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Abstract

Lattice dynamics are of the utmost importance in understanding many modern ma-

terials. They enable us to probe the specific details of a material’s chemistry and its

ordering, and are vital to understanding many technologically relevant phenomena.

Unfortunately for anything more than the simplest system understanding how the

dynamics relate back to the properties becomes extremely challenging.

This difficulty can be overcome by combining the latest experimental techniques

at international x-ray and neutron scattering facilities with first-principles calcula-

tions. The experiments allow us to validate the calculations and the calculations

can then be related back to an understanding of the material’s properties.

In this thesis two different problems are investigated. The first is a study of

the vibrational spectrum of a thermoelectric material NaxCoO2. This system has

cage-like structures with atoms inside the cage that can rattle. In similar materials

this rattling has been postulated to suppress the thermal conductivity by phonon

scattering. We find that in fact there is no significant phonon scattering and instead

the suppression is due to a reduction in the phonon velocities. The effect of changing

the cage-like structures and doping the rattling ion is also investigated.

The second system studied is the alkaline doped iron selenide superconductors.

Spectroscopic studies have shown that these exhibit a symmetry breaking phase

transition on cooling but its origin is unknown. We show that this arises from a

subtle ferrimagnetic transition related to the localisation of charge on certain iron

sites. It is this charge localisation which is responsible for the symmetry break-

ing and by relating these results to the literature the case is put forward that the

ferrimagnetism is also related to the origin of superconductivity in this system.
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Chapter 1

Introduction

Modern civilisation requires vast amounts of energy. A great deal of this energy

however, is wasted. For example, the transmission of electric power within the UK

results in losses of around 8% [7] while 1/6 of the energy used by UK industry is

potentially recoverable[8]. These represent considerable contributions to individual

bills, company overheads as well as contributing to CO2 emissions.

There is unlikely to be a single killer material which can solve all of these prob-

lems, instead many different materials with properties tailor made to their specific

application will be used. Superconductors could be used in power lines to reduce

transmission losses but the superconducting transition temperature is still very much

within the cryogenic region preventing large scale deployment. Other materials,

known as thermoelectrics, are capable of turning waste heat back into useful power,

but their efficiency is low and production costs high, and this has limited them to

very specific applications.

The dynamics of materials are vital to building up a comprehensive understand-

ing of their physical properties. In the case of thermoelectrics the lattice dynamics

are of direct technological relevance as the lattice thermal conductivity limits device

efficiency. In the case of superconductors, while some are phonon mediated most

15
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high temperature superconductors are not, but the lattice dynamics place very tight

constraints upon the underlying state which must be known before a proper theory

of unconventional superconductivity can be developed.

1.1 Thermoelectrics

There are now a vast range of thermoelectric materials [9] but all of them share a

common design aim. A large voltage for a given temperature gradient is required

while keeping the electrical conductivity high (as it must go into an electric circuit)

and the thermal conductivity low (so that a large temperature gradient can be used).

This presents a real design challenge.

1.1.1 The figure of merit

With the proliferation of different thermoelectric materials it becomes necessary to

have a single figure of merit by which they can be compared. This is stated as

zT = S2T
σ

κ
.

S is the Seebeck co-efficient (or voltage for a given temperature gradient), σ the

resistivity and κ the thermal conductivity. The additional T term arises from the

fact that at higher temperatures a greater electrostatic repulsion can be overcome

allowing larger voltages to be obtained. The best thermoelectrics now have a zT > 2

[10].

These parameters are all interdependent. Within the parabolic band, energy-

independent scattering approximation [11]

S =
8π2k2

B

3eh2
m∗T

( π
3n

)2/3

,
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where m∗ is the effective mass of the carrier (either electrons or holes) and n the

carrier concentration. This shows that in general S will improve as the system’s

metallic properties decrease, this will of course also reduce the electrical conduc-

tivity (σ). The picture is further complicated by the thermal conductivity κ. This

has two components, the electronic κe and lattice κl. A reduction in the electronic

conductivity will also reduce κe but potentially not κl. Any changes in the elec-

tronic nature to improve S or σ will likely change κl as the chemical bonding is

fundamentally related to the behaviour of the electrons. However, it is not obvious

for many systems how they are coupled. Indeed, it may be possible to dope in such

a way as to improve S, σ and κl. It is thus important to develop a methodology for

understanding and ideally predicting, κl as a guide to the development of the next

generation of materials.

1.1.2 The lattice thermal conductivity

κ is the rate at which heat flows from a hotter region to a cooler one, and for a system

with cubic or isotropic symmetry it relates the heat flux (q) to the temperature

gradient ∂T/∂x such that

q = −κ∂T
∂x

.

In this work the focus will be on the lattice thermal conductivity as outlined above,

the lattice contribution is given by the summation over all possible vibrations within

the system such that

κl =
∑
~k

3N∑
s=1

c~k,sv
2
~k,s
τ~k,s,

where ~k is a wavevector (all must be considered), s is the polarization index (of

which there are 3 corresponding to x, y and z for every unique atom), v is the group
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velocity and τ the lifetime. c is the thermal capacity which is given by

c~k,s =
kB
V

(
hω~k,s
kBT

)2
e
hω~k,s
kBT(

e
hω~k,s
kBT − 1

)2

with ω the frequency of vibration and V the volume [12].

A widely used simplification is that of the Debye model for heat capacity. In

this case only the vibrations which correspond to propagation of sound are con-

sidered, as they tend to dominate the vibrational spectrum at low energies, and

as the non-acoustic vibrations typically have small propagation velocities, also the

thermal transport. This still leaves the problem of determining the lifetimes. There

are a number of complicated computational approaches [12] but in the crudest ap-

proximation it can be determined experimentally by fitting the measured thermal

conductivity.

1.2 Novel Superconductors

Superconductivity was first observed in solid Hg in 1911 [13]. It was another 40

years before a theory was developed which could explain the elemental supercon-

ductors. This is known as the BCS (for Bardeen, Cooper and Schrieffer) theory

of superconductivity [14] in which pairs of electrons form a composite boson which

can then undergo Bose-Einstein condensation at low temperatures [13]. In the BCS

theory, electrons become paired via an interaction with the lattice dynamics. This

is neatly evidenced by the “isotope effect” in which the superconducting transition

temperature (Tc) is related to the mass of the atoms which make up the crystal

lattice. According to BCS theory

Tc ∝M−α,
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where M is the isotope mass and α is 0.5. A number of elements (such as Zn, Pb

and Hg) agree with this theory well. However other elements do not, for example

in Ru α = 0.0, and this different behaviour has been attributed to strong coupling

effects [13]. Of the systems which seem to be mediated by the conventional BCS

theory the maximum Tc is found in that of MgB2 at 39 K [15]. This is far too cold

to be useful for widespread technological applications as the cooling costs would be

too large (although MgB2 is finding some small scale applications in cryogen free

MRI scanners).

There is, however, a growing class of materials known as “unconventional” su-

perconductors which do not follow BCS theory. These materials still lack a compre-

hensive theoretical description but have been known about since 1979 [16]. There

are several key classes of unconventional superconductors and, as with the uncon-

ventional superfluid 3He, there may well be more than one pairing mechanism at

work [16]. The first unconventional superconductor was CeCu2Si2, joined quickly by

UPt3 and UBe13. These materials are examples of heavy-fermion systems where the

electrons have an effective mass of several hundred times the bare electron mass [17],

furthermore they are magnetic which should be inconsistent with superconductivity.

When tuned (by doping or pressure), however, the magnetism is suppressed and at

the point at which the magnetism should be completely destroyed a superconducting

dome appears, as shown in figure 1.1.

In the unconventional materials generally superconductivity and magnetism ap-

pear closely related. The class of materials which is currently most promising for

commercial application is the cuprates (as Tc is above 77 K [18] where N2 liquefies

reducing cooling costs considerably), and here again the superconductivity appears

close to the destruction of antiferromagnetic (AFM) order. The cuprates are layered

materials with the Cu sandwiched between oxygen leading to quasi-two-dimensional

physics in the copper layer. There are strong electron-electron correlations and these
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Figure 1.1: The phase diagram of the heavy fermion material CeRhIn5 reproduced
from Ref. [16]. Note that as the antiferromagnetic order (AF) is destroyed the
superconducting dome (SC) appears. Above Tc the system is paramagnetic (PM).

lead to a Mott insulating state in the antiferromagnetic region [16]. Cuprate physics

is now an extremely large field but there is some consensus that magnetic dynamics

rather than lattice dynamics are important to the emergence of superconductivity

[19].

Fairly recently a new class of superconductors based around Fe bonded to either

As, P, S or Se have emerged [20]. These materials have a similar phase diagram as

shown in figure 1.2 but with weaker correlations [16]. Many of these materials are

metals rather than Mott insulators because of the weaker correlations but again the

magnetic fluctuations are believed to be important [21].

Thus it is important to determine the magnetic ground state in these materials.

There is strong magneto-elastic coupling which makes the lattice dynamics an ex-

tremely sensitive probe of the magnetic order [22, 20]. Thus a model which correctly
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Figure 1.2: The phase diagram of the Fe superconductor Ba(Fe1−xCox)2As2 repro-
duced from Ref. [16]. As with the heavy fermionic systems and cuprates AFM is
suppressed continuously but the point at which it is destroyed is masked by the su-
perconducting dome. This Fe superconductor also has a structural phase transition
associated with the formation of the AFM state.

describes the lattice dynamics in the Fe superconductors should also describe the

magnetism correctly. This could be used to determine the exact ground state (and

indeed the structural excitations), an important step in devising a model for these

systems. Such a model might make it possible to design materials with improved

superconducting properties.

1.3 Synopsis

In this thesis two main materials are studied. The lattice contributions to the ther-

mal conductivity of the thermoelectric NaxCoO2 and the lattice dynamics of the

unconventional superconductor based on FeSe layers. Although initially these two

compounds appear very different, they have key physical properties in common.
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For example, when water is intercalated in NaxCoO2 it becomes an unconventional

superconductor [23]. FeSe with K intercalated between the layers exhibits a very

large positive and negative Seebeck coefficient at room temperature depending on

the K concentration [24]. Beyond these comparisons both materials form super-

structures which play a pivotal role in controlling both the thermoelectricity [25]

and unconventional superconductivity [26].

The experimental and computational tools used to investigate these materials

are discussed (chapters 2 and 3) before beginning with the investigation of κl in

Na0.8CoO2 in chapter 4. In chapter 5 the role of doping and changing superstructures

and their influence on κl in NaxCoO2 is probed. The FeSe superconductors are

discussed in chapter 6 with a focus on their superstructure ordering energetics and

the lattice dynamics across a symmetry breaking phase transition. Finally in chapter

7 the work is summarised and some future outlooks given.



Chapter 2

Experimental probes

The experimental components of this thesis mostly use inelastic scattering from

x-rays and neutrons to probe the lattice dynamics of crystalline systems, as the

wavevectors of typical lattice excitations are well matched to both forms of radiation.

Furthermore neutrons have similar energy scales making it relatively easy to perform

energy and momentum resolved measurements with them. Thanks to advances in

x-ray techniques it is now also possible to do this with x-ray scattering as well.

In this chapter we will start with elastic scattering from an ordered solid to

explain the basic principles of scattering and will then look at how symmetry ap-

plies to crystalline systems which will be particularly important when we consider

the theory of lattice dynamics later on. There is then a discussion of neutron and

x-ray production and how the different sources are exploited to build “simple” in-

struments. These principles are then generalised to describe inelastic scattering and

inelastic instruments. Finally the way in which samples are prepared and initially

characterised are briefly touched upon.

23
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2.1 Elastic scattering

2.1.1 Scattering from an atom

The most obvious place to start when considering how atoms will scatter radiation

is with a single fixed atom. Consider a constant stream of particles of wavelength λ

travelling along a direction x. This can be described by the complex plane wave

Ψ = Ψ0e
ikx

with |Ψ0|2 the incident particle flux and k = 2π/λ the wavevector. If we place our

atom at the origin so that any scattered particle will have the final wavevector ~kf

parallel to a displacement vector ~r then our scattered particle’s wavefunction will

have the form

Ψf = Ψ0f(λ, θ)
ei
~kf ·~r

r
= Ψ0f(λ, θ)

ei|
~kf ||~r|

r
,

where θ is half the angle between ~r and x and f(λ, θ) is the probability of our wave

being scattered in a particular direction. This value depends greatly on the relative

size of the wavelength compared to the atomic size.

2.1.2 Angular dependence of the scattered intensity

It is worth considering for a moment the form that f(λ, θ) will have for different

values of λ and θ. First consider the case where λ is comparable to the size of our

atom. Our wave can be scattered by any part of the atom. For small values of θ

this will have no effect as as all possible path lengths will be similar. As θ increases

however the path length from the front and back of our atom to ~r is no longer the

same. This leads to an interference effect which suppresses the scattered intensity

reaching a minimum at θ = π. If however our wavelength is much larger than our
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Figure 2.1: The geometry of a steady stream of particles being scattered by a single
atom

scattering site then f(λ, θ) is entirely independent of θ. The first of these cases

would be true if our atom is irradiated by x-rays. Here the x-rays interact with the

cloud of electrons which is comparable in size to a typical x-ray wavelength, this

is known as the x-ray form factor. If however our atom is exposed to a beam of

neutrons of the same wavelength the second case will apply. This is because the

neutrons interact via the strong-nuclear force and the nucleus is much smaller than

the typical Angstrom wavelength of a neutron [27].

2.1.3 Scattering from many atoms

We can now extend this to consider scattering from a number of atoms. Now our

incident beam is a complex plane wave with wavevector ~ki = (K, 0, 0). An atom j
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sitting at ~Rj will scatter the incident beam according to

Ψf,j = Ψ0e
i~ki·~Rjfj(λ, θ)

ei
~kf ·(~r−~Rj)

|~r − ~Rj|
,

here ~r corresponds to our point of observation. We can easily now consider all atoms

in the system by summing over j. This leads to our final scattered wave having the

form

Ψf = Ψ0e
i~kf ·~r

N∑
j=1

fj(λ, θ)
ei(

~ki−~kf )·~Rj

|~r − ~Rj|
,

where N is the total number of atoms in our system. Henceforth the wavevector

transfer ~ki − ~kf will be defined as ~Q. This setup makes the implicit assumption

that each scattering process has a negligible effect on the incident beam and that

a scattered beam will interact with nothing else. Generally this is a reasonable

assumption as the interaction strength for both neutrons and x-rays is small. How-

ever when dealing with large samples multiple scattering can become an important

consideration.

Generally our detector sits a relatively large distance from the sample (many

times the actual sample size). This enables us to make the approximation that

~r − ~Rj = ~r or that |~r − ~Rj| = r. Furthermore, the actual probability of observing

a scattered particle in our detector is the modulus squared of our wavefunction.

Taking the modulus squared and noting that ,
∣∣∣ei~kf ·~r∣∣∣2 = 1 we obtain

|Ψf |2 =

∣∣∣∣∣Ψ0

r

N∑
j=1

fj(λ, θ)e
i ~Q·~Rj

∣∣∣∣∣
2

.
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Figure 2.2: The geometry of scattering from an atom at a point relative to an
arbitrary origin. Summing over these contributions allows the description of the
collective scattering from an assembly of atoms.

2.1.4 The Crystal Lattice

We now have the mathematical foundations to calculate the elastic scattering from

any arrangement of atoms. Unfortunately the number of atoms in most samples is

of the order of 1023 (this can be several orders of magnitude in either direction).

This would require several years to compute the intensity of a single ~Q on even

the most powerful computers. We can greatly simplify this problem by considering

a highly repetitive structure. In such a case we can factorize out the repetition

and just consider a summation over a small number of atoms. We can express this

periodicity mathematically as
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β(~r) = β(~r + n1~a+ n2
~b+ n3~c)

for any set of integers n1, n2 and n3. The parallelepiped which is defined by ~a, ~b

and ~c is the smallest section that we can consider and is called the unit cell. The

angles between these vectors are known as α (between ~b and ~c), β (between ~a and

~c) and γ(between ~a and ~b).

This enables us to rewrite our intensity in terms of two summations, the first

over all the atoms within the unit cell and the second over all the cells such that

|Ψf |2 =

∣∣∣∣∣Ψ0

r

cells∑
k=1

n∑
j=1

fj(λ, θ)e
i ~Q·(~Rk+xj~a+yj~b+zj~b)

∣∣∣∣∣
2

.

Now ~Rk is the position of the cell we are considering and u, v and w are the

fractional co-ordinates of the jth atom within the cell. However, we can note that

∣∣∣∣∣
cells∑
k=1

ei
~Q·~Rk

∣∣∣∣∣
2

= N2
cells,

so that,

|Ψf |2 =
Ψ2

0N
2
cells

r2

∣∣∣∣∣
n∑
j=1

fj(λ, θ)e
i ~Q·(xj~a+yj~b+zj~b)

∣∣∣∣∣
2

.

The simplification is only valid for ~Q · (xj~a + yj~b + zj~c) = 2πn where n is a

integer. If we lack this periodicity then the summation over all cells will interfere

destructively resulting in no intensity. If we consider a possible solution for ~Q of the

form

~Q = h~a∗ + k~b∗ + l~c∗,
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with h, k and l as integers and

~a∗ =
2π~b× ~c
~a · (~b× ~c)

, ~b∗ =
2π~c× ~a
~a · (~b× ~c)

, ~c∗ =
2π~a×~b
~a · (~b× ~c)

.

from scalar triple products (using ~a∗ as an example)

~a · ~a∗ = 2π,

while

~a · ~b∗ = ~a · ~c∗ = 0.

This is important because it tells us that when ~Q corresponds to an integer hkl

our intensity will be at a maximum for a given uvw. Away from integer values of

hkl the scattering from each ion will have a different phase and very quickly the

intensity will decay to zero. This implies that there are special points in ~Q where

elastic scattering is allowed. These points are known as the reciprocal lattice and

they are defined by ~a∗, ~b∗ and ~c∗ the reciprocal lattice vectors.

2.1.5 Bragg’s Law

It is on occasion useful to consider another construction for calculating where scat-

tering will occur. We have already seen a periodic system can be defined in terms

of the vectors ~a, ~b and ~c. Any three non-collinear vectors will define a plane, thus

we can define different planes of atoms using these vectors multiplied by integer

values. For us to observe scattering the waves which interact with each of these

planes need to add coherently. Thus at a given 2θ the path difference must be an

integer multiple of the wavelength. This set-up is shown in figure 2.3 and thus we
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can see that the change in path length (for a given planar space d) is given by

∆L = 2d sin θ

and that

Nλ = 2d sin θ.

θθ

d

d

d

Figure 2.3: The set-up of Bragg’s law. ~Q is perpendicular to the planes.

This result is known as Bragg’s law and it is one of the best known in scattering

theory. It is useful to relate this to the wavevector ~Q we encountered earlier. Since

our incoming waves are reflected away at the same angle as they are incident on the

plane, ~Q must be normal to the plane. By drawing the triangle of scattering defined

by ~ki, ~kf and ~Q it is clear that

| ~Q|
2

= |~ki| sin θ =
2π

λ
sin θ
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or

| ~Q| = 4π sin θ

λ
,

therefore

| ~Q| = 2π

d
.

This implies that the integer values hkl that were encountered earlier are in fact

related to the inter-planar spacing.

2.1.6 Symmetry

The problem has now been simplified to a summation over a relatively small number

of atoms. However we can go further and use symmetries to further reduce the

complexity of our problem. There are a number of different symmetries which

can be exploited to describe our crystal structure. Here they are only listed with

a more detailed discussion in appendix A. A proper discussion is also given in the

International Tables of Crystallography Volume A and A1 [28, 29]. The complete list

of symmetries are mirror planes, rotation axes, inversion symmetry, rotoinversions,

glide planes and screw axes.

2.1.7 Short range order

We have thus far completely ignored the possibility of vacancies or dopants which

could break the translational symmetry we have relied upon to simplify our problem.

Let us consider vacancies which have no correlations between them. We can take

account of this for the Bragg diffraction by reducing f(λ, θ) (i.e. if we have 10%

vacancies fvac(λ, θ) = 0.9f(λ, θ)). Uncorrelated dopants can be treated in much the

same way, where extra ions are added to a particular site with their own fdopant(λ, θ).

While these remain uncorrelated and there is no response from the neighbouring

atoms then the main change will be the intensity of our Bragg peaks (there will also
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be an increased flat background). However other atoms will normally move relative

to the vacancy. In the case of a dopant it will almost certainly have a different ionic

radius (and may have a different charge state too) and this will disturb the nearest

neighbours. These motions are normally fairly small and have a correspondingly

small effect on the intensities of the Bragg peaks. We now have two different types

of sites, the original sites and a perturbed site. These two kinds of site will lead

to interference effects between them causing scattering away from our main peaks.

The positions of this scattering will depend on the displacement from the original

positions. If the motions are at all asymmetric or other ions move in response to

them the scattering can very quickly become complicated in ~Q and an analysis of

this “diffuse” scattering can be a powerful tool in the study of disordered vacancies

[30].

In many systems dopants (and indeed vacancies) will cluster together [31]. This

clustering will also give diffuse scattering with the cluster size being inversely pro-

portional to the width of this diffuse scattering.

2.1.8 Superlattices

In some cases the interactions between vacancies are strong enough that rather than

simply clustering they actually adopt a long-range-ordered pattern which sits on top

of the underlying unit cell. In such a case the scattering will be made up of two

components. The first will be the principal Bragg reflections from the underlying

unit cell, the second will be much weaker (a system with 10% vacancies might have

extra reflections a few percent of the strength of the main peaks) but still sharp in

~Q with the periodicity reflecting the larger cell.

These can be given their own set of lattice parameters which can be expressed

in terms of the unit cell lattice parameters. Where the symmetry of the supercell

is lower than the unit cell then multiple domains with different orientations relative
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to each other will form. Each will give scattering at different points in ~Q away

from the principal Bragg reflections, but they will all contribute to the main Bragg

reflections.

In some systems the correlations are not strong enough to adopt this long-range

order in all directions. This is easiest to imagine in a layered compound where the

correlations within a plane may be very different from those between them. In such

a situation the scattering from the superlattice will be sharp in two directions but

diffuse along the third.

2.1.9 Incoherent scattering

Here we have implicitly assumed that the scattering from our sample is entirely

coherent. This is not necessarily the case. For example, neutrons have both a

coherent and incoherent interaction with atomic nuclei. The incoherent in this case

has two different origins, the nuclear spin and isotopic incoherence. The origin of

incoherent scattering is in deviations from the mean scattering length of the system.

Since a neutron has spin ±1/2 and the nucleus spin does not have to be zero there can

be different interaction probabilities for spin up and spin down neutrons. This leads

to two different cross sections and if they are not ordered (which would only occur

at extremely low temperatures), incoherent scattering. Isotopic incoherence arises

from the fact that the neutron scattering cross section is based on the strong nuclear

force. A change in the number of neutrons in the nucleus will change the strong

force interaction and again lead to different scattering cross sections. The exact

weighting of isotopes will change the incoherent cross section (with the maximum

being a 50-50 split assuming only two nucleons) [32]. Here we have not exploited the

incoherent cross section although it can be used to probe non localised ionic motion

(such as diffusive processes) and it simply contributes a flat background [33].
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2.2 Sources and elastic instruments

2.2.1 Lab Sources

While the first neutron sources were lab based, [34] they do not produce enough

neutrons to be useful to us in a scattering experiment. For this reason the only lab

based source of radiation used in this thesis is the Xcalibur x-ray diffractometer. In

this system x-rays are produced by knocking an electron out of the inner state of

a molybdenum atom. When an electron falls back into this state an x-ray of the

energy corresponding to this transition is emitted. The actual layout of a simple

x-ray source is shown in figure 2.4. Here electrons are produced by a heated filament

and accelerated across a potential difference where they collide with the molybde-

num target, producing x-rays in two ways. The first is that described above which

produces a narrow band of x-ray energies, there are other variants of this transition

which correspond to excitations to a higher energy level and they will also produce

x-rays of this characteristic energy. The second kind of x-ray emission is caused

by the electrons slowing as they interact with the target. This deceleration causes

emission over a wide range of energies up to a maximum corresponding to the volt-

age applied to the electrons. This continuous spectrum is known as bremsstrahlung

radiation (from the German to break). The maximum x-ray intensity here is limited

by the ability to cool the target. This beam is normally monochromated with the

chosen x-ray energy corresponding to the Kα line (a transition from 2p → 1s) as

this is the most likely transition and thus most intense. The Xcalibur instrument

is monochromated however Agilent Technologies (the manufacturer) do not release

the details of this monochromator.
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Figure 2.4: A simplistic view of a monochromated lab diffractometer. Electrons
produced at the cathode are accelerated across the potential difference to the anode
which is made of Mo. This bombardment produces x-rays which are then monochro-
mated. The relatively small size of such a set-up even constrains the maximum
possible resolution due to beam divergence.

