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Abstract

Divergent margin development is a fundamental aspect of plate tectonics, yet it remains

poorly understood. Key issues like the formation of tectonic asymmetry between conjugate

margins, the detailed history of vertical movements, and the influence of sedimentation on

margin architecture remain unresolved. In this PhD I developed accurate numerical tools

essential to understand margins and their sedimentary response.

I placed particular emphasis in simulating uplift and subsidence for which I have developed

a free-surface algorithm. Stress-free surfaces typically suffer from instabilities when the

time step is bigger than the viscous relaxation time. The new free-surface algorithm

improves performance of the models avoiding instability, so that the code yields stable

and accurate dynamic topographies.

Subsequently, I explored the factors influencing the polarity of the asymmetry between

conjugate margin pairs. Along the magma-poor stretch of the South Atlantic margins the

polarity correlates with the distance of the rift to nearby cratons. Numerical experiments

of extension show that the presence of a thick cratonic lithosphere inhibits asthenospheric

flow from underneath the craton towards the fold belt, while flow from underneath the

fold belt towards the craton is favoured thereby enhancing craton-ward faulting. These

faults become dominant, resulting in a wide faulted margin in the fold belt, and a narrow

conjugate margin in the craton side, as observed in nature.

Finally, I implemented surface processes into the models to study the feedbacks between

tectonics and sedimentation. Models show that different rates in erosion/deposition have

an important impact on margin subsidence and architecture. This influence is modu-

lated by lower crust rheology. Furthermore, models showcase varying-in-time break-up

unconformities along the margins, which are explained as a result of rift migration.

Although numerical models do not represent nature in its full complexity, they are an

excellent testing tool for studying interplays between geological processes. Future work will

include further addition of complexity into the codes to understand a variety of problems

including oceanization and feedbacks between climate and tectonics.



Acknowledgements

This thesis would have not been possible without the help of many people who lend a

hand in many different ways.

The first person to acknowledge is of course Marta Pérez-Gussinyé. I am very grateful to
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Chapter 1

Introduction

1.1 Rifting and breakup of a continent

The Earth is a extremely heterogeneous system where a great variety of processes interact

at very different spatial and time scales. In order to explain these processes and their

outcomes, geologists make use of a wide variety of techniques such as field studies, geo-

physical exploration, geochemical experiments, petrological analysis, radiometric dating,

numerical modelling, etc. However, the heterogeneous character of the Earth, the lack

of direct observations from its inside and the giant time and spatial scales of some of

its processes have obscured our understanding of global dynamics. Only in the late 60s

were all these techniques developed enough to overcome the scale limitations and set the

paradigm of plate tectonics. Plate tectonics establishes that the Earth’s outer most shell is

divided in rigid plates which move relative to each other over a viscous layer (Wilson, 1963,

1965, 1966; McKenzie and Parker, 1967; Morgan, 1968; Le Pichon, 1968). As plates are

considered rigid, relative displacements occur at their boundaries. Three types of plate

boundaries can be defined based on the type of motion: 1) divergent where two plates

separate leading to generation of new oceanic crust at oceanic ridges, 2) convergent where

one plate subducts below another, and 3) transform where two plates move parallel to

their boundary in opposite horizontal directions without creation or destruction of crust.

Plate boundaries are not static features, they may become inactive and new boundaries

can appear in the middle of a plate.

The process by which a continental crust horizontally stretches and vertically thins is

known as rifting and, if the extension does not stop, results into a new divergent boundary

where oceanic crust is generated (Baker et al., 1972; McConnell, 1972; Fairhead, 1976).

Extension is accommodated by normal faults (upper crust) and viscous flow (lower crust

1



Chapter 1. Introduction 2

and mantle) which, more or less gradually, thin the lithosphere. Passive margins refer to

the span of the continental crust thinned by this extension. Passive margins are of great

interest from different perspectives: 1) scientifically because they represent the process

of oceanization and because they are an expression of the inner-Earth dynamics, and 2)

economically because the submarine environment of the deepest basins, which together

with their infilling by sediments from the continent, allows for the formation of economic

oil and gas deposits.

Rifting has been typically classified as volcanic or non-volcanic, also known as magma-rich

and -poor, respectively. Although a decade ago, it was generally accepted that volcanic

margins were associated to hot mantle temperatures and fast extension rates (Keen and

Boutilier, 2000; Nielsen and Hopper, 2004), while non-volcanic occur at slow extension

rates and cold lithospheres (Sibuet et al., 2007), more recent studies show that there are

other important factors that condition rifting type, such as the rifting history or mantle

composition (Müntener and Manatschal, 2006; Pérez-Gussinyé et al., 2006; Voss et al.,

2009; Armitage et al., 2010).

1.2 Non-volcanic rifted margins

Initially, magma-poor or non-volcanic rifting was thought to be an uncommon byproduct

of continental extension. However, it has been shown that non-volcanic extension may

represent a more common than previously thought type of rifting. Margins considered

non-volcanic are the West Iberia-Newfoundland conjugates, the Cretaceous Northeast At-

lantic margins, the central sector of the South Atlantic conjugates and the margins of

the Southern Sea (Fig. 1.1) (Sibuet, 1992; Manatschal and Bernoulli, 1999; Boillot and

Froitzheim, 2001; Pérez-Gussinyé et al., 2001; Pérez-Gussinyé et al., 2001; Reston et al.,

2001; Whitmarsh et al., 2001; Lundin and Doré, 2011).

Non-volcanic rifted margins are characterized by very little magmatism during extension

and a wide continent-ocean transition, which is often interpreted as an expanse of exhumed

and serpentinized mantle (Boillot and Froitzheim, 2001; Whitmarsh et al., 2001). The

lack of magmatism in these margins may be related to very slow extension velocities

(Minshull et al., 2001; Pérez-Gussinyé et al., 2006), a depleted composition of the mantle

(Müntener and Manatschal, 2006; Pérez-Gussinyé et al., 2006) or to a mantle that is

colder than sub-oceanic ridge mantle (Reston and Morgan, 2004). It has been shown

that magma-poor margins all extend very slowly (Minshull et al., 2001; Pérez-Gussinyé

et al., 2006; Heine et al., 2013). Slow extension velocities lead to cooling by conduction

during extension. This results in the inhibition of melting during decompression and also
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Non-volcanic margins
Volcanic margins

Figure 1.1: Volcanic and non-volcanic passive margins. Colors represent topogra-
phy. Topographic map from ETOPO1 (Amante and Eakins, 2009). Margin type data
from Sibuet, 1992; Manatschal and Bernoulli, 1999; Boillot and Froitzheim, 2001; Pérez-
Gussinyé et al., 2001; Pérez-Gussinyé et al., 2001; Reston et al., 2001; Whitmarsh et al.,
2001; Lundin and Doré, 2011; Minshull, 2009; Tugend et al., 2014; Hopper et al., 2003;
Subrahmanya, 2001; Blaich et al., 2011; Menzies et al., 1997; Kelemen and Holbrook,
1995; Frey et al., 1998.

a change in rheology of the lower crustal rocks from ductile to brittle towards the end

of the extension. Embrittlement of the crust allows faults to reach the mantle, and to

bring enough water to serpentinize it. Crustal scale faults lead to crustal breakup and the

exhumation of the mantle before enough melt has been generated to create a steady-state

oceanic ridge. This results in a wide continent-ocean transition consisting of exhumed and

serpentinised mantle before oceanic accretion starts (Pérez-Gussinyé et al., 2001; Peréz-

Gussinyé and Reston, 2001).

It is not clear, however, whether all magma-poor margins exhibit a wide continent-ocean

transition consisting of exhumed and serpentinised mantle or some have an abrupt tran-

sition to oceanic crust. In addition, magma-poor margins show a great architectural

variability. Some present numerous faults that thin the crust smoothly such as the West

Iberian Margin, while others show less faulting with larger offsets that thin the crust

abruptly such as the Great Australian Bight (Fig. 1.2). Asymmetry of conjugate margins

is also variable, for example conjugates of West Iberia and Newfondland, and some sectors

of the South Atlantic (Camamu/Gabon conjugates) exhibit a large degree of asymmetry

while other sectors of the South Altantic (Campos/Kwanza conjugates) showcase symme-

try (see Chapter 4, Fig. 1). Factors that control the degree of asymmetry and the final

architecture of the margins are poorly constrained. Therefore, one of the aims of this



Chapter 1. Introduction 4

thesis has been to investigate how factors such as pre-existing lithospheric structure and

amount of sedimentation control margin architecture and degree of asymmetry.

50 km

Great Australian Bight

West Iberian Margin
a

b

Basement
Serpentinized mantle
Continent-ocean transition
Synrift
Postrift

Figure 1.2: Non-volcanic margin architectures of a) West Iberian Margin (Ranero and
Pérez-Gussinyé, 2010; Pérez-Gussinyé, 2013) and b) Great Australian Bight (Totterdell
et al., 2000; Talwani et al., 1979; Falvey and Mutter, 1981; Pérez-Gussinyé et al., in prep.).

1.3 Motivation

Passive margins have been intensively studied since the beginning of the 20th century due

to their economical interest. Nowadays, there is a great availability of passive-margin data

such as boreholes and reflection and refraction seismics both in 2D and 3D. Furthermore,

acquisition techniques for seismic imaging and signal processing are in constant revision

which allows for a constant improvement of seismic image resolution. Particularly exciting

new images on margin architecture are those of the pre-salt at the South Atlantic which,

although similar in some aspects to the West Iberia/Newfoundland ones, are very different

in terms of the width of the conjugate margins and perhaps also the transition to oceanic

spreading. The next generation of 3D geophysical data and future IODP drillings, together

with a scientific community better connected than ever, promise great findings on margin

development in the next decades.

However, nowadays datasets still lack of the resolution needed to link the mineral-scale

chemical and mechanical processes to the tectonic-scale events. Furthermore, every region

of the highly heterogeneous Earth is unique, and it is the product of a unique combina-

tion of process interactions. Earth is also finite, in the sense that not all the possible

combinations of process interplays are represented. Therefore, finite and heterogeneous
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characteristics of the Earth limit and will limit our knowledge of the processes taking part

in tectonics even if better datasets will be available in the near future.

In terms of rifting, all these limitations result into a wide variety of classifications and

models of modes of extension built from observation. This models and interpretations are

constantly tested, debated, modified and/or discarded. However, the limitations previ-

ously explained also make difficult for this models to converge into a generalised theory

of extension. Also, models built from observations still fail to explain some aspects of the

rifting processes, leaving many opened questions.

Most of these questions are of regional character and are typically related to the structure

of the margins. Factors that influence conjugate margin asymmetry are starting to be

better constrained (Brune et al., 2014). However, there is little knowledge on what con-

trols the polarity of the asymmetry. There are also large number of evidences that prove

surface processes such as erosion and sedimentation, have an impact on crustal deforma-

tion (Weissel and Karner, 1989; Buiter et al., 2008; Bialas and Buck, 2009; Kaus, 2010;

Redfield and Osmundsen, 2012; Clift et al., 2015), but there are still uncertainties on what

are the implications of surface processes in rifting evolution and final margin geometry

and asymmetry. Regional sediment unconformities are typically observed at passive mar-

gins. Originally, they were interpreted to form at breakup time, when local subsidence by

faulting is replaced by regional thermal subsidence (Falvey, 1974; McKenzie, 1978). How-

ever, nowadays it is widely accepted that faulting does not occur simultaneously along the

whole span of the margins and that rift jump and rift migration are common during ex-

tension (i.e. Pérez-Gussinyé, 2013; Gillard et al., 2015). This has important implications

for the tectonic meaning of regional unconformities, since they might not be necessarily

related to breakup but to a change in the locus of the deformation followed by thermal

subsidence. Further research is needed in this direction in order to obtain a catalogue of

types of unconformities with their characteristics and associated modes of extension.

In a larger scale, questions that remain unsolved are related to the mechanisms driving

rifting: Are far field stresses responsible for rifting? Are subduction zones responsible of

these stresses? What is the role played by mantle convection in the rifting? What is the

role of mantle plumes?. In order to address these questions it is important to integrate

conclusions drawn from studies of different stages at the Wilson cycle. Furthermore, a

better understanding of the development of passive margins could also help to better

understand subduction initiation and the composition, water content, thermal state, etc.

of the materials that are subducted or take part of the accretionary wedge. Therefore, it is

essential to address the regional questions related to rifting in order to better understand

Global Tectonics.
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In this thesis I approach the regional questions presented above. As previously mentioned,

the different scales of the processes involved in rifting and their interactions make regional

studies complex. Here, I use numerical experiments together with systematic parameter

exploration to better understand rift evolution and margin architecture. The main advan-

tage of numerical modelling is that it is able to simultaneously integrate a wide variety of

processes occurring in nature at different scales and allows for the study of their trade-offs

and impacts on evolution and final geometry of passive margins. Then results can be

contrasted with examples in nature.

In the last two decades numerical modelling has been successfully used to study rifting

and continental breakup. Numerical codes have been applied to rifting to understand

which thermo-mechanical conditions favour the different modes of extension observed in

nature (Buck, 1991; Hopper and Buck, 1996; Buck and Lavier, 2001; Lavier and Buck,

2002; Huismans et al., 2005; Huismans and Beaumont, 2011; Buiter et al., 2008), which

factors favour margin asymmetry (Brune et al., 2014), the importance of oblique rifting

(Brune et al., 2012), the impact of precursor structures and lithosphere heterogeneities

(Tommasi et al., 2009; Dunbar and Sawyer, 1989), and melt generation and serpentiniza-

tion (Pérez-Gussinyé et al., 2006; Armitage et al., 2008, 2009, 2015). State-of-the-art 2D

numerical codes typically account for multi-layered non-linear visco-elasto-plasticity, while

3D numerical models are typically multi-layered with non-linear viscosity.

Although these models are becoming very sophisticated, most of them still neglect surface

processes or approach them in a very simplistic way. Additionally, when asymmetry occurs

at these models the location of the narrow and the wide margins is random (random

polarity of the asymmetry).

The aim of this thesis is to address questions related to: 1) which processes shape margin

architecture, 2) which factors define the polarity of the conjugate asymmetry, 3) how

do surface processes influence margin development and architecture, and 4) what is the

tectonic meaning of the so called ‘breakup’ unconformities.

1.4 Thesis outline

This thesis is divided in seven chapters. Chapter 2 describes the numerical methodology

used in the modelling. The core of this thesis is composed by three thematic blocks in the

shape of journal publications or as manuscript drafts aimed for publication in the near

future.
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A large amount of the PhD time was spent on developing an algorithm to stabilize the

topography modelled by the code. This algorithm allows the code to accurately and effi-

ciently track topographies and recover subsidence and uplift, which were of great interest

for later addressing surface processes. Chapter 3 is a methodology chapter resulting from

the design and calibration of this topographic stabilization algorithm that was published

on the journal Physics of the Earth and Planetary Interiors.

Chapter 4 addresses conjugate margin architecture, asymmetry and polarity when rifting

occurs in the vicinity of a craton. This chapter is in the form of a manuscript draft for

later publication.

Chapter 5 examines the influence of surface processes on margin architecture, asymmetry

and modes of extension. Furthermore, the tectonic meaning of major unconformities

observed in the sediments is addressed. This chapter is in the form of a manuscript draft

for later publication.

Chapter 6 critically evaluates the results and methods used in this thesis and Chapter 7

summarizes the conclusions of this thesis.



Chapter 2

Methodology: Numerical

modelling of crust and mantle

dynamics

2.1 Introduction

The geology that we observe in the field results from the interaction of physico-chemical

processes over a very broad range of spatial and temporal scales. A challenge in geology

is to design experiments that help us to understand the processes that shape this geology.

Analogue models can only represent these processes at much smaller spatial and temporal

scales than those occurring in nature, so that the interpolation from the small scales of

the lab to the large temporal scales observed in nature is uncertain. Moreover, typical

analogue models cannot reproduce the feedbacks between rheology and temperature which

take place in real deforming systems, as in most of the analogue experiments temperature

and pressure do not meaningfully vary within the experimental box.

Numerical modelling of geodynamic processes helps us understand the physico-chemical

interactions that shape the observed geology by solving for the basic physical laws that

govern deformation in the crust and mantle, which are the conservation laws for mass,

energy and momentum. These are solved assuming rheologies for mantle and crustal rocks

obtained from experimental analysis in the laboratory. These rheologies also need to be

extrapolated over orders of magnitude in time and space before they are used in numerical

codes. As in analogue experiments, these extrapolations may be uncertain, but at least

this allows us to explore the non-linear feedbacks between stress, strain and temperature,

which is not possible with ‘sand box’ modelling. This is why numerical experiments have

8
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become in the last two decades a very popular tool to investigate the geological structures

observed in nature.

The combination of the laws for the conservation of mass, energy and momentum results in

two differential equations, the Stokes equation of motion, which solves for the flow velocity

of a viscous fluid in a gravity field, and the heat conservation equation, which solves for

the temperature in the deforming crust and mantle. A large part of my PhD has consisted

in developing a modified version of the finite element code MILAMIN (Dabrowski et al.,

2008) which solves for these equations. The MILAMIN code first uses the Stokes equation

to solve for the mechanical problem (i.e. the velocity of the rocks in the deforming Earth)

and then the heat advection-diffusion equation to solve for the temperature of these rocks

(the so-called thermal problem).

This thesis focuses on the numerical modelling of rifting. Although rifting is generally a

strongly three-dimensional process, 3D modelling is nowadays computationally very ex-

pensive and the development of such a code is highly time-consuming. Instead, I choose to

approach rifting by simulating a 2D cross section of the lithosphere, parallel to the exten-

sion velocity, so that the implementation of numerous processes involved in rifting could be

accomplished during the PhD, and a larger number of experiments can be run with mul-

tiple combination of parameters and initial conditions. This section of virtual rock is then

discretized into a finite element grid (see Sec. 2.4), where boundary conditions of constant

velocities are applied at the edges of the box. The grid used here is composed of triangular

(Fig. 2.1) Lagrangian elements (elements move with the material). The box is then di-

vided into four layers: Upper Crust (UC), Lower Crust (LC), Dry-Olivine Mantle (DOM)

or mantle lithosphere, and Wet-Olivine Mantle (WOM) or asthenosphere. These layers

have distinct properties such as rheologies, densities, and thermal parameters. Finally, the

mechanical and thermal problems are solved within this grid. In order to simulate rifting

in a more realistic way I worked on the implementation of visco-elasto-plasticity, top free

surface with a free-surface stabilization algorithm (see Chapter 3) in order to allow the

model to generate stable dynamic topography, strain softening to simulate faulting and

shear zones, and surface processes (i.e. erosion and sedimentation).

This chapter provides the formulation behind the mechanical and the thermal solvers, a

brief description of the Finite Element Method (FEM), an explanation of the MILAMIN

code and the modifications and implementations carried out during the project.
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Figure 2.1: Finite element triangular grid. Different resolutions can be defined for the
different layers and interfaces. Constant half extension velocities (1/2EV) are applied at
the lateral edges of the grid as boundary conditions, while the bottom boundary condition
corresponds to an upwelling of the same magnitude as the extension rate (−β).

2.2 The mechanical problem

The mechanical sub-problem consists of the procedure of solving the velocities and pres-

sures inside a continuum under certain boundary conditions. Our model approaches rock

dynamics assuming rocks behave as a highly viscous non-Newtonian (stress-strain rate

non-linear relation) flow. Relevant concepts and definitions are given in the subsections

2.2.1, 2.2.2, 2.2.3 and 2.2.4, while subsection 2.2.5 details the actual formulation used in

the code for solving the mechanical problem. Further documentation on stress, strain

and momentum equation is provided in the appendix A sections A.0.1, A.0.2 and A.0.3

respectively.

2.2.1 Stress, strain rate and strain second invariants

Stress, strain rate and strain are tensors which respectively represent the internal distri-

bution of forces, deformation rate and deformation states within a continuum (Malvern,

1969) (see appendix A.0.1 and A.0.2). However, it is convenient to express these tensors as

total scalar magnitudes which are independent of the coordinate system. For this purpose

we use the definition of square root of the second invariant.

The total magnitude of the deviatoric stress tensor expressed as a scalar is defined by the

square root of the second invariant of the deviatoric stress τII :

τII =
√

(τ2
11 + τ2

22 + τ2
33)/2 + σ2

12 + σ2
13 + σ2

23, (2.1)
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The square root of the second invariant of the deviatoric strain εII and the

square root of the second invariant of the deviatoric strain rate ε̇II are scalars

which account for the total magnitude of the deviatoric strain and the strain rate tensors

respectively and they are defined as:

ε′II =
√

(ε′11
2 + ε′22

2 + ε′33
2)/2 + ε2

12 + ε2
13 + ε2

23, (2.2)

ε̇′II =
√

(ε̇′11
2 + ε̇′22

2 + ε̇′33
2)/2 + ε̇2

12 + ε̇2
13 + ε̇2

23. (2.3)

2.2.2 Accumulated strain and deformation gradients

The square root of the second invariant of the accumulated strain, referred here as historic

strain scalar εIIh , is the controlling parameter of our strain softening algorithm (section

2.6). As a root of the second invariant, εIIh is a scalar and, therefore, it represents an

expression of the total strain in all directions. Previous deformations can be recovered in

some particular directions or rotated through the time. Consequently, tracking the historic

strain as a scalar is an inaccurate approach. Instead, we track the historic change of

deformation gradient Fh (Malvern, 1969), which is a tensor that accounts for both

rotation and strain:

Fh(n) = Fh(n−1) + δtḞ , (2.4)

where n refers to the current time step and Ḟ is the rate of change of the deformation

gradient, defined by:

Ḟ = L · Fh(n−1), (2.5)

where Fh(1) is the identity matrix I, and L is the spatial gradient of the velocity

(Malvern, 1969), defined as the change of the velocities vi along the different directions

xj :

Lij =
∂vi
∂xj

. (2.6)

Note that the components of the strain rate can be defined as (Lij +Lji)/2. Strain ε can

be defined in terms of change of deformation gradient F (Malvern, 1969):

ε =
1

2
(F T · F − I). (2.7)

Then, it is possible to calculate a historic strain εh for each time step with the historic

change of deformation gradient Fh(n):

εh =
1

2
(F Th(n) · Fh(n) − I), (2.8)
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and calculate the second invariant εIIh in the same way as for Eq. 2.2.

2.2.3 Viscosity

In fluid dynamics, the viscosity is as a measure of the resistance of a fluid to flow (Ranalli,

1994) and it is generally defined as the relationship between stress and strain rate. Its

units on the SI system are the Pascal-second (Pa s). Viscosity varies among different

materials and mechanisms of deformation. Newtonian (linear) fluids present a linear

relation between stress and strain rate, while non-Newtonian (non-linear) fluids have a

non-linear relation (Ranalli, 1994). For an isotropic medium the Newtonian fluid law is

defined as:

σij = −PT δij + λ′ε̇kkδij + 2ηε̇ij , (2.9)

where λ′ and η are material parameters, and PT is thermodynamic pressure, not necessarily

equal to the mean pressure P since it depends on the temperature and density of the

medium (Ranalli, 1994). Introducing deviatoric stress τij and strain rate ε̇′ij (appendix

Eqs. A.8 and A.17):

τij = (P − PT )δij + κε̇kkδij + 2ηε̇′ij , (2.10)

where κ = λ′ + (2/3)η is the volumetric viscosity analogous to the bulk modulus in linear

elasticity, and η is the dynamic shear viscosity, commonly referred as viscosity (Ranalli,

1994). If the medium is incompressible then P = PT , ε̇kk = 0 or κ = 0, and ε̇′ij = ε̇ij , so:

τij = 2ηε̇′ij , (2.11)

or

τij = 2ηε̇ij . (2.12)

Then, we can calculate the root of the second invariant of the deviatoric stress using

Eq. 2.1:

τII =

√
(2ηε̇11)2 + (2ηε̇22)2 + (2ηε̇33)2

2
+ (2ηε̇12)2 + (2ηε̇13)2 + (2ηε̇23)2, (2.13)

τII = 2η
√

1/2(ε̇2
11 + ε̇2

22 + ε̇2
33) + ε̇2

12 + ε̇2
13 + ε̇2

23. (2.14)

Substituting the root of the second invariant of the strain rate (Eq. 2.3) we can define the

effective viscosity η as:

η =
τII
2ε̇II

. (2.15)
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Consequently, it is possible to define the effective dynamic viscosity η as the ratio

between the deviatoric stress τij and twice the strain rate ε̇ij , as well as the ratio between

the total amount of deviatoric stress τII and the total amount of strain rate ε̇II (Gerya,

2010). See section 2.5 for a description on how the dynamic effective viscosity is calculated.

2.2.4 Stokes equation of a viscous flow

In order to solve the mechanical problem, lets consider the momentum equation for a

continuum in the Lagrangian form (see appendix A.0.3):

∂σij
∂xj

+ ρgi = ρ
∂vi
∂t
. (2.16)

Lets also consider the definition of deviatoric stress (see appendix A.8):

σij = τij − Pδij . (2.17)

Substituting Eq. 2.17 into 2.16 allows to introduce the pressure in the momentum equation.

The resultant is known as the Stokes equation of motion:

∂τij
∂xj
− ∂P

∂xi
+ ρgi = ρ

∂vi
∂t
. (2.18)

The motion inside the mantle and the crust is approached as a highly viscous flow. Con-

sequently, the flow is very slow and the inertial forces ρ∂vi∂t are negligible (the infinite

Prandtl-number approximation):

∂τij
∂xj
− ∂P

∂xi
+ ρgi = 0. (2.19)

2.2.5 Solving the mechanical problem

Our model works under extension applied to the side boundaries of a 2D vertical section of

the crust and upper mantle. As boundary conditions constant velocities are applied at the

side boundaries of the grid. The velocities at the remaining grid nodes are the unknowns

of the mechanical problem. The following formulation is expanded only in the 1 and 2

directions, since our problem is two-dimensional.

By substituting Eq. 2.11 into Eq. 2.19, and considering the definition of deviatoric strain

rate (Eq. A.17):
∂

∂xj
[2η(ε̇ij −

1

3
ε̇kkδij)]−

∂P

∂xi
+ ρgi = 0. (2.20)
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For plain strain
(
∂vi
∂x3

= 0
)

, Eq. 2.20 turns into:

∂

∂x1
[2η(ε̇11 −

1

3
ε̇kk)] +

∂

∂x2
(2ηε̇12)− ∂P

∂x1
+ ρg1 = 0, (2.21)

for the x1 axis and,

∂

∂x1
(2ηε̇21) +

∂

∂x2
[2η(ε̇22 −

1

3
ε̇kk)]−

∂P

∂x2
+ ρg2 = 0, (2.22)

for the x2 axis. Writting ε̇ in terms of velocity changes respect the axes (Eq. A.15) and

reordering, the Eq. 2.21 for the x1 axis is:

∂

∂x1

[
2η

(
∂v1

∂x1
− 1

3

∂v1

∂x1
− 1

3

∂v2

∂x2

)]
+

∂

∂x2

[
η

(
∂v1

∂x2
+
∂v2

∂x1

)]
− ∂P

∂x1
+ ρg1 = 0, (2.23)

and proceeding the same way with Eq. 2.22, the equation for the x2 axis is:

∂

∂x1

[
η

(
∂v1

∂x2
+
∂v2

∂x1

)]
+

∂

∂x2

[
2η

(
∂v2

∂x2
− 1

3

∂v1

∂x1
− 1

3

∂v2

∂x2

)]
− ∂P

∂x2
+ ρg2 = 0, (2.24)

or, for the x1 axis:

∂

∂x1

[
η

(
4

3

∂v1

∂x1
− 2

3

∂v2

∂x2

)]
+

∂

∂x2

[
η

(
∂v1

∂x2
+
∂v2

∂x1

)]
− ∂P

∂x1
= −ρg1, (2.25)

and for the x2 axis:

∂

∂x2

[
η

(
4

3

∂v2

∂x2
− 2

3

∂v1

∂x1

)]
+

∂

∂x1

[
η

(
∂v1

∂x2
+
∂v2

∂x1

)]
− ∂P

∂x2
= −ρg2, (2.26)

where η is assumed to be the effective viscosity ηeff (see section 2.5.4, Eqs. 2.110 and

2.118). Note that the right-hand side of the equations are the body force vector fields.

Pressure P is the other unknown of the mechanical problem, so another equation is needed.

Taking the diagonal terms in the Eq. 2.10:

τii = 3(P − PT ) + 3κε̇kk + 2ηε̇′ii. (2.27)

By assuming incompressibility so τii = 0 and ε̇′ii = 0:

P − PT + κε̇kk = 0. (2.28)

By considering neligible pressure changes due to thermal and chemical reaction depen-

dency, PT ≈ 0, we obtain the barometric equation of the state:

P + κε̇kk = 0, (2.29)
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or

P + κ5 ·v = 0. (2.30)

So it is possible to define the divergence of the velocity 5 · v as:

5 ·v = −P
κ
. (2.31)

Eq. 2.30 could be written as:
∂v1

∂x1
+
∂v2

∂x2
+
P

κ
= 0. (2.32)

For incompressible conditions ∂v1
∂x1

+ ∂v2
∂x2

= 0. Therefore, Pκ−1 = 0, so κ must be a very

big number to satisfy the incompressible condition. This formulation is known as the

penalty-factor pressure formulation for incompressibility (Hughes, 2000). The mechanical

solver of MILAMIN is based on Eqs. 2.25, 2.26 and 2.32 (Dabrowski et al., 2008).

2.3 The thermal problem

Stokes equation is strongly dependent on the viscosity, which is also dependent on the

temperature (see section 2.5.1, Eqs. 2.82). Therefore, variations in temperature must be

taken into account to solve for deformation. Advective and conductive heat transport

are the main factors responsible of the temperature change in our model. The heat

conservation equation relates temperature with both advective and conductive heat

transport in addition to internal heat generation:

ρCp
DT

Dt
= − ∂qi

∂xi
+H, (2.33)

where ρ is the density, Cp the heat capacity of the medium, qi is the heat flux in the i

axes direction 1, 2 and 3, H is the volumetric heat production, and DT
Dt = ∂T

∂t + v · ∇T ,

where v · ∇T is the advection term. The conductive heat flux qi is defined as:

qi = −k ∂T
∂xi

. (2.34)

where k is the thermal conductivity and ∂T
∂xi

is the temperature gradient. By using Eq. 2.34

into Eq. 2.33:
∂

∂xi

(
k
∂T

∂xi

)
+H = ρCp

(
∂T

∂t
+ v · ∇T

)
. (2.35)
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As the code uses a Lagrangian solver the advection term v ·∇T is included in the intrinsic

motion of the mesh. Consequently Eq. 2.35 can be written as:

∂

∂xi

(
k
∂T

∂xi

)
+H = ρCp

∂T

∂t
. (2.36)

In 2D Eq. 2.36 can be written as:

∂

∂x1

(
k
∂T

∂x1

)
+

∂

∂x2

(
k
∂T

∂x2

)
= ρCp

∂T

∂t
−H. (2.37)

By discretizing in the time domain ∂T
∂t '

Tn−Tn−1

δt , Eq. 2.37 turns into:

∂

∂x1

(
k
∂T

∂x1

)
δt+

∂

∂x2

(
k
∂T

∂x2

)
δt− ρCpTn = −ρCpTn−1 − δtH, (2.38)

where Tn is the unknown temperature at the current time step n, and Tn−1 is the tem-

perature at the previous time step n− 1. The thermal solver subroutine of MILAMIN is

based on Eq. 2.38.

