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Abstract

There is abundant evidence pointing to an unseen component of the Universe comprising ap-

proximately 80% of its mass; this dark matter cannot be any known particle, and so demands

new physics. Very little is known about dark matter, however from the cosmic microwave

background, its abundance has been accurately measured. How this is produced then dic-

tates the requirements placed on a theory of dark matter. Here four works [1–4] are described

where theories of dark matter genesis are explored. The first mechanism considers an addi-

tional source of dark matter from decaying topological defects in the early Universe. Topo-

logical defects are massive structures formed during spontaneous symmetry breaking phase

transitions, which evolve under their own tension and decay, possibly producing dark matter

during freeze-out. This allows the annihilation cross-section to rise above what is required in

standard freeze-out, as the losses in abundance it predicts, may be recuperated by the con-

tributions from the decaying defects. Given this, the constraints standard freeze-out imposes

on dark matter models can be loosen. This is illustrated by implementing the mechanism in

an example theory, the Inert Doublet Model, where it opens up large swathes of parameter

space and allows for lighter dark matter masses. Furthermore this mechanism is employed

to resolve issues with dark matter interpretations of the galactic centre γ-ray excess seen by

Fermi-LAT. The cross-section required to produce this signal is in tension with limits from

searches in dwarf spheroidal satellite galaxies. Using this mechanism in a p-wave annihilating

model of dark matter, this tension is avoided while producing the correct relic abundance of

dark matter. Additionally we examine the direct detection signatures in upcoming detectors,

DEAP-3600 and XENON1T, of nuclear dark matter: bound states of strongly-interacting

dark nucleons, formed during a synthesis period in the early Universe. Scatterings of states

in this model produce characteristic recoil spectra, which we find can be distinguished to

3σ confidence level from WIMP spectra with as few as ∼ 24 events. Subsequently there is

potential for discovery in the not too distant future.
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Prologue

For the moment we might very well can them DUNNOS (for Dark

Unknown Nonreflective Nondetectable Objects Somewhere).

— Bill Bryson

This thesis details the original work in four papers produced as part of my PhD re-

search [1–4]. These are all related at least in part to atypical models of dark matter pro-

duction in the early Universe, which is the core theme of this thesis. We start by dedicating

Chapter 1 to reviewing dark matter physics — studying the evidence, production mecha-

nisms, phenomenology, and popular models. Within this chapter we explore the motivation

for dark matter to be a beyond the standard model particle, and discuss the ways it can be

produced in the early Universe; detailing freeze-out, the oft assumed production mechanism.

This places restrictions on some models, which can be relieved if an alternative mechanism

is considered. Furthermore, this chapter will briefly discuss arguably the most popular dark

matter candidate, the neutralino, in context in supersymmetric models. This is followed by

a section on model building using effective field theories and simplified models. Concluding

this chapter, we shall take a look at the status of dark matter searches in direct and indirect

detection, and collider experiments.

Topological defects play a crucial role in the works described here and comprise a large

part of the discussion, as such Chapter 2 provides a review of the subject, which begins with

a summary of symmetry breaking and the Higgs mechanism. We will also discuss defect

formation during these phase transitions and how the vacuum manifold’s topology dictates

the type of defect arising. Proceeding this, the focus shifts onto cosmic strings, a particular

type of defect, as they are of greater significance to our research. The evolution and decay of

cosmic strings is then examined, along with the condensates that form upon them.
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The next four chapters detail each piece of research in turn. Chapter 3 will examine

an alternative production mechanism of dark matter presented in [1], which used decaying

defects as a source of dark matter. The Boltzmann equation governing the evolution of the

dark matter yield in this scenario is derived and numerically analysed in order to study the

mechanism. Approximate analytic solutions to this equation are also presented in this chapter.

Lastly, constraints on the mechanism will be explored in a model-independent fashion, and

how these then limit the cosmic strings is discussed.

Chapter 4 studies how this mechanism may be realised in an example dark matter theory:

the Inert Doublet Model. After first reviewing the model, cosmic strings are then implemented

into it by adding a scalar field charged under an additional local U(1)′ symmetry. The strings

form during the spontaneous breaking of this symmetry by the scalar field, and the remnant

particle model is studied. Relevant experimental bounds from both dark matter and cosmic

string physics are then reviewed and applied to the model. We subsequently examine in what

regions of parameter space the correct relic abundance of dark matter can be produced, while

not conflicting with phenomenological limits. The work presented here is from [2].

In a second example of how the defect mechanism may be utilised, the work of [3] is

discussed in Chapter 5. Here the mechanism is used to deal with issues facing dark matter

interpretations of the galactic centre excess. First outlining the nature of the excess and how

dark matter can accommodate it, we then discuss its tension with searches in dwarf spheroidal

galaxies. Following on from this, it will be shown how a model with p-wave dominant dark

matter annihilation avoids this tension, but requires an annihilation cross-section too large

to produce the correct abundance according to standard freeze-out. The defect mechanism

is then used to resolve this new issue, and we build a toy model in which cosmic strings can

arise and the dark matter candidate has dominant p-wave annihilations. We then consider

the experimental constraints on this model and the consequences for cosmic string physics.

Finally Chapter 6 considers the direct detection phenomenology of nuclear dark matter,

a composite model of dark matter, which was the subject of [4]. Nuclear dark matter is

built on the ideas of standard model nuclear physics, i.e. it assumes dark matter consists

of strongly-interacting bound states of dark nucleons, and is reviewed here. We will then

study its signatures in two upcoming tonne-scale detectors, DEAP-3600 and XENON1T, by

first examining the recoil spectra. Proceeding this, the projected limits on the scattering

19



Prologue

cross-section will be found and compared to the existing limits from LUX. Using likelihood

tests, the number of events required to distinguish nuclear dark matter recoils from those of

a WIMP will also be found. Concluding this chapter, we comment on the chances for nuclear

dark matter to be discovered by these detectors.
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Chapter 1

Dark Matter

If this would be confirmed we would get the surprising result

that dark matter is present in much greater amounts than

luminous matter.

— Fritz Zwicky

It is now widely believed that the Universe contains a significant abundance of new unde-

tected particles called dark matter (DM), whose existence is essential to form the Universe as

we know it. The evidence so far suggests it is massive, interacts gravitationally and does not

scatter light (and is thus dark), but very little else is known; its spin, mass, and couplings have

yet to be measured. Huge numbers of beyond the standard model (BSM) theories containing

DM candidates have been suggested and studied, and each year more and more are presented.

While there is much not known about DM, a lot is known about what it is not; a variety

of experiments are searching (and have searched) for DM and many more are planned which

allow us to constrain DM theories, and have even provided a number of possible signals.

This chapter will deliver a brief review of DM physics — the motivation, theories, and

phenomenology, with an aim to create a foundation of knowledge from which one could delve

deeper into this vast subject. In Section 1.1 the evidence for DM is discussed, alongside

alternate theories which may also give rise to some of the observations, but are in tension

with others. Proceeding this, Section 1.2 reviews a selection of mechanisms through which

DM could have been produced, and considers the implications on the relic density. Section 1.3

takes a look at DM models, focusing on arguably the most popular candidate, the neutralino,
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1.1 Origins and Evidence

and discusses model building using effective field theories and simplified models. Lastly,

Section 1.4 looks at DM searches and signals in direct detection, indirect detection, and

collider studies, while also considering theoretical limits.

1.1 Origins and Evidence

The well established pieces of evidence for DM all originate from the collective gravitational

effects of a large body of DM, which can manifest in the rotation curves of galaxies and

galaxy clusters, measurements of gravitational lensing, and in the structure and formation

of the Universe. Here each piece of evidence is reviewed in approximate chronological order

allowing one to follow a line of reasoning, so that the motivation for DM can be clear.

1.1.1 Galaxy and Galaxy Cluster Rotation Curves

A galaxy is a celestial body primarily made up of stars, dust, and gas (and DM, we will later

assume), with a supermassive black hole thought to be at the centre. These can be part of

larger gravitationally bound systems called groups and clusters, which typically contain O(10)

and O(102 -103) galaxies respectively. Clusters and groups can then be part of superclusters,

which are amongst the largest systems in the observable universe. Superclusters and smaller

systems are not uniformly spread out, but rather are part of a network of filaments (vast

chains of galaxies) and walls with voids in between. With any gravitationally bound system,

the mean rotation velocity v(r) of its components as a function of distance to the centre r

may be estimated by considering the balancing of gravitational and centrifugal forces. Doing

so one finds

v(r) =

√
GM(r)

r
, (1.1)

where G = 6.674 × 10−11 m3 kg−1 s−2 is the gravitational constant and M(r) is the mass

contained within a sphere of radius r around the gravitational centre of the system. Crudely

modelling the luminous matter in a system as a hard shell core of uniform density, we then

expect the mean rotational velocity to be proportional to r inside the core and to drop

as r−1/2 outside. Any significant deviations from this behaviour suggests that either our

understanding of gravity is wrong, or our ideas on the composition of galaxies and systems

thereof are incomplete.
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1.1 Origins and Evidence

Arguably, the first evidence for DM came in around 19331 when Fritz Zwicky used mea-

surements from the 100-inch telescope at the Mount Wilson Observatory to infer the total

mass of the Coma cluster, then compared the result to the total luminous matter (estimated

from the number of nebulae). The total mass of the cluster was determined from the rota-

tional velocity of the orbiting galaxies, which in turn was inferred from the redshift of their

spectral features, i.e. the H, K, and G-band Fraunhofer lines. It was found that the total

mass was ∼ 400 times larger [9] than the luminous prompting the response quoted at the

beginning of this chapter.

The next major step came in 1970 when Rubin & Ford measured the rotation curve of

the Andromeda (M31) galaxy [10] using the so-called 21cm or HI line; a spectral line created

by the decay of excited hydrogen atoms in the interstellar medium (ISM). This provided

convincing evidence for a flat curve outside the core of the galaxy, and thus a deviation from

the r−1/2 behaviour expected from the luminous matter. More ambiguous results had been

found earlier, e.g. in 1939 Babcock [11] measured Andromeda’s rotation curve and saw it

to be constantly rising, although he had too few measurements outside the core to firmly

establish its shape.

In order for DM to give rise to the observed flatness in the rotation curve, it must be

distributed approximately as a large halo centred on the core, but extending out much further

than it. This is illustrated in Figure 1.1, where an example measured rotation curve is shown

to be in good agreement with a model combining the luminous and gaseous matter with such

a DM halo. This plot is not Rubin & Ford’s own results, but rather taken from later work

by Begeman, Broeils & Sanders on the NGC 6503 galaxy [12]. For simplicity and in keeping

with the theme, our discussions thus far have assumed DM as the source of the discrepancies

in rotation curves, however it is just one possible explanation.

Alternative Explanations: MACHOs

Taking a broader view, the postulated missing mass in these bodies needs not be a new BSM

particle (DM); it is only required that the matter be non-luminous. Astronomical objects

1While Zwicky is often credited with providing the first evidence, in the preceding decades others [5–8]

were working on comparing the total mass to the luminous mass of galaxies and galaxy clusters with varied

results and conclusions. For example, in 1922 Jeans found from the motions of stars in the Milky Way, that

two “dark” stars would be needed for every luminous one in the vicinity of the galactic plane.
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1.1 Origins and Evidence

Figure 1.1: The rotation curve of the galaxy NGC 6503. The measured contributions from luminous

and gaseous matter is shown by the dashed and dotted lines respectively. The dot-dashed line is the

predicted contribution from a DM halo. One can see that by summing all three contributions the

predicted rotation curve (the solid line) matches the measured well. Taken from [12] and annotated

with line labels.

emitting little to no light, such as brown dwarfs, neutron stars, and black holes are all large

baryonic structures and could provide the required mass, these are referred to as Massive

Compact Halo Objects (MACHOs1).

Alternative Explanations: SM Neutrinos

Alternatively SM neutrinos (being neutral particles) could also provide the missing mass.

The three neutrinos in the SM are massless by definition, however observations of neutrino

oscillations tell us this is not so. Tritium decay experiments give us a direct measurement

of the electron-neutrino mass, limiting it to be . 1 eV [13]. While direct limits on the

1The name was chosen to contrast with WIMPs, one of the main candidates for non-baryonic DM. These

will be discussed later in Section 1.2.1.
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1.1 Origins and Evidence

muon- and tau-neutrino masses are significantly greater (around the MeV scale [14, 15]),

measurements on the mass splitting from observations of neutrino oscillations indicate much

smaller values. From a global fit of neutrino oscillation data [16], we have best fit values

of ∆m2
21 = 7.37 × 10−5 eV2 and |∆m2

32| ≈ 2.5 × 10−3 eV2. Furthermore, there are limits

on the summed masses coming from the cosmic microwave background (discussed later in

Section 1.1.3), which mean
∑
mν ≤ 0.57 eV [17]. Given all this, we expect these three

generations of neutrinos to be very light and assuming they were produced thermally in the

early Universe, would have been relativistic during freeze-out (this production mechanism

will be discussed in greater detail in Section 1.2). This is an example of a Hot Dark Matter

(HDM) candidate. In this case, the number density per comoving volume is constant, and the

relic abundance only depends upon the mass, requiring the DM candidate to be ∼ 9 eV to

produce the measured amount. Such a neutrino mass value is in slight tension with neutrino

mass limits, but more importantly we will see in Section 1.1.3 that HDM candidates pose

serious challenges for structure formation.

One might instead consider a fourth generation of neutrino that is sufficiently heavy to be

non-relativistic during freeze-out (i.e. a cold dark matter (CDM) candidate). Limits on the

summed masses from the cosmic microwave background, discussed above, assumed three light

neutrino species, thus the presence of a fourth much heavier state will not be constrained by

this bound. Similarly measurements of the Z boson decay width indicating three families of

neutrinos [18], are blind to additional states of greater mass than half that of the Z boson, as

these final states will be kinematically inaccessible.

In the case of CDM, the number density per comoving volume is not constant, and the

relic abundance predicted by freeze-out, depends on both the candidates mass and couplings.

Taking the fourth generations’ couplings to be the same as the first three, its mass needs

to be ∼ 6 GeV in order to produce the measured abundance (known as the Lee-Weinberg

bound [19]). This would be in tension with the Z decay width measurements mentioned

above. Given this, SM neutrinos as DM candidates are often disfavoured. However sterile

neutrinos, BSM states which are not charged under any SM gauge group, are possible DM

candidates. They can also explain SM neutrino masses via the see-saw mechanism, and can

even explain the baryon asymmetry via leptogenesis.
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1.1 Origins and Evidence

Alternative Explanations: MOND

As suggested earlier, discrepancies in velocity rotation curves could also arise when the gravi-

tational interactions are no longer well described by Newtonian gravity. The theory of MOd-

ified Newtonian Dynamics (MOND) is in keeping with this notion, and was suggested by

Milgrom [20,21] as an alternative to DM.

As an ad hoc first attempt to resolve discrepancies in the velocity rotation curves of

galaxies, cluster, and other such systems, one might wish to consider an alternate theory of

gravity above some critical length scale. Doing so would explain why gravitational forces are

Newtonian-like in our solar system, but differ with larger systems like the Coma cluster. Such

a theory would suggest bigger discrepancies in larger systems, however significant deviations

from Newtonian gravity have been observed in small systems like dwarf galaxies, and haven’t

been observed in large systems such as spiral galaxies [22]. MOND avoids this issue by

recognising discrepancies within systems tend to arise for those with accelerations lower than

∼ 10−8 cm s−2. MOND was actually defined by Milgrom in two ways. The first viewed it as

a modification to inertia, where the force on a particle is not proportional to its acceleration,

but rather a function of it. That is

~F = m~aµ(|~a|/a0), (1.2)

where m is the particles mass, a is its acceleration, a0 is new parameter dictating the crossover

between regimes, and µ is a function with the behaviour: µ(x) ≈ 1 for x � 1 and µ(x) ≈ x

for x� 1.

The second interpretation of MOND takes these effects only to be relevant for gravitational

interactions, in which case the true gravitational acceleration, ~g, is related to the Newtonian

gravitational acceleration ~gn via

~gµ(|~g|/a0) = ~gn. (1.3)

In either case, the flattening of velocity rotation curves is predicted when the acceleration

is sufficiently low (a� a0).

In the coming sections further observations are discussed which poise difficulties for

MOND, SM neutrinos and MACHOs, but give further credence to the existence of DM.

For a more detailed historical review of rotation curves, see [23,24].
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1.1 Origins and Evidence

1.1.2 Gravitational Lensing and the Bullet Cluster

In 1916 Einstein [25] found a way to represent gravity using the geometry of spacetime, which

would become “bent” around massive objects, a theory known as general relativity. A major

consequence of this theory was that light (a massless particle) was expected to also feel the

effects of gravity and thus be attracted to massive objects, giving rise to a phenomenon known

as gravitational lensing. This occurs when light from a source is bent around a massive object,

such as a galaxy and reaches an observer creating a translated and distorted image of the

source, akin to an optical lens. This phenomenon was confirmed shortly after in 1919 when

Dyson, Davidson & Eddington [26] observed the gravitational lensing of stars passing close

to the sun (which was undergoing a total eclipse).

Gravitational lensing is typically categorised into three different types:

� Strong lensing: The most extreme form of lensing which typically results in the forma-

tion of multiple images of the source, or the source being distorted into arcs or circular

images called Einstein rings. Here the lens is usually a galaxy or a cluster, with the

source relatively close to it, and the distortions are easily visible.

� Weak lensing: In this case, the lensing is only strong enough to magnify and stretch

images. Since it is hard to know the shape and size of single sources, the strength and

nature of the weak lens is difficult to gauge. However by using a collection of sources and

their averaged properties, more information about the lens may be found. For example

the lensing of a cluster may be found by using the galaxies behind it as sources.

� Microlensing: Distortions in the image here are too small to be detected, but image

may appear brighter. By measuring a source’s brightness with time, one can track the

appearance of a lens.

Measuring gravitational lensing effects allows us to infer the total mass of a system, which

can then be compared to the luminous mass to find the abundance of non-luminous matter.

The Sloan Digital Sky Survey started measuring the weak lensing around 1.6 million objects

in 2000 [27] and has since found DM dominating in galaxies. Gravitational lensing effects have

two other important consequences for DM: they can be used in MACHO searches, and in tests

of MOND. In 1986 Paczyński suggested a novel way in which MACHOs can be detected using
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1.1 Origins and Evidence

microlensing events [28]; passing close to our line-of-sight with a distant star, they cause a

time-symmetric rise and fall in the star’s apparent magnitude. From the peak brightness and

duration of the microlensing event, the mass and velocity of the MACHO may be inferred.

Two collaborations, MACHO and EROS, have both looked for microlensing events in

order to limit MACHO content. In 2000 results from a 5.7 year study by the MACHO

collaboration were published, which looked for microlensing events in 11.9 million stars in

the Large Magellanic Cloud (LMC), a satellite galaxy of the Milky Way [29]. The study of

microlensing events is best done using large numbers of stars, which are far away enough to

allow as many MACHOs as possible to pass in front of them; making the LMC an excellent

probe. A total of 13-17 microlensing events were seen, while this was larger than expected from

the known stellar content, it still rules out to a 95% confidence level (CL) the possibility of

the dark halo being entirely comprised of MACHOs. Interestingly their maximum likelihood

analysis suggests MACHOs could comprise around 20% of the LMC’s missing matter, however

this depends on the dark halo model.

The EROS collaboration published the final results of the EROS-2 survey in 2006, studying

33 million stars in the LMC and the Small Magellanic Cloud (SMC). Using a subsample of

bright stars from their results they found only a single microlensing event, where ∼ 39 would

have been expected for a dark halo comprised entirely of typical MACHOs.

To differentiate between the missing mass and modified gravity solutions to rotation curve

anomalies, one must study a system where the luminous and dark matter could be spatially

displaced. One such system is the Bullet Cluster, the product of two colliding clusters (the

smaller one being the “bullet”). The gas plasma components of the colliding clusters inter-

act sufficiently and slow down, while the galaxies pass through effectively unhindered. As

the majority of the baryonic mass is in the plasma, one expects the gravitational potential

(Newtonian or otherwise) to be centred there. However the weak lensing about the cluster

shows this is not the case, revealing two centres of gravity unaligned with the distribution of

plasma (found from X-ray data). This suggests there are invisible components of the clusters

making up the majority of their mass which passed through each other unhindered.

This was first reported in 2006 by Clowe et al. [30], where they claim the spatial separation

of the centres of total and baryonic mass to 8σ significance. Figure 1.2 shows the X-ray

emission and gravitational lensing around the Bullet Cluster as presented in [30]. Here one
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1.1 Origins and Evidence

Figure 1.2: An X-ray heat map image of the Bullet Cluster as seen by the Chandra X-ray Observatory

overlaid with gravitational potential contours reconstructed from weak lensing measurements shown

in green. Taken from [30].

can clearly see the separation between the X-ray data depicting the luminous matter (the

heat map), and the gravitational wells (green contours). Later, other systems were studied

and found to have similar features, such as in [31] and [32]. In the latter they saw a cluster

with a ring-like invisible halo, thought to be generated by two clusters colliding along our

line-of-sight. Using numerical simulations of collisionless particles, they show how such rings

form after the initial collision.

1.1.3 Cosmic Microwave Background Radiation

In 1964 Wilson and Penzias, while working with a 20 ft horn antenna, detected a strong

extraterrestrial background noise of microwaves at a temperature of 3.5 ± 1.0 K [33], the

so-called Cosmic Microwave Background (CMB). This discovery provided further evidence

for a Big Bang cosmological model, which had been postulated by Lemâıtre in 1931 [34]. The

CMB is typically spoken of as a “picture” of the Universe at approximately 380,000 years old,

which was when the light last scattered. This occurs just after recombination, a period when

protons and electrons fused to form the first atoms, which effectively ended photon scattering.
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Prior to this epoch, photons are kept in thermal equilibrium via Thomson scattering with free

electrons, thus the CMB is a blackbody spectrum. The dramatic drop in free electron density

instigated by the formation of bound hydrogen states at recombination effectively terminates

Thomson scattering and so photons cease interacting and will have streamed freely towards

us, redshifting under the expanding Universe.

This radiation is (almost) isotropic, suggesting regions were once in contact with each other

allowing them to thermalize. This was not expected by the standard cosmological model of

the time, and so motivated a period of inflation (exponential expansion) to bring regions

into causal contact [35–39]. Later in 1989 COBE, a satellite based experiment measuring the

CMB, was launched and discovered tiny anisotropies (too small to discourage inflation) [40];

Figure 1.3 shows these anisotropies as found in a more recent survey by Planck [41]. By

measuring these temperature fluctuations the abundance of baryonic and non-baryonic (dark)

matter can be inferred.

Figure 1.3: A full sky map of the anisotropies seen in the CMB by Planck [41], where Kcmb is the

deviation from the mean temperature.

The temperature fluctuations reflect the distribution of matter at recombination, e.g. in

a region of higher mass density the photons will have to escape a “deeper” gravitational well

and so be at a lower temperature. These density fluctuations grow and the matter clusters,

first creating small-scale structures (galaxies, etc. ), then later the large-scale structures such
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1.1 Origins and Evidence

as filaments. These fluctuations are analysed as a function of the angular displacement be-

tween points on the map. To do so, a multipole analysis is utilised, where the temperature

fluctuations as a function of angular displacement can be expanded in terms of spherical

harmonics, i.e.

δT (θ, φ)

T
=

∞∑
l=1

l∑
m=−l

almYlm(θ, φ). (1.4)

The anisotropies in the CMB are then considered as a function of the multipole l, with each

term representing temperature fluctuations on differing angular scales. A general expansion

in spherical harmonics would include an l = 0 term, which has been left out above. This, like

the s-orbital of an atomic electron, is spherically symmetric, and so determines the overall

scale of the temperature fluctuations, which is zero in our case by definition. The first non-

zero term is then l = 1, which represents dipole anisotropies. Our solar system is moving with

respect to the CMB, and so a large dipole contribution occurs due to the resulting Doppler

shift. Any dipole contributions intrinsic to the CMB cannot be seen due to this dominating

effect, and so one adjusts the measured CMB to remove this dipole term (which is the case

in Figure 1.3) and is only interested in the terms with l ≥ 2. At higher values of l, the scale

being probed is of finer angles, in accordance with the approximate relation θ ∼ 180°

l .

To analysis the CMB in this manner, one is interested in determining the values of the

coefficients alm required to produced the observed map. This cannot be done by determining

the expectation value of the temperature fluctuation, 〈δT/T 〉, as the average variation will

be zero. Thus what one actually determines is the two-point correlation function〈
δT (n̂)

T

δT (n̂′)

T

〉
=
∑
l

2l + 1

4π
〈|alm|2〉, (1.5)

where n̂, n̂′ represents unit vectors pointing to single points in the sky, such that n̂.n̂′ = cos θ

with θ representing their angular displacement.

The angular power spectrum is not actually represented by the expression seen in (1.5),

but rather l(l+1)
2π 〈|alm|2〉 by custom. Figure 1.4 shows this quantity as measured by Planck [17],

as a function of l. We can see a definite structure in the spectrum, which has a series of peaks

starting with the most dominant at l ∼ 200, and further ones of decreasing amplitude as l

is increased. The origin of these peaks lies in the acoustic oscillations of the photon-baryon

plasma caused by the pressure and gravitational interactions of the fluid.
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1.1 Origins and Evidence

Figure 1.4: Angular Power Spectrum of the CMB as measured by Planck [17]. Here, DTTl =

l(l+1)
2π 〈|alm|2〉.

The formation of the CMB starts with the creation and expansion (to cosmic sizes) of

primordial fluctuations by inflation. This made a landscape of potential wells and hills, on

which acoustic oscillations of a distribution of frequencies propagated. This system evolved

up until the surface of last scattering, and the CMB is a frozen image of this epoch. The first,

and largest peak of the CMB, represents the oscillation mode which since creation has had

just enough to time to reach maximal compression for the first time in the potential wells.

The second peak has exactly half the wavelength of the first, and so oscillated twice as fast.

This means that at the surface of last scattering, it had just reached a point of maximum

rarefaction in the well, having already undergone maximal compression before. This picture is

also true for the subsequent peaks thereafter, which are higher harmonics of the fundamental

first peak, having undergone several oscillations and reached an extremum at the surface of

last scattering.

The position and amplitude of these peaks (amongst other features) reflects the composi-

tion of the early Universe. Baryonic matter experiences pressure through its electromagnetic

interactions, and also gravity, whereas non-baryonic matter would only feel the latter. Conse-

quently they affect the CMB in different ways and their abundance can be extracted from the
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spectrum. To understand the contribution DM could make, one must note its importance in

bringing about a matter-dominated Universe and consider the modes which start oscillating

before or after this transition. Modes which start oscillating earlier in the radiation-dominated

Universe (those of larger l), will be enhanced because their oscillations cause the decay of the

potential wells. This is because if radiation is dominating the energy, then it is also responsi-

ble for the gravitational potential. It’s own oscillations changes the potential. On the other

hand, if the oscillations start later in the matter-dominated Universe (like those of lower l),

then the gravitational potential will be held by the non-relativistic matter and this effect

which boosts the amplitude does not occur. This means by comparing the higher and lower

peaks, the abundance of non-relativistic matter (DM) can be determined.

In practice one has to consider the range of effects each component of a cosmological

model could have, which will affect multiple features of the spectrum. Silk damping must be

considered as well, this is an effect which results in the suppression of peaks of higher l. This

is understood by acknowledging that the surface of last scattering is not an exact point at

which photon scatterings were switched off, but rather occurred over a finite period of time.

This means that during the decoupling from matter, light can still undergo a few scatterings

before it finally starts free streaming. Before these final scatterings the light will travel a

finite distance, and this means that temperature fluctuations on scales below this distance

will be smeared out, dampening the peaks seen in the spectrum.

Thus from the angular variation of temperature fluctuations (seen in Figure 1.4) the

composition of the early Universe can be determined, and we find it is best described by

what is known as the ΛCDM cosmological model, which contains SM matter along with

non-relativistic CDM and a non-zero cosmological constant. Values for the abundances of

baryonic matter and CDM can then be extracted from this angular power spectrum. These

measurements tell us the missing mass inferred by velocity rotation curves cannot come from

MACHOs as there is too little baryonic matter. They also provide the best measurement for

the abundance of DM, ΩDMh
2, which is formally defined later in Section 1.2.1. Planck [17]

found this to be

ΩDMh
2 = 0.1186± 0.0020, (1.6)

which is approximately 25% of the energy of the Universe, while SM particles (moslty baryons)
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are only 5%1.

If there was no CDM, primordial density fluctuations in the plasma would need to be much

larger than what is inferred from the CMB in order to get sufficient galaxy formation. By

including CDM, density fluctuations start earlier and sufficient galaxy formation is allowed.

As mentioned before, the missing mass in galaxies could also comprise of SM neutrinos,

however they are an example of relativistic HDM, which also suffers from insufficient galaxy

production.

The small scale density fluctuations required for galaxy formation are erased by the free

streaming of neutrinos [42], i.e. they are moving at relativistic velocities and the distance

they travel before becoming non-relativistic is larger than the scale of the fluctuations. In

this scenario galaxy formation must have then occurred via the fragmentation of large-scale

structures; numerical simulations [43] found that this must have happened fairly recently (z,

the expected redshift to have occurred since that time, must be less than ∼ 2). However

measurements of galactic ages seem to be in excess of z > 4 [44], which makes SM neutrinos

less attractive DM candidates (see [45] for further detail).

A third option, keV-scale “warm” dark matter (WDM) is also possible, where the can-

didate is still relativistic at freeze-out, like HDM, but becomes non-relativistic sufficiently

quickly after, such that the free streaming length is ∼ 4 Mpc. This however doesn’t di-

rectly correspond to the minimum size of structures that can form in WDM scenarios. Post-

decoupling, where the pressure from photon interactions with baryons dissipates, perturba-

tions of this minimum size start evolving non-linearly. The perturbations become gravitational

unstable and consequently collapse and virialize, i.e. become a stable gravitationally bound

system. For an initial perturbation of ∼ 4 Mpc in size, which will encapsulate a total mass of

∼ 1012M�, the resulting bound system will be ∼ 30 kpc; this is around the size and mass of a

typical galaxy. Thus in WDM scenarios, sub-galactic structure formation is suppressed. An

attribute which can be exploited to resolve some tensions facing CDM models on these scales,

such as issues with satellite galaxy populations (the ‘missing satellites’ problem), density pro-

files in galactic and satellite cores (the ‘core/cusp’ problem), and the structure of subhalos

(the ‘too-big-to-fail’ problem) [46–49].

1The remaining 70% is dark energy, postulated to be the driving force behind a non-zero cosmological

constant, and so an accelerating expansion of the Universe.

34



1.2 Genesis and Relic Density

From the evidence presented here, we are painted a picture of a Universe whose mass is

dominated by a BSM particle as yet undiscovered. Theories of modified gravity face problems

from colliding galaxies, while assuming neutrinos or MACHOs as the missing matter leads

to issues with structure formation, and constraints from microlensing searches and the CMB.

Many key results have been discussed here, but for a reader seeking further detail and evidence,

there are many illuminating texts [23,24,50–52].

1.2 Genesis and Relic Density

Having established the evidence for DM in the Universe, we shall now discuss the means

through which it may be produced by considering a selection of genesis mechanisms. As seen

in Section 1.1.3, the CMB (as measured by Planck) provides the best measurement for the

relic density of DM [17]. Without further information, there is no connection between the

abundance and intrinsic properties of DM, and so no constraints. However by assuming a

mechanism via which the relic density was produced, such a relation may be created. There

are numerous mechanisms one could use, which allows the constraint to be manipulated, but

it is typically assumed DM was created via a process known as freeze-out [53–55].

1.2.1 Freeze-Out and the WIMP Miracle

In freeze-out one assumes DM was in thermal equilibrium with the particle bath in the early

Universe, where it was annihilated and created in equal rates. When the temperature drops

below the DM mass, creation becomes suppressed as more and more bath particles no longer

have enough energy, thus annihilations dominant and the abundance drops. Approximately

when the annihilation rate matches the expansion rate of the Universe, the DM particles

become too far apart and annihilations effectively cease (the DM falls out of chemical equilib-

rium), and we are left with a residual amount of DM, this is known as the point of freeze-out.

This process is described by a Boltzmann transport equation, which tells us the number

density evolution of the particle freezing-out. In its most general and compact form this

equation is written as

L̂[f ] = Ĉ[f ], (1.7)

where Ĉ is the collision operator and L̂ is the Liouville operator. In relativistic covariant

35



1.2 Genesis and Relic Density

form

L̂ = pα
∂

∂xα
− Γαβγp

βpγ
∂

∂pα
, (1.8)

where Γαβγ are the Christoffel symbols into which the gravitational effects enter. Using the

Friedmann-Robertson-Walker (FRW) metric and assuming a homogeneous and isotropic Uni-

verse, the Liouville operator becomes

L̂[f(E, t)] = E
∂f

∂t
−H|~p|2 ∂f

∂E
, (1.9)

where H ≡ Ṙ/R is the Hubble parameter. Freeze-out occurs during the radiation-dominated

era, and as such H as a function of temperature T , is given by

H(T ) =

(
8π3

90

)1/2 T 2√g∗
MPl

with g∗ =
∑

bosons

gi

(
Ti
T

)4

+
7

8

∑
fermions

gi

(
Ti
T

)4

, (1.10)

where MPl = 1.22 × 1019 GeV is the Planck mass, g∗ is the relativistic degrees of freedom

contributing to the energy density, and gi and Ti are the internal degrees of freedom and

temperature of that particle species respectively.

Inserting L̂[f(E, t)] into the Boltzmann equation, with some manipulation, one gets

dn

dt
+ 3nH =

g

(2π)3

∫
Ĉ[f ]

d3p

E
, (1.11)

where n is the number density, which in terms of f(E, t), the phase space distribution, is

n(t) = g
(2π)3

∫
d3pf(E, t).

Labelling the DM particle species χ, and assuming a single annihilation and creation

channel (χ+ a+ b+ . . .↔ i+ j + . . .), the collision term is

g

(2π)3

∫
Ĉ[f ]

d3pχ
Eχ

= −
∫
dΠχdΠadΠb . . . dΠidΠj . . .

× (2π)4δ4(pχ + pa + pb . . .− pi − pj . . .)

[|M|2χ+a+b+...→i+j+...fafb . . . fχ(1± fi)(1± fj) . . .

− |M|2i+j+...→χ+a+b+...fifj . . . (1± fa)(1± fb) . . . (1± fχ)],

(1.12)

where (with α representing any particle involved) dΠα ≡ gα
(2π)3

d3pα
2Eα

, and the |M|2 terms are

the square matrix elements, averaged over initial and final state spins. In the (1± fα) terms,

a +(−) is used when α is a boson (fermion).
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By assuming CP or T invariance, and a Maxwell-Boltzmann distribution fα = e−(Eα−µα)/T

for every particle, then

|M|2 ≡ |M|2χ+a+b+...→i+j+... = |M|2i+j+...→χ+a+b+... (1.13)

and (1 ± fα) ≈ 1 (since the temperature has fallen below the χ mass, meaning fα is small).

With these assumptions the equation simplifies to

ṅχ + 3Hnχ = −
∫
dΠχdΠadΠb . . . dΠidΠj . . . (2π)4|M|2

× δ4(pi + pj . . .− pχ − pa − pb . . .)[fafb . . . fχ − fifj . . .].
(1.14)

As the Universe is expanding the number density continues to fall even after the cessation

of inelastic scattering processes. A more useful quantity would then be the number density

per comoving volume, which would be independent of these dynamics. Furthermore it is

convenient to consider the evolution in temperature as opposed to time, and so typically the

Boltzmann equation is rewritten in terms of the yield Y and the variable x, which are given

by

Yα ≡
nα
s

and x ≡ mχ

T
, (1.15)

where s is the entropy density. This scales the same way under expansion as total entropy is

conserved (sR3 = constant), and in the radiation-dominated era, can be approximated by

s =
2π2

45
g∗ST

3 with g∗S =
∑

bosons

gi

(
Ti
T

)3

+
7

8

∑
fermions

gi

(
Ti
T

)3

. (1.16)

where g∗S is the relativistic degrees of freedom contributing to the entropy density. During

freeze-out, the effective relativistic degrees of freedom, g∗ and g∗S , are approximately equal

and constant, and so are taken as such.

Rewritten in terms of Y and x, the Boltzmann equation is

dYχ
dx

= − 1

H(mχ)s(mχ)x2

∫
dΠχdΠadΠb . . . dΠidΠj . . . (2π)4|M|2

× δ4(pi + pj . . .− pχ − pa − pb . . .)[fafb . . . fχ − fifj . . .].
(1.17)

Typically in freeze-out calculations one considers DM pair annihilating via 2 → 2 inelastic

scattering processes such as χ̄χ ↔ ψ̄ψ, where ψ represents all possible SM final states. In

these cases, the Boltzmann equation reduces to the far simpler form

dYχ
dx

= −
〈σχ̄χ→ψ̄ψv〉s(m)

H(m)x2
(YχYχ̄ − Yχ,eqYχ̄,eq) , (1.18)
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where 〈σχ̄χ→ψ̄ψv〉 is the thermally-averaged annihilation cross-section times velocity, and Yα,eq

is the yield in thermal equilibrium. This depends on both particle and antiparticle yields,

however standard freeze-out is presumed to be symmetric (asymmetric DM is discussed later

in Section 1.2.2), i.e. the yields of both are initially equal and no asymmetry is generated

thereafter. Here, we will consider an even simpler case in which DM is its own antiparticle

(e.g. a real scalar or Majorana fermion).

In general, the annihilation cross-section times relative velocity, σv, for most processes

can be expanded as

σv = a+ bv2 +O(v4). (1.19)

If all terms of this expansion are non-zero, then the velocity-independent first term dominates

(as v ∼ 0.3 at freeze-out) and the annihilations are s-wave. However scenarios with dominant

p-wave annihilations can arise in which a = 0, and so σv is velocity-suppressed. Taking the

lowest order non-zero term as dominant, by thermally-averaging σv one then finds

〈σv〉 ≈ σ0

xn
, (1.20)

where n = 0(1) and σ0 = a(6b) in the case of s(p)-wave dominant annihilations. The Boltz-

mann equation with this expansion becomes

dYχ
dx

= − A

xn+2

(
Y 2
χ − Y 2

χ,eq

)
, (1.21)

where A =
√

π
45g∗mχMPlσ0, and

Yχ,eq ≈ 0.145(g/g∗S)x3/2e−x, (1.22)

which is an approximation valid in the non-relativistic regime.

This equation (1.21) has no known exact analytic solution, but can be solved numerically

assuming the initial condition Yχ(xi) ≈ Yχ,eq(xi) when x is below the point of freeze-out xfr.