2.2.2 Synchrotron X-Rays

The level of x-ray intensity from a tube source is sufficient for a standard x-ray

crystallography experiment, however, often we require higher resolution, shorter

counting times or other more complicated techniques one of which will be covered

later. In this case much higher incident x-ray brilliance (defined as photons /s

/mrad2 /mm2/ 0.1%bandwidth) is required. As discussed with the bremsstrahlung

radiation an accelerating charged particle will emit radiation with spectral charac-

teristics depending on the acceleration applied. This can happen in a synchrotron

when the particles are bent around a corner via a magnet. This process is of great

inconvenience to particle physicists as it limits the maximum attainable particle

energy (it is for this reason that the tunnel in which the LHC sits has a 27 Km cir-

cumference). The first x-ray experiments using synchrotron radiation were parasitic,

in that they were attached to either currently operating or recently decommissioned

particle physics experiments. However, this seriously limited the possible intensity

as the beam characteristics were designed (understandably) for the particle physics
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experiments not the optimal operation of the x-ray experiments. This led in 1981

to the opening of the first synchrotron dedicated to x-ray research at the Daresbury

laboratory.

These second generation sources still used bending magnets but achieve a bril-

liance around 5 orders of magnitude higher than the best lab sources. This is still

not enough for a variety of x-ray techniques, particularly where the highest resolu-

tion is required as this involves discarding most of the photons produced. To meet

these demands third generation sources were constructed beginning with the Euro-

pean Synchrotron Radiation Source (ESRF) in Grenoble. In addition to the bending

magnets of the earlier sources, here special“insertion devices” increase the brilliance

by another 5-6 orders of magnitude over bending magnets. These insertion devices

come in two distinct types, undulators and wigglers. The undulator has a number

of closely spaced permanent magnets placed neighbouring each other such that the

electrons oscillate as they pass along the undulator. The cones of x-rays emitted at

each bend in the electrons’ path are coherent, allowing a constructive interference

effect resulting in several peaks narrow in energy. This beam is highly collimated

in both the horizontal and vertical directions. By physically changing the gap be-

tween top and bottom magnets the field strength and consequently the energies of

the x-ray peaks can be adjusted. The wiggler is very similar to the undulator in

its principle of operation however it uses larger fields with fewer sets of magnets.

This means that the beam is not coherent leading to a larger flux in a continuous

spectrum with a larger beam divergence.

Although the beam produced by an undulator has naturally favourable char-

acteristics, x-ray optics can further reduce the beam divergence and improve the

monochromation. The design and operating principles of x-ray optics are compli-

cated and not relevant to this thesis, therefore, the interested reader is directed to

the x-ray data booklet [35] for a discussion of this. Typical x-ray beamline optical
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Figure 2.5: A schematic diagram of a synchrotron diffractometer. Relativistic elec-
trons are passed through the undulator producing an intense beam of somewhat
monochromatic x-rays. A complicated set of optics is used to produce the required
beam characteristics. A double bounce monochromator is used because these beam-
lines are quite long (maybe 40m or more) and there can be space for 30 undulators
around a typical synchrotron. Thus by keeping the beamline tangential to the syn-
chrotron they do not overlap.

components are slits (to improve the collimation), a monochromating crystal (which

uses Bragg’s law to pick a particular wavelength) and mirrors to focus the beam.

Thus a typical x-ray beamline for diffraction may look something like that shown

in figure 2.5. As the monochromation is done via a crystal exploiting Bragg’s law

there can be higher order contamination n = 2, 3.... of the beam. Typically this is

suppressed by several orders of magnitude with mirrors (exploiting the wavelength

dependence of reflection). In both lab and synchrotron x-ray sources a single fixed

detector will cover only a single point in ~Q. For this reason all simple diffraction

instruments use a“four-circle” set-up. In this the four angles are 2θ which moves

the detector, θ which moves the whole sample assembly about z (where the direct

beam defines x and y is parallel to the floor), κ which rotates the sample about y

when θ = 0 and φ which rotates only the sample about z (when θ = κ = 0). This

enables any point in ~Q to be reached by a single detector.



CHAPTER 2. EXPERIMENTAL PROBES 38

2.2.3 Reactor Neutrons

As we have mentioned in addition to x-rays, neutrons with energies of the order

10 to 100 meV also have wavelengths comparable to the interatomic spacing of

materials and are very well suited to a scattering experiment. Furthermore they

have a magnetic moment which makes it possible to carry out a magnetic scattering

experiment analogous to the structural example above. Neutrons however are very

challenging to produce at a level where the neutron flux is useful. One possible

source of neutrons which has been available since the 1940s is a nuclear reactor.

The minimum requirement for a reactor is a fissionable material (typically ura-

nium, thorium or plutonium), a moderator and control rods. All reactors also have

biological shielding to protect the operators. The reactor at the Institut Laue-

Langevin (ILL) which has been used in this thesis is fuelled by 235U and it is that

which we shall consider here. When a 235U nucleus splits on average 2.7 neutrons are

released with an energy of the order of 1 MeV. When another 235U nucleus captures

one of these neutrons it undergoes a fission event of its own and a chain reaction

can begin. Due to their wavelike properties the neutron capture cross section is

limited by their wavelength and not the target nucleus size. Neutrons with longer

wavelengths have a greater capture cross section and it is for this reason that the

moderator is present. Typically this moderator is a light element either 12C or 2H

and the recoil of these nuclei following a collision allows the neutron to rapidly lose

energy. 1H was not used in early reactors because it has a relatively large neu-

tron cross section and without a high ratio of 235U to 238U it is very challenging to

maintain a critical reaction [36]. The control rods are typically made of a neutron

absorber such as cadmium or boron and used to keep the reactor exactly critical

(where exactly 1 neutron is absorbed by a 235U atom per fission process).

Since an excess of neutrons is produced per fission it should be possible to utilise
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the 1.7 neutrons not required to maintain the reaction. At ILL the core is a single

fuel element consisting of very highly enriched uranium (93% 235U) surrounded by a

heavy water moderator. The principal moderation of the core however is performed

by the light water coolant. The heavy water moderator around the core reflects

neutrons back towards it and this causes a peak in the neutron flux just outside

the reactor core. It is here that the beam pipes are situated to carry the neutrons

away towards the instruments. These tubes do not point directly at the core as

this would lead to a large background from gamma rays and fast (unmoderated)

neutrons. Several of the beam tubes point at small areas made of moderators at

different temperatures. There is one hot source, a graphite block at 2400 K and

two cold sources which are liquid hydrogen at 25 K. These sources and the thermal

heavy water moderator produce neutrons with Maxwellian distributions peaked at

energies corresponding to their respective temperatures.

Thus at a particular instrument we have a continuous beam of neutrons with a

Maxwellian distribution of wavelengths. While this can be used in a Laue experiment

in this thesis we are mostly concerned with monochromatic beams, so just as in the

case of an x-ray experiment a monochromating crystal is used. λ/2 contamination is

also a problem, this unwanted component can be removed with filters.

There are two kinds of filter, the first works by scattering the shorter wavelength

components out of the beam, the second by absorbing them. A scattering filter

relies on the fact that there is a maximum wavelength which can be Bragg scattered

equivalent to twice the largest d-spacing. If a polycrystal is used then regardless of

how the filter is set up wavelengths larger than this limit will pass unaffected while

those which can satisfy Bragg’s law will be scattered. For example beryllium will

not scatter neutrons above 3.9 Å and graphite above 6.7 Å. However for thermal

neutrons these wavelengths are far too large to be useful. In this case pyrolytic

graphite crystals can be used. They are placed in the beam with the ordered ~c
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lattice direction parallel to the beam. Scattering still takes place, picking out narrow

bands which satisfy Bragg’s law in this geometry. However, as shorter wavelengths

are considered these bands begin to overlap drastically reducing the transmitted

beam at that wavelength. An absorption filter relies on the excitation of nuclear

resonances. Many materials exhibit this resonance in the eV to KeV range however

there are some materials with a resonance at hundreds of meV and they can be used

to remove higher order contamination. Generally this technique is used for high

energy spectroscopy not used in this thesis however the interested reader will find a

full discussion in reference [37].

Sample

Detector

2θ

Ki

Kf

Core D O Moderator2

Beam Pipe

Graphite FilterMonochromator

Figure 2.6: A schematic view of a reactor diffractometer. Collimation can also be
added to this instrument to reduce ∆θ. It is also important to observe that the set
up shown here will give a poor resolution as the outgoing beam is anti-parallel to
the beam incident on the monochromator.

Thus a simple reactor diffractometer using thermal neutrons could be laid out as

shown in figure 2.6. In this set-up, as with an x-ray diffractometer, the detector can

measure only a single point in ~Q unless able to move. Due to the comparatively low

flux of neutron instruments many modern designs make use of a bank of detectors

to reduce counting times. The resolution of a crystal monochromator instrument is
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non-trivial and a proper discussion is given in reference [38]. Here we shall consider

the simplified treatment of reference [37]. Our monochromator (assuming a perfect

crystal, ∆d = 0) will produce a neutron beam of wavelength λM however our neutron

beam has some divergence ∆θ which we can see by differentiating Bragg’s law leads

to a spread of wavelengths

∆λ = λM cot θ ·∆θ.

If this beam then interacts with a sample satisfying the Bragg condition with the

final scattering parallel to the original beam then the neutrons will interact with the

sample in the same way as the monochromator (i.e. neutrons with a larger Bragg

angle at the monochromator will have a larger Bragg angle at the sample). In this

case the divergence of the final beam is minimised, however if the final scattering

is antiparallel then the divergence is maximised. The final form of the resolution is

such that the peak FWHM passes through a minimum at

tan θ = tan θM
α2

2(α2
1 + 2β2)

α2
1α

2
2 + α2

1β
2 + α2

2β
2

where α1 is the beam divergence between source and monochromator, α2 is the beam

divergence between monochromator and sample and β is the mosaic spread of the

monochromator (a term for the divergence between sample and detector is required

to work out what the FWHM actually is but it has no effect on where the minimum

occurs) [37]. Thus we can pick where we want the minimum in resolution to be.

Normally this is at large 2θ where peaks are much more closely spaced.

2.2.4 Spallation Neutrons

While reactor sources remain the most intense neutron sources available their ad-

vancement is limited by the difficulty of removing heat from the core. This has led
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to the consideration of pulsed sources where the pulse length is much shorter than

the gap between pulses. This allows heat within the source to be removed before

the next pulse. If the whole neutron spectrum is used then it is the peak neutron

flux which determines the data collection rate not the time averaged flux which is

often lower than a reactor based source. There are a number of such sources around

the world (SNS in the USA and J-PARC in Japan are the most recent examples)

however here we will focus on the ISIS facility as this is the only spallation neutron

source which has been used in this thesis.

Spallation is a process which occurs when a nucleus is bombarded with high

energy particles. This bombardment causes the target nuclei to become greatly

excited. Initially there is a cascade process within the target where many high

energy particles including neutrons are produced. There is then a second process

by which almost all (approx. 97%) of the useful neutrons are produced where the

excited nuclei sweat neutrons to cool down.

At ISIS the incident particles are protons with a typical energy of 800 MeV

bunched together with a rep-rate of 50 Hz. These protons are initially accelerated

by a synchrotron to their operating energy before being directed to one of two targets

(4 out of every 5 bunches are sent to the first target). This target is made of tungsten

clad in tantalum (tungsten is slightly soluble in water and an unclad target would

lead to radioactive contamination of the coolant). While a fissile material target

would produce more neutrons it would also have a large background from continuous

fission events which would hamper the operation of the instruments.

After production the neutrons enter a moderator similar to those used for pro-

ducing reactor neutrons. A beryllium reflector is used to get the greatest possible

neutron flux into the moderator while absorbing material (such as cadmium or

boron) is used to prevent neutrons which have been moderated by the reflector con-

tributing to the background. The neutrons which leave the moderator have the same
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characteristics as those from a reactor but importantly are well separated between

pulses as their creation time is very short relative to the pulse length.
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Figure 2.7: A time-of-flight diffractometer. Its fundamental layout is extremely
simple as the calculation of λ is performed entirely from the time-of-flight doing
away with the need of monochromators.

A simple TOF diffractometer could be laid out as in figure 2.7. In such a set-

up a single detector will map out a radial line in ~Q. The resolution of our fixed

detector is limited by the length of the flightpath and it is for this reason that the

high resolution powder diffraction beamline at ISIS (HRPD) is built almost 100m

away from the target compared to around 10m for a standard diffractometer. We

can understand why it is flight length that limits the resolution by considering the

three main sources of error. The first is an uncertainty in our flight length as our

moderator is of finite size (the final moderating event can happen anywhere within

it). The second is an uncertainty in our time of flight as we do not know how many

moderating events will happen. Finally there is an uncertainty in our scattering

angle as the neutrons leaving the moderator will have some divergence. By defining

Bragg’s law in terms of a TOF instrument’s characteristics (t, flight time, L, flight
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length, θ, detector angle) we get

Q =
4πmn

h
· L sin θ

t
.

Differentiating to calculate the individual error terms and then combining gives a

total instrumental error of

(
∆Q

Q

)2

=

(
∆L

L

)2

+

(
∆t

t

)2

+ (cot(θ)∆θ)2.

Thus as we increase the flight path ∆L/L will decrease as it is the moderator size

which defines ∆L. For a given neutron speed a longer flight path will lead to a larger

t while ∆t remains constant. Finally, for a given detector layout our resolution is

defined by the position of the detector in θ. However there is a gain from ∆θ as

this will drop with longer flightpath as more divergent neutrons will miss the sample

entirely (this is not actually the case on many neutron instruments including HRPD

as neutron guides are used which reflect neutrons that would escape to increase the

flux). Realistically in most TOF diffractometers the maximum resolution is limited

by the gap between pulses as a very long flightpath will lead to the fast neutrons

from one pulse catching up with the slow neutrons from a previous pulse.

2.3 Inelastic scattering

2.3.1 Formalism

So far we have considered only atoms which are fixed in place and have no variation

with time. For a thesis with ‘dynamics’ in the title this may appear a small oversight

and thus we now turn our attention to the consideration of atomic motion. Generally

this section will follow the theoretical construction used in reference [39] before
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moving on to a discussion of the instruments which can be used to measure these

phenomena. Rather than reproduce the whole of the derivation contained within

Ref. [39], key results which help to explain the origin of final terms will be pointed

out with the reader directed towards [39] for the details.

Lattice vibrations and the harmonic approximation

In this thesis we are concerned with materials in the solid state and will also disregard

the ability of ions to hop through the crystal lattice. In this set-up atoms will have an

equilibrium position and if they are perturbed a restoring force will drive them back

towards it. Let the vector ~uj,α represent a displacement along one of the Cartesian

axes (which one is denoted by α) of atom j. We can then write the energy as a

Taylor expansion such that

E = E0 +
1

2

∑
j,j′

α,α′

∂2E

∂uα,j∂uα′,j′
uα,juα′,j′ + . . . .

Here E0 is the total energy of the lattice at equilibrium. The first order term in

this expansion is zero because at equilibrium the forces must be zero. The second

order term is called the harmonic energy and all higher order terms the anharmonic

energy. In this chapter we will assume that the anharmonic terms are negligible and

work purely within the harmonic approximation. The advantage of this approach

is that it can be solved exactly (the introduction of higher order terms precludes

this [39]) and gives us a framework which we can then use to recover the physics

described by the anharmonic terms.

We must now consider how our atomic positions will evolve with time. The sim-

plest possible case is to consider a one-dimensional chain of atoms along the x-axis

with the equilibrium interatomic distance a. Here within the harmonic approxima-

tion and considering only nearest neighbour interactions
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E = E0 +
1

2

∂2E

∂u2

N∑
n=1

(un − un+1)2.

We have taken the differential out of the summation as all the atoms are the

same and thus it will take on a constant value (we shall call it J). E0 in this case

corresponds to the energy of the interatomic bonds times the total number of bonds

(N − 1). Let us now consider atom n. Its energy will be

En =
1

2
J(un+1 − un)2 +

1

2
J(un − un−1)2

and the force (the negative first differential of the energy)

Fn = −∂En
∂un

= J(un+1 + un−1 − 2un) = m
∂2un
∂t2

.

If we consider a solution of the form

un = Ae−i(kna−ωt)

and substitute in

(iω)2mAei(kxn−ωt) = AJ(ei(k(n+1)a−ωt) + ei(k(n−1)a−ωt) − 2ei(kna−ωt))

using the trigonometric relations

ω = ±
(

4J

m

)1/2

sin

(
ka

2

)
.

A negative frequency makes no physical sense and thus we consider only the modulus

ω =

(
4J

m

)1/2 ∣∣∣∣sin(ka2
)∣∣∣∣ .



CHAPTER 2. EXPERIMENTAL PROBES 47

This shows that there exists a solution to the atomic motion which is a trav-

elling wave and depends purely on the spring constant J , atomic mass m and the

wavevector k. This solution has considered motion only in the direction of the chain

(it is longitudinal), there will also be a set of solutions for vibrations along y and z

(transverse motion) which will have a different spring constant but a similar form.

Systems with more than one atom in the cell allow modes which do not go to zero

at multiples of k = 2π/a but retain the periodic nature. We will return to these

more complicated systems and the manner of calculating their behaviours in the

next chapter. For now all that matters is that our atomic motions are expressible

in the form of travelling waves (which henceforth we will refer to as phonons).

There is only one other point to be made at this juncture. We have performed

this derivation without temperature which implies that the allowed values do not

change with temperature. Within the harmonic approximation this is true, however,

the actual displacement of an atom does depend on temperature. This is because as

we increase the temperature more phonons will exist within the system perturbing

our atom further from equilibrium. The total contribution to an atom’s displacement

is given in reference [39] as

~u(j) =
1√
Nmj

∑
~k,ν

~e(j,~k, ν)ei
~k·~rjQ(~k, ν),

where ν is the label of the phonon, mj is the mass of the jth atom, ~rj its position

and ~e is known as the eigenvector of this atom for this phonon. We will discuss

the calculation of ~e in the next chapter but for now we will simply remark that it

gives information on the direction of atomic motion. The value Q(~k, ν) is called the

normal mode co-ordinate and has taken on both the time dependence of the phonon

and its temperature contribution. A detailed discussion of this parameter is given

in references [39, 40].
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One phonon scattering

As highlighted above we have until now considered terms with no dependence on

time. Now if we consider the scattering from two atoms, one of which we call k and

the other j then there will be terms within our scattering equation of the form

fj(λ, θ)fk(λ, θ)e
i ~Q·( ~Rj(t)− ~Rk(0)).

Unfortunately our answer now depends on the time that at which we perform

the measurement. Thankfully since in reality even a short counting time (a few

seconds would be very quick) is very much larger than the typical frequency of a

lattice vibration (∼ THz) we can integrate over all times. Scattering from atoms

at different times however still complicates the picture and a proper derivation re-

quires rebuilding our scattering functions from a fundamentally different (quantum

mechanical) perspective. Instead we shall note the fundamental similarity between

our elastic scattering equations and a Fourier transform. This is no coincidence as

our scattering from the real space lattice is described in reciprocal space ( ~Q) and

a convenient way to move between the two is in the form of a Fourier transform.

When we Fourier transform our new time dependant term we will obtain a frequency

which for our incident waves will also correspond to an energy. Quoting the classical

form of our scattered intensity [39] allows us to write

I( ~Q,E) =
∑
j

∑
k

fj(λ, θ)fk(λ, θ)

∫ 〈
ei
~Q·( ~Rj(t)− ~Rk(0))

〉
e−iωtdt.

If ~Rj(t) = ~rj + ~uj(t) where ~rj is the equilibrium position and ~uj(t) the displace-

ment relative to this position. Then
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I( ~Q,E) =
∑
j

∑
k

fj(λ, θ)fk(λ, θ)e
i ~Q·( ~Rj− ~Rk) ×

∫ 〈
ei
~Q·( ~uj(t)− ~uk(0))

〉
e−iωtdt.

If we exploit the properties of harmonic distributions we will obtain two exponen-

tial terms which depend upon the mean squared displacement of j and k respectively

and ~Q2. This is called the Debye-Waller factor (or temperature factor) and applies

to both elastic and inelastic scattering. Henceforth it will be referred to as Tj( ~Q).

The time dependence is then confined to a third term which when expanded as a

power series (and taking only the second term as the first is simply elastic scattering

and the higher multiphonon processes). We now have

I( ~Q,E) =
∑
j

∑
k

fj(λ, θ)fk(λ, θ)e
i ~Q·( ~Rj− ~Rk)Ti( ~Q)Tj( ~Q)×

∫ 〈
( ~Q · ~uj(t))( ~uk(0))

〉
e−iωtdt

We already have an expression for ~uj(t) and by summing over all values of the

wavevector ~k and applying the effect of the crystal lattice periodicity as we did in

the elastic case we can write the scattering intensity as

I( ~Q,E) = N
n∑
j,k

fj(λ, θ)fk(λ, θ)√
mjmk

ei
~Q·( ~Rj− ~Rk)Ti( ~Q)Tj( ~Q)

×
∫ ∑

ν

(
~Q · ~ej( ~Q, ν)

)(
~Q · ~ek(− ~Q, ν)

)〈
Q( ~Q, ν, t)Q(− ~Q, ν, 0)

〉
eiωtdt. (2.1)

The correlation function of
〈
Q( ~Q, ν, t)Q(− ~Q, ν, 0)

〉
can be rewritten in the form〈

Q( ~Q, ν)Q(− ~Q, ν)
〉

cos
(
ω( ~Q, ν)t

)
. The new correlation function has a standard

solution in the high temperature limit (which as we are purely classical we can use)
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of the form
〈
Q( ~Q, ν)Q(− ~Q, ν)

〉
= kBT

ω2(~k,ν)
. Finally we observe that we are taking

the Fourier transform of our new cosine term which will be a Dirac delta function.

This gives the final classical solution as

I( ~Q,E) = NkbT
n∑
j,k

fj(λ, θ)fk(λ, θ)√
mjmk

ei
~Q·( ~Rj− ~Rk)Ti( ~Q)Tj( ~Q)

×
∑
ν

(
~Q · ~ej( ~Q, ν)

)(
~Q · ~ek(− ~Q, ν)

)
δ(E ± h̄ω( ~Q, ν))

ω2( ~Q, ν)
. (2.2)

This compares to the full quantum mechanical solution which can be quoted as

I( ~Q,E) =
Nh̄

2

∑
ν

1

ω( ~Q, ν)

∣∣∣∣∣∑
j

fj(λ, θ)

m
1/2
j

[ ~Q · ~ej(~k, ν)]ei
~Q· ~RjTj( ~Q)

∣∣∣∣∣
2

× ([n(ω( ~Q, ν), T ) + 1]δ(E + h̄ω( ~Q, ν)) + n(ω( ~Q, ν), T )δ(E − h̄ω( ~Q, ν))), (2.3)

here all of the terms are as described above but the additional n is the Bose factor.

It is a weighting factor that relates to the number of phonons within the system at

any one time.

A detailed derivation of this is given in [32]. It is worth pausing here to both

explain the new terms involved and their physical origin (at least within a semi-

classical picture). The δ function tells us that we will see phonon scattering only at

sharp positions corresponding to transitions between the ground state and a single

excitation. n(ω( ~Q, ν), T ) is known as the Bose factor and describes the phonon pop-

ulation at this energy. As phonons are bosons, they are described by Bose-Einstein

statistics. Here E corresponds to the energy of the sample, positive h̄ω( ~Q, ν) means

that our particle gives energy to the sample. This is the origin of the +1 on the
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sample energy gain side. The Bose weighting accounts for scattering from a phonon

which already exists in the sample, the +1 accounts for the sample energy gain

allowing a phonon to be created by the incident radiation. We can think about

phonon scattering in terms of a Doppler shift of the the incident energy. This is

illustrated in figure 2.8 for the two extremes. When ~Q is parallel or antiparallel to ~e

(the direction of atomic motion) the Doppler shift for ~ki and ~kf add constructively.

If ~Q is perpendicular then (for example) ~ki will be shortened and ~kf elongated lead-

ing to no net effect. This is represented by the dot product ~Q · ~ej(~k, ν). Technically

~ej is a complex number and only completely real at Brillouin zone centres.

~ki

~e(~k,ν)

~kf

~Q

(a)

~ki

~e(~k,ν)

~kf

~Q

(b)

Figure 2.8: The Doppler shift of an incident wave on a particle vibrating along
~e. With ki along x and kf along y. (a) When the particle vibrates along a [-1,1]
direction both ki and kf appear to have a shorter wavelength. (b) With a [1,1]
vibration ki is elongated kf is shortened leading to no net effect.
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2.3.2 The triple-axis spectrometer

Now that we have an expression for the scattering from phonons within our system

we will turn our attention to their measurement. Fundamentally the problem is one

of detecting a change in energy at a particular ~Q. The first instrument layout we shall

consider is the Nobel prize-winning triple-axis spectrometer [41]. We have already

seen how a diffractometer on a reactor source can make use of a monochromating

crystal to produce an incident beam of known energy. Use of a second monochro-

mating crystal after the sample position to select the energy of the outgoing beam

is the basic principle of operation of the triple-axis spectrometer. Our 3 axes refer

to the selection of incoming energy, ~Q and outgoing energy. The basic layout of a

triple-axis spectrometer is shown in figure 2.9. The accessible regions in our now

4D space ( ~Q and E) are defined by the scattering triangle. If we cannot close this

triangle (due to the geometry of the instrument for example) at a particular point

in 4D space then it is inaccessible. An example of this triangle is shown in figure

2.10. If we use only a single detector then we can measure only a single point in 4D

space at a time. Although triple axis instruments typically have the greatest flux of

any reactor instrument, the weak signal of inelastic scattering tends to restrict the

regions that can be measured during any one experiment.