2.4 The finite element method

The Finite Element Method (FEM) provides numerical solutions to differential equations

with the strong form:
∂2u

∂x2
+ f(x) = 0, (2.39)

with boundary conditions u(1) = g and ∂u
∂x(0) = −h (Hughes, 2000). A first step is to

transform this strong formulation into its weak form. For this, lets assume a collection

of square-integrable trial solutions for u which satisfy the boundary condition u(1) = g.

Then, a second collection of functions is required such that w(1) = 0. This last set of

functions are called weighting functions and represent the homogeneous counterpart of

the boundary condition g (Hughes, 2000). By multiplying Eq. 2.39 by w and integrating

through the interval [0, 1]:

∫ 1

0
w
∂2u

∂x2
dx+

∫ 1

0
wf(x)dx = 0. (2.40)

The inclusion of w allows us for integration by parts of the first term of Eq. 2.40, so that:

∫ 1

0

∂w

∂x

∂u

∂x
dx =

∫ 1

0
wf(x)dx+ w

∂u

∂x

∣∣∣∣
1

0

, (2.41)
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or ∫ 1

0

∂w

∂x

∂u

∂x
dx =

∫ 1

0
wf(x)dx+ w(1)

∂u

∂x
(1)− w(0)

∂u

∂x
(0). (2.42)

By considering boundary conditions ∂u
∂x = −h and w(1) = 0, then we obtain the weak

form for os Eq. 2.39: ∫ 1

0

∂w

∂x

∂u

∂x
dx =

∫ 1

0
wf(x)dx+ w(0)h. (2.43)

The FEM consists of dividing a continuum into a finite number of elements to then solve the

weak form of this type of equation for the discrete elements. Each element is characterised

by nodes, integration points and shape functions Ni which variation is assumed to describe

the variation of u in the element domain:

u(x1, x2) '
nnod∑

i=1

Ni(x1, x2)ui, (2.44)

where nnod is the number of nodes in the discretized domain and ui the values u for the

i nodes. The shape functions are defined for the element domain. Their values at the

boundaries of the element domain is 0. The derivatives of the shape functions are also

known. Then the second derivative of u can be defined in terms of the shape function as:

∂2u

∂x2 ip
'

nnod∑

i=1

∂2Ni

∂x2
uij , (2.45)

where ip is the index for the integration points. By introducing a weight function w as

in Eq. 2.40 and following the same scheme as the one to obtain Eq. 2.43 we can write

Eq. 2.39 in its weak form where spatial variation of u is described by the shape function

Ni. Note that the shape functions satisfy the conditions for weight functions and therefore

we can use w = Nj . Then we can write:

ip∑

k=1

nnod∑

i=1

nnod∑

j=1

(
∂Ni

∂x

∂Nj

∂x

)
uij =

ip∑

k=1

nnod∑

j=1

Njf(x) +Nj(0)h. (2.46)

The solution of u is achieved by solving the linear system defined by Eq. 2.46. The term

with the form of summation of the product of shape function derivatives is known as the

stiffness matrix. The code builds this matrix Ke and integrates Njf(x) for each element,

and assembles them into the global stiffness matrix K and the global right-hand-side vec-

tor (Rhs) respectively.
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The code uses Crouzeix-Raviart triangular elements with quadratic velocity shape func-

tions enhanced by a cubic bubble function and discontinuous linear interpolation pressure

(Crouzeix and Raviart, 1973).

In the case of the thermal solver each element contains seven nodes, three at the vertices,

three at the middle-point edges, and one in the center, and six integration points (Fig. 2.2).

By using Eq. 2.45 into Eq. 2.38 and integrating over the element domain, the element

stiffness matrix Ke
T for the thermal problem can be defined as:

Ke
T =

ip∑

k=1

nnod∑

i=1

nnod∑

j=1

keδt

(
∂Ni

∂x1

∂Nj

∂x1
+
∂Ni

∂x2

∂Nj

∂x2

)
− ρCpNiNj , (2.47)

a b nodes
integration points

Figure 2.2: Triangular elements, a) for the velocities and temperatures, and b) for the
pressures.

where ke is the element thermal conductivity, i and j are node indexes from 1 to 7, and k

are integration point indexes from 1 to 6. Consequently, the heat conservation equation

(2.38) can be written in the FEM form:

KTT = RhsT , (2.48)

where the right-hand-side vector RhsT is defined as:

RhsT = −ρCpTn−1 − δtH. (2.49)

The mechanical solver needs two kinds of shape functions: quadratic shape functions

enhanced by a cubic bubble function for the velocity (N) and linear shape functions for

the pressure (Π). For the velocities, the code uses the same triangular elements as the
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ones of the thermal solver (Fig. 2.2), while only the three vertex nodes are used to define

the linear pressure variation. The element stiffness matrix Ke
m for the mechanical problem

is defined as:

Ke
m =

(
A QT

Q M

)
(2.50)

where

Ae(2i−1) (2j−1) =

ip∑

k=1

nnod∑

i=1

nnod∑

j=1

(
4

3

∂Ni

∂x1

∂Nj

∂x1
+
∂Ni

∂x2

∂Nj

∂x2

)
, (2.51)

Ae(2i−1) 2j =

ip∑

k=1

nnod∑

i=1

nnod∑

j=1

(
−2

3

∂Ni

∂x1

∂Nj

∂x2
+
∂Ni

∂x2

∂Nj

∂x1

)
, (2.52)

Ae2i (2j−1) =

ip∑

k=1

nnod∑

i=1

nnod∑

j=1

(
−2

3

∂Ni

∂x2

∂Nj

∂x1
+
∂Ni

∂x1

∂Nj

∂x2

)
, (2.53)

Ae2i 2j =

ip∑

k=1

nnod∑

i=1

nnod∑

j=1

(
4

3

∂Ni

∂x2

∂Nj

∂x2
+
∂Ni

∂x1

∂Nj

∂x1

)
, (2.54)

where i and j are node indexes from 1 to 7, Ae is a 14×14 matrix and the integrations k

are done over the 6 velocity integration points,

Qei (2j−1) = −
ip∑

k=1

nnod∑

i=1

ηΠi
∂Nj

∂x1
, (2.55)

Qei 2j = −
ip∑

k=1

nnod∑

i=1

ηΠi
∂Nj

∂x2
, (2.56)

where i is the index for the pressure shape functions Π, with values from 1 to 3, j is the

index for the velocity shape functions, with values from 1 to 7, Qe is a 3×14 matrix, and

the integration k is done over the 3 pressure integration points,

M e =

ip∑

k=1

nnod∑

i=1

nnod∑

j=1

η
1

κ
ΠiΠj , (2.57)

where i and j are the indexes for the pressure shape functions from 1 to 3, M e is a 3×3

matrix, and the integrations k are done over the 3 pressure integration points. QT is the

transpose of Q. Then it is possible to write the mechanical system defined by Eqs. 2.25,

2.26 and 2.32 in FEM form as:

Ke
mu

e
m = Rhsem, (2.58)
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where uem is the unknowns with velocities vij at the beginning and the three pressures pi

at the end:

uem =




v11

v21

v12

v22

.

.

.

v17

v27

p1

p2

p3




, (2.59)

where the first index represents the direction of the velocity, and the second represents the

node for which the velocity is calculated. The right-hand side Rhsem for the FEM form of

the mechanical system is a vector with the body forces at the beginning and three zeros

at the end that satisfies the Eq. 2.32:

Rhsem =




F11

F21

F12

F22

.

.

.

F17

F27

0

0

0




, (2.60)

where the first index represents the direction of the body force, and the second represents

the node in which the force is applied. The mechanical system Eq. 2.58 can also be written

in terms of the matrices A, Q, M , and the velocity vector v, the pressure vector P and

the body force vector F : (
A QT

Q M

)(
v

P

)
=

(
F

0

)
. (2.61)
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Note that Av +QTP = F and Qv +MP = 0, where P is a vector which components are

p1, p2 and p3. Then, it is possible to define P as:

P = −M−1Qv. (2.62)

Consequently:

(A−QTM−1Q)v = F. (2.63)

The global matrix becomes ill-conditioned through this procedure for bulk modulus corre-

sponding to a very small divergences and incompressibility (Hughes, 2000). It is possible to

solve this problem introducing a ‘Uzawa-like’ iteration which consist of changing the term

QTM−1Q to the right-hand side term, multiplied by the velocity solved in the previous

iteration vprev, and solving again for the new iteration (Zienkiewicz et al., 1985):

(A−QTM−1Q)v = F − (QTM−1Q)vprev. (2.64)

Note that the volumetric viscosity κ, which can be taken out from M , works as a penalty

factor in this formulation (Hughes, 2000).

The FEM also allows to make the code faster by employing isoparametric elements. Each

element in the space can be mapped into a reference element with fixed local coordinates

(ξ, µ), making the calculation of the local matrices faster. The change from local coor-

dinates to global coordinates (x, y) is achieved by using the same shape functions that

interpolate the physical fields:

x1(ξ, µ) =
nnodel∑

i=1

Ni(ξ, µ)x1i, (2.65)

x2(ξ, µ) =
nnodel∑

i=1

Ni(ξ, µ)x2i, (2.66)

where nnodel is the number of nodes in the element. It is possible to build a Jacobian

matrix J which approximates the local coordinates values to the global ones:

J =

(
∂x1
∂ξ

∂x1
∂µ

∂x2
∂ξ

∂x2
∂µ

)
. (2.67)
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The global coordinates shape functions are calculated from the locals multiplying by the

inverse of the Jacobian:

(
∂N
∂x1
∂N
∂x2

)
=

(
∂x1
∂ξ

∂x1
∂µ

∂x2
∂ξ

∂x2
∂µ

)−1(
∂N
∂ξ
∂N
∂µ

)
. (2.68)

2.5 Rock mechanical behaviour

Rocks mechanically behave as a visco-elasto-plastic material. In the case of both the vis-

cous and the plastic behaviour the deformation is not recoverable, while elastic behaviour

allows recovery of deformation once the stress ceases (Ranalli, 1994). This section reviews

these three deformation mechanisms and explains the procedure followed to couple them

into the numerical code.

2.5.1 Viscous behaviour and creep mechanisms

The viscous behaviour of rocks is represented by the so called flow laws or creep laws which

can be both Newtonian and non-Newtonian. Rocks on the mantle deform mainly by two

mechanisms: diffusion creep and dislocation creep, where creep refers to slow flow under

constant stress (Ranalli, 1994). Diffusion creep occurs through diffusive mass transport

between grain boundaries, for low stress level, small grain size, or both, and the strain

rate increases linearly with stress (i.e. Newtonian deformation) (Karato and Wu, 1993).

Dislocation creep occurs through the motion of crystalline dislocation within grains,

for high stress level, large grain size, or both, and the strain rate increases nonlinearly

with stress (i.e. non-Newtonian deformation) (Karato and Wu, 1993). Both mechanisms

occur simultaneously for a given temperature and pressure, but the mechanism that gives

the highest strain rate becomes the dominant creep mechanism (Karato and Wu, 1993).

A nonlinear formulation (non-Newtonian) is needed in order to account for dislocation

creep. By far the most important nonlinear stress-strain rate relation is the power-law

creep equation, where the strain rate is related to the nth power of the stress (Ranalli,

1994). Factors, such as shear modulus µ, grain size d, pressure P , temperature T , and

water fugacity fH2O condition the rheology of the rocks. Empirical power-law equations

that take into account some of these parameters to relate stress and strain rate are known

as flow laws. Different flow laws imply different parameters and different calibrations.

An example of flow law is the one described by Hirth and Kohlstedt, 2003 for olivine

aggregates:

ε̇ = Aσndd
−mfH2O

rexp(αφ)exp

(
−E

∗ + PV ∗

RT

)
, (2.69)
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where ε̇ is the strain rate, A is the preexponential factor, σd is the differential stress, n is

the stress exponent, d is the grain size, m is the grain size exponent, fH2O is the water

fugacity, r is the water fugacity exponent, α is the melt fraction factor, φ is the melt

fraction, E∗ is the activation energy, P is the pressure, V ∗ is the activation volume, R is

the gas constant, and T is the temperature. For this particular case we can group most

of the parameters into a new preexponential factor B = Ad−mfH2O
rexp(αφ):

ε̇ = Bσnd exp

(
−E

∗ + PV ∗

RT

)
, (2.70)

so that we obtain a more general flow law which can be representative of flow laws that

take into account other parameters than the ones from Hirth and Kohlstedt, 2003, by

grouping all this parameters inside a preexponential factor B. Table 2.1 summarize the

different flow-law parameters used for the numerical studies contained in this thesis.

Table 2.1: Creep parameters. DIS and DIF refer to parameters for dislocation and
diffusion creep respectively. Diffusion creep B is calculated using a grain size d of 6 mm.
Wet olivine water fugacity fH2O is 500 MPa (or COH in ppm H/Si) (Hirth and Kohlstedt,
2003).

Rock/mineral aggregate Creep log(B) [Pa−ns−1] n E∗ [kJ mol−1] Reference

Wet quartzite
(upper crust and
weak lower crust)

DIS -28.0 4.0 223 Gleason and Tullis, 1995

Wet anorthite
(intermediate lower crust)

DIS -15.4 3.0 356 Rybacki and Dresen, 2000

Mafic granulite
(strong lower crust)

DIS -21.05 4.2 445 Wilks and Carter, 1990

Dry olivine
(lithospheric mantle)

DIS -15.56 3.5 530 Hirth and Kohlstedt, 2003

Wet olivine
(asthenospheric mantle)

DIS -15.05 3.5 480 Hirth and Kohlstedt, 2003

Dry olivine
(lithospheric mantle)

DIF -8.65 1 375 Hirth and Kohlstedt, 2003

Wet olivine
(asthenospheric mantle)

DIF -8.66 1 335 Hirth and Kohlstedt, 2003

Note that the values of strain rate ε̇ and differential stress σd given by experiments are

not equivalent to the root of the second invariant of the strain rate ε̇II and the deviatoric

stress τII . However, in numerical modelling it is convenient use both ε̇II and τII , since the

dynamic viscosity is calculated using Eq. 2.15. All chosen rheological parameters shown

on table 2.1 were calculated from either uniaxial or triaxial experiments. In this type of
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experiments σd is the differential stress such as:

σd = σ1 − σ3, (2.71)

where σ1 is the largest principal stress and σ3 is the smallest (Fig. 2.3). The strain rate ε̇

given in this type of studies is typically the axial strain rate ε̇11. The stress conditions of

these experiments are such as:

σ2 = σ3 6= σ1, (2.72)

where σ2 and σ3 smallest principal stresses are 0 in uniaxial experiments and correspond

σ1

σ3

σ2

ε11

ε33

ε22

Figure 2.3: Uniaxial/triaxial test. σ1, σ2 and σ3 represent principal stresses, and ε̇11,
ε̇22 and ε̇33 are the strain rate components.

to the confining pressures in triaxial experiments. It is possible to define the deviatoric

stress (Eq. A.8) as:

τ =




σ1 − σ1+2σ3
3 0 0

0 σ3 − σ1+2σ3
3 0

0 0 σ3 − σ1+2σ3
3 ,


 (2.73)

so that the square root of the second invariant τII is:

τII =

√√√√1

2

((
2

3
σ1 −

2

3
σ3

)2

+ 2

(
−1

3
σ1 +

1

3
σ3

)2
)
. (2.74)

By using the definition of differential stress in Eq. 2.71:

τII =
1√
3
σd, (2.75)

or

σd =
√

3τII . (2.76)
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Assuming incompressibility and uniform deformation along the axis 2 and 3 (Fig. 2.3),

then:

ε̇22 = ε̇33 = −1

2
ε̇11, (2.77)

so that the square root of the second invariant of the strain rate ε̇II can be defined as:

ε̇II =

√√√√1

2

(
ε̇2

11 + 2

(
−1

2
ε̇11

)2
)
. (2.78)

By simplifying we obtain:

ε̇11 =
2√
3
ε̇II . (2.79)

Then it is possible to write the generalized flow law Eq. 2.70 for triaxial and uniaxial tests

in terms of τII and ε̇II by using Eqs. 2.76 and 2.79:

2√
3
ε̇II = B(

√
3τII)

nexp

(
−E

∗ + PV ∗

RT

)
, (2.80)

or

τII = 2
1
n 3−

n+1
2n B−

1
n ε̇

1
n
IIexp

(
E∗ + PV ∗

nRT

)
. (2.81)

By substituting Eq. 2.80 in Eq. 2.15 and neglecting PV ∗ due to its relatively small size

in comparison with E∗, we can obtain the dislocation or diffusion viscosity ηdd for a

certain ε̇II :

ηdd = FB−
1
n ε̇

1−n
n

II exp

(
E∗

nRT

)
, (2.82)

where

F =
1

2
n−1
n 3

n+1
2n

. (2.83)

In order to calculate the diffusion viscosity ηdif and the dislocation viscosity ηdis, we need

to apply the flow-law parameters calculated from experiments (table 2.1) to Eq. 2.82.

Finally, it is possible to calculate a total creep viscosity ηc by considering rocks as Maxwell

materials which implies that the total strain is represented by the summation of strains

due to the different mechanisms involved in the deformation:

ε̇ = ε̇dis + ε̇dif . (2.84)

It is possible to calculate ε̇dis and ε̇dif by using Eq. 2.12:

ε̇dis =
τ

2ηdis
, (2.85)
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and

ε̇dif =
τ

2ηdif
. (2.86)

By substituting Eqs. 2.85 and 2.86 into Eq. 2.84:

τ = 2ηcε̇, (2.87)

where ηc is the creep viscosity defined as:

ηc =
1

1
ηdis

+ 1
ηdif

. (2.88)

2.5.2 Plasticity

Rocks not only behave as creeping materials, but plastically at low pressure and tempera-

tures. Plastic behaviour implies that a critical stress σyield exist for a given material and

after reaching this stress failure occurs, meaning that the material offers no resistance to

flow (Ranalli, 1994; Gerya, 2010; de Souza Neto et al., 2008). Failure can occur through

a fracture, which is known as brittle behaviour, or can occur along the whole body with-

out causing any discontinuity, which is known as plastic flow (Ranalli, 1994). In order

to include plastic behaviour in our code, we need to define a ‘plastic’ apparent viscosity

ηp, for which we need to choose a failure or yield criterion. Many yield criterions are

described in the literature such as Mohr-Coulomb, Von-Mises, and Drucker-Prager, which

evaluate different stress states against different critical yield stresses. Here, we choose to

use Drucker-Prager yield criterion which implies that failure occurs when the the root of

the second invariant of the deviatoric stress reaches a yield stress σyield (τII ≥ σyield) cal-

culated for a given pressure P , the material friction angle φ and cohesion c (de Souza Neto

et al., 2008):

σyield = Psinθ + c. (2.89)

Then we can introduce the Prandtl-Reuss flow rule for plasticity:

ε̇p = G
τ

2τII
, (2.90)

where G is a parameter calculated for the stress to remain on the yield stress (Moresi

et al., 2003) (see section 2.5.4).
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2.5.3 Elasticity

Rocks recover some deformation once stress ceases, in other words, they behave elastically

(Ranalli, 1994). Elasticity is included into the rheology by adding an elasticity stress term

to Eq. 2.12, such as:

τij
2ηc

+

∇
τ ij
2µ

= ε̇ij , (2.91)

where ηc is the creep viscosity, µ is the elastic shear modulus, and
∇
τ ij is the objective

material derivative of the deviatoric stress (Moresi et al., 2007). In this particular case,

we use the Jaumann derivative as
∇
τ ij , since it ensures that the objective derivative is

deviatoric when the given stress is deviatoric (Moresi et al., 2003, 2007). The Jaumann

objective derivative
∇
τ ij can be written as:

∇
τ ij=

∂τij
∂t

+ τ ′ij , (2.92)

or by time discretazing the time derivative:

∇
τ ij=

τij − τ oldij
δt

+ τ ′ij , (2.93)

where τij is at stress of the current time step, τ oldij the stress for the previous time step and

τ ′ij is the instantaneous rate of change in the stress tensor associated with the transport,

rotation and stretching by fluid motion (Moresi et al., 2007; Kaus et al., 2010). τ ′ij can be

written as:

τ ′ij = vk
∂τij
∂xk
− ωikτ oldkj + τ oldik ωkj , (2.94)

where v represents velocities and ωij is the rigid-body rotation tensor (see Eq. A.12)

(Moresi et al., 2007; Kaus, 2010). Since our model works with a Lagrangian grid the term

vk
∂τij
∂xk

can be neglected:

τ ′ij = −ωikτ oldkj + τ oldik ωkj . (2.95)

By substituting Eqs. 2.93 and 2.95 into Eq. 2.91 we obtain:

τij = 2ηveε̇ij + χveτ
oldJ
ij , (2.96)

where

ηve =
1

1
ηc

+ 1
µ∆t

, (2.97)

χve =
ηve
µ∆t

, (2.98)
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and τ oldJij represent the rotated stresses of the previous time step:

τ oldJij = τ oldij + δt(τ oldik ω
old
kj − ωoldik τ oldkj ), (2.99)

where τ oldij are deviatoric stresses from the previous time step (Kaus, 2010). Considering

Eq. 2.96, it is possible to define ηve as a relation between the stress and the strain rate:

ηve =
τij − χveτ oldJij

2ε̇ij
= η −

χveτ
oldJ
ij

2ε̇ij
, (2.100)

or

η = ηve +
χveτ

oldJ
ij

2ε̇ij
. (2.101)

where η is the viscosity that relates stress and strain rate for visco-elastic behaviour of

rocks (Eq. 2.15). Then we can substitute Eq. 2.101 into Eqs. 2.21 and 2.22:

∂

∂x1
[2ηve(ε̇11−

1

3
ε̇kk)+χveτ

oldJ
11 − 1

3
ε̇kkχveτ

oldJ
11 ]+

∂

∂x2
(2ηveε̇12 +χveτ

oldJ
12 )− ∂P

∂x1
+ρg1 = 0,

(2.102)

for the x1 axis and

∂

∂x1
(2ηveε̇21 +χveτ

oldJ
21 )+

∂

∂x2
[2ηve(ε̇22−

1

3
ε̇kk)+χveτ

oldJ
22 − 1

3
ε̇kkχveτ

oldJ
22 ]− ∂P

∂x2
+ρg2 = 0,

(2.103)

for the x2 axis. For incompressible conditions the terms 1
3 ε̇kkχveτ

oldJ
11 and 1

3 ε̇kkχveτ
oldJ
22

can be neglected:

∂

∂x1
[2ηve(ε̇11 −

1

3
ε̇kk)] +

∂

∂x2
(2ηveε̇12)− ∂P

∂x1
+ ρg1 = −χve

∂τ oldJ11

∂x1
− χve

∂τ oldJ12

∂x2
, (2.104)

for the x1 axis and

∂

∂x1
(2ηveε̇21) +

∂

∂x2
[2ηve(ε̇22 −

1

3
ε̇kk)]−

∂P

∂x2
+ ρg2 = −χve

∂τ oldJ21

∂x1
− χve

∂τ oldJ22

∂x2
, (2.105)

for the x2 axis. Expanding these equations we obtain the elastic equivalents for the

mechanical problem equations 2.25 and 2.26:

∂

∂x1

[
ηve

(
4

3

∂v1

∂x1
− 2

3

∂v2

∂x2

)]
+

∂

∂x2

[
ηve

(
∂v1

∂x2
+
∂v2

∂x1

)]
− ∂P
∂x1

= −ρg1−χve
∂τ oldJ11

∂x1
−χve

∂τ oldJ12

∂x2
,

(2.106)

for the x1 axis and

∂

∂x2

[
ηve

(
4

3

∂v2

∂x2
− 2

3

∂v1

∂x1

)]
+

∂

∂x1

[
ηve

(
∂v1

∂x2
+
∂v2

∂x1

)]
− ∂P
∂x2

= −ρg2−χve
∂τ oldJ21

∂x1
−χve

∂τ oldJ22

∂x2
,

(2.107)
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for the x2 axis. Then, Eqs. 2.106 and 2.107 can be solved numerically by FEM by fol-

lowing the same procedure as for the only-viscous example in section 2.4. For elasticity

benchmarking see section 2.8.

2.5.4 Effective viscosity

In order to couple plasticity with visco-elasticity (section 2.5.3) it is necessary to first

evaluate the yield criterion at every element. If τII < σyield the element is not yielding

and therefore, it will behave visco-elastically only. Then Eqs. 2.106 and 2.107 can be

solved numerically by FEM, by using a effective viscosity ηeff = ηve.

However, yielding may occur for given elements when yield criterion is met (τII ≥ σyield).
Then it is necessary to calculate a new effective viscosity which contains the plastic

term (Eq. 2.90) as well. To do this, Maxwell constitutive relation is taken into account

(Ranalli, 1994; Moresi et al., 2003, 2007):

τ

2ηc
+

∇
τ

2µ
+G

τ

2τII
= ε̇v + ε̇e + ε̇p = ε̇, (2.108)

where ε̇v is the strain rate due to creep, ε̇e strain rate due to elasticity, and ε̇p due to

plasticity from Eq. 2.90. By substituting the objective derivative of the stress with the

Jaumann derivative as in Eqs. 2.93, 2.94 and 2.95 we obtain:

τ = ηeff

(
2ε̇+

1

µ∆t
τ oldJ

)
, (2.109)

where the effective viscosity ηeff is defined as:

ηeff =
1

1
ηc

+ 1
∆tµ + G

τII

, (2.110)

and τ oldJ defined as in Eq. 2.99. Then, by following the same procedure as in section 2.5.3

(Eqs. 2.100-2.107) we obtain:

∂

∂x1

[
ηeff

(
4

3

∂v1

∂x1
− 2

3

∂v2

∂x2

)]
+

∂

∂x2

[
ηeff

(
∂v1

∂x2
+
∂v2

∂x1

)]
− ∂P
∂x1

= −ρg1−χvep
∂τ oldJ11

∂x1
−χvep

∂τ oldJ12

∂x2
,

(2.111)

for the x1 axis and

∂

∂x2

[
ηeff

(
4

3

∂v2

∂x2
− 2

3

∂v1

∂x1

)]
+

∂

∂x1

[
ηeff

(
∂v1

∂x2
+
∂v2

∂x1

)]
− ∂P
∂x2

= −ρg2−χvep
∂τ oldJ21

∂x1
−χvep

∂τ oldJ22

∂x2
,

(2.112)
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where χvep is defined as:

χvep =
ηeff
µ∆t

. (2.113)

By grouping strain rate and old stress terms into an effective strain rate variable ε̇eff it

is possible to rewrite Eq. 2.109 as:

τ = ηeff ε̇eff , (2.114)

where

ε̇eff = 2ε̇+
1

µ∆t
τ oldJ . (2.115)

Then, we can write Eq. 2.114 in terms of roots of the second invariant of the stress and

the effective strain rate ε̇IIeff such as:

τII = ηeff ε̇IIeff , (2.116)

where

ε̇IIeff =
√

(ε2
11eff + ε2

22eff )/2 + ε2
12eff . (2.117)

If the yield criterion is met, then the plastic factor G is such as that τII = σyield is

satisfied (Moresi et al., 2003). Therefore, we can rearrange Eq. 2.116 to define ηeff for the

visco-elasto-plastic scenario as:

ηeff =
σyield
ε̇IIeff

. (2.118)

Then we can use ηeff to solve our generalized Stokes equations 2.111 and 2.112.

If needed, it is possible to calculate the plastic factor G by substituting Eq. 2.110 into

2.116 and considering that the root of the second invariant of the deviatoric stress τII is

equal to the yield stress σyield at yielding (Moresi et al., 2003), so that:

G = ε̇IIeff − σyield
(

1

µδt
+

1

η

)
. (2.119)

2.5.5 Non-Newtonian iterations to calculate ηeff

Note that both, the creep viscosity ηc as defined in Eq. 2.88 and the effective viscosity

ηeff when the yield criterion is met 2.118, depend on the strain rate, which is solved for

a given viscosity. Therefore, the relationship between viscosity and strain rate is non-

linear (Moresi et al., 2003; Gerya, 2010; Kaus, 2010). In order to solve for non-linear

visco-elasto-plastic rheologies our code includes a loop for which an initial strain rate is

calculated based on trial viscosities (i.e. viscosities of the previous time step). In the second
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iteration the first iteration strain rate is used to calculate viscosity for a later recalculation

of the strain rate. This iteration continues until a convergence criteria is met, which in

our code is:

ε̇conv < 10−3, (2.120)

where

ε̇conv =
max(|ε̇itII − ε̇it−1

II |)
ε̇it−1
II

, (2.121)

where max is an operator to find the maximum value of |ε̇itII − ε̇it−1
II | among the elements,

ε̇itII is the square root of the second invariant of the strain rate calculated for the current

non-Newtonian iteration it and ε̇it−1
II corresponds to the same type of strain rate calculated

for the previous time step it− 1.

2.6 Strain softening

Faults and shear zones highly condition the geometry and the evolution of rifting. How-

ever, FEM does not allow, by definition, the occurrence of discontinuities. Solving the

system with an apparent viscosity calculated with the Drucker-Prager yield criterion ηeff

(Eq. 2.118), makes the model to reproduce the same amount of deformation that would be

recovered from a real plastic behaviour, but it cannot reproduce brittle behaviour where

part of the plastic deformation is concentrated in fault planes or shear zones. There-

fore, it is necessary to develop an algorithm to simulate faults and/or shear zones. Fault

planes and shear zones localize deformation because, once the yielding is achieved, defor-

mation along the yielding plane is easier due to a cohesion loss (Buck, 1993). This can be

approached as a weakening related with the strain, the so-called brittle strain soften-

ing. Other mechanisms, such as fluid pressure variations (Sibson, 1990), gouge formation

and mineral transformations (Bos and Spiers, 2002) may reduce the brittle and frictional

strength (Huismans and Beaumont, 2003). Additionally, strain softening can also occur

in the viscous domain (viscous strain softening), due to a transition from dislocation

to grain size sensitive creep (Braun et al., 1999; Karato et al., 1986; Poirier, 1980) that

may reduce the effective viscosity (Huismans and Beaumont, 2003) and the development

of crystallographic preferred orientations (CPO) along which the deformation becomes

easier (Tommasi et al., 2000; Hansen et al., 2012). However, the contribution of these

mechanisms to the total effect of the strain softening is poorly constrained. Therefore, a

parametrization is applied in order to produce a strain related reduction of the apparent

viscosity for both brittle and viscous domains.
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By reducing both the friction angle θ and the cohesion c, the resulting apparent viscosity is

also reduced (Eqs. 2.89 and 2.118). Here, we choose to apply strain softening for the brittle

domain by reducing only the friction angle θ, where θ is a linear function of the square

root of the second invariant of the historic strain εIIh , for the strain interval (εIIh1, εIIh2):

θ = (εIIh − εIIh1)
θ2 − θ1

εIIh2 − εIIh1
+ θ1, (2.122)

where θ1 and θ2 correspond to the maximum and minimum friction angle assumed possible

respectively, θ1 > θ2, and εIIh1 < εIIh2 (Fig. 2.4). If εIIh < εIIh1, then θ = θ1. If

εIIh > εIIh2, then θ = θ2.
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Figure 2.4: Strain softening function.

Strain softening for the viscous domain is applied introducing a α factor into Eq. 2.82

(Fig. 2.4). Then, it is possible to write the general creep formulation such as:

ηcreep = α−1FB−
1
n ε̇

1
n
−1

II exp

(
E∗

nRT

)
, (2.123)

where α is a linear function of the second invariant of the historic strain εIIh , for the strain

interval (εIIh1, εIIh2):

α = (εIIh − εIIh1)
α2 − α1

εIIh2 − εIIh1
+ α1, (2.124)

where α1 and α2 correspond to the minimum and maximum factor assumed possible

respectively (1 ≤ α1 < α2). If εIIh < εIIh1, then α = α1. If εIIh > εIIh2, then α = α2.

