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Abstract

In this Thesis we present a new method of theoretical studies of magnetic materials. The
method is based on the Fourier expansion of the magnetisation and then using this expansion
in order to minimise the free energy functional of a magnetic material, hence obtain the
optimal configuration of the system for a certain set of parameters. We also employ Lagrange
multiplier technique in order to satisfy the constraint of ‘]\2 ‘2 = 1 required by micromagnetics.
We have mainly applied this method to a system that obeys a skyrmionic order. Critical fields
corresponding to helical-skyrmion and skyrmion-ferromagnetic phase transitions were found
exactly. Also, new shapes of skyrmion lattice that have never been observed before were
obtained via our method. The method proved itself to be universal, i.e. applicable for any
micromagnetic system. As an example of an extended magnetic system, we considered a
bilayer of a magnet and a superconductor and used our method along with Brandt’s approach
to a superconductor, that we used as a guide for our method, in order to describe the combined

system and study the magnetic states obtained.
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Chapter 1

Introduction

People have been studying magnetism for centuries, ever since they first noticed that some
objects may attract the others without any visible reason. This must have been a great
mystery back those days. On the other hand, we grow up accepting the fact of existence
of fields around us. We ask our parents how phone and TV signals work and their answer
would definitely contain words “electromagnetic waves” in it, no matter of their background.
Probably every physicist remembers a demonstration back from high school of a magnet and
metal shavings that align along field lines. Magnetic effects became a part of our life long ago
and are not mysterious anymore. However, a scientist always tries to look deeper. If a man
observes two objects that attract each other, a scientist wants to know why they do. Although
magnetism is around us and we constantly use it in our everyday life, there are still mysteries
to be revealed, there are still questions to be answered.

We know now that magnetism in solids is induced by spins of charged particles with
electrons being the most common case. The magnetic moment of an electron is anti-parallel to
the spin angular momentum. The direction is spontaneously chosen from one of the degenerate
states with the same ground state energy. In presence of an external field the chosen direction
is between the direction of the external field and one of the directions preferred by magnetic
anisotropy. This is true for homogeneous states only, i.e. when the magnetisation direction
is not spatially varying within the sample. [I] An example of an inhomogeneous state is a
domain state in a ferromagnet. Such a state contains regions (domains) with all spins parallel
to each other, however the total domain spin is not parallel to other domains’ spins. So one
can say that a typical ferromagnet consists of homogeneous domains, but as spins are aligned
in the same direction within a single domain only, ferromagnet itself is an inhomogeneous
system as almost any system in nature. Schematic representation of magnetic domains is
demonstrated in Figure and magnetic domains actually observed in a ferromagnet can be
found in Figure[1.1Db

While a single ferromagnetic domain is a special example of a homogeneous system, the
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CHAPTER 1. INTRODUCTION

(a) Schematic representation of magnetic do- (b) Magnetic domains observed in NdFeB. [3]
mains. [2]

Figure 1.1: Schematic representation of magnetic domains along with the actual picture of
magnetic domains in NdFeB. Spins are aligned in the same direction within a single domain
only, though the total spins of domains are aligned in a random order with respect to each
other.

full bulk ferromagnet is inhomogeneous. Once a large enough external field is turned on, the
domain structure gets progressively destroyed and the whole system turns into a homogeneous
one with all the spins pointing in one direction, determined by the field. Magnetic domains are
separated by domain walls — regions where spins are smoothly rotating from one neighbouring
direction to another. One can distinguish between two main types of domain walls: Bloch wall
— the one that corresponds to the rotation of domain wall spins through the plane of the domain
wall, and Néel wall — the one that corresponds to the rotation within the domain wall plane.
Schematic representation of spin behaviour in both Bloch and Néel walls is demonstrated in
Figure [I.2] Note that other types of domain walls are possible, but they are less common and

are not to be discussed here.

Figure 1.2: Schematic representation of spin behaviour in Bloch (red) and Néel (green) domain
walls. In the Bloch case spin rotates from one terminal position (either “up” or “down”) to
another through the plane and in the Néel case the rotation occurs within the plane. [4]

12



CHAPTER 1. INTRODUCTION

Ferromagnets are permanent magnets, i.e. once magnetised by an external field, they
preserve their magnetisation even when the field is switched off. Typical examples of ferro-
magnets are iron, cobalt, nickel and their alloys. [5] Among the first studying ferromagnetism
was Aleksandr Stoletov who demonstrated a non-linear dependence between B and H. The
Bohr-van Leeuwen theorem [6] tells us that ferromagnetism is of pure quantum nature. [5]
The main quantum mechanic origin of (electronic) ferromagnets is the exchange interaction.
Il

It is well known from basic quantum mechanics that two electrons in one shell (subshell)
cannot have the same spin. [8] When orbitals of the outer unpaired valence electrons overlap,
electrons with parallel spins would repel even more than electrons usually do, hence the total
spatial charge distribution would decrease, and therefore the total electrostatic energy would
become smaller. So it is actually energetically favourable for an electron to change its spin
to align with neighbouring atom’s electron’s spin in order to maintain the total minimal free
energy. In a simple way one may think about the exchange interaction this way: two electrons
of the same spins would never ever go to the same place, hence they would not need any energy
to repulse if they were not repulsing already. For a system of many particles in the case where
there are no other interactions present spins would tend to align with their neighbours until
all the spins are aligned in one direction. This explanation, though, does not take into account
on-site Coulomb interactions that would make the picture more complicated (favouring anti-
ferromagnetic alignment). Often one works with effective Hamiltonians, in which case the
effective exchange interactions includes a large part of on-site correlations due to Coulomb
interactions.

Ferromagnetic exchange interactions can be modelled by Heisenberg Hamiltonian for all

the atoms in a solid: [9]
Hy ==Y Ji;S;- 5, (1.1)
ij

where S_’; and 5’}- are spins of electrons localised at sites ¢ and j respectively, and J;; is the
exchange coupling. [10] However, it is often possible to set J;; = J = const for neighbouring
atoms and zero otherwise, as this would correspond to the exchange between nearest neigh-
bours only, that is often the most likely exchange to occur; in this case the summation then

goes over the nearest neighbour pairs only:

Hyp=-JY S-S, (1.2)

(ij)
and J > 0 corresponds to a ferromagnet, whereas J < 0 corresponds to an anti-ferromagnet.
This classification rises from the fact that spins are parallel in a ferromagnet, just as they are
in the equal-spin triplet state and anti-parallel in an anti-ferromagnet and singlet state. J is

defined as J = E; — Ey, hence its sign depends on whether the energy of a singlet state, Ej,

13



CHAPTER 1. INTRODUCTION

is lower (hence anti-ferromagnet is favourable) or the energy of a triplet state, Ej, is lower
(ferromagnet is preferred in this case). [10] The full Hamiltonian of a ferromagnetic system

then writes as

Hp=-J% 8;-S;+gus > S;- B, (1.3)
(i7) J

where the last term is the Zeeman energy, that is nothing else but the energy of an electron
(a particle with spin S;) in an external magnetic field. [7] More generally, under continuum

approximation (see later) the Zeeman energy can be written as
E, = —MO/M - Hav, (1.4)

where H is the external field and M is the local magnetisation. ]

Let us now pay more attention to inhomogeneous magnetic states. The most famous in-
homogeneous state is the domain state in ferromagnets, with magnetic domains separated by
domain walls, just as we discussed earlier. Another typical source of inhomogeneity are spin
waves, or magnons, that are excited states of a typical Heisenberg magnet. [13] Inhomoge-
neous states can be also favoured by spin-orbit coupling, hence an anisotropic chiral exchange

interaction that is described by Dzyaloshinsky-Moriya Hamiltonian: [15]

Hpy = —Zﬁij : (gz X §y) , (1.5)

)

where ﬁij is the Dzyaloshinsky-Moriya coupling vector. Clearly, for the case of parallel or
anti-parallel spins the whole term would be equal to zero due to the cross product. Schematic
representation of a two-spin system described by Hamiltonian can be found in Figure
In Figure we see two spins suffering strong spin-orbit interaction; the vector D1y is per-
pendicular to the plane where the spins are located.

While the exchange interaction tends to align all the spins in one direction, Dzyaloshinsky-
Moriya interaction gives a spin a twist. This effect results from the fact that electron’s spin
interacts with the atom as well as with other electrons in the system. Spin-orbit interaction
then gives the shift to the direction of the spin with respect to its perfect alignment governed
by the exchange interaction only. It shall be noted, though, that this effect is significant in
non-centrosymmetric materials only.

This anisotropic interaction was first derived by Igor Dzyaloshinsky in 1958 [15] and clar-
ified by Toru Moriya in 1960 (spin-orbit coupling was used to explain the phenomenological

approach of Dzyaloshinsky). [16] The total Hamiltonian of a magnetic material (that is not
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Large SOC

Figure 1.3: Schematic representation of neighbouring spins behaviour under strong spin-orbit
coupling. [14]

necessarily homogeneous) would then be written as
ﬁM:_ngi'gj_Zﬁij'(gixgj>+gMBZ§j'§' (1.6)
(i) ij Y
When effects of Dzyaloshinsky-Moriya interaction are strong enough, thus cannot be ne-

glected, and the field is weak enough, hence Zeeman term cannot dominate, spins in a magnet

align in a helical order, as demonstrated in Figure [[.4]

N

- /\H -

Figure 1.4: Spin helix with a period of Ay. By analogy to any wavelength, Aj is defined as
the shortest non-zero distance between two spins aligned in the same direction.

It is also important to notice that the inversion symmetry gets broken when the Dzyaloshinsky-
Moriya term is dominant and the solution is in helical (like in Figure or skyrmion (see
later) form.

