
Mutual Authentication Protocols for

RFID Special Schemes

Submitted by

Sarah Hani Abu Ghazalah

for the degree of Doctor of Philosophy

of the

Royal Holloway, University of London

2016

Declaration

I, Sarah Hani Abu Ghazalah, hereby declare that this thesis and the work presented in

it is entirely my own. Where I have consulted the work of others, this is always clearly

stated.

Signed . (Sarah Hani Abu Ghazalah)

Date:

1

My success is only by God

2

Abstract

Radio Frequency IDenti�cation (RFID) is a wireless identi�cation technology that

uses radio waves to identify tagged objects. RFID systems provide low-cost tagging

capabilities for many applications such as access control systems, transportation ticket-

ing, and supply chain management. Providing security and preserving privacy for these

systems is challenging. The tags utilised in such applications are low-cost tags with

limited resources that cannot a�ord the use of conventional cryptographic primitives.

Thus, low-cost RFID tags might be vulnerable to passive attacks, such as eavesdropping,

and active attacks, such as tag cloning, impersonation, replay, data de-synchronization

attacks, tag data leakage, forward secrecy invasion and location tracking.

There has been considerable research into the mutual authentication of passive RFID

tags to combat passive and active attacks, and in this thesis we present analysis of the

prior art, which led us to make �ve academic research contributions.

Security is increasingly important, especially for tagging of important objects, and

there are growing concerns from users about their privacy. To this end, in this thesis, we

studied RFID security and privacy in several schemes, such as in RFID-enabled supply

chains, RFID cloud-based scheme, and multi-tag group reading schemes. We focused

on how to improve and propose RFID mutual authentication protocols in such schemes

that are practical and cost e�ective, and satisfy the security and privacy requirements.

Lastly, we provide a formal analysis of the proposed protocols using CasperFDR

and Scyther tools, along with the implementation of the proposed protocols with their

performance measures.

3

Acknowledgement

First of all, all thanks are due to God, this thesis could not have been completed without

God blessings.

I would like to express my sincere gratitude to my supervisor Prof. Konstantinos

Markantonakis for the immeasurable amount of support and guidance throughout my

PhD. I remember in the �rst meeting with my supervisor, he told me that doing PhD is

like a running contest, I should keep running without stopping. I found this utterly true.

Also, I would like to extend my deepest gratitude to Prof. Keith Mayes for reviewing

this thesis. I am particularly in debt for Dr. Raja Naeem Akram for his insightful

comments on my thesis.

During my stay at Royal Holloway, I was privileged to meet great people. I would

like to thank my colleagues in the Smart Card Centre: Assad Umar, Ha�zah Man-

sor, Mehari Msgna, Lazaros Kyrillidis, Sheila Cobourne, Danushka Jayasinghe, Benoit

Ducray, Rashedul Hassan, and Iakovos Gurulian.

I am very thankful to my sponsors, King Khaled University, and the Ministry of

Education in Saudi Arabia for their �nancial support over the years.

Thank you Mom and Dad for always supporting me, praying for me and believing

in me. You are my role models. I dedicate this thesis to my lovely baby Hamad, who

brought joy to my life, and to my sisters and brother. Thanks for the endless prayers

of my grandmother, may her soul rest in peace.

Last but not least, a special thanks go to my husband Yahya for being patient with

me during my PhD. I would not be where I am today without your help and support.

I owe my success to you.

4

Contents

1 Introduction 13

1.1 Motivation . 14

1.2 Main Contributions . 15

1.3 Organisation . 16

1.4 Publications . 16

2 RFID Overview 18

2.1 RFID History . 19

2.2 RFID Architecture . 20

2.2.1 RFID Components . 20

2.2.2 Operating Frequency . 21

2.2.3 RFID Communication Methods 22

2.2.4 Anti-collision . 24

2.3 UHF RFID Standards . 25

2.3.1 EPCglobal Standard EPC Class-1 Gen-2 Speci�cations 26

2.4 RFID Applications . 28

2.5 RFID Privacy and Security . 29

2.5.1 RFID Privacy and Security Attributes 29

2.5.2 Attacks on RFID Systems . 30

2.5.3 RFID Main Threats . 32

2.6 Common Countermeasures . 33

2.6.1 PUFs-Based Approach . 34

2.6.2 Human-Computer (HB) Protocols 35

2.6.3 Lightweight Cryptographic Functions 36

2.7 Summary . 37

3 Formal Analysis and Implementation Tools 38

3.1 Introduction . 39

5

3.2 Formal Analysis Tools . 39

3.2.1 CasperFDR . 40

3.2.2 Scyther . 42

3.3 Implementation Tools and Performance Measurement Techniques 44

3.3.1 Lab Set-up . 44

3.3.2 Implementation Process . 46

3.3.3 Performance Measurement Techniques 46

3.4 Summary . 48

4 Data Desynchronisation on the Song RFID Mutual Authentication

Protocol 49

4.1 Introduction . 50

4.2 Data Desynchronisation Description . 51

4.3 Review of the Song Protocol . 51

4.4 Security Analysis of the Song Protocol 54

4.5 Revised Protocol . 54

4.6 Summary . 56

5 Mutual Authentication Protocol for Low-Cost RFID Tags 57

5.1 Introduction . 58

5.2 Related Work . 58

5.2.1 Hash Function-Based Protocols 59

5.2.2 Lightweight Function-Based Protocols 60

5.3 A New Lightweight RFID Authentication Protocol 63

5.3.1 Design Goals . 64

5.3.2 Assumptions . 65

5.3.3 Protocol Design . 65

5.3.4 Threat Model . 66

5.3.5 Notation . 66

5.3.6 Protocol Description . 66

5.4 Protocol Analysis . 69

5.4.1 Informal Protocol Analysis . 69

5.4.2 Formal Protocol Analysis . 70

5.5 Protocol Implementation and Performance Measurement 72

5.5.1 Implementation Process . 73

5.5.2 Performance Measurement . 73

5.6 Summary . 74

6

6 Enhancing the Key Distribution Model in the RFID-Enabled Supply

Chains 75

6.1 Introduction . 76

6.2 Secret-Sharing Approach . 77

6.2.1 LaGrange Interpolating Polynomial Scheme 78

6.3 Related Work . 78

6.4 Enhancing the Key Distribution Model in the RFID-Enabled Supply Chains 82

6.4.1 Design Goals . 82

6.4.2 System Scenario . 84

6.4.3 Assumptions . 84

6.4.4 Threat Model . 85

6.4.5 Protocol Description . 85

6.5 Protocol Analysis . 89

6.5.1 Informal Protocol Analysis . 89

6.5.2 Formal Protocol Analysis . 92

6.6 Protocol Implementation and Performance Measurement 94

6.6.1 Implementation Process . 94

6.6.2 Performance Measurement . 95

6.7 Summary . 96

7 Secure Improved Cloud-Based RFID Authentication Protocol 97

7.1 Introduction . 98

7.2 Review of the Cloud-Based RFID Authentication Protocol 100

7.3 Security Analysis of the Cloud-Based RFID Authentication Protocol . . 101

7.3.1 Reader Impersonation Attack . 101

7.3.2 Man-in-the-Middle Attack . 103

7.4 Improved Cloud-Based RFID Authentication Protocol 105

7.4.1 Design Goals . 105

7.4.2 Assumptions . 106

7.4.3 Protocol Design . 107

7.4.4 Threat Model . 107

7.4.5 Notation . 108

7.4.6 Protocol Description . 108

7.5 Protocol Analysis . 111

7.5.1 Informal Protocol Analysis . 112

7.5.2 Formal Protocol Analysis . 114

7.6 Protocol Implementation and Performance Measurement 116

7

7.6.1 Implementation Process . 116

7.6.2 Performance Measurement . 116

7.7 Summary . 117

8 Two Rounds RFID Grouping-Proof 119

8.1 Introduction . 120

8.2 Related Work . 121

8.2.1 Yoking-proof RFID Protocols . 121

8.2.2 Grouping-Proof RFID Protocols 123

8.3 Two Rounds RFID Grouping-Proof Protocol 128

8.3.1 Design Goals . 128

8.3.2 System Scenario . 130

8.3.3 Assumptions . 131

8.3.4 Threat Model . 131

8.3.5 Notation . 132

8.3.6 Protocol Description . 132

8.4 Protocol Analysis . 135

8.4.1 Informal Protocol Analysis . 135

8.4.2 Formal Protocol Analysis . 138

8.5 Protocol Implementation and Performance Measurement 140

8.5.1 Implementation Process . 140

8.5.2 Performance Measurement . 140

8.6 Summary . 142

9 Conclusion and Future Work 143

9.1 Summary and Conclusions . 144

9.2 Re�ection on Citations . 146

9.3 Future Work . 147

Bibliography 148

A Mutual Authentication Protocol for Low-Cost RFID Tags Formal Anal-

ysis Scripts 164

A.1 CasperFDR Script . 164

A.2 Scyther Script . 165

B Key Update Process in the Key Distribution Model Formal Analysis

Scripts 167

B.1 CasperFDR Script . 167

8

B.2 Syther Script . 168

C Improved Cloud-Based RFID Protocol Formal Analysis Scripts 171

C.1 CasperFDR Script (Xie protocol) . 171

C.2 CasperFDR Script (Our protocol) . 172

C.3 Scyther Script . 173

D RFID Grouping-Proof Formal Analysis Scripts 176

D.1 CasperFDR Script . 176

D.2 Syther Script . 177

9

List of Figures

2.1 Typical passive RFID system scenario 22

2.2 Inductive coupling . 23

2.3 Passive backscatter . 24

2.4 RFID attacks and threats . 31

3.1 The CAEN Slate reader, the AVR JTAG ICE programmer, and the RFID

UHF DemoTag . 44

3.2 DemoTag structure [84] . 45

4.1 The authentication process of the Song protocol 53

5.1 Hanatanil et al.'s RFID authentication protocol 61

5.2 The proposed lightweight RFID mutual authentication protocol 68

6.1 Supply chain parties [137] . 77

6.2 Cai et al.'s secret key update protocol 81

7.1 Cloud-based RFID authentication protocol 102

7.2 Improved cloud-based RFID mutual authentication protocol 110

8.1 Juels' yoking-proof protocol . 122

8.2 Piramuthu's yoking-proof protocol . 122

8.3 A multi-session attack on Piramuthu's protocol 123

8.4 Saito et al.'s grouping-proof protocol . 124

8.5 Peris-Lopez et al.'s grouping-proof protocol 125

8.6 Burmester et al.'s grouping-proof protocol 126

8.7 A multi-proof attack on Burmester et al.'s protocol 127

8.8 Moriyama's grouping-proof protocol . 128

8.9 System scenario . 130

8.10 The proposed grouping-proof protocol 134

10

List of Tables

2.1 RFID tag's frequency, reading distance and supported standards 23

4.1 A summary of notation . 52

4.2 Data desynchronisation on the Song protocol 55

5.1 A summary of notation . 67

5.2 Comparison between the related work and our proposed protocol 70

5.3 Data exchange time cost (milliseconds) 73

5.4 Computing operations time cost (milliseconds) 74

6.1 A summary of notation . 78

6.2 Distributor secret key update process . 88

6.3 Security features comparison . 91

6.4 Data exchange time cost . 95

6.5 Computing operations time cost (milliseconds) 96

7.1 A summary of notation . 100

7.2 Protocol notation . 108

7.3 Comparison between the cloud-based RFID authentication protocol and

our proposed protocol . 114

7.4 Data exchange time cost . 117

7.5 Computing operations time cost (milliseconds) 117

8.1 A summary of notation . 121

8.2 Protocol notation . 132

8.3 Security comparison of yoking/grouping-proof protocol 138

8.4 Tag's performance comparison of grouping-proof protocols 138

8.5 Data exchange time cost . 141

8.6 Computing operations time cost (milliseconds) 141

11

List of Abbreviations

ACK Acknowledgement

CRC Cyclic Redundancy Check

CSP Communicating Sequential Process

DoS Denial of Service

EEPROM Electrically Erasable Programmable Read-Only Memory

EPC Electronic Product Code

EPCC1Gen2 EPC Class-1 Generation-2

FDR Failure-Divergence Re�nement

GE Gate Equivalent

GHz Gigahertz

HF High Frequency

IC Integrated Circuit

ISO International Organization for Standardization

JTAG Joint Test Action Group

KHz Kilohertz

LF Low Frequency

MAC Message Authentication Code

MHz Megahertz

NACK Negative Acknowledgement

PC Protocol Control

PCB Printed Circuit Board

PRNG Pseudo Random Number Generator

RAM Random Access Memory

RF Radio Frequency

RFID Radio Frequency IDenti�cation

UHF Ultra High Frequency

12

Chapter 1

Introduction

Contents

1.1 Motivation . 14

1.2 Main Contributions . 15

1.3 Organisation . 16

1.4 Publications . 16

In this chapter, we explain the motivation behind the thesis, followed by the main

contributions it makes to the design of a secure RFID system. The chapter concludes

by outlining the structure of the thesis, and listing publications achieved throughout the

PhD study.

13

1.1 Motivation

Radio Frequency Identi�cation (RFID) is a wireless identi�cation technology that uses

radio signals to transmit data. It is used for identifying objects such as products,

animals and people. These objects are embedded with a small token known as an

RFID tag. In this thesis, we focus on passive RFID tags, which can be de�ned as

wireless transponders that do not have any power of their own and only respond to

the electromagnetic �elds generated by the nearby reader(s). Passive RFID tags are

designed to be resource-limited in order to be used with low-cost items. An RFID tag

stores a unique identi�er and may optionally hold additional information about the

object. RFID readers communicate wirelessly with the tags to identify, read, write or

update the tag's data without requiring a line-of-sight and over greater distances than

other identi�cation technologies such as barcodes [111].

Currently, the dominant identi�cation system is the barcode, although it requires a

line-of-sight scan to identify objects belonging to the same type (homogeneous). RFID

technology o�ers advantages that surpass barcode technology [111] as follows:

� Unique identi�cation: Each tagged object can be identi�ed uniquely, including

objects from homogeneous types.

� No line-of-sight: Tagged objects can be scanned without any requirement for

a line-of-sight or a physical connection, as RFID relies on radio frequencies to

transmit information rather than light as in the barcode technology.

� Simultaneous scanning: Multiple RFID tags can be presented simultaneously for

reading, whereas barcodes are presented sequentially; one object at a time.

� Rewritable memory: Some RFID tag's memories can be erased and re-written

with new data via the reader.

Although RFID technology provides a promising solution, security is increasingly

important, especially for tagging of important objects, and there are growing concerns

from users about privacy, for the following reasons:

1. The wireless communication channel between the reader and the tag may be sus-

ceptible to eavesdropping and/or manipulation. Moreover, a unique tag's identi-

�cation may be tracked by an intruder, and thus the privacy of the tag's holder

could be compromised.

2. An RFID tag is typically designed to be low-cost for mass distribution. This can

result in tags being designed with limited memory and computing capabilities,

14

which do not take advantage of heavy cryptographic techniques such as asymmet-

ric encryption.

A securely designed RFID system should take into account three main attributes,

which are integrity, availability, and con�dentiality. The consequences of breaching

an RFID system can be severe. An intruder could eavesdrop on the communication

channel and modify the transmitted data thus a�ecting the integrity of data. More-

over, an intruder might block the transmitted message from reaching targets, or the

messages might be lost during transmission and this will a�ect the availability feature.

Also, the data might be compromised or tracked by an intruder, leading to a breach of

con�dentiality.

Cryptography seems an inevitable tool in designing a secure RFID system. From a

theoretical point of view, traditional cryptography can be an ideal approach. However,

some common best-practice cryptographic approaches require more memory and/or

processing power than would be feasible for cost-e�ective RFID tags. Therefore, re-

searchers considered lightweight cryptographic techniques [1].

There is considerable research into the lightweight mutual authentication of RFID

tags to combat passive and active attacks, and in this thesis, we present analysis of the

prior art, and focus on proposing RFID mutual authentication protocols that provide

adequate levels of security and privacy for several RFID schemes. This has led us to

make �ve academic research contributions, as shown in the next section.

1.2 Main Contributions

The main contributions of the thesis are as follows:

1. Discovering potential attacks in some of the prior related work and proposing

countermeasures.

2. Proposing an RFID mutual authentication protocol for low-cost RFID tags.

3. Distributing and updating tags' shared secret key between the RFID-enabled

supply chain entities.

4. Protecting and preserving RFID tags' data in the cloud-based RFID systems.

5. Proving that a group of legitimate RFID tags have been scanned simultaneously

in grouping-proof-based systems.

15

1.3 Organisation

This thesis is divided into the following chapters:

� Chapter 2 presents the background of RFID technology, and identi�es the main

privacy and security features required in secure RFID systems.

� Chapter 3 presents a description of the formal mechanical analysis tools such as

CasperFDR and Scyther that are used to check the secrecy and authenticity of the

proposed protocols. This chapter also presents the lab setup, the implementation

tools, and the techniques used in the performance measurement.

� Chapter 4 shows how design �aws can be exploited to perform a data desynchroni-

sation on one of the widely-cited RFID mutual authentication protocols proposed

by Boyeon Song.

� In chapter 5, we propose a new lightweight RFID mutual authentication protocol,

which builds on the strength of existing proposals and overcomes Song's protocol

and other proposals' weaknesses.

� Chapter 6 discusses the use of secret sharing strategies for managing the key distri-

bution and recovery in RFID-enabled supply chains. We point out the weaknesses

found in two of the proposed solutions, and propose our enhanced scheme.

� In chapter 7, we review and enhance a recent proposed protocol regarding the

security and privacy of RFID tag's data that resides in the cloud; assuming that

the cloud is not trusted.

� In chapter 8, we focus on a particular RFID application called a grouping-proof,

where an entity such as a reader generates a proof of simultaneous presence of

two or more tagged items. We propose an o�ine two rounds RFID grouping-

proof protocol that provides immunity against passive and active attacks on RFID

protocols, and improves the current work performance.

� Chapter 9 o�ers concluding remarks and discusses future work.

1.4 Publications

Parts of the material presented in this thesis have been previously published in refereed

conferences:

16

1. S. Abughazalah, K. Markantonakis, and K. Mayes. A vulnerability in the Song

authentication protocol for low-cost RFID tags. In The 28th IFIP Advances in

Information and Communication Technology Security and Privacy Protection in

Information Processing Systems (IFIP SEC 2013), editors, L. Janczewski, H.

Wolfe, and S. Shenoi, volume 405, pages 102-110. Springer, 2013.

2. S. Abughazalah, K. Markantonakis, and K. Mayes. A formally veri�ed mutual

authentication protocol for low-cost RFID tags. In International Journal of RFID

Security and Cryptography, 3(2):156-169, 2014.

3. S. Abughazalah, K. Markantonakis, and K. Mayes. Enhancing the key distribution

model in the RFID-enabled supply chains. In the 28th International Conference on

Advanced Information Networking and Applications Workshops (WAINA 2014),

pages 871-878, IEEE, 2014.

4. S. Abughazalah, K. Markantonakis and K. Mayes, Secure mobile payment on

NFC-enabled mobile phones formally analysed using CasperFDR. In IEEE 13th

International Conference on Trust, Security and Privacy in Computing and Com-

munications (TrustCom 2014), pages 422-431, IEEE, 2014.

5. S. Abughazalah, K. Markantonakis, and K. Mayes. Secure improved cloud-based

RFID authentication protocol. In The 9th International Workshop on Data Pri-

vacy Management (DPM 2015), editors, J. Garcia-Alfaro, J. Herrera-Joancomartí,

E. Lupu, J. Posegga, A. Aldini, F. Martinelli, and N. Suri, volume 53, pages 147-

164, Springer, 2015.

6. S. Abughazalah, K. Markantonakis, and K. Mayes. Two rounds RFID grouping-

proof protocol, In The 10th IEEE International Conference on RFID (IEEE

RFID 2016), pages 193-206, IEEE, 2016.

17

Chapter 2

RFID Overview

Contents

2.1 RFID History . 19

2.2 RFID Architecture . 20

2.3 UHF RFID Standards . 25

2.4 RFID Applications . 28

2.5 RFID Privacy and Security 29

2.6 Common Countermeasures . 33

2.7 Summary . 37

In this chapter, we provide a brief discussion of the history of RFID technology.

Then, we discuss RFID architecture with regard to the RFID components, the operat-

ing frequencies, the communication methods between a tag and a reader, and the anti-

collision protocols. Subsequently, the regulations and standardisations governing RFID

systems and the main applications of RFID technology are illustrated. The chapter con-

cludes by outlining the concerns associated with the deployment of RFID in terms of

security and privacy, and the common countermeasures.

18

2.1 RFID History

The roots of RFID technology can be traced back to 1901, when Guglielmo Marconi

transmitted radio signals across the Atlantic to send messages. In 1934, �Radio De-

tection and Ranging� system, otherwise known as Radar was introduced, which uses

radio waves to locate physical objects. Radar was used widely in the Second World

War to detect incoming aircraft by sending pulses of radio energy and capturing the

echoes generated from aircraft [22]. However, identifying the aircraft correctly was the

main issue; they were not able to identify which aircraft belonged to whom. Thus,

the British developed the �rst active Identi�cation, Friend or Foe (IFF) system. They

embedded a transmitter in each aircraft that allowed the radar operators and pilots to

automatically distinguish friendly aircraft from enemy aircraft via the radio frequency

(RF) signals [22]. The �rst public description of passive communication used in RFID

technology was published in 1948 by Harry Stockman in �Communication by Means of

Re�ected Power� [23].

In 1970, wireless sensors developed by Los Alamos National Laboratory were used

to track nuclear materials and to identify trucks on roads, bridges and tunnels [129].

In the same year, Los Alamos National Laboratory developed the �rst low frequency

passive RFID transponders to track cows. A transponder encapsulated in glass could be

injected under a cow's skin to check the dosages of hormones and medication given to

them [129]. In 1973, passive RFID transponders was deployed to allow users to unlock

a door without a key. The nearby reader powers the card to check the identity sent by

the card to unlock the door. Also, in 1973, a one-dimensional (or linear) barcode design

was invented by encoding the product's and brand's information onto a physical object

that could be scanned by a reader [24].

Over time, IBM developed an ultra high frequency (UHF) RFID tags, which o�ered a

longer read range, and faster data transfer. IBM used these new inventions in Wal-Mart

but not for a long time. In 1999, UHF RFID tags obtained more attention when the

Uniform Code Council, EAN International, Procter & Gamble and Gillette established

the Auto-ID Center at Massachusetts Institute of Technology to study RFID and invent

new RFID technologies [25]. Adoption of RFID grew steadily over the following years,

and passive UHF tags started to be used in the supply chain to track products through

their life cycle. These tags only store the tag's serial number for identi�cation purposes,

and stored in a database [129].

Between 1999 and 2003, the U.S. Department of Defence and 100 RFID global

companies supported the use of RFID technology and funded the Auto-ID Center to

develop this technology. Auto-ID Center opened research labs in Australia, United

19

Kingdom, Switzerland, USA, Japan and China to bring together RFID manufacturers,

researchers, and users to develop standards, perform research, and share information

[129]. Together with the EPCglobal community, both are creating the standards and

assembling the building blocks needed to create an �Internet of things�.

From 2003 till today, RFID technology rapid development is being challenged by

security and privacy issues. Ongoing research is directed towards the security and

privacy of RFID, and the design of tag's supporting cryptography is being developed.

According to [26], in 2015, the RFID market was worth $10.1 billion, compared to

$9.5 billion in 2014 and $8.8 billion in 2013. It is predicted that the RFID market will

be worth $13.2 billion by 2020. This implies that RFID technology will be a promising

technology in the near future.

2.2 RFID Architecture

In this section, a brief background to the architecture of RFID systems is presented

in terms of RFID components, operating frequencies, reader and tag communication

methods, and reader and tag anti-collision schemes.

2.2.1 RFID Components

An RFID system consists of three main components; an RFID tag, an RFID reader,

and a back-end database (server).

1. RFID tag: An RFID tag is an identi�cation object that consists of integrated

circuitry (IC) and antenna. The integrated circuit is for computation and storage

purposes, and it is attached to an antenna that provides communication between

the reader and the tag. It is also known as a transponder. An RFID tag can be

classi�ed based on the source of power into three categories as follows:

� Active tag: An Active tag is a wireless transponder embedded with a battery

and a transmitter enabling the tag to run the chip's circuitry and to broadcast

a signal to a reader. This tag is expensive and can be read from 100 metres

or more.

� Passive tag: A Passive tag is a wireless transponder that does not have any

power of its own and only responds to the electromagnetic �elds generated

by the nearby reader(s). Passive RFID tag is designed to be simple and

resource-limited in order to be used with low-cost items. This type of tag

will be the focus of this thesis.

20

� Semi-passive tag: A Semi-passive tag uses a battery to run the chip's cir-

cuitry, but depends on the reader's signals for communication purposes. This

ensures that a semi-passive tag is only active when queried by a reader.

2. RFID reader: An RFID reader has an RF module, a control unit, and a coupling

element (antenna) to sense the presence of RFID tags and communicate with

them (discussed more deeply in Section 2.2.3). It is also known as a transceiver

or interrogator. RFID readers have di�erent frequencies, and may o�er a wide

range of functionality. Generally, RFID readers have more capabilities than tags

with regard to internal storage and processing power, so complex cryptographic

computations may be carried out by RFID readers. An RFID reader is connected

to a back-end server through a secure communication channel. Currently, many

applications rely on �xed reading devices, but may also be integrated into hand-

held mobile devices [30, 31].

3. Back-end database (server): A server is a database that contains records as-

sociated with the RFID tags it manages. These records may contain product

information, tracking logs, etc. The server has very high storage and computing

capabilities to be able to manage hundreds or thousands of RFID tags.

A typical passive RFID system is shown in Fig. 2.1, and works as follows:

(a) The reader emits an RF signal via its antenna to power the tag.

(b) The tag sends a message to the reader via the RF signal.

(c) The reader forwards the tag's message to the server for further processing.

(d) The server processes the tag's data and sends back a reply to the reader.

(e) The reader forwards the server's reply to the tag. In some scenarios the tag

and the server have to update their values to be used in the next session.

2.2.2 Operating Frequency

The electromagnetic spectrum within which RFID systems typically operate is com-

monly divided into low frequency (LF), high frequency (HF), ultra high frequency

(UHF), and microwave. Di�erent frequencies are widely deployed in RFID systems,

ranging from 120 KHz to 5.8 GHz [111]. Table 2.1 lists standard frequencies and their

respective read distances and standards.

� LF RFID tags: LF RFID tags typically operate in the 120-140 KHz range and

have short read-ranges of 10-20 centimetres. LF signals are able to travel through

21

Figure 2.1: Typical passive RFID system scenario

water, metals or dirt, so they are often used in pet identi�cation or laundry

management tags. They are also used in short read-range applications such as

access control and car immobilization.

� HF RFID tags: HF RFID tags operate in the 13.56 MHz frequency. HF tags o�er

a higher data distance up to 1 metre, but in practice the distance is 4-6cm as in

the NFC technology, bankcards, Oyster cards etc. HF RFID tags do not perform

as the LF RFID tags in proximity to metals and liquids. HF tags are mostly used

in smart cards, library books, and transport ticketing systems.

� UHF RFID tags: UHF tags operate in the 868-928 MHz range. UHF tags are

most commonly used for item tracking and supply-chain management applications

due to the long read distance they o�er and for their low-cost. These tags are

more sensitive to metals and liquids. This thesis focusses on this type of tags.

� Microwave: Microwave tags operate at 2.45-5.8 GHz and has a read range of up

to approximately 30 metres. Applications of microwave tags are highway toll

collection and vehicle �eet identi�cation. This type of tag consumes more energy

and is more costly than the lower frequency tags.

2.2.3 RFID Communication Methods

Passive RFID tags obtain their power by harvesting energy from the electromagnetic

�eld of the reader's signal. RFID tags communicate with the reader in two methods;

inductive coupling or passive backscatter as follows [29]:

� Inductive coupling: LF and HF tags use inductive coupling. The reader generates

a current magnetic �eld. Then, when the tag is placed close enough to the reader,

22

Table 2.1: RFID tag's frequency, reading distance and supported standards

Frequency Range Frequency Read Distance Standard
Low Frequency (LF) 120-140 KHz 10-20 cm ISO 18000-2 [27]
High Frequency (HF) 13.56 MHz up to 1 meters ISO 18000-3 [27]

ISO 14443 [32]
ISO 15693 [34]

Ultra High Frequency (UHF) 868-928 MHz < 10 meters ISO 18000-6 [27]
EPCGlobal [35]
EPCGlobal [28]

Microwave 2.45 - 5.8 GHz > 10 meters ISO 18000-4 [27]

the �eld from the reader coil will couple to the coil of the tag, charge the on-

tag capacitor and generate a voltage that powers the tag circuitry. The reader

modulates its magnetic �eld amplitude according to the data to be sent to the

tag. A tag on the other hand, transmits its ID by turning on and o� its load

resistor in accordance with the digital data to be sent; this is known as load

modulation. The reader detects these amplitude variations, and demodulates the

transmitted message. The reading distance between the reader's antenna and the

tag's antenna should be fairly small because of the limited range of the magnetic

�eld as shown in Table 2.1. This method is shown in Fig. 2.2

Figure 2.2: Inductive coupling

� Passive backscatter: This method is shown in Fig. 2.3. UHF and microwave tags

use passive backscatter. A reader's antenna generates continuous electromagnetic

waves, and this will develop a potential di�erence at the tag's antenna and en-

ergises the tag circuit. The tag's antenna is tuned to receive these waves and

demodulates it into patterns of ones and zeros that form the commands for the

operations to be performed. Then, the tag changes the amplitude of the elec-

tromagnetic waves re�ected by the tag's antenna in accordance with the tag's

messages, and this is called backscattering. Because the tag does not have power

23

Figure 2.3: Passive backscatter

to transmit the data, it uses variable impedance with a transistor to send a wave

back [33].

2.2.4 Anti-collision

Since a shared wireless channel is used between the reader and the tag, signal collision

may occur. Collision in RFID is divided into tag collision and reader collision. Anti-

collision protocols for the tag and reader are presented below:

� Tag anti-collision: When multiple tags are energised by the RFID reader simul-

taneously, tag collision may occur as the tags re�ect their respective signals back

to the reader at the same time. Such issue arises in some applications where

multiple tags need to be read within the same RF �eld. As a result, the reader is

unable to di�erentiate these signals. To minimize collisions, RFID tags must use

an anti-collision protocol. The most widely used anti-collision protocol in RFID

systems is the Aloha scheme [111, 29].

In basic Aloha scheme, after the tag is energised, it sends its ID to the reader and

waits for an acknowledgement (ACK) from the reader. If it receives a negative

acknowledgement (NACK), meaning a collision has occurred, it resets and re-

sends its ID again. Systems based on the basic Aloha scheme still su�er from

the collision problem as all the tags send their ID randomly (no time allocation).

Subsequently, several enhanced Aloha protocols have been proposed including

Slotted Aloha and Framed Slotted Aloha.

In a Slotted Aloha scheme, the tags transmit their messages at de�ned, syn-

chronous time slots, which are controlled by the reader. A slot is a discrete time

interval su�ciently long to allow the tag to transmit its ID. In this scheme, a tag

must choose one of the slots randomly and transmit data within a single slot. If

there is a collision and the tag does not receive an acknowledgement, it retrans-

24

mits after a random delay. This means the collisions only occur at the start of

each slot.

To further improve the Slotted Aloha, a Framed Slotted Aloha has been intro-

duced. The time slots are grouped in a frame; in each read cycle there are multiple

frames with the same number of slots. Each tag chooses a slot in a frame and

sends its data once within a frame. If the tag does not receive an acknowledge-

ment, it waits for the next read cycle and selects a slot in the new frame. The

read cycle is repeated until no collision occurs. Framed Slotted Aloha can be clas-

si�ed into Basic Framed Slotted Aloha for �xed frame size and Dynamic Framed

Slotted Aloha for variable frame size, where the number of tags increases during

the protocol execution.

An Aloha scheme is a probabilistic algorithm, where the tags respond at randomly

generated times, or within a slotted/framed time interval. Another scheme uses a

deterministic algorithm in which the reader sorts through the tags based on their

unique ID in a tree-based data structure. The reader searches the tree nodes

of all possible ID numbers, and the presence of a response gives the reader an

indication as to where to search next [36]. Tree-based structure may have longer

identi�cation delays but lower tag starvation problems, where a tag might wait

for unlimited periods of time time to be identi�ed [19].

� Reader anti-collision: Reader collision happens when two or more readers com-

municate on the same frequency at the same time (reader-to-reader frequency

interference), or when a nearby reader attempts to query the same tag simulta-

neously (multiple reader-to-tag interference) [19]. Because the readers have more

memory space and higher computing capabilities than tags, they can detect col-

lision easily. A commonly used anti-collision protocol proposed in [37] allocates

di�erent frequency bands or times to neighbouring readers.

2.3 UHF RFID Standards

RFID standards describe the physical and the link layers, and the requirements for the

air interface, anti-collision mechanisms, communication protocols and security func-

tions. The two most relevant UHF RFID standards are the ISO 18000-6 standard [27]

and the EPC Class-1 Generation-2 standard [35], hereinafter denoted as (EPCC1Gen2).

ISO 18000-6 speci�es the standard for the following tags:

� LF RFID tags

25

� HF RFID tags

� UHF RFID tags

� Microwave RFID tags

Two other ISO standards, ISO/IEC 14443 [32] and ISO/IEC 15693 [34] are related

to smart card and proximity card interfaces operating in the HF range.

In November, 2013, a new version of the EPCC1Gen2 standard was released [28].

The new standard added new cryptographic functions that can be optionally performed.

The additional security commands are Authenticate, AuthComm, SecureComm, KeyUp-

date, TagPrivilege. The tag shall generate a 16-bit random number as in [35], and has

the same probabilities of the random number generator (RNG) in the EPCC1Gen2

standard as discussed in the next section.

Some of the related work, and the implementation tools used in this thesis support

the EPCC1Gen2 standard [35], hence, the next section will discuss some of the main

speci�cations of the EPCC1Gen2 standard.

2.3.1 EPCglobal Standard EPC Class-1 Gen-2 Speci�cations

The EPCC1Gen2 standard aims to standardise and promote UHF RFID tags. In EPC

Class-0, the tags are read-only devices, while in EPC Class-1, the tags' data are one-

time programmable, but in practice, commercially available UHF tags can be erased

and re-written numerous times. The standard speci�es the following:

� Physical layer: The tags do not have any power source, they can respond only

when they are powered by the reader. The communication between the reader

and tag is half duplex, which means that the reader talks and the tag waits and

listens for any incoming data, or vice versa, but not simultaneously.

� Tag memory Tag memory is logically divided into four banks as follows [35]:

1. Reserved memory : Reserved memory stores a 32-bit kill password and a 32-

bit access password. Once a tag receives the kill password, it is permanently

disabled. Tags with a non-zero access password have to receive the correct

access password before transitioning to the secured state.

2. EPC memory: This area of memory contains a 96-bit unique identity of the

tag, known as Electronic Product Code (EPC) value, a 16-bit cyclic redun-

dancy check (CRC) value, and a protocol control (PC), where PC contains

physical layer information.

26

3. TID memory: This memory bank contains an 8-bit ISO/IEC 15693 class

identi�er, and additional information that identi�es the custom commands

and/or optional features that a tag supports.

4. User memory: This memory bank is for user-speci�c data storage.

� Cryptographic operations

The EPCC1Gen2 standard supports a 16-bit CRC to detect any modi�cation of

the backscattered messages [35]. The tag computes its 16-bit CRC over the values

of PC and EPC, and maps the computed CRC-16 into the EPC memory.

Moreover, tags generate 16-bit random number (RN-16) to be included in the

transmitted messages and in handling password commands [35]. The designed

RNG should meet the following probabilities: the probability that any two or more

tags simultaneously generate the same sequence of RN-16 shall be less than 0.1%,

and the generated random number shall not be predictable with a probability

greater than 0.025%.

� Tag identi�cation layer: For the reader to communicate with the tags, it performs

three basic operations [35]:

1. Select: This process is for selecting the tags the reader wants to communicate

with; it is similar to selecting records from a database.

2. Inventory. This process is performed in one session at a time to identify the

tag. The tag responds with a 16-CRC value and its unique EPC value.

3. Access: This operation is for interacting with the tag by reading and writing

data in the tag's memory. Tags have to be identi�ed before access.

� Slot counter: The EPCC1Gen2 is based on the Framed Slotted Aloha discussed

in section 2.2.4. The number of time slots is set by the reader as Q, where Q is an

integer ranging from 0 to 15, and is sent via the Query or QueryAdjust command.