The historic-strain interval (εIIh1, εIIh2), the friction-angle interval (θ1, θ2), and the creep-

factor interval (α1, α2) are parameters that need to be chosen for the strain softening

approach.
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2.7 Shear heating

Plastic and viscous deformation results in dissipation of the mechanical energy into heat.

This heat is known as shear heat Hs and can be included in Eq. 2.33 inside the heat

production term H, together with the radioactive heat production Hr (Gerya, 2010). The

shear heating Hs is defined as:

Hs = τij ε̇
ue
ij
′, (2.125)

where τij and ε̇ueij
′ are deviatoric stress and deviatoric inelastic strain rate, where ij denotes

summation, so that in 2D:

Hs = τxxε̇
ue
xx + τyy ε̇

ue
yy + 2τxy ε̇

ue
xy. (2.126)

Our mechanical solver calculates total strain rate ε̇ij from solved velocities (Eq. A.11),

which are calculated based on effective viscosities ηeff and previous stresses. Therefore, it

is necessary to calculate inelastic strain rate outside of the mechanical solver, before the

thermal solver is run. Inelastic strain rate can be defined as:

ε̇ueij = ε̇ij − ε̇eij , (2.127)

where ε̇eij is the elastic strain rate (Moresi et al., 2007). The elastic strain rate can be

written as:

ε̇eij =

∇
τ ij
2µ

, (2.128)

where
∇
τ ij is the objective material derivative of the deviatoric stress defined by Eq. 2.93.

Then, it is possible to write the elastic strain rate in terms of the current-time-step stresses

τij and the Jaumann objective deviatoric stress for the previous step τ oldJij (Eq. 2.99):

ε̇eij =
1

2µ∆t
(τij − τ oldJij ). (2.129)

2.8 Elasticity benchmark

We chose to benchmark FEM visco-elasticity of our code (Sec. 2.5.3) against linear elas-

ticity theory applied for the bending of a thin rigid plate. We chose two tests: 1) a point

load test for which solution is given by a parametric equation, and 2) a distributed

load test for which solution is given by a differential equation.



Chapter 2. Numerical modelling of the crust and mantle dynamics 34

2.8.1 Bending of a rigid plate

Lithospheric plates are considered rigid plates resting over asthenospheric mantle rocks

which behave as a fluid on geological time scales (Morgan, 1968). When a load is applied

to a lithospheric plate deflection occurs. The plate sinks under the load while bulges rise

at the margins of the negative relief due to the elastic response (Fig. 2.5) (Turcotte and

Schubert, 1982). The general equation for the deflection ω of lateral-infinite thin rigid

plate of thickness h under a load q(x) is:

D
d4ω

dx4
= q(x)− Fh

d2ω

dx2
, (2.130)

where D is the flexural rigidity defined as:

D ≡ Eh3

12(1− ν2)
, (2.131)

where E is the Young’s modulus, ν is the Poisson’s ratio, and Fh is a horizontal force per

unit length applied to the plate (Turcotte and Schubert, 1982). If the mantle below the

plate is assumed fluid, then buoyant restoring forces are needed in the formulation:

D
d4ω

dx4
+ P

d2ω

dx2
+ ρmgω = q(x), (2.132)

where ρm is the density of the fluid mantle (Turcotte and Schubert, 1982). Note that

Eq. 2.132 is a differential equation where a load function of the coordinate x can be

applied and then solved numerically. We use finite difference method to solve Eq. 2.132

for a distributed load in Sec. 2.8.3, assuming Fh = 0.

h q(x)
ωb

Figure 2.5: Deflection of a rigid plate under a load q(x) where h is the thickness of the
plate and ωb is the maximum deflection at the bulges.

Eq. 2.132 can be simplified as described in Turcotte and Schubert (1982) by taking a

point load where q(x) = 0 except for x = 0, assuming Fh = 0, and calculating the general

solution for the differential equation. Then we obtain:

ω =
V0α

3

8D
e−

x
α

(
cos

x

α
+ sin

x

α

)
x ≥ 0, (2.133)
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where V0 is the point load, and α is the flexural parameter:

α =

(
4D

ρmg

) 1
4

. (2.134)

This analytical solution is only for positive values of x. However, the general solution is

symmetric respect to 0, so it is possible to calculate the deflection ω for negative values

of x by simply mirroring ω. This formulation is the one used in Sec. 2.8.2.

Note that all the formulations presented in this section are for plates whose thickness h

tends to 0. In the case of finite differences solution the calculation is done for a infinitesimal

thin layer where D is calculated for the choice of h so that the solution is similar. However,

the analytical approach is obtained from integrating through an h (which is also assumed

to be close to 0) so the solution for thick plates (> 10 km) will not give accurate results.

Also note that the deflection calculated by these solutions occurs instantaneously, while

in our FEM visco-elastic formulation a certain amount of deformation is calculated each

time step. In order to compare both results our code will need to run through several time

steps before the topography converges.

2.8.2 Point load

This visco-elastic test consists of a 2D box of 103 × 400 km where the bottom and lateral

boundaries are fixed, and the top boundary is a free surface without stabilization algorithm

(see Chapter 3) to avoid possible artificial effects. The experiment is divided into two

layers of different linear viscosities and densities. The upper layer emulates a rigid plate

of thickness h = 2.5, 5, or 10 km and density ρ2 = 2700 kg/m3, which viscosity µ2 = 1024

Pa s is high enough to simulate a psuedo-rigid behaviour in contrast with the µ1 = 1018

Pa s of the lower layer (pseudo-fluid) which ρ1 = 3200 kg/m3, equivalent to the mantle.

A point load equivalent to a 100 × 2 km rock volume with density ρL = 2700 kg/m3 is

applied at the center of the model (0 km). The element resolution at the surface is 1 km.

We chose a small time step δt = 5 yr in order to avoid topographic instabilities such as the

ones described on Chapter 3. The model is run until the topography converges, where the

criterion for convergence is 0.5 m difference between the previous and current time-step

topographies. Note that the large dimension of the model is to attenuate the uprising of

the topographies in areas not loaded due to the conservation of volume, so it is possible

to compare with the solutions of Sec. 2.8.1, which are calculated for an infinite plate.

Results show a good agreement between topographies calculated with our FEM visco-

elastic code and the analytical solution for h = 2.5 and 5 km (Fig. 2.6a and b). For the case

where h = 10 km (Fig. 2.6c) the FEM results into a shallower negative topography than the
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topography calculated by the analytical thin-plate solution. We calculate absolute errors

along the topography (Fig. 2.6) from the differences between the topographies obtained

from the FEM and the analytical solution. The relative errors calculated for the maximum

absolute error are 2, 3 and 15% for h = 2.5, 5 and 10 km respectively. This relative errors

are small enough for the thin plate tests to validate our elasticity approach. The large

errors of the 10 km plate is the consequence of comparing our FEM model with an analytic

approach for a thin plate, as 10 km is not thin enough for the analytic solution to accurately

capture it.

2.8.3 Distributed load

The setup of this test is the same as the point load (Sec. 2.8.2) but with a distributed

2-km-high load along 100 km instead of a point load. A finite difference code developed

by Marta Pérez-Gussinyé and Jason P. Morgan is used to solve the deflection in Eq. 2.132

along the surface to compare with the results from our code. As in the previous section,

we chose to evaluate the solutions for plate thickenesses h = 2.5, 5 and 10 km.

Results show a very good agreement between the finite difference solution for elasticity for

a rigid plate and our FEM visco-elastic approach (Fig. 2.7). Here the difference between

the topographies in the visco-elastic code and the ones calculated with finite differeces are

in the order of 10-30 meters. The relative differences (equivalent to relative errors in the

previous section) at the coordinates where the absolute differences are larger are 4, 3 and

2% for h = 2.5, 5 and 10 km respectively. This decrease on the relative difference with h is

probably due to smaller velocities for the time steps, and therefore, more stable solutions

for thick plates in the visco-elastic code.

2.8.4 Conclusions

From the results shown on Secs. 2.8.2 and 2.8.3 we conclude that our elasticity algorithm

included in our viscous code is a good enough approach to model processes at a lithospheric

scale. We also conclude that the algorithm developed to include sediment loads in the

mechanics of the model is correct since it is the same algorithm we used to apply the loads

over the rigid plates.
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Figure 2.6: Point load over rigid plates of (a) 2.5, (b) 5, and (c) 10 km thickness. The
red line represents the analytical solution and the black dots the FEM solution nodes.
Note that the number of FEM nodes plotted has been cut down so that the analytical
solution is visible in the plot. The plots on the right represent the difference between the
FEM and the analytical solutions (absolute error).



Chapter 2. Numerical modelling of the crust and mantle dynamics 38

-150 -100 -50 0 50 100 150
-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

200

Distance [Km]

To
po

gr
ap

hy
 [m

]

FD solution for a distributed load vs FEM solution (Te=5 Km)

FD solution
FEM

-150 -100 -50 0 50 100 150
-5

0

5

10

15

20

25
FEM error

Distance [Km]

Er
ro

r [
m

]

-150 -100 -50 0 50 100 150
-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

200

Distance [Km]

To
po

gr
ap

hy
 [m

]

FD solution for a distributed load vs FEM solution (Te=10 Km)

FD solution
FEM

-150 -100 -50 0 50 100 150
-2

0

2

4

6

8

10

12

14

16

18
FEM error

Distance [Km]

Er
ro

r [
m

]

-150 -100 -50 0 50 100 150
-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

200

Distance [Km]

To
po

gr
ap

hy
 [m

]

FD solution for a distributed load vs FEM solution (Te=2.5 Km)

FD solution
FEM

-150 -100 -50 0 50 100 150
-5

0

5

10

15

20

25

30

35

40
FEM error

Distance [Km]

Er
ro

r [
m

]

(a)

(b)

(c)

Figure 2.7: Distributed load over rigid plates of (a) 2.5, (b) 5, and (c) 10 km thickness.
The red line represents the finite difference solution (FD) and the black dots the FEM
solution nodes. Note that the number of FEM nodes plotted has been cut down so that
the FD solution is visible in the plot. The plots on the right represent the difference
between the FEM and the FD soutions (absolute error).
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2.9 Code structure

The up-to-date formulation for the FEM geodynamic models has been explained in the pre-

vious sections. Most of this formulation was already included in the version of MILAMIN

that I enhanced for this project. However, I needed to add strain softening, elasticity,

shear heating, and a stress-free surface with a stabilization algorithm (describe in Chapter

3). The code is conceptually divided in three main sections that are:

Preprocessor

This section starts with the definition of the parameters and switches, and the decla-

ration of the variables. It continues generating the initial mesh using a subroutine to

generate the geometry of the model and another to call the triangle code (Shewchuk,

1996) to generate the grid based on the geometry. Then, it sets the initial boundary

conditions for the model.

Processor

This section initializes the loop that runs along all the time steps. Firstly, checks

the mesh and if it is very deformed it does remeshing using the same functions as

the preprocessor. Then, it calls the mechanical and the thermal solvers.

Postprocessor

This section calculates some variables from the output of the solvers, for example

the horizontal and vertical deviatoric stresses or the viscosity field, and plots the

results of the model.

The mechanical solver starts by declaring the variables and initializes the strain rate

iteration. It has two ways of solving the mechanical problem: one is coded in a more

simplistic way, and the other one is less intuitive but more efficient. The complex proce-

dure is based on building the matrices for K in blocks of 400 elements (Dabrowski et al.,

2008). It is possible to choose between these different procedures from a switch, at the

beginning of the main code. Then, the non-Newtonian iteration starts, calculate strain-

softening parameters, updates the viscosities, load the shape functions and shape function

derivatives, calculates the Jacobian, its determinant and its inverse. For the simplistic

procedure it calculates the matrices A, Q, QT , M and the vector Rhs for each element,

with integrating loops. For the block procedure it calculates the block matrices A, Q, QT ,

M and the block vector for the right-hand side Rhs, with integrating loops, and repeats

for every block. Later, it changes from local coordinates to global coordinates using the

inverse of the Jacobian and stores the data in the global matrices. Then, it generates

the global stiffness sparse matrix, reorders the matrix, applies Cholesky factorization, sets
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the boundary conditions and solves the system Eq. 2.63 by Uzawa iterations (Eq. 2.64).

Finally, it calculates horizontal, vertical and maximum deviatoric stresses, horizontal, ver-

tical and maximum strain, yield strength, historic strain, strain rate, second invariants of

deviatoric stress and strain rate, recalculates the viscosities and checks convergence of the

solution, closing the strain-rate loop. Once convergence is met (Eq. 2.120) stresses are

rotated and saved to be used as old stresses τ oldJij for elasticity (Eq. 2.99) in the future

time step.

The thermal solver starts by declaring the variables and constants, loading the integra-

tion points, shape functions and derivatives of the shape functions for the local coordinates

and indexing. Later, it initializes a blocking loop to build the stiffness matrix, integrates

through the integration points, change from local to global coordinates and write the local

stiffness matrices into the global stiffness matrix. Finally, it sets the boundary conditions

and solves the system Eq. 2.48.

Here, I present the schematic flowcharts of our main code and the mechanical and tem-

perature solvers, in order to clarify how the formulation is implemented.

Preprocessor

Declare variables, define parameters and switches

Mesh generator

Set boundary conditions

Set initial temperature

Processor

Initiate time-step loop

Check for remeshing

Remeshing

Mechanical solver

Shear heating

Thermal solverPostprocessor

Continue time-step loop

Calculate and save variables

Plot

End time-step loop
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Mechanical solver

Declare local variables

Strain-rate iteration

Viscosity algorithm

Strain softening (Eqs. 2.122 and 2.124)

Calculate ηeff (Eqs. 2.88, 2.101, and 2.118)

Build stiffness matrix (A,Q,QT ,M) and Rhs vector (F )

(Sec. 2.2.5, 2.4 and 2.5.3)

Reorder A and Rhs

Cholesky factorization of A

Uzawa-iteration solver (Eq. 2.64)

Solve velocities v = A−1Rhs

Calculate the divergence Div = QTM−1

Recalculate Rhs = Rhs− κ ∗Div ∗Q

End of Uzawa-iteration

Calculate historic strain εIIh for future strain softening 2.8

Calculate stress σ, deviatoric stress τ , strain ε, rigid-body

rotation ω, strain rate ε̇ and second invariants τII and ε̇II

Check convergence (Eq. 2.120) and end

the strain-rate iteration

Thermal solver

Declare local variables

Build stiffness matrix (KT )(Sec. 2.3 and 2.4)

Reorder KT and Rhs

Solve temperatures T = K−1
T Rhs
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a b s t r a c t

The surface of the solid Earth is effectively stress free in its subaerial portions, and hydrostatic beneath
the oceans. Unfortunately, this type of boundary condition is difficult to treat computationally, and for
computational convenience, numerical models have often used simpler approximations that do not
involve a normal stress-loaded, shear-stress free top surface that is free to move. Viscous flow models
with a computational free surface typically confront stability problems when the time step is bigger than
the viscous relaxation time. The small time step required for stability (< 2 Kyr) makes this type of model
computationally intensive, so there remains a need to develop strategies that mitigate the stability prob-
lem by making larger (at least �10 Kyr) time steps stable and accurate. Here we present a new
free-surface stabilization algorithm for finite element codes which solves the stability problem by adding
to the Stokes formulation an intrinsic penalization term equivalent to a portion of the future load at the
surface nodes. Our algorithm is straightforward to implement and can be used with both Eulerian or
Lagrangian grids. It includes a and b parameters to respectively control both the vertical and the horizon-
tal slope-dependent penalization terms, and uses Uzawa-like iterations to solve the resulting system at a
cost comparable to a non-stress free surface formulation. Four tests were carried out in order to study the
accuracy and the stability of the algorithm: (1) a decaying first-order sinusoidal topography test, (2) a
decaying high-order sinusoidal topography test, (3) a Rayleigh–Taylor instability test, and (4) a
steep-slope test. For these tests, we investigate which a and b parameters give the best results in terms
of both accuracy and stability. We also compare the accuracy and the stability of our algorithm with a
similar implicit approach recently developed by Kaus et al. (2010). We find that our algorithm is slightly
more accurate and stable for steep slopes, and also conclude that, for longer time steps, the optimal a
controlling factor for both approaches is �2/3, instead of the 1/2 Crank–Nicolson parameter inferred from
a linearized accuracy analysis. This more-implicit value coincides with the velocity factor for a Galerkin
time discretization applied to our penalization term using linear shape functions in time.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Tectonics and mantle dynamics together with sedimentation
and erosion build the Earth’s surface topography (Anderson et al.,
1973; McKenzie, 1977; Melosh and Raefsky, 1980; Hager et al.,
1985; Willett, 1999; Beaumont et al., 2001; Koons, 2002;
Finnegan et al., 2008; Braun, 2010). A topographical change trans-
lates into a change in the body forces governing the crustal and
mantle dynamic processes. Additionally, there are feedbacks

between surface erosion and topography (Ruddiman and
Kutzbach, 1989; Braun, 2006) that make accurate topographic
determinations desirable. The Earth’s subaerial surface is a
stress-free surface, which implies that both normal and shear
stress should vanish at this interface (Harlow et al., 1965; De
Bremaecker, 1976). Since surface and inner geodynamic processes
are coupled, there is increasing interest in including stress-free
surfaces and computationally similar submarine hydrostatic sur-
faces within geodynamic codes.

Several approaches to incorporate a free surface into geody-
namical codes have been discussed during the last two decades.
These include normal stress method, ‘sticky-air’ approaches, meth-
ods that treat the free surface as another variable of the flow prob-
lem, and a ‘real’ free surface. The normal-stress method remains
most common because it is easiest to compute and also stable
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for time steps that are much larger than the viscous relaxation time
of the system. It consists of an Eulerian top flat surface with
free-slip boundary conditions for which stresses are calculated by
solving the momentum equation, and where topography is
post-calculated from normal stresses at the Eulerian surface nodes,
by assuming that they are instantly compensated by the topo-
graphic load (McKenzie, 1977; Fleitout et al., 1986; Zhong et al.,
1993, 1996). Although normal-stress methods are known to be
computationally more efficient than real free surface ones, they
are not able to solve the time-dependent relaxation of topography
(Zhong et al., 1996; Crameri et al., 2012). If the relaxation time of a
particular topographic wavelength is on the order of the time-scale
of inner geodynamic processes, the relaxation of topography must
also be considered. In this situation, a real free surface method is
required to represent topographies that dynamically evolve with
time (Zhong et al., 1996). The ‘sticky-air’ method consists of adding
a low-viscous low-density layer at the top of the model, which is
used as a proxy for air or water (Zaleski and Julien, 1990; Gerya
and Yuen, 2003; Crameri et al., 2012), with the aim that the inter-
face between the ‘sticky-air’ layer and the upper crust will behave
similarly to a free surface. This method results into matrix singu-
larities when the viscosity is too low, and introduces artefacts
when the air/water layer is too viscous, because it can induce large
stresses on the surface (Crameri et al., 2012). In practical use, any
‘sticky-air’ calculation should include post processing to determine
that the sticky-air-to-surface interface is truly stress-free. Other
methods treat the free surface as an additional independent vari-
able and solve implicitly for it in conjunction with the Stokes equa-
tion (Kramer et al., 2012), or use implicit timestepping that has the
nodal coordinates as part of the solution which can also yield a
stable solution (Popov and Sobolev, 2008). Real free surface meth-
ods track the free surface in time and update it with the velocity
calculated from solving the Stokes equation in the entire domain
(Poliakov and Podladchikov, 1992). We chose to work with this
method since it solves the time-dependent relaxation of topogra-
phy and avoids artefacts associated with a ‘sticky-air’ layer without
any additional calculation.

A stress-free surface, however, suffers from well-known insta-
bilities when the time step is bigger than the viscous relaxation
time (Zhong et al., 1996). Because the longest wavelength surface

topography variations induce the most rapid rebound responses,
we first consider the effects of surface topography with a wave-
length of 1000 km, to approximate the effects of a large-scale
Plate Tectonics-related topographic variation in a given problem.
For a relevant viscosity of 1021 Pa s and surface density contrast
of 2700 kg/m3, the viscous relaxation time of such a topographical
feature would be of order �10 Kyr (Turcotte and Schubert, 1982).
Thus, for time steps bigger than 10 Kyr topographic computations
may become unstable. In Fig. 1 it is shown why instabilities arise
for time steps bigger than the relaxation time. In our example,
the initial topography is a valley underlain by a constant viscosity
fluid. In the presence of gravity, this topography should relax to a
flat surface. In most geodynamic codes, the velocities at the nodes
are calculated for the beginning of a time step and assumed con-
stant through the whole step. However, if the time step is large
compared to the viscous relaxation time, the velocities should
decrease within the time step. Hence, a large time step leads to
an overestimation of the velocity and topography at the end of
the time step. In some cases, the final topography will be larger
than the isostatically balanced topography and in the next time
step the estimated velocity will be directed downwards and create
a new ‘valley artefact’. In the subsequent time step this valley will
become again a positive topography (due to overestimation of the
average velocity in the numerical time step) and so on. Hence, the
topography will oscillate around the value for correctly compen-
sated isostatic relief. This instability could occur not only at the
beginning of a simulation in which case we could always run the
model for small time steps and then switch to bigger time steps
when stability is achieved, but could also occur for later stages of
simulations that account for complex rheologies and/or
geometries.

One of the most common free-surface instabilities that is
observed at geodynamic codes is the so called ‘drunken sailor’
instability. This instability occurs when the velocities for the sur-
face are overestimated for a broad area on one part of the model,
where in the opposite part the velocities are underestimated, and
the resulting displacements overpass the isostatic equilibrium.
Consequently, the topography of the previous step would be
inverted. This phenomena could decay through a few time steps
and then reach stability or, in case the overestimated velocities

Fig. 1. Evolution of a valley-shape negative topography with different time steps. The solid black line represents the initial negative topography (mass defect). Theoretically,
the negative topography should rise into a flat line due to buoyancy. Lets consider now two cases: (1) a single big time step (TS) for which the calculated velocity is vd , where
the dashed black line represents the positive unstable topography for the next time step, calculated with vd; and (2) smaller time steps ts1; ts2, and ts3, such as
TS ¼ ts1 þ ts2 þ ts3, with respective calculated velocities v i1;v i2 and v i3, and load increments L1; L2 and L3, the dashed gray lines represent smoother negative topographies at
the end of the time steps ts1 and ts2, and the solid gray line represents a more realistic and stable topography at the end of ts3, equivalent in time to the unstable topography of
the case 1. For the case 1, the load increments are not considered into the body forces, so the resulting integrated displacement is bigger than the integrated displacement
through the small time steps, for which body forces are updated with the load increments at the beginning of each ts. The instability of the free surface is the consequence of a
time step bigger than the viscous relaxation time, which often leads to an overestimation of the velocities at the beginning of the next time step.
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produce a displacement on the surface bigger than the initial
topography, it will lead to the instability of the whole model.

Instabilities at a free surface will not occur for small enough
time steps, since the new topography and the corresponding
changes in body forces implied by it are included with sufficient
accuracy in successive calculations. In our example, both the
topography and upward velocity would be slowly reduced through
the successive time steps leading to a stable solution (Fig. 1).
Kramer et al. (2012) estimate that time steps to obtain a stable
solution need to be at least one order of magnitude less than the
time step in an identical simulation but employs a free-slip bound-
ary. For simplistic viscous tests we have developed, �2000 year
steps are small enough to prevent numerical instabilities for a layer
with a viscosity of 1021 Pa s. Although smaller time steps allow
more accurate tracking of the topography, they are computation-
ally expensive.

For this reason, it is desirable to develop algorithms that allow
real free surface codes to run stable for relatively big time steps
(P10 Kyr). Here, we present a new free-surface stabilization algo-
rithm (FSSA). It consists of adding a penalizing load to the real free
surface, calculated implicitly from a fraction of the increment in
height of the surface between the initial and the following steps.
A similar FSSA algorithm was developed by Kaus et al. (2010).
Their algorithm takes into account the surface traction terms
derived from the time discretization of the momentum equations.
Though their mathematical formulation is different, these terms
also penalize the velocities as a function of the surface displace-
ment along a time step in a similar way to our FSSA. Therefore,
we have coded and tested both algorithms in order to check
whether there are particular cases for which one algorithm gives
a more accurate solution and/or allows a larger time step than
the other while preserving stability. The results presented here
were calculated with a modified version of MILAMIN (Dabrowski
et al., 2008), which is a Lagrangian finite element method (FEM)
solver for large 2D problems.

2. Methodology

Velocities and pressures are the unknowns of the mechanical
problem in these geodynamic simulations. Velocities can be solved
by using the Stokes equation for the viscous flow for incompress-
ible flow:

@sij

@xj
� @P
@xi
¼ �qgi; ð1Þ

where the deviatoric stress sij can be written in terms of velocities
in 2D, so for the x direction Stokes equation is:
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and for the y direction:
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where g is the viscosity, vx and vy are the velocities along the x and
y directions respectively, P is the pressure, q is the density, and gx

and gy are the accelerations along the x and y directions respectively
(Dabrowski et al., 2008). The right-hand side of Eqs. (2) and (3) are
the terms arising from the body force vector field. In this work we
choose the positive y direction to be in the direction of the gravity
vector, so that the acceleration gx is 0 and gy is Earth’s gravity. In our
code this is defined to be negative, so the horizontal body forces are
zero and the vertical body forces are negative. Another equation is
needed in order to solve for the pressure P. Using the relation

between the mean stress changes and the volumetric strain rates
we obtain:

@vx

@x
þ @vy

@y
þ P

j
¼ 0; ð4Þ

where j is a ‘penalty’ volumetric viscosity coefficient analogous to
the bulk modulus in linear elasticity (Hughes, 2000). For incom-
pressible conditions @vx

@x þ
@vy

@y ¼ 0. Therefore, Pj�1 � 0, so we assign

j a very big value (106gmax) using it as a penalty factor (Hughes,
2000). We introduce a discretization for velocity and pressure into
Eqs. (2)–(4) using global shape functions N and P, and we use the
Galerkin method to derive the weak form. Then, we can rewrite this
system of differential equations in the matrix form:
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Bvol ¼
@N1
@x ðx; yÞ 0 . . .

0 @N1
@y ðx; yÞ . . .

 !
; ð11Þ

F ¼
Z

Xe
ðqgÞdX; ð12Þ

where ge is the viscosity over the element, B defines the FE strain
rate matrix, geD is the constitutive tensor in Voigt notation, v and
P are the velocity and pressure unknowns, F contains the body
forces per volume and the boundary integrals over all forces acting
on the modelling domain X with boundaries S, and Xe is an element
domain (Hughes, 2000). It is possible to formally solve for pressure
P ¼ jM�1Qv and then simplify this system of equations to equa-
tions only for vector v:

Kv ¼ F; ð13Þ

where K � Aþ jQT M�1Q is the penalized stiffness matrix for
incompressible flow (Hughes, 2000; Zienkiewicz et al., 1985).
Here, we use Crouzeix–Raviart triangular elements with quadratic
velocity shape functions enhanced by a cubic bubble function and
discontinuous linear interpolation pressure (Crouzeix and Raviart,
1973). Meshes were generated employing the Triangle Mesh
Generator developed by Shewchuk (1996) (http://www.cs.cmu.
edu/�quake/triangle.html, version 1.6, 2005).

2.1. Free-surface approach

For a surface node at the beginning of a time step n, we can
define an increment to the surface height Dhnþ1 for this node. We
assume that the x-location of this interpolation for hnþ1 is fixed
to the current x-location for each surface node. In this case, the
topographic change during this time step is given by:
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Dhnþ1 ¼ Dh x
nþ1 þ Dh y

nþ1; ð14Þ

Dhnþ1 ¼ �dt
�dh
dx

 !
vx þ dtvy; ð15Þ

where dt is the time step, vx and vy are the time-averaged x- and
y-velocity components calculated at this node along top surface,

and �dh
dx

� �
is an approximation to the slope of the top surface during

the time step (Fig. 2). The negative sign of the horizontal term is
needed to determine the change in relief due to positive (right-
wards) advection of a positive (up to the right) slope (Fig. 3a–d).

To stabilize the displacement calculated with a large time step,
we chose to damp the velocity solution by adding, during that time
step, a portion of the load that would correspond to a fraction of
the estimated displacement Dhnþ1. At the end of the time step this
can be expressed as:

D�hn ¼ a �bdt
�dh
dx

 !
vx þ dtvy

 !
; ð16Þ

where a is a number between 0 and 1 to control what fraction of vx

and vy contribute to D�hn, and b is also a number between 0 and 1 to
control the contribution of vx alone. The force produced by the load
D�hn is:

FFS ¼ �
Z

S
qgyabdt

�dh
dx

 !
vxdxþ

Z
S
qgyadtvydx: ð17Þ

where q is the density of the rock for the subaerial case, or density
contrast between the rock and the water for the submarine case,
and gy is gravity. Here we assume that the slope is relatively con-

stant along the time step, so �dh
dx

� �
� dh

dx

� 	
n. Separating the x and y

terms of the FFS and incorporating this force into the standard weak
formulation (Hughes, 2000, p. 25):
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Fig. 2. Increments in height Dh at a surface node (a) before and (b) after a time step at the same horizontal location: v represents the velocity at the beginning of the time step,
hn and hnþ1 are the height at the beginning and end of the time step respectively, Dh x

nþ1 and Dh y
nþ1 are the height increments after the time step, calculated using vx and vy

components of the velocity respectively, dh
dx

� 	
n;

dh
dx

� 	
nþ1 and �dh

dx

� �
are the surface slopes at the beginning, at the end, and an average approximation during of the time step

respectively, and D�hn is the portion of the height increment for the end of the time step, obtained for a given choice of the a and b controlling factors.
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Fig. 3. Different configurations of positive vertical velocities vy with positive and negative horizontal velocities vx and positive and negative slopes dh
dx: (a) and (b) horizontal

velocities vx result in positive vertical displacements of the surface Dh x , for the given slopes that should be penalized with a negative kyx
FS term, while (c) and (d) horizontal

velocities vx for the given slopes result in negative displacements of the surface Dh x that should be penalized with a positive kyx
FS . Note that the term kyx

FS is opposite in sign to
the displacement Dh x . This change in sign is due to the negative sign of the gravity.
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where Fyx
FS and Fyy

FS are the different terms of the force along the y
axes (first superscript) due to the displacements along the x and y
axis (second superscript) respectively, i is the global index of all
nodes at the free surface, and N are the shape functions evaluated
along the surface. Note that these penalization forces will always
work in the opposite sense of the surface displacement since the
gravity g is defined to be negative (Fig. 3). In order to stabilize the
free surface we add both forces into the right hand side of Eq.
(13), which is equivalent to add the average load due to D�hn over
the time step:

Kv ¼ F þ Fyx
FS þ Fyy

FS : ð20Þ

Since Fyx
FS and Fyy

FS are expressed in weak formulation it is possible to
write:

Kv ¼ F þ K x
FSvx þ K y

FSvy; ð21Þ

where K x
FS and K y

FS are stiffness-shape terms which include q; gy, the
parameters a and b, and the shape functions N. We can therefore
rewrite the Eq. (21) as:

½K � K x
FS � K y

FS�v ¼ F: ð22Þ

The system of Eq. (22) is now solved for the velocities (and pres-
sures) which leads to a more stable and accurate solution for the
velocities along the free surface. Note that we are using the vertical
and horizontal velocities of each surface node to calculate the future
vertical displacement at the current horizontal location of the node
for the topographic variation during the time step (Fig. 2).
Therefore, this is an Eulerian formulation. This is justified because
the correction is applied at the node location as the solver is used
for this configuration of the mesh. Also note that although we
developed this formulation for the top surface where the largest
density contrast is expected, it can also be applied to any internal
interface across which there is a density contrast.

