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Abstract

The aim for this thesis was to produce the first systematic catalogue of

small Salem graphs, and to illustrate and enumerate those with

interesting properties. This is done in the central section, chapters 3 to

5. That is preceded by two introductory chapters, the first dealing with

definitions and motivation, the second concerning the computational

methods used to construct the catalogue. A new isomorphism testing

algorithm is presented which has proved highly successful in practice,

but an example is constructed in which it is useless. A complete

classification of circulant Salem graphs is conjectured. For Salem

graphs, their Salem number and their Mahler measure are precisely the

same thing, and some observations were made which enabled the

completion of the classification of all graphs with Mahler measure

below  ,  the very well-known ‘golden number’. The final chapter is

an exposition of the paper which reports this completion of the

classification.
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Chapter 1
Definitions and motivation

An abstract of this thesis is on page 3. After the main definitions, §1.6 describes the structure and

contribution in more detail. Each chapter begins with a paragraph on its original content.

In this chapter only the speculation in §1.3.2 and the order and layout of the content are original.

1.1 Salem numbers

1.1.1 Cyclotomic polynomials

Cyclotomic polynomials have been very extensively studied; it is clear that mathematicians find them

interesting.

The nth cyclotomic polynomial n is

n
(x) 

1kn


gcdk,n1

x
2k___

n 

where  
2k___

n are the nth roots of unity. The restriction  gcd kn 1  picks out those roots which are

primitive and also makes the degree of  n equal to  n where   (here) is Euler’s totient function.

The properties of cyclotomic polynomials are remarkable, and their appearance is deceptively simple.

It is clear from the definition that n is monic. Less obviously it has coefficients which are integers

and which are palindromic, and it is irreducible over . It is also of even degree, and the first 104

cyclotomic polynomials (where  n has no more than two odd prime factors) have all their coefficients

drawn from the set {0 1} [W1].

The only two (important) exceptions are:

1 x1  and  2 x1.

Clearly these do not have even degree and the former is not even palindromic, but they are easy to

identify and to remove when they are factors of polynomials of higher degree, and in the present work

they only occur as repeated factors, which are both even and palindromic (§1.3.1).

n is sometimes defined as the minimum polynomial (over ) of any primitive nth root of unity.

Integral, monic, palindromic polynomials of even degree are closed under multiplication, but not under

factorization:
x43x21  x2x1x2x1.

1.1.2  “Almost cyclotomic” polynomials

Interesting new mathematics often arises when definitions are relaxed slightly and the results are

investigated, so it is perhaps natural to look for polynomials which have all their roots but one on the

unit circle. We now show, however, that this is impossible; “almost cyclotomic” polynomials must have

two (closely-related) roots (at least) off the unit circle.
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Let   f  x be monic and irreducible, with  deg  f 1  and with a root  z1 on the unit circle. Then

the coefficients of  f are palindromic and the roots of  f consist entirely of mutually reciprocal pairs.

f z1
0  because the coefficients are real and  z1

  1_
z1

because  z is on the unit circle.

Let
g xx

deg ( f )
f 1_x .

The coefficients of  g are the coefficients of  f in reverse order, and in particular the constant term of  g

must be one because  f is monic.

g z1  z1

deg ( f )
f 1_z1

  z1

deg ( f )
f  z1
  0

so  f and  g share a root. This means that their  gcd must be non-trivial, but  f is irreducible so gcf

where  c is a constant. Further,  c must be  1  because of the constant term of  g.

f 1  g 1 because the sum of the coefficients is the same. But if  fg then  f 1  0  so  f has  x1

as a factor. But  f is irreducible, so  f x1  which is of no interest. So  f g and

f x  x
deg ( f )

f 1_x .

This has palindromic coefficients and is called a reciprocal polynomial.

The constant term is one, so zero is not a root, and

f x  0  f 1_x   0.

Since we have excluded the trivial cases  x1,  or  f x1,  we have that  x and  1_x are distinct. So

all the roots of our “almost cyclotomic” polynomial come in mutually reciprocal pairs, where the two

members of each pair are distinct, so the degree of  f is even.

1.1.3  Salem numbers

We have seen that if  f  x is monic and irreducible with  deg  f 1  and with a root on the unit

circle, then it is a reciprocal polynomial with roots in mutually reciprocal distinct pairs. So it cannot

have a single real root.

The closest that an “almost cyclotomic” polynomial can get to being cyclotomic is to have two real

roots, with the same sign, one with modulus less than one and the other with modulus greater than one.

If the signs are negative we prefer the polynomial  f x,  or we simply change the signs of the real

roots. Then the root which is greater than one is called a Salem number and the other is its reciprocal.

1.1.4  Polynomials which are not irreducible

Let  f  x, as before, be a reciprocal polynomial with exactly one pair of real roots (excluding 1)

and all its other roots (at least one pair) on the unit circle. What can we say if  f is not irreducible?

The two real roots must be roots of the same irreducible factor, and the other irreducible factors have all

their roots on the unit circle and so must be cyclotomic, by a theorem of Kronecker [M]. If the irreducible 
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factor with the two real roots has degree greater than two, then we still have a Salem number and its

reciprocal, though we don’t know the degree of the Salem number without going to the trouble of

removing the cyclotomic factors.

The insidious case, which does not give a Salem number, is when the two real roots are the only roots

of a quadratic polynomial. Such a quadratic must be monic, and the constant term must be one because

the roots multiply to one. So it must be of the form

x2ax1

where the coefficient of  x must be negative to make the roots positive, and the positive integer  a must

be greater than two to make the roots distinct and real.

A number like the larger root (which is outside the unit circle but with “all” its Galois conjugates inside)

is in fact called a Pisot number.

1.2 Totally real algebraic integers, and graphs

1.2.1 Characteristic polynomials

A root of a polynomial which has integral coefficients is called an algebraic number, and if the

polynomial is monic it is called an algebraic integer. If the polynomial is irreducible it is called the

minimum polynomial of the algebraic integer and the degree of the algebraic integer is said to be the

same as the degree of the polynomial. The other roots of the minimum polynomial are called the (Galois)

conjugates of the algebraic integer. If they are all real then the algebraic integer is called totally real.

The adjacency matrix of a graph is a very special case of a Hermitian matrix, so all its eigenvalues are

real. The characteristic polynomial of a graph is clearly monic with integral coefficients (though not

necessarily irreducible) so eigenvalues of adjacency matrices are totally real algebraic integers.

It is also known that all totally real algebraic integers are eigenvalues of graphs [BEG].

1.2.2 The interval [2, 2]

Let   be a totally real algebraic integer and define the interval  I  [min  max] where  min and  max

are the least and greatest of the Galois conjugates of  . If J is another interval then we know the

following [M]:

• If the length of J is strictly less than 4 then there are finitely many   with  I  J.

• If the length of J is strictly greater than 4 then there are infinitely many   with  I  J.

• If J is  [2  2] (and hence if J is  [a  a4] where  a )  then

I  J  2cosq where  q.

In other cases where the length of J is exactly 4 nothing is known.

Clearly the interval  [2  2] is important in the study of totally real algebraic integers, as will be
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1.3 Linking the previous two sections

1.3.1 A transformation

Consider the transformation

[x][z] f x zdeg f f z 1_
z  .

We claim that this defines a one-to-two correspondence between roots  x which are in the interval  [2 2]

and pairs of roots  z which lie on the unit circle. If we start with a polynomial which has exactly one

root outside the interval, we end up with an almost cyclotomic polynomial which in turn gives a Salem

number. Graphs with adjacency matrices whose characteristic polynomials satisfy this starting condition

are called (non bipartite) Salem graphs.

Proof of claim. Let
x z 1_

z .

so  z2xz1 0  and  z
x_______

x24__
2

. 

Then if  x2  we have  z1  (twice) and if  x2 2 we have

|z|  
——x2___
4
 4__ x2__

4

——
 1.

It can now be seen why the factors  x1  and  x1  always occur in pairs (§1.1.1).

Conversely if  z is on the unit circle, then

x  Rez 1_
z  Rezz

_
  2Rez[2 2].

1.3.2 Origin of the transformation

x

1 1

z

z





[2, 2]
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It is not clear who first used this transformation or how it was devised, but the following speculation is

surely convincing.

Draw the interval  [2 2] directly above the unit circle (with the same width) and simply draw vertical

lines to create the association between points in the interval and pairs of points on the circle.

Clearly we have

Rez  x2  and  Re2z Im2 z1.

This gives

Imz 
____
1 x2__

4

from which we can construct

z
x_______

x24__
2

.

So  2zx2 x2 4  and  4z24xz 40  giving

x z 1_
z .

It is worth pointing out that if we start with a more general interval  [n ,n] then we end up with

x n_
2z 1_

z  ,

so if  n2  all hope of ending up with a monic polynomial is lost.

A very similar transformation is familiar from solving cubic equations. Consider the following example,

chosen to avoid complex numbers and to minimize the need to use fractions:

x33x29x270.

Put  x y1  to remove the square term and get

y312y16 0.

Now use a close relative of the current transformation,   yz4_
z

to get a quadratic in z3, and the rest is

straightforward.

This beautiful piece of mathematics is not nearly as widely known as might be expected, presumably

because it is usually necessary to find the cube root of a complex number which introduces a huge dose

of tedious arithmetic.

1.3.3 Bipartite graphs

Let the vertices of a bipartite graph be ordered so that all the vertices of one vertex set (between which

there are no edges) come before the vertices of the other vertex set. Then the adjacency matrix has the

block structure
0 B

(
BT 0

)
.
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Suppose further that the matrix has an eigenvalue   with corresponding eigenvector
e1(
e2

)
.

So
0 B e1


Be2

 
e1

and
0 B e1


Be2

 
e1(

BT 0
)(

e2
) (

BTe1
) (

e2
) (

BT 0
)(
e2

) (
BTe1

) (
e2

)
.

This means that the eigenvalues are symmetrical about zero so we can never get exactly one eigenvalue

outside the interval  [2  2] suggesting that bipartite graphs are no use for the present purpose.

However, we know from considering elementary graphs (§5.2.3) that graphs with no odd cycles, the

bipartite graphs, have characteristic polynomials in which the degrees of all the terms have the same

parity. Also if  n and  m have the same parity with  mn then the degrees of all the terms in the

expansion of  xn(x 1_
x)

m
are even.

So instead of using the transformation

f x zdeg f f z 1_
z 

we can use

f x z½deg f f z 1_
z

and proceed as before. Bipartite graphs with adjacency matrices whose characteristic polynomials have

a single root greater than 2 are called (bipartite) Salem graphs.

1.4 Combinatorial objects and polynomials

We now have a way of generating polynomials (and hence Salem numbers) which are as close as possible

to cyclotomic (without actually being cyclotomic) both from a large number of graphs which are bipartite

and from a large number of those which are non-bipartite.

The idea of associating polynomials with graphs (or with other combinatorial objects) is not uncommon,

but usually the interest centres on the graph, and the polynomial encapsulates information relating to it.

Here on the other hand, the interest is rather in the polynomial which is generated from the graph.

The least of the known Salem numbers, Lehmer’s number (1.17628...) was found by this method because

its negative is the larger real root of the Alexander polynomial of a particular pretzel knot [Bo]:

x10x9x7x6x5x4x3x1.

1.5 Mahler measure

For a monic polynomial  pz[z],  its Mahler measure, written  Mp,  is defined by

M p 
p0

max1 ,

where multiple roots contribute to the product according to their multiplicity.
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The Mahler measure of a graph  G,  written  MG,  is defined (in [MS]) to be the Mahler measure of its

associated reciprocal polynomial.

The crucial point for this thesis is that, for a Salem graph, its Salem number and its Mahler measure are

exactly the same thing.

If a graph  G has characteristic polynomial   Gx then it will later be convenient to write the Mahler

measure of the graph  MG in terms of the eigenvalues of  G by using equation   in §1.3.1.

MG  
2

24

___
_________ .


G   0, 2

1.6 Structure and contribution of this thesis

The thesis is in three sections:

Section 1 is introductory.

Chapter 1 is mainly concerned with definitions and motivation; especially how the main idea arises

naturally from extending the familiar idea of cyclotomic polynomials.

Chapter 2 is about the computational system and the computational methods used to carry out the

study. The one rather specialist built-in function which was used pervasively, and an original

algorithm which was highly effective in practice (but far from perfect in theory) are both described

in detail.

Section 2 is the first systematic study of small Salem graphs.

Chapter 3 is a catalogue of very small Salem graphs and an enumeration of slightly less small Salem

graphs. This was a considerable computational achievement at the time, but will probably seem

trivial before long. Detailed information on the graphs which were enumerated but mostly did not

otherwise appear in the thesis will be freely available and perhaps of some future use. This hope is

supported by the fact that, in their paper [GM], the authors thank the present author for independently

confirming their calculations — a fairly small task which would have been huge had the catalogue

not existed.

Chapter 4 looks in more detail at two types of minimal graphs.

Chapter 5 looks in more detail at some other special cases.

Section 3 is Chapter 6. The equivalence, for a Salem Graph, of its Salem number and its Mahler measure

(§1.5) allowed observations to be made which lead to the completion of the classification of Salem

graphs of  ‘small’ (defined in chapter 6) Mahler measure. This section is an exposition of the paper which

contains that completion.
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Chapter 2
Computation

The presentation of §2.2, the observations and work-arounds of §2.3 and the whole of §2.4 to §2.6 are

original.

2.1 Acknowledgement

All computations carried out for this thesis were done with PARI, a free computer algebra system

primarily aimed at number theorists, maintained at the University of Bordeaux [P].

PARI programs are interpreted rather than compiled; speed is achieved by making use of the very large

number of built-in objects and functions which have been optimized and compiled. Only one of these

functions has both been very extensively used throughout the production of this thesis and uses an

algorithm, the details of which are not widely known. This is the function qfjacobi, where qf

(quadratic form) is a prefix applied to a group of PARI functions and jacobi refers to Jacobi’s

algorithm for finding the eigensystem of a real symmetric matrix.

2.2 Jacobi’s algorithm

It is very well known that a non-singular matrix A can be written as A  PDP
1 where the columns of

P are the eigenvectors of  A, and  D is a diagonal matrix with the eigenvalues of  A on its leading

diagonal [W2]. Jacobi’s algorithm achieves this decomposition by applying a sequence of very simple

rotations (and their inverses) to A. At each stage the rotation is chosen to make the largest off-diagonal

entry of  A zero. It is not at all surprising that each iteration undoes some of the “good work” done by

previous iterations. It is extremely far from obvious, however, that we get convergance to the desired

result at a very acceptable rate.

2.2.1 Givens matrices

This simple two-dimensional rotation is used to introduce a zero into a vector:

Given  a and  b,  find  r and   so that  ( cos  sin  ) (a) = (r) .sin  cos  b 0

Clearly  r 
——
a2b2 because rotations preserve lengths; it is then easily verified that  cos   ar and

sin   b
—r  .

A matrix doing a similar job in more than two dimensions is now1 called a Givens matrix. Such a matrix

represents a rotation about an axis through the origin which is perpendicular to two other co-ordinate

axes.

1 The algorithm was introduced in 1846 by Carl Gustav Jacob Jacobi (18041851). The matrices were given
their present name when they became practically useful during the lifetime of Wallace Givens (19101993),
and were made more widely known by his work.
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Specifically, given  i and  j:

• g
ii
 gjj  cos  (which we write as  c for brevity in what follows)

• g
ij
 gji  sin  (which similarly we write as  s )

• g
kk
 1  k  i, j and  

• all other entries are zero.

So, for example, the Givens matrix in six dimensions with  i  5  and  j  3  is:

1 0 0 0 0 0

0 1 0 0 0 0

0 0 c 0 s 0 0 0 0 1 0 0.

0 0 s 0 c 0

0 0 0 0 0 1

2.2.2 Eigenvalues

Now we consider  A  GTAG where  A is real symmetric (initially an adjacency matrix) and  G is a

Givens matrix, noting that  A and  A are similar because  GT G1.

The following, with  n  6,  i  5  and  j  3  is large enough to see clearly what happens and enable

mental extrapolation to the general case. It is open to the charge of being a typically poor undergraduate

“proof by example”, but it is not hard to convince oneself that the criss-cross pattern shown by the

shaded bars will always occur, and a more rigorous (and almost certainly more opaque) presentation,

such as [BDKM], would probably trouble the conscientious reader to devise a pencil-and-paper example

along the lines of what follows anyway.

A11 A12 A13 A14 A15 A16

A12 A22 A23 A24 A25 A26

A13 A23 A33 A34 A35 A36
Let A  A14 A24 A34 A44 A45 A46.

A15 A25 A35 A45 A55 A56

A16 A26 A36 A46 A56 A66

The three important entries

• Aii (= A55 in this case),

• Ajj (= A33 in this case) and

• Aij  Aji (= A35 = A53 in this case) all need to be

considered individually.