In Figure 1.5, solutions (assuming dominant s-wave annihilation) for a range of σ0 values are

plotted which illustrate the yield’s evolution during freeze-out. Here we see how the particles

were once in thermal equilibrium, following Yχ,eq (the black curve) at high temperatures,

before diverging at x ∼ 25 (the point of freeze-out) and plateauing, leaving a residual yield.

The size of the remnant yield decreases as the cross-section increases, since the annihilation

rate is higher and so the system can stay in equilibrium longer.
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Figure 1.5: A plot of Yχ vs x illustrating how the yield evolves when a particle undergoes freeze-out

with dominant s-wave annihilations, which highlights key moments in the thermal history. The yields

for several σ0 values were plotted (coloured lines), as well as Yχ,eq (the black line). These were found

by numerically solving (1.21) when mχ = 500 GeV.

While (1.21) does not permit an exact analytic solution, an approximation can be found.

For the proceeding derivations, it is convenient to rewrite the equation in terms of ∆ ≡
Yχ − Yχ,eq, obtaining

d∆

dx
= −dYχ,eq

dx
− A

xn+2
∆(∆ + 2Yχ,eq). (1.23)

In late times (x > xfr) we let Yχ,eq ≈ 0, an approximation which is justified upon inspection

of Figure 1.5. This reduces (1.23) to

d∆

dx
= − A

xn+2
∆2, (1.24)

which now possesses an analytic solution. Rearranging this into an integral between xfr and

∞, and given ∆(xfr)� ∆(∞) ≈ Yχ(∞) one derives the relic yield

Yχ(∞) ≈ (n+ 1)xfr

A
, (1.25)

This can then be related to the relic abundance Ωχh
2, where Ωχ ≡ ρχ

ρc
and h ≡ H0/100;

in these definitions, ρχ is energy density of χ particles, ρc is the critical density, and H0 =

67.8± 0.9 km s−1Mpc−1 is the present value of the Hubble parameter.
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Using the result (1.25), this means the relic abundance is

Ωχh
2 = (2.76× 108)

(n+ 1)xn+1
fr

MPlσ0
√
g∗

√
45

π
. (1.26)

When calculating these abundances it is important to remember the total will be given by

the sum of particle and anti-particle contributions.

Calculating the relic abundance from (1.26) requires knowledge of xfr; defining it as the

point where ∆(xfr) = cYχ,eq(xfr) (c is a constant of order one) and taking d∆
dx ≈ 0, an

expression is found from (1.23)

xfr ≈ log[Ak(n+ 1)]−
(
n+

1

2

)
log[log[Ak(n+ 1)]], (1.27)

where k = 0.145(g/g∗S) (the coefficient in Yχ,eq), and we have set c(c + 2) = (n + 1) which

fits best to numerical data [50].

Using (1.27) and (1.23), one can predict the DM relic abundance from freeze-out. Presum-

ing the annihilations are dominantly s-wave, to get the observed abundance the cross-section

would need to be

σ0 ≈ 3× 10−26 cm3 s−1. (1.28)

Intriguingly, if a DM state with electroweak scale mass and coupling (GF ) is considered,

one finds σ0 values of around this size. This motivates DM to consist of Weakly Interacting

Massive Particles (WIMPs) — a coincidence referred to as the WIMP miracle. However while

freeze-out motivates a WIMP candidate, it is by no means restricted to such, as highlighted

in [56]. For more details on the derivation of and analytic solutions to the Boltzmann equation

for freeze-out, see [50].

Exceptions to Freeze-Out

When assuming DM genesis through freeze-out, there are three important exceptions high-

lighted by Griest and Seckel [57] that must be kept in mind:

1. Threshold effects

2. Resonances

3. Co-annihilations
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If one (or more) of these exceptions takes place, then σv is no longer appropriately described

by an expansion in v2 as in (1.19), and the Boltzmann equation can take a different form.

Threshold effects arise when an annihilation channel is significantly more kinematically

accessible during freeze-out than it is presently. For example consider the process χ̄χ→ ψ1ψ2

when 2mχ < mψ1 + mψ2 ; there exists a minimum centre-of-mass energy required for it to

proceed. At present this channel could be neglected as a minute fraction of χ particles will

collide with enough energy, however during freeze-out when T ∼ mχ/25, annihilation through

this channel could be occurring at a significantly higher rate (and could even dominate the

total cross-section).

Resonance effects occur when an annihilation channel is near a pole during freeze-out, e.g.

when there is an s-channel annihilation process where the mediator’s mass is approximately

twice that of colliding DM particles (mmed ∼ 2mχ). In such a case one uses the Breit-Wigner

form for the propagator
1

s−m2
med + immedΓmed

, (1.29)

which takes the finite width of the mediator, Γmed, into account.

Co-annihilations become significant when the DM candidate is nearly mass degenerate

with at least one different state. During freeze-out there will be a significant abundance of

these other states still present and new scattering channels will be opened up. As an example,

consider N new states (labelled χi) which are odd under a stabilising Z2 symmetry, taking

χ1 to be the lightest and therefore our DM candidate. If the mass splitting between χ1 and

the other odd sector states is much greater than the temperature at freeze-out, then only

χ1χ1 ↔ ψaψb (with ψa representing SM final states) is important to consider; having frozen

out and decayed away earlier, the additional degrees of freedom cannot contribute. If however

the mass splittings are small enough (approximately the freeze-out temperature or less), the

other odd sector states will freeze-out almost simultaneously with χ1, and consequently co-

annihilation processes such as χiχj ↔ ψaψb, χiψa ↔ χjψb and χj → χiψa must be taken into

account.
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Following work in [58], the Boltzmann equation for each χi state is given by

dni
dt

=− 3Hni −
∑
j

〈σijvij〉(ninj − ni,eqnj,eq)

−
∑
j 6=i

[
〈σ′ijvij〉(ninX − ni,eqnX,eq)− 〈σ′jivij〉(njnX′ − nj,eqnX′,eq)

]
−
∑
j 6=i

[Γij(ni − ni,eq)− Γji(nj − nj,eq)] ,

(1.30)

where

σij =
∑
a,b

σ(χiχj → ψaψb), σ′ij =
∑
a,b

σ(χiψa → χjψb),

and Γij =
∑
a

Γ(χi → χjψa).

(1.31)

The first term is the familiar cosmological expansion term, the second represents creation and

annihilation processes, the third is for scatterings and the last term is the contribution from

decays.

Summing the Boltzmann equations together we obtain an expression describing the evo-

lution of the number density of all odd sector particles;

dn

dt
= −3Hn− 〈σeffv〉(n2 − n2

eq), (1.32)

where n =
∑
i
ni and

〈σeffv〉 ≡
∑
ij

〈σijvij〉
ni,eqnj,eq

n2
eq

. (1.33)

As we expect the other odd sector states to have decayed, the present total number density,

n(t0), will be dominantly χ1 states.

There is also a “fourth exception” to the standard freeze-out scenario, arising when the

annihilation cross-section has an inverse dependence on the velocity, i.e. σv ∼ 1/v. As the

present velocity of DM is far less than it was at freeze-out, the annihilation cross-section now

can be far greater; this boost is called a Sommerfeld enhancement [59].

Such situations occur when there is a long-range attractive potential between the colliding

DM states which can arise if light force-carrier particles are exchanged [60, 61]. Sommerfeld

enhancements are typically applied when large indirect detection signals (discussed later in

Section 1.4.2) are desired, but conflict with the small thermal cross-section values needed to

produce the relic density. A Sommerfeld boost justifies a lower cross-section at freeze-out,

however annihilations directly into the mediators can re-enhance it.
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Only DM genesis via freeze-out and the associated caveats have been discussed thus far; by

assuming this mechanism and requiring the correct abundance of DM to have been produced,

theories of DM can be heavily constrained. However by considering a different production

mechanism, these bounds will change and can make a theory more appealing. In the following

sections we shall take a look at two alternative mechanisms: asymmetric freeze-out and freeze-

in.

1.2.2 Asymmetric Freeze-Out

An asymmetry between baryonic matter and antimatter in the present Universe has long been

established [62], leading to models of Baryogenesis [63–65] via which such an asymmetry could

have been produced. Given this, it is reasonable for one to wonder if a similar situation could

have arisen in the dark sector, and produced an asymmetric abundance of DM. However

there is more than speculation; the abundance of DM is approximately five times that of

baryons, which would seem too coincidental if they are generated by separate mechanisms.

This suggests there could be a single process generating both baryon and DM asymmetries.

In asymmetric freeze-out, the asymmetry is presumed to have been generated beforehand

by some process at higher temperatures. During freeze-out DM particles and anti-particles

annihilate away, leaving behind the excess of particles (the asymmetry).

The asymmetry in a particle species can be parameterised using

ηψ =
nψ − nψ̄
nγ

, (1.34)

where ψ is the particle species (baryons or DM), and nψ and nγ are the ψ and photon number

densities respectively. If the symmetric components of the abundances are efficiently annihi-

lated away, i.e. the particle number densities are far greater than the antiparticle densities

now, then the relic density of both baryons and DM is dictated by the asymmetry generated

and

ΩDM ≈
mDMηDM

mpηb
Ωb. (1.35)

To get the observed ratio of relic densities then, we expect 1 . mDM . 10 GeV, as baryon

and DM asymmetries generated by the same mechanism will likely be of comparable value.

The Boltzmann equations describing asymmetric freeze-out will be of the same form as

(1.18), however now subject to the constraint Yχ−Yχ̄ = constant. The annihilation rate drops
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faster in asymmetric freeze-out as fewer particle-antiparticle pairs are available; this means

the annihilation cross-section will need to be greater than it is in standard freeze-out to insure

the efficient annihilation of the symmetric component. Furthermore the annihilation cross-

section may be increased pass this required value without causing any significant changes to

the relic abundance. For a more precise treatment of asymmetric production, see [66].

By assuming asymmetric production of DM, indirect detection bounds are effectively

removed as there will be too few antiparticles for DM to annihilate with. There are also other

ways aside from via freeze-out, that an asymmetric DM abundance may be produced [67–69].

1.2.3 Freeze-In

Freeze-in [70] starts with the assumption that there is initially a negligible abundance of

DM, and that while processes amongst the bath particles will produce DM, these will be

insufficient for thermal equilibrium to be established. Instead the yield of DM will gradually

build through these rare processes, and as the Universe cools and expands, they will come to a

halt and we are left with a residual abundance of DM which has “frozen-in”. DM candidates

which are produced this way are referred to as Feebly Interacting Massive Particles (FIMPs).

There are several ways for a DM candidate to be frozen-in, such as via rare decays of

bath particles, or their annihilations into DM final states. It may also be produced indirectly;

the frozen-in particle could be another heavier state which then decays into DM. The inverse

of these decays may also be the channel through which the parent state is produced. In

this last example the DM particle is actually in thermal equilibrium, however it presumes

the abundance generated via standard freeze-out is far less than that produced through the

freeze-in of the heavier state.

Figure 1.6 shows a plot of the DM yield, Yχ, against x, which illustrates how freeze-in

generates the relic abundance. This is in the case that rare decays of heavier states are

producing the DM. The DM yield for different coupling strengths is plotted (colours) along

with the thermal equilibrium yield of the parent state (black). Before x ∼ 10, the yield is

increasing and heading towards thermal equilibrium as bath processes are in effect. As the

parent particles are annihilated away, DM production via their decays ceases and we are

left with a relic abundance of DM which is larger when the interaction is stronger. This

contrasts with freeze-out, where a larger couplings mean a lower residual yield. One may also
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Figure 1.6: A plot of yield against x illustrating DM production via freeze-in. It plots the yield in

thermal equilibrium (black) and the freeze-in yield for various interaction strengths (colours), whose

relative values are indicated within.

have asymmetric freeze-in, where the asymmetry is generated by the mechanism, rather than

presumed to already exist [69].

Here different mechanisms for DM genesis have been discussed, including standard freeze-

out, the traditional mechanism of WIMP models. However other possibilities have also been

highlighted, demonstrating how the requirements of relic density may be manipulated. Indeed

atypical mechanisms are even necessary in various cases, especially when considering non-

WIMP candidates, such as axions and sterile neutrinos, these are discussed more in [71, 72].

In Chapter 3 we will present an alternate mechanism in which DM is produced from the decays

of topological defects, and in Chapters 4 & 5 we discuss works which utilise this mechanism.

1.3 Candidates and Models

Caution should be exercised when listing the criteria for a DM candidate, as one would be

hard pressed to find a condition that is without exception. As a guide, a successful theory

should permit a candidate that is stable, electrically neutral, and cold. However caveats exist:

instability is allowed as long as the lifetime is of or above the age of the Universe, DM may

couple very weakly to photons (see millicharged theories [73,74]), and “warm” DM candidates
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can still allow for sufficient galaxy formation [50, 75, 76]. Further rules could be added [77]

such as compatiability with Big Bang nucleosynthesis (BBN), stellar evolution, and self-

interactions, however broadly speaking one could put this in the category of phenomenological

bounds.

Figure 1.7: An illustrative plot of typical interaction cross-section σint against DM mass showing

regions covered by a selection of popular DM models, taken from [78].

There are an enormous number of DM models permeating every nook and cranny of our

theory-space. Figure 1.7 contains a popular illustrative plot showing the regions of typical

interaction cross-section σint, against mass for a few DM models; this highlights the vast

expanse of this space that DM models span. This section will first focus on the neutralino in

supersymmetric (SUSY) theories, which has arguably received the most attention. Proceeding

this we will discuss DM model building with simplified models and effective field theories.

1.3.1 SUSY and the Neutralinos

Arguably containing the most popular DM candidate (the neutralino), SUSY models encom-

pass all theories which are invariant (or softly broken) under a supersymmetric transformation.

This symmetry states that for every SM particle there is an associated state (its superpartner)

with the same quantum numbers, but whose spin differs by 1/2. The main motivation for
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SUSY theories is their ability to resolve the gauge hierarchy problem.

The SM has proven highly successful in describing many particle processes, but it does

not address several other phenomena, e.g. gravity. Quantum gravitational effects are thought

to become important at around the Planck scale, MPl = 1.22× 1019 GeV, which is orders of

magnitude beyond the electroweak scale processes of the SM. Further new physics between

these scales is to be expected as neutrino oscillations, the CP problem, and DM for example,

all require BSM physics.

The issues with this expectation of new physics is the sensitivity of the Higgs field, H, to

these new scales. Consider the contribution to the self-energy of the Higgs from a fermion,

which has a Yukawa coupling λfHf̄f , seen in Figure 1.8. If you regulate this using an

ultraviolet momentum cutoff, Λ, a term quadratically divergent in the cutoff arises

∆m2
H = −|λf |

2

8π2

[
Λ2 + 2m2

f log(Λ/mf ) + . . .
]
. (1.36)

The cutoff Λ can be physically interpreted as the scale at which new physics enters. If

this is the Planck scale, then this correction to the mass is huge, and fine-tuning is required

to bring the mass down to the electroweak scale. This is not just a problem for the Higgs, but

for all the massive states in the SM, as their masses are determined from that of the Higgs

field’s (which dictates the VEV). Subsequently this suggests the cutoff is at a much lower

scale (∼ TeV), where the mass correction is small enough such that no tuning is required.

f f̃

Figure 1.8: Contributions to the Higgs boson’s self-energy from fermion (left) and sfermion (right)

loops.

This problem cannot be avoided by regularising in a different way, such as by using

dimensional regularisation. In this case, the first term is no longer present, but the second

term is, which quadratically diverges with the fermion mass. So one also expects large mass

corrections even with such regularisations, as new states are expected with masses above the

47



1.3 Candidates and Models

electroweak scale. Furthermore large mass corrections from new states are expected even if

they do not couple directly to the Higgs, but rather through another particle.

In SUSY theories, this problem is resolved by considering the effect of the fermion’s

superpartner (called a sfermion1), a scalar particle which can also provide a loop correction

to the Higgs mass (see Figure 1.8). The total mass correction from both these loops is then

∆m2
H =

1

8π2
(λS − |λf |2)Λ2 + . . . , (1.37)

where λS is the scalar coupling.

Invariance under SUSY requires λS = |λf |2, thus there is a perfect cancellation between

the corrections, which can be proven to all orders, and the hierarchy problem is solved.

Although if the symmetry was perfect, the superpartners would have the same mass as their

SM counterparts, and should have been observed by now. Therefore any realistic SUSY theory

must be broken, but in such a way as to preserve its ability to solve the hierarchy problem; i.e.

it must allow for unequal masses, though the cancellation of quadratic divergences must hold,

this is called a softly broken SUSY theory. In such a scenario, there are still the logarithmically

divergent terms to consider, which are

∆m2
H = m2

soft

[
λ

16π2
log(Λ/msoft) + . . .

]
, (1.38)

where msoft determines the mass splitting between the fermion and its superpartner. This

means the masses of the SM fermions’ superpartners cannot be too large, as then the mass

correction would be also and we would again need fine-tuning.

Amongst the ensemble of new terms added in a SUSY theory are those which violate

baryon and lepton number. This presents a problem, as they predict processes which have

not been observed, such as proton decay. To avoid this, one can implement R-parity, a Z2

symmetry under which SM particles are even and superpartners are odd, which forbids the

unobserved processes. Coincidently this makes the lightest SUSY particle stable and if it is

electrically neutral, then it is a DM candidate. Neutralinos are mixed states of the neutral

1The nomenclature in SUSY is to prefix every fermion’s superpartner with s- (e.g. selectron, stop, etc. )

and to affix -ino to the end of every boson’s (e.g. gaugino, Higgsino, etc. ).
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Higgsinos1 (H̃0
u, H̃

0
d) and neutral gauginos (B̃, W̃ 0). The lightest neutralino could be a DM

candidate, and to many is the most promising. See [79] for a detailed introduction to SUSY.

1.3.2 Building Simple Models

Models of DM are often complex with large numbers of new states and interactions, however

the channels relevant to DM searches can be much more limited. With this in mind, simpler

theories can be constructed which contain the relevant terms and aptly describe the DM

phenomenology; effective field theories and simplified models are made for this purpose, and

can encapsulate the physics of many fuller theories.

Effective field theories are approximations of UV complete models valid below a particular

cut-off scale. They typically contain one new state (DM), and a single non-renormalisable

four-point interaction via which it communicates with the SM. In 1933 Fermi [80] suggested

such an effective theory to describe β-decay with the interaction

L =
GF√

2
ν̄µγ

α(1− γ5)µēγα(1− γ5)νe. (1.39)

We now know β-decay is mediated byW bosons, however it is well described by this interaction

at energies far below the W mass. At such energies the W can be integrated out, and this

effective theory is derived.

In effective field theories of DM, the principle is the same: the new physics describing the

interaction is at a scale much higher than what is being experimentally probed, and so an

effective interaction can be used. For example a vector operator could be considered, given

by

L =
1

Λ2
f̄γµfχ̄γµχ, (1.40)

where χ is the DM candidate, f is any SM fermion, and Λ is cut-off scale of the interaction,

beyond which the theory breaks down.

Effective field theories clearly have great appeal as they are arguably the simplest DM

models one could construct and could represent many complete DM theories. However a

1Two Higgs doublets are required because the superpotential must be holomorphic in left-chiral superfields;

one cannot generate up-type quark masses using the conjugate of a single Higgs doublet without spoiling

SUSY. Thus a second doublet is introduced with opposite quantum numbers to resolve this issue, and to

insure anomaly cancellation. For further details see [79].

49



1.4 Searches and Signals

problem arises when utilising effective field theories at colliders (which will be discussed in

Section 1.4.3), motivating simplified models instead.

The fundamental idea of simplified models is the same as effective field theories; to create

a simple theory, which can represent a plethora of more complex models. The difference with

simplified models is that they do not use higher dimensional non-renormalizable operators to

do so, requiring the mediators to be physical degrees of freedom. While such models are more

complicated than effective field theories, they have a wider range of validity. For example,

if the effective field theory considered above (1.40) was inadequate for a study, one might

instead use the simplified model

L = gχVµχ̄γ
µχ+ gfVµf̄γ

µf, (1.41)

where V is a new vector mediator. The cut-off of the effective theory is then related to the

fundamental parameters via 1
Λ2 =

gχgf
m2
V

, where mV is the mediator’s mass.

Using higher dimensional operators and terms such as this, toy models of DM may be

built. A successful theory will contain a new stable particle, which can be guaranteed if this

state is odd under a Z2 symmetry and the terms added conserve this symmetry. Furthermore

the particle should not be charged under the U(1)EM symmetry.

There are several DM candidates not discussed here which have received much attention,

to name a few: axions [81–83], sterile neutrinos [71,84], gravitinos [79,85], and Kaluza-Klein

DM [86]. We shall not discuss these further, but for the interested reader there is a review of

DM candidates which details these models and more [45].

1.4 Searches and Signals

Thus far we have seen the evidence for DM, how it may be created, and examined a selection of

particle models; in this final section we shall discuss attempts to detect it, and the subsequent

constraints models must adhere to. Here collider, and direct and indirect detection searches

will be briefly reviewed, as well as theoretical bounds.

1.4.1 Direct Detection

Our solar system is travelling through the Milky Way’s DM halo at a velocity of v0 ∼
220 km s−1. Direct detection experiments aim to observe the scattering of this DM “wind”
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off a target mass inside a detector. To optimise the sensitivity, backgrounds must be as low

as possible; usually this means detectors are placed underground where they can be shielded

from cosmic rays.

DM scattering events may be detected from three different products of a nuclear recoil:

� Phonons: Vibrations travelling through the target mass detected as a temperature rise.

� Scintillation: Light emitted from an excited nuclei.

� Ionization: Light emitted when an electron, freed by the scattering, recombines.

Electron recoils caused by background events also deposit their energy into these channels,

although with differing fractions. To discriminate between electron and nuclear recoil events,

there are two approaches: detect two different channels and use the relative energy deposi-

tion or detect only a single channel and use the signal’s variation in time. Direct detection

experiments are typically capable of detecting nuclear recoil energies (ER) of O(1-100) keV,

which is optimal for WIMP searches.

Analyses of direct detection searches depend on the properties of the DM halo, i.e. the

local density and velocity distribution. For consistency and comparability, these searches

typically use the Standard Halo Model (SHM), where DM is distributed as an isotropic,

isothermal sphere with a local density of ρ� = 0.3 GeV cm−3 and a Maxwell-Boltzmann

velocity distribution, but cut-off at the escape velocity of the galaxy, i.e.

f(v) =


1
N (e−v

2/v20 − e−v2esc/v20 ) v < vesc

0 v > vesc

, (1.42)

where N is a normalization constant, and v0 in the SHM is same as defined at the start of the

section. A recent RAVE survey measured the escape velocity to be vesc = 533+54
−41 km s−1 [87],

however direct detection analyses’ dependence on the choice of vesc is weak [88]. While a

reasonable model, the actual DM halo is likely to deviate from the SHM, as was shown in

numerical simulations [89–92].

Direct detection experiments are sensitive to both spin-independent (SI) and spin-dependent

(SD) interactions, where former is dependent on the number of nucleons, and the latter on the

nuclei’s total spin. Whether the scatterings are SI, SD, or both, will depend on the theory.
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These scattering cross-sections are defined as

σSI
χ-N =

4µ2
χN

π
[Zfp + (A− Z)fn]2,

σSD
χ-N =

32µ2
χN

π

J + 1

J
[Spap + Snan]2G2

F ,

(1.43)

where Z (A) is the atomic (nucleon) number, J is the nuclear spin, Sp,n are the nucleon spin

expectation values, and fp,n and ap,n are the effective DM-nucleon couplings. The form of

the effective couplings is model-dependent, however as the nuclear recoils under study have

low energy, effective interactions are often considered.

For example, in the case of a scalar interaction of the form L ⊃ αqχ̄χq̄q̄, the interactions

are SI and the effective couplings are given by

fp,n =
∑

q=u,d,s

f
(p,n)
Tq

αq
mp,n

mq
+

2

27
f

(p,n)
TG

∑
q=c,b,t

αq
mp,n

mq
, (1.44)

where

f
(p)
Tu

= 0.020± 0.004, f
(p)
Td

= 0.026± 0.005, f
(p)
Ts

= 0.118± 0.062,

f
(n)
Tu

= 0.014± 0.003, f
(n)
Td

= 0.036± 0.008, f
(n)
Ts

= 0.118± 0.062,
(1.45)

and f
(p,n)
TG = 1 − ∑

q=u,d,s

f
(p,n)
Tq

[93]. If instead there is a vector interaction L ⊃ αqχ̄γµχq̄γ
µq̄,

the interactions are still SI, but fp = 2αu + αd and fn = αu + 2αd. For further information

on SD scatterings see [94].

In the event an experiment does not find an excess of events signalling DM detection, limits

may be placed on the scattering cross-section. A summary of SI WIMP scattering results

is presented in Figure 1.9, showing limits from past studies along those projected by future

detectors. Currently LUX offers the most stringent limit, whose 2013 analysis result [95] is

shown in the figure; however since then there has been an improved analysis with a ∼ 20%

lower limit [96]1. Of the future detectors, the first results will likely come from DEAP-

3600 [98] and XENON1T [99], which expect at least an order of magnitude improvement in

sensitivity. Further upgrades to these experiments are planned, as are several other detectors

such as, DarkSide-G2 [100], DARWIN [101], LZ [102], and SuperCDMS at SNOLAB [103],

which insure direct detection limits will go steadily further down over the coming years.

1Results from 332 new live-days of data were recently presented [97], and are expected to be published

soon.

52



1.4 Searches and Signals

Figure 1.9: A summary of SI WIMP scattering limits from past and future direct detection experi-

ments, taken from [104]. Also shown are the neutrino background threshold (orange dashed line), fits

to claimed signals (shaded regions with outlines), and the regions of where signals of various models

are expected to be found (shaded regions without outlines).

Detectors pushing the sensitivity limit will eventually encounter the “neutrino floor”,

where solar, atmospheric, and diffuse supernovae neutrinos produce a large background [105–

108], shown in Figure 1.9. This poses a new challenge for direct detection searches, as these

neutrino recoils will be indistinguishable from those of a WIMP. Conventional detectors are

effectively limited by this neutrino bound, however detectors sensitive to the direction of the

nuclear recoils will be able to distinguish much of this background, and so push pass the

neutrino floor [109].

Possible candidate signals for DM have been seen by CRESST, CDMS Si, CoGeNT, and

DAMA, the last of which being the most significant. DAMA/NAI, a NaI scintillation detector,

reported an annual modulation in the event rate [110], which could be explained by the Earth

moving with and against the DM “wind” flowing through the solar system. The Earth is
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moving in the direction of the star Vega, meaning a signal of DM should peak around the

beginning of June and be at its lowest in December. The phase and period of the DAMA/NAI

modulation matched this well. Since then, the next generation detector, DAMA/LIBRA

continued to measure this modulation, and the combined signal is now at 9.3σ CL [111]. The

signal is well fitted by WIMPs with masses of ∼ 10 GeV or ∼ 80 GeV, depending on whether

it is mostly sodium or iodine recoils respectively; DAMA/LIBRA cannot determine which

nuclei is recoiling.

CoGeNT, a germanium ionization detector, also searched for this annual modulation and

found one with a significance of 2.2σ, however its amplitude was 4-7 times that expected in

the SHM [112]. It also reported an small excess of low energy ionisation events [113, 114],

consistent with ∼ 10 GeV WIMPS. CRESST found an excess of low-energy events with

a 4σ significance [115], however it had problems with decaying polonium deposited in the

clamps holding the detector, which has raised questions [116]. CDMS-II searched for annual

modulation and found no such signal [117], however CDMS Si, looking WIMPs using the

silicon detectors of CDMS-II, reported 3 low energy events with a 5.4% probability of being

produced by known backgrounds, compatible with a ∼ 10 GeV DM candidate [118].

While these signals offer some promise, their fits do not show good agreement with each

other, as seen in Figure 1.9. However, the fits depend on the particle and astrophysical

model, and by varying these some agreement may be restored [119–123]. Null results from

other searches also give these signals issue; limits from LUX [96], SuperCDMS [103], and

others [124] are in strong conflict with some or all of them. Furthermore the tension persists

even when assuming SD couplings [125]. Although there are issues that need to be addressed,

no clear alternate explanation for DAMA’s annual modulation signal has emerged — this

ongoing puzzle is one reason of many to keep a keen eye on direct detection searches.

1.4.2 Indirect Detection

As established in Section 1.1, the mass of the Universe is dominated by DM, as are most of the

astronomical systems inhabiting it. Knowing this, motivation to search for the annihilation

or decay products of DM within such systems is clear; this is called indirect detection. These

searches typically look for evidence of DM by detecting photons, neutrinos, positrons, or

antiprotons. Here, we will discuss a selection of experiments probing these channels, and any
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possible signals of DM they may have seen.

The Fermi Gamma-ray Space Telescope (Fermi) was launched in 2008 and built to measure

the γ-ray sky. Its main instrument is the Large Area Telescope (LAT), which measures γ-

rays of about 20 MeV to over 300 GeV covering approximately 20% of the sky [126]. Such

γ-rays may be produced in DM annihilations into (for example) quark final states; they are

radiated during the hadronic cascades, and created in the decays (mainly from neutral pions).

These indirect annihilations into γ-rays will produce a continuum, however line signals are

also possible if DM annihilates/decays directly into γ-rays (e.g. via a charged particle loop).

There are various astronomical objects whose γ-ray spectra we can search for DM in which

have different advantages (and disadvantages) dependent on the DM model under study.

The Galactic Centre (GC) of the Milky Way is an excellent target for γ-ray searches as the

density of DM is expected to be very large, and thus so is the signal. Indeed an excess peaking

in the range 300 MeV to 10 GeV has been observed [127, 128], and shown to be consistent

with DM annihilations. DM of ∼ 10 GeV mass annihilating dominantly into leptons, or ∼ 30

GeV DM annihilating dominantly into bottom quarks, could explain the excess. However

the GC is a complex astrophysical region with poorly understood backgrounds, and as such

the signal carries a degree of doubt. Unresolved millisecond pulsars distributed in a manner

akin to the DM halo is the leading alternative explanation for the Galactic Centre Excess

(GCE) [129]. There are other issues with dark interpretations of the GCE, which motivated

our work in [3]; this is discussed in Chapter 5.

Given the challenges with backgrounds, it is appropriate to study astrophysical objects for

which this problem is minimal: dwarf spheroidal galaxies (dSphs) make excellent such candi-

dates. These are small DM dominated satellite galaxies with low astrophysical backgrounds

orbiting larger galaxies (such as the Milky Way). Combined analyses of several of the Milky

Way’s dSphs [130, 131] often provide the most stringent indirect detection limits on a DM

model.

One can also search for DM in other parts of the photon spectrum, such as in X-rays, and

recently these searches have presented interesting results. In [132, 133] a weak 3.5 keV line

was seen in the X-ray spectrum of various galaxies, using XMM-Newton X-ray data. Such a

signal could be generated from the decays of sterile neutrinos [134] or axions [135], amongst

others [136]. However other searches, expecting a clear signal, found no evidence of the 3.5
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keV line [137,138], casting doubt on the signal.

Cosmic rays comprise mostly of nuclei and electrons, with antimatter, like antiprotons and

positrons, making up a small fraction as they are seldom generated in standard astrophysical

processes. Thus antiparticle contributions from new physics, such as DM annihilations, could

easily emerge above known sources in cosmic ray searches. An excess in the positron fraction

was first reported by PAMELA in 2009 [139], and later confirmed with an improved analysis

by AMS-02 [140]. Both saw a rise in the positron fraction spectrum above 10 GeV, which is

consistent with DM annihilations [141], but could also be explained by nearby pulsars [142].

To distinguish between these hypotheses the spectrum must be measured at higher energies;

pulsars predict the positron fraction to plateau with a gradual decrease thereafter, however

if DM annihilations are responsible for the excess, then there should be a sharp drop. The

AMS-02 mission will run for several more years, and its future results could probe this high

energy region.

With neutrino telescopes one can search for DM in the same sources as γ-ray searches,

however they are also capable of detecting the annihilations of DM captured in the Sun.

These annihilations produce high energy neutrinos (∼ 1 GeV) distinct from the background

solar neutrinos. The measured annihilation rate tells us the capture rate, as the two are in

equilibrium [143], and subsequently the scattering cross-section can be limited. As the Sun

is predominantly hydrogen, capture will be largely due DM-proton scattering, which allows

for both SI and SD analyses. While limits on SI scattering are weaker than those from direct

detection searches, SD limits can give more stringent bounds in some cases [144–146].

Indirect detection searches benefit from a huge choice of sources and channels in which to

explore, and furthermore they exploit the large DM abundances within systems more than

direct detection searches1. However, they also suffer the most from astronomical uncertainties

and backgrounds, which hamper efforts to find a clear cut signal of DM.

1.4.3 Collider Searches

A final way to search for DM is in the products of high-energy particle collisions. Accelerators

can take particles to TeV scale energies before colliding them together in the heart of a detector

1The signal rates in indirect detection searches go as the square of the DM density, whereas direct detection

rates are linearly proportional to the density.
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which can identify the products and their kinematic properties. The Large Hadron Collider

(LHC) outside Geneva is the most powerful built so far; in its first run it collided protons

with a centre-of-mass energy of up to 8 TeV, which has now risen to 13 TeV in its ongoing

second run. Its two main detectors ATLAS and CMS are currently the best in the field for

DM searches.

The major advantage of collider searches, over direct and indirect detection studies, is

the absence of astrophysical backgrounds, which (as we have seen) have created significant

hurdles for the latter studies. However the drawback is that in the event of a DM candidate

signal being detected, they provide no way in which to tell if the particle being created is the

same as the DM dominating the mass of Universe.

If DM is created in a collision, it will not interact with the detector or decay within it

into particles which will. However if produced alongside some “visible” matter, it can be

inferred by the missing energy in the event. Typically the best way to search for DM is to

look at mono-X events [147], where (for example) only one jet, photon, Z or W is seen in the

detector. Such events usually involve the production of two DM particles, due the requisite

stabilising symmetry in most theories.

Past ATLAS and CMS analyses often implemented an effective field theory approach to

DM searches [148,149], but it was recently pointed out [150] that there are limitations to this

approach. The bounds these searches derive on the cut-off scale of the theory (beyond which

it breaks down) can be comparable to the centre-of-mass energy of the collisions they study.

This motivated the use of simplified DM models instead, as discussed in [151].

Monojet limits often provide the most stringent DM collider bounds; to illustrate the

implementation of such limits in an example model, and how they compare to direct direction

limits, we will consider the analysis in [152]. Here, a simplified model is used, where DM is a

Dirac fermion which communicates to the SM quarks via a vector or axial-vector mediator.

Figure 1.10 shows the monojet limits using 8 TeV LHC data translated into SI and SD WIMP-

nucleon scattering cross-section bounds (blue lines), which are compared with the 2013 LUX

bounds (red). As we increase in mass, monojet bounds have a sharp drop off, as the energy of

the collisions limits the masses that can be probed. In the lower mass region, direct detection

limits fall off, as the recoil energy of the collisions is too small to be detected within the

energy window of the detector.
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Figure 1.10: Monojet 90% CL limits using 8 TeV LHC data on the DM-nucleon scattering cross-

section against mass in the case of SI (left) and SD (right) interactions. This uses a simplified model

of Dirac fermion DM with vector (SI) or axial-vector (SD) interactions taken from [152]. The blue

lines represent limits for two choices of couplings in the simplified model, while the green line gives

the limit when using an effective field theory approach. These limits are shown alongside those from

LUX (red) [95].

In the case of SI scattering, the overall scale of direct detection limits is far greater, thus

only in the low mass region can monojet limits surpass them. For SD scattering the situation

is more balanced; monojet limits are more stringent before their drop off. The disagreement

between effective field theory (green line) and simplified model limits is also apparent in

Figure 1.10, which highlights the issues with using effective field theories in collider searches.

1.4.4 Theoretical Bounds

While not under the umbrella of DM searches, it is appropriate here to also mention theoretical

bounds. Issues can arise in DM models when perturbativity, unitarity, and vacuum stability

bounds are violated.

A matrix element can be written as a series of successively higher order diagrams, where

it may be well approximated by the first few terms (perturbation theory). The validity of this

method relies on the convergence of the series, which is guaranteed so long as the couplings

involved do not surpass a critical value. As an illustrative example consider a 2→ 2 scattering
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process which depends on a single coupling λ, such that the tree-level diagram is proportional

to λ2, and the higher order terms go as integer powers of this factor. Naivety would lead us to

believe unity the boundary beyond which perturbativity breaks down, however loop factors

are introduced at higher orders which means the limit is instead λ2 ≤ 4π [153]. Perturbativity

is not a strict physical bound, as this limit may still be exceeded, however in such cases the

theory would become strongly coupled and bound states would arise.

The probability for a particle reaction must never be greater than one, this is the unitarity

bound. This concept was used in [154] to limit the thermally-averaged annihilation cross-

section 〈σv〉 to be

〈σv〉 . 4π(2n+ 1)

m2
χ

√
x

π
, (1.46)

where the parameters are the same as in Section 1.2.1. Assuming standard freeze-out with

dominant s-wave annihilations, and requiring the correct relic density, they used this unitarity

bound to provide an (almost) model-independent limit of ∼ 340 TeV on the DM mass.

Unstable vacua in any theory are to be avoided, i.e. the potential of the theory must be

bound from below in order to avoid an infinite vacuum expectation value (these are discussed

in the coming chapter). Vacuum stability limits are model-dependent, e.g. in the Abelian

Higgs model the vacuum is stable so long as the quartic coupling is not negative.

A vast breadth of DM searches provide us with an almost continual stream of results,

reflecting the concerted efforts and zeal of the community. This helps make DM phenomenol-

ogy a rich and varied topic, whose key subjects and findings have been touched upon here. In

the coming chapters we will use the results presented here throughout the works discussed.

In this chapter, we have provided a brief introduction to one of the scientific world’s

biggest challenges — dark matter. Section 1.1 presented the case for its existence, high-

lighting evidence in rotation curves, colliding galaxies, and the CMB. MOND and MACHO

interpretations of the evidence were put into question by other results raised here. In Sec-

tion 1.2 we looked at how DM could have been produced, discussing freeze-out and its caveats

in detail, as well as asymmetric production and freeze-in. This demonstrated that by consid-

ering different production mechanisms, different requirements are made on a DM theory. In

Chapter 3 we will introduce one such mechanism which utilises decaying topological defects

as a source of DM.

