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Abstract

In this thesis, we construct exactly solvable many-particle quantum graphs in or-

der to calculate and analyse their spectra. We begin by constructing two-particle

quantum graphs with two-particle interactions, establishing appropriate boundary

conditions via suitable self-adjoint realisations of the two-particle Laplacian. For

certain non-local particle interactions, we show that explicit Laplace eigenfunc-

tions can be constructed using the Bethe ansatz. Imposing appropriate boundary

conditions on these eigenfunctions, we arrive at exact expressions for the spectra

of two-particle quantum graphs given by solutions to a pair of secular equations.

Performing numerical eigenvalue searches, we compare the spectral statistics of

certain examples to well known results in random matrix theory, analysing the

chaotic properties of their classical counterparts. We finish by generalising the

approach to n particles, arriving at exact expressions for the spectra of n-particle

quantum graphs given by solutions to a set of n secular equations.
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Chapter 1

Introduction

In this thesis we investigate the properties of many-particle quantum graphs with

particular focus on the acquisition and analysis of their spectra. A quantum graph

is a collection of vertices and edges of finite or infinite length equipped with a dif-

ferential operator. The first theoretical model of a quantum graph was devised by

Pauling [Pau36]. His motivation was to study the dynamics of free electrons in

hydrocarbons by modelling carbon molecules as vertices and carbon-carbon bonds

as edges. This idea was later adopted by Ruedenberg and Scherr [RS53] who used

quantum graphs to describe free electrons donated by covalent bonds confined to

entire quasi-one-dimensional molecules. Since then there have been multiple ap-

plications of quantum graphs in a variety of fields including quantum waveguides

[FJK87], quantum chaos [KS97], quantum computation [Lov10, KS00] and meso-

scopic systems [TM05]. For a review of quantum graphs, see [EKK+08, BK13a].

Typically, quantum graphs are constructed by establishing boundary conditions

characterised by self-adjoint realisations of the one-body Laplacian [KS99, Kuc04].

The corresponding Laplace eigenvalues then play a major role in their study. An

important aspect of quantum graphs is that they may serve as models for quan-

tum systems with corresponding complex classical dynamics. Kottos and Smi-

lansky [KS97] demonstrated that eigenvalue correlations in quantum graphs can

be described with random matrix models, therefore providing an example for the

celebrated Bohigas-Giannoni-Schmit conjecture [BGS84] which is a central topic

in quantum chaos.

7



CHAPTER 1. INTRODUCTION 8

While the majority of quantum graphs literature is focussed on one-particle mod-

els, there have been a number of studies of many-particle quantum graphs. The

first of these, by Melnikov and Pavlov [MP95], investigated the dynamics of two

interacting particles on a connected graph with three infinite edges. Under certain

restrictions of the system, they were able to find self-adjoint realisations of the two-

body Laplacian corresponding to particle-particle and particle-vertex interactions.

The resulting two-body wave function allowed the calculation of the conductivity

of the system. More recently, Bolte and Kerner constructed two-particle quan-

tum graphs, initially with interactions localised at the vertices [BK13b], and later

with singular contact interactions [BK13c]. Boundary conditions via suitable self-

adjoint realisations of the two-particle Laplacian were ascertained using quadratic

forms. These results were then used to study Bose-Einstein condensation [BK14].

To some extent, the success of one-particle quantum graph models relies upon the

fact that their spectra are determined by a secular equation [KS97], that is, Laplace

eigenvalues are given by zeros of a finite-dimensional determinant. This leads to

very efficient methods of calculating eigenvalues, and also allows one to prove exact

trace formulae for spectral densities [Rot83, KS97, BE09]. The acquisition of the

spectra in this way is possible since, locally, the classical configuration space of

a one-particle graph is one-dimensional. For the quantum model this means that

every eigenfunction must be a linear combination of left- and right-moving, one-

dimensional plane waves. Many-particle quantum graphs have higher dimensional

classical configuration spaces, in general prohibiting a finite-dimensional secular

equation that determines the eigenvalues. This obstacle can be overcome under

specific circumstances when symmetries lead to an exactly solvable model.

The first model of an exactly solvable many-body quantum system confined to a

single dimension was developed by Lieb and Liniger [LL63]. They determined the

exact spectra of a repulsively δ-interacting Bose gas on a circle, a result which

was later generalised to distinguishable particles by Yang [Yan67], and extended

to systems confined to an interval by Gaudin [Gau71]. Each of these results were

formalised by the use of the Bethe ansatz, a sum of two-particle plane waves

over possible particle configurations. Implicit in the use of the Bethe ansatz is

the requirement for certain symmetries brought about by the interactions in the
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model. The consequence of increasing the complexity to systems of particles on

general graphs is that these symmetries are destroyed. By imposing certain non-

local particle interactions, however, Caudrelier and Crampé [CC07] showed that,

for systems of particles on two-edge star graphs, compatibility with the Bethe

ansatz is recovered. They were then able to calculate the exact spectra of these

systems. Extending this method to general many-particle quantum graphs is the

main aim of this thesis. The main results established in this thesis regarding

two-particle quantum graphs are summarised in [BG16].

One-particle quantum graphs

A combinatorial, oriented graph Γ(V ,I,E , f) is a set of vertices V = {v1, . . . , v∣V∣},

connected by a set of internal edges I = {i1, . . . , i∣I∣} and external edges E =

{e1, . . . , e∣E∣}. The map f assigns to each external edge ej a single vertex f(ej) = vη,

and to each internal edge ij an ordered pair of vertices f(ij) = (vγ, vλ), where

vγ =∶ f0(ij) and vλ =∶ fl(ij) are initial and terminal vertices respectively. A pair

of edges will be called distant if they have no common vertex and neighbouring if

they have at least one common vertex. The set of distant and neighbouring edge

couples will be denoted D and N , respectively. The degree dη of a vertex vη ∈ V

is the number of edges connected to it. The combinatorial graph is turned into a

metric graph by assigning a finite interval [0, lj] to each internal edge ij ∈ I in such

a way that f0(ij) is identified with x = 0 and fl(ij) with x = lj. To each external

edge ej ∈ E , a half-line [0,∞) is assigned such that f(ej) is identified with x = 0. A

metric graph is called compact if there are no external edges, E = ∅. We proceed

by restricting our attention to compact metric graphs only revisiting the notion of

external edges when necessary.

The relevant one-particle Hilbert space

H1 =
∣I∣

⊕
j=1

L2(0, lj) (1.0.1)

on a compact quantum graph Γ is the direct sum of constituent Hilbert spaces on

each edge. Thus vectors

Ψ = (ψj)
∣I∣

j=1 (1.0.2)
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in H1 are lists of square-integrable functions ψj ∶ (0, lj) → C. Throughout this

thesis a quantum graph will always be a metric graph with an associated Laplacian.

In the one-particle setting, such a Laplacian −∆1 acts according to

−∆1Ψ = (−ψ′′j (x))
∣I∣

j=1, (1.0.3)

where dashes denote ordinary, possibly weak, derivatives. Thus vectors Ψ will be

defined in an appropriate Sobolev space

H2(Γ) =
∣I∣

⊕
j=1

H2(0, lj) ⊂ H1. (1.0.4)

One-particle observables on Γ are self-adjoint operators on H1. We thus look for

self-adjoint realisations of −∆1. These will be given as conditions on boundary

vectors

Ψbv =
⎛

⎝

(ψj(0))
∣I∣

j=1

(ψj(lj))
∣I∣

j=1

⎞

⎠
and Ψ′

bv

⎛

⎝

(ψ′j(0))
∣I∣

j=1

(−ψ′j(lj))
∣I∣

j=1

⎞

⎠
(1.0.5)

where we denote by ψj(p), the limit limx→pψj(x). We adopt this notation through-

out the thesis. Kostrykin and Schrader [KS99] showed that −∆1 is self-adjoint on

a domain D(A,B) ⊂ H2(Γ) such that functions Ψ ∈ D(A,B) fulfil the boundary

conditions

AΨbv +BΨ′
bv = 0, (1.0.6)

where the 2∣I∣×4∣I∣ matrix (A,B) has maximal rank equal to 2∣I∣ and AB† = BA†.

Matrices A and B are often interpreted as encoding external potentials localised

at the vertices [KS99].

The spectra can then be acquired by finding solutions to the eigenvalue equation

−∆1Ψ = EΨ. (1.0.7)

For non-zero eigenvalues E = k2 ∈ R, constituent wave functions ψj of correspond-

ing eigenfunctions Ψ are necessarily superpositions of oppositely directed plane
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waves

ψj(x) = αje
ikx + βje

−ikx (1.0.8)

on each edge ij. Imposing on ψj(x), the boundary conditions (1.0.6), one can show

that Laplace eigenvalues are given by E = k2 where values k are the solutions of

the secular equation

det [I2∣I∣ − Sv(k)T (k, l)] = 0. (1.0.9)

Here the scattering matrix

Sv(k) = −(A + ikB)−1(A − ikB) (1.0.10)

contains information about particle interaction at the vertices while the metric

information is encoded in

T (k, l) =
⎛

⎝

0 eikl

eikl 0

⎞

⎠
. (1.0.11)

The blocks in (1.0.11) are the diagonal matrices eikl = diag(eiklj)
∣I∣

j=1.

As well as leading to efficient ways to calculate Laplace eigenvalues, the secular

equation (1.0.9) allows one to prove exact trace formulae for spectral densities

[Rot83, KS97, BE09]. Thus, one can express the eigenvalue counting function

N(E) = #{n;En ≤ E} (1.0.12)

in terms of classical periodic orbits of a general graph.

Spectral statistics

The spectra of quantum graphs can be used to analyse their corresponding classical

dynamics. A particularly useful statistical measure is the nearest neighbour level

spacings distribution

∫

b

a
p(s)ds = lim

N→∞

1

N
#{n ≤ N ; a ≤ εn+1 − εn ≤ b} (1.0.13)
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Figure 1.1: Characteristic nearest neighbour energy level distributions.

of the unfolded versions, ε1 < ε2 < ε3 < . . . , of the energy eigenvalues; that is the

energies are rescaled such that the average spacing is equal to unity. Generic

quantum systems with integrable classical limits are conjectured to have spectra

with Poissonian statistics [BT77]

p(s) = e−s, (1.0.14)

while generic chaotic classical systems have quantum counterparts with correla-

tions described by random matrix models. Indeed, the Bohigas-Giannoni-Schmit

conjecture [BGS84] states that for such systems, with integer spin and time-

reversal symmetry, Gaussian orthogonal ensemble (GOE) statistics apply. In this

case, eigenvalues are known to exhibit level repulsion, with the level spacings dis-

tribution approximated by

p(s) =
π

2
s e−

π
4
s2 (1.0.15)
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(see [Haa91]). The characteristic Poissonian and GOE shapes are shown in Figure

1.1.

Two-particle quantum graphs

We have seen previously that one-particle quantum graphs can be characterised

through self-adjoint realisations of −∆1. A natural question is to ask how this

approach can be extended to systems of two (or more) particles on a graph. Two-

particle systems on a compact metric graph Γ are associated with the two-particle

Hilbert space

H2 =
∣I∣

⊕
j=1

L2(0, lj) ⊗
∣I∣

⊕
j=1

L2(0, lj) (1.0.16)

given by the tensor product of constituent one-particle Hilbert spaces. Thus vec-

tors

Ψ = (ψmn(x1, x2))
∣I∣

m,n=1 (1.0.17)

in H2 are lists of two-particle functions ψmn ∶ (0, lm) × (0, ln) → C. A two-particle

quantum graph is then associated with the two-particle Laplacian

−∆2Ψ = (−
∂2ψmn
∂x2

1

−
∂2ψmn
∂x2

2

)

∣I∣

m,n=1

. (1.0.18)

The vector Ψ is again defined in an appropriate Sobolev space H2(DΓ) ⊂ H2,

where DΓ is the configuration space for two particles on Γ.

In the non-interacting case, appropriate self-adjoint realisations of −∆2 are trivial

extensions of the one-particle case. In this way, defining the two-particle boundary

vectors

Ψ
(v)
bv (y) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(ψmn(0, lny))
∣I∣

m,n=1

(ψmn(lm, lny))
∣I∣

m,n=1

(ψmn(lmy,0))
∣I∣

n,m=1

(ψmn(lmy, ln))
∣I∣

n,m=1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and Ψ
(v)
bv

′

(y) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(ψmn,1(0, lny))
∣I∣

m,n=1

(ψmn,1(lm, lny))
∣I∣

m,n=1

(ψmn,2(lmy,0))
∣I∣

n,m=1

(ψmn,2(lmy, ln))
∣I∣

n,m=1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (1.0.19)
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with y ∈ [0,1], where functions ψmn,1 and ψmn,2 are inward derivatives normal

to the lines x1 = 0 and x2 = 0 respectively, −∆2 is self-adjoint on the domain

D2(A,B) ⊂ H2(DΓ) such that functions Ψ ∈ D2(A,B) fulfil the boundary condi-

tions

(I2 ⊗A⊗ I∣I∣)Ψ(v)
bv (y) + (I2 ⊗B ⊗ I∣I∣)Ψ(v)

bv

′

(y) = 0, (1.0.20)

More interesting models include singular contact interactions between particles.

Such interactions take place along diagonals x1 = x2 of squares

(0, lm) × (0, lm) (1.0.21)

and thus additional boundary vectors are defined according to

Ψ
(p)
bv (y) =

⎛

⎝

(ψmm(lmy+, lmy))
∣I∣

m=1

(ψmm(lmy−, lmy))
∣I∣

m=1

⎞

⎠

and Ψ
(p)
bv

′

(y) =
⎛

⎝

(ψmm,d(lmy+, lmy))
∣I∣

m=1

(ψmm,d(lmy−, lmy))
∣I∣

m=1

⎞

⎠
,

(1.0.22)

where ψmm,d are derivatives normal to the lines x1 = x2. Here and throughout this

thesis we adopt the notation

y± = lim
ε→0+

y ± ε. (1.0.23)

Bolte and Kerner [BK13c] showed that for two-particle quantum graphs with sin-

gular contact interactions, −∆2 is self-adjoint on the domain of sufficiently regular

functions which, in addition to being subject to vertex conditions (1.0.20), also

obey the boundary conditions

Pp(y)Ψ
(p)
bv (y) = 0 and Qp(y)Ψ

(p)
bv

′

(y) +Lp(y)Qp(y)Ψ
(p)
bv (y) = 0, (1.0.24)

where bounded and measurable maps

Pp, Lp ∶ (0,1) →M(I2∣I∣,C) (1.0.25)

are required to fulfil the conditions that
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1. Pp(y) = I −Qp(y) is an orthogonal projection;

2. Lp(y) is a self-adjoint endomorphism on kerPp(y).

In this way Pp and Lp prescribe the nature of the particle interactions. For such

self-adjoint realisations, they proved that the counting function (1.0.12) obeys the

Weyl law

N(E) ∼
L2E

4π
, E →∞ (1.0.26)

for distinguishable particles with an additional factor of one half

Nb(E) ∼
L2E

8π
, E →∞ (1.0.27)

for the bosonic case, where L = ∑
∣I∣

j=1 lj is the total length of the graph.

Exactly solvable many-body systems

Ideally, we would like to be able to determine the exact spectra of many-particle

quantum graphs using an analogous approach to that in the one-particle setting.

It turns out that for general many-particle quantum graphs this is not possible.

However, there are a number of specific examples whereby the complexity is suf-

ficiently reduced, for which exact solutions are possible. One such example is a

system of n δ-interacting bosons on a circle [LL63]. The method is centred around

finding solutions to the n-particle eigenvalue equation

−∆nψ = Eψ (1.0.28)

by the construction of explicit eigenfunctions

ψ = ψ(x1, . . . , xn) (1.0.29)

of the n-particle Laplacian

−∆n = −
n

∑
j=1

∂2

∂xj2
. (1.0.30)
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The Bethe ansatz method in this context is the assumption that eigenfunctions ψ

take the form

ψ = ∑
Q∈Sn

AQei(kQ1x1+⋅⋅⋅+kQnxn) (1.0.31)

with amplitudes AQ and where elements Q of the symmetric group Sn act on the

set {1, . . . , n}.

Gaudin [Gau71] extended this approach to reflecting boundaries, that is n-particle

systems confined to a box. The crucial difference in this model is the appearance

of negative momenta due to reflection at the boundaries. To account for this, the

appropriate Bethe ansatz becomes

ψ(x1, . . . , xn) = ∑
P ∈Wn

AP ei(kP1x1+⋅⋅⋅+kPnxn), (1.0.32)

where elements P of the Weyl group Wn act on the set {±1, . . . ,±n}.

In each case, the eigenvalue equation (1.0.28) is satisfied with Laplace eigenvalues

E = k2
1 + ⋅ ⋅ ⋅ + k

2
n, (1.0.33)

where values {k1, . . . , kn} are simultaneous solutions to a set of n secular equations

determined by applying appropriate boundary conditions on the Bethe ansatz.

In the case of singular contact interactions, general many-particle quantum graphs

are not compatible with this approach. Caudrelier and Crampé [CC07] however,

noticed that the Bethe ansatz approach can be used for two-edge star graphs where

certain symmetries are insured by a particular choice of non-local particle interac-

tions. The main aim of this thesis is to extend their approach to general quantum

graphs, establishing appropriate boundary conditions in the context of self-adjoint

realisations of −∆n.

In Chapter 2 we formalise the construction of general one-particle quantum graphs,

establishing appropriate boundary conditions by self-adjoint realisations of the

one-particle Laplacian −∆1. The boundary conditions lead to a quantisation con-
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dition from which the spectra can be calculated. We then analyse the spectral

statistics of a specific example commenting on its corresponding classical dynam-

ics. In Chapter 3 we construct a number of exactly solvable two-particle models,

calculating their spectra using the Bethe ansatz and analysing their spectral statis-

tics. In Chapter 4 we review the construction of general two-particle quantum

graphs with singular contact interactions following the method in [BK13c]. We

then use this method to establish certain non-local interactions in the context of

self-adjoint realisations of the two-particle Laplacian which permit exact solutions

via the Bethe ansatz method. We proceed by determining a quantisation condition

which yields the spectra of such graphs. We then analyse the spectral statistics

of a number of examples commenting on the nature of the classical dynamics. In

Chapter 5 we extend the procedure to general n-particle quantum graphs. Finally,

in Chapter 6, we draw conclusions and outline possible directions for future study.



Chapter 2

One-particle quantum graphs

In this chapter, we review one-particle quantum graphs and their spectral proper-

ties. We begin by establishing boundary conditions which characterise self-adjoint

realisations of the one-particle Laplacian. Then, specifying the form of the eigen-

functions of the Laplacian and imposing boundary conditions, we arrive at a quan-

tisation condition from which one-particle quantum graph spectra can be deduced.

We then discuss some properties of the spectra, focussing on the example of the

quantum tetrahedron and commenting on its corresponding classical dynamics.

2.1 Preliminaries

Before we proceed, it is useful to introduce some definitions and conventions in

the context of Hilbert spaces and symmetric operators. The reader is assumed

to have some familiarity with the basic properties of Hilbert spaces. Material is

taken from [Gri85, RS72, RS75].

In the following we denote by H , a Hilbert space with inner product

H ×H ↦ C

(φ,ψ) ↦ ⟨φ∣ψ⟩,
(2.1.1)

where we adopt the convention that the bra-ket notation ⟨φ∣ψ⟩ implies a conjuga-

tion in the first argument φ. In this thesis we will usually be concerned with the

particular Hilbert space called the Lebesgue space.

18
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Definition 2.1.1. The Lebesgue space L2(Ω) is the set of complex functions φ

with domain Ω that are square-integrable in the Lebesgue sense

∫
Ω
∣φ(x)∣2dx < ∞ (2.1.2)

and with inner product defined as

⟨φ∣ψ⟩ = ∫
Ω
φ(x)ψ(x)dx. (2.1.3)

Moreover, due to the action of the Laplacian, functions defined on graphs will need

to possess weak second derivatives. Thus they will be defined in an appropriate

Sobolev space H2(Ω) which is dense in L2(Ω).

Definition 2.1.2. Let m ∈ N0. The Sobolev space Hm(Ω) consists of all functions

ψ ∈ L2(Ω) such that all weak derivatives up to order m are in L2(Ω).

Typically, quantum graphs are constructed by establishing boundary conditions

characterised by self-adjoint extensions of the Laplacian. Such operators are con-

structed by first defining a corresponding symmetric operator.

Definition 2.1.3. An operator A with dense domain D(A) ⊂ H is symmetric if

for all φ,ψ ∈D(A)

⟨φ∣Aψ⟩ = ⟨Aφ∣ψ⟩. (2.1.4)

The adjoint operator A∗ has domain D(A∗) defined as the set of φ ∈ H for which

there exists some χ ∈ H such that

⟨φ∣Aψ⟩ = ⟨χ∣ψ⟩ (2.1.5)

for all ψ ∈ D(A). A symmetric operator A is called self-adjoint if the domains of

A and A∗ are equal; D(A) =D(A∗).

Consider a symmetric operator A such that D(A) ⊂ H . The extension B of A is

an extension of D(A) such that D(A) ⊂D(B) and

Bφ = Aφ for all φ ∈D(A). (2.1.6)
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Since the domain of a symmetric operator is contained in the domain of its adjoint

we have that

D(A) ⊂D(B) ⊂D(B∗) ⊂D(A∗). (2.1.7)

When self-adjoint extensions are possible there exist domains D(H) which contain

D(A) and are subsets of D(A∗) for which D(H) = D(H∗). An operator H with

such a domain is self-adjoint.

Another method for finding self-adjoint operators involves constructing suitable

quadratic forms.

Definition 2.1.4. A sesquilinear form q with domain D(q) ⊂ H is a map

q ∶D(q) ×D(q) → C (2.1.8)

with D(q) a dense linear subspace of H which is conjugate linear in the first

argument and linear in the second. We call q symmetric if

q(φ,ψ) = q(ψ,φ), (2.1.9)

for all φ,ψ ∈ D(q). The corresponding quadratic form q(φ,φ) is called semi-

bounded if there exists some µ ≥ 0 for which

q(φ,φ) ≥ −µ∣∣φ∣∣2H , (2.1.10)

for all φ ∈D(q), and closed if D(q) is complete with respect to the norm

∣∣ ⋅ ∣∣2q = q(⋅) + (λ + 1)∣∣ ⋅ ∣∣2H . (2.1.11)

Self-adjoint operators can then be identified using the following theorem from

[Kat66].

Theorem 2.1.5. Every symmetric sesquilinear form (q,D(q)), with a correspond-

ing quadratic form which is closed and semibounded, corresponds to a unique,
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semibounded and self-adjoint operator (H,D(H)) with D(H) ⊂D(q) such that

q(φ,ψ) = ⟨φ∣Hψ⟩ (2.1.12)

for every φ ∈D(q) and ψ ∈D(H).

2.2 Self-adjoint extension

Let us consider the compact metric graph Γ(V ,I, f). The appropriate Hilbert

space

H1 =
∣I∣

⊕
j=1

L2(0, lj) (2.2.1)

is the direct sum of constituent Hilbert spaces on each edge. Vectors

Ψ = (ψj)
∣I∣

j=1 (2.2.2)

in H1 are lists of square-integrable functions ψj ∶ (0, lj) → C. A quantum graph is

a metric graph Γ with an associated Laplacian −∆1 which acts according to

−∆1Ψ = (−ψ′′j (x))
∣I∣

j=1, (2.2.3)

where dashes denote ordinary, possibly weak, derivatives. We wish to consider the

eigenvalue equation

−∆1Ψ = EΨ (2.2.4)

alongside conditions which characterise interactions at the vertices.

One-particle observables on Γ are self-adjoint operators on H1. We thus look for

self-adjoint realisations of −∆1 with domains characterised by appropriate bound-

ary conditions. We follow the method by Kostrykin and Schrader in [KS06b] noting

that their formalism includes graphs with external edges. Restricting our atten-

tion to compact graphs will be useful when extending our approach two-particle

systems.
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Let us define the Sobolev space H2(Γ) as the set of Ψ ∈ H1 such that

ψj ∈H
2(0, lj) (2.2.5)

for all j ∈ {1, . . . , ∣I∣}, and let Ω ∶H2(Γ) ×H2(Γ) → C be the sesquilinear form

Ω(Φ,Ψ) =⟨−∆1Φ∣Ψ⟩ − ⟨Φ∣ −∆1Ψ⟩

=

∣I∣

∑
j=1

(φj(lj)ψ
′
j(lj) − φj(0)ψ

′
j(0) − φ

′

j(lj)ψj(lj) + φ
′

j(0)ψj(0)) .
(2.2.6)

The bottom line of (2.2.6) is calculated by partial integration. Let us then define

the subspace H2
0(Γ) as the set of Ψ ∈H2(Γ) such that

ψj(0) = ψj(lj) = ψ
′
j(0) = ψ

′
j(lj) = 0 (2.2.7)

for all j ∈ {1, . . . , ∣I∣}, and let −∆0
1 denote the Laplacian −∆1 restricted to the

domain H2
0(Γ).

Lemma 2.2.1. The operator −∆0
1 is symmetric but not self-adjoint.

Proof. Symmetry is easily seen by noticing that Ω(Φ,Ψ) vanishes for all Φ,Ψ ∈

H2
0(Γ). The domain D(−∆0

1
∗
) of the adjoint operator −∆0

1
∗

is the set of functions

Φ ∈ H1 which satisfy the condition

⟨Φ∣ −∆1Ψ⟩ = ⟨−∆∗
1Φ∣Ψ⟩ (2.2.8)

for all Ψ ∈ H2
0(Γ). Since the action of −∆1 is the same as its adjoint, this is the

condition that Ω(Φ,Ψ) vanishes which is clearly satisfied for all Φ ∈ H2(Γ). We

then have that D(−∆0
1
∗
) =H2(Γ) and thus that H2

0(Γ) ⊂D(−∆0
1
∗
).