When the tag receives such a command, it extracts a value x between 0 and 2Q-1

from its RNG, and loads x into its slot counter. If the number in the slot counter

is zero, the tag is transferred into the reply state, otherwise to the arbitrate state.

� Tag states: RFID tags transit into di�erent states during a session as follows [35]:

� Ready state: The tag remains in the ready state after being energised. When

it receives a Query command from the reader, it extracts a value x between

0 and 2Q-1 from its RNG, and loads x into its slot counter. If the result is

27

non-zero it transits to the arbitrary state, or to the reply state if the number

is zero.

� Arbitrate state. A tag in an arbitrate state decrements its slot counter every

time it receives a QueryRep command. When the slot counter reaches zero, it

transits to the reply state and backscatters a 16-bit random number (RN16).

� Reply state: A tag sends an RN16, once it enters the reply state. If the

tag receives a valid acknowledgement (ACK), it transits to the acknowledge

state and sends the EPC value. Otherwise, the tag transits to the arbitrate

state if it receives NACK.

� Acknowledge state. A tag in this state can transit to any state except the

killed state. If the access password is non-zero the tag transits to the open

state, otherwise it transits to the secured state.

� Open state: After receiving a Req_RN command, the tag backscatters a

new RN16 that both reader and tag use in subsequence messages. If the

tag receives the correct access password from the reader, it transits to the

secured state.

� Secured state. Upon receiving a Req_RN command, the tag backscatters

a new RN16 that both reader and tag use in future messages. Tags in a

secured state may transit to any state except the open or the acknowledge

states.

� Killed state: If the tag receives the correct kill password in either the open

state or secured state, it will be disabled permanently.

2.4 RFID Applications

RFID systems are being adopted in a wide variety of �elds including [38, 39, 24]:

1. Tracking and identi�cation:

� Pets with implanted tags

� Product life cycles in supply-chain management

� Checkout in retail shops

� Asset tracking

� Tagged tickets in public transport

� Smart appliances in homes

28

� Smart posters

� E-passports

2. Access control:

� Car ignition keys

� Building/premises contactless proximity cards

3. Anti-Counterfeiting:

� Casino tokens

� Banknotes

� Luxury goods

4. Automated payment

� Contactless bank cards

� Automotive toll payment

� Electronic fare management systems

2.5 RFID Privacy and Security

Although RFID technology has several advantages over other identi�cation technologies,

security and privacy are among the main concerns that need to be tackled [12]. Because

the tag sends its data to any nearby readers without alerting the tag's owner, the tag's

data could be disclosed and/or tracked. Furthermore, the wireless channel between the

reader and tag is vulnerable to two kinds of attacks; passive and active. A passive

attack occurs when an adversary eavesdrops on the communication session between an

authorised reader and tag. An active attack occurs when the adversary can impersonate,

replay, modify, inject and/or block the messages between the reader and tag. In this

thesis, passive and active attacks are referred as active attacks for simplicity.

In this section, we illustrate the main attributes that a secure RFID system requires,

along with the associated attacks and threats.

2.5.1 RFID Privacy and Security Attributes

The main attributes that secure systems including RFID should take into account are

[40]:

29

� Integrity/Authentication: The system should provide a mutual entity authentica-

tion, where the communication should take place between legitimate entities, and

provide assurance to the reader or server about the identity of the tag and vice

versa. This attribute forms a subset of the integrity attribute as both attributes'

goals are to ensure that the data cannot be modi�ed in transit by any malicious

entity.

� Con�dentiality/Privacy: Privacy �ts into the con�dentiality dimension. Privacy

involves protecting the tag's data from being revealed to any malicious entity, and

preventing the tag's location from being tracked.

� Availability: When requested, all entities should be present to provide other au-

thorised parties with the information they need.

2.5.2 Attacks on RFID Systems

The nature of the wireless communication between the reader and tag enables an in-

truder to interfere and accomplish a variety of active attacks as shown in Fig. 2.4 and

highlighted below [19, 17]:

1. The main attacks a�ecting authentication are:

� Impersonation attacks: The attacker impersonates a legitimate entity by

using the leaked sensitive data, or performing a replay/spoo�ng attack.

� Replay/Spoo�ng attacks: The attacker eavesdrops on the communication

between the reader and tag, then maintains the transmitted messages in

order to impersonate a legitimate entity in the next session and replay these

messages.

2. The main attacks a�ecting privacy are:

� Tag data leakage: An RFID tag is associated to one unique identity, and

this could lead to serious privacy concerns. Thus, the tag's sensitive data

should not be revealed when transmitting in order to preserve the privacy of

the tag's holder and to prevent tag impersonation attacks.

� Traceability: Traceability is referred to as the ability of the adversary to

decide with probability if messages from di�erent sessions belong to the same

tag or not. This can be done without knowing the tag's data; for example,

the adversary might observe the level of signals, using the same tag's re-

sponses, or by linking the responses. To prevent attackers from tracking the

30

RFID security and privacy attributes

Availability Privacy Authentication

DoS

Data desyn-

chronisation

Tag data leak-

age

Tag cloning

Dishonest tag

Traceability

Tag tracking

Forward se-

crecy invasion

Replay

Impersonation

Dishonest tag

Dishonest

reader

Attack Threat

Figure 2.4: RFID attacks and threats

tag's location, the tag's replies should not be static or linkable to previous

messages. Moreover, given that the attacker has eavesdropped on the session

between the reader and tag and all the information stored in the involved

tags has been revealed at time t', the attacker should not be able to correlate

any readings of the same tag at a time t ≤ t'.

3. The main attack a�ecting availability is:

� Denial-of Service attacks (DoS): The attacker might block the tag's or

reader's messages from reaching the target, causing the tag or the reader to

assume a state in which it can no longer be valid. Hence, the attacker's goal

is to prevent the system from operating as intended, either temporarily or

permanently. Another technique that the attacker can exploit, is to send a

stream of messages to the RFID tags or the reader, �ooding it with invalid

messages.

31

2.5.3 RFID Main Threats

In this section, the principal threats that RFID systems might encounter are classi�ed

according to the authentication, privacy and availability attributes mentioned above,

each of which is discussed below:

(1) RFID authentication threats: The main attacks related to hindering the authentica-

tion process are impersonation, and replay attacks. Such attacks share the following

threats:

� Dishonest tag: An intruder can impersonate a legitimate tag to claim to be

in the neighbourhood of the reader, cause the reader/server to authenticate

the intruder instead of a legitimate tag, and/or to cause the server to update

its value, causing a desynchronisation in the next session(s).

� Dishonest reader/server: Similarly, an intruder might impersonate a reader

to claim to be in the neighbourhood of the tag, cause the tag to authenticate

the intruder instead of a legitimate reader/server, or cause the tag to update

its value causing a desynchronisation in the next session(s).

(2) RFID privacy threats: Privacy is a signi�cant concern when using RFID technol-

ogy. The wireless communications channel between a tag and a reader can disclose

information about a tag, including its unique identity. In fact, the tag's unique ID

(EPC) remains �xed most of the time, which would allow an attacker to establish

an association between the tag's current response and its previous response(s). The

two attacks associated to privacy are tag data leakage and traceability.

There are two possible threats related to tag data leakage:

� Tag cloning: An RFID system may be vulnerable to tag cloning, where the

attacker uses a compromised tag's data to clone a tag and use it as if it was

legitimate; for example, by removing the legitimate tag and replace it with a

cloned tag, hence, an attacker can fool the system into believing the cloned

tag is legitimate and present [110].

� Dishonest tag: An attacker may use a compromised tag's data to imper-

sonate the tag, which could lead to unwanted results such as data desynchro-

nisation, impersonating the reader/server in future sessions, or breaching the

privacy of the tag's holder in terms of location and his/her past behaviour [19].

There are two possible threats related to traceability :

32

� Forward secrecy invasion: An RFID tag is generally not a tamper/attack-

resistant device, so it can be physically compromised to reveal secret infor-

mation stored in the memory of the tag. Forward secrecy guarantees that all

the previous transactions that happened before the tag's secret was revealed

remain unlinkable. In other words, in forward secrecy invasion, given all the

stored data of a compromised tag at time t, the attacker is able to identify the

tag at time t0 ≤ t. The past transactions of a tag may allow tracking of the

tag owner's past locations and behaviour.

� Tag location tracking: If the data being sent from the tag to the reader is

static or linked to data sent previously, the tag holder's location can be tracked

without his/her knowledge.

(3) RFID availability threat: Availability is crucial since the core function of a se-

cure RFID system is to mutually authenticate the tags and server/reader instantly;

therefore, every entity should be available for authentication purposes. If a reader/server

is no longer available, the tags will not be able to authenticate themselves, and hence

abort the session and vice versa.

The main threat a�ecting availability is:

� Data desynchronisation: Data desynchronisation between the tag and reader

may happen if both entities need to update their data after each successful

identi�cation, and can also occur in some protocols that provide countermea-

sures against replay attacks for example. If the data in the tag and in the

server are desynchronised, the tag will not be able to authenticate the server

and abort the session; hence, the availability feature will not be achieved.

Data desynchronisation can either occur unintentionally when messages are

lost during transmission due to system malfunction or communication errors,

or can be implemented deliberately by an adversary on an RFID communica-

tion channel.

2.6 Common Countermeasures

In this section, we present some of the countermeasures for the attacks and threats

mentioned in the previous section. Then, we discuss brie�y the design of some of the

cryptographic functions that can �t the RFID tags limited resources.

33

2.6.1 PUFs-Based Approach

One of the proposed solutions to combat tag cloning and replay attacks is the de-

ployment of tamper-proof and unclonable functions on hardware; this refers to Physical

Unclonable Functions (PUFs). PUFs can uniquely identify and authenticate each silicon

chip by exploiting the physical characteristics of the silicon and the IC manufacturing

process variations with a low cost mechanism [41]. PUFs are designed to be easy to

evaluate but di�cult to clone [42]. Therefore, PUFs has have become attractive for

RFID ICs.

PUFs map a set of challenges to a set of unique responses based on the unique

characteristics of a particular chip, or on a user-de�ned input; for example, the varia-

tion of delays in wires and gates in the chip. These delays in turn depend on highly

unpredictable factors, such as manufacturing variations and noise [43].

In [42], the authors proposed using a PUF as a secure key derivation mechanism.

Moreover, the authors proposed applying elliptic curve cryptography to the PUFs to

authenticate a tag o�ine. Multiple challenges are given to the PUFs to generate several

�ngerprints with some auxiliary data. Then, the issuer signs the challenges, �ngerprints

and auxiliary data with his/her secret key, and embeds the signed data on the tag's

chip. In the authentication step, the reader receives challenges and auxiliary data

from the tag, and it challenges the tag's PUF with one of the challenges. When the

reader receives the tag's �ngerprint it checks its authenticity from the signed data. The

authors in [42] claimed that the attacker needs to embed a fake physical structure on

the product in order to produce correct �ngerprints to the challenges. Also, the attacker

cannot forge the challenges, �ngerprints and auxiliary data as he/she does not know

the issuer's secret key used in the signature. However, according to [43], this scheme is

still expensive for low-cost RFID tags as it uses a public-key cryptography.

The authors in [43] proposed a privacy-preserving RFID protocol based on PUFs.

Simply, when a reader interrogates a tag, the tag responds with its ID and updates

its ID using PUFs (p(ID)). The database stores the sequence ID, p(ID),p(2)(ID), ... ,

p(k)(ID) for each tag, and sends a tuple of all possible tag IDs to the reader to �nd a

match with the received tag's identity. This implies that the reader has to eliminate all

the previous values within the tuple to prevent replay attacks. However, in this scheme,

the tag can only be authenticated k times, which enables an attacker to perform a DoS

attack [44]. Several other cryptographic primitives based on PUFs to achieve a mutual

authentication between tag and server have been proposed; for example as in [9, 10, 46].

PUFs have also been used to solve server scalability issues in RFIDs [47, 48, 10, 49].

In these schemes, the reader stores the tag's ID, which is updated in each session using

PUFs; thus the attacker cannot guess or clone the tag's ID in future sessions, and the

34

reader/server can retrieve the tag's record in O(1).

In real-world applications, Devadas et al. [41] fabricated a PUF-enabled unclonable

RFID tag and showed that a PUF circuit can be integrated into a passive RFID tag

for authentication purposes. Furthermore, Holcomb et al. [11], proposed SRAM-PUFs,

which use SRAM cells in RFID chips as a PUF mechanism.

2.6.2 Human-Computer (HB) Protocols

In 2005, Juels et al. [7] adapted the concept of human-to-computer authentication

protocols proposed by Hopper and Blum (HB protocol) [8] for use on low-cost RFID

tags. This type of protocol is based on the computational hardness of the Learning

Parity with Noise Problem (LPNP), and uses dot products of binary vectors and a

random noise bit. The HB-style protocols do not depend on common cryptographic

methods but on the correctness of the tag's replies in several rounds.

In the HB protocol [8], in q rounds, the reader sends a challenge a to the tag, and

the tag sends the binary product of a.x xored with noise (v), where x is a secret key

shared between the tag and reader. This protocol can resist passive attacks but not

active attacks. As a result, Juels et al. [7] proposed an enhanced version of the HB

protocol (called HB+) by including a new secret value y, which serves as another secret

between the tag and reader. The tag calculates z=rA.x ⊕ rB.y ⊕ v, and sends z to the

reader, where rA and rB are binary vectors generated by the tag and reader respectively.

However, Gilbert et al.[6] showed that this protocol is vulnerable to man-in-the-middle

attacks.

In response to Gilbert et al.'s [6] attack on HB+, Bringer et al. [50] proposed an

HB++ protocol to avoid man-in-the-middle-attacks. The protocol involves renewing

the secrets in each session and correlating the tag's and reader's challenges. However,

according to Piramuthu [51], HB++ is still not immune to attacks from an adversary

that pretends to be an authentic reader. Piramuthu [51] suggested updating the value

of ρ every time z is computed, instead of updating it at the beginning of each round

to prevent an attacker from revealing the secret data. Also, to make the protocol more

lightweight, Piramuthu suggested omitting z, x, y, v for the protocol execution.

Munilla et al. [52] proposed another HP protocol called the HP-MP protocol. In

this protocol, the reader sends a challenge a to the tag, and the tag then computes z=

a.x ⊕ v. The tag then looks for a binary vector b, where b.x=z, and sends b to the

reader. The reader checks whether b.x = a.x and authenticates the tag. This protocol

has been shown to be insecure against passive attacks [5], and is also vulnerable to

replay attacks [13]. Since then a range of HB proposals closely related to HB-MP have

been proposed to overcome the attacks discussed in [6, 51].

35

A new area, where distance bounding protocols and HB family protocols can be

integrated to thwart relay and replay attacks, has been proposed in [53]. Pagnin et al.

[53], suggested combating man-in-the-middle attacks on HB protocols by modifying the

communication channel of the receiver architecture using a distance bounding protocol.

This scheme is known as a hybrid HB+DB protocol. In HB+DB, the reader and tag

share three secret values, namely (x, y, z). The protocol is divided into three phases.

The �rst phase is the initialisation of the HB protocol; the tag exchanges a challenge s

with the reader, and computes ci=(b.y) ⊕ v, where b=PRNGz(s) is computed by both

entities. In the second phase, the distance bounding protocol is initiated by the reader,

which starts a timer and sends a challenge a to the tag. On the tag, the message ri=a.x

⊕ ci is computed and sent to the reader. When the reader receives the tag's response it

stops the clock and veri�es that the tag's response is correct, and that the tag is close

enough to the reader.

2.6.3 Lightweight Cryptographic Functions

RFID tags are deployed in many applications that require security and privacy. In

order to satisfy these needs, cryptographic algorithms such as block ciphers can be an

ideal solution. However, the problem in providing some of the commonly used cryp-

tographic techniques on these devices is the extremely constrained environment. The

cryptographic primitives have to be of low memory, have minimal power consumption,

and operate at su�cient speed. Hence, researchers have attempted to design lightweight

functions that suit RFID tags resource constraints.

Starting with a block cipher scheme to calculate message digests, Yoshida et al.

[54], proposed a compression function called the MAME block cipher, speci�cally for

limited-resources hardware. The function takes a 256-bit message block, produces a

256-bit output and requires 8100 gate equivalent (GE). However, according to [55], the

work in [54] is still demanding for RFID tags.

Another well-known block cipher scheme called PRESENT has been proposed [56].

The original form of PRESENT is a block cipher that accepts 64-bit input and 80-bit

or 128-bit keys, with 1570 GE. Several PRESENT block cipher improvements have

been proposed to minimise the required GE for RFID tags, including work by [57, 58].

KATAN [59] is another example of a block cipher that can be �tted into constrained

devices and consumes less GE than PRESENT. KATAN is composed of three block

ciphers of 32, 48, or 64-bit block size, requiring 802 GE, 927 GE and 1054 GE re-

spectively. The key size for all variations is 80-bit and the number of rounds is 254.

A smaller GE block cipher has been proposed in [60]. The authors in [60] designed

Piccolo, an ultra-lightweight block cipher, which is suitable for extremely constrained

36

environments such as RFID tags. Piccolo is composed of a 64-bit block cipher, 80 or

128-bit keys, and requires 683 or 758 GE respectively. The authors claimed that Piccolo

is the smallest of the current lightweight block ciphers discussed in the literature.

Bertoni et al. designed a sponge-construction hash function. Since then several hash

functions have been proposed. O'Neill [61] designed an 8-bit low-cost-SHA-1 function

requiring 5527 GE, which saves 1200 GE as compared to other SHA-1 hash functions.

According to [55], this hash function [61, 54] is still demanding for RFID tags. The au-

thors in [55] proposed a QUARK lightweight hash function for 64 and 112 bit security,

needing 1379 GE and 2296 GE respectively. Their work was inspired by the ultra-

lightweight block cipher PRESENT [56]. Two other lightweight hash functions based

on QUARK have been proposed: SPONGENT [62] and PHOTON [63]. Regarding

SHA-3, Keccak is a family of hash functions that are based on the sponge construction,

which can perform nearly all symmetric cryptographic functions and can �t constrained

devices [4]. It uses one of seven permutations named Keccak-f [b], where b ∈ {25, 50,

100, 200, 400, 800 or 1600} is the width of the permutation. The sponge construction

state's width is also determined by the width of the speci�ed permutation [4]. The

largest permutation is Keccak-f [1600]. In 2013, Kavun et al. presented a lightweight

implementation of the SHA-3 hash function [157] with 20790 GE and a 64-bit output for

Keccak-f [1600]. However, Pessl and Hutter [64], showed that Kavun et al.'s implemen-

tation of Keccak-f [1600] does not ful�l RFID tag demands. They designed a hardware

implementation of SHA-3 Keccak-f [1600] that is smaller than Keccak-f [1600], SHA-1

and SHA-2 GE, provides 128-bit security and requires 5500 GE.

2.7 Summary

In this chapter, we provided a background information about RFID technology, start-

ing from its origins, then illustrating the main RFID architecture with regard to the

RFID components, the operating frequencies, the communication methods, and the

anti-collision protocols. This was followed by a description of the standards supported

by other related work. Then, we outlined the current deployments of RFID technol-

ogy. Finally, we discussed the main security and privacy requirements of RFID systems

and associated attacks and threats, and concluded with some common countermeasures

to such attacks. The next chapter presents a description of the tools used in formal

analysis and performance measurement.

37

Chapter 3

Formal Analysis and

Implementation Tools

Contents

3.1 Introduction . 39

3.2 Formal Analysis Tools . 39

3.3 Implementation Tools and Performance Measurement Tech-

niques . 44

3.4 Summary . 48

In this chapter, we present the tools used in the formal analysis of the proposed pro-

tocols and in the implementation process. We provide a description of CasperFDR and

Scyhter formal analysis tools. Then, we highlight the tools used in the implementation

of the proposed protocols, and the performance measurement techniques.

38

3.1 Introduction

A considerable number of RFID security protocols have appeared in the academic liter-

ature, claiming to be secure in the presence of a malicious agent, called an intruder, who

is assumed to have complete control over the communications network. Unfortunately, a

large proportion of the RFID protocols fail to meet security and privacy requirements as

they have been shown to be vulnerable to attacks [65, 66, 68, 69, 70, 112, 71, 72, 73, 74].

Therefore, for the sake of completeness, we subjected our proposed protocols to

formal analysis tools such as CasperFDR [104] and Scyther[75].

In addition, to measure the performance of the proposed protocols in a restricted

embedded device, such as the RFID tag, we implemented the protocols in Chapter 5,

6, 7, and 8. After the execution of the protocol, we measured the used memory space,

the protocol's computing time, the power consumption, and the time required to send

and receive messages between the tag and the reader (communication time cost).

3.2 Formal Analysis Tools

Cryptographic protocols are widely adopted as signi�cant components in meeting secu-

rity requirements. To implement a system, it must be demonstrated that the protocol

satis�es the fundamental security requirements. Formal veri�cation tools provide a

good way to validate this challenge, and considerable developments have been made in

their development over the last 30 years [103]. CasperFDR and Scyther analyse proto-

cols under the assumption of perfect cryptography. Perfect cryptography means using

cryptographic functions in the encryption process, where the adversary learns nothing

from the encrypted messages unless he/she knows the decryption key.

These tools check that the communication channel between the sender and receiver

achieves secrecy and authentication based on the protocol's speci�cations [76], which

meet the objectives of our protocols. Secrecy means that the exchanged secret data

cannot be accessed by an intruder. Authentication means that every party can authen-

ticate the party with whom they are executing the protocol. We chose these tools to

add more value to our protocols. Also, they have proved their capabilities in �nding

vulnerabilities in many protocols, such as in [77, 78, 15, 3, 79, 80, 81]. In addition,

Scyther, for example, assists in protocol analysis by providing classes of attacks, in an

unbounded number of sessions, as opposed to the single attack traces provided by other

formal analysis tools.

In this section, we provide a description of the tools used to formally analyse the

proposed protocols in Chapter 5, 6, 7, and 8.

39

3.2.1 CasperFDR

Security protocols were analysed using process algebras communicating sequential pro-

cesses (CSP) [20] and its model checker failures-divergence re�nement (FDR) [21].

Brie�y, they work as follows:

� Each agent taking part in the protocol is modelled as a CSP process, including

the intruder.

� The compiled protocol speci�cation is tested against the speci�ed security proper-

ties, such as �correctly achieves authentication�, or �ensures secrecy�; FDR searches

the state space to investigate whether any insecure traces can occur.

� If FDR �nds that the security properties are not achieved, then it returns a trace

of the system that does not satisfy the security properties; this trace corresponds

to an attack upon the protocol.

Although CSP and FDR have proved successful in �nding attacks in a number of

protocols [2, 14], the task of producing a CSP description of a system is very time-

consuming and error-prone. As a result, Lowe proposed CasperFDR a tool for sim-

plifying this process [104]. The CasperFDR tool takes an abstract description of the

protocol, together with its security requirements, and produces a CSP code checked and

veri�ed by FDR. The protocol is analysed in the context of the Dolev-Yao model [67],

where the intruder has full control over the communication such that the intruder may

intercept, analyse, modify messages, and/or send any message he/she composes to other

agents, pretending to come from a legitimate agent. CasperFDR speci�es the crypto-

graphic primitives as a black-box approach, which means CasperFDR does not know

which mathematical objects are used, only their properties. It supports symmetric and

asymmetric encryption including hash functions.

CasperFDR checks the authenticity of the transmitted data by examining the as-

sociated events, namely Running and Commit. The Running and Commit events are

attached to security and authentication speci�cations [82]. When the sender sends a

message to the receiver, the receiver performs the Running event, which means that it

starts running the protocol apparently with the sender. The sender performs the Com-

mit event when it receives the receiver's reply, which means that the sender has �nished

a run of the protocol with the receiver. Regarding checking the security requirements,

CasperFDR checks the secrecy speci�cations via an event called Claim_Secret, which is

performed by both parties. When the sender receives the receiver's message, it performs

Claim_Secret to ensure that the data are kept secret.

40

The input �le in CasperFDR includes the following sections, which are divided into

protocol de�nition and system de�nition:

1. Protocol de�nition: This part de�nes the generic operation of the protocol. It con-

sists of:

� Protocol description: This part de�nes the sequence of sending the data, and the

contents of the exchanged messages. For encryption, for example, the expression

is A → B: {m}{k}, where agent A sends a message m encrypted with a secret

key k to agent B.

� Free variables: The types of variables and functions that are used in the protocol

are de�ned in this section. Some of the prede�ned types used in our analysis

are (Agent, Server, Data, Nonce, TimeStamp, and HashFunction). We also use

InversKeys, which returns keys that are inverses of each other.

� Processes: Each agent running in the system is represented by a CSP process

parametrised by some arguments, and the parameters following the keyword

�knows� de�ne the knowledge that the agent is expected to have at the beginning

of the protocol run. For example: INITIATOR(A,na) knows SK(A), PK(A),

PK, means that agent A has one nonce na as an argument and he/she knows

its secret key SK(A), public key PK(A) and the other communication partner's

public key PK.

� Speci�cations: This section de�nes the protocol's goals, such as Secret and

Agreement. Secret implies that the data should be kept secret between two

partners, for example, Secret(A, na, [B]) can be paraphrased as: agent A thinks

that (na) is a secret that can be known to only itself and agent B. Agreement

speci�es the authentication requirement, for example, Agreement(A,B,[na,nb])

speci�es that agent A is correctly authenticated to agent B , and the two agents

agree on the data values na and nb.

2. System de�nition: The system de�nition includes the components required to be

checked by the analyser FDR. It consists of:

� Type de�nition (actual variables): During the analysis of the protocol using

FDR, it uses the variables de�ned in this section. It de�nes the variables of

the actual system and they are the same as the variables de�ned in the Free

variables section. An intruder is also de�ned here as an agent that participates

during the protocol execution.

41

� Functions: De�nes the functions used by the agent(s). They are of type sym-

bolic, which means that CasperFDR produces its own values as the result of

this function.

� System de�nition: This section illustrates which agent should be present and

checked by FDR, and it should match the speci�cations in the Processes section.

� Intruder: The identity of the intruder and the values he/she knows during the

protocol execution are de�ned here. For example:

Intruder = Mallory

IntruderKnowledge = {Alice, Bob, Mallory, nm, PK, SK(Mallory)}, means the

intruder Mallory knows the agents Alice and Bob, his/her nonce nm, his public

key and Alice and Bob's public keys PK, and his secret key SK(Mallory).

3.2.2 Scyther

Scyther [75] is a formal analysis tool that analyses protocols under the assumption of

perfect cryptography. Scyther checks the secrecy and authenticity of the transmitted

data. Unlike other formal tools, Scyther can verify protocols for an unbounded number

of sessions; it establishes that the security properties hold for all possible behaviours of

a protocol in the presence of a Dolev-Yao style intruder. In case that Scyther cannot

not establish unbounded veri�cation, it establishes a form of bounded veri�cation [83].

Scyther accepts the protocol description as an input, outputs a summary report, and

displays a graph if there is an attack on the protocol. The domain analysis is as follows

[83]:

� Protocol speci�cation: Scyther speci�es the security protocol as an abstract syn-

tax, where the protocol run is speci�ed as a sequence list of send and receive

events. Initial knowledge such as variables, constants and functions are declared

at the beginning of the protocol speci�cation.

� Agent model: Any entity that participates in the protocol execution is speci�ed

as a role in a closed world assumption, which means that only honest role (agent)

who shows no behaviour other than the behaviour described in the protocol spec-

i�cation participate in the protocol execution. A role can execute multiple runs

of the protocol.

� Threat model: Scyther uses a Dolev-Yao adversary model [67].

� Cryptographic primitives: Scyther deploys a perfect cryptography assumption.

Also, similar to CasperFDR, Scyther speci�es the cryptographic primitives as

a black-box approach.

42

� Intruder initial knowledge: In Scyther the intruder initial knowledge is the names

of roles, their public keys, global variables, nonces and the intruder's secret keys.

For a Dolev-Yao model (network model), the intruder rules are de�ned as {de-

�ect; inject}, where in wireless communication the intruder's rules are de�ned as

{eavesdrop;jam;inject}.

� Role terms: There are four basic terms in Scyther: Var, denoting variables that are

used to store received messages; Fresh, denoting values that are freshly generated

for each role; and Role, denoting roles (agents).

� Events: In Scyther, there are two events send and recv. For example, send (R, T

, rt) denotes the sending of a message rt by the role R, intended for the role T.

Likewise, recv (R, T , rt) denotes the receipt of message rt by T, apparently sent

by R.

� Prede�ned types: The prede�ned types are agent, Function, Nonce, TimeStamp

and Ticket. Ticket is used to substitute any unknown terms. It is also possible

to de�ne a new user type by using the usertype command.

� Security requirements: Scyther de�nes the objectives of the security protocol as

secrecy and two forms of authentication; data authentication and entity authenti-

cation. Secrecy means the secret data should remain secret even if the communi-

cation channel is compromised. Secrecy is speci�ed as Claim(R,secret,rt), which

means the data rt should remain secret for the role R. Authentication is achieved

in Scyther using three forms, including Aliveness, Synchronisation (Nisynch) and

Agreement (Niagree), which are de�ned below:

1. Aliveness: If B runs a protocol with A and it is successfully completed by

role B, then role A has previously been running the protocol. Aliveness is

speci�ed as claim(A, Alive), where A is the role executing this event.

2. Nisynch (non-injective synchronisation): Means the two events (send and

recv) must be executed in the expected order as speci�ed in the speci�ca-

tion. Synchronisation combines aliveness and entity authentication. In other

words, synchronisation con�rms that all the received messages were indeed

sent by the partner agent, the sent messages have indeed been received by

the receiver, and the actual message occurred exactly as speci�ed by the

protocol description. Synchronisation is speci�ed as claim(A, Nisynch).

3. Niagree (non-injective agreement): While synchronisation focuses on the be-

haviour of the exchanged messages, agreement focuses on the contents of the

43

exchanged messages. It means that A and B agree that both roles are alive

and agree to the values of the variables after the execution of the protocol.

Agreement is speci�ed as claim(A, Niagree).

3.3 Implementation Tools and Performance Measurement

Techniques

In this section, we outline the tools used in the implementation of the protocols discussed

in Chapters 5 , 6, 7, and 8. Then, we discuss the procedures we followed in programming

the tag's �rmware and the main issues associated with the implementation. Finally, we

list the performance measurement techniques.

3.3.1 Lab Set-up

The implementation of our proposed protocols involved an EPCC1Gen2-compliant

RFID tag [84], an EPCC1Gen2-compliant RFID reader [85], an AVR ICE JTAG pro-

grammer as shown in Fig. 3.1, and one laptop (host computer). The used tools support

the EPCC1Gen2 standard discussed in Section 2.3.1.

Figure 3.1: The CAEN Slate reader, the AVR JTAG ICE programmer, and the RFID
UHF DemoTag

For the tag side, we used a programmable, semi-passive battery-powered RFID tag

called DemoTag developed by IAIK TU Graz [84] shown in Fig. 3.2. The DemoTag is

used to emulate a real RFID EPCC1Gen2 tag and is designed to add some custom com-

mands to the EPCC1Gen2 standard. The tag's PCB board consists of a UHF antenna,

44

Figure 3.2: DemoTag structure [84]

a power supply, a USB port to communicate with the host computer, a JTAG con-

nector, an analogue front end and a programmable Atmel ATMega128 microcontroller

(F_CPU = 16 MHz).

The original DemoTag �rmware provides an implementation of the EPCC1Gen2

protocol, which is implemented as a �rmware library. The �rmware running on the

DemoTag is written in C code using Crossworks for AVR IDE from Rowley Associates

[86]. The DemoTag has 128 KB of �ash memory, 4 KB of RAM, and 4 KB of non-

volatile EEPROM memory. The �rmware is stored in the �ash memory, while data

such as the tag's ID and messages are stored in the EEPROM. The tag stores one word

(16-bit) per memory bank.

We modi�ed the original tag's �rmware by adding more functions to conform with

our protocol, including functions for calculating the hash on the tag's data. The updated

�rmware was debugged then uploaded to the �ash memory of the microcontroller in the

form of .hex via the AVR ICE JTAG programmer.

For the reader side, we used the Slate (model R1260I) desktop reader developed by

CAEN [85]; it is the reader supported by the DemoTag. Slate desktop reader is an

UHF RFID EPCC1Gen2-compliant reader with integrated antenna. It is embedded

with an EPCC1Gen2 reader �rmware, which is controlled by the host computer via a

USB link. For programming the reader to read and write data into the tag's memory,

and the generation of the reader's random number and messages, we used Microsoft

Visual Studio C#.

45

3.3.2 Implementation Process

The tag is programmed using C language. The tag computes the required messages, and

stores them in the user memory bank discussed in Section 2.3.1 within the EEPROM

memory. The tag stores the data using the tag's �rmware command syscall_writeWord

to be read on demand. Finally, it updates the data if required.

To generate a random number in the tag, we used the existing PRNG function that

is included in the original �rmware. For the hash function, we used an SHA-2 (SHA-

256) included in Crypto-avr-lib SHA 256 library [87]. This library provides special

implementations of cryptographic functions in C, which respect the microcontroller's

limited resources.

We used C# to program the reader application. The reader's library CAENR-

FIDLib is imported for communicating with the tag, reading the tag's memory and

writing data into the tag's memory. The two commands used in our protocols were the

WriteTagData_EPC_C1G2 method to write data in the speci�ed memory bank, and

the ReadTagData_EPC_C1G2 method to read data from the tag's speci�ed memory

bank.

The CAENRFIDLib library does not provide methods for generating random num-

bers and calculating hash functions. Therefore, to generate random numbers, we used

a .NET Framework method called rngCsp for this purpose. To calculate the hash on

the tag's data we imported the Crypto-avr-lib SHA-256 library. The Crypto-avr-lib

SHA-256 is the same hash function used in the tag.

We faced a communication overhead between the reader and the tag during the

implementation process. The reader could not write messages in the tag's memory in

a single write command, as the EPCC1Gen2-compliant tag is programmed to write

only one word (16-bit) of data in a single write command. As a result, in some of the

protocols' implementations we had to send more than 40 write commands to transmit

the reader's messages, and this sometimes led to communication loss between the reader

and the tag, and also a�ected the performance dramatically.

3.3.3 Performance Measurement Techniques

The aim of this section, is to discuss the techniques we deployed in measuring the

performance of the proposed protocols on a resource-restricted device such as an RFID

tag. The main measurements are:

1. The tag's memory space: The cost of storing the tag's data, the reader's messages,

the tag's messages and the tag's �rmware.

46

2. The communication cost between the reader and the tag: Communication cost

refers to the time cost for a tag to read/write data in its memory and the time

cost for a reader to read/write data in the tag's memory.

3. The tag's computing time cost: The cost of computing each message indepen-

dently, and the total cost of running the whole protocol on the tag.

4. The tag's power consumption.

To measure memory cost, after debugging the �rmware, Crossworks for AVR IDE

provided us with the total cost of storing the tag's data, random numbers and tag/reader

exchanged messages in the EEPROM and �ash memory.

Moreover, since the SHA-2 code runs on Atmel ATMega128 microcontroller, there

are no real GE, the amount of RAM and �ash memory, which are used by software

implementations take the place of GE. Crossworks for AVR IDE shows that the size of

the deployed SHA-2 functions within the �ash memory is 1.4 KB.

To measure the communication costs in the tag, the Atmega128 microcontroller

inside the DemoTag is embedded with a Timer1/counter. The Timer1 is a 16-bit

register that is capable of counting from 0 to 65535 transitions. We used TCCR1B

as a timer control register, and a counter TCNT1, which counts the internal System

Clock ticks. In the reader side, to measure the communication cost, the .NET Frame-

work stopwatch function was deployed at the beginning and the end of reading and

writing functions, then we calculated the elapsed time using a timing function stop-

watch.ElapsedMilliseconds.

To measure the execution time for computing each message (computing time cost)

and/or to measure the time to read/write data (communication cost) in the tag's mem-

ory, we started the timer TCCR1B and the counter TCNT1 as (TCCR1B |= ((1 � CS10

) | (0 � CS11))) with no Prescaler (Timer Clock = System Clock), and TCNT1=0

respectively. Then, at the end of the message's function execution we stopped the timer

by using the following command (TCCR1B |= ((0 � CS10) | (0 � CS11))) and printed

the counter value. Each value in the counter represents a transition (one clock pulse),

so to calculate the time period in milliseconds (ms) for an F_CPU = 16 MHz, we used

the following equation:

Time = 1/Frequency = 1/16MHz = 0, 0000000625sec (3.1)

Thus each transition only took 0.0000000625 sec. For example, if the counter value

is 65535, the time is 0,0000000625 * 65535 = 0,0040959375 sec ≡ 4 ms.