From Figure [1.4] we also see that helices have their pitch period, Ay, that is related to the

helical pitch vector, féH = kygé,, via
s

Ag = —.
H kH

(1.7)
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A typical way to describe the magnetisation of a helix is to parametrise it as

0
Wi=| —sin (EH - F) , (1.8)
cos (EH . F)

where 7= (z,y) and ky = (ka,k:Hy). [17]

If the field is large enough, however, the Zeeman term becomes the dominating one and
the system then collapses into a ferromagnetic (homogeneous) state.

So effects of Dzyaloshinsky-Moriya interaction, should they be strong enough, result into
inhomogeneous magnetic ordering, like spiral magnets or helimagnets. However, there is always
space for topological defects, and thus from the competition between exchange and anisotropic
terms new pattern may rise: magnetic skyrmions.

A magnetic skyrmion is a topologically stable field configuration that can be pictured as
spin helices of unit period length packed next to each other in circular direction, i.e. a side
view of a skyrmion is nothing more but a helix! An example of a single (Bloch) skyrmion can
be found in Figure [[.5] and a schematic spin-helix is demonstrated in Figure We see then
that if we follow radial direction only within a skyrmion, we observe half a helix turn. Boxed
regions in Figure and Figure match exactly.

Figure 1.5: A single skyrmion with a radial direction emphasised and a unit period of a helix

boxed. [18]
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Figure 1.6: A spin helix with period boxed. [1§]

One can then consider a skyrmion to be an intermediate state between helical state and
ferromagnetic state in a magnetic material as it rises from the competition between the ex-
change interaction that is responsible for the ferromagnetic state and the anisotropic exchange

that generates helical behaviour. Such states are demonstrated in Figure

| : ¥ B/(D?/J)
0.23 0.78

Figure 1.7: Schematic representation of possible spin configurations in a magnetic material
with Dzyaloshinsky-Moriya interaction for different values of an external field. Below B, we
observe a helix, between B, and B., — skyrmion lattice, above B, — ferromagnetic configu-
ration. Values of critical fields demonstrated in dimensionless units are claimed by Iwasaki et
al and we are to discuss them later. [19]

Experimentally observed phase diagrams of materials that exhibit skyrmion lattices under
certain conditions are demonstrated in Figure |1.§

It might be found curious that skyrmions (the actual word “skyrmion” along with the
mathematical model it stands for, to be precise) came to condensed matter field from nuclear
physics. Originally, skyrmions are named after Tony Skyrme. [22] He was developing a non-
linear field theory for interacting pions and came up with quantised and topologically stable
solutions. He explained stability of particles by the fact that they are topologically protected.
[22] Tony Skyrme studied 3D systems and his original skyrmion solution is therefore 3D as

17
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. . i v o
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(a) Phase diagram of MnSi. [20] (b) Phase diagram of Fe;_,CoxSi. [21]

Figure 1.8: Phase diagrams of magnetic materials that demonstrate skyrmion lattice under
certain conditions.

well. We are, however, interested in 2D skyrmions referred to as “baby skyrmions” by some
early researchers.

Having been introduced in nuclear physics, Skyrme model was exposed to other areas
where people were interested in multidimensional localised structures. People were looking for
localised solutions of non-linear field equations with particle-like properties. It was proven,
however, that these localised states are actually unstable in many areas of interest, [23] since in-
homogeneous states often appear as excitations, hence static configurations collapse into topo-
logical singularities. [24] Though, the instability of localised field configurations can be over-
come. In condensed matter systems the instability of localised states can be avoided by adding
chiral interactions to the functional, i.e. considering materials with broken inversion symme-
tries. The most obvious place to study would be magnetic non-centrosymmetric crystals, but
skyrmions are found as stable or metastable localised states also in non-centrosymmetric fer-
roelectrics, [25] multi-component ferromagnetic Bose-Einstein condensates, [26] quantum Hall
systems, [27] superfluid helium-A, [28] liquid crystals [29] and glasses. [30] Moreover, a 3D
skyrmion lattice is proposed for the dense nuclear matter of neutron stars [31] and neutron
stars themselves. [32]

In this research we are in the first place interested in 2D magnetic skyrmions that are
mainly found in cubic helimagnets, such as MnSi, [20] Fe;_CoySi, [21] FeGe, [33] Cri_xMn,Ge
alloys, [34] and also in easy-plane hexagonal magnets like CsCuCls [35] and RuCuCls, [36]
polar magnetic semiconductor GaV,Sg, [39] multiferroic films of CuaOSeOs, [37] tetragonal
antiferromagnets [38] and other magnetically ordered crystals.

Existence of (2D or 3D) skyrmion solution in helimagnets as an alternative to (1D) helical
solutions of the field equations of Dzyaloshinsky theory was first introduced by A. N. Bogdanov

and D. A. Yablonsky in 1989 while studying anisotropic non-centrosymmetric magnetic ma-
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terials that experience the spin-orbit interaction subject to an external field. [40] They have,
however, pointed out that this skyrmion solution (they referred to skyrmions as “magnetic
vortices”) are thermodynamically metastable, i.e. the energy of helical states would always be
lower than that of skyrmion states. Despite that, stable skyrmion solutions were found later.

Since skyrmions were introduced to condensed matter physics, a lot of research has been
carried out in the field. For example, Bogdanov carried on with his research on single isolated
skyrmions, [4I] ending up proving that skyrmion state might be thermodynamically stable
as well as metastable; [42] Han et al focused on skyrmion lattices in chiral magnets, [43]
Twasaki et al dealt with magnon-skyrmion scattering, [19] Marcus Garst mainly focused on
the dynamics of skyrmions, [44] Leonov et al considered skyrmions in liquid crystals [45] and
many other skyrmion systems, 7. Yokoyama and J. Linder studied Josephson effect through
magnetic skyrmion [46] and a lot more work has been put in the field.

Finally, in 2009 skyrmions were first observed ex-
perimentally in MnSi. [20] With the aid of neutron
scattering Miihlbauer et al have observed a lattice of
two dimensional skyrmions that is perpendicular to
the external field itself. [20] In 2010 Yu et al observed

skyrmion lattice in Fe;_CoxSi using Lorentz trans-

mission electron microscopy, [21] following up finding
skyrmions in FeGe. [33] An example of the skyrmion
lattice observed in FeGe can be found in Figure [1.9
Spin-resolved scanning tunnelling microscopy helped
to find triangular skyrmion lattices in monolayer iron
on Ir(111). [47] Romming et al studied size and shape

Figure 1.9: Skyrmion lattice in FeGe
by high-resolution Lorentz transmis-
sion electron microscopy. In it M (7)
observed that is demonstrated in the
Figure. Black regions correspond to
skyrmions. [50]

of a single skyrmion. [48] Stable skyrmions have been even found at room temperature in ul-
trathin transition metal ferromagnets (Pt/Co/Ta and Pt/CoFeB/MgO) with magnetic trans-

mission soft X-ray microscopy. [49]

Skyrmion structures in bulk materials have also
been observed. Those were found to be translation-
ally invariant along the field direction, hence one can
say that the magnetic texture of these materials con-
sists of skyrmion tubes aligned in the triangular lat-
tice. [I7] Schematic representation of these structures
can be found in Figure [[.10] Later other types of 3D
skyrmion structures were found. [17]

It does not matter now if those theorists that used
to call 2D magnetic skyrmions “baby” had anything

ironic on their mind or not, 2D magnetic skyrmions
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are not “baby” anymore. Skyrmions have been researched a lot theoretically and stabilised
experimentally. People even see magnetic skyrmions as a perspective direction for data storage
devices. Romming et al have already managed to create (“write”) and destroy (‘“remove”) a
single skyrmion that seems to be a great step towards new generation of digital memory devices.
[51] Tt was also proposed to use magnetic skyrmions as logic gates [52] and transistors. [53]

The discussion of lattices of topological defects is rather incomplete should we study
skyrmion lattices only. There are other examples of topological defects to be considered even
in condensed matter physics. One of them is found in superconductors.

The phenomenon of superconductivity was discovered by a master of low temperatures
Heike Kamerlingh Onnes in mercury below 4.12K in 1911. [54] In his experiment at 7' = 4.12K
the resistivity spontaneously jumped down to zero (immeasurably small quantity at least).
The state of zero resistance was called to be superconducting and the state above the critical
temperature — normal. This discovery had a huge impact on the scientific community and in
following years many other materials proved to be superconducting at certain circumstances.
In fact, it was demonstrated that almost half of the known metals exhibit superconductivity
at low temperatures with niobium being high-temperature champion — its critical temperature
is T, = 9.3K, that is the highest result for a pure metal — and there are of course thousands
of superconducting alloys as well. [5] The highest T, reached at the moment of writing this
Thesis is T, ~ 133K at normal pressure and it is HgBagCasCusgOg that demonstrates it. [55]
Overall, the highest T, reached is T, ~ 203K in HsS under pressure of 150G Pa. [56]

Superconductors are well-known for their perfect conductance, hence zero resistance at
low temperatures. However, according to the modern definition, the main characteristic of a
superconducting state is its ability to completely repel an external magnetic field, should it
be below the critical field, B.. [57] If the applied field is higher than B. (that depends on
temperature itself) superconductivity is destroyed. The state of complete field repulsion and
perfect conductivity is called to be a Meissner phase — after Walther Meissner who discovered
this complete repulsion of an external field by a superconductor in 1933 along with Robert
Ochsenfeld. [57] The Meissner state is a thermodynamic state that depends uniquely on the
applied field and temperature (i.e. there is no difference, whether we first cool the sample
down or turn the field on), but not on the previous configuration of the system. [58]

By analogy to ferromagnets, one can describe superconductors by an order parameter,
that is zero for a non-superconducting (normal) state, but is non-zero in the superconducting
(Meissner) phase. This was first done by Vitaly Ginzburg and Lev Landau in 1952. [59]
For a superconductor the order parameter is a macroscopic wave function of Cooper pairs
condensate, 1) = |¢|e?’. Then the free energy functional is expanded around the critical point
in powers of the order parameter and hence the macroscopic wave function can be found
by minimising the obtained functional with respect to [¢|. The famous Ginzburg-Landau

functional per unit volume for a superconductor in an external magnetic field is then written
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as )
Cov-a)of | gt o
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Fstn+/ a!¢!2+§\w\2+ (1.9)

where F,, is the free energy density of a normal state averaged over the volume V| B is the
internal field of a superconductor (zero in the bulk), A is the corresponding vector potential
and « and [ are phenomenological constantsH It is also often convenient to define F' = Fy— F,
and study the difference only.