The aim is to find self-adjoint extensions of −∆0
1. Since symmetric extensions of

−∆0
1 are contained in their adjoints, we look for maximal subspaces of H2(Γ) for

which −∆1 is symmetric, that is Ω(Φ,Ψ) = 0.
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Let boundary vectors Ψbv,Ψ′
bv ∈ C2∣I∣ be defined

Ψbv =
⎛

⎝

(ψj(0))
∣I∣

j=1

(ψj(lj))
∣I∣

j=1

⎞

⎠
and Ψ′

bv =
⎛

⎝

(ψ′j(0))
∣I∣

j=1

(−ψ′j(lj))
∣I∣

j=1

⎞

⎠
. (2.2.9)

Then, defining the vector

Ψ =
⎛

⎝

Ψbv

Ψ′
bv

⎞

⎠
∈ C4∣I∣ (2.2.10)

along with the symplectic matrix

J =
⎛

⎝

0 −I2∣I∣

I2∣I∣ 0

⎞

⎠
, (2.2.11)

the form Ω(Φ,Ψ) can be rewritten as the skew-Hermitian form

w(Φ,Ψ) = ⟨Φ∣JΨ⟩. (2.2.12)

To find maximal subspaces of H2(Γ) for which Ω(Φ,Ψ) = 0, it is sufficient to find

maximal subspaces in C4∣I∣ for which w(Φ,Ψ) = 0. By characterising the space

M=M(A,B) with 2∣I∣ ×2∣I∣ matrices A and B, Kostrykin and Schrader [KS06b]

proved a generalisation of the following theorem which we present for compact

graphs only.

Theorem 2.2.2. The Laplacian −∆1 is self-adjoint on the set of all Ψ ∈ H2(Γ)

which satisfy the boundary condition

AΨbv +BΨ′
bv = 0, (2.2.13)

with 2∣I∣ × 2∣I∣ matrices A,B subject to

1. rank(A,B) = 2∣I∣;

2. AB† = BA†.

It is convenient at this point to discuss another method for finding self-adjoint

realisations of the Laplacian which is centred around Theorem 2.1.5. The idea is

to associate with the problem, a quadratic form, show that it is closed, symmetric
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and semibounded and then extract the corresponding self-adjoint Laplacian. The

following theorem, based on this approach, is from [Kuc04].

Theorem 2.2.3. Consider the maps P,L acting on the space C2∣I∣ of boundary

vectors, where P is an orthogonal projection and L is a self-adjoint endomorphism

on ker(P ). Moreover, set Q = I2∣I∣ − P . The Laplacian −∆1 acting on a quantum

graph is self-adjoint under the restriction Ψ ∈H2(Γ) such that

PΨbv = 0 and QΨ′
bv +LQΨbv = 0. (2.2.14)

It is possible to show equivalence with the A,B parameterisation in Theorem 2.2.2

by letting P be an orthogonal projection onto ker(B) and

L = B−1
(kerB)⊥AQ. (2.2.15)

The restriction of B to ker(B)⊥ before taking its inverse is necessary since B in

(2.2.13) need not be invertible. Moreover, Fulling, Kuchment and Wilson [FKW07]

showed that there exists some invertible C such that

A′ = CA = P +L and B′ = CB = Q (2.2.16)

which implies

L = A′B′†. (2.2.17)

At this point we distinguish between two important classes of boundary condi-

tions. We note from (2.2.14) that for cases where L = 0, and thus for AB† = 0,

boundary values of functions Ψbv and their derivatives Ψ′
bv do not mix. We call

such boundary conditions non-Robin. Otherwise boundary conditions are called

Robin.
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2.3 Spectra of quantum graphs

In this section we calculate the spectra of one-particle quantum graphs by consid-

ering the eigenvalue equation

−∆1Ψ = EΨ (2.3.1)

alongside boundary conditions prescribed by Theorem 2.2.2. The starting point is

the observation that the components ψj(x) of eigenfunctions Ψ ∈ H1 with non-zero

Laplace eigenvalues E = k2 ∈ R are necessarily of the form

ψj(x) = αje
ikx + βje

−ikx. (2.3.2)

Each wave function ψj is a superposition of oppositely directed plane waves propa-

gating along edge ij with αj and βj their respective complex amplitudes. Defining

vectors

α = (αj)
∣I∣

j=1 and β = (βj)
∣I∣

j=1 (2.3.3)

and imposing boundary conditions (2.2.13), we have that

(AX(k) + ikBY (k))
⎛

⎝

α

β

⎞

⎠
= 0, (2.3.4)

where

X(k, l) =
⎛

⎝

I∣I∣ I∣I∣
eikl e−ikl

⎞

⎠
and Y (k, l) =

⎛

⎝

I∣I∣ −I∣I∣
−eikl e−ikl

⎞

⎠
. (2.3.5)

The blocks in (2.3.5) are the diagonal matrices

eikl = diag(eiklj)
∣I∣

j=1. (2.3.6)

By making the definitions

T (k, l) =
⎛

⎝

0 eikl

eikl 0

⎞

⎠
(2.3.7)
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and

Sv(k) = −(A + ikB)−1(A − ikB), (2.3.8)

and using the result in [KS99] that for k ≠ 0, the matrices A ± ikB are invertible,

we arrive at the following theorem from [KS06b].

Theorem 2.3.1. The non-zero eigenvalues of a self-adjoint Laplacian −∆1 defined

on Γ and specified through A,B are the values E = k2 with multiplicity m, where

k ≠ 0 are solutions to the secular equation

det [I2∣I∣ − Sv(k)T (k, l)] = 0 (2.3.9)

with multiplicity m.

Proof. Condition (2.3.4) can be written

det [AX(k, l) + ikBY (k, l)] = 0 (2.3.10)

which implies

det [(A + ikB)
X(k, l) + Y (k, l)

2
+ (A − ikB)

X(k, l) − Y (k, l)

2
] = 0. (2.3.11)

Then, using the invertibility of A + ikB, and multiplying on the left by

det [A + ikB]
−1

(2.3.12)

and on the right by

det [
X(k, l) + Y (k, l)

2
]

−1

, (2.3.13)

we have that

det [I + (A + ikB)−1(A − ikB)T (k, l)] = 0, (2.3.14)
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where we have used the fact that

T (k, l) = (
X(k, l) − Y (k, l)

2
)(

X(k, l) + Y (k, l)

2
)

−1

. (2.3.15)

The definition of Sv(k) completes the proof.

Clearly the matrices Sv(k) have, in general, some non-trivial dependency on k. It

was shown in [KPS07] that such matrices are k-independent if and only if A and

B prescribe non-Robin boundary conditions. Since in [KS06b] it is shown that the

number of negative Laplace eigenvalues is bounded by the number of eigenvalues

of AB†, we have that non-Robin boundary conditions, for which AB† = 0 (see

Section 2.2), imply no negative Laplace eigenvalues.

2.4 Scattering matrices

We have seen that the spectrum of a compact quantum graph is given by the

secular equation (2.3.9) which is a function of matrices T (k, l) and Sv(k). The

former clearly contains the metric information. The latter contains information

about the interactions at the vertices prescribed by A and B. In what follows

we restrict our attention to local boundary conditions where boundary values of

functions at different vertices are not related. The significance of this is that we can

consider scattering at each vertex independently. We formalise this interpretation

by dissecting the compact graph into a collection of star graphs with finitely many,

external edges.

Definition 2.4.1. Consider a compact graph Γ(V ,I, f). Let the map g associate

to each internal edge ij an ordered pair of external edges g(ij) ∶= (ej, ej+∣I∣). Here

ej =∶ g0(ij) and ej+∣I∣ =∶ gl(ij) are external edges associated with initial and terminal

vertices of ij respectively so that f(ej) = f0(ij) and f(ej+∣I∣) = fl(ij). The star

representation of the compact graph Γ is the collection Γ(s)(V ,E , f) of star graphs

Γη(vη,Eη, f) where Eη is the set of edges ej such that f(ej) = vη. Clearly we

have that 2∣I∣ = ∣E∣. The star graphs are turned into metric graphs by assigning

half-lines [0,∞) to its edges.

Consider the star representation Γ(s) of a compact graph Γ. The Hilbert space
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associated with Γ(s) is

H (s)
1 =

∣E∣

⊕
j=1

L2(0,∞). (2.4.1)

Vectors

Ψ = (ψ
(s)
j )

∣E∣

j=1 (2.4.2)

in H (s)
1 are lists of square-integrable functions ψ

(s)
j ∶ (0,∞) → C. Boundary vectors

are then defined

Ψ
(s)
bv = (ψ

(s)
j (0))

∣E∣

j=1 and Ψ
(s)
bv

′

= (ψ
(s)
j

′

(0))
∣E∣

j=1, (2.4.3)

so that analogues of boundary conditions (2.2.13) are given by

AΨ
(s)
bv +BΨ

(s)
bv

′

= 0. (2.4.4)

Let P be an ∣E ∣-dimensional permutation matrix which reorders vectors Ψ according

to

PΨ = (Ψη)
∣V∣

η=1, (2.4.5)

where each Ψη lists functions ψ
(s)
j with f(ej) = vη. Local boundary conditions

then imply the decomposition

A = P−1 (⊕
vη∈V

Aη)P and B = P−1 (⊕
vη∈V

Bη)P. (2.4.6)

With reference to Figure 2.1, we describe the propagation of particles through a

graph by considering their asymptotics on infinite stars Γη associated with vertices

vη ∈ V . Let us consider a particle incoming along an edge ei ∈ Eη with plane wave

e−ikx. The scattering matrix S
(η)
v (k) then defines the amplitudes of plane waves

outgoing on edges ej ∈ Eη according to

ψ
(s)
j (x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

S
(η)
ji (k)eikx if j ≠ i;

S
(η)
ii (k)eikx + e−ikx if j = i.

(2.4.7)
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By application of local boundary conditions (2.4.4), one can then read off the

scattering matrix

S
(η)
v (k) = −(Aη + ikBη)

−1(Aη − ikBη). (2.4.8)

The total scattering matrix

Sv(k) = P−1 (
∣V∣

⊕
η=1

S
(η)
v (k))P (2.4.9)

can can be reconstructed from sub-graphs Γη by considering the scattering process

vertex by vertex and applying the relationship (2.4.6).

Let us retrieve the secular equation (2.3.9) by reconstructing the original compact

graph from its star representation (see [KN05, KS97] for related methods). Firstly,

choosing the form (2.3.2) on each external edge ej, defining vectors

α = (αj)
∣E∣

j=1 and β = (βj)
∣E∣

j=1, (2.4.10)

and imposing boundary conditions (2.4.4), we arrive at the scattering relation

α = Sv(k)β. (2.4.11)

Now let us consider the functions ψ
(s)
j and ψ

(s)

j+∣I∣
related to the external edges ej

and ej+∣I∣ respectively. Joining up the external edges to form the single internal

edge ij of length lj (see Figure 2.2) is imposing the condition

ψ
(s)
j (x) = ψ

(s)

j+∣I∣
(lj − x) (2.4.12)

which yields the relation

β = T (k, l)α. (2.4.13)

Applying (2.4.11) and (2.4.13) successively we recover the secular equation (2.3.9)

as required.

It is convenient here to define some examples of boundary conditions which will
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vη

e−ikx

Sji(k)eikx

ei

ej

Figure 2.1: Scattering of an incoming plane wave along ei to ej with probability
Sji on a star graph Γη associated with vertex vη ∈ V .

ijej ej+∣I∣

Figure 2.2: Joining two external edges ej and ej+∣I∣ to reconstruct internal edge ij.



CHAPTER 2. ONE-PARTICLE QUANTUM GRAPHS 31

be useful in the remainder of the thesis. Consider the vertex vσ ∈ V on a graph

Γ. In the star representation Γ(s), δ-type interactions at vσ are prescribed by the

conditions

ψ
(s)
i (0) = ψ

(s)
j (0) (2.4.14)

for all ei, ej ∈ Eσ and

∑
ej∈Eσ

ψ
(s)
j

′

(0) = ηψ
(s)
i (0) (2.4.15)

where η ∈ R parameterises the strength of interaction. These are recovered from

the boundary conditions (2.4.4) by setting

Aσ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1 0 . . . 0 0

0 1 −1 . . . 0 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 . . . 1 −1

−η 0 0 . . . 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and Bσ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 . . . 0 0

0 0 0 . . . 0 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 . . . 0 0

1 1 1 . . . 1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.4.16)

We will call the special case for which η = 0, standard boundary conditions. We

remark here that in the literature, such conditions are often referred to as Kirch-

hoff or Neumann conditions.

We reiterate here that boundary conditions prescribed by Theorem 2.2.2 (or equiv-

alently Theorem 2.2.3) define self-adjoint realisations of the Laplacian. However,

physicists are often satisfied with imposing the weaker restriction that each scat-

tering matrix S
(σ)
v (k), associated with a vertex vσ, need only be unitary, in order

to ensure probability conservation [GS06]. In general, such choices do not provide

self-adjoint realisations of the Laplacian. As shown in [Car99] however, this prob-

lem is overcome the unitary scattering matrices are chosen to be k-independent.

One such scattering matrix, which will be used later in the thesis, is the Discrete

Fourier Transform (DFT) scattering matrix S
(σ,DFT )
v . Such a matrix has elements

(S
(σ,DFT )
v )γλ =

1
√
dσ
e2πi

n(γ)n(λ)
dσ (2.4.17)
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with n(⋅) a bijection of the dσ neighbouring vertices of vσ onto the numbers

{0, . . . , dσ − 1}.

2.5 Periodic orbits and the trace formula

In this section we establish the connection between the spectra of quantum graphs

and the dynamics of their classical counterparts by means of a trace formula. The

description of the classical dynamics appears as sums over periodic orbits.

Definition 2.5.1. An orbit of possibly infinite size m on a compact graph Γ is

a sequence of vertices (vη1 , . . . , vηm) such that the vertices in each subsequence

(vηi , vηi+1) are connected by some edge ij ∈ I. An orbit is periodic with period n if

vηi = vηi+n for all i ∈ {1, . . . ,m − n}. A periodic orbit which cannot be written as a

repetition of a smaller periodic orbit is called primitive.

The trace formula in the context of quantum graphs is concerned with expressing

the count

N(E) = #{n; En ≤ E} (2.5.1)

of non-negative Laplace eigenvalues in terms of periodic orbits on the graph. The

first such trace formula was deduced by Roth [Rot83] for standard boundary condi-

tions and later generalised to non-Robin conditions in [KPS07]. More recently, by

applying the argument principle to the secular equation (2.3.9), Bolte and Endres

[BE09] calculated the trace formula for quantum graphs with general boundary

conditions. It is sufficient in the context of this thesis to present the case for

non-Robin boundary conditions given by

∞

∑
n=0

gnh(kn) =Lĥ(0) + (g0 −
1

2
N)h(0) + ∑

p∈P

((Ap + Āp)ĥ(lp)) . (2.5.2)

This is an analytical representation of the counting function (2.5.1) given in terms

of the multiplicities gn of eigenvalues En, the total length L = ∑j lj of the graph,

the order N of the solution k = 0 of (2.3.9) and a suitable test function h ∶ C → C
with Fourier transform defined

ĥ(x) =
1

2π ∫
∞

−∞
h(k)eikxdk. (2.5.3)
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Furthermore, amplitudes Ap associated with periodic orbits p ∈ P with length lp

are calculated by multiplying the local scattering matrices at each vertex along p.

To finish this section we remark that the multiplicity g0 of the Laplace eigenvalue

E = 0 is, in general, not equal to the order N of the value k = 0 as a solution to

(2.3.9). For the purposes of this thesis it is sufficient to give the result in [FKW07]

that, in the case of non-Robin boundary conditions where Sv(k) is independent of

k, the multiplicity of the eigenvalue zero is given by

g0 −
1

2
N =

1

4
lim
k→0

trSv(k). (2.5.4)

A generalisation of this result to include Robin conditions can be found in [BES15].

2.6 The tetrahedron

In this final section we calculate and analyse the spectrum of a quantum tetrahe-

dron with standard boundary conditions. A tetrahedron is a graph Γ with ∣V∣ = 4

vertices and ∣I∣ = 6 edges where each vertex vη ∈ V is connected to each of the

others vγ≠η ∈ V by a single edge ij ∈ I. Figure 2.3 depicts a tetrahedron on which

the edges and vertices are labelled. In order to associate an explicit permutation

matrix P (see (2.4.5)) with the tetrahedron, we specify the orientations of the

edges ij connecting a pair of vertices {vγ, vλ} according to f0(ij) = vmin(γ,λ) and

fl(ij) = vmax(γ,λ). Local standard boundary conditions are given by

A = P−1(I4 ⊗Aη)P and B = P−1(I4 ⊗Bη)P, (2.6.1)

where for each vertex vη we have

Aη =

⎛
⎜
⎜
⎜
⎝

1 −1 0

0 1 −1

0 0 0

⎞
⎟
⎟
⎟
⎠

and Bη =

⎛
⎜
⎜
⎜
⎝

0 0 0

0 0 0

1 1 1

⎞
⎟
⎟
⎟
⎠

. (2.6.2)

These are clearly non-Robin conditions and thus the resultant scattering matrix

Sv(k) = P−1 (I4 ⊗ S
(η)
v (k))P, (2.6.3)
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v1 v3

v2

v4

i1

i5

i3

i4

i6

i2

Figure 2.3: Tetrahedron with lengths and vertices arbitrarily specified.

with

S
(η)
v (k) =

⎛
⎜
⎜
⎜
⎝

−1
3

2
3

2
3

2
3 −1

3
2
3

2
3

2
3 −1

3

⎞
⎟
⎟
⎟
⎠

, (2.6.4)

is k-independent. Choosing rationally independent lengths

l1 = 1, l2 =
√

2, l3 =
√

3, l4 =
√

5, l5 =
√

7, l6 =
√

11, (2.6.5)

we ensure non-degenerate solutions k ≥ 0 of the secular equation (2.3.9). As stated

in Theorem 2.3.1 the Laplace eigenvalues E = k2 exactly correspond to these

solutions. The one exception is the solution k = 0 which has order N = 4 equal to

the multiplicity of the eigenvalue one of

Sv(k)
⎛

⎝

0 I6

I6 0

⎞

⎠
. (2.6.6)

The multiplicity g0 = 1 of the Laplace eigenvalue E = 0 is then calculated using

(2.5.4).
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Using the identity

∫ δ(x − a)f(x)dx = f(a) (2.6.7)

as well as (2.5.3), the trace formula (2.5.2) can be written

∫

∞

−∞
h(k)

∞

∑
n=0

gnδ(k − kn)dk

=∫

∞

−∞
h(k)(

L

2π
+ (g0 −

1

2
N)δ(k) + ∑

p∈P

Ap + Āp
2π

eiklp)dk.

(2.6.8)

Since the spectral density is defined

d(k) =
∞

∑
n=0

gnδ(k − kn), (2.6.9)

we have that

d(k) =
L

2π
+ (g0 −

1

2
N)δ(k) + ∑

p∈P

Ap + Āp
2π

eiklp . (2.6.10)

The counting function N(E) for all eigenvalues up to E is then calculated by

integrating the spectral density d(k) from −
√
E to

√
E. We then have that

N(E) =∫

√
E

−
√
E

(
L

2π
+ (g0 −

1

2
N)δ(k) + ∑

p∈P

Ap + Āp
2π

eiklp)dk

=
L
√
E

π
+ g0 −

1

2
N

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ns(E)

+∑
p∈P

Ap + Āp
2πilp

(ei
√
Elp − e−i

√
Elp)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
No(E)

.
(2.6.11)

The first three terms comprise the smooth part Ns(E) of the counting function.

The final term is the oscillatory part No(E). Until now we have not been explicit

about the exact nature of amplitudes Ap. Kottos and Smilansky [KS97] showed

that the oscillatory part can be written

No(E) =
1

π
Im

∞

∑
n=1

tr (Sv(k)T (k, l))
n
. (2.6.12)

Figure 2.4 shows the counting function N(E) plotted from numerically deduced
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Figure 2.4: Eigenvalue count for a tetrahedron with local standard boundary con-
ditions. N0(E) is calculated using (2.6.12) summing the first 20 terms.
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Figure 2.5: Nearest neighbour energy level distribution for quantum tetrahedron.
Lowest 100,000 energies.
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eigenvalues En along with the corresponding analytical expression calculated from

the trace formula (2.6.11). Clearly the numerical data agrees with the trend pre-

dicted by Ns(E). The analytical expression converges to the numerical data as

more terms in No are summed.

A particularly useful statistical measure is the nearest neighbour level spacings

distribution

∫

b

a
p(s)ds = lim

N→∞

1

N
#{n ≤ N ; a ≤ εn+1 − εn ≤ b} (2.6.13)

of the unfolded versions, ε1 < ε2 < ε3 < . . . , of the energy eigenvalues, that is the

energies are rescaled such that the average spacing is equal to unity. Chaotic clas-

sical systems have quantum counterparts with correlations described by random

matrix models. For such systems, with integer spin and time-reversal symmetry,

Gaussian orthogonal ensemble (GOE) statistics are conjectured to apply [BGS84],

where the level spacings distribution can be approximated by

p(s) =
π

2
s e−

π
4
s2 (2.6.14)

(see [Haa91]). Figure 2.5 shows the nearest neighbour distribution for the quantum

tetrahedron with standard boundary conditions. We see that the nearest neigh-

bour data closely follows GOE statistics. Such spectral correlations characterise

quantum systems which are chaotic in the classical limit.



Chapter 3

Exactly solvable two-particle

systems

The complexity of most macroscopic phenomena means that their exact treatment

is impossible. In these cases meaningful, yet approximate, theoretical results can

be established by means of simulation, perturbation theory or a reduction of the

problem to a simpler exactly solvable model. There are however, a number of

macroscopic systems which can be solved exactly by considering individual parti-

cle mechanics. In the context of this thesis we use the term exact solvability to

describe systems for which exact expressions for energy can be obtained. Since

our aim is to study many-particle quantum graphs, we are most interested in such

systems confined to a single spatial dimension.

We begin by introducing a number of approaches devised to identify and solve n-

particle systems confined to a single dimension. In 1931, Bethe [Bet31] identified

the eigenfunctions and calculated the spectra of the Heisenberg-Ising anisotropic

chain; a linear chain of spin-1
2 particles interacting with their nearest neighbours.

At the centre of this approach is the construction and employment of what is

now known as the Bethe ansatz; a superposition of possible many-particle plane

wave states. Adapting this method to find solutions of the n-particle Schrödinger

equation

(−∆n + 2α∑
i≠j

δ(xi − xj))ψ = Eψ, (3.0.1)

38
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Lieb and Liniger [LL63] determined the exact spectra of a repulsively δ-interacting

Bose gas on a circle, a result which was later generalised to distinguishable parti-

cles by Yang [Yan67]. Gaudin [Gau71] later employed the Bethe ansatz to describe

similar systems confined to an interval. Central to the validity of the Bethe ansatz

method is the existence of certain symmetries associated with the system in ques-

tion. It turns out that this requirement is that interactions can be characterised

in terms of Weyl groups of root systems. These symmetries become particularly

intuitive when considering McGuire’s optical wave analogy [McG64]. He refor-

mulated the problem of n δ-interacting particles confined to a single dimension in

terms of the propagation of a single optical ray in an n-dimensional domain subject

to interaction with 1
2n(n−1) transmitting and reflecting (n−1)-dimensional plates.

Of course, it would be useful to extend the Bethe ansatz approach from inter-

acting systems on an interval to general quantum graphs. Unfortunately though,

the consequence of increasing complexity to systems of δ-interacting particles on

a non-trivial quantum graph with more than a single edge, is that compatibility

with the Bethe ansatz method is destroyed. By imposing certain non-local in-

teractions, however, Caudrelier and Crampé [CC07] showed that, for systems of

particles on two-edge star graphs, compatibility with the Bethe ansatz is recovered.

In this chapter we begin by discussing the theory surrounding the identification

and solutions of systems of particles on a circle and in a box restricting the math-

ematical presentation to two-particle models. We refer to McGuire’s optical in-

terpretation when justifying an appropriate Bethe ansatz. We then discuss the

related model in [CC07] commenting on its potential extension to systems of par-

ticles defined on general graphs. We finish by numerically deducing the spectra of

certain examples and commenting on their statistics.

The reader should keep in mind that restricting the formalism to only two particles

in this chapter allows us to establish a framework for identifying exactly solvable

two-particle quantum graphs in Chapter 4. The full n-particle analyses will be

presented in Chapter 5. For readability, we also overlook any formal discussion

of self-adjoint realisations of the Laplacian, preferring to refer to literature when

stating appropriate boundary conditions. We return to a rigorous formalism in



CHAPTER 3. EXACTLY SOLVABLE TWO-PARTICLE SYSTEMS 40

the following chapter.

3.1 Preliminaries

Before we proceed, it is useful to define and explain the groups S2 and W2 which

we will use to characterise the symmetries of exactly solvable two-particle systems.

Material is taken from [Hum72, AMP81, Ros09].

Systems of two δ-interacting bosons on a circle [LL63] exhibit symmetries which

can be described by the symmetric group S2. It is convenient to define elements

Q ∈ S2 as acting on the set {1,2}.

Definition 3.1.1. Elements Q in the symmetric group S2 = {I, T} act on the set

{1,2} according to

1. I(1,2)=(1,2);

2. T (1,2)=(2,1).

Clearly we have that TT = I.

