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iii



smart and kind people, who took time to help me find the way. I am happy to have

been able to spend more time with my good friend Dr. Alfonso E. Romero. We

shared discussions on science and life, and shared many long conversations over quite

a few pints.

I feel the responsibility as a Paraguayan to thank Prof. Paccanaro for his efforts

to help strengthen the scientific community in Paraguay. With no bonds other than

friends who remember him fondly as a good man, he took it upon himself to help the

small country I call home. He took more trips than I can count and worked longer

hours than he should have, exerting tremendous effort aimed at a foreign country.

This was done without hope for retribution and with a drive that, if it were more

common, the world would be a far better place.

Finally, we do not speak English at home, so I feel a bit of Spanish is needed.
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Abstract

For about 30% of hereditary diseases no disease gene is currently known. Very little

if anything at all is known about the molecular basis of these orphan diseases. In this

Thesis I present an ontological method that accurately quantifies similarity between

heritable diseases modules in the interactome, which can be used to help pinpoint the

location of the perturbation causing the orphan diseases . This method, based on the

MeSH ontologies, effectively brings together the existing information about diseases

that is scattered across the vast corpus of biomedical literature.

I prove that sets of MeSH terms provide a highly descriptive representation of her-

itable disease and that the structure of MeSH provides a natural way of combining

individual MeSH vocabularies. I also show that the measure can be used effectively

in the prediction of candidate disease genes. The effective use of the vast information

available allows the measure to be applicable for orphan diseases: the measure can

help pinpoint the location of their molecular perturbations. More generally, the mea-

sure enables the transfer of knowledge between similar diseases, providing hypotheses

for disease genes and even suggestions for drug repositioning.

I have validated the method through a machine learning approach to show the

predictive power of the measure. Further to the numerical evaluation, I have curated

a highly illustrative set of examples for the literature showcasing the accuracy of the

method. Lastly, I show that the measure is effective for the prediction of candidate

disease genes. I have developed a web application to query more than 28.5 million re-

lationships between 7,574 hereditary diseases (96% of OMIM) based on the similarity

measure.

During my PhD I have also developed GOssTo and GOssToWeb a console and

web application to compute semantic similarities in the Gene Ontology. GOssTo was

integrated into a disease gene prediction pipeline that showed the advantages of using

functional similarities to improve the predictions.
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Chapter 1

Biomedical Ontologies

The need for standardised vocabularies in the natural sciences arose as early as the

17Th century with Linnaeus’s taxonomy. In the biomedical field, this need was recog-

nised as early as the 19Th century with the precursors of International Classification

of Diseases (ICD+) [1]. While the main aim at the time was to obtain a uniform

vocabulary as a means to classify living things and to enable statistical analysis of

the incidence of diseases [1], these vocabularies were extended and refined over the

past decades. The new ontologies and classification systems, although built on the

same principles changed to reflect the exponential growth of data [32].

The modern biomedical ontology, such as the Gene Ontology (GO) and the Disease

Ontology (DO), not only provides this standard nomenclature, but they have become

a subject of study in their own right.

In this chapter, I will explore the biomedical ontologies more relevant to my work,

analysing their driving principles, evolution through time and their ontological struc-

ture. I will also present methods to determine similarity of genes based on the onto-

logical structure of the Gene Ontology (GO).

1
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1.1 Ontologies: A shared domain language

The term ontology, in Computer Science, is related to the philosophical concept of

Ontology. Philosophically “Ontology” is the study of nature, the basic categories

of life, existence and all their relationships. In Computer Science, and particularly

in knowledge representation, the concept is, expectedly, narrower. The concept of

“existence” in Computer Science, is reduced to the world view that can be effectively

represented [92], thereby reducing the scope of the term.

In Computer Science, an “Ontology” describes shared knowledge of a particular

domain [67]. Broadly, it is a description of a system, its parts and relationships,

that is shared between a group of people. That is, it represents a specific world

view [67]. Formally, an ontology is defined as a formal representation of a shared

conceptualisation [67].

An ontology can, therefore, represent a specific domain, such as the organisation

of a company or the structure of the army. A few examples stand out in, such as

BabelNet [77], WordNet [74] and Umbel [97].

1.2 Biomedical ontologies

The need for wider, more specific standardised vocabularies in biology became appar-

ent with the advent of large-scale functional analysis of proteins. The experimental

validation of the extent of the functional conservation of proteins in orthologues [59]

revealed the need for a cross-organism ontologies to describe genes and their products

accurately. The exponential amount of information being added required standard-

ised means to better use this information, driving Molecular Biology data analysis to

the forefront “Big Data” [99].

Larger databases, such as Online Mendelian Inheritance in Man (OMIM) highlight
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the relevance of the biomedical ontologies. OMIM’s main focus is the relationship

between the genes and their resulting disease phenotypes, in particular for those genes

that have Mendelian inheritance patterns [4]. The database contains over 15, 000

genes and more than 7, 500 human diseases, of which, nearly 70% have associated

some genetic background.

Perhaps the most significant difficulty when systematically analysing databases

such as OMIM is their lack of structure. While comprehensive, OMIM is mainly

aimed at medical practitioners, and it has extensive and detailed free-text disease de-

scriptions that are inadequate for automated analysis. It is characterised by a loose

structure, represented by entries referencing one another, consists of relations that are

neither semantically defined nor abundant enough to be exploited in a systemic analy-

sis. For example Saethre-chotzen syndrome (MIM:101400) refers to Muenke syndrome

(MIM:602849) describing it as having “similar overlapping phenotype”. The same en-

try for (MIM:101400) also refers to Craniosynostosis (MIM:123100), but in this case

the referred entry contains information about structural changes in the cytogenetic

location, and finally, it refers to Cephalopolysyndactyly Syndrome (MIM:175700), to

indicate that it “appears to be located” in the same cytogenetic region [5]. The on-

tologies provide the structure that, when used appropriately as I will show, provide

a tool for the large scale analysis of databases such as OMIM.

The ontologies analysed in this section are the most relevant for my work.

1.2.1 Gene Ontology (GO)

The Gene Ontology (GO) is a community effort to manually create a standard nomen-

clature for genes and gene products [59, 96]. It is based on the Open Biological and

Biomedical Ontologies (OBO) [15] concepts, and originally the project included the

model organisms D. melanogaster, M. musculus and S. cerevisiae, growing to include

over 30 organisms in the current releases [3].
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Gene Ontology (GO) is based on the Open Biological and Biomedical Ontologies

(OBO) [15] concepts and it is organised into three ontologies. The Molecular Function

ontology is composed of terms that describe activities at molecular level e.g. Lactase

activity (GO:0000016). The Biological Process ontology is composed of terms that

describe tasks carried out by genes and gene products, either independently or as

part of a protein complex e.g. Regulation of DNA recombination (GO:0000018). And

finally, the Cellular Component ontology describes the components of a cell, such as

the Polarisome (GO:0000133).

1.2.2 The ontological structure

The ontological structure of each ontology in GO is defined by the relationships

between its terms. In GO, 8 possible relationships link the terms.

is a

The is a relationship, occurring 71,177 times, defines the main structure of GO. It

defines instances, in the class sense, of the terms. That is, Reproduction
−−→
is a Bi-

ological Process implies that Reproduction is an instance of or a type of Biological

Process.

part of and has part

The part of relationship is the second most common relationship, occurring 8,573

times in GO. This relationship defines part-whole relationships. That is, ifA
−−−−−→
part ofB,

then A is a constituent part of B and the existence of A implies the existence of B [3].

For example, Transcription factor activity, protein binding (GO:0000988)
−−−−−→
part of Reg-

ulation of nucleic acid-templated transcription (GO:1903506).

The has part, while not the complement of part of, defines a logical reciprocal
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[3]. It is used to indicate a relationship between two terms where one is a necessary

part of the other, from the perspective of the parent. Following an has part link

implies an increase in specificity. For example, Transcription factor activity, protein

binding (GO:0000988)
−−−−−→
has part Protein binding (GO:0005515), indicating that the

transcription factor activity is always composed of protein binding. The has part

relationship occurs 710 times in GO.

regulates and the sub relationships negatively regulates and positively

regulates

These relationships link processes where one of the processes directly affects the other

[3], that is, A regulates B implies that A necessarily regulates B. The processes are

either positively or negatively regulated, however, the relationship regulates is used

when not enough information is available to accurately qualify the nature of the regu-

lation. For example, Regulation of mitotic cell cycle (GO:0007346)
−−−−−−→
regulates Mitotic

cell cycle (GO:0000278). The negatively regulates relationship occurs 2,857 times,

positively regulates 2,828 times and regulates 3,286 times.

happens during and occurs in

These relationships are special in the sense that, to the best of my knowledge, there

is no specific definition of them in the GO documentation [3]. I analysed 10 pre-

vious releases of GO dating from 2006 to 2015, and the first occurrence of both

happens during and occurs in is in 2015. From the existing occurs in relationships

in GO I was to infer that these relationships link together the Biological Process

and Cellular Component ontologies thereby describing the physical location where a

process takes place.

These relationships are rare, with happens during being used only once relating

the terms Uterine Wall Breakdown (GO:0042704) and Menstruation (GO:0042703).
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The occurs in relationship is used a total of 178 times.

Table 1.1 shows the topological characteristics of the GO ontologies. Since the

majority (89.7%) of the relationships are represented in the is a and part of relation-

ships, the depth and average number of children were calculated exclusively based on

these two relationships. The maximum depth of the ontologies is determined by the

length of the shortest path.

Ontology Terms Leaves Max.depth Avg.children
Biological Process 28,247 11,342 13 2.09
Molecular Function 10,944 7,729 11 1.21
Cellular Component 3,809 2,463 9 1.87

Table 1.1: Topological characteristics of the three ontologies in the Gene Ontology

Figures 1.1, 1.2, 1.3 show the number of nodes in each level of the ontology. This

figure contrasts the number of leaves (red bars) and non-leaf (blue) terms in each

level of the Biological Process ontology.

Not all ontologies GO grew from its inception. In particular, from the first re-

lease in 2006, the Biological Process ontology remained fixed at 13 levels, while the

Molecular Function grew from 10 levels to the current 11 and the Cellular Component

ontology grew from 8 to 9.

The growth, however, is not only reflected in the inclusion of new terms but also

in the refinement of the ontological structure through the removal of obsolete terms.

I explored all releases from 2006 to 2015 of GO, analysing growth and maintenance

of the existing ontological structure. Figure 1.4 shows the number of terms in each

yearly release of GO compared to the number of obsolete terms in that year. With

a rate of growth of 128% since its inception (from 12, 346 in 2006 to 28, 247 in 2015)

the growth process greatly exceeds the removal of obsolete terms, which grew by 89%

from 1, 011 in 2006 to 1, 918 in 2015. This reflects the highly directed process that

guides GO’s growth: terms are added whenever the need arises [59, 96].
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Figure 1.1: Distribution of nodes and leaves per level in the Biological Process ontol-
ogy. The blue bars show the number of descriptors per level in the Biological Process
ontology of GO and the red bars the number of leaves in each level.

Figure 1.2: Distribution of nodes and leaves per level in the Molecular Function
ontology. The blue bars show the number of descriptors per level in the Molecular
Function ontology of GO and the red bars the number of leaves in each level.



CHAPTER 1. ONTOLOGIES 8

Figure 1.3: Distribution of nodes and leaves per level in the Cellular Component
ontology. The blue bars show the number of descriptors per level in the Cellular
Component ontology of GO and the red bars the number of leaves in each level.

Figure 1.4: Growth of the Biological Process ontology. The blue curve shows the
number of terms in the ontology and the red curve the number of obsolete terms.
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In an attempt to analyse the refinement of the GO annotations I extracted all

experimental annotations (i.e. with evidence codes EXP, IDA, IPI, IMP, IGI and

IEP [96]) for A. thaliana, H. sapiens,M. musculus, S. cerevisiae and C. elegans from

UniProt GOA [23]. For these organisms, the usage of terms is shown in table 1.2

Organism Total terms Mean usage of terms
A. thaliana 4,143 10.94
H. sapiens 8,885 12.62
M. musculus 9,479 18.76
S. cerevisiae 4,449 9.24
C. elegans 2,375 8.87

Table 1.2: Use of GO terms in the experimental annotations of some model organisms.
The total terms correspond to the annotations with the experimental evidence codes
EXP, IDA, IPI, IMP, IGI and IEP.

In all organisms, the most common term used is Protein Binding (GO:0005515),

a term at level 2 in the Molecular Function ontology, used 2, 557 times in C. elegans,

6, 572 in A. thaliana, 10, 874 in S. cerevisiae, 22, 492 in M. musculus and 35, 409 in

H. sapiens. This term is followed the equally general terms Nucleus (GO:0005634),

Cytoplasm (GO:0005737) and Mitochondrion (GO:0005739). This skew in the use

of the ontology reflects the issues associated to the overall low reproducibility of

experiments [79, 35]: few experiments are generally repeated resulting in many genes

with very general annotations.

1.2.3 Disease Ontology (DO)

The Disease Ontology (DO) is a community-driven, manually created resource to

provide a uniform nomenclature for human diseases [57]. The centralised repository

provided by the DO enables a precise identification of human diseases facilitating the

sharing of information as well as large scale computational analysis. The DO is based

on the OBO [15] concepts and links to databases such as Medical Subject Headings
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(MeSH), ICD+ and OMIM through cross-referencing.

1.2.4 The ontological structure

DO defines a total of 6,590 non-obsolete terms, of which 5,776 (72%) are leaves. The

ontological structure is defined exclusively through 6,940 is a relationships and terms

have, on average, 1.06 children. As is the case in GO, the is a relationship in the

Disease Ontology does not define instances of diseases, but rather reflects a type-

subtype relationship. This can be seen in figure 1.5 which shows a branch of the

ontology, starting from a leaf at the deepest level of the ontology.

Figure 1.6 shows the number of nodes in each level of the ontology where each

bar corresponds to a level in the ontology. The blue part of each bar indicates the

number of descriptors in the corresponding level and the red component of the bars

the number of leaves. Again, as was the case in GO the majority of the terms in

DO are in the mid levels of the ontology. Since the upper levels of the ontology are

general (e.g. Endocrine system disease), the growth is mostly concentrated in the mid

levels.

Older versions of DO are not available for download. I was, therefore, unable to

analyse the growth and evolution of the ontology through time.

1.3 International Classification of Diseases (ICD+)

ICD+ is an ontology designed to monitor the incidence and prevalence of diseases. It

is designed and maintained by the World Health Organisation, and is arguably, the

first ever biological ontology dating as far back as the late 1800’s [1]. ICD+ provides

a standard vocabulary in order to enable the comparison and analysis of diseases and

health issues across WHO member countries.
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Figure 1.5: Example from the DO. The figure shows all paths to the root from a leaf
in the DO.
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Figure 1.6: Distribution of nodes and leaves per level in the DO. The blue bars show
the descriptors per level in DO and the red bars the number of leaves in each level.

1.3.1 The ontological structure

There are a total of 12, 131 nodes linked through implicit is a relationships. Of these

nodes, 10, 557 are leaves (87%). ICD+ is, compared to other ontologies shallow having

a maximum depth of 3. The mean number of children is 4.92, compared to GOs and

DOs (2.09 and 1.06 respectively) which reflects the shallow ontological structure and

the large number of terms.

It is important to note, that the aim of ICD+ makes the ontology itself less

complex. ICD+ need not specify the different nodes with the amount of specificity

that, for example, GO needs. Since the aim of ICD+ is to classify diagnosis, the

specific enough needs to ensure that individual terms can be used in groups to identify

a diagnosis. While every term in the ICD+ describes a disease, in the DO this is not

the case. In DO a disease is described by a collection of terms, and therefore, a more

detailed ontology is required.
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Each node is assigned a tree number with the following format: <Root><TwoDigits>

{"."<SingleDigit>"."}+ . Every "." indicates a new level and the <TwoDigits>

to the left and to the right of the "." indicates a descriptors coordinate in that spe-

cific level. For example, the Tree Number (A00) (which corresponds to the ICD+

term Cholera) has three children (A00.0) (Cholera due to Vibrio Cholerae 01, biovar

cholerae), (AA0.1) (Cholera due to Vibrio Cholerae 01, biovar eltor) and (A00.9)

(Cholera unspecified) Figure 1.7 shows the full path from a leaf at the deepest level

of the ontology to the root.

Figure 1.7: Example from ICD+. The figure shows all paths to the root from a leaf
in ICD+.

Figure 1.8 shows the number of nodes in each level of the ontology in ICD+. The

blue bars show the number descriptors per level in the ontology and the red bars the

number of leaves in each level. The ontology is very particular, as the vast majority

of leaves (95%) are located in the last level of the ontology. That is, the ontology was

build to provide a unique vocabulary to help in the comparison of diagnostics, and is

therefore designed to very specific. This is mainly due to the nature of the domain

the ontology is designed to describe.
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Figure 1.8: Distribution of nodes and leaves per level. The blue bars show the
descriptors per level in ICD+ and the red bars the number of leaves in each level.

1.4 Human Phenotype Ontology (HPO)

The Human Phenotype Ontology (HPO) focuses on the phenotypic abnormalities,

based on the Open Biological Ontologies [15] concepts. In the Human Phenotype

Ontology (HPO) each term describes a single disease phenotype [81]. The construc-

tion of the HPO differs from that of GO and DO in that it is a result of text-mining

of OMIM to produce the relevant disease phenotypes [81]. The complex construction

procedure requires further detail.

To obtain the terms that will be used to construct the ontology, the authors

extracted all available Clinical Synopsis (CS) descriptions from the diseases in OMIM

[4]. These CS fields contain a list of known phenotypes associated to the diseases.

All phenotypes appearing more than once in OMIM will be included in the HPO. For

example, the phenotype Dementia is associated to more than a hundred diseases in

OMIM and results in the term (HP:0000726), while Presenile and senile dementia is
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exclusively associated to Alzheimer’s Disease (MIM:104300) and therefore does not

have a term in the ontology. Every putative term obtained through this process of

text mining of the CS fields was manually curated, exploiting the authors’ expertise

in human genetics [81]. The list of terms was further expanded by performing string

matching analysis of terms already in the ontology and those initially discarded. The

relationships between the terms were manually constructed [81].

1.4.1 The ontological structure

The ontological structure is defined through is a relationships. A total of 11, 324

nodes, of which 7, 290 (64,3%) are leafs, are connected through 11, 423 links. Figure

1.9 shows a specific branch built from a leaf in the HPO.

Figure 1.10 shows the number of nodes in each level of the ontology. The blue

bars show the descriptors per level in the ontology and the red bars the number of

leaves in each level.

Over the course of the 31 releases, the ontology maintained the 13 levels from

2012 through to 2014. I explored the releases available from 2012 to 2014 to compare

the growth to the maintenance and removal of obsolete terms. Figure 1.11 shows

the number of terms in each yearly release of the HPO compared to the number of

obsolete terms in that release. The constant number of obsolete terms and the little

increase (in some cases even decrease) in number of terms compared to GO reflects the

construction procedure of the HPO: fewer terms need to be deprecated as most terms

were already manually extracted from a comprehensive database such as OMIM.

1.5 Medical Subject Headings (MeSH)

MeSH is a controlled vocabulary created and maintained by the National Library of

Medicine [98] in the United States of America. It is organised into several hierarchical
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Figure 1.9: Example from the HPO. The figure shows all paths to the root from a
leaf in the HPO.
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Figure 1.10: Distribution of nodes and leaves per level. The blue bars show the
descriptors per level in the HPO and the red bars the number of leaves in each level.

Figure 1.11: Growth of the Human Phenotype Ontology. The blue curve shows the
number of terms in the ontology and the red curve the number of obsolete terms.
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structures that allow searching and indexing of publications in the PubMed/MED-

LINE library at different levels of specificity. Usually MeSH is identified with the

descriptors [64, 106], however, there are two additional record types: Qualifiers and

Supplementary Concept Records.

Descriptors

The descriptors are organised into 16 individual but overlapping ontologies, each of

which represents a specific subject area: Anatomy [A], Organisms [B], Diseases

[C], Chemicals and Drugs [D], Analytical, Diagnostic and Therapeutic Techniques

and Equipment [E], Psychiatry and Psychology [F], Phenomena and Processes [G],

Disciplines and Occupations [H], Anthropology, Education, Sociology and Social

Phenomena [I], Technology, Industry, Agriculture [J], Humanities [K], Information

Science [L], Named Groups [M], Health Care [N],Publication Characteristics [V] and

Geographicals [Z]. These categories are not meant to be an exhaustive classification

of the subject they represent, but rather a hierarchy of terms needed for the classi-

fication and indexing of the publications in PubMed. It is important to note that

the descriptors in the Publication Characteristics [V] and Geographicals [Z] do not

describe the content of the publications, but rather the publications themselves.

Subheadings or Qualifier

The Subheadings or Qualifier are records used for indexing and cataloguing PubMed

entries alongside the Descriptors. They are organised into a smaller taxonomy of 88

descriptors. Effectively, the subheadings group together descriptors into a coherent

topic related to the publication [98].
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Supplementary Concept Records

The Supplementary Concept Records are used to index chemical compounds, drugs

and other concepts. These records are not structured in an ontology, but are linked

to one or more descriptors.