There exists a huge range of theories with DM candidates, a selection of these were briefly
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reviewed in Section 1.3. After discussing SUSY and the neutralino, arguably the most popular

candidate, we looked at effective field theories and simplified models. Finally in Section 1.4

the searches and signals for DM were summarised, including direct and indirection detection

experiments, and collider seaches, as well theoretical bounds. Several possible signals were

discussed, including the γ-ray excess in the GC, which is the subject of the work presented

in Chapter 5. Dark matter is a broad subject encompassing a colossal body of work, here we

have provided but a brief review; for further information there are a number of other works,

such as [45,50,51,94,155,156].
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Chapter 2

Topological Defects

It is very gratifying to realise that an idea and a theory that

we worked on nearly 50 years ago has such huge relevance to

actual physics.

— Gerald Guralnik

Symmetries play a crucial role in particle physics — the SM was built using them and

you will be challenged to find a modern particle theory in which a symmetry is not integral.

Symmetries largely emerged as a driving force of theoretical physics in the early 20th century,

with the inception of special relativity [157], when the idea that nature could be defined by

symmetries became prominent [158].

Later, special relativity was reconciled with quantum mechanics, and quantum field theory

was born. From this grew gauge theories: the quantum theories of the fundamental forces of

nature, derived from ideas of invariance under a symmetry. The SM comprises of three gauge

theories (although we will see the situation is a little more complex than that), describing the

electromagnetic, weak, and strong forces. To further understand gauge theories, consider the

free fermion field Lagrangian

L = ψ(i/∂ −m)ψ, (2.1)

where /∂ = γµ∂µ and m is the mass. The Lagrangian is invariant under what is called a U(1)

global symmetry, where if ψ → e−iαψ then it is left unchanged.

The case is more complex when α is spacetime dependent; this is referred to as a local or
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gauge U(1) transformation, and under this the Lagrangian becomes

L → L′ = ψ(i/∂ − /∂α(x)−m)ψ, (2.2)

which is not what we started with. To insure invariance under this transformation, one must

introduce a new field which couples to the fermions and transforms itself. This is done by

promoting the derivative to a covariant derivative, i.e. ∂µ → Dµ = ∂µ + igAµ (where g is a

coupling constant), and allowing the new vector field (called the gauge boson) to transform

as Aµ → Aµ − 1
g∂

µα(x).

Our Lagrangian is still incomplete however, as a kinetic term for the gauge field must also

be added, which preserves the gauge symmetry. Doing so, the full gauge invariant Lagrangian

is

L = ψ(i /D −m)ψ − 1

4
FµνFµν , (2.3)

where the field strength tensor Fµν = ∂µAν − ∂νAµ. One might also consider a mass term for

the gauge boson, however such a term is not gauge invariant. This means the gauge boson

must be massless if the symmetry holds, which is true of all gauge theories.

Quantum Electrodynamics (QED), the quantum field theory of electromagnetic interac-

tions, is a gauge theory which uses such a local U(1) symmetry. In QED all electrically

charged fermions transform under the symmetry and couple to the photon (the gauge boson)

with a strength proportional to the charge. Weak and strong interactions can also be formu-

lated as gauge theories, although they use more complex symmetry groups. The gauge theory

of the strong force is called Quantum Chromodynamics (QCD) and uses the group SU(3) to

transform triplets comprising of the three colour states (typically called red, green, and blue)

of a quark. The number of new bosons required for gauge invariance is equal to the number

of generators of the symmetry. The group SU(3) has eight generators, and so QCD requires

as many gauge bosons, called gluons.

QCD possesses a curious property: interactions between coloured states strengthen as

the distance between them increases. While the theory is not fully understood, it is thought

that this quality is behind the non-observability of free coloured states, i.e. the principle of

confinement which states that only colourless bound states can exist as free particles.

We understand this from a physical picture where one trys to separate quarks in a bound

state. Eventually the energy required to push them further apart will be sufficient for quark
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2.1 Spontaneously Breaking a Symmetry

pair production, and thus one gets two new bound states rather than two free quarks. As

the energy of the interaction increases (or equivalently the distance decreases) the interaction

weakens, a quality, true of all non-abelian gauge theories, called asymptotic freedom [159,160].

This means that at high energies and inside hadrons quarks can be treated as free particles.

For weak interactions the case is more complex; they could be described by a SU(2) gauge

theory which contains three new gauge bosons, however these would be massless and the

observed weak vector bosons are not. This suggests the symmetry is broken and in such a

manner as to generate the boson masses. A dynamical way through which this may occur

in a gauge theory was first presented in the 60s by Higgs [161], Englert & Brout [162], and

Kibble, Guralnik & Hagen [163] — through a phenomenon known as spontaneous symmetry

breaking.

In this chapter we shall review spontaneous symmetry breaking and topological defects,

massive structures which can arise through the breaking, and are important to the works

discussed here. In the proceeding section spontaneous symmetry breaking is discussed, along

with the Higgs mechanism. The latter is implemented in the Abelian Higgs model as an illus-

trating example, before its place in the SM is discussed. Following on from this, Section 2.2

details how topological defects can form after a spontaneous symmetry breaking phase tran-

sition. The types of defects are reviewed, as well as their relation to the symmetry which is

broken.

Cosmic strings are a type of topological defect, and are the most relevant to the works

presented here. This being so, Section 2.3 discusses their formation from the field theory,

their gravitational interactions, and the condensates which can form on the string. Finally, in

Section 2.4 we look at the evolution and decay of strings, and discuss two schools of thought

on how these occur.

2.1 Spontaneously Breaking a Symmetry

Spontaneous symmetry breaking is a mechanism by which a symmetry of a theory is broken, or

perhaps more correctly, hidden. Within the context of the SM, it is responsible for generating

the masses of the W and Z weak gauge bosons, as well as the fermion masses (excluding the

neutrinos). One can have a local or global symmetry within a theory, which they wish to

extend with a term which is forbidden under the symmetry; one way to do this is to simply add
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2.1 Spontaneously Breaking a Symmetry

the term, and “ignore” the symmetry requirements, this is referred to as explicit symmetry

breaking. If we use this to generate the W and Z boson masses, issues with unitarity arise in

WW → WW scattering. Examining just the scattering of the longitudinal components, one

finds the cross-section goes as

σ(W+
LW

−
L →W+

LW
−
L ) ≈ G2

F s

16π
, (2.4)

which diverges with the centre-of-mass energy. This only occurs with the longitudinal com-

ponents, with the dangerous divergences arising from their polarisation terms, εL ∼ E
MW

.

Therefore in the low energy regime, the longitudinal component is suppressed over the trans-

verse terms and there is no problem. However in the high energy regime, the longitudinal

term dominates and violates the unitarity bound at approximately 1 TeV. New physics is

therefore required to unitarize this process. With the additional of a SM Higgs boson, new

WW scattering diagrams are opened up, in which a Higgs is exchanged; these new diagrams

cancel the dangerous divergences and the issue is resolved. The cancellation is assured owing

to the restoration of gauge symmetry to the theory. In addition to this issue with unitary, a

theory of weak interactions with explicit symmetry breaking is also non-renormalizable.

One consequence of breaking a continuous symmetry is the emergence of (at least one) new

degree of freedom, this is known as Goldstone’s Theorem. This theorem states that for every

generator of the symmetry that is broken, there is a new massless scalar, called the Goldstone

boson. When it became desirous to use symmetry breaking to create massive particles, this

theorem presented an impasse [164]. The Higgs mechanism resolved this issue by showing

that when the symmetry is local, the Goldstone bosons are “eaten” by the gauge bosons of

the symmetry, which subsequently become massive. To illustrate how the mechanism works,

we will first consider it in action in the Abelian Higgs model.

2.1.1 In the Abelian Higgs Model

At the beginning of this chapter one of the simplest gauge theories was constructed, which

was based on a local U(1) symmetry. Continuing to work with this example here, it will be

shown how the gauge boson can become massive via the Higgs mechanism. This first requires

the introduction of a new complex scalar (the Higgs field), which is charged under the same
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2.1 Spontaneously Breaking a Symmetry

symmetry:

L ⊃ |Dµφ|2 − V (φ)− 1

4
FµνFµν , where V (φ) = µ2|φ|2 +

1

2
λ(|φ|2)2. (2.5)

Spontaneous symmetry breaking arises from changes in the vacuum state, where the

energy of the system is minimal. This will be where the kinetic terms are zero, and so the

minimum is found from that of the potential V (φ). To insure vacuum stability, the quartic

coupling λ, must be positive, however µ2 need not be. If µ2 > 0, then the minimum is at zero,

that is to say, the vacuum expectation value (VEV) 〈φ〉 ≡ 〈0|φ|0〉 = 0. In this case the theory

is as it appears and we just have a new scalar particle of mass µ. If instead µ2 < 0, then the

minimum is now at |φ|2 = −µ2/λ and the situation is more complex. Figure 2.1 shows the

shape of this potential (often referred to as a Mexican hat potential), where it is evident that

the minimum is no longer at zero, but lies along the circular trough, 〈φ〉 =
√
−µ2
λ eiθ. One

can move between points in the trough using gauge transformations, which are all equivalent,

as only the magnitude dictates what the physical theory will be.

Figure 2.1: An illustration of the Abelian Higgs potential, taken from [165].

To rewrite the Lagrangian in terms of the physical degrees of freedom we must expand the

Higgs field about its minimum, however this requires us to pick a particular vacuum state —

this inevitable choice breaks the symmetry. Expanding about a generic point on the vacuum
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2.1 Spontaneously Breaking a Symmetry

manifold, φ may be rewritten as

φ =
1√
2

(η + h)eiξ, (2.6)

where η =
√

2〈φ〉 =
√
−2µ2/λ, and h and ξ are real scalar fields. However ξ (the Goldstone

boson) is an unphysical degree of freedom, as it can be removed via a transformation into the

unitary gauge, i.e. φ→ e−iξφ. Expanding φ in this gauge, our Lagrangian becomes

L =
1

2
(∂µh)2 − 1

2
λη2h2 − 1

2
ληh3 − 1

8
λh4

− 1

4
FµνF

µν +
1

2
e2η2AµA

µ

+ e2ηhAµA
µ +

1

2
e2h2AµA

µ.

(2.7)

Inspecting (2.7) one sees a gauge mass term (with mA = eη) has arose from the coupling

to the original Higgs field. The massive gauge boson now has three degrees of freedom (before

it had two), and knowing this, one can further see the necessity for the removal of ξ: to insure

the total degrees of freedom are unchanged by symmetry breaking. Typically one says ξ has

been “eaten” by the gauge field, becoming its longitudinal component.

In summary, a scalar field charged under a gauge symmetry generated the mass term for

the associated gauge boson after it gained a VEV and broke the symmetry. Consequently

this also introduced a new field h (a Higgs boson), which couples to the gauge boson. While

this is one of the simplest models in which to implement the Higgs mechanism, it illustrates

the key features true in any case.

2.1.2 In the Standard Model

Now the basics of spontaneous symmetry breaking and the Higgs mechanism have been es-

tablished, it is appropriate to discuss their place in the SM. As previously mentioned, the SM

before the Higgs was incomplete as there was no explanation for the masses of the W and Z

bosons. Furthermore parity was seen to be maximally violated in weak interactions, and so

left-handed and right-handed fermion chiral states must be charged differently under the elec-

troweak gauge group; i.e. left-handed fermion states form doublets charged under an SU(2)L

symmetry, whereas the right-handed states are singlets. This meant fermion mass terms,

mf̄f = m(f̄LfR + f̄RfL), were also forbidden by the gauge symmetry. By implementing the

Higgs mechanism into the SM the problems with mass terms can be eloquently solved.
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2.1 Spontaneously Breaking a Symmetry

In the SM, weak and electromagnetic forces become unified above a scale in accordance

with the electroweak theory [166–168], and only after a symmetry breaking phase transition

do the electromagnetic and weak interactions emerge as separate forces. The electroweak

theory is formulated with the left-handed doublets

LL =

νe
e


L

, and QL =

u
d


L

, (2.8)

which are charged under an SU(2)L ×U(1)Y
1 symmetry, as well as right-handed singlets eR,

uR, and dR (but no veR), which are charged under the U(1)Y. Here e, νe, u, and d can

represent any electron-, neutrino-, up-, and down-type fermion respectively, however within

a doublet the fermions must be of the same generation.

A scalar doublet H (the Higgs field), also charged under the SU(2)L × U(1)Y symmetry

is added to the SM:

Lφ ⊃ |DµH|2 − V (H), (2.9)

where Dµ = ∂µ + igW a
µT

a + ig′Y Bµ with the index a = 1, 2, 3, and the form of V is the same

as in (2.5). W a and B are the massless gauge bosons, Ta are the generators of the SU(2)L

gauge group, g and g′ are coupling constants, and Y is the hypercharge. The same covariant

derivative appears in the kinetic terms of the doublets.

At the electroweak phase transition, H gains a VEV which breaks SU(2)L × U(1)Y →
U(1)EM. In the unitary gauge, H is expanded about the VEV v to be

H =
1√
2

 0

v + h

 , (2.10)

where h is the Higgs boson. As in the Abelian Higgs model, this expansion breaks the

symmetry and generates gauge boson mass terms, however now the situation is more involved.

Firstly, W 1 and W 2 gain the same mass and are recast into physical states via W±µ = 1√
2
(W 1

µ∓
W 2
µ). Secondly a mixing is induced between W 3 and B giving rise to the physical mass

eigenstates Z and A, the latter being massless. While the Higgs field breaks the symmetry,

it does not do so perfectly; there is a remnant U(1)EM symmetry of which A is the gauge

boson (thus why it is massless). Fermions then couple to A with a strength proportional to

1U(1)Y is not the same symmetry that represents QED; this emerges after symmetry breaking.
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2.1 Spontaneously Breaking a Symmetry

Q = T 3 + Y , which is the electric charge of the particle. Therefore we can see the remnant

gauge theory is QED, and A is the photon.

Via the Higgs mechanism we have seen how W and Z boson mass terms arise, however

fermion mass generation has yet to be addressed. These are produced via Yukawa terms

L ⊃ yije L
i
L.He

j
R + yijd Q

i
L.Hd

j
R + yiju Q

i
L.H̃u

j
R + h.c, (2.11)

where i, j labels the generation, and H̃ = iσ2H
∗ (σ2 being the Pauli matrix). Post-symmetry

breaking, these terms generate the electron-, up-, and down-type fermion masses, however the

neutrinos remain massless as there are no right-handed fields νR. Given the form of (2.11),

we see the Yukawa couplings set both the fermion masses and couplings to h, which means

the hf̄f coupling is proportional to the mass of the fermion; this is a key phenomenology

consequence of electroweak symmetry breaking in the SM. This behaviour has been seen by

ATLAS and CMS [169,170] suggesting the Higgs boson found is at least SM-like.

One can also see from (2.11) that terms which mix generations are permitted, i.e. the

Yukawa coupling matrices ye, yu, and yd need not be diagonal. However we can diago-

nalize them, transforming the mixing fields into their mass eigenstates, e.g. uiL → Uuiαu
α
L,

diL → Udiαd
α
L, etc. These transformations do not effect the photon and Z couplings, as they

are diagonal in flavour, however W± couplings are between different flavours and so the

transformations need not cancel out. For quarks, the interaction in terms of mass eigenstates

becomes

L ⊃ − g√
2
uαLγ

µV CKM
αβ dβLW

+
µ + h.c., (2.12)

where V CKM
αβ = Uu†αiU

d†
iβ is called the CKM matrix [171,172].

In the W± couplings to leptons, the same mixing does not arise however. Neutrinos are

massless and as such there is no Yukawa matrix to diagonalize and therefore one can always

choose a transformation that allows the current to be unchanged.

This brief overview of spontaneous symmetry breaking and the Higgs mechanism high-

lights some key features of the phenomena. The latter has now become a well ingrained

device in modern particle physics, implemented in many theories. Furthermore, from this

theory arose another relevant to this work — topological defects.
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2.2 Forming a Topological Defect

2.2 Forming a Topological Defect

Given the wide use of spontaneous symmetry breaking in BSM theories, we are well motivated

to believe that as the Universe cooled it underwent a number of such phase transitions, not

just the electroweak. The dynamics of these transitions are described using finite-temperature

field theory, which formulates particle interactions in the non-zero temperature regime. We

will first consider the simple example of a symmetry breaking phase transition in the Abelian

Higgs model. For this discussion we need only concern ourselves with a single result of

finite-temperature field theory: there is a temperature-dependent contribution to the mass,

which by dimensional analysis must be proportional to T 2. Including this contribution, the

Lagrangian may be written in the form

L = |∂µφ|2 +m2
0

(
1− T 2

T 2
c

)
|φ|2 − 1

2
λ(|φ|2)2, (2.13)

where Tc is the critical temperature of the phase transition.

As the temperature drops below Tc the quadratic term changes sign, that is when T ≥ Tc

the VEV is zero (the normal phase) and when T < Tc it is non-zero (the ordered phase),

i.e. |φ|2 = η2 ≡ m2
0
λ . Below Tc, the potential is as seen in Figure 2.1, where the vacuum

state may lie anywhere on a circular vacuum manifold. Upon entering into the ordered phase,

the system at different points in space needs not fall onto the same point on this vacuum

manifold, but rather it can be a function of spacetime. Just after the phase transition, the

temperature is still high enough to allow for fluctuations back to the normal phase, but as

the temperature drops further the fluctuations diminish and the vacuum state settles onto a

point on the manifold for each point in space.

During this process configurations of normal phase can become trapped within the vacuum

structure. To illustrate this we will consider the case when φ is breaking a Z2 symmetry,

under which it is odd. The potential in this case is akin to a flatten Mexican hat potential

(see Figure 2.2), which has two possible VEVs 〈φ〉 = ±η. Suppose there are two neighbouring

spatial regions whose vacuum states, upon the phase transition, fall into opposing minima.

To cross over the interface between these regions the vacuum state must change continuously,

but as seen in Figure 2.2, this cannot be done while remaining in the vacuum manifold as the

points are disconnected. Therefore in order to get a continuously varying 〈φ〉, we are required

to move through the normal phase as we pass over the boundary. In our Euclidean space this
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2.2 Forming a Topological Defect

+-

Figure 2.2: An illustration showing the potential in a φ4 theory (2.13) where φ is odd under a Z2

symmetry. The system here has two choices of VEV (〈φ〉 = ±η) into which it can fall.

will produce 2D structures of normal phase (or false vacuum, if you will) called domain walls.

How gradually the vacuum evolves to the normal phase (and onto the other ordered phase)

is derived from φ’s equation of motion; one finds φ varies smoothly from one phase to the other

with a characteristic width of ∼ (
√
λη)−1 [173]. The normal phase is at a higher potential

energy than the ordered, thus these structures are massive. Consequently it is energetically

favourable for domain walls to minimise their surface area; i.e. they evolve under their own

surface tension, σ ∼
√
λη3.

Domain walls are arguably the simplest topological defects, and have been useful here

to illustrate the key features of topological defect formation. Phenomenologically speaking

though, domain walls are heavily constrained and typically disfavoured. Their energy density

falls slower than the matter or radiation contributions, and so it comes to dominant the

energy of the Universe, thus overclosing it. Consequently, domain walls would also have left

a significant imprint on the CMB, unless the VEV is below ∼ 1 MeV [174]. Domain walls

always arise when a discrete symmetry is broken, so typically theories where this occurs are

avoided, or else a work around is required [173,175,176].

Let us now consider the case when (2.13) is invariant under a U(1) symmetry, which is an

increment more complex than our Z2 symmetry breaking model. Here the vacuum manifold
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2.2 Forming a Topological Defect

is now continuous and connected (see Figure 2.1), i.e. it can be represented by the group S1

(a circle). This allows for the vacuum state to remain in an ordered phase as it pasts between

two regions by moving through the vacuum manifold. However normal phase trapping can

still occur via more intricate spatial configurations of the vacuum state. Figure 2.3 shows a

configuration of vacuum states in a 2D plane which traps a point of normal phase at the center,

in 3D space this is extended to a line defect called a cosmic string. Akin to domain walls,

cosmic strings evolve under a characteristic string tension which in most cases is equivalent

to its mass per unit length µ ∼ η2 (where η is the magnitude of the VEV, as before).

Figure 2.3: Spatial configurations of post-symmetry breaking vacuum states in a theories predicting

cosmic strings (left), shown in a 2D plane, and monopoles (right). The position on the vacuum

manifold is represented by arrows, and the points of normal phase are the central dots.

Other theories where more complex symmetries are broken can produce vacua described

by the S2 group (a sphere), this can lead to configurations such as those seen in Figure 2.3,

which produce 0-dimensional point defects known as monopoles. Before even encountering

topological defects one would have usually heard of monopoles from cosmic inflation. Many

GUT theories predict the production of monopoles in the early Universe, but in such large

abundances that they should have been observed by now [177]. This was one of the motivations

for a period of exponential expansion in the early Universe (inflation), along with the (almost)

isotropic CMB and apparent flatness of our Universe [35,36].
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2.2 Forming a Topological Defect

2.2.1 Homotopy Groups

Thus far we have discussed topological defects qualitatively in order to a establish basic ideas

upon which to build. Here we delve into the involved symmetries and topologies, and the

importance of homotopy groups.

When a symmetry is broken in a theory the topology of the vacuum manifold, M, will

determine what type of defects will form (if any). This may be defined as

M = {φ : V (φ) = Vmin}, (2.14)

however we would like to express this in terms of the symmetry groups describing the phase

transition. In general, one starts with a theory that is invariant under a symmetry group G,

which upon symmetry breaking produces a theory that is now invariant under the subgroup

H. If we define φ0 as a single point on the vacuum manifold, then gφ0 where g ∈ G, is also on

the vacuum manifold. Furthermore, there are elements of G which leave φ0 unchanged, i.e.

they act trivially (gφ0 = φ0), in this case g ∈ H. Given hφ0 = φ0 ∀h ∈ H, then elements of

a left coset gH will give the same state when acting on φ0. Thus G/H, the set of left cosets

of H in G, is equivalent1 to the set of all elements of G which have non-trivial action on φ0,

i.e. the vacuum manifold M = G/H.

The topology of the vacuum manifold informs us what stable defects can form, or more

specifically the homotopy groups πn(M) tells us. By definition πn(M) is the set of homotopy

classes of the maps

f : Sn →M. (2.15)

To elucidate this further we will consider the first homotopy group π1(M) concerning the

mapping of S1 →M, this is called the fundamental group. M will be some topological space

and starting at a given basepoint one may consider paths traversing this space. Those which

end at the same basepoint are the various mappings of S1 to our topological space, which are

referred to as loops. Two different loops are homotopic if they can be continuously deformed

into one another within M, and a homotopy class is the set of all homotopically equivalent

loops (mappings). The set of all possible classes is then the homotopy group π1(M).

1One can have distinct elements of G, whose left cosets are equal (gH = g′H). These are not “double-

counted” in the set of left cosets G/H, instead they are a singular element.
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2.2 Forming a Topological Defect

Figure 2.4: An illustration of contractible and non-contractible loops in a vacuum manifold. The green

shaded region represents the vacuum manifold, which contains a hole. Loops not enclosing this hole,

such as the blue loop shown, are contractible (to a point). Otherwise if it encloses the loop, such as

the red one shown, then it is non-contractible.

Like all groups, the fundamental group has identity, reverse, and product elements (or

classes). The identity class is the set of all contractible loops, i.e. all loops which are homotopic

to the trivial loop: a loop whose path always lies on the basepoint (an infinitely small loop

if you will). The difference between contractible and non-contractible loops is highlighted in

Figure 2.4. The reverse class is the group of loops which traverse M in the opposite way,

e.g. a class of non-contractible loops with a “clockwise” path will have a reverse with an

“anticlockwise” path. The product classes consist of (non-contractible) mappings homotopic

to one which loops multiple times around the same path of the manifold. These correspond

to string solutions with higher winding numbers n, i.e. those which traverses a loop in M n

times as one moves through a single loop in space.

If a homotopy group only contains the identity class, it is trivial and we say the manifold

is simply-connected. A necessary condition for string formation is the non-triviality of the

fundamental group of the vacuum manifold. As an example, consider the fundamental group

of the vacuum manifold in the Abelian Higgs model (2.5), whereM = U(1). Here the vacuum
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2.3 Cosmic Strings

Condition Defect

π0(M) 6= 1 Domain Walls

π1(M) 6= 1 Cosmic Strings

π2(M) 6= 1 Monopoles

π3(M) 6= 1 Textures

Table 2.1: A list of conditions on the homotopy groups of the vacuum manifold πn(M), in order for

defects of the listed types to form.

manifold is easily visualised (as a circle), and one can, without any strenuous mathematical

exercise, see that non-contractible loops are possible, thus the fundamental group is non-trivial

and cosmic strings can therefore form. Similarly the non-triviality of the other homotopy

groups allows the possibility of other types of defects forming; this is summarised in Table 2.1.

For a more vigorous mathematical treatment see for example [173,178].

Given these criteria for defect formation, and the discussion earlier on electroweak sym-

metry breaking, one might question if such defects arise in the SM. However while the funda-

mental homotopy group of the electroweak vacuum manifold is non-trivial, no stable string

solutions are possible. This reflects an important caveat: while the homotopy conditions

discussed are necessary for defects to form, they do not guarantee it [179].

In this section, a brief review of topological defects and their formation has been given in

which issues with domain walls and monopoles were highlighted. These problems motivated

us to focus on cosmic string physics in the works presented here, and as such a provision of

further detail on the subject is appropriate.

2.3 Cosmic Strings

In the previous section we briefly reviewed how cosmic strings are generated through a spon-

taneous symmetry breaking phase transition, and through what kind of breaking do they

arise. Derivations of string solutions from the field theory have not been touched upon how-

ever, which shall be discussed here. To demonstrate this, we shall once more consider the

Abelian Higgs model (2.13) in the case of invariance under a global U(1) symmetry. For this
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discussion, the Lagrangian is more appropriately given in the form

L = |∂µφ|2 − λ(|φ|2 − 1

2
η2)2, (2.16)

where a constant term has been added to insure the potential is non-negative everywhere.

The equation of motion of φ is then

[∂2 + 2λ(|φ|2 − 1

2
η2)]φ = 0, (2.17)

to which the vacuum states are possible solutions, but there are also others — string solutions.

We can derive these by considering a cylindrically symmetric ansatz

φ =
η√
2
f(m0r)e

inθ, (2.18)

where m0, as seen in (2.13), is the mass of the Higgs boson, and the form of the exponent

reflects the requirement that the system must loop around the circular vacuum manifold an

integer number of times (the winding number, n) as θ goes from 0 to 2π.

The form of f(m0r) is not immediately known, however we need f(0) = 0 and f(m0r →
∞) → 1, in order to get symmetry restoration in the string center, and an ordered phase

outside. The full form of f(m0r) may be found by inserting the ansatz into the equation of

motion, doing so one obtains

f ′′ +
1

ρ
f ′ − n2

ρ2
f − 1

2
(f2 − 1)f = 0, (2.19)

where ρ = m0r and a prime means the derivative with respect to ρ. This non-linear second-

order differential equation has no known analytic solution, leaving f(ρ) to be found numeri-

cally.

Here the solutions arose from the breaking of a global symmetry and as such are known

as global strings or vortices. The energy density for these solutions goes as ρ−2 for large ρ,

thus the energy (mass) per unit length µ (found by integrating over the plane perpendicular

to the direction of the string), is infinite. Axion strings, produced via symmetry breaking in

models with axions, are an example of such strings [180,181].

Considering the same theory (2.16), but with a local U(1) symmetry, one obtains more a

complex Nielsen-Olesen string solution [182]. In this case there is also a gauge field and so a

set of equations of motion

(D2 + 2λ(|φ|2 − 1

2
η2))φ = 0,

∂νF
µν + ie(φ†Dµφ−Dµφ†φ) = 0,

(2.20)
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Figure 2.5: Radial string functions f(ρ) and P (ρ) from (2.22) in the case that β = 1 representing the

cosmic string solutions to an Abelian Higgs model with a local U(1) symmetry.

where Dµ is the covariant derivative necessary for gauge invariance. As before, we again

consider cylindrically symmetric ansatzes

φ =
η√
2
f(ρ)einθ,

Aµ =
1

e
(P (ρ)− n)∂µθ.

(2.21)

Inserting these ansatzes into the Euler-Lagrange equations, we obtain1

f ′′ +
1

ρ
f ′ − n2

ρ2
f − 1

2
(f2 − 1)f − 1

ρ2
P 2f = 0,

P ′′ − 1

ρ
P ′ − 1

β
Pf2 = 0,

(2.22)

where β = m2
0/m

2
v with mv = eη (the mass of the gauge boson). Figure 2.5 plots f(ρ) and

P (ρ), showing how f(ρ) smoothly varies from 0 to 1, i.e. from the normal to ordered phase,

and how P (ρ) peaks at ρ = 0 and flattens off as ρ increases. Since the gauge field’s vacuum

state is varying within the cosmic string, from ~B = ~∇ × ~A this tells us a magnetic field is

produced, given by

Bz =
m2

0

eρ
P ′. (2.23)

1For more details on these derivations see [179,183].
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This translates to a magnetic flux of

ΦB =

∮
∂S

~A.d~l = lim
r→∞

∫ 2π

0

1

e
|P (m0r)− n|dθ =

2πn

e
, (2.24)

which is quantized in units of 2π/e and is proportional to winding number of the string.

The mass per unit length of the cosmic string may be found from the energy density ε,

which in terms of f(ρ) and P (ρ) is

ε(ρ) =
m2

0η
2

2

[
f ′2 +

β2

ρ2
P ′2 +

1

ρ2
f2P 2 +

1

2
(1− f2)2

]
, (2.25)

thus µ is given by

µ =

∫
ε(r)rdrdθ = πη2

∫ ∞
0

{
f ′2 +

β2

ρ2
P ′2 +

1

ρ2
f2P 2 +

1

2
(1− f2)2

}
ρdρ. (2.26)

Inspecting f and P in Figure 2.5, which is for the case when β = 1 (a typical value since

both m0 and mv are set by the VEV), one may estimate that the term in the parentheses in

(2.26) will be of order unity; given this we expect µ ∼ η2. From numerical studies the term in

the parentheses actually goes as lnβ, thus β need not be near unity for the µ approximation

to hold. Cosmic strings are typically characterised by the parameter Gµ (where G is the

gravitational constant), which is referred to as the string tension. From its form, one can see

that this gauges a string’s gravitational strength.

Local strings are categorised into type I and type II dependent on the value of β. Type

I strings occur if β < 1, where strings of any winding number n are stable. If instead β > 1

we get type II strings, where only the n = 1 solution is stable. The strings of higher winding

number will decay in this scenario, splitting into n strings of unit flux 2π/e. This reflects the

interplay of two forces acting in the system: the first arises from the scalar field wanting to

minimize the energy and thus join with other strings (an attractive force), and the second

is the repulsive force between the magnetic fluxes of the strings. Given the width of these

forces is characterised by 1/m0 and 1/mv respectively, one can see how β’s value determines

the string type.

2.3.1 Gravitational Interactions

Cosmic strings are massive structures, and as such can have important gravitational conse-

quences. The field equations of general relativity [25] which describe these interactions are

77



2.3 Cosmic Strings

θ

Figure 2.6: An illustration of how the conical space around a cosmic string allows the gravitational

lensing of light. A cylindrical space (represented in red) has a slice of angular width θ removed from

it. The edges are then pushed together “stretching” the space and transforming the geodesic path of

light (shown as blue lines) travelling nearby.

dependent on the energy-stress tensor, which in the case of static straight local strings [176]

is given by

Tµν = µ diag(1, 0, 0,−1)δ(x)δ(y). (2.27)

This presumes the string is orientated along the z-axis and that the typical distances being

considered are far greater than the width of the string, such that the latter has been taken to

be zero. The Ttt term represents the energy density, while the Tzz term represents pressure

along the z-axis. We can see that this latter quantity is negative, thus there is negative

pressure along the string, that is to say, there is tension in the string. We also see that this

tension, T = −µ, is equal to the energy density, a relation which can be derived from lorentz

invariance and conservation of energy.

Inserting this into the field equations one finds an intriguing result — the metric is flat,

but conical (that is the angular coordinate runs from 0 to 2π− δ) in the vicinity of the string;

this means the string can act as a gravitational lens. In Figure 2.6 we illustrate what is meant

by conical space and how light is bent by it. Consequently an image of a source positioned

behind a string may emerge on both sides of it. Several of these pairs of images aligned along

a path would be a distinctive signal for the presence of a cosmic string.

By considering moving or non-straight strings, one finds a gravitational attraction is now

exerted by the cosmic string (as opposed to simply a conically shaped spacetime). This
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means, for example, that kinks (discontinuous turns in the path of a string) will be sources

of gravitational attraction, and a moving string will affect the CMB [184]. Light from the

surface of last scattering passing ahead of a cosmic string moving orthogonally to the line of

sight will be redshifted, and the light behind will be blueshifted. This leads to temperature

discontinuities along lines in the CMB, a distinct signature of cosmic strings.

Cosmic strings were originally a favoured explanation for the primordial perturbations

required for structure formation in the early Universe [185, 186]. This was as an alternative

to inflationary models, which also could create these fluctuations. However when acoustic

peaks were seen in the CMB [187, 188], these were counter to cosmic string predictions, and

ruled them out as the sole source of perturbations [189]. It was still thought that they could

play a subdominant role, although CMB bounds on Gµ limits this contribution to at most

O(1)% [190–195].

Having been ruled out as the main source of primordial perturbations, interest in cosmic

strings waned [189]. However it was later renewed when cosmic strings were shown to arise in

some models of string theory [196–200], opening a path for experimental tests of the theory.

These cosmic superstrings are fundamental strings which have grown via an inflationary mech-

anism to cosmic sizes. Indeed, the numerous channels through which cosmic strings could

arise makes their formation generic [201–204] and so studies of their possible consequences

important.

2.3.2 Condensates and Superconductivity

Previously we saw how cosmic string formation in the case of a local U(1) symmetry also

gave rise to structures on the gauge field. Interactions between the scalar field breaking

the symmetry and other fields can generate further structures called condensates [205–207].

Section 2.1 established how mass terms can be generated upon the spontaneous symmetry

breaking of a field, however in the core of a string the symmetry is restored and thus these

consequences are reversed. If this regime change within the vicinity of the string means the

interacting field sees a similar change, then this field is said to have condensed onto the string.

As an establishing example we will examine SM Higgs condensates, which are important

in the works discussed here. Consider string production in the case of the Abelian Higgs

model (2.16); taking into account the presence of the SM Higgs field, H, the scalar potential
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of this theory may be written in the form

V (φ,H) =
1

2
λ1(|H|2 − 1

2
v2)2 +

1

2
λ2(|φ|2 − 1

2
M2)2

+ λ3(|H|2 − 1

2
v2)(|φ|2 − 1

2
M2),

(2.28)

where both H and φ undergo spontaneous symmetry breaking, gaining non-zero VEVs 〈H〉2 =

v2/2 and 〈φ〉2 = M2/2 respectively.

Assuming φ breaks the additional U(1) symmetry at a scale much greater than the elec-

troweak (i.e. M � v), there will be period after this phase transition where the electroweak

symmetry is still intact and 〈H〉 is zero. Here strings have formed upon the φ field, but within

their cores there is a false vacuum (〈φ〉 = 0). Subsequently, the potential within the string

includes the quadratic term −1
2λ3M

2|H|2, as we see by inspection of (2.28). This contribu-

tion means the Higgs field’s symmetry could be broken in the core of the string, but remain

unbroken outside. The SM Higgs field’s VEV, 〈H〉, inside will be of the order of M , so when

the electroweak phase transition occurs, the VEV of the condensate will not be significantly

affected as M � v.

This was an example of a bosonic condensate, which is any arbitrary scalar field whose

symmetry is also broken within the vicinity of the string. Note here the genericity of these con-

densates; they form through scalar portal couplings which arise regardless of the symmetries

each field is charged under.

Suppose now we have a bosonic condensate of a new scalar singlet S, charged under the

electromagnetic U(1)EM symmetry. In the core of the string, the field solution is of the form

S = 1√
2
s(r)eiα(x). Taking the phase to vary linearly space and time, i.e. α = kz − ωt, it can

be shown that the electromagnetic (Noether) current along the length of the string obeys

∂jz
∂t

= q2s(r)2Ez, (2.29)

which is a London equation of superconductivity [208]. Therefore by allowing the bosonic con-

densate to be charged under the U(1)EM gauge symmetry, the string is now superconducting

with the condensate field carrying the current.

This phenomenon was first suggested in [205] showing how superconducting fermionic

condensates could also be rise. This occurs when a fermion field obtains its mass via a

Yukawa coupling with the scalar field, thus at the core of the string you get fermion zero
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modes of zero energy [209]. If the fermion field is also charged under the U(1)EM symmetry,

then it can carry the current and make the string superconducting.

Issue arises in models predicting superconducting cosmic strings in what is referred to

as the vorton catastrophe [210, 211]. Vortons are loop solutions predicted in such models

which have non-zero angular momentum, and can stabilise. This can present a problem akin

to that of monopoles; vortons produced in the early Universe can come to dominant the

energy density of the Universe. Such scenarios are to be avoided, unless one requires very

light strings, and so one must advocate an effect or mechanism by which the vorton relic

abundance can be reduced. One way in which this could occur is via the consideration of

quantum tunnelling permitting vorton decays.

Here we looked further into cosmic strings (one dimensional topological defects), reviewing

the string solutions of the field theory, their gravitational effects, and the condensates which

can form upon the string, and subsequently become superconducting. In order to further

understand how DM can be produced from these strings, one must study their evolution and

decays.

2.4 Cosmic String Evolution and Decay

Upon a phase transition (with the appropriate symmetry being broken) a cosmic network of

strings form, which evolve under their own tension and under the expansion of the universe;

doing so, they lose energy (decay) by radiating it into different forms. Firstly, they may lose

energy via gravitational radiation as the oscillations of cosmic strings produce gravitational

waves [212–214]. They can also emit particle radiation of various forms dependent on the

particular model considered, e.g. in the case of an Abelian Higgs model, strings will emit

Higgs and gauge bosons (associated with the symmetry and its breaking) [215, 216], or if we

had superconducting strings, electromagnetic radiation may be emitted [205]. In the works

described here, we consider the scenario when DM is amongst the particle radiation emitted,

and can effect standard freeze-out physics.

Strings come in two types: long strings and loops1, the former enter and exit at points on

the horizon and in the case of the latter the ends meet. As the Universe evolves, long strings

1Earlier we referred to loops in the context of a vacuum manifold space, but here it is attributed to loops

in physical space. From this point onwards that is the intended meaning, unless otherwise specified.
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will straighten and loops will shrink and eventually disappear. Long strings can also create

loops by intersecting with other strings or themselves; Figure 2.7 illustrates this procedure.