Definition 3.1.2. Let V be a two-dimensional Euclidean space with Euclidean

inner product ⟨⋅∣⋅⟩. A root system Ω in V is a finite set of non-zero vectors (or

roots) which satisfy the conditions

1. Given a root z ∈ Ω, the scalar multiple λz is also in Ω if and only if λ = ±1;

2. Ω is closed under reflection in the line perpendicular to any z ∈ Ω;

3. The roots of Ω span V ;

4. The inner product ⟨x∣y⟩ for any two roots x, y ∈ Ω is an integer.

Of particular importance to us will be the root system C2 in R2 given by the set

of eight vectors

⎧⎪⎪
⎨
⎪⎪⎩

⎛

⎝

±2

0

⎞

⎠
,
⎛

⎝

0

±2

⎞

⎠
,
⎛

⎝

±1

±1

⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

(3.1.1)

as depicted in Figure 3.1.
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σR

σT

Figure 3.1: The root system C2 and associated Weyl group W2 generated by re-
flections σR and σT .

σTσRσTσRψ

σRσTσRψ

σRψ

σRσTψ

σTσRσTψ

σTσRψ

ψ

σTψ

σR

σT

Figure 3.2: Generators σR and σT of the Weyl group W2 acting on a vector ψ.
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Definition 3.1.3. The Weyl group of a root system Ω is the group of isometries

generated by the reflections through hyperplanes perpendicular to the roots of Ω.

Systems of two δ-interacting particles in a box [Gau71, Yan67], and indeed two-

particle systems with certain non-local interactions [CC07], exhibit symmetries

which can be described by the Weyl group W2 of the root system C2. In the

context of this thesis, the generators of W2, which are the reflections σR and σT

depicted in Figure 3.1, will act on vectors ψ defined in R2 as depicted in Figure

3.2. It is convenient to define elements P of W2 as acting on the set {±1,±2}

accordingly.

Definition 3.1.4. Consider a group G with identity element I and subgroups N

and H which satisfy the conditions

1. N is a normal subgroup in G;

2. The intersection N ∩H is the identity I;

3. G is the product of the subgroups NH.

Then G = N ⋊H is the semidirect product of N and H.

Definition 3.1.5. Elements P in the Weyl group

W2 ∶= (Z/2Z)2 ⋊ S2, (3.1.2)

of order 8, acting on the set {±1,±2} will be written in terms of generators T and

R which act according to

1. T (1,2) = (2,1);

2. R(1,2) = (−1,2),

and satisfy the conditions

1. TT = I;

2. RR = I;

3. TRTR = RTRT .
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We note that, with S2 and W2 defined as above, the normal subgroup (Z/2Z)2

in W2 can be written in terms of generators R and TRT . With this in mind,

the conditions in Definition 3.1.4, which validate the semidirect product are easily

verified.

3.2 Simple exactly solvable two-particle systems

We begin by presenting three well known examples of exactly solvable two-particle

systems. Each example can be described as a two-particle quantum graph con-

sisting of a single internal edge with certain boundary conditions applied at the

end points. This simplified presentation will provide a base from which we can

generalise the discussion to graphs with more than a single edge.

3.2.1 Bosons on a circle

We first consider a system of two δ-interacting bosons confined to the perimeter

of a circle length l. Lieb and Liniger [LL63] formulated this problem as a search

for solutions

ψ = ψ(x1, x2) (3.2.1)

of the two-particle Schrödinger equation

(−∆2 + 2αδ(x1 − x2))ψ = Eψ, (3.2.2)

with particle positions x1, x2 defined on the real line R = (−∞,∞). Here α > 0

parameterises the repulsive interaction strength. The two-particle Laplacian acts

according to

−∆2ψ = −
∂2ψ

∂x2
1

−
∂2ψ

∂x2
2

. (3.2.3)

We note that the problem of impenetrable bosons [Gir60] can be recovered by let-

ting α →∞. By requiring that −∆2 is self-adjoint and imposing bosonic symmetry

ψ(x1, x2) = ψ(x2, x1), (3.2.4)
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equation (3.2.2) decomposes into the eigenvalue equation

−∆2ψ = Eψ (3.2.5)

alongside the jump condition in the derivatives

(
∂

∂x2

−
∂

∂x1

)ψ(x1, x2)∣x1=x−2 = αψ(x1, x2)∣x1=x−2 , (3.2.6)

with ψ restricted to the subspace

D− = {(x1, x2) ∈ R2; x1 < x2}. (3.2.7)

Together with the imposition of bosonic symmetry, the problem is then also defined

in

D+ = {(x1, x2) ∈ R2; x1 > x2} (3.2.8)

and thus all of R2.

The task is then to construct explicit Laplace eigenfunctions ψ in D− which satisfy

(3.2.6). To this end let us consider the two-particle plane wave state

ψI = e
i(k1x1+k2x2) (3.2.9)

defined with momenta k1, k2 ∈ R. In order to justify an appropriate form of ψ let us

assume k2 < k1 so that the system is approaching a point of particle interaction x1 =

x2. Central to the Bethe ansatz method is the assumption that no new momenta

are generated [McG64] by such interactions. In this context then, interactions

between particles result either in the momenta of each particle being swapped

(k1, k2) → (k2, k1), (3.2.10)

or else remaining as they were

(k1, k2) → (k1, k2). (3.2.11)

We thus expect that any resulting two-particle state must be one of two two-



CHAPTER 3. EXACTLY SOLVABLE TWO-PARTICLE SYSTEMS 45

particle plane waves

ψQ = ei(kQ1x1+kQ2x2), (3.2.12)

with elements Q ∈ S2 as prescribed in Definition 3.1.1. We can think of each Q ∈ S2

as corresponding to some configuration of particle momenta

kQ = (kQ1, kQ2). (3.2.13)

The Bethe ansatz in this context is the sum of possible two-particle plane wave

states

ψ(x1, x2) = ∑
Q∈S2

AQei(kQ1x1+kQ2x2), (3.2.14)

with AQ the amplitudes of constituent states ψQ.

Using the form (3.2.14), equation (3.2.5) is satisfied with Laplace eigenvalues

E = k2
1 + k

2
2. (3.2.15)

The boundary condition (3.2.6) implies the relation

AQT = sp(kQ1 − kQ2)A
Q (3.2.16)

for all Q ∈ S2 with

sp(k) =
k − iα

k + iα
. (3.2.17)

We note here the restriction that momenta k1 and k2 must be distinct since for

identical momenta k1 = k2, the ansatz (3.2.14) vanishes. To prove exact solvability

we need only show that the relation (3.2.16) is consistent with the properties of

S2, namely that TT = I. This amounts to the requirement sp(u)sp(−u) = 1 which

is easily verified.

Until this point we have said nothing about the geometry of the one-dimensional

problem in question. Putting the particles on the perimeter of a circle length l is
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applying periodic boundary conditions

ψ(0, x) = ψ(x, l); (3.2.18)

∂

∂x1

ψ(x1, x)∣x1=0 =
∂

∂x2

ψ(x,x2)∣x2=l (3.2.19)

for all x ∈ (0, l), which, by again using the form (3.2.14), imply the relations

AQ = AQT eikQ1l (3.2.20)

for all Q ∈ S2. Finally, applying (3.2.16) and (3.2.20) successively, we arrive at the

pair of quantisation conditions

e−ikj l = sp(kj − ki), (3.2.21)

with j, i ≠ j ∈ {1,2}. Solutions (k1, k2) then constitute energies (3.2.15). It is

important to note here that since, for any solution (k1, k2) of the quantisation

conditions (3.2.21), one also has the solution (k2, k1), it is sufficient to search for

solutions in the region k1 < k2.

3.2.2 Bosons in a box

We have seen how to construct systems of two particles on a circle by first defining

particle position x1, x2 on the real line R. We would now like to adapt this approach

to describe particles confined to a box. Gaudin [Gau71] formulated this problem

as a search for solutions ψ of the two-particle Schrödinger equation (3.2.2) with

x1, x2 defined on the half-line R+ = (0,∞). As we will see, framing the problem in

this way has a profound affect on the appropriate Bethe ansatz. Specifically, the

possible configurations of particle momenta will no longer correspond to elements

of the symmetric group S2, but rather the Weyl group W2. We begin by again

restricting our attention to systems of bosons before generalising our approach to

distinguishable particles. As previously, (3.2.2) decomposes into (3.2.5) alongside

the boundary condition (3.2.6) but with ψ now restricted to the subspace

d− = {(x1, x2) ∈ R2
+; x1 < x2}. (3.2.22)
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Together with the imposition of bosonic symmetry, the problem is then also defined

on

d+ = {(x1, x2) ∈ R2
+; x1 > x2} (3.2.23)

and thus all of R2
+.

The task now to construct explicit Laplace eigenfunctions ψ in d− which satisfy

conditions (3.2.6) as well as the Dirichlet condition

ψ(0, x) = 0 (3.2.24)

associated with the finite endpoint of R+. Let us again consider the two-particle

plane wave state ψI , as in (3.2.9), but now defined on d−. Let us also make the

additional assumption

k2 ≤ k1 ≤ 0 and (k1, k2) ≠ (0,0), (3.2.25)

so that the system is approaching one of the two boundaries, x1 = x2 and x1 = 0,

of d−. As previously, the two possible consequences of δ-type interactions at the

former boundary are the momenta being swapped (3.2.10), or else remaining as

they were (3.2.11). Dirichlet conditions at the latter boundary result in momentum

reversal

(k1, k2) → (−k1, k2). (3.2.26)

Taking into account all possible particle interactions, we expect that any resulting

two-particle state must be one of eight two-particle plane waves

ψP = ei(kP1x1+kP2x2), (3.2.27)

with elements P ∈ W2 as prescribed in Definition 3.1.5. We can think of each

P ∈ W2 as corresponding to some configuration of particle momenta

kP = (kP1, kP2). (3.2.28)
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The Bethe ansatz in this context is the sum of possible plane wave states

ψ(x1, x2) = ∑
P ∈W2

AP ei(kP1x1+kP2x2), (3.2.29)

with AP the amplitudes of constituent states ψP .

To gain some intuition here we refer to an interpretation of many-particle dynam-

ics introduced by McGuire [McG64]. He reinterpreted the n-particle Schrödinger

equation (3.0.1) as describing optical waves propagating in n-dimensional Eu-

clidean space subject to reflection or transmission at the 1
2n(n − 1) hyperplanes

xi = xj. The superposition of the waves which result from possible transformations

at these hyperplanes is the Bethe ansatz characterised by the Weyl group Wn. To

illustrate this point let us consider this optical analogy in the context of a pair

of δ-interacting bosons in a box. Let us depict the state ψI as an optical wave

propagating in the two-dimensional space d− and track the transformations on kI

as the ray interacts with the boundaries of d− (see Figure 3.5). Figure 3.4 depicts

the collection of possible resulting states ψP , with P ∈ W2. Given the state ψI ,

each ψP can be accessed by a combination of reflections σT and σR. The set of the

eight transformations generated by σT and σR is the Weyl group W2 of the root

system C2.

We proceed by noting that, using the form (3.2.29), equation (3.2.5) is satisfied

with Laplace eigenvalues (3.2.15). Boundary conditions (3.2.6) and (3.2.24) then

imply

APT = sp(kP1 − kP2)A
P (3.2.30)

and

APR = −AP (3.2.31)

for all P ∈ W2. To prove exact solvability we need only show that relations (3.2.30)

and (3.2.31) are consistent with the properties of W2. This again amounts only to

the requirement sp(u)sp(−u) = 1.
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d+

d−

d+

d−
ψIψTRTR

ψT
ψTRT

ψTR

ψTRTR
ψI

ψRTR
ψR

ψRT

x2

x2
x1

x1

Figure 3.3: Ray tracing diagram showing scattering of two distinguishable δ-
interacting particles on R+.
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ψTRTR

ψRTR

ψR

ψTR

ψTRT

ψRT

ψI

ψT

σR

σT

Figure 3.4: Weyl group W2 generated by reflections σR and σT acting on a vector
ψI .
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Bringing our attention back to the geometry of the problem at hand, we enclose

the particles in a box of length l by enforcing the Dirichlet condition

ψ(x, l) = 0, (3.2.32)

which implies the relation

AP = −e−2ikP2lAPTRT . (3.2.33)

Finally, applying (3.2.30), (3.2.31) and (3.2.33) successively, we arrive at the con-

dition

e−2ikP2l = sp(kP1 + kP2)sp(kP2 − kP1) (3.2.34)

for all P ∈ W2. It is clear that the form of sp(k) is such that, if (3.2.34) is satisfied

for some P ∈ W2, then it is necessarily satisfied for elements PR and PTRT . We

thus have the pair of quantisation conditions

e−2ikj l = sp(kj + ki)sp(kj − ki), (3.2.35)

with j, i ≠ j ∈ {1,2}. Solutions (k1, k2) ≠ (0,0), such that 0 ≤ k1 ≤ k2, then

constitute energies (3.2.15).

3.2.3 Distinguishable particles in a box

Until this point we have considered only systems of bosons. Here we present a

system of two distinguishable particles confined to a box. The method closely

resembles that in Section 3.2.2 with the crucial difference being that we no longer

have equivalence between the subspaces d− and d+ of R2
+. To this end, we denote

functions ψ± as the restrictions of ψ to d±. In this setting, (3.2.2) decomposes into

(3.2.5) alongside the condition of continuity

ψ+(x1, x2)∣x1=x+2 = ψ
−(x1, x2)∣x1=x−2 (3.2.36)
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and the jump condition in the derivatives

(
∂

∂x1

−
∂

∂x2

− 2α)ψ+(x1, x2)∣x1=x+2 = (
∂

∂x1

−
∂

∂x2

)ψ−(x1, x2)∣x1=x−2 (3.2.37)

across the line x1 = x2, where α ∈ R parameterises the strength of interaction.

Again we wish to employ Dirichlet conditions at the endpoint of R+. These now

appear as the conditions

ψ−(0, x) = ψ+(x,0) = 0. (3.2.38)

The appropriate Laplace eigenfunction is then required to satisfy boundary con-

ditions (3.2.36)–(3.2.38). The choice of Bethe ansatz can be justified in the same

way as in the bosonic case taking into account that we must distinguish between

subdomains of R2
+. We thus have the ansatz

ψ±(x1, x2) = ∑
P ∈W2

A(P,±)ei(kP1x1+kP2x2), (3.2.39)

with A(P,±) defined as the amplitudes of the restrictions ψ±P of constituent plane

waves ψP to the domains d±. Figure 3.5 illustrates this justification in the spirit of

McGuire’s optical analogy. Depicting the state ψ−I as an optical wave propagating

in d−, and drawing a ray tracing diagram, we arrive at a collection of possible

resulting plane wave states ψ±P , with P ∈ W2, associated with each subdomain d±.

Using the form (3.2.39), equation (3.2.5) is again satisfied with Laplace eigenvalues

(3.2.15). Let us define the vector of amplitudes

AP =
⎛

⎝

A(P,−)

A(PT,+)

⎞

⎠
. (3.2.40)

The δ-type conditions (3.2.36)–(3.2.37) then imply

APT = Sp(kP1 − kP2)A
P , (3.2.41)
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Figure 3.5: Ray tracing diagram showing scattering of two distinguishable δ-
interacting particles on R+.



CHAPTER 3. EXACTLY SOLVABLE TWO-PARTICLE SYSTEMS 54

with

Sp(k) =
1

k + iα

⎛

⎝

−iα k

k −iα

⎞

⎠
, (3.2.42)

for all P ∈ W2. The Dirichlet condition (3.2.38) implies

APR = −AP (3.2.43)

for all P ∈ W2. To prove exact solvability we need only show that relations (3.2.41)

and (3.2.43) are consistent with the properties of W2. This amounts to the require-

ments

1. Sp(u)Sp(−u) = I2;

2. Sp(u)Sp(v) = Sp(v)Sp(u),

which are easily verified by the explicit form of Sp(k).

Enclosing the particles in a box of length l is enforcing the Dirichlet conditions

ψ−(x, l) = ψ+(l, x) = 0 (3.2.44)

which imply the relations

AP = −e−2ikP2lAPTRT (3.2.45)

for all P ∈ W2. Finally, applying (3.2.41), (3.2.43) and (3.2.45) successively, we

arrive at the condition that

z(kP1, kP2) = 0, (3.2.46)

with

z(k1, k2) = det [I2 − e
2ik1lSp(k1 − k2)Sp(k1 + k2)] , (3.2.47)

is satisfied for all P ∈ W2. We note here that the form of Sp(k) is such that, if

(3.2.46) is satisfied for some P ∈ W2, then it is necessarily satisfied for elements
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PR and PTRT . We thus have the pair of quantisation conditions

z(ki, kj) = 0, (3.2.48)

with j, i ≠ j ∈ {1,2}. Solutions (k1, k2) ≠ (0,0), such that 0 ≤ k1 ≤ k2, then consti-

tute energies (3.2.15).

We finish this section by showing how to recover the quantisation condition in Sec-

tion 3.2.2 where particles are assumed to be bosons. Requiring bosonic symmetry

is imposing the condition

ψ−(x1, x2) = ψ
+(x2, x1) (3.2.49)

which implies the relation

A(P,−) = A(PT,+) (3.2.50)

for all P ∈ W2. As a consequence, the matrix Sp(k) in (3.2.41), is replaced with the

scalar form sp(k)I2. Clearly then, the condition (3.2.35) is recovered from (3.2.48)

as required.

3.3 Extension to general graphs

In Sections 3.2.2 and 3.2.3, models were constructed by placing a pair of particles

on the half-line R+ and establishing an appropriate Bethe ansatz on which appro-

priate boundary conditions were imposed. In the language of quantum graphs,

this procedure amounts to considering two particles on a single external edge. We

would like to investigate how this approach can be generalised to graphs with more

than a single edge. It is natural then, to begin this investigation by considering

systems of two particles on a pair of external edges {e1, e2} with a common vertex

v = f(e1) = f(e2), that is, a two-edge infinite star graph.

Let us begin by introducing the vector

Ψ = (ψmn)
2
m,n=1 , (3.3.1)
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with each

ψmn = ψmn(x1, x2) (3.3.2)

defined on the domain

dmn = (0,∞) × (0,∞) (3.3.3)

so that x1 and x2 correspond to the positions of the particles along edges em and

en respectively.

Carrying over the procedure in previous sections, we look for solutions Ψ of the

eigenvalue equation

−∆2Ψ = EΨ (3.3.4)

where the two particle Laplacian acts according to

−∆2Ψ = (−
∂2ψmn
∂x2

1

−
∂2ψmn
∂x2

2

)

2

m,n=1

. (3.3.5)

Let us also define the subspaces

d+mn = {(x1, x2) ∈ dmn; x2 < x1} (3.3.6)

and

d−mn = {(x1, x2) ∈ dmn; x1 < x2} (3.3.7)

with functions ψ±mn, the restrictions of ψmn to d±mn.

3.3.1 Systems of δ-interacting particles

Ideally, we would like to consider systems of δ-interacting particles as in the pre-

vious sections. In this setting, such interactions occur when particles are located

at the same position on the same edge, and will be implemented according to the
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conditions

ψ+mm(x1, x2)∣x1=x+2 = ψ
−
mm(x1, x2)∣x1=x−2 ; (3.3.8)

(
∂

∂x1

−
∂

∂x2

− 2α)ψ+mm(x1, x2)∣x1=x+2 = (
∂

∂x1

−
∂

∂x2

)ψ−mm(x1, x2)∣x1=x−2 . (3.3.9)

The independence of particles located on different edges is established by imposing

the conditions

ψ+mn(x1, x2)∣x1=x+2 = ψ
−
mn(x1, x2)∣x1=x−2 ; (3.3.10)

(
∂

∂x1

−
∂

∂x2

)ψ+mn(x1, x2)∣x1=x+2 = (
∂

∂x1

−
∂

∂x2

)ψ−mn(x1, x2)∣x1=x−2 , (3.3.11)

with m ≠ n.

We would also like to characterise single-particle interactions at the vertices. Such

interactions are governed by the single-particle boundary conditions (2.4.4) which,

in the two-particle setting, can be written

A
⎛

⎝

ψ−1j(0, x)

ψ−2j(0, x)

⎞

⎠
+B

∂

∂x1

⎛

⎝

ψ−1j(0, x)

ψ−2j(0, x)

⎞

⎠
= 0; (3.3.12)

A
⎛

⎝

ψ+j1(x,0)

ψ+j2(x,0)

⎞

⎠
+B

∂

∂x2

⎛

⎝

ψ+j1(x,0)

ψ+j2(x,0)

⎞

⎠
= 0. (3.3.13)

The task is to construct explicit Laplace eigenfunctions Ψ which satisfy conditions

(3.3.8)–(3.3.13). Naively extending the approach in the previous sections, let us

assume compatibility with the Bethe ansatz

ψ±mn = ∑
P ∈W2

A
(P,±)
mn ei(kP1x1+kP2x2). (3.3.14)

Defining the eight-dimensional vector of amplitudes

AP =

⎛
⎜
⎜
⎝

(A
(P,−)
mn )

2

m,n=1

T4 (A
(PT,+)
mn )

2

m,n=1

⎞
⎟
⎟
⎠

, (3.3.15)
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with

T4 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.3.16)

and imposing on the form (3.3.14), the boundary conditions (3.3.8)–(3.3.11), we

arrive at the relations

APT = Y (kP1 − kP2)A
P , (3.3.17)

with

Y (k) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−iα
k+iα 0 0 0 k

k+iα 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 −iα
k+iα 0 0 0 k

k+iα
k

k+iα 0 0 0 −iα
k+iα 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 k
k+iα 0 0 0 −iα

k+iα

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.3.18)

Vertex conditions (3.3.12)–(3.3.13) imply

APR = (I2 ⊗ Sv(−kP1) ⊗ I2)A
P , (3.3.19)

where Sv(k) is the one-particle scattering matrix as defined in (2.3.8). To prove

exact solvability we need to show that relations (3.3.17) and (3.3.19) are consistent

with the properties of W2. This amounts to the requirements

1. Y (u)Y (−u) = I8;

2. Sv(u)Sv(−u) = I2;

3. Sv(u)Y (u + v)Sv(v)Y (v − u) = Y (v − u)Sv(v)Y (u + v)Sv(u).

While the first two cases are satisfied, the third is not. We must then conclude

that the two-particle star graph is not exactly solvable for general vertex condi-
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tions A,B and δ-type interactions.

We can of course choose certain vertex conditions A,B in order to describe systems

which we know, from the previous sections, to be exactly solvable. For example,

choosing standard boundary conditions

A =
⎛

⎝

1 −1

0 0

⎞

⎠
and B =

⎛

⎝

0 0

1 1

⎞

⎠
, (3.3.20)

yields the scattering matrix

Sv(k) =
⎛

⎝

0 1

1 0

⎞

⎠
. (3.3.21)

Alternatively, choosing Dirichlet conditions

A = I2 and B = 0, (3.3.22)

yields the scattering matrix

Sv(k) = −I2. (3.3.23)

In each case, the third condition above is easily seen to hold. We might also

consider turning off the δ-interactions altogether, that is, setting α = 0. In this

case we have

Y (k)∣α=0 =
⎛

⎝

0 1

1 0

⎞

⎠
⊗T4 (3.3.24)

and again the third condition above is easily seen to hold. Indeed, in this setting,

the model collapses to two separable one-particle systems.

3.3.2 Systems of δ̃-interacting particles

The purpose of this thesis is to extend the Bethe ansatz approach to general

two-particle quantum graphs. As we have seen, though, systems of δ-interacting

particles on a two-edge infinite star graph are, in general, not compatible with

this approach. We wish to characterise a system which is exactly solvable and
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thus scalable to general quantum graphs. Such a system was identified in [CC07].

The central notion therein was to impose certain non-local δ-type interactions

characterised by the conditions

ψ+mn(x1, x2)∣x1=x+2 = ψ
−
nm(x1, x2)∣x1=x−2 ; (3.3.25)

(
∂

∂x1

−
∂

∂x2

− 2α)ψ+mn(x1, x2)∣x1=x+2 = (
∂

∂x1

−
∂

∂x2

)ψ−nm(x1, x2)∣x1=x−2 (3.3.26)

for all edge couples (em, en). In the remainder of this thesis we refer to these

interactions as δ̃-type. We stress here that such interactions can take place when

particles are located on different edges and are therefore rather less physical than

the δ-type contact interactions imposed up until now. We choose δ̃-type inter-

actions since, as we will show, they permit exact solutions via the Bethe ansatz

method. As we have discussed, in general, quantum graphs with δ-type interac-

tions do not permit exact solutions. In this way there is a clear trade-off between

physicality and exact solvability in the types of particle interaction we wish to

consider.

Let us proceed as before by applying appropriate boundary conditions to vectors

Ψ. Using the form (3.3.14), the δ̃-type conditions (3.3.25)–(3.3.26) imply

APT = (Sp(kP1 − kP2) ⊗ I4)A
P . (3.3.27)

Boundary conditions at the vertices are again given by (3.3.12) and (3.3.13) and

imply the relation (3.3.19). To prove exact solvability we need only show that rela-

tions (3.3.19) and (3.3.27) are consistent with the properties of W2. This amounts

to the requirements

1. Sp(u)Sp(−u) = I2;

2. Sv(u)Sv(−u) = I2;

3. (I2 ⊗ Sv(u) ⊗ I2) (Sp(u + v) ⊗ I4) (I2 ⊗ Sv(v) ⊗ I2) (Sp(v − u) ⊗ I4)

= (Sp(v − u) ⊗ I4) (I2 ⊗ Sv(u) ⊗ I2) (Sp(u + v) ⊗ I4) (I2 ⊗ Sv(v) ⊗ I2),

which are easily verified by using the explicit forms of Sp(k) and Sv(k) as well as
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the result in [KS06a] that, for any A,B and u, v, we have the commutation relation

[Sv(u), Sv(v)] = 0. (3.3.28)

3.3.3 Calculating spectra

Now we have established exactly solvable systems of two δ̃-interacting particles

on two-edge infinite star graphs, we would like to calculate the spectra of certain

compact analogues. As previously, this involves imposing certain conditions which

restrict the particles to a finite domain. Each of the examples we present here are

the two-particle versions of those given in [CC07] (see Proposition 3.1 therein).

