
ANALYSIS OF PUBLIC-KEY
ENCRYPTION SCHEMES IN

EXTENDED ATTACK MODELS

Dale Luke Sibborn

Royal Holloway and Bedford New College,
University of London

Thesis submitted to

The University of London

for the degree of

Doctor of Philosophy

2015.

Declaration

These doctoral studies were conducted under the supervision of Professor Ken-

neth G. Paterson.

The work presented in this thesis is the result of original research carried

out by myself, in collaboration with others, whilst enrolled in the Department

of Mathematics as a candidate for the degree of Doctor of Philosophy. This

work has not been submitted for any other degree or award in any other

university or educational establishment.

Dale Luke Sibborn

June 2015

2

Abstract

Cryptographic models are intended to represent an adversary’s capabilities

when attacking encryption schemes. Models often err on the side of caution

by over-estimating the power of adversaries. However, several recent attacks

reported in the literature demonstrate that measuring an adversary’s potential

is a difficult task. This thesis will view the cryptographic landscape from the

perspective of an adversary and the implementer.

The first part of this thesis will consider the view of an adversary. We

study how an adversary can obtain leaked information about a private key.

The particular scenario we study is the cold boot attack whereby an adver-

sary can procure a noisy version of the key (i.e. the noisy copy will contain

errors). Such an attack is not traditionally modelled by the standard security

games. We show how the adversary can recover the original secret key, and

hence compromise security, in the RSA and discrete logarithm settings. In

the discrete logarithm setting our approach is general, but we mount attacks

against specific elliptic curve implementations of OpenSSL and PolarSSL.

In the second part of this thesis we introduce a new type of attack, which we

call the Related Randomness Attack. We define a security game to model these

new attacks in a variety of scenarios, such as encryption schemes having access

to non-uniform randomness sources, or perhaps the randomness source is under

the control of an adversary. We introduce several variants of this model, and

we provide generic transforms that convert traditional indistinguishability-

style secure schemes into schemes that are secure with respect to our new,

extended definition.