We have already explored the resolution properties of a monochromator set-

up. The same basic principles apply to the triple-axis instrument in that the best

resolution will be obtained when the beam incident on the monochromator and

leaving the sample are parallel. We must also consider the effect of the analyser

on our resolution. In this case only the scattering angle is important and thus the

analyser should be as close to backscattering as possible. Typically this dictates that

it is antiparallel to the beam incident on the monochromator. The instrument will

consequently look somewhat like a “W” or “M”. The actual resolution that we now
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Figure 2.9: A triple-axis spectrometer such as IN8 at the ILL. The shielding has
been omitted to simplify the picture but normally heavy shielding is required to
minimise the background.

obtain is rather complicated and is typically ellipsoidal in ~Q and E. It will be tilted

in the 4D parameter space with the sign of the tilt changing depending on exactly

how it is set up. This resolution function is shown in figure 4.7. It is clear from this

that the resolution will be much better when the gradient of the ellipsoid matches

the gradient of the dispersion. For this reason when measuring highly dispersive

modes care must be taken to measure on the correct side of the dispersion. Figuring

out which is the “correct” side is not entirely trivial, one can either use a resolution

calculation program such as McStas [42] or it can be determined experimentally

moving slightly off a Bragg peak in ~Q and performing an energy scan through the

elastic position. Due to the tilting of the resolution function the Bragg peak will

appear shifted to either slightly negative or positive energy transfers and thus the

optimal measurement side can be determined.

The set-up of a triple-axis spectrometer also allows you to optimise for either

flux, resolution or a combination of the two. The highest resolution option involves



CHAPTER 2. EXPERIMENTAL PROBES 54

~ki

~kf

−~kf

~Q

2θ

Figure 2.10: The inelastic scattering triangle where |~ki| 6= | ~kf |. The magnitudes
are related to each other by the cosine rule Q2 = k2

i + k2
f − 2kikf cos(2θ) and

∆E = h̄2
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f ) in the notation used throughout this thesis.
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Figure 2.11: A triple-axis energy scan measuring on the correct (a) and incorrect (b)
sides of the dispersion. The resolution ellipsoid (shown in black) is approximately
the full width at half maximum.
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placing collimators between the monochromator and sample and sample and anal-

yser to reduce ∆θ. This has the disadvantage that it will drastically reduce the

flux (obviously the finer the collimation the worse the flux). Conversely as the

monochromator is normally made up of many co-aligned single crystals it is possible

to bend the monochromator to focus the beam onto the sample, increasing ∆θ and

improving the incident intensity.

2.3.3 Time-of-Flight

Elastic scattering can be identified by its large signal. In this case |ki| = |kf | can

be determined from the time of flight. However, for the case of inelastic scattering,

since we now allow |ki| 6= |kf |, we need a way of gathering additional information

about either |ki| or |kf | as once we know one we can use the time-of-flight (TOF)

to calculate the other. We will mostly focus on instruments that define |ki| (direct

geometry) but a brief discussion of |kf | (indirect geometry) instruments will also be

given. In a direct geometry instrument an extra piece of equipment called a chopper

is placed into the incident beam. These (as the name implies) chop up the incident

beam into packets. There are three kinds, helical velocity selectors, Fermi choppers

and disk choppers. All are made of a neutron absorber with some form of hole, which

when aligned with the beam allows neutrons to pass. By setting the delay between

the opening of the chopper and the pulse from the target an incident wavelength

can be selected. This will then interact with the sample and neutrons which gain

energy will be detected first while those which lose energy will be detected later. A

single detector will in this case map out an arc through 4D space with time of flight

as ~Q also changes continuously with flight duration. A simple TOF spectrometer

with a Fermi chopper is shown in figure 2.12.

The three different choppers are used on slightly different kinds of instruments.

The velocity selector is used at reactor sources to provide a coarse monochromation
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Figure 2.12: A very simple TOF spectrometer with a Fermi chopper. In this case
the chopper must rotate anticlockwise to allow neutrons to pass.

of the incident beam and is effectively a cylinder with a curved groove cut into it. The

curvature of the groove and the speed at which it is rotated selects the energy and its

resolution. A single disk chopper can be used to produce a polychromatic pulse from

a reactor source similar to that produced by a spallation source. Disk choppers on

their own cannot be rotated fast enough to produce a monochromated beam from a

spallation source, however, multiple disk choppers operating out of phase with each

each other can. The instrument LET at ISIS uses 7 disk choppers to produce several

monochromated beams per pulse allowing several different incident energies to be

collected simultaneously [43]. Finally Fermi choppers consist of a cylindrical drum

with curved slots running across its diameter. The cylinder is rotated perpendicular

to the incident beam placing a large volume of neutron absorber between the sample

and source when closed giving a very low background. Typically Fermi choppers are

more compact than disk choppers allowing them to be spun faster and thus achieve

higher resolution. This is the type of chopper used on the MERLIN spectrometer

at ISIS which is optimised for measurements in the thermal region [44]. In general
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a chopper spectrometer has much lower flux than a triple-axis spectrometer at a

reactor source. For this reason it is normal to use huge detector arrays (on MERLIN

they cover 180◦ in the horizontal plane and ±30◦ vertically). For a system with

reduced dimensionality in its physics this allows all of the region of interest to be

captured in a single shot however for three dimensional systems it is necessary to

rotate the crystal in small increments to build up coverage over a larger region of

~Q.

Finally we will briefly mention indirect spectrometers. In this case a white beam

illuminates the sample and then a monochromating crystal is used to backscatter

the neutrons to detectors near the sample position. In this system neutrons which

lose the most energy arrive in the detector first as the final energy is fixed. These

instruments can have very narrow resolution due to the backscattering geometry

(IN16b at the ILL has a nominal resolution of 1 µeV [45]) but typically have a

higher background than the direct geometry instruments.

2.3.4 Inelastic X-ray Scattering

Inelastic x-ray scattering is a technique which has only really been available since

the late 1990s with the advent of third generation x-ray sources. The problem can

be simply explained as we have a sample whose excitations are of the order of a

few 10s of meV. Our incident beam energy in the x-ray region is however around

10 keV and ideally we would like an instrumental resolution of just 1 meV or less.

This requires ∆E/E = 10−7 compared to neutrons which have ∆E/E = 10−2. This is

technologically extremely difficult and the few instruments around the world where

this technique is used are remarkable feats of engineering. Key advantages to using

x-rays over neutrons are that we will never have a problem closing the triangle (as

our energy transfer is negligible compared to the incident energy), the beam from a

synchrotron has many orders of magnitude more flux allowing much smaller samples



CHAPTER 2. EXPERIMENTAL PROBES 58

and finally hard x-rays usually have a negligible magnetic cross section compared to

the structural scattering so that we do not have to worry about magnetic signals. In

this thesis the beamline ID28 at the ESRF has been used and it is this instrument

that we will look at in more detail here, although the principles of operation are the

same for other beamlines. The layout of ID28 is shown in figure 2.13.
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KfK i
Sphericalb
analyser

Initialboptics

Highbheatbload
pre-monochromator

Mediumbheatbload
post-monochromatorBackscattering

monochromator

Mirror
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Figure 2.13: The layout of the beamline ID28 at ESRF. Much of the complicated
x-ray optics has either been subsumed into the initial optics or left off entirely for
clarity as, unlike a neutron instrument, there is no ‘simple’ layout for an inelastic
x-ray beamline. On ID28 there are actually 9 detectors in the horizontal plane
allowing for the simultaneous collection at different ~Q.

The basic principle is the same as that of the triple-axis spectrometer. The inci-

dent beam is monochromated, interacts with the sample and is then monochromated

again by the analyser into the detector. The main difference here is that the very

intense x-rays from the undulator dump so much heat into the monochromator that

it distorts, limiting the resolution obtainable with a single monochromator. For this

reason ID28 has 3 monochromators all made from silicon. The first is held at ∼

100 K where silicon has a maximum in its thermal conductivity and a minimum

in the thermal expansion co-efficient [46], this gives a ∆E/E ∼ 10−4. The second

monochromator further reduces the heat load leaving the beam at ∆E/E ∼ 10−5.

The final monochromator is set-up in backscattering (θm = 89.98◦) for the best

possible resolution. In this system the monochromator is not rotated (as we have

seen for reactor neutron this changes the instrumental resolution), but is instead
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heated or cooled causing a change in d-spacing and thus a change in the scattered

wavelength at a constant θm. For the highest resolution this requires temperature

control to within 0.5 mK. The analysers are made up of many small silicon crystals

with focusing to match the overall beam divergence and thus maximise the overall

intensity. They are held at a constant temperature so that it is only the tempera-

ture of the backscattering monochromator which defines the energy transfer being

measured. For both the backscattering monochromator and analyser it is always a

reflection of the kind (n,n,n) which is used (typically (9,9,9) or (11,11,11)) as for

Si these are the most intense Bragg reflections [47]. There is one final important

difference to note between IXS and INS. Due to the properties of x-ray optics the

resolution function from IXS is Lorentzian in nature (on a neutron instrument they

are normally Gaussian). This can make extracting phonon widths (which are also

Lorentzian in nature) rather challenging.

2.4 Other techniques

None of the techniques contained within this section have been used by the author,

however it is important to recap several key points to aid the interpretation of data

later on and put other results in a broader context.

2.4.1 Crystal Growth

While powders can be studied with inelastic techniques the most complete informa-

tion is obtained by measuring single crystals. Thus you can probe all of ~Q rather

than just |Q|. The samples measured in this thesis have been grown by the “op-

tical floating zone” method. In this system a powder of the sample is prepared

and then compressed into a long thin cylinder. The cylinder is then placed in a

controlled atmosphere and light from 4 halogen lamps focussed onto a narrow zone.
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Over many hours the melt is moved up the sample while the two components are

counter-rotated to improve homogeneity. In an ideal situation the entire melt would

emerge as a single crystal though this is very uncommon, so single crystals need to

be cleaved out from the growth [48].

2.4.2 Physical Properties

Physical properties discussed in this thesis which have not been obtained from the

literature were taken on a Quantum Design Physical Properties Measurement Sys-

tem (PPMS). The PPMS is a highly flexible piece of kit able to take resistivity,

magnetometry, heat capacity and thermal transport (seebeck, resistivity and ther-

mal conductivity are obtainable on the same set-up). The PPMS at Royal Holloway

is equipped with a 9 T magnet and can cover the temperature range from 2-300 K.

It is theoretically possible to go to 400 K however the system behaves very poorly

above 350 K.

The thermal transport option is the most relevant here. A typical measurement

set-up is shown in figure 2.14. For a measurement of the thermal conductivity the

heater is turned on for a short (user defined) period and then after being turned off

the evolution of temperature at the two thermometers is measured. The software fits

a known line-shape to this and from these fit parameters the thermal conductivity

can be discerned (once the user has supplied the sample dimensions). Corrections

can be applied for heat loss due to radiation. Seebeck measurements are very similar

only here it is the voltage generated by the temperature differential which is of

interest.

2.4.3 Raman Scattering

In the previous section we saw that although it is possible to use electromagnetic

radiation to measure momentum-resolved dispersions, in the case of x-rays, the
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Figure 2.14: The PPMS thermal transport option with a standard sample mounted.
Image reproduced from reference [49].

energy scale is very mismatched. We could instead use light of a much lower energy,

more comparable to the phonon energy, but here the wavelength of the light is very

mismatched and for a typical excitation the accessible wavevector is essentially only

~Q = 0. This is often perfectly reasonable for an initial study of the vibrations within

a structure (and is much cheaper than a neutron or inelastic x-ray measurement)

and the technique is known as Raman scattering.

Only a subset of phonons will be able to scatter light inelastically and to under-

stand why, it is useful to consider elastic (or Rayleigh) scattering. Here, an incident

photon excites the electron cloud by polarising it and when the cloud de-excites the

photon is remitted in an arbitrary direction [36]. The light has to polarise the elec-

tron cloud to interact with it and thus for a photon to scatter inelastically from a

phonon, the phonon must cause a change in the polarisation of the material. Modes

which can scatter light inelastically are known as “Raman active” and the active

modes are defined by the symmetries of the system [39]. A general (if imprecise)

picture is that, if a mode causes a significant change in the overall bond lengths

it will be Raman active (as the polarisability of the system is related to the bond



CHAPTER 2. EXPERIMENTAL PROBES 62

lengths) and if not it is Raman inactive. Such a case could occur when a vibration

has one atom elongating a bond and another shortening it by the same amount.



Chapter 3

Density Functional Theory

In the previous chapter a very simple ball and spring model was used to show the

nature of phonons in a monoatomic chain. This model could conceivably be gen-

eralised and used in 3 dimensions. We would like, however, to consider systems

which have large complicated cells. For such a system the simple ball and spring ap-

proach becomes impractical. Furthermore, to make predictions about the dynamics

of a system the force constants of the springs must be known and they can only be

guessed with the tools introduced so far.

It should be possible to calculate the properties of a system from the Schrödinger

equation. The Hamiltonian for a real system consisting of Nn nuclei (which can of

course be different species) and Ne electrons is

Ĥ = − h̄2

2me

Ne∑
i

∇2
i +

e2

4πε0

(
−

Ne∑
i
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+

+
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+

1

2

Nn∑
k

Nn∑
l 6=k

ZkZl
|~rk − ~rl|

)
,

where Z is the nuclear charge and ~r is the position vector of the particle. It is

unfortunate that the complexity of this problem grows combinatorially with the

63
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number of particles and in practice the problem quickly becomes intractable.

Rather than trying to solve the whole system simultaneously the problem could

be broken down into manageable chunks which when taken together will approximate

the true behaviour. There are two different principle methods by which this is

attempted. The first was developed by Hartree and collaborators in the late 1920s

[36]. This approach begins by assuming that the complex many-body wavefunction

(Φ) can be obtained from

Φ(~r1, ~r2, ......, ~rNe) =
Ne∏
i=1

ϕi(~ri),

where ϕ is the one-electron orbital [50]. These one-electron orbitals are still subject

to the various potentials of the Hamiltonian which remains a horribly complicated

problem. Instead of considering the contribution of each electron a mean-field ap-

proach could be employed where a single effective potential is used to describe all

the complex electron-electron and electron-nuclear interactions. Finding such a po-

tential would be a great step forward, but to generate the effective potential the

one-electron orbitals must be known and to find the one-electron orbitals, the ef-

fective potential is required. This can be resolved by seeking a “self-consistent”

solution where the one-electron orbitals generated from an external potential will

yield an almost identical, new external potential.

The procedure for finding the self-consistent solution is that initially the elec-

tronic contribution to the effective potential V (~r) is guessed (we do not need to

guess the nuclear component as it is static). For electron i, V (~r) will take the form

V (~r) = Vext(~r) +

∫ ∑Ne
j 6=i |ϕj(~r′)|2

|~r − ~r′|
,

where Vext is a potential external to that of the electrons (here that from the nucleus
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but it could also include a static external field) with the second term representing

the Coulombic interaction between electrons [50]. ϕi is found for this V (~r) (by

exploiting the variational principle) and used to generate one-particle Schrödinger

equations from which a new V (r) can be calculated. This procedure can be repeated

until the difference between old and new V (~r) or Φ(~r) has dropped below some pre-

specified convergence criterion. In the above the electron spin has not been included,

a shortcoming in the original approach of Hartree. The absence of spin means that

the Pauli exclusion principle (which states that a system of several electrons must be

antisymmetric with regards to particle exchange) cannot be enforced with anything

other than Φ = 0 leading to an incomplete description. The antisymmetry constraint

was added by Fock who showed that it is satisfied with a many-electron wavefunction

in the form of a Slater determinant [50]. These two elements combined give rise to

the Hartree-Fock method which has been successfully applied to many systems.

Parallel to Hartree, Thomas and Fermi proposed that the solution to the many

body problem lay in reformulating the problem in terms of the electron density. It

is from this that the second approach called Density Functional Theory (DFT) has

been developed. In this thesis DFT has been used to approximate the Schrödinger

equation and calculate the vibrational properties of materials. Thomas-Fermi theory

proposes that an inhomogeneous electron system can use the kinetic, exchange and

correlation contributions from a homogeneous electron gas to calculate its total

electronic energy (by assuming that the electronic density changes slowly and that

at any point it is locally homogeneous) [51, 52]. The energy of this system ultimately

depends upon only the electronic density and is thus termed a functional of the

density. By looking for a density which minimises the total energy the ground

state can be found. Although postulated in the 1930s DFT was initially much less

developed than Hartree-Fock Theory as it lacked a proof.
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3.1 The fundamentals of DFT

In 1964 Hohenburg and Kohn were able to show that an external potential can be

determined entirely by the electron density (ρ) plus a trivial constant [53] proving

the validity of DFT. This enables an expression for the energy to be written as

E[ρ] = T [ρ] + Vee[ρ] + Vne[ρ],

where T [ρ] is the kintetic energy, Vee[ρ] describes the electron-electron interactions

and Vne[ρ] is the external potential (which could be written more fully as
∫
v(~r)ρ(~r)d~r

where v(~r) is a potential defined by, for example, an atomic nucleus) [54]. Conse-

quently they were able to show the existence of an electron density which will min-

imise the total energy and as demonstrated in Ref. [54] this leads to an expression

of the form
δE[ρ]

δρ(~r)
= v(~r) +

δ(T [ρ] + Vee[ρ])

δρ(~r)
.

Since T [ρ] and Vee[ρ] do not explicitly depend upon v(~r) an expression for them

would enable the ground state density to be determined. Interacting electrons must,

however, be correlated preventing a simple description of the kinetic energy in terms

of the electron density. A solution was proposed by Kohn and Sham [55] to replace

the interacting electrons with a system of non-interacting particles. The Schrödinger

equation for these non-interacting particles can be written as

(
− h̄2

2m
+ Veff (~r)

)
ϕi(~r) = εiϕi(~r),

where m is the mass of the non-interacting particle, ϕ is the one particle orbital and

Veff is an effective external potential. This formulation is known as the Kohn-Sham
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equation. The kinetic energy of the system can now be easily obtained as

T = −−h̄
2

2m

∞∑
i=1

fi〈ϕi|∇2|ϕi〉,

with fi the occupation of that orbital.

If a non-interacting particle density can be found which is the same as that of the

interacting particle density then the kinetic energy contribution to the total energy

can be calculated. This is not the kinetic energy of the interacting system as the

electron-electron correlations have been lost but it allows another large component

of the energy to be obtained. These correlations could be regained by a modification

to Vee. Thus the elements of Vee[ρ] can be written out and the electron contributions

to the energy become

T [ρ] + Vee[ρ] = TS[ρ] + J [ρ] + Exc[ρ],

with TS[ρ] the non-interacting kinetic energy, J [ρ] a purely classical electronic re-

pulsion term (known as the Hartree Energy) and Exc[ρ] containing the “difficult”

exchange and correlation terms. It is thus known as the exchange and correlation

energy. With this

δE[ρ]

δρ(~r)
= v(~r) +

δ(TS[ρ] + J [ρ] + Exc[ρ])

δρ(~r)
,

δE[ρ]

δρ(~r)
= v(~r) +

δ(TS[ρ])

δρ(~r)
+
δ(J [ρ])

δρ(~r)
+
δ(Exc[ρ])

δρ(~r)
.

The one particle orbitals can now be used to calculate the density and conse-

quently the kinetic energy. The Hartree energy takes the form

J [ρ] =
1

2

∫ ∫
ρ(~r)ρ(~r′)

|~r − ~r′|
d~rd~r′,
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with

ρ(~r) =
∑
i

fi|ϕi|2,

and again can be calculated exactly from the one particle orbital densities and the

unknowns are confined to the exchange and correlation term which is energetically

the least significant [50]. If the form of the exchange and correlation is known then

the above equation can be minimised by varying the one particle orbitals.

3.1.1 Exchange and correlation

Unfortunately the exact form of the exchange and correlation term is not known

but a great many approaches have been developed to approximate it. Here they are

discussed at a general level in order of increasing complexity. This is known as the

“ladder of functionals” [56]. The work in this thesis does not go beyond the second

rung of this ladder and consequently the higher rungs will only be briefly mentioned.

The first rung - the Local Density Approximation

Using the homogeneous electron gas to approximate the properties of an inhomo-

geneous material was one of the key elements in the original Thomas-Fermi theory.

We could use this within the formulation of modern DFT and make the assumption

that the electron density at any point is is locally homogeneous. This assumption

would enable the unknown exchange and correlation energy to be obtained from the

homogeneous electron gas results. An approach of this form is known as the local

density approximation (LDA) and gives the energy as

ELDA
xc [ρ] =

∫
ρ(~r)εxc(ρ)d~r,
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and potential
δ(ELDA

xc [ρ])

δρ(~r)
= εxc(ρ(~r)) + ρ(~r)

∂εxc(ρ)

∂ρ
,

with εxc(ρ) the exchange and correlation energy per electron in a uniform electron

gas of density ρ [54]. εxc(ρ) can be obtained by a fit to Monte Carlo calculations of

the homogeneous electron gas (normally those of Ceperly and Alder [57]).

Calculations performed using the LDA tend towards more homogeneous solutions

than the real system [50]. This in turn leads to an over binding which for metallic,

ionic or covalent systems still allows for a reasonable calculation of properties. In

these tightly bound systems common errors include slightly shorter bond lengths, an

overestimate of the cohesive energy and a slight tendency to underestimate elastic

constants as well as phonon frquencies [58, 50] . In the case of weakly bound systems

(such as hydrogen bonds) this over binding is a significant source of error.

LDA also has a problem with self interaction in the Hartree term. The self

interaction error is caused by one part of the electron density repelling a different

part of the same electron’s density. In alternative methods such as Hartree-Fock

there is also a self interaction component but it is exactly cancelled by an equivalent

term in the exchange interaction. Within the LDA the self interaction error in Exc

is not equivalent to the error in the Hartree term and this incomplete cancellation

of self interaction energy gives rise to an energy penalty for highly localised states

erroneously favouring delocalised states. LDA also has issues with bandgaps in

semiconductors and strongly correlated systems (such as V2O3). In semiconductors

the LDA typically underestimates the band gap by around 40% [50] while in strongly

correlated systems it typically predicts insulating systems to be metallic. The band

gap issues have different origins which are discussed in detail in Ref. [50]. The

first step in trying to improve the LDA might be to try and introduce semi-locally,

inhomogeneities in the density.
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The second rung - the Generalised Gradient Approximation

Rather than assuming a constant density we could consider an expansion of the

density to include its gradient or even higher order terms. This expansion has been

performed for as many as 6 terms in some theories [59]. However beyond the second

order term there is a deal of uncertainty about the values of coefficients and thus

in general the expansion is truncated at the second order term. This expansion

is known as the Generalised Gradient Approximation (GGA). A great deal of care

needs to be taken in the determination of the GGA’s additional parameters as they

can be obtained in many ways which can introduce errors in either the exchange or

correlation. Within the GGA the exchange and correlation energy becomes

EGGA
xc [ρ] =

∫
Axc[ρ]ρ(~r)

4/3d~r +

∫
Cxc[ρ]|∇ρ(~r)|2

ρ(~r)4/3
,

where Axc and Cxc are parameters to be determined.

There are two main groups of GGA, either parameter free where Axc and Cxc

are determined from exact theoretical conditions or empirical where these are deter-

mined by fitting experimental data or calculated properties [60]. The most common

parameter free GGAs are those of Perdew-Wang from 1991 (PW91) [61] and Perdew,

Burke and Ernzerhof (PBE) [62]. A common empirical GGA is that of Becke, Lee,

Parr and Yang (BLYP)[63].

GGAs introduce a degree of non-locality and in general greatly improve the

behaviour of weakly bonded systems leading to a marked increase in the accuracy

of calculated cohesive energies over the LDA. A more detailed discussion of the

improvement in cohesive energies is given in reference [58]. The GGA however

retains several issues. Firstly, though an improvement over the LDA they do not

fully deal with the non-locality of exchange. Secondly, in common with the LDA

the self interaction error is not cancelled exactly [50].
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The higher rungs

Several higher rungs exist, including Meta-GGA (third rung), Hyper-GGA (fourth)

and the Generalized random phase approximation (fifth). These can use much more

complicated functions of the density, the Hartree-Fock exchange term and more

sophisticated ways of dealing with correlation the details of which are not relevant

here [60].

3.1.2 Spin density functional theory

Within the LDA and GGA only a single electron density has been considered, im-

plicitly assuming that the system is not spin-polarised. This is restrictive as many

systems are spin polarised (for example ferromagnets), however, considering such a

system turns out to be relatively simple. The details are described in Ref. [50] but

in brief, two densities are used, one corresponding to spin up and the other spin

down. A small modification to the exchange-correlation term is then included to

describe this, whose magnitude depends on the magnetisation density.