Particles in a circle with an impurity

Let us first consider the problem of two δ̃-interacting particles on a circle of length

2l with an impurity characterised by matrices A,B. Confining the particles to this

structure is enforcing periodic conditions on each particle according to

ψ−j1(x, l) = ψ
−
j2(x, l); (3.3.29)

∂

∂x2

ψ−j1(x,x2)∣x2=l = −
∂

∂x2

ψ−j2(x,x2)∣x2=l; (3.3.30)

ψ+1j(l, x) = ψ
+
2j(l, x); (3.3.31)

∂

∂x1

ψ+1j(x1, x)∣x1=l = −
∂

∂x1

ψ+2j(x1, x)∣x1=l, (3.3.32)

which imply the relation

AP = e−2ikP2l (I4 ⊗ ( 0 1
1 0 ))A

PTRT (3.3.33)

for all P ∈ W2. Applying (3.3.19), (3.3.27) and (3.3.33) successively, we arrive at

the condition that

Zcircle(kP1, kP2) = 0, (3.3.34)

with

Zcircle(k1, k2) = det [I8 − e
2ik2lSp(k1 + k2)Sp(k2 − k1) ⊗ Sv(k2) ⊗ ( 0 1

1 0 )] , (3.3.35)
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is satisfied for all P ∈ W2. We note here that the forms of Sp(k) and Sv(k) are

such that, if (3.3.34) is satisfied for some P ∈ W2, then it is necessarily satisfied for

elements PR and PTRT . We thus have the pair of quantisation conditions

Zcircle(ki, kj) = 0, (3.3.36)

with j, i ≠ j ∈ {1,2}. Solutions (k1, k2) ≠ (0,0), such that 0 ≤ k1 ≤ k2, then consti-

tute energies (3.2.15).

Let us also calculate the appropriate quantisation condition where particles are

assumed to be bosons. Requiring bosonic symmetry is imposing the condition

ψ−mn(x1, x2) = ψ
+
nm(x2, x1) (3.3.37)

which implies the relation

AP =
⎛

⎝

0 I4

I4 0

⎞

⎠
AP (3.3.38)

for all P ∈ W2. As a consequence, matrices Sp(k) are replaced with the scalar

forms sp(k)I2 and (3.3.36) reduces to the quantisation condition

e2ikj lsp(kj + ki)sp(kj − ki) = ± eig (Sv(−kj)) . (3.3.39)

Particles in a box with a central impurity

By instead choosing Dirichlet boundary conditions

ψ−mn(x, l) = ψ
+
mn(l, x) = 0 (3.3.40)

we confine particles to a box of length l with a central impurity. Conditions (3.3.40)

imply the relations

AP = −e−2ikP2lAPTRT (3.3.41)
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which, in combination with (3.3.19) and (3.3.27) yields the condition that

Zbox(kP1, kP2) = 0, (3.3.42)

with

Zbox(k1, k2) = det [I4 + e
2ik2lSp(k1 + k2)Sp(k2 − k1) ⊗ Sv(k2)] , (3.3.43)

is satisfied for all P ∈ W2. By following the arguments in the previous example, we

arrive at the pair of quantisation conditions

Zbox(ki, kj) = 0, (3.3.44)

with j, i ≠ j ∈ {1,2}. Again, solutions (k1, k2) ≠ (0,0), such that 0 ≤ k1 ≤ k2,

constitute energies (3.2.15). Imposing bosonic symmetry according to (3.3.37),

this condition reduces to

e2ikj lsp(kj + ki)sp(kj − ki) = − eig (Sv(−kj)) . (3.3.45)

3.4 Spectral statistics

In this chapter we have discussed a number of two-particle systems which, by

application of the Bethe ansatz method, we have shown to be exactly solvable.

Furthermore, we have deduced quantisation conditions which provide the spectra

of the systems. In this final section, we investigate the properties of these spectra.

For compactness we restrict our attention to two examples of bosonic systems. In

each case, we perform numerical eigenvalue searches to obtain the smallest 10,000

energy levels, choosing the length scale l = 1. In particular, we pay attention to

the nearest neighbour energy level distribution (2.6.13) as well as the appropriate

Weyl law

N(E) ∼
L2

8π
E, E →∞ (3.4.1)
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proved in [BK13c] for two-boson quantum graphs with singular contact interac-

tions. To this end, we will assign a line of best fit

N(E) = aE + b
√
E + c (3.4.2)

to the counting function and calculate

L2

8πa
, (3.4.3)

with values close to unity signifying agreement with (3.4.1).

3.4.1 Bosons in a box

Let us take, as a first example, a system of two δ-interacting bosons in a box. The

appropriate spectra are the Laplace eigenvalues (3.2.15) calculated according to

the quantisation conditions (3.2.35).

Figure 3.6 plots the α-dependancy of the lowest energy levels of the system for

repulsive interactions α > 0. We observe that, in the case α →∞, each eigenvalue

exactly corresponds to an eigenvalue for α → 0. This follows from the fact that

sp(kj + ki)sp(kj − ki)∣α=0 = lim
α→∞

sp(kj + ki)sp(kj − ki) = 1, (3.4.4)

for k1 ≠ k2, so that in each case, the quantisation conditions (3.2.35) reduce to the

familiar independent conditions

e2ikj l = 1, (3.4.5)

with i, j ≠ i ∈ {1,2}. Additional eigenvalues for α → 0 in Figure 3.6, appear as a

consequence of the case k1 = k2 where the limit

lim
α→0

sp(kj + ki)sp(kj − ki) = −1. (3.4.6)

As illustrated by the example in Figure 3.7, at higher energies, we observe in-

creasingly degenerate eigenvalues for α → 0 and α →∞. To understand how these

degeneracies arise let us consider the Laplace eigenvalues prescribed by (3.4.5)
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Figure 3.6: Dependency on interaction strength α of small eigenvalues of a system
of two bosons in a box.
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Figure 3.7: Dependency on interaction strength α of six large eigenvalues which
are degenerate at α = 0 for a system of two bosons in a box.
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which can be written

Emn =
π2

l2
(n2 +m2), (3.4.7)

with m,n ∈ N0. The multiplicities of energies Emn clearly correspond to the mea-

sure of degeneracy

r2(d) = #{(m,n) ∈ N2
0; m2 + n2 = d}. (3.4.8)

The average value

r2(d) =
π

4
(3.4.9)

can be calculated by counting the lattice points on a quarter of a circle [CK97].

Let us also define the related measure

B2(d) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if r2(d) ≥ 1;

0 if r2(d) = 0.
(3.4.10)

Landau [Lan08] showed that the local average value B2(d) is given by

lim
d→∞

B2(d) ≃
0.764
√

lnd
. (3.4.11)

Simplistically, so that the result (3.4.9) is consistent with this logarithmically in-

creasing separation between eigenvalues, there must be a corresponding logarith-

mic increase of the average degeneracy of the eigenvalues [CK97].

Generic quantum systems which are integrable in the classical limit are conjectured

to have spectra with Poissonian statistics [BT77]

p(s) = e−s. (3.4.12)

Although the system in question is integrable, degenerate eigenvalues (3.4.7) make

it non-generic. In this setting we expect spectral statistics to fluctuate about the

generic Poissonian background [CK99]. Figure 3.8 depicts the nearest neighbour

energy level distribution. Firstly for α = 0 and α → ∞ one notices a large pro-
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Figure 3.8: Integrated level spacings distributions for systems of two bosons in a
box.

portion of spacings equal to zero corresponding to degenerate values. The step

function form results from the discrete nature of possible energy level separations.

As α moves away from these extremes, the system becomes more generic and thus

approaches Poissonian spectral statistics.

Let us compare the eigenvalue counting function N(E) as defined in (2.5.1) to the

appropriate Weyl law (3.4.1). Figure 3.9 plots the counting function with α = 100.

The leading term in N̄(E) is consistent with the Weyl law for all interaction

strengths α; in this case we have the value

L2

8πa
= 0.995. (3.4.13)

3.4.2 Bosons on a circle with an impurity

As a second example, let us take a system of two δ̃-interacting bosons on a circle

with an impurity parameterised by δ-type vertex conditions
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Figure 3.9: Counting functions N(E) (solid line) with line of best fit N(E) (dashed
line) for systems of two bosons in a box.
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Figure 3.10: Dependency on impurity interaction strength η of small eigenvalues
of a system of two bosons in a box with α = 100.
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Figure 3.11: Integrated level spacings distributions for systems of two bosons on
a circle with an impurity.

A =
⎛

⎝

1 −1

−η 0

⎞

⎠
and B =

⎛

⎝

0 0

1 1

⎞

⎠
. (3.4.14)

The appropriate spectra are the Laplace eigenvalues (3.2.15) calculated according

to the quantisation condition (3.3.39) with

eig (Sv(−k)) = {−1,
2k + iη

2k − iη
} . (3.4.15)

We note here that the equivalent condition in [CC07] is recovered simply by repa-

rameterising the impurity according to

η =
2

tan(ζ)
. (3.4.16)

We have discussed, in the previous example, the effect of degenerate eigenvalues on

the deviation of the spectra from Poissonian statistics. To progress, let us choose

an interaction strength (α = 100) which minimises this effect. Figure 3.10 shows
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Figure 3.12: Counting functions N(E) (solid line) with line of best fit N(E)

(dashed line) for systems of two bosons on a circle with an impurity.

the η-dependency of a collection of low-energy levels. We observe here that the

spectra for η → 0 and for η → ±∞ are identical. This follows from the fact that

± lim
η→0

eig (Sv(−k)) = ± lim
η→±∞

eigSv(−k) = {±1,±1}. (3.4.17)

We also observe that negative coupling strengths η < 0 give rise to bound states

with the impurity.

Again, degenerate eigenvalues play a role in the spectral statistics we expect. As

can be seen in Figure 3.10, degenerate eigenvalues appear as η → ±∞ and η → 0.

At these limits, we thus expect a large number of energy level separations which

approach zero. Away from these extremes we expect a transition to a generic

system and thus Poissonian statistics. Figure 3.11 depicts these statistics.

Finally, we would again like to compare the eigenvalue counting function N(E)

to the Weyl law (3.4.1) which we know to be true for contact interactions. Figure

3.12 plots the counting function with α = 100, η = 100. It turns out that the leading
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term in N̄(E) does not agree with the Weyl prediction; in this case we have the

value

L2

8πa
= 0.246. (3.4.18)

Disagreement with the Weyl prediction here is due to the character of the δ̃-type

interactions which invoke coupling between particles on different edges. The Weyl

law (3.4.1) refers to contact interactions which occur when particles are located at

the same position. Providing a correct Weyl law for δ̃-interactions is beyond the

scope of this thesis but serves as an interesting area for further study.



Chapter 4

Two-particle quantum graphs

In this chapter we extend the Bethe ansatz approach formalised in the previous

chapter to general quantum graphs. Following [BK13c], we begin by constructing

general two-particle quantum graphs with singular contact interactions, establish-

ing appropriate boundary conditions which characterise self-adjoint two-particle

Laplacians. Such graphs are, in general, not exactly solvable. With this in mind,

the remainder of the chapter will focus on constructing two-particle graphs with

non-local δ̃-interactions introduced in Section 3.3.2, showing that corresponding

boundary conditions provide self-adjoint realisations of the two-particle Laplacian.

Using an appropriate Bethe ansatz we then prove that such systems are exactly

solvable and calculate their spectra. We finish by discussing the spectral statistics

of some examples.

4.1 General graphs with contact interactions

Consider the compact graph Γ(V ,I, f). In Section 2.2 we introduced the Hilbert

space H1 for a single particle on Γ. The Hilbert space of a many-particle quantum

system is given by the tensor product of one-particle Hilbert spaces [Bon15]. The

appropriate two-particle Hilbert space for a compact two-particle quantum graph

is then

H2 = (
∣I∣

⊕
j=1

L2(0, lj)) ⊗ (
∣I∣

⊕
j=1

L2(0, lj)) . (4.1.1)

72
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Vectors

Ψ = (ψmn)
∣I∣

m,n=1 (4.1.2)

in H2 are lists of two-particle functions ψmn ∶ Dmn → C in L2(Dmn) with rectan-

gular subdomains defined as

Dmn = (0, lm) × (0, ln). (4.1.3)

The total configuration space for two particles on Γ is the disjoint union

DΓ =
∣I∣

⊍
m,n=1

Dmn (4.1.4)

of these rectangles. The two-particle Hilbert space can then be written

H2 = L
2(DΓ) =

∣I∣

⊕
m,n=1

L2(Dmn). (4.1.5)

At this point let us introduce the two-particle Laplacian −∆2 which acts according

to

−∆2Ψ = (−
∂2ψmn
∂x2

1

−
∂2ψmn
∂x2

2

)

∣I∣

m,n=1

. (4.1.6)

We wish to consider the two-particle eigenvalue equation

−∆2Ψ = EΨ (4.1.7)

alongside boundary conditions which prescribe interactions at the vertices as well

as singular contact interactions between particles. The latter take place along the

diagonals x1 = x2 of squares Dmm and naturally define the dissected configuration

space

D∗
Γ =

⎛

⎝

∣I∣

⊍
m,n=1∣m≠n

Dmn

⎞

⎠
⊍(

∣I∣

⊍
m=1

(D+
mm ⊍D−

mm)) , (4.1.8)
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with subdomains of dissected squares D∗
mm defined as

D+
mm = {(x1, x2) ∈Dmm; x1 > x2} (4.1.9)

and

D−
mm = {(x1, x2) ∈Dmm; x1 < x2}. (4.1.10)

The total dissected two-particle Hilbert space is then H ∗
2 = L2(D∗

Γ). Thus vectors

Ψ ∈ H ∗
2 are lists

Ψ =

⎛
⎜
⎜
⎜
⎝

(ψmn)
∣I∣

m,n=1∣m≠n

(ψ+mm)
∣I∣

m=1

(ψ−mm)
∣I∣

m=1

⎞
⎟
⎟
⎟
⎠

(4.1.11)

of square-integrable functions ψmn ∶Dmn → C, for m ≠ n, and ψ±mm ∶D±
mm → C. We

remark here that H2 and H ∗
2 are in fact equivalent Hilbert spaces. We distinguish

between the two in order to make it apparent when functions are defined on the

dissected configuration space D∗
Γ. As in the one-particle setting, boundary condi-

tions will be imposed on functions in an appropriate Sobolev space. To this end

we define H2(D∗
Γ) as the set of Ψ ∈ H ∗

2 consisting of functions ψmn ∈ H2(Dmn),

for m ≠ n, and ψ±mm ∈H2(D±
mm).

Before we continue, it is convenient to single out certain interactions which will

be of particular importance to us. In the remainder of this thesis we will always

impose boundary conditions which prescribe single-particle interactions with ver-

tices. These will be described by simple two-particle lifts of those (2.2.13) imposed

in the one-particle setting. The values of Ψ ∈H2(D∗
Γ) at the vertices are given by

boundary vectors

Ψ
(v)
bv (y) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(ψmn(0, lny))
∣I∣

m,n=1

(ψmn(lm, lny))
∣I∣

m,n=1

(ψmn(lmy,0))
∣I∣

n,m=1

(ψmn(lmy, ln))
∣I∣

n,m=1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and Ψ
(v)
bv

′

(y) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(ψmn,1(0, lny))
∣I∣

m,n=1

(ψmn,1(lm, lny))
∣I∣

m,n=1

(ψmn,2(lmy,0))
∣I∣

n,m=1

(ψmn,2(lmy, ln))
∣I∣

n,m=1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.1.12)

for all y ∈ (0,1), where for compactness, the labels ± on functions ψ±mm ∈D±
mm are
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dropped. Here, functions ψmn,1 and ψmn,2 denote inward derivatives normal to the

lines x1 = 0 and x2 = 0 respectively. Boundary conditions at the vertices are then

(I2 ⊗A⊗ I∣I∣)Ψ
(v)
bv + (I2 ⊗B ⊗ I∣I∣)Ψ

(v)
bv

′

= 0, (4.1.13)

with A,B defined as in Theorem 2.2.2. Let us also define boundary conditions

which prescribe δ-interactions. These are exact analogues of those imposed in

Section 3.2, where particles are confined to an interval. On a general graph, such

interactions are characterised by the conditions

ψ+mm(x1, x2)∣x1=x+2 = ψ
−
mm(x1, x2)∣x1=x−2 ; (4.1.14)

(
∂

∂x1

−
∂

∂x2

− 2α)ψ+mm(x1, x2)∣x1=x+2 = (
∂

∂x1

−
∂

∂x2

)ψ−mm(x1, x2)∣x1=x−2 (4.1.15)

for all x1, x2 ∈ (0, lm).

4.1.1 Self-adjoint realisation

Two-particle observables are self-adjoint operators on the Hilbert space H ∗
2 . We

thus look for self-adjoint realisations of −∆2 with domains characterised by bound-

ary conditions which prescribe interactions at the vertices as well as singular con-

tact interactions between particles.

Let H2
0(D

∗
Γ) ⊂ H2(D∗

Γ) carry the extra condition that functions ψmn and ψ±mm

vanish at the boundaries of their respective subdomains along with their inward

derivatives. This is the requirement that, for all y ∈ [0,1],

ψmn(0, lny) = ψmn(lm, lny) = ψmn(lmy,0) = ψmn(lmy, ln)

=ψmn,1(0, lny) = ψmn,1(lm, lny) = ψmn,2(lmy,0) = ψmn,2(lmy, ln) = 0
(4.1.16)

in rectangles Dmn, with m ≠ n, and

ψ−mm(0, lmy) = ψ
+
mm(lm, lmy) = ψ

+
mm(lmy,0) = ψ

−
mm(lmy, lm)

=ψ−mm,1(0, lmy) = ψ
+
mm,1(lm, lmy) = ψ

+
mm,2(lmy,0) = ψ

−
mm,2(lmy, lm)

=ψ−mm(lmy, lmy) = ψ
+
mm(lmy, lmy)

=ψ−mm,d(lmy, lmy) = ψ
+
mm,d(lmy, lmy) = 0

(4.1.17)
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in dissected squares D∗
mm. Let −∆0

2 denote the Laplacian −∆2 with domain

H2
0(D

∗
Γ). Integrating by parts, and using the boundary conditions (4.1.16)–(4.1.17),

it is easy to show that the expression

⟨Φ∣ −∆2Ψ⟩ − ⟨−∆2Φ∣Ψ⟩ (4.1.18)

vanishes for all Φ,Ψ ∈H2
0(D

∗
Γ) and therefore that the operator −∆0

2 is symmetric.

As shown in [BK13c], it is not however, self-adjoint. Furthermore, in contrast to

the one-particle setting, the domain D(−∆0
2
∗
) of the adjoint operator −∆0

2
∗

is not

generally known to be contained within H2(D∗
Γ). In the one-particle setting (see

Section 2.2), self-adjoint realisations of −∆1 can be found by searching for maxi-

mal symmetric extensions of −∆0
1 with domain D(−∆0

1) ⊂ H
2(Γ). Crucially, the

domain of the adjoint operator −∆0
1
∗

is also a subset of H2(Γ). We can therefore

be assured that the domain of any self-adjoint realisation of −∆1 is itself a sub-

set of H2(Γ) and thus consists of functions with valid second derivatives. In the

two-particle case, since it could be the case that H2(D∗
Γ) ⊂ D(−∆0

2
∗
), we cannot

be sure that domains of self-adjoint realisations of −∆2 are themselves contained

in H2(D∗
Γ) and thus consist of functions with valid second order partial deriva-

tives. For this reason, a straightforward generalisation of the one-particle method

of finding maximal symmetric extensions cannot be made. In particular we have

the additional requirement that self-adjoint extensions have domains which are

subsets of H2(D∗
Γ). We will call this property H2-regularity.

Self-adjoint realisations of −∆2 will be extensions of −∆0
2 with domains char-

acterised by conditions on boundary values of functions Ψ ∈ H2(D∗
Γ) and their

derivatives. To this end, we define the boundary vectors

Ψbv(y) = (ψmn,bv(y))
∣I∣

m,n=1 and Ψ′
bv(y) = (ψ′mn,bv(y))

∣I∣

m,n=1
(4.1.19)

for all y ∈ (0,1), where ψmn,bv, ψ′mn,bv, with m ≠ n, and ψmm,bv, ψ′mm,bv list values

at the boundaries of Dmn and D∗
mm respectively. Specifically, for m ≠ n, there are
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no interactions between particles and we set

ψmn,bv(y) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ψmn(0, lny)

ψmn(lm, lny)

ψmn(lmy,0)

ψmn(lmy, ln)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and ψ′mn,bv(y) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ψmn,1(0, lny)

ψmn,1(lm, lny)

ψmn,2(lmy,0)

ψmn,2(lmy, ln)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.1.20)

For m = n, we must include boundary vectors along the diagonals x1 = x2 to

accommodate singular contact interactions. We thus set

ψmm,bv(y) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ψ−mm(0, lmy)

ψ+mm(lm, lmy)

ψ+mm(lmy,0)

ψ−mm(lmy, lm)

ψ+mm(lmy, lmy)

ψ−mm(lmy, lmy)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and ψ′mm,bv(y) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ψ−mm,1(0, lmy)

ψ+mm,1(lm, lmy)

ψ+mm,2(lmy,0)

ψ−mm,2(lmy, lm)

ψ+mm,d(lmy, lmy)

ψ−mm,d(lmy, lmy)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.1.21)

Here functions ψmm,d are inward derivatives normal to the lines x1 = x2. Clearly

we have that Ψbv(y),Ψ′
bv(y) ∈ Cn(I) with n(I) = 4∣I∣2 + 2∣I∣. It is easy to see that,

with these definitions, the domain H2
0(D

∗
Γ) of the symmetric Laplacian −∆0

2 can

be characterised by the condition Ψbv(y) = Ψ′
bv(y) = 0.

After having defined boundary vectors Ψbv(y) and Ψ′
bv(y), one can characterise

self-adjoint realisations of −∆2 in an analogous way to the approach in [Kuc04] for

one-particle quantum graphs (see Theorem 2.2.3), that is by defining a symmetric,

semibounded and closed form q with domain D(q) and then, using Theorem 2.1.5,

extracting the associated self-adjoint operator H with domain D(H) ∈ D(q). In

this way, by first assuming that domains D(H) possess H2-regularity, Bolte and

Kerner [BK13c] established self-adjoint realisations of −∆2 which we present in

the following theorem.

Theorem 4.1.1. Let bounded and measurable maps P,L ∶ [0,1] → M(n(I),C)

be such that

1. P (y) = In(I) −Q(y) is an orthogonal projector of class C1;

2. L(y) a self-adjoint endomorphism on kerP (y),
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for almost every y ∈ [0,1]. Additionally let bounded and self-adjoint operators

Π and Λ on L2(0,1) ⊗ Cn(I) act according to Πχ(y) ∶= P (y)χ(y) and Λχ(y) ∶=

L(y)χ(y) on χ ∈ L2(0,1)⊗Cn(I). Finally let us define the domain D2(P,L) as the

set of Ψ ∈H2(D∗
Γ) such that

P (y)Ψbv(y) = 0 and Q(y)Ψ′
bv(y) +L(y)Q(y)Ψbv(y) = 0. (4.1.22)

The two-particle Laplacian −∆2 with domain D2(P,L) is self-adjoint.

For completeness, let us present an outline of the proof of Theorem 4.1.1, which we

reiterate is found in [BK13c]. The starting point is the definition of the symmetric

sesquilinear form

Q
(2)
PL[Φ,Ψ] = ⟨∇Φ∣∇Ψ⟩H ∗

2
− ∫

1

0
⟨Φbv(y)∣L(y)Ψbv(y)⟩Cn(I)dy (4.1.23)

defined on the domain

D
(2)
Q = {Ψ ∈H1(D∗

Γ); P (y)Ψbv(y) = 0} (4.1.24)

for almost every y ∈ [0,1]. The fact that the corresponding quadratic form

Q
(2)
PL[Ψ,Ψ] is semibounded and closed (see Definition 2.1.4) is established in [BK13b]

for the un-dissected configuration space DΓ and is easily adapted to account for

triangular subspaces D±
mm in the dissected space D∗

Γ. Using Theorem 2.1.5, the

form Q
(2)
PL, defined on the domain D

(2)
Q , corresponds to a self-adjoint operator H

with domain D(H) ⊂D
(2)
Q such that

Q
(2)
PL[Φ,Ψ] = ⟨Φ∣HΨ⟩ (4.1.25)

for every Φ ∈ D
(2)
Q and Ψ ∈ D(H). At this point, we make the additional as-

sumption that the quadratic form Q
(2)
PL leads to operators H with domains D(H)

which possess H2-regularity, that is D(H) ⊂ H2(D∗
Γ). In order to determine the

action of H, let us restrict our attention to the set of functions Φ ∈D
(2)
Q for which

Φbv(y) = 0. Then, by partial integration, we have that

Q
(2)
PL[Φ,Ψ] = ⟨Φ∣ −∆2Ψ⟩ (4.1.26)

so that, by comparison to (4.1.25), the operator H acts as the two-particle Lapla-
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cian −∆2. In order to establish the domain D(H), we now extend our consideration

to all functions Φ ∈D
(2)
Q . Again, by partial integration, one has that

−∫

1

0
⟨Φ′

bv(y) +L(y)Φbv(y)∣Ψbv(y)⟩Cn(I)dy = 0. (4.1.27)

Finally, recalling that, since Ψ ∈D
(2)
Q , Ψbv is an arbitrary vector in ker Π, we must

have that

Φ′
bv(y) +L(y)Φbv(y) ∈ ker Π⊥, (4.1.28)

which implies

Q(y)(Ψ′
bv(y) +L(y)Ψbv(y)) = 0. (4.1.29)

Using the properties of P and L we arrive at the second condition in (4.1.22) which

completes the proof.