Two Intersecting Strings

Self-Intersecting String

Figure 2.7: A diagram showing the mechanism for loop formation by the intersection of long strings.

The top diagram shows formation through self-intersection, and the bottom shows formation from two

different strings.

How the string network evolves, and into which channels with which fraction it loses its

energy is a topic of debate. Here, two scenarios will be considered: one based on simulations

of the Abelian Higgs model [217,218], and the other on the Nambu-Goto action of the string

[173,179,183,219].

2.4.1 Abelian Higgs Field Simulations

Strings evolve on an expanding spacetime described by the FRW metric, which in conformal

time is given by ds2 = a(τ)2(dτ2 − dx2), where a(τ) is the scale factor. Considering Nielsen-

Olesen strings in the Abelian Higgs model (2.5), but now on the FRW metric, the action

is

S =

∫
d4x
√−g

(
gµνDµφ

†Dνφ− V (φ)− 1

4
gµρgνσFµνFρσ

)
, (2.30)

where gµν is the FRW metric tensor and g is its determinant.

The equations of motion under this new metric in the temporal gauge (A0 = 0) are

φ̈+ 2
ȧ

a
φ̇− |D|2φ+ 2λa2φ(|φ|2 − 1

2
η2) = 0

∂νF
µν + iea2(φ†Dνφ−Dνφ

†φ) = 0.

(2.31)
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These equations have been numerically solved by discretizing space into a lattice, then running

simulations of the string networks evolution [215]. Here the majority of the energy loss was

into particle, rather than gravitational radiation, and the system reached a scaling solution.

In this regime the general structure in a comoving volume does not change, e.g. the network

within a cube of length ct1 at a time t1 will appear similar to that at a later time t2 in a cube

of length ct2. The energy density in this case goes as ρcs ∝ t−2, thus the density parameter

Ωcs = ρcs/ρc is constant.

2.4.2 Nambu-Goto Strings

If one assumes strings have zero width1, then they can be described by a Nambu-Goto ac-

tion, where the evolution and decay of the string network differs to what simulations of the

Abelian Higgs model predict. In this formulation, one reduces from a 4D field theory to a 2D

worldsheet2 description — strings described in this manner are referred to as Nambu-Goto

strings. The coordinates of the worldsheet are labelled by σa (a = 0, 1), where typically σ0 is

time and σ1 is the position along the string. The 4D spacetime coordinates Xµ of each point

of the worldsheet are then a function of σa, that is Xµ = Xµ(σa). The metric in this new

coordinate system γab is given by

γab =
∂Xµ

∂σa
∂Xν

∂σb
gµν , (2.32)

and the action is

S = −µ
∫
d2σ
√−γ = −µ

∫
d2σ(−Ẋ2X′2 + (Ẋ.X′)2), (2.33)

where γ is the determinant of the metric, and the dot and prime denote differentiation with

respect to σ0 and σ1 respectively.

It is from this Nambu-Goto action that one can derive the strings behaviour. Again,

one finds that the string enters a scaling regime as it did in the simulations of the Abelian

Higgs model, however loop energy losses are dominantly into gravitational radiation in this

scenario [213]. Particle radiation can still occur though via structural features called kinks and

cusps. These are sharp (discontinuous) bends in the string and are illustrated in Figure 2.8.

1Such an assumption is reasonable when typical curvature radii in a network are far greater than the width

of the strings [220].
2The path of a point in space through time is a worldline, the path of a string is a worldsheet.
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Cusp Kink

Figure 2.8: Illustrations of kinks and cusps on strings.

Cusps form on string loops during oscillations, when a point on the loop attains the speed

of light and doubles back on itself. At such a point the string is self-interacting and particle

radiation can be emitted upon their collapse. Kinks are the remnants of strings intersecting,

and form on all strings involved, as illustrated in Figure 2.7. They also decay and are a source

of particle radiation. Thus while gravitational radiation dominants loop energy losses, there

is a secondary source of particles from cusps and kinks; this allows us to use this scenario as

another channel through which DM could have been produced in the early Universe. These

scenarios and their role in a mechanism for DM genesis is the focus of Chapter 3.

Symmetry topics are deeply entrenched in modern particle physics, and the works dis-

cussed here are indeed based heavily on such ideas. This chapter began with a review of

spontaneous symmetry breaking, discussing the Higgs mechanism, and its place in the SM.

Proceeding this, in Section 2.2, we moved onto topological defects, massive structures which

can arise after symmetry breaking phase transitions. This section covered how they are

formed, and how the symmetry involved determines if and what defects can arise.

Given their importance to this thesis, 1-dimensional topological defects called cosmic

strings were further detailed in Section 2.3. Cosmic string solutions to global and local

symmetries were discussed here, before their gravitational implications, condensates, and

possible superconductivity were reviewed. Lastly in Section 2.4 we saw how cosmic strings

evolve and decay, highlighting two scenarios in which particles may be radiated. For a reader

searching for further information on topological defects there are books [173,183], and articles

[179,219,221–223] which will enlighten them further.
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Chapter 3

Dark Matter from Topological

Defect Decays

It is reminiscent of what distinguishes the good theorists

from the bad ones. The good ones always make an even

number of sign errors, and the bad ones always make an odd

number.

— Anthony Zee

Section 1.2 discussed DM genesis, mechanisms through which the observed relic density of

DM could have been produced. These defined how our particle theory is connected to the as-

trophysical processes governing the relic density, and consequently, how it will be constrained

by it. Typically this is assumed to occur via freeze-out [53–55], and the subsequently, the

model under study can be highly constrained. Therefore if an alternative production mech-

anism was to be considered, these bounds will change, and the phase space could be opened

up. In the work [1] we explored this idea, by considering the effect of decaying topological

defects as a new source of DM in the early Universe1. Other mechanisms were discussed in

Section 1.2, and there are further examples in [72].

Chapter 2 saw how the spontaneous symmetry breaking of a local U(1) symmetry gives

1DM from decaying strings was also considered in [224] where a specific production mechanism was assumed,

in which DM states were generated, in small numbers, only when the loops of string had shrunk to radii the

same order as the string width.
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rise to 1-dimensional topological defects called cosmic strings. Within the particle radiation

emitted by the decays of said strings and their condensates, there can be DM or a heavier

particle which can decay into it. Remnant U(1) symmetries are generic in BSM theories, such

as in GUT and string theories [201–204], and they must be broken to insure new massless

gauge fields do not arise. Thus there is clear motivation for cosmic string formation, and so

the possible effects on DM phenomenology should be considered.

In Section 3.1 we will discuss top-down DM production from decaying topological defects,

considering how the decays can be parameterised, and the Boltzmann equation describing the

mechanism. Numerical analyses of this equation are presented in Section 3.2, revealing how

the yield of DM evolves in different scenarios. By making approximations, analytic solutions

are also found and shown to be in excellent agreement with numerical results.

In Section 3.3, we consider DM constraints on the mechanism, and how this can be used

to limit the string parameters. The analysis here is intended to be as model-independent as

possible; later, in Chapter 4 we will implement this mechanism in the Inert Doublet Model

and discuss the benefits of doing so [2].

3.1 Top-Down Dark Matter Production from Topological

Defects

We utilise a top-down1 production mechanism first considered as a possible explanation for

the ultra high energy (∼ 1011 GeV) cosmic rays [225]. In this scenario, cosmic strings decay

into undefined states labelled X, which then in turn decay into χ particles. They take these

radiated states to be cosmic rays, however we will assume they are DM particles. In such

scenarios, the total energy density injection rate of X particles is modelled as

Q(t) = Qχ

(
t

tχ

)p−4

, (3.1)

where tχ is a reference time, which for the sake of simplification is chosen to be when the

temperature is equal to the DM mass mχ. Qχ is the energy density injection rate from

1Top-down scenarios are those which arise from physics at a higher scale, e.g. DM being produced via decays

of heavier states, or small structures arising from the fragmentation of larger ones. Conversely, if something is

produced from lower scale physics, such scenarios are labelled bottom-up.
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decaying defects evaluated at that time and p is a power law index which depends on the

string scenario.

A fraction fX of the energy injected by the string goes into producing X states, which

have an average energy of EX . These X particles will decay into Nχ χ particles on average,

so the number density injection rate of χ particles is

jinj
χ =

fXNχQχ

EX

(
t

tχ

)p−4

, (3.2)

where the value of p depends on the decay scenario.

Section 2.4 discussed how cosmic strings may decay and saw there were two schools of

thought. The first is based on simulations of the Abelian Higgs field theory (as discussed in

Section 2.4.1), where the majority of the energy loss is via particle radiation (i.e. fX ≈ 1)

and p = 1, we label this the FT scenario. Section 2.4.2 saw how one can study the Nambu-

Goto equations of motion to find the string energy loss; this motivates a cusp emission (CE)

scenario, where while the dominant loop energy loss is via gravitational radiation, there is

subdominant particle emission from the collapsing of cusps. In this latter scenario, the power

law index p = 7/6.

In Appendix A, particle radiation in each scenario is discussed in further detail, where loop

energy loss calculations are reviewed. Here, the choices of p are also justified, and relations

between qX and the string tension parameter Gµ are derived.

3.1.1 Adding Defects to the Boltzmann Equation

Our mechanism only requires DM to be produced from decaying strings, and makes no further

assumptions on the particle model. Subsequently, one can assume DM was still once in

thermal equilibrium undergoing the same processes as in freeze-out, however now there is

an additional non-thermal source of DM from defects. Section 1.2.1 derived the standard

freeze-out Boltzmann equation for a DM particle undergoing 2→ 2 annihilation and creation

processes. In order to take into account decaying defects, the injection rate (3.2) found in the

previous section is added to this Boltzmann equation and one finds

ṅχ + 3Hnχ = −〈σχv〉
(
n2
χ − n2

χ,eq

)
+ jinj

χ , (3.3)

which in terms of parameters Yχ = nχ/s and x = mχ/T (as defined in Section 1.2.1) becomes

dYχ
dx

= − A

xn+2

(
Y 2
χ − Y 2

χ,eq

)
+

B

x4−2p
, (3.4)
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where as before (repeated here for convenience): n = 0(1) in the case of s(p)-wave domi-

nant annihilations, A =
√

π
45g∗mχMPlσ0, and the effective relativistic degrees of freedom is

approximated to be constant, i.e. g∗ ≈ 100, in accordance with the SM degrees of freedom.

There is also a new term B, defined as

B =
3

4

(
Nχmχ

EX

)(
QχfX
ρχHχ

)
, (3.5)

where ρχ and Hχ are the energy density and the Hubble parameter evaluated at the reference

time (x = 1 when t = tχ, as it was defined). To simplify further, we define

qX ≡
QχfX
ρχHχ

, and rχ ≡
Nχmχ

EX
, (3.6)

where qX parameterises the X injection rate; this will be used as a free parameter in the

model, and we will study how it may be constrained.

The parameter rχ, gives the fraction of the decaying X state’s energy that goes into the

production of DM particles (that is, into total DM mass energy); the larger its value, the more

efficient DM production will be. There are two main cases to consider for the value of rχ. The

first is where a few X states with mX ∼ 1015 GeV (of the order of the VEV) are produced with

a large average energy, EX ∼ 1015 GeV. The number of DM particles produced by X decays

is model-dependent. This scenario will not be considered further as DM production will not

be optimal. Instead, we will study a second scenario for X production, where many lower

mass states are produced with low average energies. We shall consider the case EX ∼ 103

GeV, appropriate for defects produced in SUSY theories where the VEV is in (a combination

of) fields in a flat direction [226] or to strings with condensates of light fields [206]. We

assume that the X states decay to a low number of DM particles, likely to be even due to the

symmetry stabilising them. However, we will conservatively take Nχ = 1, and set mχ = 500

GeV (that of a typical WIMP), thus rχ = 0.5.

When DM is still firmly in thermal equilibrium with the bath, the injection of DM from

decaying defects is not expected to have a noticeable impact on the yield, as the number den-

sity changes they produce will be removed as the equilibrium yield is rapidly re-established.

Only when the system approaches the point of freeze-out, where it departs thermal equilib-

rium, will the new source start taking effect. How it does this is quantitatively analysed in

the coming section.
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3.2 Solving the Boltzmann Equation

Evaluating the Boltzmann equation (3.4) presented in the previous section informs us how

the DM yield evolves with x (which is closely related to time, x ∝
√
t). It is controlled by

two free variables σ0, the annihilation cross-section, and qX , the X injection rate parameter.

There is also n and p to consider, for which there are two choices each, and therefore four

cases in total to consider, which we will label using (n, p).

3.2.1 Numerical Solutions

As in the case of standard freeze-out, the Boltzmann equation (3.4) has no exact analytic

solution, therefore in order to see how the yield evolves, one must analyse it numerically. In

Figure 3.1 the results of this analysis are shown, where the yield is plotted against x for all

four cases of (n, p) using a 500 GeV DM mass. Here, σ0 was chosen to be the value required

to produce the observed abundance by standard freeze-out (2.0 × 10−26 cm3 s−1 for s-wave

dominating annihilations and 9.9× 10−25 cm3 s−1 for p-wave), while four different qX values

were considered (including qX = 0, i.e. standard freeze-out).

These plots demonstrate how the presence of decaying defects increases the relic abun-

dance, which one would intuitively expect given they are a source of DM, and so can not

remove it. Likewise anticipated, the abundance increases with qX , which controls the injec-

tion rate of DM particles from the decaying defects.

The trend seen post-freeze-out differs from the behaviour one sees in standard freeze-out

curves (Figure 1.5), furthermore it varies between scenarios. In the (0, 1) case, the yield

flattens quickly, while in the other cases, it actually increases before plateauing. This effect

can be understood by looking back at the Boltzmann equation (3.4); the first term controls

the annihilation rate from standard scattering processes and the second term controls the

production rate from decaying defects. In standard freeze-out, the yield departs from the

equilibrium curve when the annihilation rate approximately equals the expansion rate of the

Universe (the point of freeze-out xfr). However now, the point where it departs (which we

will label xd) occurs when the two terms in the Boltzmann equation are balanced, and the
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Figure 3.1: The yield of DM against x = mχ/T from numerical evaluations of (3.4), which describes

freeze-out with an additional source of DM from decaying topological defects. Each sub-figure is for

one of the four different cases of (n, p) considered: (0, 1) (a), (1, 1) (b), (0, 7/6) (c), and (1, 7/6) (d).

Plotted in each case are curves for when qX = 0 (red), i.e. standard freeze-out, qX = 10−9 (purple),

qX = 10−8 (blue), and qX = 10−7 (green). Also shown is the thermal equilibrium curve (black).

In all cases, mχ = 500 GeV, rχ = 0.5, and σ0 was chosen such that one obtains the observed relic

abundance [17] in standard freeze-out; this is 2.0 × 10−26 cm3 s−1 for dominant s-wave annihilations

and 9.9× 10−25 cm3 s−1 for p-wave.

curve becomes flat (as
dYχ
dx = 0), but this is not when the system leaves thermal equilibrium1.

Past this point, the behaviour of the yield depends on the relative values of the exponents,

n+ 2 and 4− 2p. If n+ 2 = 4− 2p, then the annihilation and production rate terms decrease

by the same amount as x increases, thus past xd they will continue to cancel each other out

1The point of departure occurs when the yield is greater than that in the standard freeze-out case, so one

expects the annihilation rate to be higher, and so the system to still be in thermal equilibrium.
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3.2 Solving the Boltzmann Equation

and the curve remains flat. This condition is fulfilled in the (0, 1) scenario, which is shown

in Figure 3.1a. If instead n + 2 > 4 − 2p, then after xd the annihilation rate will decrease

faster than the production rate, and so the overall abundance increases with x. However

the annihilation rate is by no means to be treated as negligible after xd, as without it the

predicted abundance would be significantly higher (which one can calculate by integrating just

the second term from xd). Therefore the behaviour after xd is determined by the interplay

between production and annihilation mechanisms, and the point where the system leaves

chemical equilibrium is not manifest.

(0, 1)

(1, 7/6)

(1, 1)

(0, 7/6)
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Figure 3.2: Contours of constant yield in (σ0, qX) space showing the required values in order to produce

1σ either side of the observed abundance of DM [17]. Four cases are considered: (0, 1) (purple), (1, 1)

(blue), (0, 7/6) (red), and (1, 7/6) (black).

In each (n, p) case the residual yield generated is determined by σ0 and qX , it is therefore

instructive to plot contours in (σ0, qX) space for which the observed relic density of DM is

obtained. Figure 3.2 shows contours of constant yield for the four scenarios, set to 1σ either

side of the relic density value [17]. The contours display two regions of distinct behaviour: at

low qX they are approximately vertical (independent of qX), and at high qX there is a positive

correlation with σ0. In the vertical region, qX is too low to make any significant contribution,
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thus the contours are independent of it and σ0 is well approximated by standard freeze-out.

In the positive correlation region there are significant contributions from decaying defects, so

increasing qX increases the production rate, and a higher σ0 (and therefore annihilation rate)

is needed to counteract this in order to maintain a constant yield.

In the regions to right of these curves at higher σ0, there will be an under-abundance

of DM, which is phenomenologically viable, but leaves some fraction of the DM abundance

unaccounted for. Regions to the left of the curves at lower σ0 predict an over-abundance of

DM, and further new physics would be needed to bring this down to its observed value.

In Section 1.2.1 we stated annihilations could be dominantly s- or p-wave depending on

whether the first or second term of the expansion σv = a+ bv2 dominated respectively, which

meant the thermally-averaged cross-section was then 〈σv〉 = σ0
xn . Comparing these scenarios

in Figure 3.2, for dominant p-wave annihilations the contours are shifted to higher σ0, as the

factor of v2 in σv suppresses the annihilation rate, and so σ0 must increase to compensate (as

is the case in standard freeze-out). Moving onto string scenarios, one sees smaller qX values

are required for a given σ0 in the CE scenario, as the production rate drops more slowly and

so would generate a larger amount of DM, unless qX is lowered.

One also notices how the gradients in the high qX region depend on the difference between

exponents, i.e. (n+ 2)− (4− 2p). The gradient is shallowest when this difference is largest,

which is in the (1, 7/6) scenario. This may be understood by reflecting on Figure 3.1: in the

(0, 1) scenario if qX is increased, xd occurs at a higher yield (which dictates the relic yield),

and to counteract this one increases σ0 until the yield drops by the same amount. However

in the other scenarios considered, you must also compensate for the excess production past

xd, which will be greater when the production rate drops more slowly than the annihilation

rate, i.e. when (n+ 2)− (4− 2p) is largest. This means σ0 will need to increase more when

compensating for increases in qX when this difference is greatest.

The phenomenological consequences of this production mechanism are now clear; by ac-

cepting that topological defects can arise quite naturally and could be a source of DM in the

early Universe, 〈σv〉 is allowed to be larger than that required by standard freeze-out, as the

reduction in abundance it predicts can be compensated for by the additional production from

topological defects.
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3.2.2 Analytic Solutions

As aforementioned, the Boltzmann equation (3.4) as it stands cannot be solved exactly ana-

lytically, however with approximations analytic solutions may be found. A simple integration

of the production term from xd to ∞ in order to find the relic abundance is insufficient as

annihilations play a vital role in this region (as discussed in the previous section). However,

by following similar steps to those used to approximate the standard freeze-out relic yield

in [50] (which were also given in Section 1.2.1), an approximate analytic solution may be

found.

It is clear from Figure 3.1 that after xd, the yield swiftly becomes much greater than

the equilibrium yield, therefore in the region x & xd one may approximate the Boltzmann

equation to be
dYχ
dx
≈ − A

xn+2
Y 2
χ +

B

x4−2p
, (3.7)

which is in the form of a Riccati equation. This may now be analytically solved using the

condition Yχ(xd) ≈ Yχ,eq(xd), and taking the relic yield to be the solution in the x → ∞
limit, one finds

Yχ(∞) = (α+ β)
β−α
α+β

B
α

α+β Γ
(

β
α+β

)
A

β
α+β Γ

(
α

α+β

)

×

[
I− α

α+β

(
2
√
AB

(α+β)x
(α+β)/2
d

)
−
√

Bxα−βd
AYχ,eq(xd)2

I β
α+β

(
2
√
AB

(α+β)x
(α+β)/2
d

)]
[
I α
α+β

(
2
√
AB

(α+β)x
(α+β)/2
d

)
+

√
Bxα−βd

AYχ,eq(xd)2
I− β

α+β

(
2
√
AB

(α+β)x
(α+β)/2
d

)] ,
(3.8)

where α = n+ 1, β = 3− 2p, and Iν(x) is the modified Bessel function of the first kind. This

equation is valid for all possible n in the standard 〈σv〉 expansion and for p < 3/2, thus is

valid for all cases considered. If p ≥ 3/2, then Yχ → ∞ as x → ∞, i.e. the abundance is

continually increasing and does not plateau; however we are unaware of any such scenarios.

If the solution (3.8) in the B → 0 (i.e. no defects) limit is considered, one would expect the

standard freeze-out analytic solution (1.25) to be returned, however instead one gets a more

complex expression. In order to be consistent with (1.25), the solution must be approximated

further, as was done in the standard freeze-out case. One can show that the coefficient term
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√
Bxα−βd

AYχ,eq(xd)2
� 1, and so the solution simplifies to

Yχ(∞) = (α+ β)
β−α
α+β

B
α

α+β Γ
(

β
α+β

)
I− α

α+β

(
2
√
AB

(α+β)x
(α+β)/2
d

)
A

β
α+β Γ

(
α

α+β

)
I α
α+β

(
2
√
AB

(α+β)x
(α+β)/2
d

) , (3.9)

which now returns the standard freeze-out analytic solution in the B → 0 limit.

The solution is now in a more manageable form, and is valid for any choice of A and B

(that is σ0 and qX). However, we are more interested in the regions of large σ0 and qX seen

in Figure 3.2, where defect decays are making a significant difference. In this high AB limit,

the Bessel functions are approximately equal, and the solution simplifies to

Yχ(∞) = (α+ β)
β−α
α+β

B
α

α+β Γ
(

β
α+β

)
A

β
α+β Γ

(
α

α+β

) . (3.10)

By inspection, the Bessel functions cancel when their argument is ∼ 2, therefore this solution

is valid for

qXσ0 & 10−38xα+β
d cm3s−1

(
500 GeV

mχ

)(
0.5

rχ

)
. (3.11)

In Figure 3.3 these analytic solutions are compared to the numerical result by plotting

contours of fixed yield (set to the measured amount) in (σ0, qX) space (as in Figure 3.2). This

is in the (1, 1) scenario, and shows the original numerical solution in red, alongside contours

found from the analytic expression (3.9), and its approximation in the high AB limit (3.10),

in dashed and dotted blue lines respectively.

One sees the analytic solution (3.9) matches the numerical contours very closely in this

scenario (in other scenarios the difference is comparable, if not better), especially in the

higher AB region. In the lower region, where the process is effectively standard freeze-out,

there is some small disagreement, however we know our analytic solution is equivalent to that

commonly used for standard freeze-out (1.25).

Inspecting the high AB limit solution’s contour, excellent agreement with the numerical

result is seen within said region, although diverges away at low AB values. This means

that despite starting from a non-linear, non-homogeneous Boltzmann equation with no exact

analytic solution, an approximation with a simple form (3.10) is possible which closely matches
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Figure 3.3: Contours of constant DM yield in (σ0, qX) space, fixed to the the observed abundance [17].

Shown are contours derived by three means: numerical analysis (red), using (3.9), an approximate

analytic solution (dashed blue), and using (3.10), the analytic solution in the high AB limit (dotted

blue). This is in the (1, 1) scenario, where the disagreement between numerical and analytic results is

maximal.

the numerical results, only diverging in an uninteresting region, where topological defect

contributions are small and the system can be approximated by standard freeze-out.

Having established its validity, the high AB limit solution (3.10) can be used to find the

relic abundance Ωχ ≡ ρχ
ρc

=
mχs0
ρc

Yχ(∞), where ρχ and ρc are the χ and critical density

respectively, and s0 is the present entropy density. By inserting (3.10) into this one can

rearrange for an expression for qX . This tells us the qX value required to produce the DM

abundance Ωχ, given a σ0 value (as well as other parameters, which have been fixed for this

study). Doing so, one obtains

qX =
4

3

1

rχ
(α+ β)

α−β
α

(√
πg∗
45

MPlmχ σ0

)β/α [Γ( α
α+β )

Γ( β
α+β )

Ωχρc

s0mχ

]α+β
α

. (3.12)
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Using the observed relic abundance [17] along with typical parameter values, this becomes

qX . 2× 10−8

(
α+ β

104

)α−β
α

(
Γ( α

α+β )

Γ( β
α+β )

)α+β
α (

0.5

rχ

)(
500 GeV

mχ

)

×
(√

g∗

10

) β
α (
σ23

0

) β
α

(
Ωχh

2

0.1186

)α+β
β

,

(3.13)

where σ23
0 = σ0/10−23cm3s−1.

As discussed, the analytic solution found here was derived following the work in [50]. By

inspecting its derivation of the point of freeze-out xfr (seen in Section 1.2.1), this may again

be used to find an approximate analytic form for xd. Repeating the same steps, we start by

defining the point of departure as the value of x for which the difference ∆ ≡ Yχ − Yχ,eq =

cYχ,eq, where ∂∆
∂x ≈ 0 and c is a constant of order unity. With similar manipulations, one

finds the reciprocal formula

xd = log[Akc(c+ 2)]− log

[
x
n+1/2
d

(
1− 3

2xd

)]

− log

1

2

1 +

√√√√1 +
4ABc(c+ 2)(

1− 3
2xd

)2
x6−2p+n

d


 , (3.14)

where as before, k = 0.145g/g∗S (and g∗S ≈ g∗).
By inserting the first term (the dominant contribution) of this equation into itself, and

making the approximation 3
2xd
� 1 (as one expects xd � 1), an expression for xd may be

found:

xd = log[Akc(c+ 2)]−
(
n+

1

2

)
log [log[Akc(c+ 2)]]

− log

[
1

2

(
1 +

√
1 +

4ABc(c+ 2)

(log[Akc(c+ 2)])6−2p+n

)]
.

(3.15)

According to this as B increases, xd will decrease, which agrees with what is seen in

Figure 3.1. Conversely, taking the B → 0 limit the expression reduces to the approximation

for the point of freeze-out (1.27), so long as we take c(c + 2) = n + 1, as was done for xfr.

Immediately prior to this derivation, we discussed how (3.10) is a good approximation for

the relic yield as long as the defects are contributing significantly. This result is independent

of xd however1, thus where xd significantly deviates from xfr it has a negligible effect on the

relic yield, and so this analytic result is of limited use.

1There is a dependence through g∗(xd) in A, but its variation is minimal, and can be neglected.
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Figure 3.4: Contours of constant (xd/xfr)% in (σ0, qX) space alongside those of constant yield set

to 1σ either side of the observed abundance [17]. The point of departure, xd, was found using the

recursive analytic approximation (3.14) and the yield contours were plotted using the approximate

analytic solution (3.9). This was for the (0, 1) scenario, chosen as an illustrating example.

In Figure 3.4 contours of constant (xd/xfr) in (σ0, qX) space are shown along with those

of constant yield already seen in Figure 3.2 for the (0, 1) scenario. This shows that for xd

to differ from xfr by just a few percent, one must go well into the high AB region, where

defects are playing a significant role and the relic yield is well approximated by (3.10), which

is independent of xd. This supports the assertion in the proceeding paragraph, illustrating

the limited use of xd, which is true for all (n, p) scenarios.

3.3 Constraints

Standard freeze-out asserts that the DM annihilation cross-section should hold some particular

value at freeze-out, but in the preceding section one saw how, by allowing for defect decays,

this cross-section could be increased and the observed abundance could still be obtained.

However this boost will be limited by experimental and theoretical results, and thus so will

qX . Here, keeping the discussion model-independent, the bounds considered will either not

depend on the theory, or be treated as an example of one which does.
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The unitarity bound [154], which was discussed in Section 1.4.4, can be applied without

knowledge of the specific model. Repeated here for convenience, this limits the annihilation

cross-section to be

〈σv〉 . 4π(2n+ 1)

m2
χ

√
xd

π
, (3.16)

which presumes it remains approximately constant during freeze-out. This bound only de-

pends on whether the annihilations are s-wave or p-wave dominated. Inserting (3.16) into

(3.13), this bound on σ0 is translated into one on qX . That is, it tells us the qX needed to

produce the observed relic abundance, if σ0 was at the unitarity bound. This is

qX ≤ 2× 10−12
(
4× 105

) β
α (α+ β)

α−β
α (2α− 1)

β
α

(
Γ( α

α+β )

Γ( β
α+β )
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α

x
(2α−1) β

2α
d

(
0.5
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×
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) 2β+α
α
(√

g∗

10

) β
α
(

Ωχh
2

0.1186

)α+β
β

.

(3.17)

In order to consider direct and indirect detection, and collider constraints, some model

dependence must be introduced. Aiming to show how such results might constrain the

mechanism, we considered indirect detection limits from Fermi-LAT [227] (discussed in Sec-

tion 1.4.2), a satellite-based experiment measuring the γ-ray sky. Fermi-LAT results limit

the annihilation cross-section directly, and so one needs only specify the final states of the

process, rather than a full model, in order to extract limits. We used a preliminary 4 year

Pass 7 combined analysis of Fermi-LAT data from several dwarf spheroidal satellite galaxies

(dSphs) [228], and assumed dominant annihilations into W bosons.

In the case of dominant s-wave annihilations, 〈σv〉 limits are velocity-independent, and

so would have been the same during freeze-out as they are now in dSphs. The limit in this

scenario is

〈σv〉 . 8× 10−25 cm3 s−1. (3.18)

The situation is more complicated when the annihilations are dominantly p-wave, since there

is now a velocity dependence. However these limits are expected to be much weaker, as the

mean velocity is O(10) km s−1 in dSphs [229, 230], whereas ∼ c/3 at freeze-out. This means

the limit in the case of dominantly p-wave annihilations will be orders of magnitude above

those of s-wave. Consequently, these will be weaker than the unitarity bound and so can be

safely ignored.
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Figure 3.5: Plots of (σ0, qX) space constrained by unitarity (blue dotted) and Fermi-LAT (red dashed)

bounds in four cases of (n, p); (0, 1) (a), (1, 1) (b), (0, 7/6) (c), and (1, 7/6) (d). The double black

lines are contours of constant yield set to 1σ either side of the observed relic abundance [17], which

were applied using the approximate analytic solution (3.9). The Fermi-LAT bound is from a combined

analysis of several dSphs [228] and assumes dominant annihilations into W bosons. The unitarity

bound (3.16) was taken from [154].

Figure 3.5 shows plots of (σ0, qX) space in the four (n, p) scenarios considered with uni-

tarity and Fermi-LAT bounds applied. These are plotted alongside contours of constant yield

set to 1σ either side of the observed relic abundance, as originally seen in Figure 3.2. The uni-

tarity limits here are fairly weak as expected, and slightly off-vertical due to the dependence

on σ0 and qX via that on xd, whereas the Fermi-LAT bounds provide far stronger limits,

but only in the cases with s-wave annihilations dominating. One might intuitively expect

the Fermi-LAT bounds to be vertical (independent of qX), however they are more horizontal
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(independent of σ0), which is exactly true in the (0, 1) case (unless σ0 is below the standard

freeze-out value).

To understand this, note that while Fermi-LAT limits may not directly depend on qX ,

they do on Ωχ, which itself varies under changes to the string parameter. The limits depend

on Ω2
χ and so Yχ(∞)2, which is given in (3.10); this means that in the (0, 1) scenario, where

Yχ(∞) =
√
B/A ∝

√
qX/σ0 in the high AB region, the rate R ∝ Yχ(∞)2〈σv〉 ∝ qX , and so is

independent of σ0. In the (0, 7/6) scenario, the Fermi-LAT limits will have some dependence

on σ0 as Yχ(∞) ∝ B3/5/A2/5 ∝ q
3/5
X /σ

2/5
0 , which means the rate goes as R ∝ q

6/5
X σ

1/5
0 . This

predicts the limit on qX to decrease when σ0 increases, which agrees with the behaviour seen

in Figure 3.5c.

(n, p) DM density Unitarity dSph γ emission

(0, 1) qX . 2.9× 10−8(σ23
0 ) qX . 4.6× 10−6 qX . 2.3× 10−9

(1, 1) qX . 1.6× 10−10(σ23
0 )

1
2 qX . 2.0× 10−8 -

(0, 7/6) qX . 7.6× 10−10(σ23
0 )

2
3 qX . 2.3× 10−8 qX . 1.4× 10−10

(1, 7/6) qX . 2.4× 10−11(σ23
0 )

1
3 qX . 6.1× 10−10 -

Table 3.1: Limits on qX in four different (n, p) scenarios. The second column gives the values required

to produce the measured relic abundance, using (3.12), where σ23
0 = σ0/10−23 cm3 s−1. The third

and fourth columns are limits from unitarity and Fermi-LAT respectively.

Table 3.1 summarises the various limits on qX originating from DM bounds for all four

scenarios. First one may consider how the measured DM relic abundance limits qX , this is

presented in the second column of the table. This will depend on σ0, representing the qX value

required to produce the relic abundance, therefore beyond this DM is being over-produced.

All limits presented are found using the high AB limit solution (3.12)1, whose validity is

lost (and so that of the limits) when 〈σv〉 is approximately less than its value predicted in

standard freeze-out.

In the third and fourth columns, qX limits from unitarity and Fermi-LAT bounds respec-

tively, are given. These also presume the required relic abundance is being produced, however

now σ0 is limited by these bounds. In relation to Figure 3.5, these represent the qX values

1While the full analytic solution (3.9) could have been used, qX ’s dependence on σ0 would have been

significantly more complex, and the only thing gained would be accuracy in the standard freeze-out regime.

100



3.3 Constraints

at which the limit curves intersect the constant yield contours. For this analysis we chose

rχ = 0.5; to obtain qX limits in the case of an arbitrary rχ value one can simply multiply the

limits in Table 3.1 by a factor of (0.5/rχ). However, this must be done at constant DM mass

as limits depend non-trivially on mχ, as seen in (3.12).

(n, p) DM density Unitarity dSph γ emission

(0, 1) Gµ < 1.1× 10−10(σ23
0 )P−1

FT Gµ < 1.7× 10−8P−1
FT Gµ < 8.7× 10−12P−1

FT

(1, 1) Gµ < 6.0× 10−13(σ23
0 )

1
2P−1

FT Gµ < 7.5× 10−11P−1
FT -

(0, 7/6) Gµ < 3.3× 10−14(σ23
0 )

2
3P−1

CE Gµ < 1.0× 10−12P−1
CE Gµ < 6.1× 10−15P−1

CE

(1, 7/6) Gµ < 1.1× 10−15(σ23
0 )

1
3P−1

CE Gµ < 2.7× 10−14P−1
CE -

Table 3.2: Limits on the string tension parameter, Gµ, in four different (n, p) scenarios. The second

column gives the values required to produce the measured relic abundance, while the third and fourth

are limits from unitarity and Fermi-LAT respectively. These are translated from the qX values pre-

sented in Table 3.1, using the relations (A.8) and (A.21). PFT and PCE are order unity parameters,

which are defined in Appendix A.

While qX is a convenient parameter for this study, the string tension parameter, Gµ (where

µ is the mass per unit length of the string, and G = 6.7 × 10−39 GeV−2 is the gravitational

constant), is a more commonly used and physically meaningful parameter. Using the relations

in Appendix A, (A.8) and (A.21), we present limits in Table 3.2 on Gµ calculated from those

on qX . These are in terms of PFT and PCE, parameters of order unity defined in Appendix

A. All of the limits presented here are stronger than Gµ . 10−7, which comes from Planck’s

CMB power spectrum [195].

Since µ ∼ v2 (where v is the VEV), one can also use Table 3.2 to find upper limits on

the VEV of the theory generating the cosmic strings. In the CE scenario, this means VEVs

of up to O(1012) GeV are allowed before one of our limits comes in. In the FT scenario, one

can have v . O(1013) GeV and v . O(1014) GeV, in the case of dominant s- and p-wave

annihilations respectively.

The limits coming from DM search experiments have the potential to be much more

constraining than the unitarity limit, but they are highly model-dependent. Further sources

of indirect constraints can be derived from data obtained from searches for DM in the Galactic

centre [231] for example, and in a specific DM model, limits from direct detection may also
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3.3 Constraints

be applied. The details of a fully model-dependent analysis of the allowed parameter space

for a particular DM model is left to work presented in Chapter 4. The aim of this section was

to demonstrate the potential interplay between DM search limits and our parameter space.

With the source term it is possible to increase the size of the annihilation cross-section

beyond the standard freeze-out value, whilst still generating the correct relic abundance.

This may lead to a possible source of “boost factors” for indirect detection needed to explain

possible anomalies and issues. For example, in Chapter 5 this mechanism is used in a model

with dominant p-wave annihilations for the Galactic centre excess [232], which allows tensions

with dSph limits to dissipate, while keeping the observed relic density.

In principle the size of the boost factor can be several orders of magnitude with a model-

independent maximum coming from the unitarity limit. Of course, model-dependent limits

coming from both direct and indirect detection bounds for a specific DM candidate need to

be applied but even with the Fermi-LAT dSph limit applied above we still have nearly two

orders of magnitude in terms of a possible boost factor for both (0, 1) and (0, 7/6) cases.

In this Chapter, the work in [1] was discussed in detail. A DM production mechanism

was presented, which stipulated that decaying topological defects can be a new source of DM

in the early Universe, and would alter the standard freeze-out process. The formation of

1-dimensional topological defects called cosmic strings is generic, as it can just require an

additional local U(1) symmetry. Such symmetries arise in many GUT and string theories

[201–204], and so one must consider the possible impact cosmic strings could have on DM

physics.

In Section 3.1, the mechanism was introduced, where the injection rate from strings was

parameterised by qX , and the FT and CE scenarios describing string decays were discussed.

This mechanism still presumed DM was once in a thermal equilibrium with the bath, al-

though now an additional source from decaying defects was present; a Boltzmann equation

was constructed which reflected this. In Section 3.2, this equation was analysed numerically

allowing us to see how the DM yield evolved over time, and how by increasing qX , larger and

larger annihilation cross-sections were allowed, as the reduction in abundance they predicted

could be compensated for by the production from decaying defects. Using approximations,

analytic solutions for the Boltzmann equation were also derived and found to be in excellent

agreement with the numerical results.
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Possible constraints on the mechanism were considered in Section 3.3. Bounds on the anni-

hilation cross-section arising from unitarity (a model-independent constraint), were translated

into those on qX . This showed the cross-section could be boosted orders of magnitude higher

than its standard freeze-out value. Furthermore, to demonstrate how model-dependent lim-

its could be much more constraining than this, we considered Fermi-LAT limits on dSphs,

assuming dominant annihilations into W bosons.