1.5.1 The ontological structure

The ontological structure of the descriptors is defined by the tree number associated

to the descriptor. While the relationships are not explicitly specified in MeSH, I

can identify two types: is a relationships and part of relationships. Each node is

assigned a tree numbers have the following format: <OntologyName> <TwoDigits>

{"."<ThreeDigits>"."}+ . Every "." indicates a new level and the <ThreeDigits>

to the left and to the right of the "." indicates a descriptor’s coordinate in that specific

level. For example, the Tree Number G01.595.560.107 (which corresponds to the

MeSH term Acceleration (D000054)) is shown in figure 1.12 Notice the recursive con-

struction of the ontology, where all nodes at each level, share the prefix corresponding

to their depth. For example, the nodes at level 3 Coriolis Force, Rotation and Accel-

eration have identical tree numbers up to the 3rd position, namely, G01.595.560.

Table 1.3 shows a few topological features of the MeSH ontologies.

In figure 1.13 I shows the number of nodes in each level of the ontology in MeSH.

The blue bars show the descriptors per level in each MeSH ontology and the red bars

the number of leaves in each level. The ontologies are all “wider” in the middle, that

is, the majority of terms are in the middle levels of the ontology. It is important

to note that in the case of MeSH the high-level leaves do not necessarily indicate a

poorly constructed ontologies, but rather a well constructed an understood underlying

taxonomy. This can be seen in an example from the Anatomy [A] ontology, in which

a node at level 3 (from the 11 possible) can already represent a highly specific concept,
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Figure 1.12: Example from MeSH. A small subset extracted from MeSH.

for example, Adrenergic Neurons (D059331).

I analysed the evolution of the MeSH ontologies by comparing the 2013 and 2014

releases. In figure 1.14 the red bars show the distribution of descriptors per level

in 2013 MeSH and the blue bars the distribution of descriptor per level in the 2014

MeSH. The most noticeable change occurred in the Humanities [K] ontology, where

a new level of specific nodes was added.

1.6 Semantic similarity of terms in an ontology

Semantic similarity measures are metrics to quantify similarity between objects in a

given context [72]. This context is provided by well-structured controlled vocabularies
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Ontology Descriptors Leaves Max.depth Avg.children
Anatomy [A] 1,703 768 11 3.08
Organisms [B] 3,670 894 12 3.53
Diseases [C] 4,621 1,271 10 3.40
Chemicals and Drugs [D] 9,280 1.450 11 3.41
Analytical, Diagnostic and Ther-
apeutic Techniques and Equip-
ment [E]

2,727 887 10 3.83

Psychiatry and Psychology [F] 965 487 7 3.41
Phenomena and Processes [G] 1,978 748 10 3.73
Disciplines and Occupations [H] 388 280 7 3.52
Anthropology, Education, Sociol-
ogy and Social Phenomena [I]

561 322 9 3.79

Technology, Industry, Agriculture
[J]

513 218 10 4.09

Humanities [K] 191 145 7 3.17
Information Science [L] 415 213 9 3.89
Named Groups [M] 225 160 7 3.05
Health Care [N] 1,597 540 9 3.55
Publication Characteristics [V] 155 112 4 5.41
Geographicals [Z] 392 340 7 5.81

Table 1.3: The 16 MeSH ontologies. The number of terms in each ontology corre-
sponds to the 2014 version of MeSH.

in the form of ontologies. For example, when trying to determine functional similar-

ity between genes, the GO Biological Process ontology can provide the appropriate

context [42].

Considering that GO [59] is perhaps the best known biomedical ontology, the

following discussion will focus on GO without loss of generality.

1.6.1 The True Path Rule

The ontological structure allows the definition of a True-Path. This True-Path means

that the entire path from a term to the root of the ontology must be true an consistent

[42], and therefore, these ancestor terms must be valid annotations for the gene (in
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Figure 1.13: Distribution of nodes and leaves per level for each of the 16 MeSH
ontologies. The x-axis shows the different levels in each ontology and the y-axis the
number of descriptors in that level. The blue bars show the descriptors per level in
MeSH and the red bars the number of leaves in each level.

the case of GO). Consider the example shown in 1.15, in this figure, a gene annotated

with the function Cell growth function, is also a single-organism cellular process.

The True-Path rule results in an annotated Directed Acyclic Graph (DAG) of the

ontology composed of all the terms that are on the path of to the root of the originally

annotating terms. Figure 1.16 shows an example from annotations belonging to the

BRCA2 gene in Human. The red nodes indicate the direct annotations, and the

white nodes the annotated subgraph constructed following the is a relationship. In

the context of GO, the terms in figure 1.16 are the only ones that are valid descriptions

of the gene.
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Figure 1.14: Perspective on the evolution of MeSH. The x-axis shows the different
levels in each ontology and the y-axis the number of descriptors in that level. The
red bars show the descriptor per level in 2013 MeSH, the blue bars the descriptors
per level in 2014 MeSH.

1.6.2 Topological similarity measures

Based on these annotated DAG structures resulting from the True Path Rule, “sim-

ple” topological measures are possible. Consider the topological distance between the

ontology nodes, where similarity between two nodes is inversely proportional to the

length of the shortest path available [72]. This measure fails to account for the variable

conceptual distance represented by the different links, as well as for the variability in

detail of the various ontologies [72]. For example, consider the terms and relations

Regulation of cell morphogenesis (GO:0022604)
−−→
is a Regulation of anatomical struc-

ture morphogenesis (GO:0022603) and Cellular Process (GO:0009987)
−−→
is a Biological

Process (GO:0008150) are joined by an identical link, the conceptual distance is not
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Figure 1.15: All genes with the Cell growth function have also the more general
function Growth, and so on until the root. Image produced by QuickGo [78]

Figure 1.16: The red nodes correspond to all experimental annotations of the BRCA2
gene in Human.
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identical. While, as these simple topological measures show, the structure of the on-

tology is not strictly necessary to compute similarity between genes. However, as I

prove through an in-depth analysis based on MeSH in chapter 5, its appropriate use

results in more accurate similarity scores.

1.6.3 Ontological similarity measures

Several semantic similarity measures have been proposed to overcome the shortcom-

ings of the simpler, topological similarity measures. The ones by Resnik [72], Jiang

and Conrath [51] and Lin [25] are based on the information content of the lowest

common ancestor of pairs of terms, and are often referred to as “term-based”, due

to the fact that they compute the similarity between individual terms [42]. Alterna-

tively, simUI and simGIC [17] compare sets of terms rather than single terms using

graph comparison approaches and are often referred to as “graph-based” [42]. These

measures were chosen as a representative set, it is important to note however, that a

few new measures have appeared [82, 34, 43] recently.

Term-wise measures

The term-based measures determine similarity of terms a and b based on the concept

of information content of a term, defined as the negative logarithm of the probability

of that term (calculated as the ratio between the number of diseases annotated by

that term and the total number of annotated diseases) [72, 42]. Formally:

IC(c) = −log (p (c)) (1.1)

Resnik[72] determines the similarity of two nodes in an ontology by calculating

the information content of the Lowest Common Ancestor (LCA) of two given nodes.

The Lowest Common Ancestor (LCA) is defined as the common ancestor of nodes a
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and b with the highest information content. Formally, Resnik’s measure is defined as:

sim (a, b) = −2 ∗ IC (LCA (a, b)) (1.2)

Further measures, which can be interpreted as normalisations of Resnik’s measure

[42] are proposed by Lin [25] and Jiang and Conrath [51]. Lin’s measure is define as:

sim (a, b) =
−2 ∗ IC (LCA (a, b))

IC (a) + IC (b)
(1.3)

Lastly, Jiang and Conrath, define a distance measure, which can be converted to

a similarity score. Formally, the measure is defined as follows:

dist (a, b) = 2 ∗ IC (LCA (a, b))− IC (a)− IC (b) (1.4)

The conversion of this distance measures is straightforward.

sim (a, b) = f

(
1− dist (a, b)

max (dist (i, j))

)
∀ (i, j) (1.5)

While Resnik, Lin and Jiang and Conrath perform similarly on the GO [42], this

is not the case for MeSH. An in-depth analysis is presented in chapter 5.

Since genes are annotated by sets of terms, the combination of the multiple scores

into a single number that quantifies the similarity is required. To illustrate this,

consider two genes a and b, annotated as follows: Ga = {t1, t2, t4, t6} and Gb =

{t1, t7}. For each pair of terms {(t1, t2), (t1, t7), (t2, t7), (t4, t1), (t4, t7), (t6, t1), (t6, t7)},

the similarity will be given by its LCA. Thus, genes a and b have up to 8 possible

similarity scores based on their annotations. Several combinations are available at

this point, among which are the arithmetic average of the scores, the maximum

possible similarity between all pairs of terms [17], and weighted averages [33] of the

scores. Whichever the choice, some compromise will have to be made. Choosing
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the maximum possible similarity disregards the differences between the terms and

choosing the arithmetic average disregards the similarities between the terms. To

avoid the intrinsic problems of the term-based measures, Graph-based measures have

been proposed.

Graph-based measures

Graph-based measures determine the similarity of the genes based on sets of terms

rather than the individual terms. The fundamental graph-based measure, simUI [17]

is based on the Jaccard coefficient of the annotated ontology, as defined in equa-

tion 1.6:

sim (i, j) =
‖Terms (i) ∩ Terms (j)‖
‖Terms (i) ∪ Terms (j)‖

(1.6)

While this measure includes all terms annotating the genes, it fails to account for

their specificity in light of the existing annotations.

To correctly account for the specificity of terms, Pesquita et al. [16] proposed

simGIC, a modification of simUI. simGIC defines similarity as the quotient of the

sum of the information content (IC) of the common terms between two genes and

the sum of the information content of all terms used to annotate the genes. Formally:

sim (i, j) =

∑
t∈Terms(i)∩Terms(j) IC (t)∑
t∈Terms(i)∪Terms(j) IC (t)

(1.7)

simGIC has been shown to perform better than simUI [17], and these measures

were overall shown to be better than the term-wise measures in GO [17, 42].

1.6.4 Zero similarity between sets of terms

A situation that needs to be considered arises when calculating semantic similarities

in an ontology with term-based similarity measures. The following analysis will focus
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on Resnik’s [72] similarity measure as a representative of the term-based similarity

measures.

If the LCA happens to be the root node, which according to the true-path rule

annotates every gene in the organism, the similarity between the two genes will be

equal to zero (as the information content of the root is zero). Figure 1.17 presents

a toy example, in which only four nodes of the Gene Ontology annotate any genes,

namely, the ones coloured blue and red. The coloured lines, blue and red respectively,

represent the True-Path from each node of the corresponding colour.

a c b d

LCA(a,b)

LCA(c,d)

Figure 1.17: Toy example of a set of terms with zero similarity. A small set of terms
exemplifies situations in which the similarity of two terms can be zero.

By following the blue lines the LCA for nodes labelled a and b is reached. The node

labelled LCA (a, b) will not annotate all the genes. In fact, the genes annotated by

the red node d are not annotated by the node LCA (a, b). To verify this suffices with

following red line from node d to the root: this path does not include node LCA (a, b)

and therefore, the fraction of genes annotated by it will definitely be different than 1

leading to non-zero information content.
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Conversely, by following the red lines the LCA of nodes c and d is reached. This

node, represented by the node with the label LCA (c, d), happens to be the root of

this toy ontology. The fact that this node is the root means that, due to the true path

rule, it annotates all genes (a, b, c, d). This means the information content of node

LCA (c, d) will be zero. While this example might seem contrived, this particular

situation arises when considering that most organisms available in UniProt GOA

have very few experimental annotations.

Lin’s measure will also be zero whenever the LCA coincides with the root of the

ontology, according to 1.3. Jiang and Conrath’s measure requires further analysis.

The distance measure in 1.4 will be properly defined, resulting in low distance, as

given by the sum of the information content of the nodes being analysed. In cases

where the LCA is the root, the similarity of two terms will be dependent exclusively

on their own information content, as defined in equation 1.5. We can, therefore,

understand the factor 2∗ (LCA (a, b)) as being a damping factor, that will reduce the

similarity according to the distance of the pair of terms to their LCA.

Consider a basic example, were the number of genes annotated by the root is 10,

the number of genes annotated by nodes a and b are 2 and 3 respectively. If the root

is chosen the similarity will be defined as follows by the various measures:

• Resnik: −2 ∗ log (p (1)) = 0

• Lin: −2∗log(p(1))
log(0.2)+(0.3)

= 0

• Jiang: dist (a, b) = 2 ∗ log (p (1))− log (0.2)− log (0.3) = 1, 21.

To convert the distance into a similarity, the maximum value in the distance

matrix has to be determined. For the purposes of this exercise, let the maximum

value be 1, 13, corresponding to an LCA annotating 9 terms in the ontology.

sim (a, b) = f
(

1− 1,22
1,13

)
= 1.08

A graphical illustration is shown in figure 1.18.
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Figure 1.18: Zero information content. The red circle labelled Root corresponds to
the information content of the root of GO. The green and blue circles labelled a and
b, respectively, correspond to the information content of the terms a and b in GO.

1.7 Improving GO semantic similarities

An important recent development has been the introduction of the Random Walk

Contribution by Yang et al. , developed in our Lab, which greatly improves the

semantic similarity measures presented in § 1.6 [42].

The authors note that the GO annotations are constantly changing, evolving to

reflect the new knowledge that becomes available. This change introduces an inherent

uncertainty that has, so far, not been considered appropriately. In addition existing

similarity measures disregard the ontological structure that spans below the terms

that are being compared. Yang et al. [42] argue that the uncertainty in the anno-

tations and the structure below the terms has an impact on the semantic similarity

measures, and therefore need to be appropriately considered.
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To illustrate the relevance of the ontology below the terms, consider figure 1.19

(redrawn from [42]) where, without loss of generality, all leaf terms annotate non-

overlapping proteins. The pairs of nodes (A,B) and (C,D) have an identical structure

above. However, since the terms (C,D) share the child Z, they would ideally be more

similar than terms (A,B), a fact that traditional similarity measures would ignore.

Consider once again figure 1.19, but this time, note how the proteins annotated

by each term, shown in parentheses, are only completely defined for the term A.

Assuming that leaf nodes annotate non-overlapping genes, all other annotations could

be specified further.

A B C D

R

(5) (5)

(10)

(5)(5)

(15) (15) (15)

(2) (2) (5) (5)

Figure 1.19: The relevance of the ontology below the terms. This figure was reproduced
from [42]. The ontology above A,B and C,D is identical, however, terms C,D share
a child. The uncertainty in the annotations. The annotations in node A are fully
specified, while the annotations of term B can still be specified further.

The authors propose the Random Walk Contribution as an “add-on” for existing

similarity measures (the Host Similarity Measure (HSM)) in order to extend them

and appropriately handle the uncertainty in annotation as well as the ontological

structure below the terms.
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1.7.1 The method

According to the true-path rule, every protein annotated by a term in an ontology is

also annotated by all its ancestors [42]. This means that every protein annotated by

term F and by term G in the toy example presented in figure 1.20 (redrawn from

[42] are also annotated by term D. The similarity of term D and some other term

X could therefore be estimated by the pairwise similarities of G,X and F,X [42].

Viewing similarity from this perspective is relevant considering that these are leaf

terms and therefore the HSM’s are accurate for terms F and G [42]. To estimate the

weights for the similarities F,X and G,X the authors define a downward random

walk which will begin at the root of the ontology [42].

R

C D(50) (15)

(20) (25) (5) (5)

(100)

D E F G

UR

UD

Figure 1.20: Illustration of the ISM method. The figure shows the inclusion of a
fictitious node to account for the uncertainty in the annotations.

To define the transition probabilities, the authors account for the uncertainty in

the annotations. Consider the case of nodeD in figure 1.20, in which there are proteins

that could be specified further, possibly being annotated in the future by a node that

does not currently exists (labelled UD in the figure). The transition probability to
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node UD is defined by equation 1.8, where N∗v is the number of proteins annotated

by term v and not to any of is children, Nv is the total number of proteins annotated

by node v.

P (v → Uv) =
N∗v
Nv

(1.8)

Once the probability of the partially annotated proteins being annotated by a

currently nonexistent node is determined, the remaining transition probabilities can

be defined by equation 1.9.

P (v → c) = (1− P (v → Uv))
Nc∑

u:∃v→uNu

(1.9)

The random walk follows the transition probabilities defined for the nodes by

equations 1.8 and 1.9. W v
t denotes the probability of the walker being in node v at

time t, with WR
0 = 1, where R is the root, and zero for all other nodes at time t = 0.

The probability of being in any node at time t is determined by the probabilities at

t− 1 and the transition probabilities. However, the probabilities are different for leaf

nodes and non-leaf nodes. Unlike the non-leaf nodes, once the walker has arrived at

a leaf, it cannot leave. The probability of being on a leaf node l at time t+ 1 is equal

to the probability of arriving at this node from a parent, denoted by v → l plus the

probability of being there at time t, and is given by equation 1.10 [42].

W v0
t+1 (l) = W v0

t (l) +
∑

v:∃v→l

W v0
t (v)P (v → l) (1.10)

Similarly, for all non-leaf nodes v, the probability of being at node v at time t+ 1

is given by the probability of arriving to node v from one of its parents. W v
t+1 is

defined by equation 1.11

W v0
t+1 (v) =

∑
q:∃q→v

W v0
t (q)P (q → v) (1.11)
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The Random Walk Contribution to the similarity of nodes v0 and v1 is given by

the weighed HSM of all leaf node L, excluding the added fictitious nodes. Formally:

RWC (v0, v1) =
∑
i,j∈L

W v0
∞ (i)W v1

∞ (j)HSM (i, j) (1.12)

This Random Walk Contribution is then combined into an Integrated Similarity

Measure (ISM) according to equation 1.13

ISM (v0, v1) = RWC ((v0, v1)) (1.13)

As defined, the Random Walk Contribution takes into account the ontological

structure beneath the terms, as well as the uncertainty in the structure and the

annotations. The transition probabilities encode the uncertainty in the annotations,

since for nodes with higher uncertainty (see node D), the likelihood of the walker

stopping in one of the leaves (see nodes F orG) is reduced [42]. Sharing of descendants

is also accounted for by the Random Walk Contribution, as more shared descendants

implies a more similar stationary distribution [42].

The method was tested measuring the predictive power of the improved semantic

similarity measures on protein-protein interaction data, sequence similarity data and

gene expression data [42]. The authors show that the Random Walk Contribution

has consistently improve the traditional similarity measures[42].
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1.8 The Gene Ontology Semantic Similarity tool:

an integrated tool for computing semantic sim-

ilarities

Together with Dr. Alfonso E. Romero and Samuel Heron, I have developed Gene On-

tology Semantic Similarity Tool (GOssTo) [39], the Gene Ontology semantic similarity

Tool, a user-friendly web and standalone tool for calculating semantic similarities be-

tween gene products according to the Gene Ontology. GOssTo is bundled with six

semantic similarity measures, including both term- and graph-based measures, and

has extension capabilities to allow the user to add new similarities. GOssTo also

implements Yang’s et al. the Random Walk, extending all the implemented semantic

similarities.

The standalone version of the software is developed with ease of use in mind.

It is very fast, allowing the calculation of genome-wide semantic similarities on a

genomic scale in a few minutes. The web interface of GOssToWeb provides access

to all capabilities of GOssTo through a clean and simple web interface. Chapter 6

presents GOssTo and GOssToWeb in full detail.



Chapter 2

Network Medicine: a network view

of diseases

The genotype-phenotype relationship is not a linear one [11, 66] with environmen-

tal factors, variable penetrance, variable expressivity and other complex phenomena

obscuring the real link between a specific phenotype and the underlying genotype

[65, 48]. Over the past decades, linkage analysis, Genome-wide Association Studies

(GWAS) and, more recently linkage analysis coupled with whole-genome sequencing

(henceforth association studies) have produced large amounts of genotype-phenotype

associations [66, 48]. While these methods have proven to be successful [22] they do

not provide a complete picture of the nature of the phenotype-genotype relationship,

and have been found insufficient to account for the wide variability in phenotypes

[22, 10]. Elucidating the underlying mechanisms driving human diseases requires a

broader analysis [22, 10]. The main assumption of Systems Biology is that genes do

not act alone, but rather as parts of larger, complex mechanisms [12, 65]. Faults in

these complex mechanisms, that is perturbations in the biological networks, result in

diseases [66, 54].

36
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This chapter is organised as follows. First, an introduction of the relevant biolog-

ical networks will be presented followed by a discussion on disease modules. Then,

the problem of quantifying disease similarities will be introduced.

2.1 The biological networks

The observed behaviour of the complex system that is the cell is the result of wider

interaction and interdependent activity of the biological molecules [12]. This under-

standing of the modular nature of cellular organisation [56] guides the development of

the biological networks. These network abstractions are commonly depicted as graphs

where the nodes represent physical entities such as genes and proteins, and the edges

represent a variety of interactions (e.g. physical or functional) [66]. In general, the

construction of the networks follows three approaches, namely high-throughput ex-

periments, literature curation of existing data and computational predictions [66].