In order to implement the proposed algorithm into a FEM code,
it is necessary to build the K x

FS and K y
FS matrices. These additional

matrices incorporate typical forms in the usual stiffness matrix K.
Here we show a 2D example of the stiffness-matrix structure for
an element Ke:

Ke ¼

kxx
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ij kyy
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nn

kyx
n1 kyy

n1 kyx
n2 kyy

n2 : : kyx
nn kyy

nn;

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ð23Þ

where n is the number of nodes in the element. The first superscript
of k indicates the direction of the force resulting from multiplying k
by its respective v in Eq. (13). The second superscript indicates the
direction of the velocity v which is multiplying k, and the subscripts
i and j indicates the shape functions involved in the calculation of
the component. Our penalizing force FFS has both Fyx

FS and Fyy
FS compo-

nents that are applied in the y direction, and are calculated from the
velocities vx and vy at the surface nodes. Therefore, K x

FS and K y
FS

matrices will be 0 everywhere, except for the components kyx
FSij

and kyy
FSij at surface nodes:

kyx
FSij ¼ �qgyabdt

dh
dx

� �
n

Z
S

NiNjdS; ð24Þ

kyy
FSij ¼ qgyadt

Z
S

NiNjdS: ð25Þ

The annexe includes an example of coded kyx
FSij and kyy

FSij for a 2D FEM
model.

The stiffness matrix for a flow solver is typically symmetric so it
is possible to apply the computationally efficient Cholesky decom-
position method to solve it. The matrix K y

FS is also symmetric, so
that subtracting it from the stiffness matrix would have little effect
on computing time. However, K x

FS is not symmetric, since its
non-zero values are located off-diagonal in the lower-triangular
matrix (Eq. (23)), so subtracting it from the stiffness matrix would
make a symmetric Cholesky decomposition impossible. LU decom-
position could be applied in this case, but this would considerably
degrade the performance of the code. We have chosen to use an
iterative operator split into symmetric and asymmetric matrices
that can use Cholesky decomposition for inversion of a symmetric
matrix with multiple back-substitutions. This approach is �100
times faster than a full LU decomposition for the resolution used
in our experiments (10–30 km). In this iterative solution the sym-
metric matrix K y

FS is subtracted from the stiffness matrix, then
Cholesky factorization is applied to this matrix. The system of
equations is solved in which the right hand-side of the system con-
sist of the body forces F plus our correcting free surface force term
Fyx

FS or K x
FSv it�1:

½K � K y
FS�v it ¼ F þ K x

FSv it�1; ð26Þ

where it is the number of the current iterative approximation to the
solution at this time step. The first iteration v it�1 is assumed to be 0,
so Fyx

FS is also 0. In each new iteration v it�1 is updated using the
velocities calculated in the previous iteration. The loop runs until
the solution converges. Typically, FEM codes for a incompressible
flow also use an ‘Uzawa’ iterative solution algorithm in order to
achieve incompressibility. Here, ‘Uzawa’ is the name used by
Zienkiewicz et al. (1985) to describe their proposed ‘iterative
improvement’ of a penalty formulation for incompressible flow.
Other geodynamics papers use the overused term ‘Uzawa’ to mean
different, but related, numerical algorithms. We merge both itera-
tions by applying two loops, an outer loop which updates the veloc-
ities from the previous iteration and adds K x

FSv it�1 to the right-hand
side Rhs of the Eq. (13), and an inner loop which iterates to obtain
incompressibility:

Loop1 it = 1 : m
Operator split, asymmetric matrix terms moved to Rhs:
Rhs ¼ F þ K x

FSv it�1

Zienkiewicz et al. (1985) ‘Uzawa iteration’:
Loop2 uz = 1 : n

u ¼ ½K � K y
FS�
�1 Rhs

Div ¼ Q 0M�1

Rhs ¼ Rhs� jDivQ
end

end

where m and n are the number of iterations for each loop, Div is the
divergence, j is the pressure-formulation penalty factor, and Q and
M are the parts of the stiffness matrix indicated in Eqs. (7) and (8)
respectively. Note that the matrix K � K y

FS is formed and
Cholesky-factorized only once per time step so that all Rhs and
incompressibility-preserving subiterations only involved relatively
cheap and fast Cholesky back-substitutions analogous to the
back-substitutions in a typical Uzawa algorithm for
incompressibility.

3. Results

Four experiments were conducted in order to test the stability
and the accuracy of the above algorithm and also to explore which
a and b parameters are ‘best’ for practical use. These experiments
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exhibit both ‘drunken sailor’ instabilities and/or meshing problems
when the time step is too large. The experiments are: (a) a decay-
ing first-order sinusoidal topography test, (b) a decaying
high-order sinusoidal topography test, (c) a Rayleigh–Taylor insta-
bility test, and (d) a steep-slope test. The test for the topography of
a half-sinusoidal initial relief consists of a single layer experiment
with constant viscosity and an initial top-surface relief imposed as
a half-sinusoid. Theoretically, this topography should evolve
towards a flat surface. This experiment is appropriate for testing
the stability and the accuracy of our algorithm since it introduces
the longest wavelength, highest amplitude form of the ‘drunken
sailor’ instability. For time steps > 14 Kyr for the given 1021 Pa s
viscosity this instability occurs for a simple free surface. The
50th-harmonic test is a variation of the previous test but with a
much shorter wavelength sinusoidal topography. For this topo-
graphic variation the predicted relaxation time is bigger
(Turcotte and Schubert, 1982). However, this test is convenient
since it allows us to check the accuracy of our FSSA for
steep-slopes and its ability to reduce the numerical artefact involv-
ing a self-intersecting top surface (Fig. 4). The Rayleigh–Taylor
instability test is a two-layer viscous flow experiment, in which
the upper layer is more viscous and denser than the lower layer,
resulting in a Rayleigh–Taylor instability beneath the free surface.
The instability is triggered by relief on the interface between the
two layers, which helps the upper layer to start sinking where it
is thicker, and the lower layer to start rising where the upper layer
is thinner. The solution of the Rayleigh–Taylor instability is highly
sensitive to the top-surface topography, so that a badly constrained
free surface also induces the ‘drunken sailor’ instability which does
not allow the Rayleigh–Taylor instability to evolve properly.
Finally, the steep-slope test is a single-layer viscous experiment
that has a steep slope in its initial topography. Theoretically the
slope should become smoother through time and finally become
a stable flat top surface. Although this experiment does not lead
to a drunken-sailor type instability, the horizontal component of
the velocity affects the slope of the top surface so it is a suitable
experiment to better evaluate the effects of the K x

fs correction
terms. Table 1 summarizes the parameters used in the different
experiments.

In order to investigate the accuracy of our algorithm, we com-
pare the experiments to a reference solution determined for a very
small time step of 100 yr and a ‘simple’ free surface. Based on the
tests we made for solutions run with small 100 yr and 200 yr time
steps (see Table 2), the reference solution appears likely to be bet-
ter than 1� 10�2 m accuracy (RMS error) for all tests, and that we

chose to use a ¼ 0 for the reference solution so that we would not
use a FSSA for the reference solution. We next discuss the accuracy
comparing the topographies generated with the FSSA tests with
this reference solution. We found it also necessary to determine
the biggest stable time step for the non-FSSA approach, since it
defines for which dt the tests become unstable without FSSA, and
is useful as a reference when discussing the improved stability of
the FSSA approaches.

3.1. Decaying-half-sinusoidal test

Decaying-half-sinusoidal tests with a ¼ 1, 0.75, 0.7, 2/3, 0.6, 0.5
and 0.25, and b ¼ 1 and 0, were run for time steps dt ¼ 0:5, 1, 2, 2.5,
4, 5, 10 and 20 Kyr. These results show that introducing the penal-
ization for the horizontal component of the velocity K x

fs (b ¼ 1) pro-
duces almost the same surface relief as the computationally faster
tests that just include the vertical penalization K y

fs (e:g: b ¼ 0). The
experiment starts to become unstable without FSSA for
dt > 14 Kyr. For small time steps (< 5 Kyr) a ¼ 0:5 yields the most
accurate results, while a ¼ 0:7, 2/3 and 0.6 give the most accurate
results for FSSA approach with dt P 20 Kyr (Figs. 5 and 6).

3.2. Decaying 50th-harmonic-sinusoidal relief test

This test was run for dt ¼ 10, 20, 50, 100 and 400 Kyr, for a ¼ 1,
0.75, 0.7, 2/3, 0.6, 0.5 and 0.25, and for b ¼ 1 and 0. The highest
accuracy was achieved for a ¼ 0:25 and 0.5 for the smallest time
steps, and for a ¼ 0:7, 2/3 and 0.6 for dt ¼ 400 Kyr (Fig. 7a and
b). Root-mean-square errors (RMS) show that using b ¼ 0 gives
results that are slightly more accurate than b ¼ 1 for these tests.

3.3. Rayleigh–Taylor instability test

Rayleigh–Taylor instability tests with a ¼ 1, 0.75, 0.7, 2/3, 0.6,
0.5 and 0.25, and b ¼ 1 and 0 for dt ¼ 10 and 20 Kyr, show similar
results to that of decaying-sinusoidal surface topography. Both
dt ¼ 10 and 20 Kyr lead to an instability without FSSA stabilization.
Even with FSSA, the free surface becomes unstable for a ¼ 0:25
when dt ¼ 10 Kyr, and for a ¼ 0:25 and 0.5 when dt ¼ 20 Kyr.
Again, results indicate a better accuracy for a 10 Kyr time step with
a ¼ 0:5, while a ¼ 0:6 produces the most accurate results followed
by a ¼ 2=3 (Fig. 7c and d) for larger time steps. Topographies cal-
culated with b ¼ 0 and 1 do not differ significantly from each other.
The RMS error with respect to the 100 yr non-FSSA reference solu-
tion shows that the calculations done with b ¼ 0 are again slightly
more accurate than those calculated with b ¼ 1 (Fig. 7c and d).

v1 v2

)b()a(

Fig. 4. Self-intersection of surface topography created by a surface valley with very
steep slopes. In this case the surface velocities v1 and v2 in (a) induce large
horizontal displacements during a time step leading to a numerical artefact in
which the top-surface intersects itself after a Lagrangian time step as shown in (b).

Table 1
Experiment parameters.

Test Viscosity
g [Pa s]

Geometry
parameters
[km]

Geometry

Decaying-half-sinusoid
of top-surface relief

1021 500 � 500

AA = 10

Multiple harmonics of
top-surface relief

1021 500 � 500
A

λ

A = 10
k ¼ 10

Rayleigh–Taylor
instability beneath a
free top surface

g1 ¼ 1021 500 � 500

A
Layer 1
Layer 2g2 ¼ 1020 A = 10

Steep-slope along a
free top surface

1021 5 � 0.1

A θ
A = 2
H ¼ 30�
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3.4. Steep-slope test

The steep-slope test has been run for dt ¼ 20 Kyr with a ¼ 1,
0.75, 0.7, 2/3, 0.6, 0.5 and 0.25 and b ¼ 1 and 0. Calculations done
with a ¼ 0:5, 0.6 and 2/3 result in the most accurate outcomes
(Fig. 8a). Fig. 7e shows that a ¼ 2=3 gives better results after
6 Myr, whereas b ¼ 0 gives the most accurate results for the first

12 Myr while b ¼ 1 gives the most accurate results after 14 Myr
of surface evolution.

4. Discussion

As mentioned above, our formulation differs conceptually from
that previously presented by Kaus et al. (2010). They also applied
an implicit penalizing load to the stiffness matrix, but did this
using the surface traction terms derived from the time discretiza-
tion of the momentum equation, which translated into using a
normal-to-the-surface velocity vector (vxnx;vyny) instead of out
‘Eulerian’ approach using velocity directions at the node (Fig. 2).
Their equivalent penalizing terms kyx

Kij and kyy
Kij can be defined as:

kyx
Kij ¼ nxqgaKdt

Z
S

NiNjdS; ð27Þ

kyy
Kij ¼ nyqgaKdt

Z
S

NiNjdS; ð28Þ

where aK is their FSSA controlling factor, for which they showed 0.5
is the optimal value among 0, 0.5 and 1 (Kaus et al., 2010). Their
algorithm is formulated to be applied at every element boundary,
while we apply it only at the free surface. Their penalization terms
cancel out between elements of equal densities, so the penalization
is only effective at the free surface or at interfaces where changes in
density occur. This results in better estimates for multilayer models
even if free slip is imposed at the surface. Since only one of our tests
was multilayered, we chose to apply the stabilization algorithm
only at the surface, but it too would be easy to implement at inter-
nal density interfaces, but not as a general correction for all

Table 2
Topographical RMS differences between tests with different small dt and a, after 1 Myr. Note that the differences are smaller than the ones shown in Fig. 7, that compares larger
time steps with a reference of dt ¼ 100 yr and a ¼ 0.

Small dt comparisons ðdt100a0 � dt100a0:5Þ [m] ðdt200a0 � dt100a0Þ [m] ðdt200a0:5 � dt100a0:5Þ [m]

Decaying-half-sinusoid relief 7:196� 10�3 7:195� 10�3 5:746� 10�7

50th-harmonic-sinusoidal relief 8:595� 10�2 1:133� 10�1 7:503� 10�2

Rayleigh–Taylor instability 5:040� 10�3 4:177� 10�4 9:159� 10�3

Steep-slope 3:198� 10�3 3:241� 10�3 1:927� 10�3

δ δ

Fig. 5. Topographies generated after 20 Kyr, calculated with (a) a time step of 20 Kyr and (b) a time step of 2 Kyr for different a, with b ¼ 1. (a) The topographies generated for
different choices of a after the first 20 Kyr time step show remarkable differences from one to another; a ¼ 0:25 leads to instability since the topography is inverted after a
single step, with a ¼ 0:6 and 2/3 calculations yield the most accurate results. a ¼ 0:6 is more likely than higher values to trigger instability in future steps, since it results into
an small overestimate of the surface displacement. (b) The topographies generated with the more stable FSSA approximation and a ten-fold smaller time step differ by less
than 200 m from one to another. The most accurate results for small time-steps are obtained with a ¼ 0:5.

δ

α
α
α
α
α
α
α

Fig. 6. Maximum absolute differences between the topography calculated for FSSA
approximations with different a and dt, and the topography calculated with a very
small dt ¼ 100 yr using no FSSA. a ¼ 0:5 is most accurate for smaller time steps
where the method is numerically stabler, while a ¼ 0:7, 2/3 and 0.6 are more
accurate for larger time steps that result numerical instabilities in experiments
without FSSA stabilization (dt > 14 Kyr).
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elements. Assuming that the slope of the surface can be defined as
@h
@x ¼ �

nx
ny

, then their formulation is equivalent to ours (Eqs. (24) and

(25)) multiplied by ny. In order to improve the performance of their
algorithm, they assumed nx � 0, as is true for small slopes. In this
case, kyx

Kij ¼ 0 and the resulting penalized stiffness matrix is symmet-
ric. However, processes that typically transform topography, such
as erosion and faulting, can produce steep-enough slopes for mod-
els to require the horizontal term to increase numerical stability.

We also included Kaus et al. (2010) FSSA into our tests for com-
parison, and to test for the ‘best practice’ values for aK . We ran the
same tests as for our FSSA, with aK ¼ 1, 0.75, 0.7, 2/3, 0.6, 0.5 and
0.25. The results show that aK ¼ 0:5 produces the most accurate
solutions for smaller time steps, while aK ¼ 1 produces the most
stable solutions, as suggested by Kaus et al. (2010). However, for

the decaying-sinusoidal topography and Rayleigh–Taylor tests,
we find that a ¼ 0:6 and 2/3 are the best for accuracy with their
approach when using time steps bigger than the maximum stable
time step for a non-FSSA approach. Except for the steep-slope test
(Fig. 7e) where our algorithm produces slightly more accurate
results for the dt ¼ 20 Kyr test after 14 Myr of time-run for
a ¼ 2=3 and both b ¼ 1 and 0 (being b ¼ 1 results the most accu-
rate), there are no major differences between the results produced
with the Kaus et al. (2010) FSSA and our FSSA in accuracy.

Based on the results of these tests, we suggest that for large
FSSA-stabilized time steps, one should use a ¼ 2=3 for ‘best prac-
tice’ results (best accuracy and stability together) for both our
and Kaus et al. (2010) algorithms. Note that a 2/3 value would be
obtained for a standard finite-element Galerkin discretization in
time with linear shape functions in time, as opposed to a standard

δ

δ δ

δ δ

β
β

Fig. 7. Root-mean-square errors obtained from the difference between the topographies calculated with FSSAs for various a and b, and the non-FSSA reference solution
calculated using dt ¼ 100 yr for: (a) and (b) decaying 50th-harmonic sinusoidal relief for dt ¼ 20 and 400 Kyr respectively, (c) and (d) the Rayleigh–Taylor instability test for
dt ¼ 10 and 20 Kyr respectively, and (e) the steep-slope test for dt ¼ 20 Kyr. RMS differences for a ¼ 0:25 for (c) and a ¼ 0:25 and 0.5 for (d) are not plotted because these tests
result in an unstable numerical solution.
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finite-difference approximation in time that is normally used. The
finite-element-like Galerkin time-discretization results in a factor
of 2/3 that multiplies the unknown at the end of the time step,
while the factor obtained from a finite-difference Crank–Nicolson
formulation (less stable but theoretically more accurate at smaller
time steps) is 1/2. Applying a Galerkin discretization in time using
linear shape functions MðtÞ in Eq. (20), following the scheme
described in Warzee (1974), one obtains:Z

time
Ms K

Xr

u¼0

Mvvu � dtA
Xr

u¼0

Muvu � FðtÞ
" #

dt ¼ 0; ð29Þ

where dtA
P

Muvu is equivalent to the penalization term
FFS;Aij ¼ �qg dh

dx

� 	 R
S NiNjdS for the horizontal penalization term,

and Aij ¼ qg
R

S NiNjdx for the vertical penalization term.
Integrating through a time step dt:

K
1
3

u0 þ
2
3

u1

� �
� dtA

1
3

v0 þ
2
3

v1

� �
� 1

3
F0 þ

2
3

F1

� �
¼ 0; ð30Þ

where the subindexes 0 and 1 indicate whether the variables are
calculated for the beginning or the end of the time step, respec-
tively. Therefore, 2/3 would also be the parameter for the
Galerkin time discretization of our stabilization term, coinciding
with the ‘best practice’ a found in our numerical tests.

Results often show worse RMS errors with the penalized hori-
zontal stabilization term (b ¼ 1) than without it (b ¼ 0) (Fig. 7).
This can be anticipated since b ¼ 1 introduces an additional load
at the top of the surface (as well as a > 0), which for cases where
the time step is small and/or the surface is stable implies that
the error could be increased in the calculations as a byproduct of
greater stability. However, for a ¼ 2=3; b ¼ 1 gives smaller RMS
at the last stages of the multiple harmonics test with
dt ¼ 400 Kyr (Fig. 7b), and the last stages of the steep-slope test
for dt ¼ 20 Kyr (Fig. 7e). This two tests produce the highest surface
horizontal displacements from the set of tests we run and, there-
fore we conclude that, for near-optimal a; b ¼ 1 can improve the
accuracy of models that have a tendency for lateral instability.

In order to study stability of the different FSSAs these tests were
pushed to values of dt for which they become numerically unstable
with a ¼ aK ¼ 0:5 and 2/3 (Table 3). Results show that both our
and the Kaus et al. (2010) algorithms can be used for a time step
at least 2 times bigger than the maximum for a non-FSSA test for
the worst-case decaying half-sinusoid and steep-slope tests, and
at least one order of magnitude more than the non-FSSA for the
other situations. a ¼ aK ¼ 2=3 allows bigger time steps than
a ¼ aK ¼ 0:5, except for the 50th-harmonic sinusoid test. There
are no major differences in the maximum time step, independent
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Fig. 8. Steep-slope relief differences between topographies calculated with FSSA methods using different a and b parameters and dt ¼ 20 Kyr and a reference non-FSSA
solution with a 100 yr time step during a 1 Myr time run. Note that for the upper topographic inflexion (a) the tests a ¼ 0:5, 0.6 and 2/3, and b ¼ 0 and 1 are more accurate.
Note also that b ¼ 1 tests for any a results in more accurate topographies at the end of the slope (b), where the horizontal velocities are bigger.

Table 3
Stability tests. dt represents the time step from which the different tests start to be unstable or having mesh problems, tb is the run time for which the tests break, and the capital
letters indicate the way the tests fail, where DS stands for ‘drunken sailor’ instability, SIS for the self-intersecting surface artefact instability (Fig. 4) and MESH for an artefact in
which inner nodes become displaced outside of the border of the evolving Lagrangian mesh.

Test Total run-time
interval

Non-FSSA
(max dt)

Kaus Kaus a ¼ 0:5 a ¼ 2=3 a ¼ 2=3 a ¼ 2=3
aK ¼ 0:5 aK ¼ 2=3 b ¼ 0 b ¼ 0 b ¼ 0:5 b ¼ 1

Decaying-half-sinusoid relief 5 Myr DS DS DS DS DS DS DS
dt 14 Kyr dt 27 Kyr dt 40 Kyr dt 27 Kyr dt 40 Kyr dt 40 Kyr dt 40 Kyr
tb 14 Kyr tb 27 Kyr tb 40 Kyr tb 27 Kyr tb 40 Kyr tb 40 Kyr tb 40 Kyr

50th-harmonic-sinusoidal relief 20 Myr DS SIS SIS SIS SIS SIS SIS
dt 30 Kyr dt 620 Kyr dt 570 Kyr dt 610 Kyr dt 510 Kyr dt 500 Kyr dt 500 Kyr
tb 1:11 Kyr tb 19:84 Kyr tb 18:81 Kyr tb 19:52 Kyr tb 18:87 Kyr tb 19 Kyr tb 19 Kyr

Rayleigh–Taylor instability 7 Myr DS DS DS DS DS DS DS
dt 5 Kyr dt 16 Kyr dt 35 Kyr dt 16 Kyr dt 35 Kyr dt 35 Kyr dt 35 Kyr
tb 50 Kyr tb 720 Kyr tb 525 Kyr tb 752 Kyr tb 525 Kyr tb 525 Kyr tb 525 Kyr

Steep-slope 100 Myr MESH MESH MESH MESH MESH MESH SIS
dt 2:7 Kyr dt 4:7 Kyr dt 5:6 Kyr dt 4:7 Kyr dt 5:6 Kyr dt 5:9 Kyr dt 4:3 Kyr
tb 5:4 Kyr tb 9:4 Kyr tb 11:2 Kyr tb 9:4 Kyr tb 11:2 Kyr tb 11:8 Kyr tb 12:9 Kyr
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of the FSSA or choice of b parameter for the decaying-half-sinusoid
and Rayleigh–Taylor instability tests. However, the Kaus et al.
(2010) FSSA allows a slightly bigger time step (570 Kyr in contrast
to 510 Kyr) for the decaying 50th-harmonic sinusoid test for
a ¼ 2=3, without inducing a self-intersecting surface artefacts,
while our FSSA results into the maximum time step without mesh-
ing problems (5.9 Myr in contrast to 5.6 Myr) for b ¼ 0:5, and the
worse results (4.3 Myr) for b ¼ 1.

In order to solve the asymmetric system our FSSA combines
Cholesky factorization with Uzawa-like iterations, as previously
explained. In order to converge, the FSSA with the vertical and hor-
izontal penalty terms needs �5 times more ‘backsolve’ operations
than the vertical-only penalized form. We expect that for different
resolutions than the ones used here, and even for 3D, the number
of backsolve operations needed for convergence would vary little
for similar viscosities since the convergence of Uzawa-like itera-
tions only weakly depends on the number of unknowns
(Zienkiewicz et al., 1985). Consequently, the solver for the asym-
metric system is spending approximately 5 times more ‘backsolve’
operations than the one for the symmetric system. However, the
performance is still good in contrast with a solver that applies LU
factorization, since LU can spend more than 100 times the
computing-time (for the given resolution) than the forward
Cholesky factorization, which is the most time-intensive portion
of the Cholesky forward-backsolve solution process.

The algorithm presented here is formulated and tested for finite
element discretization. However, many experiments within the
modelling community are done with staggered finite difference
codes. These models also suffer from free surface instabilities
(Duretz et al., 2011), so a free-surface stabilization algorithm is also
required. A generalized formulation of our FSSA is obtained by
applying a body force penalization term to Eq. (1) at the surface
(and/or density interfaces) cells:

@sij

@xj
� @P
@xi
¼ �qgi þ FFS; ð31Þ

where

FFS ¼
dq
dy

gyadt �b
d�h
dx

vx þ vy

 !
; ð32Þ

where dq
dy is the vertical density change across the free surface or

density interface. This generalized formulation of our FSSA can be
implemented in finite difference codes.

Here, we have demonstrated that: (1) the damping factor a ¼
2/3 works best in the limit of maximum stable time steps both
for Kaus et al. (2010) and our FSSAs, and (2) the horizontal term
of the stabilization algorithm is not necessary for steep slopes
(up to 30�), meaning that Kaus et al. (2010) approach, where the
horizontal term is neglected, is a good approach since it still makes
little practical difference to include the horizontal term for
extreme topographies. We also present an operator-split method
for implementing the horizontal term that retains symmetric stiff-
ness matrix, in case readers do wish to economically use this
approach for very steep slopes. Future work to be addressed in a
follow-up paper would include: (1) a more exhaustive examination
of the relative performance (CPU time versus accuracy and stabil-
ity) of proposed free-surface stabilization algorithms; (2) a study of
the stability radius for the semi-implicit time integrators; and (3)
comparison with additional methods of free surface stabilization
such as the implicit algorithm proposed by Kramer et al. (2012)
or methods in which the surface is updated during every strain
iteration of a non-Newtonian solution so that instabilities are mit-
igated without need for an explicit stabilization algorithm (i.e.
Popov and Sobolev (2008)).

5. Conclusions

Numerical flow models with free surfaces need a free-surface sta-
bilization algorithm (FSSA) in order to be stable at relatively large
time steps (P10 Kyr) that allow for a reasonably small compute
time. We have developed a FSSA algorithm which adds to the
mechanical system a load calculated implicitly from a portion of
the difference in surface relief between the beginning and end of a
time step. This FSSA allows time steps 2–20 times larger than the
free surface models without stabilization, and produces accurate
results (< 1% relative error) for the viscosities and time steps used
in these tests. The magnitude of the additional implicit surface load
during a time step is controlled by parameters a and b, where a cor-
responds to the total controlling factor of the load (with values
between 0 and 1), which b controls only the horizontal term of the
load (with values also between 0 and 1). In addition, we have imple-
mented an Uzawa-like iteration in this algorithm that allows us to
solve the asymmetric system resulting from b ¼ 1 in compute time
comparable to that for the symmetric solution with b ¼ 0.

Different viscous experiments were carried out in order to
numerically assess the ‘best-practice’ values for a and b. For time
steps close to the stability limit for models without a FSSA,
a ¼ 0:5 results in the most accurate free surface approximation,
while for time steps larger than those stable in models without a
FSSA, a ¼ 2=3 is found to be the best option for both our FSSA
and the FSSA described by Kaus et al. (2010), because it generally
yields the most accurate and stable results.

Including the horizontal term in our FSSA (b ¼ 1) gives generally
slightly less accurate results than omitting it (b ¼ 0), except for the
steep-slope test after several million years. The maximum time
steps achieved with stability for our and the Kaus et al. (2010)
FSSAs are very similar for all tests explored here. Although the
multiple-harmonic topography test and the steep-slope test never
become unstable before they experience mesh- deformation
-related problems in our Lagrangian tests, the Kaus et al. (2010) algo-
rithm allows slightly bigger time steps without
mesh-deformation-related problems for the 50th-harmonic
-sinusoidal relief test, while our algorithm with b ¼ 0:5 allows the
use of slightly larger time steps for the steep-slope test. Although
our FSSA with b ¼ 1 should intuitively give more stable results for
steep slopes than the FSSAs without the horizontal stabilization
term, as it is, in theory, a more complete approximation, our tests
did not demonstrate a significant improvement over FSSA approxi-
mations with b ¼ 0. We did see that it leads to more accurate results
for the latest stages of the relaxation of a initial steep-slope, with
only a minor increase in computational time with respect to FSSA
methods that neglect this additional term. Our final recommenda-
tion: use FSSA, with a ¼ 2=3.
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1 Annexe

Listing 1: Example of Matlab source-code lines where kyxij and kyyij are built
(Eqs. 20 and 21). Ax fse and Ay fse correspond to the integration terms
of kyxij and kyyij respectively, nnode el fs is the number of surface nodes per
element, nip fs number of integration points for the surface problem, N fs
shape functions, Ipw fs weight functions for the integration, Dx e is the total
length of the triangular element (since every triangular element consist of 2
surface elements dS = Dx e/2), Ax fse col and Ay fse col are the kyxij and
kyyij , inc rho is the density contrast (ρ), G(2) the gravity (g), alpha and beta
the control parameters (α and β), dhdx the slope (∂h/∂x), and dt the time step.
Symbol ′ in Matlab is the command to calculate the transpose of the preceding
matrix. Note that the integration terms of Eqs. 20 and 21 are written in the form
Aij =

∫
S
NiNjdS which is equivalent to the matricial form A =

∫
S
N ·NT dS.

% I n i t i a l i z e the matr i ce s f o r the p ena l i z a t i on o f A
Ax fse = ze ro s ( nnod e l f s , n n od e l f s ) ;
Ay fse = ze ro s ( nnod e l f s , n n od e l f s ) ;

f o r i p f s = 1 : n i p f s % In t e g r a t i on loop
Ax fse = Ax fse + N fs { i p f s }∗N fs { i p f s } ’ ∗ . . .

Ipw f s ( i p f s )∗Dx e ( i ) /2 ; % Ni∗Nj∗w∗dx
Ay fse = Ay fse + N fs { i p f s }∗N fs { i p f s } ’ ∗ . . .

Ipw f s ( i p f s )∗Dx e ( i ) /2 ; % Ni∗Nj∗w∗dx
end

Ax f s e c o l = Ax fse ( : ) ∗ i n c rho ( i )∗G(2) ∗alpha∗beta∗−(dhdx
)∗dt ;
% Afs f o r x = in c d en s i t y ∗g∗beta∗dhdx∗dt∗ i n t e g r a l (Ni

∗Nj∗dx )
Ay f s e c o l = Ay fse ( : ) ∗ i n c rho ( i )∗G(2) ∗alpha∗dt ;

% Afs f o r y = in c d en s i t y ∗g∗alpha∗dt∗ i n t e g r a l (Ni∗Nj∗
dx )

1
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Abstract

When continental lithosphere is extended to break-up it forms two conjugate passive margins. In many

instances these margins are asymmetric: while one is wide and extensively faulted, the conjugate thins

more abruptly and exhibits little faulting. Recent observational studies have suggested that this asymmetry

results from the formation of an oceanward-younging sequential normal fault array on the future wide margin.