Notice that in Meissner state |1)| = const and 6 = const, hence it follows that the Meissner
state is homogeneous, as the ferromagnetic state in a single domain is.

However, as there are inhomogeneous magnetic states in magnets, there are inhomogeneous
states in superconductors as well, when magnetic field can partially penetrate a sample without
destroying superconductivity. This can be an intermediate state that is formed near the surface
of a superconductor (so the field is not exactly zero there, but decays towards zero on some
penetration depth depending on the geometry of a sample) [60} [61] or a superconducting vortex
lattice.

In 1935 Wander Johannes de Haas and Josina Maria Casimir-Jonker discovered a smooth
transition from the normal state to the Meissner state with two critical fields. [62] They
thought, though, that the effect was due to bad quality of their samples and did not pay much
attention to it. In 1937 Lev Shubnikov considered material with not doubtable quality and
discovered the same effect: some materials demonstrated a mixed state between normal and
Meissner states. [64]

Hence one can distinguish between superconductors that change their phase from normal
to Meissner directly — call them “type-I superconductors” — that have one critical field, and
superconductors that exhibit a mixed state between normal and Meissner states — “type-11
superconductors’ﬂ — that have two critical fields: B, for Meissner-mixed state transition
and B, for mixed-normal phase transition. Both B., and B., depend on temperature. It
was found later that most of the known superconductors, especially high-temperature ones,
i.e. those of particular interest of the scientific community, are type-II superconductors. A
comparison between phase diagrams of a magnetic material and a type-II superconductor is
demonstrated in Figure

Nonetheless, the true nature of the mixed state had not been discovered until in 1957
Alezei Abrikosov predicted its existence theoretically. [63] In his work he suggested that “flux
tubes” may be present in a superconductor when an external field lies between B., and B,,.

The field would then penetrate the superconductor through these flux tubes, but in the bulk

!The are constant with respect to spatial coordinates, though might depend on other parameters, such as
temperature, pressure, etc.

2In fact, formal classification is based on the value of Ginzburg-Landau parameter, &, that we would discuss
later.
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(a) Phase diagram of a magnetic material exhibit- (b) Phase diagram of a type-II superconductor exhibit-

ing helical, skyrmion, ferromagnetic and paramagnetic ing Meissner, mixed and normal states. In Meissner

states. Pictures of phases are taken from [19]. state a superconductor completely repells the field,
while in the mixed state some field can penetrate.

Figure 1.11: Comparison between phase diagrams of a magnetic material and a typpe-II
superconductor. Both have two critical temperatures, hence two phase transitions, and a
mixed state between two states of a completely different order.

superconductor magnetic induction would still remain zero. Abrikosov identified these flux
tubes as superconducting vortices and the corresponding state as a vortex state. This state
would of course be inhomogeneous, hence the order parameter, v, shall acquire some spatial
dependence. The order parameter is still constant in the bulk superconductor, but then decays
down to zero when approaching the vortex core. Abrikosov also suggested a vortex lattice
(called sometimes “Abrikosov lattice” or “Abrikosov vortex lattice” nowadays) as a solution of
Ginzburg-Landau equations derived from the functional for a system in the mixed state.
[63] Later it was calculated that for a system to maintain the minimal free energy the lattice
has to be triangular. [65]

A vortex lattice was first observed in niobium in 1964 by D. Criber et al via neutron
diffraction [66] and later directly — using electron microscopy — by U. Essman and H. Trduble.
[67] The actual lattice found was triangular and periodic, as it had been predicted, though
it might be deformed by defects in the crystal lattice. Examples of superconducting vortex
lattices observed can be found in Figure [1.12

Since a superconducting vortex lattice was predicted theoretically and observed experi-
mentally a lot of research has been carried out in the field. Many research groups around the
world have been focusing on finding high 7T, superconductivity, grinding microscopic expla-
nation of unconventional superconductivity, studying effects of lattice defects on Abrikosov
vortices and unvealing other mysteries of this fascinating phenomena. Extensive theoretical
studies of vortex lattices have been carried out by, for example, Daniel Agterberg [T0] and
Ernst Helmut Brandt [71]. We shall focus on the methods and results of the last one later on
the go.
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(a) Abrikosov vortex lattice ob- (b) Abrikosov vortex lattice ob- (c) Abrikosov vortex lattice ob-
served in Pb — 4at%In by U. Es- served in NbSez by H. F. Hess et served in MgBs by L. Y. Vinnikov
sman and H. Trauble in 1967 us- al in 1989 via scanning tunnel mi- et al in 2003 by bitter decoration.

ing electron microscopy. [67] croscopy. [68] [69]

Figure 1.12: Examples of superconducting vortex lattices observed in different materials by
different techniques.

Many people that used to work with skyrmions have noticed similarities between skyrmion
lattice and Abrikosov vortex lattice: lattice structure, topological nature, requirement of an
external field to exist, etc. [43]

Skyrmions had been studied in conjunction with superconductors. For example, Agterberg
et al have considered magnetic superconductors, [72] Knigavko et al focused on skyrmions in
triplet superconductors. [73]

In this Thesis we investigate the case of a superconducting vortex lattice next to the
skyrmion lattice (i.e. the bilayer of a magnetic material and a type-II superconductor) and
see if the ground state of both systems is to change; as we are mainly focused on magnetic
materials and skyrmion lattices in this Thesis, our main goal is to see if we can stabilise
metastable magnetic states found in the skyrmion material by presence of a superconductor
next to the magnet.

We will combine the two systems via electromagnetic coupling; i.e. an external field that
penetrates the vortex in a superconductor would not be uniform anymore, but rather stand as
a combination of the uniform external field and the magnetisation stray field of the skyrmion
lattice. On the other hand, the field external to the skyrmion lattice would not remain uniform
either, as it would be the field that penetrated a superconductor, and had been modified
therefore.

We start off with Brandt’s approach to type-II superconductors [71] and extend it to the
combined system.

In this Thesis we first discuss single skyrmions, then, in chapter 2] turn to skyrmion lattices
and study their stable and metastable states, emphasising energies of these states with respect

to each other, size and shape of skyrmions and critical magnetic fields that were found exactly.
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Being inspired by Brandt’s approach, we consider Fourier representation of the magnetisation.
The method introduced in chapter [2| proved to be very efficient, universal and more accurate
than any other known technique. In chapter [3] we recall type-II superconductors and super-
conducting vortices, and henceforth in chapter [f] consider a bilayer of a skyrmion material
and type-II superconductor. We then see if one can use a superconductor in order to stabilise

magnetic states that used to be metastable in pure magnetic material.
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Chapter 2

Skyrmion Lattice

2.1 Introduction and Motivation

Skyrmion lattices were first introduced by Igor Klebanov [79] in 1985 for neutron crystals.
Bogdanov and Yablonskii [40] then introduced the skyrmion lattice model for magnetic mate-
rials (they referred to skyrmions as “magnetic vortices”, though) in 1989, and in 2009 (after a
period of twenty years!) a skyrmion lattice was finally spotted experimentally by Mihlbauer
et al [20] in MnSi and by Yu et al [2I] in Fe;_CoxSi (these materials were predicted by
Bogdanov and Hubert in 1994 to support skyrmion lattices [42]).

It is known from both theoretical predictions
[42] and experimental evidence [75] that skyrmions
form 2D triangular latticesﬂ that are perpendicu-
lar to the external field and translation invariant in
the parallel direction. Skyrmion lattices have been
observed in non-centrosymmetric magnets, such as
MnSi, Fe;_xCoySi, FeGe, Mnj_,Fe,Ge, and some

other materials. [75] An example of experimentally

observed skyrmion lattice can be found in Figure [2.1
Clearly, being proposed back in 1989, skyrmion Figure 2.1: Skyrmion lattice struc-
lattices have been studied widely. Various methods ture observed experimentally in

had been used: for example, Bogdanov introduced FeyxCoxSi for a weak magnetic field
(50mT'). Colour scheme and arrows

analogy to the Abrikosov solution for a superconduct- R . )
represent the magnetisation direction.

ing vortex lattice [40] in his first work and then con-
ducted the study of free energy functional of a magnetic material using polar coordinates and
tried the finite-difference method [42] 80] and Runge-Kutta method, [81] in order to solve Eu-

!Triangular lattice was first imposed for skyrmions due to the analogy to Abrikosov vortices in type-II
superconductors. [42]
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ler equation for helical-like structures obtained. Yu et al performed Monte-Carlo simulations,
[21] Han et al applied variational analysis of the free energy functional with the aid of C' P!
mapping and analogy of skyrmion lattice to the Abrikosov vortex lattice, [43] Karin Everschor
and Markus Garst solved Landau-Lifshitz-Gilbert equation [82] and many other approaches
have been carried out. In this survey we are going to apply a different method of investigation
of skyrmion lattices — as the skyrmion lattice is periodic, we will use the probably most con-
venient way of investigation for periodic structures: introduce Fourier decomposition of the
magnetisation on a triangular lattice and use it in order to minimise the free energy functional
of a magnetic system. We will start with the systems that have been already studied, for
example, by Han et al, [43] in order make sure our approach is consistent with the results
obtained before; then we would carry on the research to reveal unknown mysteries of this
piece of the microworld.