For the purposes of this work, Protein-protein interaction (PPI) networks are the

most relevant and will therefore be analysed in more detail. Table 2.1 presents a brief

breakdown on the most relevant biological networks [66, 105].

2.2 Protein-protein interaction networks

Proteins rarely perform their tasks in isolation [66] but rather as part of functional

modules called complexes [49, 56]. Within these complexes, each protein has a specific

function that contributes to the overall function of the module [91]. A PPI network

represents all known physical interactions between the proteins of an organism by

means of an undirected graph. Many approaches have been developed for experimen-

tally discovering the physical interactions between proteins. Yeast two-hybrid (Y2H)

and Affinity purification/Mass spectrometry (AP/MS) are the most widely used [49].
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Network Nodes Edges Construction Datasets

Protein-
protein

interaction
Proteins

Physical
interac-
tions.
Undi-
rected.

Literature
curation,

high-throughput
experiments,

computational
prediction [66]

HPRD[93],
BioGRID[18],

IntAct[84],
STRING[28]

Metabolic
Biochemical

metabo-
lites

Reactions,
Enzymes.
Directed

or
undirected

Literature curation
and prediction

based on orthology

BIOCYC [75],
metaTIGER [50],

KEGG [61]

Gene
regulatory

Transcription
factors,
DNA

regulatory
elements

Transcription
factor -

regulatory
element re-
lationship.
Directed

Y1H, CHiP
[66, 94], Gene

Knockdown [13],
Coexpression [6]

SysGenSIM [13],
ARACNE [6],

ChIP-Array [73].

Coexpression Genes

Coexpression
measure.

Undi-
rected.

Built by computing
expression profile

similarity measures
on transcriptonics
data such as the
datasets in GEO

[89]

GEO [89]

Table 2.1: Summary of biological networks

Yeast two-hybrid (Y2H) methods work by co-opting the transcription mechanism

genetically modified yeast cells. The system is designed in a way as to ensure that a

reporter gene will be transcribed only when the Bait and Prey proteins interact [101].

As shown in figure 2.1, the protein of interest, the Bait, is bound to a DNA binding

domain, while the Prey protein is bound to a Transcriptional activation domain. As

the transcription factor will only be functional when both the DNA binding domain

and the Transcriptional activation domain are present the reporter gene will only be

expressed in those cells in which the bait and prey interact [8].
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Figure 2.1: Yeast 2-hybrid. A) shows the case in which the Bait and Prey interact,
with the resulting expression of the Reporter Gene. B) shows a case in which the
Bait and Prey-2 protein do not interact, and the Reporter Gene not being expressed

Figure 2.2 presents an outline of a typical AP/MS experiment. The process begins

by affixing a Bait protein to a matrix to inmobilise it (A). The Bait protein is passed

through a protein mixture (B) where it will bind to its interacting partners (C).

Through a series of washes (i.e. purification steps) the Bait is separated from its

Preys (D), which are then analysed by Mass Spectrometry (E). AP/MS experiments

are repeated for the same bait protein, resulting in weighted interactions of the bait-

prey proteins [103].

In contrast to the binary interactions produced by Y2H methods, AP/MS ap-

proaches result in weighted co-complex information [103], that is, AP/MS can report
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Figure 2.2: Affinity Purification / Mass Spectrometry. The bait protein is attached
to an inmobilising matrix (A). The attached Bait protein is passed through a protein
mixture where the interacting partners attach (B) (C). Through a series of purification
steps the preys are separated (D) and analysed through mass spectrometry.

links between proteins that do not directly interact (notice the black protein in col-

umn D or figure 2.2). Y2H methods are not without fault, as they can fail to detect

interactions that occur after post-translational modifications [8]. These methods are

complementary, and a combination of methods might be required to obtain a high-

quality, high-covering PPI network [8].

Several of the existing databases are the result of manual and automated literature

curation by the authors, as is the case of the Mammalian Protein-Protein Interaction

Database (MIPS) [70], the Molecular interaction database (MINT) [9], the Biomolec-

ular Interaction Network Database (BIND) [36] and the Human Protein Reference

Database (HPRD) [93]. IntAct [85] follows a more collaborative approach, where

literature curation efforts are augmented by user-submitted interactions. In contrast,

the High-quality interactomes (HINT) [45] and STRING [28] provide integrated PPI

networks, constructed by integrating multiple databases (among which are MIPS,

Human Protein Reference Database (HPRD), and others) and additionally, in the

case of STRING, predicting interactions through machine learning approaches. In
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addition to the construction of the networks substantial bioinformatics work is re-

quired to produce comprehensive and accessible datasets, in order to combine the

individual experiments into comprehensive PPI datasets that are useful as systems

biology tools.

While PPI networks are incomplete [46], some topological characteristics can read-

ily be observed. The networks tend to be scale-free, that is, there are few very well

connected nodes while most tend to have few connections [12]. This degree distribu-

tion is thought to be associated with gene duplication events which result in already

well connected nodes gaining even more connections [12]. Interestingly, the scale-

free nature of the networks does not seem to be associated to biases in the study of

diseases [95].

These well-connected Hub nodes account for most of the essential genes [41]. This

is indeed a property of scale free networks such as the Internet [68] where the removal

of a central node has catastrophic consequences. Interestingly, only few disease genes

encode hubs and the ones that do correspond to the minority of disease genes that

are essential genes in the organism [54].

2.3 Human diseases and biological networks

For many diseases the disease status is determined by conditions that have to be

met for the disease to be diagnosed [22]. This approach focuses on the observable

pathophenotype [22] and is still a staple in modern medicine as evidenced by concepts

such as the Medical algorithm [83]. However, complex diseases are not necessarily

amenable to this type of analysis. In some diseases, for example Phenylketonuria

(MIM:261600)) penetrance can be incomplete, causing only a subset of the individuals

with a particular genotype to develop the phenotype. In other cases penetrance can

vary with age, as is the case in late-onset diseases such as ARMD1 (MIM: 603075).
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A genotype can also have variable expressivity leading to a continuum of resulting

phenotypes as in the case of Marfan Syndrome (MIM: 154700) [48, 27]. These complex

scenarios reveal an underlying complexity that is not explained by linear disease-gene

associations and therefore require a broader, more powerful analysis [22].

The systems view of diseases does not consider a disease to be a “whole” but

rather a consequence of wider perturbations in the interactome – the “disease module”

[63, 66, 54]. These perturbations have non-linear effects that result in the collection of

phenotypes that co-occur to bring about the disease [22, 95]. This broader relationship

between diseases and their causes have important implications on our understanding

of human disease, as is evidenced in Goh’s et al. Diseasome [54]

2.4 Relating diseases through biological networks

In their work, Goh et al. propose the construction of the “Diseasome”, a global map

of the disease-gene relationships. The Diseasome is represented as a bipartite graph

in which one set of nodes represents the diseases and the other set of nodes the

known disease genes. The links between the disease set and the gene set represent

the known disease-gene associations found in Online Mendelian Inheritance in Man

(OMIM). Based on the Diseasome, two complementary networks are constructed: the

Human Disease Network (HDN) and the Disease Gene Network (DGN). In the HDN

nodes represent diseases and two diseases are connected if they share common disease

genes, while in the DGN nodes are genes and links connect genes associated to the

same disease.

To illustrate the construction of the Diseasome and its complementary repre-

sentations the HDN and the DGN, consider the disease-gene associations shown in

table 2.2.

Figure 2.3 illustrates the Diseasome based on the disease-gene associations in
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Disease Gene
Familial Expansible Osteolysis (MIM:174810) TNFRSF11A
Paget Disease of Bone (MIM:602080) SQSTM1,TNFRSF11A
Osteopetrosis, Autosomal Recessive 7 (MIM:612301) TNFRSF11A

Table 2.2: Example of disease-gene associations obtained from OMIM.

table 2.2. In the HDN, there are three nodes, one for each disease and since TN-

FRSF11A is associated to all three diseases, the network is fully connected. The link

between (MIM:174810) and (MIM:602080) is wider, since these diseases share two dis-

ease genes. In the DGN there are two nodes, one for each gene, and one connection

representing the fact that genes TNFRSF11A and SQSTM1 are both associated to

(MIM:602080). The complementary representations provided by the HDN and DGN

provides a systems view of the interconnectedness of heritable diseases.

Some fundamental topological features of the disease modules are highlighted by

Goh’s et al. work. In particular, the authors show that, not only the genes associated

to a disease tend to be functionally coherent, but genes associated with similar disor-

ders are related to one another [54]. The interconnectedness of the diseases enables

wider analyses to be carried out, identifying the extent of the perturbations that

drive the diseases [95]. In particular, this understanding that the underlying causes

of similar diseases must be somehow related allows us to explore disease similarity

measures that would quantify the distance between the disease modules [64].

Figure 2.4 reproduces the figure presented by Goh et al. [54]. It is important

to note that while the layout was designed manually, both the HDN and the DGN

reveal the interconnectedness of human diseases. In the figure, each disease is coloured

according to one of 22 disease classes, and it can readily be noted that diseases belong

to the same class are tightly connected.

From a network medicine perspective quantifying disease similarity at molecular

level would allow the transfer of knowledge between similar diseases [64], possibly
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MIM:174810

MIM:602080

TNFRSF11A

SQSTM1

MIM:612301

MIM:174810

MIM:602080

MIM:612301

TNFRSF11A

SQSTM1

Diseasome

HDN DGN

Figure 2.3: Example of the HDN and DGN projections of the bipartite diseasome.
This example represents a subset of the diseasome based on data extracted directly
from OMIM.

providing hypotheses for causal genes discovery and even suggestions for drug reposi-

tioning. The Diseasome follows a bottom-up approach, relating the diseases through

their molecular basis. However, the lack of molecular-level information about the

diseases (for about 30% of hereditary diseases in OMIM no disease gene is currently

known) suggests that a wide covering and accurate measure should rely on a combi-

nation of the phenotype and genotype data in order to accurately quantify similarity

between diseases.
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Figure 2.4: Visualisation of the HDN and DGN projections of the bipartite diseasome.
Each disease is coloured based on its disease class. The figure is reproduced from Goh
et al. [54].
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The complexities of the genotype-phenotype relationship provides an argument for

more comprehensive phenotype-based approaches to relating diseases. In particular,

phenotypic information is more readily available and is more comprehensive than the

existing molecular information [63].



Chapter 3

Existing methods for disease

similarity

Few methods for quantifying disease similarity have recently appeared. These can

be classified into two groups: phenotype and molecular data -based approaches. In

the first group, the measures by van Driel et al. [64], Köhler et al. [81] and Zhou et

al. [106] stand out. In the second group are the methods proposed by Goh et al. [54],

Park et al. [86] and Mathur and Dinakarpandian [82].

In this chapter, I will provide an in-depth review of the relevant literature, analysing

the motivation behind the existing approaches, identifying relevant features and short-

comings.

3.1 van Driel’s et al. text mining analysis

van Driel et al. [64] present a measure based on text-mining analysis of the disease

phenotype descriptions found in Online Mendelian Inheritance in Man (OMIM). The

authors show that phenotype level similarity relates to the function of the genes

associated to the diseases [64]. To verify the correlation between phenotype similarity

47
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and protein level function, genotype distance correlation, van Driel et al. defined

four molecular-level relationships. These relationships relate disease-genes through

physical protein-protein interactions and three protein-protein similarities based on

sequence, protein motifs and Gene Ontology (GO) function.

3.1.1 The method

van Driel’s et al. fundamental building block is a “record” composed of the combina-

tion of the Clinical Synopsis (CS) and Text (TX) fields mined from OMIM. Due to the

free-text nature of the entries, van Driel et al. implemented text analysis techniques

to systematically retrieve the knowledge contained in them and produce a descriptive

feature vector for each disease.

The records are mined for a predefined set of Medical Subject Headings (MeSH)

terms which are used to construct feature vectors for every disease. The authors

used the terms from the Anatomy [A] and Diseases [C] MeSH ontologies, which they

filtered removing general terms such as “disease” and “syndrome”. This resulted in

4, 145 MeSH terms to be used as features for the disease records. In order to construct

the feature vector, the records are parsed counting the number of occurrences of each

feature. In this way, every disease is represented by a 4, 145-dimensional feature

vector, in which the occurrence count of each feature represents its relevance with

respect to the disease.

The authors recognise the need to account for the hyponym - hypernym (i.e. the

relationship between more specific and more general terms) relationship (see chap-

ter 1). As the authors observe, whenever a term from the feature set appears in a

record, its ancestors must also be considered [64]. For example, if a record references

the feature (Retina), its hypernyms (i.e. ancestors) such as the term (Eye) must be

relevant to the record as well.

To account for the hierarchical structure of MeSH, each term along the path to the
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root starting from each feature will be considered relevant in relation to the feature

found in the record. The relevance of feature c is given by:

rc = rc,counted +

∑
rhypos

nhypo,c

(3.1)

Where rhypos is the relevance of the hyponyms of feature c, nhypo,c is the number of

hyponyms of feature c and rc,counted is the counted frequency of feature c in the record.

rc is calculated iteratively for each term starting at the deepest level of the MeSH

ontology.

The features extracted from the MeSH ontologies are not equally informative.

The increasing specificity of the terms as the ontology is traversed down results in

very general terms used to describe diseases together with very specific terms. For

example, the term Chromosomes (D002875) is used 4, 294 times across OMIM while

Afibrinogenemia (D000347) appears only twice. This imbalance is corrected by the

authors using the inverse document frequency measure (tdf-idf), thereby accounting

for the variable frequency of the terms. The weight wc of term c is given by the

base 2 logarithm of the fraction of disease records that are described a specific term.

Formally:

wc = rc ∗ log2

N

nc

(3.2)

Where N is the total number of OMIM records, and nc is the number of times a

MeSH feature c is used to annotate records in OMIM. The inverse document frequency

reduces the relevance of a very common term while increasing the relevance of more

infrequent terms that could provide more information. Thus, a rare term such as

Afibrinogenemia (D000347) would have a weight given by wD000347 = log2
7,812
2

=

11.93 while the more common term Chromosomes (D030342) would have a weight of

wD030342 = 0.86.

The weight of a term is further refined to account for the variability of length of
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the OMIM records.

weightc =
1

2

(
1 +

wc

rmf

)
(3.3)

In this way the weight of a feature weightc in a record is a function of the concept’s

frequency rc divided by the frequency of the most occurring feature in that record,

given by rmf . Equations 3.1, 3.2 and 3.3 are applied in order to each disease’s feature

vector.

The pairwise similarity of the records is given by the cosine of the angle between

each corrected feature vector, given by equation 3.4.

s (x, y) =

∑l
i=1 xiyi√∑l

i=1 x
2
i

√∑l
i=1 y

2
i

(3.4)

To illustrate van Driel’s et al. method, I present a toy example based on a set of

1, 000 diseases and a feature set of 5 features A,B,C,D,E. For a a given disease the

frequencies of the features are given by rc,counted = 〈3, 4, 0, 1, 0〉. According to van

Driel’s et al. method, equations 3.1, 3.2 and 3.3 are applied in order to every diseases’

feature vector.

Based on the structure of the ontology in figure 3.1, vector rc,counted will be trans-

formed by equation 3.1 recursively into

r = 〈3rA , 4rB , 3.5rC , 1rD , 2.25rE〉

Since leaf terms A,B,D have no hyponyms, their relevance is given by their counted

frequencies rA, rB and rD respectively (
∑

rhypos
nhypo,c

in equation 3.1 equals zero). For non-

leaf terms their relevance is determined by their own frequencies and the relevance

and number of their hyponyms. For C,
∑
rhypos is the sum of the relevances of A and

B, namely 7, and nhypo,c is 2. The relevance of C is then given by rC = 0 + 7
3

= 3.5.

To weigh the relevances according to the number of times each feature is used to
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describe the N = 1, 000 diseases in this example, we need to define the total number

of disease records each feature is used to describe:

nfeature = 〈100nA
, 500nB

, 20nC
, 3nD

, 1000nE
〉

According to equation 3.2, the weights are defined as follows:

wfeature = 〈9.96rA , 4rB , 31.36rC , 8.38rD , 0rE〉

The weight of A is given by wA = 3 ∗ log2 1000100
= 9.96

Finally, equation 3.3, accounts for the variable length of the records:

weightfeature = 〈1.74weightA , 1weightB , 4.42weightC , 1.54weightD , 0.5weightE〉

For feature A, the final weight weightA is determined by the quotient of weight wA

of the term and the frequency of the term most used to describe diseases, namely B:

weightA = 1
2
∗
(
1 + wA

4

)
= 1.74

Figure 3.1: The final weights for the 5 features in the ontology are weightfeature =
〈1.74weightA , 1weightB , 4.42weightC , 1.54weightD , 0.5weightE〉.
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3.2 Köhler’s et al. Human Phenotype Ontology

Köhler et al. observe that while OMIM is a broad and detailed compendium of her-

itable diseases, it is not suitable for automated analysis. The main obstacle resides

in the lack of a centralised vocabulary that could be used to describe the OMIM

diseases. This is particularly relevant considering that synonyms are not taken into

account in the construction of OMIM (e.g. muscle atrophy and muscular atrophy are

used to describe the same concept).

The authors propose the construction of the Human Phenotype Ontology (HPO),

a wide covering, purpose specific ontology aimed at describing the phenotypic ab-

normalities of the diseases in OMIM. The HPO is constructed through a process of

automated and manual curation by the authors [81]. Each term in the ontology rep-

resents a phenotypical abnormality and terms are related to one another through an

is a relationship. For details on the construction of the HPO, refer to chapter 1 § 1.4.

The authors provide annotations for OMIM, which enables disease similarities to

be calculated based on the term-based similarities of their annotations.

3.2.1 The method

The method proposed by Köhler et al. measures similarity of two OMIM diseases

based on the semantic similarity of terms in the HPO. The similarity of two terms

t1, t2 is defined by the Resnik [72] similarity of the terms, that is, the information

content of their common ancestor with highest information content, that is:

TermSim (t1, t2) = maxa∈A(t1,t2) − log p (a) (3.5)

where A = (t1, t2) is the set of ancestors common to t1 and t2.
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Based on this term-wise similarity, disease similarities are calculated as follows:

sim (d1, d2) = avg

[∑
s∈d1

maxt∈d2TermSim (t1, t2)

]
(3.6)

where s are terms annotating disease d1 and t are terms annotating disease d2.

Since this similarity score is not symmetric, a transformation is applied:

HPOsim (d1, d2) =
1

2
sim (d1, d2) +

1

2
sim (d2, d1) (3.7)

3.3 Zhou’s et al. Disease Symptom Network

Zhou et al. [106] propose the construction of the Human Symptoms Disease Network

(HSDN), a network that reflects the dynamics of heritable diseases from the perspec-

tive of the physical manifestations that characterise them. In the HSDN, nodes are

diseases and the links represent similarities calculated based on the co-occurrence of

symptoms.

In order to build the HSDN, Zhou et al. mine PubMed analysing the co-occurrence

of a symptom and a disease. The co-occurrence is compiled into a feature vector that

characterises each disease based the frequency of its symptoms. Pairwise similarity

between diseases is obtained by calculating the cosine of the angle between the feature

vectors and then conserving only statistically significant scores.

3.3.1 The method

Zhou et al. define the symptoms by filtering the Diseases [C] ontology in MeSH,

extracting terms which describe clinical manifestation of diseases contained in the sub

ontology Signs and Symptoms [C23.888]. To define diseases, a similar procedure is

followed, whereby the Diseases [C] ontology is used excluding the Signs and Symptoms
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[C23.888] sub ontology, the Animal Diseases [C22] sub ontology and some general

terms like “Disease” and “Symptom”. Through this process, the authors obtain

4, 442 diseases and 327 symptoms.

The main assumption is that disease terms and symptom terms that co-occur in

a publication indicate a relation between the disease and the symptom. By mining

PubMed, the authors obtain the set of MeSH terms associated to each publication,

which enables the construction of a feature vector that describes the co-occurrence

of diseases and symptoms in PubMed. For a given disease, its feature vector dj is

defined as follows:

dj = (w1,j, w2,j, . . . , wn,j) (3.8)

where wi,j denotes the number of times a feature i coincides with a disease j in

PubMed.

To account for the different specificity of the terms in MeSH, (e.g. ) the tdf-idf

was measured:

wi,j = wi,j ∗ log
N

ni

(3.9)

where N denotes the total number of diseases, and ni the number of diseases which

reference symptom i. The wi,j weights are further filtered by a Chi-squared test with

a threshold P-value of 0.05 in order to preserve only significant disease-symptom

associations.

The remaining significant vectors determine the symptoms most relevant to each

disease, and an appropriate measure of similarity between them would determine

similarity between the diseases. This is done following a similar approach to van

Driel et al. [64], calculating the cosine of the angle of the feature vectors:

cos (d1, d2) =

∑
i dx,idy,i√∑

i d
2
x,i

√∑
i d

2
y,i

(3.10)
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3.4 Goh’s et al. Human Disease Network

I preface this section by noting note that while Goh et al. [54] do not provide a

similarity measure as such, I have developed a method to produce disease similarity

scores based on the data presented by the authors in [54]. For a detailed discussion

on the construction of the Diseasome, refer to chapter 2 § 2.4.