3.1.3 DFT in practice

The elements to compute the total energy of a system are now all in place. Once

a choice for the approach to exchange and correlation has been made the problem

becomes one of finding one-particle wavefunctions that minimise the total energy.

Finding these wavefunctions requires two decisions to be made. First a way to

represent them must be chosen and second, will all of the electrons within the

system be modelled?

This second question may be surprising but very often a significant fraction of the

electrons within a system are irrelevant for the properties being investigated. After

all, in many atoms the innermost electrons are not involved in the chemical bonding
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and increase the cost of the calculation for no real increase in the overall accuracy.

Depending on the problem being considered either all-electron or pseudopotentials

can be used.

To model the one-particle orbitals a choice of basis set must be made. There

are four broad categories of basis set. These are extended (the basis set covers all

space, typically useful for condensed systems), localised (the basis set is centred

somewhere perhaps at an atomic position, these are often used for molecular sys-

tems), mixed (a combination of the previous two) and augmented (the basis set

includes atomic like wavefuctions around the nucleus, typically highly accurate but

also highly complicated) [50].

In this thesis the CASTEP [64] DFT package has been used. This uses a plane-

wave pseudopotential approach with plane-waves as an extended basis set and using

pseudopotentials rather than considering all electrons.

3.2 The plane-wave pseudopotential approach as

implemented in CASTEP

3.2.1 Bloch’s theorem, reciprocal space and Brillouin zone

sampling

A periodic lattice was introduced in the experimental section to facilitate calcu-

lations of a scattering experiment. Bloch’s theorem states that an electron in an

external periodic potential has the same probability of being found at a point ~r

in any unit cell within the system [65] implying that a similar construction could

be of use here. The crystal lattice in real space has a related lattice in reciprocal

space with the reciprocal lattice vectors ~a∗, ~b∗ and ~c∗. These three reciprocal lattice

vectors define a volume in reciprocal space known as the first Brillouin zone (BZ).
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A set of non-interacting particles in a one dimensional box of length a have wave-

functions which are solutions of the Kohn-Sham equation of the form φk(x) = eikx,

with the eigenvalues ε(k) = h̄2k2/2m. This parabolic relationship shows how the en-

ergy of a particle varies with wavevector. Each neighbouring BZ also contributes

a parabola, but Bloch’s theorem means only the components within the first BZ

are needed to describe the total system. This is shown in figure 3.1. If an external

potential is applied (which could be the effective potential containing the electron

interaction terms of DFT) the main effect is to open energy gaps within the dis-

persion. These will occur only at particular points within the BZ depending on the

nature of the external potential.

Figure 3.1: The energy bands of a non-interacting particle within a periodic crystal.
Following Bloch’s theorem only the first BZ is required to describe the behaviour of
the whole system.

Since the wavefunction is periodic it could be represented as a Fourier series.

φ~k(~r) = ei
~k·~r
∑
~G

C~k, ~Ge
i ~G·~r,



CHAPTER 3. DENSITY FUNCTIONAL THEORY 74

where ~G is a reciprocal lattice vector (which it must be to satisfy the periodic

boundary conditions) and the summation is performed over all reciprocal lattice

vectors, C~k, ~G is the coefficient of the Fourier series. Formally the density is obtained

by integrating over all ~k within the first BZ but as nearby k-points carry similar

information this can be approximated by a summation over a discrete set of ~k [50]

ρ(~r) =

∫
|Ψ~k(~r)|

2d~k ≈
∑
~k

A~k|Ψ~k(~r)|
2,

where A~k is the weighting of that point such that
∑

~k A~k = 1.

This concept of BZ sampling is very powerful and the points that are sampled are

known as k-points. In general the sampling formalism of Monkhorst and Pack [66] is

used to select the k-points. This uses a regularly spaced grid and by increasing the

density of points within the grid the accuracy of the calculation will be increased.

It is also worth noting that as the size of the real space cell increases the reciprocal

lattice shrinks. Functionally this means that a cell twice the size (with no other

changes) will need only half the number of k-points as the first BZ is shrunk. The

symmetry of the system can also be used to reduce the total computational cost.

In a system with 4-fold symmetry, one quadrant of the first BZ contains all the

information required as the rotational symmetry can be used to generate the rest of

the BZ. The symmetry reduced BZ is known as the irreducible wedge.

3.2.2 Plane-wave basis sets

Above, we introduced the concept of representing the one-particle orbitals as a

Fourier series of plane-waves, independent at each k-point. To build up a complete

description, all the Fourier coefficients (of which there are an infinite number) would

need to be considered [67]. The Fourier coefficients, however, decrease with increas-

ing |~G| [67] and thus the summation can be truncated once enough terms have been
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included to accurately describe the property being investigated. This truncation

is related to the smallest possible spatial variation which can be sampled in real

space of the one particle orbitals (a larger basis set allows smaller features to be

represented). Since each system will have a different sized BZ it is not convenient

to specify this in terms of actual G-vectors. Instead the cut-off is normally defined

in terms of an energy (Ecut) such that

h̄2

2m
|~k + ~G|2 < Ecut.

Once the coefficients C ~G have been determined for each k-point and orbital, the

ground state density is defined.

It has already been stated that by using pseudopotentials the total number of

orbitals that need to be solved can be reduced. Another reason for wanting to replace

the true nuclear potential is that at the nucleus the potential diverges. Plane waves

are computationally efficient away from the nucleus where the external potential

is relatively flat. Close to the nucleus the number of plane waves required grows

rapidly, raising the cost of the calculation beyond practical limits for all but the

simplest systems. For this reason it is beneficial to replace the nuclear potential

with a smoother one.

3.2.3 Pseudopotentials

Modifications to atomic potentials to make them easier to describe with plane waves

have existed since the 1930s [68]. In 1959 modern pseudopotential theory emerged

[69] based on the separation of the atomic and electronic potential into two compo-

nents. The first is an effective core, which has a number of electrons subsumed into

it and the valence electrons which must behave exactly as they would in the all elec-

tron atom. Once the pseudopotential has been created, the core is the same every



CHAPTER 3. DENSITY FUNCTIONAL THEORY 76

time it is used, regardless of the chemical environment (this is known as the “frozen

core” approximation [50]). The design, construction and testing of pseudopotentials

is non-trivial, but one of the main decisions is which electrons will belong to the

core and which to the valence states. In general the more states (working from

the outside towards the centre) that are included, the more chemical environments

the pseudopotential will be valid for, but it will also increase the cost. No pseu-

dopotentials have been devised by the author and thus no more details about the

construction of pseudopotentials are given. Instead, only a general overview of the

differences between several common classes follows.

Most pseudopotentials are designed with transferability in mind. By this it is

meant that a pseudopotential used in one chemical environment will give equivalently

good results in another unrelated environment. For this reason pseudopotentials

are not designed by fitting to experimental results (although early ones were [70]).

While there are many specific varieties of pseudopotential (which are discussed in

Ref. [50]) the two broad categories that we will consider for use with CASTEP are

norm-conserving or ultrasoft. An example of these two constructions is shown in

figure 3.2.

Norm-conserving pseudopotentials require that

∫ rc

0

|rR̃PS(r)|2dr =

∫ rc

0

|rRAE(r)|2dr,

where R is the wavefunction (PS and AE denoting pseudo and all-electron respec-

tively), r the radius from the nucleus and rc the distance from the nucleus above

which both wavefunctions must be the same [50].

With ultrasoft pseudopotentials this constraint is lifted allowing, in general, a

smoother wavefunction reducing the cost of the calculation. This makes ultrasoft the

pseudopotential of choice for a plane-wave calculation subject to certain important
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Figure 3.2: The oxygen 2p radial wavefunction reproduced from reference [71]. The
true wave-function is shown as the solid line, with a norm-conserving pseudopotential
as the dotted line and ultrasoft the dashed line. Note that above 1.5 a.u. the
wavefunctions are the same.

limitations. The formalism for ultrasoft is much more complicated and for many

properties calculations the problem becomes essentially intractable. To reduce the

computational cost of the superstructures considered in this thesis only ultrasoft

pseudopotentials have been used.

3.2.4 Electronic self-consistency

We are now in a position to attempt to find a density which minimises the total

energy. The idea of electronic self-consistency was originally encountered while

discussing the Hartree method and here again it can be used to obtain the ground
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state density. Initially, the nuclear potential is specified, this could be used as

the first guess for the total potential. However, a better approach is to use the

potentials (Vee + Vne) of isolated atoms arranged according to the nuclear positions

of the system. This defines the initial potential and the Kohn-Sham equation from

which the initial ϕi is found (as a Fourier series) by minimising the total energy

[67]. A new outgoing density is calculated and this becomes the new input density

from which Veff can be calculated. This procedure is repeated until the total energy

changes are small enough for the answer to be considered self consistent.

There are various ways that this calculation can be influenced to reach the ground

state more quickly. It is easy to imagine a case where the density oscillates between

two distributions converging slowly towards an answer which is somewhere between

them. A way around this is so-called density-mixing where a fraction of the old

density is combined with the new. Density-mixing can be refined in several ways,

the exact mixing ratio, how many steps back the density should be sampled at, as

well as the specific mixing scheme the details of which are beyond the remit of this

chapter. Density mixing has been used to improve the rate of convergence presented

in the results chapters. As it simply improves the efficiency and is not important

for the final result no details of the specific methods will be mentioned. Instead of

mixing it is also possible to use Ensemble Density-Functional Theory (EDFT) to

find the minimum [50, 72]. This is often slower than density-mixing but will always

find a minimum and in very challenging systems it can provide a speed increase.

Metallic systems, which are characterised by bands crossing the Fermi level and

small energy scales for excitations into nearby states, present particular challenges

to achieving self-consistency. Here relatively small changes in the electronic bands

crossing to the Fermi level can lead to quite large changes in the total energy of the

system. For this reason rather than using a sharp cut-off at the Fermi level it is

normal to broaden the electron distribution by smearing the density according to
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an artificial temperature. This smearing can take many forms with some common

types being Gaussian or a Fermi-Dirac type distribution. Once smeared the system

is much less sensitive to small changes in the Fermi level which can greatly improve

the speed with which a self-consistent solution can be found. The smearing width

should, however, be carefully checked as it can introduce changes in the calculated

properties [60].

3.2.5 DFT+U

The LDA and GGA give good agreement with a great many different systems and

properties and are consequently widely used. Despite this there are some systems

where the lack of cancellation of the self interaction error gives a completely incorrect

ground state. The exact size of this error depends upon the specifics of the system

being considered but it is a particular problem for systems with strong electron

correlations, such as transition metals and rare earth elements. A prime example

of this problem is the case of Mott insulators such as NiO where LDA and GGA

(which are mean-field type approaches) give the same electronic charge on each Ni

ion and a metallic ground state whereas experimentally there are two different Ni

sites with different electronic charge states and an insulating ground state.

There are complicated approaches which attempt to improve on this self inter-

action error such as DFT+ Dynamical Mean Field Theory but they are computa-

tionally much more expensive than the traditional DFT approach [73]. Another

computationally easier approach is to supplement DFT with a model Hamiltonian.

In DFT+U this makes use of a correction inspired by the Hubbard model.

DFT+U begins by treating the entire system within the standard formalism of

either GGA or LDA, then a subset of states which at the beginning of the calcula-

tion have been associated with a d or f orbital (normally) have the Hubbard-like

correction applied to them. At this point we have double counted the uncorrected



CHAPTER 3. DENSITY FUNCTIONAL THEORY 80

energies and need to subtract out their original uncorrected values. This can be

expressed mathematically as

EDFT+U[ρ(r)] = EDFT[ρ(r)] + EU[ρd,f (r)]− Edc[ρd,f (r)],

where EDFT is the original LDA or GGA energy, EU is the energy modified by

the Hubbard type Hamiltonian and Edc is the original LDA or GGA energy of the

orbitals. The formal definition of EU requires a summation over the different angular

momentum operators and spin state and consequently a DFT+U calculation must

always be spin polarised. Identification of the orbitals corresponding to d or f states

is performed through a projection of the orbitals onto a localised basis set [73]. The

parameter of note for these calculations is the Hubbard U which is defined in the

Hubbard Hamiltonian as

Ĥ = −t
∑
〈ij〉

a+
iσajσ + U

∑
i 6=j

n̂i↑n̂j↓.

−t
∑
〈ij〉 a

+
iσajσ corresponds to EDFT[ρ(r)]. The value for U must be specified by

the user as an energy but this means that the problem is no longer fully ab-initio.

Typically U will be between 2 and 5 eV depending on how severe the self-interaction

error is in the system under consideration and there is no universal value for a

particular element. U can be calculated using a package such as Quantum Espresso

[74] or where this has already been done for the system under consideration it can

be taken from the literature. Great care must be taken with the use of DFT+U

because, as already mentioned, it is no longer an ab-initio technique and the results

must be checked to prove they are robust. When used correctly DFT+U can allow

for the self-interaction error to be corrected for a comparatively small computational

cost.
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3.3 Calculation of Properties

3.3.1 Single-point energy and convergence

Before a material’s properties can be calculated choices for the k-points and plane-

wave cut-off as described above must be made. The general procedure for choosing

these parameters is to converge them. By this it is meant that a series of calcula-

tions are performed where each parameter is varied systematically to ascertain the

computationally cheapest setting that will still allow for reliable conclusions to be

made about the property of interest.

The total energy of the system is variational with respect to plane-wave cut-

off (i.e. the total energy will drop as the cut-off is increased). This variational

behaviour is occasionally violated in certain complicated magnetic systems when

the higher frequency terms change the stability of the magnetic structure. This is

rare but was seen in one of the FeSe systems discussed in this thesis. If a system

behaves variationally then it is possible to fit a standard curve to this (which has a

logarithmic dependence on Ecut) and extrapolate to infinity thus correcting for the

finite size of the basis set.

BZ sampling is not variational. Instead as the density of sampling within the BZ

is increased, the total energy will oscillate about its true value with the total size of

the oscillations decaying as the sampling density is increased. This sampling density

should be converged along each non-symmetric direction (i.e. in a cubic system a

grid of n×n×n could be used while an orthorhombic system would use n×m× l).

If the system is metallic the smearing width should also be converged as it can affect

the final result.

The one-particle orbitals are, as already discussed, computed in reciprocal space

but quantities such as the Hartree energy are defined in real space. This necessitates



CHAPTER 3. DENSITY FUNCTIONAL THEORY 82

converting between real and reciprocal space which can be done by means of a Fourier

transform with the real space electron density represented on a grid. However, as

previously mentioned the size of features probed is related to the plane-wave cut-off

and thus the size of the real space grid is defined in terms of the largest |~G|. It is

not simply a 1 to 1 conversion though, as Gmax is related to the one particle orbitals

not the electron density and due to the properties of Fourier transforms this makes

the real space grid twice the size that would be expected from just Gmax. In reality

it is often possible to use a grid scale smaller than 2 (by default CASTEP uses 1.75)

as the errors introduced will for many properties not be large but it is important to

check this. A grid scale greater than two will, however, only increase the memory

requirements of the calculation and not the accuracy.

There is one particular case where a grid scale greater than two is required.

When using ultrasoft pseudopotentials an additional static electron density is added

to the core region to represent the density lost in softening the wavefunctions. This

“augmentation charge” would require a much larger |Gmax| to describe (this was, of

course, the point in the ultrasoft formalism) but we do not want to use a finer grid ev-

erywhere as outside of the core it will add no information. For this reason CASTEP

also has a fine grid which by default is the same as the standard grid but which can

be increased independently and its value will depend on the pseudopotential used.

This enables the augmentation charge to be accurately included regardless of the

pseudopotentials specific position relative to the standard grid preventing spurious

forces or jumps in energy if the pseudopotential moves in real space as part of a

properties calculation. The fine grid especially requires convergence testing.

Once all these parameters have been specified and checked, a total energy calcu-

lation could be performed with a known level of uncertainty. This can be useful if

the energetics of different structures are to be compared but very often more than

just the total energy of the system is required. A calculation of the total energy is
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often just the first step towards the calculation of a material’s properties.

3.3.2 Band Structures

Once the self-consistent solution has been found the electronic density is completely

specified. The electronic band structure below the Fermi level can then be obtained

from the Kohn-Sham equation as for each orbital at a given k-point its corresponding

energy is simply the eigenstate ε. Above the Fermi level the Kohn-Sham orbitals

are often a reasonable first approximation for the electronic excitations although

formally they are have no meaning within Kohn-Sham theory. Bands above the

Fermi level also suffer from the previously mentioned band-gap problem and issues

in strongly-correlated systems.

From the self consistent density the one-particle orbitals can be obtained at

arbitrary ~k within the BZ. It is important to note that these are not self-consistent

solutions as, while the density has been obtained self-consistently, at other points

this self consistent procedure is not repeated. However, if a suitably accurate set

of initial sampling points has been used this answer will not deviate from a self-

consistent solution significantly.

3.3.3 Geometry Optimisation

The force acting upon a particle is related to the negative first differential of its en-

ergy with respect to position. The force on an atom could be calculated by displac-

ing the nucleus a small amount, then recalculating the total energy and calculating

the gradient. This would be moderately expensive and can be entirely avoided by

implementing the Hellmann-Feynman theorem [75, 76]. This theorem states that

∂E

∂a
=

∂

∂a

∫
d~rψ∗Ĥψ =

∫
d~rψ∗

∂Ĥ

∂a
ψ,
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where a is an infinitesimal displacement. This shows that once the electron density

is obtained it is comparatively trivial to compute the forces. Thus for any single

point energy calculation it is possible to calculate the forces on the atoms in the

cell as a post-processing step. Once the force has been calculated, an attempt at

minimising it can be made by displacing the atomic nuclei based on the forces acting

upon them. This is the core principle of a geometry optimisation where a quasi-

Newtonian method is used to find the minimum energy geometry [77] (this is named

after Broyden-Fletcher-Goldfarb-Shannon and henceforth referred to as the BFGS

method). Each step consists of a displacement whose size depends on an estimation

of the bonding between atoms (expressed in terms of an average phonon frequency)

and the magnitude of the force. The direction of the displacement is defined by the

direction of the force subject to any applied symmetry constraints. The electronic

ground state for this new structure is computed using the previous electron density as

the starting configuration to reduce costs (as hopefully each step is a small change).

The forces are then re-analysed and if the force remains in the same direction but

is still non-zero a second step is made assuming a linear dependence. If the new

force points antiparallel to the original force, the second step will lie between the

start and first point (again assuming a linear dependence). If the new force is not

parallel or antiparallel then the process will begin anew. This continues until the

force drops below some user defined tolerance.

It is also possible to calculate the stress on a cell and thus optimise the cell

parameters at any external pressure desired by the user. This is discussed in more

detail in Ref. [67]. There are several considerations to be aware of if a variable cell

type calculation is performed. The most important is that if the size of the cell is

varying then so will the size of the reciprocal lattice and thus the number of plane

waves in the calculation. This change in the number of plane waves introduces fic-

titious stresses called Pulay stresses [50]. These can be compensated by correcting
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for the finite size of the basis set. This correction can be calculated at the beginning

of a run by varying the plane-wave cut-off and fitting a logarithmic curve to the

total energy. The curve does not need to be recalculated at each step. Both forces

and stresses should be converged with respect to all the parameters previously de-

scribed. When a geometry optimisation is performed it is important that the initial

convergence tests look at the forces and stresses rather than simply the ground state

energy.

3.3.4 Lattice dynamics

The generalised form

We have already calculated the expected excitation spectrum for a 1D monatomic

chain. To allow the investigation of more complicated systems (preferably 3D with

many atoms in the cell) within DFT, a generalised method is required. Here the

methodology and notation of Ref. [39] is followed. As before the energy of the jth

atom is

Ej =
1

2

∑
n,j′

Jj,j′,n(uj,0 − uj′,n)2,

where j is an atom in a reference unit cell, j′ is all atoms in the cell n (n = 0 being

the reference cell which is included in the summation). The force is thus

Fj = − ∂Ej
∂uj,0

= −
∑
n,j′

Jj,j′,n(uj,0 − uj′,n) = mj
∂2uj,0
∂t2

,

where mj is the mass of the jth atom.

All the possible modes must be considered in any solution. For every atom in

the cell there are 3 possible modes corresponding to displacements along x, y and
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z. A solution to this is of the form

uj,n =
∑
ν

Aνm
−1/2
j ej,νe

i(~k·~r−ωνt),

where ν is the mode label, Aν is a scaling parameter and ej,ν contains information

about the relative atomic displacements and is normalised such that
∑

j |ej,ν |2 = 1.

Substituting this into the force equation would enable its solution to be found.

This new equation would, however, get cumbersome quite quickly and it is better

expressed in matrix notation such that

eνω
2
ν = D× e,

with eν a vector containing all ej,ν at a particular ν. e is the individual eν matri-

ces packed together into a square matrix and D is the dynamical matrix with the

elements

Dj,j′ = mjm
− 1/2
j′

∑
n

Jj,j′,n

(
δj,j′ − e(i~k· ~Rn)

)
.

We could specify another matrix Ω which has the components Ων,ν′ = ω2
νδν,ν′

which would allow

Ω = e−1 ×D× e.

This is now an eigenproblem with Ω the eigenvalues and e the eigenvectors of

D. Now only the force constants Jj,j′,n must be specified and then Ω and e can be

found.

Calculating the force constants

To build up the force constants (which we can represent as a matrix and thus as

defined above will be referred to as J) more than just the single point forces are
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required. The response of every atom within the system to every other atom’s

displacement must be known. Due to the translational symmetry of the system

only the displacements within a unit cell should be considered and furthermore the

symmetry operators can be used to reduce the number of displacements required.

This is still problematic as formally the response of every other atom within the

system is needed. However, J decays quite quickly with |~r| and practically can be

considered zero for distances greater than ∼ 5− 6 Å.

Within a plane-wave code a periodic cell must be used, but the displacements

required to build up J will also be repeated in the neighbouring cell which can lead

to a problem of self-interaction. Consequently cells of at least 10-12 Åin x, y and

z must be used. Each unique atom is then displaced a small amount in positive

and negative x (then y and z) and the forces induced on the other atoms computed.

The assumption is made that all the forces are harmonic which, while not true is

generally a reasonable assumption and makes the calculation much cheaper. Thus

D for the supercell at ~k = 0 is built up as (for the x component only)

Dj,j′,x =
F+
j′ − F

−
j′

2∆x
,

where atom j has been displaced by ∆x along the Cartesian x direction and F

denotes the resultant force on atom j′ for a displacement along either + or − x.

It is important to point out at this juncture that this procedure only works if ev-

ery displacement results in an excited state which requires an accurate geometry

optimisation to be carried out before the phonon calculation is run.

We are also interested in the elements of D at ~k 6= 0. So long as the cell used is

large enough that interactions with periodic repetitions can be considered to be zero

then the expression for Dj,j′ in terms of J can be used to calculate Ω and e at any

arbitrary ~k. These calculations at arbitrary ~k are inexpensive as the force constants
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calculated for the supercell completely define the problem. Indeed we can even make

simple mass substitutions as a post processing step to evaluate the effect that doping

might have. This general methodology is known as the finite-displacement supercell

method [78, 79].



Chapter 4

Rattling modes in sodium

cobaltate

4.1 Background

As was discussed in the introduction the thermal conductivity of a thermoelectric

is of key technological relevance. While nothing can be done to reduce the elec-

tronic thermal conductivity without similarly reducing the electrical conductivity

much attention has been given to the reduction of the lattice thermal conductiv-

ity. Most work has focussed on reducing this by increasing phonon scattering rates.

Structural disorder has been used successfully to this end. Nano-crystalline powders

(with particle sizes of the order of 10 nm) [80] have been seen to reduce the lattice

thermal conductivity by around 50% and lead to a corresponding increase in ZT .

Nano-crystalline effects have also been seen in AgSbTe2 where the system adopts

a nanoscale superstructure (with significant disorder manifesting as diffuse scatter-

ing in neutron diffraction) [81] which leads to massive phonon scattering [82]. The

problem is that structural disorder would also be expected to reduce the electronic

conductivity as can be seen in impurity scattering in simple metals [65] (that this

89
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is not seen in reference [80] is most interesting). This has led to a great deal of

interest in anharmonic phonons and their interactions as this should lead to phonon

scattering without reducing the electrical conductivity.

PbTe is a prime example of this. It has a relatively simple rock salt structure

but a very low κlatt which has been attributed to anharmonic coupling between the

acoustic phonons and an optic mode associated with the development of ferroelec-

tricity [83]. In complicated crystal systems with cage-like structures loosely bound

guest atoms have been observed to reduce the thermal conductivity. This has been

postulated to be due to anharmonic vibrations of the guest atom leading to the scat-

tering of other phonon modes (particularly the acoustic modes) [84]. This concept

has been refered to as the Phonon Glass Electron Crystal (PGEC) and has been

tremendously successful in motivating the reduction the lattice thermal conductivity

[85]. This chapter is concerned with the study of this PGEC.

