2.14) and
4See Appendix A.1 for the derivation.
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(2.15) and polar parametrisation of the magnetisation, (2.4), one can transform the functional
(2.23) into pure polar form. While the transformation of the Zeeman term (the last term
in the functional) is trivial, let us focus on the transformation of the exchange term and
Dzyaloshinsky-Moriya term.

The exchange term can be expanded as

Tex =
1

4

[
(∂xMx)2 + (∂yMx)2 + (∂xMy)

2 + (∂yMy)
2 + (∂xMz)

2 + (∂yMz)
2
]
. (2.16)

Taking the parametrisation of Mx, My and Mz from (2.4), the parametrisation of ∂x
and ∂y from (2.14) and (2.15) respectively and recalling the fact that θ = θ(r) only and
φ = φ(ϕ) = mϕ+ γ, with m = 1, γ = π

2 and ϑ = π
2 for Bloch skyrmions, we obtain

Tex =
1

4

(
dθ

dr

)2

+
1

4r
sin2 θ. (2.17)

The easiest way to deal with the anisotropic term is to apply derivatives, (2.14) and (2.15)
and do the algebra just as we did it for the exchange term above.5 The anisotropic term then
becomes

TDM = κ
dθ

dr
+
κ

r
sin θ cos θ. (2.18)

Combining results from (2.17) and (2.18) along with the parametrised form of the Zeeman
term, we obtain the polar form of the free energy functional:

F = 2πJ

∫ R

0

{(
1

2

dθ

dr
+ κ

)2

− κ2 +
κ

r
sin θ cos θ +

1

4r
sin2 θ − β (cos θ − 1)

}
rdr, (2.19)

where κ = D
2J , β = B

2J , as ~B = (0, 0, B) with B = const and R is the radius of a skyrmion.
Technically, the integration should have taken place on the interval of [0,∞), but we fix the
outer boundary to R as θ collapses to a trivial solution for r > R.

Now we can minimise the obtained functional with respect to θ either directly or via solving
corresponding Euler-Lagrange equation in order to obtain θ(r) for a skyrmion of a given radius,
R. In either way we start with the linear initial guess,

θ0(r) = π (1− r) , (2.20)

with boundary conditions of
θ(0) = π (2.21)

5Alternatively, one can recall curl in polar coordinates, transform ~M into pure polar form (i.e. to Mr, Mϑ,
Mϕ, not the parametrised form used in (2.4)) and do the curl directly. Both methods would work.
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and
θ(R) = 0. (2.22)

Before proceeding with calculations of θ, one shall find the optimal radius of a skyrmion.
In his early works Bogdanov defined the radius of a skyrmion as lattice constant halved. [42]
Later he used more accurate circular-cell approximation. [41] However, while working with a
single skyrmion, the relation between the radius of a skyrmion and lattice constant does not
really matter, so we can use any definition. In any case, the radius of a skyrmion is roughly
the distance from a “down” spin to the nearest “up” spin. We also need to employ another
minimisation procedure in order to find the optimal radius for given values of κ and β. This
was done directly and the results obtained are demonstrated in Figure 2.4.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
R

5

0

5

10

15

20

25

30

35

F

Free Energy Functional for β= 1

Free Energy Functional for β= 1. 5

Free Energy Functional for β= 2

Figure 2.4: Free energy functional for a single skyrmion minimised with respect to the radius
of a skyrmion with optimal radius found. All the calculations were performed for κ = 1. Lines
of different colours correspond to calcualtions for corresponding values of β.

From Figure 2.4 we can notice that the optimal radius of a skyrmion does not vary much
with β, however, the dependence exists. It is demonstrated in Figure 2.5a. We see then that
the radius decreases with applied field increasing, i.e. the skyrmion becomes smaller at high
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fields. Physically this means that if we consider the same number of spins for any system, for
large external field more spins would rather align in the direction of the field (as in a typical
ferromagnet), than follow the skyrmion distribution. And as we consider the skyrmion radius
to be the distance from “ down” spin to the nearest “up” spin, this distance would become
smaller, as fewer spins would make it up.

1.0 1.5 2.0 2.5 3.0
β

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

R

Free Energy Functional

(a) Optimal radius of a skyrmion against β.

1.0 1.5 2.0 2.5 3.0
β

4

2

0

2

4

6

F

Free Energy Functional

(b) Free energy functional of a signgle skyrmion
against β.

Figure 2.5: Optimal radius of a skyrmion and free energy functional for a single skyrmion
calculated for the optimal radius configuration against β.

The free energy functional, (2.19), was calculated for an optimal radius configuration using
θ(r) found for this radius from the minimisation of the functional (2.19). The functional against
the applied field for fixed κ = 1 is demonstrated in Figure 2.5b.

Let us also plot θ(r) as it was found from the minimisation of the free energy functional
with the optimal radius. This is shown in Figure 2.6. The coordinate is scaled with the optimal
radius for a studied configuration in order to provide better comparisonal view.

Results demonstrated in Figure 2.6 can be compared against those obtained experimentally
by Romming et al. [48] We would see then that the correspondence between these results is
quite good. Also, from Figure 2.6 one can conclude that the linear guess is rather good only
for small values of an applied field and for the region around the centre of a skyrmion. In
other cases the linear formulation of θ(r) should not be accepted.
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θ
Linear initial guess for θ(r)

θ(r) for β=1

θ(r) for β=1.5

θ(r) for β=2

Figure 2.6: θ(r) found from the minimisation of the free energy functional with the optimal
radius for different values of β. Lines of different colours correspond to calcualtions for various
values of β. The purple line stands for the initial linear guess for θ. The terminal point varies
for different configurations as it is nothing but the optimal radius itself.

2.3 Euler-Lagrange Equations for a Magnetic System in Fourier
Space

2.3.1 Free Energy Functional in Cartesian Coordinates

So far we have dealt with a single magnetic skyrmion only. A single skyrmion is a great toy
model, a wonderful self-consistent piece of quantum magnetism. Despite the fact that one
can extract surprisingly a lot from single skyrmion studies and the fact that single (isolated)
skyrmions still can act as stable and metastable solutions of the actual systems [41, 78], we
would rather move to the survey of their collective behaviour: study 2D lattices formed by
skyrmions.

At the first glance one could try to formulate a structure factor [83] for a single skyrmion
and work with it on a lattice. Such an approach would not work for skyrmions, however, as
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skyrmions are known to be dynamic. Moreover, skyrmion lattice as well as the skyrmion itself
can get deformed. So let us start our study of skyrmion lattices with the formulation of the
free energy functional in Cartesian coordinates. It is convenient to work in polar coordinates
with a single skyrmion, that is a 2D circular object itself, i.e. obeys rotational symmetry,6

however, this does not hold for lattices. A formulation in terms of Cartesian coordinates is
preferable in the case of skyrmion lattices. It is also easier to construct square and triangular
lattices in Cartesian coordinates due to their rectangular nature. As it was demonstrated in
section 2.2, the free energy functional per unit volume (from here onwards – just the free
energy functional) of a magnetic system in Cartesian coordinates goes as follows:

F
[
~M
]

=

∫ {
J

2

∑
µ

(
∂µ ~M

)
·
(
∂µ ~M

)
+D ~M ·

(
∇× ~M

)
− ~B · ~M

}
dxdy

A
, (2.23)

where J is the ferromagnetic exchange constant, D is the Dzyaloshinsky-Moriya coupling
constant and ~B is the external field applied. Here ~M = ~M(x, y) with components

~M(x, y) = (Mx(x, y),My(x, y),Mz(x, y)) , (2.24)

obeying
∣∣∣ ~M ∣∣∣2 = 1 and ~B = (0, 0, B) with B = const, which corresponds to the uniform

external field in z-direction.
Many equations that are to be derived in the following chapters cannot be solved analyt-

ically, hence have to be attempted numerically. The most convenient way to do numerical
analysis is to convert the equations of interest to the dimensionless form, as in this case one
does not have to worry about extremely small or extremely large quantities as well as the
dimensions themselves. Hence let us convert the free energy functional, (2.23), into dimen-
sionless form. Introduce

κ =
D

2J
(2.25)

that would scale the anisotropic (Dzyaloshinsky-Moriya) constant, and

β =
B

2J
(2.26)

to scale the applied field as we did for single skyrmion studies in the previous section, in order
to obtain dimensionless formulation of the free energy functional:

F
[
~M(x, y)

]
= 2J

∫ {
1

4

∑
µ

(
∂µ ~M

)
·
(
∂µ ~M

)
+ κ ~M ·

(
∇× ~M

)
− ~β · ~M

}
dxdy

A
, (2.27)

6In this case we need to deal with θ = θ(r) only, hence simplify our life by dealing with a quasi 1D system.
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or just

F
[
~M(x, y)

]
= 2J

∫
F [ ~M(x, y)]

dxdy

A
, (2.28)

where F is the free energy functional density. Notice that β and κ are not dimensionless them-
selves, moreover, κ has dimensions of ~r−1 and β has dimensions of ~r−2. However, functional

F̃ =

∫
F [ ~M(x, y)]

dxdy

A
(2.29)

is dimensionless.
Let us now introduce dimensionless coordinates, ~̃r = ~rκ, via

~rκ = (x̃, ỹ) = κ~r, (2.30)

with x̃ = κx and ỹ = κy, as κ has dimensions of ~r −1. This is the usual convention for
coordinates in skyrmion systems. [43]

In correspondence with (2.30) define

Ã = κ2A, (2.31)

∂̃µ =
1

κ
∂µ, (2.32)

so the functional, F̃ , transforms to

F̃ = κ2

∫ {
1

4

∑
µ

(
∂̃µ ~Mκ

)
·
(
∂̃µ ~Mκ

)
+ ~Mκ ·

(
∇̃ × ~Mκ

)
− ~βκ · ~Mκ

}
dx̃dỹ

Ã
= κ2F̃κ, (2.33)

where we have also defined
~βκ =

~β

κ2
(2.34)

to make ~β dimensionless as well.
Another important quantity now is ~Mκ, that is defined as

~Mκ = ~Mκ

(
~rκ
κ

)
. (2.35)

In order to shorthand the notation in the future, we relabel

~rκ → ~r, (2.36)

F̃κ → F̃ , (2.37)

~βκ → ~β, (2.38)
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~Mκ → ~M, (2.39)

etc.
Despite the fact that the formulation of the free energy functional given in (2.27) is con-

venient for lattice studies, magnetisation formulated in Cartesian components, as stated in
(2.24), does not automatically satisfy the crucial constraint of

| ~M(x, y)|2 = 1. (2.40)

In order to take this constraint into account we introduce the Lagrange multiplier, λ =

λ(x, y), and hence add the constraint to the functional, as one usually does for constraint
systems:

F̃ =
1

4

∑
µ

(
∂µ ~M

)
·
(
∂µ ~M

)
+ ~M ·

(
∇× ~M

)
− ~β · ~M + λ

(
| ~M |2 − 1

)
, (2.41)

or in component form:

F̃ =
1

4

[
(∂xMx)2 + (∂xMy)

2 + (∂xMz)
2 + (∂yMx)2 + (∂yMy)

2 + (∂yMz)
2
]

+ [Mx∂yMz −My∂xMz +Mz (∂xMy − ∂yMx)]− βMz (2.42)

+ λ
(
M2
x +M2

y +M2
z − 1

)
,

for better demonstration.
We want to figure out the optimal spin (magnetisation) configuration for given parameters,

so we need to minimise functional (2.41), and thus derive Euler-Lagrange equations for Mx,
My and Mz. Following the general form of

∂F
∂Mµ

− ∂ν
∂F

∂ (∂νMµ)
= 0, (2.43)

with summation convention applied for ν, that is ν = x, y, Euler-Lagrange equations come as
follows: (

∂2
x + ∂2

y

)
Mx − 4∂yMz − 4λMx = 0, (2.44)(

∂2
x + ∂2

y

)
My + 4∂xMz − 4λMy = 0, (2.45)(

∂2
x + ∂2

y

)
Mz − 4 (∂xMy − ∂yMx)− 4λMz = −2β. (2.46)

2.3.2 Fourier Representation of the Magnetisation

As it was mentioned before, there are many methods to study skyrmion lattices. None of them
is perfect, however. One of the most popular methods (developed by Bogdanov et al [42])
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involves so-called circular cell approximation, i.e. it assumes a unit cell to be a circle with the
corresponding radius. This method does its job, however results obtained are not nessesarily
in a good agreement with experimental evidences (see later). Another method, introduced by
Han et al, [43] that takes into account similarity between the skyrmion lattice and Abrikosov

vortex lattice does not take the constraint of
∣∣∣ ~M ∣∣∣2 = 1 for all ~r into account, hence the results

obtained cannot be precise either. Therefore we are not going to follow any of the existing
methods; instead develop a very new one: being inspired by Brandt’s approach for Abrikosov
vortices in type-II superconductors (see section 3.5) we Fourier transform the magnetisation
components (and the Lagrange multiplier as well) and do all the important calculations in
Fourier space. As our skyrmion lattice is a periodic structure (hence the magnetisation is a
periodic quantity) and in general is expected to be similar to the Abrikosov vortex lattice,
Fourier approach is completely legitimate. Following Brandt’s motivation, [71] we expect
our approach to be fast and universal, i.e. converging fast enough for any combination of
parameters.

Prior to doing the transformation itself, let us introduce the space and the lattice. We
define lattice vectors to be ~a1 and ~a2 with

~a1 = aêx (2.47)

and

~a2 =
a

2
êx +

√
3

2
aêy. (2.48)

An example of a triangular lattice is given in Figure 2.7.

a

1

a

2

a

Figure 2.7: Sample triangular lattice with primitive lattice vetors ~a1 and ~a2 and lattice spacing
a. A unit cell is depicted by a shaded paralellogram and contains exactly one vertex (skyrmion,
in our case).
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Any point within the unit cell now can be described by

~r = xi~a1 + yj~a2, (2.49)

where xi ∈ [0, 1] and yj ∈ [0, 1] within a unit cell. See Figure 2.8 for the demonstration of
such a unit cell.

a1

a2

r

xi

yj

Figure 2.8: A unit cell of a triangular lattice with primitive vectors, ~a1 and ~a2. Position vector,
~r, is defined via ~a1 and ~a2 as in equiation (2.49) and xi ∈ [0, 1] and yj ∈ [0, 1].

Positions of skyrmions (or any vertices, in general) on a triangular lattice can be denoted
by

~Rvw = (vx1 + wx2, wy2) , (2.50)

with
x1 = a, (2.51)

x2 =
a

2
, (2.52)

y2 =

√
3

2
a, (2.53)

where and a is the lattice spacing and v and w are integers. For example, when v = w = 0, a
skyrmion is located at ~R00 = 0, etc.

With such a unit cell imposed, any real space function can be periodised as

f
(
~r + ~Rvw

)
= f (~r) . (2.54)

On the other hand, one can always Fourier transform any periodic function via

f (~r) =
∑
~k

f~ke
−i~k~r, (2.55)
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where
~r = (x, y) , (2.56)

and
~k =

{
~kmn

}
, (2.57)

with

~kmn =
2π

x1y2

(
my2

nx1 −mx2

)
=

(
kx

ky

)
, (2.58)

where m and n are dummy indices. In Fourier space they go from −Nx
2 to Nx

2 for m and −Ny
2

to Ny
2 for n, where Nx is the number of points in x-direction used in numerical simulations

and Ny is the number of points in y-direction.
Now that as we have fulfilled all the necessary conditions, we can do the (discrete) Fourier

transform7 of the magnetisation components and the Lagrange multiplier.
Discrete Fourier transform of Mx is given as

Mx(x, y) =
∑
m,n

Xmn(kx, ky)e
−i~kmn~r, (2.59)

where Xmn(kx, ky) is the Fourier coefficient for Mx and m and n are integer indices as intro-
duced before.

In order to shorthand the notation, we write

Mx =
∑
~k

X~ke
−i~k~r, (2.60)

and by analogy:
My =

∑
~k

Y~ke
−i~k~r, (2.61)

Mz =
∑
~k

Z~ke
−i~k~r, (2.62)

for the rest components of the magnetisation and the Lagrange multiplier:

λ =
∑
~k

λ~ke
−i~k~r. (2.63)

Notice that although in this notation we have only one summation index, ~k, the actual
summation goes over m and n indices, also

X~k = Xmn(kx, ky) (2.64)

7Not to be confused with Fourier series.
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as well as all the other Fourier coefficients.
Now we can substitute these Fourier expressions into Euler-Lagrange equations (2.44) –

(2.46) derived in the previous section.8 In order to do it we would require formulation of
derivatives in Fourier form:

∂νMµ = −
∑
~k

ikνM̂µ(~k)e−i
~k~r, (2.65)

where ν = x, y, µ = x, y, z and M̂µ(~k) is the Fourier coefficient of a magnetisation component,
Mµ, i.e. either of X~k, Y~k and Z~k. Similarly,

∂2
νMµ = −

∑
~k

k2
νM̂µ(~k)e−i

~k~r, (2.66)

and we also write
k2
x + k2

y = k2. (2.67)

So we can now use auxiliary relations (2.65) – (2.67) along with Fourier formulations (2.60)
– (2.63) to obtain Euler-Lagrange equations in Fourier form from (2.44) – (2.46). Note the
terms with the Lagrange multiplier. The equations then are:

∑
~k

−k2X~ke
−i~k~r + 4ikyZ~ke

−i~k~r − 4X~k

∑
~k′

λ~k′e
−i(~k+~k′)~r

 = 0, (2.68)

∑
~k

−k2Y~ke
−i~k~r − 4ikxZ~ke

−i~k~r − 4Y~k

∑
~k′

λ~k′e
−i(~k+~k′)~r

 = 0, (2.69)

∑
~k

−k2Z~ke
−i~k~r + 4i

(
kxY~k − kyX~k

)
e−i

~k~r − 4Z~k

∑
~k′

λ~k′e
−i(~k+~k′)~r

 = −2β. (2.70)

Multiply equations (2.68) – (2.70) by ei
~k′′~r

A and integrate over dxdy:9

∑
~k

∫ −k2X~ke
−i~k~r + 4ikyZ~ke

−i~k~r − 4X~k

∑
~k′

λ~k′e
−i(~k+~k′)~r

 ei~k′′~r dxdy
A

= 0, (2.71)

8Another option is to Fourier transform the equations directly.
9We need this integration step as we are working with Euler-Lagrange equations, though if we had worked

with the direct variation of the functional, the integration would have been more straightforward as well as if
we had Fourier transformed the equations at once.
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∑
~k

∫ −k2Y~ke
−i~k~r − 4ikxZ~ke

−i~k~r − 4Y~k

∑
~k′

λ~k′e
−i(~k+~k′)~r

 ei~k′′~r dxdy
A

= 0, (2.72)

∑
~k

∫ [
−k2Z~ke

−i~k~r + 4i
(
kxY~k − kyX~k

)
e−i

~k~r − 4Z~k

∑
~k′

λ~k′e
−i(~k+~k′)~r

 ei~k′′~r dxdy
A

= −2β

∫
ei
~k′′~r dxdy

A
. (2.73)

Now one wants to simplify equations obtained. We will present the derivation step by step,
considering several important cases (terms) and do the rest by analogy. Start with a sample
term that results from the Dzyaloshinsky-Moriya term:

∑
~k

∫
4ikyZ~ke

−i~k~rei
~k′′~r dxdy

A
=
∑
~k

∫
4ikyZ~ke

−i(~k−~k′′)~r dxdy

A
, (2.74)

but the integral of an exponent like the one in the above equation is just a δ-function:∫
e−i(

~k−~k′′)~r dxdy

A
= δ~k~k′′ , (2.75)

hence the whole term reduces to∑
~k

∫
4ikyZ~ke

−i(~k−~k′′)~r dxdy

A
= 4i

∑
~k

kyZ~kδ~k~k′′ (2.76)

also re-label ~k → ~k′ and ~k′′ → ~k to get

4i
∑
~k

kyZ~kδ~k~k′′ → 4i
∑
~k′

k′yZ~k′δ~k~k′ . (2.77)

One can generalise this (call it) d-term as

T dµk = 4iσ
∑
~k′

k′µM̂µ(~k′)δ~k~k′ , (2.78)

where σ = ±1.
Another important term is the one containing the Lagrange multiplier, λ, call it λ-term:

− 4

∫ ∑
~k

X~k

∑
~k′

λ~k′e
−i(~k+~k′−~k′′)~r dxdy

A
= −4

∑
~k

X~k

∑
~k′

λ~k′δ~k+~k′,~k′′ , (2.79)
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which yields ~k + ~k′ → ~k′′, or ~k′ → k′′ − ~k, hence

− 4
∑
~k

X~k

∑
~k′

λ~k′δ~k+~k′,~k′′ = −4
∑
~k

X~kλ~k′′−~k, (2.80)

re-labelling ~k → ~k′ and ~k′′ → ~k in order to remain consistent with the previous example, get

− 4
∑
~k

∑
~k′′

X~kλ~k′′−~k → −4
∑
~k′

X~k′λ~k−~k′ , (2.81)

and this λ-term can be generalised to

T λµk = −4
∑
~k′

M̂µ(~k′)λ~k−~k′ . (2.82)

Dealing with exchange terms is easy compared to d-terms or λ-terms: no underwater rocks,
integrate the exponents to obtain δ-functions and re-label ~k → ~k′ for consistence sake.

Finally, the constant term is simplified to:

− 2β

∫
ei
~k′′~r dxdy

A
= −2βδ~k,0, (2.83)

where we have re-labelled ~k′′ → ~k.
Investigating all the d-terms by following example (2.78), all the λ-terms via (2.82) and

employing (2.83) for the constant term, for a given k one obtains:∑
~k′

[{
−k′2X~k′ + 4ik′yZ~k′

}
δ~k~k′ − 4X~k′λ~k−~k′

]
= 0, (2.84)

∑
~k′

[{
−k′2Y~k′ − 4ik′xZ~k′

}
δ~k~k′ − 4Y~k′λ~k−~k′

]
= 0, (2.85)

∑
~k′

[{
−k′2Z~k′ + 4i

(
k′xY~k′ − k

′
yX~k′

)}
δ~k~k′ − 4Z~k′λ~k−~k′

]
= −2βδ~k,0. (2.86)

Equations (2.84) – (2.86) can be rewritten in the matrix form to shorthand notation and
make the numerical procedures that are to follow easier and clearer:∑

~k′

D̂~k~k′
~V~k′ = ~I~k, (2.87)
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where the term on the RHS is just

~I~k =

 0

0

−2βδ~k,0

 , (2.88)

~V~k is the vector containing Fourier coefficients of the magnetisation components for a given k,

~V~k =

 X~k
Y~k
Z~k

 , (2.89)

and the matrix D̂~k~k′ is

D̂~k~k′ =

 k′2δ~k~k′ − 4λ~k−~k′ 0 4ik′yδ~k~k′

0 k′2δ~k~k′ − 4λ~k−~k′ −4ik′xδ~k~k′

−4ik′yδ~k~k′ 4ik′xδ~k~k′ k′2δ~k~k′ − 4λ~k−~k′

 . (2.90)

For convenience D̂~k′ matrix can be split onto two terms,

D̂~k~k′ = K̂~k′δ~k~k′ − L̂~k~k′ , (2.91)

where

K̂~k′ =

 k′2 0 4ik′y

0 k′2 −4ik′x

−4ik′y 4ik′x k′2

 (2.92)

and the second term is related to the Lagrange multiplier,

L̂~k~k′ = 4λ~k−~k′ Î , (2.93)

with Î being an identity 3× 3 matrix.
This step, however, is not necessary, though it simplifies future numerical calculation,

as the K̂~k′ matrix contains lattice parameters only and is not modified by Euler-Lagrange
equations, hence has to be calculated once per lattice.

Solving equation (2.87) for ~V~k via

~V~k =
∑
~k′

D̂−1
~k~k′
~I~k′ , (2.94)

one can obtain expressions for Fourier coefficients and hence use the Fourier transform expres-
sions, equations (2.60) – (2.62), to obtain Mx, My and Mz.

43



CHAPTER 2. SKYRMION LATTICE

As one may have noticed, we find X~k, Y~k and Z~k and thus Mx, My and Mz analytically
(matrix inversion and Fourier transform). However, we need to employ a numerical procedure
(see Appendix C.1) in order to find the Lagrange multiplier, λ.

2.3.3 Skyrmion Lattice Solution

A typical lattice solution obtained by the procedure described in the previous section may be
found in Figure 2.9.
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Figure 2.9: Lattice solution for a skyrmion system for the external field of β = 1.4 and the
lattice spacing of a = 4. In this figure as well as in all the other figures of this kind to follow
one finds the magnetisation of the skyrmion system. Mx andMy are denoted by arrows curling
in the anti-clockwise direction (skyrmion way) and the colour contours stand for Mz that has
the value of −1 in the centre of a skyrmion and 1 in the region between skyrmions. The
coordinates are normalised with respect to the lattice spacing, a. Note that it is not a unit
cell, though a piece of the lattice, represented in this figure.

As we can see from Figure 2.9, the lattice is triangular just as we imposed it to be. Lattice
spacing, a, is the distance between the centres of two neighbouring origins of unit cells. Also
we see that Mz has its lowest values in the centre of a skyrmion and the highest between
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skyrmions. Conventionally, the highest value of z-component of the magnetisation, Mz = 1,
corresponds to the “up” configuration of spins and the lowest value of z-component of the
magnetisation, Mz = −1, corresponds to the “down” configuration of spins. Following such
a convention, one can see how spins change their position from “down” in the centre of a
skyrmion to “up” on the edge just as we have seen it for a single skyrmion in the previous
section.

Spin pattern, though, is better seen from Figure 2.10 that demonstrate spin orientation
whithin a unit cell of a skyrmion lattice and on a triangular lattice respectively.

Figure 2.10: Spin orientation within the unit cell of a triangular skyrmion lattice for β = 1.4
and a = 4. Spin changes from “down” position in the centre of a skyrmion to “up” position far
away from the centre of a skyrmion.

Keeping in mind that the field applied is positive, we see that spins align along the direction
of the field between skyrmions and in the opposite direction in the centres of skyrmions. So
one can call the region between skyrmions to be ferromagnetic.

We will stick to the representation style used in Figure 2.9 while speaking about lattice
structure and shape of skyrmions, whereas the style used in Figure 2.10 is more convenient
when discussing spin patterns and internal structure of skyrmions.

Although it was the magnetisation we have been mainly interested in, we had to employ a
numerical procedure in order to find the Lagrange multiplier, λ. If we have a look at λ in the
unit cell of our system, we realise that the shape of λ repeats the shape of a skyrmion exactly,
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though with the largest value situated in the centre – see Figure 2.11a – and the lowest values
distributed in the middle region of a “skyrmion”. In other words, λ takes the largest values
when the spins are aligned parallel or anti-parallel to the external field and the lowest values
when the spins are perpendicular to it (parallel to the xy-plane). It is not surprising, should

one remember the actual constraint of
∣∣∣ ~M ∣∣∣2 = 1.
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(a) Lagrange multiplier calculated for β = 1.4, a = 4
on a unit cell.
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(b) | ~M |2 calculated for β = 1.4, a = 4 on a unit cell.

Figure 2.11: Lagrange multiplier and | ~M |2 − 1 on a unit cell of a skyrmion system. Lagrange
Multiplier repeats the shape of a skyrmion exactly and the condition of | ~M |2 = 1 is preserved
at any point in the unit cell up to numeric uncertainty.

The only reason to introduce the Lagrange multiplier was to fulfil the condition of | ~M |2 = 1

in every single point of the lattice, as described in section 2.3.1. Figure 2.11b shows us that
| ~M |2 = 1 holds everywhere up to the numerical accuracy, which means that our implemen-
tation of the constraint and the calculations that followed up are correct. Figure 2.11a and
Figure 2.11b are presented in order demonstrate the legitimacy of the method developed in
this work. We will not refer to studies of quantities displayed in Figure 2.11a and Figure 2.11b
in the future.

Solutions to Euler-Lagrange equations are functions for which a functional is stationary,
however, there is no guarantee that such a stationary solution minimises the functional or, in
case it does, the minima found is the global minima, not the local one. So solutions found by
the method introduced in section 2.3.2 can be metastable as well as stable or not stable at all.
Since we work with a thermodynamic system that obeys several first order phase transitions,
we expect a huge cluster of metastable solutions, but it is the stable solutions we are looking
for in the first place. Hence we need to invent an additional procedure to distinguish stable
solutions from those metastable or not stable at all. As in general we are free to vary the
lattice spacing (though, the outcome of such a variation may not correspond to the minimal
configuration), we can find a lattice spacing that guarantees the most stable solution for a
given β and fix it. And this is to be demonstrated in the next section.

46



CHAPTER 2. SKYRMION LATTICE

2.4 Finding the Optimal Skyrmion Lattice

2.4.1 Additional Condition

In section 2.3.1 we have minimised the free energy functional by deriving Euler-Lagrange
equations that can be solved for a stationary solution. However, there is no guaranty for such
a solution to be the global minima: it might correspond to a local minima or no minima at
all. So we need to think of some additional condition that would help us to make sure the
solution we have found is the actual minima of the free energy functional. The only control
parameter we have used so far was ~β that is related to the external field.