Entries outside the shaded areas do not change.
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1 0 0 0 0 0 A11 A12 A13 A14 A15 A16 1 0 0 0 0 0

0 1 0 0 0 0 A12 A22 A23 A24 A25 A26 0 1 0 0 0 0

0 0 c 0 s 0 A13 A23 A33 A34 A35 A36 0 0 c 0 s 0
A  GTAG   0 0 0 1 0 0 A14 A24 A34 A44 A45 A46 0 0 0 1 0 0 

0 0 s 0 c 0 A15 A25 A35 A45 A55 A56 0 0 s 0 c 0

0 0 0 0 0 1 A16 A26 A36 A46 A56 A66 0 0 0 0 0 1

1 0 0 0 0 0 A11 A12 cA13sA15 A14 cA15sA13 A16

0 1 0 0 0 0 A12 A22 cA23sA25 A24 cA25sA23 A26

0 0 c 0 s 0 A13 A23 cA33sA35 A34 cA35sA33 A36  0 0 0 1 0 0 A14 A24 cA34sA45 A44 cA45sA34 A46
0 0 s 0 c 0 A15 A25 cA35sA55 A45 cA55sA35 A56

0 0 0 0 0 1 A16 A26 cA36sA56 A46 cA56sA36 A66

A11 A12 cA13sA15 A14 cA15sA13 A16

A12 A22 cA23sA25 A24 cA25sA23 A26

cA13s A15 cA23sA25 s2A552scA35c2A33 cA34sA45 c2s2A35scA55A33 cA36sA56
  A14 A24 cA34sA45 A44 cA45sA34 A46 

cA15sA13 cA25sA23 c2s2A35scA55A33 cA45sA34 c2A552scA35c2A33 cA56sA36

A16 A26 cA36sA56 A46 cA56sA36 A66

So • Aij  Aji  c
2s2AijscAiiAjj (1)

• Aii  c2Aii2scAijc2Ajj

• Ajj  s2Aii2scAijc2Ajj

• Aik  Ak i  cAiksAjk k  i, j (2)

• Ajk  Ak j  sAikcAjk k  i, j (3)

• Akl  Ak l k, l  i, j

We can choose  i and  j so that  Aij is an entry off the leading diagonal with maximal modulus, and

conjugate with a Givens matrix to make  Aij  0. From (1) above

cos2 Aij
1
2

sin2 AiiAjj  0

 tan2  —
2
—

Aij
—— with    45° (from the previous equation) if  Aii Ajj.AjjAii

15



Clearly other entries have changed in moving from  A to  A,  and if the process is repeated it is unlikely

that the newly-introduced zero will remain zero for long, so it is not obvious that we have done anything

useful. We now show, however, that the sum of the squares of the entries off the leading diagonal has

been reduced, and that the matrices generated by successive applications of the process are converging

to a diagonal matrix. The diagonal entries of this must be the eigenvalues of  A. 

To show that the sum of the squares of the entries off the leading diagonal has decreased we can ignore

all entries on one side of the leading diagonal because the matrix is symmetric, and clearly we can ignore

the entries which do not change. We know that an entry with the greatest modulus has been changed to

zero. This leaves  n2  pairs of entries, each one corresponding to a value of  k, where  k  i, j. From (2)

and (3) above the sum of each of these pairs is

cAiksAjk
2  sAikcAjk

2

 c2A2
ik2csAik Ajks2A2

jks2A2
ik2csAik Ajkc2A2

jk

 A2
ikA2

jk

and so is unchanged. Thus the sum of all the squares of the entries off the leading diagonal has decreased.

2.2.3 Convergence

There are  
n
—
n1
—
2

— entries on each side of the leading diagonal of which the one with the previously

greatest modulus has been reduced to zero and the sum of the squares of the others is unchanged. So at

each stage the sum of the squares is multiplied by a factor of at most  1 n n
————

2
—
1
— and we have

convergence at a useful rate.

A program was written to replicate the built-in function, though it was considerably slower because it

was neither optimized nor compiled. This showed that it takes around 150 iterations to calculate the

eigenvalues of a 1010 adjacency matrix to 28 significant figures, which is PARI’s default precision.

2.2.4 Eigenvectors

A huge advantage of Jacobi’s algorithm is that the eigenvectors can be calculated at the same time as

the eigenvalues with remarkably little extra effort, and this is always done by qfjacobi. This important

feature is easily described in just seven lines, though it was not used at all in the production of this thesis.

The algorithm generates  GT
n  GT

1 AG1  Gn  D where  A is the adjacency matrix and the  Gi are

Givens matrices.  D is the matrix with  i, the eigenvalues of  A, on its leading diagonal and all other

entries very close to zero. The eigenvectors of  D are clearly the standard basis vectors ei (with

component  i equal to one and all other components equal to zero). That is  Dei  iei.

So  GT
n  GT

1 AG1  Gnei  iei and since  GT
i
1
 Gi we have  AG1  Gnei  iG1  Gnei.

So the eigenvectors of  A are  G1  Gnei which are just the columns of  G1  Gn.  This matrix is very

easy to calculate while going through the algorithm to find  D, without needing to store all the  Gi.

16



2.2.5 Alternatives

The calculation of eigenvalues was so central to this thesis that two serious alternatives to qfjacobi

were considered.

• Finding and solving the characteristic polynomial takes about 25% longer than qfjacobi for a

typical 1010 adjacency matrix (and doesn’t find the eigenvectors).

• Also starting with the characteristic polynomial, Sturm’s algorithm [A] is an extremely efficient way

of finding how many eigenvalues are in a given half-open interval, even in cases where there are

repeated roots, the corresponding factors of which have to be removed before the algorithm can be

applied. But even when none of the eigenvalues or eigenvectors are required explicitly we frequently

need the sum of the top and bottom eigenvalues as the easiest way of determining whether or not a

graph is bipartite (in which case the sum is zero), otherwise some kind of colouring algorithm would

have to be used, so qfjacobi is preferable.
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2.3 PARI: advantages and problems

2.3.1 Advantages

The overwhelming advantage of PARI is that it works efficiently to any number of significant figures,

limited only by memory and time constraints. It can calculate and display  to a million digits in 95

seconds. The other advantages are that it has a very large number of useful well-written built-in functions,

and it’s free.

2.3.2 File handling

There are four problems associated with PARI's handling of files.

First, files can be read only in their entirety — the whole thing at one go. The standard (and fairly

obvious) business practice of reading a single record from a large sequential file, processing it, then

replacing it by reading in the next record, is simply not possible. So it is necessary to keep track of the

size of any output and to open a new output file, typically with essentially the same name but with an

increased suffix number, whenever there is a  danger of writing files that are too big to be read back in

again at some future time.

Secondly it is not possible to delete or rename files from within PARI. So the standard procedure of

• inputting data

• processing it and outputting the results to a file with a temporary name

• deleting the original file and

• renaming the temporary file with the original file name

cannot be done. This, particularly when combined with the first problem, means that these is usually a

very large build-up of intermediate files, but with a little care these can be confined to temporary

directories and deleted en masse when a task is finished.

Thirdly PARI cannot create a file with nothing in it. So if, for example, output is directed according to

some criterion to one of ten files named from Output-01 to Output-10, any file to which no output was

sent will not exist, rather than exist and be empty. Since PARI is also unable to check whether or not a

file exists before attempting to open it, a program to read and process these files sequentially will crash

if one is missing. This problem can be overcome by always writing something (the number zero was

chosen for want of anything better) to every file which might exist, thus ensuring that it does exist.

Programs which read files will then of course have to be written to ignore this first entry.

Finally, if PARI writes more than one object to a file, the file becomes a vector whose components are

the objects which have been output to it. When the first (and perhaps the only) object is written to a file

however, it is simply written as itself (meaning specifically that it is not the only component in a one-

dimensional vector). When encountering a vector at the beginning of a file it is not always easy to tell

whether the vector is the required object, or a simply a container whose first entry is the required object.
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One solution to this problem is to write not just one zero to every file that might exist (as described in

the previous paragraph), but two. The first zero will ensure that the file exists; the second will ensure

that a container vector is created. Every file is now a vector. Vectors of length two represent what would

normally be an empty file, and a non-empty file is a vector with more than two components, with the

meaningful data beginning at the third.1

2.3.3 Memory management

PARI can currently control just under one megabyte of memory, so using a computer with huge amounts

of volatile memory does not enable the reading in of larger files.

More positively however, two copies of PARI (at least) can be run simultaneously with an increase in

the time taken to perform calculations which is usually much less than 20%.

Many PARI functions can be applied to a much larger range of objects than might be expected. This

appears at first to be very helpful, but it can actually lead to quite stunning inefficiency. Consider, for

example, the concat function.

Most programming languages have some kind of concatenation function, usually limited to strings. So

that, for example, a filename like “Output-” and a variable containing the number 10 can be concatenated

to form the filename “Output-10” (usually with an intermediate function being necessary to turn the

number 10 into the string “10”). With PARI the intermediate function is not necessary, and the concat

function can be used with other objects. It is possible, for example, to concat an object to a vector,

which increases the dimension of the vector by one and makes the object its last entry.

This sort of thing makes PARI amazingly flexible, but not necessarily usefully so. Consider the following

example where we set up a 20  20 matrix with entries which are small integers:

m=matrix(20,20);for(i=1,20,for(j=1,20,m[i,j]=i-j))

Now we build a vector with 10,000 entries, each of which is a copy of this matrix. We do this in two

ways. First we declare a vector of the required size and then fill in the entries:

v=vector(10000);for(i=1,10000,v[i]=m)

Secondly we start with a vector of length one, the only entry in which is a copy of the matrix, and

concat the other entries, as one might wish to do when finding results one at a time:

w=vector(1);w[1]=m;m=w;for(i=1,9999,w=concat(w,m))

It should of course be obvious that computer programming is a combination of logic and engineering

and is not at all surprising that the former is more efficient, but it is perhaps extremely surprising that

the second method takes well over 7,000 times longer, comparable to the difference between a calculation

taking one hour, or one year.
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2.4 An isomorphism algorithm

2.4.1 Introduction

The first big computational requirement in this thesis was for the calculation of eigenvalues, and an

algorithm for doing this, which is very efficient and almost certainly the best available, has been

described. The second big computational requirement was for the elimination of isomorphic graphs from

sets of adjacency matrices. In this case, however, to quote [FSG], “As it could be expected, it does not

exist an algorithm that is definitively better than all the others”. In view of this, and since the requirements

here are slightly unusual (the elimination of isomorphisms from quite large numbers of quite small

graphs) and since it promised to be an instructive and enjoyable exercise, it was decided that an algorithm

should be specially written.

Given a complete set of pairs of associated vertices of two graphs then the two graphs are isomorphic if

and only if there is an edge between two vertices of one when and only when there is an edge between

the associated vertices of the other. The obvious algorithm to find whether one graph is isomorphic to

another is to fix the labelling of the vertices of one graph and permute the labelling of the vertices of the

other in every possible way, checking for isomorphism each time. Clearly one can go on to the next

permutation as soon as any contradiction is found, and finish as soon as any isomorphism is found. Even

so this is almost never efficient and very rapidly becomes computationally infeasible.

2.4.2 The Distance Matrix and the Correspondence Vector

The Distance Matrix is a table of information about a graph which is stored as a matrix so that use can

be made of PARI’s many simple but efficiently-written functions for manipulating matrices.

Row  r of the Distance Matrix initially corresponds to the same vertex of the graph as row  r of the

adjacency matrix. The entry in column  c of a row in the Distance Matrix is the number of vertices of

the graph which are distance  c from the vertex which the row represents.

The rows of the Distance Matrix are now sorted in some way which we choose to regard as standard.

Clearly this breaks the connection between the rows of the Distance Matrix and the rows of the adjacency

matrix, so before sorting a Correspondence Vector is created, the entries of which initially run simply

from  1  to  n,  where  n is the number of rows of the Distance and adjacency matrices. When the rows

of the Distance Matrix are sorted, the entries of the Correspondence Vector are permuted in exactly the

same way, so that the correspondence between the rows of the Distance Matrix and the rows of the

adjacency matrix is not lost.
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This is done for the following reasons:

• The Distance Matrix contains a lot of information about its graph which can be

calculated once only, stored efficiently with the adjacency matrix, and used in thousands

of tests for isomorphism without the need for recalculation.

• Equality of sorted Distance Matrices is clearly a necessary condition for isomorphism,

so a huge number of non-isomorphisms can be established by a simple comparison with

no further calculation.

• The Distance Matrix partitions the rows of a graph into equivalence classes which have

the same entries in the same order. Any corresponding vertices in two isomorphic graphs

must belong to the same equivalence class, so the more equivalence classes there are,

the more the number of permutations needed to find or disprove an isomorphism is

(massively) reduced.

If we look at the top Distance Matrix and Correspondence Vector in the example on the next page, we

see that the first graph has 1 vertex of valency 6, and the 5 vertices which are not adjacent to it are

distance 2 away. The vector tells us that this corresponds to the 6th row/column of the adjacency matrix.

The two adjacency matrices shown have the same Distance Matrix, which is clearly a necessary condition

for isomorphism of their graphs, which are in fact isomorphic in this case.

Rows 1, 6, 10, 11 and 12 of the Distance matrices are unique within each matrix, which means, using

the Correspondence Vectors, that if there is an isomorphism then vertex 6 of the first graph must

correspond to vertex 9 of the second graph, vertex 3 of the first graph must correspond to vertex 8 of the

second graph and so on. We call these correspondences unavoidable. Similarly the set of four vertices

{4, 9, 10, 12}  of the first graph corresponds to the set of four vertices  {4, 5, 11, 12}  of the second

graph (in some order) because they all have the same entries in the Distance Matrices, and the set of

three vertices  {1, 7, 11}  in the first graph must correspond to the set of three vertices  {1, 2, 6}  in the

second. So in this particular case we now know that there are only  4!×3!=144  possible pairings of

vertices for isomorphism and a full edge test in each case is certainly computationally feasible.

This partitioning of vertices doesn’t always happen; there are 34 cyclotomic/Salem graphs with number

of vertices between 2 and 10 which have every row of their Distance matrices the same. They include

the cyclic graphs, the complete graphs and the Petersen graph.
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Matrix 1 1 2 3 4 5 6 7 8 9 10 11 12

Matrix 2 3 8 7 9 10

Level X 0 0 X 0 0 X 0 X X X X

Example of the use of the algorithm to establish isomorphism

Adjacency Matrices Distance Matrices
Correspondence

Vectors

0 0 1 0 0 0 1 0 1 1 0 0 6 5 0 6
0 0 0 1 0 0 0 0 1 1 0 1 5 6 0 4
1 0 0 1 1 1 0 0 0 0 0 0 5 6 0 9
0 1 1 0 0 1 0 0 0 1 1 0 5 6 0 10
0 0 1 0 0 0 1 0 0 0 1 0 5 6 0 12
0 0 1 1 0 0 0 1 1 1 0 1 4 7 0 3
1 0 0 0 1 0 0 0 0 1 0 1 4 6 1 1
0 0 0 0 0 1 0 0 0 0 0 0 4 6 1 7
1 1 0 0 0 1 0 0 0 0 1 1 4 6 1 11[ 1 1 0 1 0 1 1 0 0 0 0 0 ] [ 4 5 2 ] [ 2 ]
0 0 0 1 1 0 0 0 1 0 0 1 3 6 2 5
0 1 0 0 0 1 1 0 1 0 1 0 1 5 5 8

0 0 0 1 0 0 1 0 0 0 1 1 6 5 0 9
0 0 0 1 1 1 0 1 0 0 0 0 5 6 0 4
0 0 0 1 1 0 0 0 0 0 1 1 5 6 0 5
1 1 1 0 0 0 0 0 1 0 1 0 5 6 0 11
0 1 1 0 0 1 0 0 1 0 0 1 5 6 0 12
0 1 0 0 1 0 1 0 0 0 1 0 4 7 0 8
1 0 0 0 0 1 0 1 0 0 0 0 4 6 1 1
0 1 0 0 0 0 1 0 1 0 0 1 4 6 1 2
0 0 0 1 1 0 0 1 0 1 1 1 4 6 1 6[ 0 0 0 0 0 0 0 0 1 0 0 0 ] [ 4 5 2 ] [ 3 ]
1 0 1 1 0 1 0 0 1 0 0 0 3 6 2 7
1 0 1 0 1 0 0 1 1 0 0 0 1 5 5 10

Assignment Table

Permutation Table

éPointer

Level 1 2 3 4 5 6 7

Maximum 3 2 1 0 2 1 0

Counter 0 0 0 0 0 0 0

Graph 1 vertices (fixed) 4 9 10 12 1 7 11

Graph 2 vertices (cycle) 4 5 11 12 1 2 6
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Vertices :  4  ← 5  ← 11  ← 12          1  ← 2  ← 6



2.4.3 The Assignment table and the Permutation Table

Now we set up an Assignment Table and a Permutation Table.

The number of columns in the Assignment Table (apart from the labels in the first column of the printed

version of course) is equal to the number of vertices in the graphs being compared. We assume that it

has already been checked that this is the same for both.

• The first row consists of the numbers of the vertices of the first graph (the rows/columns of

the first matrix), in order. These are simply the numbers of the columns of the table so they

are not actually stored in computer memory — but it is clearly convenient to be able to see

them in the printed version.

• The second row consists of the vertices of the second graph which correspond to the vertices

of the first. Initially, as in the example, only the unavoidable assignments are filled in. If an

isomorphism is found then, when the algorithm terminates, this row gives the precise

correspondences which constitute the isomorphism. At all other times all the assignments,

apart from those which are unavoidable, are provisional; they might be undone at any time.