47

Finally, for measuring the power consumption of the DemoTag, we used a digital

multimeter [88] to measure the Direct Current (DC) Voltage, DC Current, and Resis-

tance. The DemoTag power supply is provided by a USB port, which provides an 5V

DC voltage. The resistance provided in the DemoTag is 1470 Ohms. The average power

consumption in all the proposed protocols is about 17 mW @ 1 MHz clock frequency.

3.4 Summary

In this chapter, we provided a background information about the tools used in the

formal analysis of our protocols. CasperFDR and Scyther are deployed to con�rm that

secret data remains private and the participating entities are mutually authenticated.

The tools deployed in the performance measurement and the techniques for measuring

the tag's memory, communication, computing costs and power consumption were also

demonstrated in this chapter. In the next chapter, we will study one of the widely-

cited RFID protocols, demonstrate its vulnerability to DoS attacks, and provide some

recommendations for combating such attacks.

48

Chapter 4

Data Desynchronisation on the

Song RFID Mutual Authentication

Protocol

Contents

4.1 Introduction . 50

4.2 Data Desynchronisation Description 51

4.3 Review of the Song Protocol 51

4.4 Security Analysis of the Song Protocol 54

4.5 Revised Protocol . 54

4.6 Summary . 56

This chapter reviews how protocol's design �aws can be exploited to perform a data

desynchronisation on one of the widely cited RFID mutual authentication protocols pro-

posed by Boyeon Song. We �rstly give a general description of the data desynchro-

nisation that might occur in RFID mutual authentication protocols. Subsequently, we

explain in detail the Song protocol, and demonstrate how data in the Song protocol can

be desynchronised. Finally, we propose a countermeasure that overcomes the Song's

protocol vulnerability.

49

4.1 Introduction

In this chapter, we highlight weaknesses in an existing lightweight RFID mutual au-

thentication protocol proposed by Song et al. in [89] (referred to hereafter as Song

protocol). In [39], Song proposed an enhanced version of her protocol presented in [89].

In both versions, we discovered that the tag's and server's data can be desynchronised

although they provide a synchronisation process.

Insecure communication between reader and tag is inherently vulnerable to inter-

ception, modi�cation, fabrication and replay attacks as described in Section 2.5.2. In

addition to these attacks is data desynchronisation, which is one of the major prob-

lems encountered in designing a secure RFID system. If data has to be updated syn-

chronously after authentication is achieved between tag and server, an attacker can

cause a data desynchronisation by blocking the exchanged message(s) from reaching

the target, meaning that the receiver will not update the data, and hence, authentica-

tion will not be achieved in subsequent transaction(s).

Song proposed an RFID mutual authentication protocol that aims to achieve privacy

and security as follows:

� The protocol achieves privacy by using a challenge-response scheme. The tag

generates a cryptographic nonce to send a di�erent response for every reader

query, so the tag's transmitted message(s) cannot be traced or linked. Moreover,

the tag and server update their values after each successful session.

� The tag calculates a keyed-hash function (Message Authentication Code (MAC))

on the tag's secret data to meet the integrity attribute.

� To combat data desynchronisation, the server database stores both the most recent

previous data (old) and the current data (new) for each tag, hence achieving the

availability feature.

� The tag's hashed identi�er is a result of applying the hash function on its unique

ID, assigned and calculated by the server, hence achieving the con�dentiality

feature.

Song claimed that the proposed protocol resists data desynchronisation by storing

the old and new values of the tag's data in the server, thus when an attacker blocks

the transmitted message(s), the server still can use the most recent old values to resyn-

chronise with the tag in the next transaction. However, in this chapter, we will show

how an attacker may apply data desynchronisation on the Song protocol, without com-

50

promising the internal data stored in the tag. In section 4.2, we will explain how data

transfer between tag and server can be desynchronised in general.

4.2 Data Desynchronisation Description

Data desynchronisation between a tag and a server may occur unintentionally when

messages are lost during transmission due to system malfunction or communication

error. In addition, according to [17], data desynchronisation can be implemented delib-

erately on RFID communication channels via, for example, using one of the following

options:

� Blocking the messages from reaching the targets. The attacker may use a �blocker

tags� [16] or an �RFID Guardian� [90] to perform a deliberate DoS. These two

schemes were potentially designed to achieve privacy for RFID tags.

� Active jamming, by transmitting a continuous signal to the tag to prevent the tag

from communicating with the reader.

� An adversary may take advantage of the tag's limited resources and send a stream

of random messages to it, so it will be �ooded with random messages, and will

abort the session without updating the data.

Storing and updating the (new) value to represent the current value, and the (old)

value to represent the previous value can partially prevent data desynchronisation. In

other words, even if the server updates tag's data after a successful authentication,

and stores the recent old value, an adversary can easily cause synchronisation failure

by intercepting and blocking messages between the server and the tag in two or more

consecutive sessions, resulting in mismatched values. In Section 4.4, we demonstrate

how this attack can be applied on the Song protocol.

4.3 Review of the Song Protocol

This section presents the Song protocol in detail. Notation used in this paper is de�ned

in Table 4.1. The Song protocol consists of two processes: the initialisation process,

and the authentication process, which are summarised below:

� Initialisation Process:

This stage only occurs during manufacturing when the manufacturer assigns the

initial values in the server and tag. The initialisation process is summarised below:

51

Table 4.1: A summary of notation

Notation Description
h A hash function, h : {0, 1}∗ → {0, 1}L, where L is a bit-length of a tag

identi�er
fk A keyed hash function, fk : {0, 1}∗× {0, 1}L→ {0, 1}L

N The number of tags
Ti The ith tag (1 ≤ i ≤ N)
Di The detailed information associated with tag Ti

si A string of L bits assigned to ith tag Ti

ti Ti's identi�er of L bits, which equals h(si)
xnew The new (refreshed) value of x
xold The most recent value of x
r A random string of L bits
ε Error message
⊕ An XoR operator
‖ A concatenation operator
← A substitution operator
x � k A Right circular shift operator, which rotates all bits of x to the right

by k bits, as if the right and left ends of x were joined
x � k A Left circular shift operator, which rotates all bits of x to the left by k

bits, as if the left and right ends of x were joined
∈R The random choice operator, which randomly selects an element from a

�nite set using a uniform probability distribution

� An initiator (e.g. the tag manufacturer) assigns a string si of L bits to each

tag Ti, computes ti = h(si), and stores ti in the tag, where L should be

large enough so that an exhaustive search to �nd the L-bit values ti and si
is computationally infeasible.

� The initiator stores the entries [(si, ti)new, (si, ti)old] for every tag that it

manages in the server. Initially (si, ti)new is assigned with the initial values

of si and ti, and (si, ti)old is set to null.

� Authentication Process:

The authentication process is shown in Fig. 4.1 as presented in [39], and sum-

marised below:

1. Reader: A reader generates a random bit-string r1 ∈R {0, 1}L, and sends it

to the tag Ti.

2. Tag: The tag Ti generates a random bit-string r2 ∈R {0, 1}L as a temporary

secret for the session, and computes M1 = ti ⊕ r2 and M2 = fti(r1 ‖ r2),
then sends M1 and M2 to the reader.

52

Server Reader Ti
1−r1−−−−→

2-Generates r2
Computes:
M1 = ti ⊕ r2
M2 = fti (r1 ‖ r2)

2−r1,M1,M2←−−−−−−−−−
3−r1,M1,M2←−−−−−−−−−

4-Re-computes M1 and M2
Computes:
M3 = si ⊕ fti (r2 ‖ r1)

4−M3−−−−→ 5−M3−−−−→
Updates:
si(old)← si(new)
si(new)←(si � L/4)⊕(ti�L/4)⊕r1⊕r2
ti(old)←ti(new)
ti(new)←h(si(new))

6-Re-computes M3
Updates:
ti←h((si�L/4)⊕(ti�L/4)⊕r1⊕ r2)

Figure 4.1: The authentication process of the Song protocol

3. Reader: The reader transmits r1, M1, and M2 to the server.

4. Server:

(a) The server searches its database using M1, M2 and r1 as follows.

i. It chooses ti from amongst the values ti(new) or ti(old) stored in the

database.

ii. It computes M2'=fti(r1 ‖ (M1 ⊕ ti)).

iii. If M2'== M2, then it has identi�ed and authenticated Ti. It then

goes to step (b). Otherwise, it returns to step (i). If no match is

found, the server sends ε to the reader and stops the session.

(b) The server computes r2 = M1 ⊕ ti, and M3 = si⊕ fti (r2 ‖ r1), and
sends M3 to the reader.

(c) If the server found the tag's record in the new or old values, it updates:

si(old) ← si(new)

si(new) ← (si � L/4) ⊕ (ti � L/4) ⊕ r1 ⊕ r2

ti(old) ← ti(new)

ti(new) ← h(si(new))

5. Reader: The reader forwards M3 to the tag Ti.

6. Tag: The tag Ti computes si = M3 ⊕ fti(r2 ‖ r1) and checks that h(si) =

ti. If the check fails, the tag keeps the current value of ti unchanged. If the

check succeeds, the tag authenticates the server, and sets:

53

ti ← h((si � L/4) ⊕ (ti � L/4) ⊕ r1 ⊕ r2)

In the next section 4.4, we will analyse the Song protocol in terms of security.

4.4 Security Analysis of the Song Protocol

Although in the Song protocol, the server stores the new and old value of the tag's data

and they are updated after each authenticated session, data desynchronisation can be

performed without compromising the internal data stored in the tag. The Song protocol

will fail if an attacker intercepts the communication in two consecutive sessions. If the

server's message (M3) is blocked in sequential sessions, the server database will have

no matching data to complete the authentication, causing the data between the server

and tag to be desynchronised. To elaborate, for example, in the �rst access to the

tag, the server's values (sold, told) are set to null, while (snew, tnew) values are set to

speci�c values assigned by the server, where (tnew) is equal to the tag's value (ti). If

the authentication succeeds, then (tnew) and (ti) will be updated to the same value

and (sold, told) will take the previous values of (snew, tnew). As shown in Table 4.2, if

the attacker blocks M3 from reaching the tag, the server has updated the tag's data,

while the tag will not update (ti). In this situation, the value (ti) in the tag will match

the value (told) in the server and mutual authentication can still be achieved. Then,

we suppose that the attacker blocks M3 in the consecutive session; then the tag will

also not update (ti), while (sold, told) in the database have been updated with values

not associated with the tag's data (ti). As a result, the tag's data will not match the

server's data, causing data desynchronisation and authentication failure.

4.5 Revised Protocol

We propose an improvement to the Song protocol by changing the updating process

discussed in Section 4.4. In the Song protocol, if authentication is achieved, the server's

data will be updated even if the matching record is found in (sold) and (told). In the

revised protocol, we propose that in the event of an authentication failure, whether it is

due to communication error or intentional interference by an adversary, both the server

and the tag should not update their values. Also, if the data is found in (sold) and

(told), the server's values should remain �xed.

Not updating the data does not a�ect location tracking, as the tag's messages and

server's message include fresh random numbers.

54

Table 4.2: Data desynchronisation on the Song protocol

Server Tag
In the �rst session:
If the server authenticates the tag
successfully, the server updates its
data
s2i (old) ← s1i (new)
s2i (new)←(s1i�L/4)⊕(t1i�L/4)⊕r1⊕r2
t2i (old) ← t1i (new)
t2i (new) ← h(s1i (new))

M3{blocked}−−−−−−−−→
the tag will not update
t1i

In the next session:
The tag uses the current
value of t1i in calculating
M1 and M2

M1,M2,R1←−−−−−−−
The tag's data t1i will match the old
server's data t2i (old) and authentica-
tion is still achieved, then the server
updates its data

s3i (old) ← s2i (new)
s3i (new)←(s2i�L/4)⊕(t2i�L/4)⊕r1⊕r2
t3i (old) ← t2i (new)
t3i (new) ← h(s2i (new))

M3{blocked}−−−−−−−−→
The tag will not update
t1i

In the next session:
The tag uses the current
value of t1i in calculating
M1 and M2

M1,M2,R1←−−−−−−−
The tags data t1i will not match the
old server data t3i (old) and authenti-
cation will not be achieved

55

4.6 Summary

In this chapter, we have highlighted a design �aw in the Song protocol. We found

that this protocol is vulnerable to data desynchronisation only if an attacker blocks the

transmitted message from reaching the tag in consecutive sessions. This attack a�ects

the availability of the tag in the next transaction. We proposed a revised protocol,

which combats the desynchronisation incident possible in the Song protocol by changing

the data update mechanism. In the next chapter, we propose our own RFID mutual

authentication protocol which withstands the Song protocol desynchronisation attack

and other well-known RFID active attacks.

56

Chapter 5

Mutual Authentication Protocol for

Low-Cost RFID Tags

Contents

5.1 Introduction . 58

5.2 Related Work . 58

5.3 A New Lightweight RFID Authentication Protocol 63

5.4 Protocol Analysis . 69

5.5 Protocol Implementation and Performance Measurement . 72

5.6 Summary . 74

In this chapter we propose a new lightweight RFID mutual authentication protocol,

which builds on the strengths of existing schemes and overcomes their weaknesses. We

then carry out a security analysis of our proposed protocol in terms of informal and

formal analysis using CasperFDR and Scyther tools. Subsequently, we implement the

proposed protocol and present the performance measurement.

57

5.1 Introduction

RFID is being used in many applications that require security and privacy, such as access

control systems, and authentication of products in the supply chains [111]. Therefore,

there is a need for improved security measures to protect against active attacks, such

as those discussed in Section 2.5.2. Wireless communication between tag and reader

may allow an attacker to eavesdrop on a session, modify the transmitted messages,

and prevent some messages from reaching their target. Moreover, a malicious entity

may obtain the tag's data and/or track the tag's holder or the tag's location [111].

As shown in the previous chapter 4, the Song protocol takes into account the data

desynchronisation issues but it is still vulnerable to such incidents. Hence, in this

chapter we attempt to overcome active RFID attacks, including vulnerability in the

Song protocol.

Another area that a�ects the adoption of RFID systems is performance. A low-cost

RFID tags cannot perform computationally intensive security cryptographic functions,

as it o�ers tightly constrained computational power and storage capacity [64].

The protocol proposed in this chapter can �t into systems that require user privacy

and security. The protocol uses lightweight functions, such as PRNG and hash func-

tions that can be implemented into constrained devices, such as low-cost RFID tags.

For example, the proposed protocol, can be used in access control to authorise people

holding RFID tokens to access a building. Moreover, other system, such as in sup-

ply chains, where tagged products need to be identi�ed and authenticated by nearby

reader(s). Such systems require security to con�rm that only authorised people and

products are being authenticated, and at the same time preserve their privacy.

5.2 Related Work

In this section, we present the mutual authentication protocols proposed so far for

solving the security and privacy concerns associated with the use of RFID systems.

Some common best-practice cryptographic approaches require more memory and/or

processing power than would be feasible for cost-e�ective RFIDs. Hence, lightweight

cryptographic primitives have gained more attention. For example, using optimised

PRNG and cryptographic hash functions would su�ce, assuming that it requires sig-

ni�cantly fewer resources than the public key and symmetric key approaches [36]. In

the following section, some of the proposed lightweight solutions are explained more

thoroughly.

58

5.2.1 Hash Function-Based Protocols

Considering hash function-based authentication protocols for RFID, in 2003, Weis et

al. [93] (referred to hereafter as WP) introduced the �rst lightweight protocol based

on one-way hash functions; their scheme is called hash-based access control. The main

idea of this scheme is to lock the tag from o�ering any functionality until it receives the

correct secret key. The tag stores the hash of the secret key as a meta-ID ; i.e. meta-

ID=hash(Key). When the tag receives the correct secret key, it calculates the hash of

the received secret key, and compares it with meta-ID, if a match is found, it unlocks

itself. Since then, attacks on this protocol have received a large amount of attention,

and hundreds of papers have been published indicating ways to combat such attacks.

In [94], (referred to hereafter as W2) the authors pointed out that Weis et al.'s

protocol [93] is prone to location tracking, as the attacker can simply eavesdrop the

previous session, track the tag since the value of meta-ID is �xed, and replay the tag's

message in the next session. Hence, they proposed the �rst randomised access control

scheme, which is based on pseudo-random functions (PRFs). The tag uses a PRF to

generate a random number (R) and calculates the hash on its ID and R in order to

obtain di�erent responses, preventing attackers from tracking the tag's location. A

server then identi�es the tag by performing an exhaustive search of all the stored tags

IDs, until it �nds a match to the value received from the tag. To unlock a tag, the server

sends the matched tag's ID to the tag. However, the tag's response can be intercepted,

thus allowing the attacker to perform replay and tag impersonation attacks.

Forward secrecy was introduced by Ohkubo et al. [96] (referred to hereafter as OP).

The Ohkubo et al. protocol involves updating the tag's data whenever a tag is queried

using a cryptographic hash function, which is presumably one-way. Hence, forward

secrecy is guaranteed as the tag stores the new value of the data that are not used in

the computation of previous messages, and the attacker cannot obtain the old values

from the curent stored data. The ith tag Ti and the server store a secret (s). Ti updates

(s) in every session by using a hash function (h). Then in the next transaction, Ti uses a

second hash function (g) and sends g(h(si+1) to the server, where (si+1) is the updated

secret to be used in the next transaction. However, according to [97], this scheme is

still vulnerable to replay attacks, and they proposed an extended protocol by adding

random numbers to the exchanged messages to avoid replay attacks.

Another approach is called a challenge-response scheme. In this scheme, the reader

sends a challenge to the tag, which can be a cryptographic nonce, and the tag sends a

response to the reader's challenge. The use of a challenge-response scheme was moti-

vated by Molnar et al. [115] (referred to hereafter as MP). Molnar et al. proposed using

cryptographic nonces generated by the reader and tag to protect the privacy of the tag's

59

data. The tag and the server share a key (k). The server sends a random number (r1)

as a challenge to the tag. The tag generates a random number (r2), and sends M1=ID

⊕ fk(0‖ r1 ‖ r2), where (f) is a PRF, to the server in order to be authenticated. Once

the server successfully authenticates the tag, it sends M2=ID ⊕ fk(1 ‖ r1 ‖ r2) to be

authenticated by the tag. However, according to [39], this proposal is vulnerable to

forward secrecy invasion, as the value of the secret key is �xed.

Dimitriou [110] (referred to hereafter as DP) suggested similar approach to the

protocol proposed in [115] but with more features, such as updating tag's data after

each successful run of the protocol. Dimitriou proposed an RFID mutual authentication

protocol to enforce user privacy. This approach uses a challenge-response protocol, a

hash function, and a keyed hash function. The tag only stores the tag's identi�er (ID),

which serves as a key to calculate the keyed hash function. The server stores the tag

identi�er (ID) and the hash of the tag identi�er (HID), which is used as an index to

retrieve the tag's data. When the server successfully authenticates the tag, it updates

(ID) to g(ID), where (g) is a hash function, and sends M3 = fIDi(r2 ‖ r1) to the tag

using the updated IDi, where r2 and r1 are random numbers generated by the tag and

reader respectively. The tag checks the received value of M3. If the check is successful,

the tag updates (ID) to g(ID). Nevertheless, this protocol is still vulnerable to DoS

attacks [39]; if the third message (M3) sent by the server is blocked, then the server will

update the identi�er (ID) while the tag keeps the old value of the identi�er, resulting

in a desynchronisation between the server and tag.

In [103] (referred to hereafter as HP), the authors proposed an RFID lightweight

protocol that uses PRNG and three hash functions. The detail of this proposal is shown

in Fig. 5.1. The server and the tag shares the tag's ID, the secret key (SKID,i), and

a counter (i). The server and the tag generate random number (X and a) respectively.

As shown in Fig. 5.1, if the attacker blocks the tag's messages in consecutive sessions,

the tag will not be authenticated by the server and data desynchronisation between the

tag and the server occurs.

5.2.2 Lightweight Function-Based Protocols

Lightweight algorithms were used in RFID protocols, taking into account the limitation

of the RFID tags. Motivated for this reason, several proposals suggested using the

PRNG, the CRC and simple triangular operations, such as XoR, And and OR.

Duc et al. [114] presented an RFID mutual authentication protocol conforming to

the EPCCIG2 standard (referred to hereafter as DP2). This scheme uses simple cryp-

tographic primitives, such as PRNG and CRC functions, as they are supported in the

EPCC1G2 standard. The PRNG is used to update the secret key while the CRC detects

60

Server Reader Tag
X ←{0,1}t

X−→ X−→
a ←{0,1}t

B= H0(SKID,i, ID, i, X, a)
a,B←−−− a,B←−−−

Re-computes B′ ,
If there is a match: set dY =1
else computes:
Bi−1= H0(SKID,i−1, ID, i-1, X, a)
If there is a match: set dY =1
Otherwise set dY =0
If dY =1, and B′=B
Computes Z=H1(SKID,i, ID, i, X,a)
If dY =1, and B′i−1=B
Computes Z=H1(SKID,i−1,ID,i-1,X,a)
if dY =0, rnd ←{0,1}∗

Computes Z=H1(rnd)
Key update:

If B′=B
Compute s=H2(SKID,i, ID, i)
Sets SKID,i = s
Sets SKID,i−1 = SKID,i

Sets i=i+1
else, no update

Z−→ Z−→
Computes Z′=H1(SKID,i, ID, i, X, a)
If Z′=Z
Sets dZ=1, otherwise,
sets dZ=0
If dZ=1
Compute s=H2(SKID,i, ID, i)
Sets SKID,i = s
Sets i=i+1
else, no update

Figure 5.1: Hanatanil et al.'s RFID authentication protocol

any errors occurring during the transmission of the messages. The server and tag store a

secret key, which is updated after a successful authentication. However, this scheme still

has some weaknesses, including vulnerability to data desynchronisation, replay attacks

before the next successful authentication, and forward secrecy invasion[95].

Chien et al. [95] introduced an improved version of Duc et al.'s RFID mutual au-

thentication protocol [114] (referred to hereafter as CP). The proposed protocol requires

the server and tag to generate random numbers to prevent replay attack. The tag keeps

a static EPC, which represents the unique identity of the tag, and an access key (K) and

authentication key (P), which are updated after each successful authentication. The

server also maintains the same values as well as the old and new access and authenti-

cation keys to avoid DoS attacks. The protocol uses simple cryptographic primitives,

such as a PRNG and a CRC. After the server authenticates the tag, it updates the data

except for the EPC identi�er which is static. However, according to Peris-Lopez et al.

[98], this proposal permits location tracking, tag impersonation, server impersonation,

61

and backward traceability, because of the linear properties of the CRC.

Another improved version of Chien et al.'s protocol was proposed by Yi et al. [99].

However, again due to the use of the CRC function, [101] found that this proposal is also

vulnerable to data desynchronisation, tag and reader impersonation, and traceability

attacks.

A lightweight RFID mutual authentication protocol was proposed in [102] using a

Shrinking Algorithm (referred to hereafter as SG). In this protocol a shrinking algorithm

generates di�erent random keys. The tag generates an encryption key (CSGK1) using

the shrinking algorithm that takes a shared secret between the tag and the database

(K1) as an input, and computes M=CSGK1 ⊕ (ID ‖ S), where (ID) is the tag's ID, and
(S) is a random number generated by the reader. Once the database authenticates the

tag, it generates another encryption key (CSGK2) using the shrinking algorithm, and

computes ID′=CSGK2 ⊕ ID. Finally, the tag and database will update their values.

The authors claim that their protocol reaches the synchronization between the tag

and database by maintaining a list of current and previous tag's data in the database.

However, we found that this protocol is vulnerable to a desynchronisation attack, as if

the attacker blocks the database's message from reaching the tag in consecutive sessions.

Song et al. [89] proposed an RFID authentication protocol for low-cost tags (re-

ferred to hereafter as SP). This protocol uses MAC and PRNG. Each tag stores the

hash of a secret (s) namely (t), and the server stores the old and new values of the secret

(snew, sold), the hashed secret (tnew, told) and the tag's information (D). This scheme

uses a challenge-response protocol and supports updating data when the mutual au-

thentication is achieved. Cai et al. [113] demonstrated that Song et al.'s protocol does

not provide protection against tag impersonation attacks. Moreover, Rizomiliotis et al.

[73] found that an attacker can impersonate the server without accessing the internal

data of a tag and launch DoS attacks. Also, in Chapter 4, we pointed out that the new

version of this protocol in [39] is prone to data desynchronisation.

Yeh et al. [105] proposed an improved version of Chien et al.'s RFID authentication

protocol conforming to the EPCC1G2 standard (referred to hereafter as YP). The data

kept in the server and tag is the same as in Chien et al.'s protocol, except that their

protocol uses an index (C) to avoid DoS attacks and database overloading. The ini-

tialisation and authentication phases do not use CRC functions. Only PNRG functions

are used, thus blocking the bad linear properties of the CRC function. Although this

protocol prevents DoS attacks, it is still vulnerable to forward secrecy invasion, tag

impersonation attacks, and server impersonation attacks as pointed out by [117].

An improved version of Yeh et al.'s protocol was proposed by Yoon in [117] (referred

to hereafter as YoonP). Their protocols' data and the initialisation process are identical

62

to Yeh et al.'s protocol, but the authentication phase adds a secret session random

number (r2) to the exchanged massage (M1) generated by the tag. Yoon claimed that

the proposed protocol provides more security than that of Yeh et al.'s protocol; however,

[118] demonstrated that eavesdropping on only one session of the protocol and O(216)

PRNG function evaluation can reveal the tag's secret data, as the length of the data

generated from PRNG is only 16-bit strings, which makes it easier for the attacker to

do an exhaustive search to reveal the data; it is thus easy to launch traceability attacks,

DoS attacks, tag impersonation and server impersonation attacks.

As shown above, many RFID protocols have attempted to protect against a wide

range of attacks, including DoS attacks, impersonation attacks, location tracking, replay

attacks and forward secrecy invasion; however, cryptanalysis on proposed protocols is

still ongoing. Designing a secure RFID protocol is still a challenging task, and this may

be due to the following reasons:

� EPCC1G2-compliant RFID authentication protocols: Designing an EPCC1G2-

compliant protocol is challenging because the only security operations available

in this standard are a 16-bit PRNG and a 16-bit CRC. These functions do not

provide irreversibility as in the hash function [112, 74].

� Updating data: Some of the protocols require the tag and the server to update

internal data after each successful session in order to prevent location tracking,

replay attacks and forward secrecy invasion. However, they do not take into

account that the attacker might block certain messages more than once in two

consecutive sessions causing a desynchronisation of data [66, 105].

� The deployment of inexpensive operators: The use of bitwise, and/or bit shifts

operators is compatible with the tag's computational capabilities but it can lead

to various security vulnerabilities [119, 120, 70, 112, 72, 73, 74].

Hence, we propose a new lightweight RFID mutual authentication protocol discussed

in the next section, which overcomes the weaknesses highlighted in this section and

builds on their strengths to provide a secure RFID system.

5.3 A New Lightweight RFID Authentication Protocol

In this section, we explain the proposed protocol in detail.

63

5.3.1 Design Goals

When designing a lightweight RFID mutual authentication protocol, consideration

should be given to the following:

� Mutual authentication: The protocol should provide a mutual entity authentica-

tion. The communication should take place between legitimate entities, such as

a tag, a reader and a server, and provide assurance to the receiver (server) about

the identity of the sender (tag) and vice versa.

� Privacy: The tag's data should remain secret and not be revealed to any malicious

entity, thus providing anonymity to the tag. Another notion related to privacy is

untraceability; if the data being sent from the tag to the reader is static or linked

to data sent previously, the tag holder's location can be tracked without his/her

knowledge. Finally, if the tag's memory is compromised, the attacker should

not be able to trace past transactions. Therefore, the protocol should provide a

mechanism to achieve forward secrecy.

� Security: Due to the wireless communication between the tag and reader, an

active attacker can observe and manipulate the communication channel between

reader and tags. In this study, we focus on three common techniques to violate

the secrecy of the system, namely replay attacks, data desynchronisation incidents

and tag/server impersonation attacks. To elaborate, the designed protocol should

provide:

1. Resistance to replay attacks: The adversary can eavesdrop on the communi-

cation between reader and tag, obtain the exchanged message(s), and resend

it repeatedly. Therefore, the generated messages should be fresh to the pro-

tocol session to protect against replay attacks.

2. Resistance to desynchronisation incidents: Messages can be lost or the ad-

versary can modify the �ow of messages and block messages from reaching

their target, causing a desynchronisation between the two legitimate parties.

Therefore, the server should store the old and new values of the tag in order

to authenticate the desynchronised tag and reach synchronisation.

3. Resistance to tag/server impersonation attacks: In this attack, the attacker

sends a message to the server that claims to come from a legitimate tag, and

this message fabrication enables the attacker to masquerade as a legitimate

tag and vice versa. Hence, the responses should not be sent in clear.

64

� Performance: The tag's memory storage space, and the computing cost should be

appropriate for the tag's limited computing capability, and the amount of data

communicated should be minimised.

5.3.2 Assumptions

We present a lightweight RFID mutual authentication protocol, which operates under

the following assumptions:

� The reader contacts the tag through a wireless channel, which is susceptible to

active attacks.

� The communication channel between the reader and server is secure.

� The tag's data are stored in non-volatile memory, such as EEPROM or Flash

memory, where they can be updated.

� All the operations in the tag are atomic i.e. either all of the operations or none

are processed. If the attacker kills the electromagnetic �eld between the reader

and tag or the tag simply walks away from the reader's signal, the tag will execute

all the computations simultaneously or not at all.

� The proposed protocol supports a multiple readers scenario, all connected to a

central server, so that a tag can be read in many di�erent locations.

5.3.3 Protocol Design

The proposed protocol has the following main features:

� Tags are capable of computing XoR operation, generating a pseudo-random num-

ber and calculating hash functions.

� The proposed protocol uses random numbers in an attempt to prevent location

tracking and replay attacks.

� The server stores both the old and the new values of the data in order to prevent

desynchronisation incidents.

� After a successful authentication between the server and tag, both parties update

their values to be used in the next transaction.

� The reader does not store or update any data related to the tags.

65

5.3.4 Threat Model

From an information security standpoint, RFID is a challenging platform. The limited

computational power in RFID tags makes it infeasible to perform common best-practice

cryptographic approaches, such as public key cryptography schemes.

Accordingly, we used a popular adversary model called the Dolev-Yao model [67],

where the adversary has powerful resources to control the communication channel via

performing the following:

� Eavesdropping

� Modifying messages

� Blocking messages from reaching targets

� Replaying previous messages

� Injecting new messages (forgery)

� Impersonating any entity

Defences against relay attacks, physical attacks, side channel attacks, and power

analysis attacks are not within the scope of this thesis.

5.3.5 Notation

The notation used in the proposed protocol are presented in Table 5.1:

5.3.6 Protocol Description

The scheme consists of two processes: initialisation, and authentication.

� Initialisation Process: This stage only occurs during manufacturing when the

manufacturer assigns the initial values in the server, and in the tag. The initiali-

sation process is summarised below:

� The server assigns random values for each tag it manages to (IDnew, Knew)

in the server, and (IDi, Ki) in the tag.

� Initially, (IDold, Kold) in the server is set to null.

� Authentication Process: The authentication process is shown in Fig. 5.2.

1. Reader: The reader generates a random number R1 of L bits and sends it to

the tag.

66

Table 5.1: A summary of notation

Notation Description
Ti The ith tag of the RFID system, where 1 ≤ i ≤ n
IDold The ith tag old ID
IDnew The ith tag new ID
Kold The ith tag old secret key
Knew The ith tag new secret key
IDi The ith tag ID
Ki The ith tag secret key
x The value kept as either new or old to show whether the tag uses the

old or new values of IDi and Ki

R1 A pseudo-random number generated by the reader
R2 A pseudo-random number generated by the tag
H A hash function, h:{0,1}∗←{0,1}L

A ← B The value of A is updated to that of B
⊕ An XoR operation
‖ A concatenation operation
j The transaction number
i The number of the tag in the system
n The number of tags managed by the server

2. Tag: The tag generates a random number R2 of L bits, and computes two

messages as follows:

M1= H(Ki ‖ R1 ‖ R2)
M2= H(IDi ⊕ R2)

3. Tag: The tag sends R2, M1 and M2 to the reader.

4. Reader: The reader sends R1, R2, M1, and M2 to the server.

5. Server: For all the stored IDs, the server computes H(IDi ⊕ R2) until it �nds

a match with the received value of M2:

� If there is a match in IDnew, then the server marks x=new. The server

retrieves data (IDnew, Knew), and re-computes M1, i.e., M′1=H(Knew ‖
R1 ‖ R2) to authenticate the tag.

� If there is a match in IDold, then the server marks x=old, retrieves

the data (IDold, Kold), and re-calculates M′1=H(Kold ‖ R1 ‖ R2) to

authenticate the tag.

6. Server: The server computes M3=H(IDx ‖ Kx ‖ R1 ‖ R2), and transmits it

to the reader.

7. Server: The server updates the data as follows:

67

Server Reader Ti

1- Generates R1
1−R1−−−−→

2- Generates R2
Computes
M1=H(Ki‖R1‖R2)
M2= H(IDi ⊕ R2)

3−R2,M1,M2←−−−−−−−−−−
4−R1,R2,M1,M2←−−−−−−−−−−−−

5- Searches for IDi

Marks x=new or old
Re-computes
M′1=H(Kx‖R1‖R2)
6- Computes
M3=H(IDx‖Kx‖R1‖R2)

6−M3−−−−→
7-Updates:
If x=new:
IDj+1

new ← H(IDj
new)

IDj+1
old ← IDj

new

Kj+1
new←H(Kj

new⊕IDj+1
new)

Kj+1
old ← Kj

new

Else if x=old:
No update

8−M3−−−−→ 9- Re-computes:
H(IDi ‖ Ki ‖ R1 ‖ R2)
Updates:
IDj+1

i ←H(IDj
i)

Kj+1
i ←H(Kj

i⊕ IDj+1
i)

Figure 5.2: The proposed lightweight RFID mutual authentication protocol

If x=new, where IDi is found in IDnew

IDj+1
new ← H(IDj

new)

IDj+1
old ← IDj

new

Kj+1
new ← H(Kj

new ⊕ IDj+1
new)

Kj+1
old ← Kj

new

Else if x=old, where ID is found in IDold: No update

If there is no match in IDnew and IDold or M′1 6= M1, then the server keeps

the tag's data the same, and sends an end session message to the reader to

terminate the session.

8. Reader: The reader sends M3 to the tag.

9. Tag: The tag checks whether the received value of M3 is equal to

H(IDi ‖ Ki ‖ R1 ‖ R2). If there is a match, the tag authenticates the server
and updates its values to:

IDj+1
i ← H(IDj

i)

Kj+1
i ← H(Kj

i ⊕ IDj+1
i)

If the check fails or M3 is not received, the tag keeps the current values

unchanged.

68

5.4 Protocol Analysis

In this section, we present the analysis of the proposed protocol in terms of informal,

and formal analysis using CasperFDR and Scyther.

5.4.1 Informal Protocol Analysis

Our proposed protocol meets the following goals:

� Tag anonymity: The ith tag stores two 128-bit values, namely IDi and Ki that

are supposed to be secret and not revealed to any entity except the legitimate

server. The values of IDi and Ki are protected during transmission using a secure

one-way hash function. Moreover, it will take up to 2128 attempts to guess the

value of IDi or Ki.

� Tag location privacy (untraceability): In the proposed protocol, the tag's re-

sponses are changed with new updated values and fresh random numbers; thus

an attacker will obtain new responses every time he/she eavesdrops on a session.

Moreover, if the previous authentication session failed, and the tag's data remain

unchanged, M1 and M2 messages will change due to the existence of random

numbers (R1 and R2) generated by the reader and tag respectively.

� Forward secrecy: The values of IDi and Ki are updated after each run in order

to prevent forward secrecy invasion, using a hash function that is irreversible.

If an adversary compromises the tag's memory, he/she will not be able to trace

the previous communications of the tag, as the obtained messages involve the

use of previous secret values IDi and Ki, which are not stored in the tag. The

stored updated values are used in the calculation of the next session and cannot

be irreversible as a result of using a hash function.

� Resistance to replay attack: Our protocol utilises a challenge-response scheme. In

messages M1 and M2, the tag sends the responses in which the reader's challenge

(R1), and tag's random number R2 are included. The server must therefore

include the tag's challenge R2 and R1 in its response (M3). Therefore, only

legitimate parties (server+tag) can send valid answers, since random numbers are

sent with secret values only known to the server and tag.