This chapter illustrated how the mechanism works, and the benefits of implementing it.

In the proceeding chapter, we do so, applying it in the Inert Doublet Model.
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Chapter 4

The Inert Doublet Model with

Topological Defects

They cheer me because they all understand me, and they

cheer you because no one understands you.

— Charlie Chaplin to Albert Einstein

The topic of [1] and of the previous chapter, was a new mechanism for DM genesis using

topological defect decays, where the dynamics and key features of the process were detailed

through a model-independent approach. The mechanism proposed that a DM model in which

cosmic strings arise (after a spontaneous symmetry breaking phase transition), can have larger

〈σv〉 values than is permitted under standard freeze-out; this is because the strings can decay

producing enough DM to compensate for the loss predicted by larger annihilation cross-

sections. Ergo, it is important to test this conjecture by implementing the mechanism in an

example model, which is the subject of [2] and of this chapter.

The simplest way in which cosmic strings may arise is via the spontaneous breaking of

an additional local U(1)′ symmetry. Furthermore, in a working example of a model with

this genesis mechanism, these cosmic strings must then be permitted to decay into DM. In

extending the SM from a bottom up perspective, we need to add DM states, and may also

wish to supplement the SM gauge group with additional gauge symmetries, such as U(1)′.

The associated gauge boson can play a role in connecting the DM state to the SM sector.
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Such a connection is required in most models of DM relying on the freeze-out mechanism to

determine the relic abundance.

We may also expect additional Abelian gauge symmetries from a top down perspective.

Whether one considers heterotic strings, type II string theory with D-branes or F-theory, it is

common that in attempts to recover the SM gauge group, additional unbroken Abelian gauge

symmetries are generated (see for example [202–204]). Whatever the source of the extra

symmetry, the Z ′ in these models must be sufficiently massive to have escaped detection, and

so the U(1)′ must be spontaneously broken (at a symmetry breaking scale v′).

As seen in the previous chapter, the connection the mechanism makes between DM and

the topological defects can also be exploited to find constraints on the properties of the cosmic

strings. There are a number of ways in which such a connection can be realised. Whether

the DM states are charged under the additional symmetry or not, we generically expect that

the decays of the defects formed in these models will have a branching fraction to the DM

states at some level. If the DM is not charged under the U(1)′, but is a scalar state χ, it can

couple to the complex scalar, φ, responsible for spontaneously breaking the U(1)′. It can do

so via a quartic “portal” coupling L ⊃ |φ|2|χ|2, which provides a connection between the DM

states and the states that will form the cosmic string.

One could also consider the additional U(1)′ kinetically mixing with the SM gauge group

U(1)Y. If the DM is charged under the electroweak gauge group we again have a direct

connection between the U(1)′ sector and the DM states. A further example, is where the DM

state is charged under the U(1)′. In this case the connection is straightforward with the DM

states being produced directly from defect decays. In all these cases it is clear that DM will

be produced in the decays of these defects with some branching fraction.

Increasing the injection rate of DM states from decaying defects, the annihilation cross-

section needs to increase in order to bring the relic abundance down to the measured value.

This can only be increased up to the unitarity limit, and hence there is an upper limit on the

DM injection rate. For a given DM mass, this translates to constraints on the properties of

the cosmic string network, or specifically, the mass per unit length of the strings µ. A further

effect of increasing the annihilation rate is generically an enhancement of the indirect and

direct detection signals, which can further limit the model. Conversely, the extra source of

DM particles changes the predictions of specific DM models.

105



4.1 The Inert Doublet Model

Scenarios in which DM production by decaying defects could play a positive role involve

WIMP models where DM annihilation into SM particles naturally yields a relic density signif-

icantly below the observed one. This is, for example, the case for WIMP scenarios where DM

annihilates dominantly via SU(2)L × U(1)Y gauge interactions, as in most of the parameter

space of the minimal DM [233,234] and Inert Doublet Model (IDM) [235–237] scenarios. These

models constitute rather minimal extensions of the SM, and are very appealing phenomeno-

logically since the DM annihilation properties can be purely dictated by their SU(2)L×U(1)Y

gauge quantum numbers. However, this same feature greatly restricts the range of DM masses

that yield the observed relic abundance via thermal freeze-out.

In this work we explore the impact of DM production by defect decays on the available

parameter space, taking as a case study the IDM supplemented by an additional U(1)′ gauge

symmetry. This model has already been considered in [238,239], however the motivation there

was to dynamically create the symmetry stabilising the DM state.

In this chapter we will first review the IDM in Section 4.1, discussing its theoretical and

phenomenological bounds. We furthermore define a choice of parameterisation, appropriate

for our study. Later in Section 4.2 we add the U(1)′ local symmetry to the IDM, and introduce

a scalar field to break it. The phenomenological impact of the symmetry breaking is then

discussed.

Next, in Section 4.3, we derive the Boltzmann equation describing DM genesis in the IDM

with a source of DM from decaying defects, whereafter it is solved numerically and the relic

yield’s dependence on masses and couplings is explored. Lastly, experimental DM constraints

from direct and indirect detection, and collider searches are considered in Section 4.4, along

with limits directly on cosmic strings from Big Bang Nucleosynthesis and the diffuse γ-ray

background. Here we will see how much more of the IDM’s phase space is viable after cosmic

strings have been introduced and experimental bounds applied.

4.1 The Inert Doublet Model

As reviewed in Section 2.1.2, the SM contains a single Higgs doublet charged under the

electroweak symmetry group SU(2)L × U(1)Y. The Higgs doublet then gains a VEV, which

breaks this symmetry down to U(1)EM, and leaves behind a remnant scalar, the SM Higgs

boson. The other degrees of freedom in the doublet are “eaten” by the W and Z bosons,
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4.1 The Inert Doublet Model

which become massive after the phase transition. Yukawa couplings also arise with left-handed

fermion doublets charged under the electroweak symmetry group and right-handed singlets

charged under just the U(1)Y; post-symmetry breaking, these terms generate the fermion

masses. There are multiple generations of fermions, which naturally leads one to question

whether similarly, there may be additional Higgs doublets.

In the simplest realisation of this, there is a single extra Higgs doublet, which is also

charged under the electroweak symmetry and gains a VEV. This is referred to as the two

Higgs doublet model (2HDM), and has a rich and varied phenomenology [240]. Limits on

flavour-changing neutral currents heavily constrain such models, but one way to avoid these

limits is to make the extra Higgs doublet odd under an additional Z2 symmetry. This protects

the theory from these unwanted currents, so long as the doublet does not gain a VEV and

break the Z2 symmetry, i.e. the doublet should be inert. Given this discrete symmetry, the

lightest degree of freedom in the doublet will be stable and so a DM candidate. This is the

IDM.

Allowing the inert Higgs doublet to be odd forbids it from having Yukawa couplings with

SM fermions, thus couples only to itself, the electroweak gauge bosons, and the SM Higgs

doublet1. Under the gauge and Z2 symmetries, the addition of this extra Higgs Doublet

admits several new terms to the scalar potential, which becomes

V = −µ2
1|H1|2 + µ2

2|H2|2 + λ1|H1|4 + λ2|H2|4 + λ3|H1|2|H2|2

+ λ4|H†1H2|2 +
λ5

2

{
(H†1H2)2 + h.c.

}
,

(4.1)

where H1 is the SM Higgs doublet and H2 is the inert Higgs doublet.

The potential has 7 parameters, although two of them (λ1 and µ1) are from the SM and

can be calculated using electroweak observables, leaving us with 5 free parameters. With the

SM Higgs doublet expanded about its VEV, v, the Higgs doublets are defined as follows

H1 =

 G+

1√
2
(v + h+G0)

 , and H2 =

 H+

1√
2
(H0 + iA0)

 , (4.2)

where h is the SM Higgs boson. The scalars G0 and G+ are the would-be Goldstone bosons,

which are “eaten” by the electroweak gauge bosons. The remaining four degrees of freedom,

1The SM Higgs doublet is sometimes referred to as the active doublet, as it gains a VEV and breaks the

electroweak symmetry.
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4.1 The Inert Doublet Model

H±, A0, and H0 are the new Higgs bosons, which are odd under the Z2 symmetry. The

H± states carry electromagnetic charge, and therefore cannot be our DM candidate, leaving

either A0 (the CP-odd Higgs) or H0 (the CP-even Higgs) as our DM candidate, depending

on which is lighter.

Post-symmetry breaking, the masses of the odd sector Higgs bosons are given by

m2
H0 = µ2

2 +
1

2
(λ3 + λ4 + λ5) v2,

m2
A0 = µ2

2 +
1

2
(λ3 + λ4 − λ5) v2,

m2
H± = µ2

2 +
1

2
λ3 v

2.

(4.3)

For this study H0 was taken to be the lightest and therefore our DM candidate, which

given the relations above, means λ5 < 0 and λ4 + λ5 < 0. We would like to parameterise the

IDM in terms of physically meaningful observables, which are appropriate to this study, rather

than the more abstract parameters seen in (4.1). Of the 5 parameters to be defined, a logical

first choice is the DM mass mH0 . We also use, as is typically done in studies of the IDM,

the combination of couplings λL ≡ (λ3 + λ4 + λ5)/2. This combination controls a number

of interactions, most importantly the hH0H0 coupling, which if switched off suppresses DM

scattering off of fermions via SM Higgs exchange, and therefore quenches the direct detection

signal.

The following squared mass splittings can also be taken as free parameters

∆m2
0 ≡ m2

A0 −m2
H0 = −λ5 v

2 > 0, (4.4)

∆m2
+ ≡ m2

H± −m2
H0 = −1

2
(λ4 + λ5) v2 > 0. (4.5)

Summarising, the IDM can be described by the variables mH0 , ∆m2
0, ∆m2

+, λL, and λ2.

However all the processes considered in this study (annihilation, scattering off SM nuclei, and

production at colliders) are independent of λ2 at tree-level (higher order diagrams will not be

considered here), and so it may be ignored as a parameter in this study.

Furthermore, the square mass differences are set to be equal, i.e. ∆m2 ≡ ∆m2
0 = ∆m2

+,

which simplifies the model, and also protects against conflicts with electroweak precision tests

(discussed in the coming section). The intention of this study was to show how topological

defects can be added to the IDM and its allowed parameter space could be expanded, therefore

a simplification of this nature does not discard any key features integral to our aims. We are
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4.1 The Inert Doublet Model

now left with a more manageable 3-dimensional parameter space consisting of λL, ∆m2, and

mH0 .

4.1.1 Theoretical Bounds and Electroweak Precision Tests

The IDM has a rich phenomenology, and before considering the typical experimental con-

straints in Section 4.4, we will look at the theoretical bounds and limits from electroweak

precision tests (EWPTs) to find the regions of parameter space to start our study within.

The requirement for the potential (4.1) to have stable minima is essential, as discussed in

Section 1.4.4. To be bounded from below, and so not have minima at infinities, the couplings

in the potential must obey the following conditions

λ1,2 > 0, λ3 > −2
√
λ1 λ2, λ3 + λ4 − |λ5| = 2λL > −2

√
λ1 λ2. (4.6)

A global minimum preserving the Z2 symmetry is also required, that is there cannot be

another minimum which breaks the symmetry into which ours might tunnel. To avoid this

one requires
µ2

1√
λ1

<
µ2

2√
λ2
. (4.7)

With the above conditions a stable vacuum is assured.

As well as vacuum stability, it is also desired that calculations within the model remain

perturbative across the energy scales of the processes considered, this may be guaranteed if

|λi| ≤ 8π ∀ i = 1, . . . , 5. (4.8)

Lastly, processes in the IDM should not break unitarity; this is insured by imposing the

bounds

|ei| ≤ 8π ∀ i = 1, . . . , 12, (4.9)

where

e1,2 = λ3 ± λ4, e3,4 = λ3 ± λ5, e5,6 = λ3 + 2λ4 ± 3λ5, (4.10)

e7,8 = −λ1 − λ2 ±
√

(λ1 − λ2)2 + λ2
4, e9,10 = −λ1 − λ2 ±

√
(λ1 − λ2)2 + λ2

5, (4.11)

e11,12 = −3λ1 − 3λ2 ±
√

9 (λ1 − λ2)2 + (2λ3 + λ4)2. (4.12)

Across the parameter space we will consider here, the couplings obey all vacuum stability,

perturbativity, and unitary bounds.
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When considering BSM theories, it is often important to see how they are constrained by

precision tests. A measurable process can be well predicted by the SM, and so contributions

from new physics need to be small as to not spoil the agreement. For the IDM, EWPTs

[241, 242], which constrain the size of new physics contributions to electroweak observables,

offer the best limits.

For EWPTs, it is standard procedure to consider all contributions to the electroweak

observables in just three oblique parameters S, T , and U . To do, three assumptions are

made [243]:

1. Electroweak interactions are described by the gauge group SU(2)L ×U(1)Y.

2. The couplings to light fermions introduced by the new physics are suppressed relative

to the fermion couplings to electroweak gauge bosons.

3. The scale of the new physics is larger than the W and Z boson masses.

Electroweak observable precision measurements involve light fermions exchanging electroweak

gauge bosons. With the assumptions above, one can neglect new physics contributions from

vertex and box corrections, as vacuum polarization diagrams (the oblique corrections) give

the dominant contributions.

The oblique parameter U only affects charged current observables, such as mW , whereas

S and T influences these as well as neutral current and low energy observables. Typically

U is expected to be small, and furthermore much less than T [242]. Subsequently, one often

adds the further assumption that U = 0, allowing all observables to be in terms of S and T .

In the IDM, the contributions to S and T (taken from [236]) are

∆S =
1

2π

∫ 1

0
dxx (1− x) log

(
xm2

H0 + (1− x)m2
A0

m2
H±

)
, (4.13)

and

∆T =
[F (mH± ,mA0) + F (mH± ,mH0)− F (mA0 ,mH0)]

32π2αEMv2
, (4.14)

where

F (m1,m2) =
m2

1 +m2
2

2
− m2

1m
2
2

m2
1 −m2

2

log

(
m2

1

m2
2

)
. (4.15)

Work by the GFitter group [244] offers the best measurements of the oblique parameters,

which under the same assumption that U = 0 with mt = 173 GeV and mh = 125 GeV, are

∆S ≡ S − SSM = 0.06± 0.09, and ∆T ≡ T − TSM = 0.10± 0.07. (4.16)
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The contributions to S (4.13) and T (4.14) from the IDM must then be within error of these

values in order to not conflict with EWPTs.

In the case of T , the IDM’s contribution ∆T = 0 when ∆m2
0 = ∆m2

+, which has already

been assumed, pre-empting this result. This is the consequence of a SU(2)L × SU(2)R cus-

todial symmetry arising in this limit, which may be seen when one recasts the potential (4.1)

in terms of 2× 2 matrices: Φ1 = (iσ2H
∗
1 , H1), and Φ2 = (iσ2H

∗
2 ,±H2). Doing so one finds

V =− µ2
1

2
Tr
[
Φ†1Φ1

]
+
µ2

2

2
Tr
[
Φ†2Φ2

]
+
λ1

4

(
Tr
[
Φ†1Φ1

])2
+
λ2

4

(
Tr
[
Φ†2Φ2

])2

+
λ3

4
Tr
[
Φ†1Φ1

]
Tr
[
Φ†2Φ2

]
+
λ4 + λ5

16

(
Tr
[
Φ†1Φ2

]
+ Tr

[
Φ†2Φ1

])2

− λ4 − λ5

16

(
Tr
[
Φ†1Φ2σ3

]
− Tr

[
σ3Φ

†
2Φ1

])2
,

(4.17)

where if λ4 = λ5, then there is a global SU(2)L × SU(2)R symmetry which causes a cancel-

lation between gauge self-energies such that ∆T = 0. Furthermore if rewritten in terms of

Φ̃2 = Φ2σ3 instead, one finds a similar potential which conserves the same global symmetry

in the limit that λ4 = −λ5. Therefore ∆T = 0 when λ4 = ±λ5, which corresponds to either

∆m2
+ = ∆m2

0 or ∆m2
+ = 0.

Let us now consider ∆S when ∆m2
+ = ∆m2

0, in this case

∆S ' 1

2π

∫ 1

0
dxx (1− x) log

(
1− x a2

)
≤ 0, a2 ≡ m2

A0 −m2
H0

m2
A0

∈ [0, 1]. (4.18)

This takes its largest (absolute) value when a2 = 1 which is, ∆S ' −0.022. Furthermore

∆S → 0 as a2 → 0, therefore given (4.16) ∆S remains within error of the measured value. In

conclusion, by requiring ∆m2
+ = ∆m2

0 we avoid constraints from EWPTs.

4.2 An Inert Doublet Model with a U(1)′ Gauge Symmetry

Having reviewed the IDM, we now wish to see how the theory can be extended in order to

for cosmic strings to form, and in such a way as to allow DM to be produced in the decays

of these defects. There are many ways in which the IDM could be extended to accommodate

this new physics, however as we seek just an illustrative example of defects in a DM model,

then a simple extension will be studied.

As mentioned at the start of this chapter, the simplest way for strings to arise is in the

spontaneous breaking of an additional local U(1)′ symmetry. Such breaking is necessary to
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4.2 An Inert Doublet Model with a U(1)′ Gauge Symmetry

allow the gauge boson to become massive enough to escape detection, and requires just a

single additional field φ, charged under the symmetry, to gain a VEV. Doing so allows cosmic

strings to form in the model.

Interestingly, these strings can then decay into DM particles with no further requirements

on, or additions to the theory. This may be understood by inspection of the potential, which

with the addition of the φ field becomes

V =− µ2
1|H1|2 + µ2

2|H2|2 − µ2
φ|φ|2 + λ1|H1|4 + λ2|H2|4 + λφ|φ|4 + λ̃1|φ|2|H1|2

+ λ̃2|φ|2|H2|2 + λ3|H1|2|H2|2 + λ4|H†1H2|2 +

{
λ5

2
(H†1H2)2 + h.c.

}
.

(4.19)

As mentioned, φ breaks the U(1)′ symmetry by gaining a VEV, v′, and can be expanded

about its minimum, which in the unitary gauge is

φ =
1√
2

(v′ +X), (4.20)

where X is a remnant real scalar.

Inspecting the potential (4.19), one sees portal coupling terms, |φ|2|H1|2 and |φ|2|H2|2,

have arisen. These terms mean the H1 and H2 Higgs fields can condense upon the string,

and these condensates (which were discussed in Section 2.3.2) can radiate both SM and inert

Higgs bosons. The latter means the decaying strings produced in the theory will be a source

of DM, and the former introduces interesting string constraints [245], which will be studied

further in Section 4.4.2.

There are two new particles now in our model: X, and Z ′, the U(1)′ gauge boson, whose

masses post-symmetry breaking will both be proportional to v′. Significant DM production

from cosmic string decays requires v′ to be far greater than the electroweak scale, thus these

new degrees of freedom will be massive enough to be integrated out. This leaves us with an

effective field theory, whose potential is

V =−
(
µ2

1 −
λ̃1v
′2

2

)
|H1|2 +

(
µ2

2 +
λ̃2v
′2

2

)
|H2|2 +

(
λ1 −

λ̃2
1

8λφ

)
|H1|4

+

(
λ2 −

λ̃2
2

8λφ

)
|H2|4 +

(
λ3 −

λ̃1λ̃2

8λφ

)
|H1|2|H2|2 + λ4|H†1H2|2

+

{
λ5

2
(H†1H2)2 + h.c.

}
.

(4.21)
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This is in fact just the same as the original IDM potential (4.1), when the following redefini-

tions are made:

µ2
1 −

λ̃1v
′2

2
→ µ2

1, µ2
2 +

λ̃2v
′2

2
→ µ2

2, λ1 −
λ̃2

1

8λφ
→ λ1,

λ2 −
λ̃2

2

8λφ
→ λ2, and λ3 −

λ̃1λ̃2

8λφ
→ λ3.

(4.22)

This mapping back to the usual IDM is clearly advantageous, although the first two redefi-

nitions show fine-tuning will be required in order to allow µ2
1,2 (and therefore the Higgs bosons’

masses) to remain near the electroweak scale. Such fine-tunings are common in theories of

this type, and can be viewed a sensitivity to high scale physics, which we recognise as part of

the gauge hierarchy problem. This could be solved, for example, if we supersymmetrise the

model, however this is beyond the scope of this work.

This model is arguably the simplest way in which cosmic strings may be introduced into the

IDM, although we could have embellished and allowed the inert doublet to also be charged

under U(1)′ symmetry. This would have permitted the Z2 symmetry, which stabilises the

DM candidate, to arise dynamically upon the U(1)′ breaking. However the λ5 term would be

forbidden by gauge invariance in this model, which means H0 and A0 will be mass degenerate,

as evident from (4.4). This mass degeneracy causes a conflict with direct detection searches.

In the IDM, H0N → H0N scattering (where N is a SM nucleon) proceeds via the exchange

of the SM Higgs boson, and direct detection bounds can be avoided by lowering λL. However

mass degenerate H0 and A0 states allows H0N → A0N scattering (and vice versa) via

Z boson exchange, which is determined by fixed gauge couplings, and generates a direct

detection signal far above current limits. This problem will be avoided if a mass splitting,

i.e. a λ5 term, can be reintroduced. However the mass splitting will need to be greater than

the typical recoil energies imparted in the scatterings ( ∼ O(100) keV) in order to close this

channel.

The λ5 term can be reintroduced via a higher-order effective operator, such as

1

Λ
φ (H†1H2)2, (4.23)

which is allowed when φ and H2 carry +1 and −2 charge under the U(1)′ symmetry respec-

tively. Post-symmetry breaking, (4.23) will produce a λ5 term like that seen in the potential

(4.19). Such a theory was considered, but for different reasons, in [239], where the U(1)′ was
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broken near the TeV scale. This allowed DM annihilations into Z ′ bosons, which meant lighter

DM states could produce the correct relic abundance (according to standard freeze-out).

Regardless of whether or not the inert doublet is charged under the U(1)′ symmetry, our

effective field theory at the electroweak scale will be the standard IDM, with the additional

presence of cosmic strings, which can decay into SM and inert Higgs bosons. This means we

have a source of DM from decaying defects in the early Universe, and we must consider the

genesis mechanism presented in Chapter 3, as standard freeze-out is no longer appropriate

for this model.

4.3 Increasing the Relic Abundance

The previous section introduced cosmic strings into the IDM, showing how condensates of both

the SM and inert Higgs doublets could form on the defect. Consequently, defect decays radiate

not just DM, but all odd sector states. Given this, the derivation of the Boltzmann equations

in this section will be slightly more involved than what was presented in Section 3.1.1. As

there is now a sector of odd particles, rather than a single species, a set of Boltzmann equations

must be evaluated in order to take into account co-annihilations (reviewed in Section 1.2.1),

and all particle production from defect decays.

Before, when deriving the Boltzmann equation in the case of a single DM species in

Section 3.1.1, the energy density injection rate of the string was taken to have the form (3.1).

A fraction fX of this went into X states, which in turn decayed producing DM. Now, the

string decays are producing the odd sector Higgs bosons directly, with a fraction fi (where i

represents an odd sector state) of the energy density injected going into i particles with an

average energy of Ei. The number density of each odd sector state, ni, evolves according to

dni
dt

=− 3Hni −
∑
j

〈σijvij〉(ninj − neq
i n

eq
j )

−
∑
j 6=i

[
〈σ′ijvij〉(ninX − neq

i n
eq
X )− 〈σ′jivij〉(njnX′ − neq

j n
eq
X′)
]

−
∑
j 6=i

[
Γij(ni − neq

i )− Γji(nj − neq
j )
]

+
fiQ(t)

Ei
,

(4.24)

where the cross-sections and decay rates are the same as defined before in (1.31), although

here X and X ′ only comprise of SM particles, due to the Z2 symmetry conserved in each of

the processes.
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Proceeding as with co-annihilations in the case of standard freeze-out (see Section 1.2.1)

[58], the Boltzmann equations are summed obtaining

dn

dt
= −3Hn− 〈σeffv〉(n2 − n2

eq) +
∑
i

fiQ(t)

Ei
, (4.25)

where n =
∑
i
ni and

〈σeffv〉 ≡
∑
ij

〈σijvij〉
ni,eqnj,eq

n2
eq

. (4.26)

Given only the lightest odd sector particle, H0, is stable, then we expect the present total

number density of odd sector states to be entirely in the form of H0, i.e. n(t0) = nH0(t0).

In terms of Y = n/s and x = mH0/T (as defined in Section 1.2.1), the Boltzmann equation

becomes
dY

dx
= −A(x)

x2

[
Y 2 − Y 2

eq

]
+

B

x4−2p
, (4.27)

where

A(x) =

√
πg∗
45

mH0MPl〈σeffv〉(x), B =
3

4
r0q0, (4.28)

with

q0 =
∑
i

EH0

Ei

fiQχ
ρχHχ

, and r0 = mH0/EH0 . (4.29)

The equilibrium yield now sums over all odd sector states, and so takes the form1

Yeq(x) =
45x2

4π4g∗S

∑
i

gi

(
mi

mH0

)2

K2

(
x
mi

mH0

)
, (4.30)

where gi is the internal degrees of freedom of particle i.

The model’s Boltzmann equation (4.27), despite the added complexities, has the same

form as that of a single DM species (3.4). In this previous derivation, the injection rate of

a single particle species was parameterised using a variable qX . Now the variable q0 is used

which acts in the same way, although for the injection of multiple odd sector states. We set

r0 = 0.5 for this study, which is typical for condensates of light fields [206].

Both FT and CE scenarios (introduced in Section 2.4) of cosmic string decay will be

considered, where p = 1 and p = 7/6 respectively. For this study we focus on benchmark

points in the IDM parameter space, where ∆m2 = 1000 or 10000 GeV2, and λL = 0 or 0.1.

1The equilibrium yield was earlier defined in a different form (1.22), which was valid in the non-relativistic

regime. This helped us to derive an approximate analytic expression of xfr (1.27). Here we use the full form

of equilibrium yield.
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The chosen values for the mass splitting allow us to examine regions of parameter space

where co-annihilations are important (∆m2 = 1000 GeV2), and when they are not (∆m2 =

10000 GeV2). One can see this by considering a 200 GeV H0 state; with ∆m2 = 1000 GeV2,

this means mA0 = mH± ≈ 202 GeV, while with ∆m2 = 10000 GeV2, we get mA0 = mH± ≈
224 GeV. Given that coannihilations can be expected to become important roughly when

the linear mass splitting drops below the temperature at freeze-out, i.e. when δm ∼ Tf ≈
mH0/25 = 8 GeV, then one can see our choices of ∆m2 are suitable for the study of regimes

with and without coannihilations playing a significant role. As mentioned earlier, λL controls

the connection to SM fermions via the hH0H0 coupling, so by choosing these values as

benchmark points, one can see how severing this connection impacts the phenomenology.

To use the Boltzmann equation (4.27) to find the evolution of the yield, one must calcu-

late the effective cross-section 〈σeffv〉, which we found using MicrOMEGAS [246]. Through

numerically evaluating the equation, the relic abundance of DM is plotted against mH0 in

Figure 4.1, for the four benchmark points in our parameter space in the FT scenario. Within

each plot are curves showing the predicted relic abundance of DM in our IDM with topological

defects for various values of q0, as well that predicted by standard freeze-out. It is clear from

these plots that increasing q0 increases the predicted relic abundance. Below the standard

freeze-out curves in all of these cases, an over-abundance of DM is being produced.

From the standard freeze-out curves, one finds only one or two mH0 values along these

slices in parameter space at which the observed relic abundance is produced. However with

cosmic string decays the correct relic density may be generated within a large range of mH0

values by tuning q0. Therefore anywhere in parameter space where the relic abundance

previously predicted by standard freeze-out to be equal to or less than what is measured, can

now be acceptable.

The general shape of each plot is the same: they feature a major dip at around mH0 ∼
100 GeV and rise either side. This dip emerges as annihilation channels into W and Z

bosons become kinematically accessible. Below these thresholds, annihilations into fermions

dominate, but in the case when λL = 0 these channels are cut-off; consequently, the predicted

abundance sharply increases, as is evident in Figure 4.1b. However by decreasing the mass

splitting, co-annihilation channels are opened up and the predicted relic abundance drops in

these low mass regions, as is seen by comparing Figure 4.1a & 4.1b.
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Figure 4.1: Plots of the predicted relic abundance against mH0 in the FT scenario for four different

benchmark points of (∆m2, λL); (1000 GeV2, 0) (a), (10000 GeV2, 0) (b), (1000 GeV2, 0.1) (c), and

(10000 GeV2, 0.1) (d). Each plot shows the predicted relic abundance for the IDM with topological

defects for various values of q0, as well as for standard freeze-out. The horizontal dotted line is the

observed relic abundance [17].

One would assume that this effect from a decreased mass splitting would also be true in

the high mass region, and the relic abundance would likewise drop. Somewhat surprisingly

however, one finds the relic abundance actually increases. This is due to the decrease in

the mass splitting causing the model to go towards what is referred to as the pure gauge

limit. In the high mass region, annihilations into W and Z bosons are dominant, however in

the pure gauge limit the contribution from their longitudinal modes vanishes. Subsequently,

this suppresses the cross-section and so increases the relic abundance enough to counteract
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co-annihilation effects. In Appendix B we go over this point in further detail, showing the

contributing diagrams and the behaviour of the squared matrix elements.

Freeze-out with defect

decays for different

values of -log10[q0]

Freeze-out only

1200100070050020010070
10-4

0.001

0.010

0.100

1

mH0/GeV

Ω
D

M
h2

Δm2 = 1000 GeV2, λL = 0

CE

11.5
11.

10.5

10.

9.5

9.

(a)

Freeze-out with defect

decays for different

values of -log10[q0]

Freeze-out only

1200100070050020010070
10-4

0.001

0.010

0.100

1

mH0/GeV
Ω

D
M
h2

Δm2 = 10000 GeV2, λL = 0

CE

12.
11.5

11.

10.5

10.

9.5

9.

(b)

Freeze-out with defect

decays for different

values of -log10[q0]

Freeze-out only

1200100070050020010070
10-4

0.001

0.010

0.100

1

mH0/GeV

Ω
D

M
h2

Δm2 = 1000 GeV2, λL = 0.1

CE

12.
11.5

11.

10.5

10.

9.5

9.

8.5

(c)

Freeze-out with defect

decays for different

values of -log10[q0]

Freeze-out only

1200100070050020010070
10-4

0.001

0.010

0.100

1

mH0/GeV

Ω
D

M
h2

Δm2 = 10000 GeV2, λL = 0.1

CE

12.
11.5

11.

10.5

10.

9.5

9.

8.5

(d)

Figure 4.2: Plots of the predicted relic abundance against mH0 in the CE scenario for four different

benchmark points of (∆m2, λL); (1000 GeV2, 0) (a), (10000 GeV2, 0) (b), (1000 GeV2, 0.1) (c), and

(10000 GeV2, 0.1) (d). Each plot shows the predicted relic abundance for the IDM with topological

defects for various values of q0, as well as for standard freeze-out. The horizontal dotted line is the

observed relic abundance [17].

Figure 4.2 contains the same plots as before, except now in the CE scenario. They have

the same shape as those in Figure 4.1, although smaller q0 values are required to produce

the same relic abundance. This is because the production rate from string decays drops at a

slower rate in the CE scenario and so the total contribution to the relic density will be larger,

meaning q0 must be lower in order to balance this out.
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For this study we will consider the case where H0’s mass is greater than the electroweak

gauge bosons’. Above this threshold, annihilations into these states are allowed, and drive

the cross-section up and so the relic abundance down. This is where our mechanism for DM

genesis will have the most use. Furthermore, below this mass threshold there are several

strong collider constraints, which will be discussed later in Section 4.4

The Boltzmann equations dictate how the yield of DM will evolve over time, in this section

we have derived these equations for an extended IDM in which cosmic strings form and decay

into the odd sector particles. These showed us how the relic abundance can be increased by

the contributions from defects; this subsequently meant the observed relic abundance could

be generated across a larger range of parameter space. The discussion in this section thus far

has been void of experimental constraints, which will restrict these newly opened up regions

of parameter space; the coming section addresses these.

4.4 Constraints

In the previous section the benefits of our mechanism were seen: it allowed the correct

relic density to be generated for a range of mH0 values in benchmark (∆m2, λL) cases, as

opposed to the discrete points permitted by standard freeze-out. Here we study a range

of phenomenological bounds on the IDM and our mechanism arising from both DM and

cosmic string considerations. Direct and indirect detection bounds from DM physics are

examined along with those from collider searches, while bounds on cosmic strings from Big

Bang Nucleosynthesis and the diffuse γ-ray background are studied.

4.4.1 Bounds from Dark Matter Physics

Direct Detection

We have already seen how direct detection limits can constrain the IDM, forbidding the mass

splitting between H0 and A0 falling below a few hundred keV. Now we can consider their

constraints on the general phase space. Currently the strongest direct detection limits, in the

mH0 range we considered, came from the Large Underground Xenon (LUX) experiment at

the Sanford Underground Research Laboratory. LUX is a scintillation and ionization detector

with a 118 kg fiducial volume of liquid xenon as a target. From 85.3 live-days of data, it limited
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the spin-independent scattering cross-section at 90% CL to be 7.6×10−46 cm3 s−1 at a WIMP

mass of 33 GeV [95]. In the IDM, the WIMP-nucleon scattering proceeds via the exchange

of a SM Higgs, whose hH0H0 vertex factor is proportional to λL. Thus if one sets λL to

zero, the direct detection signal is cut-off at tree-level. We implement the limits from LUX

by calculating the scattering cross-section using MicrOMEGAS [246].

Indirect Detection

Of the indirect detection searches, Fermi-LAT (discussed in Section 1.4.2) can provide the

most stringent bounds. For this study we took limits from an analysis which examined the

γ-ray continua (in the 20 MeV and 300 GeV energy range) in several dSphs [130]. DM

annihilations can produce such γ-rays and so the annihilation cross-section may be limited

by this analysis. The γ-ray flux Φ from a celestial object is given by

Φ = ΦPP × J, (4.31)

where ΦPP is the “particle physics input” containing all our knowledge of the particle model,

and J is the “astrophysical input”, which likewise holds all information regarding the astro-

nomical object under study. They are given by

ΦPP =
〈σv〉

8πm2
H0

∫ Emax

E0

dN

dE
dE, J =

∫
∆Ω(ψ)

∫
l

[ρ(l, ψ)]2dldΩ(ψ). (4.32)

The astrophysical factor, J , depends on the density profile of DM around the object, a

quantity that is poorly understood leading to significant uncertainties in resulting bounds. In

the study considered, each dSph was weighted by its J value, obtaining a combined 95% CL

limit on ΦPP of

ΦPP < 5.5+4.3
−4.5 × 10−30 cm3 s−1 GeV−2. (4.33)

MicrOMEGAS [246] was then used to scan across phase space and find the predicted value

of ΦPP at each point.

DM annihilations can also effect recombination via reheating and ionization, therefore

limits on 〈σv〉 can be extracted from CMB data. Taking an analysis which uses WMAP

5-year data [247], it was found that the limits were weaker than those from LUX across our

chosen phase space. However the limits from Planck data are expected to be an order of

magnitude stronger, and will be competitive with current direct detection bounds.
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Collider Searches

As with most theories, the IDM can be probed using several different collider searches. Al-

ready in Section 4.1.1 we have discussed the constraints from EWPTs.

The strongest collider limits typically come from monojet searches. The coupling λL is

the controlling parameter in these analyses; if set to zero, monojet signals from pp→ H0H0 +

jet are suppressed as they occur via the mediation of a SM Higgs. We take limits from an

analysis of simplified models of DM using
√
s = 8 TeV LHC data, which considers a scalar

DM candidate coupling to the SM Higgs in the same way as H0 in the IDM [248]. It shows

the 90% CL monojet limits only come in approximately when mH0 drops below half the SM

Higgs boson mass, mh/2, which is outside the parameter space considered here.

If ∆m2 is sufficiently small, monojet signals could arise from pp→ A0H0 + jet processes

(in which a Z is exchanged), since the decays of A0 are expected to emit soft SM particles,

which could be below ATLAS’s and CMS’s trigger threshold. The same analysis we used

above [248], could be used here to limit this process. However we find the limits are very

weak, requiring only that A0H0Z coupling be approximately less than 5 for mH0 > mW .

If the mass splitting is large enough, then the visible decay products of A0 and H± could be

detected within ATLAS and CMS. Such searches closely match those of chargino/neutralino

pair production in SUSY theories, which look for missing transverse energy and multilepton

signatures. An analysis of
√
s = 8 TeV ATLAS data constrains the neutralino mass to be

. 110 GeV [249] when it decays the same way as the odd sector particles in the IDM could.

However, the limits will be weaker in the case of the IDM, where the odd sector particles

are scalars, as the production cross-sections are smaller than for charginos and neutralinos.

These searches put no relevant constraints on the IDM parameter space for mH0 > mW .

With the discovery of the SM Higgs boson [250,251], came measurements from ATLAS and

CMS of the h→ γγ decay rate, which at the time were slightly above the SM prediction, and

so indicated possible new physics. After improved analyses from ATLAS [252] and CMS [253],

the excesses dropped and came within 1σ of the SM prediction, measuring the signal strengths

to be

RCMS
γγ = 1.14+0.26

−0.23 and RATLAS
γγ = 1.17± 0.27. (4.34)

The IDM contains a charged Higgs, which contributes to h → γγ via a loop. The signal
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strength for h→ γγ in the IDM is

Rγγ ≡
σ(pp→ h→ γγ)IDM

σ(pp→ h→ γγ)SM

≈ σ(gg → h)IDMBR(h→ γγ)IDM

σ(gg → h)SMBR(h→ γγ)SM
=
BR(h→ γγ)IDM

BR(h→ γγ)SM
.

(4.35)

This may be simplified further by approximating the total decay rate of the Higgs in the IDM

and SM to be the same for mH0 > mh/2. Therefore the signal strength can be approximated

as the ratio of h → γγ decay rates in the IDM and SM. These quantities were calculated

analytically in [254], where just the dominant SM contributions from top and W loops were

considered. Using these expressions, one finds the signal strength never deviates more than

10% from the SM result across all of our parameter space, which is within 1σ of both ATLAS

and CMS measurements and so we are unaffected by this limit.

There is also the limit from the invisible decays of the SM Higgs boson, which given we

are looking at DM masses larger than mh/2, would not affect this study as the process is

kinematically forbidden. Similarly LEP limits on mA0 and mH+ as a function of mH0 are

only relevant when mH0 < mW , which does not enter into our parameter space, thus these

constraints can be ignored [255,256].