3

Contents

Declaration 2

Abstract 3

Contents 4

List of Tables 10

List of Figures 11

Notation 13

Publications 15

Acknowledgements 16

1 Introduction 17

1.1 Motivation . 17

1.2 Thesis Structure . 20

2 Preliminaries 23

2.1 Mathematical Background . 23

4

2.1.1 Computational complexity 23

2.1.2 Computational hardness assumptions 24

2.1.3 Code-based games . 25

2.2 Cryptographic Primitives . 25

2.2.1 Public-key encryption 26

2.2.2 Data encapsulation mechanisms 28

2.2.3 Key encapsulation mechanisms 29

2.2.4 KEM/DEM composition 30

2.2.5 Pseudorandom functions 31

2.2.6 Related-key attack pseudorandom functions 32

2.2.7 Key derivation functions 33

2.3 Random Oracle Model . 34

2.4 Coding Theory . 35

I Cold Boot Attacks 37

3 Cold Boot Attacks in the RSA Setting 38

3.1 Introduction . 38

3.1.1 Limitations of previous work and open questions 41

3.1.2 Our contributions . 43

5

3.1.3 Further related work 48

3.2 The HS and HMM algorithms 48

3.3 The Coding-Theoretic Viewpoint 53

3.3.1 The link to channel capacity 55

3.3.2 Implications of the capacity analysis 57

3.4 The New Algorithm and Its Analysis 62

3.4.1 Asymptotic analysis of our algorithm 65

3.5 Experimental Results . 74

3.5.1 The symmetric and cold boot channels 75

3.6 Conclusions . 77

4 Cold Boot Attacks in the Discrete Logarithm Setting 79

4.1 The LKBC Algorithm and Its Limitations 79

4.2 Our Contributions . 82

4.3 Multinomial Distributions and the Multinomial Test 83

4.3.1 Convergence of the multinomial test 88

4.4 Exponentiation Algorithms . 89

4.4.1 (Windowed) double-and-add 90

4.4.2 (Windowed) signed-digit representations 91

4.4.3 Point multiplication in OpenSSL 93

6

4.4.4 Comb-based methods 94

4.4.5 Point multiplication in PolarSSL 97

4.5 General Procedures for Recovering Noisy Keys 99

4.5.1 Attack model . 99

4.5.2 NAF encodings . 99

4.5.3 Comb encodings . 102

4.5.4 Success analysis of OpenSSL implementation 105

4.5.5 Success analysis of PolarSSL implementation 106

4.6 Implemented Simulations of Key Recovery 107

4.7 Analysis of Success for the Z-Channel 108

4.8 Running-Time Analysis . 110

4.9 Comparison of Ground States 111

4.10 Comparison with the RSA Setting 114

4.11 Conclusions . 115

II Related Randomness Attacks 117

5 Related Randomness Attacks for Public-Key Encryption 118

5.1 Introduction . 118

5.1.1 Motivation . 121

7

5.1.2 Bad randomness in practice 122

5.1.3 Our contributions . 125

5.2 Related Randomness Security for Public-Key Encryption . . . 129

5.2.1 Alternative security notions 133

5.2.2 A simplifying lemma 135

5.2.3 Function restrictions 139

5.3 Construction in the Random Oracle

Model . 143

5.4 Related Randomness Security for PKE

from RKA-PRFs . 145

5.5 Related Randomness PKE from CIS Hash Functions 149

5.6 Related Work . 162

5.7 A Brief Detour into Symmetric Encryption 163

5.8 Conclusions . 166

6 Function-Vector Related Randomness Attacks 167

6.1 Function-Vector Related Randomness Security 168

6.1.1 The modified BHHO scheme 171

6.2 Goldreich-Levin Theorem for Large Fields 183

6.3 Generalised FV-RRA Security 184

6.3.1 Extended function-vector related randomness security . 187

8

6.3.2 Obtaining FV-RRA security from auxiliary-input recon-

structive extractors . 189

6.3.3 Instantiation of an auxiliary-input reconstructive extrac-

tor . 197

6.4 Connections with Correlated-Input

Secure Hash Functions . 200

6.5 Conclusions . 203

7 Related Randomness Attacks for Key Encapsulation Mecha-

nisms 205

7.1 Introduction . 205

7.1.1 Our contributions . 207

7.2 Related Randomness Security for KEMs 207

7.2.1 Alternative security notions 209

7.2.2 Simplifying lemmas . 210

7.3 Related Randomness for the KEM/DEM Paradigm 214

7.4 Instantiations . 226

7.5 Conclusions . 228

8 Conclusions 229

Bibliography 231

9

List of Tables

3.1 Capacity bounds for RSA key-recovery in the symmetric setting. 61

3.2 Capacity bounds for RSA key-recovery in the Z-channel setting. 61

3.3 RSA key-recovery experiments for symmetric errors with m = 5. 75

3.4 RSA key-recovery experiments for the Z-channel setting with

m = 5. 76

3.5 RSA key-recovery experiments for asymmetric errors with m = 5. 76

3.6 RSA key-recovery experiments for asymmetric errors with m = 3. 76

3.7 RSA key-recovery experiments for asymmetric errors with m = 2. 77

4.1 OpenSSL key-recovery experiments. 108

4.2 PolarSSL key-recovery experiments. 109

4.3 Quartile data for OpenSSL experiments. 112

10

List of Figures

2.1 Game IND-CCA for public-key encryption. 26

2.2 Game IND-CCA for symmetric-key encryption. 29

2.3 Game IND-CCA for a KEM. 30

2.4 Games for PRF security. 31

2.5 Games for RKA-PRF security. 32

2.6 Games for KDF security. 34

3.1 Capacity graphs for RSA key-recovery. 61

3.2 Visualisation of candidate solution generation. 68

4.1 Visualisation of the comb encoding. 96

5.1 The ElGamal public-key encryption scheme. 123

5.2 The ECDSA scheme. 125

5.3 Game RRA-ATK. 132

5.4 Game `-HK-RRA-ATK. 134

5.5 The game Gj used in the proof of Lemma 5.2.1. 136

5.6 Scheme Hash-PKE. 143

5.7 Scheme PRF-PKE. 146

11

5.8 Game `-MK-SCI-PR for a family H of keyed hash functions. . 151

5.9 Scheme CI-Hash-PKE. 152

5.10 Game CCRA for SKE. 164

5.11 Scheme PRF-SKE. 164

6.1 Game φ-FV-RRA-ATK. 169

6.2 Modified BHHO scheme mBHHO. 174

6.3 Game (φ,φ′)-FV-RRA-ATK for PKE. 187

6.4 Scheme EXT-PKE. 191

6.5 Scheme EIP-PKE. 198

6.6 The (φ,φ′)-CIS hash game. 201

7.1 The standard KEM/DEM composition. 206

7.2 Game RRA-CCA for KEMs. 208

7.3 Game `-HK-RRA-ATK for KEMs. 209

7.4 Game φ-FV-RRA-ATK for KEMs. 210

7.5 The game Gj for Lemma 7.2.2. 213

7.6 Scheme KEM-PKE. 215

7.7 The KEM DDH-KEM implicitly used in Theorem 6.1.2. 227

12

Notation

N The set of natural numbers

Z The set of integers

R The set of real numbers

λ ∈ N The security parameter

Zn The set of least residues modulo n ∈ N

{0, 1}n The set of binary strings of length n ∈ N

x⊕ y The exclusive-or (XOR) of strings x and y

|X| The cardinality of the set X

|r| The absolute value of a real number r

[n] The set of natural numbers 1, . . . , n

bxc The largest integer not greater than x

dxe The smallest integer not less than x

s←$ S Selecting an element s uniformly at random from the set S

y ← A(x) Running an algorithm on input x and assigning the result

to y

x← y Assigning the value y to the variable x

⊥ The error or rejection symbol

∧ Logical conjunction

13

∨ Logical disjunction

P[A] The probability of event A occurring

log x The base-2 logarithm of x

lnx The natural logarithm of x

G Denotes a cyclic group

g Denotes a generator of a cyclic group G

a mod b The remainder of a when divided by b

D(f) Denotes the domain of the function f

R(f) Denotes the range of the function f

14

Publications

The work in this thesis originates from the four papers listed below.

1. Kenneth G. Paterson, Antigoni Polychroniadou, and Dale L. Sibborn,

A Coding Theoretic Approach to Recovering Noisy RSA Keys, Advances

in Cryptology - Asiacrypt 2012 - 18th International Conference on the

Theory and Application of Cryptology and Information Security, Beijing,

China, December 2-6, 2012. Proceedings, Lecture Notes in Computer

Science, vol. 7658, Springer, 2012.

2. Kenneth G. Paterson, Jacob C. N. Schuldt, and Dale L. Sibborn, Related

Randomness Attacks for Public Key Encryption, Public-Key Cryptogra-

phy - PKC 2014 - 17th International Conference on Practice and Theory

in Public-Key Cryptography, Buenos Aires, Argentina, March 26-28,

2014. Proceedings (Hugo Krawczyk, ed.), Lecture Notes in Computer

Science, vol. 8383, Springer, 2014, pp. 465-482.

3. Kenneth G. Paterson, Jacob C. N. Schuldt, Dale L. Sibborn and Hoeteck

Wee, Security Against Related Randomness Attacks via Reconstructive

Extractors, IACR Cryptology ePrint Archive Report 2015/892.

4. Bertram Poettering and Dale L. Sibborn Cold Boot Attacks in the Dis-

crete Logarithm Setting, Topics in Cryptology - CT-RSA 2015, The

Cryptographers Track at the RSA Conference 2015, San Francisco, CA,

USA, April 20-24, 2015. Proceedings (Kaisa Nyberg, ed.), Lecture Notes

in Computer Science, vol. 9048, Springer, 2015, pp. 449-465.

15

Acknowledgements

First and foremost, I would like to thank my supervisor, Kenny Paterson, for

tolerating me for all these years. His support and guidance were invaluable,

even though I did not utilise them as much as I should have.

I am grateful for the financial support of the EPSRC who funded the

project of which I was a part, and I owe a thank you to the other members of

the team: Susan and my two favourite post-docs, Bertram and Jacob.

I would also like to thank my examiners, Keith Martin and Elisabeth Os-

wald, for making the viva such a pleasant and enjoyable experience.

Thank you to all my friends within the department: Caroline, Christian,

Dan, Dean, Eugenio, George, Gordon, James, Matteo, Pavlo, Pip, Rachel,

Sam, Shahram and Wanpeng. Thank you all for the trips to the Happy Man,

Crosslands and Medicine. In addition, a special thanks must go to James

Alderman for his assistance with my brief foray into computer programming.

From a non-academic perspective, I would like to thank my incredible

friends: Claire, Eamonn, Laura and Tim. Thank you also to my amazing

housemates, the ‘Vegal’antes of 59 Vegal Cresent: Ana, Andy, Hannah, Kaja

and Mersiye. Thank you all for invariably putting a smile on my face. It would

be remiss of me not to mention SCMKC at this point since that is where the

journey really began, so thank you to all its members too.

Finally, I owe a huge debt to my family for supporting me throughout this

journey, so thank you to my dad Dean, my mum Melanie, my sister Kaidee,

and my grandparents Gwendoline, Leonard, Maureen and Trevor.

16

Chapter 1

Introduction

In this chapter we provide motivation for this thesis and we provide a roadmap

of the results we shall present.

1.1 Motivation

In recent decades the study of cryptography has transformed from an art into

a science, and in this time there has been a gradual divergence between the

theoretical and practical cryptographic literature. A major difference occurs

when attempting to evaluate the strength of an adversary. When designing

cryptographic schemes we begin by modelling the capabilities of an adversary.