Numerical models have shown that fault sequentiality arises as a result of asymmetric uplift of the hot mantle

towards the hanging wall of the active fault, which weakens this area and promotes the formation of a new

oceanward fault. In numerical models the polarity of the asymmetry is random. It results from spontaneous

preferential localization of strain in a given fault, a process reinforced by strain weakening effects. Slight

changes in the experiments initial grid result in an opposite polarity of the asymmetry. However, along a

long stretch of the South Atlantic margins, from the Camamu-Gabon to the North Santos-South Kwanza

conjugates, the polarity is not random and is very well correlated with the distance of the rift to nearby

cratons. Here, we use numerical experiments to show that the presence of a thick cratonic root inhibits

asthenospheric flow from underneath the craton towards the adjacent fold belt, while flow from underneath

the fold belt towards the craton is favoured. This enhances and promotes sequential faulting towards the

craton and results in a wide faulted margin located in the fold belt and a narrow conjugate margin in the

craton side, thereby determining the polarity of the asymmetry, as observed in nature.

Keywords: rifting, margin architecture, cratons, numerical modelling

Magma poor rifted margins present a wide variety of architectures and geometries from the relatively

narrow Newfoundland-Iberia asymmetric conjugates (∼150 Km wide), to the hyper-extended margins of the

central South Atlantic where conjugate margin width may span 1000 Km (e.g. North Santos-South Kwanza).

Along the magma-poor region of the South Atlantic (Blaich et al., 2011), where extension was perpendicular

to the margin (Davison, 1997; Meisling et al., 2001), the degree of asymmetry as well as margin width varies

substantially (Fig. 1). To the North, in the Camamu-Gabon sector, the conjugate margins are asymmetric.

The Brazilian Camamu conjugate, located close to the onshore San Francisco craton, is much narrower than

the Gabon one. In the central sector, the Campos-Kwanza conjugates are fairly symmetric. Here, both
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margins developed far away from cratons. Southwards, the North Santos margin is much wider than its

conjugate the South Kwanza, which developed offshore of the Congo craton. Thus, margin width and the

proximity to a craton at the time of break-up are clearly correlated (Fig. 1). Where the rift developed close

to a craton, the margin closer to the craton is narrow, while the opposite margin is wider.

Figure 1: Width of Central South Atlantic conjugate margins and distance from the edge of the margin to the
cratons.
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Figure 1: a, Map of the central sector of the South Atlantic conjugate margins using Pérez-Dı́az and Eagles, 2014 reconstruction
at 106 Myr. Dots represent flowlines which labels are distance in km to the Central-Africa respect South-America rotation pole
from 106 Myr to present. SFC—Sao Francisco Craton, CC—Congo Craton, Cm—Camumu, ES—Espirito Santo, Cp—Campos,
NS—North of Santos, G—Gabon, K—Kwanza basins. Rigid crust (light grey) as crust not deformed by rifting, and landward
limit of the oceanic crust (LaLOC) from Heine et al., 2013. Note that the further the craton to the landward edge of the
margin (LEM), the wider the margin. b, c, Margin width (red lines) and distance from the craton to the LEM measured
along flowlines Pérez-Dı́az and Eagles, 2014 model. At the Brazilian margin, b, where Sao Francisco craton is by the coast
the margin is very narrow (<50 km), while southwards the craton is far from the LEM and the margin is wider. North of Sao
Francisco craton the extension is transtensional so we do not evaluate this data. Along the African margin, c, there is a clear
direct relationship between the width of the margin and the distance from the craton to the LEM.

The mechanisms of asymmetry generation at extensional margins have been long debated. Early obser-

vational studies suggested that asymmetry may be generated by large and long-lived detachments faults that

may cross-cut through the entire lithosphere from the onset of extension (Wernicke, 1985; Lister and Davis,

1989). Numerous factors have been proven to influence asymmetry such as of crustal rheologies (Kusznir and

Park, 1987; Buck, 1991; Buiter et al., 2008; Huismans and Beaumont, 2003), plastic thickness (Lavier and

Buck, 2002), strain weakening (Buck and Lavier, 2001; Huismans and Beaumont, 2002), extension velocities

(Huismans and Beaumont, 2002; Brune et al., 2014), anisotropic weakness in the mantle due to precursor

structures (Tommasi et al., 2009; Hansen et al., 2012), and heterogeneities, both in the crust and mantel

lithosphere (Dunbar and Sawyer, 1988; Corti et al., 2003; Nielsen and Hopper, 2004).
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Recent studies have suggested that asymmetry formation may be a late stage process during rifting which

occurs when a fault direction becomes dominant. This promotes the development of an array of faults that

are sequential in time and consistently dip in that dominant direction, thereby generating two asymmetric

margins. The margin where sequential faulting occurs becomes the wide margin, and the conjugate is

the narrow one (Ranero and Pérez-Gussinyé, 2010; Brune et al., 2014; Pérez-Gussinyé, 2013). Numerical

models show that a fault direction becomes dominant when upper crustal faults are strongly coupled to

mantle deformation, so that a fault/shear zone penetrating at depth, leads to asymmetric up-welling of the

mantle, heating and weakening of the hanging wall of that active fault, where the future fault will occur

(Brune et al., 2014). This process feeds back onto itself thereby generating an array of sequential faults

that dip consistently in one direction. Sequential faulting occurs as long as there is lower crust that is weak

enough to flow into the tip of the active fault, thereby inhibiting mechanical breakup of the crust by faulting.

However, a too weak rheology will allow for decoupling of crustal and mantle deformation and consequent

symmetric crustal deformation. Hence, asymmetry formation strongly depends on lower crustal viscosity.

Here, we use numerical models to study margin asymmetry related to the presence of cratons. Our

models are seeded by a slight temperature increase in the lower crust which dissipates with time (see

Methods). This temperature anomaly leads to an initial viscosity decrease in this location, so that the

starting deformation pattern are two conjugate shear zones dipping towards the initial weak seed. This

initial set up favours symmetry in the absence of viscous strain softening (VSS) as observed in Figure 2a.

Half extension velocities of 5 mm/yr are applied at the boundaries of the model. This velocities are in the

order of the ones proposed by (Heine et al., 2013) for the South Atlantic central sector, calculated from

the 127-140 Ma stage pole for South America relative to a fixed African plate. These velocities are also in

the order of the ones estimated for the Southern Sea extension during the formation of the continent ocean

transition (Direen et al., 2012).

Our tests show that increasing degrees of VSS (pre-exponential factor ranges from 1 to 15 and 1 to 30,

see Methods) lead to increasing margin asymmetry (Fig. 2b and c). This is a consequence of the non-linear

character of the VSS which greatly enhances localization of strain at shear zones present at viscous domains

such as the lower crust. If one shear zone at the lower crust accommodates slightly more deformation than

its conjugate one, weakening will occur faster at the former and eventually it will dominate deformation

leading to asymmetry.

However, margin asymmetry does not exclusively depend on the amount of VSS but also on rock type,

temperature field, crustal thickness and strain rate. For example, Figures 2c and 2d show that for the same

amount of VSS a 40 km thick crust with mafic granulite lower crust will produce asymmetric margins, while

a 35 km crust with the same rheology will produce symmetric margins. This is because, a 35 km crust

accounts for a stronger viscosity at its base (since the temperature at 35 km is less than at 40 km), so lower

crustal flow does not inhibit mechanical breakup of the crust, resulting in two narrow symmetric margins.

When the crust is 40 km, the low viscosity at the deep lower crust allows one fault to become dominant

and sequential faulting to be triggered. Unfortunately, the exact amount of VSS is not well constrained by

observations or laboratory experiments. Here, we use VSS pre-exponential factors varying linearly with the

strain from 1 to 30, as for the models in Figures 2c and d, as these are in the order of typically values used

in other modelling works (e.g. Huismans and Beaumont, 2003; Warren and Beaumont, 2008; Brune et al.,

2012, 2014).
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Figure 2: Numerical experiments
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Figure 2: Strain rate fields of different numerical experiments with mafic granulite lower crustal rheologies. Discontinue black
lines represent the 1340◦C isotherm. UC stands for upper crust, LC for lower crust and DWOI for dry-wet olivine interface.
a, b, c, Experiments without craton and 40 km crustal thickness for maximum VSS values of 1 (no softening), 15 and 30.
Note that asymmetry increases with increasing maximum VSS factor. In c, 1 represents an area of crust thinned by sequential
faulting previous to the rifting migration to 2, which adds a thicker crustal block (between 1 and 2) to the wide margin. d,
Experiment with 35 km crust and a maximum VSS factor of 30 resulting into symmetric conjugates. e, f, Experiments with
40 km crust, identical parameters, but randomly differentiated meshes. Note that geometries and length of the margins are
similar but polarity of the asymmetry is inverted. g, h, i, Evolution of a 35-km-crust experiment with a cratonic lithosphere
at the left side. White lines represent isoviscosity lines with viscosities given in logarithm on base 10. j, zoom of (h). The
craton favours localization of the deformation in the closest shear zone (g) and asymmetric up-welling of the asthenosphere (h),
which results into asymmetric margins, in contrast with the equivalent experiment without craton (d). Note that the narrowest
margin develops close to the craton since sequential faulting develops in this direction due to the asymmetric up-welling of the
fold-belt lithospheric mantle and asthenosphere.
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When the crustal and lithospheric geometry and rheology along the modelled section, are laterally con-

stant, the polarity of the asymmetry cannot be predicted a priori. Experiments with exactly the same

starting set-up and boundary conditions but a slightly different finite element grid result in opposite po-

larities (Fig. 2e and f). However, the presence of a craton near the incipient rift would produce a laterally

heterogenous lithosphere. Figures 2g-i show time steps of a numerical experiment used to exemplify how the

presence of a craton may trigger asymmetric margins, where the narrow margin develops near the craton

while the wide one is in the opposite side. This occurs because the shear zone at the lower crust that dips

towards the craton becomes dominant since the cratonic lithosphere is stronger than the fold belt one, hence

it localizes deformation more effectively and, as it strains, it is able to pull the asthenosphere initially located

beneath the fold belt upwards (Figs. 2g-i). In the contrary, the shear zone that dips towards the fold belt

is more diffuse, and as it deforms it cannot pull the underlying asthenosphere upwards, as the craton root

forms a barrier to asthenospheric flow in this direction.

To test that the craton determines the polarity of the asymmetry we ran experiments with laterally

homogeneous crustal and lithospheric structure (from here on called no-craton tests), and tests with a craton

and a fold belt (from here on called craton tests). As margin architecture is dependent on lower crustal

rheology (Kusznir and Park, 1987; Buck, 1991; Huismans and Beaumont, 2003; Buiter et al., 2008), we used

two different rheologies, the strong mafic granulite and the weaker wet anorthite (tests with an unlikely

rheology of wet quartzite are also presented in the Supp. Info.), and also two different crustal thicknesses,

35 and 40 km. We ran tests with initial weak seeds located at different distances from the craton (50, 100,

150 and 300 km), to analyse the impact of the distance from the rift to the craton on asymmetry formation

and polarity. Experiments are run 6 times with identical parameters for randomly differentiated meshes in

order to test for consistency of the results. Small variations in the mesh affect mainly to the polarity of the

asymmetry, but the length of the conjugated margins and their final architecture remain similar (Figs. 2e

and f). In Figure 3 we show the paired mode of conjugated margin lengths of these 6 experiments for

no-craton tests. For craton tests we show the paired mode and we used shading to show the spread of the

results.

In no-craton tests with 35 km thick crust the resulting margins, have very similar width, thus are

symmetric (Figs. 3a and b). In craton tests with 35 km thick crust, when the rift initializes at 50 and 100

km from the craton border (i.e. weak seed at 50 and 100 km), the margin located further from the craton

is wider than the one located close to the craton. For strong mafic granulite, which favours asymmetry

formation more strongly than weaker wet anorthite, the asymmetry is more marked. When the rift intitalizes

at 150 km or more from the craton, the craton does not exert any influence in the crustal deformation and

margins become symmetric again. Therefore, we conclude that the presence of a craton close enough to the

rift location, can trigger asymmetry in cases where no asymmetry is observed in the absence of a craton and

also determines the polarity of this asymmetry.

No-craton tests with 40 km crust result in asymmetric margins (Figs. 3c and d), but the polarity of

this asymmetry is random (as exemplified in Figs. 2e-f). As before, the asymmetry is more marked in the

mafic granulite than in the wet anorthite experiments. For craton tests and 40 km thick crust, the degree

of asymmetry is similar or slightly larger when the rift initializes at 50 and 100 km from the craton. At

these distances the craton determines margin polarity, with the narrow margin being always on the craton

side. For rifting initiation 150 km away from the craton for anorthite, and 300 km for mafic granulite, the
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Figure 3: Margin width vs distance to craton
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Figure 3: Margin width versus the distance between the initiation of rifting and the craton (50, 100, 150 and 300 km). Results
from experiments with cratons are plotted in solid lines. No-craton experiments (NC) results are plotted in discontinuous lines.
NC results of this experiments are plotted in terms of widest and narrowest margins independently of their polarity. Shaded
areas correspond to maximum variations on the margin width found with randomly-differentiated meshes. a,b, Margin widths
for different lower crustal rheologies and 35 km crustal thickness. d,e, Margin widths for different lower crustal rheologies
and 40 km crustal thickness. Note that the narrowest margin always develops near the craton when the rifting initiates close
enough to the craton. For results of wet quartzite see Supp. Info.
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polarity of the asymmetry becomes random, which implies that the craton does not influence polarity any

more.

In this work we find that polarity of the asymmetry is random when a laterally homogeneous initial set

up is chosen. We also conclude that 1) cratons will influence the polarity of the asymmetry, with the narrow

margin developing in the side of the craton and the wide margin in the opposite side, as observed in the

South Atlantic and also South of Australia, next to the Yilgarn craton, (see Supp. Info.), and 2) cratons

are capable of triggering asymmetric rifting even when lower crustal rheologies and crustal thickness are

not favourable for asymmetry in their absence (Fig. 3a and b). For these effects to occur initiation of the

deformation should take place close enough to the craton (≤100 km) so that the craton-dipping shear zone in

the mantle is forced to localize more deformation than the conjugate. Additionally, strong to intermediate

lower crustal rheologies are needed for coupling of crustal and mantle deformation so that asymmetric

extension can be sustained. We have shown that cratons influence margin architecture and polarities when

rifting initiates at distances ≤100 km, which coincide well with the observations in the South Atlantic and

also South of Australia, although margins are wider and degree of asymmetry is smaller than in the South

Atlantic example (see Supp. Info.). Cratons may also influence subduction geometry (Manea et al., 2012;

Pérez-Gussinyé et al., 2008). Some conjugate magma-rich margins developed near a craton, such as SE

Greenland, also showcase an asymmetric architecture. However, these margins show inverse polarity to

the one observed at magma-poor ones. At magma-rich margins the crust is asymmetrically accreted by

magmatic bodies, where larger volumes of magmatic bodies are observed near the craton (Hopper et al.,

2003). However, numerical models have not yet been able to reproduce this magmatic asymmetry (Nielsen

and Hopper, 2004). Further work is needed in our code, such as implementation of melting, depletion-

dependent viscosities and temperature- and depletion-dependent densities, before approaching the craton

influence in the development of volcanic margins.

Methods

Maps and distances along flowlines

In this study we relate asymmetry of conjugate margins and margin width with the distance from the

initiation of rifting to a craton. In order address this we have measured width of margins and distance from

cratons to the landward edge of the margin (LEM) for the South Atlantic and the Australian margin of the

Southern ocean.

In the case of the South Atlantic, we used a compilation of data made by Heine et al., 2013, based on

seismic, potential field and map data. From this data set we extracted: (a) the rigid crust data which stands

for areas of the crust that have not been deformed by the South Atlantic rifting, which edges we defined

as LEM, and (b) the landward limit of the oceanic crust (LaLOC). Sao Francisco and Congo craton maps

were obtained from Trompette, 1994. Cratonic domains in the maps include Paleoproterozoic rocks since

they typically present deep lithospheric roots similar to those of the Archean domains (Hoffman, 1990). We

measured width of the margins, from LaLOC to LEM, and distance to cratons, from LEM to the edge of

the cratons, along the flowlines of the South Atlantic kinematic paleoreconstruction model by Pérez-Dı́az

and Eagles, 2014 (Fig. 1a). We also measured margin width and distance to craton along flowlines of the
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Heine et al., 2013 paleoreconstruction with similar results (see Supp. Info.).

Numerical model

For the numerical experiments we developed a 2D finite element visco-elasto-plastic code based on MIL-

AMIN mechanical and temperature solvers (Dabrowski et al., 2008). It uses the Stokes equation with

incompressibility condition and the heat conservation equation to solve velocities, pressures and tempera-

tures at Crouzeix-Raviart triangular elements with quadratic shape functions enhanced by a cubic bubble

function and discontinues linear-interpolation pressure (Crouzeix and Raviart, 1973). Here, rock is treated

as a non-Newtonian fluid and, therefore, viscosity is non-linear. Stokes solution is then achieved by a

loop where viscosities are updated by using the previous iteration strain rate. Viscosity is calculated on

a parallel scheme which includes diffusion and dislocation creep, and plastic (by Drucker-Prager yielding)

terms. Elasticity is implemented following the Moresi et al., 2003 formulation. The boundary conditions

are half-extension velocities applied to the lateral boundaries of the model box with consequent up-welling

of the deep bottom boundary (400 km depth to avoid artefacts at the lithosphere). Dynamic topography is

generated by a free surface top boundary where we applied a free-surface stabilization algorithm (Andrés-

Mart́ınez et al., 2015; Kaus et al., 2010) so that topographies can be generated in a stable way for relatively

big time steps (10 Kyr).

Rheology and parametrizations

The numerical model domain is divided in four layers of different rheologies: (1) wet quartzite upper

crust (Gleason and Tullis, 1995), (2) lower crust for which we use strong mafic granulite (Wilks and Carter,

1990), intermediate strength wet anorthosite (Rybacki and Dresen, 2000), or weak wet quartzite lower crust

(Gleason and Tullis, 1995) (see Supp. Info. for wet quartzite results), (3) dry olivine lithospheric mantle

(Hirth and Kohlstedt, 2003), and (4) wet olivine asthenosphere (Hirth and Kohlstedt, 2003).

Strain weakening is implemented by: (a) linear reduction of the friction angle of the Druker-Prager yield

criterion dependent on the root of accumulated second strain invariant for windows from 0 to 1 strain,

and 30 to 15◦ friction angle, which simulates brittle weakening of faults, and (2) linear increase of the

pre-exponential factor in the creep flow laws (Hirth and Kohlstedt, 2003) for a strain window from 0 to 1,

in distinct ranges of factors varying from 1 to 15 and 1 to 30, which simulates olivine weakening by grain

reduction (Karato and Wu, 1993) and crystallographic preferred orientations (CPO) (Tommasi et al., 2009;

Hansen et al., 2012). This last type of strain-dependent weakening is referred here as viscous strain softening

(VSS). Note that the larger the pre-exponential factor range the more effective the VSS.

Weak seeds are needed in order to initialize deformation in numerical models. We chose to use 2D-

Gaussian temperature weak seed of 10×20 km size and +100 ◦C maximum temperature increment, which

allows the experiments to nucleate rifting in regions of interest with the advantage of vanishing after a

number of time steps by diffusion.

See Table 1 in Supp. Info. for a complete list of parameters.
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Simulation of a craton

Cratons are simulated in our model thermally and by their volatile content. The thermal boundary

condition used in our model is a constant temperature of 1350 ◦C below 125 km depth, which represents the

thermal lithosphere-asthenosphere boundary (LAB). Here, we approximate the asthenospheric temperature

to be constant since its geotherm is adiabatic due to convection. Cratons are simulated by placing the

thermal LAB at 200 km (Evans et al., 2011; Ritsema and van Heijst, 2000), so that the thermal gradient

at the craton is lower than the one of mobile belts. The same depths apply for the dry-wet olivine interface

(Fullea et al., 2011; Khoza et al., 2013). LAB transition between cratonic and mobile belt lithosphere occurs

at 80◦ (Ritsema and van Heijst, 2000). Craton crustal thicknesses observed in nature vary from 35 to 50 km

and in fold belt crusts from 40 to 55 km (Durrheim and Mooney, 1994; Niu and James, 2002; Ford et al.,

2010). Crust at cratons is inferred to be mostly felsic with the exception of areas affected by plumes, while

at mobile belts is found to be slightly more mafic (Nguuri et al., 2001; Kgaswane et al., 2009). For simplicity,

we choose to use same thickness of the crust and same crustal rheology for both cratons and mobile belts.

We vary crustal thicknesses in cratons and fold belts between 35 and 40 km

Numerical experiments

We run 150 experiments with cratons next to mobile belts where we systematically vary: (1) rheology

of the lower crust (mafic granulite, anorthite, and wet quartzite, results from wet quartzite shown in Supp.

Info.), (2) crustal thickness of 35 and 40 km, and (3) position of the weak seed respect to the craton (0, 50,

100, 150, 300 km) to initialize rifting at different distances from the craton and study its influence on the

asymmetry and polarity. We also run 30 experiments on laterally homogeneous mobile belt lithosphere alone

varying: (1) rheology of the lower crust, and (2) crustal thickness. This last experiments seek to understand

which combination of parameters would result in symmetric margins when a craton is not present, so that we

can study for which combination of parameters the presence of craton is determinant for the development of

conjugate margin asymmetry. Slightly different meshes can result in different solutions due to non-linearities

in the formulation, and will specially affect polarity of the asymmetry. All parameter combinations are run

over 6 different meshes in order to prove that cratons actually condition the polarity of the asymmetry. See

Experiments evolution in Supp. Info. for results with mafic granulite, anorthite and wet quartzite lower

crust and the experiments without craton.
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Supplementary Information

1 Maps, margin width and distance to cratons

1.1 South Atlantic conjugates

A figure on the South Atlantic conjugate margins equivalent to Fig. 1 in the article is presented here

as Fig. 1. The difference between Fig. 1 and the one in the article is that in the former the pole of

rotation used is the one suggested by Heine et al., 2013. Although margin widths and distance to

cratons are slightly different, the relationship between the polarity of the margin asymmetry and the

proximity to the craton remains constant, so that the narrowest margin of a pair occurs on the side

where a craton is closer to the landward edge of the margin.

1.2 Australia-Antarctica conjugates

Asymmetry can be observed as well in the Australian margin of the Southern ocean (Fig. 2). There,

Yilgarn and Gawler cratons expand west and east of Australia respectively, near the coast (Myers,

1995; Fitzsimons, 2003). In the conjugate Antarctic margin, Archean and Paleoproterozoic rocks as-

sociated to the Terre Adélie craton are observed at at the coasts of Terre Adélie and King George

V Land (Ménot et al., 2007; Fitzsimons, 2003). However, the extension of the Terre Adélie craton is

not well constrained since it is covered by the Antarctic ice cap. Therefore we choose to exclude the

Antarctic margin from this study. Two phases of rifting are observed in the South Australia-Antarctica

conjugates: a Jurassic phase (165-145 Ma) where rifting is broad, and a Cretaceous-Paleogene phase

(93.5-50 Ma) where rifting is narrow (Ball et al., 2013). Seismic sections and gravity data show little

deformation associated with the initial phase along sectors of the Gawler shelf (next to the Gawler

craton), while West of the Archean-Mesoproterozoic limit initial phase stretching is broad (Totterdell

et al., 2003; Ball et al., 2013). Different deformation sectors recognised at the Australian margin are

probably conditioned by prerift mechanical heterogeinities such as the Yilgarn and Gawler cratons

(Ball et al., 2013). Asymmetry of conjugated margins is mainly observed in the East and West sectors

(Stagg and Reading, 2007; Ball et al., 2013), while the central sector remains highly symmetric (Direen

et al., 2011, 2012). The western Australian margin is narrower (∼350 km) where the Yilgarn craton

is close to the coast while it widens towards the east (∼450 km) (Fig. 2b). Similarly, the margin

next to Gawler craton is narrower. However, in this sector the extension is oblique to the margin

and, therefore, we cannot address the mechanical influence of the craton in the rifting by using a 2D

approach.
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Figure 1: Width of South Atlantic conjugate margins, and distance from the edge of the
margin to the cratons using the rotation pole defined in Heine et al., 2013
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Figure 1: a, Map of the central sector of the South Atlantic conjugate margins using Heine et al.,
2013 reconstruction at 105 Myr. Dots represent flowlines which labels are distance in km to the
Central-Africa respect South-America rotation pole from 105 Myr to present. SFC—Sao Francisco
Craton, CC—Congo Craton, Cm—Camumu, ES—Espirito Santo, Cp—Campos, NS—North of Santos,
G—Gabon, K—Kwanza basins. Rigid crust (light grey) as crust not deformed by rifting and landward
limit of the oceanic crust (LaLOC) from Heine et al., 2013. Note that the further the craton to the
landward edge of the margin (LEM), the wider the margin. b, c, Margin width (red lines) and distance
from the craton to the LEM measured along flowlines Heine et al., 2013 model. The relationship
between polarity of the asymmetry and the distance from the craton to the LEM remains similar to
the one shown in the Fig. 1 in the article, even if the rotation poles used to calculate the distances
are different.
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Figure 2: Width of South Australian-Antarctic conjugate margins and distance from the
edge of the margin to the cratons.
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Figure 2: a, Map of the Australian-Antarctic margin conjugates reconstructed at 45 Myr by using
the White et al., 2013 model. YC—Yilgarn Craton, GC—Gawler Craton, MW—Mawson Craton,
TAC—Terre Adélie Craton, AFB—Albany-Fraser Belt and CB—Coompana Block. c, Width of the
Australian margin and distance from the LEM to the cratons. b Width of the Antarctic margin. Note
that next to Yilgarn craton the Australian margin is ∼100 km narrower than its Antarctic conjugate.
Eastward of the Yilgarn craton the conjugate pair becomes symmetric. Asymmetry occurs again closer
to the Gawler Craton, although we choose to not evaluate this area in our study since deformation
is not perpendicular to the opening direction and the lack of control on the cratonic presence at the
Antarctic side due to the ice sheet.
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2 Model parameters

Table 1: Model parameters. Rheological parameters from Rybacki and Dresen, 2000; Wilks and Carter,
1990; Hirth and Kohlstedt, 2003. Remaining parameters from Turcotte and Schubert, 2002. Diffusion
creep B is calculated using a grain size d of 6 mm. Wet olivine water fugacity fH2O is 500 MPa (in
COH ppm H/Si).

Rock/
mineral aggregate

Wet quartzite
(upper crust and
weak lower crust)

Wet anorthite
(intermedium
lower crust)

Mafic granulite
(strong
lower crust)

Dry olivine
(lithospheric
mantle)

Wet olivine
(asthenospheric
mantle)

Dislocation pre-exponential
factor log(B) [Pa−ns−1]

-28.0 -15.4 -21.05 -15.56 -15.05

Dislocation exponent n 4.0 3.0 4.2 3.5 3.5

Dislocation activation
energy E∗ [kJ mol−1]

223 356 445 530 480

Diffusion pre-exponential
factor log(B) [Pa s−1]

- - - -8.65 -8.66

Diffusion exponent n - - - 1 1

Diffusion activation
energy E∗ [kJ mol−1]

- - - 375 335

Shear modulus µ [GPa]
UC 36
LC 40

40 40 74 74

Thermal conductivity
k [W m−1 K−1]

UC 2.1
LC 2.5

2.5 2.5 3.3 3.3

Heat capacity
Cp [J Kg−1K−1]

1200 1200 1200 1200 1200

Radiogenic heat
production Hp [µWm−3]

UC 1.3
LC 0.2

0.2 0.2 0 0

Densities ρ [Kg m−3]
UC 2700
LC 2850

2850 2850 3300 3300

3 Wet quartzite lower crust results

For completeness, we chose to run equivalent experiments to those described in the main text for an

unlikely weak wet quartzite rheology for the lower crust. Figure 3 shows results for this model. In

the 35 km crust experiment we observe higher asymmetry, for both craton and no-craton tests, in

comparison with anorthite models (Fig. 3a). This is explained by a combination of asymmetric up-

welling of the mantle combined with crustal deformation related to a widely extended channel of low

viscosity developed at the base of the crust (see Sec. 4). This lower crustal channel develops due to the

extremely weak wet quartzite viscosity at the base of the crust, and acts as a detachment for crustal

faulting. However, this channel is laterally limited by the craton, where basal crustal temperatures are

slightly colder than the equivalent ones in the fold belt. Therefore, a larger number of faults rooting

in this low viscosity channel develop in the fold belt side enhancing asymmetry.

Experiments with wet quartzite lower crust and 40 km crustal thickness develop a larger and thicker

low viscosity channel than the equivalent ones with 35 km (see Sec. 4). This allows for complete decou-

pling of mantel and crustal deformation. Even if shear zones close to cratons localize deformation faster

at initial phases of rifting, their conjugates are forced to remain active to accommodate wide crustal
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Figure 3: Margin width vs distance to craton for wet quartzite lower crusts
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Figure 3: Margin width versus the distance between the initiation of rifting and the craton (50, 100,
150 and 300 km) for experiments run with wet quartzite lower crust. Results from experiments with
cratons are plotted in solid lines. No-craton experiments (NC) results are plotted in discontinuous lines.
NC results of this experiments are plotted in terms of widest and narrowest margins independently
of their polarity. Shaded areas correspond to maximum variations on the margin width found with
randomly-differentiated meshes. a, Margin widths for 35 km crustal thickness.b, Margin widths for
40 km crustal thickness. Note that the narrowest margin develops near the craton when the rifting
initiates close enough to the craton except in the case with 40 km crust. This is due to a decoupling
between mantle and crustal deformation aided by a wide channel of low viscosity developed at the
base of the crust.
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deformation, and eventually weaken enough to allow for symmetric up-welling of the asthenosphere.

In later phases of rifting (>20 Myr) a low viscosity pocket occurs and allows sequential faulting to take

over on wide extension and asymmetry develops. Consequently, polarity of the asymmetry is random

even for the tests with cratons, except for the experiment where rifting is initiated at 50 km from the

craton, where polarity of the asymmetry is opposite to the one for the rest of parameter combinations

(Fig. 3b). The polarity for this particular case is a consequence of the low viscosity channel not being

able to develop in the cratonic crust similarly to tests with 35 km crust. Here the difference is that

there is no deformation coupling between crust and mantle and, therefore, up-welling of the astheno-

sphere is symmetric while crustal thinning occurs asymmetrically and the rifting migrates away from

the craton.

Consequently we conclude that asymmetry does not depend exclusively on the presence of a craton

but also on the rheology of the lower crust. In order to have such a relationship between the polarity

of the margin asymmetry and distance to the craton, the lower crust needs to be strong enough to

allow coupling of mantle and crustal deformations.

4 Experiments evolution and final margin architectures

In this section we introduce figures of some of the most relevant models which margin widths and

distances to craton where used to produce Fig. 3 in the article. Colours represent square root second

invariant of the strain rate ε̇II .
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4.1 GRANULITE 35 KM CRUST (Fig. 4)

4.1.1 Symmetry with no craton

This type of model allows for a strong coupling of upper and lower crust in the brittle deformation

domain. Consequently, the result is large-offset faults and a very symmetric geometry with short

margins.

4.1.2 Craton test - weak seed at 50 km

This model results in a strong asymmetry although equivalent models without craton are symmetric.

The polarity of the asymmetry is such as that the narrow margin develops close to the craton and the

widest margin in the opposite side. Asymmetry is favoured since early stages of the model (see 4 Myr).