• The third row facilitates this potential undoing. It shows the order in which assignments have

been made so that they can be undone in reverse order if necessary. A zero means that an

assignment is unavoidable and cannot be undone. An X means that either no assignment has

been made or that any assignment made has been undone, so there is no current valid

assignment. Computer memory can never be blank of course; an X means that whatever is in

the memory corresponding to the cell above the X is not of any importance. As non-

unavoidable assignments are made they are numbered, starting from 1, in this row.

The number of columns in the Permutation Table (apart from the labels in the first column of course) is

equal to the number of vertices for which the assignments are not unavoidable. They are grouped into

blocks separated by heavy vertical lines, and the sizes of the blocks depend on the numbers of identical

rows in the Distance Matrices which is the size of the equivalence classes which have more than one

member. In the example there are 4 rows with 5, 6, 0 in the Distance Matrix, and 3 rows with 4, 6, 1, so

the blocks have widths of 4 columns and 3 columns.

The elements in the bottom row of the table are to be permuted cyclically within their block. A pointer

which points initially to the first column is shown below the table in the example. The cycles extend

from the column to which the pointer is pointing to the end of the block in which the pointer is currently

situated. The cycles in the example are shown at the bottom of the page. The first cycle would currently

consist of the numbers 4, 5, 11 and 12. The second cycle, as the pointer moves to the right, would

currently consist of the numbers 5, 11 and 12, and the third would currently consist of the numbers 11

and 12. Another cycle would permute a single number, so it would do nothing and is not shown.
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Then the pointer moves to the next block where there are two cycles currently consisting of the numbers

1, 2, 6 and 2, 6.

The Permutation Table is made up of the following rows:

• The first row is the order in which assignments will be made, used to fill in the third row of

the Assignment Table. These are simply the numbers of the columns of the table so they are

not actually stored in computer memory — but it is clearly convenient to be able to see them

in the printed version.

• The second row shows the maximum number of cyclic permutations which are possible of

the numbers in the columns from the current column to the column at the end of the current

block before repetitions start. These numbers simply count down to zero within each block.

The cells containing zero ensure that a cycle consisting of a single number is never permuted.

• The third row is initially set to zero and shows how many of the above cyclic permutations

have been carried out. If this number were allowed to exceed its maximum in the cell above

we would be carrying out pointless repetitions.

• The fourth row consists of vertices in the first graph which do not have a unique row in the

Distance matrix. Within each block the row of the Distance Matrix corresponding to each

vertex is the same. Within each block the vertices could be in any order, but for computational

convenience they will always be in numerical order. The row never changes.

• The last row consists of vertices in the second graph which do not have a unique row in the

Distance Matrix. Within each block the rows of the Distance Matrix corresponding to each

vertex are the same, and also the same as the rows of the Distance Matrix corresponding to

the vertices of the first graph in the cells above. Within each block the vertices could start in

any order, but for computational convenience they will always start in numerical order. This

is the row which is subject to the cyclic permutations described above.

An assignment is made by taking the column of the Assignment Table corresponding to the Graph 1

vertex above the pointer, placing the Graph 2 vertex above the pointer in the second row of the

Assignment Table, and placing the Level above the pointer in the third row (the Level row) of the

Assignment Table. An unassignment is made by taking the column of the Assignment Table

corresponding to the Graph 1 vertex above the pointer, and placing an X in the third row (the Level row)

of the Assignment Table. This means that the number in the second row is not significant — it is not

necessary to delete it.
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2.4.4 Contradictions

The crucial concept of a contradiction must now be made precise.

When making a new (provisional) assignment we use the assignment table to take in turn each pair of

vertices which have already been assigned (both unavoidably and provisionally).

• We use the Correspondence Vector and the Adjacency matrix of the first graph to find whether

or not the already-assigned vertex of the first graph is adjacent to the vertex of the first graph

in the new provisional assignment.

• We use the Correspondence Vector and the Adjacency matrix of the second graph to find

whether or not the already-assigned vertex of the second graph is adjacent to the vertex of the

second graph in the new provisional assignment.

The adjacency (or not) must be the same in each case or there is a contradiction because the new

provisional assignment cannot logically be made.

The flow chart of the algorithm can now be described.

1  If the Distance Matrices are not identical return FALSE. Set up the Assignment and

Permutation tables, initialize the pointer, and make the unavoidable assignments. If there is

a contradiction in the unavoidable assignments return FALSE. If all the assignments are

unavoidable and there is no contradiction return TRuE. 

2  If there is a contradiction between the vertices of Graph 1 and Graph 2 which are above the

pointer GOTO 3. If there is not a contradiction between the vertices of Graph 1 and Graph 2

which are above the pointer then make the provisional assignment and if all the assignments

have been made return TRuE. Otherwise move the pointer to the right and GOTO 2.

3  If the counter above the pointer is not maximal then carry out a permutation, increase the

counter and goto 2. If the counter above the pointer is maximal and the pointer is back at the

start then we have exhausted every possibility so return FALSE. Otherwise we have only

exhausted the current cycle so carry out a final permutation to get the cycle back to its

beginning and reset the counter above the pointer to zero. Move the pointer to the left to

return to the previous cycle and unassign the provisional assignment which is now above

the pointer because it led to an unavoidable contradiction (an infeasible cycle). GOTO 3.
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Vertex Distances

1        5 3 0 0

2        5 2 1 0

3        4 4 0 0

4        4 3 1 0

5        3 3 2 0

6        2 5 1 0

7        2 4 2 0

8        2 2 3 1

9        1 4 2 1

Figure 1
The smallest pair of non-isomorphic Salem graphs with identical distance tables

which have no repeated rows, so all assignments are unavoidable

Some Salem graphs
with unusual distance tables
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Figure 3
The smallest set of three non-isomorphic Salem graphs with identical distance tables

in which every row is the same; namely 4 3 0 0 0 0 0

 

 

 

 

 

 

Figure 2
The smallest pair of non-isomorphic Salem graphs with identical distance tables

in which every row is the same; namely 3 2 0 0 0
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Some Salem graphs
with unusual distance tables

II

Figure 4
A set of four non-isomorphic Salem graphs with identical distance tables

which have no repeated rows, so all assignments are unavoidable

Vertex   Distances

1        5 4 1 0 0

2        4 5 1 0 0

3        4 4 2 0 0

4        4 4 1 1 0

5        3 5 2 0 0

6        3 4 3 0 0

7        3 4 2 1 0

8        3 3 3 1 0

9        2 4 3 1 0

10        2 3 3 1 1

11        1 2 3 3 1
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2.5 Some Salem graphs with unusual distance tables

2.5.1 Introduction

In this section we consider Salem graphs with identical distance tables at the two extremes:

• those with distance tables in which every row is different, which the algorithm always finds

extremely straightforward, and

• those with distance tables in which every row is the same. When the graphs are isomorphic

there is usually so much symmetry that the algorithm finds one of the automorphisms

quickly. When the graphs are not isomorphic the distance tables are of no use and many

permutations of vertices have to be tried.

Some of the edges in the examples are drawn as dotted lines. This is just an attempt to present the graphs

in a more memorable way; the dotted edges have exactly the same status as the solid edges.

2.5.2 Every row different

If two graphs have identical distance tables in which every row is different then all the assignments are

unavoidable. If the vertices of one graph are numbered in some way then there is no choice in how to

number the vertices of the other graph. The concept of the distance table is at its most useful in this case

because no permutations are required. To establish if two such graphs are isomorphic it is simply

necessary to check that there is an edge between two vertices of one graph if and only if there is an edge

between the same two vertices in the other graph.

The smallest of these pairs of graphs, perhaps surprisingly the only one with fewer than ten vertices, is

shown in figure 1. The algorithm can tell them apart because there is, for example, an edge between

vertices 2 and 4 in one graph but not in the other. It is often interesting to imagine a pair of non-

isomorphic graphs being presented as a collection of rings tied together with bits of string, and to give

a simple rule for a human to distinguish between them without needing to use a distance table or number

the vertices. In this case we simply locate the  three vertices with valency two. In one graph one of these

vertices is adjacent to both the others, in the other graph this is clearly not the case.

There are five such pairs of graphs with ten vertices (with 14, 18, 20, 20 and 22 edges) and eighteen

such pairs with eleven vertices. In addition to these eighteen pairs the smallest such set of more than

two graphs is a remarkable set of four shown in figure 4. They can be thought of as an underlying graph

with 11 vertices and 14 edges, with just three extra edges, shown dotted, added differently in each case.

The top left graph is easily distinguished because the two vertices with valency two are adjacent. To

distinguish the others consider the four vertices with valency three: in one graph three of the four are in

a row, in another two of them are separated from the others, and in the last graph they are in two adjacent

pairs.
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2.5.3 Every row the same

Now we turn to sets of non-isomorphic Salem graphs with identical distance tables in which every row

is the same. Clearly in these cases the distance table is completely useless in trying to find isomorphisms.

However, given two isomorphic copies of one of these graphs, such as the Petersen graph, the order of

the automorphism group is so large that it is usually possible to find an isomorphism mapping without

going through an enormous number of vertex permutations. The slowing down of the algorithm seems

to occur mainly with graphs which are “almost isomorphic”, meaning that they are not isomorphic but

have one or more large sets of similar vertices in the permutation table, an example of which is described

in the next section.

The only pair of such graphs with fewer than eight vertices is shown in figure 2. These are K3,3 and the

triangular prism. They are very easily distinguished by eye because the prism is planar with every vertex

being a vertex of a triangle, while K3,3 is bipartite (with no triangles) and is famously not planar. 

2.6 The structure of two “almost isomorphic” graphs

2.6.1 Two graphs in E8

Of all the graphs to which the algorithm has been applied which have arisen naturally (so excluding

those described below which are constructed with the sole purpose of being difficult for the algorithm

to distinguish) two stand out as requiring an unusually long time (well over a minute) for their lack of

isomorphism to be established. We look at these in detail for several reasons:

First to see why the algorithm is inefficient in this case, how to construct an even “worse” case, and how

the algorithm might be improved (or at least changed) to deal with this case. Secondly because the

structure relates back in a very pleasing way to the small graphs with unusual distance tables described

in the previous section, and finally because the two objects and the relationship between them are

examples of great mathematical beauty.

The two graphs are both maximal subgraphs of E8 with 30 vertices. The following is a description of

both graphs until otherwise stated.

Imagine 12 of the vertices in a horizontal regular dodecagon with one vertex above its centre and one

below. The other 16 vertices can be thought of as “evenly distributed” on a sphere underneath. The top

vertex is connected to every vertex of the dodecagon. The dodecagon consists of the vertices of the

cocktail party graph CP12, “almost” a copy of K12, with just six independent edges missing, which can

be thought of as the six between opposite vertices, so the complement consists of six copies of K2. The

vertex below the dodecagon is connected to every vertex of the dodecagon and to every vertex of the

sphere. Each vertex of the dodecagon is connected to eight vertices on the sphere, and each vertex
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The structure of two “almost isomorphic”
maximal subgraphs in E8
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on the sphere is connected to six of the others. All this is shown in figure 1. The differences between the

two graphs lie solely in the detail of the pattern of edges on the sphere.

Figure 2 shows the pattern of edges on the sphere of the first graph. Following any four edges in the

same direction gets you back to where you started. Now consider the vertices inside the grey oval (the

one which is not dashed). These eight vertices and the edges between them can be drawn as in figure 3,

which is familiar from the previous section. The other eight vertices which are not in the grey (not

dashed) oval and the edges between them can also be drawn in exactly the same way. All this is shown

in figure 4, which also shows four of the 16 edges between the two cubes. These 16 edges can be

described as follows:

For each vertex of the first (upper left) cube, identify the vertex which can be reached along a dotted

edge, and the vertex which is diagonally opposite through the cube. The vertex has edges going to the

two corresponding edges in the second cube. For example start with vertex 3. The dotted edge from 3

goes to 14 and the vertex disgonally oposite through the cube is 10. 14 and 10 correspond to 8 and 4 in

the second cube, so 3 is connected to 4 and 8. Similarly 7 is connected to 12 and 8. The other 12 edges

between the two cubes are not shown.

So figure 4 (along with the those other 12 edges) contains exactly the same information as figure 2,

describing the vertices and edges on the sphere, but presented in a way which at first appears

unnecessarily much more complicated. Now we consider the edges between the sphere and the rest of

the structure. We already know that all 16 vertices are connected to the vertex below the dodecagon, but

the edges between the dodecagon and the sphere are much more interesting. The eight edges from one

vertex of the dodecagon to the sphere go to the eight vertices of one cube, and the eight edges from the

opposite edge in the dodecagon (the only vertex to which the previously-considered vertex is not

connected within the dodecagon) go to the eight vertices of the other cube.

Clearly there are six different pairs of opposite vertices within the dodecagon, and indeed there are six

possible ways of choosing the vertices of the sphere to form a diagram similar to figure 4. Returning to

figure 2, we have considered the vertices inside the unbroken grey oval, and the rest. We could also take

the vertices inside the dashed grey oval, and the rest. The major axes of both these ovals are clearly

parallel to one of the sides of each of the equilateral traingles which make up figure 2, so clearly it would

be easy to draw similar pairs of ovals with major axes parallel to each of the other two sides of the

equilateral traingles, giving the six possible constructions of figure 4.

This completes the description of the first graph.

The essential difference between the two graphs is that figure 6 (also familiar from the previous section)

replaces figure 3. There is just one detail of interest. In figure 5 (which corresponds to figure 2 for the

previous graph) the two grey ovals can only be rotated in only one (obvious) way to provide two more

of the required six different selections of eight vertices for the cube, rather than four. Figure 7
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shows the final two selections of the required six. It is easy to see (though much less easy to spot in the

first place) that all six are equivalent.

Now we can see why the isomorphism algorithm is not efficient in this case.

The two vertices above and below the dodecagon are unavoidable assignments so take up almost no

time when the algorithm is executed. The 12 vertices of the dodecagon have 20 neighbours, so come

before the 16 vertices of the sphere (which have only 13 neighbours) in the permutation table. The

cocktail party graph has so much symmetry that many permutations do not throw up a contradiction.

The unavoidable contradictions are thrown up by the sphere, and one of these have to be found for each

acceptable permuation of the dodecagon. This is why it takes over a minute to establish that the two

graphs are not isomorphic.

2.6.2 A worse case

Each vertex of the dodecagon has 20 neighbours. To construct a “worse” example, all we need to do is

to add a highly symmetrical structure which will appear earlier in the permutation table (meaning that

it must have more than 20 neighbours) without messing up the symmetries of the previous graph. So we

take a copy of K21 and place it at the top of the previous structures with each vertex of the K21 connected

to the vertex which was previously at the top. For each of the 21! symmetries of the K21 a contradiction

has to be found in what was the previous graph. Since it took over a minute to distinguish between the

previous graphs it will now take over 21! minutes; greater than the age of the universe, to distinguish

between the new graphs. The number of steps is finite, however, so it’s probably just about allowable to

continue to call the method an algorithm.

In practice the algorithm has worked always adequately and almost always very well, so no attempt has

been made to enable it to manage artificially difficult cases. It might be possible to put the blocks of

similar vertices in the permutation table in a different order so that contradictions are found earlier, but

if you understand the structure of the graphs well enought to decide which order of the blocks is best,

you probably don’t need an isomorphism algorithm anyway. Probably it would be best to collect more

information about the graphs which is invarient under isomorphism so that the blocks in the permutation

table are split into smaller components.
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Chapter 3
A catalogue of small Salem graphs

Without doubt many of the small graphs considered here must have been looked at before, in particular

there have been a tiny number of classifications of some very special families (see [GM], to which the

present author made a few small contributions, and [MS]). This, however, is the first systematic study

of Salem graphs starting with the smallest and building up. In particular, the numerical results of how

many Salem graphs exist with a given number of vertices listed in §3.2 were not previously known.

3.1 Building the catalogue

3.1.1 Introduction

When starting to investigate Salem graphs the most obvious question by far is how many there are with

some given number of vertices. This chapter describes how that question has been answered, at least for

rather small numbers, and how a catalogue of those graphs has been built.

3.1.2 Interlacing

Cauchy’s interlacing theorem is the key to finding Salem graphs vastly more efficiently than by a brute-

force search of all graphs.

Adjacency matrices are special cases of Hermitian matrices, which have real eigenvalues.

Cauchy’s Interlace Theorem:

Let H be a Hermitian matrix with eigenvalues  12 . . . n and

H′ a principal submatrix with eigenvalues 1 2  . . .  n1.

Then 1 12  2  . . .  n1 n.

The proof given in [H] uses only undergraduate mathematics and is based on the intermediate value

theorem. Surprisingly it has only been available since 2004. Previous proofs, not difficult to find,

depended on other theorems which are themselves very far from obvious. The present author has a strong

preference for the former, particularly since it occupies little more than a single page.