Before we address the issue of H2-regularity, let us show how to recover bound-

ary conditions (4.1.13)–(4.1.15) by choosing P and L appropriately. Firstly, to

distinguish boundary values relating to vertex interactions from those relating to

particle interactions we assume the decomposition

Cn(I) =Wv ⊕Wp (4.1.30)

where Wv and Wp have dimension 4∣I∣2 and 2∣I∣ respectively. The subspace Wv

is then composed of all components in vectors (4.1.20) as well as the top four

components in vectors (4.1.21). The subspace Wp is composed of the bottom two

components in vectors (4.1.21). Choosing block diagonal forms

P =
⎛

⎝

Pv 0

0 Pp

⎞

⎠
and L =

⎛

⎝

Lv 0

0 Lp

⎞

⎠
(4.1.31)

with respect to this decomposition, we impose that vertex and particle interactions

are independent of each other.

For vertex interactions we first note that the restrictions of Ψbv and Ψ′
bv to Wv
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are the boundary vectors (4.1.12). In order to recover the boundary conditions

(4.1.13) which prescribe single-particle interactions with the vertices, we must

establish correspondence between maps Pv, Lv and matrices A,B. To this end, in

exact analogy to the approach in Section 2.2, let Pv be an orthogonal projection

onto ker(I2 ⊗B ⊗ I∣I∣) and

Lv = (I2 ⊗B
−1
(kerB)⊥A⊗ I∣I∣)Qv. (4.1.32)

Substituting into (4.1.22), we recover boundary conditions (4.1.13) as required.

In Wp we would like to distinguish clearly between contact interactions on different

edges. Therefore we define the decomposition

Wp =
∣I∣

⊕
m=1

Wp,m, (4.1.33)

where each Wp,m is composed of the bottom two components of ψmm,bv. Then, by

fixing the block diagonal forms

Pp =
∣I∣

⊕
m=1

Pp,m and Lp =
∣I∣

⊕
m=1

Lp,m (4.1.34)

with respect to this decomposition, we impose that there are no interactions be-

tween particles on different edges. Of particular interest to us will be δ-type contact

interactions prescribed by conditions (4.1.14)–(4.1.15). It is easy to see that these

conditions are retrieved by setting

Pp,m(y) =
1

2

⎛

⎝

1 −1

−1 1

⎞

⎠
and Lp,m(y) = −αI2. (4.1.35)

Finally, let us bring our attention back to the problem of H2-regularity. For

certain additional conditions on the maps P and L, Bolte and Kerner [BK13c]

proved that the quadratic form Q
(2)
PL does indeed lead to domains D2(P,L) which

are contained in H2(D∗
Γ). We choose not to present the general theorem here, but

remark that the maps include those prescribed above for δ-interactions. It will be

useful later in this chapter to mention that, in order to show D2(P,L) ⊂H2(D∗
Γ),

it is enough to show H2-regularity on each subspace Dmn and D±
mm. The former
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is established in [BK13b], the latter in [BK13c]. In subsequent sections we will

define variants of δ-type interactions which will appear as boundary conditions

along new dissections of DΓ. We argue here that H2-regularity therein can always

be assured by imposing further dissections of DΓ into constituent subspaces which

are equivalent to Dmn and D±
mm.

4.1.2 Spectra

In Section 2.3, we calculated the spectra of one particle quantum graphs by speci-

fying the form (2.3.2) of eigenfunctions of −∆1 and applying boundary conditions

(2.2.13). We would like to extend this approach to the two-particle quantum graph

setting. As we are dealing with a two dimensional configuration space, the diffi-

culty is that, in general, there does not exist a suitable analogue of the general

form of an eigenfunction (2.3.2). As shown in Chapter 3, however, in particular

cases, a Bethe ansatz can be used in this way. We present two such examples next.

The task will be to specify eigenvectors Ψ ∈ H2(D∗
Γ) of −∆2 which satisfy vertex

conditions (4.1.13) as well as the δ-type interaction conditions (4.1.14)–(4.1.15).

Justifying the Bethe ansatz method as in Chapter 3, the vector Ψ will be described

by the collection of functions

ψmn(x1, x2) = ∑
P ∈W2

APmne
i(kP1x1+kP2x2) (4.1.36)

on rectangles Dmn, for m ≠ n, and

ψ±mm(x1, x2) = ∑
P ∈W2

A
(P,±)
mm ei(kP1x1+kP2x2) (4.1.37)

on squares D±
mm. The eigenvalue equation (4.1.7) is then satisfied with Laplace

eigenvalues

E = k2
1 + k

2
2. (4.1.38)

Non-interacting particles

We begin by considering the example of two non-interacting particles on Γ. Such

particles obey δ-type boundary conditions (4.1.14)–(4.1.15) with α = 0. Together
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with the form specified by (4.1.37), these conditions imply the relations

A
(P,+)
mm = A

(P,−)
mm = APmm (4.1.39)

for all P ∈ W2, where the final equality is made so that we can drop labels ±. Let

us define the vector of amplitudes

AP = (APmn)
∣I∣

m,n=1 (4.1.40)

and also the d2 × d2 permutation matrix

Td2 =
⎛
⎜
⎜
⎜
⎝

Id ⊗m1

⋮

Id ⊗md

⎞
⎟
⎟
⎟
⎠

, (4.1.41)

with row vectors

mj = (
0 . . .0
²
j−1

1 0 . . .0
²
d−j

) . (4.1.42)

It is convenient to note the properties

Td2 (Amn)
d
m,n=1 = (Amn)

d
n,m=1 (4.1.43)

for d2-dimensional column vectors A and

Td2(M ⊗N)Td2 = N ⊗M (4.1.44)

for any d×d matrices M and N . Using the form (4.1.36), the boundary conditions

(4.1.13) then imply the relations

(A⊗ I∣I∣)
⎛

⎝

AP +APR

(eikP1l ⊗ I∣I∣)AP + (e−ikP1l ⊗ I∣I∣)APR
⎞

⎠

+ikP1(B ⊗ I∣I∣)
⎛

⎝

AP −APR

−(eikP1l ⊗ I∣I∣)AP + (e−ikP1l ⊗ I∣I∣)APR
⎞

⎠
= 0

(4.1.45)
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and

(A⊗ I∣I∣)
⎛

⎝

T∣I∣2A
PT +T∣I∣2A

PRT

(eikP1l ⊗ I∣I∣)T∣I∣2A
PT + (e−ikP1l ⊗ I∣I∣)T∣I∣2A

PRT

⎞

⎠

+ikP1(B ⊗ I∣I∣)
⎛

⎝

T∣I∣2A
PT −T∣I∣2A

PRT

−(eikP1l ⊗ I∣I∣)T∣I∣2A
PT + (e−ikP1l ⊗ I∣I∣)T∣I∣2A

PRT

⎞

⎠
= 0

(4.1.46)

for all P ∈ W2, with eikl defined in (2.3.6). Using the properties of Kronecker

products, each of these can be shown to imply the condition

det [AX(kP1, l) + ikBY (kP1, l)] = 0, (4.1.47)

with X(k, l) and Y (k, l) defined in (2.3.5). Following the proof of Theorem 2.3.1

we arrive at the condition

Z(kP1) = 0 (4.1.48)

for all P ∈ W2, where

Z(k) = det [I2∣I∣ − Sv(k)T (k, l)] . (4.1.49)

Here Sv(k) is the one-particle scattering matrix defined in (2.3.8) and T (k, l) is

defined in (2.3.7). We note that the forms of Sv(k) and T (k, l) are such that, if

(4.1.48) is satisfied for some P ∈ W2, then it is necessarily satisfied for elements

PR and PTRT (4.1.50)

in W2. Thus we have two independent conditions,

Z(kj) = 0 (4.1.51)

for j ∈ {1,2}, each corresponding to a single particle. As one might expect, these

conditions are exactly those prescribed in Theorem 2.3.1 derived in the context of

one-particle quantum graphs. Two-particle energies (4.1.38) in the non-interacting

setting are simply the sums of the energies Ej = k2
j given by the one-particle

quantisation conditions.
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Two δ-interacting particles on an interval

One can establish agreement with the example of two δ-interacting particles in a

box discussed in Section 3.2.3 by considering the simplest metric graph, an interval

[0, l], with Dirichlet boundary conditions

A = I2 and B = 0. (4.1.52)

Applying boundary conditions (4.1.13)–(4.1.15), and following the approach in

Section 3.2.3, we arrive at the two-particle spectra prescribed by (3.2.48).

4.2 Equilateral stars with δ̃-interactions

In the previous section we established appropriate boundary conditions on general

two-particle quantum graphs with singular contact interactions by characterising

self-adjoint extensions of the two-particle Laplacian. Such systems are, in general,

not exactly solvable. The aim of this chapter is to calculate spectra for general

two-particle graphs. The task is then to establish boundary conditions on general

quantum graphs which are compatible with the Bethe ansatz method. In Section

3.3.2, systems of particles on two-edge star graphs, with non-local δ̃-type particle

interactions, were shown to be exactly solvable. Then prescribing length l to the

edges and imposing certain coupling conditions, their spectra were deduced. In

the remainder of this chapter, we extend this approach to systems of two particles

on general graphs. Furthermore, we show that the corresponding boundary con-

ditions provide a self-adjoint realisation of the two-particle Laplacian.

Before discussing general graphs it is convenient to consider a subset of graphs

called equilateral stars. These graphs exhibit most of the essential features of

the general case and thus act as a convenient way to introduce some key concepts.

They also exhibit some distinguishing features associated with their spectral statis-

tics. We revisit this point at the end of the chapter.

Let us define the equilateral star Γe as the graph Γ(V ,I, f) with the restrictions

that

1. lj = l;
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v1

v2

v3

v4

v5

v∣V∣

i1

i2

i3

i4

i∣I∣

Figure 4.1: Equilateral star with ∣I∣ edges each of length l.

2. f0(ij) = v1;

3. fl(ij) = vj+1,

for all ij ∈ I, as depicted in Figure 4.1. Vectors Ψ ∈ H2 are then lists of two-particle

functions ψmn ∶Dmn → C in L2(Dmn) with square subdomains

Dmn = (0, l) × (0, l). (4.2.1)

The total configuration space for two particles on Γe is the union

DΓe =
∣I∣

⊍
m,n=1

Dmn (4.2.2)

of these squares. The two-particle Hilbert space can then be written H2 = L2(DΓe).

Appropriate interactions will be analogous of the δ̃-interactions imposed in Section

3.3.2 and take place when particles are situated on neighbouring edges, the same

distance from the common vertex of the edges. We reiterate here that the set
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l

l

x2

x1

D−
mn

D+
mn

Figure 4.2: Dissected configuration space D∗
mn for an edge pair (im, in) on an

equilateral star.

N of neighbouring edges includes pairs (im, im). On the equilateral star, such

interactions will be implemented by dissecting all squares Dmn along the lines

x1 = x2 and imposing suitable boundary conditions on functions ψmn. We thus

have the dissected configuration space

D∗
Γe =

∣I∣

⊍
m,n=1

(D+
mn ⊍D

−
mn), (4.2.3)

with subdomains of dissected squares D∗
mn defined as

D+
mn = {(x1, x2) ∈Dmn; x1 > x2} (4.2.4)

and

D−
mn = {(x1, x2) ∈Dmn; x1 < x2} (4.2.5)

as depicted in Figure 4.2. The total dissected two-particle Hilbert space is then
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H ∗
2 = L2(D∗

Γe
). Thus vectors Ψ ∈ H ∗

2 are lists

Ψ =
⎛

⎝

(ψ+mn)
∣I∣

m,n=1

(ψ−mn)
∣I∣

m,n=1

⎞

⎠
(4.2.6)

of square-integrable functions ψ±mn ∶ D
±
mn → C. The corresponding Sobolev space

H2(D∗
Γe
) is the set of Ψ ∈ H ∗

2 consisting of functions ψ±mn ∈H
2(D±

mn).

We are now in a position to be explicit about the types of interactions we would

like to impose. They will appear as conditions on functions Ψ ∈ H2(D∗
Γe
) along

the boundaries of D∗
Γe

.

Interactions at the vertices will again be described by simple two-particle lifts of

those imposed in the corresponding one-particle quantum graph. These will be

given by conditions (4.1.13), with all edge lengths in boundary vectors (4.1.12)

equal to l.

Interactions between particles will be analogues of the δ̃-type interactions intro-

duced in Section 3.3.2 and are characterised by the conditions

ψ+mn(x1, x2)∣x1=x+2 = ψ
−
nm(x1, x2)∣x1=x−2 ; (4.2.7)

(
∂

∂x1

−
∂

∂x2

− 2α)ψ+mn(x1, x2)∣x1=x+2 = (
∂

∂x1

−
∂

∂x2

)ψ−nm(x1, x2)∣x1=x−2 , (4.2.8)

for all edge couples (im, in) ∈ I ⊗I. We reiterate here that δ̃-type interactions can

take place when particles are located on different edges and are therefore rather

less physical than the familiar δ-interactions. Such interactions are chosen since,

as we will show, they permit exact solutions via the Bethe ansatz method.

4.2.1 Self-adjoint realisation

The task is now to show that the interactions we would like to impose correspond to

a self-adjoint Laplacian. To this end, adapting the method in [BK13c] (see Section

4.1.1), we deduce self-adjoint realisations of −∆2 with domains characterised by

conditions on boundary values of functions Ψ ∈H2(D∗
Γe
) and their derivatives. We

then show that from these conditions we can recover (4.1.13) and (4.2.7)–(4.2.8).
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Let us define the boundary vectors

Ψbv(x) = (ψmn,bv(x))
∣I∣

m,n=1 and Ψ′
bv(x) = (ψ′mn,bv(x))

∣I∣

m,n=1
(4.2.9)

for all x ∈ (0, l), where each ψmn,bv and ψ′mn,bv list values at the boundaries of D∗
mn

so that

ψmn,bv(x) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ψ−mn(0, x)

ψ+mn(l, x)

ψ+mn(x,0)

ψ−mn(x, l)

ψ+mn(x,x)

ψ−mn(x,x)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and ψ′mn,bv(x) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ψ−mn,1(0, x)

ψ+mn,1(l, x)

ψ+mn,2(x,0)

ψ−mn,2(x, l)

ψ+mn,d(x,x)

ψ−mn,d(x,x)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.2.10)

Clearly we have that Ψbv(x),Ψ′
bv(x) ∈ Cn(I) with n(I) = 6∣I∣2.

Carrying over the approach from the previous section we present the following

theorem.

Theorem 4.2.1. Let bounded and measurable maps P,L ∶ [0, l] → M(n(I),C)

be such that

1. P (x) = In(I) −Q(x) is an orthogonal projector of class C1;

2. L(x) a self-adjoint endomorphism on kerP (x),

for almost every x ∈ [0, l]. Additionally let bounded and self-adjoint operators

Π and Λ on L2(0, l) ⊗ Cn(I) act according to Πχ(x) ∶= P (x)χ(x) and Λχ(x) ∶=

L(x)χ(x) on χ ∈ L2(0, l)⊗Cn(I). Finally let us define the domain D2(P,L) as the

set of Ψ ∈H2(D∗
Γe
) such that

P (x)Ψbv(x) = 0 and Q(x)Ψ′
bv(x) +L(x)Q(x)Ψbv(x) = 0. (4.2.11)

The two-particle Laplacian −∆2 with domain D2(P,L) is self-adjoint.

Now we have established the domain D2(P,L) of a self-adjoint Laplacian −∆2 on

Γe, we would like to recover boundary conditions (4.1.13) and (4.2.7)–(4.2.8) by
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choosing P and L appropriately. Firstly, to distinguish boundary values relat-

ing to vertex interactions from those relating to particle interactions, we assume

the decomposition (4.1.30) where Wv and Wp now have dimension 4∣I∣2 and 2∣I∣2.

Subspaces Wv and Wp are then composed of the top four and bottom two compo-

nents in vectors (4.2.10) respectively. Choosing block diagonal forms (4.1.31) with

respect to this decomposition, we impose that vertex and particle interactions are

independent of each other.

For vertex interactions we again recover boundary conditions (4.1.13) by defining

Pv and Lv as in Section 4.1.1.

For δ̃-type particle interactions, we would first like to impose the further decom-

position

Wp =
∣I∣

⊕
m,n=1

Wp,mn, (4.2.12)

where in the case of Ψbv, each Wp,mn is composed of the second bottom component

of ψmn,bv and the bottom component of ψnm,bv. Fixing the block diagonal forms

Pp =
∣I∣

⊕
m,n=1

Pp,mn and Lp =
∣I∣

⊕
m,n=1

Lp,mn (4.2.13)

with respect to this decomposition and setting

Pp,mn(x) =
1

2

⎛

⎝

1 −1

−1 1

⎞

⎠
and Lp,mn(x) = −αI2, (4.2.14)

we recover the δ̃-type boundary conditions (4.2.7)–(4.2.8).

4.2.2 Spectra

We have seen how to establish boundary conditions which correspond to systems of

two particles on equilateral stars with δ̃-interactions in the context of self-adjoint

realisations of the two-particle Laplacian. In this section we show that these sys-

tems are exactly solvable and calculate their spectra.
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The task is to specify eigenvectors Ψ ∈ H2(D∗
Γe
) of −∆2 which satisfy vertex con-

ditions (4.1.13) as well as δ̃-type conditions (4.2.7)–(4.2.8). Justifying the Bethe

ansatz approach as previously, the vector Ψ will be described by the collection of

functions

ψ±mn(x1, x2) = ∑
P ∈W2

A
(P,±)
mn ei(kP1x1+kP2x2) (4.2.15)

on squares D±
mn. The eigenvalue equation (4.1.7) is then satisfied with eigenvalues

(4.1.38).

We would first like to show that the system is indeed exactly solvable, that is,

boundary conditions (4.1.13) and (4.2.7)–(4.2.8) imposed on Ψ are compatible

with the properties of W2. Defining the 2∣I∣2-dimensional vector

AP =

⎛
⎜
⎜
⎝

(A
(P,−)
mn )

∣I∣

m,n=1

T∣I∣2 (A
(PT,+)
mn )

∣I∣

m,n=1

⎞
⎟
⎟
⎠

, (4.2.16)

the vertex condition (4.1.13), together with the form specified by (4.2.15), implies

(I2 ⊗A⊗ I∣I∣)Q
⎛

⎝

AP +APR

APT eikP1l +APRT e−ikP1l

⎞

⎠

+ikP1 (I2 ⊗B ⊗ I∣I∣)Q
⎛

⎝

AP −APR

−APT eikP1l +APRT e−ikP1l

⎞

⎠
= 0

(4.2.17)

for all P ∈ W2 where

Q =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I∣I∣2 0 0 0

0 0 0 T∣I∣2

0 I∣I∣2 0 0

0 0 T∣I∣2 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.2.18)

Equilateral stars have Dirichlet conditions at external vertices vj for j ≥ 2. We
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thus have the decomposition

A =
⎛

⎝

A1 0

0 A2

⎞

⎠
and B =

⎛

⎝

B1 0

0 B2

⎞

⎠
, (4.2.19)

with

A2 = I∣I∣ and B2 = 0. (4.2.20)

By using the properties of T∣I∣2 , we then have that

Q−1 (I2 ⊗ Sv(k) ⊗ I∣I∣)Q =
⎛

⎝

I2 ⊗ S
(1)
v (k) ⊗ I∣I∣ 0

0 −I2∣I∣2

⎞

⎠
. (4.2.21)

Rearranging (4.2.17), we can then extract the relation

APR = (I2 ⊗ S
(1)
v (−kP1) ⊗ I∣I∣)AP . (4.2.22)

The δ̃-type conditions (4.2.7) and (4.2.8) imply

APT = (Sp(kP1 − kP2) ⊗ I∣I∣2)AP (4.2.23)

with Sp(k) defined in (3.2.42). To prove exact solvability we need only show

that relations (4.2.22) and (4.2.23) are consistent with the properties of W2. This

amounts to the requirements

1. S
(1)
v (u)S

(1)
v (−u) = I∣I∣;

2. Sp(u)Sp(−u) = I2;

3. (I2 ⊗ S
(1)
v (u) ⊗ I∣I∣) (Sp(u + v) ⊗ I∣I∣2) (I2 ⊗ S

(1)
v (v) ⊗ I∣I∣) (Sp(v − u) ⊗ I∣I∣2)

= (Sp(v − u) ⊗ I∣I∣2) (I2 ⊗ S
(1)
v (v) ⊗ I∣I∣) (Sp(u + v) ⊗ I∣I∣2) (I2 ⊗ S

(1)
v (u) ⊗ I∣I∣).

The first two conditions are easily verified by the explicit forms of S
(1)
v (u) and

Sp(u). The third follows from the commutation relation (3.3.28).

Now we have established that the system is exactly solvable, we would like to

deduce the spectrum. This can be done in a number of ways. The method we
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choose here generalises that used for the one-particle case in [KS06b] which we

presented in Section 2.3. Substituting (4.2.23) into (4.2.17) we have that

det [ (I2 ⊗ (A + ikP1B) ⊗ I∣I∣)Q
X(kP1, kP2, l) + Y (kP1, kP2, l)

2

+(I2 ⊗ (A − ikP1B) ⊗ I∣I∣)Q
X(kP1, kP2, l) − Y (kP1, kP2, l)

2
] = 0,

(4.2.24)

with

X(k1, k2, l) =
⎛

⎝

I2 I2

Sp(k1 − k2)eik1l Sp(−k1 − k2)e−ik1l
⎞

⎠
⊗ I∣I∣2 (4.2.25)

and

Y (k1, k2, l) =
⎛

⎝

I2 −I2

−Sp(k1 − k2)eik1l Sp(−k1 − k2)e−ik1l
⎞

⎠
⊗ I∣I∣2 . (4.2.26)

Then, using the invertibility of A ± ikB, and multiplying on the left by

det [(I2 ⊗ (A + ikP1B) ⊗ I∣I∣)Q]
−1

(4.2.27)

and on the right by

det [
X(k1, k2, l) + Y (k1, k2, l)

2
]

−1

, (4.2.28)

we arrive at the condition that

Ze(kP1, kP2) = 0, (4.2.29)

with

Ze(k1, k2) = det [I2∣I∣ + e
2ik1l (Sp(k1 − k2)Sp(k1 + k2) ⊗ S

(1)
v (k1))] , (4.2.30)

is satisfied for all P ∈ W2. By using properties of determinants and the explicit

forms of Sp(k) and S
(1)
v (k), it is easy to see that if (4.2.29) is satisfied for some

P ∈ W2, then it is necessarily satisfied for elements PR,PTRT ∈ W2. With this in

mind, we can state the main result of this section.
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Theorem 4.2.2. Non-zero eigenvalues of a self-adjoint two-particle Laplacian −∆2

defined on an equilateral star Γe with interactions at the central vertex specified

through A1,B1 and δ̃-type particle interactions, are the values E = k2
1 +k

2
2 ≠ 0 with

multiplicity m, where (k1, k2), such that 0 ≤ k1 ≤ k2, are solutions to the secular

equations

Ze(ki, kj) = 0 (4.2.31)

for j, i ≠ j ∈ {1,2}, with multiplicity m.

4.2.3 Spectra from star representation

We have seen how to calculate the spectra of equilateral stars by imposing bound-

ary conditions (4.1.13) and (4.2.7)–(4.2.8) on functions Ψ ∈ H2(D∗
Γe
). Before we

move on, it is instructive to discuss an alternative method for calculating the

spectra since we will follow a related method in the subsequent section where we

extend the scope of our discussion to general graphs. The basic premise is to first

consider Γe in its star representation Γ
(s)
e as prescribed in Definition 2.4.1. This is

the collection Γ
(s)
e (V ,E , f) of the single infinite star Γ1(v1,E1, f) along with ∣V∣ − 1

infinite one-edge stars Γj(vj, e∣I∣+j−1, f), for j ∈ {2, . . . , ∣V∣}, as depicted in Figure

4.3. Deducing appropriate boundary conditions in this setting and constructing

Laplace eigenfunctions using the Bethe ansatz, we show that we recover the spec-

trum prescribed in Theorem 4.2.2.

Consider the equilateral star Γe in its star representation Γ
(s)
e . The appropriate

two-particle Hilbert space

H (s)
2 = (

∣E∣

⊕
j=1

L2(0,∞))⊗ (
∣E∣

⊕
j=1

L2(0,∞)) (4.2.32)

on Γ
(s)
e is the direct sum of constituent Hilbert spaces on each external edge couple

(em, en) ∈ E ⊗ E . Vectors

Ψ = (ψ
(s)
mn)

∣E∣

m,n=1
(4.2.33)

in H (s)
2 are then lists of two-particle functions ψ

(s)
mn ∶ D

(s)
mn → C in L2(D

(s)
mn) with



CHAPTER 4. TWO-PARTICLE QUANTUM GRAPHS 94

v1

v2

v3

v4

v5

v∣V∣

e1

e1+∣I∣

e2

e2+∣I∣

e3 e3+∣I∣

e4

e4+∣I∣

e∣I∣

e2∣I∣

Figure 4.3: Star representation Γ
(s)
e of equilateral star Γe with ∣I∣ edges.

infinite subdomains defined

D
(s)
mn = (0,∞) × (0,∞). (4.2.34)

The total configuration space for two particles on Γ
(s)
e is the union

D
(s)
Γe

=
∣E∣

⊍
m,n=1

D
(s)
mn (4.2.35)

of these subdomains. The two-particle Hilbert space can then be written H (s)
2 =

L2(D
(s)
Γe

).