In this chapter we discuss single skyrmions and their origin, then introduce Fourier de-
composition of the magnetisation components, then with the aid of the Lagrange multiplier
we find optimal lattice spacing for a given field that minimises the free energy functional and
then investigate stable solutions, paying extra attention to transition points and determining
exact values of critical fields. Although the lattice of the stable system was confirmed to be
triangular during this research, another lattice type was found in metastable regions. It ap-
peared that some metastable skyrmion configurations follow honeycomb lattices in oppose to
their stable counterparts. However, if one compares free energy functionals of systems that
obey triangular and honeycomb lattices, one realises that they are close to each other near the
skyrmion-ferromagnet transition. We will study these honeycomb lattice solutions deeper in

comparison with triangular lattice solutions and thus think of their applications in the future.

2.2 Magnetic Skyrmions

As it was mentioned in the introduction, magnetic skyrmions mainly arise from the competition
between ferromagnetic exchange and anisotropic interaction. The exchange interaction tends
to bring all the spins to a single alignment, whereas Dzyaloshinsky-Moriya interaction tends
to curl spins in helices. So when these terms are of similar magnitude and the Zeeman term is
small enough, magnetic skyrmions can be formed. Typical length scale of magnetic skyrmions
is 5 — 100nm, which is larger than the lattice constant,ﬂ hence the continuum approximation
is valid for magnetic skyrmion systems. [75]

There are, however, other possible origins of skyrmions or skyrmion-like structures. Let
us briefly discuss several of them, though we would still focus on those resulting from the
competition between exchange and Dzyaloshinsky-Moriya interactions. The most popular

alternative origin of skyrmions is the long-ranged magnetic dipolar interaction. [76] These

2Lattice constant of a material, not to be confused with skyrmion lattice constant.
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are common in magnetic thin films with perpendicular easy-axis anisotropy. The dipolar
interaction in this case enhances an in-plane magnetisation, whereas the natural anisotropy
favours an out-of-plane magnetisation. So we have two competing interactions again, hence
the skyrmion state may arise. Typical length scale of skyrmions arising from the competition
of the dipolar interaction and the anisotropic interaction is in order of 100nm to 1pm, which
is larger than the length scale in the system of our interest. These skyrmions are often referred
to as “magnetic bubbles”. [77]

Other skyrmion formation mecha-

nisms include frustrated exchange inter-
actions, [74] where one considers sec-
ond nearest neighbour interactions, and
four-spin exchange interactions, that
lead to square skyrmion lattices. [47] In
these cases the size of the skyrmion is of
order of 1nm, which is of order of the lat-
tice constant, hence the continuum ap-
proximation cannot be applied here. [75]
Luckily, here and later on we are going to
focus on skyrmions formed by the com-

petition between the exchange interac-

tion and anisotropic interaction, hence

shall not worry about the validity of the Figure 2.2: Single magnetic skyrmion in spin repre-

. . . sentation.
continuum approximation.

Let us now consider a single skyrmion as depicted in Figure 2.2l We see that the spins are
in their “up” position at the edge of the skyrmion and in the “down” position in the centre of
a skyrmion. On the other hand, in polar coordinates, the component of the spins in circular
direction is independent of the polar angle, and thus we can claim that the direction of a spin
in a single skyrmion has the radial dependence only.

In continuum approximation a magnetic system is described by the following free energy

functional per unit area: [75]

F:/{gZ(auM)-(6#]\7[)+DM.<V><M)—§.M} d‘fy, (2.1)

m

where the integration goes over the unit cell with area A and M is the direction of the
magnetisation, hence must satisfy
=1. (2.2)
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—

B

We also introduce k = % and E = 37 in order to simplify our functional to

F:2J/{i2(auj\2)-(auM)+nM.(V><M>E.M} dffy. (2.3)

m

A single skyrmion is a magnetic system, hence it is convenient to describe it by the
functional (2.1). However, following the symmetries described above it is also convenient

to parametrise the magnetisation in polar coordinates:
M = (cos ¢sin 0, sin ¢sin 0, cos 0) , (2.4)

with 6 and ¢ angles demonstrated in Figure [2.3

“A
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—

7
Figure 2.3: Definition of angles 6 and ¢ for a spin within a skyrmion.
Combining this definition with the knowledge we obtained from Figure 2.2 conclude that

0 depends on the radial component only and ¢ — only on the angular one. So if one defines a

radius-vector in our new coordinate system as

7= (r,e) E] (2.5)

then 0 = 6(r) only and ¢ = ¢(¢) only. While the 6(r) dependence is non-trivial, ¢(¢) can be

written as
P(p) = mp +1, (2.6)

where m = £1 and v = 0, £5, 7. Their values depend on the anisotropy and its origin. For

3This is in fact ¥ = (r,9, ) in 3D, but we are working on a plane, hence with the case of ¥ = 5
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the system of our interest (Bloch skyrmion) m = 1 and v = 5. The sign of v is determined
by the Dzyaloshinsky-Moriya constant, D. The form of ¢(p) stated in equation (2.6 comes

from the topological skyrmion number. [75] Topological skyrmion number is defined as

1 - (oM _ oM
Ny = — M| — X — 2.
w=p |/ ( M 8y>dxdy, (27)

where M can be parametrised as in 1) The skyrmion number then turns into (see below

for the detailed conversion of the integral)

1 00 2 Jp do . 1 r=00 27
Ny, = 47T/0 dr/o d@%% sinf = E[COSGLZO [gb(cp)}o ) (2.8)

Suppose now that all spins point up at » — oo and all spins point down at » = 0. Then
=00
[cos 9} =2 (2.9)
r=0
One can define the vorticity, m, such that

Ny =m (2.10)

once the condition r — oo is fixed. Then obtain

L o 2.11
= o-[#0)], - (2.11)
Such a formulation then leads to
¢ =mep, (2.12)
or
o =mp+. (2.13)

Let us now convert the functional (2.1)) to the form that is consistent with our new
parametrisation of M. Notice that although we have parametrised our magnetisation in po-
lar coordinates, the derivatives involved in functional (2.1 still remain Cartesian. In the

representation of 7= (r, 1, ) the derivatives becomﬂ

in v Y
0y = cos ¥ sin 90, — 31.n Oy + o8 COS(pa@, (2.14)
7 sin T
VY ind
Oy = sin ¥ sin p0, + CO,S Oy + P o8 ‘pa#,, (2.15)
rsin ¢ T

and there is no z-dependence in our model. With the aid of transformations (2.14) and

4See Appendix for the derivation.
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and polar parametrisation of the magnetisation, , one can transform the functional
(2.23) into pure polar form. While the transformation of the Zeeman term (the last term
in the functional) is trivial, let us focus on the transformation of the exchange term and
Dzyaloshinsky-Moriya term.

The exchange term can be expanded as
Tor = 1 [0+ (0, + (@M, + (9,M,)° + (0:M2)? + (0,M.] (2.16)
e:):—4 ciVlg yiVig riVly yiVly ciVlz yiVlz . .

Taking the parametrisation of M,, M, and M, from (2.4]), the parametrisation of 0,
and 0, from (2.14) and (2.15) respectively and recalling the fact that § = 6(r) only and

™

¢ = ¢(p) =me +, withm =1, v = § and J = § for Bloch skyrmions, we obtain

1/do\> 1
Tow = 1 <dr> + y sin? 6. (2.17)

The easiest way to deal with the anisotropic term is to apply derivatives, (2.14) and ([2.15)
and do the algebra just as we did it for the exchange term aboveﬂ The anisotropic term then

becomes

do
Toum = k— + — sin 0 cos 0. (2.18)
dr r

Combining results from (2.17)) and (2.18) along with the parametrised form of the Zeeman

term, we obtain the polar form of the free energy functional:

R 1d6 2 9 K . 1 .5
F:27rJ/ ——+ k| —K"+ —sinfcosf+ —sin“f — B (cosf — 1) prdr, (2.19)
0 2dr r 4r

where xk = %, 8= %, as B = (0,0, B) with B = const and R is the radius of a skyrmion.
Technically, the integration should have taken place on the interval of [0, 00), but we fix the
outer boundary to R as 6 collapses to a trivial solution for r > R.

Now we can minimise the obtained functional with respect to @ either directly or via solving
corresponding Euler-Lagrange equation in order to obtain 6(r) for a skyrmion of a given radius,

R. In either way we start with the linear initial guess,
bo(r) =m(1—71), (2.20)

with boundary conditions of
0(0) =x (2.21)

5 Alternatively, one can recall curl in polar coordinates, transform M into pure polar form (i.e. to M,, My,
M, not the parametrised form used in (2.4)) and do the curl directly. Both methods would work.
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and
0(R) = 0. (2.22)

Before proceeding with calculations of 6, one shall find the optimal radius of a skyrmion.
In his early works Bogdanov defined the radius of a skyrmion as lattice constant halved. [42]
Later he used more accurate circular-cell approximation. [41] However, while working with a
single skyrmion, the relation between the radius of a skyrmion and lattice constant does not
really matter, so we can use any definition. In any case, the radius of a skyrmion is roughly
the distance from a “down” spin to the nearest “up” spin. We also need to employ another
minimisation procedure in order to find the optimal radius for given values of x and . This

was done directly and the results obtained are demonstrated in Figure 2.4

35 : . . ; ; : :
Free Energy Functional for g=1
30}| — Free Energy Functional for g=1.5
—— Free Energy Functional for 5=2
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Figure 2.4: Free energy functional for a single skyrmion minimised with respect to the radius
of a skyrmion with optimal radius found. All the calculations were performed for x = 1. Lines
of different colours correspond to calcualtions for corresponding values of S.