Cauchy’s theorem is invaluable for this reason:

All connected graphs can be “grown” from the graph which consists of a single vertex by adding vertices

one at a time, together with all the edges which go between the new vertex and the already-existing

vertices. The crucial point is that all edges between previously-existing vertices are already present and

never added later. So at each stage the old adjacency matrix is a principal submatrix of the new adjacency

matrix, and Cauchy’s interlace theorem applies. This means that once a grown graph has eigenvalues

which prevent it from being either cyclotomic or Salem, no matrix grown from it can ever return to

being either cyclotomic or Salem.
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The strategy, then, is as follows:

Enter the two connected cyclotomic and Salem graphs with three vertices “by hand”. (Starting with one

or two vertices saves no significant effort and makes the coding awkward.) Then at each stage grow all

the connected graphs from the previous stage in every possible way, save those which are cyclotomic or

Salem and remove isomorphic repeats.

The number of connected graphs with n vertices grows so rapidly with n that many exhaustive

investigations of graphs rapidly become computationally infeasible, but if we restrict our attention to

cyclotomic and Salem graphs, it is reasonable to hope (and it is in fact the case) that the terminal leaves

in the growth tree (which appear when a grown graph is neither cyclotomic nor Salem) will restrict the

number of graphs to such an extent that some exhaustive investigations can go considerably further that

would otherwise be possible.

3.1.3 Standard graph format

Terabyte hard drives have recently become affordable, so drive space is, in crude terms, a less valuable

resource than time. Storing graphs in a way which is relatively heavy on memory but speeds up the

elimination of isomorphisms would seem to be sensible.

It was decided to store graphs as vectors with five components as follows:

• First the adjacency matrix.

• Next the Distance Matrix and Correspondence Vector as described in section 2.4.2.

• Finally it was felt that it would be advantageous to record whether or not the graph is bipartite, and

whether it is cyclotomic or Salem.

3.1.4 Standard file format

The limitation on file size imposed by the fact that files can only be read in their entirety means that

there must be a carefully-managed limit on the number of graphs which a file contains. A convenient

number when dealing with the larger of the small Salem graphs being considered here was found to be

500.

To deal with the other problems of PARI described in section 2.3.2 the standard file format was chosen

as follows:

Every file consists of a vector with at least 2 and not more than 502 components. The first two

components are dummy entries (in fact the number zero). All other entries are graphs represented in the

standard graph format described above. Files frequently exist in groups which are named with a text

prefix followed by a number from 1 up to some limit. All files with numbers between 1 and that limit

exist, even if they contain no “real” data.
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3.1.5 Growing graphs

At each stage every graph from the previous stage is grown as follows:

Add a row and column to the adjacency matrix representing the new vertex. Fill in the row and column

(which clearly must be the same in a symmetric matrix) in every possible way, one after another. In each

case, if the resulting matrix is cyclotomic or Salem then expand it to standard graph format as described

above and save it.

The possible ways of filling in the row and column are simply the binary numbers of the appropriate

length, excluding zero which would create a disconnected graph, and excluding the odd numbers (which

end in a 1 in binary) which would put a 1 on the leading diagonal and indicate a loop which is clearly

not allowed in a “proper” graph.

In every case the eigenvalues are found by the qfjacobi function, which is absolutely crucial to the

whole process. It is the only PARI function used with underlying details of operation which are not

reasonably obvious, and it has been described in detail in section 2.2. The eigenvalues establish whether

the graph is cyclotomic or Salem, and whether it is bipartite, since in this case the top and bottom

eigenvalues add to zero because in a bipartite graph the eigenvalues are symmetric about zero [Bi p53].

For computational purposes we look for top and bottom eigenvalues adding to epsilon, where epsilon is

“very close” to zero. 10
20

was chosen.

The details of the rest of the code are not of sufficient interest to be worth describing here.

3.1.6 Removing isomorphisms

With almost 100,000 graphs in files of 500, when only one of those files can be loaded at a time, the

problem of comparing all possible pairs of graphs to eliminate isomorphisms is obvious.

It was found highly effective to do a preliminary separation of the graphs into relatively small collections

with the same Distance Table, since all isomorphisms would then reside within these collections and

not between them. The isomorphism algorithm could then operate easily on each of those collections

which consisted of a single file.

In the relatively few cases in which a collection required more than one file the isomorphisms were

eliminated within each file, the files were then merged, and the process repeated. This was tedious but

not difficult. Clearly the problem would become much harder if the number of graphs were to approach

a million, but equally clearly this situation will almost certainly appear amusingly dated within a few

years.

3.1.7 Pausing

A final small but important aspect of the programming is the potential to pause. It is difficult to dedicate

a much-used computer to a single task for well over a week, and running two programs simultaneously

is very undesirable since at this time computer multi-tasking is still in its infancy; a crash in one task
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will almost always freeze the whole computer and terminate all the other tasks, and real-time operations

such as burning a DVD or playing a video clip do not yet share time happily. There are plenty of

convenient points both in the growing of graphs and in the removal of isomorphisms where the state of

the task in hand can easily be saved and the program temporarily halted. The obvious thing to do is to

check at each convenient point whether some key has been pressed, but there is no way of doing this

from within PARI. There is, however, a timer, and it is easy to check at each convenient point whether

or not a time specified at the start of the program has been exceeded, and proceed accordingly. This is

far from ideal, but at least enables good use to be made of some substantial chunks of time when the

computer is not otherwise required, for example at night.

3.2 Numerical results

The counts which have been established so far are an excellent illustration of the often-encountered so-

called “combinatorial explosion”. They are as follows:

Table 3.1 Numbers of cyclotomic and Salem graphs with a given number of vertices

Vertices Cyclotomic Salem
Graphs Graphs

1 1 0

2 1 0

3 2 0

4 3 3

5 4 16

6 5 74

7 6 324

8 6 1496

9 5 6201

10 4 20723

11 4 58952
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3.3 The 16 cyclotomic graphs with 6 vertices or fewer

  







1 vertex         2 vertices                 3 vertices
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6 vertices

3.4 The 3 Salem graphs with 4 vertices

3.5 The 16 Salem graphs with 5 vertices



























 



















 

























 





5 edges

6 edges
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6 edges with the same distance table





























7 edges







8 edges                      9 edges                10 edges











 

 



 

 





3.6 The 74 Salem graphs with 6 vertices
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7 edges

7 edges with the same distance table

8 edges

8 edges with the same distance tables
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9 edges

9 edges and the same distance tables
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10 edges
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11 edges



12 edges

13 edges

14 edges                   15 edges
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Chapter 4
GRINs

Apart from the listing of the 18 graphs below, everything in this chapter is original.

4.1 The 18 GRINs

4.1.1 Definitions

The index of a graph is the greatest eigenvalue of its adjacency matrix. A graph is said to be minimal

with respect to some property if none of its induced subgraphs have that property. There are precisely

18 graphs which are minimal with respect to the property of having index greater than two. These will

be called GRINs (GRaphs with INdex GReater than two which are mINimal).

GRINs are important here because, by interlacing, every Salem graph has at least one GRIN as an

induced subgraph.

The graphs have been taken from [CvRo], but have been renamed because of the importance here of

whether or not they are bipartite.

4.1.2 Figure 1: list of GRINs
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The five non-bipartite GRINs

The five bipartite GRINs which are star-like trees

The four bipartite GRINs which are trees but not star-like

A1 A2 A3 A4 A5

B1 B2 B3

B4 B5

B6 B7 B8

B9



4.2 When GRINs can coexist

4.2.1 Theorem

Given any set of GRINs there exists a Salem graph of which all are induced subgraphs if and only if all

are bipartite or all are not.

Proof

Recall first that a Salem graph is defined in such a way that it is allowed to have an eigenvalue less than

2 only if it is bipartite. This is because the eigenvalues of a bipartite graph are symmetrical about zero

[Bi p53] so an eigenvalue less than 2 is unavoidable unless we exclude all bipartite graphs from being

Salem, which we don’t wish to do.

A Salem graph cannot contain both a bipartite and a non-bipartite GRIN as induced subgraphs for this

reason:

If the Salem graph contains an induced non-bipartite graph as a subgraph then the graph itself is not

bipartite. This means it has no eigenvalue less than 2. But growing it from the induced bipartite GRIN

subgraph means by interlacing that it must have an eigenvalue less than 2 . This is impossible1. 

The fact that all other possibilities can exist is proved by exhibiting them. 

For each pair of bipartite GRINs and for each pair of non-bipartite GRINs, here (in sections 4.2.4 and

4.2.5) are the smallest Salem graphs which contain both as induced subgraphs. “Smallest” means having

the fewest vertices, and within that constraint having the fewest edges. Where there is more than one

such graph, all are exhibited. Single thicker lines show the edges of one induced subgraph; double thinner

lines show the edges of the other.
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1 The theorem was first observed after very extensive listing of graphs and their pairs of induced subgraphs, and
it was proved (in this direction) by an exhaustive computer method. This was done at an early stage, before
the problems with PARI’s file handling had been resolved, and required three computers with a great deal of
data transfer between them, working continuously for almost a month. This work was carried out with tenacious,
determined enthusiasm, which in retrospect is probably better described as blind obstinate stupidity. The elation
and exhilaration of triumph was as euphoric as it was misguided; the (not difficult) three-line proof given above
emerged a couple of weeks later.

The four bipartite GRINs which are not trees
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4.2.2 Different configurations

The induced subgraphs have been indicated in every case so that the reader can verify with minimal

effort that they do exist as claimed.

This indication could often be made in more than one way. The graph below has B4 and B12 as induced

subgraphs, and B12 can be highlighted in three different ways as shown. In the following pages, when

such choice exists, the induced subgraphs shown have been chosen at random, because the question of

when multiple copies of the same induced subgraph can exist within the same Salem graph is addressed

extremely briefly in section 4.3. 

4.2.3 A special edge

It is remarkable that in every case but one on the following pages, every edge in every graph belongs to

at least one of the induced subgraphs. The sole exception is shown below.

This graph has A3 and A5 as induced subgraphs, with a dotted edge which does not belong to either

subgraph. It connects (of course) part of the graph which belongs to only one of the induced subgraphs

to part of the graph which belongs to only the other induced subgraph.





The smallest Salem graphs containing each possible pair of GRINs

4.2.4 The ten non-bipartite pairs
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A1 A2 (2)               A1 A3















 























 

 



 
A1 A4 (4)













































A1 A5 (4)

 







 





 



 

















 











  









 













A2 A3                     A2 A4 (4)



 







 








 

A2 A5 (2)

 

 
 





 

 
 



  

 
 





 

 









A3 A4 (4)
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B1 B9 (5)



 





 

 

 





 




















A3 A5 (2)                 A4 A5

4.2.5 The 78 bipartite pairs















  

  







B1 B2              B1 B3            B1 B4



 







 














 

 







 

B1 B5 (2)                         B1 B6 (2)









 

 











  





B1 B7                  B1 B8
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B1 B10               B1 B11             B1 B12

B1 B13                 B2 B3

B2 B4               B2 B5

B2 B6 (2)             B2 B7 (2)             B2 B8 (2)

B2 B9 (2)

B2 B10 (3)

B2 B11                  B2 B12              B2 B13
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B3 B4                   B3 B5

B3 B6 (2)                          B3 B7

B3 B8                          B3 B9

B3 B10 (5)

B3 B11                  B3 B13

B3 B12 (3)
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B4 B5 (4)

B4 B6 (2)                           B4 B7 (2)

B4 B8

B4 B9 (3)

B4 B10 (8)

B4 B11                    B4 B13 (2)



 



 







 



 







 



 



 

 



 






 



 







 



 

















 





 



        



        

 

        



        



        



        





        

 

        



        



        



        



        



        





        



        



 

  

B4 B12 (6)

B5 B6 (2)

B5 B7                        B5 B8

B5 B9                      B5 B11

B5 B10 (9)
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B5 B12 (6)
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B5 B13 (4)

B6 B7 (2)           B6 B8 (3)                B6 B9 (3)

B6 B10 (6)
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B6 B11 (2)

B6 B12                     B6 B13

B7 B8 (2)                           B7 B9

B7 B10 (7)

B7 B11 (2)                       B7 B13



































 

















 

 













 

































 















 















 















 















 















 















 















 















 

 











 























 

 



 

 







 

 

 





 

 

 







 

 

 















B7 B12 (3)

B8 B9 (2)

B8 B10 (8)

B8 B11 (2)

B8 B13                    B8 B12 (4)
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B9 B10 (9)

B9 B11 (2)

B9 B12 (5)

B9 B13 (3)
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B10 B11 (2)






















































































































































































































































































 









 











B10 B12 (5)

B10 B13 (6)

B11 B12                  B11 B13

B12 B13 (4)
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A1                 A2                A3

A4                A5
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4.2.6 A Salem graph with all five non-bipartite GRINs as induced subgraphs

There are no Salem graphs with fewer than ten vertices which have all five non-bipartite GRINs as

induced subgraphs. Remarkably, however, there are a 110 such graphs with ten vertices. These have

between 16 and 22 edges. One of the 14 of these graphs with just 16 edges is shown below. It is illustrated

five times, with each of the five non-bipartite GRINs shown in a separate example.

4.2.7 A Salem graph with all thirteen bipartite GRINs as induced subgraphs

There are no Salem graphs with fewer than thirteen vertices which have all the bipartite GRINs as

induced subgraphs and there is, so far, no complete catalogue of Salem graphs with thirteen vertices.

However, a Salem graph with thirteen vertices (which is only three more vertices than the largest GRIN)

has been found. It has eighteen edges and is drawn below thirteen times, each showing a different

bipartite GRIN as an induced subgraph.

It is not yet known whether there are other such graphs with thirteen vertices, possibly with fewer edges.







 

 



















 

 



















 

 



















 

 



















 

 



















 

 



















 

 



















 

 



















 

 



















 

 



















 

 



















 

 



















 

 















B1                 B2              B3

B4                 B5

B6                 B7              B8

B9                B10

B11              B12                  B13
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4.3 Minimal non-Salem graphs

As a very brief introduction to a different sort of minimal graph, here is a minimal non-Salem graph.

Although not a Salem graph itself, the removal of any vertex, along with its associated edges, leaves a

Salem graph.
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Chapter 5
Other small Salem graphs of interest

Many of the graphs in this chapter will have been considered before, but not in a systematic study of

small Salem graphs. All enumerations and complete sets of graphs are original work (except 5.2.3), as

are the attempts to present the structures of some larger graphs in a memorable way.

5.1 Complementary graphs

5.1.1 Introduction

This section considers small connected Salem graphs with complements which are also connected Salem

graphs. Those which most clearly fulfill this criterion are those which are their own complements. Since

a graph and its complement must each have exactly half of all the possible edges, a self-complementary

graph with  n vertices must have  ¼ n (n –1)  edges. Either  n or  (n –1)  must be odd, so the other must

be divisible by four. Hence there cannot exist self-complementary graphs with 3, 6, 7, 10 or 11 vertices.

Table 5.1 The numbers of complementary graphs with fewer than twelve vertices

Vertices
Self- Complementary

Total
complementary in pairs

3 Impossible 0 0

4 0 0 0

5 1 2 3

6 Impossible 30 30

7 Impossible 74 74

8 3 114 117

9 5 94 99

10 Impossible 74 74

11 Impossible 34 34

All these self-complementary graphs are now drawn, as well as all those with fewer than seven vertices.

The second member of the pair is drawn twice: once to show clearly that it is the complement of the

first, and secondly to show it rearranged into a more memorable shape.

5.1.2 The results for five vertices

Self-complementary with 5 vertices       Complementary pair with 5 vertices
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5.1.3 The 15 complementary pairs with 6 vertices
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5.1.4 The 3 self-complementary graphs with 8 vertices

The first is also integral with spectrum  {4 , 1(2), 0 , –1(2), –2(2) }

 

 





 

 

 





 

 

 









5.1.5 The 5 self-complementary graphs with 9 vertices

The first graph is also integral with spectrum  {4 , 1(4), –2(4) }



 

 

 

 

 





 

 









 

 

 









 





  

 



 

 

The last case is a wonderful example of how the salient properties of a graph can leap off the page if

one is lucky enough to stumble upon a good way of drawing it.

When construcing the complementary graph the pentagon at the top turns into an isomorphic pentagram,

and the vertices which are connected to all or none of those of the pentagon/pentagram are swapped

(and are no longer joined), whereas the two vertices which are initially adjacent to a single edge become

connected to each other, with each connected to the other vertex which is newly adjacent to a single

edge.
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5.2 Cospectral graphs

5.2.1 Introduction

This section considers sets of small connected Salem graphs which share the same characteristic equation

and thus the same spectrum of eigenvalues. Most of these sets have two members and are commonly

called PINGs (Pairs of Isospectral Non-isomorphic Graphs). In graphs with eleven vertices we also find

sets with up to and including ten graphs.

Table 5.2 Numbers of sets of isospectral Salem graphs with fewer than twelve vertices

Vertices 6 7 8 9 10 11

Sets of 2 graphs
1 17 104 494 2002 6590(PINGs)

Sets of 3 graphs 11 68 384 1457

Sets of 4 graphs 1 10 85 463

Sets of 5 graphs 1 14 144

Sets of 6 graphs 5 57

Sets of 7 graphs 1 15

Sets of 8 graphs 7

Sets of 9 graphs 4

Sets of 10 graphs 2

5.2.2 Six vertices

There is a unique Salem PING with fewer than seven vertices:

Their characteristic equation is

x67x4 x37x2 4x1.