From the discussion above, one can see that while there are a large range of collider

constraints to consider, they enter in the low mH0 regime, which is beyond the parameter

space considered here, and are therefore irrelevant.

4.4.2 Bounds from Cosmic String Physics

Considering string phenomenology, there are also cosmological bounds on q0 [245, 257–261].

Searches for line-like discontinuities in CMB data put limits on cosmic string scenarios re-

quiring the string tension parameter Gµ . 10−7 [195]. However we can now use DM phe-

nomenological bounds to constrain q0, and the model-independent unitarity limit (as seen in

Section 3.3), while much weaker than experimental bounds, places stronger limits on q0 than

those from CMB searches.

In our model, both inert and SM Higgs doublets can condense upon the string formed, this

subsequently means strings decay radiating not just the odd sector Higgs particles needed for

our genesis mechanism, but also SM Higgs bosons. Here cosmic string bounds arising in the
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case of a large1 Higgs condensates [245] will be examined, which come from considerations of

BBN and the diffuse γ-ray background (DGRB).

These limits constraint the energy injection rate into “visible” SM particles (γ, e, p, n),

which will be denoted Qvis, with a dimensionless qvis defined analogously to q0 (4.29). It

turns out that BBN constrains the CE scenario (p = 7/6) most strongly, while the DGRB

constraints and BBN constraints from the deuterium abundance are about the same for the

FT model (p = 1).

Big Bang Nucleosynthesis

BBN is a process through which the aggregation of SM nucleon bound states occurs, which

dictates the atomic composition of the Universe. The measured abundance of the light ele-

ments is well predicted from SM nuclear physics, therefore a theory significantly disrupting

the SM BBN scenario will be constrained. BBN occurs approximately when the temperature

drops to around the same level as the binding energy of nucleons, O(1-10) MeV.

BBN has been used to limit long-lived states [262] produced during an earlier freeze-out

period, which then decay later during BBN, injecting high energy particles which can disrupt

the process. Cosmic strings may affect BBN in a similar way; their decays may carry on

during BBN, injecting high energy particles through the SM Higgs condensates. In the CE

scenario the bound with the best combination of strength and robustness comes from the

deuterium abundance [245], which limits the energy injected per unit entropy to

(EvisYX)max ' 10−13 GeV, (4.36)

where Evis is the average energy emitted in the form of non-weakly interacting “visible”

particles, and YX is the yield of the X particles with a lifetime τX = 400 s.

Approximating the energy density injected at a time t by Qvist, then

qvis(tBBN) .
8

3

(EvisYX)max

TBBN
, (4.37)

where tBBN = 400 s and TBBN is the temperature at that time.

Knowing the time-dependence of qvis in the CE scenario, we can translate this bound at

the BBN epoch to that during freeze-out, which gives

qvis(tχ) .
8

3

(EvisYX)max

TBBN

(
tχ
tBBN

) 1
6

, (4.38)

1A large Higgs condensate has an amplitude of the order of the string mass scale.
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where tχ is a reference time during freeze-out, which as before is when the temperature equals

the DM mass. Substituting in the numerical values, the limit in terms of the DM mass is

qvis(tχ) . 4× 10−11

(
100 GeV

mH0

)1/3

. (4.39)

Diffuse γ-ray Background

Visible particle injection post-recombination will cause electromagnetic cascades via interac-

tions with the cosmic medium, which will contribute to the DGRB. A Fermi-LAT analysis

limits the energy injection into SM particles to be ωmax
cas = 5.8 × 10−7eV cm−3 [263, 264],

therefore we require ∫ t0

tc

dt

(
a(t)

a(t0)

)4

Qvis . ωmax
cas , (4.40)

where tc is the time at which the Universe becomes transparent to the γ-rays detected by

Fermi-LAT, and t0 is the present time.

In the FT scenario, this corresponds to a limit on qvis of

qvis .

(
t0
tc

)2/3 ωmax
cas

ρ0
, (4.41)

where ρ0 = 5.6× 103 eV cm−3 is the present energy density. Inputting numerical values, one

finds

qvis . 6× 10−9

(
1015s

tc

)2/3

. (4.42)

4.4.3 Results

Section 4.3 saw how adding topological defects to the IDM opened up the parameter space,

as regions where DM was under-produced in standard freeze-out could now meet the relic

density requirement. Here the experimental bounds discussed in the previous section are

implemented as well in order to see the viable regions of parameter space which remain.

In Figure 4.3 there are plots of q0 vs mH0 for the FT and CE scenarios. They show the q0

values required to produced the measured relic density, against mH0 for the four benchmark

cases of (∆m2, λL). As such, they could be viewed as inversions of Figure 4.1 & 4.2, which is

reflected in their shapes. The q0 values plummet towards the high mass end of the plots, this

corresponds to the points at which the correct abundance is obtained via standard freeze-out,

thus any further contributions from topological defect decays will spoil this agreement and so
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Figure 4.3: Plots of the q0 values which generate the measured relic density, against mH0 in the FT

(a) and CE (b) scenarios. In each plot four benchmark cases of (∆m2, λL) are shown; (1000 GeV2, 0)

(green), (1000 GeV2, 0.1) (black), (10000 GeV2, 0) (purple), and (10000 GeV2, 0.1) (red). In the FT

plot, the gray shaded region represents DGRB bounds and in the CE plot it represents BBN bounds.

Where the lines are dashed and dot dashed, are where they are ruled out by Fermi-LAT limits from

dSphs [130] and LUX limits [95] respectively. The regions where the lines are dotted or solid are ruled

out by both or neither respectively.

q0 → 0. Past this point the annihilations are so inefficient that an over-abundance of DM is

predicted, which cannot be reduced via our mechanism.

In each plot, the region of parameter space ruled out by Fermi-LAT/LUX experimental

data is indicated with broken line styles, while the grey shaded region is ruled out by cosmo-

logical bounds on q0. Therefore in the regions where the curves are solid and not in the gray

shaded area, the measured relic abundance is being produced, while all experimental bounds

are avoided. By inspection of these plots, one can see DM states can now be as light as ∼ 200

GeV, whereas with standard freeze-out, the DM mass could be no lower than ∼ 500 GeV, or

at least across these slices in parameter space.

It is interesting to note the complementarity of DM and cosmic string bounds; in the FT

scenario the DM bounds place stronger limits than the string bounds on q0, but the opposite

occurs in the CE scenario. The BBN bound in the latter case is particularly strong, but one

can still reduce the DM mass by nearly 300 GeV and be consistent with all experimental

constraints.
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4.4 Constraints

(λL,∆m
2/GeV2)

mH0/GeV q0

FT CE FT CE

(0, 1000) 220− 550 380− 550 . 2× 10−9 . 3× 10−11

(0.1, 1000) 310− 660 440− 660 . 9× 10−10 . 2× 10−11

(0, 10000) 260− 830 580− 830 . 2× 10−9 . 2× 10−11

(0.1, 10000) 320− 1040 690− 1040 . 2× 10−9 . 2× 10−11

Table 4.1: A table listing the possible mass ranges and maximum q0 values allowed in an IDM in

which cosmic strings arise. These are given for FT and CE scenarios for the four benchmark values of

(∆m2, λL). The second column lists the range of mH0 values consistent with all experimental bounds,

in which the observed relic density may be produced. The third column lists the maximum q0 allowed

in each of the cases, beyond this value q0 is ruled out by either BBN or DGRB bounds, or requires 〈σv〉
to be an unacceptably large value (i.e. conflicts with direct or indirection bounds) in order produce

the observed relic density.

Table 4.1 summarises the valid mass ranges for each of the benchmark points considered,

along with the maximum value of q0 required in order to open up this whole range of mass

values. The upper limits on the mass ranges correspond to the only valid values (of those

considered) allowed when considering standard freeze-out. The limits on q0 in the FT scenario

arise from DM bounds, as if it were any higher, the annihilation cross-section would have to be

an unacceptably large value in order for the correct relic abundance to be obtained. Whereas

in the CE scenario the q0 limits arise from cosmic string BBN bounds.

As was done in the previous chapter in Table 3.2, it is instructive to convert these limits

on q0 into limits on the string tension parameter Gµ. In the case of a single DM species, where

the energy injection rate was parameterised by qX , the relationships with Gµ in the FT and

CE scenarios were calculated in Appendix A to be (A.8) and (A.21) respectively. Now, the

energy injection rate is parameterised by q0 instead, however equivalent relationships with

Gµ can be derived by letting qX → q0 ≡
∑

i
EH0

Ei
qi in the same expressions. This results in

slight redefinitions of PFT and PCE, which are now given by

PFT ≡
EH0

Ei
fi

(
1− 3ωd

2

)(
0.25

ξH

)2

, (4.43)
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4.4 Constraints

(λL,∆m
2/GeV2)

Gµ

FT CE

(0, 1000) . 6× 10−12P−1
FT . 1× 10−15P−1

CE

(0.1, 1000) . 3× 10−12P−1
FT . 1× 10−15P−1

CE

(0, 10000) . 7× 10−12P−1
FT . 1× 10−15P−1

CE

(0.1, 10000) . 7× 10−12P−1
FT . 1× 10−15P−1

CE

Table 4.2: A table listing the maximum allowed values of Gµ in the four benchmark (∆m2, λL) points

in the FT and CE scenarios. These were translated from the q0 values seen in Table 4.1 using the same

formulae for qX in (A.8) and (A.21), although now PFT and PCE are defined differently, as shown in

(4.43) and (4.44) respectively. Both parameters are still O(1).

and

PCE = νβ
2/3
CE

EH0

Ei
fi

(
100

g∗

)1/12 ( mX

TeV

)1/6
(

500 GeV

Tχ

)1/3

. (4.44)

Table 4.2 shows the limits on Gµ calculated from the q0 limits seen in Table 4.1, using the

formulae described in the previous paragraph. These bounds on Gµ mean the U(1)′ symmetry

breaking scale can be limited to v′ . 1013 GeV in the FT scenario, and v′ . 1012 GeV in the

CE scenario.

While the (∆m2, λL) benchmark approach has been convenient in highlighting the main

consequences of an IDM with topological defects, a broader view of the phase space would

inform further.

In Figure 4.4 are plots of (mH0 , λL) space for ∆m2 = 1000 and 10000 GeV2 in the FT

and CE scenarios. Shown in each plot are the regions ruled out by Fermi-LAT (shaded blue)

and LUX (shaded green), where the limits of the latter disappear as λL → 0, as expected.

Also shown are contours of constant yield set to the observed DM abundance for different

values of q0, along with those in the case of standard freeze-out. The q0 contours become

dotted when the DGRB (in the FT scenario) or BBN (in the CE scenario) bound forbids it

from holding that value. The contours of q0 at which these bounds are met are shown by blue

curves in these plots.

In the standard IDM one is forced to lie along the standard freeze-out contour seen in

127



4.4 Constraints

FT scenario, �m2 = 1000 GeV2
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LUX 90% CL
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LUX 90% CL

FT scenario, �m2 = 10000 GeV2

(b)

Fermi-LAT 95% CL
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CE scenario, �m2 = 1000 GeV2
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(c) (d)

Figure 4.4: Plots in (mH0 , λL) space for ∆m2 = 1000 GeV2 (left) and ∆m2 = 10000 GeV2 (right)

in the FT (top) and CE (bottom) scenarios. The shaded regions show 90% CL limits from LUX

(shaded green) and 95% CL limits from Fermi-LAT (shaded blue). Contours of constant yield set to

the measured abundance for different values of − log10[q0] are shown in red, along with that in the case

of standard freeze-out, seen in gray. When the contours become dotted, they are no longer consistent

with DGRB and BBN bounds. The blue contour shows when the required q0 value hits one of these

cosmic string bounds, i.e. DGRB in the FT scenario and BBN in the CE scenario.

Figure 4.4, whereas in our model with topological defects added, the model may lie anywhere

to the left of this up until the DM and cosmic string bounds come in. This has opened

up a much larger region of phase space; the parameters have gone from being restricted to

a 1-dimensional curve, to being allowed within a 2-dimensional area, i.e. the viable phase
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4.5 Discussion

space has had a “dimensional” boost. With standard freeze-out, only DM masses down to

∼ 550 GeV are permitted, but now with the addition of topological defects these plots show

this may go down to around 200 GeV, a significant reduction.

In the discussion of Figure 4.3 it was noted that the cosmic string limits were stronger

than the DM bounds in the CE scenario for the benchmark cases considered. What is now

seen here in Figure 4.4c, where ∆m2 = 1000 GeV2 and we are in the CE scenario, is that at

around λL ∼ 0.26 LUX bounds surpass the BBN bounds to be become the leading constraint.

This could also occur in the ∆m2 = 10000 GeV2 case at a λL value beyond the boundaries of

this plot, although perturbativity or unitarity bounds may come into play before this value

is reached.

Figure 4.5 is the same as Figure 4.4, but now in (mH0 , ∆m2) space in the cases where

λL = 0 and λL = 0.1. As one would expect the LUX limits disappear in as λL → 0 and

the direct detection signals vanish. These plots infer the same as Figure 4.4: that with the

addition of topological defects to the IDM large regions of parameter space have been opened

up, and we are no longer restricted to lie along the standard freeze-out contours.

4.5 Discussion

This chapter details [2], where the freeze-out with decaying topological defects mechanism

discussed in Chapter 3 was implemented into the IDM. In order to generate cosmic strings,

an additional local U(1)′ symmetry was added to the IDM. This supplementary symmetry

was then broken by a scalar field, creating cosmic strings, and two massive particles: Z ′, the

associated gauge boson, and X, the remnant scalar field.

Since the symmetry is thought to break at a scale far greater than the electroweak, these

new degrees of freedom were far more massive than the others in the IDM. Given this, they

could be integrated out to make an effective field theory, which was identical to the IDM.

This required some fine-tuning, which was seen as part of the larger gauge hierarchy problem,

and beyond the scope of this work. We saw how the addition of topological defects raised

the relic abundance in the IDM, and discussed several experimental bounds on the IDM and

cosmic strings. Of the former, LUX limits and Fermi-LAT bounds from an analysis of several

dSphs were used to constrain the phase space. Direct limits on q0 were also taken from [245],

which considered BBN and DGRB bounds on cosmic strings. The main result was that large
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Figure 4.5: Plots in (mH0 , ∆m2) space for λL = 0 (left) and λL = 0.1 (right) in the FT (top) and

CE (bottom) scenarios. The shaded regions show 90% CL limits from LUX (shaded green) and 95%

CL limits from Fermi-LAT (shaded blue). Contours of constant yield set to the measured abundance

for different values of − log10[q0] are shown in red, along with that in the case of standard freeze-out,

seen in gray. When the contours become dotted, they are no longer consistent with DGRB and BBN

bounds. The blue contour shows when the required q0 value hits one of these cosmic string bounds,

i.e. DGRB in the FT scenario and BBN in the CE scenario.

swathes of the IDM’s parameter space was now opened up, i.e. they could produce the correct

relic abundance and be consistent with all experimental bounds. This allowed the CP-even

Higgs H0 to be as light as ∼ 200 GeV, whereas in the standard freeze-out scenario it could

only go down to ∼ 550 GeV.
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Chapter 5

The Galactic Centre Excess with

Topological Defects

Reality is frequently inaccurate.

— Douglas Adams

A high density of DM is thought to lie within the Galactic Center (GC) of the Milky Way,

and as such is a logical target for indirect detection searches. Fermi-LAT, as discussed in

Section 1.4.2, has been detecting the 20 MeV to 300 GeV γ-ray sky. Using Fermi-LAT data

an excess was found in the region of the GC after known sources were removed [127], which was

shown to be consistent with DM annihilations into b-quarks. Furthermore, the cross-section

required to produce the excess came close to the value needed to generate the correct DM

abundance according to standard freeze-out. Since then further analyses on the GC excess

(GCE) have been carried out, studying the morphology, background systematics, possible

annihilation modes, and other interpretations of the signal [129, 232, 265–269]. Millisecond

pulsars have gained the most attention as an alternative source of the GCE; an explanation

which has been studied and scrutinized by various groups [270–274].

Aside from the GC, dSphs also provide good targets for DM indirect detection as they

have high mass-to-light ratios, and Fermi-LAT limits on these are in tension with DM inter-

pretations of the GCE [275]. In order to circumvent this contradiction, one can assume the

DM annihilations are dominantly p-wave, as was shown recently in [276]. Since DM annihi-
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lates at lower mean relative velocities within dSphs than the GC, limits from the former are

more suppressed and the tension is avoided.

However in order to compensate for the velocity-suppression in the GC, the annihilation

cross-section (σ0, as defined in (1.20)) needs to be large, which means the relic abundance is

predicted to be orders of magnitude below the observed value. In [276], as a solution to this

problem, there is a second heavier state which undergoes freeze-out with dominant s-wave

annihilations, which later decays into the p-wave annihilating DM state responsible for the

GCE.

Here, we will show how instead the deficit can be accounted for by allowing topological

defect decays to be a source of DM in early Universe, via the mechanism proposed in [1], which

was discussed in Chapter 3. In the previous chapter, this mechanism was implemented into

an example DM model (the IDM), which subsequently meant large regions of its parameter

space opened up and lighter DM states were permitted (under all phenomenological bounds).

We implement it again here, in order to resolve an issue with a signal of DM, rather than a

model. In both cases however, the core problem was the same: the relic abundance needed

to be increased to the correct value. Considering the effects of decaying defects solves such

issues, which could arise in other models and signals, and more. In the case of the IDM, it

did so while keeping the effective particle theory unchanged at the electroweak scale.

As σ0 has to be large to generate the GCE when the annihilations are dominantly p-wave,

one needs to be wary of conflicts with direct detection and collider bounds. These can be

avoided in cascade annihilation models, where the final states are on-shell mediators, which

can then decay into SM fermions. Alternatively, there could be several mediator states, which

decay into one another in a long chain (or cascade), before the SM fermions are finally emitted.

This means the annihilation rate is set just by the DM-(heaviest) mediator coupling, while

the scattering and production rates are dependent on the mediator-SM fermion couplings as

well. Subsequently, we can fix the former coupling such that the GCE is generated, while the

latter couplings can be suppressed to avoid direct detection and collider bounds. While this

means the mediators’ lifetimes can be large, this will not be nearly enough to effect of the

morphology of the GCE.

Cascade annihilations have been used before to generate the GCE [276–281], however

this has mostly been in the case of dominant s-wave annihilations. In such scenarios, DM
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5.1 The Galactic Centre Excess and dSph Limits

is a fermion with either vector, axial-vector, or pseudoscalar interactions. Annihilation into

two pseudoscalars is actually p-wave dominated, however the three pseudoscalar final state

channel is s-wave and is the leading contribution. Here we shall consider a model with DM

annihilating into scalars, whose leading contribution is p-wave dominant. A benefit of such a

theory is that mixing with the SM Higgs boson can arise, and given the SM Yukawa couplings

follow a mass hierarchy, naturally allows annihilations into b-quarks to dominate (a preferred

channel for the GCE).

This chapter is laid out as follows: in Section 5.1 we look at the GCE, showing how it can

arise from DM annihilations and providing details of the fitting analysis. Limits from dSphs

are then considered and the tension with DM as the source of the GCE is shown. This is

subsequently demonstrated to be avoided when DM annihilations are dominantly p-wave. In

Section 5.2 we detail our cascade annihilation model, and the mixing between the mediator

and the SM Higgs. Following this, we examine how cosmic strings can be introduced into

this model, and allow for sufficient DM production. In Section 5.4, we fit our model to the

GCE and find the values of the string tension parameter, Gµ, required for the correct relic

abundance to be produced. Cosmic string bounds on this parameter are then examined,

before we conclude in Section 5.5.

5.1 The Galactic Centre Excess and dSph Limits

The DM models here will be fitted to the GCE using the analysis of Fermi-LAT data presented

in [265], where spectral data with statistical and systematic errors is provided in the appendix.

This analysis considered γ-rays in the range 200 MeV to 100 GeV observed during the period

August 4th 2008 - June 6th 2012. The region of interest (ROI) is a 7°× 7° box centred

on Sagittarius A*, the supermassive black hole at the centre of the galaxy, which itself is

modelled as a point source of γ-rays. To illustrate the tension with dSph limits, a model of

dominantly s-wave annihilating DM is fitted to the data.

The differential γ-ray flux from an astronomical source was given in Section 4.4.1, but

repeated here for convenience with a change of variables more appropriate for this study, it

is expressed as a function of the photon energy (Eγ), longitude (l), and latitude (b)

Φ(Eγ , b, l) =
〈σv〉

8πm2
χ

dN

dEγ
J(b, l), (5.1)
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5.1 The Galactic Centre Excess and dSph Limits

where mχ is the DM mass, 〈σv〉 is the velocity-averaged1 annihilation cross-section times

relative velocity, and dN
dEγ

is the photon spectrum per annihilation. The term J(b, l) is an

astrophysical factor, given by

J(b, l) =

∫
l.o.s.

ρ(r)2ds, (5.2)

where ρ(r) is the DM density as a function of the radial distance to the GC. The integral is

performed along the line of sight, i.e. r2 = s2 + r2
�− 2sr� cos(b) cos(l), where r� = 8.5 kpc is

the distance between the Earth and the GC.

For the DM density, we will use the generalised Navarro-Frenk-White (NFW) profile

[282,283]

ρ(r) =
ρ0(

r
rs

)γ (
1 + r

rs

)3−γ , (5.3)

where the scale radius rs = 20 kpc, the slope factor γ = 1.2, and ρ0 is set such that ρ(r�) =

ρ� = 0.4 GeV cm−3, the density of DM in the vicinity of the Earth. These astrophysical

factor values were chosen as to be in line with previous studies of the GCE and analyses of

the DM halo [266,267,284,285].

The annihilation spectra are generated using PPPC 4 DM ID [286, 287], a Mathematica

package which has a database of photon spectra. These are generated by considering the

possible products of DM annihilations/decays and the particles produced via the decays or

hadronizations of said products. PPPC calculates the predicted fluxes of electrons/positrons,

antiprotons, antideuterium, γ-rays, and neutrinos, after these latter processes have ceased.

It then takes into account changes to these prompt spectra as they propagate through the

Milky Way on their way to us, into order to give their observed spectra. For the charged

cosmic ray fluxes, this takes into account energy loss due to processes such as synchrotron

radiation from the galactic magnetic fields, and the inverse Compton scattering of the CMB,

dust-rescattered light and starlight. These processes not only alter the charged cosmic ray

fluxes, but also contribute to the photon spectra, which is accounted for in PPPC. It also

computes the contribution of extragalactic photons.

A χ2 analysis across a range of 〈σv〉 and mχ values is presented in Figure 5.1, which

assumes dominant annihilations into b̄b final states. Also shown are the limits from a combined

analysis of 15 dSphs using Fermi-LAT data [131], and the relic density curve, along which the

1Not to be confused with the thermally-averaged quantity used in the freeze-out calculation (1.20).
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observed abundance of DM is produced in standard freeze-out.

dSph Limits
Relic Density
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Figure 5.1: A fit of (mχ,〈σv〉) space via a χ2 analysis of GCE data [265] to a model of DM with

dominant s-wave annihilations, assuming b̄b final states only. The cross shows the point of best fit,

while the red bold, dashed, and dotted lines are contours highlighting 1σ, 2σ, and 3σ significance.

Also shown are the thermal values of 〈σv〉 required to produce the observed relic abundance according

to standard freeze-out [17] (dashed gray), and the Fermi-LAT 95% limits from dSphs [131] (blue).

The best fit parameter values from the χ2 analysis are

〈σv〉 = (1.71± 0.29)× 10−26 cm3 s−1 mχ = 36.1+7.4
−5.8 GeV, (5.4)

which is in approximate agreement with other analyses, and close to the value required to

produce the observed relic abundance. However the limit from dSphs is below the fit, outside

the 3σ CL contour, which puts pressure on the DM interpretation of the GCE (when assuming

the annihilations are dominantly s-wave). This tension is explored further in [275], which finds

it may be avoided by using a highly concentrated DM halo. Such a profile could arise due to

the adiabatic contractions instigated by baryonic infall, but this situation is ruled out in [288].

5.1.1 P-wave Annihilating Dark Matter

One way to resolve the disagreement discussed in the previous section is by considering

velocity-dependent annihilation cross-sections, as the velocity distributions vary between the
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5.1 The Galactic Centre Excess and dSph Limits

astronomical bodies. As discussed in Section 1.2.1, the annihilation cross-section may be

expanded in relative velocity, v, as σv = a+bv2+O(v4). This expansion may be approximated

by its lowest order non-zero term, which may be a or bv2 corresponding to dominant s- or

p-wave annihilations respectively.

The velocity-averaged cross-section is defined as

〈σv〉 =

∫
f(~v1)f(~v2)(σvrel)d

3~v1d
3~v2. (5.5)

Following the work in [289], the velocity distribution in a given celestial object is taken to be

a Maxwell-Boltzmann distribution with a cutoff at the escape velocity, i.e.

f(v) = N


v2 exp

(
− v2

2v2d

)
v < vesc

0 v > vesc

, (5.6)

where vd is the velocity dispersion and N is a normalisation factor given by

N−1 = 25/2πv3
d

(√
π

2
erf

(
vesc√
2vd

)
− vesc√

2vd
e
− v

2
esc
2v2
d

)
. (5.7)

In the limit that vd � vesc, we can approximate 〈σv〉 = σ0

(
vd
c

)2
, where σ0 is the same as in

(1.20).

The velocity dispersion is dependent of the distance to the body’s centre, and as such, the

differential γ-ray flux for dominant p-wave annihilations will now be

Φ(Eγ , b, l) =
σ0

8πm2
χ

dN

dEγ
Jp(b, l), (5.8)

where

Jp =

∫
l.o.s.

ρ(r)2

(
vd(r)

c

)2

ds. (5.9)

Following [276,289], the velocity dispersion of the Milky Way is taken to be

vd(r)
3 = v3

0

(
r

r�

)χ(ρ(r)

ρ�

)
, (5.10)

where v0 = 260 km s−1, in accordance with simulations of the DM halo [290] and χ = 1.64

from [291], which takes baryonic effects into account.

Comparing (5.1) and (5.8), the best fit σ0 value in the case of dominant p-wave annihilation

(assuming no other changes) may be found by scaling the s-wave cross-section fit by the ratio of
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5.2 A Toy Model

J factors (integrated over the ROI). Doing so, one finds we would need σ0 ≈ 9×10−20 cm3 s−1

in order to explain the GCE.

The velocity dispersion of a dSph is approximately constant, which means its limit on

p-wave annihilating DM can be found by scaling the s-wave limit by a factor of
(
vd
c

)2
, but

the situation is more complex as we are using a combined analysis of several dSphs. However

by scaling by the largest velocity dispersion we produce a limit which is stronger than the

true value, which is fine for our purposes (as was done in [276]). In the case of the 15

dSphs considered in [131], Fornax has the highest velocity dispersion at a value of vd =

11.7 ± 0.9 km s−1 [230]. This means in the p-wave dominated case σ0 . 8 × 10−18 cm3 s−1,

which is far above the value required to produce the GCE, and so the tension is avoided.

However the cross-section from the GCE fit is many orders of magnitude over the value

required to produce the correct relic abundance when assuming the DM was generated via

standard freeze-out, which is σ0 ∼ 10−24 cm3 s−1 for a p-wave dominated theory. As with

the IDM, by letting decaying defects be a source of DM, this disagreement may be corrected.

5.2 A Toy Model

We now present an example model which can explain the GCE, and produce the correct relic

abundance. The theory needs to satisfy two requirements: the DM’s dominant annihilation

channel is p-wave, and the model permits the formation of cosmic strings which can decay

producing DM. First we shall consider how the former may realised, before the implementation

of the latter in discussion in Section 5.3.

As discussed in the introduction, we shall consider a model with cascade annihilations

where the mediators are light enough to be produced on-shell in DM annihilations. The

mediators are unstable and will decay into SM particles, or into other unstable mediators

which do, extending the chain (or cascade). Here, the simplest cascade will be considered,

where there is only one new mediator.

One of the simplest ways in which such a scenario could arise with p-wave annihilations

is if DM is a Dirac fermion χ, which couples to a scalar φ, i.e.

L = LSM + iχ̄/∂χ+mχχ̄χ+
1

2
(∂µφ)2

− 1

2
m2
φφ

2 − µφ

2
√

2
φ3 − λφ

4
φ4 − λχφχ̄χ− λfφf̄f,

(5.11)
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5.2 A Toy Model

where f represents the SM fermion fields. In this case DM annihilations proceed via the chain

χ̄χ→ φφ→ f̄f f̄f .

The photon spectrum in the case of cascade annihilations is given in [280, 292], where it

is calculated by boosting the mediator’s (at rest) decay spectrum dNφ/dEγ , i.e.

dN

dEγ
=

2

x+ − x−

∫ Eγx+

Eγx−

dE′γ
E′γ

dNφ

dE′γ
, (5.12)

where x± =
mχ
mφ
±
√(

mχ
mφ

)2
− 1.

5.2.1 Higgs Portal Couplings

The GCE is best fit by models predicting dominant annihilations into b-quarks, which for our

toy model means φ decays should be likewise. This can occur naturally if the mediator mixes

with the SM Higgs, which is indeed possible in our model as the following portal couplings

are also permitted

L ⊃ −µH√
2
φ|H|2 − λH

2
φ2|H|2, (5.13)

where H is the SM Higgs doublet. Post-electroweak symmetry breaking a mixing emerges

between the mediator and the SM Higgs boson h, and so diagonalizing, one finds

φ = φ̃ cos θ + h̃ sin θ,

h = h̃ cos θ − φ̃ sin θ,
(5.14)

where θ is the mixing angle, and φ̃ and h̃ are the physical mass states. The φ field itself does

not gain a non-zero VEV.

This mixing allows the mediator to couple to fermions via the SM Higgs boson’s hierar-

chical (in mass) Yukawa terms, with a strength yf sin θ. Subsequently φ → b̄b decays can

dominate, provided the mediator’s original Yukawa couplings, λf , are small enough. Such a

scenario is always possible since λf can be decreased almost indefinitely without affecting the

GCE signal, which is a defining concept of cascade annihilation models. We shall assume λf

can be ignored and so the hierarchical coupling, yf sin θ, controls the mediator’s interactions

with SM fermions. In an extension to this model, the original λf couplings to the SM fermions

could be forbidden under some symmetry, whereby leaving them to be generated via mixing

with the SM Higgs.
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5.3 Generating Cosmic Strings

The mixing also generates a direct coupling between DM and the SM Higgs, which opens

up new channels for direct detection and collider searches. Furthermore, there will also be

lower limits on the decay rate of the mediator (and thus sin θ) coming from BBN; a long-lived

particle decaying during this period will disrupt the process which is in the most part already

well described by SM physics. In Appendix C we derive these bounds on sin θ, finding they

are not strong enough to forbid the mixing, and so hierarchical couplings can arise through

this channel.

5.3 Generating Cosmic Strings

DM production from decaying topological defects proceeds here as it did in Section 3.1, i.e.

cosmic strings decay emitting X states with average energy EX , which in turn decay into Nχ

DM states of mass mχ. The Boltzmann equation is once again

dYχ
dx

= − A
xn
(
Y 2
χ − Y 2

χ,eq

)
+

B

x4−2p
, (5.15)

where

A =

√
πg∗
45

MPlmχσ0, and B =
3

4

(
Nχmχ

EX

)(
QχfX
ρχHχ

)
, (5.16)

whose parameters are defined as they were in Section 3.1. We again use the cosmic string

variables

qX ≡
QχfX
ρχHχ

, and rχ ≡
Nχmχ

EX
. (5.17)

As discussed in Section 2.3 and utilised in Chapter 4, one of the simplest ways in which

cosmic strings may be generated is via the spontaneous breaking of a U(1)′ symmetry by a

scalar gaining a VEV. We will call this scalar the string field and label it Y . DM can then be

produced from the decays of the string itself, or from the decays of condensates which form

upon the string.

Considering the former case, the emitted particle, X, could be the remnant scalar of the

string field Y , whose mass is expected to be of the order of the VEV, v′. For sufficient particle

production, a large (much greater than the electroweak scale) VEV is required, therefore in

this case EX ∼ v′ ∼ O(1010-1015) GeV. Given this, one would expect rχ to be very small, as

mχ ∼ O(10) GeV and typically Nχ ∼ O(1). Although Nχ is model-dependent, it will not be

close to the value required for rχ ∼ O(1). Having an rχ value of this size is problematic, as
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5.4 Fitting and Constraining

qX would need to be very large to generate the correct relic abundance, and such values will

be in conflict with CMB string constraints [195].

This issue is remedied by assuming X is a different state with a mass around the elec-

troweak scale, which couples to Y in such a way as to be produced from the string decays.

For example, if X is a scalar field, it will have a portal coupling with the string field, |Y |2|X|2,

which would allow X to form a condensate upon the string field. In this scheme, EX will be

around the electroweak scale.

In order for rχ to be large enough, we need a significant branching fraction of X decays

into DM, which means a coupling to DM must be introduced. One way in which this could be

realised is if X is also charged under the U(1)′ symmetry, but with opposite charge to Y . One

could then consider the effective operator, 1
Λ |Y †X|χ̄χ, which upon the symmetry breaking

phase transition would generate the Yukawa term v′√
2Λ
Xχ̄χ.

Alternatively the coupling to DM could arise through mixing with the mediator, φ, which

is expected to have a large coupling to DM, such that the GCE can be produced. If X gains a

VEV, a mixing may be generated via a term like φ|X|2. In this case, the remnant scalar of X,

would mix with φ and be the field which decays producing DM. For the rest of this study, we

presume DM production via decaying defects proceeds in ways such as those explored above,

and subsequently take rχ ≈ 1.

In Chapter 4 a field such as Y , which breaks the U(1)′ symmetry, was added to the IDM.

As it broke the symmetry close to the GUT scale, it did not change the effective particle

model at the electroweak scale. This was because it introduced particles which were massive

enough to be integrated out. One can see that the situation will be the same here in our

toy model, and like before, we expect fine-tuning will be needed to deal with large mass

corrections generated from terms such as φ2|X|2. This is recognised as part of the larger

gauge hierarchy problem, which could be solved by supersymmetrising the model, however

this is beyond the scope of this work.

5.4 Fitting and Constraining

With a working toy model established, we are now in a position to fit to the GCE, and

consider further constraints. Thus far we have discussed how Fermi-LAT dSph limits are

avoided with dominantly p-wave annihilating DM, but have not considered other indirect
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5.4 Fitting and Constraining

detection limits, which cannot be suppressed in the same way as direct detection and collider

bounds can be. When assuming dominantly s-wave annihilating DM, limits from clusters

are weaker than those from dSphs, however with p-wave annihilations they can be stronger

since the average DM velocity is higher. Out of the clusters, Virgo with an approximately

flat velocity dispersion of 643+41
−30 km s−1 [293], provides the strongest limits on the p-wave

annihilation cross-section [294]. Fitting our toy model to the GCE cannot simply be done
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Figure 5.2: A fit of (mχ, σ0) space via a χ2 analysis of GCE data [265] to a cascade annihilation model

of DM where χ̄χ → φφ → b̄bb̄b for mφ = 15 GeV (green) and 40 GeV (red). The crosses show the

points of best fit, while the bold, dashed, and dotted lines represent the 1σ, 2σ, and 3σ CL contours

respectively. Also shown are the Fermi-LAT 95% CL limits from dSphs [131] (blue) and the Virgo

Cluster [294] (purple). Contours along which the correct relic abundance is generated are plotted for

various values of − log10[qX ] (gray dashed lines) in the FT scenario.

by scaling the fit of the s-wave annihilation model, as was done at the end of Section 5.1.1.

Since we are using a cascade annihilation model, the situation is more complex, as the photon

spectrum is now found using (5.12). Figure 5.2 shows two fits in (mχ, σ0) space for our toy

model with mφ = 15 and 40 GeV, along with Fermi-LAT limits from dSphs and Virgo. The

point of best fit for mφ = 15 GeV is

σ0 = (1.10± 0.17)× 10−19 cm3 s−1 mχ = 45.2± 8.7 GeV. (5.18)
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and for mφ = 40 GeV is

σ0 = (1.42± 0.26)× 10−19 cm3 s−1 mχ = 57.0+12.1
−8.3 GeV. (5.19)

These cross-sections are approximately a factor of 107 greater than the s-wave fit (5.4). As

a check, we can crudely approximate the expected cross-section by scaling the s-wave fit

by
(
vd
c

)2
, where vd is the average velocity dispersion. The velocity dispersion according to

our model (5.10) peaks and plateaus around 185 km s−1, however given the form of the γ-

ray flux (5.8), we can see we’ll get the largest contributions from the more central region

where the density is highest and the velocity dispersion is lower. Given this, we can take

vd ∼ 100 km s−1 and doing so we would expect the p-wave cross-section fit to be ∼ 107 times

larger than the s-wave, in agreement with the results above. One could also take into account

the increase in multiplicity given there are now cascade annihilations, and the increase in DM

mass, however the resultant change would be negligible (less than a factor of 2).

As expected, dSph limits are no longer conflicting with the GCE fits. Limits from the

Virgo cluster are now far stronger than those from dSphs, although not enough to create

a new tension with the GCE fit. The gray dashed lines seen are contours along which the

correct relic abundance is generated when assuming DM production from decaying topological

defects; this is plotted for various values of − log10[qX ] and assumes we are in the FT scenario.

With a smaller mediator mass, the best fit values for mχ and σ0 decrease. By inspection of

(5.8) we can see that the decrease in σ0 (which is an overall scaling factor) can be considered

as compensating for the decrease in mχ, in such a way as to keep the coefficient σ0
m2
χ

constant.

Physically this decrease in mχ is causing the number density to rise, which would boost the

signal unless σ0 is scaled down appropriately.

However while σ0 is overall at a lower value when mχ is smaller, it is larger than what

would be expected if the system was purely governed by this effect on the number density.

Therefore a second effect is in play, which drives σ0 up. The only other dependence on mχ

and mφ is in the photon spectrum, thus σ0 increases because the amplitude of the photon

spectrum is lower when mφ and mχ are also. The photon spectrum for a one step cascade

(5.12) is derived through the boosting of φ’s decay spectra. By lowering the mediator’s mass,

the total number photons emitted on average is smaller as the b-quarks are emitted with

less energy. This decreases the amplitude of the mediators decay spectra, and therefore the

convolved DM annihilation spectrum. Subsequently the cross-section must be increased to
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counter this secondary effect.