The authors combine the diseases in OMIM into 1, 284 syndromes through auto-

matic textual comparison of the names followed by manual curation. For example

Anaemia, hypochromic microcytic (MIM:206100) and Anaemia, hemolytic, Rh-null,

regulator type (MIM:268150) are combined into a single syndrome, Anaemia. Each

syndrome is then categorised into one of 21 categories according to the physiological

system it affects. The categories are as follows: a) Bone, b) Cancer, c) Cardio-

vascular, d) Connective tissue disorder, e) Dermatological, f) Developmental, g) Ear-

Nose-Throat, h) Endocrine, i) Gastrointestinal, j) Haematological, k) Immunological,

l) Metabolic, m) Multiple, n) Muscular, o) Neurological, p) Nutritional, q) Oph-

thalmological, r) Psychiatric, s) Renal, t) Respiratory and u) Skeletal. The authors

labelled all remaining syndromes without an appropriate category such as Alcoholism,

susceptibility to (MIM:103780) and Antley-Bixler syndrome (MIM:207410) as “Unclas-

sified”.

I constructed a binary disease similarity measure from the Diseasome through a

mapping that considers all diseases in a category to be similar (similarity equal to

1) and all pairs of diseases with diseases appearing in different categories as dissim-

ilar (similarity equal to 0). For example, Sarcoidosis, early-onset (MIM:181000) and

Neutrophil immunodeficiency syndrome (MIM:608203) which were both categorised as

“Immunological” by Goh et al. , are are therefore considered similar according to the

mapping I propose. Following the work of Goh et al. , this binary similarity measure,

albeit coarse, reflects the organisation of the interactome, whereby diseases that are
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similar at phenotype level (i.e. affect the same physiological system), are the result

of perturbations in nearby regions in the interactome [54]. The technical details of

the construction of the disease similarity score based on the Diseasome are presented

in chapter 4.3.

3.5 Park’s et al. co-localisation of disease proteins

Park et al. [86] study the phenotypic similarities of heritable diseases analysing the

subcellular location of the disease proteins. In their work, Park et al. prove that

disease proteins from phenotypically similar diseases tend to be co-localised in the

same cellular compartment. The author’s main assumption is that proteins associated

to phenotypically similar diseases are more likely to share a subcellular compartment.

In order to verify this claim, Park et al. construct a disease similarity measure based on

the location of the known disease proteins. Furthermore, diseases affecting the same

physiological system show significant association with specific cellular compartments.

3.5.1 The method

Park et al. describe a disease in terms of the subcellular location of its disease proteins

by measuring the association of the disease proteins to 10 predetermined subcellular

compartments. These spatial profiles are compiled into the Disease-associated Protein

and Subcellular Localization (DPL). In Park’s et al. work, a disease corresponds to

one of the 1, 284 syndromes defined by Goh et al. [54] (see § 3.4), and disease-protein

associations are obtained from OMIM.

The authors use the GO Cellular Component ontology to annotate the disease

related proteins in order to describe their subcellular localisation. To determine the

appropriate GO term for the 1, 171 disease associated proteins, the authors use a

combination of predicted subcellular locations (for 609 proteins) and annotations
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provided by UniProt GOA (for 1, 168 proteins).

Based on these GO annotations, the authors calculate an association score defined

by the Ochai coefficient, between a disease Di and a subcellular location Lj:

OC (Di, Lj) =
PDi∈Lj√
PDi
× PLj

(3.11)

where PDi∈L denotes the number of proteins associated to disease Di which are located

in subcellular compartment Lj; PDi
and PLj

are the number of proteins associated

to disease Di and the number of disease proteins located in location Lj respectively.

The association score between a disease and a location is then defined by normalising

the OC (Di, Lj) score as follows:

AS (Di, Lj) = 100
OC (Di, Lj)∑
k OC (Di, Lk)

(3.12)

In this way, a disease’s association score AS (Di, Lj), can be thought of as a vector

of length ‖L‖ that sums up to 100. This vector constitutes a “location profile” for

a disease. The similarity between two diseases is given by the Pearson Correlation

Coefficient of these location profiles [86]. Formally:

PCCij =
Nl

∑
lASilASjl −

∑
l xil

∑
l xjl√

Nt

∑
l x

2
il − (

∑
l xil)

2
√
Nt

∑
l x

2
jl − (

∑
l xjl)

2
(3.13)

ASil denotes the association score between disease i and subcellular localisation j.
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3.6 Disease similarity based on functional similar-

ity of disease proteins

A few methods have recently appeared linking the similarity of phenotypes to the

functional similarity of disease proteins, such as the ones by Cheng et al. [55], Suthram

et al. [88] and Mathur and Dinakarpandian [82]. These methods are conceptually

similar, and in the following, Mathur and Dinakarpandian’s method will be presented

as an example.

Mathur and Dinakarpandian [82] present a measure based on functional similarity

of the disease associated proteins, given by the semantic similarity of GO terms

annotating the proteins. The method has two steps. First, the authors design a

new semantic similarity measure and evaluate its performance by comparing it with

existing measures. The similarities between disease-associated proteins are then used

to determine similarity between the diseases.

The protein semantic similarity measure

The semantic similarity measure proposed by the authors considers the graph struc-

ture of the ontology and the co-occurrence of the annotations simultaneously, under

the assumption that the continually changing structure in the GO will render existing

similarity measures inaccurate [82].

The authors measure co-occurence of annotations for a pair of terms through the

Jaccard coefficient of GO terms of two annotated gene products, namely:

sc (x, y) =
n (x ∩ y)

n (x ∪ y)
(3.14)

where x, y are GO terms and n (x ∩ y) are the number of genes annotated with term

x and y simultaneously.
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The authors note that the Jaccard coefficient would be inaccurate as specific

terms would have the same effect on the similarity as would very general terms. They

account for this effect by weighting the sc with the average information content of

the terms:

sim (x, y) = sc (x, y)Avg (IC (x) , IC (y)) (3.15)

sim (x, y) quantifies similarity between two terms in an ontology accounting for the

different specificity of the terms and relevance of the terms [82].

Conceptually, Mathur and Dinakarpandian’s sc measure is similar of the Graph-

based measure simUI (see § 1.6.3). The main difference lies in that While simUI

measures gene similarity based on the GO terms used to annotate the genes, sc while

the sc measures term similarity based on the genes the GO terms annotate.

To measure the similarity between two annotated objects, that is, between two

sets of terms, the authors propose the following:

Mb (A,B) =
1

2

[∑
1≤i≤mmsim (TAi, TB)

m
+

∑
t≤j≤nmsim (TBj, TA)

n

]
(3.16)

where A,B are genes, TA, TB are terms annotating A and B and m and n are the

number of terms annotating A and B. msim (TAi, TB) is the maximum semantic

similarity between the ith term annotating A and the set of terms annotating B, as

given by equation 3.15.

3.6.1 The method

Mathur and Dinakarpandian propose two methods to determine disease similarity

based on the function of the disease proteins: Process-Similarity based (PSB) and

Process-Identity based (PIB).

The PSB and PIB measures are a three stage process. The first stage removes
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terms that are not statistically significant in describing the function of the disease

proteins. The second stage eliminates very general terms, and finally, the similarity

is calculated.

In the first stage, the authors consider only the over-represented GO terms asso-

ciated to each disease (hypergeometric test, Benjamini-Hochberg correction) [82].

In the second stage, to reduce the effect of very general, but over-represented terms

associated to the disease proteins, the authors normalise the information content of

each GO term with respect to each disease it annotates:

NF =
ICGO (term)

MaxICGO

∗ ICDIS (term)

MaxICDIS

(3.17)

ICGO (term) is the information content of term, MaxICGO is the maximum infor-

mation content of any term in GO, ICDIS (term) is the information content of term

with respect to the GO terms annotating the disease and MaxICDIS is information

content of the most informative term annotating the disease. The normalising factor

NF for term is defined as the product of the relevance of term with respect to all

other terms in GO and the relevance of term with respect to all other terms anno-

tating a disease. ICGO(term)
MaxICGO

determines how relevant term is in the ontology, while

ICDIS(term)
MaxICDIS

measures the relevance of term in the context of the GO annotations of

the diseases’ proteins. The normalising factor NF is then multiplied by the max-

imum semantic similarity between the ith term annotating A and the set of terms

annotating B msim (TAi, TB) used in equation 3.16.

Finally, in the third stage, the similarity is calculated. The Process-Similarity

based (PSB) measures similarity based on the common GO terms annotating the two

diseases. For every pair of diseases, the similarity is given by the measure proposed by

the authors in equation 3.16. The Process-Identity based (PIB) measure, determines

disease similarity based only on the common terms. For each GO term shared by a



CHAPTER 3. LITERATURE REVIEW - DISEASE SIMILARITY 61

pair of diseases, its self-similarity is calculated using equations 3.14 and 3.15. These

values are summed, and the resulting score used to quantify disease similarity.

3.7 Discussion

In general, methods that rely on molecular information to quantify disease similarity

will have to manage the limited information available. The lack of known genes for

72.9% (approximately 5, 844 diseases) of OMIM’s 8, 006 (as of June 2015) diseases

presents the major impediment, resulting in invariably low covering methods.

Of the existing measures that focus on phenotypic information, there are some

characteristics that should be noted. The discussed measures, namely van Driel et

al. , Köhler et al. and Zhou et al. , focus exclusively on the disease symptoms, and

while they are important for categorising the diseases, the diseases should be thought

of as multi-dimensional entities of which the symptoms are but one. I will show (see

Chapter 4.3) that an important aspect of OMIM has been overlooked thus far by the

existing methods – OMIM is a collection of highly diverse information. The database

is the result of a process of curation [4] of the existing bio-medical literature and as

such does not provide any new knowledge, but rather constitutes a centralised repos-

itory of all that is known about a particular heritable disease [4]. The descriptions

contained in OMIM are far richer than the mere symptoms or phenotypes. The entries

contain descriptions on mechanisms of inheritance, ethnic and racial characteristics

of the affected individuals (e.g. increased prevalence of Familial Mediterranean Fever

(MIM:249100) in Sephardic Jews) pathogenesis of the diseases and even relationships

between drugs and the disease (e.g. Sudden infant death syndrome (MIM:272120) and

Beta-blockers) among other characteristics. I will show that including this informa-

tion is, in fact, useful.

Interestingly, when analysing Zhou’s et al. and van Driel’s et al. method, I noted
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that there is substantial overlap between the CS fields and the subset of terms

from the Signs and Symptoms [C23.888] contained in the Clinical Synopsis fields

of OMIM. Zhou’s et al. HSDN could be viewed as a further refinement of van Driel’s

et al. method. For example, van Driel et al. matches the term Ecchymosis (D004438)

for disease Glanzmann Thrombasthenia (MIM:273800), and this term also co-occur

in the publication identified by PubMed ID 14233375 “Hemorrhagic Thrombocytic

Dystrophy. A Discussion Of Nosology”, and is thereby associated by Zhou et al. to

the same disease. Further large-scale analysis is not possible, due the lack of mapping

between the Chemicals and Drugs [D] ontology used by Zhou et al. and OMIM used

by van Driel et al. .

Of note is a situation that arises in van Driel’s et al. method. While the authors

acknowledge the value of the ontological structure of MeSH, they fail fail to appro-

priately account for their Directed Acyclic Graph (DAG) structure of the ontologies.

This DAG structure causes some issues in light of equation 3.1, which results in some

terms having an undue effect on the relevance of their ancestors. Consider the toy ex-

ample presented in section § 3.1, figure 3.1. The relevance of term A is determined by

equation 3.1. This equation defines the relevance of the terms based on the relevance

of its hyponyms. However, since C is a hyponym of A, and B is a hyponym of both

A and C, the relevance of term A would disproportionately consider the relevance of

B: through C and directly. Should the ontologies be defined strictly as trees, this

situation would not arise.

I will show in chapter 4.3, that the appropriate use of the ontology is fundamental

for disease similarity measures the accurately quantify molecular relatedness between

heritable diseases.



Chapter 4

A network medicine approach for

disease similarities

A graphical conceptualisation of the method I developed is shown in Figure 4.1. The

method begins (Step 1.) by extracting the publications referenced by all diseases

in Online Mendelian Inheritance in Man (OMIM). In Step 2. the Medical Subject

Headings (MeSH) terms which describe the publications are collected from PubMed.

Each disease is then annotated with the MeSH terms associated to the publications it

references. These sets MeSH terms, are compared (Step 3.) using ontological semantic

similarity measures which produce, for each pair of MeSH annotated diseases, a single

non-negative real number. The similarity of the MeSH terms annotating the diseases

quantifies the similarity between the diseases, which in turn, quantifies that quantifies

their molecular relatedness (Step 4.)

In this chapter I will discuss each step of my disease similarity measure in detail.

63
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Figure 4.1: Outline of the method. The process starts with the mapping of OMIM
diseases to PubMed publications (1). The MeSH terms for each publication are
obtained from PubMed, mapping the OMIM disease onto the MeSH ontology (2).
A semantic similarity measure quantifies the similarity between both sets of MeSH
terms in the ontology (3). The resulting similarity score represents the molecular
distance between the disease modules of diseases Da and Db (4).

4.1 Annotating OMIM diseases with MeSH terms

The assignment of MeSH terms to OMIM diseases, or the annotation of the diseases,

consists in finding the set of MeSH terms that most accurately, unambiguously and

concisely describe each disease. This concept is analogous to the Gene Ontology (GO)

annotations of gene products [96].

The main assumption on which my disease similarity measure is based is that the

MeSH terms used to describe the publications in PubMed will also be good descriptors
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of the OMIM diseases. This assumption relies on the fact that the OMIM entries are

compendia of the literature most relevant to the disease [4], and therefore the MeSH

terms assigned to the referenced publication will also provide accurate and detailed

descriptions for the diseases themselves [98]. This process of matching MeSH terms

to OMIM diseases by proxy of the referenced publications is, considering the nature

of the OMIM entries and MeSH annotations of PubMed publications, comparable to

obtaining manual annotations of the OMIM disease.

Table 4.1 shows the number of diseases annotated by each MeSH ontology. An

ontology is considered to annotate a disease if at least a term from that ontology is

used to describe a disease.

Ontology
Annotated
Diseases

Anatomy [A] 6,781
Organisms [B] 7,488
Diseases [C] 7,321
Chemicals and Drugs [D] 5,958
Analytical, Diagnostic and Therapeutic Techniques and Equipment [E] 7,000
Psychiatry and Psychology [F] 3,271
Phenomena and Processes [G] 7,018
Disciplines and Occupations [H] 1,994
Anthropology, Education, Sociology and Social Phenomena [I] 1,903
Technology, Industry, Agriculture [J] 348
Humanities [K] 315
Information Science [L] 4,063
Named Groups [M] 6,775
Health Care [N] 4,257
Geographicals [Z] 2,834

Table 4.1: The 16 MeSH ontologies. The number of annotations is calculated by the
diseases annotated with at least a term from the ontology.
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4.2 MeSH based similarity of diseases

Having obtained the MeSH annotations for the OMIM diseases, a measure to compare

these annotations is needed. I analysed and tested several well established semantic

similarity measures namely the ones by Resnik [71], Pesquita [17], Jiang and Conrath

[51], and Lin [25] as well as simpler topological measures. See Chapter 1 for details

on the various semantic similarity measures tested. Resniks’s [71] similarity measure

proved to be superior in performance, and I have therefore chosen it to quantify

similarity between OMIM diseases.

The method described so far may, and in some cases will, produce several similarity

scores per pair of diseases. Since the ontologies are (conceptually) separate entities,

the semantic similarity measure when used in each ontology separately will produce

a score for every pair of diseases annotated with terms from the same ontology. This

results in up to 16 scores for each pair of diseases. In order to obtain a single similarity

score that characterises the molecular relatedness of the diseases, a combination of

either the scores or the ontologies is required.

Since the MeSH ontologies are not mutually exclusive, I performed an analysis of

the entire MeSH structures to verify the extent of the overlap. Figure 4.2 shows the

amount of pairwise overlap between the different ontologies. In this figure, the colour

of the links corresponds to the pairwise Jaccard coefficient between the ontologies and

the width of the links correspond to the number of terms shared by the ontologies.

I noticed that, while the overlap between the ontologies connects most of them (of

the 120 possible connections, 61 exist) it serves a more important purpose: the overlap

establishes paths between the ontologies, even between those with no overlap. That

is, it is possible to start from any ontology and visit all others (except Publication

Characteristics [V], which will be discussed later) through the links resulting from

the overlap. Based on this fact, I decided to combine the ontologies by adding a new
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Figure 4.2: Overlap of the MeSH ontologies. Nodes represent MeSH ontologies and
links are related to the amount of overlap between them. Link colours correspond to
the Jaccard coefficient between the set of terms in each pair of ontologies. Link thick-
nesses correspond to the number of shared terms between ontologies and only strictly
positive links are shown. MeSH Ontologies abbreviations: Anatomy [A], Organisms
[B], Diseases [C], Chemicals and Drugs [D], Analytical, Diagnostic and Therapeutic
Techniques and Equipment [E], Psychiatry and Psychology [F], Phenomena and Pro-
cesses [G], Disciplines and Occupations [H], Anthropology, Education, Sociology and
Social Phenomena [I], Humanities [K],Information Science [L], Named Groups [M],
Health Care [N], Publication Characteristics [V], Geographicals [Z].

root node at level zero, connected to each of the ontologies root node through an

is a relationship. This results in a single, sweeping ontology that combines all areas

of knowledge present in MeSH which, when analysed with an ontological semantic

similarity measure, results in a single score for every pair of diseases. In Figure 4.3,

the overlap is shown as nodes of different ontologies connected to one another. The

red links between the A and F ontologies, establish a path between these otherwise

disconnected ontologies.
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Figure 4.3: The overlap between the ontologies established paths between all of them.
These paths (shown in red) allow the comparison of diseases annotated with terms
from non-overlapping ontologies.

The fictitious root node is a requirement when using Resnik’s semantic similarity

measure, since otherwise some similarities would be undefined. If the fictitious root

node did not exist, diseases annotated only with the root term of each MeSH ontology

would not be comparable. In figure 4.4, terms t1 and t2 would not be comparable

without the added root node R, they would lack a Lowest Common Ancestor (LCA)

and their similarity would therefore not be defined.

The combination results in a single score for each pair of diseases for which a

MeSH annotation can be produced. The scores are positive real unbounded numbers.

No order preserving transformation with the aim of rescaling the scores was applied.

Such a transformation would have no effect on performance and could make it data



CHAPTER 4. ONTOLOGICAL SIMILARITY OF DISEASES 69

t
1

R

t
2

Figure 4.4: Nodes labelled t1 and t2 show the need for the fictitious root node labelled
R. Should node R not exist, the similarity of nodes t1 and t2 would not be defined.

set-dependent or lead to misinterpretations (e.g. values constrained between zero and

one might be wrongly interpreted as probabilities).

It is important to note that Publication Characteristics [V]does not annotate any

diseases in OMIM and can therefore be omitted.

4.3 Evaluating disease similarity measures

The network medicine principles introduced in chapter 2 provide the rationale for the

evaluation of disease similarity measures. For example, we know that the interactors

of known disease-associated proteins tend to also be involved in the disease [95]. Thus,

the evaluation follows the premise that similar diseases are close in the interactome

[54] and a phenotype similarity measure should be able to accurately quantify the

distance between disease modules on the interactome [64].

I use a machine learning approach to show that the measure I propose is capable
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of accurately predicting molecular-level relationships between diseases. In addition

to the numerical analysis, I curate a highly illustrative set of examples from recent

medical literature. These examples showcase the method’s capability to accurately

quantifying phenotype similarity between diseases that are reported to be molecularly

related. I will also show that the measure is able to accurately group diseases based

on the affected physiological system. Lastly, by comparing the current version of

OMIM with a two-year old release, I show the potential of the measure to produce

candidate disease genes.

4.4 Definition and construction of the evaluation

datasets

The evaluation of the similarity measures follows the approach used by van Driel et

al. [64] who proposed to quantify the molecular level similarity between diseases using

three relationships between their disease proteins. The first relationship determines

molecular relatedness based on protein-protein interactions between disease proteins.

The second relationship is based on the co-occurrence of Pfam-A signatures (i.e. fam-

ilies, domains, motifs or repeats), and it relates two diseases if any of their disease

proteins share at least one of these signatures. The last relationship proposed by van

Driel et al. is based on sequence similarity, and it relates two diseases whenever their

disease proteins are similar in sequence.

Each criteria produces a binary dataset that relates diseases at a molecular level.

The evaluation is thus reduced to a binary classification problem, where disease sim-

ilarity scores are used to predict these binary relationships. The performance of the

measure is evaluated by computing the area under the ROC curve (AUC). Finally, I

include coverage in the evaluation, defined as the percentage of OMIM diseases for
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which similarities can be computed.

For the results analysed in this work, the July 21 2014 release of OMIM was

used. This release contains 23, 611 records of which 7, 812 correspond to Mendelian

diseases. The diseases in OMIM reference a total 62, 829 publications. The 2014

release of MeSH contains 27, 149 terms, or which 13, 220 were referenced by 62, 393

of the publications referenced by the OMIM diseases.