5.2.3 Elementary graphs

Illustrating these graphs gives an opportunity to describe a very interesting relationship between the

prevalence of certain subgraphs of a graph, called elementary graphs, and its characteristic equation.

An elementary graph is frequently not connected. Each of its components is either a copy of  K2 or one

of the cyclic graphs from  C3 upwards. With each graph the number  (1)
c
2

k
is associated, where  c is

the number of components, and  k is the number of components which are not K2. Clearly  k is a non-

negative integer.

Here are all the elementary graphs with fewer than 12 vertices. The notation 10,6  4, for example,

means that the sixth graph in the list of those with ten vertices has the associated number 4.
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2,1  1                   3,1  2













 

 







 

 

























 







 

 


 

 

  



 



 

























 

 







 

 















 

 

 

 



 



 

 







 





















 











 

 






 

 

 



 



 



 



 

 





 



 













 

 



 

 





 




 



































 

 











 

 





























 



 

 




 

 

 

 



 





 









 

 



 

 



  



 



   

 















 

 


 

 





















4,1  1         4,1  2            5,1  2        5,2  2

6,1  1         6,2  1        6,3  4        6,4  2

7,1  2            7,2  2            7,3  4             7,4  2

8,1  1       8,2  2       8,3  4           8,4  2

8,5  4          8,6  4        8,7  2

9,1  2        9,2  2        9,3  4               9,4  2

9,5  8          9,6  4         9,7  4           9,8  2

10,1  1        10,2  2           10,3  4           10,4  2

10,5  4          10,6  4        10,7  2

10,8  8            10,9  4 10,10  4

10,11  4 10,12  2





















 











 

 






 

 

 



 



 



  

 

 





 



 













 

 



 

 





 




 





































 

 





 

 



 

 

 

 

  





 









 

 

  



 



 



 

 










 



 




 






11,1  2           11,2  2           11,3  4

11,4  2             11,5  8           11,6  4

11,7  4        11,8  2            11,9  8

11,10  8             11,11  4            11,12  4

11,13  4        11,14  2

The elementary graphs for each new vertex number are easily constructed from those already found,

adding a new cycle (or K2 initially) at each stage. Alternatively they can be seen as being in corres -

pondence with those partitions of the integer representing the number of vertices which do not include

the number one.

Let the characteristic equation of the graph under consideration be

c
0
xn c

1
xn1 c

2
xn2 ... c

n
.

Then  c
0 

is always one, c
1 

is always zero, and to calculate the other coefficients  c
i 

it is only necessary

to count the occurences of each elementary subgraph with  i vertices, multiply by the associated number,

and sum. This is proved in [B Proposition 7.3], using only the standard expansion of the determinant by

minors and some very simple properties of adjacency matrices.

The prevelence of elementary subgraphs is “rather loosly” [Bi p46] related to the structure of the parent

graph, and this, together with the fact that the associated numbers are always of the limited form  2n

where  n is a non-negative integer, probably explains why there are fewer distinct characteristic

polynomials (and so more PINGs) than one might at first suppose.

Let us return to the first example, now with the edges labelled (on the next page), and calculate the

characteristic equation.

c0 This is one as always.

c1 This is zero as always.

c2 2,1  1 and in each graph there are seven edges, so  c2  72,1  7.
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c3 3,1  2 and in each graph there are two triangles, so  c3  23,1  4.

c4 This is the most interesting coefficient in this example because it demonstrates

how the same value can arise in different ways.

(4,1)1, and in the first graph there are nine copies of 4,1, specifically 1-4, 1-5, 1-6,

1-7, 2-6, 2-7, 3-5, 3-7 and 4-7. Also 4,2  2 and there is one copy of (4,2), specifically

2-3-5-6.

c
3 
 9(4,1)1(4,2)7 for the first graph.

In the second graph there are 7 copies of (4,1), specifically a-d, a-e, a-f, a-g, b-g, c-g,

and d-g.

c
3 
 7(4,1)7 for the second graph.

c
5

(5,1)2 and the graph (5,1) appears twice in each case, as 1-4-5-6, 2-3-4-7,

a-b-c-g and a-e-f-g, so c
5 
 2(5,1)4 in both cases.

c6 6,1  1 and the graph (6,1) appears once in each case, as 1-4-7 and a-d-g, so

c
6 
 1(6,1)1 in both cases.

All this leads to the required characteristic equation:

x67x4 x37x2 4x1.

At the very least this would seem to be an amusing party trick, enabling a characteristic equation to be

conjured up using no algebra and minimal arithmetic. However, even with a highly systematic approach

and the utmost concentration, the accurate counting of subgraphs is a matter of the very greatest difficulty.

Except in the simplest cases one always ends up using the characteristic equation to check the counting

rather than using the counting to construct the equation.

We now consider four sets of cospectral Salem graphs with eight vertices, and continue to calculate the

characteristic equations since they are pivotal to the relationship between Salem numbers and graphs.

5.2.4 The smallest bipartite Salem PING

The smallest bipartite cospectral Salem graphs are eight pairs, each with eight vertices and with between

seven and ten edges. The only pair with seven edges consists of these two trees:
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The only elementary subgraphs which can be subsets of a tree are (2,1) , (4,1) , (6,1) , (8,1) and so on,

with associated numbers alternating between 1, which goes a long way to explaining the relative

simplicity of the characteristic equations of bipartate graphs and their relatively high number of PINGs.

In this case it is easy to see that there are no copies of (6,1) or (8,1) in either graph, and the copies of

(2,1) are just the edges. It is not difficult to count nine copies of (4,1) in each case, so the characteristic

equation is:

x87x69x4.

5.2.5 The smallest set of three cospectral Salem graphs

The smallest sets of three cospectral Salem graphs have eight vertices. There are eleven sets, with

between 10 and 18 edges. Only one set has 10 edges:

 

 



   













 

 



A C

B

Characteristic equation:

x810x6 4x525x412x316x28x .

Coefficient Graphs Subgraphs Result

c0 A, B and C None 1

c1 A, B and C None 0

c2 A, B and C 10(2,1)10 10

c3 A, B and C 2(3,1)4 4

c4 A, B and C 27(4,1)27 1(4,2)2 25

A 8(5,1)16 2(5,2)4
c5 B 7(5,1)14 1(5,2)2 12

C 6(5,1)12

c6
A 18(6,1)18 3(6,2)6 2(6,4)4

16
B and C 20(6,1)20 3(6,2)6 1(6,4)2

A 4(7,1)8
c7 B 4(7,1)8 1(7,2)2 1(7,4)2 8

C 2(7,1)4 2(7,4)4

c8 A, B and C 2(8,1)2 1(8,2)2 0
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5.2.6 The smallest set of four cospectral Salem graphs

The members of this set have  eight vertices and twelve edges:

Characteristic equation:

x812x610x528x428x315x212x 4.

Coefficient Graphs Subgraphs Result

c0 A, B, C and D None 1

c1 A, B, C and D None 0

c2 A, B, C and D 12(2,1)12 12

c3 A, B, C and D 5(3,1)10 10

A 34(4,1)34 3(4,2)6
c4 B 38(4,1)38 5(4,2)10 28

C and D 36(4,1)36 4(4,2)8

A, B and D 17(5,1)34 3(5,2)6
c5 C 18(5,1)36 4(5,2)8

28

A 23(6,1)23 3(6,2)6 1(6,2)4 1(6,4)2

c6
B 35(6,1)35 12(6,2)24 2(6,4)4

15
C 27(6,1)27 7(6,2)14 1(6,2)4 3(6,4)6
D 27(6,1)27 8(6,2)16 1(6,2)4 4(6,4)8

A 9(7,1)18 3(7,2)6
B 11(7,1)22 7(7,2)14 2(7,4)4

c7 C 9(7,1)18 4(7,2)8 1(7,4)2 12
D 7(7,1)14 3(7,2)6 2(7,4)4

c8
A, C, and D 2(8,1)2 1(8,4)2

4
B 4(8,1)4 2(8,2)4 2(8,4)4 1(8,5)4 2(8,7)4

5.2.7 The smallest integral cospectral Salem graphs

These are in a set of three, with eight vertices and fourteen edges. The characteristic equation and

spectrum are:

x814x616x525x432x312x216x and  {4 , 1(2), 0 , 1(2), 2(2) }.



 











 

 



 

























A B C D
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Coefficient Graphs Subgraphs Result

c0 A, B and C None 1

c1 A, B and C None 0

c2 A, B and C 14(2,1)14 14

c3 A, Btt and C 8(3,1)16 16

c4
A and C 47(4,1)47 11(4,2)22

25
B 49(4,1)49 12(4,2)24

c5
A and C 28(5,1)56 12(5,2)24

32
B 31(5,1)62 15(5,2)30

A 36(6,1)36 16(6,2)32 2(6,3)8 8(6,4)16
c6 B 42(6,1)42 27(6,2)54 1(6,3)4 14(6,4)28 12

C 40(6,1)40 18(6,2)36 2(6,3)8 8(6,4)16

A 12(7,1)24 8(7,2)16 4(7,4)8
c7 B 15(7,1)30 15(7,2)30 1(7,3)4 10(7,4)20 16

C 20(7,1)40 12(7,2)24

A 2(8,1)2 1(8,7)2
c8 B 4(8,1)4 4(8,2)8 2(8,4)4 0

C 6(8,1)6 7(8,2)14 2(8,3)8 8(8,4)16

5.2.8 The smallest set of ten cospectral Salem graphs

There are two sets of ten cospectral Salem graphs with eleven vertices, one with 20 edges, and the other,

considered here, with 19 edges. The characteristic equation is:   

x1119x918x888x7108x6127x5156x4 64x348x216x.
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Coefficient Graphs Subgraphs Result

c0 All None 1

c1 All None 0

c2 All 19(2,1)19 19

c3 All 9(3,1)18 18

c4
A, F, I 112(4,1)112 12(4,2)24

88
B, C, D, E, G, H, J 110(4,1)110 11(4,2)22

A 74(5,1)148 20(5,2)40
B 68(5,1)136 14(5,2)28

c5
C, J 69(5,1)138 15(5,2)30

108
D, E, H 70(5,1)140 16(5,2)32

F, I 72(5,1)144 18(5,2)36
J 71(5,1)142 17(5,2)34

A 243(6,1)243 69(6,2)138 8(6,3)32 27(6,4)54
B 237(6,1)237 60(6,2)120 5(6,3)20 15(6,4)30
C 235(6,1)236 61(6,2)122 5(6,3)20 17(6,4)34
D 231(6,1)231 60(6,2)120 7(6,3)28 22(6,4)44

c6
E 231(6,1)231 58(6,2)116 7(6,3)28 20(6,4)40

127
F 247(6,1)247 64(6,2)128 7(6,3)28 18(6,4)36
G 227(6,1)227 61(6,2)122 7(6,3)28 25(6,4)50
H 229(6,1)229 60(6,2)120 6(6,3)24 21(6,4)42
I 243(6,1)243 65(6,2)130 9(6,3)36 25(6,4)50
J 229(6,1)229 58(6,2)116 6(6,3)24 19(6,4)38

A 153(7,1)306 85(7,2)170 9(7,3)36 28(7,4)56
B 136(7,1)272 54(7,2)108 7(7,3)28 10(7,4)20
C 139(7,1)278 60(7,2)120 8(7,3)32 15(7,4)30
D 130(7,1)260 56(7,2)112 8(7,3)32 20(7,4)40

c7
E 138(7,1)276 63(7,2)126 8(7,3)32 19(7,4)38

156
F 155(7,1)312 76(7,2)152 7(7,3)28 12(7,4)24
G 130(7,1)260 64(7,2)128 7(7,3)28 26(7,4)52
H 131(7,1)262 61(7,2)122 6(7,3)24 20(7,4)40
I 147(7,1)294 79(7,2)158 12(7,3)48 34(7,4)68
J 127(7,1)254 58(7,2)116 7(7,3)28 23(7,4)46

A { 174(8,1)174 84(8,2)168 21(8,3)84 73(8,4)146
11(8,5)44 1(8,6)4 26(8,7)52

B { 180(8,1)180 82(8,2)164 12(8,3)48 36(8,4)72
5(8,5)20 5(8,6)20 8(8,7)16

C { 172(8,1)172 82(8,2)164 12(8,3)48 42(8,4)84
5(8,5)20 6(8,6)24 12(8,7)24

D { 168(8,1)168 75(8,2)150 12(8,3)48 44(8,4)88
5(8,5)20 2(8,6)8 11(8,7)22

E { 160(8,1)160 70(8,2)140 16(8,3)64 49(8,4)98

c8
9(8,5)36 1(8,6)4 15(8,7)30
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F { 182(8,1)182 80(8,2)160 23(8,3)92
61(8,4)122 11(8,5)44 16(8,7)32

G { 146(8,1)146 67(8,2)134 11(8,3)44 58(8,4)116
3(8,5)12 2(8,6)8 20(8,7)40

H { 152(8,1)152 70(8,2)140 11(8,3)44 47(8,4)94
5(8,5)20 2(8,6)8 13(8,7)26

I { 170(8,1)170 67(8,2)134 25(8,3)100
70(8,4)140 14(8,5)56 34(8,7)68

J { 150(8,1)150 62(8,2)124 10(8,3)40 47(8,4)94
4(8,5)16 2(8,6)8 20(8,7)40



A { 174(9,1)174 84(9,2)168 21(9,3)84 73(9,4)146
11(9,5)44 1(9,6)4 26(9,7)52 26(9,8)52

B { 180(9,1)180 82(9,2)164 12(9,3)48
5(9,4)20 5(9,7)20 8(9,8)16

C { 172(9,1)172 82(9,2)164 12(9,3)48
5(9,4)20 6(9,7)24 12(9,8)24

D { 168(9,1)168 75(9,2)150 12(9,3)48 44(9,4)88
5(9,6)20 2(9,7)8 11(9,8)22

E { 160(9,1)160 70(9,2)140 16(9,3)64 49(9,4)98

c9
9(9,6)36 1(9,7)4 15(9,8)30

48

F { 182(9,1)182 80(9,2)160 23(9,3)92 23(9,4)92
61(9,5)122 11(9,6)44 16(9,7)32 23(9,8)92

G { 146(9,1)146 67(9,2)134 11(9,3)44 58(9,4)116
3(9,6)12 2(9,7)8 20(9,8)40

H { 152(9,1)152 70(9,2)140 11(9,3)44 47(9,4)94
5(9,6)20 2(9,7)8 13(9,8)26

I { 170(9,1)170 67(9,2)134 25(9,3)100 23(9,4)92
70(9,5)140 14(9,6)56 34(9,8)68

J { 150(9,1)150 62(9,2)124 10(9,3)40 47(9,4)94
4(9,6)16 2(9,7)8 20(9,8)40

A { 28(10,1)28 18(10,2)36 (10,3)12 24(10,4)48
3(10,5)12 1(10,6)4 14(10,7)28

34(10,1)34 25(10,2)50 6(10,3)24 14(10,4)28
B { 5(10,5)20 4(10,6)16 6(10,7)12 1(10,8)8

1(10,10)4 1(10,11)4 2(10,12)4

30(10,1)30 23(10,2)46 6(10,3)24 16(10,4)32
C { 5(10,5)20 4(10,6)16 6(10,7)12 1(10,8)8

2(10,10)8 1(10,11)4 2(10,12)4

D { 30(10,1)30 20(10,2)40 3(10,3)12 14(10,4)28
4(10,5)16 2(10,6)8 5(10,7)10 1(10,11)4

26(10,1)26 16(10,2)32 5(10,3)20 14(10,4)28
E { 5(10,5)20 1(10,6)4 7(10,7)14

c10 1(10,8)8 2(10,9)8 2(10,12)4 16

30(10,1)30 17(10,2)34 7(10,3)28
F { 20(10,4)40 5(10,5)20 8(10,7)16

2(10,9)8 2(10,10)8 10(10,12)20

G 16(10,1)16 6(10,2)12 8(10,4)16 2(10,7)4

H { 18(10,1)18 9(10,2)18 9(10,4)18
1(10,6)4 4(10,7)8 1(10,12)2

I { 26(10,1)26 9(10,2)18 5(10,3)20
20(10,4)40 3(10,5)12 12(10,7)24

J { 18(10,1)18 9(10,2)18 9(10,4)18
1(10,6)4 4(10,7)8 1(10,12)2

A, I 2(11,1)4 4(11,2)8 2(11,4)4

B { 8(11,1)16 6(11,2)12 3(11,3)12
2(11,4)4 2(11,7)8 2(11,8)4

C 6(11,1)12 4(11,2)8 2(11,3)8 2(11,4)4

c11 D { 6(11,1)12 6(11,2)12 2(11,3)8
0

2(11,4)4 1(11,7)4

E 4(11,1)8 4(11,2)8 1(11,3)4 2(11,4)4

F { 4(11,1)8 2(11,2)4 1(11,3)4
2(11,4)4 2(11,8)4

G,H J None
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5.3 Integral and trivial Salem graphs

5.3.1 Introduction

This section considers small connected Salem graphs with all their eigenvalues integral, and those with

an integer as their greatest eigenvalue. A table of the numbers of each with fewer than twelve vertices,

broken down by number of edges, is given on the next page. All the integral examples with fewer than

nine vertices are drawn, a few infinite sets and well-known larger examples are described, and finally

the smallest trivial examples are considered.