4.1.1 The Phonon Glass Electron Crystal

The PGEC has been widely studied and we will now recap some of the key findings,

both experimental and theoretical. This is a very large field with a great many

results and only a brief overview can be offered here. More comprehensive overviews

of the PGEC and indeed thermoelectrics in general can be found in the many review

articles on the subject [11, 9, 86].

After the very earliest work which suggested that rattling guests could suppress

thermal conductivity [84] in the skutterudites a more systematic study was made

which showed that rather than κ being driven to a minimum at full occupation some

vacancies would lower the thermal conductivity further [87]. This was attributed to

the structural disorder scattering a larger spectrum of phonons. Early experimental

work on the Ge clathrates found a remarkably low κ of less than 1 W/mK at room

temperature for a range of guest ions approaching the so-called minimum thermal
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conductivity (κmin) for Eu and Sr guests [88]. The minimum thermal conductivity is

computed by assuming acoustic phonon mean free paths the size of the interatomic

spacing [89]. This system had fully occupied guest sites and thus introducing struc-

tural disorder should not be able to reduce the lattice thermal conductivity further

in contradiction to the work on the skutterudites.

Molecular dynamics calculations with empirical potentials were used to further

investigate the Ge clathrates. They found an order of magnitude decrease in κ from

the introduction of cages and then another order of magnitude decrease when Sr

guests were added. They attributed the first drop to the increased complexity of

the cells and the second to resonant scattering by the guest atoms [90]. Nuclear

resonant inelastic x-ray scattering (NRIXS) in the clathrate hydrides (with Kr as

the guest) confirmed the existence of guest modes in this structure but did not make

a systematic study of the phonon lifetimes [91]. Other NRIXS measurements on the

skutterudites have found that the Eu guest atoms’ vibrations are focussed at low

energy [92] but that the cage dynamics were also important for reducing the thermal

conductivity [93].

First principles calculations of the guest dynamics in the skutterudites found that

there was a rattling type motion but that it was not significantly anharmonic [94].

This was confirmed by powder INS which found well defined phonon modes with

no indication of the resonant scattering predicted by the PGEC. They also argued

against the concept of a rattling guest as the guest vibrational intensities observed

were modulated in ~Q. This interpretation is rather strict however as only in the case

of the guest being completely decoupled from the lattice would its intensity have no

modulation with ~Q.

In the skutterudite CeRu4Sb12 [95] and clathrate Ba8Ga16Ge30 [96] the presence

of a rattler was inferred from the presence of an avoided crossing. The avoided

crossing is not a reliable indicator of a rattling type mode as it is not always ob-
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served [97]. The INS measurements again failed to observe any significant phonon

scattering. Instead it was suggested that the low propagation velocities of the guest

vibrations reduced the thermal conductivity [95].

While there is no question that the concept of introducing guest atoms into

cage-like structures has been hugely successful for reducing κ the actual mechanism

does not seem to be supported by the body of the literature. While individually

both momentum resolved spectroscopy and first-principles calculations are powerful

each has limitations exploring these systems. Due to the complexity of the cells

a proper understanding of the features observed with spectroscopy is challenging

and first principles calculations remain to be properly validated [86]. Furthermore

relations to experimental values of κ are often based around a Debye model which

only considers the acoustic phonons, inadequate for complex systems [98] where the

full dispersion must be considered.

Another material which has been suggested to have rattling type motion is

Na0.8CoO2 [25]. This material has the advantage that NaCoO2 is a reference system

since it removes the possible rattling sites and cages while preserving the underlying

layered structure allowing a proper investigation of the role of the rattling modes

and their cages (if they can be shown to exist).

4.1.2 The structure of Na0.8CoO2

Sodium cobaltate has attracted much interest over the years for a variety of physical

reasons. Its physical properties are controlled by the sodium concentration [1] and an

early proposed phase diagram is shown in figure 4.1. The superconductivity at low

concentrations when hydrated generated great excitement due to similarities to the

cuprate superconductors [23] although with much lower superconducting transition

temperatures. It was shown to have a moderate Seebeck co-efficient at around half

filling [99]. This increases as more sodium is added to the system until it eventually
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becomes insulating at full filling [100]. Much of the interest in the Seebeck co-efficient

stemmed from its seeming origin in magnetic entropy [101, 102].

Figure 4.1: The phase diagram of NaxCoO2 reproduced from Ref [1].

NaxCoO2 has the space group P63/mmc (Wyckoff:194) [23] and is made up of

layers of Co with O octahedrally co-ordinated around them such that a single CoO2

layer has ABC type stacking. Ignoring the positions of the Na ions momentarily

the cell has two of these CoO2 layers which stack in the order CABBAC (O-Co-O

O-Co-O) as shown in figure 4.2. The Na layers sit between the two O layers. They

cannot sit directly on top of the oxygen sites and will sit in either the vacant C site

or in the slightly higher energy A sites (taking the oxygen B sites as the example).

The convention used in this thesis is that a = b = 2.85 Åand c = 10.8Å (the lattice

constants depend on sodium concentration, more details can be found in reference

[3]) and α = β = 90◦ with γ = 120◦. It should be noted that NaCoO2 undergoes a

structural phase transition to R3̄m which has 3 layers per cell but retains the same

structure within a CoO2 layer [100, 103].

These two different sodium sites correspond to the Wyckoff 2b (for the higher
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Figure 4.2: The crystal structure of NaCoO2 with each crystallographic site labelled.
Figure reproduced from the thesis of Dr D.G. Porter [2].

Atom Fractional co-ordinates Site
Co (0,0,0) 2a
O (1/3,2/3,0.098) 4f
Na1 (0,0,1/4) 2b
Na2 (2/3,1/3,1/4) 2d

Table 4.1: The Wyckoff positions of NaxCoO2.

energy site) and 2d crystallographic sites (the full list of Wyckoff positions are given

in table 4.1). They are also referred to as the Na1 and Na2 sites respectively and

this is the notation that will be used throughout this chapter. We might expect

only the Na2 sites to be occupied as they are the lower energy positions however,

experimentally a fraction of the Na1 sites are occupied [104]. This is interesting as

the neighbouring Na1 and Na2 sites cannot both be occupied at the same time as
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the inter-site distance is smaller than the Na+ diameter [25]. In fact a kaleidoscope

of different sodium superstructures has been predicted [25, 5] and observed [25, 105,

104, 106, 107, 108] across the entire sodium concentration range. A more detailed

description of all of these different superstructures can be found in the thesis of M.

Pandiyan [3].

The origin of the superlattices and partial occupation of Na1 sites lies in a

consideration of vacancy energetics. This was considered by M. Roger. et. al. [25]

with a Coulombic model. If the vacancies are considered as single negative charges

then we would expect them to move as far apart as possible as shown in figure 4.3a.

When two vacancies are neighbours we could also promote an Na2 into an Na1.

While there is an energy cost to pay for doing this, there is a large gain from moving

further away from the neighbouring Na2 sites. This turns out to be energetically

more favourable for most levels of vacancy concentrations. This single Na1 site is

known as a divacancy cluster. As the sodium concentration increases other types

of multivacancy cluster become competitive. This is shown in figure 4.3b. The

trivacancy cluster is the one which we shall further focus on for this chapter as

it is the superstructure with the best thermoelectric properties (the quadrivacancy

cluster has never been observed).

Roger. M. et al. showed that for Na0.8CoO2 the most favourable configuration

was based around trivacancies arranged in an almost square pattern (γ = 87◦)

which for obvious reasons has become known as the square phase [25]. This phase

has propagation vectors

~a′ = ~a+ 3~b

~b′ = 4~a− 3~b.

The structure of the square phase (minus the oxygen atoms) is shown in figure

4.4. The displacement in the Co layer is due to electrostatic repulsion of the Na1
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(a) (b)

Figure 4.3: Vacancy energetics in sodium cobaltate from reference [25]. (a) The
energy of two vacancies for various distances. (b) The energetics of different multi-
vacancy clusters with composition (red divacancy, blue trivacancy, green, quadriva-
cancy and black monovacancies). The inset shows the square phase superstructure.

sites which cannot deviate from the z = 0.25 positions by symmetry. This phase

undergoes a structural phase transition at 283 K on heating (it is slightly hysteretic)

into a partially disordered phase still consisting of trivacancies but now arranged in

stripes. These trivacancies are perfectly ordered within the stripe but there is no

correlation of the position of the trivacancy clusters between stripes. On cooling,

this disordered stripe phase can either go into the square phase or (particularly if

cooled quickly) enter into an ordered stripe phase where correlations between the

stripes develop [105]. This ordered stripe phase has propagation vectors

~a′ = 5~a+~b

~b′ = 3~b.

Finally on heating further beyond 400 K the trivacancy clusters break down into a

disordered array of multivacancy clusters [3]. These structures are shown in figure

4.5. There are many more superlattice peaks in the data than would be expected
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with the stated superlattice vectors. The reason for this is that the superlattices

break the underlying P63/mmc symmetry. Thus differently oriented domains will

form throughout the crystal (which can be obtained by applying the symmetry

operators to the propagation vectors listed here) and all of these must be included

to reproduce the total scattering.

Figure 4.4: The square supercell with oxygen not plotted from reference [25]. The
Co displacements have been vastly exaggerated so that they are visible.

Finally it is worth noting that at slightly lower concentrations (Na0.77CoO2)

sodium cobaltate also forms a superstructure based on trivacancies which can be

indexed on a 1/13 grid. This system has a very large and complicated superstructure

with 392 atoms in the supercell and partial disorder between the planes making it

impractical to treat theoretically. Most samples of Na0.8CoO2 have some fraction of

this present as a contaminant phase.

4.1.3 Previous Studies of the Lattice Dynamics of NaxCoO2

There have been several previous studies of the lattice dynamics in sodium cobaltate,

however, most have chosen to focus on the electron-phonon coupling between the

hydrated superconductor and the unhydrated system. Raman measurements at
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(a) (b)

(c) (d)

Figure 4.5: The in-plane structure of Na0.8CoO2. (a) The square phase, stable below
285 K. (b) The ordered stripe phase, meta stable below 285 K. (c) The disordered
stripe phase which exists between 285 K and 370 K. (d) Disordered multivacancy
clusters which are observed above 370 K.

higher x concentrations have identified up to 5 Raman active phonon modes for

systems around Na0.75CoO2 [109] with the highest energy excitations at 83 meV.

Other authors have found that care must be taken with these measurements as

the sample surface rapidly degrades [110] or that this highest energy mode may be



CHAPTER 4. RATTLING MODES IN SODIUM COBALTATE 99

from Co3O4 [111]. The authors of Ref [111] found that in hydrated samples the

highest energy mode was at 70 meV, however, it is worth noting that ~c expands on

H2O intercalation [112] and that these high energy modes have been identified as

O modes with vibrations perpendicular to the plane in first principles calculations

[113]. The highest energy mode observed with infra-red was at 72 meV. In all these

measurements little information can be extracted at low energies due to a lack of

intensity and high background. This is the region where the Na vibrations dominate

as shown by the changes observed in first principles lattice dynamics calculations

when the Na1 site is occupied instead of the Na2 [100] which mostly occur below

30 meV. Another Raman study showed that anhydrous Na0.7CoO2 samples had

much broader excitations than their superconducting counterparts, attributed to

Na disorder or sublattices forming [114]. Again this could only be observed between

55 and 75 meV [114] where O vibrations dominate.

There have been some momentum-resolved spectroscopy studies of the dynamics

in Na0.75CoO2. Boothroyd et. al. principally studied the magnetic dynamics with

single crystal INS however they were able to observe some scattering from optic

phonons at 20 meV [115]. Powder INS measurements were performed on Na0.3CoO2

but did not extend below 25 meV in energy transfer and thus cannot be compared

to the other calculations or measurements [112]. The most extensive study of the

lower energy dynamics was an IXS study in which the dispersions were mapped out

along Γ-M. Clear modes were measured up to 75 meV with significant intensity in

the region 10-30 meV in all scans not predicted by their first principles calculations

[116].
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4.2 Experimental procedure

To investigate these properties a number of experimental studies have been per-

formed. Mostly these are inelastic but there have been a small number of elastic

measurements to characterise samples.

4.2.1 X-Ray Measurements on Xcalibur

A small crystal of nominal growth composition Na0.85CoO2 was cleaved from the

larger growth (dimensions 400 × 400 × 20 µm) and screened on the Xcalibur x-ray

diffractometer. It was found to be a single crystal principally in the disordered

stripe phase as the 1/13
th peaks are very weak compared to the disordered stripe

phase peaks indexed on a 1/5th grid (as shown in Fig 4.6). An estimation of the

relative concentrations was made by comparing the intensity of the (0.8, 0, 0) type

peaks to the (1,0,0) peaks. Integrations across the entire peak were made using

the 3D peak integration in CrysAlisPro (the software which comes bundled with

Xcalibur) and averaged across all 6 of the symmetric peaks. This gave a relative

ratio of intensities of 1/74 compared to the calculated value of 1/55 giving a disordered

stripe phase concentration of 75%. After this measurement the sample was covered

in a thin layer of silicone oil to prevent it reacting with the atmosphere.

4.2.2 Inelastic x-ray measurements on ID28

The sample measured on Xcalibur was then remounted on a 0.1mm diameter glass

capillary and taken to the ESRF for an inelastic x-ray experiment on the beamline

ID28. The beamline was aligned with the Si (9,9,9) reflection (incident energy 17.794

keV) on the backscattering monochromator (giving a nominal resolution of 3 meV).

The toroidal focussing mirror was used to increase flux (slightly decreasing the ~Q
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Figure 4.6: The (hk0) plane of the sample measured on ID28. ~a∗ is horizontal

and −~a∗+2~b∗ vertical. The secondary peaks which lie between the (1, 0, 0) principal
reflections (and form a 6-fold ring around them) are from the disordered stripe phase
and the 1/13

th peaks lie just away from this direction forming a 12-fold ring around
the principal reflections. However, their intensities are so small that they are barely
visible on this scale.

resolution but given the poor mosaic of our crystal anyway this is comparatively

unimportant). The sample was initially aligned in the (h, 0, l) orientation using the

(1,0,0) and (0,0,4) and quickly cooled to 250 K before being more slowly cooled

to 200 K using an Oxford Instruments cryostream. Energy scans from -20 to 90

meV in 0.68 meV steps were performed for fixed values of ~Q along the (1,0,0)

direction starting at (1.07,0,0) and increasing in (0.1,0,0) steps until (1.47,0,0) (0.07

type positions were used to avoid possible contamination from stripe phase elastic

superlattice reflections which lie along this direction). The sample was then re-
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aligned with the (h, h, l) plane parallel to the horizontal scattering plane using the

(1,1,0) and (0,0,4) reflections. Energy scans were again performed from -20 to 90

meV for selected values of ~Q from (1,1,1) to (1.5,1.5,1) and then the corresponding

scans were made around the (1,1,2) allowing a large swathe of reciprocal space to

be mapped out.

The sample was then warmed up and at 255 K a camera image of the diffraction

was taken, shown in figure 4.7a. This shows that on cooling the sample went princi-

pally into the square phase rather than the stripe phase. The reason that the 1/13
th

phase appears to be stronger here is that this camera does not take a cut through

the (h, k, 0) as it is a flat plate. Instead everywhere apart from the main (1,0,0)

peaks is slightly off in l and this makes the 1/13
th rods appear stronger.

(a) (b) (c)

Figure 4.7: The three camera images obtained on ID28 at (a) 255 K, (b) 300 K and
(c) 400 K. The peak positions have been marked with the coloured squares. At 255
K red shows the positions of the square phase, green the ordered stripe phase and
yellow the 1/13

th. At 300 K the green squares show the positions of the disordered
stripe phase peaks. That they have disappeared on cooling shows that the sample
has gone into the square phase. At the highest temperatures only a broad diffuse
ring is visible.

At 300 K another camera image was taken showing the sample in the disordered

stripe phase (shown in figure 4.7b). The sample was re-aligned and the scans around

the (1,1,1) were repeated. Finally the sample was warmed to 400 K and another

camera image was obtained showing diffuse scattering implying that it is in the
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disordered multi-vacancy cluster phase with no long-range order. The measurements

around the (1,1,1) were then repeated for a final time.

The datasets were initially extracted using the MATLAB script addIXS and

then peak positions and widths were extracted by fitting the energy scans using the

program fit28. Both addIXS and fit28 are available from ID28. The phonons were

treated as Lorentzians which were then convolved with the instrumental resolution

function measured for this set-up at the beginning of the cycle.

4.2.3 Inelastic Neutron Measurements on IN8

A large crystal (35 × 10 × 3 mm3) with a mosaic spread of 3◦ (determined via a

θ scan on IN8) which had been screened by Dr D.G. Porter on SXD at ISIS was

placed in an aluminium can in an inert helium atmosphere and taken to IN8 at

the ILL. Due to technical difficulties it was not possible to use the best resolution

without collimation option of the Cu focussing monochromator/analyser and instead

the pyrolytic graphite (0,0,2) monochromator and analysers were used with a high

degree of collimation (|kf | was fixed at 2.662 Å). This collimation was 30’ between

source and monochromator, 20’ between monochromator and sample, 30’ between

sample and analyser and 30’ between analyser and detector. This gave a FWHM of

0.77 meV for the elastic incoherent scattering from vanadium. A graphite filter was

used to suppress higher order reflections.

Measurements were made on a strong, highly dispersive phonon mode at (1.01,1.01,1)

which had been shown to have a width roughly in the middle of those measured on

ID28. Energy scans from 20 to 4 meV in -0.2 meV steps (negative energy steps

were used due to the backlash on IN8 associated with 2θm) were made at a num-

ber of temperatures (10, 50, 85, 120, 160, 200, 240 and 275 K) to determine the

phonon lifetimes. The 10 K data was not used due to anomalous broadening as the

temperature was lowered, possibly due to magnon contamination.
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The collimation was then removed and the analyser/monochromators were changed

to Si to improve the ~Q resolution (again |kf | =2.662 Å). Energy scans were then

made through the rattling mode position at (1.25,1.25,1). An unusual shaped back-

ground (identified as Al) was observed and thus the sample was rotated by 90◦ to

suppress the rattling mode and obtain a measure of the background.

The peak fitting was performed using a Python script written by this author.

The minimisation algorithms were supplied by Minuit from the Python wrapper

PyMinuit [117]. The 50 K data was fitted by a Gaussian and this was used as the

instrumental resolution. This resolution function was convolved with a Lorentzian

and the width of this Lorentzian was used to calculate the phonon lifetimes. There

is a small shoulder at higher energy which seemed to be temperature independent

and, therefore, not phonon scattering from the sample.

4.2.4 Inelastic Measurements on MERLIN

Two different samples were measured on MERLIN. The first was a sample which

had been observed to go into the stripe phase on cooling on SXD. The sample was

aligned in (h, h, l) on the instrument ALF at ISIS. This was cooled to 200 K and

the “sloppy” (by which it is meant that it has a relatively large acceptance angle)

chopper placed into the beam. An incident energy of 50 meV was selected with a

chopper frequency of 250 Hz giving a resolution of ∼ 3 meV at the elastic line. A

50◦ degree rotation of the sample (in 2◦ steps) was used to map out a large volume

of reciprocal space.

The second sample consisted of two co-aligned (again on ALF) single crystals

with a combined mass ∼ 4 times that of the previous. They went into the square

phase on cooling and an identical region of reciprocal space to the original experiment

was mapped out. In both experiments there was considerable scattering from Al

which made up the cryostat. Due to the machining of the cryostat this was not
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an isotropic powder and thus for the background subtractions several scans of the

same length as the original were made over the same range but with a step size of

12◦. The assumption that the background was the same over these arcs was made

and the same scan was then used to represent the 2◦ steps originally measured.

This measurement slightly overestimates the Al contribution as Co has a moderate

neutron absorption cross section and removing the sample leads to an increased

neutron flux on the sample holder and rear of the cryostat. The averaging procedure

will also lead to errors in the intensity with angle. By looking at the Al line positions

and comparing the magnitude of the remaining intensities with the unsubtracted

intensities this overestimation can be seen to be around 5% as shown in figure 4.8.

4.2.5 Thermal Conductivity measurements with the PPMS

The thermal conductivity measurements were performed by Dr D.G. Porter on a

sample cleaved from the same growth as the ID28 measurements. This sample

measured 7× 2× 0.5 mm with the short direction parallel to the crystallographic ~c.

Gold contacts were attached to the sample with silver epoxy resin and the in-plane

thermal conductivity was measured from 2 to 300K.

4.3 Computational procedure

The calculations reported in this chapter have been performed by Professor K. Ref-

son. For this reason there are no reports of convergence testing or discussions of why

certain parameters have been used as this is the work of Professor Refson. Instead

a brief summary of the computational details will be given to enable comparisons

to the literature.
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Figure 4.8: Data from MERLIN integrated from 0.45 ≤ l ≤ 0.55 and −0.05 ≤ η ≤
0.05 where η corresponds to (− η/2, η, 0). The cut is in a [h, 0, 0] direction with the
axis labels in terms of the ~a∗ of Na0.8CoO2. The two peaks in the unsubtracted data
are the Al (1,1,1) and (2,0,0) respectively. The small peak that remains near the
(1,1,1) in the subtracted data is probably a powder line corresponding to the (1,0,0)
of sodium cobaltate. The background level of ∼ 300 is due to the incoherent cross
section of Co and Na (around 80 % Co). Looking at the remaining peak height of
the (2,0,0), subtraction has removed around 95%.

4.3.1 The 8 Atom Cell

Calculations were initially performed on the 8 atom unit cell with symmetry P63/mmc.

Custom pseudopotentials for sodium, cobalt and particularly oxygen were devised

for this system while retaining a high degree of transferability between other tran-

sition metal oxides. These gave accurate agreement with all electron models at a

plane-wave cut-off of 500 eV. The electronic Brillouin zone was found to be sampled

adequately with a Monkhorst-Pack grid of 7× 7× 2. Na0.8CoO2 was approximated

by doping the 8 atom unit cell with an additional 0.4 holes. This drove the system

metallic and a Gaussian smearing of electrons at the Fermi level was used with a
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width of 0.1 eV to aid convergence. In both cases the density mixing technique was

used with Pulay mixing. The fine grid scale was increased from 1.75 to 3.

For the phonon calculations the system was geometry optimised with fixed lattice

parameters of a = 2.85 Åand c = 10.811 Å. This led to a total error in the forces

of less than 0.002 eV Å−1. The phonon calculations were performed using the finite

displacement/supercell method with a supercell of 5× 5× 2.

4.3.2 The square and stripe phases

The calculations for the square and striped phases were performed in a very similar

manner. A k-point sampling grid of 4 × 4 × 4 was used and, as both systems were

metallic, Gaussian smearing with a width of 0.1 eV was used. For the phonon

calculations the systems were geometry optimised such that the error in the forces

was less than 0.0024 eV Å−1. A single cell with parameters a′ = 10.276 Åfor the

square phase and a′ = 13.06 Åfor the stripe phase was found to be sufficient for the

supercell method.

4.4 Results

4.4.1 The Phonon Dispersion from ID28

200K

The scans made around (1,0,0) and (1,1,1) at 200 K allowed reciprocal space to be

mapped out along both the high symmetry directions Γ-M and Γ-K-M. In addition

the other detectors mapped out a significant volume of reciprocal space away from

the high symmetry directions. The comparison between the measured positions,

the 8 atom cell and square phase calculations are shown in figure 4.9 with the full

dispersions shown in figure 4.10. It is clear from this that there is significant extra
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intensity in the square phase calculation between 10 and 30 meV. This seems to be

borne out experimentally with additional features observed in this region.

(a) (b)

(c)

Figure 4.9: The computed phonon dispersions from (1,1,1) to (1.5,1.5,1) (Γ-K-M)
and (1.5,0,0) to (1,0,0) (M-Γ) for the 8 atom cell (a), the 8 atom cell doped with 0.2
holes per formula unit (b) and square phase (c). The red hexagons indicate where
it was possible to fit individual modes in the ID28 data.

For a more detailed comparison between the two models it is necessary to look

at the individual energy scans. A representative sample of these from the high sym-

metry directions and off axis detectors is shown in figure 4.11. The agreement here

between experiment and calculation is remarkable, indeed the only real disagreement

is observed in the strong mode around 40 meV across the K point. This corresponds
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(a) (b)

(c)

Figure 4.10: The computed phonon dispersions from around their respective irre-
ducible wedges for the 8 atom cell (a), the 8 atom cell doped with 0.2 holes per
formula unit (b) and square phase (c).

to a collective motion of the Co-O planes moving towards each other and any errors

due to the localisation of charge on the Co sites is likely to be amplified in such a
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mode. In all of these scans there is significant scattering below 30 meV which, apart

from intense and highly dispersive modes near Γ are not predicted by the 8 atom

cell calculations.

(a) (b)

(c) (d)

Figure 4.11: Selected energy scans from ID28. (a) (1.17,0,0), (b) (1.1,1.1,1), (c)
(1.5,1.5,1) and (d) (1.17,1.17,1.08). The data are shown as the points with error
bars while the two calculations are for the 8 atom cell and square phase with an
arbitrary elastic line.