While the origin of the changes to σ0 can be put down to the changes in mφ and mχ, we

have yet to examine why mχ decreases. This may be understood by considering two effects

lowering mφ has on the spectrum. Firstly, as the b-quarks are produced with less energy,

the decay spectrum is more sharply peaked, and secondly, the mass splitting between mχ

and mφ is larger. The latter means the φ’s have higher momentum and so the decay spectra

are boosted across a larger range of energy values, which increases the integration window

in (5.12). This second effect dominates over the first, and smears the annihilation spectrum

out. Therefore to regain approximately the same shape as before, which fitted the GCE, the

mass splitting must be decreased by lowering mχ.

5.4.1 Implications for Cosmic Strings

With the fits to the GCE seen in Figure 5.2, it is instructive to know how the large DM

production from cosmic strings (reflected in the value of qX) needs to be in order for the

observed relic abundance to be produced. This can be found using the expression in (3.12),

which tells us the required value of qX for a given value of σ0. These values are presented

in Table 5.1 for both mediator masses in the FT and CE scenarios. In the case where the

mediator is lighter, qX is slightly greater, to counter the increase in the annihilation cross-

section. In the FT scenario qX is larger as the production rate drops more quickly, thus a

greater value is required.

qX

mχ/GeV FT Scenario CE Scenario

15 qX = 3.25+0.24
−0.26 × 10−8 qX = 1.170.06

0.06 × 10−9

40 qX = 2.92+0.25
−0.28 × 10−8 qX = 1.01+0.06

−0.07 × 10−9

Table 5.1: Values of qX required to produce the observed relic abundance of DM [17] when the

annihilation cross-section is fitted to the GCE signal, as seen in Figure 5.2. This is for mχ = 15 and

40 GeV, and is found for both the FT and CE scenarios.

As was done in the previous two chapters, the qX values are converted into those of the

more commonly used string tension parameter Gµ. This can be done by using the expressions

(A.8) and (A.21) for the FT and CE scenarios respectively. These can be rescaled by 1
rχ

to
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find the value of Gµ for any rχ. In the FT scenario, Gµ & 1 × 10−10
(

1
rχ

)
, and in the CE

scenario, Gµ & 5×10−14
(

1
rχ

)
, in order for the correct relic abundance to be produced, which

correspond to VEV values for the string field of v′ ∼ 1014
(

1
rχ

)1/2
and v′ ∼ 1012

(
1
rχ

)1/2
GeV

respectively. CMB string searches limit Gµ . 10−7 [195], which our values easily avoid, since

we are assuming rχ = 1. However taking rχ as a free variable, this limit will still be avoided

if rχ & 10−3 in the FT scenario and rχ & 5× 10−7 in the CE scenario.

There are further limits on Gµ, which could be strong enough to conflict with the required

values, however these are model-dependent. For example, in the FT scenario, limits from the

DGRB using EGRET data [225, 295] require Gµ . 10−10f−1, where f is the fraction of the

energy going into γ-rays. Unless strings are dominantly decaying into photons, this bound

will be avoided. In the CE scenario, the gravitational radiation may be searched for using

pulsar timing arrays, and one such analysis requires Gµ . 2.8× 10−9 [296]. This bound does

not significantly constrain our model, and rχ can still be as low as ∼ 2× 10−5.

Other limits also arise when large SM Higgs condensates form [245] upon the string,

coming from BBN and DGRB bounds (discussed in Section 4.4.2). These will limit qvis,

a parameter defined in the same way as qX , but for “visible” SM particles. Following the

discussion in Section 4.4.2, the DGRB bound in the FT scenario is found to be

qvis . 6× 10−9. (5.20)

The BBN limit in the FT scenario is comparable to this, while in the CE scenario it provides

the strongest limit, given by

qvis . 5× 10−11. (5.21)

Comparing these limits to the required values in (5.1) one can see a strong tension. How-

ever this presumes qvis ∼ qX , i.e. the fraction of energy going into DM and SM particles (via

Higgs radiation) is comparable. Furthermore this requires the formation of “large” Higgs

condensates, and one can easily consider a region of parameter space where the condensates

are not “large”, as discussed in [297].

5.5 Discussions

In this chapter we examined the unexplained γ-ray GeV excess coming from the GC of the

Milky Way, which has been shown to be consistent with annihilating DM [127]. The cross-
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section required to produce the signal is close to that of a thermal relic (assuming standard

freeze-out), however limits from dSphs are in tension with it [275]. By considering dominant

p-wave annihilations, this tension may be resolved [276] (as established in Section 5.1), but

at the cost of spoiling the agreement with the thermal value.

Here, we have shown that by considering the effects of defect decays in the early Universe,

the correct relic density may be obtained for a model generating the GCE with dominant

p-wave annihilations. As explained in Chapter 3, the decaying defects can be a source of

DM, and so allows the annihilation cross-section to be far greater than standard freeze-out

permits.

To illustrate how such a scenario could relieve tensions with dSphs and the relic density, a

toy model was considered in Section 5.2. This was based on cascade annihilation theories [277–

280], where DM annihilates dominantly into on-shell mediators, and allowed for experimental

bounds to be avoided. Taking the mediator to be a scalar meant the DM annihilations were

dominantly p-wave. Furthermore it meant portal couplings to the SM Higgs doublet were

permitted, which allowed the mediator to mix with the Higgs boson. This subsequently gave

the mediator hierarchical couplings to SM fermions determined by their masses, and therefore

provided a natural explanation for dominant b̄b final states in mediator decays.

Cosmic strings were then introduced into this model in Section 5.3 by adding a new scalar

Y which gained a VEV breaking an additional local U(1)′ symmetry. To avoid cosmic string

bounds we required rχ to be sufficiently large, which was an unrealistic assumption if the

DM was being produced directly from the decays of Y ’s remnant scalar field. Therefore we

considered a second field, X, with an electroweak scale mass, which could decay dominantly

into DM.

Fitting our model to the GCE in Section 5.4, we found the annihilation cross-section

was required to be σ0 ∼ 10−19 cm3 s−1 with a larger DM mass than in the s-wave case.

Furthermore these fits were shown to be consistent with dSph limits, as well as those from

the Virgo cluster, which are stronger than dSph limits in the p-wave case. In order for the

correct relic abundance to be produced, the string tension parameter describing cosmic strings

was required to be Gµ ∼ 10−10 and ∼ 10−14 in the FT and CE scenarios respectively. This

avoided most cosmic string bounds, apart from large Higgs condensates limits, however these

presume a large SM Higgs condensate forms, which needs not be the case.
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Chapter 6

Direct Detection Signatures of

Nuclear Dark Matter

It is a capital mistake to theorize before one has data.

Insensibly one begins to twist facts to suit theories, instead

of theories to suit facts.

— Sherlock Holmes

The previous three chapters concentrated on a mechanism for DM production, where there

was an additional source of DM in the early Universe from decaying topological defects. In

the work [4], the direct detection signatures of a DM model also with atypical early Universe

dynamics and genesis mechanism are considered. This uses a model of Nuclear Dark Matter

(NDM) [298–303], where DM consists of bound states of strongly-interacting dark nucleons

(DN) with short-range interactions, akin to SM nuclear bound states. In the early Universe,

the DNs undergo an aggregation period, whereby through fusion processes larger and larger

bound states form. These dark nuclei are spatially-extended objects, rather than the point-

like candidates usually considered.

Compositeness has already been seen in the SM (emerging at different levels within atoms,

nuclei, and nucleons) motivating DM models which follow suit. There are numerous models of

composite DM, including [304–306] which study “WIMPonium”, two particles bound under

a Yukawa potential. The direct detection signatures of WIMPonium were fairly recently con-

sidered in [307,308]. In analogy with SM atoms, a model of “dark hydrogen” was postulated
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in [309], and “Q-balls”, non-topological solitons of scalar fields, were presented in [310, 311].

Furthermore composite states can also be present in technicolor-like theories [312,313].

We focus on the model of NDM hypothesised in [302,303], and study the direct detection

signatures and constraints arising from it. This class of model assumes that the dark nuclei

have an approximately uniform density, with a hard core repulsion between the constituent

DNs. This is in contrast to the DM “nuggets” described in [300, 301], where no hard core

repulsion was assumed resulting in a more complicated internal structure.

In comparison to standard WIMP DM, the mass of a typical dark nucleus can be much

larger. For example, in [302, 303] dark nuclei with a large number of constituents, each with

masses in the GeV region, were considered leading to states with a total mass well in excess

of the unitarity limit of thermal WIMP DM.

The composite and extended nature of these DM states will affect the way in which they

scatter off SM nuclei in direct detection experiments. If all DM is in the form of composite

states each with k dark nucleons (which we refer to as a k-DN state), and if the momentum

transfer in the scattering process is less than the inverse radius of the state then the elastic

scattering cross-section will be coherently enhanced by a factor of k2 [298, 302, 303, 314].

However, as we increase k the number density of these k-DN states will decrease, leaving an

overall event rate increasing only linearly with k [303].

The dependence of the scattering rate on the spatial properties of both the extended DM

states and the SM nuclei is encoded in the product of their respective form factors. These

form factors are as usual related to the Fourier transforms of the spatial densities of the

particular composite object. If the radii of the DM states are larger than the SM nuclei, off

which they are scattering, then direct detection experiments will start to probe the dark form

factor at lower values of the momentum transfer compared to the SM form factor. This can

lead to a striking structure in the recoil spectrum [303]. For example, if we assume that the

composite DM states possess a uniform internal density, and model this density in terms of a

spherical top hat function, the resulting form factor is a spherical Bessel function. The recoil

energy spectrum will as a result include characteristic peaks and troughs. Whether these

features are distinguishable from point-like WIMP recoil spectra depends on the individual

experiment’s energy resolution and threshold, and is the focus of this work.

The appearance of these distinctive peaks and troughs in the recoil spectrum also depends
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on whether all DM states have the same number of DNs or whether there is a distribution

of nuclei with different k values. The position of the troughs and peaks in the recoil spec-

trum is dependent on the value of k and it was shown in [303] that the compound recoil

spectrum from a distribution of k values results in the peaks and troughs being smoothed

out leaving a monotonically decreasing spectrum. While more difficult, in a single detector

with a sufficiently high number of signal events the recoil spectrum in this case may still be

distinguishable from that of a standard WIMP for a given DM velocity-distribution. Due to

the uncertainty in the DM velocity-distribution a more effective way to distinguish between

NDM and WIMP spectra is to perform a halo-independent analysis (see for example [315])

using data from several different detectors. In this paper however we wish to study the former

and simpler case of dark nuclei existing predominantly with a fixed number of dark nucleons

leaving the halo-independent analysis for future work.

In [303] a toy direct detection analysis of fixed k dark nuclei was performed using approx-

imations of future detectors. In this paper we build on this work and perform an in-depth

analysis of NDM at DEAP-3600 [98] and XENON1T [316] using the detectors’ energy response

functions, efficiencies and thresholds.

The first detector we consider is the liquid argon detector DEAP-3600, which will soon

begin its 3 year run and will be approximately 20 times more sensitive to the WIMP scattering

cross-section than current searches at a 100 GeV/c2 WIMP mass [98]. We have chosen DEAP-

3600 as one of our test cases as it has excellent energy resolution, which will be important if

we hope to be able to identify peaks and troughs in the recoil energy spectrum. DEAP-3600

also has a better sensitivity to high mass DM states due to the slow (compared to xenon) fall

off in the argon nuclear form factor.

The second direct detection experiment XENON1T is a liquid xenon detector which will

also soon begin its physics run, and will be approximately 100 times more sensitive to the

WIMP scattering cross-section than current searches in the mass range of 10-50 GeV/c2

[316]. The use of the xenon target allows for a few-keV energy threshold, potentially giving

sensitivity to features in the recoil energy spectrum at the lower energies where the scattering

rate is largest.

Although our focus is to analyse the potential distinguishability of NDM from a standard

WIMP signal, this paper includes an analysis of the current and future constraints on NDM if
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no signal is observed. We use the limits from LUX [96] to calculate the current upper bounds

on the DN-SM nucleon scattering cross-section for fixed k dark nuclei and go on to calculate

the potential future limits arising from DEAP-3600 and XENON1T.

The paper is structured as follows; in Section 6.1 we outline our chosen model of NDM and

review the calculation of the recoil spectrum including the energy efficiency and resolution of a

direct detection experiment. Following this in Section 6.2.1 we explore the generic features of

the recoil energy spectra for a selection of benchmark NDM scenarios at DEAP-3600, detailing

the effect of the energy resolution and energy threshold on the observability of the features

produced by the dark form factor. Following this we present the current and projected (if

no signals are observed) limits on NDM from LUX and the two tonne-scale direct detection

experiments respectively. In Section 6.3, we turn to the main component of this work and

calculate the number of signal events required in order to distinguish a NDM spectrum from

one generated by WIMPs. Finally we discuss our results and conclude in Section 6.4.

6.1 Nuclear Dark Matter Recoil Spectrum

The aim of this work is to analyse the direct detection phenomenology of a particular class

of composite DM model termed Nuclear Dark Matter [302]. In particular, we extend the toy

analysis of [303], in which a scenario of NDM with striking predictions for the recoil spectrum

in direct detection experiments was examined. The specific scenario we wish to consider is

one in which the DM abundance today consists of dark nuclei, each with the same number

of DNs, i.e. all DM states are the same size or at least narrowly clustered around a specific

value.

This scenario is a variant of the general picture described in [302], where dark nuclei

generically exist in a wide distribution of sizes. The assumptions of [302] include the existence

of a binding energy per dark nucleon that saturates leading to fusion processes that continue

to produce larger and larger dark nuclei with the limit in size being determined by the

temperature at which the fusion processes freeze-out. As a result we expect a distribution

over different sizes of dark nuclei. In this case, however, the peaks and troughs in the recoil

spectrum that we would hope to detect from a single size of dark nucleus are washed out

when the full distribution is included [303].

The modified case where the distribution of dark nuclei sizes are focused around a par-
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6.1 Nuclear Dark Matter Recoil Spectrum

ticular value of k can in principle arise if the binding energy per dark nucleon turns over at

some nucleon number, in the same way the SM nuclear binding energy per nucleon does at

Iron. This turnover, for example, could arise in the dark sector in an analogous way to the

SM by introducing a dark equivalent of the coulomb force. The direct detection prospects of

this scenario is qualitatively different to that of the wide distribution and deserves detailed

attention.

For simplicity in this analysis we will consider the underlying interaction between the DNs

and SM quarks being due to the exchange of a heavy scalar mediator. In this case the elastic

scattering rate of two spatially extended states will depend on the product of the respective

form factors derived from the Fourier transforms of the individual spatial densities of the

colliding objects.

The composite DM states we consider have an approximately uniform density of con-

stituent matter and we can model the density as a spherical top hat function, leading to a

spherical Bessel function form factor,

Fk(q) =
3j1(qRk)

qRk
, (6.1)

where Rk is the radius of the k-DN state and q is the momentum transfer in the collision.

Under the assumption of a constant density and negligible binding energy, the radius is

approximated by

Rk = k1/3R1, (6.2)

where R1 is the approximate radius of a single DN.

For the SM nuclear form factor, we use the Helm parameterisation [317]

FN (q) =
3j1(qRN )

qRN
e−q

2s2/2, (6.3)

which represents a modification to the spherical hat density to include a finite-width drop

off with skin depth s = 0.9 fm. For the SM nuclei’s radius RN , we employ the approximate

analytic expression

R2
N = c2 +

7

3
π2a2 − 5s2, (6.4)

from [318] with c ≈ 1.23A1/3 − 0.6 fm (where A is the SM nucleon number), a = 0.52 fm.

The recoil spectrum, that is, the differential scattering rate per unit target mass for a DM
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(whether a WIMP, NDM, or otherwise) particle to scatter off a SM nucleus, is given by

dR

dER
=

1

mN

∫
v>vmin

d3v
ρX
mX

f(v)v
dσXN
dER

∣∣∣∣
v

, (6.5)

where vmin =
√

ERmN
2µ2XN

(for non-relativistic scattering) is the minimum velocity required to

obtain recoil energy ER, µXN is the reduced mass of the SM nuclei-DM state system, σXN is

the DM-SM nuclei scattering cross-section, ρX is the local DM density, mN and mX are the

masses of the SM-nucleus and DM state respectively, and f(v) is the DM velocity distribution.

Now specifying to our case of a NDM state with k dark nucleons we follow [302] and

assume that the underlying scattering process between the SM and DNs is isotropic and

velocity independent. This allows us to write the differential event rate as

dR

dER
= g(vmin)

ρk
2µ2

knm1
A2kσ0FN (q)2Fk(q)

2, (6.6)

where σ0 is defined as the zero-momentum transfer DN-SM nucleon scattering cross-section1

(and so Fk(0) = FN (0) = 1), µkn is the reduced mass of the DN-SM nucleon system, m1 is

the mass of a single DN, q =
√

2mNER, and

g(vmin) =

∫
v>vmin

d3v
f(v)

v
. (6.7)

Note that the event rate is proportional to a linear factor of k due to the cancellation of one

power of the coherence factor (k2) with a power of k in the denominator coming from the

mass of the k-DN state, mk = km1. As we will only consider the case of a single size of dark

nuclei, the density of k-DN, ρk, is the total local DM density.

In order to determine the recoil spectrum reconstructed by an experiment, one must take

into account the detectors efficiency εeff(ER), and energy resolution σ(ER). The reconstructed

recoil spectra are then found using

dRrec

dER
=

∫
dE′Rεeff(E′R)κ(ER, E

′
R)

dR

dE′R

≈
∫
dE′R

εeff(E′R)√
2πσ(E′R)

exp

(
−(ER − E′R)2

2σ2(E′R)

)
dR

dE′R

(6.8)

where κ(ER, E
′
R) is the energy response function, which we have taken to be a Gaussian.

The predicted number of events seen by a detector is then

N =

(∫ E
′
up

E
′
low

dER
dRrec

dER

)
× Exposure, (6.9)

1Not to be confused with the annihilation cross-section parameter σ0 used in the previous chapters.
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where E
′
low and E

′
up are the limits of the reconstructed energy window used in the analysis,

and the exposure is the fiducial mass of the detector multiplied by its livetime.

6.2 Nuclear Dark Matter in Tonne-Scale Direct Detection

Experiments

6.2.1 Energy Resolutions, Efficiencies and Energy Windows.

In this section we detail the parameterisation of the energy resolution, detector efficiency and

recoil energy window used in our analysis for each experiment we consider. The recoil energy

spectrum generated by the dark form factor, (6.1), has two important features that will play

an important role in the analysis. The first is the oscillatory nature of the Bessel function

leading to non-decreasing sections of the recoil spectrum. In order to identify these features

the experiment needs to have sufficiently good energy resolution. For this reason we have

included an analysis with DEAP-3600, which has a particular focus on producing a leading

energy resolution.

The second important feature of the NDM recoil spectrum is that the first few peaks at

low energy will dominate the event rate. This means that a low recoil energy threshold will

be an advantage for maximising the event rate. In addition, for large k states the frequency

of oscillations will be higher and given that in order to distinguish between the NDM and

WIMP models we need to detect as many events as possible in the non-decreasing part of the

spectrum it is clear that the we need to have the recoil energy threshold as low as possible.

For this reason, we have included an analysis with XENON1T, which has a low recoil energy

threshold.

The size of the full signal energy window and the efficiency within the window for each

experiment will also play a role in determining how many of the NDM form factor oscillations

are in principle observable in each experiment. We start with the details of DEAP-3600.

DEAP-3600 is a single-phase scintillation detector with a 1000 kg fiducial mass target of

liquid argon, which will begin its search in the near future and results are anticipated over the

next few years. In the single-phase detector, an array of photomultiplier tubes (PMTs) views

the target over the full solid angle of 4π to detect the scintillation light of any possible DM

scatterings. This approach maximises the number of photoelectrons (PE) detected, which is
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proportional to the recoil energy (in keV) imparted by the collisions. To predict how WIMPs

and NDM will be reconstructed we ran Monte Carlo simulations of ∼ 8 × 106 events in a

DEAP-like detector simulation. The efficiency and energy resolution were then found by

fitting functions to the resulting distributions of measured PE versus generated recoil energy

resulting in

σ(ER) = 0.54 keV
√
ER/ keV− 0.048 keV(ER/ keV) + 0.0026 keV(ER/ keV)3/2,

ε(ER) = 0.56 erf(0.044 ER/ keV).
(6.10)

We consider events with 50 < ER < 300 PE (19.4 < ER < 122.4 keV), since below this there

are not enough photoelectrons to accurately reconstruct the position of the event, and above

there are too few DM scatters.

XENON1T is a two-phase scintillation detector with 1000 kg fiducial mass of liquid xenon

target. XENON1T is currently in the commissioning phase and will begin its physics run

shortly. The relevant information for XENON1T was taken from [316], with an approximation

for the energy resolution given by [319]. This and the efficiency were then taken to be

σ(ER) = −0.47 keV + 0.65 keV
√
ER/ keV + 0.02 keV(ER/ keV),

ε(ER) = 0.4,
(6.11)

where the energy window 4 < ER < 50 keV is used.

We will calculate the bound on NDM from the existing published LUX results [96]. All

requisite information about LUX was taken from a recent improved analysis of the 2013

data [96] and the first results report [95], except for the energy resolution. For this, we use the

resolution for electron recoils from a more recent calibration of LUX using tritium decays [320],

σ(ER) = 0.32 keV
√
ER/ keV. This was then converted into the energy resolution for nuclear

recoils using a Lindhard model quenching factor [321] with a Lindhard factor of 0.174, as

given in [96]. LUX’s efficiency is taken directly from Figure 1 in [96], within an energy

window 1.1 < ER < 50 keV.

6.2.2 Example Recoil Spectra

To illustrate the phenomenology of NDM scattering, we compare the reconstructed recoil

spectra of NDM with that of a WIMP for DEAP-3600 and XENON1T. In Figure 6.1, the

recoil energy spectra for a range of k are shown for each experiment. For each value of
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k we display the spectra with and without the inclusion of the detector energy resolution

detailed in Section 6.2.1. We have fixed the NDM model parameters R1 and m1 to 1 fm and

1 GeV respectively in analogy with the SM. We have no fundamental guide for what these

parameters should be in the dark sector, so we have chosen to take the SM values as a place

to start. These parameters will remain fixed at these values throughout the rest of this paper.

Also shown in each plot of Figure 6.1 is the reconstructed recoil spectra of a standard WIMP

with a mass and elastic scattering cross-section per SM nucleon of 100 GeV and 10−46 cm2

respectively. We use a Maxwell-Boltzmann DM velocity distribution for the WIMP spectrum

and assume the scattering is isotropic and momentum independent.

In most cases even with detector effects turned on the oscillations of the k-DN form factor

can be seen, which contrasts with the monotonically decreasing WIMP spectrum1. The period

of the oscillations in the NDM recoil energy spectrum decreases with k, as the size of the k-DN

states increases. It is worth noting at this point that the slope enveloping these oscillations

also steepens with k, due to the inverse dependence in (6.1).

Comparison of the solid and dashed curves in Figure 6.1 demonstrates the effect of the

finite experimental energy resolution. The sharpness of the features are smoothed out leading

to less significant troughs in the spectrum and simultaneously decreasing the height of the

peaks. As k increases the period of the oscillations will decrease and the effect of the energy

resolution smearing becomes more prominent. As the oscillation period approaches the energy

resolution of the detector it is clear that there is a value of k, call it kmax, beyond which the

characteristic oscillations of the form factor can no longer be resolved. In particular, the non-

decreasing parts of the spectrum will be smoothed away leaving a monotonically decreasing

spectrum. This transition is important for our analysis as it will represent the value of k

beyond which the distinguishability between the NDM spectrum and the WIMP spectrum

is no longer determined by the non-decreasing sections of the spectrum but rather on its

slope as a whole. As described earlier, the WIMP spectra used throughout this paper are all

generated with a Maxwell-Boltzmann DM velocity distribution. Allowing for a non-standard

velocity distribution may permit a WIMP spectrum that mimics the NDM spectrum for dark

nuclei with k > kmax, where as for lower k values the non-decreasing sections of the NDM

1The WIMP spectrum will start increasing again due to the oscillations in the SM form factor, but this

occurs far beyond the maximum energy window of DEAP-3600 and XENON1T that we consider here.
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Figure 6.1: (a): Comparison of the recoil energy spectra for NDM along with that of a 100 GeV

WIMP for DEAP-3600. Spectra are plotted for three different k values: 103 (red), 104 (blue), and

kDmax = 6.5× 106 (purple). (b): Comparison of the recoil energy spectra for NDM along with that of a

100 GeV WIMP for XENON1T. Spectra are plotted for three different k values: 103 (red), 104 (blue),

and kXmax = 5.8 × 105 (green). The bold and dashed lines represent the spectra with and without

the finite energy resolution taken into account for each experiment using the experimental parameters

in (6.10) and (6.11) for DEAP-3600 and XENON1T respectively. In the NDM cases we have set

R1 = 1 fm and m1 = 1 GeV. Vertical dashed lines represent the limits of the energy windows of the

two experiments. The WIMP-SM nucleon scattering cross-section was fixed to be 10−46 cm2 and the

NDM cross-sections were scaled such that the integrated rates were equal to that of the WIMP across

the energy window of each experiment.

spectrum will still allow an experiment to distinguish it from a WIMP spectrum no-matter

what the velocity distribution.

We can determine kmax by finding when the period of the oscillations at the threshold

energy1 is approximately equal to the width of the response function, σ(Eth
R ), where Eth

R is

the threshold energy of the detector. This leads to

kmax ∼

 π2

4mNR2
1

(
Eth
R −

√
(Eth

R )2 − σ(Eth
R )2

)


3/2

. (6.12)

Beyond kmax we expect the dominant part of the NDM spectrum to be effectively a mono-

tonically decreasing function of the recoil energy. In Figure 6.1, we have plotted the kmax for

1We compare at the threshold energy as this is where the dominant part of the signal will come from and

is where the period of the oscillation is smallest.
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each detector, kD
max for DEAP-3600 kX

max for XENON1T, and in each case we can see that

the spectra including the detector effects have been smoothed out leaving no rising sections.

Conversely if we decrease the value of k sufficiently we will eventually generate a recoil

spectrum that has no rising sections within the energy window of the experiment. The NDM

form factor in this region only produces a modification in the slope of the recoil energy

spectrum, which again could be mimicked easily by a WIMP spectrum. Defining kmin as the

DN number at which the first trough in the recoil spectrum enters the energy window, we

find

kmin ∼
(

4.5

R1

√
2mNEup

)3

, (6.13)

where Eup is the upper end of the sensitivity energy window for a given experiment. With

these definitions, for each experiment there is a range of k values in which the distinctive

rising features of the dark form factor may be seen within the energy window of a detector;

outside this region we expect NDM spectra to be monotonically decreasing.

For DEAP-3600 this k range is

800 . k

(
R1

1fm

)3

. 6.5× 106, (6.14)

and for XENON1T it is

500 . k

(
R1

1fm

)3

. 5.8× 105. (6.15)

The lower bound in XENON1T is slightly lower than in DEAP-3600, as the first dip appears

within the energy window sooner due to the larger mass of the xenon nucleus (leading to

a shorter period in the form factor oscillation), despite XENON1T having a smaller energy

window compared with DEAP-3600. Comparing DEAP-3600 and XENON1T for k = 103 and

k = 104 we note that for the same value of k the period of oscillations in the spectra is larger

for DEAP-3600 due to the smaller mass of the argon nucleus producing a lower value for the

momentum transfer, q, for a given recoil energy. In addition for the majority of the relevant

range of recoil energies, DEAP-3600 has a better energy resolution potentially allowing it to

distinguish (using rising sections of the spectra) dark nuclei with larger k values compared

to XENON1T as the transition to a monotonically decreasing spectrum will occur at larger

values of k.

In Section 6.3 we perform an analysis to determine the number of signal events required

to distinguish the NDM spectrum from that of a WIMP with a Maxwell-Boltzmann velocity
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distribution. As we have stated above, due to the uncertainty in the DM velocity distribution,

the NDM spectra for k values beyond kmax could be mimicked by WIMP spectra with a

non-standard velocity distribution. However, asking whether the NDM spectrum can be

distinguished from that of a WIMP with a Maxwell-Boltzmann velocity distribution is still a

valuable question to answer.

For k values within the ranges in (6.14) and (6.15) the number of signal events required

to identify the NDM spectrum will depend on two main properties; where the first (and

sometimes subsequent) rising section of the spectrum appears in the energy window and

what the amplitude of the oscillations are after the energy resolutions of the detectors have

been taken into account.

6.2.3 Current and Projected Exclusion Limits

While our main focus is to examine whether we can distinguish the NDM from WIMP signal

events, we finish this section with a discussion of the current and projected limits on models

of NDM if neither DEAP-3600 or XENON1T observe any candidate signals. In Figure 6.2,

we show a combination of limits on σ0, the DN-SM nucleon scattering cross-section for NDM

and compare this to the equivalent limits for a standard WIMP, plotting each as a function

of the mass of the DM state. For NDM, the mass of the DM state is given as mk = k m1,

where we have fixed the mass of an individual DN to m1 = 1 GeV. As a result the x-axis is

equivalent to the number of DNs, k, for the nuclear states.

In both the NDM and WIMP cases, we show the projected limits for DEAP-3600 and

XENON1T, and the current limits derived from LUX. All NDM limits are calculated using

(6.8) with the requisite detector information from Section 6.2.1. Our reconstructed WIMP

limits (dashed lines in Figure 6.2) are in good agreement with the results presented in the

analysis papers [96,98,316].

Comparing the NDM limits with those of the WIMPs, from (6.6) we see that the con-

straints on the DN-SM nucleon cross-section is much stronger than those for the WIMP. In

the lower mass region below 100 GeV, the ratio of the NDM and WIMP limits for a given

DM mass goes approximately as k2 as in this region the dark form factor is still close to unity.

As we move to higher masses the dark form factor suppresses the overall rate and therefore

weakening the limits. The limiting behaviour of the event rate for large k goes as ∼ k−1/3
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Figure 6.2: Projected limits at 90% CL for σ0, the DN-SM nucleon scattering cross-section (in bold),

against the DM mass for DEAP-3600 (blue) [98] and XENON1T (green) [96], and compared with the

strongest current limits from LUX (red) [316]. Also shown are the WIMP limits in the same detectors

(dashed lines). For the NDM limits we have taken m1 = 1 GeV and R1 = 1 fm.

and as a result the elastic scattering cross-section limit for dark nuclei increases as k1/3 in

contrast to the usual WIMP limit, which increases linearly with mDM.

In the high mass region the NDM limits also exhibit oscillations (due to the dark form

factor), which are more pronounced in the case of DEAP-3600. These arise as a result of

the energy window enclosing varying configurations of form factor oscillations. As k (and

therefore mk) increases there are k values for which the energy window contains more peaks

than troughs and visa-versa, which results in the observed oscillations. This effect is less

pronounced in LUX and XENON1T as the energy resolution is not as good in the high recoil

energy region, which means the amplitude of the oscillations in the recoil spectra will not be

reconstructed as sharply resulting in the limit shape being flattened. An interesting result

of these oscillations is that for some ranges of NDM mass a detector with a worse energy

resolution could provide a slightly stronger limit compared to one with better (if all else is

equal).

The overall scale of the limits on the DN-SM nucleon scattering cross-section is several

orders of magnitude more restrictive than that for the WIMP case. In the example of a scalar

158



6.3 Identifying Nuclear Dark Matter

interaction between a SM quark and a DN (scalar or fermion) we can translate the limits from

direct detection to an upper limit on the DN annihilation to SM quarks. We find a result

that is many orders of magnitude below what is required for achieving the correct abundance

via freeze-out. This is no great surprise as it has been known for some time [322] that it is

very difficult to have a sufficiently large DM annihilation rate to SM quarks for asymmetric

freeze-out to produce an abundance that is determined by the DM asymmetry. The limits

from direct detection and monojet searches at the LHC rule out the viable parameter regions

involving interactions with quarks or gluons. The process of asymmetric freeze-out in NDM

models can proceed, however, via the annihilation into lighter hidden sector states [302].

These hidden sector states may also be limited in a model dependent way by astrophysical

constraints, the details of which are beyond the scope of this work.

6.3 Identifying Nuclear Dark Matter

Perhaps the most interesting question is: if DEAP-3600 or XENON1T do see a candidate

signal above the background, how many events are required to identify NDM? In this section

we calculate the number of events required to distinguish between the NDM and WIMP

hypotheses (Nreq) at a given confidence level.

In the absence of knowledge about the nature of DM particles, we compare each NDM

spectrum (of varying k values) with the most similar WIMP-induced recoil energy distribution.

This most similar WIMP mass can be different for each k, and therefore the number of events

required to effectively distinguish between the hypotheses will be different in each case.

We start by finding the WIMP spectrum which is the most indistinguishable, i.e. requires

the highest number of events to distinguish, from each hypothesised NDM spectrum. To this

end we define a test statistic, λ, as a negative log likelihood (NLL) ratio;

λ = −2 ln

( LNDM

LWIMP

)
, (6.16)

where LNDM/WIMP is the likelihood of an event occurring due to an NDM or WIMP DM

candidate. In this case values greater than zero correspond to data sets which are more

WIMP-like than NDM-like. An unbinned extended likelihood is used giving

LNDM/WIMP = Poisson {Nobs, Nexp(σ0, k,m1)}
Nobs∏
i=1

f(Ei|k,m1). (6.17)
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where f(Ei|k,m1) is the reconstructed recoil energy PDF for the WIMP (k = 1) or NDM case.

The mass m1 (which in the case of NDM is the individual DN mass), and elastic scattering

cross-section σ0, is allowed take independent values for the NDM and WIMP cases. The

scattering cross-section acts as an overall factor (under our assumptions of isotropic and

velocity independent scattering) in both distributions; as such, it only appears in the integral

number of expected events Nexp. The most indistinguishable case occurs when the expected

number of events is the same for both NDM and WIMP DM, thus the Poisson term can be

dropped from the likelihood ratio and only the shape of the distributions is compared.

For each hypothesised number of observed events a confidence level C is determined from

the PDF of λ, g(λ|Nobs), where

1− C =

∫ ∞
0

g(λ|Nobs)dλ. (6.18)

The PDF is built using a Monte Carlo where events are created under the NDM hypothesis for

a given k. The value of C corresponds to the probability that a dataset will appear NDM-like

under the NDM hypothesis.

The test was carried out at a range of 121 k values, logarithmically distributed between

k = 10 and k = 107, with m1 = 1 GeV. For the WIMP distributions a table was built

comprising 5000 WIMP mass spectra logarithmically distributed between m = 10 GeV and

m = 106 GeV. This range accounted for all possible WIMP distribution shapes; masses of

10 GeV and below are easily distinguishable from the NDM spectra in question, and those

above 106 GeV are indistinguishable from each other.

The WIMP spectra table was scanned through for each value of k. The number of events

required to distinguish between the NDM and WIMP hypotheses at 3σ CL was then de-

termined for each WIMP mass. Generating adequate Monte Carlo statistics to produce

distributions of g(λ|Nobs) for each of the masses and number of events is computationally

expensive. Instead, a subset of values of Nobs were used and the distribution of confidence

levels was determined by fitting a modified non-central chi-squared CDF:

C(Nobs) = 1−Qa
2

(
√
b,

√
Nobs

c

)
, (6.19)

where Qa
2

is the Marcum Q-function. Here the parameters a, b, and c are left as variables in

the fit. This function fits well to the CL distribution as illustrated in Figure 6.3. Figure 6.3a
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Figure 6.3: (a): The CL up to Nobs = 92 for k = 104 (m1 = 1 GeV) compared to a 53.2 GeV WIMP

(which gives the most indistinguishable spectrum. 105 pseudo-experiments were used to generate the

g(λ|Nobs) distribution for each Nobs. (b): A subset of Nobs values, function (6.19) was fit to these

points, shown as the solid line.

shows the CL for each value of Nobs up to Nobs = 92 for k = 104 (m1 = 1 GeV) compared to

a 53.2 GeV WIMP. To generate the g(λ|Nobs) distribution, 105 pseudo-experiments were used

in each case. Function (6.19) was fitted to these points with 1−C being used to determine the

3σ CL. In Figure 6.3b this fit is plotted alongside a subset of the Nobs values from Figure 6.3a,

showing excellent agreement between the two.

Figure 6.4 shows a selection of NDM spectra as reconstructed by DEAP-3600, which

are plotted across the energy window of the detector. In each sub-figure the spectrum is

plotted alongside that of the most indistinguishable WIMP at that k value. The top left

panel (Figure 6.4a) shows the spectra for k = 1412, which is the first bin in the k range in

Figure 6.5, where the number of events required to distinguish up to a 3σ CL is plotted as a

function of k. In the k = 1412 case, the first trough in the recoil spectrum has just entered

into the energy window, and the WIMP spectrum closely matches that of NDM. Subsequently

the number of events required to distinguish to 3σ is large (1294). As k decreases below

this value, Nreq gets larger and eventually the first trough leaves the energy window with

distinguishability between WIMP and NDM spectra becoming effectively impossible. In the

event of a signal in this case, one could only put an upper limit on k.

In Figure 6.4b where k = 5012, the first trough occurs earlier, and the WIMP spectrum
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Figure 6.4: Example NDM spectra (black) reconstructed in DEAP-3600 along with the most indistin-

guishable WIMP spectra (red) resulting in the number of events shown in Figure 6.5. Inset into each

plot are the k values, the mass of the best fitting WIMP (mWIMP), and the number of events required

to distinguish the spectra to a 3 σ confidence level. This is plotted across the energy window, where

the total rate integrated over the window is equal for both WIMP and NDM.
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Figure 6.5: The number of events required to distinguish between values of k and all WIMP masses to

the stated confidence level in DEAP-3600 (above) and XENON1T (below). Here the confidence level

given by (6.19) is shown by the colour scale with 1, 2, and 3 σ shown as dot-dashed, dashed, and solid

lines respectively.

no longer closely follows that of NDM. Here, the relative contribution of the second peak is

much greater than in Figure 6.4a, by almost a factor of 100. Given that Nreq decreases by

around this factor as well, this suggests the rise in the spectrum, which is irreproducible with

a standard WIMP, acts as the dominant distinguishing feature of the spectra. This claim is

further supported when we notice that Nreq in each of these cases is just enough to be able
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to resolve the second peak (and consequently, the first trough)1. Only 24 events are required

in the case that k = 5012, which corresponds to the lowest value across the entire range for

DEAP-3600, i.e. the deepest minimum in Figure 6.5.

This distinguishing mechanism is also at work in the case that k = 17785 (seen in Fig-

ure 6.4c), which corresponds to the first peak following the central minimum at k = 5012

in Figure 6.5. Here the threshold is just at the beginning of a peak, which means the NDM

spectrum follows the WIMP spectrum more closely than in the previous case and the second

peak occurs later on, subsequently Nreq is larger.