� Resistance to desynchronisation incidents: The communication session between

the reader and tag may be accidentally or intentionally interrupted. Therefore,

to avoid this sort of incidents, each time the server �nds a match with the new

values (IDnew, Knew), it updates the tag's data, and the old previous values of

69

Table 5.2: Comparison between the related work and our proposed protocol

WP
[93]

W2
[121]

OP
[96]

MP
[115]

DP
[110]

DP2
[114]

CP
[95]

SG
[102]

PP
[122]

SP
[89]

YP
[105]

YoP
[117]

HP
[103]

Our
pro-
tocol
5.3

Tag
anonymity

×
√ √ √ √ √ √ √ √ √ √ √ √ √

Location pri-
vacy

×
√

×
√

×
√

×
√ √ √

× ×
√ √

Replay
attacks

× × ×
√ √

×
√ √ √ √ √ √ √ √

Denial of ser-
vice attacks

√ √ √ √
× × × × × ×

√ √
×

√

Tag imper-
sonation
attacks

× ×
√ √ √ √

×
√ √

× × ×
√ √

Server im-
personation
attacks

× × × × × × ×
√

× × × ×
√ √

×: Means does not provide protection
√
: Means resists such an attack

IDi and Ki are maintained. Moreover, the server will not update its data either

when there is no match, or if there is a match in (IDold, Kold); it keeps the stored

data the same. Thus, when the attacker blocks M3 more than once in consecutive

order, the tag's data (IDi, Ki) will still match the server's data (IDold, Kold).

� Resistance to tag/server impersonation attacks: This is when an attacker attempts

to impersonate a legitimate server to obtain information from a tag. This kind

of attack is not feasible because the transmitted message (M3) includes secret

values shared only by the tag and the server, and sent within a secure one-way

hash function that is irreversible. The same applies to the tag impersonation.

� Mutual Authentication: All the exchanged messages include secret values (IDi,

Ki) sent using the hash function, so only a legitimate server and tag can calculate

such messages, preventing any other from recovering and creating valid messages.

The size of the data is 128-bit length, which means that the attacker needs to

make 2128 attempts to recover the secret data.

In Table 5.2, we compare our protocol with the related research work in terms of

the main requirements shown in Section 5.3.1. The result shows that our protocol is

immune to the identi�ed attacks, and provides better protection than the related work.

5.4.2 Formal Protocol Analysis

To formally analyse the proposed protocol and con�rm that secrecy and authenticity

between the server and tag are achieved, we used CasperFDR [104] and Scyther [75]

tools.

70

CasperFDR Analysis of the Proposed Protocol

We prepared the CasperFDR script to obtain some indicative results if there is an at-

tack on the protocol. The script is shown in Appendix A. We identi�ed the following

data in the #Free variables section:

T : Agent

S : Server

R1, R2 : Nonce

ID, K : Data

h: HashFunction

InverseKeys= (h,h)

The section #Speci�cation, speci�es the security and authentication requirements

of the protocol, in which the Secret goals are:

Secret (T, K, [S])

Secret (T, ID, [S])

These goals indicate that the values of K and ID should only be known by the tag

(T) and legitimate server (S).

The lines starting with Agreement are for providing authentication for instance:

Agreement (T, S, [ID, K])

This goal means that the tag is authenticated to the server using the data values

(ID, K).

In addition, in the #Intruder information section, the intruder is de�ned to be Mal-

lory, who can take full control of the session; impersonate any entity in the protocol,

generate a random number (R3), read the messages transmitted in the network, inter-

cept, analyse, and/or modify messages. The intruder is depicted as:

#Intruder Information

Intruder = Mallory

IntruderKnowledge ={Tag, ServerDB, Mallory, R1, R2, R3}

CasperFDR did not �nd any feasible attacks on the proposed protocol.

71

Scyther Analysis of the Proposed Protocol

Scyther performs a formal analysis of security protocols using a Dolev-Yao model [67]

for an unbounded number of instances. It is mainly used to verify the authenticity of

the exchanged messages between entities as in the proposed protocol considered here.

We conducted the analysis of our protocol with respect to three goals, namely secret,

aliveness and agreement. The script is shown in Appendix A.2. Three roles are de�ned,

namely a server (S), a reader (R), and a tag (Ti). The random numbers R1 and R2 are

de�ned as Nonce; and IDi (tag identi�er), and Ki (tag key) are de�ned as Data. The

XoR and hash functions are de�ned as global functions.

Both roles, server and tag, share the secret goal over the two secret values IDi and

Ki as follows:

claim_S1(S, Secret, IDi);

claim_S2(S, Secret, Ki);

claim_Ti1(Ti, Secret, IDi);

claim_Ti2(Ti, Secret, Ki);

Also both roles claim to be alive and share the agreement and synchronisation goals

as follows:

claim_S3(S, Alive);

claim_S4(S, Niagree);

claim_Ti3(Ti, Alive);

claim_Ti4(Ti, Niagree);

claim_Ti5(Ti, Nisynch);

After compiling the Scyther script, it did not �nd any feasible attacks within bound.

5.5 Protocol Implementation and Performance Measure-

ment

For our experiment, we implemented the proposed protocol using the tools discussed in

Chapter 3. We present the performance measurements after running the protocol for

100 runs on the DemoTag.

72

5.5.1 Implementation Process

The tag is provided with two 128-bit secret values: IDi and Ki, which are stored in the

tag's EEPROM. Because we did not implement the protocol on the server, we assume

that the reader knows IDi and Ki.

The reader starts by generating a 128-bit (16-byte) random number (R1) using the

.NET Framework rngCsp method. Then, it sends R1 to the tag by sending eight Write-

TagData_EPC_C1G2 commands; each command writes 2 bytes of data. When the

tag receives the reader's random number, it generates a random number R2 (128-bit)

using the built-in PRNG, computes the two messages, namely M1 and M2 , each of

which is 128-bit length. Subsequently, the tag writes the messages (R2, M1 and M2) in

its memory using the syscall_writeWord commands ready to be read on demand. The

reader later sends three ReadTagData_EPC_C1G2 commands to read R2, M1 and M2,

and re-computes M1. If there is a match with the received M1, it calculates M3 and up-

dates the values of IDi and Ki. Finally, the reader sends 8 WriteTagData_EPC_C1G2

commands to the tag representing M3. The tag re-computes M3 to authenticate the

reader. If successful, the tag updates IDi and Ki.

5.5.2 Performance Measurement

The performance measurements are as follows:

1. DemoTag memory cost: In the proposed protocol, the memory cost is:

� 348 bytes are used from the 4 KB EEPROM memory for storing tag's data,

messages (responses), and random numbers.

� 33 KB used from the 128 KB Flash memory to store the tag's �rmware.

Table 5.3: Data exchange time cost (milliseconds)

Tag Reader

Read - 240

Write 1.28 985.74

2. Communication cost is shown in Table 5.3: For the tag to write R2, M1 and M2

into its memory to be read by the reader, the average timer counter after running

the protocol 100 times is 20484.48, so the time cost, based on equation 3.1, is:

20484.48 ∗ 0.0000000625 = 0.00128sec ≡ 1.28ms (5.1)

73

Regarding the reader, after 100 runs, the average communication cost is: around

985.74 ms to write R1 and M3 into the tag's memory, and 240 ms to read the

whole tag's response.

3. DemoTag computing cost: In a successful run of the proposed protocol, the tag

generates R2, computes three messages (M1, M2, and M3), updates two values

and write its messages in the memory. Table 5.4 demonstrates that the time

cost of running the whole protocol on the DemoTag is around 9.31 ms, which

means that the tag can respond to reader's query in less than a second, and this

demonstrates the relatively low computing cost of the protocol on the tag.

Table 5.4: Computing operations time cost (milliseconds)

R2 M1 M2 M3 Update Write

Computing cost 0.11 1.61 1.52 1.66 3.13 1.28

Total 9.31

The protocols discussed in this chapter did not provide any performance measure-

ments, thus we could not present a performance comparison between our protocol and

other related work.

5.6 Summary

In this chapter, we proposed our own RFID mutual authentication protocol that at-

tempted to meet the identi�ed goals and avoid the weaknesses found in related works

and in the Song protocol. The proposed protocol has been informally and formally anal-

ysed, and the results demonstrated that our proposal can resist active RFID attacks.

Moreover, the performance measurement demonstrated that the protocol execution time

on the tag requires only 9.31 ms. So far we have ignored one vital security aspect of

secure RFID systems; the secret key distribution problem. The following chapter aims

to address this aspect in RFID-enabled supply chains.

74

Chapter 6

Enhancing the Key Distribution

Model in the RFID-Enabled Supply

Chains

Contents

6.1 Introduction . 76

6.2 Secret-Sharing Approach . 77

6.3 Related Work . 78

6.4 Enhancing the Key Distribution Model in the RFID-Enabled

Supply Chains . 82

6.5 Protocol Analysis . 89

6.6 Protocol Implementation and Performance Measurement . 94

6.7 Summary . 96

This chapter discusses the use of secret-sharing strategies as a promising solution

for managing key distribution and recovery in the RFID-enabled supply chains. Firstly,

we provide an overview of how RFID technology can be used in RFID-enabled supply

chain systems. Existing approaches for distributing secret keys among tagged products

in supply chains are discussed. Then, we point out the weaknesses found in the related

work, and propose our enhanced scheme. We also present the analysis of our proposal,

and �nally illustrate the implementation of the proposed protocol.

75

6.1 Introduction

As already discussed in Chapter 2, RFID technology is extensively used in various

applications. One of these applications is supply chain systems, where millions of in-

bound and outbound products move from manufacturers to customers [107]. These

products should be correctly identi�ed, veri�ed and sorted at di�erent points in the

supply chain. In an RFID-enabled supply chain, the product information is embedded

inside the RFID tag's memory, and this information can be e�ciently collected, tracked,

shared, and managed remotely via a nearby reader(s).

Shi et al. [123] classi�ed the nodes in an RFID-enabled supply chain into �ve

categories as follows:

1. Entry node, where the supply chain starts; for example in a manufacturing plant.

2. Aggregation node, where a number of cases are grouped into a larger unit; for

example, in a distributor centre (DC).

3. Disaggregation node, where large units of products are disaggregated into smaller

units, such as in a DC.

4. Normal node, where the cases are transported via land, air or sea logistics systems.

5. End node, where the supply chain ends; for example, in a retail shop.

As shown in Fig. 6.1, a manufacturer creates the products, embeds them with RFID

tags that store unique data, stores these data in the server for further processing, then

groups the products in cases, and ships them to the DC by land, air and/or sea. After

that, the DC decomposes cases, then recomposes them into larger or smaller cases based

on the next regional DCs, and ships them to the next regional DCs. Finally, the cases

in the regional DCs are distributed to retailers. Typically, the number of cases starts

o� in large units (such as pallets) and these are reduced to smaller units as they make

their way from the manufacturer to the retailers [107].

It is assumed that the manufacturers and distributor centres have physically secure

environments, whereas areas outside these environments are prone to attacks as they

are open to adversaries. Hence, protocols emerged to protect tags' data and preserve

tags' anonymity in the retail and consumer environments [38, 70, 107, 137, 125]. In this

chapter, we propose a protocol for protecting tags' data in an RFID-enabled supply

chain, and secondly, we present a key update protocol incorporating a resynchronisa-

tion capability to counter the disruptive e�ects of location tracking, replay attacks and

76

Figure 6.1: Supply chain parties [137]

desynchronisation attacks [126]. In the next section 6.2, we discuss the current prob-

lem in adopting RFID technology in RFID-enabled supply chain, and introduce our

proposed solution.

6.2 Secret-Sharing Approach

RFID has captured the attention of many leading supply chain companies that want

to make this technology feasible [137]. RFID technology enables a supply chain to

identify, track and verify products remotely. To use this technology, all parties have to

store the product data in their databases, and these data should be protected during

transmission.

One way to secure the transmission of data between the reader and tags, is to

encrypt the exchanged data with a secret key. Basically, secret key distribution must

rely on secure channels established through pre-existing trust relationships. However,

in supply chain practice, especially for ad-hoc supply chain structures, there is a lack of

trust between the parties involved as the products' manufacturer may not know the next

owner (distributor and/or retailer) [137]. So, the question remains of how to distribute

the secret key safely. Proposals have been made for distributing the secret key securely

in the RFID-enabled supply chain using the secret-sharing approach proposed by Adi

Shamir [127]. Shamir [127] proposed a secret-sharing approach, where a secret can be

divided into n parts (shadows) that, individually, do not provide any useful information

about the secret. To reconstruct the secret, not all the parts are needed; any k of the

77

Table 6.1: A summary of notation

Notation Description
R Reader
Ti The ith tag of the RFID system, where 1 ≤ i ≤ n
K A symmetric secret key
IDi The ith tag ID
EPCi The ith tag Electronic Secret Code value
Si The ith tag share of a secret key K
EK{M} A symmetric key encryption on a message M
h A hash function, h:{0,1}∗←{0,1}L, where L is equal to the length of

the data
n The number of tags
⊕ An XoR operation
‖ A concatenation operator
A ← B The value of A is updated to that of B

parts are su�cient to reconstruct the original secret. This scheme is called a (k, n)

threshold scheme. The generation of the shares is brie�y shown below.

6.2.1 LaGrange Interpolating Polynomial Scheme

Adi Shamir uses polynomial equations in a �nite �eld to construct a threshold scheme

[127].

Let p be a prime, which is larger than the number of possible shadows and larger

than the secret. For a given secret M, generate an arbitrary polynomial of degree M-1,

i.e.:

F(x) = (axk−1 + bxk−2 + ... + cx + M) mod p

The coe�cients (a, b, c) are chosen randomly, and kept secret. The shadows are

obtained by evaluating the polynomial at n di�erent points:

ki = F(xi)

6.3 Related Work

In this section, we present proposals based on secret-sharing approach in RFID-enabled

supply chains. For the rest of this section, we will use the notation summarised in Table

6.1.

Langheinrich et al. [108] proposed a �Shamir tag�, which was the �rst proposal based

on dividing the secret tag's ID into shares in the RFID systems. This approach splits

78

the ID of a tag into multiple shares based on Shamir's secret-sharing scheme [127], and

stores all the shares on the tag itself. These shares are concatenated to form the new

ID of the tag. Following a reader's inquiry, an initial set of random bits from the new

ID is released, followed by subsequent throttled single-bit releases. Once the entire new

ID is released, the reader can compute the original ID. In this scheme, an RFID reader

requires several minutes to recover the ID, which is not practical in a supply chain,

where a large number of tags need to be processed in an e�cient manner [70].

Li et al. [137] proposed another secret-sharing scheme called �Resilient Secret-

Sharing (RSS)�. They designed a secure and practical key distribution system between

three parties (A, B, C) in the supply chain. Each tag stores two shares; one share

belongs to the secret key K1 between A and B, and the other share is intended for the

secret keyK2 between A and C. The secret key K1 is divided into multiple shares that

are stored in n tags, and the remaining shares (r-k-n) are stored in the database, where

r is the number of shares, and k is the number of shares required to reconstruct the

secret key. The same process is done on the secret key K2.

In [107], Juels et al. proposed a secret key-sharing approach to be used within

RFID-enabled supply chains to protect the transmission of the tags' EPC values. Their

proposal complies with the predominant RFID standard EPCC1Gen2 discussed in Sec-

tion 2.3.1. This approach does not require any computations on the tag side; the tag

just stores two values and sends them to the reader.

The authors suggested the following:

� The manufacturer generates a secret key K and splits it into shares using the

Reed-Solomon ECC-based secret-sharing scheme [109].

� Using a threshold scheme (k, n) where k ≤ n, the secret key is divided into n

shares, but only k shares are needed to reconstruct the secret key.

� The ith tag Ti stores two values: share (Si) and symmetrically encrypted infor-

mation (EK{EPCi}).

� Each Ti sends (Si, EK{EPCi}) to any distributor/retailer reader who queries it.

� When the reader receives k shares from the products' tags, it recovers the secret

key, and obtains the EPC value for each tag by decrypting (EK{EPCi}).

Juels et al. claimed that their protocol provides the following features:

1. This scheme provides an e�cient solution for tag ownership transfer, as there is

no need to distribute the keys in multiple supply chain databases.

79

2. An adversary will not be able to recover the secret key when he/she obtains the

two values (Si , EK{EPCi}) from a customer's tag or from the tags in the retail

shop, as he/she needs to collect k shares to recover the secret key and decrypt

(EK{EPCi}).

3. This scheme assumes that the manufacturer and distributor centres are secure

areas, where the adversary does not have access, only legitimate parties can collect

the shares.

However, Li et al. [137] claimed that Juels et al.'s proposal renders the system

impractical, because it is di�cult for any intermediate party in the supply chain to

change the threshold of the shares, since the manufacturer pre-assigned all the shares

to the tags according to a �xed secret-sharing scheme. In other words, if a group

of products is aggregated or disaggregated into larger or smaller group, the threshold

should be changed according to the new number of groups. Thus, the model should

support updating the threshold scheme.

In addition, Cai et al. [70] pointed out that the tag's response can be tracked, as

(Si, EK{EPCi}) are �xed and sent to any reader that queries it. Also, an adversary can

obtain the �xed tag's reply, and thus he/she is able to counterfeit the tag. Hence, Cai

et al. [70] proposed an enhanced protocol based on Juels et al.'s scheme to avoid tag

location tracking and counterfeiting attacks. They presented a protocol for updating

the secret key (K) and shares (S) after recovering the secret key and authenticating the

tag successfully, so the tag will respond with new values in each session. Cai et al.'s

protocol is depicted in Fig. 6.2.

The authors proposed storing a new value (c) to serve as authenticating the reader

before updating the data on the tag. This value is stored in the tag, i.e., ci=h(K ‖
Si). The tag responds to the reader query with three values: (Si, ci, and Mi), where

Mi=EK(EPCi).

During manufacturing, the manufacturer assigns the initial data (Si, ci, Mi) to the

tag. The protocol in [70] is described as follows:

1. Tag: The tag Ti sends (Si, ci, Mi) to the reader.

2. Reader: After receiving k shares and recovering the secret key, the reader calcu-

lates ci=h(K ‖ Si) to �nd a match with the received ci. If there is a match, it

authenticates the tag.

3. Reader: If the reader successfully authenticates the tag Ti, the reader gen-

erates a new secret key K′, divides it into n new shares (S′i) and calculates

Mi
′=EK′{EPCi}.

80

Reader Ti
1−Si,ci,Mi←−−−−−−−−

2-After receiving k shares and recovering the secret key
Re-computes ci=h(K ‖ Si) to �nd a match with the re-
ceived ci
3- Generates a new K′ and divides it into n shares
Generates Mi

′=EK′{EPCi}
4-Calculates:
C′i=h(K′ ‖ S′i)
A=(Si

′ ‖ Mi
′) ⊕ h(0 ‖ ci)

B=Ci
′ ⊕ h(1 ‖ ci)

C=h(ci ‖ S′i ‖ Mi
′ ‖ C′i)

5−A,B,C−−−−−−−→
6-Computes:
(Si
′ ‖ Mi

′)=A ⊕ h(0 ‖ ci)
C′i=B ⊕ h(1 ‖ ci)
If C==h(ci ‖ S′i ‖ Mi

′ ‖ C′i),
updates:
Si ← S′i
Mi ← Mi

′

ci ←C′i

Figure 6.2: Cai et al.'s secret key update protocol

4. Reader: For the ith tag Ti, the reader calculates:

� C′i = h(K′ ‖ S′i)

� A = (Si′ ‖ Mi
′) ⊕ h(0 ‖ ci)

� B =C′i ⊕ h(1 ‖ ci)

� C = h(ci ‖ S′i ‖ Mi
′ ‖C′i)

5. Reader: The reader sends (A,B,C) to Ti.

6. Tag: After receiving (A,B,C) from the reader, Ti computes:

� (Si′ ‖ Mi
′) = A ⊕ h(0 ‖ ci)

� C′i = B ⊕ h(1 ‖ ci)

If C = h(ci ‖ S′i ‖ Mi
′ ‖C′i), the reader is authenticated. Then Ti updates its

values to:

� Si ← S′i

� Mi ← Mi
′

� ci ←C′i

Cai et al. assumed that any place outside the manufacturing area is insecure. Cai

et al. claimed that their protocol is immune against location tracking, as the tag data

81

are updated after a successful key recovery process. Thus, the tag will reply with new

data every time the reader queries it.

We found two attacks on their protocol were possible: desynchronisation attack and

location tracking. The attacks are shown below:

1. The intruder eavesdrops on a normal session between the tag and the reader.

2. The intruder captures the tag's values (Si, ci, and Mi).

3. The intruder blocks the A, B and C messages from reaching the tag, resulting

in an update of the tag's data on the reader but not on the tag. Therefore, the

reader will not authenticate this tag in future due to the mismatch between the

reader's and tag's data.

4. Since the tag does not receive any data from the reader,it will reply with the same

data (Si, ci, and Mi) for every query it receives, and these data can be used to

trace the tag's location.

5. The attacker can then replay the captured messages in another session, thus caus-

ing the tag to be updated with old values.

Therefore, Cai et al. protocol will not provide a mutual authentication between

the reader and the tag when a desynchronisation incident occurs. As a result

of such data desynchronisation, the tag will reply with the same values, thus

permitting tracking of the tag's location. In Section 6.4, we attempt to address

the weaknesses found in this work.

6.4 Enhancing the Key Distribution Model in the RFID-

Enabled Supply Chains

In order to solve the security problems found in previous works while maintaining their

merits, we propose a secure key management and recovery model as an enhancement

to the Juels et al.'s model and Cai et al.'s secret key update protocol. Our proposal is

illustrated below.

6.4.1 Design Goals

Juels et al.'s scheme does not preserve the tag's location privacy, and is prone to tag

impersonation attacks. Cai et al.'s protocol is also vulnerable to location tracking and

desynchronisation attacks. Therefore, our proposed model should avoid such vulnera-

bilities and meet the following goals:

82

� Privacy: The designed scheme must achieve three important goals related to

privacy, namely:

� Tag anonymity: RFID tags should provide a mechanism for preventing the

tag information from being revealed to any malicious entity. For example,

encrypting the tag's reply will only allow an authorised entity to decrypt it,

such as a server.

� Untraceability: If the data being sent from the tag to the reader is static or

linked to data sent previously, the tag holder's location can be tracked with-

out his/her knowledge. Therefore, the RFID tag's data should be anonymous

and unlinkable.

� Forward secrecy: The proposed protocol should ensure that if an attacker

compromises the tag's memory, he/she will not be able to trace previous

communication session(s) using previously known messages.

� Security: The designed protocol should resist the following attacks:

� Replay attacks: The adversary may eavesdrop on the communication be-

tween a reader and tag, reuse the data and send it repeatedly.

� Desynchronisation incidents: The adversary may eavesdrop on the commu-

nication between a reader and tag, and block messages from reaching their

target, thus causing a data desynchronisation between the tag and server if

there is an update process.

� Tag and server impersonation attacks: The attacker may send a message

to the server that claims to come from a legitimate tag, and this message

fabrication enables the attacker to masquerade as a legitimate tag. The same

applies to the server impersonation.

� Mutual authentication: The scheme should provide a mutual entity authentica-

tion, where the communication should take place between valid tags and server,

and provide assurance to the receiver (server) about the identity of the sender

(tag) and vice versa.

� Performance: The tag's memory storage space, and the computing cost should be

appropriate to the tag's limited resources.

� Flexibility: The proposed model should allow all the distributor centres that

participate in the supply chain to change the threshold parameters according to

the new groups of products re-packaged into larger or smaller cases.

83

6.4.2 System Scenario

The general structure of our proposal is as follows:

1. Manufacturer initialisation process: To dispatch the products to the next dis-

tributor, the manufacturer generates a secret key for the products, speci�es the

threshold, and divides it into shares. Then, the manufacturer stores one share

in each product's tag. Finally, it dispatches the tagged items to the distributor

centre.

2. Distributor key recovery process: The distributor collects the required number of

shares to recover the secret key for identifying the products. Then, it generates a

new secret key and divides it into new shares, and speci�es a new threshold based

on the aggregated/disaggregated products.

3. Distributor secret key update process: After specifying the new threshold to recover

the new secret key, the distributor updates the tags' stored data with the new

shares and encoded-IDs, where encoded-IDi = ID-Tagi = EKT
{IDi}

4. Retailer key recovery process: The retail shop recovers the secret key by collecting

the required number of shares to identify each tagged product.

6.4.3 Assumptions

The proposed system in this chapter operates under the following assumptions:

� Passive tags are capable of computing XoR operation, generating a pseudo-random

number and calculating hash functions.

� The reader contacts the tag through a wireless channel that is susceptible to

attacks.

� The communication channel between the reader and the server is secure.

� The tags can be read by a single reader upon arrival.

� The tag's data is stored in a non-volatile memory, such as EEPROM or Flash

memory, where they can be updated.

� The number of shares should be large to prevent the attacker from obtaining the

tag's ID using the recovered secret key.

� All the operations in the tag are atomic.

84

6.4.4 Threat Model

We use the Dolev-Yao adversary model [67], where the adversary has powerful resources

to control the communication channel by performing the following:

� Eavesdropping

� Modifying messages

� Blocking messages from reaching targets

� Replaying previous messages

� Injecting new messages (forgery)

� Impersonating any entity

6.4.5 Protocol Description

We propose a secure and �exible key distribution and recovery model for use in the

RFID-enabled supply chains. The proposed scheme is described below:

A. Manufacturer initialisation process:

The main goal of this process is to protect tags' transmitted IDs from being revealed

to any entities except the legitimate distributors and retailers. The manufacturer

does the following:

(a) The manufacturer generates a random number (R1).

(b) The manufacturer calculates KT=h(R1), where KT is the secret key for the

products to be dispatched to the next distributor.

(c) The manufacturer speci�es the threshold (k, n) for recovering the (KT) secret

key, then splits KT into n shares (Sn) using the threshold scheme discussed in

Section 6.2, and stores one share (Si) in the ith product's tag.

(d) For each tag Ti, the manufacturer computes Ci=h(KT ⊕ Si) and stores Ci in

Ti's memory for authenticity purpose.

(e) To ensure privacy of the tag's data, such as the tag's ID during transmission in

insecure environments, the manufacturer encrypts each ith tag's ID value and

stores it in the tag's memory, i.e., ID-Tagi=EKT
{IDi}, where EKT

represents

a symmetric key encryption using KT . The tag also stores its IDi.

(f) The manufacturer dispatches the tagged products to the next distributor.

85

B. Distributor key recovery process:

In this section, we discuss the key recovery process when all the products reach the

distributor. The distributor uses the threshold scheme to recover the secret key

(KT), decrypts the encoded-ID (ID-Tagn), and obtains the IDn values, where n is

the total number of products.

� Reader: When the distributor ensures that all the expected products have

arrived, the reader scans the products' tags.

� Tag: Each tag sends (Si, Ci, ID-Tagi) to the reader.

� Reader: The reader collects k shares, and sends the collected shares and the

tags' messages (Cn, ID-Tagn) to the server.

� Server: The server recovers the secret key (KT) based on the received collected

shares.

� Server: The server decrypts ID-Tagi for each product's tag to retrieve the tag's

ID value.

� Server: The server re-calculates Ci=h(KT ⊕ Si) for each tagged product to

authenticate it. Then, it performs the next step.

C. Distributor secret key update process:

The main goals of updating the secret key and the threshold are to prevent location

tracking and counterfeiting attacks. If Si, Ci and ID-Tagi are �xed, the attacker

will be able to trace the location of the tag and/or obtain such data to counterfeit a

legitimate tag. The secret key update process is shown in Table 6.2. For simplicity,

in Table 6.2 we refer to the server as a reader and a server.

Once the server has recovered the secret key, and obtained IDi for each product's

tag Ti as shown above, it does the following:

1 Server: The server generates a random number (R1), and sends it to the tag. The

tag then generates a random number (R2), and sends it back to the server.

2 Server: The server generates a random number (R), then, calculates K′T=h(R),

where K′T is the new secret key for the products.

3 Server: For each tag, the server computes ID-Tag2i=EK′T {IDi} for the ith tag in

the system.

4 Server: It speci�es the new threshold parameters (knew, nnew) based on the num-

ber of the new group of products to be dispatched, then divides K′T into n new

shares (S′n).

86

5 Server: It calculates C′i=h(K′T ⊕ S′i) for each ith tag.

6 Server: To distribute the new values of S′i and C′i securely for the ith tag, the

server acts as follows:

� Calculates M1= h(IDi ⊕ ID-Tag2i ⊕ R1 ⊕ R2 ⊕ Ci) ⊕ S′i.

� Calculates M2= h(S′i ⊕ IDi ⊕ R1 ⊕ R2) ⊕ C′i.

� Calculates M3= h(S′i ⊕ IDi ⊕ R1 ⊕ R2 ⊕ C′i).

� Sends M1, M2, M3, and ID-Tag2i to the tag via the reader.

7 Tag: When the tag receives the messages, it obtains S′i and C′i by calculating:

S′i= M1 ⊕ h(IDi ⊕ ID-Tag2i ⊕ R1 ⊕ R2 ⊕ Ci)

C′i= M2 ⊕ h(Si′ ⊕ IDi ⊕ R1 ⊕ R2)

Then, the tag authenticates the server by re-calculating M3. If there is a match,

the tag guarantees that the server has successfully recovered the secret key, de-

crypted ID-Tag2i, and obtained IDi. Subsequently, the tag updates its values

to:

Si ← S′i
ID-Tagi ← ID-Tag2i
Ci ←C′i

8 Tag: To inform the server that the tag has received the new data, it calculates

M4= H(IDi ⊕ Si ⊕ Ci ⊕ R1 ⊕ R2), where Si and Ci are the updated values, and

sends M4 to the reader.

9 Reader: The reader sends M4 to the server.

10 Server: The server then re-calculates M4. If there is a match, the server guarantees

that the tag has updated its values successfully, and sends an OK message to the

reader.

11 Once the tags are embedded with the new data and arranged in the new group,

the distributor dispatches them to the next receiver (distributor or retailer).

87

Table 6.2: Distributor secret key update process

Server Tagi

1- Generates R1
R1−−→
R2←−− 1- Generates R2

2- Generates R, calculates K′T=h(R)

3- Encrypts

ID-Tag2i=EK′T {IDi}

4- Speci�es new threshold, and divides K′T
into new n shares

5- C′i=h(K′T ⊕ S′i)

6- Generates R2

Computes:

M1=h(IDi⊕ID-Tag2i⊕R1⊕R2⊕Ci)⊕S′i
M2= h(S′i⊕IDi⊕R1⊕R2)⊕C′i
M3= h(S′i⊕IDi⊕R1⊕R2⊕C′i)

M1,M2,M3,ID−Tag2i−−−−−−−−−−−−−−−−→
7- Computes:

S′i=M1⊕h(IDi⊕ID-Tag2i⊕R1⊕R2⊕Ci)

C′i=M2⊕h(S′i⊕IDi⊕R1⊕R2)
Re-calculates M′3

If M′3==M3, updates its values to:

Si ← S′i

ID-Tagi← ID-Tag2i

Ci←C′i

8- Calculates:

M4=h(IDi⊕Si⊕Ci⊕R1⊕R2)
10- Recalculates M4

M4←−−

If there is no match with the received M4 message, or if the reader does not receive

M4 from the tag, the reader starts the resynchronisation process as shown below:

(a) Server: To re-distribute (S′i, C′i) securely for the ith tag, the server acts as

follows:

� Generates a new random number (R3), and sends it to the tag. The tag

generates a random number (R4), and sends it to the server.

� Computes M5= h(IDi ⊕ ID-Tag2i ⊕ R3 ⊕ R4 ⊕ Ci) ⊕ S′i.

� Computes M6= h(Si′ ⊕ IDi ⊕ R3 ⊕ R4) ⊕C′i.
� Calculates M7= h(S′i ⊕ IDi ⊕ R3 ⊕ R4 ⊕ C′i).

� Sends a resynchronization request with M5, M6, M7, and ID-Tag2i to the

tag.

(b) Tag: When the tag receives the resynchronisation request, M5, M6, M7, and

ID-Tag2i, it re-computes M5, and M6 as in step C7 above.

i. If the received values of S′i, ID-Tag2i and C′i are equal to the current

88

values of Si, ID-Tagi and Ci, the tag assumes that M4 did not reach the

reader, and keeps the values the same without update.

ii. If the received values of S′i, ID-Tag2i and C′i are not equal to the current

values of Si, ID-Tagi and Ci, the tag re-computes M7, and if there is a

match, it updates its values to:

Si ← S′i
ID-Tagi ← ID-Tag2i
Ci ←C′i

(c) Tag: The tag calculates M8= H(IDi ⊕ Si ⊕ Ci ⊕ R3 ⊕ R4) and sends it to

the reader to inform the reader that it received the new values. The process is

iterated until it reaches an upper limit set by the system owner. If it reaches the

upper limit, the reader should issue an error message that requires attention.

D. Retailer key recovery process:

At this stage, the retailer wants to authenticate all the required products' tags and

retrieve their ID values. It recovers the secret key KT to obtain the ID values from

each tag.

The retailer key recovery process is summarised below:

(a) Reader: When the retail shop con�rms that all the expected products have

arrived, the reader scans the products' tags.

(b) Tag: Each tag sends (Si, Ci, ID-Tagi) to the reader.

(c) Reader: The reader sends the the collected shares and tags' messages (Sn, Cn,

ID-Tagn) to the server.

(d) Server: The server recovers the secret key (KT).

(e) Server: The server re-calculates Ci for each tagged product to authenticate it.

(f) Server: The server decrypts ID-Tagi for each product's tag using the recovered

secret key (KT) to retrieve the ID value.

6.5 Protocol Analysis

In this section, the proposed protocols are analysed informally and formally as shown

below.

6.5.1 Informal Protocol Analysis

The proposed protocol meets the following goals:

89

� Tag anonymity: The aim of the proposed model is to protect the tag's ID, which is

128-bit long. The value of tag's ID is protected by encrypting it with a secret key.

This key is not openly distributed, and is not stored in the participants' database.

Also, the tag does not maintain the secret key in its memory. Moreover, it will

take up to 2128 attempts to guess the secret key value.

� Untraceability: The tag's values of Si, ID-Tagi and Ci are updated after each

successful key recovery process, so the tag's responses will be di�erent for every

reader query. Hence, the attacker cannot track the tag's location. Moreover, the

responses contain random numbers that are freshly generated in each session. The

resynchronisation process plays an important role in preventing location tracking,

as the reader keeps resending the new updated data until it con�rms that the tag

has successfully changed its data.

� Forward secrecy: In the proposed protocol, even if the attacker compromises

the tag's memory and obtains the values of (Si, ID-Tagi, Ci), he/she cannot re-

compute the previous values, as they are calculated using a secret key only known

to the legitimate parties.

� Protection against replay attacks: All the messages transmitted in the communi-

cation channel are updated with new values and include fresh random numbers.

Hence, the attacker cannot re-send the obtained messages. Our protocol uses a

challenge-response scheme. In messages M1, M2 and M3, the server sends the

tag's data, in which the server's random number R1 is included as a challenge.

The tag must therefore include the server's random number (R1) in its response

(M4). Similarly, the tag sends a challenge (R2) to the server, therefore, the server

must include the tag's challenge (R2) in its responses (M1, M2, M3). Hence, only

legitimate parties (server and tag) can send valid answers, since random numbers

are sent with secret values only known to the server and tag.

� Protection against desynchronisation incidents: The new secret update protocol

addresses the realistic scenario in which messages might not reach their intended

recipient due to accidental or malicious interference. If the reader does not receive

M4 from the tag, the reader will assume that the tag did not receive the reader's

messages, or that M4 was lost during transmission, so the reader will start the

resynchronisation process. Similarly, if the resynchronisation messages are blocked

or M8 is lost, after timeout the reader will restart the resynchronisation process

until it reaches an upper limit set by the system owner.

� Protection against server impersonation attacks: An attacker may attempt to

90

impersonate the server and update the tag with incorrect values. However, the

attacker cannot calculate M1, M2 and M3, as they involve a secret value, (IDi),

that is 128-bit long and only known to the tag and the server. The tag's ID is

sent within a one-way hash function that is pre-image resistant.

� Protection against tag impersonation attacks: The attacker cannot send M4 on

behalf of the tag, as it involves three secret values unknown to the attacker (IDi,

Si, Ci), and they are not sent in clear; they are sent within a one-way hash

function.

� Mutual authentication: The proposed protocol allows the distributor's server to

access the tag and update the tag's data by sending authentication messages M3,

which con�rm that the server has successfully recovered the secret key and has

obtained the right value of (IDi). Similarly, the tag also sends M4, which con�rms

to the server that a legitimate tag has successfully changed the values of Si, IDi

and Ci, which can only be obtained by a legitimate tag equipped with a valid IDi

and Ci values.

� Flexibility: In our model, any distributor party in the supply chain can gener-

ate new secret-sharing parameters (knew,nnew). Thus, a downstream party may

choose knew≤k and nnew≤n to process a small group of tags, or choose knew≥k
and nnew≥n to process a large group of tags.