These low energy modes could simply be due to softening from the decrease in

total number of electrons rather than an effect of the superstructure. For this reason

the lattice dynamics for an 8 atom cell doped with an extra 0.2 holes per formula
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unit were computed and the phonon DOS for the square phase and both 8 atom

cells are shown in figure 4.12a. From this it is clear to see that at low energies

both unit cell calculations are quantitatively the same. There are small shifts in the

peak positions but the biggest differences occur in the region 40-80 meV. This is

unsurprising as these modes involve motions of the whole Co-O layer or the higher

energies correspond to O motions whose bonding would be expected to be most

affected by a change in total electron density in the Co-O slabs.

(a) (b)

Figure 4.12: The computed phonon densities of states for (a) the 8 atom cell, doped
8 atom cell and square phase and (b) the square superstructure with two different
mass Na1 sites and 8 atom cell. There is only the marked shift to lower energies
caused by the mixed occupancies of Na1 and Na2 sites.

Instead what is clear in this case is that there is a quite significant difference in

the total weighting of the square phase at low energies. It is possible to show that

these modes involve considerable coupling to the Na1 sites within the trivacancies

by making a mass substitution onto these sites. In this case we retain our force

constant matrix and shift the phonon frequencies from the trivacancy by an amount

proportional to ω =
√

k/m. This result is shown in figure 4.12b. From this it is clear

that the additional scattering seen at low energies is coupled into trivacancies but

that it has no real effect on modes above 40 meV.



CHAPTER 4. RATTLING MODES IN SODIUM COBALTATE 112

If we return to the dispersion in figure 4.9 we can identify an approximately flat

mode near K at 12 meV. Figure 4.13a shows this mode at ~Q = (1.25, 1.25, 1). This

mode’s atomic motion can be plotted in real space at the Γ point and this is shown

in figure 4.13b. This mode consists mostly of motion within the trivacancy cluster

with a smaller response in the walls of the cage and very little motion in the Co-O

layer. Thus this mode has been identified as a “rattling” mode. As shown in the

DOS there are many other modes which couple into the Na1 sites and a typical

mode is shown in figure 4.13c. The rattler motion is asymmetric and thus it would

be expected to be quite anharmonic. This was investigated by performing frozen

phonon calculations. The results are shown in figure 4.14. The harmonic model

clearly does not describe this well (the reason for a cubic fit rather than the more

usual quartic is due to the asymmetry of the mode). It is challenging to go from a

description of the anharmonicity to a quantitative description of phonon scattering

and therefore this was investigated experimentally instead.

320 K and 400 K

The dispersion along Γ − K − M was also measured and fitted at 320 and 400

K. There is very little change between each temperature which can be attributed to

the continued existence of multivacancy clusters across the entire temperature range

investigated. There was a small increase in phonon line width (as would be expected

from increased phonon-phonon scattering) and some softening due to the expansion

of the crystal lattice but very little in the way of clear changes.The energy scans

show that the changes in the phonon dispersion are overall small with some possible

changes in the range 10-30 meV. As it is not possible to perform first-principles

calculations for these disordered phases no comparison to calculations is offered.

The strongest peaks whose positions are relatively easy to fit are observed to

soften slightly as the system is heated indicating that they are not strongly an-
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Figure 4.13: (a) The energy scan from ID28 at (1.25,1.25,1) showing the lowest
energy rattling type mode as a peak at 12.5 meV (b) This rattling modes motion at
the Γ point. (c) A typical optic phonon which is coupled into the Na1 sites. It is at
an energy of 37.3 meV.

harmonic. Unfortunately owing to their weak intensity it has not been possible to

perform the same analysis on the rattling type modes.

Phonon Lifetimes from IXS

An attempt to extract the phonon lifetimes from the data reported above has been

made, however, it is extremely difficult to find a region where the overlap of phonons
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Figure 4.14: A frozen phonon calculation of the rattling mode shown in figure 4.13b.
A displacement of 1 on this scale corresponds to a displacement on the Na1 site with
the largest motion of 0.3 Å.

does not allow for variances which are equal to the best fit of the parameter. In other

words the phonon width at x±x has not increased χ2 by 1 (which is the definition of

the variance of a parameter for the χ2 distribution [118]). It may have been possible

to overcome this by using asymmetric error analysis (where it is not assumed that

one standard deviation is the same in both positive and negative directions of a

parameter), however, the program fit28 does not support this.

The typical best fit values range between 0.1 and 0.4 meV however in almost all

cases it is not possible to refine a physical error. In general the degree of overlap

with a 3 meV resolution is too large for this process. At higher energies even the

strongest modes weaken which causes problems due to the counting statistics. At

low energies the intensity is much better, however, there is quite significant overlap

with the elastic line.
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Of the modes measured during this experiment one is particularly clean and

returns a defined width for any set of fitting parameters. This mode sits at ~Q =

(1.1, 1.1, 1). By this point an optic mode has dispersed to 20 meV where it is clear

of the elastic line but still has enough intensity to give good counting statistics. The

temperature dependence of this mode is plotted in figure 4.15 and the extracted

values are shown in table 4.2. One other lifetime in which we can be relatively

confident of the value (due to its large intensity) and which must be reported for

comparison to the PGEC is that of the acoustic mode measured at (1.07,0,0). This

has a width of 0.29(3) meV.

Temperature (K) Position (meV) Width (meV)
200 23.20 (4) 0.36 (3)
320 23.02 (5) 0.38 (3)
400 22.70 (5) 0.38 (4)

Table 4.2: The phonon lifetimes obtained from the Lorentzian half-width at
half-maximum as extracted from the ID28 data for the strongest mode at ~Q =
(1.1, 1.1, 1).

4.4.2 Phonon lifetimes from INS

No energy broadening was detectable below 120 K. The convolution of the instru-

mental resolution, sample mosaic and mode dispersion lead to a FWHM of 1.45

meV. The fitted lifetimes as calculated from the HWHM from the Lorentzian of the

phonon are shown in Fig. 4.16 and in table 4.3. The energy scans at 50K and 275K

are shown in figure 4.17.

To make sure that these widths were obtained in a system with rattling modes

present a scan of the rattling mode position was made. The resolution at the elastic

line of our sample in the much coarser set-up was 1.57 meV. The scans before and

after background subtraction are shown in figure 4.18.



CHAPTER 4. RATTLING MODES IN SODIUM COBALTATE 116

16 18 20 22 24 26 28 30
E (meV)

0

5

10

15

20

In
te

ns
ity

 (a
rb

. u
ni

ts
)

200K
320K
400K

Figure 4.15: Energy scans taken at ~Q = (1.1, 1.1, 1). The lines are the fits to the
data from the program fit28.

Temperature (K) 85 120 160 200 240 275
HWHM (meV) 0.01(5) 0.07(6) 0.16(9) 0.16(9) 0.26(7) 0.35(5)
Lifetime (ps) 60(300) 9(7) 4(1) 4(1) 2.5(3) 1.8(3)

Table 4.3: The phonon lifetimes calculated from the Lorentzian half-width at half-
maximum as extracted from the IN8 data also expressed in picoseconds.

4.4.3 Impact on Thermal Conductivity

The thermal conductivity can be calculated by summing over all modes within the

system at all points within the Brillouin zone (as discussed in the introduction).

Realistically this means that much like a first principles calculation a sufficiently

dense sampling of points will be able to describe the system adequately (especially

compared to the error bars of our lifetime measurements). A 4×4×4 grid of k-points

was found to be sufficient for the square phase and 16× 16× 4 for the 8 atom cell.
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Figure 4.16: The phonon lifetimes extracted from the IN8 data and the 200 K ID28
peak for comparison.

The lifetimes measured on IN8 were assumed to apply to all phonon modes and the

thermal conductivity was calculated at each temperature measured on IN8. For the

8 atom cell only the thermal conductivity at 200 K with the square phase lifetimes

are shown. This is because we do not have actual lifetime (or thermal conductivity)

data for the 8 atom cell and it is very much an artificial calculation.

As previously highlighted there is also a contribution to the total thermal con-

ductivity from the electrons. This can be estimated using the Wiedemann-Franz

law [65] which states that

κ

σT
=
π2

3

(
kB
e

)2

= 2.45× 10−8WΩK−2.

Using the electronic conductivity of Lee et al. the electronic contribution over

this temperature range can be seen to be around 1/8th of the value measured by Dr
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(a) (b)

Figure 4.17: Energy scans at ~Q = (1.01, 1.01, 1) where a single intense mode is
expected from the square phase phonon calculations. (a) The scan at 50 K which
is resolution limited. The feature at 9.5 meV is attributed to a spurion from higher
order harmonics of the monochromator/analyser. (b) The scan at 275 K just under
the transition to the disordered stripe phase. The resolution determined from the
50 K data is shown as the dashed line.

(a) (b)

Figure 4.18: Measurements of the rattling mode with IN8 in the highest flux Si-Si
setup. (a) The unsubtracted data showing the very large aluminium background. (b)
The rattling mode with the aluminium background subtracted. Peaked at around
12 meV and almost as narrow as the elastic line in this setup as expected for a flat
mode.
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D.G. Porter and thus it has been neglected. The calculated and measured thermal

conductivities are shown in figure 4.19. The agreement between measurement and

calculation is remarkable especially given the simplicity of the assumptions. There

is a factor 6 decrease in the calculated thermal conductivity between the square and

8 atom cell calculations at 200 K. As the same lifetimes have been used this cannot

be explained by some form of resonant phonon scattering phenomenon.
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Figure 4.19: The thermal conductivity of Na0.8CoO2 both measured (by Dr D.G.
Porter) and calculated from the CASTEP dispersions and lifetimes measured exper-
imentally. The Na0.8CoO2 and NaCoO2 points were calculated using the dispersions
from those models respectively while the INS and IXS models refer to the origin of
the lifetimes (the IXS used was the average of widths with an estimated error).

4.4.4 Comparison between Square and Stripe Phase

The measurements were performed on a single crystal. However, due to the rel-

atively small sample sizes, it was not possible to extract usable inelastic data on

the phonon dispersion due to the poor counting statistics. Figure 4.20 shows elastic

data obtained by integrating the intensity from -2 to 2 meV, and the positions of the

superlattice reflections enables the determination of the superstructures. In order

to obtain better counting statistics, the inelastic data has been integrated over all
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Q. The neutron-weighted DOS data obtained on MERLIN for the square and stripe

phases are shown in Fig. 4.21. As the underlying measurements are single crystal

this leads to a strong bias in the data for intensity with vibrations perpendicular to

~a like the rattling mode of figure 4.13b due to the (h,h,l) orientation.

The data obtained on MERLIN for the square and stripe phases respectively

are shown in figure . These were single crystal (cuts integrated across the elastic

line from −2 to 2 meV are shown in figure 4.20) measurements, however, due to

the relatively small sample sizes it has not been possible to obtain usable data from

small cuts through the data due to the poor counting statistics. For this reason the

inelastic data has been integrated across all ~Q. As the underlying

(a) (b)

Figure 4.20: The diffraction patterns obtained on MERLIN around a (1,0,1) type
reflection (integrated between ±2 meV) for the (a) square phase and (b) stripe
phase.

There are small differences in this dataset between the square and stripe phase in

these data as would be expected from the calculated DOS. The calculation does not

take account of the preferential orientation (this calculation is strictly only valid for
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Figure 4.21: (a) The neutron weighted DOS below 50 meV showing very small
changes between the square and stripe phases. (b) The data from MERLIN for

both phases integrated over all values of ~Q measured. The data has been corrected
for the Bose factor and had the elastic line subtracted, the centre of the elastic line
has been used to redefine zero energy transfer.

comparison to a powder). Where differences are larger this may be attributed to the

orientation of the crystal and it makes it challenging to draw specific conclusions. In

both the experiment and the calculations there is no fundamental change of features,

both have a shoulder at around 13 meV which can be attributed to a rattling type

motion (as shown in the Na plane for both phases in figure 4.22). In the stripe phase

this is slightly more washed out presumably indicating that the rattler in this system

is more dispersive. Calculations of the thermal conductivity show that this subtle

change in the phonon dispersion leads to a rather large 50% increase in kappa.

4.5 Discussion

The combination of momentum-resolved spectroscopy and first-principles lattice dy-

namics calculations show unambiguously, for the first time, that rattling modes exist

in sodium cobaltate. It should however be noted that anomalous sodium vibrations
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(a) (b)

Figure 4.22: The rattling modes in (a) the square phase and (b) the stripe phase.
They sit at 13 meV and 14.9 meV respectively.

has been observed in Na0.75CoO2 via NMR which had been suggested could be in

part due to rattling type vibrations [119]. With the benefit of the calculations pre-

sented in the previous chapter it is tempting to say that the first actual observation

of a phonon associated with rattling was in the original IXS measurements [120]

whose data are reproduced in figure 4.23.

The IXS measurements of Rueff et al. [120] also contain scattering close to 12

meV, where none is predicted for the stoichiometric compound, see figure 4.23. It

seems highly likely that this scattering is also connected to rattling modes. The

nominal composition was Na0.71CoO2, but the stated c lattice parameter indicates

some uncertainty in the precise composition, and the superstructure is unknown.

The results of this chapter show how important knowledge of the superstructure is

in understanding the low energy dynamics. That they see low energy dispersionless

modes does imply that the rattling concept will continue to be important across a

wide range of compositions. The measurements presented in this chapter of funda-

mentally similar dispersions as the system is heated indicate that rattlers will also

continue to be important over a wide range of temperatures.

As with the skutterudites and the clathrates the observation of a rattling mode
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Figure 4.23: The IXS dataset obtained by Rueff et. al. on NaxCoO2. There is a
noticeable amount of intensity at low energies where Na vibrations dominate. The
solid lines show first-principles calculations for the 8 atom cell with Na sitting on
the 2b and 2d sites respectively.
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was not observed to be associated with strong phonon-phonon scattering [96, 121].

Indeed, it has even been suggested that in the filled skutterudites the lifetimes might

increase rather than decrease [122] on the incorporation of rattling type atoms. For

our measurements of the lifetimes to be consistent with the PGEC model the typical

phonon mean free path would need to be comparable to the spacing of the rattling

type sites. The typical speeds of the highly dispersive modes are around 3000 m/s.

At 200 K these modes would have a mean free path of 120 Å, over an order of

magnitude larger than the distance between trivacancy clusters, which is utterly

inconsistent with the idea of a phonon glass. While it is possible that the rattlers do

increase phonon scattering it is highly improbable that scattering is the dominant

suppressor of κ.

The mechanism for the suppression of κ is flattening of the phonon dispersion

at low energies. The fact that the phonon mean free path is much greater than

the distance between rattlers suggests that the introduction of disorder through, for

example partial filling, may be used to further reduce κ. If instead in the skut-

terudites and clathrates it is a similar mode flattening mechanism then you would

expect disorder to be able to further reduce κ. Indeed it implies that many systems

with these rattling type sites might gain further improvements to ZT from being

processed in nanoscale powders [80]. This is beginning to be seen in for example,

in ball milled, nano-structured (with silver nanoparticles) Ba0.3Co4Sb12 leading to a

30% gain in ZT [123].

The subtle differences between square and stripe phases opens up exciting pos-

sibilities for tuning the thermal conductivity by changing the nature of the rattlers.

That there is a measurable difference in the phonon dispersions between the square

and striped phases is promising given the change in trivacancy environments. The

moderate change in thermal conductivity between the two phases was surprising

but is consistent with the measurements of Lee et. al. who had a variation in κ of
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approximately 60% across the composition range where trivacancies dominate [124].

4.6 Conclusions

A single crystal of Na0.8CoO2 was studied with inelastic x-ray scattering. At 200 K

it was observed to be in the square phase superstructure and good agreement was

obtained between the measurements and first principles calculations. A significant

amount of additional intensity (compared to an Na1CoO2 system) was observed at

low energies which can be attributed to the presence of rattling type vibrations on

the Na2b sites [86]. Little difference was observed between the square, disordered

stripe and disordered phases apart from a small amount of softening associated with

the expansion of the lattice.

Detailed measurements of the phonon lifetimes found phonon scattering for tem-

peratures at and greater than 120 K however they were found to be inconsistent

with the PGEC picture which would require them to have been an order of magni-

tude shorter. The combination of these lifetimes and the validated first-principles

calculations enabled the lattice thermal conductivity to be calculated and excellent

agreement was obtained between the calculated value and experimentally deter-

mined thermal conductivity. There was a factor 6 increase in the calculation of the

8 atom cell thermal conductivity which could be attributed to the introduction of

flat modes at low energies in the square phase.

Finally measurements on the ordered stripe phase showed that there were dif-

ferences in the phonon dispersion for the two systems. Somewhat surprisingly this

led to a 50% increase in the thermal conductivity which suggests that it may be

possible to control the thermal conductivity in this compound through changing the

environment of the rattlers.



Chapter 5

Rattling modes in divacancy

NaxCoO2

5.1 Background

It is rare that a material is naturally perfect for its intended application. Often

particular properties can be improved by doping with different elements. In the

case of thermoelectrics doping can affect all three relevant properties in different

ways. For example, doping a monovalent site with a divalent ion would change

the carrier concentration, affecting both the electrical conductivity and Seebeck co-

efficient [11]. The electronic contribution to the thermal conductivity will also be

affected, however, it is non-trivial to understand the effect of the dopant on the

lattice thermal conductivity. In compounds with rattlers the thermal conductivity

has been tuned by doping onto the rattler sites. An example of this is the clathrate

Ga16Ge30 doped with Ba, Sr and Eu, in which each dopant changes the thermal

conductivity, but also changes the functional form of the thermal conductivity [88].

126
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5.1.1 Thermoelectric properties of the doped cobaltates

Several studies have looked at the role of doping on NaxCoO2. Initial work focussed

on changing the Na concentration (which changes the hole doping within the CoO2

slabs) and it was found that the Seebeck coefficient was improved as x was increased

[124]. This showed that the Seebeck coefficient was controlled by the number of holes

in the CoO2 slab since the removal of δ = (1− x) Na ions creates δ holes in the Co

layers. There is, however, an upper limit x = 0.85 (which corresponds to δm = 0.15),

where phase separation with the x = 1 insulating phase occurs. The substitution

of a divalent ion for Na decreases by one the number of holes in the Co layer. This

offers the opportunity to decrease δ below δm and further enhance ZT .

It was observed in the thesis of M. Pandiyan that there is also a factor three

decrease in the thermal conductivity of NaxCoO2 for large x values, attributed to the

superstructure changing from divacancy clusters to trivacancy clusters (x ≥ 0.71)

[3] as shown in figure 5.1. Experimentally it is extremely challenging to obtain

high quality single crystals of divacancy phases of NaxCoO2 anywhere apart from

insulating x = 0.5 [1], which is of less interest for thermoelectric applications. It

is, however, possible to obtain a divacancy structure which is manageable both

experimentally and computationally when doping with Ca [125].

Ca doping at low Na concentrations (around x = 0.55) was probed shortly

after the initial work on NaxCoO2 as a way of further reducing the hole doping

within the CoO2 slabs. It was shown that the Ca negatively impacted resistivity but

positively impacted on the Seebeck co-efficient [126] leading to an overall increase

in the power factor. Another study investigated three different dopants (Ca, Sr,

K) around x = 0.8 − y. Here it was found that K reduced the power factor, Ca

gave a moderate increase (for concentrations with less Ca than Na0.55Ca0.25CoO2)

and Sr gave the largest increase [4] as shown in figure 5.2. Neither of these studies
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Figure 5.1: The thermal conductivity at 300 K as a function of sodium concentration
compiled from the literature in the thesis of M. Pandiyan [3].

investigated the thermal properties.

Figure 5.2: The power factor of several doped cobaltates reproduced from Ref. [4].

Some limited measurements of the thermal conductivity in doped compounds

have been made. One investigated a large range of dopants (including monova-

lent, divalent and trivalent) at high temperatures and found that all the dopants

investigated apart from Y suppressed the thermal conductivity by up to 40% [127],

however, they did not investigate Ca doping. Another measurement which looked

only at Ca doping in polycrystalline samples found that there was little difference
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between the doped and undoped compounds with both having a thermal conductiv-

ity which increased with temperature [128], suggesting that disorder is the primary

phonon scattering mechanism.

There has been a solitary Raman scattering measurement on the Ca doped sys-

tem. This measurement investigated the system’s suitability for battery applications

and only observed a small hardening in the phonon frequencies which was attributed

to the decreased lattice parameter [129].

5.1.2 Structure of NaxCayCoO2

As already mentioned, Ca doped NaCoO2 adopts a divacancy superstructure. There

are in fact, two different divacancy structures [125], the first at lower Ca concen-

trations corresponds to a nominal concentration of Na0.57Ca0.14CoO2 and displays a

superlattice indexed on a 1/7th grid with propagation vectors

~a′ = 2~a−~b

~b′ = ~a+ 3~b.

There is a small contraction in a from 2.85 to 2.84 Åand in c from 10.8 to 10.75 Å.

The Ca ion sits on the crystallographic 2b site with Na forming a ring around each Ca

ion as shown in figure 5.3. While this structure has the same vacancy concentration

as Na0.71CoO2 its structure is distinct as the pure Na phase has stripes of divacancy

clusters with a complicated and as yet unresolved c dependence [3]. This makes the

pure system impossible to treat properly with DFT at the present time.

There is a second superstructure observed when the system is prepared with a

nominal Ca concentration greater than 0.14 per Co. This phase corresponds to a

nominal concentration of Na0.25Ca0.25CoO2 and for the purposes of this chapter will

be treated as a contaminant phase as it has yet to be observed independently of the
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Figure 5.3: The in-plane superstructure of Na0.57Ca0.14CoO2.

1/7th phase.

In this chapter we focus on a calcium doped sample of ideal composition for

the superstructure in figure 5.3 in part because the concentration of Ca is close

to the maximum of the power factor and also because it is possible to grow small

single crystals of very high quality for this phase. Other de-intercalated NaxCoO2

compositions and Sr doped samples have promising thermoelectric properties but

they have much more complicated supercells. The advantage of the relatively simple

Na0.55Ca0.14CoO2 system is that its smaller superstructure makes DFT calculations

quite affordable.

5.2 Experimental procedure

5.2.1 X-ray measurements on Xcalibur

A small crystal (400 × 400 × 10µm) of nominal composition Na0.57Ca0.14CoO2 was

cleaved from the larger growth boule. It was found to be a single crystal with a

superlattice indexed on a 1/7th grid and no intensity at the 1/4 positions implying

that it is a single phase. The (h, k, 0) plane is shown in figure 5.4.
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Figure 5.4: The (h, k, 0) plane of the calcium doped sample measured on ID28. ~a∗

is horizontal and −~a∗+ 2~b∗ vertical. The ring of peaks around each principal Bragg
reflection is from the 1/7th divacancy phase.

5.2.2 Inelastic x-ray measurements on ID28

The crystal screened on Xcalibur was mounted on a 0.1 mm capillary and taken to

ID28 at the ESRF. The beamline was initially aligned with the Si (9,9,9) reflection

(incident energy 17.9 keV) giving a resolution of 3 meV at the elastic line. The

toroidal focussing mirror was again used to improve flux. The sample was aligned

in (h, h, l) and measurements along Γ-K-M were made around the (1,1,1) at 290 K

from -20 to 90 meV in 0.68 meV steps. The sample was then cooled to 200 K and a

scan at (1.25,1.25,1) was performed to ensure that there were no significant changes

in the phonon dispersion on cooling. The sample was then re-aligned in the (h, 0, l)
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orientation and scans were made along Γ-M from -20 to 90 meV in 0.68 meV steps

around the (1,0,0). As with the previous experiment addIXS and fit28 were used

for the data treatment.

Finally a temperature dependence was performed at (-1.17,0,0). The beamline

was re-aligned on the Si (11,11,11) giving a FWHM of 1.5 meV and scans were made

from -3 to 13 meV. Each scan was repeated a number of times to build up statistics.

The counting time at a single position could not be simply increased indefinitely as

the monochromator is not stable over long periods of time. The final scans were

made by fitting to the elastic line and fixing it at zero before summing the data

using addIXS. The temperatures measured at were 100, 200, 280 and 360 K.

5.3 Computational procedure

Lattice dynamics calculations were performed for the divacancy 1/7th structure in

figure 5.3 for the cases of Ca and then Na at the 2b site. These calculations enabled

the assignment of modes and further analysis to be performed.

5.3.1 Exchange, correlation and pseudopotentials

The ultrasoft pseudopotentials designed by Prof K. Refson which were used in the

previous chapter for Na, Co and O were used again here. The default ultrasoft

pseudopotential from CASTEP 7.0 was used for Ca. The custom pseudopotential

strings were

O 2|1.5|12.86|16.537|18.375|20UU:21UU(qc=6.25)[2p4.75],

Na 2|1.3|1.3|1|11.8|13.6|15.3|20U=-2.07:30U=-0.105:21U=-1.06U=0.25[],

Co 3|2.5|2.5|1.5|5.9|7.7|10|40UU:32UU:41UU4s1.95,4p0.05(qc=4)[].