5.3.2 The smallest examples

The smallest integral Salem graph is K
4

There are two examples with five vertices, including K5

{3, 1(3)}               {3, 0(2), 1, 2}         {4, 1(4)}

The four examples with six vertices are: the triangular prism, which can also be regarded as a rather

trivial example of an extended Petersen graph GP (3,1) ; the utility graph K3,3; the cocktail party graph

which is complete apart from  ½ n  independent edges (where  n 6  here); and the complete graph K6.

 

 









 











 





 





 

 





 

{3, 1, 0(2), 2(2)}       {3, 0(4) }           {4, 0(3), 2(2)}           {5, 1(5)}

There are five examples with seven vertices.




 





The friendship graphs (also known as Dutch windmill graphs), based on this

pattern, are the only finite graphs in which every pair of vertices has exactly

one neighbour [ERS]. The smallest, C3 (a single sail), is cyclotomic; the next,

(also known as the bow tie graph or butterfly graph), is Salem but not integral.

No other friendship graph is Salem. {3 , 1(2), 1(3), 2}

 

  



 

  







 

 

 



 

 

 

{3, 2, 0, 1(3), 2}       {3, 1(2), 0, 1, 2(2)}             {5, 1, 1(4), 2}     {6, 1(6)}
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Table 5.3 Numbers of integral Salem graphs and (in brackets) trivial Salem graphs
with fewer than twelve vertices, listed according to their number of edges

Vertices

Edges 4 5 6 7 8 9 10 11

6 1
7 1
8 0
9 0 2 1 1 1
10 1 0 2 2 (2) 0

11 0 0 2 (0) (1) 0
12 1 0 1 (0) 1 (4) 3 (2) (1)
13 0 0 1 (0) 0 (2) 2 (5) 1 (4)
14 0 0 3 (0) 0 (0) 3 (3) 4 (8)
15 1 0 1 (1) 1 (1) 4 (2) 4 (9)

16 0 2 (1) 4 (5) 1 (2) 0 (0)
17 1 0 1 (2) 2 (3) 1 (0)
18 0 1 2 (1) 6 (4) 3 (1)
19 0 2 0 (0) 2 (2) 4 (5)
20 0 0 0 (0) 2 (0) 3 (2)

21 1 0 1 (0) 0 (0) 0 (3)
22 0 0 (0) 0 (0) 2 (0)
23 0 0 (0) 6 (1) 6 (3)
24 1 0 (0) 0 (0) 0 (3)
25 0 0 (1) 1 (0) 4 (3)

26 0 2 (0) 1 (0) 1 (1)
27 0 0 (0) 1 (1) 0 (0)
28 1 0 (0) 2 (2) 1 (1)
29 0 (0) 1 (1) 0 (2)
30 0 (0) 1 1 (5)

31 0 (1) 0 4 (1)
32 0 0 1 (1)
33 0 2 1 (0)
34 0 0 0 (0)
35 0 0 2 (0)

36 1 0 0 (1)
37 0 3 (1)
38 0 0 (0)
39 0 0 (0)
40 1 0 (0)

41 0 0 (0)
42 0 0 (0)
43 0 2 (1)
44 0 0
45 1 0

46 0
47 0
48 0
49 2
50 0

51 0
52 0
53 0
54 0
55 1

Integral: 1 2 4 5 18 13 43 51

Trivial: (4) (18) (28) (56)
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{3, 1, 0(4), 2(2)}

5.3.3 The eighteen integral Salem graphs with eight vertices

9 edges 10 edges

12 edges: the cube

{3, 1, 0(4)}
{3, 1(2), 0(2), 1, 2(2)}

{3, 1(3)}

11 edges

{3, 2, 1, 1(4), 2}   {3, 1(3), 1(2), 2(2)}

13 edges

15 edges

{4, 1, 0(3), 1, 2(2)} {4, 2, 0(2), 1(2), 2(2)}

{4, 1(2), 0, 1(2), 2(2)}

The three graphs with 14 vertices are an isospectral set

16 edges 18 edges

{4, 2, 0(3), 2(3)}       {4, 0(6)}
{5, 1, 0(2), 1(2), 2(2)}

19 edges          24 edges: cocktail party graph         28 edges: K8

{5, 2, 1(5), 2}     {5, 1(2), 1(3), 2(2)}    {6, 0(4), 2(3)}           {7, 1(7)}
78





5.3.4 A selection of infinite sets of integral Salem graphs and special named integral Salem graphs










































 

 

 

 

 

 

 

 

 

 

 









 

 

 

 









 


















 

 



 

 

{3, 0(8)}

{3, 2(6), 1(3), 0(4)} {6, 2(6),2(9)}

{3, 2(2), 1, 0(4)}  {(2), 
–
2(4),  (1)}

{3, 1(5), 2(4)}

The star graph with 10 vertices

The standard Petersen graph GP(5,2)

GP(6,1) GP(6,3)

5.3.5 The star graphs

It is easily seen in the table that with fewer than twelve vertices there is only one integral Salem tree

(with number of edges one fewer than number of vertices). This is the star graph shown above. All star

graphs are Salem, except those with fewer than six vertices which are cyclotomic. Those with  n vertices,

where  n1  is a perfect square, are also integral with spectrum {——
n1,  0(n2)}.

5.3.6 The complete graphs

The complete graphs Kn are all integral with spectrum {n1, 1(n1)}. K1 to K3 are cyclotomic, and

the rest are Salem. K4 to K11 are seen in the table at the bottom of each integral column.

1 The Nauru graph was named by David Eppstein after the island nation, which has a twelve-pointed star on its flag
representing the original twelve tribes of Nauru. Remarkably, if the [currently universally recognized] states of the world
are arranged in alphabetical order, each of the three consecutive states Namibia, Nauru and Nepal (and no other) has a
twelve-pointed star on its flag.

The Nauru1 graph GP(12,5)
The line graph of K4,4
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5.3.7 The complete bipartite graphs

The complete bipartite graph  K m,n has spectrum {——
mn ,  0(mn2)}, so K1,1, K2,1, K3,1, K4,1, and

K2,2 are cyclotomic while the rest are Salem. The integral cases can be thought of as:

• K i 2,1 (i 2),  the integral star graphs described above.

• K i, i (i 2).  K3, 3 , K4,4, and K5,5 appear in the table; the first two are also drawn

among the graphs with six and eight vertices.

• Other cases  K m,n where  m n is a perfect square, such as K12,3.

5.3.8 The cocktail party graphs

The cocktail party graph  CPn (n even, 4)  is the same as  Kn with (any)  ½ n independent edges

removed. This is frequently represented as the complete graph drawn as a regular polygon without the

edges joining opposite vertices.

The spectrum is {n2 , 0(½n), 2(½n1)}, so  CP4 is cyclotomic (and isomorphic to C4) while the rest

are integral Salem.  CP6 , CP8 and  CP10 appear in the table as the penultimate entry in their respective

columns; the first two are also drawn among the graphs with six and eight vertices.

5.3.9 The generalized Petersen graphs

The generalized Petersen graph GP n k  is defined as follows:

The vertices are  u0  un1 and  v0  vn1. These are often drawn as the  n vertices of each of two

concentric regular polygons.

The edges fall into three sets:

• ui  , ui1 mod n . These complete the outer polygon in the obvious way.

• ui  , vi . These are the “spokes” joining the inner and outer polygons.

• vi  , vik mod n . These complete the inner polygon, “winding it up”. In the standard

Peterson graph for example, shown at the top of this section, the inner pentagon “winds

up” into a pentagram. If  k1  there is no “winding” and we have the graph of a

polygonal prism such as  GP 61 shown at the top of this section. If  n and  k are not

co-prime the inner polygon degenerates into separate components; an extreme example

being GP63, shown at the top of this section, in which the inner hexagon degenerates

into three independent edges.

Eight of the smaller generalized Petersen graphs are Salem:

• GP 31, the triangular prism, is integral Salem, illustrated among the graphs with

six vertices. The spectrum is {3, 1, 0(2), 2(2)}.

• GP 4 1, the cube, is integral Salem, illustrated among the graphs with eight vertices.

The spectrum is {3, 1(3)}.
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• GP 61, the hexagonal prism, is integral Salem, illustrated at the top of this section.

The spectrum  is {3, 2(2), 1, 0(4)}.

• GP 52, the standard Petersen graph, is integral Salem, illustrated at the top of this

section. The spectrum is {3, 1(5), 2(4)}.

• GP 103, the Desargues graph, is integral Salem with spectrum {3, 2(4), 1(5)}.

• GP 125, the Nauru graph, is integral Salem, illustrated at the top of this section.

The spectrum is {3, 2(6), 1(3), 0(4)}.

• GP 83, the Möbius-Kantor graph, is trivial Salem, with the following spectrum:

{3, 
–
3(4), 1(3)}.

• GP 63, illustrated at the top of this section, is a degenerate generalized Petersen

graph, but a “proper” Salem graph.

5.3.10 The Shrikhande graph

The Shrikhande graph [Sh] has been singled out for special mention for a combination of reasons:

Most importantly it is an integral Salem graph. Its spectrum is {6, 2(6),2(9)}.

Secondly, it has already been encountered in §2.6.1, where it was most conveniently described as a

triangulation of the sphere, and most easily drawn in two dimensions as a triangular tessellation with

some vertices appearing at least twice at the edges. It is of course possible to draw it in two dimensions

with each vertex appearing only once, but all such drawings belie its inherent simplicity.   

Thirdly, it has a remarkable unique property. The spectra of the line graphs of the complete bipartite

graphs  Ki,i are unique, with the single exception that the spectrum of the line graph of  K4,4 is the

same as that of the Shrikhande graph. The line graph of  K4,4 is shown at the top of this section. The

thick gray lines each represent four edges between the copies of  K4,4. These edges go between

corresponding points (i.e. top-left to top-left and so on). 

Finally the Shrikhande graph is also a strongly regular integral Salem graph.

5.3.11 The smallest Salem graphs for which the largest eigenvalue is an integer

In all but one of these smallest cases all the non-integral eigenvalues are closely related to either 
–
2,


–
3 or the golden ratio .

The four trivial Salem graphs with eight vertices:







 

  



 









{3, 
–
2, 1, 0, 1(2), 

–
2, 2} {3, 1, , 0, , 1, 1, 2}

10 edges
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{4, 

–
3, 0(3), 

–
3, 2(2)} {4, 

–
2(2), 0,  

–
2(2), 2(2)}

15 edges 16 edges

The 18 trivial Salem graphs with nine vertices:





















 

 









   











11 edges

12 edges

{3, 1, 1, , 0, , 1, 2(2)}         

{3, 
–
3, 0(5)}

















{3, 
–
2, 0(5)}



















{3,
–
3, 1, 0(3), 

–
3, 2(2)}

{3, 
–
3(2), 0, 1(3),

–
3(2)}



{3, 2,
–
2, 0(2), 1, 

–
2, 2(2)}

 

 



 

 











 

13 edges: a cospectral pair









 
 



15 edges

{4, 
–
2, 1, 0(2), 1, 

–
2, 2(2)}




 



 

 

{4, 2, (2), 1(2), 1(2), 2}

 

 





 


 

 





 



{4, 
–
2(2), 0(2), 

–
2(2), 2(2)}



 



 

 

 

 


 







{4, 
–
3, 1, 0(2), 1, 

–
3, 2(2)}

16 edges, including two cospectral pairs



 





 

 



 



 

 



{4, 2, 
–
2, 0, 1(2), 

–
2, 2(2)}

17 edges: a cospectral pair

   

 



 

18 edges

{4, a(2), b(2), c(2), 2(2)}
where a, b and c are the roots of

x33x1

The graph with 25
edges is the 9-vertex
complement of this:

The last graph, with 31 edges, is the complete graph C9 with a copy of C5 removed.

Its spectrum is {7, (2), 1(3), 1(2), 2}
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{6, 
–
2, 0(2), 1(2), 

–
2, 2(2)}



5.4 Regular Salem graphs

5.4.1 Introduction

This section considers small connected regular Salem graphs, in particular those that satisfy the stronger

requirements of being circulant or strongly regular, and including those that satisfy the weaker

requirement of being semi-regular.

5.4.2 Circulant Salem graphs

A circulant graph has a circulant adjacency matrix which is defined by its first row; the entries of each

subsequent row are the same as the entries of the previous row, but shifted one space to the right, with

the one that “falls off the end” reappearing at the beginning.

If the first row of a circulant adjacency matrix is  a0 a1 a2 ... an1 then  a0 0  because loops are

excluded, and  aiani 0 i n because the matrix must be symmetric as well as circulant.

This means that the number of circulant adjacency matrices is (relatively) very small. It is much easier

to find those circulant graphs which are Salem and identify them with those regular Salem graphs already

found, than it is to establish which of the regular Salem graphs already found are circulant. Also it is

not difficult to push the exhaustive search for circulant Salem graphs up to 40 vertices; the results are

shown in table 5.4.

The table very strongly suggests a complete classification of all circulant Salem graphs. There are five

infinite sets, the most interesting of which depends on the prime factors of the number of vertices, and

in addition there are seven small sporadic examples.

5.4.3 Remarks on drawing circulant graphs

Given several circulant adjacency matrices which are known to represent isomorphic graphs, then, when

drawing the graph, we choose if possible one of the matrices in which  a1 an1 1.  This means that

we can start the drawing with  n vertices arranged in a regular polygon (numbered if necessary

consecutively), with at least some of the edges between them completing the polygon in the obvious

way, meaning that physically adjacent vertices are also adjacent in the graph. Such a choice is always

possible in all of the infinite sets of graphs which we are about to consider; and a few cases where such

a choice is not possible will be detailed among the sporadic examples.

If in addition  n is even and  a½n1 1  then the diagonals of this polygon can also be drawn. The

polygon and its diagonals can then be redrawn in a way which is superficially very different, known as

a Möbius ladder.

Consider the circulant adjacency matrices with first rows 0 0 0 1 0 1 0 1 0 0  and 0 1 0 0 0 1 0 0 0 1 . These

represent isomorphic graphs. A way of seeing this with minimal effort will be described in section 5.4.6.

We prefer the second matrix, and note that the diagonal edges are present. The graph can now be drawn

in at least three ways.

The first is the circulant drawing which has the advantage of showing the symmetry beautifully.
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6

1

The second is a Möbius ladder. This is vastly easier to draw, but the corner vertices are repeated and so

need to be labelled to show that a twist has been introduced, making the (obvious) ladder similar to a

Möbius strip.

The third drawing bends the ladder round into a circle. Vertices don’t need to be repeated, the similarity

to the graph of the (in this case) pentagonal prism is clear, and the twist is also self-evident; but the

symmetry needs to be thought about — it no longer leaps off the page as in the circulant version — and

the drawing once again takes some effort.

Now consider the graph with  0 1 1 1 0 1 1 1  as the first row of its adjacency matrix, which is in fact

CP8 , the cocktail party graph with eight vertices. Vertex 1 is connected to vertices 2, 3, 4, 6, 7 and 8,

but it is much more informative to regard these as “jumps” of 1 (to vertices 2 and 8 in this case), of 2

(to vertices 3 and 7 in this case), and 3 (to vertices 4 and 6). These relative jumps, as opposed to the

absolute numbers of the target vertices, apply to every vertex. The “” pairs always occur because of

the restrictions described in 4.4.1, except for the diagonals where it is not necessary because the result

of the jump is the same regardless of the direction in which it is made. In this example jumps of 4 and

4 are the same, and represent the diagonals.

If the jump number does not divide the number of vertices, the jumps generate another polygon with all

the vertices. This can either be drawn “wound up” inside the first polygon, or drawn separately. In the

latter case the vertices must be labelled since their relationship to the vertices in the other polygon is a

crucial part of the structure.

If the jump number does divide the number of vertices the second polygon arrives back at the start

without including all the vertices so the new polygon decomposes into smaller polygons. The jump

number is the number of smaller polygons and the quotient of the total number of vertices by the jump

number is the number of vertices in the smaller polygons.

In this example the 1 and the 3 jumps generate full octagons, while the 2 jumps generate two

squares. Some or all of these can then be combined together if clarity allows, as shown on the next page

but one after the table.