The Pfam dataset

The first relationship proposed by van Driel et al. is based on the co-occurrence of

Pfam-A signatures, that is families, domains, motifs or repeats. Pfam-A [76] is a

database of curated protein families and as such provides a grouping of functionally

related proteins that allows the association of diseases at molecular level based on

structural characteristics of their disease proteins. Should proteins share structural

features, then a mutation perturbing these features will result in similar phenotypes

[64].

After manually verifying the content of the MeSH ontologies it became apparent

that certain MeSH terms correspond to Pfam signatures. To avoid any bias in the

evaluation, the MeSH ontologies were curated to extract all MeSH terms that describe

Pfam-A signatures. This automatic curation process, followed by manual verification,

resulted in the 113 descriptors shown in Table 4.2. Disease pairs in which a protein’s

Pfam signature matched any of the ones listed in Table 4.2 were excluded from the

evaluation. After filtering, 33, 660 pairs relating 2, 647 OMIM diseases were evaluated.

The Protein-protein interaction dataset

The second relationship presented by van Driel et al. determines molecular relatedness

based on protein-protein interactions between disease proteins. This is perhaps the

most literal interpretation of the disease module, as it directly relates to evidence
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MeSH term Name MeSH term Name
D001081 Apyrase D013049 Spectrin
D005294 Ferrochelatase D002364 Casein
D050600 Snare D051348 Tropomodulin
D043169 Endostatin D002155 Calsequestrin
D004815 EGF D005914 Globin
D014168 Transferrin D005801 Homeobox
D015847 IL4 D014357 Trypsin
D017370 IL11 D009320 ANP16
D001119 Arginase D035561 TFIIA
D018664 IL12 D000519 Melibiase
D016596 Vinculin D046988 Proteasome
D064451 Hepcidin D051152 Clusterin
D006466 Hemopexin D053523 Amelogenin
D016547 Kinesin D050683 Synaptobrevin
D001839 Bombesin D003094 Collagen
D052116 Endomucin D005293 Ferritin
D018793 IL13 D037282 Calreticulin
D018969 IGFBP D025801 Ubiquitin
D016173 CSF-1 D056489 Nucleoplasmin
D052243 Resistin D013884 Rhodanese
D005420 Flavoprotein D019409 IL15
D053673 Glypican D014216 TAN
D013004 Somatostatin D008049 Lipase
D014559 Urocanase D019922 Neuromodulin
D035581 TFIIB D025481 6PF2K
D013879 Thioredoxin D013947 Thymosin
D014598 Uteroglobin D054477 Glutaredoxin
D014442 Tyrosinase D064248 Geminin

Table 4.2: MeSH terms names matching Pfam-A families, domains, repeats or motifs.

that similar diseases tend to have interacting proteins [54].

According to the Protein-protein interaction (PPI) dataset two diseases are related

if a physical interaction between any of their disease proteins is reported in Human

Protein Reference Database (HPRD) [93]. This criterion resulted in 15, 515 disease

pairs relating 2, 512 OMIM diseases.
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The Sequence Similarity dataset

The last relationship proposed by van Driel et al. is based on sequence similarity, and

it relates two diseases whenever any of their disease proteins are similar in sequence.

This criteria is based on the observation that disease proteins associated to similar

diseases tend to be functionally similar [42] and also tend to compress [54], enabling

the use of sequence similarity measures as a proxy of functional associations between

disease proteins.

The construction of the Sequence Similarity dataset is based on a Smith-Waterman

local alignment of the sequences with a threshold e-value smaller or equal to 10−6.

This criterion results in 37, 486 diseases pairs relating 2, 817 OMIM diseases.

Coverage

The evaluation also included coverage, defined as the fraction of OMIM diseases for

which similarities can be computed. This is particularly important when considering

that 27% (5, 519) of the diseases in OMIM have no known molecular basis as of June

2015. The coverage of a measure thus becomes an indicator of its capability to locate

the module of an orphan disease on the interactome in the absence of molecular

information.

My method covers 7, 575 OMIM diseases corresponding to 96.9% of the 7, 812

diseases in OMIM. The shortfall in coverage is due to the lack of MeSH annotations

for some OMIM diseases, a situation that arises in two situations: a) either no

publications were found to be associated to a particular OMIM disease, or, b) the

publications associated to the diseases have no MeSH terms.

Those diseases with no associated publications either do not reference any pub-

lications (e.g. Fragile Site 20p11 (MIM: 136590)), or the publications could not be

retrieved through PubMed’s API interface. In some exceptional cases, the PubMed
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identifier referenced in OMIM was an invalid. This was the case of Myofibrillar My-

opathy (MIM:601419) which at the time of querying OMIM, referenced the PubMed

ID 10553984, which is non-existent. These cases were reported to the OMIM staff.

Out of the 62, 829 PubMed identifiers available from OMIM, 62, 393 are annotated

with at least one MeSH term, the remaining 436 publications were either very new

(e.g. “Human CalDAG-GEFI gene (RASGRP2) mutation affects platelet function

and causes severe bleeding” - PubMed ID 24958846, published 2014) or very old

(e.g. “Some possible effects of nursing on the mammary gland tumour incidence in

mice” - PubMed ID 17793252, published 1936) and had no MeSH terms assigned at

the time of querying the database. A few PubMed entries were found to be lacking

MeSH annotations without apparent reason, such as as “Neonatal Hyperinsulinism”

- PubMed ID 10322395, published 1999.

Comparison

The three evaluation datasets relate a similar number of diseases, however, the PPI

dataset is comparatively sparser than the other two, as shown in table 4.3. This is

due in part to the sparseness of the PPI networks themselves [66] and in part by

the stringent evaluation criteria selected. However, it is important to note that the

datasets overlap significantly.

Overlap
Dataset Links Nodes Pfam PPI Sequence
Pfam 33,660 2,647 · 2,793 3,232
PPI 15,515 2,512 2,793 · 2,745
Sequence 37,486 2,817 3,232 2,745 ·

Table 4.3: Topological characteristics of the evaluation datasets.
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4.5 Numerical evaluation of the performance

In this section I will present the numerical evaluation of the similarity measure. First,

the performance of the measure using terms from the individual ontologies, followed

by the results of combining the ontologies. Lastly, I will compare the existing simi-

larity measures with the one I propose.

4.5.1 Performance of the individual ontologies

Figures 4.5 to 4.19 present the performance of the proposed method in the MeSH on-

tologies that produced annotations. It is important to note that since the Publication

Characteristics [V] ontology does not annotate any of the referenced publications in

OMIM, it produces no similarity score.

In chapter 4 §4.1 I discussed the importance of the information contained in the

MeSH ontologies that are not specifically related to diseases.

Importantly, the Chemicals and Drugs [D] ontology, is the best performing on-

tology, as can be seen in figure 4.8. This is remarkable specially when considering

the highly specific sub ontology of the Diseases [C] ontology, Pathological Conditions,

Signs and Symptoms [C23] (see figure 4.7) . The higher performance highlights the

thorough nature of the descriptions in OMIM. The rich descriptions in OMIM are far

wider and more detailed than the mere symptom.



C
H
A
P
T
E
R

4.
O
N
T
O
L
O
G
IC

A
L
S
IM

IL
A
R
IT

Y
O
F
D
IS
E
A
S
E
S

76

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Anatomy(A)

Pfam. AUC:0.56
PPI. AUC:0.64
Sequence similarity. AUC:0.58

Figure 4.5: ROC curve [A] ontology

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Organisms(B)

Pfam. AUC:0.53
PPI. AUC:0.54
Sequence similarity. AUC:0.53

Figure 4.6: ROC curve [B] ontology
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Figure 4.7: ROC curve [C] ontology
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Figure 4.8: ROC curve [D] ontology
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Figure 4.9: ROC curve [E] ontology
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Figure 4.10: ROC curve [F] ontology
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Figure 4.11: ROC curve [G] ontology
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Figure 4.12: ROC curve [H] ontology
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Figure 4.13: ROC curve [I] ontology
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Figure 4.14: ROC curve [J] ontology
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Figure 4.15: ROC curve [K] ontology
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Figure 4.16: ROC curve [L] ontology
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Figure 4.17: ROC curve [M] ontology
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Figure 4.18: ROC curve [N] ontology

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Geographicals(Z)

Pfam. AUC:0.52
PPI. AUC:0.57
Sequence similarity. AUC:0.52

Figure 4.19: ROC curve [Z] ontology
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4.5.2 Performance of the combined ontologies

While all ontologies in MeSH could be combined following the method discussed in

§ 4.1, I have chosen to discard the poor performing ontologies in order to keep the

smallest possible set of terms needed to accurately define the similarities. Table 4.4

shows the coverage and AUC of the ROC curve for each ontology.

Ontology Coverage
AUC
Pfam

AUC
PPI

AUC
Sequence

Anatomy [A] 6, 781 0.56 0.64 0.58
Organisms [B] 7, 488 0.53 0.54 0.53
Diseases [C] 7, 321 0.56 0.68 0.59
Chemicals and Drugs [D] 5, 958 0.76 0.75 0.81
Analytical, Diagnostic and Therapeutic
Techniques and Equipment [E]

7, 000 0.56 0.63 0.57

Psychiatry and Psychology [F] 3, 271 0.52 0.54 0.53
Phenomena and Processes [G] 7, 018 0.58 0.66 0.59
Disciplines and Occupations [H] 1, 994 0.57 0.60 0.59
Anthropology, Education, Sociology and So-
cial Phenomena [I]

1, 903 0.53 0.56 0.53

Technology, Industry, Agriculture [J] 348 0.58 0.58 0.57
Humanities [K] 315 0.53 0.57 0.55
Information Science [L] 4, 063 0.53 0.55 0.54
Named Groups [M] 6, 775 0.55 0.59 0.55
Health Care [N] 4, 257 0.56 0.61 0.56
Geographicals [Z] 2, 834 0.52 0.57 0.52

Table 4.4: The 16 MeSH ontologies. The coverage of each ontology is calculated by
the diseases annotated with at least one of its terms. The AUC is the Area Under the
ROC curve. See figures 4.5 to 4.19 for a graphical representation of the ROC curves.

The results presented in figure 4.20 are obtained using the ontologies which had

an AUC above 60% (shown in boldface in table 4.4 for the PPI dataset while main-

taining a high coverage of OMIM diseases. The combined ontologies are: Anatomy

[A], Diseases [C], Chemicals and Drugs [D], Analytical, Diagnostic and Therapeutic

Techniques and Equipment [E] and Phenomena and Processes [G]. I have analysed the
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combination various other subsets of ontologies and results were found to be similar

as long as ontologies with high coverage were included.

The reason behind the choice of the PPI dataset as a decision criteria for the

combination of the ontologies can be seen in figure 4.20, particularly when comparing

the Sequence Similarity and PPI datasets. The PPI curve (blue), grows more sharply

in the bottom left quadrant of the ROC plot, which means that the measure issues a

positive classification when the evidence is strong, i.e. the measure is more conserva-

tive [90]. Conversely, in the Sequence Similarity dataset (green curve), the measure

is more liberal, issuing positive classifications when the evidence is not as strong [90].
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Performance of the combined ontologies
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Figure 4.20: Performance evaluation of the semantic similarity method on the com-
bined ontologies. Each ROC represents the predictive power of the semantic similarity
method on the Pfam, PPI and Sequence dataset respectively. The combined ontolo-
gies are Anatomy [A],Diseases [C],Chemicals and Drugs [D],Analytical, Diagnostic
and Therapeutic Techniques and Equipment [E] and Phenomena and Processes [G].
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4.5.3 Comparing with the existing measures

If the following, I will detail the mappings built for each method, in order to compare

them with the disease similarity method I introduce in this Thesis.

Goh et al.

Due OMIM’s continuous update policy, it was impossible to retrieve the same dataset

used by the authors at the time of publication. However, through a reverse engineering

process, a total of 1,717 syndromes were retrieved from Goh’s et al. syndromes.

In their curated morbidmap Goh et al. provide the mapping between diseases in

OMIM and syndromes. While most entries were complete and it was possible to

obtain the OMIM numbers comprising the syndrome, some entries were incomplete.

To maximise the coverage of this reverse engineered similarity measure, a fuzzy string

matching procedure followed by manual curation was performed.

The name each incomplete entry was compared to the names of all entries in a

current morbidmap (21 July 2014) obtained from OMIM. A fuzzy string matching

procedure matched these incomplete entries to all entries in the newer morbidmap

whose Levenshtein string similarity ratio was higher than 0.9. If more than one entry

satisfied the matching cut-off value, the entry was discarded. The matched entries

were verified manually, thus obtaining 1,717 OMIM diseases extracted from the Goh’s

et al. curated morbidmap. Of these 1,717 OMIM diseases, 1,542 were directly matched

and 175 where extracted through the string matching procedure.

From these 1,171 OMIM diseases, a binary similarity matrix was constructed, in

which diseases were represented as either similar or not similar. Similarity between

diseases is given by the physiological category of the syndrome from which the disease

was extracted. If two diseases belong to syndromes with identical category, those

diseases were considered similar.
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Park et al.

Following the reverse engineering process I designed for Goh’s et al. Diseasome, the

syndromes were mapped onto their constituent OMIM diseases, each of which was

assigned the subcellular profile of the syndrome it was extracted from. Since the

authors provide the original Disease-associated Protein and Subcellular Localization

(DPL), obtaining the correlation between the disease localisation profiles becomes

a trivial exercise. This allows the construction of a square, real-numbered matrix

bounded between 0 and 1 of similarities between the 1.177 OMIM diseases.

van Driel et al.

van Driel et al. [64] have made the similarity matrix between all diseases listed in

OMIM at the time of publication in 2006 (5,132) available from their website http:

//www.cmbi.ru.nl/MimMiner/suppl.html. To produce updated similarity scores

we contacted Prof. Han G. Brunner (Radboud University Nijmegen Medical Centre,

Department of Human Genetics) who provided the original scripts used to produce

the similarity matrix. The scripts required some fixes to adapt to newer versions of

the libraries and operating system and after these fixes were applied they were used

to compute up-to-date similarity scores.

To compare van Driel’s et al. method there was no mapping required, as they

provide a square similarity similarity matrix for all OMIM diseases.

Köhler et al.

Köhler et al. provide a matrix of similarity as defined in [81]. There is no need to

map the dataset provide by the authors, as it already relates OMIM diseases to one

another. The Human Phenotype Ontology (HPO) similarity dataset contains a total

of 6, 441 OMIM diseases in the October 2014 release.
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Zhou et al. and Mathur and Dinakarpandian

In the case of Zhou [106] et al. and Mathur and Dinakarpandian [82] I was unable to

compare the performance of the similarity scores.

In the case of Mathur and Dinakarpandian, the authors did not have similarity

scores available. From the description in the publication, I was unable to accurately

replicate the method.

Zhou et al. provide a full similarity matrix, however, they do no provide a mapping

between OMIM diseases and MeSH diseases. To the best of my knowledge, no such

mapping exists, and therefore I decided to map the diseases myself. I first attempted

to map the MeSH diseases to the OMIM diseases by approximately matching the

MeSH disease names and OMIM disease names calculating the Levenshtein distance,

and considering names with matching ratio higher than 90% to be identical. After

manually verifying the mapping I concluded that the method produces an excessive

number of false mappings. In a second attempt, I matched the MeSH disease terms

to the OMIM diseases through the Disease Ontology (DO) [100]. Several DO entries

contain a cross-reference field, which matches the DO term with corresponding entities

in alternative databases. MeSH terms were matched to OMIM diseases based on co-

occurrence in the same cross reference field in the DO. Unfortunately, this mapping

had a very low coverage, resulting in only 454 OMIM diseases being mapped.

I am, therefore unable to present a comparison between either Zhou’s et al. and

Mathur’s and Dinakarpandian’s method.

Performance comparison

The similarity scores obtained through the mapping described before were evaluated

using the tree relationships proposed by van Driel et al. [64]. Figure 4.21 presents a

comparison between the proposed method and the approaches by Park et al. [86], Goh
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[54] et al. , van Driel et al. [64] and Köhler et al. [81]. Both larger AUC values and

larger coverage are better, and since these scores are all bound between 0 and 1, they

are combined into a composite score to compare the methods’ overall performance,

following the approach presented in [91].

To show the performance of the method without analysing coverage, figures 4.22, 4.23

and 4.24 shows the ROC curves for each evaluated method.

Figure 4.21: Performance Comparison. For each method, the grey bar quantifies its
OMIM coverage, coloured bars quantify its performance measured by AUCs on the
Pfam, PPI and Sequence Similarity datasets. The total length of each bar represents
the overall performance of each method.

4.6 Verifying the correlation with molecular level

similarity

To further assess the correlation of the similarity measure I propose with the molecular

level similarity of the diseases, a contrast between the distribution of similarity scores
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Figure 4.22: ROC plot of the performance of proposed method with the combined
ontologies evaluated on the Pfam dataset

Figure 4.23: ROC plot of the performance of proposed method with the combined
ontologies evaluated on the PPI dataset
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Figure 4.24: ROC plot of the performance of proposed method with the combined
ontologies evaluated on the Sequence Similarity dataset

for all pairs of diseases with that of the subset of pairs sharing disease genes is shown

in figure 4.25. The two distributions are very different (Student’s t-test P < 10−350).

Interestingly, 90% of the pairs of diseases with shared genes have high-similarity scores

(99th percentile or higher), indicating that high-similarity values are correlated with

existing knowledge of relatedness at molecular level.

4.6.1 Assessing the measures ability to predict molecular

similarity

For many disease pairs with high similarity score, it is readily verified that they are

indeed similar at molecular level by analysing existing medical literature. For exam-

ple, the score between Budd-Chiari (MIM:600880) syndrome and Myeloproliferative

disorder (MIM:131440) is in the 97th percentile and genes associated to these diseases

have in vivo verified first-level interactions (JAK2 – PDGFRB) [93]. Furthermore, it
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Figure 4.25: Distribution of similarity scores for all pairs of diseases (yellow bars) vs.
distribution of similarity scores for disease pairs sharing one or more disease genes
(green bars). 90% of the pairs of diseases with shared genes have scores in the 99th
percentile or higher.

is known that these two diseases are causally related [40].

The score between Breast Cancer (MIM:114480) and Noninsulin-dependent Dia-

betes (NDDIM) (MIM:125853) lies in the 100th percentile, and several cancer related

proteins are known to interact with NDDIM related proteins (TP53 - HNF4A, CDH1

- PTPN14, CDH1 - IRS1 ) [93]. Moreover, there exists statistical evidence of increased

risk of Breast Cancer in Women with type 2 diabetes [53].

The similarity scores between Type I von Willebrand disease (VWD1) (MIM:193400)

and pseudo von Willebrand disease (VWDP) (MIM:177820), two bleeding disorders,

lies in the 100th percentile. VWD1 is a consequence of exceptionally low levels of

plasma von Willebrand Factor (VWF) [47], while VWDP is characterised by subtle

mutations in the alpha subunit of the glycoprotein Ib (GPIbα) subunit, causing it to

bond uncharacteristically to VWF [87].
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4.6.2 Embedding diseases in 3d space

The measure can be used to produce a 3D graphical representation of human diseases

automatically. Figure 4.26 top shows the embedding of diseases into 3D space ob-

tained applying t-SNE [58] a recently developed dimensionality reduction technique.

Figure 4.26: Embedding of hereditary diseases in 3D space using t-SNE. Each point
represents an OMIM disease. Colours are assigned based on their disorder class
according to Goh et al. [54]. Highlighted diseases belong to multiple phenotypic
classes and are discussed in the main text. The figure shows the diseases belonging
to the 10 most numerous disease classes in Goh et al. [54].

In the figure, each point corresponds to a disease and the distance between two

diseases relates to their similarity according to the proposed method. Colouring each

disease according to the disease classes identified in Goh et al. [54] reveals that diseases

in the same class tend to be grouped together. The 10 most numerous classes are
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shown in the figure (see Chapter 2 § 2.4) This is interesting, as Goh et al. show that

these classes group diseases that are highly related at molecular level.

Notice how some diseases which, from a phenotypical perspective belong to mul-

tiple classes, are placed appropriately at the boundaries between them (see dis-

eases pointed by arrows in Figure 4.26. For example the Ring dermoid of Cornea

(MIM:180550), is located at the boundary between the Dermatological, Cancer and

Ophthalmological classes. This disease is characterised by dermoids (growths with a

skin-like structure) in the eye. In general, dermoids exhibit known hallmarks of can-

cer [24]. Cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar keratoderma

syndrome (MIM:609528) is characterised by severe neurological impairment as well

as keratoderma and late-onset ichthyosis. The embedding places this disease at the

boundary between the Neurological and Dermatological classes. In other cases, dis-

eases that belong to more than one class are placed closer to a class different from the

one chosen by Goh et al. , but their position is overall appropriate when considering

the diseases’ characteristics. For example, Lymphoproliferative syndrome, X-linked, 1

(MIM:308240), exhibits both immunological and cancer features. It is characterised by

severe immunological dysregulation, and is related to several phenotypes (including

lymphoma) and often occurs after an infection (Epstein-Barr virus). The embedding

places this disease closer to immunological diseases than to the cancer group.