We then attempt to show that our scheme is secure against any adversary

with the modelled powers (typically by providing a reduction to a suitably-

hard problem). However, an inherent problem with these models is that we

do not always know the lengths an adversary will go to in order to subvert

our cryptographic methods. Various schemes have been shown to be secure

according to certain models, but these schemes may be trivially broken by at-

tacks that fall outside the scope of the models. Such failures frequently occur

in the real world [36, 42, 44, 2]. Similarly, the assumptions used within the

17

model may not always be realisable in practice (see, for example, [31, 68, 50]).

Randomised primitives are almost ubiquitously proved to be secure only when

the scheme uses fresh, uniform randomness for every (randomised) crypto-

graphic operation. Unfortunately, obtaining such high-quality randomness is

a difficult task in practice, and schemes typically forfeit all security guarantees

when poor randomness is used.

In this thesis we will consider both of the above-mentioned disparities. In

the first part we will study how to reconstruct private keys when an adversary

is able to obtain a leakage function of the private key. Standard security models

do not allow an adversary this power, but in practice it is well-known that

such information can be procured, albeit with some effort on the attacker’s

part. We study three particular encryption schemes and show that, whilst

secure according to traditional notions, these schemes may be broken when an

adversary obtains sufficient partial information about the private key. In the

second part of this thesis we will introduce novel security models for encryption

that do not require randomised primitives to use fresh, uniform randomness

for every operation. These models are designed to reflect the real world more

accurately and hence are more applicable to practice. We provide several

results with respect to these models, both negative and positive, and we show

how standard encryption schemes can be modified to remain secure in our new

models. The two parts are discussed in more detail below.

Part I. The first part of this thesis will study how to reconstruct a private

key when given a noisy version of it. It is possible to obtain a noisy version

of the key via a cold boot attack (whereby the contents of the memory can be

extracted, but with errors). Traditional security notions for encryption do not

allow an adversary to obtain such leakage, and various cryptographic schemes

become insecure when an adversary is allowed access to such information. We

18

will concern ourselves with the reconstruction of RSA and elliptic curve private

keys. In the latter case, we focus in particular on the implementation of elliptic

curve primitives in OpenSSL and PolarSSL. Despite being secure according to

standard security notions, for each scheme we show that we can recover private

keys (and thereby completely compromise security) if an adversary can acquire

a noisy version of the private key that is not too heavily degraded. Our key

recovery algorithms for OpenSSL and PolarSSL are new to the literature, but

key reconstruction in the RSA setting has been studied several times previously

in [37], [44] and [42] (and indeed several times following the publication of the

work based on this chapter [52, 51]). Crucially, however, the degradation

models used in these previous reports do not accurately reflect the reality of

cold boot attacks, but our models do, and we show how to recover keys that

have been degraded according to this true model. We take two approaches

to recovering the private keys, the first being a Maximum-Likelihood (ML)

approach, and the second being a threshold-based approach (reminiscent of

that in [42]). Each approach has its own advantages and disadvantages, and

we therefore use different approaches for different scenarios.

Part II. In the second half of this thesis we consider how to protect against

a certain class of adversarial attacks that fall outside the scope of traditional

security notions for public-key encryption. Standard security games typi-

cally assume that fresh, uniform randomness is used for every randomised

encryption, signature, etc. However, in practice this is frequently not true.

There are well-known instances of cryptographic schemes using randomness

that is highly correlated, resulting in the schemes becoming trivial to break

[26, 31, 34, 35, 22, 3, 25, 60, 68]. In order to protect against such attacks, we

must first introduce new security models that simulate these types of random-

ness failure, since there are no such models currently in the literature. We call

19

our attack the Related Randomness Attack, and we concentrate on public-key

encryption and key encapsulation mechanisms. Our security game that models

this type of attack extends the IND-ATK notion (for ATK=CPA or CCA) of

security, and gives the adversary extra capabilities (such as requesting encryp-

tions under correlated randomness values). As a result, any scheme that is

secure in our new model is also secure according to the IND-ATK notions. We

propose several variants of our strongest game and we present transforms that

will convert any IND-ATK secure scheme into a scheme that is secure with

respect to the Related Randomness Attack notion. Additionally, we show that

it is trivial to protect against bad randomness in the symmetric setting even if

an adversary can force a particular randomness value to be used for challenge

encryptions.

1.2 Thesis Structure

Chapter 2. This chapter contains the preliminaries and will establish the

notational conventions that will be used throughout this thesis. Standard def-

initions and computational assumptions can be found in this section. Any

advanced or non-standard definitions will be encountered in the relevant sec-

tions.

Chapter 3. In this chapter we will consider the reconstruction of RSA pri-

vate keys that have been obtained via a cold boot attack. We will briefly

recall some previous work in this area, since we build upon these previous

techniques. We will then provide an algorithm that is more successful and

also works in a setting that is more applicable to practice. Furthermore, we

are able to recover private keys for greater noise levels than are possible in the

current literature.

20

Chapter 4. This chapter will expand on the work of Chapter 3, but in a

different direction. We will study the recovery of private keys in the discrete

logarithm setting; in particular we attack specific implementations of OpenSSL

and PolarSSL for elliptic curve cryptography. We provide a general framework

for recovering keys in each of these scenarios, and we show that a well-known

statistical test can be used within this framework to achieve an arbitrary suc-

cess rate when recovering keys. Furthermore, we show that this statistical test

may be used within the framework of the previous chapter, thereby allowing

the recovery of RSA keys with arbitrary success rate.

Chapter 5. The previous chapters considered breaking schemes using at-

tacks that fell outside the scope of security models. In this chapter we will

change perspective and consider the design of stronger security models that are

designed to address such issues. Specifically, we define a new security model,

which will capture our new notion of Related Randomness Attack (RRA). We

also define a variant of this new model, with each variant having different

strengths and security guarantees, and being applicable to different scenarios.

For example, in our weaker models we may restrict either the public keys or

the adaptivity of the adversary. We are able to provide concrete instantiations

for these models in both the random oracle model and the standard model.

Chapter 6. In this chapter we consider another variant of our Related Ran-

domness Attack model. In this setting the adversaries are no longer adaptive,

but we require security to hold for all adversaries from a particular class. We

show that this security model has interesting connections with the auxiliary-

input setting for public-key encryption, in which an adversary is given a leak-

age function of the private key. Furthermore, we exhibit a relation between

this model and auxiliary-input reconstructive extractors, showing that these

21

extractors may be used to instantiate secure encryption schemes in this new

model.

Chapter 7. In this section we will switch our attention from public-key

encryption to Key Encapsulation Mechanisms (KEMs). We adapt the security

models of Chapters 5 and 6 to the KEM setting, and we show how to construct

an RRA secure PKE scheme by using an RRA secure KEM as a building block.