The task is now to specify appropriate boundary conditions which correspond to

(4.1.13) and (4.2.7)–(4.2.8) imposed in the compact setting. To this end, let us

make the definition

Ne = {(em, en) ∈ E ⊗ E ;

f(em) = f(en) = v1 or f(em), f(en) ∈ {v2, . . . , v∣E∣}.
(4.2.36)
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On Γe, δ̃-interactions require us to define dissections along the lines x1 = x2

of squares Dmn. On Γ
(s)
e , this corresponds to defining dissections of D

(s)
mn with

(em, en) ∈ Ne, according to

D
(s,+)
mn = {(x1, x2) ∈D

(s)
mn; x1 > x2} (4.2.37)

and

D
(s,−)
mn = {(x1, x2) ∈D

(s)
mn; x1 < x2}. (4.2.38)

It is convenient, however, to extend these dissections to all edge pairs, as depicted

in Figure 4.4, so that the total dissected configuration space is given by

D
(s,∗)
Γe

=
∣E∣

⊍
m,n=1

(D
(s,+)
mn ⊍D

(s,−)
mn ) . (4.2.39)

We note that later in the formalism we correct for this by imposing conditions

of continuity across dissections of D
(s)
mn, with (em, en) ∉ Ne. The total dissected

two-particle Hilbert space is then H (s,∗)
2 = L2(D

(s,∗)
Γe

) with vectors

Ψ =

⎛
⎜
⎜
⎝

(ψ
(s,+)
mn )

∣E∣

m,n=1

(ψ
(s,−)
mn )

∣E∣

m,n=1

⎞
⎟
⎟
⎠

(4.2.40)

in H (s,∗)
2 , lists of square-integrable functions ψ

(s,±)
mn ∶ D

(s,±)
mn → C. The corre-

sponding Sobolev space H2(D
(s,∗)
Γe

) is the set of Ψ ∈ H (s,∗)
2 consisting of functions

ψ
(s,±)
mn ∈H2(D

(s,±)
mn ).

Interactions at the vertices will be described by simple two-particle lifts of those

(2.4.4) imposed in the star representation of the corresponding one-particle quan-

tum graph. Defining boundary vectors

Ψ
(s,v)
bv (x) =

⎛
⎜
⎜
⎝

(ψ
(s,−)
mn (0, x))

∣E∣

m,n=1

(ψ
(s,+)
mn (x,0))

∣E∣

n,m=1

⎞
⎟
⎟
⎠

and Ψ
(s,v)
bv

′

(x) =

⎛
⎜
⎜
⎝

(ψ
(s,−)
mn,1(0, x))

∣E∣

m,n=1

(ψ
(s,+)
mn,2(x,0))

∣E∣

n,m=1

⎞
⎟
⎟
⎠

(4.2.41)
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D
(s,−)

m(n+∣I∣)

D
(s,+)

m(n+∣I∣)
D

(s,+)

(m+∣I∣)(n+∣I∣)

D
(s,−)

(m+∣I∣)(n+∣I∣)

D
(s,−)
mn

D
(s,+)
mn D

(s,+)

(m+∣I∣)n

D
(s,−)

(m+∣I∣)n

Figure 4.4: Four dissected infinite subdomains associated with internal edge cou-
ple (im, in). δ̃-interactions imposed along solid diagonals and continuity imposed
across dashed diagonals.

for all x ∈ (0,∞), boundary conditions at the vertices are given by

(I2 ⊗A⊗ I∣E∣)Ψ
(s,v)
bv + (I2 ⊗B ⊗ I∣E∣)Ψ

(s,v)
bv

′

= 0. (4.2.42)

The δ̃-type interactions are implemented through the conditions

ψ
(s,+)
mn (x1, x2)∣x1=x+2 = ψ

(s,−)
nm (x1, x2)∣x1=x−2 ; (4.2.43)

(
∂

∂x1

−
∂

∂x2

− 2α)ψ
(s,+)
mn (x1, x2)∣x1=x+2 = (

∂

∂x1

−
∂

∂x2

)ψ
(s,−)
nm (x1, x2)∣x1=x−2 (4.2.44)

for edge couples (em, en) ∈ Ne. Finally, we reestablish continuity across the dissec-

tions relating to edge couples (em, en) ∉ Ne by imposing the conditions

ψ
(s,+)
mn (x1, x2)x1=x2 = ψ

(s,−)
mn (x1, x2)x1=x−2 ; (4.2.45)

(
∂

∂x1

−
∂

∂x2

)ψ
(s,+)
mn (x1, x2)∣x1=x+2 = (

∂

∂x1

−
∂

∂x2

)ψ
(s,−)
mn (x1, x2)∣x1=x−2 . (4.2.46)

The task is now to specify eigenvectors Ψ ∈H2(D
(s,∗)
Γe

) of −∆2 which satisfy bound-

ary conditions (4.2.42)–(4.2.46). Using the Bethe ansatz method, the vector Ψ will
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be described by the collection of functions

ψ
(s,±)
mn (x1, x2) = ∑

P ∈W2

A
(P,±)
mn ei(kP1x1+kP2x2) (4.2.47)

on D
(s,±)
mn . Let us define the 2∣E ∣2-dimensional vector

AP =

⎛
⎜
⎜
⎝

(A
(P,−)
mn )

∣E∣

m,n=1

T∣E∣2 (A
(PT,+)
mn )

∣E∣

m,n=1

⎞
⎟
⎟
⎠

. (4.2.48)

The vertex condition (4.2.42) then implies

APR = (I2 ⊗ Sv(−kP1) ⊗ I∣E∣)AP (4.2.49)

for all P ∈ W2. At this point, it is convenient to define the matrix ce = diag(cmn)
∣E∣

m,n=1

where

cmn =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if (em, en) ∈ Ne;

0 otherwise,
(4.2.50)

which distinguishes domains with δ̃-type interactions from those which are contin-

uous across dissections. Conditions (4.2.43)–(4.2.46) then imply

APT = Ye(kP1 − kP2)A
P , (4.2.51)

with

Ye(k) = Sp(k) ⊗ ce + ( 0 1
1 0 ) ⊗ (I∣E∣2 − ce)T∣E∣2 . (4.2.52)

To prove exact solvability we need only show that relations (4.2.49) and (4.2.51)

are consistent with the properties of W2. This amounts to the requirements

1. Sv(u)Sv(−u) = I∣E∣;

2. Ye(u)Ye(−u) = I2∣E∣;

3. (I2 ⊗ Sv(u) ⊗ I∣E∣)Ye(u + v) (I2 ⊗ Sv(v) ⊗ I∣E∣)Ye(v − u)
= Ye(v − u) (I2 ⊗ Sv(v) ⊗ I∣E∣)Ye(u + v) (I2 ⊗ Sv(u) ⊗ I∣E∣).
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The first two conditions are easily verified by the explicit forms of Sv(u) and Ye(u),

noting that, since cmn = cnm, the properties of T∣E∣2 are such that

[ce,T∣E∣2] = 0. (4.2.53)

Prescribing the connectivity of the star graph by choosing the block form (4.2.19)

and Dirichlet conditions (4.2.20) at the outer vertices, the relation

[Sv(u) ⊗ I∣E∣,ce] = 0 (4.2.54)

holds, and the third condition is easily verified.

Let us bring our attention back to the original equilateral star Γe. In order to turn

the eigenfunctions in the star representation into eigenfunctions on the compact

graph, it is sufficient to impose the relations

ψ+mn(x1, x2) = ψ
+
(m+∣I∣)n(l − x1, x2) and (4.2.55)

ψ−mn(x1, x2) = ψ
−
m(n+∣I∣)(x1, l − x2) (4.2.56)

for all m,n ∈ {1, .., ∣I∣} which imply

A
(P,+)
mn = A

(PR,+)

(m+∣I∣)n
e−ikP1l and (4.2.57)

A
(P,−)
mn = A

(PTRT,−)

m(n+∣I∣)
e−ikP2l. (4.2.58)

These conditions then yield the relation

AP = E(−kP2)A
PTRT , (4.2.59)

with

E(k) = I4∣I∣ ⊗ ( 0 1
1 0 ) ⊗ I∣I∣eikl. (4.2.60)

Applying (4.2.49), (4.2.51) and (4.2.59) successively we arrive at the secular equa-

tion

det [I8∣I∣2 −E(k2)Ye(k2 − k1) (I2 ⊗ Sv(k2) ⊗ I2∣I∣)Ye(k1 + k2)] . (4.2.61)
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Finally, defining the permutation matrix

V = (I2 ⊗T4 ⊗ I∣I∣2)
⎛

⎝

I4∣I∣ ⊗ (I∣I∣,0∣I∣)

I4∣I∣ ⊗ (0∣I∣, I∣I∣)
⎞

⎠
, (4.2.62)

where 0d is the d × d matrix of zeros, the spectrum prescribed in Theorem 4.2.2

is recovered by inserting the identity I = V−1V between each element of (4.2.61),

multiplying on the left and right by det[V] and det[V−1] respectively, and using

the properties of determinants.

4.2.4 Recovering specific results

Before we move on to general graphs, let us establish agreement between the spec-

tra of equilateral stars presented in Theorem 4.2.2 and results derived in previous

chapters.

Two-edge stars

Let us first explain how to recover the results of [CC07] presented in Section 3.3.3.

Simply by substituting ∣I∣ = 2 into (4.2.31), we immediately recover the appropriate

quantisation conditions (3.3.44) for systems of two particles in a box with a central

impurity. Furthermore, rather than choosing Dirichlet vertex conditions (4.2.20),

which specify the connectivity of an equilateral star, and instead choosing standard

boundary conditions

A2 =
⎛

⎝

1 −1

0 0

⎞

⎠
and B2 =

⎛

⎝

0 0

1 1

⎞

⎠
(4.2.63)

to establish continuity at the outer vertices, we recover the quantisation conditions

(3.3.36) which specify the spectra of systems of two particles on a circle with an

impurity.

Non-interacting particles

Throughout this thesis we have used α to parameterise the strength of particle

interactions. It is reasonable to expect then, that by setting α = 0, one should arrive

at separable quantisation conditions given by (2.3.9) for one-particle quantum
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graphs. Indeed, by substituting α = 0 into the form (4.2.30), we recover

det [I∣I∣ + e2iklS
(1)
v (k)] = 0 (4.2.64)

which is exactly the corresponding one-particle condition. It is important to point

out however, that δ̃-type interactions with α = 0 result in coupling between domains

Dmn and Dnm and are thus clearly distinct from the truly non-interacting situation.

For this reason we refer to such systems as pseudo-non-interacting. The fact the

one-particle condition (4.2.64) is recovered in this case is a result of the specific

geometry of the equilateral star. We will see in the subsequent section that this

agreement does not hold for general graphs. We revisit this point in the final

section of the chapter when discussing spectral statistics.

Bosons on equilateral stars

Later in this chapter, we would like to analyse examples of bosons on graphs.

Computationally speaking, such examples are useful as the dimension of the matrix

inside the determinant Ze(k1, k2) is halved. Imposing bosonic symmetry

ψ−mn(x1, x2) = ψ
+
nm(x2, x1) (4.2.65)

we have that

A
(P,−)
mn = A

(PT,+)
nm (4.2.66)

for all P ∈ W2. The matrix Sp(k) then reduces to the scalar form sp(k)I2 as defined

in (3.2.17) so that from (4.2.30) we recover

Ze,b(k1, k2) = det [I∣I∣ + e2ik1lsp(k1 − k2)sp(k1 + k2)S
(1)
v (k1)] . (4.2.67)

4.3 General graphs with δ̃-interactions

We have seen, in the previous section, how to construct systems of two δ̃-interacting

particles on equilateral stars, defining appropriate boundary conditions in the con-

text of a self-adjoint Laplacian, proving exact solvability and calculating spectra.

The majority of quantum graphs literature, however, is concerned with the dynam-
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ics of single particles on graphs with, in general, different edge lengths. Indeed,

in [KS97], rationally independent edge lengths are required to avoid degenerate

energy levels and ensure spectral statistics following random matrix predictions.

This section is concerned with extending the scope of our discussion to two parti-

cles on general compact graphs.

As imposing δ̃-type interactions between particles on equilateral stars leads to

exact solutions, it seems reasonable to assume that a suitable variant of such

interactions in the general setting will also lead to exact solutions. However,

general graphs bring added complications associated with edges of different length

and distant vertices. The problem is then to choose an appropriate way to impose

δ̃-type interactions in the general setting which preserves compatibility with the

Bethe ansatz method. To address this, let us consider a pair of particles on Γ

viewed in its star representation Γ(s). At any one time, the particles will be

located on some pair of infinite stars (Γγ,Γλ) with γ, λ ∈ {1, . . . , ∣V∣}. We impose

that, when particles are located on different stars (γ ≠ λ), they will be independent

of each other; there are no particle interactions. When, however, the particles are

located on the same star (γ = λ), they will be allowed to interact. We postulate

here that exact solvability is assured if these interactions are of δ̃-type. In this

setting, by following the method in Section 4.2.3, we show these systems are exactly

solvable and calculate their spectra. Before we do this, however, we would like to

establish that corresponding boundary conditions provide self-adjoint realisations

of −∆2 on the compact graph. To see this, let us first consider a pair of particles,

with coordinates x1 ∈ [0, lm] and x2 ∈ [0, ln] respectively, on a neighbouring edge

couple (im, in) ∈ N with common vertex vη. Additionally, let us assume that the

edges are orientated such that f0(im) = f0(in) = vη. The δ̃-interactions prescribed

above become effective when x1 = x2, with the interaction cut off at the smaller of

the two edge lengths involved. Thus the appropriate dissection of Dmn is given by

D∗
mn =D

+
mn ⊍D

−
mn, (4.3.1)

with subdomains defined as

D+
mn = {(x1, x2) ∈Dmn; x1 > x2} (4.3.2)
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ln

lm

x2

x1

D−
mn

D+
mn

Figure 4.5: Dissected finite configuration space D∗
mn associated with internal edge

couple (im, in).

and

D−
mn = {(x1, x2) ∈Dmn; x1 < x2} (4.3.3)

(see Figure 4.5). Accordingly, appropriate δ̃-interactions will be imposed along

these dissections.

Let us now extend this discussion from the pair of internal edges (im, in) to general

graphs Γ. Before we continue, it is convenient to impose the further requirement

that any two edges have at most one common vertex. This caveat facilitates the

formalism that follows, namely by enforcing that any rectangle Dmn has at most

one dissection. However, we argue that, dropping these restrictions, the method

is easily generalised by imposing additional appropriate dissections.

For the example discussed above, where we assumed f0(im) = f0(in), appropriate

dissections were made along lines x1 = x2 of rectangles Dmn. In the general setting,

we must, however, pay attention to additional complexities which arise from the
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possible orientations of neighbouring edge couples. Appropriate lines of dissec-

tion should be chosen with this in mind. Specifically, for possible orientations of

(im, in) ∈ N , with

f0(im) = f0(in), f0(im) = fl(in), fl(im) = f0(in) and fl(im) = fl(in), (4.3.4)

we require dissection along the lines

x1 = x2, x1 = ln − x2, lm − x1 = x2 and lm − x1 = ln − x2, (4.3.5)

respectively. These four types of dissection are shown in Figure 4.6. Of course

for distant edge couples (im, in) ∈ D, no dissection is required. By extending the

arguments made in the example above, the appropriate dissected configuration

space is given by

D∗
Γ =

⎛

⎝
⊍

(im,in)∈D

Dmn

⎞

⎠
⊍

⎛

⎝
⊍

(im,in)∈N

(D+
mn ⊍D

−
mn)

⎞

⎠
, (4.3.6)

with subdomains of rectangles Dmn, for (im, in) ∈ N , defined as

D+
mn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(x1, x2) ∈Dmn; x1 > x2} if f0(im) = f0(in);

{(x1, x2) ∈Dmn; x1 > ln − x2} if f0(im) = fl(in);

{(x1, x2) ∈Dmn; lm − x1 > x2} if fl(im) = f0(in);

{(x1, x2) ∈Dmn; lm − x1 > ln − x2} if fl(im) = fl(in),

(4.3.7)

and

D−
mn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(x1, x2) ∈Dmn; x1 < x2} if f0(im) = f0(in);

{(x1, x2) ∈Dmn; x1 < ln − x2} if f0(im) = fl(in);

{(x1, x2) ∈Dmn; lm − x1 < x2} if fl(im) = f0(in);

{(x1, x2) ∈Dmn; lm − x1 < ln − x2} if fl(im) = fl(in).

(4.3.8)

The total dissected Hilbert space is then H ∗
2 = L2(D∗

Γ). Thus vectors Ψ ∈ H ∗
2 are
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x2

x1
ln lm

ln

x2

x1
ln lm

ln

x2

x1
lm − ln lm

ln

x2

x1
lm − ln lm

ln

Figure 4.6: Dissected domains D∗
mn such that lm > ln with four possible ori-

entations. Top left: f0(im) = f0(in), top right: f0(im) = fl(in), bottom left:
fl(im) = f0(in), bottom right: fl(im) = fl(in).
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lists

Ψ =

⎛
⎜
⎜
⎜
⎝

(ψmn)(im,in)∈D

(ψ+mn)(im,in)∈N

(ψ−mn)(im,in)∈N

⎞
⎟
⎟
⎟
⎠

(4.3.9)

of square-integrable functions ψmn ∶Dmn → C, for (im, in) ∈ D, and ψ±mn ∶D
±
mn → C,

for (im, in) ∈ N . The corresponding Sobolev space H2(D∗
Γ) is the set of Ψ ∈ H ∗

2

consisting of functions ψmn ∈ H2(Dmn), for (im, in) ∈ D, and ψ±mn ∈ H
2(D±

mn), for

(im, in) ∈ N .

Generalising the argument made earlier, we would like to impose δ̃-type conditions

along all dissections of D∗
Γ. In principle we can define such interactions on the

dissected configuration space (4.3.6). However this presentation becomes rather

convoluted. To this end, it is convenient to define an equivalent configuration

space which simplifies this process. Let

(x̃1, x̃2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x1, x2) if f0(im) = f0(in);

(x1, ln − x2) if f0(im) = fl(in);

(lm − x1, x2) if fl(im) = f0(in);

(lm − x1, ln − x2) if fl(im) = fl(in)

(4.3.10)

so that correct dissections are along the diagonals x̃1 = x̃2. The total dissected

configuration space can then be written

D∗
Γ =

⎛

⎝
⊍

(im,in)∈D

Dmn

⎞

⎠
⊍

⎛

⎝
⊍

(im,in)∈N

(D̃+
mn ⊍ D̃

−
mn)

⎞

⎠
, (4.3.11)

with subdomains defined as

D̃+
mn = {(x̃1, x̃2) ∈Dmn; x̃1 > x̃2} (4.3.12)

and

D̃−
mn = {(x̃1, x̃2) ∈Dmn; x̃1 < x̃2}. (4.3.13)
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We are now in a position to be explicit about the types of interactions we would

like to impose. They will appear as conditions on functions Ψ ∈H2(D∗
Γ) along the

boundaries of D∗
Γ.

As in the previous two sections, single-particle interactions at the vertices are given

by conditions (4.1.13).

Defining functions φ±mn ∶ D̃
±
mn → C in H2(D±

mn), δ̃-type boundary conditions are

prescribed by the conditions

φ+mn(x̃1, x̃2)∣x̃1=x̃+2 = φ
−
nm(x̃1, x̃2)∣x̃1=x̃−2 ; (4.3.14)

(
∂

∂x̃1

−
∂

∂x̃2

− 2α)φ+mn(x̃1, x̃2)∣x̃1=x̃+2 = (
∂

∂x̃1

−
∂

∂x̃2

)φ−nm(x̃1, x̃2)∣x̃1=x̃−2 (4.3.15)

for neighbouring edge couples (im, in) ∈ N , where

l−mn = min(lm, ln). (4.3.16)

The task is now to show that these conditions correspond to a valid self-adjoint

two-particle Laplacian −∆2.

4.3.1 Self-adjoint realisation

Following the formalism in Section 4.2.1, we deduce self-adjoint realisations of

−∆2 with domains characterised by conditions on boundary values of functions

Ψ ∈ H2(D∗
Γ) and their derivatives. We then show that, from these conditions, we

can recover (4.1.13) and (4.3.14)–(4.3.15).

Let us define the boundary vectors

Ψbv(y) = (ψmn,bv(y))
∣I∣

m,n=1 and Ψ′
bv(y) = (ψ′mn,bv(y))

∣I∣

m,n=1
(4.3.17)

for all y ∈ (0,1), where ψmn,bv and ψ′mn,bv list values at the boundaries of D∗
mn, for

(im, in) ∈ N , and Dmn, for (im, in) ∈ D. Specifically, for (im, in) ∈ D, there are no
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interactions between particles and we set

ψmn,bv(y) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ψmn(0, lny)

ψmn(lm, lny)

ψmn(lmy,0)

ψmn(lmy, ln)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and ψ′mn,bv(y) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ψmn,1(0, lny)

ψmn,1(lm, lny)

ψmn,2(lmy,0)

ψmn,2(lmy, ln)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.3.18)

For (im, in) ∈ N , we must include boundary values along the diagonals x̃1 = x̃2 to

accommodate δ̃-interactions. We thus set

ψmn,bv(y) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ψmn(0, lny)

ψmn(lm, lny)

ψmn(lmy,0)

ψmn(lmy, ln)

φ+mn(l
−
mny, l

−
mny)

φ−mn(l
−
mny, l

−
mny)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and ψ′mn,bv(y) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ψmn,1(0, lny)

ψmn,1(lm, lny)

ψmn,2(lmy,0)

ψmn,2(lmy, ln)

φ+mn,d(l
−
mny, l

−
mny)

φ−mn,d(l
−
mny, l

−
mny)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.3.19)

where functions φ±mn,d are inward derivatives normal to the lines x̃1 = x̃2. We note

that we have dropped the labels ± denoting the appropriate subdomains of Dmn

in the first four components of (4.3.19) in order to keep the presentation compact.

Clearly we have that Ψbv(y),Ψ′
bv(y) ∈ Cn(I,N) with n(I,N) = 4∣I∣2 + 2∣N ∣.

Carrying over the approach in [BK13c], used for equilateral stars in Section 4.2.1,

we have the following theorem.

Theorem 4.3.1. Let bounded and measurable maps P,L ∶ [0,1] →M(n(I,N),C)

be such that

1. P (y) = In(I,N) −Q(y) is an orthogonal projector of class C1;

2. L(y) a self-adjoint endomorphism on kerP (y),

for almost every y ∈ [0,1]. Additionally let bounded and self-adjoint operators

Π and Λ on L2(0,1) ⊗Cn(I,N) act according to Πχ(y) ∶= P (y)χ(y) and Λχ(y) ∶=

L(y)χ(y) on χ ∈ L2(0,1) ⊗Cn(I,N). Finally let us define the domain D2(P,L) the

set of Ψ ∈H2(D∗
Γ) such that

P (y)Ψbv(y) = 0 and Q(y)Ψ′
bv(y) +L(y)Q(y)Ψbv(y) = 0. (4.3.20)
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The two-particle Laplacian −∆2 with domain D2(P,L) is self-adjoint.

Now we have established the domain D2(P,L) of a self-adjoint Laplacian −∆2

on Γ, we would like to recover boundary conditions (4.1.13) and (4.3.14)–(4.3.15)

by choosing P and L appropriately. To distinguish boundary values relating to

vertex interactions from those relating to particle interactions, we assume the

decomposition

Cn(I,N) =Wv ⊕Wp, (4.3.21)

where Wv and Wp have dimension 4∣I∣2 and 2∣N ∣ respectively. Here Wv is com-

posed of all components in vectors (4.3.18) as well as the top four components in

vectors (4.3.19) with Wp composed of the remaining components. Choosing block

diagonal forms as in (4.1.31) with respect to this decomposition, we impose that

vertex and particle interactions are independent of each other.

For vertex interactions, we again recover boundary conditions (4.1.13) by defining

Pv and Lv as in Section 4.1.1. For δ̃-type particle interactions we impose the

further decomposition

Wp = ⊕
(im,in)∈N

Wp,mn, (4.3.22)

where in the case of Ψbv, each Wp,mn is composed of the fifth component of ψmn,bv

and the sixth component of ψnm,bv in (4.3.19). Fixing the block diagonal forms

Pp = ⊕
(im,in)∈N

Pp,mn and Lp = ⊕
(im,in)∈N

Lp,mn (4.3.23)

with respect to the decomposition (4.3.22) and setting

Pp,mn(y) =
1

2

⎛

⎝

1 −1

−1 1

⎞

⎠
and Lp,mn(x) = −αI2, (4.3.24)

we arrive at the δ̃-type conditions (4.3.14)–(4.3.15).
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4.3.2 Spectra

We have seen how to establish boundary conditions which correspond to two-

particle quantum graphs with δ̃-type interactions by means of self-adjoint exten-

sion. We would now like to show that such systems are exactly solvable and

calculate their spectra.