Let us now work with the lattice spacing, a, as with a parameter and develop a procedure
to find an optimal one. Parametrise the coordinates via γ that is a dimensionless number:

~r = γ~r′, (2.95)

with x = γx′ and y = γy′, which leads to

∂′µ =
1

γ
∂µ, (2.96)

d2r′ =
1

γ2
d2r, (2.97)

A′ =
1

γ2
A, (2.98)

hence the functional (2.27) turns into

F̃
[
~Mγ

]
=

∫ {
1

4

1

γ2

∑
µ

(
∂′µ ~Mγ

)
·
(
∂′µ ~Mγ

)
+

1

γ
~Mγ ·

(
∇′ × ~Mγ

)
− ~β · ~Mγ

}
dx′dy′

A′
, (2.99)

with ~Mγ = ~M(γ~r′).
In the end, though, the functional must be independent of the scaling, γ, hence we impose

∂F̃

∂γ
= 0, (2.100)

that leads to∫ {
−1

2

1

γ3

∑
µ

(
∂′µ ~Mγ

)
·
(
∂′µ ~Mγ

)
− 1

γ2
~Mγ ·

(
∇′ × ~Mγ

)
+
δF̃

δ ~M

∂ ~M

∂γ

}
dx′dy′

A′
= 0, (2.101)

or, in shorthand,

F̃ex =
1

4

∫ ∑
µ

(
∂′µ

~Mγ

)
·
(
∂′µ

~Mγ

) dx′dy′
A′

(2.102)
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for the ferromagnetic exchange term and

F̃DM =

∫
~Mγ ·

(
∇′ × ~Mγ

) dx′dy′
A′

(2.103)

for the Dzyaloshinsky-Moriya term, we get

− 2
1

γ3
F̃ex −

1

γ2
F̃DM +

∫
δF̃

δ ~M

∂ ~M

∂γ

dx′dy′

A′
= 0. (2.104)

But as ~M is a stationary solution of Euler-Lagrange equations, it corresponds to

δF̃

δ ~M
= 0. (2.105)

On the other hand, we recall that ~Mγ = ~M(γ~r′). We would like to have ~M unchanged,
though, as it is ~M(~r) that is a stationary solution of Euler-Lagrange equations derived, not
~M(γ~r′) or any other scaled ~M . Hence we impose γ = 1. This is allowed, as the functional
shall be independent of γ anyway. So our condition would actually look like

∂F̃

∂γ

∣∣∣
γ=1

= 0, (2.106)

and thus (2.104) transforms to

∫ {
−1

2

∑
µ

(
∂′µ ~Mγ

)
·
(
∂′µ ~Mγ

)
− ~Mγ ·

(
∇′ × ~Mγ

)} dx′dy′

A′
= 0, (2.107)

or just
− 2F̃ex − F̃DM = 0, (2.108)

that can be rewritten as
F̃DM

F̃ex
= −2, (2.109)

which is actually nothing more, but the virial theorem10 formulated for our problem (call
V = F̃DM

F̃ex
to be a “virial ratio” from here on). We will also stick to the condition (2.109) in

our calculations in order to make sure the minimum we find is the global minimum (see later).
As we have used the fact that the free energy functional is stationary with respect to ~M

and λ, we conclude that (2.109) holds for a stationary solution, or, on the other hand, if (2.109)
holds for a given set of parameters, then the solution obtained is stationary. Employing this
additional condition also gives us better numerical accuracy in the position of the minima (see

10In general, virial theorem relates the average of the total kinetic energy with the the average of the total
potential energy. [85]
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later).

2.4.2 Fixing Optimal Spacing

In the previous section we have derived a relation, (2.109), that is supposed to help us achieve
a global minima of the system. The question is now how to satisfy this relation? And the
answer is: by varying the lattice spacing, a, for a given β. An example of the free energy
functional for β = 1.1 against different values of the spacing is demonstrated in Figure 2.12a.
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(a) Free energy functional of a skyrmion system for
β = 1.1 against the lattice spacing. The black dot
indicates the minima of the functional.
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(b) Virial ratio, F̃DM

F̃ex
, for β = 1.1. The black dot

indicates V = F̃DM
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= −2 point.

Figure 2.12: Free energy functional and virial ratio against lattice spacing for β = 1.1.

We see that it is hard to determine the minima from Figure 2.12a solely, as the free en-
ergy functional is very shallow around it. One can still determine the minima, though with
quite poor precision. This is indicated by a black dot. On the other hand, from Figure 2.12b
it is easy to find the spacing that satisfies the virial condition, (2.109), – this point is indi-
cated in Figure 2.12b by a black dot. Comparing position of black dots in Figure 2.12a and
Figure 2.12b, realise that they their abscissa coordinates coincide, i.e. the minima of the free
energy functional corresponds to F̃DM

F̃ex
= −2, as expected. Though, it is far easier to determine

a point precisely from Figure 2.12b than from Figure 2.12a. Moreover, it would also require to
consider way fewer points in a due to high precision of the method, hence the efficiency of the
method would increase. So we will use condition (2.109) in order to find the optimal spacing,
a, that minimises the free energy functional. The state obtained for a that corresponds to the
minimal value of the free energy functional aka F̃DM

F̃ex
= −2 is the stable solution.
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2.4.3 Analytical Solution for B = 0

2.4.3.1 The Solution

Before turning to numerical minimisation of the functional (2.27) using all the scaling and
procedures we have presented above, we want to test our approach. In order to do it, let us
minimise functional (2.27) analytically for a special case of B = 0.

As we know, Dzyaloshinksy-Moriya system in absence of an external field should demon-
strate helical behaviour. [15] Let us derive this solution analytically. The dimensionless
functional for β = 0 is

F̃
[
~M(x, y)

]
=

∫ {
1

4

∑
µ

(
∂µ ~M

)
·
(
∂µ ~M

)
+ ~M ·

(
∇× ~M

)
+ λ

(∣∣∣ ~M ∣∣∣2 − 1

)}
dxdy

A
.

(2.110)
Fourier expand components of ~M as introduced in section 2.3.2:

Mµ =
∑
~k

M̂µ(~k)e−i
~k~r, (2.111)

with M̂µ being Fourier coefficients for Mx, My, Mz, then the derivatives are

∂νMµ = −
∑
~k

ikνM̂µ(~k)e−i
~k~r, (2.112)

(
∇× ~M

)
α

=
∑
βγ

εαβγ
∑
~k

ikβM̂γ(~k)e−i
~k~r, (2.113)

and the functional then becomes

F̃
[
~M(x, y)

]
=

∫ −1

4

∑
αµ

∑
~k,~k′

(ikµ)(ik′µ)M̂α(~k)M̂α(~k′)e−i(
~k+~k′)~r

+
∑
αβγ

εαβγ
∑
~k,~k′

ikβM̂α(~k′)M̂γ(~k)e−i(
~k+~k′)~r (2.114)

+ λ

∑
α

∑
~k,~k′

M̂α(~k)M̂α(~k′)e−i(
~k+~k′)~r − 1

 dxdy

A
.

Recall ∫
e−i(

~k+~k′)~r dxdy

A
= δ~k,−~k (2.115)

and work with each term of the functional (2.114) separately:

F̃ = F̃ex + F̃DM + F̃λ. (2.116)
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The exchange term simplifies to

F̃ex = −1

4

∫ ∑
µν

∑
~k,~k′

(ikν)(ik′ν)M̂µ(~k)M̂µ(~k′)e−i(
~k+~k′)~r dxdy

A

= −1

4

∑
µν

∑
~k,~k′

(ikν)(ik′ν)M̂µ(~k)M̂µ(~k′)δk,−k

= −1

4

∑
µν

∑
~k

(ikν)(−ikν)M̂µ(~k)M̂µ(−~k)

= −1

4

∑
µν

∑
~k

k2
νM̂µ(~k)M̂∗µ(~k)

= −1

4

∑
µν

∑
~k

k2
ν

∣∣∣M̂µ

∣∣∣2 , (2.117)

as M̂µ(−~k) = M̂∗µ(~k).
The Dzyaloshinsky-Moriya term then becomes:

F̃DM =
∑
αβγ

εαβγ

∫ ∑
~k,~k′

ikβM̂α(~k′)M̂γ(~k)e−i(
~k+~k′)~r dxdy

A

=
∑
αβγ

εαβγ
∑
~k,~k′

ikβM̂α(~k′)M̂γ(~k)δk,−k (2.118)

=
∑
αβγ

εαβγ
∑
~k

ikβM̂
∗
α(~k)M̂γ(~k).

Finally, the Lagrange multiplier term turns into:

F̃λ = λ

∫ ∑
µ

∑
~k,~k′

M̂µ(~k)M̂µ(~k′)e−i(
~k+~k′)~r − 1

 dxdy

A

=
∑
µ

∑
~k,~k′

M̂µ(~k)M̂µ(~k′)δ~k,−~k − λ (2.119)

= λ
∑
µ

∑
~k

∣∣∣M̂µ(~k)
∣∣∣2 − λ (2.120)

Combining all three terms, we obtain

F̃ =
∑
~k

1

4

∑
µν

k2
ν

∣∣∣M̂µ(~k)
∣∣∣2 +

∑
µβγ

εµβγM̂
∗
µ(~k)ikβM̂γ(~k) + λ

∑
µ

∣∣∣M̂µ(~k)
∣∣∣2
− λ. (2.121)

Vary the functional with respect to M̂∗µ(~k) by writing the corresponding Euler-Lagrange
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equation:
∂F̃

∂M̂∗µ
− ∂ν

∂F̃

∂(∂νM̂∗µ)
= 0 (2.122)

with the summation convention applied for ν.
One then finds that all the derivative terms,

∂F̃

∂(∂νM̂∗µ)
= 0 (2.123)

∀ν, hence we obtain
∂F̃

∂M̂∗µ
= 0, (2.124)

which is found to be

∂F̃

∂M̂∗µ
=
∑
~k

1

2

∑
µν

k2
νM̂µ(~k) +

∑
βγ

εµβγ

(
ikβM̂γ(~k)− ikγM̂γ(~k)

)
+ 2λ

∑
µ

M̂µ(~k)

 = 0,

(2.125)
leading to three equations for three Fourier coefficients for a given k:

k2X~k + 4ikyZ~k + 4λX~k = 0, (2.126)

k2Y~k − 4ikxZ~k + 4λY~k = 0, (2.127)

k2Z~k + 4ikxY~k − 4ikyX~k + 4λZ~k = 0. (2.128)

These equations look similar to equations (2.84) – (2.86) with the only difference in the absence
of β.11 Let us now rewrite our new equations in the matrix form:

D̂
(0)
~k
~V~k + 4λÎ ~V~k = 0, (2.129)

where we have separated the Lagrange multiplier from the other terms combined in D̂(0)
~k

,

D̂
(0)
~k

=

 k2 0 4iky

0 k2 −4ikx

−4iky 4ikx k2

 . (2.130)

11We could have actually adapted equations (2.84) – (2.86) for β = 0 case straight away, though we decided
to repeat the procedure from scratch for better demonstration.
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The Fourier coefficients are now combined in the eigenvector ~V~k,

~V~k =

 X~k
Y~k
Z~k

 . (2.131)

On the other hand, sometimes it is more convenient to write

D̂~k = D̂
(0)
~k

+ 4λÎ, (2.132)

with

D̂~k =

 k2 + 4λ 0 4iky

0 k2 + 4λ −4ikx

−4iky 4ikx k2 + 4λ

 (2.133)

then equation (2.129) reduces to
D̂~k

~V~k = 0 (2.134)

that can be easily solved via
det D̂~k = 0. (2.135)

So let us find the determinant of the matrix D̂:

det D̂ =
(
k2 + 4λ

) (
−16k2 +

(
k2 + 4λ

)2)
, (2.136)

and a characteristic equation

(
k2 + 4λ

) (
−16k2 +

(
k2 + 4λ

)2)
= 0 (2.137)

solves to
λ = −1

4

(
k2 + 4σk

)
, (2.138)

where σ can take values of σ = −1, 0, 1.
Let us now denote

k|β=0 = kH (2.139)

in order to mark the wave vector of a helix and not to confuse it with other possible values of
k.

Finally, let us go back to the free energy functional, (2.121), and notice that it can be
written in the matrix form as well:

F̃ =
∑
~k

D̂~k
~V~k − λ. (2.140)

53



CHAPTER 2. SKYRMION LATTICE

But we had just solved D̂~k~V~k = 0, hence the functional reduces to

F̃ = −λ =
1

4
k2
H + σkH = F̃σ. (2.141)

Let us now plot F̃ (kH) for allowed values of σ to determine whichever corresponds to the
minimal solution. See the plot in Figure 2.13.
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Figure 2.13: F̃ (kH) for differnet values of σ: blue curve represents the functional for σ = 0,
orange curve stands for σ = 1 case and green one goes for σ = −1.

As one can see form Figure 2.13, if we would like to stick to positive values of kH it is
σ = −1 we should choose. However, if we do not restrict ourselves to positive kH , σ = 1 case
would also minimise the free energy functional.

On the other hand, one can assume a helical solution from the beginning and parametrise
~M in the usual helical form as it was demonstrated in the introduction:

~M =

 0

− sin~kH~r

cos~kH~r

 , (2.142)

with ~k = kH êx, then the derivatives become

∂µ ~M = −kHµ

 0

cos~kH~r

sin~kH~r

 , (2.143)
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∇× ~M = −~kH

 0

− sin~kH~r

cos~kH~r

 , (2.144)

hence the ferromagnetic exchange term simplifies to

F̃ex =
1

4

∑
µ

(
∂µ ~M

)
·
(
∂µ ~M

)
=

1

4
k2
H (2.145)

and the Dzyaloshinsky-Moriya term – to

F̃DM = ~M ·
(
∇× ~M

)
= −kH , (2.146)

as an expression sin2 θ + cos2 θ = 1 is involved in both (2.145) and (2.146). Hence the total
functional becomes

F̃ =
1

4
k2
H − kH , (2.147)

just as we got it via λ with σ = −1 that corresponds to ~k = kH êx (positive kH).
Finally, let us plot F̃ vs kH and compare it with F̃DM

F̃ex
. The plot is demonstrated in

Figure 2.14.
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Figure 2.14: F̃ (kH) and F̃DM
F̃ex

compared. Blue curve represents F̃ (kH) for positive values of

kH and orange one – F̃DM
F̃ex

.

In Figure 2.14 we see that it is kH = 2 that corresponds to the minima of F̃ on the one
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hand side, and to
F̃DM

F̃ex
= −2 (2.148)

on the other hand side, as the condition (2.148) is satisfied precisely at kH = 2. Hence we
conclude that it is easy to determine a point at which (2.148) is satisfied exactly. Clearly, for
a nonzero β the position of the minima of the functional would change, but the virial theorem
would remain valid (i.e. the condition (2.148) would still correspond to the minima), hence
the condition (2.148) would hold for any value of an external field as well. Then conclude that
it is condition (2.148) one must fulfil in order to make sure the minima one finds for F̃ is the
actual global minima.

Notice, that the condition (2.148) is general for any helimagnetic system in its ground
state.

2.4.3.2 Comments on the Numerics

Another conclusion one may obtain from Figure 2.14 is the fact that F̃ is very shallow near
its minima, hence the error in the position of this minima would be significant. In fact, it is
nearly impossible to determine the exact minima from the blue curve in Figure 2.14 with a
naked eye. This can be justified by a simple example. Suppose we are looking for a solution
of

f(xr) = 0. (2.149)

However, it is impossible to reach anything precisely numerically, just up to a certain
accuracy, hence what we actually want is

|f(xr)| < ε, (2.150)

where ε is the numerical error in calculations of f .
Taylor expand

f(xr + ∆x) = f(xr) + ∆x
∂f

∂x

∣∣∣
xr

+O
(
∆x2

)
, (2.151)

where ∆x is the numerical error in the result; so the condition (2.150) turns into

|∆x|
∣∣∣∣∂f∂x ∣∣∣xr

∣∣∣∣ < ε, (2.152)

as f(xr) = 0 and we neglect terms of the second and higher orders in ∆x.

We conclude then that the smaller
∣∣∣∣∂f∂x ∣∣∣xr

∣∣∣∣ is, the higher the error in the result would be.

In other words, the shallower the function is around the point of interest, the higher numerical
error there is; and according to Figure 2.14, the free energy functional is almost flat around its
minima, hence the result obtained would be highly unreliable in terms of the determination
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of the actual minima. So this is another motivation for us to employ condition (2.148) in our
future calculations.

2.4.4 Summary of the Method

Let us now summarise our method. In order to obtain the optimal configuration of a magnetic
system, one needs to

• write the free energy functional in Cartesian coordinates with Lagrange multiplier, λ,

imposed for a functional to satisfy the constraint of
∣∣∣ ~M ∣∣∣2 = 1;

• define the lattice – triangular in our case;

• define Fourier decomposition of the magnetisation components and the Lagrange multi-
plier;

• derive Euler-Lagrange equations in Fourier representation;

• rewrite these equations in the matrix form;

• find Fourier coefficients for λ numerically;

• find Fourier coefficients for the magnetisation components analytically from λ found in
the previous stage;

• use the virial ratio, (2.109), to find the optimal spacing, a, for a given value of an external
field, β;

• use the optimal spacing found before in order to calculate the optimal configuration of
the system for a given β;

• repeat the procedure for other values of β of interest.

2.4.5 Stable Solutions

Following the procedure described in section 2.4.2, we have fixed the optimal spacing that
corresponds to a certain value of an external field. Clearly, skyrmion lattice exists for some
particular values of an external field only. We study the system for different values of an
external field to find the minimal possible free energy for that field starting from β = 0. The
free energy curve obtained is demonstrated in Figure 2.15 (red curve).

Notice that as we have found magnetisation components formulated in Fourier space, there
is no need to calculate the free energy functional numerically (hence avoid possible numerical
errors, especially while calculating derivatives); we can just formulate it via Fourier coefficients.
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Figure 2.15: Free energy functional of a magnetic system against an external field. Red
curve represents the optimal free energy of a system and green line is the free energy of a
ferromagnetic system demonstrated for comparison purposes.

Write
F̃ = F̃ex + F̃DM + F̃Z , (2.153)

as we did for B = 0 case, keeping in mind that the condition
∣∣∣ ~M ∣∣∣2 = 1 is now satisfied, hence

F̃λ = 0.
Use (2.60) – (2.62) for Fourier formulations of magnetisation components and (2.65) for

Fourier formulation of their derivatives to obtain:

F̃ex =
1

4

∫ ∑
ν

(
∂ν ~M

)
·
(
∂ν ~M

) dxdy
A

=
1

4

∫ ∑
νµ

∑
~k~k′

(−ikν)(−ik′ν)M̂µ(~k)M̂µ(~k′)e−i(
~k+~k′)~r dxdy

A

= −1

4

∑
νµ

∑
~k~k′

kνk
′
νM̂µ(~k)M̂µ(~k′)δ~k~k′ (2.154)

= −1

4

∑
νµ

∑
~k

kν(−kν)M̂µ(~k)M̂∗µ(~k)

=
1

4

∑
νµ

∑
~k

k2
ν

∣∣∣M̂µ

∣∣∣2 =
1

4

∑
~k

k2
(∣∣X~k∣∣2 +

∣∣Y~k∣∣2 +
∣∣Z~k∣∣2) ,
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where we have noticed that (−i)(−i) = −1, δ(−x) = δ(x) and M̂µ(−~k) = M̂∗µ(~k).
Similarly, for the Dzyaloshinsky-Moriya term:

F̃DM =

∫
~M ·
(
∇× ~M

) dxdy
A

= −i
∫ ∑

~k~k′

(
X~kk

′
yZ~k′ − Y~kk

′
xZ~k′ + Z~kk

′
xY~k′ − Z~kk

′
yX~k′

)
e−i(

~k+~k′)~r dxdy

A
(2.155)

= i
∑
~k

(
kyX~kZ

∗
~k
− kxY~kZ

∗
~k

+ kxY
∗
~k
Z~k − kyX

∗
~k
Z~k

)
.

Finally, for the Zeeman term:

F̃Z = −β
∫
Mz

dxdy

A
= −β

∫ ∑
~k

Z~ke
−i~k~r dxdy

A
= −β

∑
~k

Z~kδ~k,0 = −βZ0, (2.156)

so the total free energy can be formulated via Fourier coefficients of the magnetisation as

F̃ =
∑
~k

{
1

4
k2
(∣∣X~k∣∣2 +

∣∣Y~k∣∣2 +
∣∣Z~k∣∣2)+ i

(
kyX~kZ

∗
~k
− kxY~kZ

∗
~k

+ kxY
∗
~k
Z~k − kyX

∗
~k
Z~k

)}
−βZ0.

(2.157)
And it is functional (2.157) demonstrated in Figure 2.15 and all the subsequent figures as

a function of β.
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Figure 2.16: F̃DM
F̃ex

against β. F̃DM
F̃ex

= −2 ∀β up to some
numerical uncertainty.

In order to prove that the solu-
tion we obtained is actually stable,
we demonstrate the corresponding
virial ratio,

V =
F̃DM

F̃ex
, (2.158)

and ensure it is equal to −2 ∀β
up to some numerical uncertainty.
This is demonstrated in Fig-
ure 2.16.

In order to get a better under-
standing of the transitions, it might
be handy to demonstrate free en-
ergy functional for the metastable
regions as well as for the stable ones. This is shown in Figure 2.17, where energies of metastable
helices, skyrmions and a ferromagnet are plotted along with the stable solutions.

From Figure 2.17 it is also easy to read off the critical points. So we claim that in our

59



CHAPTER 2. SKYRMION LATTICE

0.0 0.5 1.0 1.5 2.0
β

2.0

1.5

1.0

0.5

0.0

F̃

Free Energy Functional

Helix
Metastable helix above βc1
Skyrmion
Metastable Skyrmion below βc1
Metastable Skyrmion above βc2
Ferromagnet
Metastable Ferromagnet below βc2

Figure 2.17: Free energy functional of a magnetic system against an external field. Red curve
represents the optimal free energy of a skyrmion system, purple one stands for the helial system
and green line is the free energy of a ferromagnetic system. Dashed lines of different colours
correspond to metastable solutions of corresponding patterns.

units the critical field for the helical-skyrmion phase transition is

βc1 = 0.46 (2.159)

and the critical field for the skyrmion-ferromagnet phase transition is

βc2 = 1.56. (2.160)

It is notable, that although the studies of the free energy functional of a skyrmion lattice
system have been performed before (by Han et al [43], for example), the constraint of | ~M |2 = 1

had never been implemented in a proper way for a lattice,12 hence the exact transition points
12It had been for a single skyrmion, though, as polar coordinates are sort of the conventional way of working

there, and parametrisation of ~M in polars provides
∣∣∣ ~M ∣∣∣2 = 1 in a straighforward way.
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had never been found before.
Following Figure 2.17, we can define three regions on β scale: helical region – where a stable

system obeys helical ordering, skyrmion region – where a stable solution has the form of the
skyrmion lattice and ferromagnetic region – where a system has its minimal configuration as
a ferromagnet. Then if for a given β the stable solution for our system is a helix, we say
that a system for a given β lies in a helical region or in a helical state. All the regions are
demonstrated in Figure 2.18.
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Figure 2.18: Magnetic pattern distribution with respect to β.

We had already mentioned, that the total free energy functional is composite of three
terms: ferromagnetic exchange term,

F̃ex =
1

4

∑
µ

(
∂µ ~M

)
·
(
∂µ ~M

)
, (2.161)

Dzyaloshinksi-Moriya term,
F̃DM = ~M ·

(
∇× ~M

)
(2.162)
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and Zeeman term,
F̃Z = ~β · ~M. (2.163)

It had been also pointed out before that when the Zeeman term is dominant, the system
tends to a ferromagnetic solution, when the Dzyaloshinksi-Moriya term is dominant, the system
tends to be helical (and thus turns into a perfect helix at zero field, as demonstrated in section
2.4.1), and when neither is dominant, the stable solution may have a form of a skyrmion
lattice. Let us demonstrate these three terms separately to test our propositions.
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Figure 2.19: Ferromagnetic exchange term (the upper figure), Dzyaloshinksi-Moriya term (the
middle figure) and Zeeman term (the last figure) demonstrated separately against β.
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Figure 2.19 shows us that our predictions were correct: at low values of the field the Zeeman
term is (obviously) very small, whereas the exchange term and anisotropic term have the most
of their effect (despite having opposite signs, |F̃ex| = max as well as |F̃DM | = max at β = 0).
This effect then gets smaller with β increasing. It shall be also clear enough that for large
external fields the system would tend to the ferromagnetic ordering, as (mathematically) the
Zeeman term would dominate drastically over the others and (physically) spins would tend to
align along the field with Dzyaloshinksi-Moriya effects not able to compete any more. When
effects of all three terms are comparable to each other, Dzyaloshinsky-Moriya term is able to
compete with ferromagnetic ordering and skyrmion lattice results as an outcome of such a
competition.

It is also notable, how different the lattice is near transition points. Consider Figure 2.20
for different configurations.
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(a) Optimal lattice solution for a skyrmion system
for β = 0.478 and a = 3.785 (stable skyrmion region
near helix-skyrmion phase transition).
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(b) Optimal lattice solution for a skyrmion system
for β = 1.55 and a = 4.8 (stable skyrmion region
near skyrmion-ferromagnet phase transition).

Figure 2.20: Skyrmion lattice near critical points.

In Figure 2.20a there is a skyrmion system near helix-skyrmion phase transition. Here we
see that the radius of skyrmions (i.e. the distance from the centre of a skyrmion to the edge)
becomes large, spacing between them – therefore small (not the distance between the cores of
skyrmions, though), and the shape of skyrmions is not ideally circular anymore. If we compare
skyrmion lattice in Figure 2.21 with a typical helix in Figure 2.22, we would realise that our
skyrmions actually tend to helices: more spins undertake the intermediate states between
“up” and “down”, fewer spins align with the field. The similarities are seen even better if we
consider the side view that is demonstrated in Figure 2.23. So the actual phase transition that
eventually happens at a point is not surprising at all.

On the other hand, as it is demonstrated in Figure 2.20b, near skyrmion-ferromagnet

63



CHAPTER 2. SKYRMION LATTICE

Figure 2.21: Optimal spin configuration for a skyrmion system for β = 0.478 and a = 3.785
(stable skyrmion region near helix-skyrmion phase transition).

Figure 2.22: Spin configuration of a stable helical structure obtained for β = 0.15 and a = 3.81.

(a) Side view of a helix.

(b) Side view of a skyrmion lattice near helix-skyrmion transition.

Figure 2.23: Side view comparison between helix and skyrmion lattice near helix-skyrmion
phase transition.

64



CHAPTER 2. SKYRMION LATTICE

phase transition skyrmions appear to be smaller and the distance between them increases
(this also includes the distance between skyrmion cores), therefore the area with the highest
magnetisation increases. But as the field between skyrmions is constant, we can approximate
the area between skyrmions as a ferromagnetic region. This is well demonstrated in Figure 2.24
that presents the spin configuration of the skyrmion lattice near βc2 . It is then clear from
Figure 2.24 that the ferromagnetic region (i.e. the region of all the spins aligned along the
field) is larger than the skyrmions themselves. In fact, spins that are not aligned with the field
are in a little fraction in comparison with those that do align. So with β increasing, the area
of the ferromagnetic region is increasing as well, and at some point, at βc2 , pure ferromagnet
becomes energetically more favourable than the skyrmion system, as there are only few spins
that are not aligned with the field left.

Figure 2.24: Optimal spin configuration for a skyrmion system for β = 1.55 and a = 4.8
(stable skyrmion region near skyrmion-ferromagnet phase transition).

We have already mentioned several times that the lattice spacing that provides an ener-
getically optimal configuration varies for different values of an external field. One can recall
the analogy to the Abrikosov vortex lattice: the optimal lattice spacing for a superconducting
vortex lattice is also defined by the field. The dependence is universal and well-known (see
later). However, from the actual skyrmion configurations demonstrated in Figure 2.20 it is
hard to make any conclusions about how does the optimal spacing depend on the applied
field, so let us study this dependence explicitly. It is demonstrated in Figure 2.25a. As one
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can see from this figure, the spacing increases drastically with β increasing, which agrees with
our conclusion based on the lattice configuration demonstrated in Figure 2.20b. Area of the
ferromagnetic region is increasing, hence the distance between skyrmions would become larger.
However, the spacing is also slightly increasing with β decreasing towards the helical region,
and this conclusion is not obvious solely from Figure 2.20a.
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(a) Optimal skyrmion lattice spacing vs β.
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Figure 2.25: Lattice spacing and skyrmion radius vs β. Brown curve stands for the optimal
lattice spacing, vinous curve – for λH and blue one – for the radius of a skyrmion. Both lattice
spacing and the radius of a skyrmion are scaled with κ as usual for skyrmion systems. The
spacing increases drastically when the field is approaching βc2 , when the field is near βc1 , the
spacing slightly increases as well.

One can now define a radius of a skyrmion as the distance from the minimal value of Mz

(ideal “down” spin) that lies in the centre of a skyrmion to the largest value of Mz (the closest
“up” spin) that happens to be on the edge, just as we did it for a single skyrmion in section 2.2.
The definition of the radius of a skyrmion on the lattice is demonstrated in Figure 2.26.

Then if we plot the radius of the skyrmion against the applied field as it is done in Fig-
ure 2.25b, we realise that the radius of a skyrmion always decreases with field applied (which
means that the area of the ferromagnetic region always increases and while increasing it tears
skyrmions apart and makes them smaller), or, in other words, if one prefers moving backwards
in β scale, i.e. from the ferromagnetic region towards helices, one would realise that the lattice
spacing at a point starts increasing – consult with the corresponding region in Figure 2.25a.
This happens because the radius of a skyrmion always increases with decreasing field, hence
at a point in order to continue increasing it needs more space, so the lattice then shall expand,
as skyrmions cannot overlap.