Moreover, we develop connections with Chapter 6 by showing that the main

theorem of this chapter is a generalisation of a theorem that appeared in

Chapter 6. Specifically, we show that a theorem of Chapter 6 implicitly used

an RRA secure KEM as a building block.

22

Chapter 2

Preliminaries

In this chapter we will take a brief tour of the fundamental concepts in prov-

able security, and then we shall introduce the primitives that will be used

extensively throughout this thesis. Any basic definitions will be given in this

section. Any new or advanced notions will be included as and when needed.

2.1 Mathematical Background

2.1.1 Computational complexity

When dealing with asymptotic results it is convenient to work with big-O

notation. This notation gives us a succinct, but approximate, measure of the

running-time of algorithms.

Definition 2.1.1 (Big-O notation). Let f and g be functions defined on a subset

of the real numbers. We say that f(x) = O(g(x)) as x→∞ if and only if there

exists a positive constant M and a real number x0 such that |f(x)| ≤M |g(x)|

for all x ≥ x0.

Definition 2.1.2 (Polynomial-time). An algorithm is said to be polynomial-

time if it always terminates in time O(kc), where k is the size of the input and

23

c is a constant.

Any algorithm that runs in polynomial time is deemed to be efficient. If

an adversary is not polynomial-time, then it is necessarily super-polynomial

time. There are various sub-categories of super-polynomial time, but we have

no need to discuss these.

Definition 2.1.3 (Negligible function). A function ψ is negligible if, for every

constant c, there exists a real number Nc such that |ψ(x)| < x−c for all x > Nc.

2.1.2 Computational hardness assumptions

Definition 2.1.4 (Decisional Diffie-Hellman (DDH) problem). The advantage

of an algorithm A in solving the Decisional Diffie-Hellman problem in a cyclic

group G of order p = p(λ) for the security parameter λ, is defined as

Advddh
G,A(λ) = |P[A(g, ga, gb, gab) = 1]− P[A(g, ga, gb, R) = 1]|

where g is a random generator of G, a, b←$ Zp, R←$ G, and the probability

is taken over the random coins consumed by A.

Assumption 2.1.1 (DDH assumption for G). No polynomial-time algorithm

has a non-negligible advantage in solving the DDH problem in G.

Definition 2.1.5 (q-Decisional Diffie-Hellman Inversion (q-DDHI) problem).

The advantage of an algorithm A in solving the q-Decisional Diffie-Hellman

Inversion problem in a cyclic group G of order p = p(λ), is defined as

Advq-ddhi
G,A (λ) = |P[A(g, gx, . . . , gx

q

, g1/x) = 1]− P[A(g, gx, . . . , gx
q

, R) = 1]|

where g is a random generator of G, x←$ Zp, R←$ G, and the probability is

taken over the choice of x ∈ Zp, and the random coins consumed by A.

Assumption 2.1.2 (q-DDHI assumption for G). No polynomial-time algorithm

has a non-negligible advantage in solving the q-DDHI problem in G.

24

2.1.3 Code-based games

All our security definitions and proofs will utilise code-based games and the

associated terminology. Code-based games were introduced by Bellare and

Rogaway in [11], and the definitions in this subsection are reproduced from

the cited paper.

A game consists of at least two procedures, which are Initialise and Fi-

nalise. The games always begin with the Initialise procedure, which assigns

starting values to all variables and then returns outputs, if there are any, to

the adversary. If there are procedures other than Initialise and Finalise, the

adversary A may then submit queries to these procedures (which are typically

encryption or decryption oracles), and when A halts (and possibly outputs a

value) the Finalise procedure begins. The Finalise procedure will take the

output from A (if there is one) as its input and will output its own value. The

value output by Finalise is defined to be the output of the game. We write

P[GA ⇒ b] to denote the probability that game G outputs bit b when run

with A. Occasionally, we use the shorthand P[GA] to denote the probability

that game G outputs bit 1 when run with A. Alternatively, in some proofs

we will use the notation AG ⇒ b. This means that the adversary outputs b

when playing game G. We will occasionally use the notation A(x)⇒ b, which

denotes adversary A outputting b when given the input x.

2.2 Cryptographic Primitives

In this section we will introduce some standard cryptographic schemes and

primitives. Throughout this thesis we let ATK denote either CPA or CCA

(Chosen Plaintext Attack or Chosen Ciphertext Attack) whenever theorems

or statements apply to both attacks. Any proofs or figures will refer to the

25

CCA setting, but may be easily modified to the CPA case by removing access

to the decryption or decapsulation oracle. We begin with public-key encryp-

tion.

2.2.1 Public-key encryption

We denote a specific PKE scheme PKE by a triple of algorithms, which are

(PKE.K, PKE.E, PKE.D). All three algorithms are polynomial-time. The ran-

domised key generation algorithm PKE.K takes the security parameter λ as its

input and outputs a key pair (pk, sk). The encryption algorithm, on input of a

message m ∈M and a public key pk, chooses random coins from Rnd and uses

these coins to output a ciphertext c. The decryption algorithm is determinis-

tic. Its inputs are a private key sk and a ciphertext c. The algorithm either

outputs a message m or an error symbol ⊥. We require the scheme PKE to

satisfy the correctness property. That is, for all λ ∈ N, all pairs (pk, sk) output

by the key generation algorithm, and all messages m ∈MPKE
λ , we require that

PKE.D(sk, PKE.E(pk,m)) = m.

proc. Initialise(λ):

b←$ {0, 1};
(pk, sk)←$ PKE.K(1λ);
S ← ∅;
return pk.

proc. LR(m0,m1):

c←$ PKE.E(pk,mb)
S ← S ∪ {c}
return c.

proc. Dec(c):

if c ∈ S
return ⊥

else
return PKE.D(sk, c).

proc. Finalise(b′):

if b = b′

return 1
else

return 0.

Figure 2.1: Game IND-CCA for PKE. For the CPA version of the game, there
is no access to proc. Dec.

The definition of security for a PKE scheme is as follows:

26

Definition 2.2.1. The advantage of an IND-ATK adversaryA against a scheme

PKE is

Advind-atk
PKE,A (λ) := 2 · P[IND-ATKAPKE(λ)⇒ 1]− 1,

for game IND-ATK of Figure 2.1. A scheme PKE is IND-ATK secure if the

advantage of any polynomial-time adversary is negligible in the security pa-

rameter λ.

Note that in Figure 2.1, the security game keeps track of the ciphertexts

that have been output by the LR oracle, and prevents the adversary requesting

the decryption of these ciphertexts. This is because any adversary can trivially

win the game if we do not insist on this restriction. The adversary could simply

submit (m0,m1) to the LR oracle and then submit the returned ciphertext to

the Dec oracle. This will obviously reveal which of m0 or m1 was encrypted.

We will insist on such a restriction in our security games for all primitives.