The clear grouping of diseases is made possible by the difference between average

inter- and intra- class similarity values, visualised as a heat map in Figure 4.27. Note

that pairs of classes with high average inter-class similarity contain diseases which

are often related. For example, this can be the case for diseases in the immune and

respiratory classes as it is known that an abnormal immune response can cause chronic

respiratory diseases [60].

One important thing to note is that figure 4.26 is the result of a computational

method that depends exclusively on the pairwise similarity between the diseases. I
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Figure 4.27: Each (x,y) tile represents, for the disease classes in Goh et al. the mean
similarity of disease pairs where one disease belongs to class x and the other to class y.
The values range from 1.15 (Gastrointestinal – Ear, nose, throat) to 2.71 (Nutritional-
Nutritional). The colours range between the minimum mean similarity and 2, with all
values above 2 (In the diagonal: 2.01 Bone, 2.05 Immunological, 2.06 Gastrointestinal,
2.07 Muscular, 2.1 Psychiatric, 2.2 Cancer, 2.5 Respiratory, 2.71 Nutritional) set to
2. Inset: the average intra-class similarity is significantly higher than the average
inter-class similarity (t-test p-value ≤ 10−350).

did not intervene in any way to produce the figure. Nevertheless, comparing 4.26

with Goh’s et al. diseasome (reproduced from [54] in figure 2.4) the grouping of the

classes is remarkably similar.
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4.7 Candidate disease genes prediction

Evidence in the literature proving the molecular relatedness of diseases with high

similarity scores illustrates the measure’s power in predicting the molecular related-

ness between two diseases. However, the transfer of knowledge between diseases is

perhaps the most important use of a disease similarity measure. That is, an accurate

measure should also be able to help provide candidate disease genes.

To assess the effectiveness in providing candidate diseases “old” similarity scores

were calculated using an older version of OMIM (downloaded on April 9th 2013).

Based on these calculations, several pairs of diseases which had high similarity values

according to this old data from 2013, have since been shown to be close on the

interactome.

For example, the proposed method reported (using the 2013 version of OMIM)

no disease genes for SHORT syndrome (MIM:269880), Dermatofibrosarcoma protuber-

ans (MIM:607907) and Right Atrial Isomerism (MIM:208530). However, the similarity

scores indicated SHORT syndrome to be very similar at molecular level to Noninsulin-

dependent Diabetes Mellitus (MIM:125853) (99th percentile), thus suggesting that dis-

ease genes for SHORT syndrome could be located in the neighbourhood of Diabetes.

This is indeed the case, as the new version of OMIM links SHORT syndrome to gene

PIK3R1, which has a verified in vitro interaction with IRS1, a gene associated to

Noninsulin-dependent diabetes. Interestingly the publication identifying the associa-

tion of PIK3R1 to SHORT syndrome namely “PIK3R1 Mutations Cause Syndromic

Insulin Resistance with Lipoatrophy” [19], was published in July 2013, postdating

the OMIM data used. For a comparison of the referenced publications in the current

version of OMIM and July 2013 version, please refer to B.

Similarly, the “old” similarity scores indicated Dermatofibrosarcoma to be very

similar at molecular level to Juvenile Myelomonocytic Leukaemia (MIM:607785) (100th
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percentile). The current version of omim shows an association between Leukaemia

and the gene PDGFRB, which interacts with PDGFB a gene associated to Dermatofi-

brosarcoma.

Lastly, the “old” score between Right Atrial Isomerism and Tetralogy of Fallot

(MIM:187500) is in the 100th percentile and now it has been shown that they share

a disease gene (GDF1 ).



Chapter 5

Discussion on the factors that

affect the performance of the

disease similarity measures

In this chapter I will analyse the suitability of the various semantic similarity measures

presented in Chapter 1 for calculating disease. I will show how the structure of

the MeSH ontologies improves the accuracy of the disease similarity calculations. I

will show that not all semantic similarity measures introduced in chapter 1 perform

equally well, showing that the correct use of the ontology is essential for accurately

quantifying disease similarity. Finally, I will show how the correct use of the MeSH

terms to annotate the OMIM diseases has a significant impact on the performance of

the similarity measures.

94
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5.1 Using the MeSH ontological structure improves

the accuracy of disease similarity calculations

To verify the importance of MeSH’s ontological structure, I have implemented several

overlap-based similarity measures, both based on the overlap of publications and the

overlap of MeSH terms. Exploring the results obtained measuring the overlap of the

publications associated to the diseases it becomes apparent that the publications are

not enough to accurately quantify disease similarities. Conversely the overlap between

the sets of MeSH terms annotating the diseases shows that exploiting the structure

of the MeSH ontology is essential to accurately quantify similarity between diseases

at molecular level.

The simpler, overlap-based similarities are given by several the following measures:

• Jaccard: The similarity of two diseases sim (a, b) is given by the Jaccard coef-

ficient of their respective annotation sets. Formally:

sim (a, b) = |Annot(a)∩Annot(b)|
|Annot(a)∪Annot(b)|

• Dice:The similarity of two diseases sim (a, b) is given by the Sørensen-Dice co-

efficient of their respective annotation sets. Formally:

sim (a, b) = 2∗|Annot(a)∩Annot(b)|
|Annot(a)||∪Annot(b)|

• Overlap: The similarity of two diseases sim (a, b) is given by

sim (a, b) = 2∗|Annot(a)∩Annot(b)|
min(|Annot(a)|,|Annot(b)|)

• Common: The similarity of two diseases sim (a, b) is given by the size of he

intersection of their annotations. Formally sim (a, b) = |Annot (a) ∩ (b)|
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5.1.1 Measuring the overlap of publications

Measuring the overlap of the publications rests on the idea that similar diseases

are described in overlapping groups of publications. The size of the overlap would,

therefore, accurately quantify similarity between the diseases. The performance of

the simple measures is shown in Figure 5.1.

Figure 5.1: Performance of the simpler, overlap-based similarity measures. Each
bar shows the combined AUC of the ROC curves on the Pfam, PPI and Sequence
Similarity datasets. The pairwise disease similarities were calculated measuring the
overlap of publications referenced by the OMIM diseases.

The coverage of this simple overlap measures is high, since most diseases in OMIM

reference at least one publication. However, the number of pairs of diseases with at

least one common publication is extremely low. From the 28, 686, 525 possible pairs,

only 8, 757 (0, 03%) pairs of diseases share at least one publication. Furthermore,

these pairs include only 4, 114 diseases, meaning that only about 48% of the diseases

in OMIM are represented. The extremely low number of positive overlap pairs is

the result of a very coarse measure that is only able to produce similarity between

highly similar diseases. As is to be expected, maximum similarity is given to pairs
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of diseases which represent variations of one syndrome, such as Cowden Syndrome 5

(MIM:615108) and Cowden Syndrome 6 (MIM:614109).

The reason so few diseases share a publication can be traced back to the bias

that exists in the study of diseases [80]. Figure 5.2 illustrates this imbalance in the

study of diseases, showing the number of publications each OMIM entry references.

The majority of diseases (76%) references fewer than 10 publications and 99% of the

OMIM records references fewer than 100 publications. The best referenced record

is Methemoglobinemia, Beta-Globin Type, Included (MIM:141900) with 1,094 publi-

cations followed by Methemoglobinemia, Alpha-Globin Type Included (MIM:141800)

with 387.

Figure 5.2: Number of referenced publications. The figure shows the number of
publications (Y-axis) each OMIM disease (X-axis) references in increasing number of
referenced publications. The Y-axis ranges from 1 to 103 in log scale. The disease
with the most annotations references 1, 094 publications.

Importantly, the number of referenced publications does not necessarily correlate

with the prevalence of the various diseases. While I have not performed a large-

scale analysis a few examples are illustrative of this imbalance. Sickle-cell disease,
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Methemoglobinemia, Beta-Globin Type, Included (MIM:141900), the diseases with the

most references, affects around 100, 000 United States citizens [20]. In contrast there

are 29 OMIM diseases which have the word “heart” in the name. Collectively, these

diseases reference a total of 585 publications, even though heart disease is much more

prevalent than Sickle cell disease [26] and the leading cause of death in the developed

world in general [104] and among the top in the UK (leading cause for men, second

for women,[69]).

5.1.2 Measuring the overlap of MeSH terms

Based on the assumption that similar diseases would share a significant fraction of

MeSH annotations, I measured the overlap of annotations using the simple similarity

measures. Figure 5.3 shows a comparison of the performance.

Figure 5.3: Performance of the simple similarity measures. The similarity was calcu-
lated using the various overlap measures of MeSH terms.

Due to the fact that the simple similarity measures do not consider the ontological
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structure, the scores they produce do not depend on the specificity of the annotations.

This results in measures with a reduced capability to discriminate between diseases

with high-quality annotations and those annotated with several general but overlap-

ping terms. As an example, 5 overlapping but very general terms (e.g. Elements -

(D004602)) are as good as 5 very specific overlapping terms (e.g. Argon - (D001128)).

Additionally, since the true path rule does not apply, terms following the path to the

root of the ontology are not considered. This situation is similar to the one faced by

van Driel et al. in [64]. As the authors noted, it is important to consider the relevance

of the hypernyms of the actual terms found in a record [64].

These simple measures are generally coarse and are unable to discriminate between

two pairs of slightly similar diseases. A coarse measure will heavily penalise dissimilar

diseases and lesser-known diseases, as the information available for them might not

be as broad or detailed. The nature of the domain, where information is uncertain

and scarce, a very conservative measure would not be appropriate. Figures 5.4, 5.5

and 5.6 show the ROC curves for each dataset. Notice how these curves contrast

sharply with those presented in figure 4.20, particularly in the region of (0.3, 0.6) in

the X and Y axis, where the curve is almost linear, showing the measure’s reduced

ability to accurately distinguish between the slightly similar instances [90].

It is important to note that the lack of overlap when analysing the overlap of both

publications and MeSH terms, is not a definite measure of dis-similarity between

diseases. It might simply reflect the lack of information, but a value of “zero” would

at the same time represent a lack of information as well as dis-similarity.

In contrast, the ontology-based similarity measures (Resnik, Lin, Jiang and Con-

rath, simUI and simGIC, see 1) are only able to produce a similarity score of zero when

the root of the ontology is chosen as the Lowest Common ancestor or, equivalently,

when two diseases have no common terms along the path to the root. Conceptually,

such a situation would arise only when two diseases are annotated with terms that
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Figure 5.4: ROC curve of the simple similarity measures in the Pfam dataset.

are distant from one another in the ontology.

5.2 Correct use of the MeSH ontological structure

is essential for accurate disease similarity cal-

culations

To fully take advantage of the quality of the annotations, the ontology must be used

appropriately. The studied semantic similarity measures however, do not perform

equally well. Figure 5.7 shows a comparison of the semantic similarity measures eval-

uated, which shows Resnik’s similarity measure outperforming all others. However,

considering that Lin’s [25] and Jiang and Conrath’s [51] semantic similarity measures
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Figure 5.5: ROC curve of the simple similarity measures in the PPI dataset.

are similar to Resnik’s [71], further analysis is required.

An important characteristic of Lin’s and Jiang and Conrath’s measure is that, any

two diseases having at least one term in common would have a similarity of 1, that

is, maximal irrespective of the specificity of this common term and the number and

specificity of the non-overlapping annotations. To illustrate this scenario, consider two

diseases, Da and Db, annotated as follows: Da = {t1, t2, t4, t6} and Db = {t1, t7}. The

similarity of these diseases is 1 given by the similarity of t1 with itself, computed using

either Jiang and Conrath or Lin. A similarity measure that assigns the maximum

possible similarity whenever an annotation is shared will result in a large proportion

of high-similarity pairs whenever high overlap in the annotations exists. Since these

measures have a performance comparable to that of Resnik’s in the GO [42] the

question is: do the annotations in MeSH overlap substantially more than they do in
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Figure 5.6: ROC curve of the simple similarity measures in the Sequence Similarity
dataset.

GO?

To answer these question, I obtained GO annotations with experimental evidence

codes (i.e. EXP, IDA, IPI, IMP, IGI and IEP [96]) for the model organisms A.

thaliana, H. sapiens,M. musculus, S. cerevisiae and C. elegans from UniProt GOA

[23]. I calculated the overlap of the annotations by counting the number of times the

genes were annotated with the same GO term. I performed the same calculation for

the MeSH annotations, and compiled the results in the box plot, shown in figure 5.8.

The difference in the means between MeSH and every model organisms is significant.

The p-values are: A. thaliana: 3.89 ∗ 10−16, H. sapiens : 3.96 ∗ 10−12, M. musculus :

1.37 ∗ 10−11, S. cerevisiae: 2.84 ∗ 10−16 and C. elegans : 3.87 ∗ 10−18.

In general, the similarity scores according to Lin and Jiang and Conrath will be
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Figure 5.7: Performance of the evaluated semantic similarity measures on the com-
bined MeSH ontologies

maximal whenever the similarity of the pair with the most informative LCA (i.e. with

the highest information content) is chosen . This situation would not arise if other

combinations were to be used (see chapter 1 §1.6). However, the maximum has

proven to be successful in GO [42], and has the advantage of providing the actual most

informative LCA. Knowing the most informative term that describes both diseases

allows manual analysis of the pairwise similarity scores [16].

Considering that Resnik’s similarity measure does not suffer from the shortcomings

of Lin and Jiang and Conrath, and outperforms all other semantic similarity measures,

I chose Resnik’s to quantify the similarity between the sets of MeSH terms that

describe the disease.
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Figure 5.8: Comparison of the overlap of MeSH annotations in OMIM and the model
organisms A.thaliana, H. sapiens, M. musculus, C. elegans and S. cerevisiae. The
X-axis shows the different model organisms annotated with the Gene Ontology and
OMIM annotated with MeSH. The Y-axis shows the distribution of overlapping an-
notations for each test case, in log scale. Notice the greater variability for the OMIM
case. The difference between the means of MeSH and the model organisms is signifi-
cant, as indicated by the p-values: A. thaliana: 3.89 ∗ 10−16, H. sapiens : 3.96 ∗ 10−12,
M. musculus : 1.37 ∗ 10−11, S. cerevisiae: 2.84 ∗ 10−16 and C. elegans : 3.87 ∗ 10−18.

5.3 The choice of MeSH subset

MeSH categorises the terms associated to a publication into Major Topic and non-

Major Topic. A “MajorTopics” term designates a term extracted from the title or

statement of purpose of the publication, and refers to its central focus point. The

remaining MeSH terms are either qualifiers for the Major Topics or refer to topics

substantially discussed in the publication.
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The coverage of the proposed method was lower when considering only the Ma-

jorTopics set of annotations, with 7,094 (90.8% of OMIM) of the diseases having

associated Major Topics against 7,575 (96.8% of OMIM) when considering all MeSH

terms available. Performance between both sets was similar, shown in figures 5.9, 5.10

and 5.11. To ensure the widest possible coverage, I chose the entire set of MeSH

terms.
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AllMeSH. AUC: 0.7033
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Figure 5.9: Performance comparison of the proposed method using all MeSH terms
available and the major topics subset on the Pfam dataset
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Figure 5.10: Performance comparison of the proposed method using all MeSH terms
available and the major topics subset on the PPI dataset
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Figure 5.11: Performance comparison of the proposed method using all MeSH terms
available and the major topics subset on the Sequence Similarity dataset

5.4 Decomposing the method: annotation and cal-

culation

Conceptually, the proposed method can be thought of as a two-step process: an

annotation step that results in MeSH terms being assigned to OMIM diseases (i.e.

an OMIM-to-MeSH mapping) and a similarity calculation step. To gauge the impact

of each step in the overall similarity of two diseases, the entire process of calculating

disease similarity was decoupled for both the proposed method and van Driel’s et

al. [64] method. This was done as follows:

1. Replacing the proposed OMIM-to-MeSH mapping with van Driel’s et al. OMIM-

to-MeSH mapping (resulting from the text-mining analysis of the Clinical Syn-

opsis (CS) and Text (TX) fields of OMIM). Note that, since the proposed

method does not require weights for this initial mapping, the weights in van

Driel’s et al. OMIM-to-MeSH mapping, were removed.

2. Conversely, to verify the similarity calculation step, van Driel’s et al. pipeline
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was altered, replacing the implemented OMIM-to-MeSH mapping with the map-

ping provided by the proposed method. As van Driel’s et al. method requires

weights, a weight of 1 was assigned to each MeSH term. Since the annotation

procedure defined for the proposed method does not consider repeated MeSH

terms as relevant, a weight of 1 is appropriate according to van Driel’s et al. an-

notation method.

The results are shown in figures 5.12, 5.13 and 5.14. As can be seen in these figures,

using the MeSH terms associated to the publications to annotate the OMIM diseases

provides rich descriptions that when used appropriately, can accurately quantify dis-

ease similarity. These comparisons highlight the fact that OMIM provides richer

descriptions of the diseases that go beyond the symptoms and signs of a disease.

Figure 5.12: Performance comparison of the OMIM to MeSH mapping (Step 1) and
the similarity calculation (Step 2) between the proposed method and van Driel’s et
al. method on the Pfam dataset.

Further analysis of the annotations produced by both the proposed method and

van Driel’s et al. method provides insight into the reasons for the poor performance of
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Figure 5.13: Performance comparison of the OMIM to MeSH mapping (Step 1) and
the similarity calculation (Step 2) between the proposed method and van Driel’s et
al. method on the PPI dataset.

the text-mining method when analysing such complex entities as the OMIM entries.

Consider the case of Hyperpigmentation of Fuldauer and Kuijper (MIM:145200), a

disease with suspected Mendelian trait. This disease has no known genes associated

to it and its short description provides a concise example.

The building blocks of the record analysed by van Driel et al. , namely the CS

and TX fields, are reproduced from OMIM [4] in excerpt 5.4.
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Figure 5.14: Performance comparison of the OMIM to MeSH mapping (Step 1) and
the similarity calculation (Step 2) between the proposed method and van Driel’s et
al. method on the Sequence Similarity dataset.

[Text TX]

Fuldauer and Kuijpers (1964) described a pigmentary anomaly in many

members of a Dutch family. Although the paper was entitled “Incon-

tinentia Pigmenti,” the distribution of the hyperpigmentation was

quite different, being located on the wrists, hands, and neck and less

consistently on the axillary folds, dorsa of the feet, and lines of the

hands. Furthermore, incontinentia pigmenti is probably an X-linked dom-

inant lethal in males. Many males were affected in this family.

[Clinical Synopsis CS]

• Inheritance: Autosomal dominant.

• Skin: Hyperpigmentation of wrists, hands, neck and less con-

sistently on axillary folds, dorsa of the feet and lines of hands

Excerpt 5.4: OMIM record for Fuldauer and Kuijpers syndrome.
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The boldface words represent the features selected by van Driel’s et al. method.

It is clear to see that while the term Hand (D006225) is chosen as descriptive of the

disease, in reality, it provides little information on the disease itself, as in this case it

was used to indicate the absence of a relationship.

Comparing the terms proposed by van Driel et al. with the terms obtained by my

method, the relevance of the terms chosen becomes evident:

van Driel My method
Foot (D005528), Hand (D006225),
Incontinentia Pigmenti (D007184),
Neck (D009333), Skin (D012867),
Wrist (D014953), Hyperpigmenta-
tion (D017495)

Diagnosis, Differential (D003937),
Ectodermal Dysplasia (D004476),
Pigmentation Disorders (D010859)

While some annotations such as Diagnosis, Differential (D003937) might not be

very informative, they are consistent with the description of the disease. My method

is incapable of producing contradictory annotations such as the case of the term

Foot (D005528) which van Driel’s et al. method uses to annotate the disease. The

MeSH annotations, by design, consist exclusively of terms which are relevant to the

publication, therefore, cases such as the one mentioned, cannot happen.

5.5 Low variability of scores

After analysing the scores of highly similar diseases, I noticed that there is little

variability in the scores. That is, in a relatively large set of disease pairs, very few

different scores are present. As an example, a list of the similarities between Breast

Cancer (MIM:114480) and the 10 diseases most similar to it is shown below:

1. Similarity 3.4:

• Cervical Cancer (MIM:603956), LCA: Core binding factor beta (D050658)



CHAPTER 5. DISCUSSION 111

• Mammographic density (MIM:607308), LCA: Mammography (D008327)

• Episodic Kinesigneic Dyskenisia (MIM:128200) LCA: Cerumen (D002571)

2. Similarity 3.58:

• Breast-ovarian cancer (MIM:604370), LCA: Mastectomy, Simple (D015413)

• Phosphoglycerate Dehydrogenase Deficiency (MIM:603956), LCA: Phos-

phoglycerate Dehydrogenase (D050543)

• Retinoblastoma (MIM:180200), LCA Neoplasm Seeding (D009366)

• Severe combined immunodeficiency (MIM:102700), LCA: Deamination (D003641)

• Estrogen receptor (MIM:133430), LCA: Nuclear Receptor Coactivator 3

(D056921)

• Epidermolysis bullosa (MIM:226730), LCA: Integrin alpha6 (D039503)

• Hypertrichosis (MIM:135400), LCA: Adenofibroma (D000232)

The little variability is due to the fact that the score depends on the number

of diseases annotated by the lowest common ancestor, and it can happen that this

number is the same for different pairs of diseases, even if the common ancestor is

different. The LCA’s for the diseases pairs with similarity score 3.58 annotate no

other diseases than the ones in the example. The LCA’s corresponding to disease

pairs with score 3.40 are used to annotate three diseases each.