Also recall the crucial parameter of a helix, λH – the period of a helix. It can be calculated
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Figure 2.26: Skymion lattice with the radius of a single skyrmion defined. Here a is the lattice
spacing and R is the radius of a single skyrmion.

via
λH =

2π

kH
, (2.164)

and for kH = 2 (calculated in section 2.4.3.1 for β = 0), λH = π. We see then from the
vinous line in Figure 2.25a that corresponds to λH(β), that λH obtained from our calculation
is exactly λH = π, hence our calculations exactly match analytical predictions as expected.
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2.5 Comparison to Earlier Works

2.5.1 Comparison to the Simulations

2.5.1.1 Comparison to the Pioneering Work

Let us now briefly compare our results against those obtained in the past. First consider the
pioneering work in skyrmion lattices by Bogdanov et al. [40, 42] In this work they started with
the same functional we have begun with. Then it was transformed in the spiral form: [42]

w̃s =
1

L

∫ L

0

[(
dθ

dr

)2

− dθ

dr
+ κ sin2 θ + β (1− cos θ)

]
dr, (2.165)

where w̃s is the average energy density, L is the period of the spiral structure and r is the radial
coordinate; κ and β correspond to our definitions given in section 2.3.1. The most important
thing, θ, arises from the decomposition of the magnetisation in polar form,

~M = (sin θ cosϕ, sin θ sinϕ, cos θ) . (2.166)

The Euler equation that follows from (2.165) is then(
dθ

dr

)2

= κ sin2 θ + β (1− cos θ) + C, (2.167)

with constant C defined through the following condition:∫ π

0

√
κ sin2 θ + β (1− cos θ) + C dθ =

π

2
. (2.168)

Boundary conditions for a single skyrmion were introduced to be

θ(0) = π, (2.169)

θ(∞) = 0, (2.170)

that transformed to
θ(L) = 0 (2.171)

for a lattice with a circular cell approximation embedded, yielding L = 2R, where R is the
radius of a single skyrmion. [42]

A linear ansatz of
θ0 = π

(
1− r

L

)
(2.172)

was first introduced in [42], but the function θ(r) was still calculated numerically from (2.167)
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via Newton’s method.
A good thing to compare with our results is the optimal lattice spacing – twice the radius

in the circular cell approximation. Skyrmion radius defined via circular cell approximation for
a cell obtained via Newton’s method is demonstrated in Figure 2.27a and for a cell obtained
by Runge-Kutta method is demonstrated in Figure 2.27b. [84]

(a) Radius of a cell in circular cell approx-
imation for a cell obtained by Newton’s
method. [42]

(b) Radius of a cell in circular cell approx-
imation for a cell obtained by Runge-Kutta
method. [84]

Figure 2.27: Radius of a cell in circular cell approximation.

In all of his works, however, Bogdanov addressed to a skyrmion lattice as to a periodic
structure of single skyrmions with a circular cell approximation. He also had never distin-
guished stable and metastable states.

We see that radius of a cell in circular cell approximation demonstrated in Figure 2.27 is
similar to the optimal lattice spacing calculated in this survey – see Figure 2.25a. However,
we are sure to distinguish stable and metastable states, hence demonstrate the optimal lattice
spacing or period of a helix in the region where either of them belongs.

All the other works discussed later in this chapter are in one way or another (as well as
our work) based on Bogdanov’s approach.

2.5.1.2 Comparison to the Other Works

Kawaguchi et al [17] followed the approach developed in [42], i.e. parametrised ~M in polar
coordinates and focused on the Euler equation, (2.167).

Then they have employed linear ansatz,

θ(r) = θ0(r) = π(1− r), (2.173)

and used it in further calculation. As we could see from the comparison of θ(r) calculated
for different values of an external field with its linear initial guess in Figure 2.6 demonstrated
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in section 2.2, the linear ansatz works quite well at low fields, and in the region close to the
centre of a skyrmion, though at higher fields actual form of θ is clearly not linear even for a
single skyrmion system.

However, it is still manageable to calculate a lot of interesting stuff as well as predict values
of critical fields, βc1 and βc2 , just as we did.

Existence of two phase transitions, hence critical fields had been predicted even before,
though, by Bogdanov et al. [84] Kawaguchi et al had also claimed calculated values for tran-
sition points, though as they had used an approximated (linear) form for skyrmion θ, hence
magnetisation, their results cannot be treated as exact. We can also compare our critical fields
against those experimentally observed, for example, by Mochizuki. [86] In our units critical
fields observed in [86] are

β(experimental)
c1 = 0.46 (2.174)

and
β(experimental)
c2 = 1.56, (2.175)

that correspond exactly to the values we had obtained, whereas critical field obtained in [17]
transferred in our units would be βKc1 = 0.48 and βKc2 = 1.34, which still demonstrate quite good
correspondence to the experimental results (especially at low fields, which is not surprising at
all, taking the linear ansanz used), though not as good as those obtained in this research.

Finally, let us compare our lattice against that obtained by Han et al. [43]
Han et al in their work introduced a completely new approach, however still based on

Bogdanov et al [42] work.
They took our usual functional, (2.1), but instead of working in Cartesian coordinates as

we did or parametrising magnetisation in O(3) representation like Bogdanov et al [42] and
Kawaguchi et al, [17] they introduced the spinor representation of

~z =

(
z1

z2

)
=

(
e−iϕ cos θ2

sin θ
2

)
(2.176)

that obeys ~z†~z = 1 and then mapped the magnetisation via

~M = ~z†σ̂~z, (2.177)

where σ̂ is the Pauli matrix,
σ̂ = σxêx + σy êy + σz êz. (2.178)

Ferromagnetic exchange term of the free energy functional density then becomes

Fex =
1

4

∑
µ

(∂µMµ) · (∂µMµ) =
∑
µ

(∂µ~z
†) · (∂µ~z)−A2

µ (2.179)
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with the vector potential,

Aµ = − i
2

[
~z† · (∂µ~z)− (∂µ~z

†) · ~z
]
, (2.180)

that is associated with the magnetisation via

1

2
~M ·
(
∂x ~M × ∂y ~M

)
= ∂xAy − ∂yAx. (2.181)

The anisotropic term in this formulation turns into

FDM = ~M ·
(
∇× ~M

)
= −2 ~M · ~A− i~z† (σ̂∇) · ~z + i

(
∇ · ~z†

)
· σ̂~z. (2.182)

Then if we introduce
Dµ = ∂µ − iAµ + iκσµ, (2.183)

the total functional density becomes

F [~z] = 2J
∑
µ

(Dµ~z)
† · (Dµ~z)− ~B · ~z†σ̂~z. (2.184)

Saddle-point equation derived from the functional (2.184) with respect to ~z† is

2J
(
∇− i ~A+ iκσ̂

)2
~z + 2iD

(
~M · ∇

)
+
(
~B · σ̂

)
~z = λ~z, (2.185)

where λ is the Lagrange multiplier introduced in order to provide ~z†~z = 1, just as in our case.
While turning to skyrmion lattice studies, the analogy with Abrikosov lattice was employed.

With the aid of the Landau gauge,

~A = (0, Hx, 0) , (2.186)

magnetic length,

lH =
1√
H
, (2.187)

that acts as the correlation length, ξ, in Abrikosov solution, as well as the skyrmion lattice
spacing through the condition of

lxly = 2πl2H , (2.188)

where lx = x1 = a and ly = y2 =
√

3
2 a for a triangular lattice, get the Abrikosov-like solution

for ~z:

~z(x, y) =

√
2lx

(1 + d2
0)lH
√
π

∞∑
j=−∞

cje
i2πjy
ly

 e
−

x2j

2l2
H

id0
√

2 xj
lH

e
−

x2j

2l2
H

 , (2.189)
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where
xj = x+ jlx, (2.190)

j is an integer, cj is a coefficient that is 1 for even integers and i for odd integers on a triangular
lattice and

d0 =
2
√

2 κlH

1 + 2κ2l2Hb+
√

(1 + 2κ2l2Hb)
2 + 8κ2l2H

(2.191)

with
b =

JB

D2
(2.192)

and κ, J , B and D correspond to our definitions in section 2.3.1.
The lattice obtained by this method is demonstrated in Figure 2.28a.

(a) Skyrmion lattice obtained with spinor decomposition (2.189).

(b) Energies of different magnetic config-
urations against b for different values of
Lagrange parameter, u.

Figure 2.28: Skyrmion lattice and energies obtained with spinor decomposition (2.189).

This method might look less intuitive than the others, though still does the job.
Notice, that Han et al had also predicted critical fields demonstrated in Figure 2.28b, but

as they have not calculated any exact Lagrange multiplier, u, but fitted several values, their
result is not to be taken as quantitatively exact and it does not pretend to be, in fact.
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2.5.2 Comparison to Experimental Results

Figure 2.29: Skyrmion lattice struc-
ture observed experimentally in
Fe1−xCoxSi for a weak magnetic field
(50mT ). Colour scheme and arrows
represent the magnetisation direction.
[21]

It was already mentioned above that our values
of critical fields perfectly match those obtained by
Mochizuki. [86] Let us also check how well do our
other results correspond to something found experi-
mentally.

A typical skyrmion lattice observed experimen-
tally can be found in Figure 2.29.

By comparing results in Figure 2.29 with our lat-
tice in Figure 2.7 conclude, that our model can be
qualitatively confirmed by an experiment. In Fig-
ure 2.29 colour (brightness) indicates the direction
of the magnetisation, hence spins; the black colour
means that the spins are perpendicular to the plane,
i.e. are pointing either upwards or downwards.

2.6 Metastable Solutions

2.6.1 Expected Metastable Solutions

So far we have dealt with stable solutions only. However, it had been already mentioned that
metastable solutions exist as well. We had even observed the evidence in Figure 2.17. Such
metastable solutions are expected for a system with first order phase transitions. They are
nothing more but continuations of the previous state in the region of another state just with
higher energies. For example, as it can be seen from Figure 2.18, for β < βc1 = 0.46 the system
is in the helical state. But these are stable solutions. However, one can obtain metastable
skyrmion solutions for β < βc1 . Energy of these lattice solutions, obviously, is higher than the
energy of helical solutions, as can be clearly seen from Figure 2.17, and the virial ratio is no
longer equal to −2. An example of such a metastable solution is demonstrated in Figure 2.30a.

One can easily compare the system in Figure 2.30a with the system in Figure 2.20a to
realise that they look pretty much alike. So conclude that the metastable skyrmion system
in the region where a helix is a stable solution, i.e. in the helical region, is nothing more but
the continuation of the skyrmion lattice solution for a lower field. This is also true for all the
other metastable states of this kind and is justified by the free energy diagram in Figure 2.17.
Another justification is the spacing of this metastable skyrmion state in the helical region
demonstrated in Figure 2.31. We see that a(β) is a perfect continuation of the spacing curve
in the stable region. Curve in Figure 2.31 looks pretty much like that in Figure 2.27 taken
from Bogdanov’s work, [84] where he did not distinguish between stable and metastable states.
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(a) Metastable lattice solution for a skyrmion system
at β = 0 with a = 4.13.
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(b) Metastable lattice solution for a skyrmion system
at β = 2 with a = 3.8.

Figure 2.30: Metastable skyrmion lattice solutions.
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Figure 2.31: Skyrmion lattice spacing for a given β including that for a metastable region.
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In fact, one can find a metastable skyrmion solution even for β = 0. Skyrmions in this case
would be “fat”, just like they are in proximity to the helix-skyrmion phase transition. Such
a shape results from the fact that many spins tend to follow helical order, rather than the
ferromagnetic one (DM-term dominates over the Zeeman term).

Eventually, one can find a metastable skyrmion system for β > βc2 = 1.56. An example
of such a lattice solution is demonstrated in Figure 2.30b. As one clearly observes from
Figure 2.17, the energy of such a skyrmion system is higher than the energy of a ferromagnetic
configuration, hence the solution is metastable, and from the comparison of the systems in
Figure 2.30b and Figure 2.20b one concludes that they still look similar, hence the metastable
skyrmion lattice in the ferromagnetic region is the continuation of the stable skyrmion lattice
just with the energy that is not the lowest possible.

Numerically, we obtain these metastable solutions varying the initial guess (not to be
confused with initial conditions) by using the converged result from a system with previous
value of β and going in tiny steps in β. In this case we also do not seek condition (2.148) to
be satisfied as it is a stable solution only that can fulfil it.

2.6.2 Unexpected Metastable Solutions

All this discussion of metastable solutions would have been useless and unnecessary (as the
metastable states described in the previous section were expected and their existence was
predictable), should not have we found a completely different type of skyrmion lattice that also
happens to be a solution to equations (2.84) – (2.86), though the energy of the corresponding
states is higher than the energy of typical stable lattice solutions and the virial relation (2.148)
does not hold as well, i.e. V 6= −2 for these new states; though, for some of these states V is
just slightly above or slightly below −2, but this is already enough to claim these states to be
metastable. We call the new lattice observed to be a honeycomb lattice.

Free energy functional of these new metastable states (the golden line) along with the
energies of other stable and metastable states is demonstrated in Figure 2.32. It is only slightly
higher than the free energy functional of the stable configuration and while approaching βc2
the difference between them becomes almost negligible.13

Figure 2.32 tells us that the free energy functional of honeycomb states is only slightly
higher than the free energy of the states obeying triangular lattice. However, if for a stable
triangular lattice we had a valid way of finding the optimal solution described in section 2.4.1
(the virial ratio), we have no such formulation for a metastable configuration (as the state
cannot be optimal if it is metastable). So we need to rely on the minima of the free energy
functional only. The corresponding plot of the free energy functional against the spacing for

13Other metastable honeycomb lattice states with higher energies have been also found, though are not
demonstrated in Figure 2.32. The golden line in Figure 2.32 corresponds to the lowest values of the free energy
functional calculated for honeycomb lattice states.
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Metastable helix above βc1
Skyrmion
Metastable Skyrmion below βc1
Metastable Skyrmion above βc2
Metastable Honeycomb Skyrmions
Ferromagnet
Metastable Ferromagnet below βc2

Figure 2.32: Free energy functional of a magnetic system in different regions including
metastable honeycomb skyrmion lattice that is represented by a gold line. Red curve rep-
resents the optimal free energy for a skyrmion system, purple one stands for the helial system
and green line is the free energy of a ferromagnetic system. Dashed lines of different colours
correspond to metastable solutions of corresponding patterns.

a given β is demonstrated in Figure 2.33a.
The free energy functional is still shallow, though, as we cannot rely on the virial ratio

anymore, we have to stick to the results obtained from the direct minimisation of the functional.
We need to consider more points (configurations with different spacing), though, in order to
obtain precise results. We also demonstrate the free energy functional against the spacing for
fixed β for both triangular (optimal) and honeycomb lattices on the same plot to ensure that
honeycomb solutions are actually metastable. This is demonstrated in Figure 2.33b. The value
of the free energy functional that corresponds to the minima of the functional for a honeycomb
configuration is higher than that for a triangular configuration. Another conclusion that can
be drawn from Figure 2.33b is the fact that the optimal lattice spacing of a honeycomb lattice
is a lot larger than the optimal lattice spacing of a triangular lattice.
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(a) Free energy functional of a honeycomb configu-
ration against lattice spacing, a, for β = 1.4. The
black dot indicates the minimal value of F .
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(b) Free energy functional of a honeycomb configu-
ration along with the free energy functional of a tri-
angular configuration against lattice spacing, a, for
fixed β = 1.1.

Figure 2.33: Free energy functional of a honeycomb configuration against lattice spacing, a.
In Figure 2.33b the red curve corresponds to the free energy of a triangular lattice, the golden
curve corresponds to the honeycomb lattice. The minimal energy of the triangular configu-
ration is smaller that the minimal energy of the honeycomb configuration, hence honeycomb
solution is metastable. Notice that the optimal lattice spacing of a honeycomb lattice is a lot
larger than the optimal spacing of a triangular lattice.

However, the fact that the free energy functional curve of the honeycomb lattice lies just
above the free energy functional curve of a stable triangular lattice allows us to hope to stabilise
it via some external effects and thus use it in our future research (see the following chapters).
Also, especially in condensed matter physics, metastable phases sometimes can be observed
and even exist in nature in some circumstances.

The magnetisation of the honeycomb lattice is demonstrated in Figure 2.34 and the spin
configuration of the honeycomb lattice can be found in Figure 2.35. We notice that the
skyrmions are no longer perfect circles as they used to be for the triangular lattice case. The
curling pattern ofMx andMy is preserved, though, as it depends on the Dzyaloshinksy-Moriya
interaction only.

From Figure 2.34 one can yield two important conclusions:

• lattice spacing is no longer the distance between the centres of the nearest skyrmions,
but the distance between the centres of honeycombs;

• a unit cell now contains exactly two skyrmions in oppose to the case of the triangular
lattice where there has been exactly one skyrmion per unit cell.

One may think from the first glance, that it is impossible to obtain any but triangular
lattice via the method we have used, as it was the triangular lattice we had imposed. But we
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Figure 2.34: Metastable honeycomb lattice solution for a skyrmion system at β = 1.2 with
a = 4. Lattice spacing, a, indicated in the figure is no longer the distance between the
centres of the nearest skyrmions, but the distance between centres of honeycombs. Skyrmions
themselves are not perfect circles as they used to be for the case of a trianguar lattice.

had actually imposed primitive cell vectors,

~a1 = aêx (2.193)

and

~a2 =
a

2
êx +

√
3

2
aêy, (2.194)

that happen to coincide for both triangular and honeycomb lattices, so there is no contradic-
tion. This can become clear if one considers a schematic representation of a honeycomb lattice
given in Figure 2.36.

Comparing honeycomb lattice in Figure 2.36 with the triangular lattice in Figure 2.7 one
realises that primitive lattice vectors are the same with the only difference: a honeycomb

78



CHAPTER 2. SKYRMION LATTICE

Figure 2.35: Honeycomb lattice spin configuration for a skyrmion system at β = 1. with
a = 5.7. Non-circular shape of skyrmions is confirmed.

a

1

a

2

a

Figure 2.36: Sample honeycomb lattice with primitive lattice vetors ~a1 and ~a2 and lattice
spacing a. A unit cell is depicted by a shaded parallelogram and contains exactly two vertices
(skyrmions).
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lattice unit cell would contain two vertices (in our case – skyrmions), while a unit cell of a
triangular lattice contains only one vertex (skyrmion).

Let us compare unit cells of these two lattices directly – see Figure 2.37. Such a feature of
honeycomb lattices would become extremely important in our future research, as the region
between skyrmions – the region of the highest magnetisation, when all the spins are parallel
to the field – is now localised by the honeycomb lattice in the periodic structure as well.
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(a) A unit cell of a triangular skyrmion lattice at
β = 1.4 with a = 4. There is exactly one skyrmion
in the unit cell.
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(b) A unit cell of a metastable honeycomb skyrmion
lattice at β = 1 with a = 4. There are exactly two
skyrmions in the unit cell.

Figure 2.37: Unit cells of triangular and honeycomb skyrmion lattices.

If we demonstrate the honeycomb lattice solutions in the different regions of β, just as we
have done for the triangular lattice, we would realise that these are different from each other
– see Figure 2.38, – though the difference is not as dramatic as it used to be for a triangular
configuration. However, while moving towards βc2 , the distance between skyrmions increases
(the distance between skyrmions themselves, not the lattice spacing, as it not the same thing
anymore, though the lattice spacing increases as well) and the ferromagnetic spin alignment
becomes dominant.

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
x/a

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y/
a

0.9

0.6

0.3

0.0

0.3

0.6

0.9

(a) Honeycomb lattice solution for
a skyrmion system at β = 1. with
a = 5.7.
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(b) Honeycomb lattice solution for
a skyrmion system at β = 1.25 with
a = 6.
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(c) Honeycomb lattice solution for a
skyrmion system at β = 1.45 with
a = 7.05.

Figure 2.38: Honeycomb skyrmion lattice for different values of β.
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Notice that the “optimal” lattice spacing – the one that corresponds to the minima of
the free energy functional of a honeycomb lattice configuration – now is much larger than
the optimal lattice spacing for a triangular system especially at larger values of an external
field. We also see that by analogy with the stable case the lattice spacing is increasing with
increasing β, and the radius of skyrmions is decreasing. Once again, this is related to the
proximity of the ferromagnetic state and the fact that more spins would tend to align with
the field.

2.6.3 Square Skyrmion Lattice

It had been predicted that skyrmions form triangular lattices in actual materials. [42] This
was later confirmed by experimental evidence. [21] That is why we had imposed the triangular
lattice in our calculations and defined primitive vectors in the corresponding way. So it was
impossible to obtain a lattice that has different lattice vectors following the method introduced
in section 2.3.2. However, one can impose a square lattice in a similar way by setting

~Rvw = (vxs, wys) , (2.195)

~Kmn =
2π

xsys

(
mys

nxs

)
, (2.196)
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Figure 2.39: Square lattice solution for a skyrmion sys-
tem at β = 1.4 with a = 4.

where xs = ys = a, that defines
a square lattice, and v, w, m and
n are dummy integers just as for
the triangular or honeycomb lat-
tice. All other assumptions we have
done before (including the deriva-
tion of the virial ratio) remain un-
changed as they do not depend on
the lattice configuration. Skyrmion
lattice obtained with such a defi-
nition of lattice vectors is demon-
strated in Figure 2.39.

Let us now is to compare val-
ues of the free energy functional for
triangular and square lattices (and honeycomb, in fact) to see which of them is actually ener-
getically favourable. Such a comparison is demonstrated in Figure 2.40a.

We then see from Figure 2.40a that it is still a triangular lattice that is energetically more
favourable than the others, though the difference in the free energy functional especially near
βc2 is very small – see Figure 2.40b for a better view – so one can even try to stabilise the square
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(a) Free energy functional of a magnetic system for
different lattice configurations.
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(b) Enlarged region near βc2 .

Figure 2.40: Free energy functional of a magnetic system for different lattice configurations.
Free energy functional of a triangular skyrmion lattice in represented by a Red curve, hon-
eycomb skyrmion lattice – by a gold line, square skyrmion lattice – by a black line and a
ferromagnetic configuration – by a green line.

skyrmion lattice experimentally! This is explained by the fact that it is the ferromagnetic
region that is dominant near βc2 for all three types of lattices (it can be seen from Figure 2.20b,
Figure 2.38c and Figure 2.41b that the area between skyrmions near βc2 is actually way
larger than the area of skyrmions themselves), so there is in fact no much difference in the
lattice configuration and then there is, again, no wonder, that at a point a pure ferromagnetic
configuration dominates over all of them. One can, obviously, obtain metastable configurations
of all the three types in the ferromagnetic region.

We can also see from Figure 2.41 that the difference in the configuration of our square lattice
near βc1 (Figure 2.41a) and βc2 (Figure 2.41b) follows the same logic as that for triangular
and honeycomb lattices: skyrmions are spatially large and lattice spacing is small near βc1 ,
skyrmions are small and the lattice spacing is large near βc2 . This is also confirmed by the
optimal spacing plot demonstrated in Figure 2.42.

It is also notable that the numerical algorithm is way faster for the square lattice case than
it is for a triangular or honeycomb lattice, so one may actually use it when investigating the
region near βc2 in order to save the computation time.

From all the survey done above one can conclude that skyrmion lattice becomes dilute
near βc2 , hence its configuration is not that crucial anymore.

82



CHAPTER 2. SKYRMION LATTICE

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
x/a

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y/
a

0.9

0.6

0.3

0.0

0.3

0.6

0.9

(a) Square lattice solution for a skyrmion system at
β = 0.461 with a = 3.58.
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(b) Square lattice solution for a skyrmion system at
β = 1.55 with a = 4.6.

Figure 2.41: Square skyrmion lattice solutions for different values of β.
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Figure 2.42: Optimal lattice spacing for triangular and square lattices compared. Brown and
vinous curves represent lattice spacing for stable and metastable skyrmion lattices respectively,
black curve stands for the lattice spacing of a square skyrmion lattice.
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Chapter 3

Abrikosov Vortex Lattice in Type-II
Superconductors

3.1 Basic Properties of Superconductors

Conductors are characterised by the presence of some particles that are free to move macro-
scopic distances inside an object (conductor). [87] For example, metals are good conductors
because electrons are free to move between the atoms inside a metal. In metals there is also a
lattice of positive ions, of course, but their movement is nothing but small oscillations about
an equilibrium position, hence in general it does not contribute to the net current, or its effects
are small. [87] Such a lattice generates the periodic potential. In the absence of an external
electric field electrons are distributed in a free random motion interacting with the lattice as
well as with each other. Once electric field is applied, electron movement becomes directed
with respect to the electric force. But electrons, however, still may collide (resistivity) or pass
their kinetic energy to the bulk of the metal (thermal dissipation). It is well-known that in
normal metals resistance depends on temperature. A typical metal at low temperature has a
T 2 behaviour leading to some finite resistivity at T = 0.

At low temperatures, though, some materials disobey this dependence: at a certain point
their resistance suddenly drops to zero! [54] Such materials are called superconductors, as zero
resistance implies infinite conductivity.

An important observation was done for mercury in 1911 by Heike Kamerlingh Onnes. [54]
It was found that the resistivity does not actually decay towards zero at low temperatures
continuously, but drops down to zero at some certain temperature, TC . So the resistance in
mercury (and many other materials, as it was found later) becomes zero even before T = 0!
Such a phenomenon was called to be superconductivity. A threshold value for a current that
can be carried without resistance was observed later in 1913. [88]

As it was observed, the resistivity in a perfect superconductor is zero, hence its conductivity,
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σ, is infinite. Recall Ohm’s law:
~E = σ ~J. (3.1)

The only possible way for Ohm’s law to hold for a finite ~J and infinite σ is to maintain

~E = 0 (3.2)

at all points inside a superconductor, so conclude that the supercurrent carries no electric
field!

In 1933 Meissner and Ochsenfeld observed probably the most important feature of super-
conductors: they observed that a superconductor completely expels an external magnetic field,
resulting in

~B = 0 (3.3)

inside a superconductor. [57] Behaviour of magnetic field lines in presence of a superconductor
is demonstrated in Figure 3.1.

Figure 3.1: Meissner effect. Magnetic field lines are expelled by a superconductor that is held
in its superconducting state, i.e. its temperature is T < TC . The external field is rather small.

Notice that Meissner effect cannot be explained by the perfect conductivity of a supercon-
ductor only: ~E = 0 implies

∂ ~B

∂t
= 0, (3.4)

as
∂ ~B

∂t
= −∇× ~E, (3.5)
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but not ~B = 0 on its own, so one concludes that the perfect expulsion of an external magnetic
field is an essential property of a superconducting state. Nowadays a material is said to be
superconducting if it demonstrates Meissner effect – this is the modern definition of a (type-I)
superconductor. [9]

Nowadays, however, it is known that most materials still do not expel the external magnetic
field completely: there is either an intermediate state on the boundary that allows decaying
field to penetrate on some (small) depth [89] or even normal regions within a bulk supercon-
ductor – this phenomenon is related to type-II superconductors and is to be discussed later in
details.

So far we have considered weak external magnetic fields only. However, large external field
may destroy superconductivity as well as high temperature does. [88] Such a field is called the
critical field, Bc. Microscopically, high external fields correspond to high energies that break
Cooper pairs that are responsible for superconductivity and can be formed at low energies
(hence low temperatures) only. Critical field is a function of temperature. [89] Empirically
the dependence of the critical field on temperature was found to be

Bc(T ) = Bc(0)

[
1−

(
T

TC

)2
]
. (3.6)

An inverse conclusion is also correct: superconductivity might be destroyed by a strong
current if it induces magnetic field greater than Hc that corresponds to Bc. [89]

Such a behaviour is true, however, for so-called type-I superconductors only. We will focus
on type-II superconductors later.

3.2 Ginzburg-Landau Theory

3.2.1 Landau Theory of Second Order Phase Transition

It has been known since long ago that the same materials can exhibit different phases under
certain conditions. Should one modify these conditions, the phase would change. Suppose a
system is known to exhibit two different states at different temperatures (for example). If one
of the two states is ordered and another is disordered, one can introduce an order parameter –
the measure of the order in a system. [12] This order parameter would be zero in the disordered
state and non-zero in the ordered state. If the temperature is involved in the phase transition,
then there would always be Tc – critical temperature at which the transition occurs. In this
case the state with T > Tc is always disordered, whereas the state with T < Tc is ordered.