Exchange and correlation were treated with the approach of Perdew, Burke, and

Ernzerhof [62].
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5.3.2 Plane wave convergence and Brillouin zone sampling

A plane-wave cut-off of 500 eV was found to be sufficient with a maximum error in

the forces of 0.0045 eV/Å. A k-point grid with a density of 6× 6× 4 was found to

lead to a maximum error in the forces of 0.005 eV/Å.

5.3.3 Other parameters

As both the de-intercalated and doped compounds are metallic a Gaussian smearing

width of 0.1 eV was used to improve convergence. It was found that a fine grid scale

of 3 × Ecut was required to converge the forces to the same level as that of the

plane-wave cut-off and k-point grid. It was not found to be necessary to increase

the standard grid above 1.75 × Ecut. The magnetic ground state was investigated

and found to be an A-type antiferromagnet as is seen in the Na0.8CoO2 system [115]

for both calcium-doped and pure systems.

5.3.4 Phonon calculations

Both systems were geometry optimised with the low memory BFGS method [130,

131] such that the largest residual force was 0.0022 eV/Å. The force constant matrix

was computed with the finite-displacement supercell method [78, 79]. A cell of size

2×2 was used in these calculations with in-plane lattice parameters of length 15.04

Å.
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5.4 Results

5.4.1 The phonon dispersion of Na0.57Ca0.14CoO2

The measurements performed on ID28 showed that the changes between the square

and 1/7th phases were small. The fitted and calculated dispersion is shown in figure

5.5 with the full dispersions if figure 5.6. There are changes across the entire energy

range. At low energy there are changes in position and intensity presumably due to

the superstructure and at high energy changes in the O modes due to the change in

hole doping.

(a) (b)

Figure 5.5: The computed phonon dispersions from (1,1,1) to (1.5,1.5,1) (Γ-K-M)
and (1.5,0,0) to (1,0,0) (M-Γ) for the Ca doped 1/7th (a) and square phase (b). The
red hexagons indicate where it was possible to fit individual modes in the ID28 data.
In the 1/7th phase data along (Γ-K-M) was taken at 290 K while (Γ-M) was at 200
K.

The agreement is very good along Γ-M however along Γ-K-M, while there are

changes compared to the square phase, they agree less well with the calculation.

In particular there are several peaks observed around 12 meV close to K which

are very similar to the rattling mode peak of the square phase. It is possible that
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(a) (b)

Figure 5.6: The computed phonon dispersions around the irreducible wedge for the
Ca doped 1/7th (a) and square phase (b).

there are isolated trivacancies within this sample and if so they may contribute only

incoherent elastic scattering (explaining why they do not show up in diffraction) but

their excitation spectrum should remain similar.

In Γ-M there is a clear flat mode at just below 20 meV which is well resolved in

the energy scans from ID28 and is not present in the original square phase as shown

in figure 5.7a. This mode when plotted at the Γ point resembles a Ca “rattler”

however it is not the lowest lying rattling type mode shown in the calculations in

this system. That mode is at an energy of 14.9 meV and is shown in figure 5.7b.

Attempts to extract the phonon lifetimes by fitting the higher resolution scans

around (1.17,0,0) proved inconclusive. Only the acoustic phonon in detector 1 (at

(1.055,0,0.06)) proved to have enough intensity for an attempt at fitting to be made.

This was not found to have a sensible temperature dependence with a HWHM of

0.21(7) meV at 100 K and 0.17(4) meV at 300 K. This is attributed to the summing
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(a) (b)

Figure 5.7: An energy scan at (1.37,0,0) taken at 200 K with the calculations for the
Ca doped 1/7 and square phases showing clear differences below 30 meV. (b) The
Ca rattling mode at 14.9 meV.

together of multiple scans to build up statistics. The number of scans used correlates

with the width of the elastic line (which should have no temperature dependence).

This suggests that the observed widths were mainly due to a drift in the temperature

of the monochromator between scans and it was not possible to completely correct

for this. In the lower resolution data it was not possible to extract any widths

implying that if anything the phonon lifetimes may be longer than those of the

square phase.

5.4.2 Comparison to Na0.71CoO2

To compare to the undoped compounds and their anomalous factor 3 increase in

thermal conductivity upon adopting a divacancy structure a pure Na analogue of

the 1/7th phase was investigated. This system was, unsurprisingly, found to have very

similar lattice dynamics to the Ca doped system. There was a small shift in the

energy scale of the lowest lying “rattling mode” from 14.90 to 16.39 meV with small
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shifts in the DOS as shown in figure 5.8. A small shift between the two compounds

would be expected as, while there is approximately a factor two difference in rattler

mass between the Na and Ca, there is also a doubling of the charge state. These two

contributions would shift the rattler energy in opposite directions leading to a net

cancellation. There are small changes in the high energy modes due to the change in

hole concentration, however, they would not be significantly thermally populated in

the temperature range investigated and should not impact the thermal conductivity.

Figure 5.8: The computed phonon DOS for the divacancy phases, Ca doped, pure
1/7th and square phase. Note the drop in spectral weight below 15 meV caused by
the shift in rattling mode energy.

In both cases the rattler was found to be more strongly coupled into the walls of

the cage. This would be expected to increase the dispersion of the rattling modes

and thus have a smaller effect on the average mode velocity. Furthermore the shift

to higher energies should further reduce this effect.
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5.4.3 The Thermal Conductivity

As it was not possible to extract meaningful lifetimes from the measurements on the

Ca doped system the lifetimes obtained on IN8 for the square phase have been used

for a comparison. This is an unsatisfactory approximation as the lower resolution

measurements suggest that if anything the lifetimes are longer but it has not been

possible to place a bound on this.

The calculation of κl showed a factor two increase in the thermal conductivity

moving between the square and 1/7th phases. There is less than a 1% difference

between the two divacancy calculations which is surprising. This suggests that the

dominant factor in controlling the thermal conductivity is the nature of the rattling

site rather than the rattling ion itself.

5.5 Discussion

The change in superstructure clearly has a noticeable impact on the lattice thermal

conductivity. That there is no change between the pure and Ca doped systems is

somewhat surprising and suggests that it is changes in the superstructure which are

the most important in the control of thermal conductivity in the cobaltates not the

rattling ion itself.

This may go some way to explaining the observed factor 3 increase between tri

and divacancy compositions in the literature (as shown in figure 5.1). While the

increase here is smaller than that observed experimentally the structure is not the

same as that which is actually observed experimentally [3].

The in-plane superstructure of Na0.71CoO2 was originally proposed by Y. Hinuma

et. al. [5] and is shown in figure 5.9. This structure is more reminiscent of the stripe

phase than the square phase and perhaps the striped structure leads to another small

increase in the thermal conductivity. This is supported by the previous chapter
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where it was found that the arrangement of trivacancies into stripes led to an increase

in κ of 50%.

Figure 5.9: The in-plane structure of Na0.71CoO2 showing stripes of divacancy clus-
ters. Figure produced by Dr. D.G. Porter from the work of Y. Hinuma et. al.
[5].

It is disappointing not to be able to say anything more conclusive about the life-

times when changing from tri to divacancy structures. Unfortunately crystals large

enough for inelastic neutron scattering are not available and IXS is the only possible

technique. In a future experiment an extraction of lifetimes may be possible if great

care is taken in the preparation of a sample such that its thickness is optimised for

maximum intensity reducing the overall counting time.
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5.6 Conclusions

The change of superstructure to divacancy clusters has a noticeable impact on the

phonon dispersion and correspondingly the overall thermal conductivity. The disper-

sion has been computed and validated with IXS measurements for Na0.57Ca0.14CoO2

with particularly good agreement obtained along Γ-M around the (1,0,0).

The changed superstructure shifts the rattling modes to higher energies and the

rattling ion is more strongly coupled into the cage walls. This increases the phonon

velocities at low energies relative to the square phase and leads to an increase in

the total thermal conductivity. Calculations performed for Na0.71CoO2 show that

this increase is a property of the structure not the dopant. These two results can

help to explain the large increase in thermal conductivity when moving from tri

to divacancy structures previously observed. While this increase essentially rules

out divacancy structures for thermoelectric applications it suggests that some effort

should be made to identify new superstructures. An example of this could be the

recently observed Sr doped superstructure [2] which is fundamentally different from

the previously studied vacancy superstructures.



Chapter 6

Superlattices and Symmetry

Breaking in the iron chalcogenide

superconductors

6.1 Background

The discovery of superconductivity at 26 K in LaFeAsO when lightly doped with F−

ions [132] has caused a flurry of activity within the condensed matter community.

There are now 6 different iron based structures which lead to superconductivity.

They all have a common Fe-As or Fe-Se layer with the arsenic/selenium ion tetra-

hedrally coordinated around the iron sites. These 6 families are known as the 1111

(LaFeAsO), 122 (MFe2As2), 111 (MFeAs), 11 (FeSe), 21311 (Sr2VO3FeAs) and 245

(M0.8Fe1.6Se2) where M is an ion for which there are several possibilities in each

structure [20].

This chapter is concerned with the 245 class M0.8Fe1.6Se2 where M=K,Cs,Rb.

Superconductivity was first observed in the potassium doped system with an onset

temperature of 30.1 K [133]. This was quickly followed by single crystal work which

141
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raised the transition temperature to 33 K [134] and the observation of very similar

properties in the caesium [135] and rubidium [136] compounds. Much excitement

was caused by the observation of strong antiferromagnetism co-existing with the

superconductivity (TN=560 K and 3.2 µB moment) [137]. Several superstructures

have been observed in these compounds [138], and a question arises as to the nature

of the magnetism and superconductivity in each superstructure.

6.1.1 Structure

The unit cell structure of the materials is the same as the high temperature phase of

BaFe2As2, I4/mmm [139]. On cooling they are all observed to form a superlattice

with a
√

5 ×
√

5 × 1 cell and the space group I4/m [140, 141]. The propagation

vectors of this phase are

~a′ = 2~a+~b

~b′ = −~a+ 2~b.

This superlattice based on iron vacancies has also been observed in the similar,

but non-superconducting, system TlFe1.6Se2 [142]. This has been identified as being

based around iron vacancies. The iron vacancy structure is shown in figure 6.1.

There have been reports of a number of additional vacancy superstructures.

These include a rhombus phase (AFe1.5Se2) [143], a 2 × 2 supercell (AFe1.75Se2)

[144] and a
√

2 ×
√

2 phase [141]. There have been many different observations of

the
√

2×
√

2 phase but, no study has been able to explain all its observed features.

The original observation of the
√

2×
√

2 phase with neutron scattering in RbyFe1.6+xSe2

suggested that it had half iron occupancy in the Pmna space group. However, they

also observed the superlattice peaks to be rod-like along ~c, which could not be ex-

plained with this 3D structure [141]. Scanning probe measurements have suggested

that this phase is stoichiometric AFe2Se2 with charge ordering giving rise to the
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Figure 6.1: The
√

5 ×
√

5 Fe vacancy superstructure from Ref. [140]. The alkaline
metal ions are purple, Fe is brown and Se is green.

superlattice [138]. High resolution x-ray measurements have shown that this phase,

as well as being disordered along ~c, also has a small monoclinic distortion of 0.25◦

[145]. It was argued that the
√

2 ×
√

2 phase remains I centred and, therefore the

FeSe layer cannot be responsible for the disorder along ~c [145].

The presence of superstructures results in a splitting of the principal Bragg

reflections. The first, which can be associated with the
√

5×
√

5 phase, has |a√5| =

3.97 Å and |c√5| = 15.25 Å, while a second component (associated with the
√

2×
√

2)

has |a√2| = 0.98|a√5| and |c√2| = 1.02|c√5| [145]. The two phases are spatially

separated with domains the order of 0.1-1 µm, as shown in nano-focussing x-ray

diffraction measurements [146].
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6.1.2 Magnetism

It has now been determined that the room temperature phase of the
√

5×
√

5 phase

is antiferromagnetic [137]. Getting to this point has been somewhat challenging

as the magnetic structure is commensurate with the underlying superstructure and

there are two possible magnetic structures which would give scattering consistent

with the initial powder measurements. Single-crystal measurements, however, were

able to show that it is the so-called Block-AntiFerroMagnetic (BAFM) structure

which is actually observed [141]. This magnetic structure is shown in figure 6.2.

The authors of Ref. [141] also performed polarized neutron measurements on the
√

2×
√

2 phase in the same study, but did not observe any scattering in the spin-flip

channel, leading them to conclude that it was not magnetically ordered.

(a) (b)

Figure 6.2: The BAFM magnetic structure proposed in Ref. [137] and confirmed
in Ref. [141] for the

√
5 ×
√

5 structure. (a) The side view and (b) the top view.
Positive and negative symbols denote the different spin up and down sites.

First-principles calculations for the
√

5 ×
√

5 and a stoichiometric phase per-
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formed within the LDA+U formalism (U=2eV) showed that, even for stoichiometric

KFe2Se2, a BAFM type structure was energetically favourable [147]. This related

BAFM structure (henceforth referred to as BAFM′) is shown in figure 6.3. The

magnetic ordering and superstructure formation in the
√

5×
√

5 phase occur within

20 K of each other [137] and given that the BAFM seems to be stable at several

compositions this suggests that there may be strong coupling between the structural

and magnetic properties. Reference [147] also performed variable cell geometry op-

timisations and found strong magneto-elastic coupling. Changes in the magnetic

structure (with changes of less than 1% in the total moment) led to changes of the

lattice parameters of around 2-3%. If a non-magnetic calculation was performed the

lattice parameters collapsed by around 7% [147].

Figure 6.3: The BAFM′ structure proposed in reference [147] as the ground state to
the 122 type systems. The Fe spin up and down sites are denoted by the red and
blue atoms respectively while the Se atoms are shown in orange.
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The magnetic excitations have been studied with INS in superconducting Rb0.8Fe1.6Se2

[148], non-superconducting Rb0.89Fe1.58Se2 [149] and superconducting Cs0.8Fe1.6Se2

[150]. These studies found an acoustic and two higher-energy optic magnons, all of

which can be attributed to the BAFM structure. In the superconducting samples a

new magnetic excitation was observed to appear between 10 and 15 meV at a ~Q of

(0.25, 0.5, l) (l implying that it is not peaked along this direction). This “resonance”

was observed to strengthen as the system became superconducting implying that it

is in some way coupled to the superconductivity [150].

6.1.3 Lattice dynamics and symmetry breaking

Initial Raman scattering studies of the K0.88Fe1.63Se2 system were able to identify

14 Raman active modes (as predicted by group theory analysis of the
√

5×
√

5 cell)

[151]. Other Raman and IR studies have, however, found a number of anomalies in

the
√

5×
√

5 phase on cooling. Measurements performed at 9 K on superconducting

crystals of K0.8Fe1.6Se2 found similar results to Ref [151] but with an additional

3 modes between 150 and 200 cm−1 [152]. These extra modes were attributed

to a minority phase. However, this was not observed in powder x-ray diffraction

measurements. Another Raman study of superconducting K0.8Fe1.6Se2 observed

only one extra mode, but as the system was cooled through the superconducting

transition there were also anomalous shifts in both intensity and positions of the Ag

modes associated with the FeSe layer [153].

The first IR measurements performed on K0.83Fe1.53Se2 took place before con-

sensus on the BAFM phase had been reached, and the authors were only able to

conclude that their results were not consistent with a 122 type structure, but instead

favoured the BAFM structure [154]. Other IR measurements did not focus on the

lattice dynamics (although they did observe some at room temperature). Instead

they probed the superconducting fraction [155] and found that the nature of the su-
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perconductivity was fundamentally different from the other Fe superconductors (and

even the bare FeSe system) which they attributed to the presence of the insulating

BAFM phase [156].

A combined IR and Raman measurement did look purely at the lattice dynam-

ics from a non-superconducting sample [157]. In this study a careful temperature

dependence was performed which showed that at room temperature all modes could

be attributed to the BAFM I4/m structure. On cooling below 250 K several new

modes appear which were argued to be associated with a symmetry-breaking phase

transition from I4/m to I4. The new modes were assigned to Se motion by compar-

ison with first principles calculations performed with the BAFM structure. On this

basis the authors concluded that the phase transition was a structural transition

within the Se layers. They also observed a second transition at 150 K, which was

not symmetry-breaking but instead corresponded to a change in the temperature

dependence of the phonon intensities and gradients.

These two transitions are at very similar temperatures to those observed in a

high pressure x-ray and resistivity measurement performed on superconducting and

non-superconducting KyFe1.6+xSe2 [158]. Their phase diagrams are shown in figure

6.4. It was found that the non-superconducting system underwent a transition

from insulator to metal at between 200 and 250 K and then another from metal to

insulator at just above 100 K. Unfortunately they did not take measurements at zero

pressure, but it was found that the second transition was suppressed continuously

until being destroyed when the
√

5 ×
√

5 superstructure is also destroyed. In the

superconducting sample the upper insulator to metal transition is seen at a reduced

temperature with the lower temperature metal to insulator transition masked by

the superconducting dome. The superconducting transition is also suppressed with

increasing pressure, disappearing at the same pressure as the
√

5 ×
√

5 phase. At

higher pressures a second superconducting dome is observed to appear.
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(a) (b)

(c) (d)

Figure 6.4: The high-pressure resistivity data for from Ref [158] with the plot re-
arranged for clarity. The vertical bar at 9 GPa shows the pressure at which the√

5×
√

5 phase was observed to be destroyed in their high pressure XRD measure-
ments. (a) The bare

√
5×
√

5 with the composition K0.8Fe1.6Se2 and (b) containing
a superconducting fraction with the total composition K0.8Fe1.7Se2. The second
compound shown is isostructural but with a mix of thallium and rubidium on the
alkaline metal site. (c) A low pressure resistivity scan from the pure

√
5×
√

5 sample
showing the two transitions and (d) a similar scan on the superconducting system.
Both (c) and (d) datasets are the mixed thallium and rubidium system.

The symmetry breaking has also been observed in powder inelastic neutron mea-

surements [6]. These measurements were supported by first principles lattice dynam-

ics calculations of the BAFM state, which gave reasonable agreement with the 300
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K dataset. The authors were however unable to explain their low temperature data

as anything other than the same Se distortions of Ref [157] despite considering cal-

culations for non-magnetic I4/m and a magnetic system which fell into the space

group Fmmm.

There has been some discussion of electron-phonon coupling in the literature.

Ref. [157] found Fano type lineshapes for some Fe modes while in Ref. [6] the

phonon lineshapes were found to be extremely broad by comparison to equivalent

measurements on the 122 BaFe2As2 system, and this was attributed to static disorder

in the Fe layer.

6.2 Computational Procedure

Single-crystal diffraction data obtained by Dr D.G. Porter and Mr E. Cemal on

a superconducting sample of nominal composition Cs0.8Fe1.6Se2 found that both

the
√

5 ×
√

5 and
√

2 ×
√

2 phase were present. By refining the two principal

Bragg components individually they were able to show that the
√

5 ×
√

5 phase

has a composition approximately CsFe1.6Se2 and
√

2×
√

2 phase Cs0.5Fe2Se2. Using

these refinements as a starting assumption for the composition of the two phases,

calculations have been performed to investigate three results in the literature. These

are the shift of lattice parameters between the two phases, the origin of the disorder

along ~c, and the symmetry-breaking in the
√

5×
√

5 phase.

6.2.1 Exchange, correlation and pseudopotentials

The GGA was used for all calculations in this chapter, in particular the approach of

Perdew, Burke, and Ernzerhof [62]. The default CASTEP 7.0 ultrasoft pseudopo-

tentials have been used for all elements.
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6.2.2 DFT+U in the
√

5×
√

5 phase

Previous calculations within the GGA on the electronic properties of KyFe2Se2 have

found that for y 6= 0.8 the system is metallic [159]. As the physical properties

measurements under pressure show that the lowest temperature state of the
√

5×
√

5

phase is insulating [158] and the crystallographic refinements show y = 1 then within

the GGA the system will emerge as metallic. For this reason a Hubbard-U was

required to reproduce a band gap in the
√

5×
√

5 phase.

To investigate the system within the insulating phase a Hubbard U was applied

to the iron 3d states. It was found that a U of 2, 3 or 4 eV yielded identical results

although the electronic convergence at 4 eV was somewhat challenging. For reasons

of electronic convergence a U of 2 eV was used in the main calculations. This

produces a band gap of approximately 250 meV compared to the experimental gap

of 430 meV [160]. The band structures are shown in figure 6.5.

6.2.3 Plane-wave convergence

Initial convergence tests were performed on a unit cell of CsFe2Se2. The system was

found to be converged with respect to energy to within 1 meV/atom by a plane-wave

cut-off of 400 eV. When this cut-off was applied to the
√

5 ×
√

5 phase the energy

was found to change non-variationally with the Hubbard U applied (this was due

to changes in the magnetic ground state). Variational behaviour was not regained

until a cut-off of 550 eV which was found to give better energy convergence than

was seen at 400 eV as well as forces which were converged to within 0.0015 eV/Å.

This cut-off was also found to be adequate for the
√

2×
√

2 phase and was utilised

for comparisons between the two. This cut-off was also found to be satisfactory for

calculations on the potassium system.
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(a) (b)

Figure 6.5: The computed band structures of KFe1.6Se2 with U = 0 eV (a) and
U = 2 eV (b). The Fermi level is denoted by the dashed line. Note the gap which
is opened by the application of the Hubbard U and the difference between spin up
and down electrons due to a change in magnetic structure.

6.2.4 Brillouin zone sampling

For the
√

2×
√

2 phase very fine convergence of less than 0.1 meV/atom and 0.001

eV/Å was obtained for a k-point grid of 8× 8× 4 in a supercell of parameters

~a′ = 2~a

~b′ = 2~b.

The larger cell was employed so that the magnetic ground state of BAFM could

be used. It was confirmed as part of the testing for this system that the BAFM state

was the lowest energy of those surveyed (a ferromagnetic, ferromagnetic-in-plane

while antiferromagnetic between planes and an antiferromagnetic with respect to all

neighbours system were all investigated).
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In the case of the the
√

5×
√

5 phase a grid of 6×6×4 was found to converge the

system to within an energy 0.2 meV/atom and force of 0.003 eV/Å on each atomic

site.

6.2.5 Other parameters

In all the calculations a number of parameters have been converged to a similar level

as above and used in all calculations. The smearing width for metallic calculations

was 0.05 eV with Gaussian smearing. The standard grid was increased to 2.0×Ecut

while the fine grid was set to 4.0×Ecut.

6.2.6 Phonon calculations in the
√

5×
√

5 phase

Lattice dynamics in the
√

5×
√

5 phase were computed using the finite-displacement/supercell

method [78, 79]. Initially the positions were geometry-optimised with the low mem-

ory BFGS (LBFGS) method [130, 131] such that the residual forces were less than

0.005 eV/Å. The supercell used was a 2x2 cell of the non-primitive I centred lattice

with |a| = 17.65 Åfor the caesium system (using the experimentally determined lat-

tice parameters at 30 K). Two calculations were performed with and without the

Hubbard-U to investigate its effect on the lattice dynamics. These calculations were

then repeated for the K system using the lattice parameters from Ref. [6].

6.2.7 Cell optimisations and ordering energetics

In order to compare the calculated lattice parameters to experiment, variable cell

geometry optimizations were again performed using the LBFGS method. For the
√

5×
√

5 phase calculations the cell was optimised with a Hubbard U applied and the

CASTEP spin fix keyword used to enforce the BAFM state. This was then released

to investigate the effect of the changing magnetic state on the lattice parameters.
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The
√

2 ×
√

2 phase was optimised in the BAFM structure with no Hubbard U

applied.

For the calculations of the ordering energetics 4 calculations were performed

using the geometry optimised primitive lattices as a starting point. The first looked

at the in-plane orderings by calculating the energy of an ideal structure with a

tetragonal cell of base ~a′ = 4~a and ~c′ = ~c. The second displaced a single Cs ion into

an unoccupied site. This is shown in figure 6.6a. To investigate interlayer ordering

energies a double height cell (with 4 layers) was used. The two stacking structures

were ABAB and ABCD with the sites shown in figure 6.6b.

(a) (b)

Figure 6.6: (a) A single layer of Cs sites as proposed by D.G. Porter and E. Cemal.
The yellow site ion is the Cs which was moved to the originally empty blue site
when investigating the intralayer energetics. The black lines show the underlying√

2 ×
√

2 unit cell. (b) The different sites for each layer. The circles show the two
different possibilities for the first layer and the squares the second layer.
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6.3 Results

6.3.1 Symmetry breaking in the
√

5×
√

5 phase

The standard GGA calculation of the BAFM phase yielded a system which was

metallic as would be expected from a simple analysis of ionic charge states. A

moment of 3.22 µB was obtained on each iron site for the Cs compound and 3.20 µB

for K (from a Mulliken type analysis). The application of a 2 eV Hubbard U led to

an increase in the average moment to 3.4 and 3.38 µB respectively. As well as this

moderate increase in total moment (due to a slight increase in the net charge on

the Fe sites) there was also a splitting of the moment between the spin up and spin

down sites. This splitting corresponds exactly to one extra µB associated with either

the up or down direction (we will use the convention that the extra spin is on the

up sites) spread across a block of 4 Fe sites. This splitting leads to a ferrimagnetic

ground state which also lowers the symmetry from I4/m to I4. The two structures

are shown in figure 6.7.