For equilateral stars Γe considered in Section 4.2, exact solvability was shown by

substituting the ansatz (4.2.15) directly into boundary conditions (4.1.13) and

(4.2.7)–(4.2.8) defined on D∗
Γe

. The spectra then followed by generalising the ap-

proach in [KS06b] to two particles. While, in principle, we can use the same

method in the general graph case, the extra complexity brought about by different

edge lengths and distant edge couples makes the presentation rather convoluted.

To this end we will use the method presented in Section 4.2.3 which utilises the

star representation Γ(s) of the compact graph Γ.

The appropriate two-particle Hilbert space

H (s)
2 = (

∣E∣

⊕
j=1

L2(0,∞))⊗ (
∣E∣

⊕
j=1

L2(0,∞)) (4.3.25)

on Γ(s) is the direct sum of constituent Hilbert spaces on each external edge couple

(em, en) ∈ E ⊗ E . Vectors

Ψ = (ψ
(s)
mn)

∣E∣

m,n=1
(4.3.26)

in H (s)
2 are then lists of two-particle functions ψ

(s)
mn ∶ D

(s)
mn → C in L2(D

(s)
mn) with

infinite subdomains defined

D
(s)
mn = (0,∞) × (0,∞). (4.3.27)

The total configuration space for two particles on Γ(s) is the union

D
(s)
Γ =

∣E∣

⊍
m,n=1

D
(s)
mn (4.3.28)

of these subdomains. The two-particle Hilbert space can then be written H (s)
2 =



CHAPTER 4. TWO-PARTICLE QUANTUM GRAPHS 110

D
(s,−)

m(n+∣I∣)

D
(s,+)

m(n+∣I∣)
D

(s,+)

(m+∣I∣)(n+∣I∣)

D
(s,−)

(m+∣I∣)(n+∣I∣)

D
(s,−)
mn

D
(s,+)
mn D

(s,+)

(m+∣I∣)n

D
(s,−)

(m+∣I∣)n

Figure 4.7: Four dissected infinite subdomains associated with internal edge couple
(im, in) with f0(im) = f0(in). δ̃-interactions imposed along solid diagonal and
continuity imposed across dashed diagonals.

L2(D
(s)
Γ ).

In the compact setting, δ̃-interactions require us to define dissections along the lines

x̃1 = x̃2 of the domains Dmn which relate to neighbouring edge pairs (im, in) ∈ N .

On Γ(s), this corresponds to defining dissections of D
(s)
mn, with f(em) = f(en),

according to

D
(s,+)
mn = {(x1, x2) ∈D

(s)
mn; x1 > x2} (4.3.29)

and

D
(s,−)
mn = {(x1, x2) ∈D

(s)
mn; x1 < x2}. (4.3.30)

As in Section 4.2.3, it is convenient to extend these dissections to all edge pairs,

as depicted in Figure 4.7, so that the total configuration space is given by

D
(s,∗)
Γ =

∣E∣

⊍
m,n=1

(D
(s,+)
mn ⊍D

(s,−)
mn ) . (4.3.31)
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The total dissected two-particle Hilbert space is then H (s,∗)
2 = L2(D

(s,∗)
Γ ) with

vectors

Ψ =

⎛
⎜
⎜
⎝

(ψ
(s,+)
mn )

∣E∣

m,n=1

(ψ
(s,−)
mn )

∣E∣

m,n=1

⎞
⎟
⎟
⎠

(4.3.32)

in H (s,∗)
2 , lists of square-integrable functions ψ

(s,±)
mn (x1, x2) ∶D

(s,±)
mn → C. The corre-

sponding Sobolev space H2(D
(s,∗)
Γ ) is the set of Ψ ∈ H (s,∗)

2 consisting of functions

ψ
(s,±)
mn ∈H2(D

(s,±)
mn ).

Interactions at the vertices in this setting will again be described by simple two-

particle lifts of the corresponding one-particle conditions. Defining boundary vec-

tors

Ψ
(s,v)
bv (x) =

⎛
⎜
⎜
⎝

(ψ
(s,−)
mn (0, x))

∣E∣

m,n=1

(ψ
(s,+)
mn (x,0))

∣E∣

n,m=1

⎞
⎟
⎟
⎠

and Ψ
(s,v)
bv

′

(x) =

⎛
⎜
⎜
⎝

(ψ
(s,−)
mn,1(0, x))

∣E∣

m,n=1

(ψ
(s,+)
mn,2(x,0))

∣E∣

n,m=1

⎞
⎟
⎟
⎠

, (4.3.33)

for all x ∈ (0,∞), the appropriate boundary conditions at the vertices are given by

(I2 ⊗A⊗ I∣E∣)Ψ
(s,v)
bv + (I2 ⊗B ⊗ I∣E∣)Ψ

(s,v)
bv

′

= 0 (4.3.34)

with ∣E ∣ × ∣E∣ matrices A and B defined as in (2.4.6). As discussed previously we

would like to impose δ̃-type interactions between particles located on the same

infinite star. Such interactions are prescribed by the boundary conditions

ψ
(s,+)
mn (x1, x2)∣x1=x+2 = ψ

(s,−)
nm (x1, x2)∣x1=x−2 ; (4.3.35)

(
∂

∂x1

−
∂

∂x2

− 2α)ψ
(s,+)
mn (x1, x2)∣x1=x+2 = (

∂

∂x1

−
∂

∂x2

)ψ
(s,−)
nm (x1, x2)∣x1=x−2 , (4.3.36)

with f(em) = f(en). Since in D
(s,∗)
Γ , we defined dissections in Dmn for all edge

pairs, we must reestablish continuity where there are no interactions, that is for
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f(em) ≠ f(en), according to

ψ
(s,+)
mn (x1, x2)∣x1=x+2 = ψ

(s,−)
mn (x1, x2)∣x1=x−2 ; (4.3.37)

(
∂

∂x1

−
∂

∂x2

)ψ
(s,+)
mn (x1, x2)∣x1=x+2 = (

∂

∂x1

−
∂

∂x2

)ψ
(s,−)
mn (x1, x2)∣x1=x−2 . (4.3.38)

The task is now to specify eigenvectors Ψ ∈H2(D
(s,∗)
Γ ) of −∆2 which satisfy bound-

ary conditions (4.3.34)–(4.3.38). Using the Bethe ansatz method, the vector Ψ will

be described by the collection of functions

ψ
(s,±)
mn (x1, x2) = ∑

P ∈W2

A
(P,±)
mn ei(kP1x1+kP2x2) (4.3.39)

on D
(s,±)
mn . Let us define the 2∣E ∣2-dimensional vector

AP =

⎛
⎜
⎜
⎝

(A
(P,−)
mn )

∣E∣

m,n=1

T∣E∣2 (A
(PT,+)
mn )

∣E∣

m,n=1

⎞
⎟
⎟
⎠

. (4.3.40)

The vertex conditions (4.3.34) then imply

APR = (I2 ⊗ Sv(−kP1) ⊗ I∣E∣)AP (4.3.41)

for all P ∈ W2. At this point, it is convenient to define the diagonal matrix

c = diag(cmn)
∣E∣

m,n=1 where

cmn =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if f(em) = f(en);

0 otherwise,
(4.3.42)

which distinguishes domains with δ̃-type interactions from those which are contin-

uous across dissections. The δ̃-type conditions (4.3.35)–(4.3.38) then imply

APT = Y (kP1 − kP2)A
P , (4.3.43)

with

Y (k) = Sp(k) ⊗ c + ( 0 1
1 0 ) ⊗ (I∣E∣2 − c)T∣E∣2 . (4.3.44)
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To prove exact solvability we need only show that relations (4.3.41) and (4.3.43)

are consistent with the properties of W2. This amounts to the requirements

1. Sv(u)Sv(−u) = I∣E∣;

2. Y (k)Y (−k) = I2∣E∣;

3. (I2 ⊗ Sv(u) ⊗ I∣E∣)Y (u + v) (I2 ⊗ Sv(v) ⊗ I∣E∣)Y (v − u)

= Y (v − u) (I2 ⊗ Sv(v) ⊗ I∣E∣)Y (u + v) (I2 ⊗ Sv(u) ⊗ I∣E∣).

The first two conditions are easily verified by the explicit forms of Sv(u) and Y (u),

noting that, since cmn = cnm, the properties of T∣E∣2 are such that

[c,T∣E∣2] = 0. (4.3.45)

Noting then that the relation

[Sv(u) ⊗ I∣E∣,c] = 0 (4.3.46)

holds if boundary conditions at the vertices are local, that is matrices A,B are

subject to the conditions (2.4.6), and also the relation (3.3.28), the third condition

is easily verified.

Let us bring our attention back to the original compact graph Γ. In order to turn

the eigenfunctions in the star representation into eigenfunctions on the compact

graph, it is sufficient to impose the relations

ψ
(s,+)
mn (x1, x2) = ψ

(s,+)

(m+∣I∣)n
(lm − x1, x2) and (4.3.47)

ψ
(s,−)
mn (x1, x2) = ψ

(s,−)

m(n+∣I∣)
(x1, ln − x2) (4.3.48)

for all m,n ∈ {1, .., ∣I∣} which imply

A
(P,+)
mn = A

(PR,+)

(m+∣I∣)n
e−ikP1lm and (4.3.49)

A
(P,−)
mn = A

(PTRT,−)

m(n+∣I∣)
e−ikP2ln . (4.3.50)

These conditions then yield the relation

AP = E(−kP2)A
PTRT , (4.3.51)
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where

E(k) = I4∣I∣ ⊗
⎛

⎝

0 1

1 0

⎞

⎠
⊗ eikl, (4.3.52)

with eikl defined as in (2.3.6). Applying (4.3.41), (4.3.43) and (4.3.51) successively

we have the condition that

Z(kP1, kP2) = 0, (4.3.53)

with

Z(k1, k2) = det [I8∣I∣2 −E(k2)Y (k2 − k1) (I2 ⊗ Sv(k2) ⊗ I2∣I∣)Y (k1 + k2)] , (4.3.54)

is satisfied for all P ∈ W2. By using properties of determinants, the commutation

relations established above, and the explicit forms of Y (k), Sv(k) and E(k), it

is easy to see that if (4.3.53) is satisfied for some P ∈ W2, then it is necessarily

satisfied for elements PR,PTRT ∈ W2. With this in mind we can state the main

result of this section.

Theorem 4.3.2. Non-zero eigenvalues of a self-adjoint two-particle Laplacian −∆2

defined on Γ with local vertex interactions specified through A,B and δ̃-type in-

teractions between particles when they are located on neighbouring edges, are the

values E = k2
1 + k

2
2 ≠ 0 with multiplicity m, where (k1, k2), such that 0 ≤ k1 ≤ k2,

are solutions to the secular equations

Z(ki, kj) = 0, (4.3.55)

for j, i ≠ j ∈ {1,2}, with multiplicity m.

4.3.3 Recovering specific results

To finish the section, let us establish agreement between the spectra of general

two-particle quantum graphs presented in Theorem 4.3.2 and results derived and

discussed earlier in the thesis.
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Equilateral stars

We would like to show that the quantisation condition prescribed in Theorem 4.3.2

for general graphs Γ reduces to that prescribed in Theorem 4.2.2 for equilateral

stars Γe when appropriate parameters are imposed. Firstly, the appropriate vertex

conditions are given by (4.2.19) and (4.2.20) so that interactions at a central vertex

are prescribed by A1,B1 with Dirichlet conditions at outer vertices. We also impose

equal lengths lj = l for all j ∈ {1, . . . , ∣I∣}. We recall that on equilateral stars, δ̃-type

interactions are imposed along the diagonals x1 = x2 of all square domains Dmn.

Viewed in the star representation, this corresponds to δ̃-type interactions along

dissections of D
(s,∗)
mn with (em, en) ∈ Ne and continuity otherwise. To this end, we

replace the diagonal matrix c with ce as prescribed by (4.2.50). Substituting these

parameters into Z(ki, kj) and using the properties of determinants we recover the

form Ze(ki, kj) as required.

Pseudo-non-interacting particles

In Section 4.2.4, we introduced the notion of pseudo-non-interacting particles and

showed that in the equilateral star setting, the corresponding quantisation con-

dition is indeed that of the truly non-interacting case. However, in the general

setting, this agreement does not hold. The spectra of such systems is calculated

first by identifying the matrix

lim
α→0

Y (k) = ( 0 1
1 0 ) ⊗ (c + (I∣E∣2 − c)T∣E∣2). (4.3.56)

Substitution into (4.3.54) then yields the quantisation condition

Z(k) = det [I4∣I∣2−(Sv(k) ⊗ ( 0 1
1 0 ) ⊗ e

ikl)c

−(I2∣I∣ ⊗ (( 0 1
1 0 ) ⊗ e

ikl)Sv(k)) (I4∣I∣2 − c) ]
(4.3.57)

which we notice is dependent on the single momentum k.
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Non-interacting particles

Truly non-interacting systems are recovered by turning off all coupling between

domains Dmn and Dnm. This is achieved by setting c = 0. We then have that

Y (k)∣c=0 = ( 0 1
1 0 ) ⊗T∣E∣2 . (4.3.58)

By substituting into (4.3.54) we recover the secular equation (2.3.9) for the one-

particle quantum graph.

Bosons on a general graph

In the subsequent section we would like to analyse examples of bosons on a graph.

Imposing bosonic symmetry

ψ
(s,−)
mn (x1, x2) = ψ

(s,+)
nm (x2, x1) (4.3.59)

we have that

A
(P,−)
mn = A

(PT,+)
nm (4.3.60)

for all P ∈ W2. The matrix Y (k) then reduces to the form

Y (k) = I2 ⊗ Yb(k) (4.3.61)

with

Yb(k) = sp(k)c + (I∣E∣2 − c)T∣E∣2 , (4.3.62)

so that from (4.3.54), we recover

Zb(k1, k2) = det [I4∣I∣2 −Eb(k2)Yb(k2 − k1) (Sv(k2) ⊗ I2∣I∣)Yb(k1 + k2)] , (4.3.63)

with E(k) = I2 ⊗Eb(k).
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4.4 Spectral statistics

One of the main motivations for the study of quantum graphs is to analyse their

spectral statistics. In doing so, we can investigate the chaotic nature of their clas-

sical counterparts. Again we pay particular attention to the nearest neighbour

energy level distribution (2.6.13). We also compare the counting function N(E)

as defined in (2.5.1) to the Weyl law (3.4.1) which is proven for singular contact

interactions. Of course, the majority of this thesis is not concerned with δ-type

interactions, but with δ̃-interactions. Nonetheless, for each example, we again as-

sign a line of best fit (3.4.2) to N(E) and compare the leading term to (3.4.1) by

calculating the value (3.4.3).

In [KS97], nearest neighbour energy level distributions of one-particle quantum

tetrahedra were shown to exhibit GOE spectral statistics and thus imply chaotic

classical counterparts (see Section 2.6). In this section we analyse the spectra of

two-particle quantum graphs calculated in the previous sections, looking for a po-

tential dependence of spectral correlations on the interaction strength. We refer

to the result by Srivastava et al. [STL+16] who analysed the spectral properties

of interacting kicked rotors which individually show GOE statistics. For the com-

bined spectra, they found a transition from Poissonian to GOE statistics as the

strength of the interaction was increased.

4.4.1 The tetrahedron

Let us take, as a first example, a system of two δ̃-interacting bosons on a tetrahe-

dron (see Figure 2.3) with local boundary conditions (2.6.1), such that scattering

matrices S
(η)
v (k) corresponding to each vertex vη are identical. The appropriate

spectra are calculated according to Theorem 4.3.2 by finding solutions to the pair

of secular equations

Zb(k1, k2) = 0 and Zb(k2, k1) = 0 (4.4.1)
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given by (4.3.63). In order to reduce the computational expense of this problem

let us define the permutation matrix

V = I4 ⊗ (I12 ⊗ (1 0 0)
T
, I12 ⊗ (0 1 0)

T
, I12 ⊗ (0 0 1)

T
) . (4.4.2)

Multiplying on the left and right of (4.3.63) by

det[V(P⊗ P)] and det[(P−1 ⊗ P−1)V−1], (4.4.3)

we arrive at the block form

Zb(k1, k2) = det[I144 −
4

⊕
m=1

Mm(k1, k2)], (4.4.4)

with

Mm(k1, k2) = (P(( 0 1
1 0 ) ⊗ e

ik2l)P−1 ⊗ I3)

(diag(δmn)
4
n=1 ⊗ sp(k2 − k1)sp(k1 + k2) (I3 ⊗ S

(η)
v (k2))

+diag(1 − δmn)
4
n=1 ⊗ S

(η)
v (k2) ⊗ I3).

(4.4.5)

Laplace eigenvalues E = k2
1 + k

2
2 are then given by solutions (k1, k2) of the pairs of

secular equations

det [I36 −Mu(k1, k2)] = 0 and det [I36 −Mv(k2, k1)] = 0, (4.4.6)

with u, v ∈ {1, . . . ,4}.

Boundary conditions at the vertices are determined by choosing Discrete Fourier

Transform (DFT) scattering matrices S
(η,DFT )
v as defined in (2.4.17). For the

tetrahedron, appropriate DFT scattering matrices at each vertex vη are

S
(η,DFT )
v =

1
√

3

⎛
⎜
⎜
⎜
⎝

1 1 1

1 e
2iπ
3 e

4iπ
3

1 e
4iπ
3 e

8iπ
3

⎞
⎟
⎟
⎟
⎠

, (4.4.7)

with distinct eigenvalues {−1,1, i}. With this choice, the spectrum of the two-

particle Laplacian with δ̃-interactions is non-degenerate.
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Figure 4.8: Integrated level spacings distributions for the single-particle spectra
associated with non-interacting and pseudo-non-interacting systems on a tetrahe-
dron. First 50,000 eigenvalues.

Before analysing two-particle spectra, let us consider the spectra of non-interacting

systems. Figure 4.8 plots the nearest neighbour distributions for the single-particle

spectra associated with truly non-interacting (c = 0) and pseudo-non-interacting

(α = 0) particles on the tetrahedron with DFT scattering matrices. As is well

known [KS97] and confirmed in Figure 4.8, the one-particle spectrum follows GOE

statistics. The pseudo-non-interacting system, however, shows Poissonian statis-

tics. The crucial point here is that two-particle systems prescribed in Theorem

4.3.2 in fact couple systems of pseudo-non-interacting particles which individually

possess spectra with Poissonian statistics, not systems of truly non-interacting

particles which individually follow GOE statistics. Thus we cannot expect a tran-

sition to GOE statistics as in [STL+16]. Figure 4.9 plots the α-dependency of the

lowest energy levels of a system of δ̃-interacting bosons on a tetrahedron with DFT

vertex scattering matrices. There is no obvious transition to a regime of energy

level repulsion as we increase α. Indeed, plots of nearest neighbour distributions

reveal Poissonian statistics for all interaction strengths. Figure 4.10 shows these
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Figure 4.9: Dependency on interaction strength of small eigenvalues of a system
of two bosons on a tetrahedron.
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Figure 4.11: Counting functions N(E) (solid line) with lines of best fit N(E)

(dashed line) for systems of two bosons on a tetrahedron.

plots for interaction strengths α = 1 and α = 10.

Figure 4.11 plots counting functions N(E) for strengths α ∈ {0,1,10} together

with quadratic lines of best fit N̄(E) given by (3.4.2). In each case, the leading

term does not agree with the Weyl law (3.4.1) predicted for contact interactions;

the values L

8πa are

8.36 × 10−3, 6.47 × 10−3 and 5.94 × 10−3 (4.4.8)

for α equal to 0, 1 and 10 respectively.

4.4.2 Equilateral stars

To examine the spectral statistics of coupled chaotic systems we must look for

two-particle quantum graphs for which the one-particle spectra recovered when

setting α = 0 are chaotic. We have seen that two-particle tetrahedra with δ̃-

interactions do not fulfil this requirement. Let us then focus our attention on

equilateral stars which we discussed in Section 4.2. Therein, we showed that true
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of two bosons on a 9-edge equilateral star.
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Figure 4.15: Dependency on interaction strength of large eigenvalues of a system
of two bosons on a 9-edge equilateral star.
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Figure 4.16: Integrated level spacings distributions for systems of two bosons on
a 9-edge equilateral star with α = 10.

one-particle spectra are recovered when setting α = 0. Thus we can discuss coupled

chaotic systems in the spirit of [STL+16] if we can find one-particle equilateral stars

which exhibit GOE statistics. Such systems are characterised by the quantisation

condition (4.2.64) which can be written

e−2ikl = −µ(k), (4.4.9)

where µ(k) is an eigenvalue of S
(1)
v (k). Clearly, the multiplicity of solutions k are

equal to the multiplicity these eigenvalues. For example, equilateral stars with

boundary conditions characterised by the DFT scattering matrix (2.4.17) at the

central vertex yield solutions corresponding to µ = {1,−1, i,−i}, with degenerate

values arising for d > 3. Clearly degenerate energy levels would obscure conclusions

made in the context of spectral statistics. To navigate this issue, we must choose

a scattering matrix with non-degenerate eigenvalues. In what follows, we choose a

randomly generated d∣I∣ × d∣I∣ unitary matrix. Figure 4.12 plots the nearest neigh-

bour distribution for a single particle on such an equilateral star with 9 edges.

The degenerate energy level spacings arise from the imposition of equal lengths.
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Figure 4.17: Counting functions N(E) (solid line) with lines of best fit N(E)

(dashed line) for systems of two bosons on a 9-edge equilateral star.

Indeed in studies of one-particle quantum graph spectra, rationally independent

lengths are chosen to avoid degenerate level spacings. We do however see approx-

imate agreement with GOE statistics. In this setting we can thus investigate the

coupling of two chaotic spectra by increasing α from 0.

Figure 4.13 plots the α-dependency of the lowest energy levels of a system of two

bosons on a 9-edge equilateral star with a random unitary central scattering ma-

trix. We clearly see a transition to level repulsion as α is increased. Figure 4.14

plots nearest neighbour distributions for the first 100 energy levels. There is a

clear shift from Poissonian, for α = 1, towards GOE statistics, for α = 10. We

note, however, that this level repulsion becomes less apparent as we include larger

energy levels; Figure 4.15 shows level crossing at higher energies and Figure 4.16

shows how the spectral statistics for the α = 10 case tend to Poissonian as we

include higher energies.

Figure 4.17 plots counting functions for α ∈ {0,1,10} together with quadratic lines

of best fit N̄(E) given by (3.4.2). The leading term is consistent with the Weyl
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law (3.4.1) for all interactions strengths; the values L

8πa are

1.002, 0.990 and 0.964 (4.4.10)

for α equal to 0, 1 and 10 respectively. Indeed, for the non-interacting (α = 0)

case, this agreement is almost exact. As the interaction strength increases, the

counting function diverges from this exact agreement.



Chapter 5

Many-particle quantum graphs

In the previous chapter we constructed exactly solvable two-particle quantum

graphs with δ̃-interactions and calculated their spectra using the Bethe ansatz.

In this chapter we generalise this approach to n-particle graphs.

5.1 Preliminaries

Before we proceed it is useful to define the symmetric group Sn, and the Weyl group

Wn of the root system Cn, which we will use to characterise the symmetries of ex-

actly solvable n-particle systems. Material, taken from [Hum72, AMP81, Bou68],

generalises that in Section 3.1.

Definition 5.1.1. Elements Q in the symmetric group Sn acting on the set

{1, . . . , n} will be written in term of generators

T1, . . . , Tn−1 (5.1.1)

which act according to

Ti(1, . . . , i − 1, i, i + 1, i + 2, . . . , n) = (1, . . . , i − 1, i + 1, i, i + 2, . . . , n) (5.1.2)

and satisfy the conditions

1. TiTi = I;

2. TiTj = TjTi for ∣i − j∣ > 1;

127
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3. TiTi+1Ti = Ti+1TiTi+1.

Consider the Euclidean space Rn with standard basis consisting of vectors

εi = (0, . . . ,1, . . . ,0)T, (5.1.3)

with 1, in the ith position, the only non-zero entry. The root system Cn, for n > 2,

is the set of 2n2 vectors {±εi ± εj}, with 1 ≤ i < j ≤ n, and {±2εi}, with 1 ≤ i ≤ n.

The Weyl group Wn is the group of isometries generated by the reflections through

hyperplanes perpendicular to the roots of Cn.

Definition 5.1.2. Elements P in the Weyl group

Wn ∶= (Z/2Z)n ⋊ Sn, (5.1.4)

of order 2nn!, acting on the set {±1, . . . ,±n} will be written in terms of generators

T1, . . . , Tn,R1 (5.1.5)

which act according to

1. Ti(1, . . . , i − 1, i, i + 1, i + 2, . . . , n) = (1, . . . , i − 1, i + 1, i, i + 2, . . . , n);

2. R1(1,2, . . . , n) = (−1,2, . . . , n),

and satisfy the conditions

1. R1R1 = I;

2. TiTi = I;

3. TiTj = TjTi for ∣i − j∣ > 1;

4. TiTi+1Ti = Ti+1TiTi+1;

5. R1T1R1T1 = T1R1T1R1;

6. R1Ti = TiR1 for i > 1.

It will be convenient to define elements

Ri = Ti−1 . . . T1R1T1 . . . Ti−1 (5.1.6)
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so that

Ri(1, . . . , i, . . . , n) = (1, . . . ,−i, . . . , n). (5.1.7)

We note then that, with Sn and Wn defined as above, the normal subgroup (Z/2Z)n

in Wn can be written in terms of generators R1, . . . ,Rn. With this in mind, the con-

ditions in Definition 3.1.4, which validate the semidirect product are easily verified.