One can distinguish two types of simple (isolated) phase transitions: so-called first order
and second order phase transitions. [12] First order phase transition involves some latent heat,
i.e. a system either adsorbs or emits some amount of energy. The most famous examples of
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first order phase transitions are melting and boiling (evaporation).
Second order phase transition, in contrast to the first order one, has a major significance:

the order parameter changes continuously, i.e. if the order parameter is zero in one state
and non-zero in another, it has to be zero at the transition point as well.1 This statement
then leads to the conclusion that the order parameter is small in the ordered phase near the
phase transition. [12] Famous examples of a second order phase transition are paramagnetic-
ferromagnetic phase transition and normal-superconducting phase transition – the one we are
particularly interested in. Mathematically, a point of the second order phase transition can
be represented as a point characterised by some thermodynamic potential – the free energy.
Moreover, at the transition point these potentials must be equal for both states. Together
with an assumption of analyticity of Gibbs’ free energy at the transition point, one can Taylor
expand the free energy functional in terms of the order parameter, X: [12]

FG = c0 + c1X + c2X
2 + c3X

3 + c4X
4 + . . . . (3.7)

However, any system tends to the minimal free energy configuration, so in equilibrium the
order parameter must satisfy

δFG
δX

= 0, (3.8)

leading to
c1 +

(
2c2 + 3c3X + 4c4X

2 + . . .
)
X = 0. (3.9)

But in the normal state X = 0, hence the only way for the above equation to hold at any
point including the transition point is to set

c1 = 0. (3.10)

Notice that one cannot stop at the odd term of the expansion, as in this case the minimal
free energy would always tend to −∞. The cubic term often vanishes, as otherwise the
symmetry of the functional with respect to the order parameter is ruined. So need to set

c3 = 0. (3.11)

If the cubic term is present, the transition is always of the first order.
So for a general second order phase transition the free energy functional can be expanded

as
FG = c0 + c2X

2 + c4X
4, (3.12)

and one can truncate at order 4, so long as the corresponding coefficient is positive in order
1In order to avoid confusion, clarify that the symmetry of the system, hence the phase still changes spon-

taneously.
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to make sure that the global minima exists, without any lose of physics. [11] The coefficient
in from of the last term (fourth order term in our case, c4) must be greater than zero in order
to maintain FG → ∞ as X → ∞. Notice also that the phase transition actually occurs when
c2 changes its sign from positive in the disordered phase to negative in the ordered one.

3.2.2 Ginzburg-Landau Functional

At low temperatures all particles tend to their ground states. For quantum systems this
state can be described by a macroscopic wave function that is the same for all the particles
sharing the state. This macroscopic wave function would act as an order parameter for a
normal-superconducting phase transition, as it is zero in the normal state and non-zero in the
superconducting state.2 [90]

For a normal-superconducting phase transition define the order parameter to be [90]

X = ψ = |ψ|eiθ, (3.13)

where θ is the phase of the macroscopic wave function, leading to

X2 = |ψ|2, (3.14)

X4 = |ψ|4, (3.15)

with |ψ|2 = ψψ∗, as usual for complex quantities.
Notice that as ψ = ψ(~r), it might be convenient sometimes to work with the free energy

functional density, F , instead of the functional itself. So the free energy functional density of
a free superconductor is

F = α|ψ|2 +
β

2
|ψ|2 +

~2

2m
|∇ψ|2, (3.16)

where α and β are phenomenological Ginzburg-Landau constants and we add the kinetic term
to the phase transition term. So the free energy functional per unit area is then

F =

∫
F d

2r

A
, (3.17)

for a system that does not exhibit any z-dependence, i.e. for a system with ~r = (x, y).3

2It is macroscopic wave function that is zero in normal state. Some ground state wave function still exists.
3This is not a general requirement, though. Derivations of Ginzburg-Landau equations that we are about

to demonstrate would be valid for any arbitrary ~r. We assume ~r = (x, y) in order to be consistent with the
Abrikosov solution that is to follow.
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In the presence of a magnetic field, Ginzburg-Landau functional density is modified to [90]

F = α|ψ|2 +
β

2
|ψ|2 +

∣∣∣(−i~∇− q ~A)ψ∣∣∣2
2m

+
| ~B|2

2µ0
, (3.18)

where the last term corresponds to the energy of the magnetic field and ~B = ∇ × ~A with ~A

being the vector potential.4

N.B.: for a superconductorm and q are effective mass and charge respectively, i.e. m = 2me

and q = 2e, where me is the mass of an electron and e is the electron charge.

3.2.3 Ginzburg-Landau Equations

Let us now recall that a system would always tend to the configuration of the minimal free
energy, hence minimise the functional (3.18) with respect to ψ5 and ~A.

The variation of the functional with respect to ψ∗ in absence of an external field (i.e. in
the simplest case of ~A = 0) gives us

− ~2

2m
∇2ψ + αψ + βψ|ψ|2 = 0. (3.20)

Equation (3.20) can be solved analytically. Consider a 1D case with the interface between
normal and superconducting states situated at x = 0. The wave function for such a system is
found to be6

ψ(x) =

√
|α|
β

tanh
x√
2 ξ
, (3.21)

where ξ is the coherence length defined as

ξ2 =
~2

2m|α|
, (3.22)

and this solution is demonstrated in Figure 3.2.
4In general, however, Ginzburg-Landau functional density is written as

Fs = Fn + α|ψ|2 + β

2
|ψ|2 +

∣∣∣(−i~∇− q ~A)ψ∣∣∣2
2m

+

(
~B − µ0

~H
)2

2µ0
, (3.19)

where Fs is the energy density of a superconducting state, Fn is the energy density of a normal state and ~H
stands for the magnetic field intensity that is the same as for an external field, hence constant for a uniform
field. We have defined F = Fs − Fn for convenience. We also omit the constant term that corresponds to
an external field, as we are going to find Euler-Lagrange equations for this functional (that would become the
famous Ginzburg-Landau equations), hence the constant terms would drop out.

5ψ∗ in fact.
6See Appendix B.5 for the full derivations and solution.
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Figure 3.2: Order parameter of a 1D free superconductor for T < TC . Suppose that the
interface with the normal state is located at x = 0.

In presence of some non-zero magnetic field equation (3.20) modifies to

δF
δψ∗

=

(
−i~∇− q ~A

)2

2m
ψ + αψ + β|ψ|2ψ = 0. (3.23)

Now let us vary the functional (3.18) with respect to ~A. The outcome is the second
Ginzburg-Landau equation:7

i~q
2m

(ψ∗∇ψ − ψ∇ψ∗) +
q2

m
|ψ|2 ~A = ~Js. (3.24)

3.2.4 Flux quantisation

Let us work with the second Ginzburg-Landau equation a bit. Define the macroscopic wave
function through the density, ν:

|ψ|2 = ψψ∗ = ν, (3.25)

then
ψ =

√
ν eiθ, (3.26)

and
ψ∗ =

√
ν e−iθ, (3.27)

where θ = θ(~r), hence

ψ∗∇ψ − ψ∇ψ∗ = iν∇θ + iν∇θ = 2iν∇θ. (3.28)
7Once again, consult with Appendix B.5 for the detailed derivation.
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Substitute this result in (3.24) to get:

− q~
m
ν∇θ +

q2

m
ν ~A = ~Js. (3.29)

Now take the integral of both sides around a closed contour:∮ [
q2

m
ν ~A− q~

m
ν∇θ

]
~dl =

∮
~Js · ~dl (3.30)

and notice that q, m, ν and ~ are constants and the integral of the current along the closed
loop is zero: ∮

~Js · ~dl = 0.8 (3.31)

From Stokes’ theorem it follows that∮
~A · ~dl =

∫ (
∇× ~A

)
· ~dS =

∫
~B · ~dS = Φ (3.32)

– magnetic flux.
Integral of the gradient part then follows from the gradient theorem (fundamental theorem

of calculus for line integrals):∮
∇θ · ~dl = lim

~r1→~r2
{θ(~r2)− θ(~r1)} = 2πn, (3.33)

as we integrate along a closed path and the shape of the path does not matter; n is an integer.
Thus finally get an expression for the magnetic flux9

Φ = 2πn
~
q

= n
h

q
= nΦ0, (3.34)

where Φ0 is known as the flux quanta. This is an important result to remember for the future.

3.2.5 Ginzburg-Landau Parameters

Ginzburg-Landau theory introduces two important lengths scales. We have already met one of
them in section 3.2.3: it was ξ, coherence length, that works as an indicator of a typical length
scale of the variation of the order parameter within a superconductor. Coherence length is
defined as

ξ =
~√

2m|α|
. (3.35)

8In general this might not be true. In this case we would label the integral to be the vortex strength and
speak about the fluxoid quantisation. [89]

9Or fluxoid if
∮
~Js · ~dl 6= 0.
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Similar scale – the one that allows the variation – exists for the magnetic field as well.
This is the penetration depth mentioned in section 3.1. It can be derived from the simplified
second Ginzburg-Landau equation to be

λGL =

√
mβ

q2|α|µ0
. (3.36)

Both ξ and λGL have dimensions of length. The are demonstrated schematically in Fig-
ure 3.3 for a typical type-I superconductor.
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Figure 3.3: The spatial distribution of the order parameter and the magnetic field at the
boundary between a superconducting and a normal state. Coherence length, ξ, and penetration
depth, λGL, are indicated in the superconducting state. Notice that for a type-I superconductor
ξ > λGL.

Another important quantity is the ratio of λGL and ξ – Ginzburg-Landau parameter, κGL:

κGL =
λGL
ξ

=

√
2m2β

~2q2µ0
. (3.37)

κGL would become extremely important soon enough.

3.2.6 Dimensionless Form of Ginzburg-Landau Equations

We would apply numerical analysis to superconducting vortices as well as we did for skyrmions,
hence let us now introduce some dimensionless quantities in order to make our Ginzburg-
Landau functional and equations dimensionless. We would widely use ξ, λGL and κGL defined
in the previous section.

It is usual for a superconducting system to scale the coordinates with λGL, that is a
measure of length itself. We would start off with the dimensional coordinates scaled with λGL
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and hence scale all other dimensional quantities. By defining the dimensionless coordinate,

~X =
~r

λGL
= ~r

√
q2|α|µ0

mβ
, (3.38)

obtain (
− i

κGL
∇− ~A

)2

ψ + ψ + |ψ|2ψ = 0, (3.39)

~i = − i

2κGL
(ψ∗∇ψ − ψ∇ψ∗)− |ψ|2 ~A, (3.40)

where ψ, ~A and ~i are now all dimensionless and the only material-specific parameter involved
is the dimensionless κGL – the Ginzburg-Landau parameter.

3.3 Type-II Superconductors

The main feature learnt about superconductors was their ability to completely expel magnetic
field. This, however, appeared not to be the general truth. Some superconductors demonstrate
an ability to be penetrated by a magnetic field, though still remain superconducting. Such
materials are called to be type-II superconductors. [90]

It was Lev Shubnikov who discovered type-II superconductors experimentally and it was
Alexei Abrikosov who first described them theoretically. [63] Before Abrikosov Ginzburg-
Landau theory was applied to superconductors with

κGL <
1√
2

(3.41)

only. Abrikosov, however, showed that all materials with Ginzburg-Landau parameter

κGL >
1√
2

(3.42)

are in fact type-II superconductors and developed an extension of Ginzburg-Landau theory
that holds for these values of κGL.

So one can say that Meissner-Normal phase transition in type-II superconductors is not
instant – there is a region – Abrikosov phase (sometimes referred to as the vortex phase or
Shubnikov phase) – in between. This statement also yields existence of two critical fields: the
lower critical field, Bc1 , corresponding to Meissner-Abrikosov phase transition and the upper
critical field, Bc2 , corresponding to Abrikosov-normal phase transition. Clearly, both Bc1 and
Bc2 depend on temperature, and there are no phase transitions beyond Tc. [91] The phase
diagram for a type-II superconductor is demonstrated in Figure 3.4.

Though type-II superconductors allow magnetic field to penetrate, their existence does not
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TC

BC1

BC2

T

B

Figure 3.4: Phase diagram for a type-II superconductor demonstrating the dependence of
critical fields on temperature. This diagram also shows the behaviour of magnetic field lines
with respect to the material in different phases. In the Meissner phase (below Bc1) field lines
are completely expelled by a superconductor; in the Abrikosov phase (between Bc1 and Bc2)
field lines penetrate the superconductor, in certain places only, though; in the normal phase
field lines penetrate the sample everywhere as it is no longer superconducting.

violate the general theory of superconductivity. Following this argument, Abrikosov proposed
existence of some small non-superconducting domains inside a superconductor. [63] So the
flux is carried through these domains, being expelled by a superconducting part. Keeping in
mind that the sample tends to split onto normal and superconducting domains in the best
possible (energetically most optimal) way, it was later established that such regions typically
have cylindrical-like shape, projected to circles – vortices – in 2D, that form a triangular
lattice – such a configuration corresponds to the minima of the free energy as in the case of a
triangular lattice the distance between vortices is the largest possible, as the triangular lattice
is in general the best-packed one in 2D. [65] It was then determined that every single vortex
carries exactly one flux quanta. [63] It is known that the flux is quantised, as we derived it in
section 3.2.4,

Φ = nΦ0. (3.43)

For a vortex we take n = 1, as any other configuration would lead to agglutinate vortices near
the upper critical field; such a conclusion arises from the fact that we would need to minimise
the free energy, and this would anyway lead to the narrowest possible vortex, i.e. n = 1; in
addition to that, it is easier to form a little vortex rather than the large one, so small fields
near the lower critical field would correspond to n = 1 vortices only. [92]
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It is then trivial that inside a normal region the order parameter, ψ, is zero, as we are still
within the limits of the Landau theory of phase transitions. However, the order parameter does
not jump down to zero on the N-S boundary, though varies continuously over the vortex. We
can define a so-called vortex core of radius ∼ ξ – the radius of change of the order parameter
from zero to its finite superconducting value. Rate of change of B is a lot larger, however, of
order λGL. [91]

Notice that in contrast to type-I superconductors in type-II superconductors λGL is typi-
cally larger than ξ. This is demonstrated in Figure 3.5.
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Figure 3.5: The spatial distribution of the order parameter and the magnetic field for a type-
II superconductor. Coherence length, ξ, and penetration depth, λGL, are indicated in the
superconducting state. λGL is greater than ξ.

3.4 Abrikosov Solution

We had already mentioned that it was Alexei Abrikosov who first described type-II supercon-
ductors theoretically. In this section we would demonstrate Abrikosov’s solution of the first
Ginzburg-Landau equation that made him a Noble prize winner.

Let us recall Ginzburg-Landau functional density for a superconductor in the magnetic
field that is

F = α|ψ|2 +
β

2
|ψ|4 +

∣∣∣(−i~∇− q ~A)ψ∣∣∣2
2m

+
| ~B|2

2µ0
. (3.44)

The first Ginzburg-Landau equation in presence of an external magnetic field is then(
−i~∇− q ~A

)2

2m
ψ + αψ + β|ψ|2ψ = 0, (3.45)
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which can be modified to [90]

− ~2

2m

(
∇+

iq

~
~A

)2

ψ(~r) +
(
α+ β|ψ|2

)
ψ(~r) = 0. (3.46)

Now assume
~B = (0, 0, B) , (3.47)

with B = const, and consider the corresponding Landau gauge:

~A = (0, xB, 0) , (3.48)

then the kinetic term gets expanded as(
∇+

iq

~
~A

)2

= ∇2 +
2iq

~
xB

∂

∂y
− q2

~2
x2B2. (3.49)

Dropping off the cubic term, [63] the first Ginzburg-Landau equation becomes:

− ~2

2m

(
∇2 +

2iq

~
xB

∂

∂y
− q2

~2
x2B2

)
ψ + αψ = 0. (3.50)

As we work in the superconducting region, we are not interested in the trivial solution of
ψ = 0. This also yields the fact that α is negative, hence α = − |α|, as it is conventional for a
superconducting state.

Introduce the cyclotron frequency:

ω =
qB

m
, (3.51)

for convenience, so the first Ginzburg-Landau equation transforms to(
− ~2

2m
∇2 − i~ωx ∂

∂y
+
mω2

2
x2

)
ψ = |α|ψ. (3.52)

Notice that in this chapter we consider a 2D system, not a 3D that is just invariant in
z-direction, and ~A = ~A(x) only. So one can introduce10

ψ(~r) = eikyyf(x), (3.53)
10We notice the mathematical similarity with the Schrödinger equation for a simple harmonic oscillator.

Modify the equation for this correspondence to become obvious. This is a standard technique when dealing
with some quantum systems, for example, Landau levels (see Appendix B.6).
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then the gradient term is expanded as

∇2ψ(~r) = −k2
yψ(~r) +

d2f

dx2
eikyy, (3.54)

and the derivative in y-direction is nothing more but

∂

∂y
ψ(~r) = ikyψ(~r), (3.55)

which leads to

~2k2
y

2m
f(x)− ~2

2m

d2f

dx2
+ ~ωxkyf(x) +

mω2

2
x2f(x) = |α|f(x), (3.56)

as we had cancelled ei(kyy+kzz) term out.
Rearrange:

− ~2

2m

d2f

dx2
+

(
~ωxky +

mω2

2
x2

)
f(x) =

(
|α| −

~2k2
y

2m

)
f(x). (3.57)

Define
x0 = −~ky

mω
, (3.58)

then

~ωxky +
mω2

2
x2 =

mω2

2
(x− x0)2 − mω2

2
x2

0, (3.59)

so the equation (3.52) becomes

− ~2

2m

d2f

dx2
+

(
mω2

2
(x− x0)2 − mω2

2
x2

0

)
f(x) =

(
|α| −

~2k2
y

2m

)
f(x). (3.60)

Notice that
mω2

2
x2

0 =
~2k2

y

2m
, (3.61)

hence can drastically simplify equation (3.52) to

− ~2

2m

d2f

dx2
+
mω2

2
(x− x0)2 f(x) = |α|f(x), (3.62)

which looks extremely similar11 to the Schrödinger equation for a shifted simple harmonic
oscillator. Then one can use this analogy in order to obtain a solution of(

n+
1

2

)
~ω = |α|, (3.63)

11In terms of its mathematical form, not physical meaning.
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for “energies” and

f(x) =
1√

2nn!

(mω
π~

)2
e−

mω(x−x0)
2

2~ Hn(

√
mω

~
x), (3.64)

for wave functions, where Hn are Hermite polynomials (see Appendix A.3).
For the ground state one has n = 0, kz = 0, so

H0 = 1, (3.65)

f(x) = Ce−
mω(x−x0)

2

2~ = Ce−
2m|α|(x−x0)

2

~ = Ce
− (x−x0)

2

ξ2 , (3.66)

where
C =

(mω
π~

)2
(3.67)

and

ξ =

√
~

2m|α|
(3.68)

is the Ginzburg-Landau coherence length.
Hence the full solution is written as

ψ(~r) = Ceikyye
− (x−x0)

2

ξ2 , (3.69)

as ~r = (x, y, 0), yet there is no z-dependence.
But this is not the end of the story. Now employ the periodic lattice conditions:

kx =
2π

Lx
l, (3.70)

ky =
2π

Ly
j, (3.71)

where l and j are integers and Lx and Ly are periods in x and y directions respectively.
An important property of an Abrikosov vortex is the fact that it carries exactly one flux

quanta. Recall:

Φ0 =

∫
~B · ~dS, (3.72)

but ~B = (0, 0, B) and B = const, hence we are left with∫
dS =

Φ0

B
. (3.73)

For a triangular lattice one knows that∫
dS = S = LxLy, (3.74)

98



CHAPTER 3. ABRIKOSOV VORTEX LATTICE IN TYPE-II SUPERCONDUCTORS

hence
LxLy =

Φ0

B
. (3.75)

As x0 was expressed as

x0 = −~ky
mω

, (3.76)

can now re-express it as

x0 = − Φ0

BLy
j. (3.77)

The full solution is then

ψ(x, y) =
∑
j

Cje
2πijy
Ly e

− (x−jLx)2

ξ2 , (3.78)

and this is the famous Abrikosov solution for a type-II superconductor. [63]

3.5 Brandt-Fourier Ansatz

3.5.1 Alternative Form of the Ginzburg-Landau Functional

Let us now return to the Ginzburg-Landau functional density:

F = α|ψ|2 +
β

2
|ψ|4 +

∣∣∣(−i~∇− q ~A)ψ∣∣∣2
2m

+
| ~B|2

2µ0
. (3.79)

Following the approach introduced in section 3.2.6, it can be converted to the dimensionless
form:

F =
|α|2

β

[
−|ψ|2 +

1

2
|ψ|4 +

∣∣∣∣(− i

κGL
∇− ~A

)
ψ

∣∣∣∣2 + | ~B|2
]

(3.80)

for a superconducting state, hence the minus sign in front of |ψ|2.
We have already considered the variation of the functional (3.80) with respect to ψ∗ and

~A in order to obtain Ginzburg-Landau equations that describe a superconductor, however,
there exists another approach, which is more convenient for numerical methods that are to be
applied. [93] Let us write

ψ = feiθ =
√
f eiθ, (3.81)

where
f = |ψ|2. (3.82)

Also introduce the superfluid velocity or supervelocity,

~Q = ~A− 1

κGL
∇θ (3.83)
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and recall ~B = ∇× ~A.
Then one can expand the kinetic term as(
− i

κGL
∇− ~A

)
ψ =

∇f
iκGL

eiθ +
f

κGL
eiθ∇θ − ~Qfeiθ − f

κGL
eiθ∇θ =

(
∇f
iκGL

− ~Qf

)
eiθ. (3.84)

Noting that
f = |f|2, (3.85)

then gradient of f2 can be expanded as

∇f2 = 2f∇f (3.86)

in order to express ∇f, and thus

(∇f)2 =

(
∇f2

2f

)
=

(
∇f2

)2
4f2

=
(∇f)2

4f
, (3.87)

as |f|2 = f , and therefore obtain∣∣∣∣(− i

κGL
∇− ~A

)
ψ

∣∣∣∣2 =
(∇f)2

κ2
GL

+
(
~Qf
)2

=
(∇f)2

4κGLf
+ f

∣∣∣ ~Q∣∣∣2 , (3.88)

which then leads to the formulation of the functional in terms of f and ~Q:

F =
α2

β

[
−f +

f2

2
+

(∇f)2

4κ2
GLf

+ f
∣∣∣ ~Q∣∣∣2 + |∇ × ~Q|2

]
, (3.89)

where we have made use of
∇× ~Q = ∇× ~A = ~B. (3.90)

N.B.: Here f = f(x, y), ~Q = ~Q(x, y), θ = θ(x, y), as ψ = ψ(x, y), ~A = ~A(x, y) and
~B = ~B(x, y). Also notice that ~Q follows the same gauge as ~A.

3.5.2 Alternative Derivation of Ginzburg-Landau Equations

Let us now construct Euler-Lagrange equations for the functional (3.89) by variating it with
respect to f and ~Q, keeping in mind that both f and ~Q are functions of Cartesian x and y.

For f (first Gizburg-Landau equation):

∂F
∂f
−∇ ∂F

∂(∇f)
= 0. (3.91)
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Do it step by step. Start with

∂F
∂f

= −1 + f + | ~Q|2 − (∇f)2

4κ2
GLf

2
, (3.92)

and

∇ ∂F
∂(∇f)

=
f∇2f − (∇f)2

4κ2
GLf

2
, (3.93)

so the full Euler-Lagrange equation now reads:

− 1 + f + | ~Q|2 − (∇f)2

4κ2
GLf

2
=
f∇2f − (∇f)2

2κ2
GLf

2
(3.94)

that can be transformed to

−∇2f = 2κ2
GL

[
f − f2 − f | ~Q|2 − g

]
, (3.95)

where

g =
(∇f)2

4κ2
GLf

. (3.96)

Equation (3.95) is just the first Ginzburg-Landau equation in the so-called Brandt form.
However, it was demonstrated [71] that the numerical solution converges faster if one isolates
(−∇2 + const)f(x, y) term on the LHS, so equation (3.95) then becomes

(
−∇2 + 2κ2

GL

)
f = 2κ2

GL

[
2f − f2 − f | ~Q|2 − g

]
, (3.97)

as we have added a 2κ2
GLf term to both sides.

Let us now derive an alternative formulation for the second Ginzburg-Landau equation.
We start from the same functional (3.89) and vary it with respect to ~Q. Such a variation leads
to the following equation:

f ~Q+∇× ~Q = 0. (3.98)

Notice that from the gauge choice

∇ · ~Q = 0, (3.99)

hence equation (3.98) can be transformed to

f ~Q−∇2 ~Q = 0, (3.100)

and this is the Brandt’s form of the second Ginzburg-Landau equation.
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Again, we seek for some numerical acceleration, so let us now introduce

~Qb = ~Q− ~QA, (3.101)

where ~QA is the supervelocity of the Abrikosov solution,

~QA =
∇fA × êz
2κGLfA

, (3.102)

with fA being the Abrikosov solution at Bc2 (can be calculated analytically). ~QA satisfies

∇× ~QA =

B̄ − Φ0

∑
~R

(
~r − ~R

) êz, (3.103)

where ~R are positions of vortices (see later),

B̄ = 〈B(x, y)〉 =
Φ0

S
, (3.104)

is the spatially averaged over a unit cell12 magnetic field; S is the area of the unit cell and Φ0

is the flux quanta.
Also,

∇× ~Qb =
(
B − B̄

)
êz. (3.107)

With ~Qb introduced, equation (3.100) becomes

−∇2 ~Qb −∇2 ~QA = −f ~Qb − f ~QA, (3.108)

but following the definition of ~QA, equation (3.102), and condition (3.103) notice that

∇2 ~QA = 0, (3.109)

hence we are left with
−∇2 ~Qb = −f ~Qb − f ~QA. (3.110)

12By spatial averaging over a uinit cell we mean

〈F (~r)〉 = 1

Ln

∫
F (~r)dnr (3.105)

for a continuous system and

〈F (~r)〉 = 1

Nn

∑
k

Fk (3.106)

for a discrete one. Here n is the dimensionality and N is the number of points along one of the axes. For all
the systems studied in this Theses n = 2.
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Just as before, isolate (−∇2 + const)f(x, y) term on the LHS:

(
−∇2 + f̄

)
~Qb = −f ~QA −

(
f − f̄

)
~Qb, (3.111)

where
f̄ = 〈f〉 . (3.112)

So to conclude, two Ginzburg-Landau equations in Brandt form are:

(
−∇2 + 2κ2

GL

)
f = 2κ2

GL

[
2f − f2 − f | ~Q|2 − g

]
(3.113)

and (
−∇2 + f̄

)
~Qb = −f ~QA −

(
f − f̄

)
~Qb. (3.114)

3.5.3 Fourier Series Ansatz

3.5.3.1 The Lattice

One of the main Abrikosov’s assumptions was the periodicity of the vortex lattice. [92] Suppose
one has a lattice with constant a, then vortex positions can be set as

~Rvw =

(
vx1 + wx2

wy2

)
, (3.115)

where x1 = a, x2 = x1
2 , y2 = x1

√
3

2 for a triangular lattice (x1 = Lx, y2 = Ly to be consistent
with Abrikosov’s definitions introduced before) and v and w are integers. [93]

Reciprocal lattice vectors then are

~kmn =
2π

S

(
my2

nx1 +mx2

)
, (3.116)

where
S = x1y2 =

Φ0

B̄
(3.117)

and m and n are integers. [94]
One shall also notice that the position vector in the real space, ~r, is continuous,

~r = (x, y) , (3.118)

but the reciprocal lattice vector, ~k, is discrete:

~k =
{
~kmn

}
. (3.119)

103



CHAPTER 3. ABRIKOSOV VORTEX LATTICE IN TYPE-II SUPERCONDUCTORS

We have used the same formalism for our skyrmion lattice studies in chapter 2.

3.5.3.2 Fourier Coefficients

The main achievement of Brandt [71] was to introduce the Fourier series ansatz for f , B = Bz

and ~Q:
f(~r) =

∑
~k

a~k

(
1− cos

(
~k · ~r

))
, (3.120)

B(~r) = B̄ +
∑
~k

b~k cos
(
~k · ~r

)
, (3.121)

~Q(~r) = ~QA(~r) +
∑
~k

b~k
êz × ~k
k2

sin
(
~k · ~r

)
, (3.122)

where ~r = (x, y), the sums go over kmn 6= 0 to avoid ill-defined terms in equation (3.122)
(kmn = 0 terms are handled separately, as one can see from equations (3.120) – (3.122)), ~k is
defined in (3.116) and ~B is assumed to be ~B = (0, 0, B).