Geometry optimisation

Both the Cs and K systems were geometry-optimised in both the BAFM and ferri-

magnetic states. The lattice parameters were fixed at their experimentally observed

values and some key parameters are reported in table 6.1. The decrease in lattice

parameters between the Cs and K systems is shared between both the in-block (e.g.

(↑) − (↑)) and between-block ((↑) − (↓)) bond distances. The Fe blocks sit a little

out of the 1/4 type positions leading to a structure which looks corrugated, with

the amplitude of this corrugation being much more pronounced in the ferrimagnetic

phase. It is perhaps this increased corrugation which allows for the net increase in

the in-block bond lengths. There is a larger increase in the in-block bond lengths
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(a) (b)

Figure 6.7: The calculated magnetic structures for (a) the BAFM and (b) the fer-
rimagnetic structure. The alkaline metal is shown in purple, Se as orange and the
two different spin states of Fe as red and blue respectively. The Fe ionic radius has
been scaled to show where the extra moment sits although the changes have been
exaggerated for clarity.

for the ↓ sites presumably due to the decrease in electrons increasing the Fe-Fe re-

pulsion. The Se sites do not move relative to the origin of the cell and thus there

is a net change in the Fe-Se1 bond lengths. These actually increase as the displace-

ment along z is smaller than the increased in-block bond lengths. There is also a

difference in the Fe-Se bond lengths between the ↑ and ↓ which would be expected

to lead to a difference in the lattice dynamics between the sites.
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Cs BAFM Cs Ferri K BAFM K Ferri

a′ 8.8262 Å 8.8262 Å 8.7308 Å 8.7308 Å

c′ 15.2401 Å 15.2401 Å 14.113 Å 14.113 Å
Fe (↑) x 0.19170 0.19171 0.19173 0.19285
Fe (↓) x 0.19170 0.19393 0.19173 0.19511
Fe (↑) y 0.09295 0.09145 0.09271 0.09167
Fe (↓) y 0.09295 0.09094 0.09271 0.09087
Fe (↑) z 0.24904 0.24703 0.24959 0.24558
Fe (↓) z 0.75096 0.75331 0.75041 0.75472
Se1 (↑) z 0.35582 0.35746 0.36782 0.36717
Se1 (↓) z 0.64418 0.64642 0.63218 0.63707

Fe (↑)-Fe (↑) 2.6593 Å 2.6513 Å 2.6187 Å 2.6251 Å

Fe (↓)-Fe (↓) 2.6593 Å 2.6736 Å 2.6187 Å 2.6460 Å

Fe (↑)-Se1 (↑) 2.4867 Å 2.51927 Å 2.4856 Å 2.5200 Å

Fe (↓)-Se1 (↓) 2.4867 Å 2.4956 Å 2.4856 Å 2.4940 Å

Fe (↑)-Fe (↓) 2.9573 Å 2.9810 Å 2.9177 Å 2.9293 Å

Table 6.1: The fixed-cell geometry-optimised parameters for each of the
√

5 ×
√

5
systems. Differences between the BAFM and Ferrimagnetic systems are the result of
the different magnetic moment rather than numerical noise which becomes apparent
at the 6th decimal place. The Wyckoff positions of each of the sites in I4/m is Fe
16i (x, y, z) and Se1 4e (0, 0, z). Se1 sits at the centre of a block of 4 Fe with the
same spin, and the arrows indicate if it is a spin up or down block.

Lattice dynamics

Calculations of the lattice dynamics were performed on both systems to see if this

ferrimagnetism was consistent with the symmetry-breaking reported in the litera-

ture. The calculations on KFe1.6Se2 are directly comparable to those in the literature

while those for Cs will be compared to future single crystal INS measurements of

E. Cemal. The calculated partial DOS and combined neutron weighted DOS are

shown in figure 6.8. In the K calculations there is a large shift in the K DOS which

is not seen for the Cs compound. The main peak for K moves from 11.0 to 13.5

meV which, as the K is not directly bound to the Fe atoms is unexpected. However,

this can be understood in three ways. First, the K motion here is principally along
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~c and the contraction of the lattice parameters causes a stronger coupling between

K and the Fe-Se layer. Second, the lighter K ions have a larger amplitude motion

than the Cs. Finally, these modes involve the Se atoms due to their large motion

along ~c. This is much less clear in the Se DOS as the Se ions are coupled into almost

every mode in the system. Consequently these modes make up a small component

of their DOS.
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Figure 6.8: The calculated DOS and neutron-weighted DOS for the ferrimagnetic
and BAFM state of KFe1.6Se2 and CsFe1.6Se2. (a) KFe1.6Se2 partial DOS, (b)
KFe1.6Se2 neutron-weighted DOS, (c) CsFe1.6Se2 partial DOS and (d) CsFe1.6Se2

neutron-weighted DOS. The neutron-weighted DOS have been broadened by a Gaus-
sian with FWHM of 2meV.
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The ferrimagnetism induces moderate changes at all energies in the Fe and Se

modes and produces large overall changes in the neutron-weighted DOS given the

small change in moment between the two sites. Looking in more detail at the

modes which could become Raman active between the two phases the most obvious

candidates are those involving the Se. An example for the K system is shown in

figure 6.9. In the BAFM the bond lengths are elongated and shortened by the

same amount leading to no change in the overall polarization of the material. In

the ferrimagnetic case there is a difference in the changes of the bond length which

would change the overall polarization of the material and could be expected to be

Raman active. A proper test of this would be to compute the Raman intensities,

however, this would only be possible in the ferrimagnetic case as the BAFM is

metallic and, as norm-conserving pseudopotentials would be required, it would be

much more expensive.

6.3.2 Lattice parameters

The optimised lattice parameters are shown in table 6.2. There is very little differ-

ence between the BAFM and ferrimagnetic calculations, suggesting that the ferri-

magnetism would not manifest itself in an observable change in the lattice parame-

ters. The calculated shifts between the proposed Fe and Cs vacancy structures are

in the correct direction, however, the magnitude is much larger than those observed

experimentally. The agreement between experiment and calculation is within 4% for

the
√

5×
√

5 phase, however, the difference is greater at 7% for the
√

2×
√

2 phase.

Furthermore, the calculated change in the lattice parameters between the two phases

is 10% and this is significantly greater than the 2% observed experimentally.
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(a) (b)

Figure 6.9: (a) An Ag mode at 173 cm−1 in the BAFM state. (b) A similar Ag mode
at 178 cm−1 in the ferrimagnetic state. A mode identified as belonging to the Se
ions in Ref. [157] which becomes active across the transition is found at 165 cm−1.
In the BAFM calculations this mode would not be Raman active as there is no net
change in bond lengths. In the ferrimagnetic case the Se coupled to the spin-up Fe
sites has a much larger displacement which could cause this mode to become Raman
active.

6.3.3 Ordering energetics

The two calculations performed for the vacancy energetics were to look at the in-

plane and inter-plane ordering energies. The difference between the perfectly ordered

structure and that with one Cs ion displaced was found to be 851 meV. Most of this

large increase is attributable to simple Coulombic repulsion. In the ground state a
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System a (Å) c (Å) γ√
5 experimental 3.9472(2) 15.24009(3) 90◦√
2 experimental 3.85535(1) 15.4931(5) 90◦

CsFe1.6Se2 BAFM 4.0945 15.0138 90◦

CsFe1.6Se2 Ferri 4.0979 15.0105 90◦

Cs0.5Fe2Se2 3.7901 16.5419 89.77◦

Table 6.2: The experimental lattice parameters at 30 K for the two phases of
Cs0.8Fe1.6Se2 provided by Dr D.G. Porter and the variable cell geometry optimised
lattice parameters of Cs0.5Fe2Se2 and CsFe1.6Se2 in the BAFM and ferrimagnetic
phases.

Cs ion has a nearest neighbour bond length of 5.36 Å while a displaced Cs has 3

nearest neighbours at a distance of 3.8 Å. This leads to an increase in energy of

0.62 eV. The remaining changes are likely to be due to next nearest neighbours and

subtle changes in the magnetism of the system. Hence this large stabilisation energy

would be expected to result in Cs vacancy ordering within the plane.

In contrast the two different stacking sequences proved to be extremely close in

energy, with only 1.5 meV separating them. This is very small (although larger than

the convergence criteria of the calculation). It would be surprising if the heavy Cs

ions were still mobile and able to order at this low temperature, it is more likely that

by this point the interplanar disorder has frozen in, explaining the rods of scattering

along l.

6.4 Discussion

The calculations of ordering energies and lattice parameters in the
√

2×
√

2 phase are

in qualitative agreement with experiment. The ordering energies show that alkaline

metal vacancies order in-plane, but that these superstructures are not correlated

between planes. This could be responsible for the disorder along ~c observed in
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x-ray measurements [145]. Unfortunately the calculation of lattice parameter shift

between this phase and the
√

5×
√

5 phase is much larger than occurs experimentally.

This may be due to the BAFM structure assumed in the calculation of the Cs

vacancy structure. Previous studies have found a strong dependence on the magnetic

state used [147] and polarized neutron measurements have failed to find any magnetic

order associated with the
√

2×
√

2 phase [141]. It is not easy to model a paramagnetic

structure within DFT as this would require a very large number of atoms to capture

the disordered nature. All that can really be said is that the lattice parameter shifts

are in the correct direction, which is reassuring, although the absolute magnitude

is not observed experimentally. The reproduction of a small monoclinic distortion

is comparable to that seen in high resolution x-ray measurements [145] although

further calculations would need to be performed to quantify the error bars on this

parameter.

The ferrimagnetic calculations of the
√

5×
√

5 phase are interesting in the context

of the observed symmetry-breaking. As already discussed, the ferrimagnetic phase

would allow for certain selenium Ag modes to become Raman active, and they

sit relatively close to those which are observed in Ref. [157]. A comparison of

the neutron-weighted DOS for K to that measured in Ref. [6] is offered in figure

6.10. The agreement is reasonable with most of the key features reproduced. The

agreement could be artificially increased by attempting to take account of the shift

in phonon frequencies from cell contraction as the system is cooled. This leads to a

change of around 3% on average [157]. The two main peaks’ total width is expanded

in the ferrimagnetic calculation and the pronounced dip just below 20 meV is also

present. The only missing feature in the calculation is the peak observed at 30

meV. The origin of this discrepancy is not presently understood. However, the

overall agreement between experiment and calculation is encouraging.

The transition to the ferrimagnetic ground state could also explain the observed



CHAPTER 6. IRON CHALCOGENIDE SUPERCONDUCTORS 162

(a)

0 5 10 15 20 25 30 35 40
Energy (meV)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

g(n
)
(E

) (
m

eV
−

1
)

BAFM
Ferri

(b)

Figure 6.10: (a) The neutron-weighted DOS measured in Ref. [6] at 300 and 150
K. (b) The neutron-weighted DOS calculated for KFe1.6Se2 in both the BAFM and
ferrimagnetic state.

metal-insulator transition in high pressure data [158] as the BAFM state is metallic

and the ferrimagnetic is insulating.

The idea of a magnetic transition in this compound is not entirely without prece-

dent. The
√

5×
√

5 structure is also observed in the non-superconducting compound

TlFe1.6Se2 [142]. This has been observed to undergo a 2-stage magnetic phase tran-

sition [161]. The high-temperature phase is BAFM, at 140 K it develops a canted

moment structure, and at at 100 K the authors suggest it returns to the BAFM

structure but with a reduced total moment. The refinements also assumed that it

maintained the I4/m space group which, if it is related to the symmetry-breaking

phase transition may not be correct. There was a noticeable change in the corru-

gation of the Fe layer. It was doubled at the 140 K transition before returning to

its approximately original value at 100 K. At each transition the Se1 sites remained

approximately constant (within the rather large error bars). Detection of a ferrimag-

netic moment only along ~c would only be possible with an external magnetic field to

drive the system single domain (as well as needing to refine the system within I4).

Scanning tunnelling microscope measurements have suggested that the mag-
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netism and superconductivity are in some form of “symbiotic relationship” [138]

while high pressure-measurements show that the metal insulator transition in the
√

5 ×
√

5 phase is suppressed in a similar way to the superconductivity, with both

being destroyed at the same pressure [158]. Furthermore the IR measurements show

that superconductivity in the alkaline metal iron selenides is fundamentally different

from that of all other iron superconductors [155]. It has previously been shown that

cuprate superconductors can have their transition temperature increased by thin

film growth in contact with the Ba doped ferroelectric SrTiO3 [162]. Very recently

FeSe grown on Nb doped SrTi3 thin films has resulted in an order of magnitude

increase in their transition temperature from 8 to 109 K (Nb doped SrTi3 has a

ferroelectric transition of 104 K) [163]. The ferrimagnetic phase would be expected

to be weakly ferroelectric (and in Ref. [157] it is stated that the I4 phase is). It is

perhaps the interaction between this and the superconducting fraction which leads

to the change in its nature and the increase in the transition temperature from 8 K

in FeSe to 30 K in the 245 class of superconductors.

6.5 Conclusions

The composition of the
√

2 ×
√

2 phase in Cs0.8Fe1.6Se2 has been suggested to be

Cs0.5Fe2Se2 on the basis of single crystal refinements. Using this as a starting point

the ordering energetics have been investigated and have shown that a Cs vacancy

structure is consistent with ordering in a− b with disorder along c. Geometry opti-

misations of the lattice parameters for this phase, however, were promising although

due to strong magnetoelastic interactions it was not possible to reproduce the exact

experimental shifts. A small monoclinic distortion which agrees with that observed

in high resolution x-ray diffraction [145] was reproduced.

The symmetry-breaking phase transition observed in the
√

5×
√

5 phase has been
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explained in terms of a ferrimagnetic phase transition. This ferrimagnetism is able

to explain the appearance of several new Raman active modes, a metal-insulator

phase transition and powder inelastic neutron scattering data. A knowledge of the

structure and magnetic state for both the
√

2×
√

2 and
√

5×
√

5 phase is vital to

understand the origin of the superconductivity in this class of superconductors and

it is hoped that this work will enable a theoretical model to be developed in the

future.



Chapter 7

Summary and future outlook

In this thesis two main areas have been covered. In the case of thermoelectrics it has

been shown that rattling modes exist within the potential thermoelectric NaxCoO2

by combining first-principles lattice dynamics calculations with momentum resolved

spectroscopy. This rattling mode was found at 13 meV but it was not accompanied

by significant phonon-phonon scattering. Instead it was found that the flat nature

of the rattling modes in reciprocal space suppressed the phonon group velocity and

that this reduced the overall thermal conductivity by a factor of 6.

Measurements of the stripe arrangement of trivacancy clusters found a subtle

change in the neutron weighted phonon DOS and a corresponding change in the lat-

tice thermal conductivity. The divacancy Ca doped structure however led to a much

larger increase in the thermal conductivity. While this means that Na0.57Ca0.14CoO2

is not an ideal thermoelectric material it shows that changing the rattling mode en-

vironment can significantly change the lattice thermal conductivity.

This has implications for other rattler materials, namely the clathrates and skut-

terudites in that it may not be possible to design simple guidelines for doping.

Instead more comprehensive computational studies of possible rattlers and their ef-

fect on the phonon velocities should be carried out to inform the design of future

165
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materials, where necessary supported by momentum resolved spectroscopy.

This combined approach is applicable to other classes of thermoelectrics as well.

For example, the compound Cu2Se displays a liquid-like specific heat (cv = 2KBT ) at

temperatures above 800K, which it has been suggested is responsible for its observed

low thermal conductivity [164]. A combination of lattice dynamics calculations,

momentum resolved spectroscopy measurements and quasi-elastic neutron scattering

[33] (a neutron technique where the self-correlation function of ions can be probed)

would be able to measure the emergence of liquid-like behaviour if it exists and

relate it back to the thermal conductivity.

The second area studied was that of the new iron chalcogenide superconductors.

It was shown that alkaline metal vacancies were a possible origin for
√

2×
√

2 phase

by looking at their ordering energies. A symmetry breaking transition within the
√

5 ×
√

5 phase was then explained in terms of a ferrimagnetic phase transition.

This transition explained a number of results within the literature (metal-insulator

phase transition, Raman and powder inelastic neutron scattering data) purely com-

putationally. It is obviously a requirement that this be measured experimentally.

This would involve two elements, the first a single-crystal phonon measurement to

show that the transition also exists in CsFe1.6Se2 and a polarized neutron scatter-

ing measurement. A polarized elastic neutron measurement would allow (with the

application of a small external field to drive the system single domain) a ferrimag-

netic component to be detected unambiguously in the (h, k, 0) plane. It would be

interesting to perform these measurements for both insulating and superconducting

samples, since the phase diagrams appear to be rather different.

This approach is, however not limited to the iron chalcogenides. The sensitivity

of lattice dynamics to subtle changes in the electronic structure and the ability

to use computational models to interpret the data makes them very powerful and

versatile. This has already been successful in the cuprate superconductors to probe
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charge density wave formation [165]. In the future, given the ability to reach high

pressures with a diamond anvil cell, inelastic x-ray scattering studies could prove

interesting in the emergence of complex electronic effects without the complication

of doping.



Appendix A

Symmetry operators and notation

The symmetry operators mentioned in the experimental methods chapter and their

notation is discussed here in more detail. The aim is not to replace the full discussion

given in the international tables but instead to facilitate an understanding of the

work presented without reference to them.

Mirror planes

An object has mirror (or reflection) symmetry if we can define a plane such that

a point which lies on a vector normal to the plane has an equivalent point at the

negative of this vector. This is simplest to see if we consider a two dimensional

system. If we have a mirror perpendicular to x then any point at +x must have an

equivalent point at −x. In three dimensions we can define our plane as ax + by +

cz + d = 0 where the normal to the plane is ~n = (a, b, c). If we define our initial

point to be (x0, y0, z0) and recalling that the distance from a plane to a point (D) is

D =
ax0 + by0 + cz0 + d√

a2 + b2 + c2

then our reflected point (x′0, y
′
0, z
′
0) will be [166]

168
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x′0

y′0

z′0

 =


x0

y0

z0

− 2(ax0 + by0 + cz0 + d)√
a2 + b2 + c2


a

b

c

 .

Mirror

Figure A.1: A stereographic projection of a mirror operation acting on a single point.
The mirror sits in the plane of the paper and thus only affects the z component which
is represented here by the filled circle turning into an empty circle.

Rotation axes

Rotational symmetry is defined by a point coming into contact with an equivalent

point after a rotation by 2π/n. n is used to describe the rotation axis. For example

a cube being rotated about the middle of one of its faces will come into coincidence

with itself after a π/2 rotation (n = 4). This is known as a four-fold rotation axis. In

standard crystallography only 2,3,4 and 6 fold rotations are allowed. The rotation

of a vector ~r about a unit vector n̂ is expressed as

~r′ = ~r cosφ+ n̂(n̂ · ~r)(1− cosφ) + (~r × n̂) sinφ,

where φ is the angle of rotation (in a counter clockwise direction) and ~r′ the rotated

vector [167].
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2π/3

2π/3

   First
Rotation

 Second
Rotation

Figure A.2: A stereographic projection of a 3-fold rotation axis. Each point is
mapped out by rotating the previous point by 2π/3.

Inversion symmetry

A system has inversion symmetry (or a centre of inversion) if a point at (x, y, z) has

an equivalent point at (−x,−y,−z). A crystal with a centre of inversion is known as

centrosymmetric and this is important for many properties such as ferroelectricity

[39].

Inversion

Figure A.3: A stereographic projection of an inversion operation. The point is
moved from (x, y) to (−x,−y) and the z inversion is represented by the change from
filled to empty circle.

Rotoinversion axes

A rotoinversion is a composite symmetry operator consisting of a rotation and in-

version. The first stage is one step of the n-fold rotation and then the inversion
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operator is applied to obtain the actual point. A tetrahedron is an example of a

system with such an axis (a 4-fold rotoinversion axis through the edges).

π/2Invert

Rotoinversion Repeat three
      times

Figure A.4: A stereographic projection of the 4-fold rotoinversion axis of a tetrahe-
dron. Our initial point undergoes a combined rotation by π/2 and then immediately
an inversion.

Glide planes and screw axes

There exist two other type of symmetry operators which are useful in crystallogra-

phy. The first is a glide plane, where there is a reflection followed by a translation

in the plane of the mirror. The second is a screw axis, in this operator there is a

combined rotation and translation with the translation occurring along the axis of

rotation.

Notation

It is cumbersome to express a system which may (for example) have a rotation axis,

several mirror planes and a screw or glide plane by writing them all out in long-

hand. The shorthand notation used throughout this thesis is described in table A.1

including combinations of operators (for example a combined rotation with a perpen-

dicular mirror plane). There are several levels of detail into which we can go when

describing the symmetries within a crystal. The most coarse is to classify it within

one of the 7 crystal systems, outlined in table A.2. Within these 7 systems there are,



APPENDIX A. SYMMETRY OPERATORS AND NOTATION 172

in total 14 Bravais lattices. Each system has a primitive lattice were an atom sits

at (0,0,0) type position but there are also body-centred (orthorhombic, tetragonal

and cubic with an additional atom at (1/2, 1/2, 1/2)), face-centred (orthorhombic and

cubic with extra atoms in the middle of each face, for 3 extra in total) and c-centred

(monoclinic and orthorhombic with an atom in the middle of the face defined by a

and b.).

There are then 32 different possible combinations of the symmetry operators (ro-

tations, mirror planes, inversion and rotoinversions) which can act upon the Bravais

lattices to give the point group of a crystal. The inclusion of glide planes and screw

axes gives the space group of which there are 230 in total. As only two principal sys-

tems are studied in this thesis, these are not all listed and explained here, however

the interested reader is once again referred to the international tables [33]. It should

be mentioned that sometimes the trigonal group is misclassified as rhombohedral.

The rhombohedral group is in fact a subset of the trigonal group where the 3-fold

axis lies along the body diagonal of the cell.

In this notation the two systems considered in this thesis have the following

labels. A unit cell of NaCoO2 is P63/mmc implying that is has a 6-fold axis of

rotation with a perpendicular mirror plane and a 1/2 translation screw axis. It

also has one additional mirror plane and a 1/2 translation glide plane along ~c. The

unit cell of CsFe2Se2 is I4/mmm. I stands for body centred (i.e. every atom has an

equivalent point at a translation of the cell (1
2
, 1

2
, 1

2
)). 4/m shows that there is a 4-fold

rotation with a perpendicular mirror plane and mm two further orthogonal mirror

planes (that there are 3 mirror planes in total forces them all to be orthogonal).
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Operator Notation Example Explanation
Rotation n 3 A threefold axis of rotation
Mirror m m The system has a mirror plane
Rotation with a per-
pendicular mirror
plane

n/m 4/m There exists a 4-fold axis of ro-
tation with a mirror plane per-
pendicular to it (this example
would generate 8 points)

Inversion (only) 1̄ N/A The system is centrosymmetric
with no other symmetry

Rotoinversion n̄ 4̄ This notation is for the 4-fold
rotoinversion axis of the tetra-
hedron shown in Fig A.4.

Screw Axes nx 63 n here is the same as for the
axes of rotation however the
subscript x relates to the trans-
lation distance. This distance
is given by x/n multiplied by
the lattice parameter that the
screw axes lies along. In the
example 63 this would be a π/3
rotation followed by a 1/2 lat-
tice parameter translation.

Glide Plane a, b, c,
d, e, n

N/A a, b or c corresponds to a glide
along 1/2 of this lattice vector.
d is a glide along 1/4 of a face
of the unit cell. e is two glides
with the translation along two
different 1/2 lattice parameters.
Finally n is a glide along 1/2 of
a unit cell face.

Table A.1: The crystallographic notation used throughout this thesis.

Symmetry notation in lattice dynamics

Phonons will break particular symmetries (the specifics depend on the nature of the

mode) and the notation used in this thesis is that of the iuPAC. Here the notation

Lmn where L is the symbol A or B which denotes if any rotational symmetry is lost
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System Lattice Parameters
Triclinic a 6= b 6= c, α 6= β 6= γ 6= π/2
Monoclinic a 6= b 6= c, α = β = π/2 6= γ
Orthorhombic a 6= b 6= c, α = β = γ = π/2
Trigonal a = b = c, α = β = γ 6= π/2
Tetragonal a = b 6= c, α = β = γ = π/2
Hexagonal a = b 6= c, α = β = π/2, γ = 2π/3
Cubic a = b = c, α = β = γ = π/2

Table A.2: The seven crystal systems and their lattice parameters.

(A means it is not, B means it is), m is a number denoting similar combinations of

operators and n will be either g or u for if the centre of symmetry is preserved or

not. For example an A1g mode preserves all symmetry while an A1u mode preserves

rotational but breaks inversion symmetry.
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