This is because the mantle shear zone closer to the craton is favoured due to the asymmetric up-welling

of the asthenosphere. Since the lower crust is very strong and deforms by creep only at depths near the

Moho, the asymmetric character of the deformation in the mantle is transmitted to the crust which

initially favours one fault among the two initial conjugates and finally induces a low viscosity pocket

in the lower crust by strain softening which is translated into sequential faulting (Brune et al., 2014).

4.1.3 Symmetric craton test - weak seed 300

When the craton is a distance of 300 km from the rift axis, its influence in the deformation of the

mantle is small and consequently the resulting conjugated margins are symmetric.
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Figure 4: Evolution and architectures of granulite lower crust (35 km thick)
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4.2 GRANULITE 40 KM CRUST (Fig. 5)

4.2.1 No craton with different polarities

The models presented have asymmetric conjugate margins. Although the lower crust is strong, it is 5

km thicker than models with 35 km. This allows the lower crust to accommodate larger deformations

and, as an effect of the non-linearity of the viscous strain softening, one of the two initial conjugate

faults will be favoured, resulting in subsequent asymmetry. The favouring of one initial fault over its

conjugate is triggered by natural-heterogeinity-scale errors associated with the spactial discretization.

Since meshes for tests are generated with small random variations, the polarity of the asymmetry

observed here is also random.

4.2.2 Craton test - weak seed at 50 km

Results are very similar to tests without craton in terms of asymmetry and length of the narrow and

wide margins. However, polarity of the asymmetry is always such as that the narrow margin develops

near the craton and the wide margin opposite to it. This is again due to an asymmetric up-welling

of the mantle triggered by the craton stiffness, which favours one lower crustal shear zone over its

conjugate.

This type of test with craton never reaches a 0 km crust (breakup) because the lower-crustal low-

viscosity pocket becomes too dominant in the presence of a craton. Tests without a craton account

for a weak shear zone in the upper mantle which partially accommodates the bending produced by

the deformation on the low viscosity pocket. When mantle and lower crust are cold enough (become

strong enough) the low-viscosity pocket looses control of the deformation, localization occurs faster

on the mantle shear zone and breakup is reached. Similar low-viscosity pocket and associated mantle

shear zone is observed in tests with craton (see 16 Myr), but the mantle shear zone will eventually

disappear allowing for the low-viscosity pocket to continue controlling deformation and breakup not

be reached. However, we found that geometries of the margins and their widths are very similar to the

ones observed in tests with no-craton when we consider the breakup to occur just before the mantle

shear zone disappears. This results typically in a crust with minimum thickness of 3 km, where we

assume the breakup is located.

4.2.3 Craton tests with different polarities - weak seed 300

When a craton is far enough from the rift axis, the polarity of the asymmetry becomes random as in

models with no craton.
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Figure 5: Evolution and architectures of granulite lower crust (40 km thick)
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4.3 ANORTHITE 35 KM CRUST (Fig. 6)

4.3.1 Symmetry with no craton

Like the granulite 35 km crust models, anorthite 35 km crust models result in symmetric margins due

to a strong crust which behaves mainly brittly.

4.3.2 Craton test - weak seed at 50 km

The presence of a craton near the rift axis seems to favour a slight asymmetry by the same mechanisms

observed in models with granulite 35 km crust. The reduction in asymmetry occurs due to the weaker

lower crusts which couple less effectively upper crustal deformation with lower crustal deformation,

and therefore, the lower-crustal low-viscosity pocket is not as dominant as tests with granulite lower

crust.

4.3.3 Symmetric craton test - weak seed 150

Models where rifting initiates 150 km away from the craton result in symmetric margins.
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Figure 6: Evolution and architectures of anorthite lower crust (35 km thick)
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4.4 ANORTHITE 40 KM CRUST (Fig. 7)

4.4.1 No craton with different polarities

In an initial phase wide extension occurs symmetrically along the model due to a smaller coupling of

the deformation in the upper crust and lower crust than in tests with granulite. Eventually, when the

crust becomes thin enough, strong coupling occurs and a pocket of low-viscosity is developed in the

lower crust that results in sequential faulting and asymmetry. Here, the asymmetry of the width of

the margins is small. However, there is a large asymmetry in the geometry of the lithosphere. This is

due to the fact that the thinned lithosphere developed during the first phase is attached to one of the

margins while the sequential faulting develops at the edge of this thinned lithosphere. Again, polarity

of the asymmetry is random in tests without a craton.

4.4.2 Craton test - weak seed at 50 km

Asymmetry in tests with cratons is similar to the one shown in tests without a craton. However, the

polarity of the asymmetry is always such as that the narrow margin develops near the craton and the

wide margin opposite to it. This occurs because the low-viscosity pocket that appears in the second

phase of extension is favoured by an asymmetric up-welling of the mantle (see 5 and 10 Myr).

4.4.3 Craton tests with different polarities - weak seed 150

When rifting develops far away from the influence of the craton the polarity of the asymmetry becomes

random as in tests with no craton.
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Figure 7: Evolution and architectures of anorthite lower crust (40 km thick)
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4.5 QUARTZITE 35 KM CRUST (Fig. 8)

4.5.1 No craton with different polarities

Very little asymmetry is observed in these models. This is due to a very weak lower crust with creep

behaviour. Consequently, extension spans along a broad area not allowing for any shear zone in the

lower crust to dominate.

4.5.2 Craton test - weak seed at 50 km

Slight asymmetry is observed in tests with cratons. In these tests this is not due to an asymmetric

up-welling of the mantle. In this case lower temperatures of the lower crust at the craton limit the

development of a low-viscosity channel, while a low viscosity channel extends far away from the rift

axis inside the fold belt (see 8, 12, 16, 19 Myr). This allows for faults to root further away from the

rift axis in the fold belt side which increases the margin width.

4.5.3 Craton tests with different polarities - weak seed 150

When rifting takes place far away from the craton the polarity of the asymmetry becomes random.
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Figure 8: Evolution and architectures of quartzite lower crust (35 km thick)
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4.6 QUARTZITE 40 KM CRUST (Fig. 9)

4.6.1 No craton with different polarities

Strong asymmetry is observed in this models. In an initial phase the extension is wide and symmetric.

Eventually, a fault is favoured and one of the branches of the channel of low viscosity develops into a

smaller low viscosity pocket which dominates deformation until breakup.

4.6.2 Craton test - weak seed at 50 km

In tests with cratons the larger branch of the low viscosity channel developed under the fold belt allows

for decoupling between mantle and crustal deformation (see 12 and 24 Myr). As a consequence a lot

of strain is accommodated by this branch which results in a large viscosity pocket dipping towards

the fold belt which dominates deformation until breakup. This results in a polarity of the asymmetry

opposite to what we observed in the previous models, thus the widest margin developed in the craton

side and the shortest opposite to it. Note that in this case the mantle and crustal deformations are

completely decoupled so that the factor responsible for rift migration is the contrast in crustal strength

at the border of the craton, and not the asymmetric mantle flow.

4.6.3 Craton tests with different polarities - weak seed 150

Different geometries and polarities of the asymmetry are observed in tests where the craton is far away

from the rift axis.
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Abstract

The inner dynamics of the Earth such as mantle convection, geochemical reactions and isostasy have been

typically interpreted as the main engine of plate tectonics and crustal deformation. However, nowadays it

is well established that processes transporting material along the surface of the Earth influence the inner

dynamics. Surface processes play a key role particularly during rifting, where great subsidence rates occur

at synrift basins while shoulder uplift provides rock to be eroded for later infilling of these basins. Erosion

implies unloading of the crust which favours uplift, and sedimentation at basins results in loading which

favours subsidence. Consequently, erosion and sedimentation amplify stresses and the flexural response of

the lithosphere in situations with extensive faulting. These changes to the stress field may be large enough to

result in changes in the evolution of rifting and its modes of extension. Additionally, higher subsidence rates

and thermal blanketing due to sediments may result in higher geotherms and consequently, a weaker/more-

viscous behaviour of the crustal rocks. This would also have a large impact on the deformation style during

extension. Here, we explore the interactions between surface processes and tectonics using numerical mod-

elling. Experiments are run with the absence of sediment transport and with different sediment transport

regimes for 35 and 40 km crustal thicknesses. Tests with higher transport coefficient show more effective

localization of deformation into upper crustal faults which results in effective crustal thinning, larger blocks

and longer-lived faults. Our experiments also prove that more effective surface processes reduce the length

of margins generated by sequential faulting. For our end member situations, high sedimentation rates lead

to pure shear extension of the crust induced by high temperatures, which finally results in broad extension

and symmetric margins. Furthermore, our model allows for the recovery of predicted sediment stratigraphic

patterns. Major unconformities that separate synrift from sag-basin-type sediments are observed in these

pseudo-strata patterns. Here, we also address the meaning of these major unconformities and their relation-

ship to the time of breakup.
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∗Principal corresponding author
∗∗Corresponding authors

Email addresses: m.andres-martinez.2011@live.rhul.ac.uk (Miguel Andrés-Mart́ınez),
marta.perez-gussinye@rhul.ac.uk (Marta Pérez-Gussinyé), (John Armitage), jason.morgan@rhul.ac.uk (Jason Phipps
Morgan)

May 12, 2016

Chapter 5. Sediment transport impacts in margin geometry and unconformities 90



1. Introduction

Rifting is an extraordinarily complex system in which many processes and interplays take place. These

processes range from erosion and sedimentation at the surface, to deeper processes such as faulting, flexure

due to loading/unloading, lithospheric and crustal thinning, mineral phase changes, convection, mantle

exhumation and melting.

Nowadays it is widely accepted that surface processes can have an effect on both shallow and deeper

Earth dynamics. For example, numerical models that allow for dynamic topography solve a sinking slab

problem better than models with free-slip top surface (Kaus et al., 2010). It has also been observed that

shoulder uplift in passive margins can persist more than 50 Myr after breakup which has been explained by

the tradeoffs between flexural bending, unloading at the shoulder due to erosion and loading at the marginal

basins due to sedimentation (Weissel and Karner, 1989; Redfield and Osmundsen, 2012). During rifting an

input of sediments from farfield sources have proven to favour narrow rifting (Bialas and Buck, 2009), and

also to control the mode transition from asymmetric basins to symmetric due to loading of the hanging

wall (Buiter et al., 2008). Additionally, Clift et al., 2015 proved that an increase of sediment influx related

to a climate change during postrift is capable of inducing ductile lower crustal flow and consequent larger

subsidence rates than expected from thermal subsidence.

Examples in nature seem to support such interplays between surface processes and tectonics. Here, we

compare the West Iberian Margin (WIM) with the Great Australian Bight (GAB), both of them represen-

tative of ultra-slow magma-poor margins, although they differ in the amount of synrift deposition.

The WIM shows little synrift sediment infilling (Boillot et al., 1988). The crystalline crust is overlain by

a succession of sandstones, conglomerates and Thitonian carbonates of possible prerift origin, and a synrift

succession of at least 1 km thickness at half-graben depocenters and an estimated maximum of 2 km by

seismic imaging of line IAM11 (Fig. 1a). Seismic sections also show a large number of crustal blocks limited

by faults that thin the crust smoothly by sequential faulting (Ranero and Pérez-Gussinyé, 2010). Although

these faults account for great offsets little sediment infilling is observed.

The GAB exhibits thicker synrift sediments which together with postrift exceed 15 km thickness at the

depocenter of Ceduna basin (Stagg et al., 1990). Synrift sediments date from Late Jurassic-Early Cretaceous

and are deposited at half-grabens which bounding faults dip southwards (Totterdell et al., 2000). Based

on seismic imaging (line AGS0199 0900) maximum 5 km thickness of synrift sediments are estimated to

be deposited at a major depocenter (Fig. 1b). This major depocenter is found along the GAB bounded

by large offset faults such as the Wallaroo Fault System (Talwani et al., 1979; Falvey and Mutter, 1981;

Totterdell et al., 2000). Abrupt necking of the crust is inferred from sonobuoy data in the vicinity of these

faults (Talwani et al., 1979; Direen et al., 2012).

The observations at the WIM and GAB suggest that sediment loading influences the crustal architecture

at margins. Margins with larger sediment loads such as the GAB have major faults due to higher stresses

resulting in abrupt thinning of the crust. Margins with little sediment loads contain a larger number of

faults leading to a smooth thinning of the crust.

2
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Figure 1: Depth-migrated profiles of West Iberia and South Australia non-volcanic passive margins. a) West Iberian Margin
seismic section, line IAM11 modified from (Ranero and Pérez-Gussinyé, 2010). Synrift sediments do not exceed the 2 km
thickness at the largest depocenter. Crust is smoothly thinned by the presence of numerous faults. b) Great Bight Basin
seismic section, line AGS0199 0900 (Pérez-Gussinyé et al., in prep.). Profile includes Eyre and Ceduna sub-basins. Note that
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On the other hand, regional scale unconformities are observed and commonly associated with breakup

(Falvey, 1974). The breakup unconformity is typically explained as a result of thermal relaxation of up-

welled asthenosphere with the consequent increase on mantle density which allows for regional subsidence

after synrift faulting. However, other different processes could likewise result in the erosion of synrift

sediments and later broad subsidence required for the formation of the breakup unconformities, such as:

phase changes in lower crustal or mantle lithospheric rocks (Podladchikov et al., 1994; Armitage and Allen,

2010), necking of the lithosphere with consequent flexural relaxation (uplifting of basins and overdeeping in

the flanks) (Braun and Beaumont, 1989), and erosion during the final uplift phase associated with a last

pulse of mantle upwelling with later subsidence (Falvey, 1974). Furthermore, the tectonic meaning of the

breakup unconformities remains controversial. Postrift sequences onlapping synrift observed in some sectors

of proximal margins turn into synrift-like geometries in distal sectors (i.e. at the Great Australian Bight)

(Gillard et al., 2015). This is interpreted to be the result of rift migration and polyphase rifting. This

interpretation invalidates concepts such as a time-synchronous ‘breakup unconformity’, and prerift, synrift

and postrift as time-synchronous terms (Ranero and Pérez-Gussinyé, 2010; Pérez-Gussinyé, 2013; Gillard

et al., 2015).

This work will therefore address two main questions relating to surface processes and tectonics: 1) do

surface processes have an important impact on passive margin architecture and how does loading/unloading

affect faults, temperature field and crustal rheology, and 2) what are the possible tectonic settings that lead

to ‘breakup-like’ unconformities and do they actually coincide in time with breakup.

In order to approach both the effect of surface processes on the development of margin architecture and

the tectonic meaning of breakup unconformities we have developed a new 2D visco-elasto-plastic geodynamic

model based on MILAMIN mechanical and thermal solvers (Dabrowski et al., 2008). This code simulates

dynamic topography by using a stress-free surface, and accounts for strain softening, shear heating and

surface processes. Erosion and sedimentation are modelled as a function of sediment transport. Lines in

the sediments of same depositional age are tracked along the model so that stratigraphy and unconformities

can be recovered from the model.

2. Methodology

2.1. Tectonic model

Here, we model a 2D section of the continental lithosphere and upper asthenosphere using numerical

codes. This 2D volume of virtual rock is divided in three layers of different properties: 1) upper crust (UC),

2) lower crust (LC), and 3) mantle. Mantle is subsequently divided by a 35 km transition into lithospheric

dry mantle and asthenospheric wet mantle, where rheologies are calculated based on depletion values and

tracked with the material flow along time. Then, the model domain is subjected to half-extension velocities

on the sides to simulate far-field stretching. In order to solve deformation due to extension, temperatures

and pressures inside the section we use a visco-elasto-plastic finite element code based on MILAMIN solvers

(Dabrowski et al., 2008).

We solve Stokes equation for the incompressible viscous flow and elasticity written in terms of velocities

4
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(Moresi et al., 2003; Kaus, 2010), to calculate velocities, stresses and strains due to the given extension:

∂

∂xi

[
ηeff

(
4

3

∂vi
∂xi
− 2

3

∂vj
∂xj

)]
+

∂

∂xj

[
ηeff

(
∂vi
∂xj

+
∂vj
∂xi

)]
− ∂P

∂xi
= −ρgi − χvep

∂τoldJii

∂xi
− χvep

∂τoldJij

∂xj
, (1)

where ηeff is the effective viscosity, v is the velocity vector, x represents the axis of the coordinate

system, P is the pressure, ρ density, g is the gravity vector, τoldJ are the Jaumann-rotated previous time

step stresses and χvep is the elastic factor defined as:

χvep =
ηeff
µ∆t

, (2)

where µ is the elastic shear modulus. In order to introduce incompressibility we couple the barometric

equation of the state into the system:

5 · v +
P

κ
= 0, (3)

where κ is equivalent to the bulk modulus and is chosen to be a large value (106 ×max(ηeff )) to be used

as a penalty factor for the pressure formulation (Hughes, 2000).

Temperatures are solved by the heat conservation equation:

ρCp
DT

Dt
= k

∂T

∂xi
+H, (4)

where Cp is the heat capacity, T is temperature, t is time, k the thermal conductivity and H is the volumetric

heat production composed by radioactive and shear heating components.

The effective viscosity ηeff is calculated by following the scheme described in Moresi et al., 2003, so that

our formulation accounts for diffusion and dislocation creeps (Hirth and Kohlstedt, 2003), elasticity and

plasticity:

ηeff =
1

1
ηc

+ 1
∆tµ + G

τII

, (5)

where ∆t is the given time step, G is the plastic flow potential, τII is the square root of the second invariant

of the deviatoric stress and ηc is the creep viscosity such as:

ηc =
1

1
ηdis

+ 1
ηdif

. (6)

In Eq. 6, dislocation ηdis and diffusion ηdif creep viscosities are defined by the flow rule:

ηdis/dif = FB− 1
n ε̇

1−n
n

II exp

(
E∗

nRT

)
, (7)

which parameters for both mechanisms and rocks are shown in table 1.

After the discretization of the spatial domain we use the finite element method to numerically solve

Eqs. 1, 3 and 4. Here, we use a high resolution triangular grid (1 km UC, 5 km LC and mantle) tracked

along with the material (Lagrangian mesh). When high deformations take place in a Lagrangian mesh

(i.e. in shear zones), this may result in extremely non-equilateral triangles, in which case the finite element

method may not return an accurate solution for the system. In order to avoid this issue a remesh with a

5
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Table 1: Model parameters. Rheological parameters from Wilks and Carter, 1990; Gleason and Tullis, 1995; Hirth and
Kohlstedt, 2003. Remaining parameters from Turcotte and Schubert, 2002. Diffusion creep B is calculated using a grain size
d of 6 mm. Wet olivine water fugacity fH2O is 500 MPa (in COH ppm H/Si).

Rock/
mineral aggregate

Wet quartzite
(upper crust)

Mafic granulite
(strong
lower crust)

Dry olivine
(lithospheric
mantle)

Wet olivine
(asthenospheric
mantle)

Dislocation pre-exponential
factor log(B) [Pa−n s−1]

-28.0 -21.05 -15.56 -15.05

Dislocation exponent n 4.0 4.2 3.5 3.5

Dislocation activation
energy E∗ [kJ mol−1]

223 445 530 480

Diffusion pre-exponential
factor log(B) [Pa s−1]

- - -8.65 -8.66

Diffusion exponent n - - 1 1

Diffusion activation
energy E∗ [kJ mol−1]

- - 375 335

Shear modulus µ [GPa] 36 40 74 74

Thermal conductivity
k [W m−1 K−1]

2.1 2.5 3.3 3.3

Heat capacity
Cp [J kg−1 K−1]

1200 1200 1200 1200

Radiogenic heat
production Hp [µ W m−3]

1.3 0.2 0 0

Densities ρ [kg m−3] 2700 2850 3300 3300

subsequent variable resampling takes place when extremely distorted triangles appear.

Additionally, the model includes a stress-free surface at the top of the model with a free-surface sta-

bilization algorithm (Andrés-Mart́ınez et al., 2015) in order to accurately model dynamic topography and

to avoid instabilities typically associated with free surfaces. The model also accounts for strain weakening

where previously deformed materials are weaker than non-deformed materials. This allows for the simu-

lation of faults and shear zones because deformation will localize into weakened bands which will become

increasingly weaker and narrow. Strain weakening is justified for the plastic behaviour of rocks due to a

cohesion loss when yielding criteria is met. This loss in cohesion is associated with fault planes since they

represent a discontinuity to the rock’s integrity. Fluids penetrate faults from the surface, increasing the fluid

pressure, decreasing the friction angle and also inducing mineral transformations, which together are used

to justify the friction angle softening (Bos and Spiers, 2002; Handy and Stünitz, 2002). Here, we choose to

use friction angle softening alone, because cohesion contributes only a small amount to the yield stress in

comparison with the friction coefficient which is multiplied by the pressure. Softening is applied as a linear

function of the historic strain invariant (Huismans and Beaumont, 2007), so that for no deformation the

friction angle is 30◦ and for historic strains ≥1 the friction angle is 15◦. Furthermore, we include viscous

weakening by linear increasing of the pre-exponential factor of the dislocation creep law B (Eq. 7), which

accounts for weakening due to grain size reduction by dislocation mechanism and crystallographic preferred

orientations (Karato and Wu, 1993; Hansen et al., 2012). The viscous strain weakening rule is such that the

pre-exponential factor remains the same for no deformation and it linearly varies with deformation up to 30

times larger than the original value when the historic (or accumulated) strain is ≥1.

Together, free surface and strain weakening allow for the developing of faults and associated relief,

6
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subsidence and elastic response of the topography to the tectonic and geomorphological loading and unload-

ing. Consequently, accommodation space for sedimentation and positive topographies for erosion are made

available, which is critical for this study.

Additional rules included in our model are shear heating, and density dependency on temperature and

the degree of depletion in the mantle. The degree of depletion is defined by an initial profile tracked with the

material along time. The initial depletion profile has values of 0 for depths below 160 km, from 160 to 60 km

depletion varies linearly towards 0.1 values, and above 60 km depletion remains constant at 0.1. Lithospheric

mantle and asthenosphere are mechanically differentiated by dry and wet olivine rheologies respectively

(table 1). We use wet olivine rheologies where the depletion is 0, and dry olivine where the depletion is

above 0.04 (above 125 km depth in initial profiles) (Morgan et al., 1995; Morgan, 1997; Hirth and Kohlstedt,

2003). These rheologic parameters linearly vary with the depletion profile in the lithosphere-asthenosphere

transition, where dry olivine contribution increases with increasing depletion and wet olivine contribution

increases with decreasing depletion. For simplicity, melting and depletion dependency on melting are not

implemented, which we consider a valid assumption in this context of ultra-slow magma-starved rifting.

Half-extension velocities of 5 mm/yr (ultra-slow) are applied as lateral boundary conditions for the model

while subsequent half extension rates are applied at the bottom boundary (upwelling of the asthenosphere

by pure shear approach) for the mechanical problem. In order to avoid strong influence of the boundary

conditions in the deformation styles we use a relatively large modelling domain (500×400 km). Additionally,

we impose a weak seed at the middle of the domain to nucleate rifting far from the boundaries so that we

avoid boundary-related artefacts in the deformation. The weak seed is a 10×20 km region with the center

located at 30 km depth and where temperature is increased at the initial time step by 100◦C following a 2D

Gaussian function. This increase of temperature makes viscosity smaller in that region. Once the model is

started the seed is allowed to thermally relax so that it only helps for the nucleation of rifting but does not

contribute to later phases.

Thermal boundary conditions are 0◦C at the surface (including sediment surface), and 1350◦C below

125 km where heat transport is assumed to occur adiabatically by convection.

2.2. Geomorphologic model

Topographic variations can be due to both tectonic deformation and the downslope transport of rocks

along the surface towards areas of lower relief. For transport to happen, basement rocks need to loose

cohesion by transforming into sediment through erosion and weathering. Therefore, to model sediment

transport it is necessary to define how material from the basement is transferred by erosion or weathering

to the sediment/regolith mobile layer. One possible assumption is to consider a constant sediment thickness

so that the sediment production (i.e. erosion) dominates landscape evolution. This type of assumption is

known as detachment-limited model (Kirkby, 1971; Carson and Kirkby, 1972; Howard, 1994; Dietrich et al.,

2003). As the sediment production can be defined as a function of the slope, steep slopes will be eroded

faster than low ones, which leads to landscapes similar to the river profiles, with steeper slopes towards the

drainage divides. However, this model does not allow for sedimentation. A second possibility is to assume

that there is always availability of sediment/regolith at the surface of the model and consequently, that the

sediment transport dominates landscape evolution. Then, we can define a diffusion-concentrative equation

7

Chapter 5. Sediment transport impacts in margin geometry and unconformities 96



for sediment transport in 1D such as:
Dh

Dt
= U − ∂qs

∂x
, (8)

where h is the topography, t is time, U is uplift, qs represents the sediment flux and x the horizontal coordi-

nate (Culling, 1960; Smith and Bretherton, 1972). This implies that the temporal topographic variation for

an element depends only in the uplift and in the difference between the sediment flux into the element and

the out flux and, consequently, that the landscape evolution is a function of the sediment transport spatial

variation. This approach is known as the transport-limited model (Kirkby, 1971; Carson and Kirkby, 1972;

Howard, 1994; Dietrich et al., 2003). Here we choose this approach for our landscape evolution model since

it allows for sedimentation to occur.

It is possible to define the sediment transport flux qs in terms of water flux qw such as:

qs = −(K + kqnw)
∂z

∂x
, (9)

where K is the slope diffusivity, k is the transport coefficient, and n ≥ 1 is the power law that defines

the type of relationship between the sediment transport and the water flux (Smith and Bretherton, 1972;

Simpson and Schlunegger, 2003). Therefore, our model accounts for hillslope diffusion processes where the

topography will tend to a dispersive diffusion (Culling, 1960) and fluvial transport processes which result on

concentrative diffusion due to water run off (Graf, 1984). For simplicity in the solution we choose a linear

relationship between sediment transport and water flux (n = 1). The water flux can be related to the water

discharge/effective rainfall α such as:
∂

∂x
(nqw) = −α, (10)

where n is an unit vector directed down the surface gradient (Smith and Bretherton, 1972). By assuming a

constant α and integrating Eq. 10 over the surface in the downstream direction, then we obtain:

qw = αxd, (11)

where xd is the downstream distance from the drainage divide. By substituting Eqs. 9 and 11 into 8 we

obtain the 1D sediment mass conservation equation for combined hillslope and discharge-dependent fluvial

transport:
Dh

Dt
= U +

∂

∂x

(
(K + kαxd)

∂h

∂x

)
, (12)

where downstream distance xd is calculated at each time step as the distance from the topographic highs to

the valley floors. Because qw is dependent to the length of the drainage, the model mimics 1D landscapes

similar to river profiles when the fluvial processes are dominant.

Note that Eq. 8 is defined in an Eulerian frame of reference. However, our model works under a La-

grangian frame. In order to transfer this equation into a Lagrangian frame of reference it is necessary to

consider the definition of the material time derivative (Malvern, 1969):

Dh

Dt
=
∂h

∂t
+ v · ∇h, (13)

where Dh
Dt is the material time derivative, ∂h

∂t is the variation of the topography along time for a given
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particle, v is the velocity and ∇h is the gradient of the topography which in 1D is equivalent to ∂h
∂x . Then

we can obtain ∂h
∂t in 1D for a given particle (Lagrangian frame) such as:

∂h

∂t
= U − ∂qs

∂x
− vx

∂h

∂x
. (14)

Here, the tectonic uplift U works like a source term. However, in our model surface processes are run

over a static topography, which is obtained from the Stokes solution at the last time step (see section 2.3).

Therefore, the uplift source term is not needed (U = 0). In our model the product of topographic slopes

and velocities is relatively small in comparison with ∂qs
∂x . This allows us to neglect the term vx

∂h
∂x which is

convenient for simplicity. Then, the change in topography with time in our Lagrangian mesh can be defined

as:
∂h

∂t
= −∂qs

∂x
. (15)

Substituting the sediment flux qs as done in Eq. 12 one obtains the transport equation that we use in our

model:
∂h

∂t
=

∂

∂x

(
(K + kαxd)

∂h

∂x

)
. (16)

Table 2 shows the parameters used in Eq. 16 for the numerical experiments done in this study.

Table 2: Sediment transport parameters

Values Reference
Surface processes
time step δts [Kyr]

1

Hill-slope diffusion
K [m2 yr−1]

1
Flemings and Jordan, 1989,
Martin and Church, 1997,
Armitage et al., 2015

Discharge transport
coefficient k

Low transport
10−3

Intermedium transport
10−2

High transport
1

Paola et al., 1992; Marr et al., 2000,
Armitage et al., 2014

Precipitation rate
α [m yr−1]

1 Huffman et al., 2009

2.3. Coupling of tectonics and surface processes

Coupling between inner Earth dynamics and landscape evolution is done by first solving the tectonic

model defined by Eqs. 1 and 4 for a time step δt, then advecting topography for δt with the solved velocities

and finally solving for sediment transport (Eq. 16). This approach implies that sediment transport during

δt occurs over a tectonically static topography previously calculated for the current time step. Therefore,

this approach neglects the feedbacks between the load redistribution caused by the landscape model and the

tectonic model during a given time step. This approach is valid because the wavelength and amplitude of

the topographic changes due to sediment transport are sufficiently small that their relaxation time is large

compared with the size of the flow solver time step δt (10 Kyr).

For stability reasons, we choose to run the sediment transport model for a number of smaller time steps

δts (1 Kyr) which in total sum the tectonic time step δt. Once the new topography is calculated from the
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sediment transport function, y-coordinates of the top nodes of the triangular grid are updated.

Variables for nodes and integration points of surface elements are resampled every time step after the

topography update. In the case nodes or integration points are located out of the old mesh due to sedimen-

tation (Fig. 2), then their temperature is set to be the top boundary condition value (0◦C), historic strain

and rotated stress values are set to 0, and viscosity and strain rate are set to be the average of the closest

element in order to ensure model stability. Temperature boundary conditions remain at the top boundary

independently of the nature of the exposed rock (basement or sediment).

Distance [Km]
36 38 40 42 44 46

D
ep

th
 [K

m
]

-7

-6.5

-6

-5.5

-5

-4.5

-4
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Basment
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1 2

Figure 2: Topography after surface processes. Black triangles and dots represent surface elements and nodes of the old mesh
before erosion/sedimentation. Red triangles and dots represent elements and nodes of the new mesh after erosion/sedimentation
function is applied. In 1 and 2 erosion is large enough for the update of the topography to result in bad elements (non-Delaunay
triangles). In this case a remesh is necessary. However, this example represents a extreme case, while in our models most of
the time steeps need no remeshing since nor the erosion or the sedimentation make such large changes in the surface elements.

Additionally, we use tracers to follow previous time-step topographies (PTST) throught the time. Here,

we choose to track PTSTs separated by a time lapse of 100 Kyr, since following every time step PTST

(10 Kyr) is computationally very expensive. PTST are equivalent to time-lines in the sediments, meaning

surfaces inside the sediments of syncronous depositional time. Once the model run finishes, we use a

post-processing script to evaluate where erosion has occured in every PTST, so that we can plot sediment

time-lines.

In summary, the scheme used here for coupling landscape evolution model and tectonics for a given time

step δt is as follows:

1. Run the flow and thermal solvers (tectonic model) (Eqs. 1, 3 and 4) for δt, and obtain velocities,

pressures and temperatures

2. Advect nodes with calculated velocities generating a new ‘tectonic topography’

3. Advect previous time-step topographies (PTST), equivalent to sediment time-lines

4. Run the landscape evolution model for the new ‘tectonic topography’ for i number of δts time steps,

where δts = δt/i

5. Update model topography with the final ‘landscape-model topography’

6. Resample variables for updated elements
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This scheme for coupling tectonics and landscape evolution is equivalent to the one used in Collignon et al.,

2014.