As shown in Table 6.3, Cai et al. [70] presented several issues that we have addressed.

Table 6.3: Security features comparison

Cai et al [70] Our protocol 6.4

Reader impersonation √ √

Tag impersonation √ √

Desynchronisation attack × √

Tag information privacy √ √

Untraceability × √

Replay attack × √

Forward security √ √

Mutual authentication × √

×: Means does not provide protection
√
: Means resists such an attack

91

6.5.2 Formal Protocol Analysis

This section presents the formal analysis of the secret key update process using CasperFDR

[104] and Scyther [75] tools. The aim of this section is to prove that the data exchanged

between the tag and reader is protected.

CasperFDR Analysis of the Proposed Protocol

The intruder's capability modelled in CasperFDR scripts for the proposed protocol is

shown below:

1. An intruder can impersonate any entity in the network.

2. An intruder can read and maintain the messages transmitted by each entity in

the network.

3. An intruder can intercept, analyse messages, and/or re-send any transmitted mes-

sages.

The script is shown in Appendix B.1. In the script we assumed that the key recovery

process is already achieved, and the reader has generated the new values of KT , Si, Ci

and ID-Tag. The de�ned variables are:

S, Ti: Agent

R1, R2: Nonce

ID, Ci, IDProductnew, Snew, Cnew: Data

h: HashFunction

InverseKeys = (h,h)

The main goals of the key update process are to ensure that the value of tag's ID

is secret and the new shared values (Snew) and (Cnew) are transmitted securely to the

tag; this is depicted as follows:

Secret(S, ID, [Ti])

Secret(S, Snew, [Ti])

Secret(S, Cnew, [Ti])

We also specify the goal predicate Agreement(S, Ti, [ID]), where both the server

and tag are agreed on the value of IDi.

92

The intruder is de�ned to be Mallory, who knows all the entities, nonces, C message

and ID-Tag value as shown below:

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Serveri, Tagi, Mallory, R11, R22, R33, CTag, IDProductNew}

The CasperFDR tool evaluated the protocol and did not �nd any attack(s).

Scyther Analysis of the Proposed Protocol

Similar to CasperFDR, the intruder is modelled using the channel (dy) [67]. The threat

model is de�ned as an intruder, who has full control over the network, such that all

messages sent by agents can be eavesdropped by the intruder. Moreover, the intruder

may intercept, analyse, modify messages, and/or send any message he/she composes to

other agents pretending to come from a legitimate agent.

Two roles are identi�ed in the script: a server (S) and a tag (Ti) as shown in Ap-

pendix B.2. The variables de�ned are:

fresh ID: Data;

fresh Ci: Data;

fresh IDProductnew: Data;

fresh Snew: Data;

fresh Cnew: Data;

fresh R1 : Nonce;

var R2 : Nonce;

Each role speci�es the goals that the protocol attempts to meet. These goals are

within the Claim section. In the protocol, there are, for example, �ve Claim goals

speci�ed in the tag role as follows:

claim_Ti1(Ti, Secret, ID), which means the value of the tag's ID should remain secret.

claim_Ti2(Ti, Secret, Snew), which means the value of Snew (the new generated share

(S′i)) should remain secret.

claim_Ti3(Ti, Secret, Cnew), which means the value of Cnew (the new generated share

(C′i)) should remain secret.

claim_Ti4(Ti, Alive), which means that the protocol run is fresh and the tag Ti is

alive.

93

claim_Ti5(Ti, Niagree), which means that the tag Ti agree to the values of the vari-

ables.

claim_Ti6(Ti, Nisynch), which means that the messages must be executed in the ex-

pected order as speci�ed in the speci�cation.

Similarly the goals speci�ed in the server role are:

claim_S1(S, Secret, ID);

claim_S2(S, Secret, Snew);

claim_S3(S, Secret, Snew);

claim_S4(Si, Alive);

claim_S5(S, Niagree);

claim_S6(S, Nisynch);

After running the script, Scyther did not �nd any feasible attack within bounds,

which means no attack was found within the bounded state space.

6.6 Protocol Implementation and Performance Measure-

ment

In this section, we present the implementation process of the distributor secret key up-

date process (successful run), and the performance measurement taken from DemoTag

after 100 runs.

6.6.1 Implementation Process

The tag is provided with two 128-bit secret values, IDi and Ci, which are stored in the

tag's EEPROM. The reader stores four 128-bit values, namely IDi, Si, ID-Tagi and Ci.

The reader generates a random number R1 (128-bit), and sends it to the tag using

8 WriteTagData_EPC_C1G2 commands. The tag generates a random number R2

(128-bit) using the built-in PRNG, and writes it in the memory to be read by the

reader. The reader reads the tag's random number, and generates a 128-bit random

number (R) using the rngCsp method and calculates the hash of (R) to generate the

secret key for the products (K′T). Then, it encrypts the ID-Tag value with this secret

key using the AES library built into the .Net framework. Following that, the reader

computes C′i. Subsequently, it computes 3 messages (M1, M2, M3) using the SHA256

library imported from the Crypto-avr-lib SHA 256 library. Finally, the reader sends

94

M1, M2, ID-Tag and M3 (64-byte) to the tag by sending 32WriteTagData_EPC_C1G2

commands, each write command sends 2 bytes of data.

When the tag receives the reader's messages, it extracts S′i form M1 and C′i from

M2. Then, it re-computes M3 using the extracted values to authenticate the reader. If

there is a match with the received M3, it updates its values accordingly and uses the

updated values in the calculation of M4. Finally, the tag writes (M4) in its memory

using the syscall_writeWord command ready to be read on demand.

The reader later sends ReadTagData_EPC_C1G2 command to read M4, and re-

computes M4. If there is a match with the received M4, it authenticates the tag and

con�rms that the tag has updated its values successfully.

6.6.2 Performance Measurement

The performance measurements for the distributor secret key update process are as

follows:

1. DemoTag memory cost: In the proposed protocol, the memory cost is:

� 348 bytes are used from the 4 KB EEPROM memory for storing the tag's

data, messages (responses), and random numbers.

� 32.7 KB used from the 128 KB Flash memory to store the tag's �rmware.

Table 6.4: Data exchange time cost

Tag Reader

Read - 160.66 ms

Write 1.8 ms 4.73 sec

2. Data exchange time cost is shown in Table 6.4: For the tag to write R2 and M4

into its memory to be read by the reader, the average timer counter after running

the protocol 100 times is 28809.74, so, based on equation 3.1, the time cost is:

28809.7 ∗ 0.0000000625 = 0.0018sec ≡ 1.8ms (6.1)

Regarding the reader, we found that the reader needs 4.73 sec to write R1, M1,

M2, M3, ID-Tag2 into the tag's memory, and 160.66 ms to read the whole tag's

responses.

3. DemoTag computing cost: In a successful run of the proposed protocol, the tag

generates a random number, computes four messages, writes the messages in the

95

memory and updates two values. Table 6.5 demonstrates that the time cost of

running the protocol on the DemoTag is around 10.66 ms.

Table 6.5: Computing operations time cost (milliseconds)

M1 M2 M3 Update R2 M4 Write

Computing

cost

1.63 1.63 1.56 0.12 0.11 3.81 1.8

Total 10.66

The related works' protocols discussed in this chapter did not provide any perfor-

mance measurements, thus we could not present a performance comparison between

our protocol and other related work.

6.7 Summary

We proposed an improved version of a key distribution and recovery model in the

RFID-enabled supply chain. We found that the Juels et al.'s model is not �exible as no

party other than the manufacturer can update the secret key threshold. Moreover, the

updated secret key model proposed by Cai et al. to improve the Juels et al.'s model

is not resistant against location tracking, and desynchronisation attacks. Hence in this

chapter, we proposed the following: Firstly, our scheme distributes a secret key securely

in an RFID-enabled supply chain by using the secret-sharing approach. Secondly, it

updates the secret key after each successful key recovery, and thus eliminates the threats

associated with location tracking. Thirdly, the proposed protocol avoids replay attack

by using fresh random numbers generated by the server and tags. Fourthly, to counter

the disruptive e�ects of desynchronisation attacks, the protocol has a resynchronisation

phase that is initiated by the reader whenever it suspects a desynchronisation with the

tag. Fifthly, the proposed scheme permits the distributor to change the threshold based

on the dispatched items. Finally, the proposed protocol attempts to accommodate the

limited resources of the low-cost RFID tags in terms of storage and computational

costs. The proposal in this chapter suits a conventional RFID deployment with the

assumption of a secure server; however, many physical servers are being migrated to

cloud solutions; so we investigate this in the next chapter.

96

Chapter 7

Secure Improved Cloud-Based

RFID Authentication Protocol

Contents

7.1 Introduction . 98

7.2 Review of the Cloud-Based RFID Authentication Protocol 100

7.3 Security Analysis of the Cloud-Based RFID Authentica-

tion Protocol . 101

7.4 Improved Cloud-Based RFID Authentication Protocol . . . 105

7.5 Protocol Analysis . 111

7.6 Protocol Implementation and Performance Measurement . 116

7.7 Summary . 117

In this chapter we study and enhance a recent proposed protocol regarding the security

and privacy of RFID tag's data that resides in the cloud. Maintaining RFID tags'

data in the cloud reduces the cost of deployment and storage, but raises more concerns

regarding the security and privacy of RFID systems. Xie et al. proposed a cloud-based

RFID protocol that mitigates such concerns. Improvements to this study will be the focus

of this chapter. Our proposed protocol is analysed using CasperFDR and Scyther. Then,

we conclude this chapter with an illustration of the implementation and performance

measurements.

97

7.1 Introduction

As already discussed in Chapter 2, a traditional RFID system consists of tags, a reader

and a server. The server is responsible for maintaining the tags' data and processing

them for various purposes. The server plays an important role in authenticating the

RFID tags' data, as the communication channel between the reader and tags is vul-

nerable to interception, modi�cation, fabrication and replay attacks. There have been

extensive studies attempting to achieve mutual authentication between the server and

tags, such as in [66, 95, 135, 136, 122, 39, 128, 130, 117].

In [130], the authors divided the proposed RFID mutual authentication proposals

into two approaches:

� Server-based RFID mutual authentication: In this approach, the tag and reader

depend on the backend server for authentication. When the reader receives a

message from the tag, it forwards the tag's message to the server to be authenti-

cated. The server stores secret data related to the tags. The researchers in this

case made the assumption that the server is secure, and their main focus was to

secure the data transmission between tags and readers.

� Server-less RFID mutual authentication: This approach takes into account an

o�ine authentication, where the reader authenticates the tag o�ine without the

need to contact the server. This scheme is normally used for searching for a

particular tag within a group of tags, and the reader does this process without

querying the server. A server-less RFID scheme is based on tag authentication

credentials previously stored in the reader. For instance, the reader contacts the

Certi�cation Authority (CA) during the initialisation phase to retrieve a list of

legitimate tags data.

A new approach, where the RFID tags data can be stored in a remote server residing

in the cloud, has gained increasing attention. According to the National Institute of

Standards and Technology (NIST) [138], cloud computing can be de�ned as �a model

for enabling ubiquitous, convenient, on-demand network access to a shared pool of

con�gurable computing resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with minimal management e�ort

or service provider interaction�. Cloud computing provides a promising solution for

handling and using data collected with powerful computing and massive storage abilities

[131].

Con�dentiality and privacy are generally regarded as two of the main concerns in

cloud computing. This is largely due to the fact that customers outsource their data to

98

cloud servers, thus losing direct control over their data, for example, customers' data

may be altered, lost, or deleted [140]. Considering the cloud as the processor and storage

for an RFID system, the tags' data should be protected against any malicious internal

or external attacks, such as the attacks on the cloud described in [133, 134, 141]. Data

privacy is also another critical concern, as customers' data is outsourced to a third

party, meaning that a customer's sensitive data is out of his/her control, and might be

disclosed to public or business competitors [139, 140]. To sum up, if cloud con�dentiality

is compromised, then privacy will also be violated [140].

To tackle the aforementioned concerns, the authors in [130] proposed a new scheme

called �cloud-based RFID authentication�, which provides the following features:

� It aims to address the con�dentiality and privacy concerns regarding RFID tags'

data in the cloud, where the cloud server is regarded as untrusted.

� The reader is connected to the tag through a wireless channel, where the commu-

nication between the reader and the cloud server is assumed to be secure.

� The manufacturer stores the tags' and readers' data in an encrypted hash table

in the cloud server.

The authors in [130] claimed that their proposed protocol resists reader-to-tag im-

personation attacks, as only the legitimate reader can compute the authentication

messages. Furthermore, they also claimed that their protocol preserves tag's data

anonymity by hashing the tag's data with a random number, which ensures con�-

dentiality and freshness in all protocols' runs. Xie et al.'s protocol is discussed in detail

in Section 7.2.

We examined the cloud-based RFID authentication protocol [130], and discovered

the following:

1. An attacker is able to impersonate the reader without compromising the secret

data shared with the tag, thus causing the tag to be updated with a wrong value,

and permitting tracking of the tag's location.

2. By using CasperFDR, we found that tag data anonymity is not achieved, as the

attacker can perform a man-in-the-middle attack and obtain the secret data at

the end of the protocol session.

Hence, we propose a new protocol that uses some of the notions in [130] while in-

troducing new approaches that improve the cloud-based RFID authentication protocol.

Our improved cloud-based RFID authentication protocol is shown in Section 7.4.

99

Table 7.1: A summary of notation

Notation Description
R The identity of an RFID reader
T The identity of an RFID tag
S The number of authentication sessions between a reader and a tag,

with bit length L
M The last number of sessions between a reader and a tag
Nr The random number generated by a reader
Nt The random number generated by a tag
PRNG() The Pseudo Random Number Generation (PRNG) function
H() The secure one-way hash function with output length L, that is, H():

{0,1}∗→{0,1}L

E() The encryption function using a symmetric algorithm with a reader
secret key

D() The decryption function using a symmetric algorithm with a reader
secret key

⊕ An XoR operation
‖ A concatenation operation

7.2 Review of the Cloud-Based RFID Authentication Pro-

tocol

This section reviews the cloud-based RFID authentication protocol as proposed in [130].

The notation used in the cloud-based RFID authentication protocol is shown in Table

7.1.

The cloud-based RFID authentication protocol consists of two processes: the regis-

tration process, and the authentication process, which are summarised below:

� Registration process:

The tag is encoded with three secret values: R, T and S. The manufacturer also

stores unique initialised records, i.e., {H(R‖T‖S) and E(R‖T‖S)} to the cloud

server. The authors assumed that the registration is secure and performed in a

�closed� environment.

� Authentication process:

The cloud-based RFID authentication protocol is shown in Fig. 7.1 and works as

follows:

1. Tag: The tag generates H(R‖T‖S) as an authentication request and sends it

to the reader.

100

2. Reader: The reader sends the index message (H(R‖T‖S)) to the cloud, and

retrieves E(R‖T‖S) from the cloud's index table. Then, the reader decrypts

D(E(R‖T‖S)), veri�es R and obtains T and S.

3. Reader: The reader generates a random number (Nr) as a challenge to the

tag, and sends (Nr) to the tag.

4. Tag: The tag calculates H(R‖T‖Nr) as a response and generates a random

number (Nt) as a challenge to the reader.

5. Reader: The reader veri�es the tag's response, and if valid, the next step is

started; otherwise, the protocol is terminated.

6. Reader: The reader tries to read the next record indexed by H(R‖T‖(S+1))
from the cloud server and checks the integrity. If there is a valid record,

this implies that the tag has been desynchronized. The reader attempts to

read the S+2nd record indexed by H(R‖T‖(S+2)), until it �nds the last valid
record.

7. Reader: The reader writes E(R‖T‖M′) with the index H(R‖T‖M′) into the

cloud server, where M′=M+1.

8. Cloud: The cloud sends H(R‖T‖M′) ⊕ H(E(R‖T‖M′)) to the reader to con-
�rm that the update process has been successful.

9. Reader: The reader sends the authentication messages H(R‖T‖Nt) ⊕ M′,

and H(T‖R‖M′) to the tag.

10. Tag: The tag calculates H(R‖T‖Nt) XoRed with the received H(R‖T‖Nt) ⊕
M′ to obtain M′, and then it calculates and veri�es H(T‖R‖M′). If successful,
this implies that M′ has not been modi�ed by an attacker, and subsequently

synchronisation is achieved again by updating S=M′ on the tag. The validity

of M′ also means that the reader is authenticated by the tag.

7.3 Security Analysis of the Cloud-Based RFID Authenti-

cation Protocol

In this section, we show the main weaknesses found in the cloud-based RFID authenti-

cation protocol.

7.3.1 Reader Impersonation Attack

In [130], the authors claim that their proposed protocol achieves a mutual authentication

between the tag and the reader, as only the legitimate reader knows the data (R, T,

101

Cloud Reader Tag
1−H(R‖T‖S)←−−−−−−−−−−

2−H(R‖T‖S)←−−−−−−−−−−
2-Find H(R ‖ T ‖ S) and
E(R ‖ T ‖ S)

2−E(R‖T‖S)−−−−−−−−−→
2-Decrypts
E(R‖T‖S), veri�es R

3−Nr−−−−→
4−H(R‖T‖Nr),Nt←−−−−−−−−−−−−−

5-Veri�es H(R‖T‖Nr)
6−H(R‖T‖(S+1))←−−−−−−−−−−−−−

6-Absence of
H(R‖T‖(S+1)) means
the last record is H(R‖T‖S)

6−E(R‖T‖S)−−−−−−−−−→
7−H(R‖T‖M′)←−−−−−−−−−−− 7-Noti�es Cloud to

update
7−E(R‖T‖M′)←−−−−−−−−−−−

8-The new record is up-
dated

8−H(R‖T‖M′)⊕−−−−−−−−−−−−→
H(E(R‖T‖M′))−−−−−−−−−−−→

9-Checks Cloud's
messages

9−H(R‖T‖Nt)⊕M′−−−−−−−−−−−−−−→
9−H(T‖R‖M′)−−−−−−−−−−−→

10-Calculates:
H(R‖T‖Nt)
to obtain M′

10-Veri�es
H(T‖R‖M′)
10-If success-
ful, updates
S=M′

Figure 7.1: Cloud-based RFID authentication protocol

M). However, we found that the attacker can impersonate a legitimate reader and be

successfully authenticated by the tag without compromising the internal tag's data.

The scenario for accomplishing this attack is as follows:

� Eavesdrops one session of the protocol, blocks the reader's message from reach-

ing the tag and obtains all the exchanged messages including N and G, where

N=H(R‖T‖Nt) ⊕ M, and G=H(T‖R‖M). As a result, the tag will not update the

(S) value, hence the attacker will track the tag's location in subsequent sessions.

� The tag starts a new session with the reader, and sends H(R‖T‖S) to the reader.

� The reader sends a new random number (Nr′) to the tag.

102

� The tag generates a new random number (Nt′) and sends H(R‖T‖Nr′) and Nt′ to

the reader.

� After the reader authenticates the tag, it asks the tag to update its value by

sending

N′=H(R‖T‖Nt′) ⊕ M′, and G′=H(T‖R‖M′), where M′=S+1.

� The attacker blocks N′ and G′, and calculates the following:

1. Since M′ = M + 1, the attacker changes the 2 least signi�cant bits (LSB) of

N to be equivalent with N′ after addition, and then assigns the result to N′′.

In other words, if for example N is 111000 and N′ is 101011, the attacker

changes N to 111010 and assigns it to N′′.

2. N′′ ⊕ N′= H(R‖T‖Nt) ⊕ M′′ ⊕ H(R‖T‖Nt′) ⊕ M′

3. (N′′ + 1) ⊕ N′= (H(R‖T‖Nt) ⊕ M′′ + 1) ⊕ H(R‖T‖Nt′) ⊕ M′. Note that

M′′+1= M′.

4. (N′′ + 1) ⊕ N′= H(R‖T‖Nt) ⊕ H(R‖T‖Nt′)

5. (N′′ + 1) ⊕ N′ ⊕ N=(H(R‖T‖Nt) ⊕ H(R‖T‖Nt′)) ⊕ H(R‖T‖Nt) ⊕ M

6. (N′′ + 1) ⊕ N′ ⊕ N=H(R‖T‖Nt′) ⊕ M

� The attacker impersonates the reader and sends H(R‖T‖Nt′) ⊕ M and the ob-

tained G, i.e., G=H(T‖R‖M) to the tag.

� The tag calculates H(R‖T‖Nt′) XoRed with the received H(R‖T‖Nt′) ⊕ M to ob-

tain M, then calculates and veri�es H(T‖R‖M); if successful, the tag authenticates

the attacker not the legitimate reader and updates S with the wrong value.

7.3.2 Man-in-the-Middle Attack

In Xie et al.'s protocol, the value of (M), which represents the session number, should

be kept secret. However, after analysing the protocol using CasperFDR, we found that

the attacker can obtain the secret session number (M), thus tag data anonymity is not

achieved.

We used CasperFDR to formally analyse the cloud-based RFID authentication pro-

tocol between the reader and the tag. CasperFDR was used to model communication

and security protocols and verify the authentication and secrecy requirements of the

protocol, which are the main goals of the Xie et al.'s protocol.

We prepared a CasperFDR script as shown in Appendix C.1. In the script, we

assume that the reader knows about the tag's data. The communication between the

103

reader and server is secure, therefore we did not check the protocol in this area. In the

#Free variables Section, the reader (R) and tag (T) are de�ned as Agent; the random

numbers (Nr) and (Nt) are de�ned as Nonce; and TID (tag identi�er), RID (reader

identi�er), S, and M are de�ned as Data.

#Free variables

T, R : Agent

Nr: Nonce

Nt: nonce

TID, RID, S, M: Data

h: HashFunction

InverseKeys=(h,h)

As mentioned in Section 7.2, the main goals of the cloud-based RFID authentication

protocol are authenticating the reader to the tag, and vice versa, and verifying that the

data, such as R, T, S and M, remain secret between the reader and tag. These goals

are shown in the script in the #Speci�cation Section, where data secrecy is depicted as

Secret, such as Secret(R, M, [T]), and the goal predicate authentication takes the form

of Agreement:

#Speci�cation

Agreement(T, R, [TID, RID])

Secret(R, M, [T])

Secret (T, S, [R])

Secret (T, TID, [R])

Secret(T, RID, [R])

After compiling the CasperFDR script and feeding the output to the veri�er tool

FDR, a man-in-the-middle attack was found. FDR states that the goal predicate Se-

cret(R, M, [T]) was not achieved. The attack is illustrated below:

1. T → Mallory : H(R ‖ T ‖ S)

2. Mallory → R: H(R ‖ T ‖ S)

3. R → Mallory : Nr

4. Mallory → T : Nr

5. T → Mallory : H(R‖T‖Nr), Nt

104

6. Mallory → R : H(R‖T‖Nr), Nr

7. R → Mallory : N=H(R‖T‖Nr)⊕M, G=H(T‖R‖M)

The attacker performs a man-in-the-middle attack and eavesdrops on a session be-

tween the tag and the reader. The attacker impersonates the reader to obtain the

tag's messages, and then impersonates the tag to send the tag's messages to the reader.

CasperFDR shows that the attacker can replace the tag's random number (Nt) with

the reader's generated random number (Nr), and at the end of the protocol run, the

attacker can calculate M=H(R‖T‖Nr)⊕ N and obtain M, which is assumed to be secret;

thus, tag's data privacy is compromised.

As a result, in Section 7.4, we propose a new improved cloud-based RFID authenti-

cation protocol that prevents reader impersonation and man-in-the-middle attacks and

takes into account other goals discussed in the next Section 7.4.1.

7.4 Improved Cloud-Based RFID Authentication Protocol

In this section, we explain the proposed protocol in detail.

7.4.1 Design Goals

The proposed protocol aims to protect the tag's data from being revealed to any entity

except a legitimate reader. The proposed protocol should meet the following goals:

� Tag data anonymity: The RFID tag should support a mechanism for concealing

the tag's data from any entity except the legitimate readers.

� Untraceability: If the data being sent from the tag to the reader is static or linked

to data sent previously, the tag holder's location can be tracked. Therefore, the

RFID tag's responses should be anonymous and unlinkable in order to prevent

such an attack.

� Forward secrecy: The proposed protocol should ensure that if an attacker compro-

mises the tag's memory, he/she will not be able to trace previous communication

session(s) using previously known messages.

� Resistance to replay attacks: An adversary may eavesdrop on the communication

between the reader and tag, re-use the data and send it repeatedly. Therefore,

the generated messages should be fresh to the protocol session.

105

� Resistance to desynchronisation incidents: The proposed protocol should recover

from de-synchronisation incidents, either when an attacker blocks the exchanged

message(s), or when the messages are lost during transmission due to system

malfunction or communication error.

� Resistance to impersonation attacks: An attacker can respond to a reader query

and can claim that this response is coming from a legitimate tag, and this fabrica-

tion enables the attacker to masquerade as a legitimate tag. Similarly, an attacker

may impersonate the legitimate reader and attempt to obtain access to the tag's

data. Hence, to prevent such attacks, the tag's data should be protected during

transmission.

� Mutual authentication: The protocol should provide a mutual entity authentica-

tion, where the communication should take place between valid tag, reader and

cloud server. The readers should authenticate the cloud server before validat-

ing the tag's messages. At the end of the protocol run, the tag should receive a

message from the reader that con�rms the legitimacy of the reader.

� Performance: The tag's memory storage and the computing cost should be ap-

propriate to the tag's limited computing capability, and the amount of data com-

municated should be minimised.

7.4.2 Assumptions

We present an improved cloud-based RFID authentication protocol, which operates

under the following assumptions:

� The reader contacts the tag through a wireless channel that is susceptible to

attacks.

� The communication channel between the reader and the cloud server is secure.

� There are multiple readers in the system, so a tag can be read in many di�erent

locations.

� This scheme only supports readers that are tamper-resistant, for example, they

have a secure memory and a rigid access control mechanism.

� The tag's data are stored in a non-volatile memory, such as EEPROM or Flash

memory, where they can be updated.

� All the operations in the tag are atomic.

106

� The cloud server is not trusted; it might be compromised to reveal the tag's data

to intruders or competitors, and/or internal employees.

7.4.3 Protocol Design

The main protocol features are discussed below:

� Tags are capable of computing XoR, generating a pseudo-random number and

calculating hash functions.

� The reader can compute XoR, generate a pseudo-random number, calculate hash

functions and perform symmetric encryption and decryption.

� The proposed protocol uses random numbers in an attempt to prevent location

tracking and replay attacks.

� After a successful authentication between the cloud server and tag, both parties

update their values to be used in the next transaction.

� The cloud server does not store the tag's ID and the tag's secret key; it stores the

hash of the tag's ID and the encryption of the tag's ID and tag's secret key to

provide con�dentiality and anonymity to the tag's data in the cloud.

� The cloud server stores both the old and the new tag's data in order to prevent

desynchronization incidents.

� Each legitimate reader contains a master key used for a symmetric encryption.

� The reader does not store any data related to the tags.

7.4.4 Threat Model

We consider that the communication between the reader and the tag is vulnerable to

both passive and active attackers. Accordingly, we used the Dolev-Yao adversary model

[67], where the adversary has powerful resources to control the communication channel

by performing the following:

� Eavesdropping

� Modifying messages

� Blocking messages from reaching targets

� Replaying previous messages

107

Table 7.2: Protocol notation

Notation Description
IDi The ith tag's ID, where 1 ≤ i ≤ n
Ki The ith tag's secret key
MK The master key shared by all the legitimate readers, and used for a

symmetric encryption and decryption
H(IDnew) A hash of the updated ID, H:{0,1}∗←{0,1}L

H(IDold) A hash of the old ID, H:{0,1}∗←{0,1}L

x The value kept as either new or old to show whether the tag uses the
old or new values of (IDi and Ki)

R1 A pseudo-random number generated by the reader
R2 A pseudo-random number generated by the tag
EMK(M) A message M encrypted with a master key
A ← B The value of A is updated to that of B
⊕ An XoR operation
‖ A concatenation operation
j The transaction number
i The number of the tag in the system
n The number of tags in the system

� Injecting new messages (forgery)

� Impersonating any entity

7.4.5 Notation

The notation used in the proposed protocol is presented in Table 7.2:

7.4.6 Protocol Description

The scheme consists of two phases: initialisation and authentication.

� Initialisation phase:

We assume that the initialisation phase is carried out via a secure channel in a

secure environment. The initialisation process is summarised below:

1. For each tag the system operator manages, the system operator assigns a

unique H(IDnew), which serves as an index, and EMK(IDnew ‖ Knew) in the

cloud server.

2. Initially, H(IDold), and EMK(IDold ‖ Kold) in the cloud server are set to null.

3. The system operator assigns IDi and Ki in the ith tag.

108

4. The system operator assigns the master key in each reader the system man-

ages.

� Authentication phase:

The authentication process is shown in Table 7.2 and is described as follows:

1. Reader: The reader starts the session by generating a random number R1 of

L bits, where L is a security parameter, and sending it to the tag.

2. Tagi: The tag performs the following:

� Generates R2 of L bits.

� Computes the following messages:

HID=H(IDi ⊕ R1 ⊕ R2), which serves as an index message

M1=H(IDi ‖ Ki ‖ R1 ‖ R2), which serves as an authentication message

� Sends HID, M1 and R2 to the reader.

3. Reader: The reader sends HID, R1 and R2 to the cloud server.

4. Cloud server: The cloud server performs the following:

� For all the stored H(IDnew) and H(IDold), it searches for H(IDx ⊕ R1 ⊕
R2) until there is a match. Marks x=new or old based on the matched

H(IDi).

� Retrieves the associated data, i.e., EMK(IDx ‖ Kx).

� Sends EMK(IDx ‖ Kx) and x to the reader.

5. Reader: The reader performs the following:

� Decrypts EMK(IDx ‖ Kx) using the master key, and obtains IDx and

Kx.

� Re-computes M1′=H(IDx ‖ Kx ‖ R1 ‖ R2). If there is a match, the

reader authenticates the tag. Furthermore, the reader con�rms that the

data within the server's message are correct, and authenticates the cloud

server.

If M1′==M1 and x=new, this implies that the tag's data are synchro-

nised with the server's data. The reader updates (IDnew and Knew), to

be used in the next transaction (j+1) by calculating the following:

IDj+1
new ← H(IDj

i)

Kj+1
new ← H(IDj+1

new ⊕ Kj
i)

109

Cloud Server Reader Tagi

1- Generates R1
R1−−−−−−−−−→

2- Generates R2

HID=H(IDi⊕R1⊕R2)
M1=H(IDi‖Ki‖R1‖R2)

HID,M1,R2
←−−−−−−−−−

3−HID,R1,R2←−−−−−−−−−−
4- Searches for

H(IDx⊕R1⊕R2)
Marks x=new or old

Retrieves EMK(IDx‖Kx)
EMK(IDx‖Kx),x−−−−−−−−−−−−−→

5- Decrypts

EMK(IDx‖Kx)

Re-computes:

M1′=H(IDx‖Kx‖ R1‖R2)
If M1′==M1 and the x

value is new, then updates:

IDj+1
new ← H(IDj

i)

Kj+1
new ← H(IDj+1

new ⊕ Kj
i)

Calculates H(IDj+1
new) and

EMK(IDj+1
new ‖ Kj+1

new)

H(IDj+1
new)←−−−−−−−−−

EMK(IDj+1
new ‖ Kj+1

new)←−−−−−−−−−
6- Writes:

H(IDnew)←H(IDj+1
new)

EMK(IDnew‖Knew)←EMK(IDj+1
new‖Kj+1

new)

H(IDold)←H(IDj
new)

EMK(IDold‖Kold)←EMK(IDj
new‖Kj

new)

OK−−−−−−−−−→
7- Calculates:

M2=H(Kj+1
new‖R1‖R2)

M2−−−−−−−−−→
8- Computes:

IDj+1
i ←H(IDj

i)

Kj+1←H(IDj+1⊕Kj)

Re-calculates

M2′=(H(Kj+1‖R1‖R2),
then updates ID and

K

Figure 7.2: Improved cloud-based RFID mutual authentication protocol

� Calculates H(IDj+1
new), and encrypts the new values, i.e., EMK(ID

j+1
new ‖

Kj+1
new).

� Noti�es the server to update its values by sending:

110

H(IDj+1
new), and EMK(ID

j+1
new ‖ Kj+1

new)

6. Cloud server: The cloud server performs the following:

� Writes the following data in its database:

H(IDnew) ← H(IDj+1
new)

EMK(IDnew‖Knew) ← EMK(ID
j+1
new‖Kj+1

new)

H(IDold) ← H(IDj
new)

EMK(IDold‖Kold) ← EMK(ID
j
new‖Kj

new)

� Sends an OK message to notify the reader that the update process has

been successful.

7. Reader: The reader performs the following:

� If the reader received the OK message from the cloud server, the reader

noti�es the tag to update its data such as (IDnew, Knew) by calculating

M2=H(Kj+1
new ‖ R1 ‖ R2) using the updated tag's secret key.

� Sends M2 to the tag.

8. Tagi: The tag performs the following:

� Computes IDj+1
i ← H(IDj

i) and Kj+1
i ← H(IDj+1

i ⊕ Kj
i).

� Re-calculates M2′=(H(Kj+1
i ‖ R1 ‖ R2), and if it is equal to the received

value of M2, then it authenticates the reader and updates IDi and Ki

to:

IDj+1
i ← H(IDj

i)

Kj+1
i ← H(IDj+1

i ⊕ Kj
i)

If M1′==M1 and x=old, the reader still authenticates the tag, but this implies that the

tag's data has been desynchronised, thus the reader does not update the current values

of the ith tag (IDi and Ki). It sends no update to the server, and sends M2=H(Kj
new

‖ R1 ‖ R2) to the tag using the current value of the tag's secret key. Then, the tag

re-computes M2 using the current values. If there is a match with the received M2, the

tag authenticates the reader and updates its data, as shown in the previous step.

If there is no match with the received M2 using the current or updated values of

IDi and Ki, then the tag will not authenticate the reader, and will not update its data.

7.5 Protocol Analysis

In this section, we present the analysis of the proposed protocol in terms of informal,

and formal analysis using CasperFDR and Scyther.

111

7.5.1 Informal Protocol Analysis

Our proposed protocol meets the following goals:

� Mutual authentication: If the reader successfully calculates the tag's responses

M1, it authenticates the tag, as only the legitimate tag knows the values of (IDi

and Ki) and thus can calculate such responses. Similarly, if the tag calculates M2

and it �nds a match with the received M2, it con�rms that the reader has success-

fully recovered the values of (IDi and Ki). Furthermore, the reader decrypts the

server's message (EMK(IDx ‖ Kx)), and if the tag's message M1 is authenticated,

this implies that the cloud server is sending legitimate data within the message,

and hence the reader authenticates the server.

� Tag data anonymity: The tag stores two secret values, each of which is 128-bit

length: IDi and Ki, which are not revealed to any entity except the legitimate

readers. The tag's data are not sent in clear in messages HID, M1 and M2, as

they are protected using the hash function. Therefore, only the legitimate entity

can extract these values. Furthermore, if the cloud server is a malicious entity,

this will not a�ect the tag's data privacy, as the cloud server stores the hash of

the tag's ID and the encrypted tag's data; and without the master key, the cloud

server cannot disclose the tag's data. Finally, the size of the data is 128-bit length,

which means that the attacker needs to make 2128 attempts to recover the secret

data.

� Tag location privacy (untraceability): In the proposed protocol, the tag's re-

sponses are changed in each session using the updated tag's values and fresh

random numbers (R1 and R2), thus the attacker will obtain new responses every

time he eavesdrops on a session. Even if the the tag does not update its values,

the responses will not be static due to the use of fresh random numbers R1 and

R2. However, the cloud server can track the location of the tag's holder.

� Forward secrecy: The values of IDi and Ki are updated after each run in order

to prevent forward secrecy invasion, using a hash function that is irreversible. If

an adversary compromises the tag's memory, he/she will not be able to trace the

previous communications of the tag as the obtained messages involve the use of

previous secret values IDi and Ki, which are not stored in the tag. The stored

updated values are used in the calculation of the next session, and cannot be

irreversible as a result of using a hash function.

� Resistance to replay attacks: The proposed protocol uses a challenge-response

scheme. In messages HID and M1, the tag includes the reader's and tag's fresh

112

random numbers as a challenge. The reader must therefore include R1 and R2 in

its response (M2). Therefore, only legitimate parties (reader and tag) can send

valid answers, since random numbers are sent with secret values only known to

the reader and tag.