Finally it will be useful to relate the Weyl groups Wn and Wn−1. To this end, let

us define the cyclic permutation

Cn = Tn−1Tn−2 . . . T1 (5.1.8)

so that

Cn(1,2, . . . , n − 1, n) = (n,1, . . . , n − 2, n − 1), (5.1.9)

where we note the relation

Rn = CnR1C
−1
n . (5.1.10)

The Weyl group Wn can then be written in terms of Wn−1 according to

Wn = {{Cd
nX,C

d
nRnX}X∈Wn−1}

n−1

d=0
. (5.1.11)

5.2 Bosons in a box

In order to establish some key concepts in the n-particle setting, we begin by

presenting the model of n δ-interacting bosons in a box solved by Gaudin [Gau71]

and presented for n = 2 in Section 3.2.2. The problem is formulated as a search

for n-particle solutions

ψ = ψ(x1, . . . , xn) (5.2.1)



CHAPTER 5. MANY-PARTICLE QUANTUM GRAPHS 130

of the Schrödinger equation

(−∆n + 2α∑
i≠j

δ(xi − xj))ψ = Eψ (5.2.2)

with particle positions x1, . . . , xn defined on the half-line R+ = (0,∞). Here the

n-particle Laplacian acts according to

−∆nψ = −
n

∑
j=1

∂2ψ

∂xj2
. (5.2.3)

By requiring that −∆n is self-adjoint and imposing bosonic symmetry

ψ(x1, . . . , xi−1, xi, xi+1, . . . , xj−1, xj, xj+1, . . . , xn)

=ψ(x1, . . . , xi−1, xj, xi+1, . . . , xj−1, xi, xj+1, . . . , xn),
(5.2.4)

equation (5.2.2) can be shown to decompose into the eigenvalue equation

−∆nψ = Eψ (5.2.5)

alongside the set of n − 1 jump conditions in the derivatives

(
∂

∂xj+1

−
∂

∂xj
)ψ∣xj+1=x+j = αψ∣xj+1=x+j , (5.2.6)

for j ∈ {1, . . . , n − 1}, and the Dirichlet condition

ψ∣x1=0 = 0, (5.2.7)

with ψ restricted to the subspace

dI = {Rn
+; x1 < ⋅ ⋅ ⋅ < xn}. (5.2.8)

Together with the imposition of bosonic symmetry, the problem is then also defined

in all subspaces

dQ = {Rn
+; xQ1 < ⋅ ⋅ ⋅ < xQn} (5.2.9)
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with Q ∈ Sn and thus all of Rn
+. We recall that, in the two-particle setting, inter-

actions between particles meant R2
+ was naturally dissected into two subspaces d±.

Here, in the n-particle case, appropriate dissections result in n! subspaces labeled

by elements Q ∈ Sn. Bosonic symmetry establishes equivalence between each of

these subspaces so that we need only consider one.

The task is then to construct explicit Laplace eigenfunctions ψ in dI which satisfy

conditions (5.2.6) and (5.2.7). The justification for the appropriate ansatz is a

straightforward generalisation of that given in the two-particle setting. Let us

consider an n-particle plane wave state

ψI = e
i(k1x1+⋅⋅⋅+knxn) (5.2.10)

defined with momenta

kn ≤ ⋅ ⋅ ⋅ ≤ k1 ≤ 0 and (k1, . . . , kn) ≠ 0, (5.2.11)

so that the system is approaching one of the n boundaries, xj = xj+1, for j ∈

{1, . . . , n − 1}, and x1 = 0, of dI . The possible results of δ-type conditions at each

boundary xj = xj+1 are the momenta of each participating particle being swapped

(kj, kj+1) → (kj+1, kj), (5.2.12)

or else remaining as they were

(kj, kj+1) → (kj, kj+1). (5.2.13)

Dirichlet boundary conditions at the latter boundary result in momentum reversal

(k1, k2, . . . , kn) → (−k1, k2, . . . , kn). (5.2.14)

Taking into account all possible interactions, we expect that any resulting n-

particle state must be one of n!2n n-particle plane waves

ψP = ei(kP1x1+⋅⋅⋅+kPnxn), (5.2.15)
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with elements P ∈ Wn as prescribed in Definition 5.1.2. We can then think of each

P ∈ Wn as corresponding to some configuration of momenta

k = (kP1, . . . , kPn). (5.2.16)

The Bethe ansatz method in this context is the assumption that the appropriate

ansatz is the sum of possible constituent plane wave states

ψ = ∑
P ∈Wn

AP ei(kP1x1+⋅⋅⋅+kPnxn) (5.2.17)

with AP the amplitudes of constituent states ψP .

Using the form (5.2.17), equation (5.2.6) is satisfied with Laplace eigenvalues

E =
n

∑
j=1

k2
j . (5.2.18)

Boundary conditions (5.2.6) and (5.2.7) then imply

APTi = sp(kPi − kP (i+1))A
P , (5.2.19)

for i ∈ {1, . . . , n − 1}, and

APR = −AP (5.2.20)

for all P ∈ Wn. Exact solvability is assured if relations (5.2.19) and (5.2.20) are

compatible with the properties of Wn. This amounts only to the requirement

sp(u)sp(−u) = 1 which is easily verified.

Let us bring our attention back to the compact setting. Enclosing the particles in

a box length l is enforcing the Dirichlet condition

ψ(x1, . . . , xn−1, l) = 0 (5.2.21)
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which implies the relation

AP = − e2ikPnlAPRn

= − e2ikPnlAPCnR1C
−1
n ,

(5.2.22)

where for the latter equality we have used the relation (5.1.10). Finally, applying

(5.2.19), (5.2.20) and (5.2.22) successively, we arrive at the condition

e−2ikPnl =
n−1

∏
i=1

sp(kPn + kPi)sp(kPn − kPi) (5.2.23)

for all P ∈ Wn. We note here that the form of sp(k) is such that, if (5.2.23) is

satisfied for some P ∈ Wn then it is necessarily satisfied for elements

PT1, . . . , PTn−2, PR1 and PRn (5.2.24)

in Wn and thus for every

PX and PRnX (5.2.25)

in Wn with X ∈ Wn−1. Using (5.1.11), we thus have the n quantisation conditions

e−2ikj l =∏
i≠j

sp(kj + ki)sp(kj − ki), (5.2.26)

with j ∈ {1, . . . , n}. Solutions (k1, . . . , kn) ≠ (0, . . . ,0), such that 0 ≤ k1 ⋅ ⋅ ⋅ ≤ kn,

then constitute energies (5.2.18).

5.3 General graphs with δ̃-interactions

Now we have established how to construct exactly solvable n-particle systems on

an interval, we would like to extend the approach to general graphs. As in the

two-particle setting, we will impose δ̃-interactions to ensure compatibility with the

Bethe ansatz method.

In Section 4.3, we calculated the spectra of two-particle quantum graphs by first

viewing a general graph Γ in its star representation Γ(s) and then imposing δ̃-type
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interactions between particles located on the same star. In this section we extend

this notion to n-particle quantum graphs. Appropriate boundary conditions will be

n-particle analogues of (4.3.34)–(4.3.38). Defining an appropriate n-particle Bethe

ansatz, we show exact solvability and calculate quantisation conditions which pro-

vide the exact spectra. In previous chapters, boundary conditions were shown to

provide self-adjoint realisations of the appropriate Laplacian. For compactness, we

claim that the arguments made in this context can be carried over to the n-particle

setting in the obvious way (see [BK13c]).

Consider the compact graph Γ viewed in its star representation Γ(s). The appro-

priate n-particle Hilbert space on Γ(s) is

H (s)
n =

n

⊗
i=1

(
∣E∣

⊕
j=1

L2(0,∞)) . (5.3.1)

Vectors

Ψ = (ψ
(s)
j1...jn

)
∣E∣

j1,...,jn=1
(5.3.2)

in H (s)
n are then lists of n-particle functions

ψ
(s)
j1...jn

∶D
(s)
j1...jn

→ C (5.3.3)

in L2(D
(s)
j1...jn

) with infinite subdomains defined as

D
(s)
j1...jn

= (0,∞)n. (5.3.4)

The total configuration space for n particles on Γ(s) is the disjoint union

D
(s)
Γ =

∣E∣

⊍
j1,...,jn=1

D
(s)
j1...jn

(5.3.5)

of these subdomains. The n-particle Hilbert space can then be written H (s)
n =

L2(D
(s)
Γ ).

In the two-particle setting, interactions take place along the diagonals x1 = x2

of two-dimensional configuration spaces D
(s)
mn. In the n particle case, we wish to
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impose interactions at the boundaries of subdomains

D
(s,Q)

j1...jn
= {(x1, . . . , xn) ∈D

(s)
j1...jn

; xQ1 < ⋅ ⋅ ⋅ < xQn}, (5.3.6)

with Q ∈ Sn. The appropriate total dissected configuration space is then

D
(s,∗)
Γ =

∣E∣

⊍
j1,...,jn=1

( ⊍
Q∈Sn

D
(s,Q)

j1...jn
) , (5.3.7)

with the total dissected two-particle Hilbert space H (s,∗)
n = L2(D

(s,∗)
Γ ). Thus

vectors

Ψ = ((ψ
(s,Q)

j1...jn
)
∣E∣

j1,...,jn=1
)
Q∈Sn

(5.3.8)

in H (s,∗)
n are lists of square-integrable functions ψ

(s,Q)

j1...jn
(x1, . . . , xn) ∶ D

(s,Q)

j1...jn
→ C.

The corresponding Sobolev space H2(D
(s,∗)
Γ ) is the set of Ψ ∈ H (s,∗)

n consisting of

functions ψ
(s,Q)

j1...jn
∈H2(D

(s,Q)

j1...jn
).

Boundary conditions will be imposed on eigenfunctions Ψ ∈ H2(D
(s,∗)
Γ ) of the n-

particle Laplacian −∆n. We reiterate here that these will be n-particle analogues

of the boundary conditions (4.3.34)–(4.3.38) imposed in the two-particle setting.

Before we proceed with establishing these conditions, it is convenient to define the

permutations Q as representations of Q ∈ Sn on

n

⊗
j=1

C∣E∣ (5.3.9)

according to

1. I = I∣E∣n is the representation of I;

2. T(i) = I∣E∣i−1 ⊗T∣E∣2 ⊗ I∣E∣n−i−1 is the representation of Ti.

We note the properties

T(i) (Aj1...jn)
∣E∣

j1,...,ji−1,ji,ji+1,ji+2...,jn=1 (5.3.10)

=(Aj1...jn)
∣E∣

j1,...,ji−1,ji+1,ji,ji+2,...,jn=1 (5.3.11)
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for ∣E ∣n-dimensional column vectors A and that

T(i)(M1 ⊗ ⋅ ⋅ ⋅ ⊗Mi−1 ⊗Mi ⊗Mi+1 ⊗Mi+2 ⊗ ⋅ ⋅ ⋅ ⊗Mn)T(i)

=M1 ⊗ ⋅ ⋅ ⋅ ⊗Mi−1 ⊗Mi+1 ⊗Mi ⊗Mi+2 ⊗ ⋅ ⋅ ⋅ ⊗Mn

(5.3.12)

for any ∣E ∣ × ∣E∣ matrices Mj.

Let us define boundary vectors

Ψ
(v)
bv = (Q−1(ψQj1...jn(x1, . . . , xn)∣xQ1=0)

∣E∣

j1,...,jn=1)Q∈Sn
;

Ψ
(v)
bv

′

= (Q−1(ψQj1...jn,Q1(x1, . . . , xn)∣xQ1=0)
∣E∣

j1,...,jn=1)Q∈Sn
,

(5.3.13)

where ψQj1...jn,Q1(x1, . . . , xn) are inward derivatives normal to the line xQ1 = 0.

Single-particle interactions with the vertices are then prescribed by local boundary

conditions

(In! ⊗A⊗ I∣E∣n−1)Ψ
(v)
bv + (In! ⊗B ⊗ I∣E∣n−1)Ψ

(v)
bv

′

= 0 (5.3.14)

with ∣E ∣ × ∣E∣ matrices A and B defined as in (2.4.6).

We would like to impose δ̃-type interactions between particles located on the same

infinite star and impose continuity across dissections otherwise. We then have the

conditions

ψQjQ−11...jQ−1n
(x1, . . . , xn)∣xQi=xQ(i+1)

=ψQTijTiQ−11
...jTiQ−1n

(x1, . . . , xn)∣xQi=xQ(i+1) ;

(
∂

∂xQ(i+1)

−
∂

∂xQi
− 2α)ψQjQ−11...jQ−1n

(x1, . . . , xn)∣xQi=xQ(i+1)

=(
∂

∂xQ(i+1)

−
∂

∂xQi
)ψQTijTiQ−11

...jTiQ−1n
(x1, . . . , xn)∣xQi=xQ(i+1) ,

(5.3.15)
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for f(eji) = f(eji+1) and

ψQjQ−11...jQ−1n
(x1, . . . , xn)∣xQi=xQ(i+1)

=ψQTijQ−11...jQ−1n
(x1, . . . , xn)∣xQi=xQ(i+1) ;

(
∂

∂xQ(i+1)

−
∂

∂xQi
)ψQjQ−11...jQ−1n

(x1, . . . , xn)∣xQi=xQ(i+1)

=(
∂

∂xQ(i+1)

−
∂

∂xQi
)ψQTijQ−11...jQ−1n

(x1, . . . , xn)∣xQi=xQ(i+1) ,

(5.3.16)

for f(eji) ≠ f(eji+1).

The task is now to specify eigenvectors Ψ ∈H2(D
(s,∗)
Γ ) which satisfy boundary con-

ditions (5.3.14)-(5.3.16). Taking care to distinguish between subdomains D
(s,Q)

j1...jn
,

the vector Ψ will be described by the collection of functions

ψQj1...jn = ∑
P ∈Wn

A
(P,Q)

j1...jn
ei(kP1x1+⋅⋅⋅+kPnxn). (5.3.17)

This form obviously leads to eigenfunctions of −∆n with Laplace eigenvalues

(5.2.18).

Let us define the ∣E ∣n-dimensional vectors

A(P,Q) = (A
(P,Q)

j1...jn
)
∣E∣

j1,...,jn=1
(5.3.18)

and then the n!∣E ∣n-dimensional vectors

AP = (Q−1A(PQ−1,Q))
Q∈Sn

. (5.3.19)

It is convenient at this point to impose an ordering on (5.3.19) by associating with

each element Q the number [Q] ∈ (1, . . . , n!) so that

Q−1A(PQ−1,Q) (5.3.20)

is the [Q]th block in the list AP .
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Boundary conditions at the vertices (5.3.14) imply the relations

Q−1A(PRQ1,Q) = (Sv(−kPQ1) ⊗ I∣E∣n−1)Q−1A(P,Q). (5.3.21)

Noting then, that the properties of Wn imply

RQ1 = QR1Q
−1, (5.3.22)

we have that

APR1 = In! ⊗ Sv(−kP1) ⊗ I∣E∣n−1AP . (5.3.23)

At this point, it is convenient to define the diagonal matrices

ci = diag(c
(i)
j1...jn

)
∣E∣

j1,...,jn=1, (5.3.24)

where

c
(i)
j1...jn

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if f(eji) = f(eji+1);

0 otherwise,
(5.3.25)

which distinguish domains with δ̃-type interactions from those which are continu-

ous across dissections. We notice here the relations

ci = I∣E∣i−1 ⊗ c⊗ I∣E∣n−i−1 . (5.3.26)

The δ̃-type conditions (5.3.15) and continuity conditions (5.3.16) imply the rela-

tions

(I2 ⊗ ci)
⎛

⎝

Q−1A(PTiQ
−1,Q)

T(i)Q−1A(PQ−1,QTi)

⎞

⎠

=(Sp(kPi − kP (i+1)) ⊗ I∣E∣n) (I2 ⊗ ci)
⎛

⎝

Q−1A(PQ−1,Q)

T(i)Q−1A(PTiQ
−1,QTi)

⎞

⎠

(5.3.27)

and

(I∣E∣n − ci)Q−1A(PQ−1,Q) = (I∣E∣n − ci)Q−1A(PQ−1,QTi) (5.3.28)
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respectively. We then have that

APTi = Yi(kPi − kP (i+1))A
P , (5.3.29)

where

(Yi(k))[Q][Q′] =
−iα

k + iα
ciδ[Q][Q′] + (

k

k + iα
ci +T(i) (I∣E∣n − ci)) δ[QTi][Q′]. (5.3.30)

Exact solvability is assured if relations (5.3.23) and (5.3.29) are compatible with

the properties of Wn. This amounts to the consistency relations

1. Sv(u)Sv(−u) = I∣E∣;

2. Yi(u)Yi(−u) = In!∣E∣n ;

3. Yi(u)Yj(v) = Yj(v)Yi(u) for ∣i − j∣ > 1;

4. Yi+1(u)Yi(u + v)Yi+1(v) = Yi(v)Yi+1(u + v)Yi(u);

5. (In! ⊗ Sv(u) ⊗ I∣E∣n−1)Y1(u + v) (In! ⊗ Sv(v) ⊗ I∣E∣n−1)Y1(v − u)

= Y1(v − u) (In! ⊗ Sv(v) ⊗ I∣E∣n−1)Y1(u + v) (In! ⊗ Sv(u) ⊗ I∣E∣n−1);

6. Yi(u) (In! ⊗ Sv(v) ⊗ I∣E∣n−1) = (In! ⊗ Sv(v) ⊗ I∣E∣n−1)Yi(u) for i > 1.

These conditions can be verified by the explicit forms of Sv(k) (for local bound-

ary conditions) and Yi(k) using the commutation relations (4.3.46), (4.3.45) and

(3.3.28) alongside the decompositions of ci and T(i) in terms of c and T∣E∣ pre-

scribed above.

In order to turn the eigenfunctions in the star representation into eigenfunctions

on the compact graph, we must impose appropriate joining conditions. These are

analogues of (4.3.47)–(4.3.48) and are written

ψQj1...jn(x1, . . . , xn) = ψ
Q
j′1...j

′
n
(x′1, . . . , x

′
n) (5.3.31)

for all Q ∈ Sn, where

(x′Q1, . . . , x
′
Qn) = (xQ1, . . . , xQ(n−1), ljQn − xQn) (5.3.32)
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and

(j′Q1, . . . , j
′
Qn) = (jQ1, . . . , jQ(n−1), jQn + ∣E∣). (5.3.33)

We then have

AP =E(−kPn)A
PRn

=E(−kPn)A
PCnR1C

−1
n ,

(5.3.34)

where

E(k) = In!∣E∣n−1 ⊗ ( 0 1
1 0 ) ⊗ e

ikl. (5.3.35)

Applying (5.3.23), (5.3.29) and (5.3.34) successively we have that the relation

Z(kP1, . . . , kPn) = 0, (5.3.36)

with

Z(k1, . . . , kn) = det [In!∣E∣n −E(kn)Yn−1(kn − kn−1) . . . Y1(kn − k1)

(In! ⊗ Sv(kn) ⊗ I∣E∣n−1)Y1(k1 + kn) . . . Yn−1(kn−1 + kn)],
(5.3.37)

is satisfied for all P ∈ Wn. By using properties of determinants, it can be shown

that the explicit forms of Yi(k), Sv(k) and E(k) are such that if (5.3.36) is satisfied

for some P ∈ Wn, then it is necessarily satisfied for elements

PT1, . . . , PTn−2,R1 and Rn (5.3.38)

in Wn and thus for every

PX and PRnX (5.3.39)

in Wn with X ∈ Wn−1. Using (5.1.11), we can state the main result of this section.

Theorem 5.3.1. Non-zero eigenvalues of a self-adjoint n-particle Laplacian −∆n

defined on Γ with local vertex interactions specified through A,B and δ̃-type in-

teractions between particles when they are located on neighbouring edges, are

the values E = k2
1 + ⋅ ⋅ ⋅ + k

2
n ≠ 0 with multiplicity m, where (k1, . . . , kn), such that
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0 ≤ k1 ≤ ⋅ ⋅ ⋅ ≤ kn, are solutions to the n secular equations

Z(ki1 , . . . , kin) = 0, (5.3.40)

for (i1, . . . , in) ∈ {Cd
n(1, . . . , n)}

n−1
d=0 , with multiplicity m.

5.3.1 Recovering specific results

In this final section, by choosing particular parameters, we show how to recover

established results from the general n-particle quantisation condition prescribed

by Theorem 5.3.1.

Equilateral stars

Let us recover the spectra of n-particle equilateral stars Γe. We begin by im-

posing vertex conditions (4.2.19) and (4.2.20) and equal lengths lj = l for all

j ∈ {1, . . . , ∣I∣}. We recall that in the star representation of two-particle equilateral

stars, δ̃-type interactions were imposed along the diagonals x1 = x2 of domains

D
(s)
mn with (em, en) ∈ Ne. Extending this notion to n particles, the diagonal matri-

ces c in Yi(k), are replaced with ce as prescribed by (4.2.50). Substituting these

parameters into (5.3.37) we recover the spectra for n-particle equilateral stars.

Simply by choosing ∣I∣ = 2, one immediately recovers the spectra of n particles

in a box with a central impurity. By instead defining vertex conditions according

to (4.2.63) to establish continuity at the outer vertices, we recover the spectra of

systems of two particles on a circle with an impurity. These spectra are exactly

those prescribed in [CC07] (see Proposition 3.1 therein).

Non-interacting particles

Non-interacting systems are recovered by turning off all coupling between domains

Dmn and Dnm. This is achieved by setting c = 0. Matrices

Yi(k)∣c=0 (5.3.41)
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are then composed of blocks

(Yi(k)∣c=0)[Q][Q′] = T(i)δ[QTi][Q′]. (5.3.42)

By substituting into (5.3.37) we recover the secular equation (2.3.9) for the one-

particle quantum graph.



Chapter 6

Summary and Outlook

In this thesis, we have constructed exactly solvable many-particle quantum graphs

with boundary conditions which provide self-adjoint realisations of the Laplacian.

Using the Bethe ansatz, we calculated and analysed their spectra.

We began by introducing basic concepts and ideas associated with one-particle

graphs before introducing the Bethe ansatz in the context of simple, exactly solv-

able, two-particle systems. We then constructed general two-particle quantum

graphs by establishing self-adjoint realisations of the two-particle Laplacian which

prescribe single particle interactions with the vertices as well as δ-type particle

interactions. Such systems are, in general, not exactly solvable. Adapting the ap-

proach so that self-adjoint Laplacians instead prescribe non-local δ̃-type particle

interactions, we constructed exactly solvable two-particle equilateral star graphs.

In this setting we introduced two methods for calculating spectra using the Bethe

ansatz. The latter was used in extending the approach to general two-particle

quantum graphs, finally arriving at an exact expression for the spectra

E = k2
1 + k

2
2, (6.0.1)

with (k1, k2) given by solutions to a pair of secular equations

Z(k1, k2) = 0 and Z(k2, k1) = 0. (6.0.2)

For two examples, we performed numerical eigenvalue searches to obtain explicit

spectra. We then compared the spectral counting function and level-spacings

143
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distribution with known results in quantum graphs and random matrix theory.

Mostly, Poissonian statistics resulted, with some level repulsion detected in exam-

ples of equilateral stars. None of the examples, however, reproduced clear GOE

statistics. Spectral counting functions, in general, did not agree with the two-

particle Weyl law for contact interactions. Agreement, however, was observed in

the equilateral star case. Finally, we extended the Bethe ansatz approach to n-

particle quantum graphs with δ̃-interactions, deducing an exact expression for the

spectra

E =
n

∑
j=1

E2
j (6.0.3)

with (k1, . . . , kn) given by solutions to the collection of n secular equations

Z(ki1 , . . . , kin) = 0, (6.0.4)

for (i1, . . . , in) equal to cyclic permutations of (1, . . . , n).

There are several directions for further research in this area. Firstly, quantisa-

tion conditions in the form of secular equations provide the possibility to establish

a many-particle quantum graph trace formula analogous to (2.5.2) for the one-

particle quantum graph. Such an expression would provide an analytical connec-

tion between the spectra of many-particle quantum graphs and the dynamics of

their classical counterparts in terms of periodic orbits.

Using the trace formula, or otherwise, one might wish to deduce an appropriate

Weyl law for quantum graphs with δ̃-interactions. Indeed this would shed light

on the apparent disagreement between the spectral counting functions for certain

two-particle quantum graphs and the Weyl laws (1.0.26)–(1.0.27) which are valid

for contact interactions.

In each of the examples studied in Sections 3.4 and 4.4, we referred to the asser-

tion [BGS84] that systems which are chaotic in their classical limit exhibit spectral

statistics which follow GOE predictions. It is well known [KS97] that this is the

case for one-particle quantum graphs. Indeed we showed this for the one-particle

tetrahedron. However, none of the two-particle quantum graphs we studied exhib-
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ited clear GOE statistics. In [STL+16], it was shown that, when coupling individ-

ually chaotic systems, the resulting spectra reproduce GOE statistics in the limit

of a large number of systems. Of course, in this thesis, the n-particle spectra have

been deduced exactly and thus, in principle, it is possible to test this argument

for n-particle quantum graphs. However this amounts to eigenvalue searches in

high dimensions which is computationally expensive. Revealing numerical results

could be obtained either by increasing computational power or developing efficient

root-finding methods. Additionally, it may be possible to reduce the dimension of

certain secular equations by making use of inherent symmetries associated with

specific examples.

Exact solvability on general many-particle quantum graphs was assured by impos-

ing δ̃-interactions between particles. In this way we constructed explicit Laplace

eigenfunctions using the Bethe ansatz. Of course there may be other possible

types of particle interaction which lead to exactly solvable models. It would then

be interesting to compare the spectral statistics of such models.
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