The next minimum in Nreq lies at k = 28187, whose spectrum is seen in Figure 6.4d. Here

the threshold intersects the oscillations approximately as it does in Figure 6.4b for k = 5012,

however more events are required to distinguish in the k = 28187 case. This reflects the effect

of the finite energy resolution which smears out the troughs, reducing their depth and making

them less distinctive.

It is clear now that as k is increased, Nreq oscillates as the spectra change between con-

figurations such as those in Figure 6.4b & 6.4d, and that in Figure 6.4c. These fluctuations

are seen in Figure 6.5 for both DEAP-3600 and XENON1T, the difference between them will

be discussed later. The ability to distinguish between hypotheses for a particular value of

k in this region is dependent on the chosen energy window. If we were to change the lower

threshold of the window, this would change the relative size of the second peak and therefore

Nreq. The overall effect of this would be a phase change in the oscillations seen in Figure 6.5;

the troughs and peaks would shift, but their amplitude would not change much. Changing

the upper threshold by small amounts will have little effect, as the relative rate in this region

is negligible (compared with the rate at threshold).

Looking now at the case where k = 501245 (Figure 6.4e), lying in the upwards trending

region of Figure 6.5, we can see the period of the oscillations is significantly shorter here,

which have also been smeared out significantly here. With just O(10) events, the first several

oscillations in the spectrum can now be probed (as opposed to only the first), however their

amplitude has been reduced to such an extent that 139 events are required to distinguish

to 3σ. The upwards rise in Figure 6.5 reflects the increase in smearing making distinction

1A crude criterion for a resolvable spectral feature is as follows: if the rate in the vicinity of the feature is

a factor of 1/N smaller than the peak rate within the entire energy window, then at least N events will be

needed before events appear in this region, allowing it to be “resolvable”.
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harder.

In the last case seen in Figure 6.4f where k = 107, the oscillations in the NDM spectrum

are no longer visible, as their period is too small to be resolved by DEAP-3600. The shape of

the slope is still distinct from all WIMP spectra, and so can still be distinguished. However

this is under the assumption that the WIMP’s velocity distribution is described by the SHM.

By considering an alternative velocity distribution, a WIMP spectrum could mimic that of

NDM’s seen here. Past the point where the oscillations are no longer resolved, the shape of

NDM spectra is fixed, and so Nreq plateaus, as seen in Figure 6.5.

What one notices across the selection of spectra presented in Figure 6.4 is that the mass

of the most indistinguishable WIMP, mWIMP, approximately follows Nreq. When Nreq is

smaller, so is mWIMP as the NDM spectra start with sharp declines, which WIMP spectra

best mimic by decreasing more quickly as well; this trend is created by decreasing the WIMP

mass, which causes the distribution of recoil energies to drop off faster.

Comparing DEAP-3600 and XENON1T in Figure 6.5 one notices the range of k values

where distinguishing could be possible (before the plateau region and after the divergence at

low k) is greater for DEAP-3600, where Nreq is also smaller. Both these qualities reflect the

benefit of having a better energy resolution when searching for NDM. Furthermore the range

of distinguishable k values seen in these plots is in good agreement with the those predicted

earlier: (6.14) and (6.15) for DEAP-3600 and XENON1T respectively.

The oscillations in Nreq have a larger period for XENON1T, which is counter-intuitive

given that the period of the recoil spectra’s oscillations is smaller. This is a result of the

energy threshold being lower; as k increases the dips in the recoil spectrum contract towards

the origin, and so get “bunched” around it. This means that by having a lower threshold,

troughs will pass through this boundary at a slower pace with increasing k, and so the period

of the oscillations in Nreq increases.

As discussed, the minimum number of events required to distinguish to 3σ in DEAP-3600

is 24, which occurs when k ∼ 5000. For XENON1T, the minimum is 55 events (as the energy

resolution is worse), which occurs when k ∼ 8000. As the position of the first trough in the

recoil spectrum is at lower ER in XENON1T, one might expect to find this global minimum

at a lower k value than in DEAP-3600. However because the energy threshold is also lower,

the relative differences are such that the minimum is pushed higher.
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The final significant difference one notices between detectors, is the size of Nreq in the

plateau region, which is lower for XENON1T. While the characteristic troughs are not resolved

here, the NDM spectra have different slopes. In the case of XENON1T, the slope is sharper

and more easily distinguished as the target nuclei are larger.
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Figure 6.6: The maximum number of events that could be seen at DEAP-3600 (above) and XENON1T

(below) against DM mass for NDM (red) and WIMPs (blue), plotted alongside the 1,2, & 3σ CL lines

(the dotdashed, dashed, and bold lines respectively) for distinction as seen in Figure 6.5.
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6.3.1 Discovery Potential

Finally, we examine the maximum number of events that could be seen (Nmax) in DEAP-3600

and XENON1T, and see how they compare to Nreq in each case. This is estimated by taking

the LUX limit as the cross-section, and is plotted against mass in Figure 6.6 for both NDM

and WIMPs in the DEAP-3600 and XENON1T experiments. Included in the same plot are

the Nreq values at 1, 2, & 3 σ CL. For both WIMPs and NDM, Nmax goes to zero at low

mass, where LUX becomes more sensitive than DEAP-3600 and XENON1T1. The predicted

Nmax rises with mass as the experiments increase in sensitivity relative to the current LUX

bound for both NDM and WIMPs, however the two models diverge around 100 GeV, where

the value plateaus at ∼ 65 (120) for WIMPs, but oscillates around ∼ 20 (60) for NDM in

DEAP-3600 (XENON1T). These oscillations occur for the same reason as those in the σ0

limit in Figure 6.2; i.e. the energy window is enclosing varying configurations of the recoil

spectra, which results in a fluctuating Nmax.

Comparing Nmax to Nreq for NDM, we see there are small ranges where distinguishing to

2σ CL could be possible in both DEAP-3600 and XENON1T. However this range is slightly

larger in case of XENON1T, despite requiring a higher number of events to distinguish, as

this is compensated for by its increased sensitivity. Furthermore XENON1T comes closer to

distinguishing to 3σ than DEAP-3600. Changes to m1 and R1 are not expected to cause large

shifts or gains to Nmax relative to Nreq, which would alter the discovery potential. Varying

m1 will just scale the recoil spectra in the high mass limit as the number density is changing,

and Nreq only depends on the relative shape of WIMP and NDM spectra, so is unchanged

by such scaling factors. Similarly Nmax is not affected as the change in the rate is exactly

cancelled by an equivalent shift in the LUX limit.

Varying R1 would change the size of the k-DN state, Rk, which affects the scattering rate

via the form factor, and so if it were allowed to vary, the configuration of troughs would

change. However this would be equivalent to varying k as this also changes Rk (it also scales

the rate, but as mentioned, such factors are irrelevant), therefore shifting R1 will simply

stretch or contract Nmax and Nreq equivalently along the mass axis. While the situation

may be more complex in the lower mass region, as distribution of imparted recoil energies is

1LUX becomes more sensitive than both XENON1T and DEAP-3600, because its energy threshold is lower,

allowing it to probe lighter DM states with a higher sensitivity.
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changing (i.e. g(vmin)), much of it is already constrained by LUX. Furthermore NDM expects

high mass DM candidates, and so this region is less interesting.

Therefore while 2σ “hints” of NDM could be seen in the tonne-scale experiments coming

online now, a distinction at the 3σ level is unlikely. However larger follow-on detectors

employing argon (20T) and xenon (7T) targets are under consideration. Taking a 20T argon

detector’s specifications (the efficiency, etc. ) to be the same as DEAP-3600’s, then Nmax in

Figure 6.6 can simply be scaled to predict the same for the follow-on detector. Therefore we

can expect Nmax in this detector to oscillate around 400 events with a peak of 800, which is

enough to distinguish almost the entire k range in (6.14) to at least 3σ. Only where k . 2000

could distinguishing to 3σ still not be possible. Thus where the peaks and troughs are visible

within the energy window, distinguishing NDM and WIMP signals will nearly always be

possible.

Doing the same calculation for a 7T xenon detector with the same specifications as

XENON1T, we can expect Nmax also oscillate around 400 events with a peak of 650, which

also allows the signals to be distinguished to at least 3σ across the most of the k range in

(6.15). Furthermore, these projections as conservative estimates, as better efficiency, energy

thresholds, and so forth, are to be expected.

It is clear that when searching for NDM, both DEAP-3600 and XENON1T have their own

advantages. DEAP-3600’s better energy resolution and smaller oscillation periodicity allows

NDM spectra to be more easily distinguishable, while XENON1T’s reduced lower energy

threshold pushes the sensitivity higher.

6.4 Discussions

Typically DM is assumed to be a point-like particle, however composite DM forming spatially-

extended bound states is an area of increasing interest. If DM is composite, it will have new

interesting phenomenology; such as that in direct detection searches, which often provide

our most stringent bounds. This paper studies the signals of NDM, following [302], in the

tonne-scale argon and xenon experiments coming online now, DEAP-3600 and XENON1T

respectively.

The model we considered is motivated from SM nuclear physics with composite DM states

consisting of asymmetrically produced DNs bound together under an analogous strong nuclear
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force. The binding energy per nucleon decreases with DN number, allowing for stable states

of exceedingly high DN number (up to 108, but can be more [302]) and thus mass. A striking

feature of this model are the oscillations in the dark form factors, which we find could be seen

in future direct detection searches, including realistic detector energy response, threshold,

and resolution.

We find predicted limits on benchmarks cases of NDM assuming no events are seen by

DEAP-3600 or XENON1T, along with those already placed by the null result from LUX.

The limits on σ0, the DN-SM nucleon scattering cross-section, are orders of magnitude below

the equivalent WIMP limits, owing to a k2 enhancement arising in the scattering rate. The

projected limits on WIMP and NDM scattering cross-sections are seen to be slightly stronger

in XENON1T than in DEAP-3600. The benefit of argon over xenon targets in the high

mass region is partially lost here, as the lower energy threshold is higher and so DEAP-3600

is probing deeper into the dark form factor where the rate is more suppressed. However if

DEAP-3600’s lower energy threshold could be reduced past ∼ 8 keV, then it could be more

sensitive to NDM in the high mass region.

Likelihood tests were also carried out to determine how many events DEAP-3600 and

XENON1T would need in order to distinguish between WIMP and NDM spectra. The number

of required events for each value of k was found to be dependent on the detector energy

threshold, which determines the relative contribution of the second NDM peak in the energy

window, and the energy resolution, which determines the amplitude of the characteristic

oscillatory features.

The lowest number of events required for 3σ CL distinction was 24 events in DEAP-3600

and 55 in XENON1T, which occurred when k ∼ 4000 and ∼ 8000 respectively. After this

point, the required number of events oscillates with k, as the configurations of the recoil

spectra in the energy window vary. These fluctuations reflected the relative difficulty in

resolving the second peak in the energy window, which was the dominant distinguishing

feature.

Taking the limits from LUX, the maximum number of events which could be seen were

derived and found to oscillate around 20 in DEAP-3600 and 60 in XENON1T. While this

is likely only enough to see 2σ “hints” of NDM across a small range of k values, future

upgrades to both detectors will be able to distinguish to 3σ CL over almost the entire k range
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considered. Argon based detectors like DEAP-3600 can be ideal for NDM searches, as they

can have greater sensitivity at higher mass, larger periods of oscillation in the recoil spectra,

and smaller energy resolutions. However if the lower energy threshold is not sufficiently small,

these benefits over xenon detectors may be hindered or lost.
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The most exciting phrase to hear in science, the one that

heralds the most discoveries, is not ‘Eureka!’ (I found it!)

but ‘That’s funny...’

— Isaac Asimov

Highly abundant yet remarkably elusive, dark matter is one of the longest standing ques-

tions in physics. How it emerged in the early Universe from the primordial soup is a rich and

interesting topic, and was the core theme of this thesis. Four works [1–4] were described here,

in which atypical dark matter genesis mechanisms played an integral role. In the first three

works, discussed across Chapters 3, 4 & 5, there was an additional source of dark matter

from the decays of topological defects which was discussed and detailed, or used for varied

purposes. Chapter 6 covered the last work, in which the direct detection signatures of nuclear

dark matter were examined; in such models, dark matter fuses into bound states during a

period of aggregation in the early Universe.

Chapter 1 was an introduction to dark matter physics, first taking a look at the evidence for

it from a historical perspective. The modified gravity and invisible baryonic matter hypotheses

were brought into question, and the case for a new beyond the standard model particle was

established. Typically dark matter is presumed to have been generated through a process

called freeze-out, which was reviewed in detail thereafter, alongside other alternative dark

matter genesis mechanisms. Freeze-out assumes dark matter was once in thermal equilibrium

with a primordial bath, until the Universe expanded and cooled sufficiently to allow dark

matter to fall out of equilibrium leaving a residual yield. Assuming dark matter to be produced

through these means can heavily constrain some models of dark matter, and not be possible

in others — this highlights the value of alternative production mechanisms.
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Proceeding this, we took a glance at arguably the most popular dark matter candidate,

the neutralino, followed by a discussion of model building with effective field theories, and

simplified models. Lastly we reviewed the searches for dark matter by means of direct and

indirect detection, and well as collider analyses. Work in each of these fields is progressing well

with fresh results coming regularly and many further experiments already planned. There

have been several possible signatures of dark matter already seen in searches, which are part

of an ongoing debate. These include the DAMA/LIBRA annual modulation, and the galactic

centre excess seen by Fermi-LAT, the latter was a subject of our work [3].

Given its relevance to the works presented, a summary of topological defects was pro-

vided in Chapter 2. Topological defects are structures arising at symmetry breaking phase

transitions in the early Universe; they are stable configurations on the vacuum, which evolve

under their own tension and can emit particle radiation. Here spontaneous symmetry break-

ing was reviewed, as was its place in the standard model. Following this, we examined how

topological defects can form during such phase transitions, and recognised how the topology

of the vacuum manifold dictated which defects (monopoles, cosmic strings, domain walls, etc.

) could be produced. If created, domain walls would quickly come to dominant the energy

of the Universe, and are therefore under heavy experimental constraints. As are monopoles,

which motivate a period of inflation in order to dilute them away sufficiently. Thus cosmic

strings are one of the only cosmologically acceptable forms of topological defects. It was then

discussed how cosmic strings can decay into gravitational and particle radiation by forming

string loops, which then shrink releasing energy in these forms. The manner of string decays

is of debate, and we discussed two possible cases based on simulations of the Abelian Higgs

model, and on the Nambu-Goto equations of motion.

Examining the effect of topological defect decays during freeze-out was the subject of [1],

and of Chapter 3. If via defects decays particle radiation is emitted, then this can be a

new source of dark matter during freeze-out. A Boltzmann equation describing dark matter

freezing out with this extra source was derived, and subsequently solved numerically. This

revealed behaviour that theories of dark matter could benefit from: it allowed the annihilation

cross-section to be increased beyond what standard freeze-out requires, and still generate the

correct relic abundance, as contributions from decaying defects could compensate for the

predicted loss in dark matter.
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Despite the complexity of the Boltzmann equation, following the work of others [50],

simple approximate analytic solutions were found which were in excellent agreement with the

numerical results. Unitarity bounds and an example experimental constraint from indirect

detection were then applied to the mechanism’s phase space in order to provide an initial

glance into what the phenomenology of such a mechanism could entail.

This work followed a model-independent approach, choosing to focus on the mechanism

itself. Following on from this, in Chapter 4 the mechanism was implemented in an example

dark matter theory: the inert doublet model [2]. After reviewing this model, we saw how

cosmic strings could form in this theory by simply adding an extra scalar field charged under

a U(1)′ gauge symmetry. Such symmetries are typically remnant in grand unified theories

and string theories [201–204], and their spontaneous breaking is necessary for the associated

gauge boson to avoid detection and will always produce cosmic strings. String formation is

consequently generic, and its possible phenomenological ramifications for dark matter should

be explored. In the case of the inert doublet model, this meant the cosmic strings could decay

into dark matter with no further requirements needed other than that they form.

By adding an extra U(1)′ symmetry to the inert doublet model, two new particles are

introduced: the remnant scalar and the associated gauge boson. Both of these had masses of

the order of the vacuum expectation value, which needed to be far greater than the electroweak

scale to allow sufficient dark matter production from decaying strings. The processes relevant

to the study were of or below the electroweak scale, therefore these additional degrees of

freedom could be integrated out, and the effective theory left was identical to the standard

inert doublet model. This required some fine-tuning, which was seen as part of a broader gauge

hierarchy problem and beyond the scope of the work. With the mechanism implemented in

the model, experimental constraints from dark matter and cosmic string physics were applied

to the parameter space of the model; it was seen that large regions could now produce the

correct relic abundance and agree with all experimental bounds, which subsequently meant

lighter dark matter states were allowed.

This chapter illustrated how by allowing cosmic strings to form in a model, the previ-

ously under-producing (according to standard freeze-out) regions of parameter space could

be opened up. If implemented in other models of dark matter, similar consequences could

be expected. Outside of model building, this mechanism can serve further purposes, e.g.
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resolving issues with dark matter interpretations of experimental signals. Chapter 5 did as

such, by considering how issues with the γ-ray excess seen by Fermi-LAT in the vicinity of

the galactic centre might be resolved by putting this genesis mechanism into effect, which was

the subject of [3].

After known sources were removed, an excess of GeV scale γ-rays was seen in the galactic

centre, which was shown to be consistent with dark matter annihilations. The cross-section

required to produce the signal was close to the thermal value required by standard freeze-out

to produce the observed abundance, however it was also in tension with Fermi-LAT limits from

dwarf spheroidal galaxies. By assuming the annihilations are p-wave, this conflict between

results was resolved, however the agreement with the thermal value was lost. In this chapter

this agreement was then restored, by allowing decaying defects to produce dark matter.

In the case of p-wave annihilating dark matter generating the galactic centre excess, issues

with direct detection and colliders limits arise as the coupling values required to produce the

excess are too large. To avoid these problems, a cascade model of dark matter was considered,

where the annihilations into on-shell mediators dominated, which then decay into standard

model fermions. This meant the dark matter-mediator coupling could be set to generate the

excess, while the mediator-standard model fermion couplings could be suppressed to avoid

direct detection and collider bounds. A benefit to considering scalar mediators was that

the coupling to fermions could be generated through mixing with the Higgs boson. In this

situation, the mediators decayed dominantly into b-quarks, which fits best to the excess.

As with the inert doublet model, cosmic strings were added by assuming an additional

U(1)′ symmetry which was broken by a new scalar field. However in order to allow for

sufficient dark matter production from these defects, an additional field was added which

had an electroweak scale mass. We explored how this second scalar could be produced in

string decays, and then dominantly decay itself into dark matter. Subsequently, we found the

requirements on the cosmic string necessary for the correct relic abundance of dark matter

to be produced. Limits on the strings were then considered, and in the case of those coming

from large Higgs condensates, could cause tension with our results. However these limits were

model-dependent and could easily be avoided.

Chapter 6 investigated the direct detection phenomenology of nuclear dark matter at

upcoming tonne-scale detectors, DEAP-3600 and XENON1T. Nuclear dark matter is a theory
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of composite dark matter modelled on standard model nuclear physics, postulating that dark

matter is comprised of bounds states of strongly-interacting dark nucleons. The scatterings

of these dark nuclei off standard model nuclei were described by a form factor with distinctive

oscillations, which could appear within the measured recoil spectrum at detectors, offering a

strong signal for nuclear dark matter. Initially the case of null results from both detectors

was considered, and subsequently we found the projected limits this would put on the spin-

independent scattering cross-section and compared this with the existing limits from LUX.

In the case that a signal of dark matter is seen, the number of events the detectors needed

to distinguish between WIMP and nuclear dark matter hypotheses was found using likelihood

tests, which for a 3σ CL was as low as O(10) in some cases. For distinction to be possible, the

number of dark nucleons forming each state had to lie within a range of values, beyond which

distinguishing would be very difficult, as either the period of the oscillations was too small to

be resolved, or these spectral features had not yet entered into the energy window. Comparing

the number of events required to distinguish with the maximum number each detector is likely

to see, told us that at most DEAP-3600 and XENON1T could see 2σ “hints” of nuclear dark

matter. However upgrades to these detectors could distinguish almost the entire nucleon

number range to 3σ CL. Future work in this area would consider different nucleon number

distributions; these result in recoil spectra which can be mimicked by those of a WIMP with

an atypical velocity distribution, and as such requires a halo-independent analysis of multiple

detectors to distinguish between them.

Dark matter is a nearly 100 year old problem, and the works described here are a few

of hundreds produced every year. The range of future dark matter searches probing the

electroweak scale gives one reason to hope for a signal over the coming decades, especially for

one loyal to the WIMP paradigm. This however may not be the case and popular theories may

be replaced by the more exotic — arguably a more interesting outcome to many. Whatever

your preferred theory, dark matter remains one of the biggest scientific questions of the our

time, and many eagerly await the day it finally reveals itself to us, stepping into the light

(but probably not scattering off it).
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Appendix A

Particle Radiation from Cosmic

Strings

Section 2.4 provided a qualitative overview of string decay dynamics, here we will discuss the

involved mathematical formalism which will allow us to relate qX , to the more commonly

used string tension parameter Gµ (where µ is the mass per unit length).

At the time of phase transition tc, where the symmetry is broken, the cosmic strings are

formed as a 3-dimensional random walk of a characteristic step length. They are in a dense

tangled formation, where the bulk length of the string network is in a single Universe-sized

long string, and the rest is in the form of loops. It is convenient to introduce a characteristic

length ξ describing the string configuration, which is defined as

ξ ≡
√
µ/ρ∞, (A.1)

where ρ∞ is the energy density of long strings. It can be interpreted as a combination of the

average curvature radius and the average separation of long string segments.

The long strings evolve under their own tension, subject to Hubble damping and friction

from the cosmic fluid [323]. Straightening out, the overall length of the strings within the

Hubble volume decreases, and so ξ increases. Eventually ξ will become comparable to the

length of the horizon, and the long strings enter a scaling regime, where ξ ∝ t. In this case,

the defect density parameter is constant, i.e.

Ωd ≡
ρd

ρc
=

8πGµ

3ξ2H2
, (A.2)
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where H is the Hubble parameter.

It is possible that ξ varies differently with time, that is it does not enter the scaling regime.

If ξ varies less rapidly (causality prevents it varying more rapidly), then strings will dominate

the energy density of the early Universe at some point. This would lead to a more inhomo-

geneous Universe, which would be inconsistent with observations. Numerical and analytical

studies [173, 179] show however, that strings would most likely enter the scaling regime. In

order for this regime to be maintained, there must be a particular rate of energy loss; if not,

then ξ will vary less rapidly and one would end up with the unacceptable inhomogeneities

described above. According to numerical simulations of the theory [217,324], ξH ∼ 0.25.

During the scaling period, the loop length distribution remains a topic of active debate

[218, 325]. The loops are freely oscillating, and can lose energy via a variety of channels.

In the original cosmic string scenario, perturbative particle production from an oscillating

string loop was shown to be negligible [326, 327], and the most important source of energy

loss was argued to be gravitational radiation for sufficiently large loops [328]. However, direct

numerical simulations of field theories with strings showed that there was an additional non-

perturbative source of particle production in the form of classical field radiation [215,218].

In either case the loop length ` shrinks at a constant rate

˙̀ = −β, (A.3)

where β is a constant dependent on the mode of energy loss. There are two significant ways

in which the loops may lose their energy; non-perturbative particle production [215, 218],

where β ∼ 1, and via gravitational radiation, where β = ΓGµ (Γ is an O(100) efficiency

parameter [328]).

Knowing the length loss rate, the energy injection rate of the process can be found using

Q(t) = −
∫ ∞

0
µ ˙̀n(`, t)d`, (A.4)

where n(`, t) is the loop length distribution. In the radiation dominated era, this is given by

n(`, t) =
ν

t
3
2 `

5
2
i

, (A.5)

where ν is a dimensionless O(1) parameter, and `i is the average loop size at formation

(ti) [173,179,325].
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A.1 FT Scenario

The loop length shrinking rate is dependent on the (FT or CE) scenario under consider-

ation, we will look at both in turn.

A.1 FT Scenario

Here non-perturbative particle radiation is the dominant source of loop energy loss, and we

can relate qX to other string parameters by first considering energy conservation, which tells

us the energy injection rate

Q = 3(ω − ωd)ΩdρcH, (A.6)

where ω (ωd) is the total (string’s) average equation of state parameter (ωd & −1/3 [173]).

Using (A.6) and the definition of qX (3.6), one finds

qX =
8πGµfX
ξ2H2

(ω − ωd). (A.7)

We now have a relationship between qX and Gµ in the FT scenario, which is linear and

for our purposes is best represented in the form

qX '
256π

3
GµPFT, (A.8)

where

PFT ≡ fX
(

1− 3ωd

2

)(
0.25

ξH

)2

, (A.9)

which is an O(1) parameter.

In this scenario, the loop length reduction rate is given by (A.3), and so `i = ` + βt.

This means, according to (A.4), that Q(t) ∝ 1/t3. Comparing this with the general form

expression for Q(t) (3.1), we see that p = 1 in this case. Its value was defined as such in the

FT scenario earlier, pre-empting this result.

A.2 CE Scenario

When the cosmic strings may be described by the Nambu-Goto equations of motion, loops

lose most of their energy through gravitational radiation, but there is also particle emission

via the collapse of cusps. This can happen in two ways: strings double back on themselves
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A.2 CE Scenario

and annihilate [329, 330], or they are a classical source of massive scalar radiation, strongly

beamed from the cusps [206,331]. In both cases, the length decreases as

˙̀ = −βCE
1√
mX`

, (A.10)

where βCE is a constant containing numerical factors and couplings [206,330].

Loops must be smaller than `CE = (βCE/β)2m−1
X in order for cusp annihilations to sig-

nificantly contribute to the energy loss. The mean length of a loop at the time it is created

is given by ` ∼ ΓGµt, i.e. longer loops are created at later times, which one would expect

from a system of dense strings, unravelling and straightening out. Therefore, combining these

results, it is not until around

tCE =
β2

CE

(ΓGµ)3mX
' 6.6× 10−13β2

CE

(
100

Γ

)3(10−7

Gµ

)3(
TeV

mX

)
s, (A.11)

when loops of size `CE are formed and cusp emissions become less important. This occurs

during the radiation-dominated era of the early Universe, thus happens when the Universe’s

temperature drops to

TCE =

(
45

16π3g∗

)1/4 √MPlmX

βCE
(ΓGµ)3/2

' 600
1

βCE

(
100

g∗

)1/4( Γ

100

)3/2( Gµ

10−7

)3/2 ( mX

TeV

)1/2
GeV.

(A.12)

Given the loop reduction rate from cusp emissions (A.10), the energy injection rate Q(t)

according to (A.4) in this scenario is

Q(t) =

∫ ∞
0

d`
µβCE√
mX`

n(`, t). (A.13)

In late times (t� tCE), where large loops dominate, the length contracts according to (A.3)

and therefore `i ' ` + βt. However in early times (t � tCE) with small loops dominating,

they contract as described by (A.10), and so

`i = `CE

[(
`

`CE

)3/2

+
3t

2tCE

]2/3

. (A.14)

The energy injection rate depends on which of these regimes we are in, using the above

results and (A.4), one may write Q(t) in the form

Q(t) =
νβCE

β1/2

µ

t3
C

(
t

tCE

)
, (A.15)
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A.2 CE Scenario

where

C(τ) '


1.0 τ1/6 for τ � 1

4
3τ
−1/2 for τ � 1

. (A.16)

Comparing this expression to the general form (3.1), one can see that p = 7/6 when τ ≡
t
tCE
� 1, and p = 1/2 when τ � 1.

Converting (A.15) into expression for qX , one obtains

qX =
Q(t)fX
ρH

∣∣∣∣
Tχ

=
64π

3
νβCEfX

√
Gµ

Γ
C(τχ). (A.17)

where given (A.12)

τχ ≡
tχ
tCE

=

(
45

16π3g∗

)1/2 MPlmX

β2
CET

2
χ

(ΓGµ)3

' 1.5
1

β2
CE

(
100

g∗

)1/2( Γ

100

)3( Gµ

10−7

)3 ( mX

TeV

)(500 GeV

Tχ

)2

.

(A.18)

Hence

qX '


2.3× 10−3

(
νβ

2/3
CE fX

)(
100
g∗

)1/12 (
Gµ

10−7

) (
mX
TeV

)1/6 (500 GeV
Tχ

)1/3
for Gµ� 10−7Dχ

2.3× 10−3
(
νβ2

CEfX
) (

100
Γ

)2 ( g∗
100

)1/4 (10−7

Gµ

)(
TeV
mX

)1/2 ( Tχ
500 GeV

)
for Gµ� 10−7Dχ

,

(A.19)

where by fixing the other parameters to their reference values, the value of Gµ determines

the boundary between the regimes. The parameter Dχ, in the conditions is given by

Dχ ' 0.88β
2/3
CE

( g∗
100

)1/6
(

100

Γ

)(
TeV

mX

)1/6( Tχ
500 GeV

)2/3

. (A.20)

CMB data [195] limits Gµ . 10−7 and so we are interested in the Gµ � 10−7Dχ regime

where p = 7/6, which justifies choosing the p value to be as such in the CE scenario. Assuming

this solution, qX may be rewritten in the more convenient form

qX ' 2.3× 104GµPCE, (A.21)

where PCE is an O(1) parameter defined as

PCE = νβ
2/3
CE fX

(
100

g∗

)1/12 ( mX

TeV

)1/6
(

500 GeV

Tχ

)1/3

. (A.22)

Using this and (A.8), one can now relate qX to Gµ in both the FT and CE scenarios.
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Appendix B

Pure Gauge Limit

In Section 4.3, we saw how the relic abundance predicted in the IDM increased when the

mass splitting ∆m2 was taken to small values in the high mass limit mH0 > 100 GeV. This

suggested that despite co-annihilation channels opening up in this limit, there was a decrease

in the cross-section which was the over-riding effect.

This effect is perhaps most intuitively explained by recalling that the masses of H0, A0,

and H± dictate the values of the coupling constants. By inspecting (4.4) and (4.5), one

sees that both λ4 and λ5 will tend to zero in the limit that ∆m2 → 0. Similarly, since

λ3 = 2λL−λ4−λ5, taking this limit also decreases λ3, which will go to zero if λL = 0 as well.

The pure gauge limit is when both λL and ∆m2 are zero, which means λ3, λ4, and λ5 all

vanish. In this case, all couplings between the inert and SM Higgs doublets in the potential

(4.1) are zero, and only DM annihilations into gauge bosons are permitted at tree level. We

may examine the consequences of this in more detail by considering the contributing diagrams.

In the high mass region, the dominant contribution to the annihilation cross-section is

from W and Z final states. The diagrams for these processes are seen in Figure B.1. The

matrix elements of these diagrams are [332]

iMp = i
g2
V

2
gµνε∗µ(p3)ε∗ν(p4), iMs = i

λLv
2g2
V

s−m2
h

gµνε∗µ(p3)ε∗ν(p4),

iMt = i
g2
V p

µ
1p

ν
2

t−∆m2 −m2
H0

ε∗µ(p3)ε∗ν(p4), and iMu = i
g2
V p

µ
2 p

ν
1

u−∆m2 −m2
H0

ε∗µ(p3)ε∗ν(p4),

(B.1)

where the subscripts indicate whether it represents the s-,t-, or u-channel, or the four point
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Figure B.1: Feynman diagrams for H0H0 → W+W− (a) and H0H0 → ZZ (b) processes which

dominate the annihilation cross-section in the early Universe in the high mass region mH0 > 100 GeV.

diagram, referred to as the “p”-channel. Here gV = g or (g/ cos(θW )), depending on whether

the annihilation is into W ’s or Z’s, respectively.

In the pure gauge limit λL = 0, and given (B.1), the s-channel contribution must disappear.

Considering just the dominant s-wave contribution, which is found by taking the zero relative

velocity limit, i.e. s = 4m2
H0 and t = u = m2

V −m2
H0 , the total squared amplitude can be

found to be

|M|2 = g4
V

[
1(

1 + y
2 − x

2

)2 (1− 2

x
+

1

x2

)

− 1(
1 + y

2 − x
2

) (1− 3

x
+

2

x2

)
+

3

4
− 1

x
+

1

x2

]
,

(B.2)

where

x ≡ m2
W /m

2
H0 and y ≡ ∆m2/m2

H0 . (B.3)

In the high mass region (where x → 0), and in the pure gauge limit (where y → 0), the

squared matrix element

|M|2 → g4
V

2
. (B.4)

Moving outside the pure gauge limit, in the regime m2
H0 � ∆m2 > mW , one finds

|M|2 = g4
V

[
(∆m2)2

4m4
W

+
1

2
+O(x, y)

]
, (B.5)
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which is greater than (B.4). Thus when we move away from the pure gauge limit, the cross-

section increases, and the relic density drops. This is a result of a cancellation between the

point-like, and the t- and u-channels, which is related to gauge invariance.

This cancellation suppresses the contribution of the longitudinal mode final states (H0H0 →
VLVL), as the longitudinal parts of the gauge bosons are contained in the Goldstones of the

SM Higgs, which the inert doublet is decoupled from in this limit. Moving away from this

limit, the longitudinal contribution is restored and the annihilation cross-section increases

significantly enough to counteract the suppression of co-annihilations.
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Appendix C

Cascade Annihilation Model: Higgs

Mixing

In Chapter 5 a cascade annihilation model of DM is used to produce the GCE, where b̄b

final states are assumed to dominate. The model is described by (5.11), which also permits

portal couplings between the mediator, φ, and the SM Higgs boson, h (5.13). Through

these couplings, a φ-h mixing arises, which allows the mediator to decay dominantly into b̄b.

However, if the mixing is too large, direct detection and collider limits could come in, and if

it is too low, the mediator could be so long-lived as to interfere with BBN. Therefore these

upper and lower limits on the mixing, sin θ, should be established in order to see if a viable

range of values is permitted.

First, the λχ value required to produce the excess must be determined, which can be used

to derive limits on sin θ. These are found using the best fit values in (5.19) and (5.18) from

the χ2 analysis of our toy model, and the expression for the cross-section expanded in terms

of the relative velocity v, which is

σv(χ̄χ→ φφ) =
λ4
χv

2

24π

mχ

√
m2
χ −m2

φ(
2m2

χ −m2
φ

)2

(
2 +

m4
χ

(2m2
χ −m2

φ)2

)
+O(v4). (C.1)

Using these we find λχ = 4.1 and 5.1 for mχ = 15 and 40 GeV respectively.

Let us first examine bounds from direct detection searches, where two t-channel diagrams

determine the scattering rate (at tree level), one in which h is exchanged and the other φ.

The matrix elements of both diagrams are proportional to |λχyf sin θ|, however there is a
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relative minus sign between them. LUX currently provides the strongest limits [96] on the

spin-independent DM-WIMP scattering cross-section, however the bounds presented assume

the DM halo is described by the SHM. As we are not using the SHM, LUX’s limits will need

to be adapted for consistency. In [333], such an adjustment is considered, and limits using a

generalised NFW profile are presented. As our DM profile parameter choices closely match

their fitted values, these results shall be used. These can be related to sin θ via the expression

for the spin-independent DM-nucleon scattering cross-section (given in [151]) is

σSI
χ-N =

µ2
χ-Nm

2
N

π

λ2
χ sin2 θ

v2

(
1

m2
φ

− 1

m2
h

)2

f2
N (C.2)

where mN is the nucleon mass, µχ-N is the reduced mass of the DM-nucleon system, and fN

is the effective DM-nucleon coupling given in (1.44).

There are numerous collider bounds that could be studied, we will focus on monojet

searches, direct searches for mediators, and invisible Higgs decays, which are amongst most

promising channels. Through the first, DM may be detected as missing energy in events

where pp → χ̄χ+ jet which may occur via a φ or h radiating off a fermion, although due

to the mass difference the φ mediated diagram will dominate. Given the enhanced couplings

to heavier quarks, missing energy searches with the mediator coupling to bottom and top

quarks are ideal to probe our model. Such a study was carried out in [334], where an effective

operator approach was used in the case of hierarchical couplings. Expected limits from ATLAS

using
√
s = 8 TeV data are presented, which we will use here. While it has been shown

that an effective field theory approach for LHC dark matter searches may not always be

appropriate [335], the limits provided here will be more conservative than in a UV complete

model, which is suits our purposes.

Given the mediator is light in our model, one can also search for it directly via searches

for Higgs-like scalars. Such searches were explored extensively in [336, 337], which looked at

various ATLAS, CMS, LEP, and DELPHI searches.

The last collider bounds we shall consider are those from the invisible decays of the SM

Higgs, which can be into either DM or the mediators. However analyses of the latter will not

allow us set rigid bounds on the mixing angle, as the process depends on the portal coupling

λH , which is a free parameter. Assuming the invisible Higgs decays are then entirely into

DM, we obtain limits from an analysis of similar simplified models [248].
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Thus far several upper limits on the mixing angle have been discussed, however there is

a lower limit from BBN to consider. If the mediator was long-lived enough, it could decay

during BBN and interfere with the SM nuclear processes which already accurately predict the

light element abundances; this could occur if φ’s lifetime is larger than t & 0.1 s [262]. The

h→ χ̄χ decay rate, taken from [277], is

Γ(h→ χ̄χ) =
∑
f

Nc

y2
f sin2 θg2

vmφ

16π

(
1−

4m2
f

m2
φ

)3/2

, (C.3)

which can be used to find the BBN limit on the mixing angle.

A long-lived mediator could also effect the morphology of the GCE, however this lower

limit on sin θ will be far weaker than that of BBN, due to the vast astronomical scales

considered.

Table C.1 presents the upper and lower limits from all the sources discussed above: direct

detection, monojet searches, direct searches for φ, invisible Higgs decays, and BBN. We can

see that the lower limits from BBN are at least six orders of magnitude below the strongest

upper limits (coming from direct detection). This means φ-h mixing is permitted, and thus

we have a natural explanation for dominant φ→ b̄b decays.

mφ = 15 GeV mφ = 40 GeV

Direct Detection . 0.0002 . 0.001

Monojet . 0.01 . 0.08

Direct φ searches . 0.015 . 0.02

Inv. Higgs decays . 0.006 . 0.03

BBN & 1× 10−10 & 7× 10−11

Table C.1: Limits on sin θ, the mixing between the mediator φ, and the SM Higgs boson h. These

take λχ = 4.1 and 5.1 for mχ = 15 and 40 GeV respectively, provided by fits to the GCE. Bounds

from direct detection, monojet searches, direct searches for φ, invisible Higgs decays, and BBN are

listed. See the text for a discussion of these limits and references there within.
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