Perhaps it is a good idea to consider an example of this security game in

action. We will take an informal look at ‘textbook’ RSA, which is insecure

according to the previous definition. The triple of algorithms is below.

PKE.K(λ):

– choose two uniformly random λ-bit primes, p and q, and set N = pq.

– choose e such that gcd(e, φ(N)) = 1, where φ is Euler’s totient function.

– compute d = e−1 mod φ(N).

– return pk = (N, e) and sk = d.

PKE.E(pk,m):

– compute c = me mod N .

– return c.

PKE.D(sk, c):

– compute m = cd mod N .

– return m.

27

Note that for textbook RSA both the message space and ciphertext space

are restricted to being Z∗N . It is straightforward to see that the textbook

RSA scheme is insecure according to Definition 2.2.1. Consider an adversary

that plays the game in Figure 2.1. Suppose the adversary submits (m,m′)

to the LR oracle, such that m 6= m′ and m,m′ ∈ Z∗N . The adversary will

receive a ciphertext c∗. Next, the adversary computes the ciphertext c =

PKE.E(pk,m) for himself. Then, if c = c∗ the adversary outputs 0, and outputs

1 otherwise. It is trivial to see that this adversary wins both the CPA and

CCA game with probability 1 (since no Dec queries were required). Hence,

this textbook scheme is insecure, since this adversary is clearly polynomial-

time and has a non-negligible advantage. Note that such an attack will work

against any deterministic PKE scheme. Therefore, any PKE scheme that is

secure according to Definition 2.2.1 must be randomised.

2.2.2 Data encapsulation mechanisms

In this subsection we will define Data Encapsulation Mechanisms (DEMs).

DEMs are more commonly referred to as Symmetric-Key Encryption (SKE)

schemes in the literature but, for reasons that will become apparent, we prefer

the name DEM. We define a DEM scheme DEM in the natural way as a triple of

algorithms (DEM.K, DEM.E, DEM.D). The three algorithms are polynomial-time.

Key generation takes λ as an input and outputs a key K. The encryption

algorithm takes a message m ∈MDEM
λ (the message space, which is dependent

on the DEM and λ) and a key K as its inputs, chooses random coins from RndDEMλ

(the randomness space, which is dependent on the DEM and λ), and outputs

a ciphertext c. Decryption takes a key K and a ciphertext c. The output is

either a message m or an error symbol ⊥. Again we require the correctness

property, so that for all K output by the key generation algorithm and all m,

we have DEM.D(K, DEM.E(K,m)) = m.

28

proc. Initialise(λ):

b←$ {0, 1};
K ←$ DEM.K(1λ);
S ← ∅.

proc. LR(m0,m1):

c←$ DEM.E(K,mb)
S ← S ∪ {c}
return c.

proc. Dec(c):

if c ∈ S
return ⊥

else
return DEM.D(K, c).

proc. Finalise(b′):

if b = b′, return 1
else, return 0.

Figure 2.2: Game IND-CCA for a DEM DEM. The CPA version of the game
removes access to proc. Dec.

Definition 2.2.2. The advantage of an IND-ATK adversaryA against a scheme

DEM is

Advind-atk
DEM,A (λ) := 2 · P[IND-ATKADEM(λ)⇒ 1]− 1,

where game IND-ATK is in Figure 2.2. A scheme DEM is IND-ATK secure if

the advantage of any polynomial-time adversary is negligible in the security

parameter λ.

2.2.3 Key encapsulation mechanisms

A KEM scheme KEM is defined by a triple (KEM.K, KEM.E, KEM.D) of polynomial-

time algorithms. The randomised key generation algorithm takes the security

parameter λ as its input, then outputs a key pair (ek, dk). The encryption

algorithm takes an encryption key ek as its input, generates random coins from

Rnd and outputs a pair (c, k) ∈ CKEMλ × KKEM
λ . The deterministic decryption

algorithm takes a ciphertext c and a decryption key dk as its inputs and

outputs a key k, or an error symbol ⊥. For all pairs (ek, dk) we require that

if (c, k)← KEM.E(ek), then k ← KEM.D(dk, c).

Definition 2.2.3. The advantage of an IND-ATK adversary A against a key

encapsulation mechanism KEM is

Advind-atk
KEM,A (λ) = 2 · P[IND-ATKAKEM(λ)⇒ 1]− 1,

29

proc. Initialise(λ):

b←$ {0, 1};
(ek, dk)←$ KEM.K(1λ);
return ek.

proc. Decap(c):

if c = c∗

return ⊥
else

return KEM.D(dk, c).

proc. RoR:
(c∗, k0)←$ KEM.E(ek)
k1 ←$ K
return (c∗, kb).

proc. Finalise(b′):

if b = b′

return 1
else

return 0.

Figure 2.3: Game IND-CCA for a KEM. The CPA version removes access to
proc. Decap.

where game IND-ATK is in Figure 2.3. We say KEM is a secure KEM if the

advantage of any polynomial-time adversary is negligible in the security pa-

rameter λ.

2.2.4 KEM/DEM composition

In this section we will briefly mention the composition of KEMs and DEMs

(we will study this in more detail in Chapter 7). The composition theorem

was proved by Cramer and Shoup [21], and it states (informally) that a KEM

and a DEM can be composed in such a way that one can obtain a secure PKE

scheme. Cramer and Shoup showed that if the KEM outputs a pair (c, k), then

the value k may be used as the key for a DEM. That is, if you wish to build

a PKE scheme, and you want to encrypt message m with public key pk, then

you can compute (c, k) ←$ KEM.E(pk), then compute c∗ ←$ DEM.E(k,m). The

ciphertext is then (c, c∗), which can be decrypted in the obvious way. Note

that we just mentioned the use of a randomised DEM. The proof of Cramer

and Shoup only requires a one-time secure DEM (i.e. the adversary can make

only one LR query), hence the DEM need not be randomised. However, in

our more general setting in Chapter 7, we will require a stronger DEM, and

30

therefore it is necessary for it to be randomised.

2.2.5 Pseudorandom functions

In this subsection we define Pseudorandom Functions, or PRFs. As the name

suggests, a PRF is a family of functions that takes two inputs and then pro-

duces an output that should be indistinguishable from random. This notion

is formalised below.

proc. Initialise(λ):

K ←$ Keysλ.

proc. Function(x):

return F (K, x).

proc. Finalise(b):

return b.

proc. Initialise(λ):

FunTab← ∅.

proc. Function(x):

if FunTab[x] =⊥, then
FunTab[x]←$ Rngλ

return FunTab[x].

proc. Finalise(b):

return b.

Figure 2.4: Games for PRF security. Game PRFReal is on the left, PRFRand
on the right.