� Resistance to desynchronisation incidents: In the proposed protocol, desynchro-

nisation incidents are avoided by storing the previous values of the tag's data

in the cloud server, hence achieving synchronisation. If the tag's data is being

desynchronised, the cloud server keeps the tag's data �xed. For instance, if the

attacker blocks M2 more than once in consecutive sessions, the tag and cloud will

not update the tag's data. In the next session, the reader contacts the desynchro-

nised tag, and sends the tag's HID message to the cloud server, then the cloud

server �nds a match with the tag's old data, and sends EMK(IDold ‖ Kold), as

HID matches H(IDold); thus synchronisation is still achieved.

� Resistance to tag and reader impersonation attack: To impersonate the tag, the

attacker must be able to compute a valid response (HID, M1) to a reader query.

However, it is hard to compute such responses without knowledge of IDi and Ki,

each of which is 128-bit length, and it will take up to 2128 attempts to guess

each value. Similarly, the attacker needs to be in possession of IDi and Ki to

impersonate the legitimate reader and send M2.

� Compromising the reader: The only risk that the system may encounter is com-

promising the reader, allowing the attacker to access the master key. However, in

the Assumption Section 7.4.2, we assumed that the proposed protocol only sup-

ports readers that are tamper-resistant; for example, they have a secure memory

and a rigid access control mechanism.

Table 7.3 shows how our proposed protocol provides more security and privacy features

than the cloud-based RFID authentication protocol. Based on the discovered weak-

nesses, we found that the cloud-based RFID authentication protocol is vulnerable to

reader impersonation attacks; hence mutual authentication is not achieved. Moreover,

we used CasperFDR to analyse the cloud-based RFID authentication protocol, and it

showed that an attacker can discover the secret value (M); hence the tag data anonymity

is compromised. Finally, if the tag does not update the value of (S), it will reply with

the same answer, and hence allows location tracking.

113

Table 7.3: Comparison between the cloud-based RFID authentication protocol and
our proposed protocol

Cloud-based pro-
tocol [130]

Our proposed protocol
7.4

Tag data anonymity ×
√

Tag location privacy ×
√
*

Resistance to replay attack
√ √

Resistance to desynchronisation
√ √

Resistance to tag impersonation
√ √

Resistance to reader impersonation ×
√

Mutual authentication ×
√

*: The cloud server can track the tag's location ×: Means does not provide protection
√
:

Means resists such an attack

7.5.2 Formal Protocol Analysis

To formally analyse the proposed protocol and con�rm that secrecy and authenticity

between the reader and tag are achieved, we used CasperFDR [104] and Scyther [75]

tools.

CasperFDR Analysis of the Proposed Protocol

We prepared a CasperFDR script as shown in Appendix C.2. In the script, we assume

that the reader knows about the tag's data. The communication between the reader

and server is secure, therefore we did not check the protocol in this area. In the #Free

variables Section, the tag (T) and reader (R) are de�ned as Agent; the random numbers

R1 and R2 are de�ned as Nonce; and ID (tag identi�er), K (tag key) are de�ned as Data.

#Free variables

T, R : Agent

R1: Nonce

R2: nonce

ID,K : Data

h: HashFunction

InverseKeys=(h,h)

As mentioned in Section 7.4.1, the main goals of our protocol are authenticating the

reader to the tag, and vice versa, as well as verifying that the data, such as ID and K,

are secure. These goals are shown in the script in the #Speci�cation Section as shown

below:

114

#Speci�cation

Agreement(T, R, [ID, K])

Secret (T, ID, [R])

Secret (T, K, [R])

In addition, in the #Intruder information Section, the intruder is de�ned as Mallory,

who can take full control of the session; he/she can impersonate any entity in the

protocol, read messages transmitted in the network, intercept, analyse and/or modify

messages.

After compiling the CasperFDR script and feeding the output to FDR, CasperFDR

found no feasible attacks, which means that mutual authentication is achieved success-

fully between the reader and the tag, and the tag's data are protected and transferred

securely.

Scyther Analysis of the Proposed Protocol

Scyther performs a formal analysis of security protocols using a Dolev-Yao model [67]

for an unbounded number of instances. It is mainly used to verify the authenticity of

the messages exchanged between entities such as in the proposed protocol considered

here.

We conducted the analysis of our protocol with respect to three goals: secret, alive-

ness and agreement. The script is shown in Appendix C.3. Two roles are de�ned,

namely a reader (R) and a tag (Ti). The random numbers R1 and R2 are de�ned as

Nonce; and IDi (tag identi�er), Ki (tag key) are de�ned as Data.

Both roles the reader and tag share the secret goal over the two secret values IDi

and Ki as follows:

claim_R1(R, Secret, IDi);

claim_R2(R, Secret, Ki);

claim_Ti1(Ti, Secret, IDi);

claim_Ti2(Ti, Secret, Ki);

Also both roles claim to be alive and shre the agreement goal as follows:

claim_R3(R, Alive);

claim_R4(R, Niagree);

claim_Ti3(Ti, Alive);

115

claim_Ti4(Ti, Niagree);

claim_Ti5(Ti, Nisynch);

After compiling the Scyther script, it found no feasible attacks.

7.6 Protocol Implementation and Performance Measure-

ment

In this section, we present the implementation process and the performance measure-

ments taken from the DemoTag.

7.6.1 Implementation Process

The tag is provided with two 128-bit secret values: IDi and Ki, which are stored in

the tag's EEPROM. We did not implement the server side, so we assumed in the

implementation that the reader already knows IDi and Ki.

The reader starts by generating a 128-bit random number (R1) using the rngCsp

method. Then, it sends R1 to the tag by sending 8 WriteTagData_EPC_C1G2 com-

mands. When the tag receives the reader's random number, it generates a random

number R2 (128-bit) using the built-in PRNG, computes two messages, namely HID

and M1, each of which is 128-bit length. Subsequently, the tag writes the messages

(R2, HID, M1) in its memory using the syscall_writeWord command, ready to be read

on demand. The reader later sends three ReadTagData_EPC_C1G2 commands to

read R2, HID, and M1, and re-computes M1. If there is a match with the received

M1, it temporarily updates IDi and Ki, and uses them in the calculation of M2 (128

bits). Finally, the reader sends 8 WriteTagData_EPC_C1G2 commands to the tag

representing M2. The tag updates IDi and Ki and re-computes M2 to authenticate the

reader. If successful, the tag changes the values of IDi and Ki with the updated ones.

7.6.2 Performance Measurement

The performance measurements are as follows:

1. DemoTag memory cost: In the proposed protocol, the memory cost is:

� 348 bytes used from 4 KB EEPROM memory for storing the tag's data,

messages (responses), and random numbers.

� 32.7 KB used from 128 KB Flash memory to store the tag's �rmware.

116

Table 7.4: Data exchange time cost

Tag Reader

Read - 1.23 sec

Write 1.3 ms 990 ms

2. Data exchange time cost is shown in Table 7.4: For the tag to write R2, HID

and M1 into its memory to be read by the reader, the average timer counter after

running the protocol 100 times is 20802.7, so, based on equation 3.1, the time

cost is:

20802.7 ∗ 0.0000000625 = 0.0013sec ≡ 1.3ms (7.1)

Regarding the reader, we found that the reader needs 990 ms to write the random

number R1 and M2 into the tag's memory, and 1.2 sec to read the whole tag's

response.

3. DemoTag computing cost: In a successful run of the proposed protocol, the tag

generates R2, computes three messages including data update, and writes mes-

sages in its memory. Table 7.5 demonstrates that the time cost of running the

protocol on the DemoTag is around 9.34 ms, which means that the tag can re-

spond to the reader's query in less than a second, and this demonstrates the

relative e�ciency of the proposed protocol.

Table 7.5: Computing operations time cost (milliseconds)

R2 HID M1 M2 + Update Write

Computing cost 0.11 1.63 1.63 4.67 1.3

Total 9.34

7.7 Summary

In this chapter, we examined the cloud-based RFID authentication protocol, and found

that the protocol is prone to reader impersonation and man-in-the-middle attacks.

Therefore, we proposed an improved cloud-based RFID authentication protocol that

avoids the cloud-based RFID authentication protocol security issues. The proposed

protocol has been analysed informally, and we showed that it is more immune to reader

impersonation attacks and can resist replay, desynchronisation, and tag impersonation

117

attacks. Also, we illustrated that tag's data anonymity is preserved, and hence the

cloud server and attackers cannot obtain the tag's data. In addition, the communica-

tion session between the reader and the tag was formally analysed using CasperFDR

and Scyther, and found no feasible attacks. Finally, we showed that the proposed pro-

tocol imposes relatively low memory storage and computing costs on the RFID tags.

So far we have only considered security protocols where there is only one tag being read

at a time; however, we mentioned at the outset that a group of items may be presented

simultaneously for reading. Proving that a group of legitimate tags are present and

that there is no way for a fake tag to join the group is considered in the next chapter.

118

Chapter 8

Two Rounds RFID Grouping-Proof

Contents

8.1 Introduction . 120

8.2 Related Work . 121

8.3 Two Rounds RFID Grouping-Proof Protocol 128

8.4 Protocol Analysis . 135

8.5 Protocol Implementation and Performance Measurement . 140

8.6 Summary . 142

In this chapter, we focus on a particular RFID application called a grouping-proof,

where an entity such as a reader generates a proof of simultaneous presence of two or

more tagged items. We begin by discussing related studies and their weaknesses in terms

of security and performance. Then, we present a two rounds grouping-proof protocol that

provides immunity against active attacks on RFID protocols and improves performance.

An informal analysis is provided for the proposed protocol, followed by a formal analysis

using CasperFDR and Scyther. Finally, we describe the implementation of our protocol,

and then illustrate the performance measurements.

119

8.1 Introduction

In 2004, Juels introduced a new RFID application called a �yoking-proof� (�yoke� means

joining things together) [106]. Yoking-proof can be de�ned as proof of the simultaneous

presence of a pair of RFID tagged items in the broadcast range of an RFID reader

within a short time period. Since its introduction, the yoking-proof has evolved to

include multiple tags and is now known as the �grouping-proof�. In an RFID grouping-

proof, the generated record of the simultaneous presence of multiple tags is veri�ed by

the server that processes the system tags' data.

There are two modes for verifying the existence of RFID tags; online and o�ine.

In the online mode, the server that veri�es the proof is running during the protocol

execution, while in the o�ine mode the server is not present during the scanning process.

Where the server is online, the solution is straightforward as each tag can authenticate

itself directly to the server. On the other hand, if the server is o�ine the solution is

challenging, as a fake tag may participate in the proof that is veri�ed later, and the

tags' responses should be completed within a speci�ed time-window [19].

A grouping-proof can be used in many systems including [142]:

� Hospitals: proving that a certain patient has been given his/her medications at

the same time.

� Manufacturing: proving that devices have been sold with their attachments.

� Access control: establishing that a group of people with legitimate RFID tokens

were present.

� Supply chains: proving that tagged products are shipped together in groups.

� Airport: associating an electronic passport with an owner or with any of his/her

luggage.

In such systems, the server, which can be an auditor or a veri�er, might not par-

ticipate in the scanning process. Since the server is o�ine during the scanning process,

unrelated tags might take part in the session. To solve this issue, a proof needs to be

generated, and at a later time, a server veri�es the simultaneous existence of the related

and legitimate tags along with other goals discussed in Section 8.3.1.

In a typical grouping-proof scenario where there are n RFID tags in the group

[143], the ith tag (Ti), i.e., 1 ≤ i ≤ n, sends a message (Mi) to the reader, then the

reader transfers Mi to the next tag (Ti+1) in the same group and waits for its response

(Mi+1). The reader repeats this operation n times. Finally, when the reader receives n

120

Table 8.1: A summary of notation

Notation Description
S Server
R Reader
Ti The ith tag in the group, where 1 ≤ i ≤ n
Kx Entity x secret key
IDx The identity of entity x
MACKi(M) Keyed message authentication code for a message M
fKi A keyed pseudo-random function
rx A random number generated by entity x
TS Timestamp
sn Session number
n The number of tags in the group

responses, it creates the proof and sends it to the server to be veri�ed later. Hence, the

number of rounds is proportional to the number of tags in the group.

In this chapter, we aim to propose a grouping-proof protocol that is secure against

active attacks on RFID protocols, and to improve the protocol's performance by pro-

viding the following features:

� Fewer rounds, to reduce time delay.

� Concurrency, where each tag does not need to wait for the Ti−1 message to re-

spond. Hence, dependency between tags is omitted. The tags only wait for the

reader's message before responding.

� Reading order independence, so the tags can be veri�ed by the server in any order.

This approach reduces failure rates [18].

8.2 Related Work

This section reviews the literature regarding RFID yoking-proof and RFID grouping-

proof. For the rest of this section, we will use the notation summarised in Table 8.1.

8.2.1 Yoking-proof RFID Protocols

Starting with Juels' yoking-proof protocol [106], each ith tag Ti is embedded with an IDi

and a secret key Ki shared with the server. The tags are capable to generate random

number (ri) and compute an MAC function. Juels' protocol is depicted in Fig. 8.1.

When the reader generates the yoking-proof P1−2 for T1 and T2 for example, it sends

it later to the server to verify the simultaneous existence of T1 and T2.

121

T1 Reader T2
Query←−−−−−

a= (ID1, r1)
a−→

Query,r1−−−−−−−→
m2=MACK2 [r1]

ID2,r2,m2←−−−−−−−−
r2←−−

m1=MACK1 [r2]
m1−−→

P1−2=(ID1, ID2, r1, r2, m1, m2)

Figure 8.1: Juels' yoking-proof protocol

In 2005, Saito et al. [144] discovered a replay attack against Juels' protocol [106].

They pointed out that the server does not provide any randomness to ensure the fresh-

ness of the reader's generated proof. Therefore, they proposed their own protocol that

combated replay attack using timestamps. The server veri�es the timestamp that is

included in both the tags' messages and the reader's generated proof.

However, Piramuthu [145] showed that Saito et al. protocol [144] is still vulnerable

to replay attack as the attacker can predict a timestamp for some future point in time,

and then replay it to interrogate another tag. Accordingly, Piramuthu proposed the use

of random numbers instead of timestamps to provide freshness to the tags' messages.

The server generates a random number (rS) and sends it to the reader. rS is used as

a seed to generate the tags' random numbers. Piramuthu protocol is depicted in Fig.

8.2. Piramuthu claimed that no secret data is transmitted in transit, and the data

transmitted is refreshed in every protocol run, hence his protocol achieves user privacy

and location privacy.

Server

rS ↓
T1 Reader T2

Query,rS←−−−−−−−
a= (ID1, r1)

a−→
Query,rS ,r1−−−−−−−−−→

m2=MACK2
[rS , r1]

ID2,r2,m2←−−−−−−−−
m2←−−

m1=MACK1 [m2,r1]
m1−−→

P1−2=(r1, r2, rS , m1, m2)

Figure 8.2: Piramuthu's yoking-proof protocol

According to Peris-Lopez [124], in Piramuthu's protocol, T2's random number (r2) is

122

not authenticated by T1, and this leads to a multi-session attack. This attack is shown

in Fig. 8.3. Firstly, the adversary eavesdrops on a normal communication session

between T1 and T2 to obtain the random numbers and m2 to be used later. Then,

the adversary impersonates the reader and interrogates tag Tx to generate a proof that

shows that T2 and Tx were simultaneously scanned, which is not valid.

Server

rS ↓
T1 Reader T2

Query,rS←−−−−−−−
a= (ID1, r1)

a−→
Query,rS ,r1−−−−−−−−−→

m2=MACK2 [rS , r1]
ID2,r2,m2←−−−−−−−−

Adversary Tx

Query,m2,r1−−−−−−−−−→
mx=MACKx [m2, r1]

IDx,rx,mx←−−−−−−−−
Px−2=(rx, r2, rS , mx, m2)

Figure 8.3: A multi-session attack on Piramuthu's protocol

Chien et al. [147] proposed a yoking-proof that is based on a tree structure, where

each tag is a kin to a leaf on a tree and the tag's identity is the path from the root

to the leaf, to reduce the computational cost of authenticating each tag by the veri�er

from O(N) to O(1). Nevertheless, Peris- Lopez et al. [146], found that the Chien et

al.'s protocol was vulnerable to replay attacks.

8.2.2 Grouping-Proof RFID Protocols

The notion of grouping-proof was introduced by Saito et al. [144]. They proposed using

a �pallet tag�. The pallet tag (PT) can be a large metal plate, on which the products

can be placed. They assumed that the pallet tag has more computing resources than

normal tags and shares a secret key (KPT) with the server. The idea behind Saito

et al.'s protocol is that the pallet tag gathers the tags' messages via the reader and

generates a proof that is veri�ed by the server later. The reader acts as middleware

between the tags, pallet tag and server. The protocol is shown in Fig. 8.4.

123

Server

TS ↓
Ti Reader PT

TS←−− TS−−→
m1=MACK1

[TS]
m1−−→ m1−−→
m2−−→ m2−−→
... ...
mn−−→ mn−−→

CP=EKPT
[TS, m1, m2, ... , mn]

CP←−−
Pn=(TS,CP)

Figure 8.4: Saito et al.'s grouping-proof protocol

Bolotnyy et al. [148] enhanced Juels' work and extended the yoking-proof to include

groups of more than two tags. This scheme was introduced to preserve privacy of the

tags by transmitting the output of a keyed hash function instead of transmitting the

tags' static identi�ers. Each tag generates a fresh random number and computes ai =

fKi [ri, ai−1], where (ai−1) represents Ti−1's message. This process continues until the

reader reaches the last tag Tn. The reader forwards Tn messages (an) to the �rst tag

to link the tags' chain, and create proof, i.e., m = fK1 [a1, an]. Finally, the reader sends

the server message P, i.e., Pn = (r1, r2, ... , rn, m) for veri�cation purposes.

Peris-Lopez et al. [146] recommended some guidelines for designing a secure RFID

grouping-proof protocol, which are discussed in detail in Section 8.3.1. Accordingly,

they proposed an RFID grouping-proof protocol shown in Fig. 8.5. The tags within

a group share a group identi�er IDgroup and a group secret key Kgroup to prevent

unrelated tags from participating. The tags also store an identi�er (IDi) and a secret

key (Ki) to be authenticated by the server. The veri�er computes encrypted timestamps

TS=fKS
(Timestamp), where KS , is the server's secret key. The generated timestamps

will be valid for a limited time-window. However, Peris-Lopez et al.'s protocol is suitable

only if there are only two tags in the system; if there are thousands of tags in the system,

their protocol is impractical as each tag has to wait for the predecessor's tag output to

include it in its response, producing a large time delay.

124

Server

TS ↓
T1 Reader T2

TS=fKS
(Timestamp)

←−−−−−−−−−−−−−−−−−
Generates [rT1

,r′T1
]

M1
group=

PRNG(IDgroup⊕rT1
⊕PRNG(Kgroup)⊕PRNG(TS))

MT1
=

PRNG(IDT1
⊕r′T1

⊕PRNG(K1)⊕PRNG(TS+1))
rT1

,r′T1
,M1

group,MT1−−−−−−−−−−−−−−−−−−→
rT1

,r′T1
,M1

group,MT1−−−−−−−−−−−−−−−−−−→
Checks M1

group

Generates [rT2
,r′T2

]

M2
group=

PRNG(IDgroup⊕PRNG(Kgroup)⊕rT2
⊕

PRNG(M1
group))

MT2
=

PRNG(IDT2
⊕r′T2

⊕PRNG(K2)⊕
PRNG(MT1

))

rT2
,r′T2

,M2
group,MT2←−−−−−−−−−−−−−−−−−−

rT2
,r′T2

,M2
group,MT2←−−−−−−−−−−−−−−−−−−

Checks M2
group

m1−2=

PRNG(IDT1
⊕MT1

⊕PRNG(MT2
)⊕PRNG(K1+1))

m1−2−−−−−→
Proof:

P1−2=(IDT1
,IDT2

,TS,m1−2,r
′
T1

,r′T2
)

Figure 8.5: Peris-Lopez et al.'s grouping-proof protocol

Ma et al. [116] extended Peris-Lopez et al.'s grouping-proof protocol to include more

than two tags. According to Sundaresan et al. [142], Ma et al.'s protocol is prone to

forward secrecy invasion, and it relies on an active clock tag, which can be compromised

as it participates signi�cantly in the protocol.

All the previous protocols are sequential, where a tag must wait for a response from

the previous tag before it can proceed.

In contrast, proposals moved to designing a concurrent grouping-proof, where each

tag sends its authenticator message independently to the reader that generates the

proof. Burmester et al. [149] proposed a grouping-proof protocol, where the main

aim is that all the tags within the group share a group ID (IDgroup) and a secret key

(Kgroup), so the tags within the group will recognise each other, and can be linked by

the reader. Burmester et al.'s protocol is depicted in Fig. 8.6. There are three phases

in this protocol: the �rst phase, where the reader challenges the tags with the server

random number, and the tags respond with their group ID. In the second phase, the

reader links the tags based on received the group ID. In the third phase, the tags prove

membership in their group. The �rst and second phase are concurrent, but the last

phase is sequential, where each tag has to wait for the predecessor tag's message to

respond.

125

Server

rS ↓
T1 Reader T2

rS←−− rS−−→
IDgroup,sn−−−−−−−−→

IDgroup←−−−−−−
Link T1 to T2

sn←−− sn−−→
aut1‖aut2=f (Kgroup,rS‖sn)
sn+1

aut1−−−→ aut1−−−→
aut′1‖aut′2=f (Kgroup,rS‖sn)
if aut′1 6=aut1
then timeout

else cnf2=f (K2,rs‖r2)
aut′2←−−−− aut′2,cnf2←−−−−−−−−

if aut2 6=aut′2 then timeout

cnf1=f (K1,rS‖r1)
cnf1−−−→

Pgroup=(rS ,r1,r2,IDgroup,sn,cnf1,cnf2)

Figure 8.6: Burmester et al.'s grouping-proof protocol

Peris-Lopez et al. [146], discovered that Burmester et al.'s protocol [149] is still

vulnerable to multi-proof replay attack as shown in Fig. 8.7. To achieve this attack,

the adversary eavesdrops on the communication channel between T1 and T2 �rst. Then,

the adversary impersonates T1 and the captured messages are replayed to Tx to build

a counterfeit proof that deceives the server into thinking that T1 and Tx have been

scanned simultaneously.

Another scheme was proposed by Lien et al. [18], who introduced the idea of a

�reading order independence� system, which can be de�ned as veri�cation of the proof

regardless of the order in which the tags were scanned. This approach reduces failure

rates. In other words, if the server assumes that the tags should be scanned in a

speci�c order, and the received proof contains tags' messages in random order, the

server proof will not match the received proof and the grouping-proof will fail. Lien et al.

protocol's uses a pallet tag (PT) to generate the proof. Reading order independence is

achieved using the XoR operator, which is commutative. When the pallet tag receives n

responses, it generates mPT=MACKPT
[rS , rPT , m1 ⊕ m2 ... ⊕ mn], where mi=MACKi

[mPT , ri], and mPT=MACKPT
[ri, rPT], and sends it to the reader. The reader generates

proof, i.e., P=(rS , r1, r2, ... , rn, mPT), and sends it to the server.

126

T1 Reader T2
rS←−−

rS−−→
IDgroup,sn
−−−−−−−−−−→

IDgroup←−−−−−−−
Link T1 to T2

sn←−− sn−−→
aut1‖aut2=f (Kgroup,

rS‖sn)
sn +1

aut1−−−−→
aut1−−−−→

aut′1 ‖ aut′2= f (Kgroup, rS ‖sn)
if aut′1 6=aut1
then timeout

else cnf2=f (K2;rs‖r2)
aut′2←−−−−

aut′2,cnf2←−−−−−−−−−

Adversary Tx
rS−−→
IDgroup←−−−−−−−

Link T1 to T2
sn−−→
aut1−−−−→

aut′1 ‖ autx= f (Kgroup, rS ‖sn)
if autx 6=aut′1
then timeout

else cnfx=f (Kx, rs‖rx)
autx,cnfx←−−−−−−−−

Pgroup=(rS ,IDgroup,sn,cnf1,

cnfx)

Figure 8.7: A multi-proof attack on Burmester et al.'s protocol

Sundaresan et al. [142] proposed a grouping-proof protocol that complies with the

EPCC1Gen2 standard. They claimed that their protocol resists well-known attacks on

RFID systems, and provides forward security, which is an open research issue in RFID

grouping-proof applications. Their protocol o�ers forward secrecy, as the messages are

computed using a freshly generated random number that is not stored in the tag. Also,

the tag stores the current value of data, which is updated after each protocol run; the

old data is not stored. Hence, the adversary will not be able to compute the previous

messages even if a tag's memory is compromised. The proposed protocol uses simple

XoR and 128-bit PRNG operations. Moreover, the reader plays an important role

in authenticating the tags, thus providing extra protection against illegitimate tags.

However, we showed in Section 8.4.1 that Sundaresan et al.'s protocol is not e�cient

in terms of memory, computing costs, and server scalability. Server scalability in RFID

context refers to the workload on the server to retrieve a single tag should not be

proportional to the number of deployed RFID tags (O(n)).

All the above RFID grouping-proof protocols require n rounds to generate the proof.

Moriyama [143] proposed an RFID grouping-proof that requires only two rounds. Each

tag's message is independent from the other tags' messages and the reader communi-

cates with the tags only in two rounds. This proposal uses a PRF for generating the

messages. Moriyama's protocol is shown in Fig. 8.8. Moriyama claimed that his pro-

127

tocol is immune against impersonation and man-in-the-middle attacks. This approach

is e�cient in terms of performance as the proof can be generated in two rounds and

the computing cost is reasonable for RFID tags. However, Moriyama's protocol does

not provide forward secrecy; he assumed it is an open problem. Also, the tags reply

with their IDs to any reader that queries them, thus a�ecting tags data anonymity and

location tracking.

Reader Ti

1,TS,rR−−−−−−→
Generates ri

mi=PRF (Kgroup, (TS, rR, IDi, ri))
rR,ri,IDi,mi←−−−−−−−−−−

Waits responses from all tags

mR=(TS,rR,{IDj ,rj ,mj}j∈Zn)
2,rR,mR−−−−−−→

Checks mj for all j ∈ Zn

vi=PRF (Ki, mR)
rR,vi←−−−−

PR=(TS,rR, {IDj ,rj ,mj ,vj}j∈Zn)

Figure 8.8: Moriyama's grouping-proof protocol

A comparison between such protocols in terms of security and tag's performance is

demonstrated in Table 8.3 and Table 8.4 respectively.

To conclude, we found that all the discussed related studies have weaknesses. Hence,

in the next section, we focus on proposing a grouping-proof protocol that takes into

account the strengths of previous protocols and avoids their de�ciencies.

8.3 Two Rounds RFID Grouping-Proof Protocol

The proposed protocol is discussed in detail in this section.

8.3.1 Design Goals

For a protocol to support the RFID grouping-proof, it should meet the following goals:

1. Forward secrecy: The proposed protocol should ensure that if an attacker compro-

mises the tag's memory, he/she will not be able to trace previous communication

session(s) using previously known messages.

2. Protection against replay attacks: An adversary may eavesdrop on the commu-

nications between reader and tag, obtain exchanged messages and resend these

128

messages repeatedly. Therefore, any generated message should be fresh to the

protocol session to protect against replay attacks.

3. Protection against de-synchronisation incidents: The proposed protocol should

recover from de-synchronisation incidents, either when an attacker blocks the

exchanged message(s), or when the messages are lost during transmission due to

system malfunction or communication error.

4. Protection against location tracking: The proposed protocol should con�rm that

the tag's responses are not static or linkable in order to prevent attackers from

tracking the tag's location.

5. Protection against reader/tag impersonation attacks: The proposed protocol should

guarantee that the reader's and tag's secret values cannot be obtained by any at-

tacker, thus preventing an attacker from impersonating the reader or the tag.

6. Authentication: The reader and each tag in the grouping-proof should con�rm

their legitimacy to the server.

7. Concurrency: The tags should only depend on the reader's message to respond,

and should not wait for the Ti−1 message.

8. Reading order independence: The server veri�es the proof regardless of the order

in which the tags were scanned.

Peris-Lopez et al. [146] provided guidelines for designing a grouping-proof protocol.

These guidelines are as follows:

� Computing capabilities: Due to the restricted computation power of RFID tags,

the protocol should take into account this limitation. Moreover, the memory and

communication costs should also be minimised.

� Matching: Only tags that belong to a group participate in the calculation of the

proof, thus reducing the time needed for the server to verify the existence of tags.

� Dependency: A tag should include all messages received from its predecessor tags

in its response to prove simultaneity.

� Identi�cation: This is related to tag anonymity and tag location privacy as dis-

cussed earlier.

� Veri�cation: Using an encrypted timestamp to avoid predictable timestamps and

hence avoid replay attacks.

129

1- Timestamp(t) 2- t, Group msg

3- Group msg

3-Server msg4- Proof=Server-msgs

Figure 8.9: System scenario

� Forward secrecy: Peris-Lopez et al. pointed out that forward secrecy in grouping

proofs is an open problem, as there are multiple tags, an untrusted reader and

o�ine veri�er involved in the process, which makes the updating process complex.

However, in this study we have attempted to solve this problem.

In this chapter we take into account these goals and guidelines as they are e�cient

in terms of security and performance, with the exception of the dependency guideline.

The dependency guideline is impractical as it will encounter a heavy computational

demand when thousands of tags participate in the grouping-proof.

8.3.2 System Scenario

The proposed system scenario is shown in Fig. 8.9, and summarised as follows:

1. The server sends an encrypted timestamp t to the reader (before the grouping-

proof begins).

2. The reader acts as a �lter that separates the tags belonging to the group from the

tags that do not belong to the group. It computes a Group message to link the

tags in the group. Then, it broadcasts the Group message to the tags.

3. The ith tag, i.e., 1 ≤ i ≤ n, veri�es the Group message. If it succeeds, it sends two

messages: the Group message to prove it belongs to the group, and the Server

message to be authenticated by the server.

4. When the reader receives n responses within a pre-de�ned time window, it veri�es

the Group message for each tag, and generates the Proof containing all the re-

ceived Server messages. Then, it sends the Proof to the server for later validation

of the grouping-proof.

130

8.3.3 Assumptions

We present an RFID grouping-proof protocol, which operates under the following as-

sumptions:

� We consider an active adversary, who has complete control over all communica-

tions in the protocol.

� The tag can compute XoR, generate a random number, and calculate hash func-

tions.

� The reader contacts the tag through a wireless channel that is susceptible to

attacks, while the communication channel between the reader and the server is

secure.

� The server is o�ine during the scanning process.

� All the operations in the tag are atomic.

� The groups are pre-de�ned and static.

8.3.4 Threat Model

Complying with the previous proposed protocols in this thesis, we assume the Dolv-Yao

model. Moreover, for grouping-proof, adversarial attacks target the following:

� RFID tags: The adversary can impersonate the reader to collect the tag's re-

sponses and forge a grouping-proof.

� RFID reader: The adversary attempts to impersonate the tags to make the reader

generates an invalid proof.

� The communication channel: The adversary controls the communication channel

by performing the following:

� Eavesdropping

� Modifying messages

� Blocking messages from reaching targets

� Replaying previous messages

� Injecting new messages (forgery)

� Impersonating any entity

131

Table 8.2: Protocol notation

Notation Description
IDG The shared group unique identity
TSG The shared group secret value
IDi The ith tag's unique identity
TSi The ith tag's secret value
KSR The reader's private key for signing the proof
KPR The reader's public key
KS The server's secret key
rx A random number generated by entity x
H(Z) The result of generating a hash of data Z, where H: {0,1}∗ → {0,1}l

EKx(M) A message M encrypted with the secret key of entity x
SignKx(Z) A signature on data Z, signed using entity x's private key
TS The server's timestamp
t A timestamp encrypted by the server's secret key
⊕ An XoR operation
‖ A concatenation operation
n The number of tags in the group

8.3.5 Notation

The notation used in the proposed protocol is shown in Table 8.2:

8.3.6 Protocol Description

The proposed protocol is divided into two phases, the setup phase and the grouping-

proof phase.

� Setup phase: The manufacturer's server assigns the initial values to the tags, the

reader and the server. For a speci�c group (G), each tag stores (IDG, IDi, TSG,

TSi), the reader stores (KSR, KPR), and the server stores (IDG, IDi, TSG, TSi,

KS , KPR) for all ith tags belonging to group G.

� Grouping-proof phase: a protocol is shown in Table 8.10 and works as follows:

1. Server: The server (S) computes encrypted timestamps t=EKS
(TS). Each

timestamp is valid for a limited time-window, within which the reader should

respond. The server stores the encrypted timestamps and time-window. The

server computes an index session message with the reader as SK=H(IDG ‖
TSG ‖ t), where t is the current encrypted timestamp, and K= TSG ⊕ H(IDG

‖ t) to inform the tags of the current value of TSG in case a desynchronisa-

tion incident occurs. The server sends t, SK and K to the reader. Moreover,

132

the server sends a list of the hashed tags' identi�ers to identify missing tags.

Round 1:

2. Reader: The reader generates a random number rR, i.e., rR ∈ {0,1}L, where

L is the security parameter.

3. Reader: The reader computes two messages to link the tag chain: the �rst

message is MR
G=H(SK ‖ rR), and the second message is K′ = K ⊕ rR.

4. Reader: The reader broadcasts rR, t, MR
G and K′.

5. Tag: The ith tag Ti generates a random number ri, i.e., ri ∈ {0,1}L.

6. Tag: Ti re-computes MR
G to check that it belongs to the group. If it succeeds,

Ti performs the next step. If it fails, this implies either:

(a) Ti has been desynchronised in the previous session(s) resulting in failure

to update the value of TSG. In this case, it needs to obtain the current

value of TSG from message (K′). If succeeds, Ti performs the next step.

(b) Ti does not belong to the group if it fails to re-compute message (K′),

therefore it aborts the session.

7. Tag: Ti calculates:

Mi= H(IDi ‖ ri ‖ rR ‖ TSi ‖ t) to be included in the grouping-proof and

veri�ed by the server.

8. Tag: Ti calculates:

Mi
G= H(SK ‖ ri ‖ rR ‖ H(IDi)) to prove to the reader that it belongs to the

group.

9. Tag: Ti updates TS
j+1
i ← H(TSji), where j is the current session, and

TSj+1
G ← H(TSjG) to be used in the next session j+1.

10. Tag: Ti sends ri, Mi and Mi
G to the reader.

These steps are performed for each ith tag in the group until the reader

receives n responses.

Round 2:

11. Reader: When the reader receives n responses within a pre-de�ned time

window, for every received ri , the reader checks that Mi
G= h(SK ‖ ri ‖ rR

‖ h(IDi)), to con�rm that only tags belonging to the group are included in

the proof.

133

Server Reader Ti

1- Generates t

SK=H(IDG‖TSG‖t)
K= TSG⊕H(IDG‖t)

t,SK,K−−−−−→
2- Generates rR

3- Computes:

MR
G=H(SK‖rR)

K′=K⊕rR
4−rR,MR

G ,K′,t
−−−−−−−−−−−→

5- Generates ri

6- Re-computes:

MR
G=H(H(IDG‖TSG‖t)‖rR)

and/or TSG=K
′⊕H(IDG‖t)⊕rR

7- Mi= H(IDi‖ri‖rR‖TSi‖t)
8- Mi

G=H(SK‖ri‖rR‖H(IDi))

9- Updates:

TSj+1
i ← H(TSji)

TSj+1
G ← H(TSjG)

10−ri,Mi,M
i
G←−−−−−−−−−−

11- Waits for n responses

Re-computes Mn
G

12- Generates Proof=

(SignKSR
(t,

rR,r1...rn,SK,M1⊕...⊕Mn),rR,r1...rn,M1⊕...⊕Mn)
Proof←−−−−

13- Veri�es reader and

checks:

Proof′=M1⊕...⊕Mn

14- Updates:

TSj+1
i ←H(TSji)

TSj+1
G ←H(TSjG)

Figure 8.10: The proposed grouping-proof protocol

12. Reader: For each tag belonging to the group, the reader generates Proof

containing the received messages (Mi ... Mn), i.e. Proof= (SignKSR
(t, rR, r1

... rn, SK, M1 ⊕...⊕ Mn), rR, r1 ... rn, M1 ⊕...⊕ Mn), and then sends it to

the server.

13. Server: Later, the server veri�es the reader's signature, checks the times-

tamp, and retrieves tags' data based on the value of index SK. Then, it

computes the expected grouping-proof (Proof′ = M1⊕...⊕Mn) regardless of

the order the tags were scanned, and compares the result of Proof′ with

the received value of (M1⊕...⊕Mn) in Proof. If there is a match, the server

believes that all the tags in the grouping-proof are present and legitimate.

14. Server: The server updates:

134

TSj+1
i ← H(TSji) for all the legitimate tags in the group, and updates

TSj+1
G ← H(TSjG).