Let us now focus on the Fourier series for f . According to equation (3.120),

∇f =
∑
~k

~ka~k sin
(
~k · ~r

)
, (3.123)

∇2f =
∑
~k

k2a~k cos
(
~k · ~r

)
. (3.124)

RHS of the equation (3.97) then becomes:

−
∑
~k

a~kk
2 cos

(
~k · ~r

)
+ 2κ2

GL

∑
~k

a~k − 2κ2
GL

∑
~k

a~k cos
(
~k · ~r

)
= (3.125)

= −
∑
~k

a~k
(
k2 + 2κ2

GL

)
cos
(
~k · ~r

)
+ 2κ2

GL

∑
~k

a~k (3.126)

= −
∑
~k

a~k
(
k2 + 2κ2

GL

)
cos
(
~k · ~r

)
+ 2κ2

GLf̄ , (3.127)

according to Brandt. [93]
The full equation (3.97) now reads:

−
∑
~k

a~k
(
k2 + 2κ2

GL

)
cos
(
~k · ~r

)
+ 2κ2

GLf̄ = 2κ2
GL

(
2f − f2 − f | ~Q|2 − g

)
. (3.128)
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Multiply both sides by cos
(
~k′ · ~r

)
, integrate (spatially average) with respect to x and y:

−
∑
~k

a~k
(
k2 + 2κ2

GL

) ∫
cos
(
~k · ~r

)
cos
(
~k′ · ~r

) dxdy
A

+ 2κ2
GLf̄

∫
cos
(
~k′ · ~r

) dxdy
A

=

∫
2κ2

GL

(
2f − f2 − f | ~Q|2 − g

)
cos
(
~k′ · ~r

) dxdy
A

. (3.129)

Apply cosine orthogonality relation,∫
cos
(
~k · ~r

)
cos
(
~k′ · ~r

) dxdy
A

=
δ~k,~k′

2
, (3.130)

notice that ∫
cos
(
~k′ · ~r

) dxdy
A

= 0, (3.131)

re-label ~k′ → ~k and define∫ (
2f − f2 − f | ~Q|2 − g

)
cos
(
~k′ · ~r

) dxdy
A

=
〈(

2f − f2 − f | ~Q|2 − g
)

cos
(
~k · ~r

)〉
(3.132)

to get

a~k = 4κ2
GL

〈(
2f − f2 − f | ~Q|2 − g

)
cos
(
~k · ~r

)〉
k2 + 2κ2

GL

. (3.133)

In order to improve the performance, one can also add an auxiliary equation that follows
from the minimisation of the functional (3.89) with respect to the amplitude of f , i.e. δF

δf̄
= 0:

[93]

a~k = a~k

〈
f − f | ~Q|2 − g

〉
〈f2〉

, (3.134)

though this step is not necessary.
Following the same logic, one can obtain an expression for b~k from the second Ginzburg-

Landau equation in Brandt’s form. Curl equation (3.111):

∇×
[(
−∇2 + f̄

)
~Qb

]
= −∇×

(
f ~QA

)
−∇×

[(
f − f̄

)
~Qb

]
. (3.135)

Deal with the LHS first. As
∇× ~Qb = ~B − B̄êz, (3.136)

and f̄ is a constant, we get

∇×
[(
−∇2 + f̄

)
~Qb

]
=
(
−∇2 + f̄

)
Bêz − f̄ B̄êz. (3.137)
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For the RHS it gets a bit trickier:

−∇×
(
f ~QA

)
− ∇×

[(
f − f̄

)
~Qb

]
= (3.138)

= −f∇× ~QA −∇f × ~QA − (f − f̄)∇× ~Qb −∇f × ~Qb (3.139)

= −f∇× ~QA −∇f ×
(
~QA + ~Qb

)
− (f − f̄)∇× ~Qb. (3.140)

Notice that as
~QA + ~Qb = ~Q, (3.141)

∇× ~Qb = ~B − B̄êz, (3.142)

hence the equation transforms to

−∇×
(
f ~QA

)
−∇×

[(
f − f̄

)
~Qb

]
= −∇f × ~Q− (f − f̄)

(
B − B̄

)
êz. (3.143)

Call
~p = ∇f × ~Q, (3.144)

then
~p · êz =

∂f

∂x
Qy −

∂f

∂y
Qx = p, (3.145)

hence equation (3.111) finally transforms to

(
−∇2 + f̄

)
B = −

[
(f − f̄)B − fB̄ + p

]
. (3.146)

Now let us apply the Fourier expansion of B, (3.121), to get

f̄ B̄ +
∑
~k

(
k2 + f̄

)
b~k cos

(
~k · ~r

)
= −

[
(f − f̄)B − fB̄ + p

]
. (3.147)

Just as before, multiply both sides of (3.147) by cos
(
~k′ · ~r

)
, integrate (spatially average)

and apply cosine orthogonality relation to get

b~k = −2

〈[
(f − f̄)B − fB̄ + p

]
cos
(
~k · ~r

)〉
k2 + f̄

, (3.148)

as ∫
cos
(
~k′ · ~r

) dxdy
A

= 0. (3.149)

The best initial guess to use in numerical simulations that are applied to solve the equations
obtained is the one that would give a triangular lattice itself. Corresponding Fourier coefficients
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then are [93]

a~k = −(−1)m+mn+ne−
k2mnS

8π , (3.150)

b~k = 0, (3.151)

fA, required for the formulation of ~QA, is found from combining series (3.120) and the
coefficients have the form stated above:

fA = −
∑
mn

(−1)m+mn+ne−
k2mnS

8π

(
1− cos

(
~kmn · ~r

))
. (3.152)

It then leads to the normalisation of 〈fA(x, y)〉 = 1.

3.5.3.3 Vortex Lattice

We have noticed already that the only material parameter introduced in the model is the
Ginzburg-Landau parameter, κGL. Obviously, different values of an external field can be
applied. However, the lattice constant, a, depends on the average field, B, via

Φ0 =

∫
Bdxdy. (3.153)

In our dimensionless units Φ0 = 2π
κGL

, Bc2 = κGL, so the area of the unit cell governed by
the field B is

S =
2π

κGLB
. (3.154)

On the other hand,

S = x1y2 = a2

√
3

2
(3.155)

for a triangular lattice, hence one obtains a relation between the average field and the lattice
spacing:

B =
4π

a2κGL
√

3
, (3.156)

or just B ∝ a−2 if we do not want to bother with the configuration of the lattice.
In our calculations we shall use either external field or lattice spacing as a control parame-

ter, as we want to deal with stable configurations only. It is more convenient to use the spacing
and then calculate the external field that corresponds to this spacing if need be.

An example of a vortex lattice calculated by the approach introduced before is demon-
strated in Figure 3.6. We demonstrate f (Figure 3.6a) and B (Figure 3.6b) calculated.
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(a) f calculated for κ = 1.43 and a = 4.
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(b) B calculated for κ = 1.43 and a = 4.

Figure 3.6: Order parameter and magnetic field on the unit cell of an Abrikosov lattice for
κ = 1.43 and a = 4. Coordinates x and y are scaled by a: x ≡ x

a and y ≡ y
a . Order parameter

is zero in the vortex core and non-zero in the bulk, whereas the field is non-zero in the vortex
core and decays in the bulk, as expected.
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Chapter 4

Magnetic Skyrmions in Proximity to
Superconducting Vortex Lattice

4.1 Introduction and Motivation

In chapter 2 we have discussed skyrmion lattices. We have noticed their similarities to
Abrikosov vortex lattices, described in section 3.4, and applied Fourier approach similar to
that of Brandt’s for superconductors (see section 3.5 to recall the approach). As both skyrmion
and Abrikosov vortex lattices are triangular and both allow magnetic field to penetrate, quite
an obvious idea rises then: to combine two systems and study the obtained one, i.e. consider
a system that consists of a bilayer of a material that exhibits a skyrmion lattice and a type-II
superconductor that has a vortex lattice. A good example to consider might be a bilayer of
Fe1−xCoxSi as a material with skyrmion lattice and Nb as a superconducting one, as their
critical temperatures and fields should allow skyrmion lattice and Abrikosov lattice to exist
simultaneously. For instance, Fe1−xCoxSi exhibits skyrmion phase when an applied field, Ba,
lies in a region of 40mT < Ba < 80mT ; [43] niobium demonstrates superconducting vortex
lattice when an applied field is 40mT < Ba < 280mT . [95]

An example of the visualisation of the combined system we are about to study can be
found in Figure 4.1a, if we take a skyrmion material that exhibits a triangular lattice, or in
Figure 4.1b, if we take a skyrmion material that exhibits a honeycomb lattice. Regions of
the maximal fields must coincide for both Abrikosov vortex lattice and skyrmion lattice. In
the vortex lattice the field is maximal in the vortex core and then decays to zero in the bulk
of a superconductor; on the skyrmion lattice the field is maximal in those regions far from
skyrmions themselves, i.e. where all the spins align along the field. So we would position
vortices above those ‘ferromagnetic’ regions and use such a system as an initial configuration
for our calculations.

Notice that the position of the vortex lattice in Figure 4.1a is not unique: there are two
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(a) Schematic representation of a triangular
skyrmion lattice interacting with Abrikosov vortices.
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(b) Schematic representation of a honeycomb
skyrmion lattice interacting with Abrikosov vortices.

Figure 4.1: Schematic representation of combined systems to be studied. Vortices are located
in the regions of the highest field and are denoted by purple dots.

possibilities to combine triangular skyrmion lattice with the triangular vortex lattice, however
the position of the vortex lattice in Figure 4.1b is unique: a vortex always happens to be
surrounded by skyrmions should they form a honeycomb lattice.

Attempts to study a similar system are known, however. For example, Hals et al [96]
considered a skyrmion-vortex pair in a hybrid system of coupled ferromagnetic and supercon-
ducting layers like it is demonstrated in Figure 4.2. They have considered effects of a single
skyrmion on a single vortex, though, whereas we are going to consider how does one lattice
affect another.

Figure 4.2: Schematic representation of a skyrmion-vortex pair. [96]

In previous chapters we considered the behaviour of the order parameter and magnetic
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field of a type-II superconductor in an external field and the behaviour of the magnetisation of
a magnetic (skyrmion) material in an external field with this field varying. In fact, skyrmion
lattice cannot even exist in the absence of an external field, as it is a type of magnetic ordering
resulting as a reaction to the field. Abrikosov vortices would not exist either. We have
observed skyrmion lattices and Abrikosov vortex lattices in the regions between critical fields.
However, the external field was held to be uniform for both cases. Now that we combine two
systems, external field would no longer stay uniform for any of them: the total field that would
cause (or not cause – depending on its value) ordering in a magnetic material would be an
external field modified by a superconductor, while the field acting on a superconductor would
be a combination of an external field and the magnetisation field due to the skyrmion lattice.
Proper interface conditions have to be derived as well.

In this chapter we would introduce a mathematical representation of the bilayer of a
skyrmion lattice and a type-II superconductor with some separation between them (that can
be zero in the simplest case); the total free energy functional of such a system consists of
the combination of a free energy functional for a magnetic system and Ginzburg-Landau
functional for a superconductor. As we are going to see later, there is only one coupling term
in the combined functional, so it would make sense to derive Ginzburg-Landau equations for
the superconducting system and Euler-Lagrange equations for the magnetic system and solve
them separately in order to save the computation time. Thus we would demonstrate how does
a type-II superconductor affect the skyrmion lattice and how does the skyrmion lattice affect
Abrikosov vortex lattice in a superconductor.

4.2 Extending Brandt’s Approach

We have described Brandt’s approach to Abrikosov vortex lattice in details in section 3.5. Let
us just quote some important results here. First Ginzburg-Landau equation in Brandt’s form
is written as (

−∇2 + 2κ2
GL

)
f = 2κ2

GL

[
2f − f2 − f

∣∣∣ ~Q∣∣∣2 − g] , (4.1)

and second Ginzburg-Landau equation in Brandt’s form1 is

(
−∇2 + f̄

)
~Qb = −f ~QA −

(
f − f̄

)
~Qb, (4.2)

for ~Qb, that can be transformed into an equation for B:

(
−∇2 + f̄

)
B = −

[(
f − f̄

)
B − fB̄ + p

]
, (4.3)

1Call them to be Ginzburg-Landau-Brandt equations from here on.
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where B is defined from
~B = (0, 0, B) , (4.4)

f , ~Q, ~QA, ~Qb, f̄ and g are defined in section 3.5.1,

p = ~p · ẑ =
∂f

∂x
Qy −

∂f

∂y
Qx, (4.5)

and κGL is the Ginzburg-Landau parameter (not to be confused with κ we have used in our
dimensionless formulation of the free energy functional for a skyrmion system).

Expanding f and ~Q in Fourier form,

f(~r) =
∑
~k

a~k

(
1− cos (~k · ~r)

)
, (4.6)

B(~r) = B̄ +
∑
~k

b~k cos (~k · ~r), (4.7)

~Q(~r) = ~QA(~r) +
∑
~k

b~k
êz × ~k
k2

sin (~k · ~r), (4.8)

where ~B−B̄êz = ∇× ~Qb, substituting these expressions into LHS of Ginzburg-Landau-Brandt
equations, multiplying these equations by 1

A cos (~k′ · ~r) and spatial averaging, get formulations
for Fourier coefficients, a~k, b~k,

a~k = 4κ2
GL

〈(
2f − f2 − f | ~Q|2 − g

)
cos (~k · ~r)

〉
k2 + 2κ2

GL

, (4.9)

b~k = −2

〈[
(f − f̄)B − fB̄ + p

]
cos (~k · ~r)

〉
k2 + f̄

. (4.10)

However, these formulations are based on the assumption of ~B = (0, 0, B) with B = const

and the corresponding Landau gauge for ~A, hence ~Q. But once we combine the Abrikosov
lattice with the skyrmion lattice, ~B would not remain necessarily directed solely along z-
axis, as the total field, ~B, would be the combination of an external field (still constant and
aligned with z-axis) and the magnetisation of the skyrmion system (three active components,
all spatially-dependent). Hence we need to derive Ginzburg-Landau-Brandt equations that
would be valid for any shape of ~B and ~Q. Also, we have used exponential form of Fourier
expansion for the magnetisation components in our skyrmion lattice survey, so we would like
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to convert Brandt’s formulation to the exponential form for consistency. Write

f =
∑
~k

a~k

(
1− e−i~k~r

)
, (4.11)

hence the expression for a~k gets modified to

a~k = 4κ2
GL

〈(
2f − f2 − f | ~Q|2 − g

)
ei
~k~r
〉

k2 + 2κ2
GL

, (4.12)

and everything else regarding first Ginzburg-Landau-Brandt equation remains unchanged.
Dealing with the second equation, however, becomes more tricky. As

~B = (Bx, By, Bz) (4.13)

now, need to write
~B = ~̄B +

∑
~b~ke
−i~k~r, (4.14)

or in component form:
Bµ = B̄µ +

∑
= bµ~ke

−i~k~r, (4.15)

where µ = x, y, z.
Condition (4.13) automatically means that instead of having one equation (4.3), we would

have three equations for three components of ~B:

(
−∇2 + f̄

)
Bx = −

[(
f − f̄

)
Bx − fB̄x + px

]
, (4.16)

(
−∇2 + f̄

)
By = −

[(
f − f̄

)
By − fB̄y + py

]
, (4.17)(

−∇2 + f̄
)
Bz = −

[(
f − f̄

)
Bz − fB̄z + pz

]
, (4.18)

where
px =

∂f

∂y
Qz, (4.19)

py = −∂f
∂x
Qz, (4.20)

pz =
∂f

∂x
Qy −

∂f

∂y
Qx, (4.21)

hence

bx~k = −2

〈[
(f − f̄)Bx − fB̄x + px

]
ei
~k~r
〉

k2 + f̄
, (4.22)
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by~k = −2

〈[
(f − f̄)By − fB̄y + py

]
ei
~k~r
〉

k2 + f̄
, (4.23)

bz~k = −2

〈[
(f − f̄)Bz − fB̄z + pz

]
ei
~k~r
〉

k2 + f̄
, (4.24)

by analogy to the formulation of b~k. Fourier formulation of ~Q is, however, less trivial.
Let us first convert Fourier formulation of ~Q, (4.8), to the exponential form:

~Q = ~QA + i
∑
~k

~b~k × ~k
k2

e−i
~k~r, (4.25)

and if ~B = (0, 0, B), then ~b~k =
(
0, 0, b~k

)
, hence one can write

~Q = ~QA + i
∑
~k

b~k
êz × ~k
k2

e−i
~k~r. (4.26)

Now check that the curl of ~Q defined in (4.26) actually gives us ~B:

êz × ~k = (−ky, kx) = ~k⊥, (4.27)

∇× ~Q = B̄ +
∑
~k

b~k

~k × ~k⊥
k2

e−i
~k~r. (4.28)

Calculate the cross product:

~k × ~k⊥ =

∣∣∣∣∣∣∣
êx êy êz

kx ky 0

−ky kx 0

∣∣∣∣∣∣∣ =
(
0, 0, k2

x + k2
y

)
= k2êz, (4.29)

then
∇× ~Q = B̄ +

∑
~k

b~kêze
−i~k~r = ~B, (4.30)

as it was defined in (4.14) just for ~B = (0, 0, B).
Let us then extend the Fourier formulation of ~Q, (4.25), for ~B = (Bx, By, Bz):

~Q = ~QA + i
∑
~k

~b~k × ~k
k2

e−i
~k~r, (4.31)

where
~b~k =

(
bx~k , by~k , bz~k

)
(4.32)
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and
~QA =

(
QAx , QAy , 0

)
, (4.33)

as this form is still consistent with its definition, (3.83).
The cross product inside (4.25) can be expanded as

~b~k × ~k =
(
−kybz~k , kxbz~k , kybx~k − kxby~k

)
, (4.34)

thus curl of ~Q is

∇× ~Q =
∑
~k

1

k2

(
bx~kk

2
y − by~kkxky , −bx~kkxky + by~kk

2
x , k

2bz~k

)
e−i

~k~r =
∑
~k

~Tb~ke
−i~k~r. (4.35)

The result may look incorrect from the first glance as it does not seem to correspond to the
definition of Bx and By from (4.15), though, if we simplify it a bit, the situation may become
different. Write

~T Tb~k
=

1

k2

 bx~kk
2
y − by~kkxky

−bx~kkxky + by~kk
2
x

k2bz~k

 (4.36)

for convenience. Then complete the k2 in two components of ~T Tb~k by adding corresponding
terms to them:

~T Tb~k
=

1

k2

 bx~kk
2
x − bx~kk

2
x + bx~kk

2
y − by~kkxky

−bx~kkxky + by~kk
2
x + by~kk

2
y − by~kk

2
y

k2bz~k



=

 bx~k
by~k
bz~k

− 1

k2


kx

(
bx~kkx + by~kky

)
ky

(
bx~kky + by~kky

)
0

 (4.37)

=

 bx~k
by~k
bz~k

− 1

k2


kx

(
~b~k · ~k

)
ky

(
~b~k · ~k

)
0

 ,

as ~k = (kx, ky, 0) if one wants to express it in 3D.
On the other hand, one can define ~b~k as

~b~k = bx~k êx + by~k êy + bz~k êz = b⊥~kê⊥ + bz~k êz (4.38)

with
b⊥~kê⊥ = bx~k êx + by~k êy (4.39)
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and ê⊥ is defined in Figure 4.3.

k


k

x

k

y

ep

Figure 4.3: Definition of ê⊥ vector – êp in the figure – as a vector that is perpendicular to ~k.

From Figure 4.3 it is then clear that

ê⊥ · ~k = 0, (4.40)

but if ê⊥ · ~k = 0, then ~b⊥~k ·
~k = 0 and therefore

~b~k · ~k = 0, (4.41)

as there is no z-dependence in ~k, so conclude that

bx~kkx + by~kky = ~b~k · ~k = 0, (4.42)

hence

~T Tb~k
=

 bx~k
by~k
bz~k

 (4.43)

and
∇× ~Q =

∑
~k

(
bx~k , by~k , bz~k

)
e−i

~k~r = (Bx, By, Bz) , (4.44)

which allows us to conclude that the generalisation (4.25) was correct.
To summarise: in the exponential form we write

f =
∑
~k

a~k

(
1− e−i~k~r

)
, (4.45)

~B = ~̄B +
∑

~b~ke
−i~k~r (4.46)
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and

~Q = ~QA + i
∑
~k

~b~k × ~k
k2

e−i
~k~r. (4.47)

Notice that if an external field is aligned along z-direction only, as it was assumed in
section 3.5.1, Bx and By would still remain zeros, hence one can use this formulation as the
general one for all the cases. The calculations are a bit slower than those using the original
Brandt’s approach, though the difference in speed is negligible on modern machines.

4.3 Coupling Skyrmion Lattice with a Superconductor

4.3.1 The Total Functional

All this study is about finding optimal solutions for thermodynamical systems in the first place,
minimising the free energy functional, in other words. As we have a system of a magnetic
material and a superconductor combined, we need to write a free energy functional for this
system. Such a free energy functional would be a combination of free energy functionals for
those systems when they are not interacting with each other. However, some modifications
have to be made to both functionals in order to combine them correctly and take the actual
interactions into account.

Recall Ginzburg-Landau functional as it was stated in section 3.2.2:

FSC =

∫ − |α| |ψ|2 +
β

2
|ψ|4 +

1

2m

∣∣∣(−i~∇− q ~A)ψ∣∣∣2 +

∣∣∣ ~B∣∣∣2
2µ0

 dxdy

A
. (4.48)

This functional is not dimensionless itself, and we cannot use the dimensionless formulation
introduced in section 3.2.6 as the coordinate scaling would be different in our new problem
(related to skyrmion coordinate scaling, in fact, as we want to combine functionals, hence
combine integrals, hence make sure we integrate with respect to the same variable(-s)), so
should develop a new one.

So let us derive this new dimensionless formulation. Write

ψ = ψ0ψ̃ (4.49)

with
ψ2

0 =
|α|
β
. (4.50)

Ginzburg-Landau coherence length and the penetration depth are defined as usually,

ξ =
~√

2m|α|
(4.51)
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and

λGL =

√
mβ

q2|α|µ0
(4.52)

respectively. These are unchanged with respect to those defined in section 3.2.5.
The functional then becomes

FSC =

∫ −|α|
2

β

∣∣∣ψ̃∣∣∣2 +
1

2

|α|2

β

∣∣∣ψ̃∣∣∣4 +
1

2m|α|
|α|2

β

∣∣∣(−i~∇− q ~A) ψ̃∣∣∣2 +

∣∣∣ ~B∣∣∣2
2µ0

 dxdy

A
, (4.53)

that can be simplified to

FSC =
|α|2

β

∫ −
∣∣∣ψ̃∣∣∣2 +

1

2

∣∣∣ψ̃∣∣∣4 +
1

2m|α|

∣∣∣(−i~∇− q ~A) ψ̃∣∣∣2 +
β

|α|2

∣∣∣ ~B∣∣∣2
2µ0

 dxdy

A
. (4.54)

Define

Bc =

√
µ0|α|2
β

, (4.55)

in order to write ∣∣∣ ~B∣∣∣2 = B2
c

∣∣∣~b∣∣∣2 , (4.56)

also rearrange

1

2m|α|

∣∣∣(−i~∇− q ~A) ψ̃∣∣∣2 =
~2

2m|α|

∣∣∣(−i∇− q

~
~A
)
ψ̃
∣∣∣2 = ξ2

∣∣∣(−i∇− q

~
~A
)
ψ̃
∣∣∣2 . (4.57)

Notice that
ξ
q

~
=

q√
2m|α|

=
1√

2 λGLBc
, (4.58)

then define

~a =
q

~
ξ ~A =

~A√
2 λGLBc

. (4.59)

Also notice that
∇× ~a =

1√
2 λGLBc

∇× ~A =
1√

2 λGLBc
~B =

1

λGL
~b, (4.60)

or just
~b = λGL∇× ~a, (4.61)

that would be useful in the future.

118



CHAPTER 4. MAGNETIC SKYRMIONS IN PROXIMITY TO SUPERCONDUCTING VORTEX
LATTICE

So finally the functional turns into

FSC = H2
c

∫ {
−
∣∣∣ψ̃∣∣∣2 +

1

2

∣∣∣ψ̃∣∣∣4 +
∣∣∣(−iξ∇− ~a) ψ̃

∣∣∣2 +
∣∣∣~b∣∣∣2} dxdy

A
, (4.62)

where

H2
c =

B2
c

µ2
0

. (4.63)

Coordinates, though, are still dimensionful. As it was mentioned before, we cannot use the
scaling introduced in section 3.2.6, as that one was related to λGL. We want our coordinates
to be the same as in the free energy functional for a magnetic material,

FSkX = 2Jκ2

∫ {
1

4

(
∂µ ~M

)
·
(
∂µ ~M

)
+ ~M ·

(
∇× ~M

)
− ~β · ~M + λ

(
| ~M |2 − 1

)} dxdy

A
,

(4.64)
and the coordinates are dimensionless for this functional. So define

~rκ = κ~r, (4.65)

where κ is defined in section 2.3.1 and has dimensions of ~r−1, hence

∇̃ =
1

κ
∇ (4.66)

and
Ã = κ2A, (4.67)

with ~rκ being dimensionless. One can also introduce

λ̃ = κλGL, (4.68)

ξ̃ = κξ, (4.69)

then the Ginzburg-Landau functional would turn into

FSC = H2
c

∫ {
−
∣∣∣ψ̃∣∣∣2 +

1

2

∣∣∣ψ̃∣∣∣4 +
∣∣∣(−iξ̃∇̃ − ~a) ψ̃∣∣∣2 +

∣∣∣~b∣∣∣2} dx̃dỹ

Ã
. (4.70)

We also want functionals (4.64) and (4.70) to be consistent with each other, hence define

H̃c =
Hc√
2Jκ2

(4.71)

to get
H2
c = 2Jκ2H̃2

c , (4.72)
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and yet the Ginzburg-Landau functional finally becomes

FSC = 2Jκ2H̃2
c

∫ {
−
∣∣∣ψ̃∣∣∣2 +

1

2

∣∣∣ψ̃∣∣∣4 +
∣∣∣(−iξ̃∇̃ − ~a) ψ̃∣∣∣2 +

∣∣∣~b∣∣∣2} dx̃dỹ

Ã
. (4.73)

One may notice, though, that the magnetic field in (4.73) is represented by ~b, whereas in
(4.64) it is represented by ~β that is also scaled with κ (κ2, in fact).

Let us recall its definition from section 2.3.1 and relate it to ~b:

~βκ =
~BZ

2Jκ2
=

µs
2Jκ2

~B =
µs
√

2Bc
2Jκ2

~b, (4.74)

where ~BZ is the Zeeman field and
µs = gµB (4.75)

– the magnetic moment of the spins in the skyrmion material.
Define

µ̃s =
µs

2Jκ2µ0
, (4.76)

then
~βκ =

√
2 µ̃sH̃c

~b, (4.77)

or
~b =

1√
2 µ̃sH̃c

~βκ, (4.78)

and then we re-label back ~βκ → ~β. This is the way ~b and ~β are related. We would juggle
between them for computational convenience, though keeping in mind that it is actually the
same mathematical quantity with different constant prefactor.

In contrast with systems considered in previous chapters, we are not working in quasi 2D
system anymore. Moreover, the system is not uniform in z-direction, as it is composite of two
different media: skyrmion and superconducting materials with possible gap between them.
Hence stray field and interface effects have to be taken into account.

Let us derive the interface conditions first. Recall from the general electrodynamics, that
on the interface between two media we get

B⊥1 = B⊥2 (4.79)

and
H‖1 = H‖2 , (4.80)

i.e. the component of ~B that is perpendicular to the interface (Bz in our case) is continuous,
and so is the component of ~H that is parallel to the interface.
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Ginzburg-Landau functional, (4.73), describes a superconductor in an external field that
is uniform. Even in this case, though, the full free energy functional is written as

FSC = 2Jκ2H̃2
c

∫ {
−
∣∣∣ψ̃∣∣∣2 +

1

2

∣∣∣ψ̃∣∣∣4 +
∣∣∣(−iξ̃∇̃ − ~a) ψ̃∣∣∣2 +

(
~b− ~h

)2
}
dx̃dỹ

Ã
, (4.81)

but h-part is often omitted, as for the uniform external field

~h = (0, 0, h0) (4.82)

and h0 = const, hence it does not affect Ginzburg-Landau equations derived from (4.81). It
was already discussed in section 3.2.2.

However, the presence of a skyrmion lattice in proximity to a superconductor means that
the field external to a superconductor is no longer uniform, hence the functional in (4.73)
needs to be modified as in (4.81), just with

~h = h0êz + µ̃sMz êz + ~hd, (4.83)

where ~hd =
(
hdx , hdy , 0

)
is the demagnetisation (stray) field of a magnetic material expressed

in our usual dimensionless units, obeying

∇× ~hd = 0, (4.84)

Mz is z-component of the magnetisation of the skyrmion lattice, ~M , that is normalised by∣∣∣ ~M ∣∣∣2 = 1, µ̃s is the magnetic moment of spins in the skyrmion material and h0 is the uniform

external field, related to the initial ~β applied to a magnetic material in our skyrmion lattice
study (we used it as a control parameter). Call it to be ~β0 now,

~β0 = (0, 0, β0) , (4.85)

β0 = const. One shall also keep in mind that the magnetisation, ~M , in equation (4.83) arises
due to the skyrmion lattice, hence has nothing to do with the usual expansion of the magnetic
induction, ~B = µ0

(
~H + ~MSC

)
, as this is related to a superconductor only, and it is ~H (~h in

the dimensionless formulation) itself that is modified by skyrmions. The final outfit of ~h is
now

~h = h0êz + µ̃sMz êz + hdx êx + hdy êy, (4.86)

For notational convenience relabel:

ψ̃ → ψ, (4.87)
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∇̃ → ∇, (4.88)

Ã→ A, (4.89)

ξ̃ → ξ, (4.90)

~a→ ~A, (4.91)

~b→ ~B, (4.92)

~h→ ~H, (4.93)

~hd → ~Hd, (4.94)

~h0 → ~H0, (4.95)

H̃c → Hc, (4.96)

µ̃s → µs, (4.97)

etc. Keep λ̃, though, in order to avoid confusion with the Lagrange multiplier.
Ginzburg-Landau functional for a superconductor in proximity to a skyrmion lattice is

then written as

FSC = 2Jκ2H2
c

∫ {
− |ψ|2 +

1

2
|ψ|4 +

∣∣∣(−iξ∇− ~A
)
ψ
∣∣∣2 +

∣∣∣ ~B∣∣∣2
− 2 ~B ·

(
H0êz + µsMz êz +Hdx êx +Hdy êy

)
+

(
H0êz + µsMz êz +Hdx êx +Hdy êy

)2} dxdy
A

,

= 2Jκ2H2
c

∫ {
− |ψ|2 +

1

2
|ψ|4 +

∣∣∣(−iξ∇− ~A
)
ψ
∣∣∣2 +

∣∣∣ ~B∣∣∣2 (4.98)

− 2 ~B ·
(
H0êz + µsMz êz +Hdx êx +Hdy êy

)
+ H2

0 +H2
dx +H2

dy + 2µsH0Mz + µ2
sM

2
z

} dxdy
A

,

or just
FSC = 2Jκ2H2

c F̃SC . (4.99)

Finally, let us combine the Ginzburg-Landau functional, (4.98), with the free energy func-
tional of a magnetic material, (4.64):

F = 2Jκ2
(
H2
c F̃SC + F̃SkX

)
= 2Jκ2H2

c

(
F̃SC + γF̃SkX

)
, (4.100)

where we have defined
γ =

1

H2
c

, (4.101)
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and

F̃SkX =

∫ {
1

4

(
∂µ ~M

)
·
(
∂µ ~M

)
+ ~M ·

(
∇× ~M

)
− ~β · ~M + λ

(∣∣∣ ~M ∣∣∣2 − 1

)}
dxdy

A
(4.102)

is the dimensionless free energy functional for a magnetic material.
The total, combined functional, then reads as

F = 2Jκ2H2
c

(
F̃SC + γF̃SkX

)
(4.103)

= 2Jκ2H2
c

∫ {
− |ψ|2 +

1

2
|ψ|4 +

∣∣∣(−iξ∇− ~A
)
ψ
∣∣∣2 +

∣∣∣ ~B∣∣∣2
− 2 ~B ·

(
H0êz + µsMz êz +Hdx êx +Hdy êy

)
+ H2

0 +H2
dx +H2

dy + 2µsH0Mz + µ2
sM

2
z

+ γ

[
1

4

(
∂µ ~M

)
·
(
∂µ ~M

)
+ ~M ·

(
∇× ~M

)
− ~β · ~M + λ

(∣∣∣ ~M ∣∣∣2 − 1

)]}
dxdy

A
,

and now γ and µs are our new control parameters that represent the contribution of the
skyrmion part to the total energy and the magnitude of the magnetic moment of spins in the
magnetic (helical, skyrmion or ferromagnetic) system respectively.