In the previous example the jumps were 1 and 5, so the graph can (as is clear from the circulant

drawing), be decomposed into a decagon and five copies of K2 which are the diagonals.
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Table 5.4 Circulant Salem graphs with fewer than 41 vertices, arranged by their n-regularity

Vertices

n 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

3 1 2* 1

4 1 2* 1 2 1

5 1 • 1 1 1 1

6 1 • 1 1 1 •

7 1 • 1 1 • 2

8 1 • • 1 1 2

9 1 • • • 1 • 1

10 1 • • • 1 1 2

11 1 • • • • 1 • 1

12 1 • • • • 1 1 2

13 1 • • • • • 1 • 3

14 1 • • • • • 1 1 1

15 1 • • • • • • 1 • 1

16 1 • • • • • • 1 1 3

17 1 • • • • • • • 1 • 1

18 1 • • • • • • • 1 1 2

19 1 • • • • • • • • 1 •

20 1 • • • • • • • • 1

21 1 • • • • • • • • •

22 1 • • • • • • • •

23 1 • • • • • • • •

24 1 • • • • • • •

25 1 • • • • • • •

26 1 • • • • • •

27 1 • • • • • •

28 1 • • • • •

29 1 • • • • •

30 1 • • • •

31 1 • • • •

32 1 • • •

33 1 • • •

34 1 • •

35 1 • •

36 1 •

37 1 •

38 1

39 1

Only the cases with an even number of vertices are shown. The odd cases consist of the complete graphs, with a

single sporadic example which is four-regular with nine vertices. The members of the most interesting of the infinite

sets are shown under the gray line. The sporadic examples are underlined in bold. The rest are members of the first

four of the five infinite sets. The notation 2* means that only one of the two examples is sporadic.
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5.4.4 The first three of the five infinite sets

These are very familiar, and already detailed in sections 5.3.6 to 5.3.8. They are the complete graphs,

the complete bipartite graphs and the cocktail party graphs. Here are some additional comments on two

of the three:

The complete graphs

The complete graphs  Kn are  n1-regular and integral Salem with spectrum  {n1, 1(n1)}.  Despite

having no vertices which are not adjacent, are usually regarded as trivially strongly regular.

K3 is cyclotomic; the rest are Salem. K4 can be drawn not only in circulant form and in planar/tetrahedral

form, but also as a small Möbius ladder.
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The cocktail party graphs

The cocktail party graphs  CPn are strongly regular with paramaters  n, n2, n4, n2 ,  and integral

Salem with spectrum  {n2 , 0(½n), 2(½n1)}.

Their adjacency matrices have first row with a0  a½n1 0, and all other entries equal to one.

The smallest Salem cocktail party graph is CP6. Its adjacency matrix has first row 0 1 1 0 1 1 , and its

spectrum is {4, 0(3), 2(2)}. It is strongly regular with parameters 6, 4, 2, 4 , and is drawn both in

circulant form and as a more familiar triangular anti-prism.
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5.4.5 The fourth infinite set: the Bunga Bunga graphs1

The cocktail party graph  CPn is the complete graph  Kn with  ½n independent edges removed. Similarly,

the fourth infinite set consists of the complete bipartite graphs  K½n,½n with  ½n independent edges

removed. The similarity is obvious and a related name is desirable. The independent edges removed

from  Kn are usually (not) drawn as those between opposite edges when the vertices form a regular

polygon. Those removed from  K½n,½n are usually thought of as the horizontal edges when the

partitioned sets of vertices are drawn, as they often are, in parallel vertical columns.

The cocktail party graphs are so named because at a cocktail party everyone is said to talk to everyone

else except their spouse. At a Bunga Bunga party (one imagines) everyone interacts with precisely those

of the opposite gender who are not their partner, so the term “Bunga Bunga graph” seems appropriate.

It was noted above that  K½n,½n has opposite diagonals only when  n  2 (mod 4),  so they are there to

be removed in only those cases. 0 1 0 1 0 1 0 1 0 1 for example becomes 0 1 0 1 0 0 0 1 0 1 but on the

other hand 0 1 0 1 0 1 0 1 0 1 0 1 cannot change in a similar way.

The Bunga Bunga graphs are ½n1-regular with spectrum {n1 , 1(n1)}. When  n  0 (mod 4)

the graphs are still regular integral Salem, but not circulant.

BB6 has the first row of its the adjacency matrix of K3,3 is 0 1 0 10 1 and to get BB3,3 the bold underlined

one has to be removed to leave 0 1 0 0 0 1  which is clearly isomorphic to C6 and cyclotomic.

BB8 is isomorphic to the graph of the cube and is not circulant. When drawn bounded by a regular

octagon, the “insides” lose the symmetry associated with circulant graphs. 

BB10 is the first circulant Bunga Bunga Salem graph. 0 1 0 1 0 0 0 1 0 1  is the first row of its adjacency

matrix so the jumps are 1 and 3 and the graph decomposes into two interlocking decagons.

1 The term “crown” graphs has been used, but is not widespread in the literature, has been applied to more than one type of
graph, and does not reflect the close relationship to the cocktail party graphs.
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5.4.6 The fifth infinite set

The complete bipartite graph  Kn,n has an even number of vertices and the first row of its adjacency

matrix contains no even jumps and all posible odd jumps. This section is illustrated with the circulant

Salem graphs which have 30 vertices, and the first row of the adjacency matrix of  K15,15 is

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 .

If precisely one pair of these odd jumps is removed, that which remains is a graph in the fifth infinite

set. In each case these are subgraphs of the complete bipartite graph and so are still bipartite. In the case

of 30 vertices this gives seven adjacency matrices with these first rows:

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 

0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 

0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 

0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 

0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 

0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 

and 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 .

In cases where the structures generated by the missing jumps are isomorphic, the graphs which remain

must also be isomorphic. This will happen when the highest common factor of the jump number and the

number of vertices are the same in each case.

In the case of 30 vertices the jumps 1, 7, 11 and 13 each generate polygons with the full 30 vertices

because  (30,1)  (30,7)  (30,11)  (30,13)  so the matrices with these missing jumps generate

isomorphic graphs, which in this case are trivial Salem with top eigenvalue 13. Similarly the jumps 3

and 9 each generate three decagons because  (30,3)  (30,9)  so the matrices with these missing jumps

also generate isomorphic graphs, which in this case are also trivial Salem with top eigenvalue 13 but

with a different spectrum. Only the jump 5 generates five hexagons. No other jump number has the

same HCF with 30 so there is only one circulant matrix representation of this graph. It is integral Salem

with spectrum {13, 2(4), 1(10)}.

The jumps of ()15 give 15 copies of  K2 which are the opposite diagonals, and can be combined with

each of the three or four 30-vertex polygons to form Möbius ladders.

So in total there are three non-isomorphic circulant Salem graphs with 30 vertices in the fifth infinite

set. Besides these, and  K15,15 mentioned above, there are three other circulant Salem graphs with 30

vertices which are included here for completeness. They are the Bunga Bunga graph  BB15,15 which is

K15,15 with the diagonals removed, the cocktail party graph CP30 , and the complete graph K30. The first

rows of their adjacency matrices are:

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

and 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .

Members of the fifth infinite set with other numbers of vertices can be found in exactly the same way.
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5.4.7 The seven sporadic circulant Salem graphs

The first graph is three-regular with six vertices. It is integral Salem with spectrum {3, 1, 0(2), 2(2)}.

The first row of its adjacency matrix is  0 0 1 1 1 0  so its circulant form decomposes into a pair of

triangles with the diagonals of what would be the enclosing hexagon, as shown in the first drawing. This

is our first example where there is no matrix of the preferred form  0 1 ... 1  which generates the same

graph, so it cannot be drawn as a regular hexagon with circulant symmetrical “insides”. The second

drawing, however, shows that it can be drawn as a regular hexagon with irregular insides.

The third drawing shows the more familiar form of a planar triangular prism.

The second graph is is trivial Salem with spectrum {4, 
–
2(2), 0, 

–
2(2), 2(2)}. It is four-regular with

eight vertices.

The first row of its adjacency matrix is  0 1 1 0 0 0 1 1  so its circulant form decomposes into an octagon

and two squares as shown in the first drawing. It is perhaps best known as the quadrilateral antiprism.

A planar drawing is also shown.

 

 



 

 







 





1 2

3

4
5

6

1

2

34

5

6



 

 

 

 



 



 














This is the only circulant Salem graph with an odd number of vertices

(nine) which is not complete.

It is four-regular and trivially Salem with top eigenvalue four. The first

row of its adjacency matrix is  0 1 0 0 1 1 0 0 1  so the circulant form

decomposes into two nonagons.
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The fourth sporadic graph is integral Salem with spectrum {5, 2(2), 1(3), 1(6)}. It is five-regular with

twelve vertices.

This is another example of a circulant graph which cannot be represented by an adjacency matrix with

its first row in the preferred form. The top row is  0 0 0 1 1 0 1 0 1 1 0 0  so the circulant form decomposes

into three squares, four triangles, and six copies of  K2 as shown below. These can now be assembled

into a memorable representation of the graph. The six copies of  K2 are the diagonals of the squares

which all go together to make three copies of  K4.  If the second square is now rotated through 90º and

the third through 180º, the four triangles can be regarded as the edges between corresponding vertices

of the copies of  K4 (i.e. top left to top left and so on). These are represented by thicker gray lines, each

of which replaces four edges.
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Similarly to the first sporadic example, it is possible to draw the vertices in a dodecagon with edges in

the obvious places (for example 1107485211312691) but the “internal” symmetry

would then be lost.

The fifth sporadic graph also has twelve

vertices and is also integral Salem, with

spectrum {7, 2(2), 1(2), 1, 2(6)}, but

it is seven-regular and has an adjacency

matrix in the preferred form with first

row 0 1 0 0 1 1 1 1 1 0 0 1 . The jumps of

1 and 5 give two dodecagons, the

jump of 6 adds the diagonals which

turn them into Möbius ladders, and the

jump of 4 gives four triangles.
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The first is trivial Salem and 4-regular

with largest eigenvalue four. The first

row of its adjacency matrix is

0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 

with jumps 1 and 7, so it de -

composes simply into two 18-vertex

interlocking polygons.

































The second is also trivial Salem and 5-regular with largest eigenvalue five. The first row of its adjacency

matrix is 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 with jumps 1, 3 and 9, so it decomposes into a Möbius ladder

and three hexagons.

The last two sporadic graphs both have 18 vertices.
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5.4.8 Small strongly regular Salem graphs

The table includes the complete graphs which are, at best, trivially strongly regular. Only three of the

entries were not encountered in the previous section on circulant graphs. The parameters v, r, a, n 

mean that the graph has  v vertices and is r-regular, with adjacent vertices sharing  a neighbours and

non-adjacent vertices sharing  n neighbours.

Vertices Total Details

4 1 K4

5 1 K5
6 3 K3,3 6, 3, 0, 3  CP6 6, 4, 2, 4  K6

7 1 K7

8 3 K4,4 8, 4, 0, 4  CP8 8, 6, 4, 6  K8

9 2 K9 and A 9, 4, 1, 2  with spectrum {4, 1(4), 2(4)} drawn below

10 5 K5,5 10, 5, 0, 5  CP10 10, 8, 6, 8  K10

The Petersen graph 10, 3, 0, 1  with spectrum {3, 1(5), 2(4)} drawn below and

Its complement 10, 6, 3, 4  with spectrum {6, 1(4), 2(5)} also drawn below

11 1 K11

Taking the usual drawing of the Petersen graph with an inner pentagram connected by spokes to an outer

pentagon, the pentagram is here rotated through 180º and enlarged so that the vertices are now those of

a regular decagon and the spokes become opposite diagonals. This unusual representation of the Petersen

graph, not very interesting in itself, allows a reasonable attempt to be made at drawing a memorable

version of its complement.

 

 




  







 















 









A 9, 4, 1, 2 

The Petersen graph
and its complement
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5.4.9 Small regular Salem graphs

Table 5.5 The regular Salem graphs with fewer than twelve vertices
arranged by their number of vertices and their n-regularity

Vertices

n 4 5 6 7 8 9 10 11

3 1 2 1 5

4 1 1 3 3 1

5 1 0 0 1

6 1 1 0 1

7 1 0 0

8 1 1

9 1

10 1

Totals: 1 1 4 1 6 4 10 1

Six of these graphs are neither circulant nor strongly regular, so were not mentioned in the previous two

sections. One is 3-regular with eight vertices, previously mentioned as the smallest non-circulant Bunga

Bunga graph, isomorphic to the cube. It is also bipartite and appears in the next section. Graph A is one

of those with eight vertices which are 4-regular. B is 4-regular with nine vertices. C, D and E are 3-

regular with ten vertices. E is also bipartite and appears in the next section.





























 











  





 
























A with spectrum {4, 2, 0(3), 2(3)} B with spectrum

{4, 2, 1(2), 1(2), 2(3)}

C with spectrum {3, 2, 1(3), 1(2), 2(3)} D is trivial Salem E with spectrum {3, 2, 1(2), 0(2)}
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5.4.10 Semiregular Salem graphs

This section is concerned with small connected Salem graphs which are bipartite, and in which all the

vertices in the same partition are incident with the same number of edges. Bipartite graphs which are

(fully) regular are included. There are 32 such graphs with fewer than twelve vertices. Of those, just

seven are not complete bipartite graphs, and four of those seven are (fully) regular and have appeared in

previous sections.

Vertices Total Details

5 1 K3,2 (the star graph K3,1 is cyclotomic)

6 3 K3,3 K4,2 K5,1

7 3 K4,3 K5,2 K6,1

8 5 K4,4 K5,3 K6,2 K7,1 and BB8 which is isomorphic to the cube

9 5 K5,4 K6,3 K7,2 K8,1 and graph A9, 4, 2  shown below, a subgraph of  K6,3

10 10 K5,5 K6,4 K7,3 K8,2 K9,1

The three-regular bipartite graph shown in the previous section

The first graph in the fifth infinite set of circulant Selem graphs

BB10 , the first circulant Bunga Bunga graph

Graphs B10, 3, 2  and C10, 3, 2  shown below, subgraphs of K6,4

11 5 K6,5 K7,4 K8,3 K9,2 K10,1



















































A9, 4, 2 

B10, 3, 2  C10, 3, 2 
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Chapter 6
Non-bipartite graphs

of small Mahler measure

6.1 Introduction

6.1.1 Publication

This is an exposition of the paper (with the same title as this chapter) published in the Journal of

Combinatorics and Number Theory (ISSN 19425600), Volume 5 (2013), Number 2, pp. 53–64. The

contributors were (in alphabetical order) the present author and James McKee of Royal Holloway,

University of London, and Chris Smyth of the University of Edinburgh.

6.1.2 Notes on the title

Bipartite graphs of small Mahler measure were classified in a previous paper [MS] by the second and

third authors, so this paper completes the classification of all graphs with small Mahler measure.

The word “small” here means less than the Golden Ratio  : 15
_

____
2    

.  This is shown to be the least limit

point of the set of Mahler measures of non-bipartite graphs, so it is the natural choice.

It is worth repeating that for Salem graphs the associated Salem number and the Mahler measure are

exactly the same.

6.1.3 Contributions of the present author

The main result in the paper is that every non-bipartite graph with small Mahler measure belongs either

to one of three infinite families or to a set of eight sporadic examples. One of the families (the odd cyclic

graphs) has been known since 1970 [Sm] to consist of the only connected non-bipartite graphs which

are cyclotomic (i.e. with Mahler measure equal to one). The present author completed the classification,

providing all remaining discoveries, calculations, conjectures and motivation for the paper.

6.1.4 Differences between this exposition and the published paper

• The introduction has been completely rewritten since the context here is very different

from that of an isolated paper. In particular, ideas which have been carefully introduced

(or at least, it is hoped, adequately mentioned) in chapter 1, have not been reintroduced

here. Similarly Cauchy’s interlace theorem, and its crucial importance in this thesis, has

already been carefully presented in chapter 3.

• The diagram on page 97 has been added to show more clearly how graphs in the

classification can be systematically developed in various ways from C3 (the

‘fundamental’ non-bipartite graph), since this was a major contribution by the present

author.
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• Because space is not a major consideration here, a little more explanation and comment

are included.

• Non-connected graphs are not discussed in the rest of this thesis because nothing

essentially new was found that was worth saying about them. The same could be said

here, but, because the paper complements [MS] where they were explicitly considered,

they are fully treated, especially in Lemma 6.2.1.

6.1.5 The bipartite case

Bipartite graphs with small Mahler measure were classified in [MS]. This section outlines the method.

Recall from the first chapter that if a graph G has characteristic polynomial  Gx then the Mahler

measure of the graph  MG can be written in terms of the eigenvalues of G:

MG  
2

24

___

________ .


Gx  0, 2

Let    2

_
5

______
 2.058... .   If     then  


2

24

___ 

 
__

._________

But if a graph is bipartite then its roots are symmetric about the origin [CR], so   and   both

contribute to its Mahler measure, and if its Mahler measure is less than   then its spectral radius must

be less than .

All connected graphs with largest eigenvalue in the interval 2, ] have been described by Cvetković

and Rowlinson [CvRo Theorem 2.4] drawing on [BN] and [CDG]. So the work of [MS] was to find

which of these graphs have Mahler measure below .

In the non-bipartite case, however, it is possible for the spectral radius to be larger, with the Mahler

measure still below , so a different approach is required.
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6.2 Theorem

Every connected non-bipartite graph with Mahler measure less than   is one of the following:

• an odd cycle

• a ‘kite’ graph (Figure 6.1)

• a ‘balloon’ graph (Figure 6.2)

• one of eight sporadic examples (Figure 6.3)

The diagram on the next page shows the interrelationships between them.
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Figure 6.1. The kite graphs: Ktn has n vertices

Figure 6.2. The balloon graphs: Bl2n has 2n vertices

Figure 6.3. The sporadic graphs: Spa to Sph
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Spa

Spc END

Spb

Spd

Spf END

Spe

Sph END Spg END

C3

Bl8

C2n1
C7

C5

Kt6

Kt7

Ktn

Kt5

Kt4Bl4 Bl6
Bl2n
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6.2.1 Nonconnected graphs

By using [MS, Theorem 10.2] and the following remark we can extend theorem 6.2 to include non-

connected graphs.