8.4 Protocol Analysis

In this section we present the analysis of the proposed protocol in terms of informal,

and formal analysis using CasperFDR and Scyther.

8.4.1 Informal Protocol Analysis

If the reader did not receive messages from a tag, whether the tag was not present,

or time period has expired before receiving the tag's messages, the following process is

performed:

� Missing tag(s): If the reader does not receive a response from the 4th tag for

example, it informs the server about the missing tag by including the missing

tag's H(ID4) value, which was not retrieved from the hashed identi�ers list during

the protocol running, within Proof. The reader generates Proof= (SignKSR
(t, rR,

rn−1, SK, Mn−1, H(ID4)), then, sends Proof to the server. The server retrieves the

missing tag data based on SK and H(ID4) values, and calculates Proof′ without

taking into account the 4th tag. The server should also alert the system about

the missing tag.

The proposed protocol attempts to meet the goals discussed in Section 8.3.1 as

follows:

1. Forward secrecy: The values of TSi and TSG are updated after each run in order

to prevent forward secrecy invasion using a hash function that is irreversible. If

an adversary compromises the tag Ti memory, he/she will not be able to trace the

previous communications of the tag as (Mi)
j−1 and (Mi

G)
j−1 involve the use of

previous secret values TSi and TSG, which are not stored in the tag. The stored

updated values of TSi and TSG are used in the calculation of the next session and

cannot be irreversible as a result of using a hash function. Hence, the attacker

cannot re-compute the previous messages.

2. Protection against replay attacks: The inclusion of random numbers in the mes-

sages is vital to con�rm that the messages are intended for a speci�c reader or

tag, which originally generate rR and ri respectively. Moreover, since rR and ri
are fresh random numbers, it is impossible for the attacker to predict them in

the next session. Replaying the reader's message will not pose a threat to the

135

protocol, as the server will detect such attacks; the server will not accept proofs

that were generated with expired timestamps.

Regarding the tag's message Mi, it contains a timestamp that is encrypted by

the server to avoid predictable timestamps and is valid for a limited time during

the session. Hence, the attacker cannot re-send the previous Mi message as the

timestamp will not be valid.

3. Protection against desynchronisation incidents: There are two scenarios, where a

desynchronisation of data might occur, but the proposed protocol tackles these

incidents as follows:

� If an attacker blocks the ith tag messages (ri, Mi, Mi
G), the reader will detect

that there is a missing tag, and perform Missing tag step.

� If an attacker blocks the reader's messages from reaching the ith tag Ti, the

server will update TSG while Ti's TSG value will remain the same, thus

causing a desynchronisation in the next session. However, our protocol can

prevent this attack as the server computes an additional message (K) that

contains the current updated value of TSG, and can only be obtained by the

legitimate tag belonging to the group (based on IDG).

4. Tag location tracking: The tags' messages involve fresh random numbers, times-

tamps, and/or updated TSi and TSG values, which means that the responses

are not static. Hence, an attacker will not be able to track the tag's location.

Moreover, even if the ith tag does not update its values, the tag's messages are

randomised with the inclusion of random numbers (rR, ri) and timestamp.

5. Protection against tag impersonation attack: The adversary needs to be in pos-

session of 128-bit secret values, such as IDi, IDG, TSi, and TSG, which are not

sent in clear, in order to impersonate or clone Ti. Moreover, it will take up to

2128 attempts to guess each secret value.

6. Protection against reader impersonation attack: The attacker has to have a valid

digital signature private key to impersonate a legitimate reader. Moreover, even

if the attacker replays previous messages to the tags and impersonates the reader,

the server will detect such an attack.

7. Authentication: The reader veri�es the existence of each tag in the group based

on Mn
G messages, and the server veri�es the legitimacy of each tag in the group

based on Mn
i messages.

136

8. Matching: The reader veri�es that only the tags that belong to the group partic-

ipate in the proof.

9. Veri�cation: To prevent replay attacks on the server side, an encrypted timestamp

is generated by the server and sent to the tags, so an attacker cannot predict future

timestamps as the actual timestamp is encrypted by the server.

10. Concurrency: Reducing time delay by allowing all the tags to compute their

messages without waiting for the other tags' responses; they send their responses

when they receive the reader's messages.

11. Reading order independence: The reader generates the proof using an XoR oper-

ator, so all tags' responses can be veri�ed in random order regardless of the order

in which the tags were scanned.

Inspired by [146], Table 8.3 demonstrates a comparison between our protocol and

the other yoking/grouping-proof protocols in terms of security. As shown in Table 8.3,

the proposed protocol protects the system from di�erent attacks, and provides forward

secrecy. Sundaresan et al.'s protocol [142] provides similar protection but it has major

issues in terms of performance as shown in Table 8.4. In Sundaresan et al.'s protocol the

number of rounds is proportional to the number of tags, the tags need to compute twelve

PRNG functions, and the server needs to perform O(n), computational operations to

authenticate the tags in the group, which implies that their protocol is large in terms

of tag's computing cost and server scalability respectively, making their protocol heavy

to implement.

Inspired by [116] and [146], Table 8.4 illustrates the performance of the proposed

protocols compared with the other grouping-proof only. We took into account the

performance of the RFID tags not the reader. Our protocol is e�cient for the following

reasons: Firstly, our protocol enhances performance by engaging the tags in one round

only and the whole protocol is executed in two rounds as in Moriyama's protocol [143].

However, Moriyama's protocol does not provide forward secrecy; they assumed it is an

open problem. Also, any attacker can impersonate the reader, as the reader does not

provide any proof of its identi�cation to the tag, and obtained the tag's ID, hence tag's

privacy is not achieved. Secondly, our protocol provides concurrency and reading order

independence features that reduce time delay and failure rates respectively. Thirdly,

the performance of our protocol is appropriate for RFID tags, as it does not require

mass memory storage; it stores four values each of which is 128-bit length, and requires

average communication cost as each tag only sends three messages to the reader (384

bits). Fourthly, regarding the server indexing scalability, the server retrieves the tags'

137

Table 8.3: Security comparison of yoking/grouping-proof protocol

Juels
[106]

Saito
[144]

Piramuthu
[145]

Chien
[147]

Bolotny
[148]

Burmester
[149]

Ma
[116]

Sundaresan
[142]

Lien
[18]

Peris-
Lopez
[146]

Moriyama
[143]

Our pro-
tocol 8.3

Forward
secrecy
invasion

× × × × × × × X × × × X

Replay
attack

× × × × × X X X X X X X

Tag imper-
sonation

× × × X X × X X X X X X

Reader im-
personation

× × X × X × X X X X × X

Traceability × X X X X X X X × X × X
X: Means resists such an attack
×: Means does not protect against such an attack

Table 8.4: Tag's performance comparison of grouping-proof protocols

Chien
[147]

Bolotny
[148]

Burmester
[149]

Ma
[116]

Sundaresan
[142]

Lien
[18]

Moriyama
[143]

Our proto-
col 8.3

Rounds n n n n n n 2 2
Messages 5 3 3 5 4 4 4 3
Hashing - 2 2 - - 1 - 6*
PRNG 3 - - 12 12 1 3 1
stored data 2 3 4 4 9 2 3 4
Server retrieving cost O(1) O(n) O(n) O(n) O(n) O(1) O(1) O(1)
Order independent × × × × × X × X
Concurrency × × X × × X X X

*The ith tag might compute 7 hash functions in case it has been de-synchronised
-: Means not applicable, ×: Means does not provide such feature, X: Means provides this
feature

data based on the value of SK, hence the retrieval computing cost for identifying a tag

in the server is O(1).

8.4.2 Formal Protocol Analysis

This section presents the formal analysis of the proposed protocol using CasperFDR

[104] and Scyther [75] tools. The aim of this section is to prove that the data exchanged

between the tag and reader is secure, not to prove the authenticity of the generated

proof.

CasperFDR Analysis of the Proposed Protocol

The script is shown in Appendix D.1. The variables de�ned in the script are :

#Free variables

R, Ti: Agent

S: Server

138

rR, ri: Nonce

IDG, IDi, SK,: Data

h: HashFunction

t: TimeStamp

InverseKeys = (h,h)

The security speci�cations for which CasperFDR evaluated the communication

channel between the reader and a tag is as shown below:

1. Agreement (R, Ti, [SK]), which means that the tag (Ti) is authenticated to the

reader (R), and both parties agree on the data value SK.

2. Secret (S, IDG, [Ti]), and Secret (S, IDi, [Ti]), which means that the value of

IDG and IDi should be secret between the server (S) and the tag (Ti).

The intruder is de�ned to be Mallory, who knows all the entities and the exchanged

random numbers as shown below:

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Server1, Reader, Tagi, Mallory, Rr, Ri, Rm}

The CasperFDR tool evaluated the protocol and did not �nd any attacks.

Scyther Analysis of the Proposed Protocol

Three roles are identi�ed in the script shown in Appendix D.2: a server, a reader and

a tag. The de�ned variables are:

fresh Time: Timestamp;

fresh IDi: Data;

fresh TSi: Data;

fresh IDG: Data;

fresh TSG: Data;

fresh SK: Data;

var ri, rR: Nonce;

Each role speci�es the goals that the protocol attempts to meet. These goals are

within the Claim section. In the protocol, there are, for example, seven Claim goals

139

speci�ed in the tag role as follows:

claim_Ti1(Ti, Secret, IDG);

claim_Ti2(Ti, Secret, TSG);

claim_Ti3(Ti, Secret, IDi);

claim_Ti4(Ti, Secret, TSi);

claim_Ti6(Ti, Alive);

claim_Ti7(Ti, Niagree);

claim_Ti8(Ti, Nisynch);

After running the script, Scyther did not �nd any feasible attacks within bounds,

which means no attack was found within the bounded state space.

8.5 Protocol Implementation and Performance Measure-

ment

In this section, we present the performance measurements of the proposed protocol.

8.5.1 Implementation Process

The tag is provided with four 128-bit secret values namely IDi, TSi, IDG, and TSG,

which are stored in the tag's EEPROM. Similarly, the reader acts as the server and

stores the same values as the tag.

The reader starts by generating a 128-bit random number (rR) using the rngCsp

method and a 64-bit timestamp (t) using the DateTime.Ticks property in .Net Frame-

work. Then, it computes (MR
G) and K, and sends rR, t, MR

G and K to the tag by

sending 28 WriteTagData_EPC_C1G2 commands. When the tag receives the reader's

messages, it generates a random number ri (128-bit) using the built-in PRNG, and

re-computes MR
G. If there is a match, it computes the two messages, namely Mi and

Mi
G, each of which is 128-bit length. Subsequently, the tag writes (ri, Mi and Mi

G)

in its memory using the syscall_writeWord commands ready to be read on demand.

The reader later sends three ReadTagData_EPC_C1G2 commands to read (ri, Mi and

Mi
G), and re-computes Mi

G . If there is a match with the received Mi
G, it generates the

Proof using RSA provided by .NET Framework.

8.5.2 Performance Measurement

The performance measurements are as follows:

140

1. DemoTag memory cost: In the proposed protocol, the memory cost is:

� 348 bytes used from the 4 KB EEPROM memory for storing the tag's data,

messages (responses), and random numbers.

� 33.6 KB used from the 128 KB Flash memory to store the tag's �rmware.

Table 8.5: Data exchange time cost

Tag Reader

Read - 418.36 ms

Write 1.4 ms 2.23 sec

2. Data exchange time cost is shown in Table 8.5: For the tag to write (ri, Mi and

Mi
G) into its memory to be read by the reader, the average timer counter after

running the protocol 100 times is 22548, so, based on equation 3.1, the time cost

is:

22548 ∗ 0.0000000625 = 0.0014sec ≡ 1.4ms (8.1)

Regarding the reader, we found that the reader needs 2.23 sec to write (rR, t, MR
G

and K) into the tag's memory, and 418.36 ms to read the whole tag's responses.

3. DemoTag computing cost: In a successful run of the proposed protocol, the tag

generates a random number, computes three messages, updates two values and

writes the messages in the memory. Table 8.6 shows that the time cost of running

the protocol on the DemoTag is around 9.71 ms.

Table 8.6: Computing operations time cost (milliseconds)

R2 MR
G Mi Mi

G Update Write

Computing cost 0.11 1.65 1.71 1.71 3.13 1.4

Total 9.71

All the other proposed grouping-proof protocols discussed in this chapter did not

present any performance measurements; hence, we could not provide a perfor-

mance comparison with such protocols.

141

8.6 Summary

In this chapter, we discussed another �eld in authenticating a group of RFID tags,

where the server is o�ine during the reading process; this is known as an o�ine RFID

grouping-proof. The challenges in designing a grouping-proof protocol reside in the

absence of the server. Based on the main goals in designing a secure RFID grouping-

proof, we designed a grouping-proof protocol that tackles these challenges with a low

probability of delay in the responses, as the tags respond in two rounds, and do not

need to wait for their predecessor tags' messages, and with a low probability of failure,

as the server veri�es the proof regardless of the order in which the tags were scanned.

Our solution also improves existing related work by protecting the system from active

attacks and providing forward secrecy, which is assumed to be an open problem. We

then informally analysed the proposed protocol and this analysis was subsequently

extended to formal analysis by CasperFDR and Scyther. Finally, we implemented the

proposed protocol in order to measure the performance of the tag's limited memory

and computing resources, and the results showed that the protocol can be implemented

with a relatively low memory and computing costs.

142

Chapter 9

Conclusion and Future Work

Contents

9.1 Summary and Conclusions . 144

9.2 Re�ection on Citations . 146

9.3 Future Work . 147

In this chapter we conclude the thesis by summarising our contributions and dis-

cussing potential future work.

143

9.1 Summary and Conclusions

The focus of this thesis directed towards the security and privacy concerns relating

to the use of passive RFID tags. Providing a lightweight mutual authentication for

RFID tags in di�erent schemes is a very active research area, which has resulted in the

publication of hundreds of RFID authentication protocols. Many of these RFID mutual

authentication protocols claim to be secure in the presence of a malicious agent, who is

assumed to have complete control over the communications network. Unfortunately, we

found that some of the protocols that have been suggested, do not succeed in their stated

goals. Hence, in this thesis, we focused on proposing mutual authentication protocols

that provide adequate levels of security and privacy for several RFID schemes, and avoid

the weaknesses found in related work. We formally analysed some of the protocols'

main goals such as providing protection against data leakage, replay and impersonation

attacks, and preserving the privacy of the transmitted data.

The �ve main contributions are listed below:

� One way to avoid replay attacks, forward secrecy invasion and tracking the lo-

cation of the tag's holder is to update the tag's data on the server and the tag

after each successful session. However, updating a tag's data comes with a cost.

If the receiver does not receive a response, it will not update the data, resulting in

a data desynchronisation in the next session, as the sender has already updated

its data. We discovered that data desynchronisation attacks can be applied to

one of the widely cited RFID mutual authentication protocols [39, 89]. Although

the Song protocol updates the data after a successful authentication session and

the server stores the old and new tag's data, it is vulnerable to data desynchro-

nisation, as the server updates the data even if the received data matches the

old values. Therefore, an adversary can easily cause synchronisation failure by

intercepting and blocking messages during transmission in two or more consec-

utive sessions, resulting in mismatched values. Hence, we proposed a modi�ed

data update process that mitigates the data desynchronisation incidents. This

contribution is discussed in Chapter 4 and published in [66]. We also found that

this attack can be applied in other proposals such as [103, 102].

� Besides reviewing the Song protocol, we reviewed other proposals in the �eld of

RFID mutual authentication protocols. We found that attacks on RFID mutual

authentication proposals are still ongoing, and these weaknesses in other's proto-

cols formed a benchmark for us to propose a new RFID mutual authentication

protocol that improves upon such weaknesses. The wireless communication chan-

nel between reader and tag may allow an attacker to perform active attacks, such

144

as replay, impersonation, DoS, location tracking, forward secrecy invasion, and

compromising a tag's privacy. The proposed RFID mutual authentication proto-

col attempted to provide immunity against such attacks and has been formally

analysed to con�rm that it achieves the desired protection. The performance of

our protocol has been measured to prove its e�ciency. This contribution is shown

in Chapter 5 and published in [150].

� In RFID-enabled supply chains, hundreds or even thousands of tagged items need

to be tracked and identi�ed remotely. Normally, in supply chain practice, there

is a lack of trust between the parties involved, as the products' owner may not

know the next owner. Moreover, for the RFID reader to identify each passively

tagged item, the wireless channel between the reader and tags is vulnerable to

active attacks. One solution to such issues is to encrypt the data with a secret

key. However, the question remains of how to distribute the secret key securely

between such parties, and protect the tagged items' data in transit. To this end,

we proposed using Shamir's [127] secret-sharing approach (threshold scheme),

where the secret key is divided into shares that, individually, do not provide any

useful information about the secret. Each tag stores one share in its memory.

In our proposal, the tag's ID is encrypted with a secret key, which is not stored

in the tag. To extract the tag's ID, the reader must collect su�cient shares

to decrypt the tag's encoded-ID. Moreover, to allow the next owner to change

the threshold scheme, we proposed a secret key update protocol incorporating a

resynchronisation capability to counter the disruptive e�ects of location tracking,

replay attacks and desynchronisation incidents. This contribution is illustrated in

Chapter 6 and published in [126].

� So far in this thesis, the discussed proposals suit a conventional RFID deployment

with the assumption of a secure server. However, many physical servers are being

migrated to cloud solutions, so we investigated this aspect in Chapter 7. Cloud

computing represents a new era in information technology that presents substan-

tial bene�ts to sectors and organisations. Processing and storing RFID tags data

in the cloud provides a promising solution with powerful computing and massive

storage ability. Nevertheless, con�dentiality and privacy are regarded as two of

the main concerns in cloud computing. Cloud-based RFID has gained relatively

little attention in the literature. Hence, we attempted to review the current work.

We found that the �rst proposal to protect tags' data from an untrusted cloud

provider is vulnerable to reader-to-tag impersonation attacks, and man-in-the-

middle attacks. Hence, we proposed an enhanced version of their protocol that

145

takes into account such vulnerabilities. The proposed protocol was formally anal-

ysed to provide an indicative results about its security, and implemented to show

its e�ciency. This contribution is published in [77].

� To this point we had only considered security protocols, where there is only one

tag being read at a time. However, there are other applications that require a

group of items to be presented for reading. Reading all the tags in a group should

be done within a speci�c time period and there must be no way for an illegitimate

tag to join the group. These issues are addressed under the research heading

of �grouping proofs�, which are considered in Chapter 8. The grouping-proof is

normally generated by the reader to con�rm the legitimacy and the simultaneous

presence of the tagged items in the group. The challenge in designing such proofs

is that the server that authenticates the proof is not present during the scanning

process, and this could allow a fake tag to participate in the group, which means

the proof should be completed within a time window. Furthermore, the wireless

communication between the reader and the tags is prone to active attacks. Hence,

we proposed an RFID grouping-proof that involves only two rounds to generate

the proof, and provides immunity against the attacks found in the literature.

The proposed protocol has been formally analysed and implemented to prove its

secrecy and e�ciency respectively. This contribution is published in [151].

9.2 Re�ection on Citations

During my PhD six papers were submitted: four to international conferences [66, 126,

152, 151], one to a workshop [77] and one to a journal [150]. Some of these published

papers have been cited in scienti�c papers as shown below.

Our proposals [66, 126, 77] were cited in [45, 92, 91]. Based on the data desynchro-

nisation, reader impersonation, man-in-the-middle attacks, and location tracking that

we found in the Song protocol [89], Cai et al. key update protocol [70], and in the

cloud-based RFID protocol [130], [45, 92, 91] designed their own protocol taking into

account the attacks we found.

In [125, 45], the authors criticised the assumptions we made in designing our pro-

tocols in [126, 77]. For example, in [126], we assumed that the attacker cannot obtain

enough shares from the tags in transit to recover the secret key in the RFID-enabled

supply chain; while in [125], the authors assumed that the attacker can obtain such

shares. They therefore proposed using dummy tags that contain a random (bogus)

secret share when the tags are transferred between the supply chain parties. In [77],

we assumed that the communication channel between the reader and cloud server is

146

secure in RFID cloud-based systems; in [45], the authors contradicted our assumption

and assumed that the channel between the cloud and a mobile reader is not secure.

Hence, their protocol attempted to protect the data in transit between tag-reader and

mobile reader-cloud server. These assumptions will be taken into account in proposing

future protocols that will extend and enhance our current proposals.

9.3 Future Work

There is potential for further research into topics discussed in the thesis as follows:

� Deploying the Universal Composable (UC) Framework for analysis purposes:

In this thesis, we analysed the proposed protocols using formal analysis tools

such as CasperFDR and Scyther. Both tools work under the assumption of per-

fect cryptography and use the Dolev-Yao model [67] as the threat model. Some

issues have been found in CasperFDR, such as state space explosion, where the

state space grows exponentially with the number of runs, and exploration be-

comes infeasible. For instance, when the number of protocols run, the amount

of data used, or the number of speci�cation goals are high, the memory may

run o� and the FDR checker will stop working. In Scyther, similar issues have

arisen, especially with heavy protocols that require many runs of the protocol in

parallel. Moreover, these tools do not provide checking with regard to privacy,

such as untraceability and forward secrecy. Finally, the data desynchronisation

attack that was discussed in Section 4.2, is a post-protocol process (not within

the communication channel) that cannot be checked by CasperFDR and Scyther.

Another method for formally analysing the security protocols is called a �Universal

Composable Framework� (UC) [153]. In the UC framework, there is an ideal

process that conducts the protocol's tasks in a secure way, where all the parties

send their inputs to a trusted third entity that processes the inputs, and then

sends back the outputs to these parties. An adversary S is restricted to corrupting

some of the parties and blocking messages. This can be regarded as the security

requirements of the protocol. In the real-life protocol, the parties carry out the

protocol execution and generate the outputs. Then, the UC framework compares

a real-life execution of a protocol with the ideal process. If running the protocol in

the real-life model amounts to �emulating� the ideal process for that task, then the

protocol is considered as secure. The UC framework includes de�nitions of some

common cryptographic tasks, such as authenticated and secure communication,

key-exchange, public-key encryption, signature, commitment, oblivious transfer,

147

zero-knowledge, secret sharing, and general function evaluation.

� Studying a wider range of physical attacks:

The proposals in this thesis consider active attacks. However, physical attacks

such as side channel attacks, power analysis, and tra�c analysis were not taken

into account. A study on these attacks and taking them into consideration when

designing a secure RFID system will form part of future work.

� Server scalability:

Most of the proposed RFID protocols focused on the tag's performance and ig-

nored the server scalability performance. When a server receives a tag's message

it searches the whole database to �nd a match with the received message, and this

could exhaust the server's computing capability. More speci�cally, performing an

exhaustive search to identify individual tags is di�cult when the number of tags

is large. Some of the techniques that already are deployed include binary search

[154], and hash tables [100]. Utilising such techniques in RFID protocols will be

a related part of future work.

148

Bibliography

[1] P. Peris López, �Lightweight cryptography in radio frequency identi�cation

(RFID) systems,� Ph.D. dissertation, Carlos III University of Madrid, 2008.

[2] G. Lowe, �Breaking and �xing the Needham-Schroeder public-key protocol using

FDR�, in Tools and Algorithms for the Construction and Analysis of Systems,

Springer, 1996, pp. 147�166.

[3] A. Mathuria, G. Sriram, �New attacks on ISO key establishment protocols�, in

IACR Cryptology ePrint Archive, Citeseer, 2008.

[4] G. Bertoni, J. Daemen, M. Peeters, G. Assche, �Keccak�, in Annual International

Conference on the Theory and Applications of Cryptographic Techniques, Springer,

2013, pp. 313�314.

[5] H. Gilbert, M. Robshaw, Y. Seurin, �Good variants of HB+ are hard to �nd�, in

International Conference on Financial Cryptography and Data Security, Springer,

2008, pp. 156�170.

[6] H. Gilbert, M. Robshaw, Y. Seurin, �Active attack against HB+: a provably

secure lightweight authentication protocol�, in Electronics Letters, The Institution

of Engineering & Technology, vol. 41, no. 21, pp. 1, 2005.

[7] , A. Juels, S. Weis, �Authenticating pervasive devices with human protocols�, in

Annual International Cryptology Conference, Springer, 2005, pp. 293�308.

[8] N. Hopper, M. Blum, �Secure human identi�cation protocols�, in International

Conference on the Theory and Application of Cryptology and Information Secu-

rity, Springer, 2001, pp. 52�66.

[9] L. Kulseng, Z. Yu, Y. Wei, Y, Guan, �Lightweight mutual authentication and

ownership transfer for RFID systems�, in IEEE Proceedings INFOCOM, IEEE,

2010, pp. 1�5.

149

[10] S. Kardas, Suleyman and M. Akgün, M. Kiraz, H. Demirci, �Cryptanalysis of

lightweight mutual authentication and ownership transfer for RFID systems�, in

Workshop on Lightweight Security & Privacy: Devices, Protocols and Applications

(LightSec), IEEE, 2011, pp. 20�25.

[11] D. Holcomb, W. Burleson, K. Fu, Kevin, �Initial SRAM state as a �ngerprint and

source of true random numbers for RFID tags�, in Proceedings of the Conference

on RFID Security, Springer, 2007.

[12] T. Karygiannis, B. Eydt, G. Barber, L. Bunn, T. Phillips, �Guidelines for secur-

ing radio frequency identi�cation (RFID) systems�, in NIST Special publication,

vol. 80, 2007, pp. 1�154.

[13] X. Leng, K. Mayes, K. Markantonakis, �HB-MP+ protocol: An improvement on

the HB-MP protocol�, in IEEE International Conference on RFID, IEEE, 2008,

pp. 118�124.

[14] G. Lowe, B. Roscoe, �Using CSP to detect errors in the TMN protocol�, in IEEE

Transactions on Software Engineering, vol. 23, no. 10, pp. 659�669, 1997.

[15] H. Kim, I. Kim, K. Han, J. Choi, �Security and privacy analysis of RFID systems

using model checking�, in High Performance Computing and Communications,

Springer, 2006, pp. 495�504.

[16] A. Juels, R. Rivest, M. Szydlo, �The Blocker Tag: Selective Blocking of RFID Tags

for Consumer Privacy�, in Proceedings of the 10th ACM Conference on Computer

and Communications Security, ACM, 2003, pp. 103�111.

[17] A. Mitrokotsa, M. Rieback, A. Tanenbaum, �Classifying RFID attacks and de-

fences�, in Information Systems Frontiers, vol. 12, no. 5, pp. 491�505, 2010.

[18] Y. Lien, X. Leng, K. Mayes, J. Chiu, �Reading order independent grouping proof

for RFID tags�, in IEEE International Conference on Intelligence and Security

Informatics (ISI 2008), IEEE, 2008, pp. 128�136.

[19] T. Li, P. Peris-Lopez, L. Hernandez-Castro, Security and Trends in Wireless Iden-

ti�cation and Sensing Platform Tags: Advancements in RFID, in Information

Science Reference, 2013.

[20] C. Hoare, �Communicating Sequential Processes�, Springer, 1978.

[21] Manual, �Failures-Divergence Re�nement�, in Formal Systems (Europe) Ltd., Ox-

ford University Computing Laboratory, 9 edition, 2000.

150

[22] M. Roberti, �The history of RFID technology,� RFID journal, vol. 16, no. 01,

2005.

[23] H. Stockman, �Communication by means of re�ected power,� Proceedings of the

IRE, vol. 36, no. 10, pp. 1196�1204, 1948.

[24] S. A. Weis, �RFID(radio frequency identi�cation): Principles and applications,�

System, vol. 2, p. 3Principles, 2007.

[25] M. R. Rieback, B. Crispo, and A. S. Tanenbaum, �The evolution of RFID security,�

IEEE Pervasive Computing, vol. 5, no. 1, pp. 62�69, 2006.

[26] R. Das and H. P. (2015, October) RFID forecasts, players and opportunities

2016-2026. IDTechEX. [Online]. Available: http://www.idtechex.com/research/

reports/r�d-forecasts-players-and-opportunities-2016-2026-000451.asp

[27] RFID for Item Management. ISO/IEC 18000, International Organization for

Standardization (ISO) Std., 2004.

[28] EPC Radio-Frequency Identity Protocols Generation-2 UHF RFID Speci�cation

for RFID Air Interface Protocol for Communications at 860-960 MHz Version

2.0.0 Rati�ed, EPCGlobal, 2013.

[29] D. Klair, K. Chin, R. Raad, �A survey and tutorial of RFID anti-collision proto-

cols�, in IEEE, Communications Surveys & Tutorials, vol. 12, no. 3, pp. 400�421,

[30] P. Nikitin, K. Rao, �Helical antenna for handheld UHF RFID reader�, in IEEE

International Conference on RFID (IEEE RFID 2010), IEEE, 2010, pp. 166�173.

[31] S. Sandoval-Reyes, J. Perez, �Mobile RFID reader with database wireless syn-

chronization�, in The 2nd International Conference on Electrical and Electronics

Engineering, IEEE, 2005, pp. 5�8.

[32] Identi�cation cards �Contactless integrated circuit(s) cards � Proximity cards.

ISO/IEC 14443, International Organization for Standardization (ISO) Std., 2003.

[33] H. Lehpamer, �RFID design principles�, Artech House, 2012.

[34] Identi�cation cards �Contactless integrated circuit(s) cards � Vicinity cards.

ISO/IEC 15693, International Organization for Standardization (ISO) Std., 2003.

[35] �EPC radio-frequency identity protocols class-1 generation-2 UHF RFID

protocol for communications at 860 MHz-960 MHz,� 2008. [On-

line]. Available: http://www.gs1.org/sites/default/�les/docs/epc/uhfc1g2_1_

0_9-standard-20050126.pdf

151

[36] S. E. Sarma, S. A. Weis, and D. W. Engels, Cryptographic Hardware and Embedded

Systems - CHES 2002: 4th International Workshop Redwood Shores, CA, USA,

August 13-15, 2002 Revised Papers. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2003, ch. RFID Systems and Security and Privacy Implications, pp.

454�469. [Online]. Available: http://dx.doi.org/10.1007/3-540-36400-5_33

[37] J. Waldrop, D. W. Engels, and S. E. Sarma, �Colorwave: A mac for r�d reader net-

works,� in Wireless Communications and Networking, 2003. WCNC 2003. 2003

IEEE, vol. 3. IEEE, 2003, pp. 1701�1704.

[38] Z. Bilal, �Addressing security and privacy issues in low-cost RFID systems,� Ph.D.

dissertation, Royal Holloway, University of London, 2015.

[39] B. Song, �RFID authentication protocols using symmetric cryptography,� Ph.D.

dissertation, Royal Holloway, University of London, December 2009.

[40] B. Schneier, Applied cryptography: protocols, algorithms, and source code in C.

john wiley & sons, 2007.

[41] S. Devadas, E. Suh, S. Paral, R. Sowell, T. Ziola, and V. Khandelwal, �Design and

implementation of PUF-based �unclonable� RFID ICs for anti-counterfeiting and

security applications,� in 2008 IEEE International Conference on RFID. IEEE,

2008, pp. 58�64.

[42] P. Tuyls and L. Batina, �R�d-tags for anti-counterfeiting,� in Cryptographers'

Track at the RSA Conference. Springer, 2006, pp. 115�131.

[43] L. Bolotnyy and G. Robins, �Physically unclonable function-based security and

privacy in RFID systems,� in Fifth Annual IEEE International Conference on

Pervasive Computing and Communications (PerCom'07). IEEE, 2007, pp. 211�

220.

[44] A.-R. Sadeghi and D. Naccache, Towards Hardware-Intrinsic Security: Founda-

tions and Practice. Springer-Verlag New York, Inc., 2010.

[45] Q. Dong, J. Tong, Y. Chen, �Cloud-Based RFID Mutual Authentication Proto-

col without Leaking Location Privacy to the Cloud�, in International Journal of

Distributed Sensor Networks. Hindawi Publishing Corporation, 2015.

[46] F. Armknecht, R. Maes, A.-R. Sadeghi, B. Sunar, and P. Tuyls, �Memory

leakage-resilient encryption based on physically unclonable functions,� in Towards

Hardware-Intrinsic Security. Springer, 2010, pp. 135�164.

152

[47] J. Bringer, H. Chabanne, and T. Icart, �Improved privacy of the tree-based hash

protocols using physically unclonable function,� in International Conference on

Security and Cryptography for Networks. Springer, 2008, pp. 77�91.

[48] M. Akgun and M. U. Caglayan, �PUF based scalable private RFID authentica-

tion,� in Sixth International Conference on Availability, Reliability and Security

(ARES 2011). IEEE, 2011, pp. 473�478.

[49] M. Akgün and M. U. ÇaÇ§layan, �Providing destructive privacy and scalability

in RFID systems using PUFs,� Ad Hoc Networks, vol. 32, pp. 32�42, 2015.

[50] J. Bringer, H. Chabanne, and E. Dottax, �Hb++: a lightweight authentication

protocol secure against some attacks,� in Second International Workshop on Se-

curity, Privacy and Trust in Pervasive and Ubiquitous Computing (SecPerU'06).

IEEE, 2006, pp. 28�33.

[51] S. Piramuthu, �HB and related lightweight authentication protocols for secure

RFID tag/reader authentication,� CollECTeR Europe 2006, p. 239, 2006.

[52] J. Munilla and A. Peinado, �HB-MP: A further step in the HB-family of

lightweight authentication protocols,� Computer Networks, vol. 51, no. 9, pp.

2262�2267, 2007.

[53] E. Pagnin, A. Yang, G. Hancke, A. Mitrokotsa, �Hb+db mitigating man-in-the-

middle attacks against HB+ with distance bounding,� in Proceedings of the 8th

ACM Conference on Security & Privacy in Wireless and Mobile Networks. ACM,

2015.

[54] H. Yoshida, D. Watanabe, K. Okeya, J. Kitahara, H. Wu, Ö. Küçük, and

B. Preneel, MAME: A compression function with reduced hardware requirements.

Springer, 2007.

[55] J.-P. Aumasson, L. Henzen, W. Meier, and M. Naya-Plasencia, �Quark: A

lightweight hash.� in CHES, vol. 6225. Springer, 2010, pp. 1�15.

[56] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. Rob-

shaw, Y. Seurin, and C. Vikkelsoe, PRESENT: An ultra-lightweight block cipher.

in International Workshop on Cryptographic Hardware and Embedded Systems,

Springer, 2007, pp. 450�466.

[57] C. Rolfes, A. Poschmann, G. Leander, C. Paar, �Ultra-lightweight implementa-

tions for smart devices�security for 1000 gate equivalents� in International Confer-

153

ence on Smart Card Research and Advanced Applications. Springer, 2008, pp.89�

203.

[58] A. Bogdanov, G. Leander, C. Paar, A. Poschmann, M. J. Robshaw, and Y. Seurin,

�Hash functions and RFID tags: Mind the gap,� in Cryptographic Hardware and

Embedded Systems�CHES 2008. Springer, 2008, pp. 283�299.

[59] C. De Cannière, O. Dunkelman, and M. Kneºevi¢, KATAN and KTANTAN � A

Family of Small and E�cient Hardware-Oriented Block Ciphers, 2009.

[60] K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and T. Shirai,

Piccolo: An Ultra-Lightweight Blockcipher. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2011, pp. 342�357.

[61] M. O'Neill, �Low-cost SHA-1 hash function architecture for RFID tags,� RFIDSec,

vol. 8, pp. 41�51, 2008.

[62] A. Bogdanov, M. Kneºevi¢, G. Leander, D. Toz, K. Var�c�, and I. Verbauwhede,

�SPONGENT: A lightweight hash function,� in Cryptographic Hardware and Em-

bedded Systems�CHES 2011. Springer, 2011, pp. 312�325.

[63] J. Guo, T. Peyrin, and A. Poschmann, �The PHOTON family of lightweight hash

functions,� in Advances in Cryptology�CRYPTO 2011. Springer, 2011, pp. 222�

239.

[64] P. Pessl and M. Hutter, �Pushing the limits of SHA-3 hardware implementations

to �t on RFID,� in Cryptographic Hardware and Embedded Systems-CHES 2013.

Springer, 2013, pp. 126�141.

[65] B. Abdolmaleki, K. Baghery, B. Akhbari, and M. Aref, �Cryptanalysis of two

EPC-based RFID security schemes,� in International ISC Conference on Infor-

mation Security and Cryptology � ISCISC 2015. IEEE, September 2015, pp.

1�6.

[66] S. Abughazalah, K. Markantonakis, and K. Mayes, �A vulnerability in the Song

authentication protocol for low-cost RFID tags,� in Security and Privacy Protec-

tion in Information Processing Systems: 28th IFIP TC 11 International Confer-

ence, SEC 2013. Springer, 2013, pp. 102�110.