In the real world µs ∼ µB and γ ∼ 1
H2
c
. For example, for MnSi µs = 0.4µB; for Nb

Hc ∼ 200mT and depends on temperature.

4.3.2 Modified Equations

We have mentioned in the section 4.1, that as there is a skyrmion lattice in proximity to a
superconductor, the total external field would not necessarily stay uniform. However, this is
also true for the skyrmion lattice itself: the external field, β, can be modified by a supercon-
ductor. It is no longer constant, hence has to be Fourier expanded in the same way as the
components of ~M are:

~β = ~β(x, y) =
∑
~k

~β~ke
−i~k~r, (4.104)

hence Euler-Lagrange equations derived from the free energy functional for a magnetic material
would be modified to (

∂2
x + ∂2

y

)
Mx − 4∂yMz − 4λMx = −2βx, (4.105)(

∂2
x + ∂2

y

)
My + 4∂xMz − 4λMy = −2βy, (4.106)(

∂2
x + ∂2

y

)
Mz − 4 (∂xMy − ∂yMx)− 4λMz = −2βz. (4.107)
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and thus in Fourier form they become:∑
~k′

[{
−k′2X~k′ + 4ik′yZ~k′

}
δ~k~k′ − 4X~k′λ~k−~k′

]
= −2

∑
~k′

βx~k′
δ~k~k′ , (4.108)

∑
~k′

[{
−k′2Y~k′ − 4ik′xZ~k′

}
δ~k~k′ − 4Y~k′λ~k−~k′

]
= −2

∑
~k′

βy~k′
δ~k~k′ , (4.109)

∑
~k′

[{
−k′2Z~k′ + 4i

(
k′xY~k′ − k

′
yX~k′

)}
δ~k~k′ − 4Z~k′λ~k−~k′

]
= −2

∑
~k′

βz~k′
δ~k~k′ , (4.110)

i.e. ~β is no longer constant and we need to take into account Fourier coefficients of ~β –
~β~k =

(
βx~k , βy~k , βz~k

)
, but this is the only change that one has to make to the skyrmion part

of our survey. Superconducting part, however, gets a bit more tricky.
In order to take into account effects of a skyrmion lattice on a superconductor introduced

via relation (4.86) in the most efficient way, let us introduce a vector that combines them:

~P =

 Hdx

Hdy

µsMz

 . (4.111)

Notice that vector ~P on its own has no physical meaning.
The effective Ginzburg-Landau functional in Brandt’s form derived from (4.98) is

F̃eff =

∫ {
−f +

f2

2
+
ξ2 (∇f)2

4f
+ f

∣∣∣ ~Q∣∣∣2 + λ̃2
∣∣∣∇× ~Q

∣∣∣2 − 2λ̃
(
∇× ~Q

)
· ~P

}
dxdy

A
, (4.112)

where we have omitted H0 term, as we are interested in Euler-Lagrange equations derived
from this functional only at the moment.

Minimisation of the functional (4.112) with respect to f , however, is not different from
the minimisation of Ginzburg-Landau-Brandt functional from section 3.5.2, as there is no
interaction between f and ~M or ~Hd, so the first Ginzburg-Landau-Brandt equation remains
unchanged, though shall be now formulated via ξ, not via κGL, in order to satisfy our new
dimensionless formulation. Hence the formulation for a~k, that is a Fourier coefficient for f , is

a~k =
4

ξ2

〈(
2f − f2 − f | ~Q|2 − g

)
ei
~k~r
〉

k2 + 2ξ−2
, (4.113)

where g is now

g =
ξ2(∇f)2

4f
. (4.114)
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The second Ginzburg-Landau-Brandt equation does change, however. It is derived to be

2f ~Q+ 2λ̃2
(
∇×∇× ~Q

)
− 2λ̃∇× ~P = 0, (4.115)

but as the triple cross product can be simplified to

∇×∇× ~Q = −∇2 ~Q+∇
(
∇ · ~Q

)
(4.116)

and
∇ · ~Q = 0 (4.117)

because of the gauge choice, equation (4.115) becomes:

f ~Q− λ̃2∇2 ~Q− λ̃∇× ~P = 0, (4.118)

that can be transformed to
− λ̃2∇2 ~Q = −f ~Q+ λ̃∇× ~P , (4.119)

and this is the second Ginzburg-Landau-Brandt equation for a system of a superconductor
and a magnetic material combined.

Let us now apply Brandt’s trick described in section 3.5.2, i.e. write ~Q = ~QA + ~Qb, curl
both sides of equation (4.119), add f̄ ~B to them (to stay consistent with Brandt’s approach)
and divide the whole equation by λ̃. Thus obtain

(
−∇2 + f̄

)
~B = − 1

λ̃2

(
f − λ̃2f̄

)
~B +

1

λ̃2
f ~̄B − 1

λ̃
~p+∇×∇× ~P , (4.120)

and f , f̄ and ~p are defined in section 4.2.
Expand the coupling term:

∇×∇× ~P = ∇
(
∇ · ~P

)
−∇2 ~P =

 −∂2
yHdx + ∂x∂yHdy

∂x∂yHdx − ∂2
xHdy

−µs∂2
xMz − µs∂2

yMz

 , (4.121)

and notice that the first two components of this vector correspond to ∇× ~Hd, but

∇× ~Hd = 0, (4.122)

hence the equations for three components of ~B become:

(
−∇2 + f̄

)
Bx = − 1

λ̃2

[
λ̃
(
f − λ̃2f̄

)
Bx − fB̄x + λ̃px

]
, (4.123)
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(
−∇2 + f̄

)
By = − 1

λ̃2

[
λ̃
(
f − λ̃2f̄

)
By − fB̄y + λ̃py

]
, (4.124)

(
−∇2 + f̄

)
Bz = − 1

λ̃2

[
λ̃
(
f − λ̃2f̄

)
Bz − fB̄z + λ̃pz − µsλ̃2

(
−∂2

xMz − ∂2
yMz

)]
. (4.125)

Now expand Bx, By and Bz on the LHS via Fourier transform, then multiply all the
equations by 1

Ae
i~k′~r and integrate with respect to x and y (just as we did in section 4.2) to

get expressions for Fourier coefficients for ~B:

bx~k = −2

〈[
λ̃
(
f − λ̃2f̄

)
Bx − fB̄x + λ̃px

]
ei
~k~r
〉

λ̃2
(
k2 + f̄

) , (4.126)

by~k = −2

〈[
λ̃
(
f − λ̃2f̄

)
By − fB̄y + λ̃py

]
ei
~k~r
〉

λ̃2
(
k2 + f̄

) , (4.127)

bz~k = −2

〈[
λ̃
(
f − λ̃2f̄

)
Bz − fB̄z + λ̃pz − µsλ̃2

(
−∂2

xMz − ∂2
yMz

)]
ei
~k~r
〉

λ̃2
(
k2 + f̄

) , (4.128)

and these are to be used in our future calculations.
It follows, though, from expressions (4.126) and (4.127) that Bx and By are not different

from the case of no skyrmion lattice present, hence Bx = By = 0, but we would still keep
them in the model should we want to extend it in the future.

4.3.3 Modified Ginzburg-Landau-Brandt Functional in Fourier Form

In the previous section we had mentioned the free energy functional calculations (not to
be confused with the minimisation). We have already derived the form of the free energy
functional for a magnetic material that is the most convenient for calculations if ~M is Fourier
transformed in section 2.4.5. Let us now derive such an expression for the Ginzburg-Landau-
Brandt functional. Recall the Ginzburg-Landau functional:

F̃SC =

∫ {
− |ψ|2 +

1

2
|ψ|4 +

∣∣∣(−iξ∇− ~A
)
ψ
∣∣∣2 +

∣∣∣ ~B∣∣∣2 (4.129)

− 2 ~B ·
(
H0êz + µsMz êz +Hdx êx +Hdy êy

)
+ H2

0 +H2
dx +H2

dy + 2µsH0Mz + µ2
sM

2
z

} dxdy
A

.
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This can be converted into Brandt’s form, i.e. to

F̃B =

∫ {
−f +

f2

2
+
ξ2(∇f)2

4f
+ f

∣∣∣ ~Q∣∣∣2 +
∣∣∣ ~B∣∣∣2 (4.130)

− 2 ~B ·
(
H0êz + µsMz êz +Hdx êx +Hdy êy

)
+ H2

0 +H2
dx +H2

dy + 2µsH0Mz + µ2
sM

2
z

} dxdy
A

,

where Mz is Fourier expanded as in section 2.3.2,

Mz =
∑
~k

Z~ke
−i~k~r, (4.131)

but Fourier expansion of other quantities is different from that introduced in section 4.2:

f =
∑
~k

a′~ke
−i~k~r, (4.132)

hence its derivative is
∇f = −i

∑
~k

a′~k
~ke−i

~k~r, (4.133)

also define Fourier expansion of the inverse f separately:

1

f
= ω =

∑
~k

ω~ke
−i~k~r, (4.134)

field components are also redefined as

Bx =
∑
~k

b′x~k
e−i

~k~r, (4.135)

By =
∑
~k

b′y~k
e−i

~k~r, (4.136)

Bz =
∑
~k

b′z~k
e−i

~k~r, (4.137)

and ~Q components as well:
Qx =

∑
~k

qx~ke
−i~k~r, (4.138)

Qy =
∑
~k

qy~ke
−i~k~r, (4.139)
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Qz =
∑
~k

qz~ke
−i~k~r. (4.140)

Fourier formulations were changed against those used in section 4.2 in order to simplify
the calculations of the functional, as there is no need to calculate Fourier coefficients via any
external algorithm: they can be found directly from the converged quantities. For example,
for converged f = f(x, y) that can be expanded as

f =
∑
~k

a′~ke
−i~k~r, (4.141)

Fourier coefficient, a′~k, is found via

a′~k =
〈
f(x, y)ei

~k~r
〉

(4.142)

for a given ~k.
Now let us calculate all the separate terms of the functional step by step. In order to

calculate of them we would need integrals of δ-function that can be found in Appendix A.2.2
along with derivations. Write

F̃B = F1 + F2 + F3 + F4 + F5 + F6, (4.143)

then F1 is found to be

F1 =

∫
(−f)

dxdy

A
= −

∫ ∑
~k

a′~ke
−i~k~r dxdy

A
= −a′~kδ~k,0 = −a′0. (4.144)

Similarly, F2 is

F2 =
1

2

∫
f2dxdy

A
=

1

2

∫ ∑
~k~k′

a′~ka
′
~k′
e−i(

~k+~k′)~r =
1

2

∑
~k~k′

a′~ka
′
~k′
δ~k,−~k′ =

1

2

∑
~k~k′

a′~ka
′∗
~k′

=
1

2

∑
~k

∣∣∣a′~k∣∣∣2 .
(4.145)

And hence all the other terms. F3:

F3 =
ξ2

4

∫
∇f∇fωdxdy

A
= −ξ

2

4

∫ ∑
~k~k′~k′′

a′~ka
′
~k′
ω~k′′

~k · ~k′e−i(~k+~k′+~k′′)~r dxdy

A

= −ξ
2

4

∑
~k~k′~k′′

a′~ka
′
~k′
ω~k′′

~k · ~k′δ~k+~k′,−~k′′ = −ξ
2

4

∑
~k~k′

a′~ka
′
~k′
ω∗~k+~k′

~k · ~k′. (4.146)

F4:

F4 =

∫
f
∣∣∣ ~Q∣∣∣2 dxdy

A
. (4.147)
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In order to simplify our life, expand
∣∣∣ ~Q∣∣∣2 first:

∣∣∣ ~Q∣∣∣2 = Q2
x +Q2

y +Q2
z, (4.148)

where
Q2
µ =

∑
~k~k′

qµ~kqµ~k′e
−i(~k+~k′)~r, (4.149)

hence ∣∣∣ ~Q∣∣∣2 =
∑
~k~k′

(
qx~kqx~k′ + qy~kqy~k′ + qz~kqz~k′

)
e−i(

~k+~k′)~r. (4.150)

Define
~q~k~k′

2 = qx~kqx~k′ + qy~kqy~k′ + qz~kqz~k′ (4.151)

to simplify: ∣∣∣ ~Q∣∣∣2 =
∑
~k~k′

~q~k~k′
2e−i(

~k+~k′)~r, (4.152)

hence F4 is

F4 =

∫ ∑
~k~k′~k′′

~q~k~k′
2a′~k′′e

−i(~k+~k′+~k′′)~r dxdy

A
=
∑
~k~k′

~q~k~k′
2a′∗~k+~k′

. (4.153)

F5:

F5 =

∫ ∣∣∣ ~B∣∣∣ dxdy
A

=

∫ ∑
~k~k′

~b′~k~k′
2e−i(

~k+~k′)~r =
∑
~k~k′

~b′~k~k′
2δ~k,−~k′ =

∑
~k

∣∣∣~b′~k∣∣∣2 , (4.154)

where
~b′~k

2 = b′x~k
b′x~k

+ b′y~k
b′y~k

+ b′z~k
b′z~k
. (4.155)

and ∣∣∣~b′~k∣∣∣2 = b′x~k
b′∗x~k

+ b′y~k
b′∗y~k

+ b′z~k
b′∗z~k
. (4.156)

F6:

F6 =

∫ {
−2 ~B ·

(
H0êz + µsMz êz +Hdx êx +Hdy êy

)
+ H2

0 +H2
dx +H2

dy + 2µsH0Mz + µ2
sM

2
z

} dxdy
A

, (4.157)

now deal with Hdx and Hdy . As ∇× ~Hd = 0, one can define a potential, Ud, such that

∇Ud = ~Hd. (4.158)

The magnetic induction, ~B, in a magnetic material can be also written in terms of ~Hd and
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~M :
~B = µ0

(
~H + µs ~M

)
, (4.159)

and as
∇ · ~B = 0, (4.160)

obtain the relation of
∇ · ~Hd = −µs∇ · ~M. (4.161)

Now let us Fourier expand Ud just as we expanded Mµ:

Ud =
∑
~k

u~ke
−i~k~r. (4.162)

The expression (4.161) then leads to the following relation for Ud:

∇2Ud = −µs∇ · ~M. (4.163)

In Fourier form this then leads to the formulation of Fourier coefficients of Ud:

u~k = −iµs
kxXk + kyYk

k2
(4.164)

for k 6= 0; for the case of k = 0, u~k = u0 = 0.
Let us now Fourier expand ~Hd itself,

~Hd =
∑
~k

~h~ke
−i~k~r, (4.165)

where
~h~k =

(
hx~k , hy~k , 0

)
(4.166)

with

hx~k = −µs
k2
xXk + kxkyYk

k2
, (4.167)

hy~k = −µs
kxkyXk + k2

yYk

k2
, (4.168)

following from (4.163) and (4.164).
With the aid of (4.167) and (4.168), required for the Fourier formulations of Hdx and Hdy ,
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one obtains the following expression for F6:

F6 =

∫ {
−2 ~B ·

(
H0êz + µsMz êz +Hdx êx +Hdy êy

)
+ H2

0 +H2
dx +H2

dy + 2µsH0Mz + µ2
sM

2
z

} dxdy
A

=

∫ H2
0 +

∑
~k~k′

[
−2b′z~k

H0 + 2µsH0Z~k (4.169)

+
(
hx~khxk′ + hy~khyk′ + µ2

sZ~kZ~k′ − 2b′x~k
hxk′ − 2b′y~k

hyk′ − 2µsb
′
z~k
Z~k′

)
e−i

~k′~r
]
e−i

~k~r
} dxdy

A
= H2

0 − 2H0b
′
z0 + 2µsH0Z0

+
∑
~k

(
hx~kh

∗
x~k

+ hy~kh
∗
y~k

+ µ2
sZ~kZ

∗
~k
− 2b′x~k

h∗x~k
− 2b′y~k

h∗y~k
− 2µsb

′
z~k
Z∗~k

)
.

The total Ginzburg-Landau-Brandt functional in terms of Fourier coefficients is then writ-
ten as

F̃B = −a′0 +
∑
~k

[
1

2

∣∣∣a′~k∣∣∣2 +
∣∣∣~b′~k∣∣∣2

]
+
∑
~k~k′

[
−ξ

2

4
a′~ka
′
~k′
ω∗~k+~k′

~k · ~k′ + ~q~k~k′
2a′∗~k+~k′

]
(4.170)

+ H2
0 − 2H0b

′
z0 + 2µsH0Z0

+
∑
~k

(
hx~kh

∗
x~k

+ hy~kh
∗
y~k

+ µ2
sZ~kZ

∗
~k
− 2b′x~k

h∗x~k
− 2b′y~k

h∗y~k
− 2µsb

′
z~k
Z∗~k

)
.

4.3.4 Summary of the Full Algorithm

Now that we have derived all the modified equations for both magnetic material and super-
conductor, it is time to summarise the approach. Our new calculation would be based on the
following algorithm:

1. calculate the solution for the magnetic system as if there is no superconductor in prox-
imity to it (i.e. with ~β = ~β0 = const);

2. use β0 to obtain H0;

3. using modified expressions for Fourier coefficients for f and ~B,

a~k =
4

ξ2

〈(
2f − f2 − f | ~Q|2 − g

)
ei
~k~r
〉

k2 + 2ξ−2
, (4.171)

bx~k = −2

〈[
λ̃
(
f − λ̃2f̄

)
Bx − fB̄x + λ̃px

]
ei
~k~r
〉

λ̃2
(
k2 + f̄

) , (4.172)
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by~k = −2

〈[
λ̃
(
f − λ̃2f̄

)
By − fB̄y + λ̃py

]
ei
~k~r
〉

λ̃2
(
k2 + f̄

) , (4.173)

bz~k = −2

〈[
λ̃
(
f − λ̃2f̄

)
Bz − fB̄z + λ̃pz − µsλ̃2

(
−∂2

xMz − ∂2
yMz

)]
ei
~k~r
〉

λ̃2
(
k2 + f̄

) , (4.174)

calculate f and ~B;

4. use ~B to obtain new ~β via
~β =

√
2

γ
µs ~B, (4.175)

5. calculate new solution for the magnetic system with new ~β:

(
∂2
x + ∂2

y

)
Mx − 4∂yMz − 4λMx = −2βx, (4.176)

(
∂2
x + ∂2

y

)
My + 4∂xMz − 4λMy = −2βy, (4.177)(

∂2
x + ∂2

y

)
Mz − 4 (∂xMy − ∂yMx)− 4λMz = −2βz; (4.178)

6. repeat steps 3-5 until the solution converges (use a and ~M from the previous step);2

7. calculate the free energy functional:

F̃ = −a′0 +H2
0 + 2H0

[
µsZ0 − b′z0

]
+
∑
~k

[
1

2

∣∣∣a′~k∣∣∣2 +
∣∣∣~b′~k∣∣∣2

]
+

∑
~k

(
hx~kh

∗
x~k

+ hy~kh
∗
y~k

+ µ2
sZ~kZ

∗
~k
− 2b′x~k

h∗x~k
− 2b′y~k

h∗y~k
− 2µsb

′
z~k
Z∗~k

)
+

∑
~k~k′

[
−ξ

2

4
a′~ka
′
~k′
ω∗~k+~k′

~k · ~k′ + ~q~k~k′
2a′∗~k+~k′

]
(4.179)

+ γ

∑
~k

{
1

4
k2
(∣∣X~k∣∣2 +

∣∣Y~k∣∣2 +
∣∣Z~k∣∣2)

+ kyX~kZ
∗
~k
− kxY~kZ

∗
~k

+ kxY
∗
~k
Z~k − kyX

∗
~k
Z~k

−
(
β∗x~k

X~k + β∗y~k
Y~k + β∗z~k

Z~k

)}]
;

8. find the optimal spacing for a given β0.

All the procedure can be repeated for different values of µs and γ.
2This usually takes several iterations for small µs if the initial guess is good enough.

132



CHAPTER 4. MAGNETIC SKYRMIONS IN PROXIMITY TO SUPERCONDUCTING VORTEX
LATTICE

4.4 Superconducting Vortex Lattice

4.4.1 Vortex Lattice with no Skyrmions in Proximity to it

Despite the fact that it is the skyrmion lattice of our main concern, let us briefly consider
a pure superconducting vortex lattice in order to remind ourselves important relations and
dependences that would make our life easier in the future. We would also be able to use the
results from this section for comparison purposes just as we would use the results for skyrmion
lattices obtained in chapter 2.

We have mentioned in section 4.3.2 that our Ginzburg-Landau-Brandt equations are now
formulated with the aid of dimensionless coherence length, ξ, and dimensionless penetration
depth, λ̃, hence varying them would naturally correspond to considering different supercon-
ducting materials. In this section we would like to revisit the optimal spacing of a vortex
lattice for given ξ, λ̃ and an external filed H0. This is important, as while considering a com-
bined system of a superconductor and a magnet we assume the lattice spacing to be the same
for both materials,3 hence we would rather adjust ξ and λ̃ for the optimal lattice spacing at
a given field, H0, to correspond to that of a skyrmion lattice, than consider a random mate-
rial, as the shape of the final solution in this case might become unpredictable and numerical
procedures would require additional time.

One shall remember, though, that the optimal lattice spacing is bound by an average field,
B0 = 〈B〉 = B̄, that corresponds to some external field H0, via the following expression:

a =

√
4π

λ̃ξB0

√
3
. (4.180)

However, we would find the optimal spacing numerically in order to be consistent with our
approach to skyrmion systems, as when the skyrmion system is attached, the relation between
a and B̄ becomes non-trivial.

Let us first stick to the external filed of H0 = 1.1 that corresponds to β0 = 1.1 for coupling
of γ = 2µ2

s. Notice, that while γ is fixed to 2µ2
s, the actual value of µs would not affect the

relation between H0 and β0.
The closer the lattice spacings of disjoint systems are to each other, the easier it would

be to couple them. But the lattice spacing is not the only thing of our concern here: another
one is the total field of a superconductor, as this is the field acting on a skyrmion system
and we would like to make sure it fits into skyrmion region on the filed scale demonstrated in
Figure 2.18. Examples of the field distribution on the vortex lattice can be found in Figure 4.4.

3Although, This is not a necessary requirement, it makes our calculations a lot easier as there is no need
to find the general lattice which would have a huge unit cell comparing to that we have for a system with
coinciding lattice spacings of a vortex lattice and a skyrmion lattice. A more general case can be studied in
the future.

133



CHAPTER 4. MAGNETIC SKYRMIONS IN PROXIMITY TO SUPERCONDUCTING VORTEX
LATTICE

The dependence of the average total field on the lattice spacing is presented in Figure 4.5.
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(a) Magnetic field of the vortex lattice for ξ = 0.5,
λ̃ = 4.5.
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(b) Magnetic field of the vortex lattice ξ = 0.5, λ̃ = 8.

Figure 4.4: Magnetic field of the superconducting vortex lattice for different parameters. In
this model ~B = (0, 0, Bz) and Bz is represented by coloured contours. The field presented in
this figure is the total field; in order to obtain the pure field that penetrates the superconductor,
the external field has to be subtracted.
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(a) Average magnetic field of the vortex lattice for
various values of λ̃ with ξ fixed to ξ = 0.5.
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various values of ξ with λ̃ fixed to λ̃ = 4.5.

Figure 4.5: Average magnetic field of the superconducting vortex lattice for different parame-
ters. Colour lines indicate the filed for corresponding parameters. A dashed line corresponds
to the critical field βc1 (expressed in the same units as B) that stands for the transition from
a helical to skyrmionic state.

We can also fix ξ and λ̃ and consider the behaviour of the Ginzburg-Landau Functional
for different values of an external field, H0. Such a dependence is demonstrated in Figure 4.6
for several values of H0 with fixed ξ = 0.5 and λ̃ = 4.5.4

4We fix these particular values of ξ and λ̃ for this demonstration as they are to play extremely important
role in the nearest future; the motivation of their choice is just about to follow.
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Figure 4.6: Ginzburg-Landau functional for various values of H0 with fixed ξ = 0.5 and
λ̃ = 4.5. Colour lines indicate the Ginzburg-Landau functional calculated for corresponding
parameters.

Following the information obtained from Figure 4.5 and Figure 4.6, we conclude that if we
would like to couple a skyrmion lattice at an external field of β0 = 1.1 that has an optimal
spacing of a = 3.9, we shall choose ξ and λ̃ to be ξ = 0.5 and λ̃ = 4.5 in order to provide the
best convergence of the total solution. It is also handy to keep in mind the proper dependence
of the optimal spacing on ξ and λ̃ when other parameters are fixed. These are demonstrated
in Figure 4.7. Such a knowledge would help us to tune ξ and λ̃ that would provide the
best optimal spacing, hence convergence, while coupled with a stable or metastable skyrmion
system of a given spacing.

4.4.2 Vortex Lattice with no Feedback on Skyrmions

Before making use of the method introduced in section 4.3.4 and study an actual bilayer of
a skyrmion material and a superconductor, let us consider how does a skyrmion lattice act
on a superconductor experiencing no feedback from it. This will be our last test before we
proceed to a proper combined system. As we are going to introduce a skyrmion lattice to the
superconductor, the coupling, µs, becomes important. The higher µs is, the higher the effects
of skyrmions on a superconductor would be. Let us first of all demonstrate the distribution of
the magnetic field on a vortex lattice once the skyrmion lattice is introduced to it for different
couplings. The patterns can be observed in Figure 4.8. Notice that we are connecting a
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(a) Optimal spacing of the vortex lattice against λ̃
with ξ fixed to ξ = 0.2.
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Figure 4.7: Optimal spacing of the vortex lattice against λ̃ and ξ. For the fixed ξ the optimal
spacing increases with λ̃ almost linearly; for fixed λ̃ the optimal spacing increases with ξ as
well.

triangular skyrmion lattice so far. Lattices were obtained for the same values of an external
field.
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(a) Magnetic field of the vortex lattice coupled with
skyrmions. Coupling strength is µs = 0.1.
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(b) Magnetic field of the vortex lattice coupled with
skyrmions. Coupling strength is µs = 1.

Figure 4.8: Magnetic field of the vortex lattice for ξ = 0.5, λ̃ = 4.5 coupled with a skyrmion
lattice with differnet values of coupling, µs. The field presented in this figure is the total field.

As one can see from Figure 4.8, the higher the coupling is, the stronger effects of a skyrmion
lattice on the vortex lattice would be. The effects of the skyrmion lattice are seen even better
if one compares field profiles from Figure 4.8 with superconducting vortices in absence of any
skyrmions around as demonstrated in Figure 3.6. Very large coupling could even destroy the
vortex lattice completely. Another important conclusion one can yield is the change of the
optimal lattice spacing of a superconducting vortex lattice. For the same external field, ξ and
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λ̃ as before, the optimal spacing would become smaller. This was actually expected as well,
as the total average field increases with coupling increasing, and the optimal lattice spacing
of the vortex lattice is related to the total average field. So if we would like to calibrate ξ
and λ̃ for better convergence of the solution for a proper combined system, it is better to
calibrate them on a system with skyrmions already attached, though not experiencing any
feedback from the superconductor, as the lattice spacing may differ drastically especially for
large values of coupling, µs.