Ideally, sediments should have different mechanical properties than the ones of the basement. However,

this would imply that in our model we should include an extra high-resolution discontinuous layer to represent

sediments. The resolution of this extra layer should be sufficiently high to have Delaunay triangles even if the

sediment layer is as thin as a few meters (which is the case at the initial steps of the model). These extremely

high resolutions are to be avoided because of the high computation time spent in Stokes solution. Some

strategies to reduce the number of small elements could be used, such as to only generate an independent

sediment layer when the sediment thickness is on the scale of the resolution set for the crust (1 km).

However, for simplicity, we assume that the sediment mechanical properties are the same as the upper

crust (wet quartzite, table 1) and we include sediments into the upper crustal layer. This assumption is

valid for shallow to intermediate depth sediments that deform in the elasto-plastic or brittle regime since

the apparent viscosity is controlled by the yield criterion and not by the flow law parameters. However,

deeper sediments at temperatures between 200-400◦C are expected to deform by grain boundary diffusion

creep driven by pressure solution (Rutter and Elliott, 1976; McClay, 1977). This deformation mechanism

would result in larger strain rates for smaller stresses and therefore, lower apparent viscosities (Rutter and

Elliott, 1976).

Lower effective viscosities of the sediments may change deformation inside sediments probably allowing

for more distributed deformation at the sediment layer and detachment levels where viscosities are low.

However, it is out of the scope of this manuscript to accurately model sediment deformation during diagenesis.

Instead, we focus on basement deformation affected by sediment loads and thermal blanketing. Therefore,

considering the difficulties previously mentioned, we choose to model sediments including them in the same

layer as the upper crust and using the same flow parameters (wet quartzite).

3. Results

3.1. Tests without surface processes

First we display the results of models without surface processes to illustrate the general behaviour of

the model and because they also serve as an end member case for this study. The evolution of two tests is

shown in Fig. 3 where the initial crustal thickness is 35 and 40 km and where the lower crust is modelled

with a mafic granulite rheology (Wilks and Carter, 1990).

At rifting initiation two main initial faults or shear zones nucleate at the weak seed, near the Moho, in

both the 35 and 40 km crust models (Figs. 3a and f). While upper crust shear zones dip inwards in both

models the behaviour of the lower crust is different. In the 35 km crust model the lower crustal shear zones

dip inward, while in the 40 km crust model shear zones dip outward. This is related to the distance between

the weak seed and the low-viscosity channel at the base of the crust (see the isoviscosity line at Figs. 3a

and f). Minor upper crustal faults are also generated in the surrounding areas of the main shear zones.

These minor faults root on a slightly smaller viscosity layer present at the base of the upper crust. The

crustal block between the two conjugate main shear zones is subjected to strong subsidence which results in

a graben geometry.

At 3 Myr the mode of extension changes from two symmetric dominant conjugated shear zones to multiple

upper crustal faults that develop outwards of the initial main shear zones (Figs. 3b and g). These faults
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present symmetric dips with respect to the center of the model. The hanging crustal block located between

the two groups of upper crustal faults of opposite dips starts to fault in the center due to high bending

stresses. The upper crustal faults root on a detachment level at the base of the upper crust. These faults

accommodate extension produced by the former main symmetric shear zones that are the main extensional

feature in the lower crust. Now both shear zones at the lower crust dip outwards of the model, separating

the two lower-crustal hanging walls from the mantle wedge below the extended upper crustal block. In both

the 35 and 40 km crust models, the lower crustal shear zones have greatly thinned the lower crust in the

region of localized deformation. Note that central lower crustal thickness is very similar in both 35 and 40

km crust models at 3 Myr, although the 40 km model has initially 5 km extra of lower crust to thin. This

occurs because deeper lower crust implies higher temperatures and consequently a weaker rheology, which

allows for accommodation of larger deformations in proportionally narrower regions.

After 5 Myr the outer-graben groups of faults are abandoned in favor of the faults that nucleated in the

hanging wall of the graben (Figs. 3c and h). This occurs mainly because the hanging wall has been highly

stressed by bending associated with the bounding graben faults. In the case of 35 km crust, the lower crust

has been removed completely from the center of the rift, the lower crustal shear zones are very attenuated,

and upper crustal faulting is strongly coupled with extension in the upper mantle (Fig. 3c). In the case of

the 40 km crust the extension of the upper crust couples with the outward-dipping shear zones of the lower

crust, which start to deflect upper mantle deformation into two extensional domains (Fig. 3h). This occurs

because the initially weaker lower crust near the Moho has undergone larger deformations and consequently

has suffered further weakening. The strong weakening present at these shear zones stops the deformation

from migrating to the center of the model and conditions the extension of the upper mantle to locate at two

different extensional regions at the base of the lower crustal shear zones near the Moho.

Symmetric deformation continues at the center of the model for the 35 km crust test until crustal breakup

occurs at 9 Myr (Figs. 3d and e). In this case, rifting resulted in two symmetric conjugate margins.

In the 40 km crust model, after 5 Myr, one of the two crustal shear zones are favoured due to the non-

linear nature of strain weakening coupled with small random numerical errors, breaking the symmetry of

the system. At 7 Myr the favoured shear zone becomes dominant coupling mantle and crustal deformation.

This leads to asymmetric up-welling of the mantle and heating with consequent weakening at the tip of the

active fault. Hence, the next fault will form in the hanging wall of the currently active fault because it is

nearest to the weakened region. This process repeats itself leading to sequential faulting and the formation

of asymmetric margins (Ranero and Pérez-Gussinyé, 2010; Pérez-Gussinyé, 2013; Brune et al., 2014).

In conclusion, the difference in margin geometry and symmetry/asymmetry among the 35 and the 40

km crust models in absence of surface processes is due to different final modes of extension, where in the

35 km model final extension concentrates in a narrow region of intense multi-dipping faulting while 40 km

model last-phase extension is driven by sequential faulting.

3.2. Influence of the sediment transport coefficient into the margin architecture

Our landscape evolution model depends on hill-slope diffusion, transport coefficient and water discharge

parameters (Sec. 2.2). For simplicity we chose to test only different transport coefficients k (Eq. 16). For each

crustal thickness (35 and 40 km) we ran three models with different transport coefficients k = 10−3, 10−2 and

1. k = 10−3 represents an end member where surface processes are active but transport is very ineffective
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and consequently erosion and sedimentation. The opposite end member is k = 1 where transport is very

efficient and erosion and sedimentation diffuse negative and positive topographies very fast.

3.2.1. Crustal thickness of 35 km

Figure 4 shows rifting evolution of the models with 35 km crust. For the first 3 Myr, the model with

transport coefficient k = 10−3 gives similar results to the equivalent without surface processes in terms of

crustal and mantle deformation (Fig. 4a and b). This model develops rift shoulders where escarpments of

faults are slightly diffuse. Note that half graben basins develop where the main initial faults intersect the top

boundary of the model. Similarly to the model without surface processes, deformation concentrates within

a small region at the center of the hanging crustal block between the two main faults at 5 Myr. This leads

to fast necking of the upper crust and breakup at 10 Myr (Fig. 4f). As observed in the tests without surface

processes, the resulting conjugate margins are symmetric and their width is also similar (∼90 km). However,

the number of faulted blocks of size between 5 and 15 km is smaller than in the models without surface

processes (9 vs 14), while larger blocks between 15 and 25 km occur in the model with surface processes and

k = 10−3 (Fig. 5a, b, c and d).

The model with k = 10−2 shows a crustal evolution deformation analogous to the models without surface

processes and with k = 10−3. However, sediments deposited at the half grabens in the vicinity of the main

faults are thicker due to the higher transport rate. This adds an extra load to the hanging walls that leads

to higher offsets at the main faults and bending of the crustal block between them (Fig. 4i). Due to the

larger bending stresses, the narrow rifting phase at the hanging crustal block occurs earlier and takes place

over a wider region (Fig. 4i). The resulting margins at the end of the rifting are symmetric and the thinned

crust is of similar length (∼85 km) to the tests with less erosion/sedimentation. However, the number of

large crustal blocks separated by faults (15-25 km) is slightly bigger and the total number of faulted blocks

is smaller (Fig. 5e and f). This is a consequence of the extra loading at hanging walls produced by faster

infilling of synrift basin. Higher stresses due to sediment loading (Fig. 6) lead to larger offsets at faults that

result in higher weakening, allowing faults to accommodate more extension and to remain active for longer

periods of time.

High transport (k = 1) drastically changes the modes of extension operating in the second phase of

rifting. Transport of larger amounts of sediments for greater distances results in high deposition rates along

the whole hanging crustal block between the main faults. Instead of two half grabens, a large graben basin

develops on top of the hanging crustal block due to uniform sediment loading (Figs. 4m and n). The uniform

sediment layer prevents the hanging crustal block from bending as described by Buiter et al., 2008. Rift

shoulders are not created because they are rapidly removed by high erosion rates. Thinning of the lower

crust is rapidly compensated by subsidence of the hanging crustal block. Therefore, mantle is not needed

to fill the space generated by fast extension on the lower crust and the Moho remains flat until 7 Myr

(Figs. 4m, n and o). At 7 Myr lower crust has been completly removed from the center of the model and

upper crust is in contact with the mantle at depths of ∼32 km (Fig. 4p). Consequently, former upper crustal

rocks are exposed to Moho temperatures (Fig. 7c and e). Additionally, the thermal blanketing due to the

thick package of sediments contributes to higher crustal temperatures. High temperatures of upper crustal

rocks result in lower viscosities of the central part of the model and necking of the crust by mantle up-

welling (Fig. 7e and f). Up-welled mantle further increase the thermal gradient and a wide region of viscous

behaviour is formed at the basal to intermediate crust (Figs. 4q and 7g and h). This leads to a change in
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Figure 4: Strain rate evolution of rifting of 35 km crust with different transport coefficients. a, b, c, d, e and f illustrate
the rifting evolution of a model with transport coefficient k = 10−3 (low erosion/sedimentation rates). g, h, i, j, k and l
recover the rifting evolution of a model with k = 10−2. m, n, o, p, q and r show the evolution of a model with k = 1 (high
erosion/sedimentation rates). The red lines represent the interface between basement and sediments.
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Figure 5: Size of faulted blocks of 35 km crust experiments. a, c and e colors represent the root of the second invariant of
the accumulated (historic) strain for different magnitudes of sediment transport. UC, LC and S stand for upper crust, lower
crust and sediments respectively. Faulted block size is measured by observing fault development along rift evolution and by
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the mode of extension of the upper crust and sediments from symmetric extension dominated by two main

conjugate faults (Fig. 4p) to symmetric extension by multiple faults (Fig. 4q), and finally pure shear that

slowly attenuates the crust along a wide region. Consequently, extension results into two symmetric wide

thinned crustal domains overlain by 15 km package of sediments at crustal breakup (24 Myr) (Fig. 4r).

3.2.2. Crustal thickness of 40 km

Figure 8 shows the evolution of 40 km crust tests with different transport coefficients. The model

with transport coefficient k = 10−3 showcase similar modes of extension (symmetric rifting followed by

sequential faulting), asymmetry and margin architecture when compared to the model without surface

processes (Fig. 8a, b, c, d, e and f). However, this model reaches crustal breakup at 12 Myr while the

model without surface processes remains in sequential faulting mode during the whole time span for these

experiments (40 Myr) (Fig. 3j). The widest margin is smaller in this case (∼140 km) in comparison to the

model without surface processes (>200 km). A shorter margin forms due to larger offsets at longer-lived

sequential upper crustal faults caused by the effect of sediment loads on the stresses and fault weakening.

The resulting larger offsets at upper crustal faults exceed deformation at the lower-crustal low-viscosity

pocket allowing for effective thinning of the crust and eventually breakup. The number of 5-10 km faulted

blocks is larger in this case than for the experiment with no surface processes (10 vs 8) which is against

the overall conclusions of this study (Fig. 9a, b, c and d). However, note that this is because the ductile

deformation style of the model without surface processes prevents us from being able to measure blocks in

the hyper-extended crust. If brittle behaviour would dominate rifting in the last phase, additional small

blocks should be observed in the distal margin as predicted by Pérez-Gussinyé, 2013. Furthermore, 15-25

km blocks exist in the model with sediment transport k = 10−3, while they are absent in the model with no

surface processes. Therefore, we see an increase of the maximum block size with increasing sedimentation

rates, which is in agreement with the general conclusions of our study.

The model with k = 10−2 also results in asymmetric margins by sequential faulting (Fig. 8d, e and f).
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Figure 9: Size of faulted blocks of 40 km crust experiments. a, c and e colors represent the root of the second invariant of
the accumulated (historic) strain for different magnitudes of sediment transport. UC, LC and S stand for upper crust, lower
crust and sediments respectively. Faulted block size is measured as described in Fig. 5. In this case we choose to only measure
block sizes in the left margins since the right margins have little amount of faulted blocks. In (a), last phase of rifting occurs
by ductile deformation of the crust which leads to no faulted blocks, but instead a wide domain of thin and highly deformed
crust. b, d and f are histograms representing the number of blocks grouped in 5 km size intervals. In this case the total number
of blocks decreases with increasing sediment transport in (d) and (f), while the experiment without surface processes (b) have
a smaller number of blocks than the one with k = 10−3. This is because the sediment loads favour strain localization which
allows the crust to behave brittlely until breakup and blocks to be measure along the whole margin, while in (a) that is not
possible due to the ductile deformation of the last rifting phase. Note that the number of large blocks and their size increase
with increasing sediment transport.
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However, the larger loads of sediments deposited on the hanging walls of the faults lead to larger offsets and

larger-in-size and smaller-in-number faulted blocks (Fig. 9e and f). Larger localization of the deformation in

the faults produce more effective thinning of the crust which makes the widest margin even narrower (∼130

km) than the one modelled with k = 10−3 (Figs. 8f, l, 9e and f).

The experiment with k = 1 displays almost identical modes of extension and crustal geometry compared

to the analogous model with 35 km crust (Fig. 8m, n, o, p, q and r). Note that equivalent models without

surface processes and with k = 10−3 and 10−2 result in asymmetric margins (Figs. 3j, 8f and l) while this

model creates symmetric margins with extremely attenuated crusts (Fig. 8r). The change from asymmetry

to symmetry is due to pure shear dominating the last phase of rifting instead of sequential faulting. Pure

shear takes over extension from 7 Myr, first by dominating deformation at the necked crust near the moho,

and then by taking place along the whole thickness of the hanging crustal block and the overlaying sediment

layer. By 9 Myr the center of the model has been greatly weakened by high deformation and extension by

pure shear is more effective in this region resulting in two symmetric thinned crustal domains (Fig. 8r).

3.3. Sediment time lines and breakup unconformity

Our model allows for the recovery of time lines in the sediments. Time lines represent relief at the

top of the sediments at a given time. Therefore, they limit packages of sediments deposited in this time

interval. We view these as a computational approximation of stratal packages. These lines are tracked

along with sediment deformation and can be eroded, which allows for observation of unconformities and

synrift/postrift-like sediment geometries (i.e. wedging, onlapping and sag-type basins).

As previously discussed in Sec. 3.2.1, the model with 35 km crust and low transport rates (k = 10−3)

results in symmetric margins by subsidence of the hanging crustal block with consequent deposition on the

half grabens in the vicinity of the main faults and later narrower extension located at the middle of the

hanging crustal block. This migration and localization of the deformation towards the center of the model

results in sediments younging towards the center of the model (Fig. 10a). Furthermore, sag-basin-type

sediments are deposited in proximal areas of the margin that unconformably overlay older sediments. The

deposition of such type of sediments, typically associated to postrift phase, occurs contemporaneously to

rifting at more distal parts of the margins.

More effective transport in the 35 km crust experiment (k = 10−2) does not generate sag-basin-type

deposition at the proximal margin as illustrated in Fig. 10b. Instead, all new sediments are deposited where

deformation is taking place and old sediments are eroded. Therefore, we do not observe an equivalent to

the breakup unconformity before crustal breakup time (Fig. 10b). In this case we would expect that sag-

basin-type deposition will occur after crustal breakup and that a consistent-in-time breakup unconformity

will be formed.

In experiments where asymmetric margins occur by sequential faulting (i.e. 40 km crust and k = 10−3)

sediments young towards the last active fault in the wide margin. In the particular case of 40 km and

k = 10−3, three sag basins developed onlapping old synrift sediments by the time of crustal breakup

(Fig. 10c). Additionally, the age of the basal sag-basin sediments also youngs towards the distal part of the

margin.

In conclusion, models show that unconformities separating synrift from sag-basin sediments do not

necessarily date the regional breakup, but instead involve the migration of rift deformation into other

sectors of the margin. If this migration is sequential in a certain direction an unconformity can occur so
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that it separates synrift from sag-basin sediments which progressively youngs towards proximal sectors of

the margin.

4. Discussion

We can now start to couple complex rheological deformation models with surface processes. However,

these models are still very simplistic. Here, we have shown results of a model where complex multi-layered

non-linear rheologies interplay with a landscape evolution model which accounts for hill-slope diffusion and

sediment transport. Sediments are included in the mechanical and thermal solvers which implies a great

improvement for investigating the impact of sediment loading and thermal blanketing in the tectonics. Addi-

tionally, time lines within the sediments are tracked with time, which allows us to examine the unconformities

associated with rifting.

However, this model is still limited by the uncertainties involved in the parametrizations that we used.

In particular, sediment transport parameters are poorly constrained due to the regional character of this

study and due to the one-dimensional approximation, while surface processes in nature always work along

a two-dimensional heterogeneous surface. Furthermore, the sediment transport-limited model is not able to

reproduce erosive patterns typical of high uplift areas where detachment of exposed rock mainly controls

the landscape evolution (Dietrich et al., 2003). Also the assumption that there is always availability of soil

or sediments for transport may not be valid in regions where high uplift exceeds the regolith production

rate (Dietrich et al., 2003). Geomorphological studies often assume that all these approaches are valid due

to the large scale character of the study, where individual events of erosion and deposition become averaged

out (Paola et al., 1992). Furthermore, small uplift rates are observed in the models so that it is unlikely

that uplift exceeds regolith production. Small uplift also implies that rock detachment mechanisms at the

surface is unlikely to dominate landscape evolution. A major limitation of this geomorphologic model is

that it does not account for sea or water filling of depressions. Beneath water the mechanisms governing

sediment transport differ from those for fluvial transport, and therefore, a water body introduced into

the model would result in a lateral change in the transport coefficient. This implies that sea level should

be a factor to consider in future studies of margin development since we observe that different transport

coefficients have an effect on the final margin geometry.

These models also lack of melting, lack pre-existing structures, assume that rifting occurs under a single

phase of constant velocity extension, and have the limitations on the surface processes algorithm previously

mentioned. Nonetheless, we find similarities between the structures predicted by these models and those

observed at the non-volcanic margins of West Iberia (WIM) and Great Australian Bight (GAB). Models

that tend to asymmetry and sequential faulting in the absence of surface processes show similar deformation

histories and margin architectures as the WIM. The West Iberia Margin experienced low sedimentation

rates contemporary of the crustal faulting. Here, we have shown that sequential faulting is inhibited by

large amount of sediments so that the small infill at the WIM can be linked to its final stage of sequential

faulting. On the contrary, there is a significant sediment accumulation in the Great Australian Bight

synchronous to the deformation at major faults that thin the crust very effectively (Talwani et al., 1979;

Stagg et al., 1990; Direen et al., 2012). This also agrees with our models in which high sedimentation rates

favour localization of deformation at pre-existing faults, effective thinning of the crust along these large

offset faults, and a large increase in the stability of these faults.
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We conclude that effective transport favours symmetry since longer lived faults result in bending of

the hanging wall which triggers formation of conjugate faulting to release stresses. Our results agree with

previous models from Buiter et al., 2008 that predict sedimentation should favour symmetric deformation.

Furthermore, some margins showcase extremely attenuated hyper-extended crusts at a later phase of

rifting (i.e. South Atlantic). Extension mechanisms in these sectors of the margins are currently a subject

of debate since little faulting has been observed (Aslanian et al., 2009). It is possible that deformation takes

place along very small offset faults that are not imaged by seismic sections due to signal attenuation by the

thick sediment packages. Here, we propose that this potential distributed stretching of the crust is analogous

of the model where we observe pure shear at attenuated crusts overlain by large sediment thicknesses. This

mode of extension could be triggered by a change on sediment transport or simply by deposition of larger

volumes of sediments due to slow and/or multi-phase rifting.

Additionally, we suggest that changes in modes of extension can be triggered by an increment of sediment

input in the rift system influenced by a catchment of an up-stream basin. An example of this is the Amazon

drainage system that 10.5 Myr ago captured the Pebas system due to a faster Andean mountain building

phase (Figueiredo et al., 2009; Sacek, 2014). The implications of this is that even far field tectonic processes

may have some control on margin architecture due to their effects on the transport of mass along Earth’s

surface.

Regarding the well-known unconformities that separate synrift-like from sag-fill sediments, we conclude

that they form due to thermal subsidence, and not necessarily be related to breakup but instead to a rift

migration (Ranero and Pérez-Gussinyé, 2010; Pérez-Gussinyé, 2013) and consequent migration of the hot

mantle up-welling. From our results we agree with Gillard et al., 2015 about the need to revisit well-accepted

stratigraphic terms such as breakup unconformity, prerift, synrift and postrift, since these terms can obscure

our understanding when processes such as rift migration and poly-phase rifting are present.

5. Conclusions

The transport of sediments can greatly influence deformation due to rifting. Sediment loads at faulted

hanging walls increase stresses which favour deformation localization, larger offsets and faulted blocks and

faults active for longer periods of time. One of the effects of this localization is that sequential faulting is

penalized by a more effective thinning of the crust. This implies that, in cases where margin asymmetry

is controlled by sequential faulting, an increase of sediment infill will lead to a reduction of the degree of

margin asymmetry. Consequently, margins with little sediment infill such as the West Iberian Margin are

expected to have undergone larger extension by numerous faults that are sequential in time oceanwards.

On the contrary, for margins with large amount of sediment input such as the Great Australian Bight,

deformation is expected to localize at large offset faults along which crust is thinned very effectively.

Furthermore, sinking of crust due to extreme sedimentation rates in areas of extension helps to expose

crustal rocks to high temperatures for which the rheology of these rocks will change from plastic to weak

viscous flow. This results in a change from finite localized faulting to multi-faulting of the crust and sediments

along a broad region and/or pure shear deformation. Here, we propose this as a potential mechanism for

hyper-extension observed at margins such as the ones in the South Atlantic.

Finally, our models show breakup-like unconformities separating synrift from sag-fill-type sediments. We

observe that these unconformities do not necessarily date the breakup but instead date the localization
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of extension in a narrower region or a lateral continuous migration of rifting (i.e. by sequential faulting),

in which case sag-basin sediments young towards the direction of the migration. This is observed at the

West Iberian Margin where ‘synrift’ sediments young oceanwards, or at the Great Australian Bight where

sequences onlap synrift-like sediments in proximal sectors of the margin while the same sequences show

synrift-like geometries in more distal sectors. The results of these simple model patterns are incompatible

with standard rift terminology like, ‘synrift’, ‘postrift’ and ‘breakup unconformity’.
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B. J. Kaus, H. Mühlhaus, and D. A. May. A stabilization algorithm for geodynamic numerical simulations with a free surface.

Physics of the Earth and Planetary Interiors, 181(1):12–20, 2010. doi: 10.1016/j.pepi.2010.04.007.

B. J. P. Kaus. Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation. Tectono-

physics, 484(1):36–47, 2010.

M. J. Kirkby. Hillslope process-response models based on the continuity equation. Special Publication Institute of British

Geographers, 3:15–30, 1971.

L. E. Malvern. Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, 1969.

J. Marr, J. Swenson, C. Paola, and V. Voller. A two-diffusion model of fluvial stratigraphy in closed depositional basins. Basin

Research, 12(3-4):381–398, 2000. doi: 10.1111/j.1365-2117.2000.00134.x.

Y. Martin and M. Church. Diffusion in landscape development models: on the nature of basic transport relations. Earth

Surface Processes and Landforms, 22(3):273–279, 1997.

K. R. McClay. Pressure solution and Coble creep in rocks and minerals: a review. Journal of the Geological Society, 134(1):

57–70, 1977.
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C. R. Ranero and M. Pérez-Gussinyé. Sequential faulting explains the asymmetry and extension discrepancy of conjugate

margins. Nature, 468(7321):294–299, 2010.

T. F. Redfield and P. T. Osmundsen. The long-term topographic response of a continent adjacent to a hyperextended margin:

A case study from Scandinavia. Geological Society of America Bulletin, 125(1-2):184–200, 2012. doi: 10.1130/B30691.1.

URL http://dx.doi.org/10.1130/B30691.1.

E. Rutter and D. Elliott. The kinetics of rock deformation by pressure solution [and discussion]. Philosophical Transactions of

the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 283(1312):203–219, 1976.

V. Sacek. Drainage reversal of the Amazon river due to the coupling of surface and lithospheric processes. Earth and Planetary

Science Letters, 401:301–312, 2014. doi: 10.1016/j.epsl.2014.06.022. URL http://dx.doi.org/10.1016/j.epsl.2014.06.

022.

G. Simpson and F. Schlunegger. Topographic evolution and morphology of surfaces evolving in response to coupled fluvial and

hillslope sediment transport. Journal of Geophysical Research: Solid Earth, 108(B6), 2003. doi: 10.1029/2002JB002162.

URL http://dx.doi.org/10.1029/2002JB002162.

T. R. Smith and F. P. Bretherton. Stability and the conservation of mass in drainage basin evolution. Water Resources

Research, 8(6):1506–1529, 1972. doi: 10.1029/WR008i006p01506. URL http://dx.doi.org/10.1029/WR008i006p01506.

H. Stagg, J. Willcox, D. Needham, G. OBrien, C. Cockshell, A. Hill, B. Thomas, and L. Hough. Basins of the Great Australian

Bight region-geology and petroleum potential: Continental margins program folio 5. Bureau of Mineral Resources, Geology

and Geophysics and Department of Mines and Energy, South Australia, 1990.

M. Talwani, J. Mutter, R. Houtz, and M. Konig. The crustal structure and evolution of the area underlying the magnetic

quiet zone on the margin south of Australia: Rifted margins. In Geological and Geophysical Investigations of Continental

Margins, pages 151–175. AAPG Special Volumes, 1979.

J. Totterdell, J. Blevin, H. Struckmeyer, B. Bradshaw, J. Colwell, and J. Kennard. A new sequence framework for the

Great Australian Bight: Starting with a clean slate. APPEA Journal-Australian Petroleum Production and Exploration

Association, 40(1):95–120, 2000.

D. Turcotte and G. Schubert. Geodynamics. Cambridge University Press, 2002. ISBN 9780521666244.

J. K. Weissel and G. D. Karner. Flexural uplift of rift flanks due to mechanical unloading of the lithosphere during extension.

Journal of Geophysical Research: Solid Earth, 94(B10):13919–13950, 1989.

K. Wilks and N. Carter. Rheology of some continental lower crustal rocks. Tectonophysics, 182(1-2):57–77, October 1990.

27

Chapter 5. Sediment transport impacts in margin geometry and unconformities 116



Chapter 6

Discussion

6.1 Introduction

The aim of this thesis is to address margin development and architecture using numerical

modelling techniques. For this purpose, I have worked on a pre-existing numerical code

to bring it to a state-of-the-art level and beyond. My major additions to this code are a

free surface stabilization algorithm to simulate dynamic topography, elasticity, plasticity,

strain weakening to simulate faults and shear zones, shear heating, and coupling with a

sediment transport function to model surface processes. In this chapter I evaluate the

outcomes of this thesis from the point of view of the limitations of the numerical model

and the parameters used. I also evaluate where these model and model results contrast

with observations and models from other authors. Finally, I propose several areas where

future work can be carried out.

6.2 Critical evaluation

6.2.1 Model limitations

One of the main limitations of our models is that Earth is a highly heterogeneous sys-

tem, while our experiments are in general laterally homogeneous. Additionally, different

deformation mechanisms and chemical processes act at completely different scales, from

the mineral lattice, mineral boundaries, and mineral aggregates to the overall mechanisms

of deformation inside shear zones, faults and fault gouges. Numerical modelling uses

parametrizations to represent these processes. Although this implies an oversimplification

of the Earth system, reproducing the exact mechanisms that shape geology at all their
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scales, and their interplays would be extremely laborious and computationally intractable.

In this section I discuss the limitations related to the approaches I made in order to model

the extension of the lithosphere.

6.2.1.1 Rheologies

Rheologies strongly influence the behaviour of a mechanical model. The rheologies used in

this thesis are taken from laboratory experiments obtained from triaxial set-ups (Wilks and

Carter, 1990; Gleason and Tullis, 1995; Rybacki and Dresen, 2000; Hirth and Kohlstedt,

1996). However, experimental values are obtained at relatively low deviatoric stresses

(in the maximum order of 100 MPa) and high strain rates (from 10−1 to 10−5 s−1). In

our models these values are applied to simulate the mechanics of deep lithospheric and

asthenospheric rocks which may be subjected to stresses on the order of ∼100 MPa and

higher and lower strain rates. Consequently, the use of these parameters in at least one

order of magnitude higher than for the stresses they were calculated implies a degree

of uncertainty on the model outcome, especially when it is highly conditioned by deep

processes.

That is the case in Chapter 4, where asymmetric deep mantle flow induced by the presence

of a craton triggers asymmetry during margin development and conditions the polarity

of the asymmetry of conjugated margins. Tests without a craton show that rheological

changes in the lower crust of the model only influence the degree of the asymmetry but not

its polarity. However, the main outcome of chapter 4 is that the presence of a craton near

rifting favours asymmetry and conditions polarity. This outcome remains probably true

for olivine rheologies different than the ones used here as it is proven that what conditions

the asymmetric mantle flow is the contrast between stiff cold cratonic lithosphere adjacent

to hotter and weaker fold belt lithosphere and asthenosphere, and not the rheology itself.

This contrast is justified since it is observed from tomographic experiments and isostasy

models (i.e. Turcotte and Schubert, 1982; Ritsema and van Heijst, 2000; Evans et al.,

2011).

Another limitation related to the rheology is that most of the parameters are calculated for

monomineralic rocks while rocks in nature are typically polymineralic and have a fabric.

Values are measured in monomineralic rocks for simplicity, and it is justified since weaker

and most abundant mineral phases are proven to dominate deformation (Karato and Wu,

1993). Including the contribution to deformation of secondary but abundant mineral

phases, such as feldespar in the upper crust and pyroxenes and amphiboles, implies using

rheological parameters calculated for a large variety of mineral combinations and rocks.
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This results in a vast parameter space to be explored, which is beyond the scope of this

thesis.

6.2.1.2 Peierls creep

Peierls creep is a type of plasticity mechanism that acts at low temperatures (<1200 K)

and stresses above 500 MPa (Kameyama et al., 1999). This type of mechanism is not

included into our model since the up-welling of the asthenosphere provides enough heat

to prevent it. However, this mechanism is thought to be important in subducting slabs

where larger stresses are expected at lower temperatures (Kameyama et al., 1999).

6.2.1.3 Deformation seeds

As mentioned in Chapters 4 and 5, weak seeds are needed in order to nucleate deformation

in desired regions of the model. With this, it is possible to avoid artefacts on the deforma-

tion that will take place if rifting nucleates near the boundaries of the model. Additionally,

this allows us to initiate rifting at different distances from a craton in Chapter 4. In nature

deformation is expected to nucleate around heterogeneities such as hotter areas, regions

in the crust of weaker lithologies, old orogenic sutures, etc. In this thesis I use a thermal

seed at the lower crust, which consist of a 2D Gaussian temperature increase of 100◦C.