Definition 2.2.4. Let F : Keysλ × Domλ → Rngλ be a family of functions. The

advantage of a PRF adversary A against F is

Advprf
F,A(λ) := P[PRFRealAF (λ)⇒ 1]− P[PRFRandA$ (λ)⇒ 1]

where the games PRFReal and PRFRand are defined in Figure 2.4. We say

F is a secure PRF family if the advantage of any polynomial time adversary

is negligible in the security parameter λ.

In the previous security game, the adversary is required to output a bit

b. We have not specified what this bit represents (since we do not need to),

however intuitively we can the view this as an adversary outputting b = 1 if he

believes the outputs are real, or b = 0 if he believes the outputs are random.

31

2.2.6 Related-key attack pseudorandom functions

Related-key attacks were introduced by Biham [14] after he noticed that the

key scheduling algorithms of certain blockciphers would inherit exploitable

relationships between keys. Related-key attacks have since been extended

to various types of primitive, such as Identity-Based Encryption (IBE) and

signatures (see, for example, [8]). In this thesis, we will only concern ourselves

with related-key attacks for PRFs, which were formalised by Bellare et al. [7].

Related-Key Attack Pseudorandom Functions (RKA-PRFs) are PRFs that are

secure against a much stronger class of attacks than the ones in the previous

subsection. That is, a PRF must satisfy a stronger definition of security on

order to be an RKA-PRF. In the previous PRF definition, the adversary was

only allowed to see outputs of the PRF for a fixed key K. The RKA-PRF

definition is an extension of this game that allows an adversary to submit

functions φ to the oracle (along with an input x), and the function will be

evaluated with the key φ(K). The security games and definition follow. Note

that FF(X, Y, Z) denotes the set of all families of functions F : X × Y → Z.

proc. Initialise(λ):

K ←$ Keysλ.

proc. Function(φ, x):

return F (φ(K), x).

proc. Finalise(b):

return b.

proc. Initialise(λ):

G← FF(Keysλ, Domλ, Rngλ)
K ←$ Keysλ.

proc. Function(φ, x):

return G(φ(K), x).

proc. Finalise(b):

return b.

Figure 2.5: Games for RKA-PRF security. Game RKA-PRFReal is on the
left, RKA-PRFRand on the right.

Definition 2.2.5 (Φ-restricted adversary). Consider an adversary playing the

game in Figure 2.5. If all functions φ appearing in Function queries are such

that φ ∈ Φ, then we say that the adversary is Φ-restricted.

32

It should be clear that there exist some functions for which it will be

impossible to achieve security. For example, if an adversary submits a query

(φ, x) for some constant function φ (i.e. φ(x) = C for all x), then the adversary

can easily compute F (C, x) and compare it to the value output by the oracle.

This is why we introduce the previous definition and restrict our attention to

adversaries that only use certain function classes (which necessarily exclude

constant functions, as we just saw).

Definition 2.2.6. Let F : Keysλ × Domλ → Rngλ be a family of functions. The

advantage of an RKA-PRF adversary A against F is

Advrka-prf
F,A (λ) := P[RKA-PRFRealAF (λ)⇒ 1]− P[RKA-PRFRandA$ (λ)⇒ 1]

where the games PRFReal and PRFRand are defined in Figure 2.5. We say F

is Φ-RKA-PRF secure if the advantage of any Φ-restricted, polynomial time

adversary is negligible in the security parameter λ.

2.2.7 Key derivation functions

A Key Derivation Function (KDF) is a deterministic function that takes a

uniformly random input and outputs a string that is indistinguishable from

random, which, as the name suggests, will be used as a key for a cryptographic

primitive.

Definition 2.2.7. Let λ be a security parameter. Consider a polynomial time

function f that maps from some domain to {0, 1}l1(λ). The advantage of a

KDF adversary A against f is

Advkdf
f,A(λ) := P[KDFRealAf (λ)⇒ 1]− P[KDFRandA$ (λ)⇒ 1]

where games KDFReal and KDFRand are defined in Figure 2.6. We say f is

a secure Key Derivation Function (KDF) if the advantage of any polynomial

time adversary is negligible in the security parameter λ.

33

proc. Initialise(λ):

return (R(f),D(f)).

proc. Oracle:
k ←$ D(f)
return f(k).

proc. Finalise(b):
output b.

proc. Initialise(λ):

return (R(f),D(f)).

proc. Oracle:
r ←$ R(f)
return r.

proc. Finalise(b):
output b.

Figure 2.6: Games for KDF security. Game KDFReal is on the left, KDFRand
is on the right.

2.3 Random Oracle Model

In this section we briefly introduce the random oracle methodology, which

was first formalised by Bellare and Rogaway [9]. Security games that do no

employ random oracles are said to be in the ‘standard model’. In essence, a

random oracle will return an independent and uniformly random output for

every unique input. That is, a random oracle is a truly random function,

which we will denote by H throughout this thesis. The domain of the random

oracle will be bit strings of arbitrary length, and the random oracle will return

bit strings of a (specified) fixed length.

In the random oracle model, the security games will include an extra pro-

cedure by which all parties may query the random oracle. That is, both the

challenger and adversary may query the random oracle. Furthermore, the out-

puts will be consistent for all queries. Therefore if two parties both query the

random oracle with the bit string x, then the random oracle will return the

same output to both parties. In security games and proofs, the random oracle

is usually implemented by initialising an output array to be empty. When the

random oracle receives a query x, it first checks whether H(x) is defined. If it

is, the oracle returns H(x). Otherwise, if H(x) =⊥, the random oracle assigns

34

H(x)←$ R, where R is the appropriate range, and then returns H(x).

2.4 Coding Theory

Coding theory is concerned with communications over unreliable channels.

That is, a message transmitted over the channel may have errors when it is

received. When we receive a message m′ over the unreliable channel, we would

like to ‘decode’ m′ to obtain the original message m that was sent over the

channel. Coding theory deals with the design and study of error-correcting

codes that are intended to ensure that the message m can be reliably recovered

at the receiver’s end of the channel.

Definition 2.4.1. Let A = {a1, . . . , aq} be an alphabet. A code C of length n

over A is a subset of An. A vector c ∈ C is called a codeword, and we let |C|

denote the size of the code. In this report we will only concern ourselves with

the alphabet A = {0, 1}. A code over A = {0, 1} is called a binary code.

Definition 2.4.2. Let C be a binary code of length n and size M . Then the

rate of C is defined to be

R =
log2M

n
.

Informally, the rate of a code measures the amount of redundancy in the

representation of messages. Essentially, log2M represents the number of ‘use-

ful’ bits (since only log2M bits are needed to represent M codewords). There-

fore, the rate is measuring the ratio between the number of useful bits and the

total number of bits representing each codeword.

Definition 2.4.3. Let x and y be binary strings, and let xi and yi denote the

ith bit of x and y, respectively. Define d as follows:

d(xi, yi) =

{
1 xi 6= yi

0 xi = yi.

35

The Hamming distance between x and y is defined to be the sum of the d over

all bit positions. That is,

d(x, y) =
n∑
i=1

d(xi, yi).