5.6 A brief analysis of the Goh et al. disease classes

When analysing Figure 4.26 in Chapter 4.3 it is important to consider that every

disease is coloured according to a single class which based on the primary physiological

system affected by the disease. My measure is not based only on the physiological
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system affected by the diseases, but rather on their wider aetiology and also includes

risk factors, related drugs and known associations to other diseases —hour measure

is aimed at reflecting closeness on the interactome. This results in some diseases

being placed among diseases of different classes, according to their “location” on the

interactome. This effect is particularly noticeable for complex multifactorial diseases

such as the Cardiovascular diseases.

In Figure 5.15 and have highlighted diseases classified as Cardiovascular that are

embedded among other disease classes. Ischemic Stroke (MIM 601367) is located in

a group of diseases classified as Metabolic. There are associations reported between

Stroke and metabolic disorders such as AOMS1 (MIM 605552) and my disease simi-

larity measure scores the pair in the 99Th percentile. In the same group of Metabolic

diseases is Coronary artery disease (MIM 608320), whose risk factors include obesity

(disease similarity 95Th percentile), hypertension (disease similarity 99Th percentile),

hypercholesterolemia (disease similarity 99Th percentile) and diabetes (disease sim-

ilarity 96Th percentile) conditions related to the metabolic system. Myxoma, In-

tracardiac (MIM 255960) is located in the Cancer group and has high similarity to

Cancer related disorders such as Carney Complex (99Th percentile) and Thyroid

Carcinoma (99Th percentile). While myxomas are in general benign tumours, they

share important hallmarks of cancer.

On the contrary, the tight group of Cardiovascular diseases at the centre of the

plot (dashed line) contains diseases which are well described by a single class. In

fact, these are intrinsically Cardiovascular and are related to mechanical failures of

the hearth such as in the cases of Ventricular Tachycardia (MIM 192605), Sick Si-

nus Syndrome (MIM 608567) and Hypoplastic Left Hearth Syndrome (MIM 241550)

to name a few. These diseases are highly similar with one another and dissimilar to

most other diseases in OMIM.
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Figure 5.15: Embedding of OMIM diseases in 3D space. Each point in the plot
represents an OMIM disease. The diseases are coloured according to the disease
classes in Goh et al. . The highlighted diseases correspond to Cardiovascular diseases
in the boundary with other classes. The dashed circle shows the tight group of
cardiovascular diseases.

5.7 The effect of the number of genes on the sim-

ilarity scores

While the method I developed does not rely on gene-disease associations the network

medicine principles on which this work is based, imply that some relationships exist.

How does the number of genes in a disease affect its similarity to other

diseases?

Diseases with many genes have, on average, slightly higher similarity scores. This is

expected, as diseases with many genes will be more likely to be close to the other
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diseases in the interactome —informally, one can think of their disease modules as

being slightly “larger”, and therefore closer.

To show this, I compared the mean similarity of two sets of diseases and all

other diseases in OMIM. The first set consists of multigenic (strictly more than one

gene) and the second set exclusively of monogenic (exactly one gene) diseases. The

monogenic set consists of 3, 743 diseases and the multigenic set of 287 diseases.

The mean similarity between all diseases in the interactome and the diseases in the

monogenic set is 1.19, compared to the 1.27 between all diseases and the multigenic

diseases (p-value: 1−350). This small difference is reflected on the smaller distance

on the interactome: multigenic diseases are slightly closer to all other diseases (mean

shortest path length 4.08) compared to the monogenic diseases (4.12); p-value: 1−350.

Do disease-pairs share more common genes often have higher similarity

scores than those pairs sharing one gene?

In Figure 4.25 I contrast two normalised histograms of disease similarity scores. The

yellow histogram in the figure shows the distribution of scores of all pairs of diseases

in OMIM, while the green histogram shows the distribution of scores for those dis-

eases in OMIM which share at least one disease gene. The difference between both

distributions shown in the figure is statistically significant, and interestingly, 90% of

the pairs of diseases which share at least one gene, have similarity scores in the 99Th

percentile or higher.

To verify the similarity scores of the diseases that do share genes, I calculated

their similarities and represented them in a box plot shown in Figure 5.16. In this

figure, the X-axis correspond to the number of shared genes, and the Y-axis to the

distribution of similarity scores, shown as a box-and-whiskers. Each box-and-whiskers

diagram represents the median similarity value (indicated by the red line) the upper

and lower quartiles (indicated by the box segment below and above the median,
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respectively) and the maximum and minimum values.

As can readily be observed, the similarity scores grow the more genes a pair shares.

To verify the significance of the difference in the similarity distributions represented

in Figure 5.16 I performed a pair-wise t-test between the diseases sharing no genes

(labelled 0 in the X-axis) an all other diseases, and between the diseases sharing 1

gene and all other pairs. In Table 5.2 I show the p-values of these pairwise t-tests.

Figure 5.16: Distribution of similarity scores with respect to the number of shared
genes. The plot shows the distribution of similarity scores for pairs of diseases with
respect to the number of genes shared by them. The X-axis shows the number of
genes shared by the pairs and each corresponding box represents the distribution of
scores for those pairs of diseases. The red line in each box represents the median
similarity value; the upper portion of each box represents the upper quartile of the
distribution and the lower portion the lower quartile.

I have analysed this matter further by counting the number of shared genes in all

pairs of diseases. The results are shown in Table 5.1, where we can see that the vast

majority of diseases in OMIM do not share any genes.
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Num. shared genes Num. disease pairs
0 80,830,090
1 6,792
2 22
3 58
4 22
5 17
6 12
7 10
8 3
10 2
11 1
12 1
13 1
15 2
16 1
17 1
18 1
20 1
22 2
35 1

Table 5.1: Number of pairs of diseases
with respect to the number of shared
genes

0 1
0 . .
1 0.0 .
2 0.0 3.2−22

3 6.7−261 3.2−13

4 4.8−111 4.4−8

5 5.2−94 2.4−8

6 3.7−72 1.3−7

7 4−1 9.7−7

8 5.8−19 0.01
10 4.4−14 0.01
15 1.1−10 0.16
22 1.0−12 0.04

Table 5.2: Pairwise t-test between dis-
eases sharing no genes and all others and
diseases sharing a single gene. While the
p-value drops sharply above the 8 mark,
for the 8, 10, 15 and 22 mark only 2 dis-
ease pairs exist.

While the significance at the 8 mark drops steeply, we must highlight that for the

8, 10, 15 and 22 mark only 2 disease pairs exist.



Chapter 6

Software

The very nature of the work I did during my PhD required the development of sub-

stantial amount of software. While exploratory data analysis constitutes the vast

majority of the code I have written, two pieces of software stand out. I developed

this software with a less technically oriented user in mind. I therefore provided easy

to use interfaces and functionalities that allow the exploration of large amounts of

data with simplicity. In this chapter I will present Gene Ontology Semantic Similarity

Tool (GOssTo) and the Disease Similarity Explorer.

It is important to note that, although substantial, the pipeline developed for

the calculation of the disease similarities is also fully available. However, since the

construction of this pipeline is not aimed at wide usage, I have not included it in this

chapter and is instead detailed in Appendix A.

6.1 The Gene Ontology Semantic Similarity Tool

Gene Ontology Semantic Similarity Tool (GOssTo) [39] is a user-friendly software

system for calculating semantic similarities between gene products according to the

Gene Ontology. GOssTo is bundled with six semantic similarity measures, including

117
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both term- and graph-based measures, and has extension capabilities to allow the

user to add new similarities. Few software tools have been proposed for calculating

semantic similarities. ProteinOn [2] IT-GOM [37] and G-SESAME [107] stand out.

These tools are provided as either stand-alone applications which are not readily

extendible with new semantic similarity measures, or are available only as packages

running within environments such as R or MATLAB. Other tools are exclusively

available online and their use is impractical for high-throughput analysis on large

bodies of data. Most tools do not allow for a straightforward calculation of semantic

similarities for a whole genome, or an easy updating of the GO annotations.

GOssTo includes the Random Walk Contribution by Yang et al. [42] (see 1.7) ,

supports both term- and graph-based similarity measures and is available in down-

loadable binary form, with the entire source code released under GPLv3. GOssTo

is easy to use and very fast Table 6.1 shows the time required for calculating the

Resnik semantic similarity including the Random Walk Contribution for a few model

organisms. GOssTo features a simple and concise command line interface and an

application programming interface (API) for easy integration into high throughput

data-processing pipelines.

GOssTo’s design allows for user provided similarity measures to be independently

developed, compiled and linked at runtime. A well-defined interface grants the user

access to the data structures upon which new measures can be developed. After a

new measure is independently compiled, it can be dynamically linked to GOssTo’s

application core, seamlessly integrating it to the main application and providing the

same functionalities as the bundled measures. Thus, GOssTo can be used in three

different ways: as a part of a larger data-processing pipeline; as a stand-alone appli-

cation; as a static library for existing software. For easy processing of the results, all

output is presented in structured plain text files.

GOssTo is also available online, through a clean web interface www.paccanarolab.
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Organism
Number
of GO
terms

Number
of annotated
genes

Time
term-wise

Time
gene-wise

Arabidopsis 6,610 9,703 3m48s 43m35s
Rat 9,422 5,270 58m19s 29m54s
Mouse 12,961 15,020 24m35s 689m26s
Fly 7,304 8,235 4m56s 47m46s
Yeast 7,077 4,898 4m0s 23m55s
Worm 4,467 4,370 1m29s 5m1s

Table 6.1: For each organism: number of unique GO terms appearing in the GO
annotation; number of annotated genes; time (in minutes and seconds) required for
calculating the Resnik semantic similarity including the Random Walk Contribution
term- and gene-wise. Calculations used GO experimental evidence codes (EXP, IDA,
IPI, IMP, IGI, IEP, TAS) and is a and part of GO relationships. Data downloaded
in February 2014. Experiments run on a machine equipped with an AMD Opteron
6128 HE.

org/gosstoweb. GOssToWeb provides access to the same functionalities of the stand-

alone application, allowing extensive configuration of the experiments through a user-

friendly web form. The user can select GO evidence codes, GO relationships and a

genome from the list of organisms available in UniProt-GOA. GOssToWeb automati-

cally fetches the most recent version of the functional annotation from UniProt-GOA

and of the GO from its official repository, thus ensuring that the most up-to-date

data are used. Results are provided by redirecting the user to a page from which they

can be downloaded. The system can notify the user with an email containing a link

to the result download page.

The current version of GOssTo focuses on traditional semantic similarity measures

which rely mostly on the GO structure. Future versions will include the possibility of

handling Description Logic axioms which are being added to existing ontologies [44].
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6.1.1 Technical details

GOssTo was developed, using the Java programming language, with the JAMA pack-

age providing the internal data types and the required mathematical routines. JAMA

was modified slightly to rely on single-precision floating point numbers instead of

double-precision floating point numbers. The decision to modify JAMA instead of the

better known Apache Commons library has several reasons. Firstly, the Apache Com-

mons library provides far more functionality than the required by GOssTo. Secondly,

JAMA, being a more compact package, allowed simpler modification without com-

promising quality. The implemented changes resulted in a 50% reduction of GOssTo’s

memory footprint without compromising the quality of the results. The changes are

extensively documented and all of GOssTo results, both final and intermediate, were

thoroughly validated.

I developed GOssToWeb to widen the user base and allow less technically oriented

users to have access to high-quality bioinformatics tools. GOssToWeb functions as a

multiprocess queuing system to allow concurrent use of the resources in the shared

server, and acts as an interface to the binary version of GOssTo. The system is

illustrated in figure 6.1. After the user (green shaded area) submits the job to

the server (blue shaded area) the User Interface (UI) will thoroughly validate all

input parameters. This validation process will ensure that enough data was provided

in order to calculate the results and that the provided parameters are valid. The

validated job will be submitted to the Queuing System, who will check the load

of the server and the status queue, and if there are enough resources available will

spawn a worker process to handle the incoming job. The worker process will then run

GOssTo (red shaded area) with the provided parameters and wait until it is complete.

In this way, the queuing system is decoupled from the running of GOssTo, allowing

more users to submit jobs that will be queued until resources become available . Once

the job is complete, the worker process updates the queue status, and the UI shows
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the result page or sends an email, according to the user preferences.

Figure 6.1: Simplified sequence diagram of GOssToWeb. The green shaded area
corresponds to the user side. The blue shaded area to GOssToWeb, and is composed of
the User Interface (UI) and the queuing mechanism. The standalone implementation
of GOssTo is show in the red shaded area. Each time a new job gets submitted, the
queuing system spawns a worker process to handle the request. Users can wait for
the UI to display the result page (A) or provide an email address for GOssToWeb to
notify them (B).

The User Interface components were developed using Php for server side program-

ming, with JavaScript components on the client side. GOssToWeb keeps track of the

jobs that were run, allowing a caching mechanism to be implemented that will check

for identical parameter sets thus saving time and resources. The Queuing System was

entirely written in Python, as were the Worker Processes.

The source code is freely available from GitHub at https://github.com/pwac092/
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gossto released under the GPLv3 license. GOssTo runs on multiple platforms, and

was extensively tested in on both GNU/Linux and Windows.

6.2 DisimWeb: A tool to explore disease similari-

ties

I have developed DisimWeb in order to allow domain experts, medical doctors and the

larger community to explore relatedness between the heritable diseases in OMIM. The

browser, available at http://www.paccanarolab.org/disimweb, enables the users

to obtain the similarity measure between over 28.5 million pairs of diseases, with

dynamic links to OMIM, MeSH and UniProtKB databases.

The main page provides text fields, with preloaded options, where users can input

a pair of diseases and obtain their similarity scores. Considering that there is a large

number of diseases, disease names are auto completed to help the users quickly find

the diseases. The pairwise similarity scores are presented in a single result page, a

screenshot of which is shown in figure 6.2. The result page provides the similarity

score as well as the MeSH terms that annotate each of the diseases being compared.

Each MeSH term is linked to its own record page in the National Library of Medicine

website.

Since the similarity scores are unbounded positive numbers, I include in the result

page the percentile in which the score is located. This percentile is shown both as

a number as well as graphically in a histogram that indicates the position of the

similarity score of the disease pair in relation to the entire dataset. A red dot is

located above the bar in the histogram corresponding to the similarity of the pair.

In addition to obtaining pairwise scores between the diseases, I developed a neigh-

bourhood “explorer”, a screenshot of which is shown in figure 6.3. The neighbourhood
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Figure 6.2: Screenshot of the “Search” feature. The pairwise similarity score and the
percentile of the score is shown at the top right. To contextualise the score with all
other scores, a histogram of similarity scores is shown. Clicking on the binoculars
“Explores” the disease’s neighbourhood. The link symbol redirects the user to the
OMIM. The MeSH terms for each disease are listed as hyperlinks that point go the
corresponding entry page in the National Library of Medicine website.

explorer allows user to graphically navigate through the disease associations by query-

ing the similarity database and retrieving the diseases most similar to the ones he/she

finds relevant. In the plot, every node is an OMIM disease and the links represent

the similarity score between the two disease it connects, coloured according to its

similarity value. The target disease appears in the centre, and it is connected to the

10 diseases that are most similar to it. In order to provide a wider picture, these 10

diseases are connected to their 5 most similar ones. The number of nodes displayed

in the graph are not fixed, as the user can choose to include more neighbours at each

level.
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I have also added a “Fill Network” feature, that allows to fully connect the nodes

in the graph. Considering that users can add a substantial number of nodes in each

level (i.e. direct neighbours of the explored disease, as well as neighbours of the

neighbours), a warning is displayed when filling using the “Fill Network” feature

might excessively load the users computer.

The user can also choose whether to hide or display node labels as well as choose

which labels to display. As a default MIM numbers are shown, but a single click

displays the disease names. While the names are long and might, at first glance,

confuse the graph, the nodes can be moved and rearranged by clicking and dragging

them around the canvas. Additionally, all elements in the graph are clickable. Clicking

on a disease node shows the disease name, while clicking on a link shows similarity

between the connected diseases.

The default layout is a concentric layout, where the disease being explored is

located in the centre of the plot, however, I have made several layouts available

allowing users to obtain different perspectives on the same data. Users can select

among a circular, breadth first, random, grid or a force-directed layout. The entire

plot, with labels and colours, can be downloaded in a high-resolution PNG image.

6.2.1 Technical details

I developed DisimWeb using Django [30] a high-level web framework based on Python.

The browser uses an SQLite in the backend to store the disease similarities, with

indices specified to speed up the fetching of the data.

The front-end of the application relies on several JavaScript libraries both to pro-

duce a fluid user experience. jQuery [52] provides general functionality and improved

user experience such as the autocompletion of disease names. The D3.js [29] library

provides the capabilities to process the similarity scores and build the histogram

shown in the results page. The neighbourhood explorer is built with the Cytoscape.js
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Figure 6.3: Force directed layout of a disease’s neighbourhood.

[21] library.

The source code of the browser is freely available from GitHub at https://

github.com/pwac092/disimweb and is released under a GPLv3 license.
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Future Work

In this chapter I present a brief analysis of future work related to my Thesis.

7.1 Disease gene prediction

The first, and perhaps more straightforward evolution of my work, is the prediction

of disease genes. To aid in this task, I have produced the Disease Similarity Resource

(DSR), a database of the disease pairs whose similarity scores was in the top 5%

(1, 552, 356 pairs) and their associated disease genes. Each pair constitutes an entry,

and contains 5 columns:

1. Disease A

2. Disease B

3. Similarity Score

4. UniProt identifiers of the proteins associated to disease A

5. UniProt identifiers of the proteins associated to disease B

126



CHAPTER 7. FUTURE WORK 127

Since similar diseases lie “close” on the interactome, similar these highly similar

disease pairs are, suitable candidates for transferring knowledge between them. Thus

the DSR provides a starting point for an in-depth analysis into the relationships and

aetiology of the diseases, providing the basis for a statistical gene-discovery process.

In a recent collaboration with Valentini et al. [38] we show that weighted in-

tegration of networks improves the performance of kernel-based gene prioritisation

techniques. The DSR provides an orthogonal source of information that correlates

with closeness on the interactome, and could therefore be integrated into an existing

gene prioritisation pipeline to improve performance.

7.2 Analysis of complex diseases

In this Thesis, I focused on diseases in Online Mendelian Inheritance in Man (OMIM),

where very few disease-gene associations elucidated through “statistical” methods

are included (see Appendix C). While OMIM includes complex diseases such as

various Cancers, more complex inheritance patterns and larger sets of genes could

be elucidated for the diseases through methods such as Genome-wide Association

Studies (GWAS).

I explored the capability of my method to quantify disease similarity for diseases

with larger set of genes, where a more complex genotype-phenotype relationship might

exist. While there is not definitive way to classify diseases in OMIM as Complex or

Simple I attempted three different ways of obtaining this classification. I report all of

them below, even if only one gave results which I consider meaningful and was able

to use afterwards.
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1. Extracting GWAS traits from OMIM.

I classified the OMIM diseases whose disease-gene associations were obtained through

GWAS as Complex and the remaining as Simple. To do this, I developed a method

which classifies the OMIM diseases appearing in the EBI GWAS catalogue [31] as

Complex while the remaining were classified as Simple. Considering that the traits in

the GWAS catalogue and the OMIM diseases do not have identical names I used an

approximate string matching algorithm that produces a similarity score for two given

strings. This score (the Levenshtein distance) is based on the number of deletions,

insertions and substitutions that are required to match the query strings. I calculated

this score for every possible pair GWAS trait - OMIM disease. The dataset contained

21, 529 GWAS traits and 7, 812 OMIM diseases, so I calculated a total of 168, 184, 548

scores. An OMIM disease was considered to be Complex if it was highly similar

(similarity ≥ 90%) to a GWAS trait. Unfortunately, this process returned only 60

OMIM diseases being classified as Complex which is less than 1% of the total, as well

as many diseases classified as Simple even if many disease genes have already been

associated with them.

2. Filtering OMIM based on the Phenotype mapping key

I contacted the staff at OMIM, who recommended us to filter the OMIM database

based on the Phenotype Mapping Key of the disease (see C). Following their rec-

ommendation I built a set of Complex diseases with those diseases that had the

Phenotype Mapping Key 2, and a set of Simple diseases with the mapping key 3.

Unfortunately, this process had similar issues as our previous method, as it returned

only 63 OMIM diseases being classified as Complex which is less than 1% of the total,

as well as many diseases (261) classified as Simple even if many disease genes have

already been associated with them.
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3. Extracting the multigenic disorders from OMIM

I classified all multigenic diseases (with more than one gene) in OMIM as Complex

and all monogenic diseases as Simple. Here I assume that the multiple disease genes

complicate the elucidation of the gene-disease relationship and therefore, multigenic

diseases correspond to the set of inherently Complex diseases. In this way I obtained a

set of 287 Complex diseases and a set of 3, 743 Simple diseases. There is a statistically

significant difference (t-test p-value ≤ 10−350) between the mean number of disease

genes associated to the Complex diseases (3.61) and to the Simple diseases (1). The

results of the evaluation on the three datasets, Pfam, PPI and Sequence Similarity,

are shown in Figure 7.1 .