From Figure [2.4] we can notice that the optimal radius of a skyrmion does not vary much
with 8, however, the dependence exists. It is demonstrated in Figure We see then that

the radius decreases with applied field increasing, i.e. the skyrmion becomes smaller at high
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fields. Physically this means that if we consider the same number of spins for any system, for
large external field more spins would rather align in the direction of the field (as in a typical
ferromagnet), than follow the skyrmion distribution. And as we consider the skyrmion radius
to be the distance from “ down” spin to the nearest “up” spin, this distance would become

smaller, as fewer spins would make it up.

2.6

— Free Energy Functional

— Free Energy Functional
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(a) Optimal radius of a skyrmion against 3. (b) Free energy functional of a signgle skyrmion
against 3.

Figure 2.5: Optimal radius of a skyrmion and free energy functional for a single skyrmion
calculated for the optimal radius configuration against j3.

The free energy functional, , was calculated for an optimal radius configuration using
6(r) found for this radius from the minimisation of the functional (2.19). The functional against
the applied field for fixed x = 1 is demonstrated in Figure [2.5b]

Let us also plot 0(r) as it was found from the minimisation of the free energy functional
with the optimal radius. This is shown in Figure|2.6, The coordinate is scaled with the optimal
radius for a studied configuration in order to provide better comparisonal view.

Results demonstrated in Figure[2.6|can be compared against those obtained experimentally
by Romming et al. [48] We would see then that the correspondence between these results is
quite good. Also, from Figure one can conclude that the linear guess is rather good only
for small values of an applied field and for the region around the centre of a skyrmion. In

other cases the linear formulation of #(r) should not be accepted.
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3.5 T T T T
— Linear initial guess for 4(r)
3.0 6(r) for p=1 1
— 0(r) for =15
2.5} _ — 0(r) for g=2 :
2.0t
< 1.5}
1.0t
0.5}
0.0t
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=l

Figure 2.6: 6(r) found from the minimisation of the free energy functional with the optimal
radius for different values of 3. Lines of different colours correspond to calcualtions for various
values of 3. The purple line stands for the initial linear guess for #. The terminal point varies
for different configurations as it is nothing but the optimal radius itself.

2.3 Euler-Lagrange Equations for a Magnetic System in Fourier

Space

2.3.1 Free Energy Functional in Cartesian Coordinates

So far we have dealt with a single magnetic skyrmion only. A single skyrmion is a great toy
model, a wonderful self-consistent piece of quantum magnetism. Despite the fact that one
can extract surprisingly a lot from single skyrmion studies and the fact that single (isolated)
skyrmions still can act as stable and metastable solutions of the actual systems [41], [78], we
would rather move to the survey of their collective behaviour: study 2D lattices formed by
skyrmions.

At the first glance one could try to formulate a structure factor [83] for a single skyrmion

and work with it on a lattice. Such an approach would not work for skyrmions, however, as
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skyrmions are known to be dynamic. Moreover, skyrmion lattice as well as the skyrmion itself
can get deformed. So let us start our study of skyrmion lattices with the formulation of the
free energy functional in Cartesian coordinates. It is convenient to work in polar coordinates
with a single skyrmion, that is a 2D circular object itself, i.e. obeys rotational symmetryﬂ
however, this does not hold for lattices. A formulation in terms of Cartesian coordinates is
preferable in the case of skyrmion lattices. It is also easier to construct square and triangular
lattices in Cartesian coordinates due to their rectangular nature. As it was demonstrated in
section the free energy functional per unit volume (from here onwards — just the free

energy functional) of a magnetic system in Cartesian coordinates goes as follows:

F ] = / {‘2]2“: (0u07) - (8,01) + DT - (V x 8 _E-M} dﬁly, (2.23)

where J is the ferromagnetic exchange constant, D is the Dzyaloshinsky-Moriya coupling

constant and B is the external field applied. Here M=M (z,y) with components
M(m,y) = (Mx(x,y),My(m,y),Mz(x,y)), (2'24)

obeying ‘M‘Q —1and B = (0,0, B) with B = const, which corresponds to the uniform
external field in z-direction.

Many equations that are to be derived in the following chapters cannot be solved analyt-
ically, hence have to be attempted numerically. The most convenient way to do numerical
analysis is to convert the equations of interest to the dimensionless form, as in this case one
does not have to worry about extremely small or extremely large quantities as well as the
dimensions themselves. Hence let us convert the free energy functional, , into dimen-

sionless form. Introduce

D
= 2.25
K=5s (2.25)
that would scale the anisotropic (Dzyaloshinsky-Moriya) constant, and
B
= 2.26
5= 2 (2.26)

to scale the applied field as we did for single skyrmion studies in the previous section, in order

to obtain dimensionless formulation of the free energy functional:

F [ M(e,y)] = zJ/ {iz (0u0T) - (8,01) + bl - (¥ x 31) = §- M} dﬂffy, (2.27)
1

SIn this case we need to deal with = (r) only, hence simplify our life by dealing with a quasi 1D system.
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or just

F [M(:E,y)} :2J/]:[M(J:

2 Y)]

dxdy
A )

(2.28)

where F is the free energy functional density. Notice that 8 and x are not dimensionless them-

selves, moreover,  has dimensions of 7! and 3 has dimensions of 7#~2. However, functional

F= [ i)

is dimensionless.

dxdy

(2.29)

Let us now introduce dimensionless coordinates, 7 = 7, via

— ~ o~

T = (L, 9) = KT,

with £ = kx and § = Ky, as k has dimensions of 7
coordinates in skyrmion systems. [43]
In correspondence with ([2.30|) define

so the functional, F, transforms to

Pt [ {50 (00 (i) e (9 21) - Ao} S0 - o,

I

where we have also defined

to make 5 dimensionless as well.

-1

(2.30)

This is the usual convention for

(2.31)

(2.32)

(2.33)

(2.34)

Another important quantity now is MH, that is defined as

m:mCﬂ.
K

(2.35)

In order to shorthand the notation in the future, we relabel

T — T,
F,— F,

Be = B,

35

(2.36)

(2.37)

(2.38)



CHAPTER 2. SKYRMION LATTICE

M, — M, (2.39)
etc.

Despite the fact that the formulation of the free energy functional given in (2.27) is con-
venient for lattice studies, magnetisation formulated in Cartesian components, as stated in
(2.24), does not automatically satisfy the crucial constraint of

|M(z,y)> = 1. (2.40)

In order to take this constraint into account we introduce the Lagrange multiplier, A =
Az, y), and hence add the constraint to the functional, as one usually does for constraint

systems:

P15 (00)- (1) 0 (V1) ateA (WP 1),

or in component form:

Fo= [0 4 @:0)° + 007 + (0,0 + (9,My)" + (9,M.)?]
+  [My0yM, — M0, M, + M, (0.My — 0yMy)| — BM, (2.42)
+ A(MZ+M;+ M -1),
for better demonstration.
We want to figure out the optimal spin (magnetisation) configuration for given parameters,
so we need to minimise functional , and thus derive Euler-Lagrange equations for M,,
M, and M. Following the general form of

OF _, OF
oM, ~ 9 (0,M,)

=0, (2.43)

with summation convention applied for v, that is v = x,y, Euler-Lagrange equations come as

follows:
(02 + 07) My — 40,M., — 4AM, =0, (2.44)
(02 + 07) My + 49, M. — 4AM,, = 0, (2.45)
(02 + 07) M, — 4(0: M, — 0, M,) — ANM,, = —28. (2.46)

2.3.2 Fourier Representation of the Magnetisation

As it was mentioned before, there are many methods to study skyrmion lattices. None of them

is perfect, however. One of the most popular methods (developed by Bogdanov et al [42])

36



CHAPTER 2. SKYRMION LATTICE

involves so-called circular cell approximation, i.e. it assumes a unit cell to be a circle with the
corresponding radius. This method does its job, however results obtained are not nessesarily
in a good agreement with experimental evidences (see later). Another method, introduced by

Han et al, [43] that takes into account similarity between the skyrmion lattice and Abrikosov

vortex lattice does not take the constraint of ‘M ’2 =1 for all 7 into account, hence the results
obtained cannot be precise either. Therefore we are not going to follow any of the existing
methods; instead develop a very new one: being inspired by Brandt’s approach for Abrikosov
vortices in type-II superconductors (see section we Fourier transform the magnetisation
components (and the Lagrange multiplier as well) and do all the important calculations in
Fourier space. As our skyrmion lattice is a periodic structure (hence the magnetisation is a
periodic quantity) and in general is expected to be similar to the Abrikosov vortex lattice,
Fourier approach is completely legitimate. Following Brandt’s motivation, [71] we expect
our approach to be fast and universal, i.e. converging fast enough for any combination of
parameters.

Prior to doing the transformation itself, let us introduce the space and the lattice. We

define lattice vectors to be d; and ds with

i = aé, (2.47)
and /3
3

i = géz + Yaé. (2.48)

An example of a triangular lattice is given in Figure

o

Figure 2.7: Sample triangular lattice with primitive lattice vetors @; and @y and lattice spacing
a. A unit cell is depicted by a shaded paralellogram and contains exactly one vertex (skyrmion,

in our case).
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Any point within the unit cell now can be described by

7= x;d] + yjd’% (2.49)

where z; € [0,1] and y; € [0,1] within a unit cell. See Figure for the demonstration of

such a unit cell.