Thus, the Hamming distance between two strings is the number of positions

in which they differ.

Before stating the main theorem from coding theory that we require, we

must first briefly discuss the capacity of a channel. Suppose that we send a

binary message over an unreliable channel that introduces errors. Knowledge

of the probabilities of these errors allows us to compute the channel capacity.

We will not discuss the formal definition of capacity (or how to compute it),

but we note that the channel capacity and code rate are closely connected, as

the following well-known theorem demonstrates.

Theorem 2.4.1 (Shannon’s noisy-channel coding theorem). For any ε > 0 and

code of rate R that is less than the channel capacity C, there is a decoding

algorithm whose error probability is less than ε, for a sufficiently large code

length. Also, for any rate greater than the channel capacity, the probability

of error at the receiver goes to one as the code length goes to infinity.

36

Part I

Cold Boot Attacks

37

Chapter 3

Cold Boot Attacks in the RSA
Setting

3.1 Introduction

Cold boot attacks [36, 37] are a class of attacks wherein memory remanence

effects are exploited to extract data from a computer’s memory. The idea is

that modern computer memories retain data for periods of time after power

is removed, so an attacker with physical access to a machine may be able to

recover, for example, cryptographic key information. The time during which

data is retained can be significantly increased by cooling the memory chips. For

example, according to [37], in an experiment at −50 ◦C (obtained by spraying

compressed air onto the memory chips) less than 0.1% of bits decay within

sixty seconds. At temperatures of approximately −196 ◦C (via the use of

liquid nitrogen) less than 0.17% of bits decay within one hour without power.

Because the memory gradually degrades over time once power is removed, only

a noisy version of the original data may be recoverable. The question then

naturally arises: given a noisy version of a cryptographic key, is it possible to

reconstruct the original key? In the current chapter we will attempt to answer

this question for RSA keys.

38

This question was addressed for broad classes of cryptosystems, both sym-

metric and asymmetric, by Halderman et al. in [36, 37]. The schemes consid-

ered include RSA, AES, DES and various tweakable encryption modes. The

question was addressed specifically for RSA private keys in [42, 44]. Similar

problems arise in the context of side-channel analysis of cryptographic imple-

mentations, where noisy key information may leak through power consumption

[50] or timing [19]. The question is also linked to the classical cryptanalysis

problem of recovering an RSA private key when some bits of the key are known,

for example the most or least significant bits, or contiguous bits spread over a

number of blocks (see, for example, the surveys in [16, 59] and [45]).

Heninger and Shacham (HS) [44] considered the setting where a random

fraction of the RSA private key bits is known with certainty. Their approach

exploits the fact that the individual bits of an RSA private key of the form sk =

(p, q, d, dp, dq) must satisfy certain algebraic relations (which we shall encounter

shortly). Here, p, q and d are exactly the same variables we encountered

in the ‘textbook’ RSA example in Section 2.2.1. The value dp represents

d mod p− 1, and dq is similarly defined. In order to decrypt messages, it is

only necessary to store the value d in the private key, but the PKCS [46]

standard recommends additionally storing the parameters p, q, dp and dq in

order to increase the efficiency of decryption via Chinese Remainder Theorem

techniques. This redundancy in the key enables the recovery of the private

key in a bit-by-bit fashion, starting with the least significant bits, by growing

a search tree. It is easy to prune the search tree to remove partial solutions

that do not match with the known key bits. The resulting algorithm will

always succeed in recovering the private key, since the pruning process will

never remove a partial version of the correct solution. On the other hand,

when only few bits are known, the search tree may grow very large, and the

HS algorithm will blow up. It was proved in [44] that, under reasonable

39

assumptions concerning the bit-distributions of incorrect solutions, the HS

algorithm will efficiently recover an n-bit RSA private key in time O(n2) with

probability 1 − 1/n2 when a random fraction of at least 0.27 of the private

key bits is known with certainty. These theoretical results are well-matched

by experiments reported in [44]. These experiments also confirm that the HS

algorithm has good performance when the known fraction is as small as 0.24

even for keys as large as 8192 bits, and the analysis of [44] extends to cases

where the RSA private key sk is of the form (p, q, d) or (p, q). When sk is

of the form (p, q, d), the algorithm theoretically requires at least a fraction of

0.42 known bits. When sk is of the form (p, q), the fraction required rises to

0.57.

Henecka, May and Meurer (HMM) [42] took the ideas of [44] and devel-

oped them further to address the situation where no RSA private key bits

are known with certainty. They consider the symmetric case where the two

possible bit flips (0 → 1 and 1 → 0) have equal probability δ. Their main

idea was to consider t bit-slices at a time of possible solutions to the equations

relating the bits of sk, instead of single bits at a time as in the HS algorithm.

In the formulation where sk = (p, q, d, dp, dq), this yields 2t candidate solutions

on 5t new private key bits for each starting candidate at each stage of the al-

gorithm. The HMM algorithm then computes the Hamming distance between

the candidate solutions and the noisy key, keeping all candidates for which

this metric is less than some carefully chosen threshold C.1 This replaces the

procedure of looking for exact matches used in the HS algorithm. Of course,

now the correct solution may fail this statistical test and be rejected; more-

over the number of candidate solutions retained may explode if C is set too

loosely. Nevertheless, it was shown in [42] that the HMM algorithm runs in

1HMM actually computed the number of bit matches between the noisy version and
the candidates, and the candidates with more than C matches were kept. However, this
is equivalent to using Hamming distance, albeit with a different threshold C and keeping
candidates with a Hamming distance less than C.

40

polynomial time and has reasonable success in outputting the correct solution

provided that δ < 0.237. Again, the analysis depends on assumptions con-

cerning the random behaviour of incorrect solutions. To support the analysis,

[42] reports the results of experiments for different noise levels and algorithmic

parameters. For example, with sk = (p, q, d, dp, dq), the algorithm can cope

with δ = 0.20, having an experimental success rate of 21% and a running time

of three minutes at this noise level. The HMM algorithm also generalises to

the cases when sk = (p, q, d) or sk = (p, q). When sk = (p, q, d), the HMM

algorithm can handle noise rates up to 0.16 theoretically, and managed 0.14

in experimental results. When sk = (p, q), their theoretical limit is 0.084, and

in practice they achieved results for δ ≤ 0.08.

3.1.1 Limitations of previous work and open questions

Although inspired by cold boot attacks, it transpires that neither the HS

algorithm nor the HMM algorithm actually solves the motivating cold boot

problem. Let us see why.

One observation made in [36, 37] is that for a given region of memory, the

decay of memory bits is overwhelmingly either 0 → 1 or 1 → 0. The type of

decay depends on the so-called ‘ground state’ of the particular memory region.