4.5 Skyrmion-Superconductor Bilayer

We are just about to study actual systems of combined skyrmion and Abrikosov vortex lattices.
There is a huge variety of lattices we can consider, though we would not study all of them, as
this seems to be physically impossible timewise. Many of them are also similar to each other,
so there is no sense to study two systems that are almost identical. A reasonable approach
goes as follows:

• choose a skyrmion lattice to combine with a superconductor, determine the correspond-
ing optimal spacing;

• choose superconducting parameters, ξ and λ̃ such that the optimal spacing of a super-
conductor would coincide with that of the skyrmion lattice or at list lie close to it (this
step is not necessary, though will significantly help to obtain stable solutions in oppose
to those metastable or not stable at all and speed up the numerical algorithm);

• start with small values of µs, as numerical procedures are faster in this case and some
physical effects found can still be clarified, do single calculations for fixed β0 and a;

• bound γ = 2µ2
s as this maintains the simplest possible relation between superconducting

~B and skyrmion ~β, hence is the easiest case to control;

• choose other values of γ;

• increase µs;

• perform calculations for various values of β0 and determine the optimal spacing for each
value of β0 for a chosen combination of µs and γ.

From our formulation described in section 4.3 we know that changing µs affects the vortex
part of the system (µs is the measure of how much does the skyrmion lattice affects the vortex
one) and the relation between ~B and ~β. On the other hand, γ determines how much the
skyrmion free energy contributes to the total free energy and affects the relation between ~B

and ~β. Expected effects of changing µs and γ are summarised in Table 4.1.
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small µs large µs
small γ skyrmions do not affect vortex lattice a lot skyrmions affect vortex lattice a lot

FSC � FSkX FSC � FSkX
~B ∼ ~β, hence the system is easy to control ~β is large

skyrmions would tend to tear apart
large γ FSC ∼ FSkX FSC ∼ FSkX

skyrmions do not affect vortex lattice a lot skyrmions affect vortex lattice a lot
~β is small ~β depends on µs√

γ a lot
skyrmion lattice would tend to helices the lattice is unpredictable

Table 4.1: Expected effects of variating coupling parameters µs and γ.

Let us quote our first ever results for a combined system here. As it was proposed above,
we start with a small coupling, µs = 0.001. According to Table 4.1, we do not expect dramatic
changes in both systems with respect to their isolated behaviour, but there are some qualitative
differences we would like to point out. Let us first of all compare the skyrmion lattice obtained
in this combined case against the lattice that is free from a superconductor for the same values
of β (β0 in case of the combined system) and a. This comparison is demonstrated in Figure 4.9.
Solution demonstrated in Figure 4.9b was obtained for superconducting ξ = 0.5 and λ̃ = 4.5

in our dimensionless units. The choice of ξ and λ̃ was motivated by the fact that the pure
superconducting system has its minimal free energy for β0 = 1.1 at a = 3.92, which is close to
the optimal spacing at β = 1.1 of the free skyrmion system (a = 3.9).

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
x/a

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y/
a

0.9

0.6

0.3

0.0

0.3

0.6

0.9

(a) Free skyrmion lattice solution for β = 1.1 with
a = 3.92.
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(b) Skyrmion lattice combined with a supercon-
ductor for β0 = 1.1 with a = 3.92.

Figure 4.9: Stable solutions for a free skyrmion lattice and a skyrmion lattice that is coupled
with a superconductor for the same values of β (β0) and a. Coupling factors are µs = 0.001
and γ = 2µ2

s. Notice that the free solution is not stable (though is quite close to the stable
one), whereas the combined one is.

One may conclude straight away from Figure 4.9 that the skyrmion lattice does not change
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much if the interaction with a superconductor is weak.
Let us now see how does the skyrmion lattice affect the superconductor. Compare the

superconducting field, ~B. The comparison is demonstrated in Figure 4.10.
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(a) Magnetic field of the vortex lattice.
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(b) Magnetic field of the vortex lattice coupled with
skyrmions. Coupling strength is µs = 0.001.

Figure 4.10: Comparison of the magnetic field of the free vortex lattice for ξ = 0.5, λ̃ = 4.5
with the one coupled with a skyrmion lattice with small coupling, µs = 0.001. The field
presented in this figure is the total field.

Figure 4.10 tells us that the field pattern on a superconducting vortex lattice is almost not
affected by a skyrmion lattice if the coupling is small, and this was predicted and expected.

Finally, let us demonstrate the free energy functional of this combined system. First of all,
let us study the dependence of the free energy on the spacing, a. Consult Figure 4.11 for the
plot.

For the system of a free skyrmion lattice we have employed the virial theorem in order to
determine the optimal spacing for a given β, hence the dependence F̃ (a) was not important
itself (though, it was demonstrated in Figure 2.12a with optimal spacing indicated). The
shape of skyrmions did not vary much even for completely different spacings (i.e. the shape
of a skyrmion remained almost the same for a = 3 and for a = 4 for a given β). As the virial
ratio derived in section 2.4.1 is not valid anymore, F̃ (a) becomes more important – we would
use it directly in order to calculate the optimal spacing for a given external field, β0.

We see from Figure 4.11 that the shape of skyrmions is now quite different for different
values of the spacing. As we have mentioned before, for a system of magnetic skyrmions that
is not affected by a superconductor there is no much difference in shape of skyrmions despite
the different spacing. For a superconductor, though, the relation between the external field
and the lattice spacing is well-known. So while changing the spacing, the average field (that
later acts on a skyrmion lattice) changes automatically. And the field obviously has a huge
impact on the skyrmion structure. If we recall the relation between the field and the spacing
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Figure 4.11: Free energy of the combined system of a superconductor and a skyrmion material.
Skyrmion lattice is demonstrated in different regions of the functional. The structure of the
skyrmions is different with spacing changing, which was not the case for a free skyrmion
system.

in superconductors,

a =

√
4π

λ̃ξB0

√
3
, (4.181)

for a triangular lattice in units introduced in section 4.3.4 with B0 being the average field,5

B0 = 〈B〉 , (4.182)

we conclude, that large spacings require small fields and vice versa. Large fields, however, as
we remember, destroy the skyrmion lattice, and turn the sample into a ferromagnetic state,
while small fields would make the lattice tend to the helical state. Hence we conclude that
varying the lattice spacing one may obtain a solution of a completely different pattern than

5Notice that it is not related to β0 via relation (4.78).
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that expected for a given β0. For example, a large spacing corresponds to a small field, hence
the corresponding skyrmion lattice shall be similar to that near the helix-skyrmion phase
transition. From Figure 4.11 we see that our expectations are completely fulfilled.

Remember, so far we are working with weak coupling of µs = 0.001. Our γ so far was
bound to µs in order to simplify the relation between ~β and ~B. Let us now consider the case
when γ > γ0 = 2µ2

s.
Skyrmion lattice as well as the total field of a superconductor does not change drastically

while considering γ > γ0, though still small, so they are not worth to be demonstrated here.
Let us, however, study the total free energy functional and its dependence on the spacing
(hence determine the optimal one) and applied field, β0. Corresponding plots can be found in
Figure 4.12a and Figure 4.12b respectively.
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(a) Free energy functional of the combined system
against lattice spacing.
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(b) Free energy functional of the combined system
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Figure 4.12: Free energy functional of the combined system against spacing and the external
field for different values of γ, though for the same small value of µs = 0.001. The optimal
spacing becomes quite different with γ changing.

One shall remember, that γ is still rather small, so the main contributor to the total free
energy functional is the superconductor. In Figure 4.13 one can find the Ginzburg-Landau
functional plotted against the spacing for a fixed value of an external field as well as against
the applied field itself.

Comparing graphs in Figure 4.12a and Figure 4.13a, we realise that they are almost iden-
tical as well as graphs in Figure 4.12b and Figure 4.13b are. It then confirms the fact that the
energy of a superconductor still remains the main contributor to the total energy while slightly
increasing γ, though keeping it of the same order. Changing γ drastically would seriously affect
~B → ~β transformation, making the field that is external to a skyrmion lattice either extremely
large (which would lead to a ferromagnetic configuration), or extremely small, hence leading
to a helical solution for a magnet. Despite being physically correct, helical and ferromagnetic
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Figure 4.13: Ginzburg-Landau part of the total free energy functional of the combined system
of a superconducotr and a skyrmion lattice against spacing and the external field for different
values of γ, though for the same small value of µs = 0.001.

solutions are not of our primary concern in this research, hence we should avoid considering
values of γ that are extreme with respect to γ0 = 2µ2

s.
From Figure 4.12a one can conclude that the optimal spacing of a combined system differs

rather drastically with γ: the higher γ is, the lower the optimal spacing gets. Let us now con-
sider the optimal lattice spacing against the applied field, β0 and demonstrate this dependence
for different values of γ explicitly in Figure 4.14.

From Figure 4.14 we confirm that the optimal lattice spacing that correspond to the same
value of an external field, β0, becomes smaller with γ increasing. In Figure 4.14 we also
compare the lattice spacing against the combined system against the lattice spacing of the
disjoint systems. We then conclude that it follows the behaviour of a lattice spacing of a
superconducting vortex lattice, though the actual value of the optimal spacing is smaller, and
the larger γ is, the smaller the optimal spacing gets. Such a behaviour can be related to
the fact that decreasing γ implies the increase in the field that acts on a skyrmion lattice
(recall equation (4.77) for the effects of γ on ~B, keeping in mind the relation between γ and
Hc: γ = 1

H2
c
), pushing it towards the ferromagnetic region, hence increasing the total field

of a skyrmion lattice acting back on the superconductor and larger applied field implements
smaller optimal spacing in the vortex lattice case.

So far we have dealt with a small coupling only. We did not expect any dramatic effects,
though we wanted to observe some qualitative dependences that would become more important
should we increase the coupling strength, µs. Let us now consider µs = 0.1. The comparison
of a free skyrmion lattice with the lattice coupled with a superconductor with coupling of
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Figure 4.14: Lattice spacing for differnet values of γ. As µs is small, the lattice spacing follows
the behaviour of that for a pure superconductor, though gets smaller with γ increasing.

µs = 0.1, holding γ = 2µ2
s is demonstrated in Figure 4.15.6

Figure 4.15 tells us that skyrmions themselves (shape-wise) are modified by a superconduc-
tor. They elongate like they are slowly turning into helices, and the direction of this change of
the shape is governed by the position of vortices with respect to skyrmions. Also, the optimal
lattice spacing is smaller than that of a free skyrmion system, just as we have seen it for
smaller couplings. In order to explain such a behaviour, let us compare the total field of our
combined system with the pure field of a vortex lattice. The comparison is demonstrated in
Figure 4.16.

From Figure 4.16 we see that the skyrmion lattice affects the field of a superconducting
vortex lattice quite drastically, hence the total field becomes larger. For a coupling of µs = 0.1,
γ = 2µ2

s the dominant term of the functional is still the superconducting one, so the optimal
spacing shall still follow the law for a superconductor, though the effects of a skyrmion lattice

6We had to consider slightly higher external field than we usually did in order to be sure that the solution
of the combined system would fit into the skyrmion region.
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(a) Free skyrmion lattice solution for β = 1.4 with
a = 4.1.
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(b) Skyrmion lattice combined with a superconduc-
tor for β0 = 1.4 with a = 3.37.

Figure 4.15: Stable solutions for a free skyrmion lattice and a skyrmion lattice that is coupled
with a superconductor for the same value of β (β0). Coupling factors are µs = 0.1 and
γ = 2µ2

s. Notice how the shape of skyrmions is different now: skyrmions that are coupled with
a superconductor do not look like perfect circles anymore.
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(a) Magnetic field of the vortex lattice.
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(b) Magnetic field of the vortex lattice coupled with
skyrmions. Coupling strength is µs = 0.1.

Figure 4.16: Comparison of the magnetic field of a free vortex lattice for ξ = 0.5, λ̃ = 4.5 with
the one coupled with a skyrmion lattice with small coupling, µs = 0.1. The field presented in
this figure is the total field.

cannot be neglected anymore. That is why the total spacing is still smaller, than it used
to be for a free skyrmion lattice for the same external field applied, and smaller than that
for a vortex lattice with no skyrmions in proximity to it. The total free energy functional is
plotted together with the Ginzburg-Landau part of this functional in Figure 4.17 in order to
demonstrate that they follow the same pattern, though not coinciding like they used to for
smaller values of coupling µs. The positions of their minimas almost coincide.
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Figure 4.17: Total free energy functional of the combined system with coupling µs = 0.1 and
γ = 2µ2

s and the Ginzburg-Landau part of this functional. Both follow the same pattern,
though they do not coincide, though their minimas almost do.
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Chapter 5

Conclusions and Future Directions

Here comes our time to leave the wonderful world of micromagnetism. But before we go, let
us summarise everything we have discussed.

In this work we have introduced a new method of dealing with micromagnetic systems that
was mainly applied to magnetic skyrmion systems. The method consists of Fourier decompo-
sition of the magnetisation components and thus converting Euler-Lagrange equations,

(
∂2
x + ∂2

y

)
Mx − 4∂yMz − 4λMx = 0, (5.1)

(
∂2
x + ∂2

y

)
My + 4∂xMz − 4λMy = 0, (5.2)(

∂2
x + ∂2

y

)
Mz − 4 (∂xMy − ∂yMx)− 4λMz = −2β. (5.3)

derived from the free energy functional,

F = 2J

∫ {
1

4

∑
µ

(
∂µ ~M

)
·
(
∂µ ~M

)
+ ~M ·

(
∇× ~M

)
− ~β · ~M + λ

(∣∣∣ ~M ∣∣∣2 − 1

)}
dxdy

A
, (5.4)

into Fourier form. We claim our method to be more efficient and universal than any of
those existed before. It is particularly well-designed for studying periodic structures, such as
skyrmion lattices, where the Fourier approach does an amazing job in simplifying the problem.

Fixing the constraint on the magnetisation of
∣∣∣ ~M ∣∣∣2 = 1 via Lagrange multiplier technique (λ in

functional (5.4)) provides more accurate results than other methods.1 We have also employed
the virial theorem in order to fix the optimal spacing that corresponds to a certain value of
an applied field precisely via ratio

F̃DM

F̃ex
= −2, (5.5)

1And it was actually λ that required numerical approach, as the components of the magnetisation were
reconstructed from the corresponding Fourier coefficients calculated analytically for a given λ.
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where F̃ex is the ferromagnetic exchange part of the free energy functional and F̃DM is the
anisotropic exchange part of the functional. A typical skyrmion lattice found via the method
described above is demonstrated in Figure 5.1.
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(a) A typical skyrmion lattice. Magnetisation. (b) Spin distribution on the skyrmion lat-
tice.

Figure 5.1: Skyrmion lattice obtained by Fourier expansion method.

The new method also allows us to follow the real-space configuration of the system (mag-
netisation or spin), not just the energy scale.

In this Thesis we have mainly focused on Bloch skyrmions. Our method, however, is
universal enough to deal with Néel skyrmions as well. The free energy functional, hence the
numerical approach has to be modified, though. The only mathematical difference between free
energy functionals of Bloch and Néel skyrmion systems is the formulation of the anisotropic
exchange term. In continuum approximation it was derived for Bloch skyrmions to be

FDM = ~M ·
(
∇× ~M

)
. (5.6)

In Néel case anisotropic exchange term is written as

FDM =
(
êz · ~M

)(
∇ · ~M

)
−
(
~M · ∇

)(
êz · ~M

)
. (5.7)

Spin distribution on a unit cell of a Néel skyrmion lattice obtained by the method intro-
duced in this Thesis is demonstrated in Figure 5.2 in order to prove the method’s universality.

We have studied the magnetic system under the effects of an external magnetic field and
thus obtained a bestiary of skyrmion lattices and other solutions as well as the phase diagram
for a magnetic system demonstrated in Figure 5.3.

As we can see from Figure 5.3, exact critical fields were found. For the helical-skyrmion
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Figure 5.2: Spin distribution on a unit cell of a Néel skyrmion lattice obtained by the method
introduced in this Thesis.

state phase transition the value of the critical field is claimed to be

βc1 = 0.46, (5.8)

for the skyrmion-ferromagnet phase transition:

βc2 = 1.56. (5.9)

Both βc1 and βc2 are expressed in dimensionless units introduced in section 2.3.1. Both βc1
and βc2 correspond to critical field values found experimentally, for example by Mochizuki,
[86] exactly.

Notice that Figure 5.3 contains the free energy of metastable states along with that of stable
states. We have studied metastable skyrmion states that can be obtained in ferromagnetic and
helical regions and found them to be rather similar to the stable states near the transition.
Notable metastable skyrmion states that exhibit honeycomb lattice in oppose to triangular one
have been found. These are demonstrated in Figure 5.4 and the proof of their metastability

148



CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS

0.0 0.5 1.0 1.5 2.0
β

2.0

1.5

1.0

0.5

0.0
F̃

Helix
Metastable helix above βc1
Skyrmion
Metastable Skyrmion below βc1
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Metastable Honeycomb Skyrmions
Ferromagnet
Metastable Ferromagnet below βc2

Figure 5.3: Free energy functional of a magnetic system in different regions including
metastable honeycomb skyrmion lattice that is represented by a gold line. Red curve rep-
resents the optimal free energy for a skyrmion system, purple one stands for the helial system
and green line is the free energy of a ferromagnetic system. Dashed lines of different colours
correspond to metastable solutions of corresponding patterns.

can be found in Figure 5.5. Such a pattern had never been observed for skyrmions before.
These honeycomb configurations were found to be metastable only. However, their energy

is only slightly higher than the energy of stable triangular lattices especially in proximity to
βc2 , so it might be even possible to observe them experimentally.

Another important conclusion that can be drawn from our calculations is the behaviour of
the optimal lattice spacing for a given field. This is demonstrated in Figure 5.6.

We have observed that the lattice spacing is increasing drastically with increasing field
– this happens because the area of the ferromagnetic region (the number of spins that align
along the field) is increasing; on the other hand, with decreasing field at some point the spacing
starts increasing again. This is explained by the fact that the radius of skyrmions is increasing
with decreasing field, so at a point the distance between skyrmions has to become larger so
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(a) Honeycomb Skyrmion lattice. Magnetisation. (b) Spin distribution on the honeycomb skyrmion lat-
tice.

Figure 5.4: Metastable honeycomb skyrmion lattice.
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Figure 5.5: Free energy functional of a honeycomb configuration along with the free energy
functional of a triangular configuration against lattice spacing, a, for fixed β = 1.1. The red
curve corresponds to the free energy of a triangular lattice, the golden curve corresponds to
the honeycomb lattice. The minimal energy of the triangular configuration is smaller that
the minimal energy of the honeycomb configuration, hence honeycomb solution is metastable.
Notice that the optimal lattice spacing of a honeycomb lattice is a lot larger than the optimal
spacing of a triangular lattice.
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Figure 5.6: Optimal skyrmion lattice spacing vs β. Brown curve stands for the optimal
lattice spacing, vinous curve – for λH . The spacing is increasing drastically when the field is
approaching βc2 , when the field is near βc1 , the spacing is slightly increasing as well.

that skyrmions would not overlap.
Another way to demonstrate the universality of the method developed is to consider a

more complicated system, for example, by coupling a skyrmion lattice with a superconductor.
Therefore we considered a bilayer of a 2D magnetic material and a type-II superconductor.
Lattices were adjusted in such a way that the regions of the largest field coincided. The actual
coupling was performed via magnetic field and the total free energy functional of the whole
combined system was derived to be

F = 2Jκ2H2
c

(
F̃SC + γF̃SkX

)
(5.10)

= 2Jκ2H2
c

∫ {
− |ψ|2 +

1

2
|ψ|4 +

∣∣∣(−iξ∇− ~A
)
ψ
∣∣∣2 +

∣∣∣ ~B∣∣∣2
− 2 ~B ·

(
H0êz + µsMz êz +Hdx êx +Hdy êy

)
+ H2

0 +H2
dx +H2

dy + 2µsH0Mz + µ2
sM

2
z

+ γ

[
1

4

(
∂µ ~M

)
·
(
∂µ ~M

)
+ ~M ·

(
∇× ~M

)
− ~β · ~M + λ

(∣∣∣ ~M ∣∣∣2 − 1

)]}
dxdy

A
,
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where ψ is the order parameter of the superconductor, ~B is the magnetic field of the super-
conductor, H0 is the external field in êz-direction, ~Hd is the stray field due to the skyrmion
lattice, µs is the magnetic moment of spins in a skyrmion material and γ is the measure of
the contribution of the skyrmion part to the total energy. ~B and ~β are related via

~B =

√
γ

2

1

µs
~β. (5.11)

We also had to modify Brandt’s approach to the superconductor to match with our new
functional. Corresponding Ginzburg-Landau equations in Brandt’s form then are:(

−∇2 +
2

ξ2

)
f =

2

ξ2

[
2f − f2 − f

∣∣∣ ~Q∣∣∣2 − g] , (5.12)

and (
−∇2 + f̄

)
~B = − 1

λ̃2

(
f − λ̃2f̄

)
~B +

1

λ̃2
f ~̄B − 1

λ̃
~p+∇×∇× ~P , (5.13)

where

~P =

 Hdx

Hdy

µsMz

 (5.14)

and f , f̄ , g, and ~p are defined in section 4.2. New Euler-Lagrange equations for a skyrmion
part of the system were derived from the functional (5.10) to be

(
∂2
x + ∂2

y

)
Mx − 4∂yMz − 4λMx = −2βx, (5.15)

(
∂2
x + ∂2

y

)
My + 4∂xMz − 4λMy = −2βy, (5.16)(

∂2
x + ∂2

y

)
Mz − 4 (∂xMy − ∂yMx)− 4λMz = −2βz, (5.17)

keeping in mind that components of ~β are to be Fourier-expanded in the same manner as the
components of the magnetisation, ~M , had been.

We have observed that the presence of a skyrmion lattice next to a superconductor makes
the total lattice spacing smaller, than it used to be for the same set of parameters for a disjoint
system. The comparisonal demonstration of free energy functional against the spacing for
different values of coupling, µs is demonstrated in Figure 5.7. On the other hand, one can use
a superconductor in order to stabilise a magnetic system that used to be metastable without
it. This can be performed via careful choice of ξ and λ̃, i.e. of a superconductor itself.

There is always space for development, no matter what you do. In the case of our combined
system one should take into account the stray field of a superconductor as well as the stray
field of a magnet. Stabilising the honeycomb lattices found for a free system to be unstable is
also a good point for future studies. Also, one can perform studies of the larger region of β0
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Figure 5.7: Free energy functional against the spacing for different values of µs. The optimal
spacing is decreasing with µs increasing.

and determine how a superconductor affects helix-skyrmion and skyrmion-ferromagnet phase
transitions.

Another possible future direction is to study different systems, a magnetic superconductor,
for example, a superconductor with magnetic skyrmions in it. On the other hand, if one does
not want to leave the bilayer case so quickly, one can try to locate skyrmions exactly on top of
the vortices and study a system of this kind (in this case the z-component of the magnetisation
of skyrmions, Mz, changes its sign, i.e. the spins shall align along the field in the centre and
opposite to it on the edge).

There are many more possible systems to study as the method was proved to be universal
and so long as the system can exist in nature (and sometimes even if it cannot) with a bit of
thought one shall be able to adjust the method for it.
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Appendix A

General Mathematics

A.1 ∇ in Polar Parametrisation

The usual conversion from Cartesian to polar coordinates is performed via [97]

x = r sinϕ cosϑ, (A.1)

y = r sinϕ sinϑ, (A.2)

z = r cosϕ, (A.3)

or, in vector form:  x

y

z

 =

 r sinϕ cosϑ

r sinϕ sinϑ

r cosϕ

 . (A.4)

The corresponding transformation matrix is [97]

Ĵ =


∂x
∂r

∂x
∂ϑ

∂x
∂ϕ

∂y
∂r

∂y
∂ϑ

∂y
∂ϕ

∂z
∂r

∂z
∂ϑ

∂z
∂ϕ

 =

 sinϕ cosϑ −r sinϕ sinϑ r cosϕ cosϑ

sinϕ sinϑ r sinϕ cosϑ r cosϕ sinϑ

cosϕ 0 −r sinϕ

 , (A.5)

so one can write the general transformation relation for a Cartesian vector, ~vC , and a polar
vector, ~vp, as

~vC = Ĵ~vp, (A.6)

or, upon inversion,
~vp = Ĵ−1~vC , (A.7)
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where Ĵ−1 is the inverse of Ĵ , given by

Ĵ−1 =

 sinϕ cosϑ sinϕ sinϑ cosϕ

− sinϑ
r sinϕ

cosϑ
r sinϕ 0

cosϕ cosϑ
r

cosϕ sinϑ
r − sinϕ

r

 . (A.8)

The vector we would like to transform is

∇ =


∂
∂x
∂
∂y
∂
∂z

 . (A.9)

Notice, that the result we will obtain would not be equivalent to the polar formulation of ∇,
as we are not going to transform the unit vectors, êx, êy and êz.

The transformed vector of partial derivatives then becomes:
∂
∂x
∂
∂y
∂
∂z

 = Ĵ


∂
∂r
∂
∂ϑ
∂
∂ϕ

 =

 cosϑ sinϕ ∂
∂r −

sinϑ
r sinϕ

∂
∂ϑ + cosϑ cosϕ

r
∂
∂ϕ

sinϑ sinϕ ∂
∂r + cosϑ

r sinϕ
∂
∂ϑ + sinϑ cosϕ

r
∂
∂ϕ

cosϕ ∂
∂r −

sinϕ
r

∂
∂ϕ

 . (A.10)

A.2 δ-function

A.2.1 Dirac δ-function and Fourier Transform

In general Dirac δ-function can be expressed as a Fourier transform: [97]

δ(x) =
1

2π

∫ ∞
−∞

eikxdk, (A.11)

or
δ(k) =

∫ ∞
−∞

e−2πikxdx. (A.12)

The most important properties of a δ-function to remember are [97]∫ ∞
−∞

f(x)δ(x− x0) = f(x0) (A.13)

and
δ(−x) = δ(x). (A.14)

A.2.2 Kronecker δ and Discrete Fourier Transform

For discrete quantities Kronecker δ is the analogue of a continuous Dirac δ-function. [97] We
are mainly interested in the integrals of discrete sums involving exponentials (discrete Fourier
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transforms), namely: ∫ ∑
~k

a~k
dxdy

A
=
∑
~k

a~k

∫
dxdy

A
=
∑
~k

a~k, (A.15)

∫ ∑
~k

a~ke
−i~k~r dxdy

A
=
∑
~k

a~kδ~k,0 = a0, (A.16)

∫ ∑
~k~k′

a~kb~k′e
−i(~k−~k′)~r dxdy

A
=
∑
~k~k′

a~kb~k′δ~k~k′ =
∑
~k′

a~k′b~k′ =
∑
~k

a~kb~k, (A.17)

∫ ∑
~k~k′

a~kb~k′e
−i(~k+~k′)~r dxdy

A
=
∑
~k~k′

a~kb~k′δ~k,−~k′ =
∑
~k′

a−~k′b~k′ =
∑
~k′

a∗~k′b~k′ =
∑
~k

a∗~kb~k, (A.18)

provided the symmetry of a−~k = a∗~k
,∫ ∑

~k~k′~k′′

a~kb~k′c~k′′e
−i(~k+~k′−~k′′)~r dxdy

A
=

∑
~k~k′~k′′

a~kb~k′c~k′′δ~k+~k′,~k′′ (A.19)

=
∑
~k~k′′

a~kb~k′′−~kc~k′′ =
∑
~k~k′

a~k′b~k′−~kc~k,

∫ ∑
~k~k′~k′′

a~kb~k′c~k′′e
−i(~k+~k′+~k′′)~r dxdy

A
=

∑
~k~k′~k′′

a~kb~k′c~k′′δ~k+~k′,−~k′′ (A.20)

=
∑
~k~k′′

a~kb−(~k′′+~k)
c~k′′ =

∑
~k~k′

a~k′b
∗
~k′+~k

c~k.

A.3 Hermite Polynomials

Hermite polynomials [98] form an orthogonal series that is a solution to the Hermite differential
equation,

y′′ − 2xy′ = −2µy. (A.21)

Hermite polynomials are given by

Hn(x) = (−1)nex
2 dn

dxn
e−x

2
. (A.22)

Several first Hermite polynomials are:

H0(x) = 1, (A.23)

H1(x) = 2x, (A.24)

H2(x) = 4x2 − 2, (A.25)
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H3(x) = 8x3 − 12x. (A.26)

Important properties of Hermite polynomials:

• orthogonality: ∫ ∞
−∞

Hm(x)Hn(x)e−x
2
dx = 2n

√
π n!δnm; (A.27)

• recursion relation:
Hn+1(x) = 2xHn(x)− H′n(x), (A.28)

Hn+1(x) = 2xHn(x)− 2nHn−1(x). (A.29)

The main application of Hermite polynomials a physicist may face is the solution of a
Schrödinger equation for a simple harmonic oscillator:

ψ(x) =
∑
n

Cn
1√

2nn!

(mω
π~

) 1
4
e−

mωx2

2~ Hn

(√
mω

~
x

)
. (A.30)
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General Physics

B.1 Basic Electromagnetism

B.1.1 Maxwell’s Equations

The heart of electromagnetism theory, Maxwell’s equations are: [99]

∇ · ~E =
ρ

ε0
, (B.1)

∇ · ~B = 0, (B.2)

∇× ~E = −∂
~B

∂t
, (B.3)

∇× ~B = µ0
~J + µ0ε0

∂ ~E

∂t
, (B.4)

where ~E is the electric field, ~B is the magnetic field, ~J is the total current density, ρ is the
total charge density, µ0 is the permeability of the free space, ε0 is the permittivity of the free
space.