'

ER

Figure 2.8: A unit cell of a triangular lattice with primitive vectors, @; and ds. Position vector,
7, is defined via @ and dy as in equiation (2.49) and x; € [0,1] and y; € [0,1].

Positions of skyrmions (or any vertices, in general) on a triangular lattice can be denoted

by
R

with

vw = (VX1 + wre, WYs) , (2.50)

r1 = a, (2.51)
a

=3, (2.52)

Y2 = Ea, (2.53)

2

where and a is the lattice spacing and v and w are integers. For example, when v =w =0, a

skyrmion is located at ROO =0, etc.

With such a unit cell imposed, any real space function can be periodised as

f (F+ va) = f (. (2.54)

On the other hand, one can always Fourier transform any periodic function via

FR =) fre (2.55)
i
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where

7= (z,y), (2.56)
and

K= {*mn} , (2.57)
with

- 2 k.
kmn = i ( 2 ) = ( ) 5 (258)
T1Y2 nri — Mo ky

where m and n are dummy indices. In Fourier space they go from —% to % for m and —%
to % for n, where N, is the number of points in z-direction used in numerical simulations
and N, is the number of points in y-direction.

Now that as we have fulfilled all the necessary conditions, we can do the (discrete) Fourier
transforrrﬂ of the magnetisation components and the Lagrange multiplier.

Discrete Fourier transform of M, is given as

Mz(xa y) = Z an(kza k’y)e_igmnfg (259)

m,n

where Xy, (g, ky) is the Fourier coefficient for M, and m and n are integer indices as intro-
duced before.

In order to shorthand the notation, we write

M, =Y Xpe ', (2.60)
P
and by analogy:
My =) Yie ™, (2.61)
P
M, =" Ze (2.62)
P

for the rest components of the magnetisation and the Lagrange multiplier:

A=Y A (2.63)
P

Notice that although in this notation we have only one summation index, E, the actual

summation goes over m and n indices, also

X = Xpn (ko ) (2.64)

"Not to be confused with Fourier series.
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as well as all the other Fourier coefficients.
Now we can substitute these Fourier expressions into Euler-Lagrange equations (2.44)) —
(2.46) derived in the previous sectionﬁ In order to do it we would require formulation of

derivatives in Fourier form:

&, M, = — Zz’kl,Mu(E)e‘“;F, (2.65)

k

where v = x,y, u = x,y, z and M M(E) is the Fourier coefficient of a magnetisation component,
M,,, i.e. either of X, Yz and Z;.. Similarly,

M, = Zk;Q (ke ik, (2.66)

and we also write
K2+ k=K. (2.67)

So we can now use auxiliary relations (2.65)) — (2.67)) along with Fourier formulations ([2.60))
— (2.63) to obtain Euler-Lagrange equations in Fourier form from ([2.44) — (2.46|). Note the

terms with the Lagrange multiplier. The equations then are:

S| kX e 4 diky Zee 4XkZ)w, iRHRT g, (2.68)
3
> | -kYee T — diky Zpe™ ik 4Yﬂz>\ ik+RDT ) = 0, (2.69)
i
S |-k Zpe T 4 i (koY — kyXg) e T =422 " Ape (FHRIT = 9, (2.70)

ik!7

Multiply equations (2.68) — (2.70)) by “

and integrate over d:cdyﬂ

_ _ _ g //—»d%dy

2 ki ki i(k+k zk

§ j/ —K2Xpe T diky Zpe T — AXE Y Ap e R < =0 (2.71)
k/

8 Another option is to Fourier transform the equations directly.

9We need this integration step as we are working with Euler-Lagrange equations, though if we had worked
with the direct variation of the functional, the integration would have been more straightforward as well as if
we had Fourier transformed the equations at once.
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L= . L= TS AT ~_’//~d.’lfdy
2 ikt ikt i(k+k)7 k"7 _
Z/ —k*Yoe M — dik, Zze —4Y,;ZA,;,e (T T =0, (2.72)
g

= T AT Tn=drd
Z/ [_kQZEe—ZkT‘ 444 (k:EYE _ kyXE) e—lk‘T _ 4ZEZ)\Ele—Z(k‘+k )7 ezk‘ 7"%
k !

zn-dxd
_ _25/6“6 T%ly. (2.73)

Now one wants to simplify equations obtained. We will present the derivation step by step,
considering several important cases (terms) and do the rest by analogy. Start with a sample

term that results from the Dzyaloshinsky-Moriya term:

2oy sdad = =drd
3 / diky Zze T i "% = / diky Zze 1R 354?/, (2.74)
P P

but the integral of an exponent like the one in the above equation is just a d-function:

Y v/ ﬂdCCdy
/e (=R = Sz, (2.75)
hence the whole term reduces to
S —»dl‘dy
. —ilk—k T
> / tiky Zge L 40 5 e Zet, (2.76)
E k
also re-label k — k' and k" — k to get
4 " kyZpdgpn — 4> Ky T 0z (2.77)
E k
One can generalise this (call it) d-term as
T = dio Y "kl M, (K)o, (2.78)
g

where o = +1.

Another important term is the one containing the Lagrange multiplier, A, call it A-term:

iRk e dzdy

(R =Ry _

—4/2){;‘52%&6 ( T =AY XD N (2.79)
k E E k7
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which yields kE+k — k' or k' — k" — k, hence

—4Y Xp D> Melpppe = 4 Xphp g (2.80)
E E i
re-labelling k — k' and ¥ — k in order to remain consistent with the previous example, get

—AY N Xphp g 42Xk,)\k o (2.81)

k. k.//

and this A-term can be generalised to
T = —4ZM (K)\p_j- (2.82)

Dealing with exchange terms is easy compared to d-terms or A-terms: no underwater rocks,
integrate the exponents to obtain d-functions and re-label k — k' for consistence sake.

Finally, the constant term is simplified to:
~"//~d$dy
— 25/6* TT = —286z (2.83)

where we have re-labelled k" — k.
Investigating all the d-terms by following example (2.78)), all the A-terms via ([2.82)) and
employing ([2.83)) for the constant term, for a given k one obtains:

> [{-K2Xp + ik 25, } g — AXp g 5] =0, (2.84)
!
> (K2 - 4k 2} 6 — Vi Ap_p ] =0, (2.85)
k!
S {225 + 4 (WY - Ky Xp) } 5 — 420055 | = —280: (2.86)

g
Equations ([2.84)) — (2.86) can be rewritten in the matrix form to shorthand notation and

make the numerical procedures that are to follow easier and clearer:

> DypVe =11, (2.87)
g
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where the term on the RHS is just

0
0 ; (2.88)
—2/36

Fll

k0

V% is the vector containing Fourier coefficients of the magnetisation components for a given k,

Xx
Vi=| Yz | (2.89)
Zi
and the matrix [)EE’ is
2 )
. k/ 6%’,;7 - 4)\%_,;_7 O 41]{:;6%”;/
DEE/ = 0 k‘l2(5l-c'l-€', — 4)\,;_;, —41]{};55];, (2.90)
—47,/9;/(5]2];, 42](1;(5]2];, K (5]2];, — 4)\’;_];,
For convenience ﬁk’/ matrix can be split onto two terms,
where
k" 0 4ik,
K = 0 K2 —dik!, (2.92)
—4ik,, 4k, K?
and the second term is related to the Lagrange multiplier,

with T being an identity 3 x 3 matrix.
This step, however, is not necessary, though it simplifies future numerical calculation,
as the K » matrix contains lattice parameters only and is not modified by Euler-Lagrange

equations, hence has to be calculated once per lattice.

Solving equation |D for ‘712 via

. o
Vi=> DI, (2.94)
!

one can obtain expressions for Fourier coefficients and hence use the Fourier transform expres-

sions, equations (2.60)) — (2.62), to obtain M,, M, and M.
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As one may have noticed, we find X, Y and Z; and thus M,, M, and M, analytically
(matrix inversion and Fourier transform). However, we need to employ a numerical procedure

(see Appendix |C.1)) in order to find the Lagrange multiplier, A.

2.3.3 Skyrmion Lattice Solution

A typical lattice solution obtained by the procedure described in the previous section may be

found in Figure [2.9

71 T TS RN S FORS SO qoees o
-------------------------------- o A RN 049
N L 10.6
a | 10.3
s VON =0T L A TN SR
S 5 10.0
e <« i .. """ > P 2 __0'3
- 5 : : % .o ; L 1-0.6
0.4 NS P N PN SRR o SO S
' § L1 0.9
. R
0.2F i oAf-- £ M/ =NV ) SLREOPERTORERDY SRRT &
1.0 12 14 16 1.8 2.0

z/a

Figure 2.9: Lattice solution for a skyrmion system for the external field of 8 = 1.4 and the
lattice spacing of a = 4. In this figure as well as in all the other figures of this kind to follow
one finds the magnetisation of the skyrmion system. M, and M, are denoted by arrows curling
in the anti-clockwise direction (skyrmion way) and the colour contours stand for M, that has
the value of —1 in the centre of a skyrmion and 1 in the region between skyrmions. The
coordinates are normalised with respect to the lattice spacing, a. Note that it is not a unit
cell, though a piece of the lattice, represented in this figure.

As we can see from Figure [2.9] the lattice is triangular just as we imposed it to be. Lattice
spacing, a, is the distance between the centres of two neighbouring origins of unit cells. Also

we see that M, has its lowest values in the centre of a skyrmion and the highest between
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skyrmions. Conventionally, the highest value of z-component of the magnetisation, M, = 1,
corresponds to the “up” configuration of spins and the lowest value of z-component of the
magnetisation, M, = —1, corresponds to the “down” configuration of spins. Following such
a convention, one can see how spins change their position from “down” in the centre of a
skyrmion to “up” on the edge just as we have seen it for a single skyrmion in the previous
section.