Corollary  Every non-bipartite graph of small Mahler measure is one of the following:

• a (not necessarily connected) bipartite graph of small Mahler measure with one or more

additional components consisting of odd cycles;

• a graph with one connected component as given in Theorem 6.2 with any other components

cyclotomic

• a graph with one connected component Bl8, one connected component the tree

————————

and any other components cyclotomic.       


6.2.2 A lower bound

As an immediate consequence of Theorem 6.2 and the computations involved in its proof we find the

following lower bound on Mahler measures greater than 1 for connected non-bipartite graphs.

Corollary Let  G be a connected non-bipartite graph. Then either  MG 1  or

MG MBl8 1.35098..., the larger real root of  z10z9z6z5z4z1.

The polynomial is obtained by substituting  n4  in expression () in §6.4, removing the first factor

which is just the cyclotomic polynomial often known as  7,  and carrying out the division.

6.2.3 Plan of the proof

After Smith’s result [Sm] we need only consider non-cyclotomic graphs.

• In 6.3 we prove that all kites have small Mahler measure;

• In 6.4 we prove that all balloons have small Mahler measure;

• In 6.5 we describe computations which deal with all small examples;

• In 6.6 we list some graphs with Mahler measure which is not small; by interlacing they cannot

be induced subgraphs of graphs with small Mahler measure;

• In Lemma 6.7.1 we prove that any connected graph which has small Mahler measure and

contains a triangle must be a kite; and finally

• In Lemma 6.7.3 we show that all remaining connected non-bipartite graphs with small Mahler

measure are balloons.

We finally prove Corollary 6.2.1.
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6.3 All kites have small Mahler measure

Ktn is a line graph [GR, §1.7], so has all eigenvalues in the interval  [2  [B, Proposition 3.7].

Deleting one of the vertices in the triangle leaves a cyclotomic graph as is seen from Smith’s

classification [S]. But  Ktn itself is not one of Smith’s graphs, so does not have all its eigenvalues in

[22], so by interlacing it is a Salem graph with a unique eigenvalue larger than two which is the only

eigenvalue that contributes to the Mahler measure.

Let  n be the largest eigenvalue of  Ktn . As  n increases so does  n , and indeed it strictly increases

[GR, Theorem 8.8.1(b)]. Write  n zn
1
—zn

, with zn >1;  then  zn also strictly increases with  n,  and

equals the Mahler measure of  Ktn . By [MS, Lemma 4.3], using the explicit formula in the proof of

[MS, Lemma 4.1],  zn converges to a root of  z2z1 0,  and it must be the positive root  .

Hence  znMKtn for all  n 4,  and we see that   is a limit point of the set of Mahler measures

of non-bipartite graphs.

Using Lemma 4.1 of [MS], we compute that the reciprocal polynomial of  Ktn is

z2n2z31z42z1 z2n61
———.

z21

Table 6.1 shows the first few values of  M(Ktn).

Table 6.1. Mahler measures of small kites and balloons

n MKtn MBl2n

2 1.5061...

3 1.4012...

4 1.5061... 1.3509...__________________________

5 1.5823... 1.5064...

6 1.6054... 1.5783...

7 1.6134... 1.6020...__________________________

8 1.6162... 1.6113...

9 1.6173... 1.6151...

10 1.6177... 1.6168...

6.4 All balloons have small Mahler measure

Balloons cause more trouble than kites because, apart from small cases, they have two eigenvalues

outside the interval  [2,2].  As indicated in Table 6.1, the Mahler measures of balloons initially decrease

as the number of vertices grows, reaching a minimum for  Bl8,  then appear to increase towards .  This

we now prove.

Computing the characteristic polynomial by expanding along the row corresponding to the leaf, the

reciprocal polynomial of  Bl2n is found to be
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z2n11 z4z21z2n1z4z21
———— . ——————————— .

z1       z1
()

Since we are interested in the Mahler measure we can delete the left factor which is cyclotomic. It also

proves easier to multiply by  z1  and work with the numerator of the right factor, rather than working

with the polynomial which results from the division.This also does not change the Mahler measure.

z4z21z2n1z4z21 Pnz say.

To show that  Bl2n has small Mahler measure we must show that  MPn.  For  n 5  we check this

by direct computation. It remains to deal with  n 5.

Deleting the vertex of valency three leaves a (disconnected) cyclotomic graph so, by interlacing,  Pn has

at most two roots outside the unit disc. Note that

Pn
—

  0  Pn1 0  Pn192n 0 for n5  Pn
—

 < 0 and  Pn

so that for  n5,  Pn has a root  zn
 in  — 1 and a root  zn

 in  — ,  and these account for

all possible roots outside the unit disc.

From  Pnz 0 we get

z4z21log|————|z4z21  2n1
——————  ———.

log|z2| 2

Putting  z21x and remembering that   1 1

 0  and  21  1


,  the left-hand side

becomes

21x)
log|1——————|x x1__

)
gx: ————————— .

loglog|1x|

The two roots  zn
 and  zn

 correspond to real roots of the equation  gx  2n1
——

2   
.  Call these  un and

un where  zn
1——

un——
and  zn

1——
un
——

.

gx is decreasing for  x0  because its numerator is decreasing and its denominator is increasing.

Since  g0.1 9
2

we see from 0.0 that  un  0,0.1 for all  n5.

We have

MPn  1un
———1un——

 1———
un

—
unun

———
un,

which is less than   if  unun. We now show that this is indeed the case.

Knowing that  gx is is decreasing in  0, and  un  0,0.1,  it will be enough to show that

gx  gx for  x  0,0.1.
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On rewriting the numerator of  gx as

log 1x   C  log 1 xRx

where

2 43x75
C log——  0.11157 and Rx ——————— ,

2              42x62

one readily checks that

2x 1g–x – gx∼——— log|––|
log2 x

as  x0,  and using the error term in the Taylor approximation to the logarithm function shows that

this positive main term dominates in the interval  0  0.1 as desired.

6.5 Details of some computations

The connected graphs with small Mahler measure can be grown in exactly the same way as the small

Salem graphs were grown in chapter 3. But in the present case the process can be made very much more

efficient by using the fact that non-bipartite graphs are precisely those which contain at least one odd

cycle.

We start with a triangle and grow all graphs with four and then five vertices, at each step keeping only

those with small Mahler measure and only one representative of each isomorphism class. At this stage

we add in ‘manually’ the 5-cycle, which cannot be grown from a triangle. We can proceed in this way

for as long as computational limitations allow. This gives the following lemma:

6.5.1 Lemma. Let G be a connected non-bipartite graph with  1MG and with at most eight

vertices. Then G is either a kite (Figure 6.1), a balloon (Figure 6.2) or one of  Spa, Spb, Spd, Spe, Sph

(Figure 6.3).

These results are shown in Table 6.2.

Table 6.2 Small connected graphs with Mahler measure strictly between 1 and 

Number
Graph(s) Mahler measure(s)

of vertices

4 Kt4Bl4 1.5061...

5 Kt5 1.5823...

6 Kt6 Bl6 1.6054... 1.4012

7 Kt7 Spa Spd Sph 1.6134... 1.4723... 1.5560... 1.5823...

8 Kt8 Bl8 Spb Spe 1.6162... 1.3509... 1.4967... 1.5991...

Once the proof of theorem 6.2 is complete, the table can be extended at will. There are three more

sporadic examples (Spc, Spf, Spg), all with nine vertices, and beyond that there are only kites and

balloons.
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For the proof we need only grow up to eight vertices as later lemmas deal with all graphs on nine or

more. It is striking to notice, however, that once we have grown to ten vertices there are no more graphs

containing pentagons or heptagons; the growing process has terminated in all possible directions so

there are only a finite number. In particular:

6.5.2. Lemma. The only connected, non-bipartite graphs with Mahler measure in the interval  1,

which contain either a 5-cycle or a 7-cycle are the balloons Bl6 and Bl8 , and the eight sporadic graphs

of Figure 3.

6.6. Some graphs that do not have small Mahler measure

These are required later in the proof. The first four are bipartite, so we can appeal to [MS Theorem

10.2].

6.6.1. Lemma. The four graphs L1, L2, L3, L4 in Figure 6.4 all have Mahler measure greater than .

The proof is by direct computation.



















































 



 



 















L1 L2 L3 L4

Figure 6.4. The graphs L1 to L4

Kt∼5 Kt∼6 Kt∼ n

Figure 6.5. The tailed kites Kt∼ n with n5

a1


d1


e1


c1


b1


Figure 6.6. The graphs Qa, b, c and Q
∼d ,e
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6.6.2. Lemma. The ‘tailed kites’  Kt∼ n of Figure 5 (n vertices, n5) all have Mahler measure greater

than .

Proof. Note that Kt∼ n is not one of Smith’s graphs [S], but that deleting one of the degree-2 vertices in

the triangle of Kt∼ n leaves a subgraph of one of those graphs. By interlacing, Kt∼ n has at least one

eigenvalue greater than 2, and indeed exactly one since the spectral radius of a graph is always equal to

one of its eigenvalues [GR, Lemma 8.7.3]. On the other hand, Kt∼ n is a generalised line graph [B, 3h],

so has all eigenvalues at least 2. Thus Kt∼ n has a unique eigenvalue outside the interval  [2,2],  and

this is 2. From [HS, Proposition 2.4], the Mahler measure of Kt∼ n slightly decreases as n increases. In

the limit using [MS, §4], this sequence of Mahler measures converges to . Hence  MKt∼ n for all

n5. 

6.6.3. Lemma. Let  Q
∼d ,e be the graph shown in Figure 6, where  d, e1  and  de2.  Then, with

the exceptions of  Spd , Spg , Sph ,  (corresponding to d ,e2,3, 3,4, 1,4) one has MQ∼d ,e.

Proof. We may assume that  d e.  For  e9  we check the result by direct computation. for  e9,

delete suitable vertices from the middle of the longer path between the two degree-3 vertices to leave a

subgraph Qa, b, c (see Figure 6; here  a1c1 7 e1 ) in the following list:

Q3, 1, 3, Q3, 2, 3, Q3, 3, 3, Q3, 4, 4, Q3, 5, 5, Q3, 6, 5, Q3, 7, 6, Q4, 8, 5

or Q4, d, 4 if d 9.

From the computations in the proof of [MS, Theorem 10.2], this (bipartite) subgraph has Mahler measure

greater than , and hence by interlacing so does  Q
∼d ,e. 

6.7. All large enough, connected, non-cyclotomic, non-bipartite

graphs of small Mahler measure are either kites or balloons

6.7.1 Lemma. Let G be a connected graph with Mahler measure in the interval  1 .  If G contains a

triangle, then G is a kite.

Proof.  We use induction on  n1.  For  n8  the direct computations in §6.5 establish the result.

Suppose that  n8  and that the result is known for relevant graphs with fewer vertices. Let  T be a

triangle in  G and for any vertex  v define the distance from  v to  T to be the minimal number of edges

in a path from  v to one of the vertices in  T.  Take  v a vertex of maximal distance from  T.  Let  G be

the subgraph obtained by deleting  v together with all its incident edges. Maximality of the distance

from  v to  T ensures that  G is connected. By interlacing, the Mahler measure of  G is at most that

of  G,  so either equals 1 or is in the interval  1 .  The former is excluded by inspection of Smith’s

graphs [S], so by our inductive hypothesis  GKtn1.  Let  x be the leaf in  G,  with  y its neighbour.

By maximality of the distance of  v from  T,  the only possible neighbours of  v in  G are  x and  y.
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First consider the possibility that  v is adjacent to both  x and  y. Using  n18,  we could then delete

vertices from the middle of the path from  y to  T to leave two disjoint copies of  Kt
4
.  By interlacing

we would have  MG  MKt
4
2 1.506132,  contradicting  MG  .  We deduce that  v is

adjacent to exactly one of  x and  y.

Next consider the possibility that  v is adjacent to  y only. Then  G is a tailed kite (Figure 5) and lemma

6.6.2 gives a contradiction.

We are forced to the conclusion that  v is adjacent to  x only, and therefore that  GKtn . 

6.7.2 Lemma.  Let  G be a connected, non-bipartite graph, with Mahler measure in the interval 1 .

Let  C be an odd cycle in  G of shortest length. If  v is a vertex not in  C,  then  v is adjacent to at most

one vertex of  C.

Proof.  If  G contains a triangle, then the result follows from Lemma 6.7.1. We may therefore suppose

that  G contains no triangles.

Suppose that  v is a vertex not in  C that is adjacent to two vertices  x and  y on  C (and perhaps

adjacent to others). The cycle provides us with two paths from  x to  y,  and since  C has odd length

one of these paths  P contains an even number of edges. If  P had more than two edges, then following

the odd-length path from  x to  y,  then going from  y to  v and from  v to  x would give an odd cycle

shorter than  C.  Hence  P has exactly two edges; let  z be the vertex on  P between  x and  y,  and let

u be the other neighbour of  y on  C.  Since  G has no triangles, and  u cannot be a neighbour of  x

(else we could shorten  C by replacing the path  xzyu by the path  xu)  the subgraph incuded by  x, y,

z, u, v is  L3 in Figure 4. Lemma 6.6.1 records that  ML3,  hence by interlacing we have  MG

which is a contradiction. We conclude that no such vertex  v exists, which is the claim of the current

Lemma. 

6.7.3. Lemma.  Let  G be a connected non-bipartite graph with Mahler measure in the interval  1 .

Suppose that  G has  n vertices and that the shortest odd cycle in  G has length  2m1.  If  m 5  then

GBl2m.

Proof. We use induction on  n.  For  n9  the result is vacuous.

We suppose that  n9  and that the result is known for all relevant smaller graphs. Let  C be a shortest

odd cycle in  G.  We may assume that  C has at least 9 edges, or there is nothing to prove. Since  MC1

there must be other vertices in  G.  Let  v be a vertex in  G that is as far distant from  C as possible.

Deleting  v leaves a connected graph  H,  containing  C as its shortest odd cycle. If  MH1  then

HC (Case 1). Otherwise, by our inductive hypothesis,  n1  is even and  HBln1 (Case 2); we now

show that this case cannot arise.
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Case 1:  HC.  Then  n1  is odd so  n is even, and by Lemma 6.7.2  GBln .

Case 2:  HBln1.  Let  x be the leaf of  H,  and let  y be its neighbour on  C.  We consider

three subcases:

• 2a:  v is adjacent to  x only;

• 2b:  v is adjacent to  x and to a vertex  z on  C (exactly one such neighbour on

C,  after Lemma 6.7.2);

• 2c:  v is adjacent to a vertex  z on  C (again unique after Lemma 6.7.2), but not

to  x.

• 2a: Noting that  L1 of Figure 4 is an induced subgraph, we see that this case is ruled out

by Lemma 6.6.1.

• 2b: Consider the path  P on  C that connects  y and  z by an odd number of edges. By

minimality of the length of  C,  the only possible lengths for  P are 1 and 3 (otherwise we

could find a shorter odd closed walk by replacing the path  P within  C by the path zvxy).

If  P has length1, then  G contains  L3 of Figure 4 as an induced subgraph; if  P has

length 3 then it contains  L4.  In either case we see that Lemma 6.6.1 gives a contradiction.

• 2c: This gives two further subcases. If  z y,  then we have  L2 of Figure 4 as an induced

subgraph of  G.  If  zy,  then we appeal to Lemma 6.6.3, noting that  m5  excludes the

sporadic cases.

Each subcase of Case 2 produces a contradiction, so we have Case 1:  HC and  GBln.

This completes the proof of the main Theorem 6.2. 

6.8 Proof of Corollary 6.2.1

The proof follows from Theorem 6.2 using the facts that a graph is non-bipartite if and only if at least

one of its components is non-bipartite, and that the Mahler measure of a graph is the product of the

Mahler measures of its connected components.

Let  G be a non-cyclotomic graph of small Mahler measure.

• If all the non-cyclotomic components are bipartite then at least one cyclotomic component must be

non-bipartite, and so an odd cycle. This gives the first case.

• Otherwise  G has a non-bipartite non-cyclotomic component as described by the Theorem.

As all of these have Mahler measure at least  MBl81.350980338

 ,  there can be

only one of these components. If all the other components are cyclotomic, we have the

second case.
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• Otherwise some component is non-cyclotomic and bipartite, in which case, by [MS,

Theorem 10.2], it has Mahler measure at least  MT1.76280818,  where  T is the  tree

in the Corollary. But then the non-bipartite component of  G can have Mahler measure at

most  
1.762
——


80818
—— 1.375550773.  But  Bl8 is the only such non-bipartite non-cyclotomic

connected graph, all others having Mahler measure at least  MBl61.401268368,  and

the only connected bipartite non-cyclotomic graph that has Mahler measure below 
MBl8


——

is  T.  This gives the third case.

6.9 Final remarks

The paper ends by pointing out that very little is known about graphs of slightly less small Mahler

measure (beyond the   boundary), and by suggesting that the work could be extended to include, for

example, signed graphs or, more generally, integer symmetric matrices.
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