Many other authors use low viscous/yield-stress seeds associated with a small region of

low viscosity (i.e. Buck, 1991; Dyksterhuis et al., 2007; Buiter et al., 2008; Huismans and

Beaumont, 2011). The decision of using a thermal instead of a viscous/yield-stress seed

was made based on the fact that higher temperature results as well in a lower viscosity,

with the difference that this seed relaxes with time due to heat diffusion, which is desirable

since it will not affect deformation at later stages of rifting.

Dyksterhuis et al., 2007 shows the big impact of the type of weak seed used in extension

modes, by testing different weak seeds placed at different depths. Such a variability is also

observed in the models used here. As a large part of the thesis is focused on asymmetry

controls I opt for placing the weak seed at the lower crust which favours symmetry (Brune,

personal communication), so that the causes of the asymmetry can be evaluated without

the need of taking into account the weak seed.

6.2.1.4 Temperature-dependent density

In Chapter 4 the density does not depend on temperature. This approach was made

in order to avoid associated small scale convection. Small scale convection is capable
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of removing the cratonic lithosphere if other processes that penalize convection are not

applied, such as depletion-dependent density (Nielsen and Hopper, 2004). As cratonic

lithosphere is expected to be preserved along long periods of time, temperature-dependent

density was not included in the experiments on Chapter 4 so that the implementation of

more complex processes that allow for craton preservation was avoided.

In later work the development of a depletion-dependent density algorithm by Elena Ros-

Bernabeu, Marta Pérez-Gussinyé and Jason P. Morgan, allowed for slower small scale con-

vections that are in better agreement with observations. Consequently, both temperature-

and depletion-dependent density functions were included for my most recent models showed

in Chapter 5.

6.2.1.5 Strain weakening

A major limitation of the models shown here is their approximation of strain softening.

As mentioned in previous chapters, strain softening is generated by gouge production,

the presence of fluids at faults, mineralization, reduction in grain size and the formation

of crystallographic preferred orientations (CPO) (Karato and Wu, 1993; Bos and Spiers,

2002; Handy and Stünitz, 2002; Hirth and Kohlstedt, 2003; Huismans and Beaumont,

2007; Hansen et al., 2012). The fact that so many processes can contribute to this type of

weakening makes difficult to quantitatively describe strain softening. Rigorous parametric

numerical studies have been carried out in addressing the influence of strain softening on

extension (Sibson, 1990; Rice, 1992; Ridley, 1993; Streit, 1997; Ingebritsen and Manning,

1999; Bos and Spiers, 2002; Handy and Stünitz, 2002). However, these numerical exper-

iments allow for model control but not for direct strain-softening parameter calibration.

Field studies suggest that strain softening is on the order of the models presented in this

thesis, but to my knowledge exact parameters and weakening-strain dependency degree

have yet to be quantitatively described. Therefore, further field and laboratory research

is needed to constrain strain softening, and bring modelling of shear zone dynamics to the

levels of uncertainty of other rheologic approximations.

In spite of the limitations referred here in the uncertainty on strain softening parameters, a

viscous strain softening algorithm could be improved by the use of temperature-dependent

Arrhenius crystal growth (Turcotte and Schubert, 2002). This will add to the rock the

capacity to heal which will allow for a more confident use of strain softening in the diffusion-

creep regime that will be limited to lower temperature regions.

Strain is the relationship between an initial length before deformation and the final length

after deformation. Consequently, when resolution is high a given deformation can easily
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produce larger strains than in lower resolutions. This implies that strain softening acts

differently depending on the resolution of the mesh. In the code presented here further

improvements could be addressed by adding a strain softening scaling with the mesh size

(Buck and Lavier, 2001), or by the use of an adaptive mesh where the resolution of a

certain area depends on the amount of strain rate.

Additionally, a reduction of the friction angle in the plastic formulation as described in

Chapter 2 reduces the effective viscosity but does not result in an effective reduction of the

fault angle respect the principal stresses. In order to account for these effects an anisotropic

formulation of viscosity is needed as described in Moresi and Mühlhaus, 2006. Further-

more, weakening along crystal preferred orientations results in anisotropic dislocation-

creep viscosity (Hansen et al., 2012). Here, I chose to not implement anisotropic viscosity

and anisotropic strain softening due to lack of time to explore the parametric space asso-

ciated with this effect.

6.2.1.6 Extension rates

Experiments run for this thesis were always calculated for half extension velocities of 5

mm/yr. However, continents rift in a wide range of velocities (∼3-50 mm/yr). Further-

more, different extension velocities have proven to result into different types of rifting

evolution and margin architectures (Brune et al., 2014). Therefore, further research is

needed in this direction.

6.2.1.7 Magmatism and serpentinization

Magmatism and serpentinization are important processes involved in the formation of the

continent-ocean transition and the oceanization. As this thesis addresses rifting at non-

volcanic margins and their architectures I do not include such processes in the modelling.

However, I am aware that melting highly influences mantle rheologies (Morgan et al.,

1995; Hirth and Kohlstedt, 2003), even in the low percentages present in the non-volcanic

margins during rifting. Also, water brought by faults into the mantle can potentially result

in the serpentinization of peridotites below the crust. Serpentinization implies an increase

in the peridotite volumes (Gresens, 1967; O’Hanley, 1992) whose impacts on upper crustal

extension remains an open question. These two processes and their implications were out

of the scope of this thesis and are being addressed by other members of my research group.
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6.2.1.8 Erosion and sediments

Limitations in the modelling of surface process are related to parametrizations and the

simplicity of the assumptions made. I consider a major issue the lack of sea-floor transport

and sedimentation environment. Submarine sediment transport processes are different in

the mechanisms and time and space scales from the continental transport processes. Con-

sequently, at least different transport coefficients should be used when sediments reach

the sea. There is also a relevant ongoing discussion on how sea level changes can corre-

late the stratigraphy globally and the magnitude of the sea level change needed for such

correlations, for which varying sea levels are a desirable implementation.

6.2.1.9 2D versus 3D

Oblique rifting is very common in Earth and it has been proven to be a more efficient

way of stretching the crust (Brune et al., 2012). Additionally, it is unlikely that extension

takes place exactly perpendicular to precursor structures which might result into very

important three-dimensional effects (Brune et al., 2012; Tommasi et al., 2009; Sacek and

Ussami, 2013). Furthermore, for surface processes to be two-dimensional as in nature 3D

lithospheric models are needed. However, non-linear visco-elasto-plastic rheologies imply a

computational challenge for high resolutions in 3D. For this reason this thesis addresses 2D

numerical modelling so that a larger amount of processes can be simultaneously modelled.

6.2.2 Outlook

This thesis addresses how different factors influence margin architecture. Special emphasis

has been put on how cratons interfere with margin development, how surface processes

affect margin geometry and asymmetry of conjugates and how crustal faulting and mantle

dynamics translate into major unconformities in margin sediments.

All these questions are closely related to the style of crustal faulting. In order to realisti-

cally simulate faulting a free surface is needed at the top of the model, so that foot-walls

can uplift, hanging-walls subside and bending can take place. Free surfaces in numerical

models have been typically avoided in the past because small time steps leads to compu-

tationally expensive runs while large time steps leads to surface instabilities. Strategies

to approach free surfaces such as ‘sticky-air’ (Zaleski and Julien, 1990; Gerya and Yuen,

2003; Crameri et al., 2012), normal-stress method (McKenzie, 1977; Fleitout et al., 1986;

Zhong et al., 1993, 1996) or implicitly solving for topography in conjuction with Stokes

equation (Kramer et al., 2012) can suppress instabilities but result in surface artefacts
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or do not solve the time-dependent relaxation of the topography. In order to accurately

model topography a free-surface stabilization algorithm (FSSA) has been developed. The

FSSA adds a penalization term to the stiffness matrix equivalent to a fraction of the future

load due to the change in topography during the time step (see Chapter 3). This penal-

ization is controlled by a factor α for which we found optimal results (large time steps

with stability) for a value of 2/3. Previous stabilization algorithm by (Kaus et al., 2010)

is shown to give similar results as ours in terms of stability and computational efficiency

when used with a corresponding α of 2/3 (instead of the 1/2 originally proposed by them).

The new FSSA together with the finding of the 2/3 optimal penalization factor will not

only be an important contribution to future modelling of continental extension, but for

modelling dynamic topographies at all geological contexts.

In addition to the FSSA, further implementations were required to make the models as

realistic as possible. Therefore, I have worked in developing algorithms for reproducing

strain softening, visco-elasto-plastic rheology and shear heating. These implementations

discussed in Chapter 2 allowed for experiments of sufficient complexity to address passive

margin development.

The first set of experiments were designed to address margin asymmetry when rifting ini-

tiates in the vicinity of a craton (discussed on Chapter 4). Many authors have approached

asymmetry of conjugate passive margins and have proven for it to be related to crustal

rheologies, strain softening, extension velocities and lithospheric/crustal heterogeneities

(Kusznir and Park, 1987; Dunbar and Sawyer, 1988; Buck, 1991; Buck and Lavier, 2001;

Huismans and Beaumont, 2002, 2003; Corti et al., 2003; Nielsen and Hopper, 2004; Buiter

et al., 2008; Tommasi et al., 2009; Hansen et al., 2012; Brune et al., 2014). In those studies

the polarity of asymmetry is random. However, observations from the central sector of

the South Atlantic conjugates and the Southern Sea show a clear relationship between

the polarity of the margin and the distance from its landward edge to the craton. This

relationship is such that narrow margins develop next to cratons while wide margins de-

velop in conjugates where there is no craton or it is distant from the margin edge. These

observations motivate experiments where initiation of rifting is triggered at different hor-

izontal distances away from the craton inside a fold belt. The experimental results match

with the correlation between polarity of the asymmetry and distance to craton observed in

nature, when rift initiation occurs in the craton influence zone (∼100 km). This polarity

of the asymmetry occurs due to: 1) a stronger lithosphere near the craton which allows

for fast localization of deformation, and 2) asymmetric up-welling of the fold belt mantle

due to the shadowing effect exerted by the thick and stiff cratonic lithosphere. When

the asymmetric deformation at the mantle is coupled with crustal faulting extension mi-

grates towards the craton, leaving a wide margin behind and mechanically ‘eroding’ and



Chapter 6. Discussion 124

shortening the margin next to the craton. Although there are several limitations related

to this model as mentioned in the previous section, a large parametric space has been

explored (different rheologies, viscous softening and crustal thicknesses) and the results

always proved the influence of the craton in the asymmetry and its polarity. I consider

this a very important finding since it completes the knowledge on margin asymmetry de-

velopment by adding a reliable prediction for its polarity and also points out the need of

integrating the precursor geology into models to narrow down the window between the

reality and the experiments.

The second set of experiments presented in this thesis (Chapter 5) targets the influence of

surface processes into modes of extension and final margin geometry. For this experiments

a surface processes function based on sediment transport was coupled to the tectonic

model. Experiments show that larger sediment transport coefficients provide greater sed-

iment inputs to the synrift basins which result in larger stresses at hanging walls due

to the sediment loading. Larger stresses translate into larger offsets at faults, increasing

weakening and sustaining deformation at the faults for longer periods of time. The result

is margins with fewer faults, larger blocks and very effective and abrupt thinning of the

crust. These results agree with observations at the Great Australian Bight margin where

thick synrift sediment packages are found along small number of blocks bounded by large

offset faults that thin the crust very effectively (Talwani et al., 1979; Falvey and Mutter,

1981; Stagg et al., 1990; Totterdell et al., 2000; Direen et al., 2012). Experiments also show

that very large transport coefficients favour pure shear/multi-faulting of the crust leading

to the formation of symmetric hyper-extended margins. Sediment loading also results in

large crustal subsidence. Mode of extension changes to pure shear when lower crustal

viscosities drop due to high temperatures at the greater depths. This implies that a large

increase on sediment input could trigger a change from a finite faulting mode of extension

towards distributed deformation along an attenuated crust. This deformation mechanism

represents a potential candidate to explain hyper-extended margins such as the ones from

the central sector of the South Atlantic and Norway (Aslanian et al., 2009; Lundin and

Doré, 2011; Redfield and Osmundsen, 2012). Low sediment transport coefficients imply

smaller sediment rates at hanging walls and allow for short-lived faults and rift migration.

The analogue for this type of architecture is the West Iberian Margin where little synrift

sedimentation allows for several sequential faults that smoothly thin the crust (Ranero

and Pérez-Gussinyé, 2010; Pérez-Gussinyé, 2013). Additionally, when margin asymmetry

depends on sequential faulting or rift migration, models show that larger sedimentation

rates favour symmetry by load-triggered localization of the deformation and consequent

inhibition of strain migration. Previous numerical models addressing continental extension

either omitted surface processes or approached them in a very simplistic way. Although
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surface processes modelled in Buiter et al., 2008 were approached simplistically, they found

that sediment input triggers change in deformation from congugate-asymmetric faulting

to symmetric faulting, in agreement with my results.

Furthermore, the more realistic sediment transport function used in Chapter 5 allows the

recovery of time lines (or pseudo strata) in the sediments. This algorithm is shown to be

sufficient to address regional scale sedimentation events. Time lines can be deformed and

eroded by the tectonic model so that unconformities can develop. Careful examination

of these unconformities show that they are not necessarily related to the breakup time,

but that they can occur due to thermal subsidence when rift migrates. This agrees with

observations at the West Iberia Margin where distal-younging sediments are explained by

sequential faulting (Ranero and Pérez-Gussinyé, 2010; Pérez-Gussinyé, 2013), and in the

Great Bight Basin where a wide rifting phase is followed by a narrow distal phase, and

where sediment sequences that showcase postrift onlap on the proximal margin present

synrift structures at distal parts (Gillard et al., 2015). Thermal subsidence due to rift

migration and related unconformities provide a new context in which major unconformities

need to be interpreted. This also points out at the need of revising concepts such as prerift,

synrift, postrift and breakup unconformity.

Numerical models have proven to be an excellent tool for answering questions related to

details of margin development, faulting history and surface-to-deep interactions. Most

relevant new findings of this thesis are that: 1) asymmetry is expected to be influenced

by the presence of cratonic lithospheres which can be key to define its polarity, 2) surface

processes can greatly impact extension modes, rifting history and margin asymmetry, 3)

greater sedimentation rates favour deformation localization and longer-lived faults which

has a great impact on the geometry of the margin, and 4) large unconformities separating

‘synrift-type’ sediments from onlapping sag infills are not necessarily associated to breakup

time but instead to thermal subsidence triggered by rift migration.

This thesis expands our knowledge of passive margins and at the same time provides some

useful information that can be applied to other tectonic contexts. For example, the new

free-surface stabilization algorithm and α factor can be used to calculate more accurate

topographies in any geological context. Conclusions drawn from chapter 4 highlight the

role of lithospheric heterogeneities in the crustal deformation and allows us to predict the

polarity of the asymmetry at passive margins. A relevant implication is that wherever this

model might fail to predict polarity, an anomalous crust and/or lithospheric mantle are

expected. Finally, orogens resulting from continent-continent collisions such as the Alps

or the Himalayas often preserve margin segments. These segments display old margin
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geometries and sediments. This thesis provides new information about under which rhe-

ological conditions given basement and/or sediment geometries are expected. Identifying

these geometries in the collisional context and relating them to the expected rheologies can

therefore provide valuable information about the strength of the materials participating

in the collision, the other end of the Wilson cycle.

6.3 Future work

Many questions arise from the exploration done in this PhD thesis. Some of these questions

are related to computational issues associated to the modelling of the crust and lithosphere

and on parametric uncertainty. Other questions relate to unexplored phenomena and

feedback between processes taking place during continental extension.

From the technical point of view a better meshing function is desirable. A new grid

should be adaptive, implying that regions of special interest (i.e. zones of high strain rates

or sediments) will be generated with better resolution, while areas away from deformation

will have lower resolution. This would greatly enhance the performance of the code and, at

the same time, would allow for high resolution near faults that is particularly interesting

for consistent strain softening without the need of the scaling described at Sec. 6.2.1.5.

More realistic weak seeds are also needed. Current weak seeds available in the code

initialize rifting by two main conjugate faults. In nature this could be the case if rifting is

initialized by a point heterogeneity. However, initial phases of wide rifting described for

several margins suggest that localization of the deformation may occur in a later phase of

extension. In order to simulate this effect weak noise can be introduced in the rheological

model (i.e. randomly reducing the initial friction angle). Maximum amplitude of the noise

can be distributed as a spatial Gaussian function so that the maximum would imply

the most likely location for rifting to localize, while random noise will prevent extreme

localization at the beginning of the run time.

I consider that the most important limitations of these models are the uncertainties in-

volved in the parameters used. Further composition studies as inferred from seismic to-

mography, refraction experiments and MT data would be needed in order to better scale

laboratory experiments. Another strategy to approach this is to start using multi-scale

modelling where parameters for the tectonic model are obtained from chemical/crystal-

lographic models that run for given stresses, temperatures and pressures (i.e. Lebensohn

and Tomé, 1993; Tommasi et al., 2009; Wimert and Hier-Majumder, 2012).
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Another major area of research are the approximations for strain weakening modelling.

Strain weakening algorithms can be greatly improved by adding anisotropic viscosities and

healing as pointed out in Sec. 6.2.1.5. Also further work on strain weakening parameters

and functions can be done by using field examples for calibration of the models.

Surface process modelling requires refinement as well. As commented in Sec. 6.2.1.8, the

results shown in this thesis do not take into account the presence of a sea. Implementing the

sea as a load over the crust and as a reduction of transport coefficients in the geomorphic

model would bring the model closer to reality and would allow for a new set of experiments

for which the influence of sea level changes into the margin development can be explored.

Another potential field of study is to test if spatial variation of the discharge (i.e. larger

precipitations rates in some regions of the model) have an impact on the asymmetry of

conjugate margins, linking climate to tectonics.

Magmatism and serpentinization are processes that are expected to have great impact on

margin evolution. Studying how such processes interplay with sediments and lithospheric

heterogeneities can open a broad field to be explored from a modelling perspective.

Finally, I found of particular interest 3D modelling where oblique tectonics can be ad-

dressed and surface processes can be modelled to reproduce actual sedimentary systems

such as rivers, graben depositional environments, alluvial fans and deltas. However, even

3D models will still confront limitations since their results will still be general and difficult

to apply to a particular region. In this aspect, I think that Montecarlo simulations could

be a great tool to grasp 1-to-1 correlations between the numerical models and the highly

heterogeneous geology of the Earth.



Chapter 7

Conclusions

• A new free-surface stabilization algorithm has been developed in order to efficiently

simulate stable topographies with geodynamic numerical models.

• This algorithm penalizes the stiffness matrix at the surface to reduce velocity over-

estimations that lead to instability.

• This method and previously developed similar ones, need a controlling parameter to

stabilize the free-surface. This parameter has been proven to be optimal at values

of 2/3, which coincides with the velocity factors for a Galerkin time discretization

of the penalization term.

• The presence of cratonic lithosphere in the vicinity of a fold belt lithosphere rift-

ing region (≤ 100 km) can result in asymmetric conjugate margins even if similar

rheological parameters give symmetric conjugates when the craton is not present.

• When asymmetry occurs, the narrowest margin develops near the craton while the

wide margin develops on the opposite margin. This polarity needs of strong enough

lower crusts to allow coupling of the deformation from crust to mantle.

• Margin asymmetry and its polarity are the result of: 1) high localization of the

deformation at lower-crustal craton-dipping shear zone due to its lower temperature

in contrast with its conjugate and 2) asymmetric up-welling of the fold-belt mantle

due to the shadowing effect exerted by the cratonic lithosphere.

• Surface processes have an important impact on margin architecture.

• Large sedimentation rates synchronous to faulting result in overloading of the hanging-

walls, large stresses, large fault offsets, large fault weakening, abrupt thinning of the

crust and little number of faults that bound large crustal blocks. These effects can
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inhibit or reduce margin asymmetry in comparison with parametrically-equivalent

margins subjected to smaller sedimentation rates.

• An excess of sediment loads can lead to a change in mode of extension from any

type of finite faulting to pure shear/multi-faulting. This is because large loads

translate into large crustal subsidences that expose lower crustal rocks to hot mantle

temperatures at the same time that the thick sediment cover amplifies this effect

by thermal blanketing. Consequently, lower crustal rocks weaken and flow easily,

distributing extension along a broad crustal region which will evolve into a very

attenuated crust.

• Models show that major unconformities developed at margins are not necessarily

synchronous to the breakup time. Instead, they are found to be the consequence of

thermal subsidence after rift migration. This points out at the need of revising the

breakup associated terminology commonly applied to stratigraphic interpretation of

seismic sections.



Appendix A

Stress, strain and momentum

equation

A.0.1 Stress

Traction is defined as the force f per unit area. If we assume an infinitesimal small surface

S then the traction T is:

T = lim
δS→0

∂f

∂S
. (A.1)

Tractions need not to be normal to the surface and can be resolved either into normal

and tangential components or into Cartesian components. The SI unit of traction is the

Pascal (Pa), equivalent to one Newton per square metre (Nm−2). In continuum mechanics,

the traction is considered by convention to be positive when acting in the same general

direction as the outer normal to the surface (tension), and negative in the opposite case

(compression) (Ranalli, 1994). In geology and rock mechanics the sign convention is

typically the opposite (compression as positive and tension as negative). Most of the

modelling literature uses the continuum mechanics convention and, consequently, I choose

to use the same.

Consider now a small cube with its faces oriented perpendicular to the coordinate axes

x1, x2 and x3 (Fig. A.1). Then it is possible to define the tractions T1, T2 and T3 for the

faces normal to the axis x1, x2 and x3:

T1 = (σ11, σ12, σ13), (A.2)

T2 = (σ21, σ22, σ23), (A.3)

T3 = (σ31, σ32, σ33), (A.4)
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where σij represents the component of the traction applied on the face perpendicular to
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Figure A.1: Stress components exerted on the faces of an infinitesimal cube. The sign of
the components indicates whether the stress component is the result of a force (positive)
or a counterforce (negative).

the i axis, in the j direction. The three tractions together form the stress tensor σij :

σij =




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 . (A.5)

Consequently, stress is the tensor formed of tractions acting on the faces of a infinitesimal

cubic volume inside a continuum. Stress can also be defined as the internal distribution

and intensity of force acting at any point within a continuum in response to various

internal and external loads applied to the continuum (Malvern, 1969). In 3D space the

stress tensor is represented by a 3× 3 matrix which units of its components are the same

ones of its component tractions (Pa in SI). Normal stresses are located in the diagonal of

the matrix and shear stresses are located in the off-diagonal part. Due to the condition

of force balance in absence of internal sources of angular momentum the stress matrix is

symmetric relative to the main diagonal (Malvern, 1969), so:

σij = σji. (A.6)
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Pressure P is defined to be the average of the normal stresses:

P = −(σ11 + σ22 + σ33)/3. (A.7)

The negative sign in the Eq. A.7 is assigned as a convention, assuming that pressure is

positive under compression. The deviatoric stresses τij are defined as the deviations of the

stresses from the pressure:

τij = σij + Pδij , (A.8)

where δij is the Kronecker delta which is δij = 1 when i = j and δij = 0 when i 6= j.

Therefore, the off-diagonal deviatoric components are equal to the off-diagonal components

of the stress.

A.0.2 Strain and strain rate

Lets assume two particles P and Q inside a continuous domain D which coordinates are

respectively xi and xi + dxi (Fig. A.2). After displacement the particles coordinates will

change into P ′(xi + ui) and Q′(xi + dxi + ui + dui), where ui and ui + dui would be

the displacements of the particles P and Q respectively. If ui is a continuous function of

the coordinates and its displacement gradient ∂ui/∂xj is also continuous and very small,

the displacements of contiguous particles would differ only by an infinitesimal amount

(Ranalli, 1994). Then the difference on displacement dui can be defined as a function of

the initial difference in location dxj :

dui =
∂ui
∂xj

dxj . (A.9)

Is is possible to split the displacement gradient in two parts:

∂ui
∂xj

=
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
+

1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
, (A.10)

where i and j are the coordinate indices 1, 2 and 3 and x1, x2 and x3 are the spatial

coordinates. The first term corresponds to the strain tensor εij :

εij =
1

2

(
∂ui
∂xj

+
∂uj
xi

)
, (A.11)

which describes the changes in shape and volume of the domain D, and the second term

corresponds to the rigid-body rotation tensor ωij :

ωij =
1

2

(
∂ui
∂xj
− ∂uj

xi

)
, (A.12)
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Figure A.2: Displacements of two proximate particles P and Q inside a continuum
domain D. The initial coordinates of the particles are respectively xi and xi + dxi, and
the displacements for each one are respectively ui and ui + dui.

which describes rigid-body displacements and rotations (Malvern, 1969). Note that the

strain tensor is symmetric while the rigid-body rotation tensor is antisymmetric. In the

models presented in this thesis the domain is represented by the mantle and the crust,

where rotations are small enough for the rigid-body rotation tensor to be neglected in

the dynamic formulation, although it is important to consider rotations where tensorial

properties are needed to be tracked.

The strain tensor characterizes the amount of deformation inside a continuum evaluating

the change of coordinates for a point along the space. Strain is dimensionless and it is

defined by a 3× 3 matrix:

εij =




∂u1
∂x1

1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
1
2

(
∂u1
∂x3

+ ∂u3
∂x1

)

1
2

(
∂u2
∂x1

+ ∂u1
∂x2

)
∂u2
∂x2

1
2

(
∂u2
∂x3

+ ∂u3
∂x2

)

1
2

(
∂u3
∂x1

+ ∂u1
∂x3

)
1
2

(
∂u3
∂x2

+ ∂u2
∂x3

)
∂u3
∂x3


 , (A.13)

where the diagonal terms represent the elongations in the directions of the coordinate axes

and the off-diagonal components are related with angular deformation.
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Then, we can define the strain rate ε̇ij , which accounts for the amount of deformation

through time inside a continuum, through the xi axes:

ε̇ij =
∂εij
∂t

, (A.14)

or, in the matricial form:

ε̇ij =




∂v1
∂x1

1
2

(
∂v1
∂x2

+ ∂v2
∂x1

)
1
2

(
∂v1
∂x3

+ ∂v3
∂x1

)

1
2

(
∂v2
∂x1

+ ∂v1
∂x2

)
∂v2
∂x2

1
2

(
∂v2
∂x3

+ ∂v3
∂x2

)

1
2

(
∂v3
∂x1

+ ∂v1
∂x3

)
1
2

(
∂v3
∂x2

+ ∂v2
∂x3

)
∂v3
∂x3


 , (A.15)

where vi represents the velocities in the i directions 1, 2 and 3. The strain rate unit in the

SI is s−1.

The deformation produced by the change in volume is defined by the volumetric strain

(ε11 + ε22 + ε33)/3. The deviatoric strain is the result of subtracting the volumetric

strain from the strain tensor:

ε′ij = εij −
1

3
εkkδij . (A.16)

Similarly, it is possible to define the deviatoric strain rate which is the change in

deformation without taking into account the change in volumetric strain:

ε̇′ij = ε̇ij −
1

3
ε̇kkδij . (A.17)

A.0.3 The momentum equation

Newton’s second law states that a force f exerted on a body of mass m will result in an

acceleration a of the body directly proportional to the force and on its direction:

f = ma. (A.18)

The acceleration describes the velocity changes with time:

a =
∂v

∂t
, (A.19)

where v is the velocity and t is the time. Both the force and the acceleration are vectors

which can be defined in the three components of the space:

fj = maj or fj = m
∂vj
∂t

, (A.20)
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where j represents the three dimensions of the space 1, 2 and 3. Eq. A.20 can be applied to

a continuum, considering each material point as a very small Lagrangian volume (Fig. A.3).

The total force applied into the j direction would be the result of adding the gravity force

mgj to the outside forces in the j direction, exerted over the boundaries of the body

(Malvern, 1969):

fj = fjA + fjB + fjC + fjD + fjE + fjF +mgj , (A.21)

where gj is the gravity acceleration in the j direction, fjA−fjF are stress-related forces
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Figure A.3: Forces applied into a Lagrangian volume on its boundaries A− F .

acting from outside of the Lagrangian volume, and A, B, C, D, E and F represent the

boundaries of the body in which the forces are exerted. If ∆x1, ∆x2 and ∆x3 are the dimen-

sions of the Lagrangian volume, then the stress-related forces for the different boundaries

can be defined as:

fjA = −σ1jA∆x2∆x3, (A.22)

fjB = +σ1jB∆x2∆x3, (A.23)

fjC = −σ2jC∆x1∆x3, (A.24)

fjD = +σ2jD∆x1∆x3, (A.25)

fjE = −σ3jE∆x1∆x2, (A.26)

fjF = +σ3jF∆x1∆x2, (A.27)
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where σijA to σijF are the components of the stresses for the faces perpendicular to the

i directions, defined at the different boundaries A to F. The sign on the right hand side

of the Eqs. A.22 − A.27 differentiate forces (positive sign) from counterforces (negative

sign). Combining Eqs. A.20 and A.21:

fjA + fjB + fjC + fjD + fjE + fjF +mgj = maj . (A.28)

Substituting A.22−A.27 into A.28:

(σ1jB−σ1jA)∆x2∆x3 + (σ2jD−σ2jC)∆x1∆x3 + (σ3jF −σ3jE)x1x2 +mgj = maj . (A.29)

Normalizing Eq. A.29 with the Lagrangian volume V :

V = ∆x∆y∆z, (A.30)

and defining the stress component increments:

∆σ1j = (σ1jB − σ1jA), (A.31)

∆σ2j = (σ2jD − σ2jC), (A.32)

∆σ3j = (σ3jF − σ3jE), (A.33)

we can obtain the momentum equation in the Lagrangian form for the j directions:

∆σ1j∆x2∆x3

V
+

∆σ2j∆x1∆x3

V
+

∆σ3j∆x1∆x2

V
+
m

V
gj =

m

V
aj , (A.34)

or
∆σ1j

∆x1
+

∆σ2j

∆x2
+

∆σ3j

∆x3
+ ρgj = ρaj , (A.35)

where ρ is the average material density of the Lagrangian volume. If ∆x1, ∆x2 and ∆x3

tend towards zero and by considering Eq. A.19, then, Eq. A.35 turns into the differential

momentum equation in the Lagrangian form which describes the conservation of momen-

tum for a continuous medium in the gravity field:

∂σ1j

∂x1
+
∂σ2j

∂x2
+
∂σ3j

∂x3
+ ρgj = ρ

∂vj
∂t

, (A.36)

or,
∂σij
∂xj

+ ρgi = ρ
∂vi
∂t
. (A.37)

The stress derivatives with respect to the coordinates represent the forces exerted over

the surfaces of an infinitesimal cubic volume, the density times the gravity represents
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the body force and the density times the derivative of the velocity with respect to time

(acceleration) represents the inertial forces.
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L. Moresi, F. Dufour, and H. B. Mühlhaus. A Lagrangian integration point finite el-

ement method for large deformation modeling of viscoelastic geomaterials. Journal

of Computational Physics, 184(2):476–497, 2003. ISSN 0021-9991. doi: 10.1016/

S0021-9991(02)00031-1. URL http://www.sciencedirect.com/science/article/

pii/S0021999102000311.

L. Moresi, S. Quenette, V. Lemiale, C. Mériaux, B. Appelbe, and H. Mühlhaus. Compu-
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