Spin pattern, though, is better seen from Figure [2.10] that demonstrate spin orientation

whithin a unit cell of a skyrmion lattice and on a triangular lattice respectively.

Figure 2.10: Spin orientation within the unit cell of a triangular skyrmion lattice for 5 = 1.4
and a = 4. Spin changes from “down” position in the centre of a skyrmion to “up” position far
away from the centre of a skyrmion.

Keeping in mind that the field applied is positive, we see that spins align along the direction
of the field between skyrmions and in the opposite direction in the centres of skyrmions. So
one can call the region between skyrmions to be ferromagnetic.

We will stick to the representation style used in Figure while speaking about lattice
structure and shape of skyrmions, whereas the style used in Figure [2.10] is more convenient
when discussing spin patterns and internal structure of skyrmions.

Although it was the magnetisation we have been mainly interested in, we had to employ a
numerical procedure in order to find the Lagrange multiplier, A. If we have a look at A in the

unit cell of our system, we realise that the shape of A repeats the shape of a skyrmion exactly,
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though with the largest value situated in the centre — see Figure [2.11a] — and the lowest values
distributed in the middle region of a “skyrmion”. In other words, A takes the largest values
when the spins are aligned parallel or anti-parallel to the external field and the lowest values
when the spins are perpendicular to it (parallel to the xy-plane). It is not surprising, should

2
=1

one remember the actual constraint of ‘M

0.000012

\ r 4 0.000009

\ R 0.000006

'\ R 0.000003

\ g 0.000000

—0.00000
—0.00000
—0.00000

—0.00001

1.0 1.2 1.4

0.6 0.8 1.0 1.2 1.4

T T

0.2 0.4

(a) Lagrange multiplier calculated for 8 = 1.4, a =4 (b) |M|? calculated for 8 = 1.4, a = 4 on a unit cell.
on a unit cell.

Figure 2.11: Lagrange multiplier and |M 2 — 1 on a unit cell of a skyrmion system. Lagrange
Multiplier repeats the shape of a skyrmion exactly and the condition of |[M|? = 1 is preserved
at any point in the unit cell up to numeric uncertainty.

The only reason to introduce the Lagrange multiplier was to fulfil the condition of |M 2=1
in every single point of the lattice, as described in section Figure shows us that
]M |2 = 1 holds everywhere up to the numerical accuracy, which means that our implemen-
tation of the constraint and the calculations that followed up are correct. Figure and
Figure 2.11D] are presented in order demonstrate the legitimacy of the method developed in
this work. We will not refer to studies of quantities displayed in Figure[2.11a] and Figure
in the future.

Solutions to Euler-Lagrange equations are functions for which a functional is stationary,
however, there is no guarantee that such a stationary solution minimises the functional or, in
case it does, the minima found is the global minima, not the local one. So solutions found by
the method introduced in section [2.3.2] can be metastable as well as stable or not stable at all.
Since we work with a thermodynamic system that obeys several first order phase transitions,
we expect a huge cluster of metastable solutions, but it is the stable solutions we are looking
for in the first place. Hence we need to invent an additional procedure to distinguish stable
solutions from those metastable or not stable at all. As in general we are free to vary the
lattice spacing (though, the outcome of such a variation may not correspond to the minimal
configuration), we can find a lattice spacing that guarantees the most stable solution for a

given [ and fix it. And this is to be demonstrated in the next section.

46



CHAPTER 2. SKYRMION LATTICE

2.4 Finding the Optimal Skyrmion Lattice

2.4.1 Additional Condition

In section we have minimised the free energy functional by deriving Euler-Lagrange
equations that can be solved for a stationary solution. However, there is no guaranty for such
a solution to be the global minima: it might correspond to a local minima or no minima at
all. So we need to think of some additional condition that would help us to make sure the
solution we have found is the actual minima of the free energy functional. The only control
parameter we have used so far was 5 that is related to the external field.

Let us now work with the lattice spacing, a, as with a parameter and develop a procedure

to find an optimal one. Parametrise the coordinates via  that is a dimensionless number:
7=~ (2.95)

with z = va’ and y = ¢/, which leads to

1
%:;m, (2.96)
% = idQ 2.97
r = 72 T ( : )
.1

hence the functional ([2.27) turns into

Pl | {ng (o) - (o100, ) + Lo, (v ) - ,BM} g
m
with M, = M(y7).

In the end, though, the functional must be independent of the scaling, ~y, hence we impose

oF

5 =0 (2.100)

that leads to

11
[{=Z0
3 2
{27 u<

or, in shorthand,

) (01) - S () ;\Zij‘j} WA, (oo

Qil

Fop= 411/2 (9,.0,) - (9.1 ) dgi:lcfg”/ (2.102)
1
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for the ferromagnetic exchange term and
dx'dy’
Fon = / M, L
for the Dzyaloshinsky-Moriya term, we get

1 - 1 §F oM dx'dy’
—2—F.; — —F =
3 " DM + 5M 67 —r

(2.103)

(2.104)

But as M is a stationary solution of Euler-Lagrange equations, it corresponds to

SF

oM

(2.105)

On the other hand, we recall that ]\Zf'v = M(~#). We would like to have M unchanged,

though, as it is M (7) that is a stationary solution of Euler-Lagrange equations derived, not

M (v7) or any other scaled M. Hence we impose v = 1. This is allowed, as the functional

shall be independent of v anyway. So our condition would actually look like

oF

=0
a’y y=1 ’

and thus (2.104)) transforms to

or just
_QFeI_FDMZO’

that can be rewritten as ~
Fpu
Fex

=2,

(2.106)

(2.108)

(2.109)

which is actually nothing more, but the virial theoremlﬂ formulated for our problem (call

V = L£ou 4o be a “virial ratio” from here on). We will also stick to the condition

Fez

2.109

in

our calculations in order to make sure the minimum we find is the global minimum (see later).

As we have used the fact that the free energy functional is stationary with respect to M
and A, we conclude that (2.109)) holds for a stationary solution, or, on the other hand, if (2.109)

holds for a given set of parameters, then the solution obtained is stationary. Employing this

additional condition also gives us better numerical accuracy in the position of the minima (see

10T general, virial theorem relates the average of the total kinetic energy with the the average of the total

potential energy. [85]
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later).

2.4.2 Fixing Optimal Spacing

In the previous section we have derived a relation, (2.109)), that is supposed to help us achieve
a global minima of the system. The question is now how to satisfy this relation? And the
answer is: by varying the lattice spacing, a, for a given 8. An example of the free energy

functional for 8 = 1.1 against different values of the spacing is demonstrated in Figure

-1.23 . . -1.6

=== Free Energy Functional

-1.8p

-1.24

-1.25
-2.0p

B —1.26
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-1.29 . . . . 2.6 L L n n
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(a) Free energy functional of a skyrmion system for (b) Virial ratio, FﬁpNI7 for 8 = 1.1. The black dot
B = 1.1 against the lattice spacing. The black dot g

indi _ Fom _
indicates the minima of the functional. indicates V' = Few

—2 point.

Figure 2.12: Free energy functional and virial ratio against lattice spacing for 5 = 1.1.

We see that it is hard to determine the minima from Figure [2.124] solely, as the free en-
ergy functional is very shallow around it. One can still determine the minima, though with
quite poor precision. This is indicated by a black dot. On the other hand, from Figure 2.125]
it is easy to find the spacing that satisfies the virial condition, , — this point is indi-
cated in Figure 2.12h by a black dot. Comparing position of black dots in Figure and
Figure 2.121] realise that they their abscissa coordinates coincide, i.e. the minima of the free
energy functional corresponds to % = —2, as expected. Though, it is far easier to determine
a point precisely from Figure than from Figure Moreover, it would also require to
consider way fewer points in a due to high precision of the method, hence the efficiency of the
method would increase. So we will use condition in order to find the optimal spacing,

a, that minimises the free energy functional. The state obtained for a that corresponds to the

minimal value of the free energy functional aka I{?M = —2 is the stable solution.
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2.4.3 Analytical Solution for B =0
2.4.3.1 The Solution

Before turning to numerical minimisation of the functional using all the scaling and
procedures we have presented above, we want to test our approach. In order to do it, let us
minimise functional analytically for a special case of B = 0.

As we know, Dzyaloshinksy-Moriya system in absence of an external field should demon-
strate helical behaviour. [I5] Let us derive this solution analytically. The dimensionless

functional for 8 =0 is

P {M(m,y)} :/{iZ@ﬂM) . (8@\2) + M- (v X M) +A (‘M‘2—1>} dgij.