[67] D. Dolev and A. Yao, �On the security of public key protocols�, in IEEE Trans-

actions on Information Theory, vol. 29, no. 2, pp. 198�208, IEEE, 1983.

154

[68] M. Akgun and U. Caglayan, �Weaknesses of two RFID protocols regarding de-

synchronization attacks,� in International Wireless Communications and Mobile

Computing Conference (IWCMC 2015). Dubrovnik, Croatia: IEEE, August

2015.

[69] G. Avoine, �Adversarial model for radio frequency identi�cation.� IACR Cryptol-

ogy ePrint Archive, vol. 2005, p. 49, 2005.

[70] S. Cai, T. Li, C. Ma, Y. Li, and R. Deng, �Enabling secure secret updating for

unidirectional key distribution in RFID-enabled supply chains,� in Information

and Communications Security, ser. Lecture Notes in Computer Science, S. Qing,

C. Mitchell, and G. Wang, Eds. Springer Berlin Heidelberg, 2009, vol. 5927, pp.

150�164. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-11145-7_13

[71] K. Oua� and R. Phan, �Traceable privacy of recent provably-secure RFID

protocols,� in Applied Cryptography and Network Security, ser. Lecture Notes in

Computer Science, S. Bellovin, R. Gennaro, A. Keromytis, and M. Yung, Eds.

Springer Berlin Heidelberg, 2008, vol. 5037, pp. 479�489. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-68914-0_29

[72] P. Peris-Lopez, J. Hernandez-Castro, J. Tapiador, and J. Lubbe, �Cryptanalysis

of an {EPC} Class-1 Generation-2 standard compliant authentication protocol,�

Engineering Applications of Arti�cial Intelligence, vol. 24, no. 6, pp. 1061 �

1069, 2011. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S0952197611000613

[73] P. Rizomiliotis, E. Rekleitis, and S. Gritzalis, �Security analysis of the Song-

Mitchell authentication protocol for low-cost RFID tags,� Communications Let-

ters, IEEE, vol. 13, no. 4, pp. 274�276, April 2009.

[74] M. Safkhani, N. Bagheri, and M. Naderi, �Strengthening the security of EPC C-1

G-2 RFID standard,� Wireless Personal Communications, vol. 72, no. 2, pp. 1295�

1308, 2013. [Online]. Available: http://dx.doi.org/10.1007/s11277-013-1078-z

[75] C. J. Cremers, �The Scyther tool: Veri�cation, falsi�cation, and analysis of secu-

rity protocols,� in Computer Aided Veri�cation. Springer, 2008, pp. 414�418.

[76] R. Patel, B. Borisaniya, A. Patel, D. Patel, M. Rajarajan, and A. Zisman, �Com-

parative analysis of formal model checking tools for security protocol veri�cation,�

in Recent Trends in Network Security and Applications. Springer, 2010, pp. 152�

163.

155

[77] S. Abughazalah, K. Markantonakis, and K. Mayes, �Secure improved cloud-

based RFID authentication protocol,� in The 9th International Workshop on

Data Privacy Management (DPM), J. Garcia-Alfaro, J. Herrera-Joancomartí,

E. Lupu, J. Posegga, A. Aldini, F. Martinelli, and N. Suri, Eds.

Springer Berlin Heidelberg, 2015, vol. 53, pp. 147�164. [Online]. Available:

http://dx.doi.org/10.1007/978-3-319-17016-9_10

[78] M. Aiash, G. Mapp, A. Lasebae, R. Phan, and J. Loo, �A formally veri�ed AKA

protocol for vertical handover in heterogeneous environments using Casper/FDR,�

EURASIP Journal on Wireless Communications and Networking, vol. 2012, no. 1,

pp. 1�23, 2012.

[79] A. K. Ranjan, V. Kumar, and M. Hussain, �Security analysis of TLS authenti-

cation,� in Contemporary Computing and Informatics (IC3I), 2014 International

Conference on. IEEE, 2014, pp. 1356�1360.

[80] A. M. Taha, A. T. Abdel-Hamid, and S. Tahar, �Formal veri�cation of IEEE

802.16 security sublayer using Scyther tool,� in Network and Service Security,

2009. N2S'09. International Conference on. IEEE, 2009, pp. 1�5.

[81] S. Xu, C.-T. Huang, and M. M. Matthews, �Modeling and analysis of IEEE 802.16

PKM protocols using CasperFDR,� in Wireless Communication Systems. 2008.

ISWCS'08. IEEE International Symposium on. IEEE, 2008, pp. 653�657.

[82] A. Alshehri and S. Schneider, �Formally de�ning NFC M-coupon requirements,

with a case study,� in The 8th International Conference for Internet Technology

and Secured Transactions (ICITST). IEEE, 2013, pp. 52�58.

[83] C. Cremers and S. Mauw, Operational semantics and veri�cation of security pro-

tocols. Springer Science & Business Media, 2012.

[84] M. Aigner, T. Plos, and S. Coluccini, �Secure semi-passive RFID tags � prototype

and analysis,� Bridge Project, Tech. Rep., 2008.

[85] CAEN, R1260I - Slate, http://www.caenr�d.it/en/CaenProd.jsp?idmod=753&

parent=73.

[86] CrossWorks for AVR, Online, Rowley Associates Ltd., http://www.rowley.co.uk/

avr/.

[87] AVR-Crypto-Lib, Online, https://www.das-labor.org/wiki/AVR-Crypto-Lib/en.

156

[88] DT830 Series 3 1/2 Digital Multimeter, OEM & ODM manufacturer of test

& measurement instruments. [Online]. Available: https://www.rapidonline.com/

pdf/DT-830B_v1.pdf

[89] B. Song and C. J. Mitchell, �RFID authentication protocol for low-cost tags,�

in Proceedings of the First ACM Conference on Wireless Network Security, ser.

WiSec '08. New York, NY, USA: ACM, 2008, pp. 140�147.

[90] M. R. Rieback, B. Crispo, and A. S. Tanenbaum, �RFID guardian: A battery-

powered mobile device for r�d privacy management,� in Information Security and

Privacy. Springer, 2005, pp. 184�194.

[91] A. Al-Adhami, M. Ambroze, I. Stengel, M. Tomlinson, �A Quorum RFID System

Using Threshold Cryptosystem,� in IEEE 4th International Conference on Future

Internet of Things and Cloud (FiCloud). IEEE, 2016, pp. 107�113.

[92] P. Bonnefoi, P. Dusart, D. Sauveron, R. Akram, K. Markantonakis, �A Set of

E�cient Privacy Protection Enforcing Lightweight Authentication Protocols for

Low-Cost RFID Tags,� in Trustcom/BigDataSE/ISPA, IEEE, 2015, pp. 612�620.

[93] S. A. Weis, �Security and privacy in radio-frequency identi�cation devices,� Ph.D.

dissertation, Massachusetts Institute of Technology, 2003.

[94] S. Weis, S. Sarma, R. Rivest, and D. Engels, �Security and privacy aspects of low-

cost radio frequency identi�cation systems,� in Security in pervasive computing.

Springer, 2004, pp. 201�212.

[95] H. Chien and C. Chen, �Mutual authentication protocol for RFID conforming to

EPC Class 1 Generation 2 Standards,� Computer Standards Interfaces, vol. 29,

no. 2, pp. 254�259, 2007.

[96] M. Ohkubo, K. Suzuki, S. Kinoshita et al., �Cryptographic approach to 2.privacy-

friendly3. tags,� in RFID privacy workshop, vol. 82. Cambridge, USA, 2003.

[97] G. Avoine, E. Dysli, P. Oechslin et al., �Reducing time complexity in RFID sys-

tems,� in Selected Areas in Cryptography, vol. 3897. Springer, 2005, pp. 291�306.

[98] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-Tapiador, and A. Rib-

agorda, �Cryptanalysis of a novel authentication protocol conforming to EPC-

C1G2 standard,� Computer Standards & Interfaces, vol. 31, no. 2, pp. 372�380,

2009.

157

[99] X. Yi, L. Wang, D. Mao, and Y. Zhan, �An Gen2 based security authentication

protocol for RFID system,� Physics Procedia, vol. 24, pp. 1385�1391, 2012.

[100] J. Korsh, Data Structures, Algorithms and Program Style, PWS Publishing Co.,

1986.

[101] M. Safkhani, N. Bagheri, P. Peris-Lopez, A. Mitrokotsa, and J. C. Hernandez-

Castro, �Weaknesses in another Gen2-based RFID authentication protocol,� in

RFID-Technologies and Applications (RFID-TA), 2012 IEEE International Con-

ference on, Nov 2012, pp. 80�84.

[102] M. A. B. Shemaili, C. Y. Yeun, and M. J. Zemerly, �RFID lightweight mutual

authentication using shrinking generator,� in Internet Technology and Secured

Transactions, 2009. ICITST 2009. International Conference for. IEEE, 2009,

pp. 1�6.

[103] Y. HanataniI, M. Ohkubo, S. Matsuo, K. Sakiyama, K. Ohta, �A Study on Com-

putational Formal Veri�cation for Practical Cryptographic Protocol: The Case

of Synchronous RFID Authentication�, in Financial Cryptography and Data Se-

curity: FC 2011 Workshops, Springer Berlin Heidelberg, 2012, pp. 70�87.

[104] G. Lowe, �Casper: A compiler for the analysis of security protocols�, in IEEE

10th Proceedings on Computer Security Foundations Workshop, IEEE, 1997, pp.

18�30.

[105] T.-C. Yeh, Y.-J. Wang, T.-C. Kuo, and S.-S. Wang, �Securing RFID systems

conforming to EPC Class 1 Generation 2 standard,� Expert Systems with Appli-

cations, vol. 37, no. 12, pp. 7678�7683, 2010.

[106] A. Juels, �Yoking-Proofs for RFID tags�, in Proceedings of the Second IEEE An-

nual Conference on Pervasive Computing and Communications Workshops, IEEE,

2004, pp. 138�143.

[107] A. Juels, R. Pappu, B. Parno, �Unidirectional key distribution across time and

space with applications to RFID security�, in Proceedings of the 17th conference

on Security symposium, USENIX Association, 2008, pp. 75�90.

[108] M. Langheinrich, R. Marti, �Practical minimalist cryptography for RFID privacy�,

in IEEE Systems Journal, vol. 1, no. 2, pp. 115�128, 2007.

[109] R. McEliece, D. Sarwate, �On Sharing Secrets and Reed-Solomon Codes�, in ACM

Commun., vol. 24, no. 9, pp. 583�584, 1981.

158

[110] T. Dimitriou, �A Lightweight RFID Protocol to protect against Traceability and

Cloning attacks�, in First International Conference on Security and Privacy for

Emerging Areas in Communications Networks, (SecureComm 2005), Springer,

2005, pp. 59�66.

[111] K. Finkenzeller, �RFID Handbook: Radio-frequency identi�cation fundamentals

and applications�, Wiley, 1999.

[112] J. Hernandez-Castro, P. Peris-Lopez, M. Safkhani, N. Bagheri, M. Naderi, �An-

other Fallen Hash-Based RFID Authentication Protocol�, in The 6th IFIP WG

11.2 International Workshop, Information Security Theory and Practice. Security,

Privacy and Trust in Computing Systems and Ambient Intelligent Ecosystems,

(WISTP 2012), Springer, 2012, pp. 29�37.

[113] S. Cai, Y. Li, T. Li, R. Deng, �Attacks and improvements to an RFID mutual

authentication protocol and its extensions�, in Proceedings of the second ACM

conference on Wireless network security, ACM, 2009, pp. 51�58.

[114] D. Duc, J. Park, H. Lee, K. Kim, �Enhancing security of EPCglobal Gen-2 RFID

tag against traceability and cloning�, in CS-Conference Papeers, Institute of Elec-

tronics, Information and Communication Engineers, 2006.

[115] D. Molnar, D. Wagner, �Privacy and security in library RFID: Issues, practices,

and architectures�, in Proceedings of the 11th ACM conference on Computer and

communications security, ACM, 2004, pp. 210�219.

[116] C. Ma, J. Lin, Y. Wang, M. Shang, �O�ine RFID grouping proofs with trusted

timestamps�, in IEEE 11th International Conference on Trust, Security and Pri-

vacy in Computing and Communications (TrustCom), IEEE, 2012, pp. 674�681.

[117] E. Yoon, �Improvement of the securing RFID systems conforming to EPC Class

1 Generation 2 Standard,� Expert Systems with Applications, vol. 39, no. 1, pp.

1589�1594, 2012.

[118] M. Safkhani, N. Bagheri, S. K. Sanadhya, and M. Naderi, �Cryptanalysis of im-

proved Yeh et al.'s authentication protocol: An EPC Class-1 Generation-2 stan-

dard compliant protocol,� IACR Cryptology ePrint Archive, vol. 2011, p. 426,

2011.

[119] G. Avoine and X. Carpent, �Yet another ultralightweight authentication protocol

that is broken,� in Cryptology ePrint Archive, Report 2011/691. Also, in Workshop

on RFID Security RFIDSec12, Nijmegen, Netherlands, June 2012, 2012.

159

[120] G. Avoine, X. Carpent, and J. Hernandez-Castro, �Pitfalls in ultralightweight au-

thentication protocol designs,� IEEE Transactions on Mobile Computing, vol. PP,

no. 99, 2015.

[121] S. A. Weis, S. E. Sarma, R. L. Rivest, and D. W. Engels, �Security and privacy

aspects of low-cost radio frequency identi�cation systems,� in Security in pervasive

computing. Springer, 2004, pp. 201�212.

[122] G. Poulopoulos, K. Markantonakis, and K. Mayes, �A Secure and E�cient Mutual

Authentication Protocol for Low-Cost RFID Systems,� in International Confer-

ence on Availability, Reliability and Security (ARES'09). IEEE, 2009, pp. 706�

711.

[123] J. Shi, S. M. Kywe, and Y. Li, �Batch clone detection in RFID-enabled supply

chain,� in IEEE International Conference on RFID (IEEE RFID), April 2014,

pp. 118�125.

[124] P. Lopez, J. Hernandez-Castro, J. Estevez-Tapiador, A. Ribagorda, �Solving the

simultaneous scanning problem anonymously: clumping proofs for RFID tags�, in

Third International Workshop on Security, Privacy and Trust in Pervasive and

Ubiquitous Computing (SECPerU 2007), IEEE, 2007, pp. 55-60.

[125] K. Toyoda and I. Sasase, �Secret sharing based unidirectional key distribution

with dummy tags in Gen2v2 RFID-enabled supply chains,� in IEEE International

Conference on RFID (IEEE RFID), April 2015, pp. 63�69.

[126] S. Abughazalah, K. Markantonakis, and K. Mayes, �Enhancing the key distribu-

tion model in the RFID-enabled supply chains,� in The 28th International Confer-

ence onAdvanced Information Networking and Applications Workshops (WAINA),

May 2014, pp. 871�878.

[127] A. Shamir, �How to share a secret,� Communications of the ACM, vol. 22, no. 11,

pp. 612�613, 1979.

[128] C. Tan, B. Sheng, and Q. Li, �Secure and serverless RFID authentication and

search protocols,� Wireless Communications, IEEE Transactions on, vol. 7, no. 4,

pp. 1400�1407, 2008.

[129] J. Landt, �The history of RFID�, in IEEE Potentials, vol. 24, no. 4, pp. 8�11,

2005.

160

[130] W. Xie, L. Xie, C. Zhang, Q. Zhang, and C. Tang, �Cloud-based RFID authenti-

cation,� in RFID (RFID), 2013 IEEE International Conference on. IEEE, 2013,

pp. 168�175.

[131] Z.-W. Yuan and Q. Li, �Research on Data Processing of RFID Middleware

Based on Cloud Computing�, in 5th International Conference on Rough Set and

Knowledge Technology (RSKT 2010). Springer, 2010, pp. 663�671. [Online].

Available: http://dx.doi.org/10.1007/978-3-642-16248-0_90

[132] Z. Xiao and Y. Xiao, �Security and privacy in cloud computing,� Communications

Surveys Tutorials, IEEE, vol. 15, no. 2, pp. 843�859, Second 2013.

[133] A. Aviram, S. Hu, B. Ford, and R. Gummadi, �Determinating timing channels in

compute clouds,� in Proceedings of the 2010 ACM workshop on Cloud computing

security workshop. ACM, 2010, pp. 103�108.

[134] B. D. Payne, M. De Carbone, and W. Lee, �Secure and �exible monitoring of

virtual machines,� in Computer Security Applications Conference, 2007. ACSAC

2007. Twenty-Third Annual. IEEE, 2007, pp. 385�397.

[135] C. Lee, H. Chien, C. Laih, �Server-less RFID authentication and searching proto-

col with enhanced security�, in International Journal of Communication Systems,

vol. 25, no. 3, pp. 376�385, 2012.

[136] J. Li, Y. Wang, B. Jiao, Y. Xu, �An authentication protocol for secure and ef-

�cient RFID communication�, in International Conference on Logistics Systems

and Intelligent Management, IEEE, 2010, pp. 1648�1651.

[137] T. Li, Y. Li, G. Wang, �Secure and Practical Key Distribution for RFID-Enabled

Supply Chains�, in Security and Privacy in Communication Networks, Springer,

2012, vol. 96, pp. 356�372.

[138] P. Mell, T. Grance, �The NIST de�nition of cloud computing�, in NIST Spe-

cial Publication, Computer Security Division, Information Technology Labora-

tory, National Institute of Standards and Technology Gaithersburg, 2011.

[139] J. Liu, Y. Xiao, S. Li, W. Liang, C. Chen, �Cyber security and privacy issues in

smart grids�, in IEEE Communications Surveys & Tutorials, vol. 14, no. 4, pp.

981�997, 2012.

[140] X. Zhifeng, X. Yang, �Security and Privacy in Cloud Computing�, in IEEE Com-

munications Surveys Tutorials, vol. 15, no. 2, pp. 843�859, 2013.

161

[141] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, �Hey, you, get o� of

my cloud: exploring information leakage in third-party compute clouds,� in Pro-

ceedings of the 16th ACM conference on Computer and communications security.

ACM, 2009, pp. 199�212.

[142] S. Sundaresan, R. Doss, S. Piramuthu, and W. Zhou, �A robust grouping proof

protocol for RFID EPC C1G2 tags,� Information Forensics and Security, IEEE

Transactions on, vol. 9, no. 6, pp. 961�975, June 2014.

[143] D. Moriyama, �A provably secure o�ine RFID yoking-proof protocol with

anonymity,� in Lightweight Cryptography for Security and Privacy. Springer,

2015, pp. 155�167.

[144] J. Saito and K. Sakurai, �Grouping proof for RFID tags,� in Advanced Information

Networking and Applications, 2005. AINA 2005. 19th International Conference

on, vol. 2. IEEE, 2005, pp. 621�624.

[145] S. Piramuthu, �On existence proofs for multiple RFID tags,� in Pervasive Services,

2006 ACS/IEEE International Conference on. IEEE, 2006, pp. 317�320.

[146] P. Peris-Lopez, A. Or�la, J. C. Hernandez-Castro, and J. C. Van der Lubbe,

�Flaws on RFID grouping-proofs. Guidelines for future sound protocols,� Journal

of Network and Computer Applications, vol. 34, no. 3, pp. 833�845, 2011.

[147] H.-Y. Chien, C.-C. Yang, T.-C. Wu, and C.-F. Lee, �Two RFID-based solutions to

enhance inpatient medication safety,� Journal of Medical Systems, vol. 35, no. 3,

pp. 369�375, 2011.

[148] L. Bolotnyy and G. Robins, �Generalized Yoking-Proofs for a group of RFID

tags,� in The Third Annual International Conference on Mobile and Ubiquitous

Systems: Networking & Services. IEEE, 2006, pp. 1�4.

[149] M. Burmester, B. de Medeiros, and R. Motta, Provably Secure Grouping-Proofs

for RFID Tags. Springer Berlin Heidelberg, 2008, pp. 176�190.

[150] S. Abughazalah, K. Markantonakis, and K. Mayes, �A formally veri�ed mutual

authentication protocol for low-cost RFID tags,� International Journal of RFID

Security and Cryptography, vol. 3, no. 2, pp. 156�169, 2014.

[151] S. Abughazalah, K. Markantonakis, K. Mayes, �Two rounds RFID grouping-proof

protocol,� in The 10th IEEE Radio Frequency Identi�cation International confer-

ence (IEEE RFID), IEEE, 2016, pp. 1�14.

162

[152] S. Abughazalah, K. Markantonakis, K. Mayes, �Secure mobile payment on NFC-

enabled mobile phones formally analysed using CasperFDR,� in IEEE 13th Inter-

national Conference onTrust, Security and Privacy in Computing and Communi-

cations (TrustCom), Sept 2014, pp. 422�431.

[153] R. Canetti, �Universally composable security: A new paradigm for cryptographic

protocols,� in Foundations of Computer Science, 2001. Proceedings. 42nd IEEE

Symposium on. IEEE, 2001, pp. 136�145.

[154] D. W. Nance, T. L. Naps, Introduction to Computer Science: Programming, Prob-

lem Solving and Data Structures. West Publishing Co., 1992.

[155] R. Anderson and M. Bond, �The man-in-the-middle defence,� in Security

Protocols, ser. Lecture Notes in Computer Science, B. Christianson, B. Crispo,

J. Malcolm, and M. Roe, Eds. Springer Berlin Heidelberg, 2009, vol. 5087, pp.

157�163. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-04904-0_21

[156] A. Arbit, Y. Oren, and A. Wool, �Toward practical public key anti-counterfeiting

for low-cost EPC tags,� in RFID (RFID), 2011 IEEE International Conference

on. IEEE, 2011, pp. 184�191.

[157] E. B. Kavun and T. Yalcin, �A lightweight implementation of Keccak hash func-

tion for radio-frequency identi�cation applications,� in Radio frequency identi�-

cation: security and privacy issues. Springer, 2010, pp. 258�269.

[158] K. Chiew, Y. Li, T. Li, R. H. Deng, and M. Aigner, �Time cost evaluation for

executing RFID authentication protocols,� in Internet of Things (IOT), 2010.

IEEE, 2010, pp. 1�8.

[159] C. Dabas and J. Gupta, �A cloud computing architecture framework for scalable

RFID,� in International Multi-Conference of Engineering and Computer Scien-

tists, vol. 1. Citeseer, 2010.

[160] Identi�cation Cards - Contactless Integrated Circuit Cards, Online, International

Standard Organization / International Electrotechnical Commission Std Std., De-

cember 2006, http://www.iso.org/iso/catalogue_detail.htm?csnumber=39695.

[161] �EPC radio frequency identi�cation protocols Class 1 Generation 2 UHF

RFID,� Online, January 2005, http://www.gs1.org/gsmp/kc/epcglobal/uhfc1g2/

uhfc1g2_1_0_9-standard-20050126.pdf.

163

Appendix A

Mutual Authentication Protocol for

Low-Cost RFID Tags Formal

Analysis Scripts

A.1 CasperFDR Script

-- Remove the reader entity to avoid state space explosion

#Free variables

T : Agent

S : Server

R1, R2 : Nonce

ID, K : Data

h: HashFunction

InverseKeys= (h,h)

#Protocol description

0. -> S : T

1. S -> T : R1

2a. T -> S : R2,h(R2 (+) ID)

2b. T -> S : h(K, R1, R2)

4. S -> T : h(ID, K, R1, R2)

#Processes

RESPONDER(T, S, R2, K, ID)

SERVER (S, T, R1, K, ID)

#Actual variables

164

Tag, Mallory : Agent

ServerDB : Server

Rr1, Rr2, R3 : Nonce

IDentityT, KeyTag : Data

#Specification

Aliveness(S, T)

Secret(T, K, [S])

Secret(T, ID, [S])

Agreement(T, S, [ID,K])

#System

RESPONDER(Tag,ServerDB,Rr2,KeyTag,IDentityT)

SERVER(ServerDB, Tag, Rr1, KeyTag, IDentityT)

#Intruder Information

Intruder = Mallory

IntruderKnowledge ={Tag,ServerDB,Mallory,Rr1, Rr2, R3}

A.2 Scyther Script

usertype Data;

hashfunction H1;

const XOR: Function;

protocol MutualAuth (S, R, Ti){

role S{

fresh IDi: Data;

fresh Ki: Data;

var R1, R2: Nonce;

recv_3(R , S, R2, H1(Ki, R1, R2), H1(XOR(IDi, R2)));

send_4(S, R, H1(IDi, Ki, R1, R2));

claim_S1(S, Secret, IDi);

claim_S2(S, Secret, Ki);

claim_S3(S, Niagree);

claim_S4(S, Alive);

}

165

role R{

fresh R1: Nonce;

var X: Ticket;

var Y: Ticket;

var Z: Ticket;

var R2: Nonce;

send_1(R, Ti, R1);

recv_2(Ti, R, R2, X, Y);

send_3(R, S, R2, X, Y);

recv_4(S, R , Z);

send_5(R, Ti, Z);

}

role Ti{

var R1: Nonce;

fresh R2: Nonce;

fresh IDi: Data;

fresh Ki: Data;

recv_1(R, Ti, R1);

send_2(Ti, R, R2, H1(Ki, R1, R2), H1(XOR(IDi, R2)));

recv_5(R, Ti, H1(IDi, Ki, R1, R2));

claim_Ti1(Ti, Secret, IDi);

claim_Ti2(Ti, Secret, Ki);

claim_Ti3(Ti, Alive);

claim_Ti4(Ti, Niagree);

claim_Ti5(Ti, Nisynch);

}

}

166

Appendix B

Key Update Process in the Key

Distribution Model Formal Analysis

Scripts

B.1 CasperFDR Script

-- Secret key update protocol in CasperFDR

-- We assumed that the new values of (S, Tag-ID and C) are generated

by the reader

-- We remove the reader entity

#Free variables

S, Ti: Agent

R1, R2: Nonce

ID, Ci, IDProductnew, Snew, Cnew: Data

h: HashFunction

InverseKeys = (h,h)

#Protocol description

1. S -> Ti : R1

2. Ti -> S : R2

3b. S -> Ti : IDProductnew, h(ID (+) IDProductnew (+) R1 (+) R2 (+)

Ci) (+) Snew

3c. S -> Ti : h(Snew (+) ID (+) R1 (+) R2) (+) Cnew

167

3d. S -> Ti : h(Snew (+) ID (+) R1 (+) R2 (+) Cnew)

4. Ti -> S : h(ID (+) Snew (+) Cnew (+) R1 (+) R2)

#Processes

Serveri(S, Ti, R1, ID, IDProductnew, Ci, Snew, Cnew)

Tagii(Ti, S, R2, ID, Ci)

#Actual variables

Serveri, Tagi, Mallory: Agent

R11, R22, R33: Nonce

IDi, CTag, IDProductnew, SNew, CNew: Data

#Specification

Agreement (S, Ti, [ID])

Secret (S, ID, [Ti])

Secret (S, Snew, [Ti])

Secret (S, Cnew, [Ti])

#System

Serveri(Serveri, Tagi, R11, IDi, IDProductnew, CTag, SNew, CNew)

Tagii(Tagi, Serveri, R22, IDi, CTag)

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Serveri, Tagi, Mallory, R11, R22, R33,

CTag, IDProductnew}

B.2 Syther Script

-- Secret key update protocol in Scyther

-- We assumed that the S, ID-case and C values are already generated

by the reader

usertype Data;

hashfunction H1;

const XOR: Function;

168

protocol key-update (S, Ti){

role S{

fresh ID: Data;

fresh Ci: Data;

fresh IDProductnew: Data;

fresh Snew: Data;

fresh Cnew: Data;

fresh R1 : Nonce;

var R2 : Nonce;

send_1(S, Ti, R1);

recv_2(Ti, S, R2);

send_3(S, Ti, IDProductnew,XOR(H1(ID, IDProductnew, R1, R2, Ci),Snew),

XOR(H1(Snew, ID, R1, R2) ,Cnew), H1(XOR(Snew, ID, R1, R2, Cnew)));

recv_2(Ti, S, H1(XOR(ID, Snew, Cnew, R1, R2)));

claim_S1(S, Secret, ID);

claim_S2(S, Secret, Snew);

claim_S3(S, Secret, Cnew);

claim_S4(S, Alive);

claim_S5(S, Niagree);

claim_S6(S, Nisynch);

}

role Ti{

fresh R2: Nonce;

var R1: Nonce;

fresh ID: Data;

fresh Ci: Data;

var Snew: Data;

var Cnew: Data;

var IDProductnew: Data;

169

recv_1(S, Ti, R1);

send_2(Ti, S, R2);

recv_3(S, Ti, IDProductnew,XOR(H1(ID, IDProductnew, R1, R2, Ci),Snew),

XOR(H1(Snew, ID, R1, R2) ,Cnew), H1(XOR(Snew, ID, R1, R2, Cnew)));

send_2(Ti, S, H1(XOR(ID, Snew, Cnew, R1, R2)));

claim_Ti1(Ti, Secret, ID);

claim_Ti2(Ti, Secret, Snew);

claim_Ti3(Ti, Secret, Cnew);

claim_Ti4(Ti, Alive);

claim_Ti5(Ti, Niagree);

claim_Ti6(Ti, Nisynch);

}

}

170

Appendix C

Improved Cloud-Based RFID

Protocol Formal Analysis Scripts

C.1 CasperFDR Script (Xie protocol)

--The cloud-based RFID authentication protocol

--We assume that the reader already knows the tag's data

#Free variables

T, R : Agent

Nr: Nonce

Nt: nonce

TID, RID, S, M: Data

h: HashFunction

InverseKeys=(h,h)

#Protocol description

0. -> T : R

1. T -> R : h(RID, TID, S)

2. R -> T : Nr

3. T -> R : h(RID, TID, Nr), Nt

4a. R -> T : h(RID, TID, Nt) (+) M

4b. R -> T : h(TID, RID, M)

#Processes

TAGG(T, R, TID, RID, S, Nt)

171

Reader(R, T, TID, RID, S, M, Nr)

#Actual variables

T1, R1, Mallory : Agent

Nr1: Nonce

Nt1, NM: nonce

TID1, RID1, S1, M1: Data

#Specification

Agreement(T, R, [TID, RID])

Secret(R, M, [T])

Secret (T, S, [R])

Secret (T, TID, [R])

Secret(T, RID, [R])

#System

TAGG(T1, R1, TID1, RID1, S1, Nt1)

Reader(R1, T1, TID1, RID1, S1, M1, Nr1)

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {T1, R1, Mallory, Nr1, Nt1, NM}

C.2 CasperFDR Script (Our protocol)

--The improved cloud-based protocol in CasperFDR

--We assume that the reader already knows the tag's data

#Free variables

T, R : Agent

R1: Nonce

R2: nonce

ID, K: Data

h: HashFunction

InverseKeys=(h,h)

172

#Protocol description

0. -> R : T

1. R -> T : R1

2a. T -> R : R2, h(ID (+) R1 (+) R2)

2b. T -> R : h(ID, K, R1, R2), R2

4. R -> T : h(h(ID), h(h(ID) (+) K), R1, R2)

#Processes

TAGG(T, R, ID, R2, K)

Reader(R, T, ID, R1, K)

#Actual variables

T1, R11, Mallory : Agent

Nr1, NM1: Nonce

Nt1: nonce

ID1, K1: Data

#Specification

Agreement(T, R, [ID, K])

Secret(T, ID, [R])

Secret (T, K, [R])

#System

TAGG(T1, R11, ID1, Nt1, K1)

Reader(R11, T1, ID1, Nr1, K1)

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {T1, R11, Nr1, Nt1, NM1, Mallory}

C.3 Scyther Script

-- Improved cloud-based protocol in Scyther

usertype Data;

hashfunction H1;

173

const XOR: Function;

protocol cloud-RFID (R, Ti){

role R{

fresh R1 : Nonce;

var R2 : Nonce;

fresh Ki: Data;

fresh IDi: Data;

send_1(R, Ti, R1);

recv_2(Ti, R, H1(XOR(IDi, R1, R2)), H1(IDi, Ki, R1, R2), R2);

send_3(R, Ti, H1(H1(XOR(H1(IDi), Ki)), R1, R2));

claim_R1(R, Secret, IDi);

claim_R2(R, Secret, Ki);

claim_R3(R, Alive);

claim_R4(R, Niagree);

claim_R5(R, Nisynch);

}

role Ti{

fresh R2: Nonce;

var R1: Nonce;

fresh IDi: Data;

fresh Ki: Data;

recv_1(R, Ti, R1);

send_2(Ti, R, H1(XOR(IDi, R1, R2)), H1(IDi, Ki, R1, R2), R2);

174

recv_3(R, Ti, H1(H1(XOR(H1(IDi), Ki)), R1, R2));

claim_Ti1(Ti, Secret, IDi);

claim_Ti2(Ti, Secret, Ki);

claim_Ti3(Ti, Alive);

claim_Ti4(Ti, Niagree);

claim_Ti5(Ti, Nisynch);

}

}

175

Appendix D

RFID Grouping-Proof Formal

Analysis Scripts

D.1 CasperFDR Script

-- Group Proof PROTOCOL in CasperFDR

-- We omitted some data for simplicity and reducing

memory space in the compiling process

#Free variables

R, Ti: Agent

S: Server

rR, ri: Nonce

IDG, IDi, SK: Data

h: HashFunction

KRS: Key

t: TimeStamp

InverseKeys = (h,h), (KRS, KRS)

#Protocol description

1. S -> R: t, SK, h(IDi)

2. R -> Ti : t, rR, h(SK, rR)

3a. Ti -> R : ri , h(SK, ri, rR, h(IDi))

3b. Ti -> R: h(IDi, ri, rR, t) % Mi

5. R -> S : {ri, rR, t, SK, Mi % h(IDi, ri, rR, t)}{KRS}

176

#Processes

Reader1(R, Ti, S, rR, KRS)

Tagii(Ti, R, S, ri, IDG, IDi)

ServerDB(S, R, Ti, IDi, IDG, SK, KRS)

#Actual variables

Reader, Tagi, Mallory: Agent

Server1: Server

Rr, Ri: Nonce

IDGroup, IDTag1, SK1: Data

KRSkey: Key

InverseKeys = (KRSkey, KRSkey)

#Specification

Agreement (R, Ti, [SK])

Secret (S, IDi, [Ti])

Secret (R, SK, [Ti])

#System

Reader1(Reader, Tagi, Server1, Rr, KRSkey)

Tagii(Tagi, Reader, Server1, Ri, IDGroup, IDTag1)

ServerDB(Server1, Reader, Tagi, IDTag1, IDGroup, SK1,KRSkey)

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Server1, Reader, Tagi, Mallory, Rr, Ri}

D.2 Syther Script

--RFID Grouping-proof protocol in Scyther

usertype Timestamp;

usertype Data;

177

secret k: Function;

hashfunction H1;

protocol GroupProof (S, R, Ti){

role S{

fresh Time: Timestamp;

fresh IDi: Data;

fresh TSi: Data;

fresh IDG: Data;

fresh TSG: Data;

fresh SK: Data;

var ri, rR: Nonce;

send_!T1(S, S, Time);

send_1(S, R, Time);

recv_6(R, S, {rR, ri, Time, SK, H1(IDi, ri, rR, TSi,

Time)}k(R, S));

claim_S3(S, Secret, IDi);

claim_S4(S, Secret, TSi);

claim_S4(S, Secret, SK);

claim_S5(S, Niagree);

}

role R{

var Time: Timestamp;

var X: Ticket;

fresh IDG: Data;

fresh IDi: Data;

fresh TSG: Data;

fresh rR : Nonce;

var ri : Nonce;

var SK: Data;

178

recv_1(S, R, Time);

send_2(R, Ti, Time, rR, H(SK, rR);

recv_3(Ti, R, Ti, R, ri, H1(SK, TSG, ri, rR, H(IDi)),

, X);

send_6(R, S, {rR, ri, Time, SK, X}k(R, S));

claim_R1(R, Secret, SK);

claim_R2(R, Niagree);

claim_R3(R, Nisynch);

}

role Ti{

var Time: Timestamp;

fresh ri: Nonce;

var rR: Nonce;

fresh TSG: Data;

fresh IDG: Data;

fresh IDi: Data;

fresh TSi: Data;

var SK: Data;

recv_2(R, Ti, Time, rR, H1(SK,rR);

send_3(Ti, R, ri, H1(SK, TSG, ri, rR, H(IDi)),

H1(IDi, ri, rR, TSi, Time));

claim_Ti1(Ti, Secret, IDG);

claim_Ti2(Ti, Secret, TSG);

claim_Ti3(Ti, Secret, IDi);

claim_Ti4(Ti, Secret, TSi);

claim_Ti6(Ti, Alive);

claim_Ti7(Ti, Niagree);

claim_Ti8(Ti, Nisynch);

}}

179

180