The composite performance of my method is slightly inferior for the set of Complex

diseases with respect to the Simple diseases —the overall composite score is 3.08 for

Complex and 3.13 for Simple. Interestingly, the method by Park [86], which uses

molecular level information, is the only method that shows the same behaviour; the

methods of Köhler [81] and van Driel [64] obtain a better performance on each of the

3 datasets for Complex rather than Simple diseases. Overall, my method is the most

stable as it varies the least in performance between the 2 sets of diseases.

Finally, It is important to note that in Figure 7.1 the coverage of the different

methods is determined only for the diseases in the Complex and Simple sets and

not for all of OMIM. Nevertheless, the Area Under the Curve (AUC) performance of

the methods is comparable to those shown in Figure 4.21 in Chapter 4.3 where the

methods are evaluated on all diseases in OMIM.

Interestingly, the EBI GWAS catalogue references the publications for the exper-

iments. They might provide a starting point for a similarity measure of the disease

traits based on my method. Conceptually, the problem is similar —the method would

provide annotations for the disease traits in the catalogue.
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Figure 7.1: This figure compares the performance of my method and those by van
Driel, Park and Robinson on the Complex and Simple sets of diseases. Coverage
is defined as the fraction of diseases in the Simple and Complex sets for which a
similarity can be calculated.

7.3 Computerised Medical Support Systems

Clinical Decision Support Systems (CDSS) are knowledge-based systems designed

to aid the medical practitioner and patients in everyday decisions and proper care

[14]. Several systems fall in the CDSS category such as automatic reminders, drug

dosage verifiers, patient specific recommendations, automated differential diagnosis

and others [14].

Medical diagnosis is a process that begins with a particular medical grievance, and

concludes only with a specific, categorised identification of the cause of the grievance

[7]. The diagnosis process is vague, and heavily dependent on the physicians abilities

and preparation, as shown in studies such as the ones presented by Melo et al. [62]

who explore Brain MRI’s of Medical Doctors diagnosing a disease. To aid in this
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process, several formulas in the form of Medical Algorithms have been developed

[83]. A simple example is the calculation performed to obtain the Body Mass Index

(BMI). This formula compiles various factors, height, sex and weight to obtain a

single number to characterise a patients weight.

Many algorithms are available [83], and they attempt to summarise expertise and

knowledge into a single, easily distributed procedure, that can help doctors. While

they provide a clear path to follow once the disease or condition has been identified,

the procedures for the elucidation of the disease is a constructive approach based

on trial and error of conditions the medical practitioner identifies as relevant. The

process of differential diagnosis, focuses on the correct discrimination of diseases from

those that exhibit similar characteristics, but whose treatments are different.

This first step of providing alternative hypothesis is particularly complex in poorer,

less developed areas, where few medical professionals are available and consultation

with other physicians is not always a possibility. An automated system for the ranking

of putative alternative diagnosis might provide a much needed sounding board in these

poorer isolated regions. Systems to provide these automated Differential Diagnosis

Generator (DDx) already exist, Bond et al. [102] evaluate 19 of such systems, ranging

from general systems to condition specific systems.

As a first step, my measure could provide an up-to-date reference for physicians

that could help discard diseases that are similar to the one experienced by the patient,

but that require different patterns of care. It could allow physicians in remote areas

to obtain more information to help contextualise the condition the patient presents.

I can also envision an interactive differential diagnosis system that would aid

medical practitioners in identifying putative alternative diagnoses that are obscured

by the complexity and multiplicity of the symptoms.
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Appendix A

Running the disease similarity

pipeline

This Appendix presents a guideline to replicate the results of the disease similarity

measure. Each step in the calculation process was implemented in an independent

script, in order to confine any possible bugs. While this results in several programs

various languages to be executed, the independence of the steps allows any and all

steps to be replaced, as long as the file formats are respected.

All data is available from www.paccanarolab.org/disease_similarity. The

code is released under GPLv3 and is available from https://github.com/pwac092/

disim_calculator. The disease similarity browser is available at www.paccanarolab.

org/disimweb, for details see chapter 6.

The pipeline was developed using Python 2.7.3 on a Debian 7 GNU/Linux system

running the 3.16 Linux kernel. The guideline presented in this Appendix was devel-

oped and tested on a Debian 7 GNU/Linux environment, and should be applicable

to most GNU/Linux systems.
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A.1 Extracting the Online Mendelian Inheritance

in Man (OMIM) data

The OMIM data has to be manually downloaded from www.omim.org. Registration

is required, but the data is freely available. Since OMIM contains both genes and

diseases, to extract the diseases from the catalogue the following prefixes have to be

matched: +,#,% and null, that is, a line without prefix.

While it is possible to extract the phenotypes from the morbidmap or genemap

files, parsing the omim.txt file can be done exclusively using Linux GNU coreutils

tools such as grep and awk. This simplifies the process and reduces the probability

of making programmatic errors.

The following awk command can extract all OMIM identifiers from the omim.txt

file, along with the name and prefix.

awk ’/∗FIELD∗ TI/{ g e t l i n e ; p r i n t } ’ omim . txt > r e co rd s

To extract only the phenotype prefixes:

• For the null prefix:

cut −f 1 −d ” ” r e co rd s | grep ” ˆ[0−9] ”

• For the + prefix:

cut −f 1 −d ” ” r e co rd s | grep ”ˆ+[0−9]” | cut −c2−

• For the # prefix:
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cut −f 1 −d ” ” r e co rd s | grep ”ˆ#[0−9]” | cut −c2−

• For the % prefix:

cut −f 1 −d ” ” r e co rd s | grep ”ˆ\%[0−9]” | cut −c2−

For convenience, the extracted OMIM should be sorted. This can be done using

the sort command as follows:

s o r t d i s e a s e s −o d i s e a s e s

A.2 Extracting the referenced publications

To extract the publications referenced by each OMIM disease, the OMIM query.py

python script hast to be used. This script will query OMIM public API, extracting

all the publications for a particular disease. An API key is required for this step, but

this is freely available from OMIM at http://omim.org/api.

Alternatively, the omim.txt file could be manually parsed and the publications

extracted in this fashion. Querying the API is safer and reduces the chances of pro-

grammatic errors, considering the free-text omim.txt file will require specific parsers

and very detailed debugging to ensure their quality. The XML results provided by

OMIM are easily parseable using python packages.

The required input for the script is:

1. A single-column file containing the list of OMIM diseases for which the publi-

cations will be obtained.
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2. The name of the output file. For illustrative purposes, this file will be named

omim2pubmed.

3. A configuration file which contains the API key provided by OMIM.

The output file is formatted in a way that makes it easy to parse in the Linux

console. Each line consists of the OMIM disease followed by the PubMed identifiers

obtained from OMIM separated by tabs. The configuration file is read for the API

details using the python ConfigParser module. The format is as follows:

[ APIconfig ]

Server = api . europe . omim . org

Key = 5ED0AEDA215A37C589A9AF0E3EAF1F143033E50

The API key shown is for illustration purposes only and as such, is not valid. The

server has to be chosen according the one’s location. It is important to note that

there are OMIM records for which no references can be fetched.

Once the PubMed identifiers are obtained form OMIM, they need to be extracted

from the omim2pubmed file:

cut −f2− omim2pubmed | t r ’ t ’ ’n ’ | s o r t −n | uniq

A.3 Fetching the Medical Subject Headings (MeSH)

terms

To extract the MeSH terms associated to each PubMed identifier, the PubMed query.py

python script hast to be used. This script will query PubMed’s public API, extract-

ing all the MeSH terms for a particular publication. This script will fetch the MeSH
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terms for a given list of PubMed identifiers through API queries to Entrez E-utils.

The input required for the script are:

1. The list of PubMed identifiers for which the MeSH terms will be fetched.

2. A string (Yes/No) indicating whether only to get the major topics MeSH terms

or all MeSH terms.

3. Double column file, mapping MeSH term names (e.g. Adult) to their unique

descriptor identifier (e.g. D000328).

4. The name of the output file. For illustrative purposes this file will be named

pubmed2mesh.

5. The configuration file for the Entrez e-utils.

As with the mim2mesh file, the output file is formatted in a way that makes it easy

to parse in the Linux console. Each line consists of the PubMed identifier followed

by the MeSH identifiers obtained from PubMed separated by tabs.

A.4 Annotating OMIM with MeSH

To annotate the OMIM diseases with MeSH terms the mim2mesh.py Python script

has to be used. This script will map each OMIM disease to the MeSH terms of the

PubMed identifiers the disease references. It will produce the mapping file also, it

will provide a file with all the OMIM diseases it could not map. The input required

for the script are:

1. The mapping between OMIM records and PubMed identifiers.

2. The mapping between PubMed identifiers and MeSH terms.
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3. The desired output file.

As with the mim2mesh and pubmed2mesh files, the output file is formatted in a

way that makes it easy to parse in the Linux console. Each line consists of the

OMIM disease followed by the MeSH identifiers associated to the disease’s referenced

publications.

A.5 Computing the pairwise disease similarities

The pipeline allows the calculation of similarity scores using a subset of the ontologies

or combining the ontologies according to the method I propose in chapter 5. The

compute matrices.py script computes the scores for each individual ontology, while

the compute combined similarities.py script computes the combined similarities.

In both cases, the similarity scores are presented in a triplet format, where the

first two columns correspond to the diseases and the last column the similarity score

between both diseases. The file has the format:

OMIM−1 OMIM−2 s im sco r e

OMIM−1 OMIM−3 s im sco r e

. . .

A.6 Producing the benchmarks

The benchmarks (Pfam dataset (Pfam), Protein-Protein interaction dataset (PPI)

and Sequence Similarity dataset (SS)) Files are represented as triplets, where the

first two columns contain the diseases, and last column contains 1 or 0, depending

on the physical evidence supporting the similarity of the diseases. The file has the

format:
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OMIM−1 OMIM−2 1/0

OMIM−1 OMIM−3 1/0

. . .

The construction of the evaluation datasets requires three sources of data:

1. The Disease-protein mapping.

2. The Protein-protein interaction network.

3. The sequences of the diseases proteins.

4. The Pfam signature information for the disease proteins.

A.6.1 Getting the data required for the benchmarks

There are several Protein-Protein interaction datasets available. I have chosen the

Human Protein Reference Database (HPRD) [93] available from www.hprd.org.

The disease protein to OMIM disease can be obtained from several sources. Pri-

marily, it can be parsed from the morbidmap file provided by OMIM. However,

UniProt provides a mapping file, named mimtosp.txt, which maps OMIM diseases

to Unpaired identifiers and Gene Names. This file is simpler to parse, and the use of

UniProt identifiers removes the need for further translation of gene names and protein

identifiers.

For convenience, the script convert mimtosp.pl transforms the mimtosp.txt file

into a file that is simpler to process in the GNU/Linux console. This script has no in-

put, it fetches the mimtosp.txt file from UniProt and converts it to the mimtoprot.txt

file.

The resulting mimtprot.txt file has a simple two column format, where the first

column contains the OMIM disease and the second column the UniProt ID of the



APPENDIX A. RUNNING THE DISEASE SIMILARITY PIPELINE 140

disease protein. Diseases with multiple proteins will appear several times in the file.

For example:

101900 P16615

102200 O00170

102200 P63092

. . .

To obtain the sequences of the proteins associated to the diseases (required for

the Sequence Similarity dataset), the script get sequences.pl has to be used. This

script automatically fetches the sequences for the proteins producing a sing file with

the sequences in FASTA format. It requires a single input:

1. The mimtoprot.txt file.

Lastly, to obtain the Pfam-A signatures of the proteins, the pfam scan.pl has to

be used. This script is available from Pfam, and will produce a tabular file associating

the Family, Domain, Motif and Repeats associated to the each protein.

A.6.2 The Pfam dataset

The pfamBenchmark.py script will build the Pfam benchmark following the criteria

defined in chapter 4.3. The script takes three parameters:

1. The output of the pfam scan.pl script.

2. The mimtosp.txt file.

3. A single-column file of valid OMIM diseases to consider.

4. A single-column file of Pfam identifiers to exclude. This parameter is optional,

and can be left blank. See 4.3 for details on the exclusion of Pfam signatures.
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The output is produced with the default name omim pfam in the local directory

where the script was run.

A.6.3 The PPI dataset

The MIM2gene.py script produces will build the PPI benchmark following the criteria

defined in chapter 4.3.

The required inputs are:

1. UniProt ID to Gene Name mapping file.

2. mimtosp.txt file. This file is provided by UniProt and maps OMIM records

to their known proteins using UniProt identifiers http://www.uniprot.org/

docs/mimtosp.txt

3. Protein protein interaction dataset file.

4. A single column file of accepted OMIM numbers.

Different PPI networks can be chosen by defining a vector of columns in the

class Interactions in the MIM2gene.py script. After this vector is defined, suffices

with appropriately replacing the call to the constructor

hprd = I n t e r a c t i o n s ( sys . argv [ 3 ] , ’ columnsHPRD ’ )

by replacing the second argument with the appropriate parameter.

A.6.4 Sequence similarity dataset

Two Perl scripts are required to construct the Sequence Similarity dataset. In the

following, they are detailed in the order they should be executed.
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The makeblast.pl script calculates the Smith-Waterman alignment of the pro-

teins provided. This script requires only the FASTA sequences of the proteins to

compare.

The produce sequence similarity.pl produces the Sequence Similarity dataset.

Two diseases are positively related when the sequence similarity e-value is lower than

10−6. The inputs are:

1. mimtoprot.txt, the file mapping OMIM diseases to UniProt proteins.

2. The alignment of the proteins.

A.7 Final comments

This guide is intended to allow results to be replicated with ease. Each script men-

tioned in this Appendix is commented explaining its behaviour.

The time required for fetching the data through the API interfaces varies depend-

ing on the load of the server and the network resources available. The bottleneck

step is the actual calculation of the similarity scores. Dr. Alfonso E. Romero and

I have implemented several mechanisms to speed up the process, nevertheless, the

calculations could exceed 10 hours.

Further improvements in the implementation will be performed based on need.



Appendix B

Publications referenced by the old

OMIM data

The following tables present the publications referenced by the OMIM diseases ex-

plored in chapter 4.3 section 4.7.

The following list corresponds to the publications referenced by the April 2013

version of OMIM.

• Tetralogy of Fallot (MIM:187500): 10587520, 5065286, 20807224, 4003436, 9132487,

11152664, 4834778, 11714651, 19597493, 8923932, 9188669, 4050848, 15937089,

20631719, 20581743, 1425789, 2260602, 21110066, 13943847, 14517948, 19948535,

21919901, 18055909, 18672102

• Right Atrial Isomerism (MIM:208530): 6638068, 7715640, 9152295, 874654,

3674113, 4003441, 3425603, 8834045, 6712272, 8873667, 7172476, 6622295, 1021593,

6050934, 6638069, 14929628, 2012140, 1191445, 14128648, 4774542, 9155619,

9443444, 7277426

• Noninsulin-dependent Diabetes (NDDIM) (MIM:125853): 17726085, 11443197,

10973253, 16885549, 2695375, 22286214, 9038347, 10720052, 12874106, 18323454,
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17463246, 19657112, 15808156, 10199785, 10331426, 11575290, 10958757, 9745421,

15924147, 17273962, 8528247, 12915642, 8528248, 11032783, 21186350, 16775236,

17603485, 12783844, 9758619, 11130726, 18477659, 15472205, 20016592, 7971976,

9032096, 11158011, 19020324, 15940393, 11030756, 1357346, 17066296, 17906635,

19020323, 15070960, 16142453, 11916952, 1587533, 20085713, 20574426, 19933169,

12750520, 14960743, 10902787, 12045211, 9498630, 9541507, 18952314, 12851856,

17603484, 12118251, 15980866, 17463248, 9312173, 9482914, 11723072, 17179727,

17293876, 18008060, 8897863, 9062343, 11904371, 9892237, 18711366, 12727978,

18231124, 11067779, 11032784, 20360734, 17554300, 21118154, 22456733, 16034410,

18711367, 22456732, 11533494, 17463249, 22456734

• SHORT syndrome (MIM:269880): 6407320, 8574420, 8790109, 15481036, 12514365,

18384141, 21340693, 8279490, 8669449, 2729352, 4050863

• Dermatofibrosarcoma protuberans (MIM:607907): 9738795, 11291071, 11435686,

12209598, 17478383, 12202658, 12660034, 8988177, 12661001, 15221986

• Juvenile Myelomonocytic Leukemia (MIM:607785): 19420352,18182584, 19388938,

10086728, 19372255, 15723289, 21562564, 19571318, 11588050, 17332249, 20008299,

9160658, 20543203, 9616134, 16474405, 12717436

The following list corresponds the publications referenced in the August 2014

version of OMIM.

• Tetralogy of Fallot (MIM:187500): 10587520, 5065286, 20807224, 4003436, 9132487,

11152664, 4834778, 11714651, 19597493, 8923932, 9188669, 4050848, 15937089,

20631719, 20581743, 1425789, 2260602, 21110066, 13943847, 14517948, 19948535,

22939634, 18055909, 18672102

• Right Atrial Isomerism (MIM:208530): 6638068, 7715640, 9152295, 874654,

3674113, 9201627, 4003441, 3425603, 14648004, 8834045, 6712272, 8873667,
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7172476, 6622295, 20413652, 6050934, 6638069, 14929628, 2012140, 1191445,

14128648, 4774542, 9155619, 9443444, 7277426

• Noninsulin-dependent Diabetes (NDDIM) (MIM:125853): 17726085, 11443197,

10973253, 16885549, 2695375, 22286214, 9038347, 10720052, 12874106, 18323454,

17463246, 19657112, 15808156, 10199785, 10331426, 11575290, 10958757, 9745421,

15924147, 17273962, 8528247, 12915642, 8528248, 11032783, 21186350, 16775236,

17603485, 12783844, 9758619, 11130726, 18477659, 15472205, 20016592, 7971976,

9032096, 11158011, 19020324, 15940393, 11030756, 1357346, 17066296, 17906635,

19020323, 15070960, 16142453, 11916952, 1587533, 20085713, 20574426, 19933169,

12750520, 14960743, 10902787, 12045211, 9498630, 9541507, 18952314, 12851856,

17603484, 12118251, 15980866, 17463248, 9312173, 9482914, 11723072, 17179727,

24390345, 17293876, 18008060, 8897863, 9062343, 11904371, 9892237, 18711366,

12727978, 18231124, 11067779, 11032784, 20360734, 17554300, 21118154, 22456733,

16034410, 18711367, 22456732, 11533494, 17463249, 22456734

• SHORT syndrome (MIM:269880): 6407320, 8574420, 11135494, 8790109, 23810379,

23810382, 15481036, 12514365, 18384141, 21340693, 8279490, 8669449, 2729352,

23810378, 4050863

• Dermatofibrosarcoma protuberans (MIM:607907): 9738795, 11291071, 11435686,

12209598, 17478383, 12202658, 12660034, 8988177, 12661001, 15221986

• Juvenile Myelomonocytic Leukemia (MIM:607785): 19420352, 18182584, 19388938,

10086728, 19372255, 15723289, 21562564, 19571318, 11588050, 17332249, 20008299,

9160658, 20543203, 9616134, 23832011, 16474405, 12717436

Finally, table B.1 shows the changes in the both the April 2013 and August 2014

releases of OMIM. All publications are shown as PubMed identifiers.
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OMIM disease Added Removed
Tetralogy of Fallot (MIM:187500) 22939634 21919901
Right Atrial Isomerism
(MIM:208530)

9201627, 14648004,
20413652

1021593

Noninsulin-dependent Diabetes
(NDDIM) (MIM:125853)

24390345 -

SHORT syndrome (MIM:269880) 11135494, 23810378,
23810379, 23810382

-

Dermatofibrosarcoma protuber-
ans (MIM:607907)

- 9920784,
10607907,
10607907

Juvenile Myelomonocytic
Leukemia (MIM:607785)

23832011 -

Table B.1: Publications associated to the diseases in the August 15, 2014 version of
OMIM.
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Dividing the set of OMIM diseases

To divide the diseases in OMIM based on the mapping method, I contacted the OMIM

staff. Their reply is included below:

Dear Horacio,

If you are trying to exclude phenotypes that are placed on the map by

GWAS, I suggest selecting by ”Phenotype Mapping Key”. Phenotypes that

have a mapping code of 3 will have a known molecular basis. Phenotypes

with a 2 will be placed on the map by linkage, GWAS, or other ”statistical”

methods. The mapping method codes available in the FTP download are

not aggressively curated and generally the code ”Fd” has been used for

so-called statistical mappings of disease to the genome. In addition, we

do not generally add GWAS information to OMIM unless the P value is

astronomical. GWAS Catalog and GWAS Central are dedicated to GWAS

data and are available from the ”External Links” link at the top of every

OMIM.org page.

Sincerely,

Joanna Amberger
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