I

(2.110)
Fourier expand components of M as introduced in section
M, =3 My (Rye ™, (2.111)
E
with M, . being Fourier coefficients for M,, M,, M., then the derivatives are
O, My, = = ik, M, (K)e*, (2.112)
E
- o e
(v M)a = eapy > ks (R)e (2.113)
By k
and the functional then becomes
] = [ {53 b s it it (B
all k k/
+3 " capy . ks Mo (KNI, (K)e T (2.114)
afy kK
- / dzdy
A —z(k+k o )
S0 B LACH! e
« k,k/
Recall dnd
—i(k+k )P ALY
/ WHRIr=" = 6 ¢ (2.115)
and work with each term of the functional (2.114)) separately:
F=F.,+Fpy+ F)\. (2.116)
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The exchange term simplifies to

~ 1 . 7 TN —i /;dﬂl‘d’y
Fro = = [ 30 S (i) ) N ()Nt (R e 072
R
= {ZZM )ik, )M, (k)N ()3,
HY kK

_ _iZZ(%)(—%U)MM(%MM(—E)
_ _72219 (k)M (k)

_ 2
— _ZZZkV M,| . (2.117)
o
as M, (—k) = M (k).
The Dzyaloshinsky-Moriya term then becomes:
~ o o a o e adady
i(k+E)7
FDM = ZEaﬂ'y/Zlk’ﬁMa(k/)Mfy(k)e (k+k") T
aBy kK
= ) eapy Y ikpMo(K') M. (k)5 (2.118)
afy EE’
= > eapy Y ik (k)M (k).
aBy E
Finally, the Lagrange multiplier term turns into:
- AT _ / dxdy
F — z(k+k )
Y A D3 SRR )
Bk
= DO M (k)M (RS i — A (2.119)
BoER
o~ L2
- AZZ‘MM)‘ )\ (2.120)
Beog
Combining all three terms, we obtain
_ 1 q .
=> i > kM ‘ + ) €upy My (R)ikg M (k ‘ — A (2121)
E v

wBy

Vary the functional with respect to M ;(/;) by writing the corresponding Euler-Lagrange
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equation: ~ 3
8%?* -0, aFA o= 0 (2.122)
oM, 8(8Z,MM)

with the summation convention applied for v.
One then finds that all the derivative terms,

F
9(0, M)
Yv, hence we obtain R
F
8A =0, (2.124)
oM,

which is found to be

OF 1 N o N "
=SS RN (R) + > e (ika N () — ik M (R)) 4+ 207 N (R) ¢ =0,
oMy = |2
E pv By I
(2.125)
leading to three equations for three Fourier coefficients for a given k:

KX + diky Z; + 4X X} = 0, (2.126)
kY — ik Zp + ANY; = 0, (2.127)
K Zy + 4iky Y — diky Xz +4XNZ; = 0. (2.128)

These equations look similar to equations (2.84]) — (2.86)) with the only difference in the absence
of 8 E Let us now rewrite our new equations in the matrix form:

7 (0) v T

DE VE + 4AIVE =0, (2.129)

)

where we have separated the Lagrange multiplier from the other terms combined in ﬁéo ,

k? 0  4ik,
DY = 0 k2 —dik, |. (2.130)
—4ik, 4ik,  k?

HYWe could have actually adapted equations (2.84) — (2.86) for B = 0 case straight away, though we decided
to repeat the procedure from scratch for better demonstration.
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The Fourier coefficients are now combined in the eigenvector Vz,

Vo=1| v |. (2.131)

On the other hand, sometimes it is more convenient to write

D= DY +4Al, (2.132)
with
k2 + 4 0 4ik,
D= 0 K+4x  —dik, (2.133)

—diky,  4iky  k? 4N
then equation (2.129) reduces to

DV =0 (2.134)
that can be easily solved via
det Dz = 0. (2.135)

So let us find the determinant of the matrix D:
det D = (k2 + ) (—16k% + (k2 +43)*) (2.136)

and a characteristic equation

(k2 +42) (1682 + (12 + 41)) =0 (2.137)
solves to .
2
A=—7 (k* + 40k) (2.138)
where o can take values of 0 = —1,0, 1.
Let us now denote
klg=0 = ku (2.139)

in order to mark the wave vector of a helix and not to confuse it with other possible values of
k.
Finally, let us go back to the free energy functional, (2.121]), and notice that it can be

written in the matrix form as well:

F=> DiVi—\ (2.140)
3

o3



CHAPTER 2. SKYRMION LATTICE

But we had just solved I)EVIZ = 0, hence the functional reduces to
~ 1 9 ~

Let us now plot F(kg) for allowed values of o to determine whichever corresponds to the

minimal solution. See the plot in Figure 2.13]

E

Figure 2.13: F(kp) for differnet values of o: blue curve represents the functional for o = 0,
orange curve stands for o = 1 case and green one goes for o = —1.

As one can see form Figure [2.13] if we would like to stick to positive values of kg it is
o = —1 we should choose. However, if we do not restrict ourselves to positive kg, 0 = 1 case

would also minimise the free energy functional.
On the other hand, one can assume a helical solution from the beginning and parametrise

M in the usual helical form as it was demonstrated in the introduction:

0
M= —sinkyr |, (2.142)
cos EHF
with k = kgé., then the derivatives become
0
8“]\21 = —kpn, | cos ki |, (2.143)
sin EHF
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0
VxM=—ky| —sinkpgr |, (2.144)
cos EHF
hence the ferromagnetic exchange term simplifies to
. 1 - - 1 5
Fu=7Y (0,07 - (8,7 = kb (2.145)
w
and the Dzyaloshinsky-Moriya term — to
FDM:M- (VXM) :—k‘H, (2.146)

as an expression sin?# 4 cos?§ = 1 is involved in both ([2.145)) and (2.146). Hence the total

functional becomes

~ 1
F= 11@%{ — kg, (2.147)
just as we got it via A with ¢ = —1 that corresponds to k = kpé, (positive k).

Finally, let us plot F vs kg and compare it with Fﬁ?—M. The plot is demonstrated in
Figure [2.14]

b

Figure 2.14: F(ky) and FPEM compared. Blue curve represents F(kg) for positive values of

kg and orange one — Fpu
FE(E

In Figure we see that it is ki = 2 that corresponds to the minima of F on the one
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hand side, and to

DM _ _9 (2.148)

Fe:p

on the other hand side, as the condition ([2.148]) is satisfied precisely at ky = 2. Hence we
conclude that it is easy to determine a point at which is satisfied exactly. Clearly, for
a nonzero (3 the position of the minima of the functional would change, but the virial theorem
would remain valid (i.e. the condition would still correspond to the minima), hence
the condition would hold for any value of an external field as well. Then conclude that
it is condition one must fulfil in order to make sure the minima one finds for F is the
actual global minima.

Notice, that the condition is general for any helimagnetic system in its ground

state.

2.4.3.2 Comments on the Numerics

Another conclusion one may obtain from Figure is the fact that F' is very shallow near
its minima, hence the error in the position of this minima would be significant. In fact, it is
nearly impossible to determine the exact minima from the blue curve in Figure 2.14] with a
naked eye. This can be justified by a simple example. Suppose we are looking for a solution
of

f(z,) =0. (2.149)

However, it is impossible to reach anything precisely numerically, just up to a certain

accuracy, hence what we actually want is
|f(ar)] <e (2.150)

where € is the numerical error in calculations of f.

Taylor expand

Flay + Aa) = [la) + 20l

where Ax is the numerical error in the result; so the condition (2.150) turns into

+0 (Az?), (2.151)

Tr

of

|Az| o

<€, (2.152)

Ty

as f(z,) = 0 and we neglect terms of the second and higher orders in Ax.

We conclude then that the smaller %

‘ is, the higher the error in the result would be.
Tr

In other words, the shallower the function is around the point of interest, the higher numerical
error there is; and according to Figure the free energy functional is almost flat around its

minima, hence the result obtained would be highly unreliable in terms of the determination
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of the actual minima. So this is another motivation for us to employ condition (2.148)) in our
future calculations.
2.4.4 Summary of the Method

Let us now summarise our method. In order to obtain the optimal configuration of a magnetic

system, one needs to

e write the free energy functional in Cartesian coordinates with Lagrange multiplier, A,

~ 2
imposed for a functional to satisfy the constraint of ‘M ‘ =1
e define the lattice — triangular in our case;

e define Fourier decomposition of the magnetisation components and the Lagrange multi-

plier;
e derive Euler-Lagrange equations in Fourier representation;
e rewrite these equations in the matrix form;
e find Fourier coefficients for A numerically;

e find Fourier coefficients for the magnetisation components analytically from A found in

the previous stage;

e use the virial ratio, (2.109)), to find the optimal spacing, a, for a given value of an external
field, g;

e use the optimal spacing found before in order to calculate the optimal configuration of

the system for a given (3;

e repeat the procedure for other values of 5 of interest.

2.4.5 Stable Solutions

Following the procedure described in section [2.4.2] we have fixed the optimal spacing that
corresponds to a certain value of an external field. Clearly, skyrmion lattice exists for some
particular values of an external field only. We study the system for different values of an
external field to find the minimal possible free energy for that field starting from § = 0. The
free energy curve obtained is demonstrated in Figure 2.15] (red curve).

Notice that as we have found magnetisation components formulated in Fourier space, there
is no need to calculate the free energy functional numerically (hence avoid possible numerical

errors, especially while calculating derivatives); we can just formulate it via Fourier coefficients.
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Figure 2.15: Free energy functional of a magnetic system against an external field. Red
curve represents the optimal free energy of a system and green line is the free energy of a
ferromagnetic system demonstrated for comparison purposes.

Write
F:Fex+FDM+FZ7 (2153)

)
as we did for B = 0 case, keeping in mind that the condition ‘M ‘ =1 is now satisfied, hence
F\ =0.
Use (2.60) — (2.62)) for Fourier formulations of magnetisation components and ([2.65|) for

Fourier formulation of their derivatives to obtain:
~ 1 - -\ dxdy
o= 3% (@M) ' (@M) y
- A _irinedxdy
— k;/ k; k;/ l(k‘+k )r
DA CANERAIE A

v k‘k/

= ZZ"” k), M, (k) My (K)o 7, (2.154)

VI KR

_ _izzky(—ky)Mu(E)M;(/%’)
vp g

1 ~ 12 1
= oY) = SR (1 Pl 12l
Ve ok E
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where we have noticed that (—i)(—i) = —1, §(~z) = §(z) and M, (~k) = M (k).
Similarly, for the Dzyaloshinsky-Moriya term:

Fpar /M-(VXJ\ZI)

kK’

k

Finally, for the Zeeman term:

. dxdy
FZ__/B/M