B.1.2 Supplementary Equations of Electromagnetism

B.1.2.1 Magnetisation

Define
~B = µ0

(
~H + ~M

)
, (B.5)

where ~H is the magnetic field intensity and ~M is the magnetisation. [99] Magnetisation is
defined as the average magnetic moment over the volume:

~M = %~µ, (B.6)
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where % is the material density:
% =

m

V
. (B.7)

B.1.2.2 Stray Field

The stray field (sometimes also referred to as a demagnetisation field) is the magnetic intensity,
~Hd, generated by the magnetisation of a material. [99] It often acts on the magnetisation and
reduces the total magnetic moment, hence the total free energy of a sample, giving rise to
shape anisotropy and other effects.

Demagnetisation field, ~Hd, obeys [99]

∇× ~Hd = 0, (B.8)

which in combination with the second Maxwell’s equation, (B.2), provides

~Hd = − ~M. (B.9)

B.1.2.3 Electromagnetic Potentials

Define scalar and vector potentials such that

~E = −∇ϕ− ∂ ~A

∂t
(B.10)

and
~B = ∇× ~A. (B.11)

B.1.2.4 Flux Equations

Electric flux:
ΦE =

∫
~E · ~dS. (B.12)

Magnetic flux:

ΦB =

∫
~B · ~dS =

∮
~A · ~dl. (B.13)

B.1.2.5 Ohm’s law

Ohm’s law:
~J = σ ~E, (B.14)

where σ is the conductivity.
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B.2 Free Energy

In general, the free energy is defined as an amount of work a system can perform. [100] The
free energy, F is the difference between the internal energy, U , and the energy that cannot be
used to perform work. Typically we work with Helmholtz free energy that is defined as

FH = U − TS, (B.15)

where T is the absolute temperature and S is the entropy. The change of the Helmholtz free
energy is equal to the amount of reversible work performed on a system. Natural variables of
the Helmholtz free energy are T and V , i.e. FH = FH(T, V ). [100]

One can also define Gibbs free energy by

FG = FH + pV, (B.16)

and natural variables for Gibbs free energy are T and p, hence FG = FG(T, p). [100] In
presence of a magnetic field Gibbs free energy writes as

FG = FH − ~H · ~M. (B.17)

B.3 Electron in an External Magnetic Field

Being a charged particle, electron obviously experiences effects of an external magnetic field.
In this chapter we are mainly interested in the energy contribution of these effects.

General Hamiltonian of a particle in an external field can be written as [101]

Ĥ =
p̂2

2m
+ V (r) = Ĥ0. (B.18)

However, if the particle is charged and an external magnetic field is turned on, the momenta
gets modified p̂→ ~p− q ~A, where q is the charge of the particle and ~A is the vector potential
of the magnetic field. [101] The Hamiltonian (B.18) has to be changed accordingly to

Ĥ =
1

2m

(
~p− q ~A

)2
+ V (r), (B.19)

that can be expanded to

Ĥ =
p̂2

2m
− q

2m

(
~p · ~A+ ~A · ~p

)
+

q2

2m
+ V (r) = Ĥ0 +

q2

2m
− q

2m

(
~p · ~A+ ~A · ~p

)
. (B.20)

Let us consider how does ~p · ~A part of a general Hamiltonian operator act on an arbitrary
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quantum mechanical state vector, recalling p̂ = −i~∇:

~p · ~A |ψ〉 = −i~
(
∇ · ~A

)
|ψ〉 − i~ ~A∇ |ψ〉 = ~A · ~p |ψ〉 , (B.21)

as
∇ · ~A = 0 (B.22)

according to Coulomb gauge. So conclude that

~p · ~A = ~A · ~p, (B.23)

hence the Hamiltonian becomes

Ĥ = Ĥ0 −
q

m
~A · ~p+

q2

2m
. (B.24)

Here and later on we are interested in the interaction part of the Hamiltonian only: [101]

Ĥint = − q

m
~A · ~p. (B.25)

Now let us expand the vector potential of the magnetic field via1

~A =
1

2
~B × ~r, (B.26)

then
~A · ~p =

1

2

(
~B × ~r

)
· ~p =

1

2
~B · (~r × ~p) =

1

2
~B · ~L, (B.27)

where ~L is the angular momentum, that can be either orbital or spin angular momentum or
combination of both.

One can also define magnetic moment of an electron,

~µ =
q

2m
~L =

µB
~
~L, (B.28)

where µB is Bohr’s magneton and spin magnetic moment is thus

~µs = gµB ~S, (B.29)

where g is Langé factor.
Finally, the Hamiltonian becomes

Ĥint = −~µ · ~B, (B.30)

1Such an expansion provides both ~B = ∇× ~A and ∇ · ~A = 0.
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where ~µ is either ~µL (magnetic moment due to the orbital angular momentum) or ~µs (magnetic
moment due to spin) or the combination of both.

B.4 Spin-orbit Interaction

Another important quantum phenomenon one should refer to while dealing with magnetism
is the spin-orbit interaction. In this section we would briefly discuss it and its effects in solids.

The spin-orbit interaction is one of the few complicated and non-trivial relativistic phe-
nomena that can be actually to a some extend explained in simple words: an electron being a
charged particle is orbiting, hence moving, hence induces some magnetic field; it’s spin then
interacts with the field induced by electrons’ own movements and one should remember that
electromagnetism is relativistic itself. [101]

As we know from Maxwell’s equations, moving charges induce the magnetic field, so in the
reference frame that moves with velocity ~v relative to an electric field ~E one finds

~B =
~E × ~v
c2

, (B.31)

where
~E = −∇V (~r) = −~r

r

dV

dr
(B.32)

is V (~r) is the electric potential corresponding to the field ~E. If the field has the Coulomb
origin, then

1

r

dV

dr
=

Nq

4πε0r3
, (B.33)

where N is the number of electrons on the outer shell.
The field induced by moving electrons, ~B, then becomes:

~B = − Nq

4πε0c2r3
(~r × ~v) = − Nq

4πmε0c2r3
(~r × ~p) = − Nq

4πmε0c2r3
~L, (B.34)

and this field interacts with the magnetic moment of an electron via2

ĤSO = −1

2
~µ · ~B =

q~2

2m

Nq

4πmε0c2r3
~S · ~L =

µ0Nq
2~2

8πm2r3
~S · ~L = αSO ~S · ~L, (B.35)

where αSO is the spin-orbit coupling constant.
Spin-orbit coupling is a relativistic effect itself and was first derived by comparing Dirac and

Schrödinger equations. [102] It is Dirac equation then that explains the spin-orbit interaction
from the first principles but we would not discuss it here.

2The factor of 1
2
– Thomas factor – rises from the change in the precession frequency of the electron spin

due to the change of reference frame. [9]
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In solid state physics spin-orbit interaction has its great importance while studying crystals
that lack inversion symmetry, as it does not affect the total energy in other cases with some
minor exceptions.

B.5 Ginzburg-Landau Equations

B.5.1 First Ginzburg-Landau Equation

Let us derive first Ginzburg-Landau equation by the direct variation of the Ginzburg-Landau
functional,

FSC =

∫ {
α|ψ|2 +

β

2
|ψ|4 +

~2

2m
|∇ψ|2

}
d3r

L3
, (B.36)

with respect to ψ and ψ∗. Start with ψ-minimisation. Define the variation in ψ and ψ∗ as

ψ′(~r)→ ψ(~r) + δψ(~r), (B.37)

ψ′∗(~r)→ ψ∗(~r) + δψ∗(~r), (B.38)

hence the quantities we are interested in (those appearing in the functional) become:

|ψ′|2 = (ψ + δψ) (ψ∗ + δψ∗) = ψψ∗ + ψδψ∗ + ψ∗δψ +O(δψ2), (B.39)

|ψ′|4 = (ψψ∗ + ψδψ∗ + ψ∗δψ) (ψψ∗ + ψδψ∗ + ψ∗δψ)

= |ψ|4 + 2|ψ|2ψδψ∗ + 2|ψ|2ψ∗δψ +O(δψ2), (B.40)

∣∣∇ψ′∣∣ = |∇ψ +∇δψ| , (B.41)∣∣∇ψ′∣∣2 = ∇ψ′∇ψ′∗ = |∇ψ|2 +∇ψ∇δψ∗ +∇ψ∗∇δψ +O(δψ2). (B.42)

Variation of the functional then can be written as

F + δF =

∫ [
~2

2m

(
|∇ψ|2 +∇ψ∇δψ∗ +∇ψ∗∇δψ

)
+ α

(
|ψ|2 + ψδψ∗ + ψ∗δψ

)
+

β

2

(
|ψ|4 + 2|ψ|2ψδψ∗ + 2|ψ|2ψ∗δψ

)] d3r

L3
, (B.43)

and then the variation term can be deduced to be

δF =

∫ [
− ~2

2m
∇2ψ + αψ + βψ|ψ|2

]
δψ∗d3r +

∫ [
− ~2

2m
∇2ψ∗ + αψ∗ + βψ∗|ψ|2

]
δψ
d3r

L3
,

(B.44)
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where we have used the consequence of the product rule for ∇ (∇ψδψ),

∇ψ∇δψ∗ = ∇ (∇ψδψ∗)−∇2ψδψ∗, (B.45)

∇ψ∗∇δψ = ∇ (∇ψ∗δψ)−∇2ψ∗δψ, (B.46)

and ∫
∇ (∇ψδψ∗ +∇ψ∗δψ)

d3r

L3
= 0, (B.47)

so the variation of the functional with respect to ψ∗ gives us

− ~2

2m
∇2ψ + αψ + βψ|ψ|2 = 0 (B.48)

– the first Ginzburg-Landau Equation for a free superconductor.

B.5.2 First Ginzburg-Landau Equation via Euler-Lagrange Method

Let us apply an alternative approach: derive first Ginzburg-Landau equation by writing Euler-
Lagrange equation for the Ginzburg-Landau functional density:

F = α|ψ|2 +
β

2
|ψ|4 +

~2

2m
|∇ψ|2, (B.49)

hence Euler-Lagrange equation is:

∂F
∂ψ∗

−∇ ∂F
∂(∇ψ∗)

= 0, (B.50)

which directly leads to

αψ + βψ|ψ|2 − ~2

2m
∇2ψ = 0 (B.51)

– the first Ginzburg-Landau equation for a free superconductor.

B.5.3 Analytical Solution of First Ginzburg-Landau Equation

Consider the simplest possible case:
ψ = ψ(x), (B.52)

first Ginzburg-Landau then writes as

− ~2

2m

dψ2

dx2
+ αψ + βψ|ψ|2 = 0. (B.53)
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With the aid of the coherence length,

ξ2 =
~2

2m|α|
, (B.54)

convert the first Ginzburg-Landau equation into a dimensionless form:

− ξ2ψ′′ − ψ − ψ3 = 0, (B.55)

where ψ′′ is the second derivative with respect to x.
Multiply both sides of (B.55) by ψ′ and notice that

d

dx

[
ψ4
]

= ψ3ψ′ + ψ
d

dx

[
ψ3
]

= ψ3ψ′ + 3ψ3ψ′ = 4ψ3ψ′, (B.56)

d

dx

[
ψ2
]

= 2ψψ′, (B.57)

d

dx

[
ψ′2
]

= 2ψ′ψ′′, (B.58)

hence (B.55) can be modified to

d

dx

[
ξ2

2
ψ′2 − 1

2
ψ2 +

1

4
ψ4

]
= 0, (B.59)

or just
ξ2

2
ψ′2 − 1

2
ψ2 +

1

4
ψ4 = const. (B.60)

Apply boundary conditions of
ψ′(∞) = 0 (B.61)

and
ψ2(∞) = 1, (B.62)

obtain
const = −1

4
, (B.63)

hence (B.60) transforms to

ξ2ψ′2 =
1

2

(
1− ψ2

)2
, (B.64)

that can be square-rooted to

ξψ′ =
1√
2

(
1− ψ2

)
, (B.65)

which is solved to
ψ = tanh

x

ξ
√

2
, (B.66)
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that is the simplest possible solution of the first Ginzburg-Landau equation.

B.5.4 Second Ginzburg-Landau Equation

Now let us vary the functional (B.36) with respect to ~A. Do this with the aid of Euler-Lagrange
technique:

∂F
∂ ~A
−∇ ∂F

∂∇ · ~A
+∇× ∂F

∂∇× ~A
= 0. (B.67)

Notice that there is no ∇ · ~A term present in the functional, hence

∇ ∂F
∂∇ · ~A

= 0. (B.68)

Also,

∇× ∂F
∂∇× ~A

= ∇× 2∇× ~A

2µ0
=
∇× ~B

µ0
= ~Js, (B.69)

where we define a supercurrent as
~Js =

1

µ0
∇× ~B. (B.70)

Focus on the first term now:

∂F
∂ ~A

=
∂

∂ ~A


∣∣∣(−i~∇− q ~A)ψ∣∣∣2

2m


=

1

2m

∂

∂ ~A

[(
i~∇ψ∗ − q ~Aψ∗

)(
−i~∇ψ − q ~Aψ

)]
=

1

2m

[
−qψ∗

(
−i~∇ψ − q ~Aψ

)
− qψ

(
i~∇ψ∗ − q ~Aψ∗

)]
(B.71)

=
i~q
2m

(ψ∗∇ψ − ψ∇ψ∗) +
q2

m
|ψ|2 ~A,

so finally get
i~q
2m

(ψ∗∇ψ − ψ∇ψ∗) +
q2

m
|ψ|2 ~A = ~Js (B.72)

– the second Ginzburg-Landau equation.

B.5.5 Ginzburg-Landau Equations in Dimensionless Form

B.5.5.1 Dimensionless Quantities

Dimensionless quantities we are interested in are:
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• the dimensionless coordinates:

~X =
~r

λGL
= ~r

√
q2|α|µ0

mβ
, (B.73)

hence
∂

∂~X
= λGL∇; (B.74)

• the dimensionless order parameter:

X =
ψ

ψ0
= ψ

√
β

|α|
; (B.75)

• the dimensionless magnetic field:

~b =
~B√
2Bc

=
~B

|α|

√
β

2µ0
, (B.76)

where Bc corresponds to Hc – the thermodynamic critical field;

• the dimensionless vector potential:

~a =
~A√

2 λGLBc
=

q ~A√
2

√
1

m|α|
, (B.77)

hence
~b =

∂

∂~X
× ~a; (B.78)

• the dimensionless current:
~i =

λGLµ0
~Js√

2Bc
, (B.79)

hence
~i =

∂

∂~X
×~b. (B.80)

B.5.5.2 First Ginzburg-Landau Equation in the Dimensionless Form

Let us now convert the first Ginzburg-Landau Equation, (3.23), in the dimensionless form.
Making use of the definitions of ~X, ~a and X from the previous paragraph, we get(

− i
~
∂

∂~X
−
√

2m|α|~a
)2

X + 2mαX + 2mβψ2
0|X |2X = 0, (B.81)
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which then transforms to(
− i

κGL

√
2m|α| ∂

∂~X
−
√

2m|α|~a
)2

X + 2mαX + 2mβψ2
0|X |2X = 0, (B.82)

then use the definition of ψ2
0,

ψ2
0 =

α

β
, (B.83)

and thus cancel out 2mα term to get(
− i

κGL

∂

∂~X
− ~a
)2

X + X + |X |2X = 0 (B.84)

– the first Ginzburg-Landau equation in the dimensionless form.

B.5.5.3 Second Ginzburg-Landau Equation in the Dimensionless Form

Now it is time to convert the second Ginzburg-Landau Equation in the dimensionless form.
It seems to be slightly more complicated than the procedure we have just followed, so let us
do it step by step. In the second Ginzburg-Landau Equation one has three terms. Call them
to be J-term,

TJ = ~Js =

√
2Bc

λGLµ0

~i, (B.85)

∇-term,
T∇ = (ψ∗∇ψ − ψ∇ψ∗) (B.86)

and A-term,

TA = −q
2

m
ψ2

0|X |2 ~A
√

2BcλGL (B.87)

Start with the J-term:

TJ = ~Js =

√
2Bc

λGLµ0

~i = qψ0

√
2|α|
m

~i, (B.88)

continue with ∇-term:

T∇ = (ψ∗∇ψ − ψ∇ψ∗) =
ψ2

0

λGL

(
X ∗ ∂

∂~X
X − X ∂

∂~X
X ∗
)
, (B.89)

and finish with the A-term:

TA = −q
2

m
ψ2

0|X |2 ~A
√

2BcλGL = −qψ2
0

√
2|α|
m
|X |2~a. (B.90)
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Combine all the terms together:√
2|α|
m

~i = − i~
2mλGL

(
X ∗ ∂

∂~X
X − X ∂

∂~X
X ∗
)
−
√

2|α|
m
|X |2~a, (B.91)

divide both sides by
√

2|α|
m and make use of definitions of ξ and κGL to obtain

~i = − i

2κGL

(
X ∗ ∂

∂~X
X − X ∂

∂~X
X ∗
)
− |X |2~a, (B.92)

and this is the second Ginzburg-Landau equation in the dimensionless form.

B.5.5.4 Summary

In order to work with more convenient notation in the future re-label back:

X → ψ, (B.93)

~b→ ~B, (B.94)

~a→ ~A, (B.95)

∂

∂~X
→ ∇, (B.96)

so Ginzburg-Landau equations in the dimensionless form read as(
− i

κGL
∇− ~A

)2

ψ + ψ + |ψ|2ψ = 0, (B.97)

~i = − i

2κGL
(ψ∗∇ψ − ψ∇ψ∗)− |ψ|2 ~A, (B.98)

and the only material-specific parameter involved is the dimensionless κGL – the Ginzburg-
Landau parameter.

B.6 Landau Levels

Let us consider a particle in a magnetic field ~B = (0, 0, B). A possible form of a vector
potential is ~A = (0, xB, 0) – the Landau gauge.

The Hamiltonian in the coordinate representation then is

Ĥ =
1

2m

(
~
i
∇− q ~A

)2

= − ~2

2m

(
∇+

iq

~
~A

)2

= − ~2

2m
∇2 +

q2B2

2m
− qB

m
xp̂y. (B.99)
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Schroedinger equation for such a particle reads as

Ĥψ(x, y, z) = Eψ(x, y, z). (B.100)

Studying the form of the Hamiltonian (B.99), try a separable solution of the form [103]

ψ(x, y, z) = ψx(x)ψy(y)ψz(z). (B.101)

So get three equations to solve. Start with those simple ones:

− ~2

2m

d2ψy
d2y

= Eyψy(y), (B.102)

which can be converted to
d2ψy
d2y

= −k2
yψy(y), (B.103)

if we define
k2
y =

2mEy
~2

, (B.104)

that is solved to
ψy(y) = eikyy. (B.105)

Similarly get
ψz(z) = eikzz. (B.106)

So we are left with an equation for ψx only, that now turns into(
− ~2

2m

d2

dx2
+
q2B2

2m
x2 +

q~ky
2m

x

)
ψx(x) = Exψx(x). (B.107)

Introduce:
ω =

qB

m
, (B.108)

x0 =
~ky
mω

(B.109)

to get (
− ~2

2m

d2

dx2
+
mω2

2
(x− x0)2 −

~2k2
y

2m

)
ψx(x) = Exψx(x) (B.110)

And this can be transformed to(
− ~2

2m

d2

dx2
+
mω2

2
(x− x0)2

)
ψx(x) = Ẽψx(x), (B.111)

171



APPENDIX B. GENERAL PHYSICS

which is an equation for a shifted simple harmonic oscillator with

Ẽ = Ex +
~2k2

y

2m
, (B.112)

and it can be solved to [103]

Ẽ = ~ω
(
n+

1

2

)
, (B.113)

or just

Ex = ~ω
(
n+

1

2

)
−

~2k2
y

2m
. (B.114)

So the total solution for energy is

E = ~ω
(
n+

1

2

)
+

~2k2
z

2m
, (B.115)

and corresponding eigenstates are

ψxn(x) =
1√

2nn!

(mω
π~

) 1
4
e−

mω(x−x0)
2

2~ Hn

(√
mω

~
(x− x0)

)
, (B.116)

where Hn are Hermite polynomials (see Appendix A.3), and the total wave function in then

ψ(x, y, z) =
∑
n

Cn
1√

2nn!

(mω
π~

) 1
4
e−

mω(x−x0)
2

2~ Hn

(√
mω

~
(x− x0)

)
eikyyeikzz. (B.117)
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Appendix C

Technical Details

C.1 Convergence Algorithm

C.1.1 General Formulation

We believe that it is important to give a reader an opportunity to reproduce the results
obtained in this Thesis. In order to make it possible, we present our full convergence algorithm
starting with the general formulation here.

Any convergence problem can written as a stationary point problem, i.e. for an n-
dimensional vector,

~x = ~G(~x) (C.1)

one can define
~f = ~G(~x)− ~x (C.2)

along with the map
~x→ ~f. (C.3)

A fixed-point problem is solved if ∣∣∣~f(~x)
∣∣∣ = 0 (C.4)

∀~x.
In general,

∣∣∣~f(~x)
∣∣∣ ≥ 0 ∀~x, hence

∣∣∣~f(~x)
∣∣∣ = 0 is the minimal-most possible configuration.

Assume we have a pair of
(
~xm, ~fm

)
, where

~fm = ~fm(~x). (C.5)
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For m iterations one can define a linear interpolation of

~f [gl] = ~fm +

m−1∑
l=1

gl

(
~fl − ~fm

)
. (C.6)

Note that the coefficient gl is to be determined.
The absolute value of any quantity can be written as∣∣∣~f(~x)

∣∣∣ =

√
~f · ~f∗ , (C.7)

hence for the minimal configuration one can write:

~f [gl] · ~f∗ [gl]→ min, (C.8)

that is
~f [gl] · ~f∗ [gl]→ 0 (C.9)

for a fixed-value problem. Therefore

~f [gl] · ~f∗ [gl] = ~fm ·
(
~f∗k − ~f∗m

)
+
m−1∑
l=1

gl

(
~fl − ~fm

)
·
(
~f∗k − ~f∗m

)
= 0, (C.10)

hence gl can be calculated for a given l from 1 to m− 1. Define

S
(i)
kl =

(
~fl − ~fi

)
·
(
~f∗k − ~f∗i

)
, (C.11)

T
(i)
k = −~fi ·

(
~f∗k − ~f∗i

)
, (C.12)

hence
g

(i)
l =

(
S−1T

)
l
. (C.13)

By analogy to (C.6) expand ~x:

~xmin = ~xm +

m−1∑
l=1

gl (~xl − ~xm) , (C.14)

as ~xmin maps to the neighbourhood of ~fmin.
Finally introduce the coupling, the measure of change in ~x, pm:

~xm+1 = ~xmin + pm ~f
min, (C.15)
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where
~fmin = ~f(~xmin), (C.16)

pm =

∣∣~xm−1 − ~xmin
∣∣

~fmin
, (C.17)

hence
~fm+1 = ~f(~xm+1). (C.18)

C.1.2 Calculations of the Lagrange Multiplier

Let us now apply the formalism developed in the previous section to the problem solved in
this Thesis. It would not only accelerate the convergence of numerical solutions, but also help
us find the Lagrange multiplier itself. Recall the functional we are to minimise:

F =

∫ {
J

2

∑
µ

(
∂µ ~M

)
·
(
∂µ ~M

)
+D ~M ·

(
∇× ~M

)
− ~B · ~M + λ

(∣∣∣ ~M ∣∣∣2 − 1

)}
dxdy

A
,

(C.19)
where ~M = ~M(x, y) and λ = λ(x, y) is the Lagrange multiplier. In chapter 2 we have
discussed this functional and its minimisation in details. Particularly, we have concluded that
if we Fourier expand both ~M and λ, then Fourier coefficients for the components of ~M can
be found analytically for a given λ. So one can write Mµ = Mµ(λ) for a component of the
magnetisation.

In order to be consistent with the algorithm described in the previous section, state

~x→ ~λ. (C.20)

Vector sign here means that ~λ is a multidimensional function, i.e. ~λ = ~λ(x, y). Also define

λ =
{
~λ1(x, y), ~λ2(x, y), . . . , ~λm(x, y)

}
, (C.21)

a vector of m vectors ~λ. The vector of functions of ~x, ~f , is then defined as

~fj = ~fj(~λj) (C.22)

and for a given j fj is written as

fj = M2
x +M2

y +M2
z − 1, (C.23)

and this is the actual constraint we want to implement.
It was found that it is enough to consider m = 5 iterations. So the full algorithm for

finding λ writes:
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• for iteration i < 31:

1 load initial guess for λi;

2 calculate Mx, My, Mz;

3 report the average ~M ;

4 calculate fi → ~fi, then write ~fi to ~f and ~λi to ~λ;

• for iteration 3 ≤ i < m:

1 calculate gl coefficients:
gl =

(
S−1T

)
l

(C.24)

with
S

(i)
kl =

(
~fk − ~fi−1

)(
~fl − ~fi−1

)
(C.25)

and
T

(i)
k = −~fi−1

(
~fk − ~fi−1

)
, (C.26)

where l, k go from 1 to i− 2;

2 find ~λmin:

~λmin = ~λi−1 +

i−2∑
l=1

gl

(
~λl − ~λi−1

)
, (C.27)

3 find ~fmin:

~fmin = ~fi−1 +

i−2∑
l=1

gl

(
~fl − ~fi−1

)
; (C.28)

4 update the mixing parameter, pi;

5 find mixed ~λi:
~λi = ~λmin + pi ~f

min; (C.29)

6 calculate Mx, My, Mz;

7 calculate fi → ~fi, then write ~fi to ~f and ~λi to ~λ;

8 test the convergence, if
|~fi| < 10−15, (C.30)

|λi − λi−1| < 10−15, (C.31)

|Mxi −Mxi−1 | < 10−15, (C.32)

|Myi −Myi−1 | < 10−15, (C.33)

1To avoid confusion, here all the counting starts at 1, though the vast majority of programming languages
start their conuting at 0.
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|Mzi −Mzi−1 | < 10−15 (C.34)

are all true;

• for i ≥ m:

1 calculate gl coefficients:
gl =

(
S−1T

)
l

(C.35)

with
S

(m)
kl =

(
~fk − ~fm−1

)(
~fl − ~fm−1

)
(C.36)

and
T

(m)
k = −~fm−1

(
~fk − ~fm−1

)
, (C.37)

where l, k go from 1 to m− 2;

2 find ~λmin:

~λmin = ~λm−1 +
m−2∑
l=1

gl

(
~λl − ~λm−1

)
, (C.38)

3 find ~fmin:

~fmin = ~fm−1 +

m−2∑
l=1

gl

(
~fl − ~fm−1

)
; (C.39)

4 update the mixing parameter, pm;

5 find mixed ~λm:
~λm = ~λmin + pm ~f

min; (C.40)

6 calculate Mx, My, Mz;

7 calculate fm → ~fm, then write ~fm to ~f and ~λm to ~λ;

8 test the convergence, if
|~fm| < 10−15, (C.41)

|λm − λm−1| < 10−15, (C.42)

|Mxm −Mxm−1 | < 10−15, (C.43)

|Mym −Mym−1 | < 10−15, (C.44)

|Mzm −Mzm−1 | < 10−15 (C.45)

are all true;

9 step back in ~f and ~λ:
~fk = ~fk+1, (C.46)
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etc, starting with
~f1 = ~f2, (C.47)

up to
~fm−1 = ~fm, (C.48)

etc. Notice that in the end one has ~fm−1 = ~fm, so two last elements of ~f vector
are the same, but it is ok, as ~fm is overwritten in the next iteration.

C.1.3 Initial Guess for λ

In the previous section we have discussed how to obtain the Lagrange multiplier, λ, from its
previous iterations, however, one shall always begin with something. Initial guess for λ is
important, as the better it is, the faster the solution would converge. We need at least two
linearly independent initial guesses for λ in order to implement the algorithm described in the
previous section.

The condition we would like to implement with the aid of the Lagrange multiplier, λ, is
the condition on the magnetisation, hence one may suggest that λ shall repeat the shape of
components of ~M somehow. If we Fourier transform both λ and ~M , then an initial guess that
seems good for λ can be written as

λ1(x, y) =
∑
~k

(
X2
~k

+ Y 2
~k

+ Z2
~k

)
(C.49)

and
λ2(x, y) =

∑
~k

Z~kZ
∗
~k
, (C.50)

where X~k, Y~k and Z~k are Fourier coefficients for Mx, My and Mz respectively.

C.1.4 Full Algorithm

The full algorithm of a run for a single value of an external field, β, for a system of skyrmions
only is then as follows:

1. define the lattice for a given lattice spacing a;

2. calculate the k-matrix, K̂~k~k′ ;

3. if there is no better choice, implement the initial guess for the Lagrange multiplier from
section C.1.3;

4. find Fourier coefficients for λ from the numerical algorithm introduced in this chapter;
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5. find Fourier coefficients for the magnetisation components analytically for λ found just
before;

6. implement the virial theorem in order to find the optimal spacing for a given external
field, β.

C.2 Software Used

The main code created in order to implement the numerical algorithms required to solve the
model presented in this Thesis was written mainly on Python [104] with come inserts of C++

[105] for bits that required heavy computations. Python was also used for all the supplementary
calculations, analysis and representation that followed the main calculations. We have used
standard python libraries (methods) only: numpy, [106] scipy [107] and matplotlib, [108] no
external packages were required. Wolfram Mathematica [109] was also used in order to present
some high quality plots.
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