Each region has the ground state set to either 0 or 1. In a particular ground

state, all bits are hard-wired to either 1 or 0. Typically, bits will degrade to the

ground state, but in rare cases it is possible for a bit to decay in the opposite

direction. The ground state of a particular region can usually be inferred from

the distribution of 0 and 1 bits. For an uncorrupted private key, we expect

the number of 1s and 0s to be approximately equal. Therefore, if we observe

many more 0s than 1s, we can assume that we are in a 1→ 0 region, and vice

versa. As a result of these decay patterns, in a 1 → 0 region, a 1 bit in the

41

noisy version of the key is known (with high probability) to correspond to a 1

bit in the original key.

In the case of [44], the assumption is made that a certain fraction of the

RSA private key bits – both 0s and 1s – is known with certainty. But, in

the cold boot scenario, only 1 (or 0) bits are known (in a particular region),

and not a mixture of both. Fortunately, the authors of [44] have informed

us that their algorithm does still work when only 0 or only 1 bits are known,

but this is not the case it was designed for, and, formally, the performance

guarantees obtained in [44] do not apply in this case. Furthermore, in a real

cold boot attack, bits are never known with absolute certainty, because even

in a 1→ 0 region, say, bit flips in the reverse direction can occur. Halderman

et al. [36] report rates of 0.05% to 0.1% for this event. Such an event will

completely derail the HS algorithm, as it will result in the correct solution

being eliminated from the search tree. Based on an occurrence rate of 0.1%,

this kind of fatal event can be expected to arise around 2.5 to five times in

a real key recovery attack for 1024-bit RSA moduli with sk = (p, q, d, dp, dq).

Naturally, one could correct for this by re-running the HS algorithm many

times with a small subset of bits being flipped in sk each time. However, this

would be highly inefficient, as well as inelegant. Thus, the HS algorithm really

only applies to an ‘idealised’ cold boot setting, where some bits are known for

sure.

The HMM algorithm is designed to work for the symmetric case where the

two possible bit flips have equal probability δ. Yet, in a cold boot attack, in a

1 → 0 region say, α := P(0 → 1) will be very small (though non-zero), while

β := P(1→ 0) may be relatively large, and perhaps even greater than 0.5 in a

very degraded case. The use of Hamming distance as a metric for comparison

and the setting of the threshold C are closely tied to the symmetric case,

and it is not immediately clear how one can generalise the HMM approach to

42

handle the type of errors occurring in real cold boot attacks. So, while the

HMM algorithm may be appropriate for RSA private key recovery in some

side-channel settings (such as power analysis attacks), it does not solve the

cold boot problem for RSA keys.

Intriguing features of the work in [44, 42] are the constants 0.27 and 0.237,

which bound the fraction of known bits/noise rate the HS and HMM algo-

rithms can handle. One can trace through the relevant analysis to see how

these numbers emerge, but it would be more satisfying to have a deeper, unify-

ing explanation. One might also wonder if these bounds are the best possible

or whether significant improvements might yet be forthcoming. Is there any

ultimate limit to the noise level with which these kinds of algorithms can cope?

And can we design an algorithm that works in the true cold boot setting, or

for fully general noise models that might be expected to occur in other types

of side channel attack?

3.1.2 Our contributions

In this chapter we show how to recast the problem of noisy RSA key recovery

as a problem in coding theory. That such a connection exists should be no sur-

prise: after all, we are in a situation where bits have an associated probability

distribution and we wish to recover the true bits. However, this connection

opens up the opportunity to apply to our problem the full gamut of sophis-

ticated tools that have been developed by coding theorists over the last sixty

years. We sketch this connection and its main consequences next, with the

details to come in the later sections of this chapter.

Recall that in the HMM algorithm, we generate from each solution so far

a set of 2t candidate solutions on 5t new bits. We now view the set of 2t

candidates as being a code, with one codeword s (representing bits of the true

43

private key) being selected and transmitted over a noisy channel, resulting in

a received word r (representing 5t bits of the noisy version of the key). In the

HMM case, the noise is realised via bit-flipping with probability δ. The HS

algorithm can be seen as arising from the special case t = 1, where the noise

now corresponds to erasing a fraction of key bits instead of flipping them.

Alternatively, we can consider a generalisation of the HS algorithm which

considers 5t bits at a time, generated just as in the HMM algorithm, and

which then filters the resulting 2t candidates based on matching with known

key bits. Because filtering is based on exact matching, this algorithm has the

same output as the original HS algorithm.2 This brings the two algorithms

under a single umbrella.

In general, in coding theory, the way in which s is transformed into r de-

pends on the channel model, which in its full generality defines the probabilities

P(r|s) over all possible pairs (s, r). In the case of [44], the assumption is that

particular bits are known with certainty and others are not known at all, with

the bits all being treated independently. The appropriate channel model is

then an erasure channel, meaning that bits are independently either erased

or transmitted correctly over the channel, with the receiver knowing the po-

sitions of the erasures. In the case of [42], the appropriate channel model is

the binary symmetric channel with cross-over probability δ. It also emerges

that the appropriate channel model for the true cold boot setting is a binary

non-symmetric channel with cross-over probabilities (α, β). In general, the

problem we are faced with is to decode r, with the aim being to reproduce s

with as high a probability as possible.

When formulated in this language, it becomes obvious that the HS and

HMM algorithms do not solve the original cold boot problem – simply put,

2However, in practice the running-time will be slightly greater because incorrect candi-
dates will not be discarded at the earliest possible moment.

44

these algorithms use inappropriate channel models for that specific problem.

We can also use this viewpoint to derive limits on the performance of any

procedure for selecting which candidate solutions to keep in an HMM-style

algorithm. To see why, we recall that the converse to Shannon’s noisy-channel

coding theorem (see Section 2.4 or [74]) states that no combination of code

and decoding procedure can jointly achieve arbitrarily reliable decoding when

the code rate exceeds the (Shannon) capacity of the channel. There is a subtle

technicality here: the converse to Shannon’s theorem applies only to decoding

algorithms that output a single codeword s, while both the HS and HMM

algorithms are permitted to output many candidates at each stage, with the

final output list only being required to contain the correct private key. The

correct key can then be determined by, for example, using a trial encryption

and decryption. It is then plausible that such list-outputting algorithms might

surpass the bounds imposed by the converse to Shannon’s theorem. However,

this is not the case for the erasure channel and the binary symmetric channel:

there are analogues of the converse of Shannon’s theorem for so-called list

decoding that essentially show that channel capacity is also the barrier to any

efficient algorithm outputting lists of candidates for these channels, as the HS

and HMM algorithms do.

When sk is of the form (p, q, d, dp, dq), for example, the code rate is fixed

at 1/5 (we have 2t codewords of length 5t, so the rate is log 2t/5t). The

channel capacity can be calculated as a function of the channel model and

its parameters. For example, for the erasure channel with erasure probability

ρ (meaning that a fraction 1 − ρ of the bits are known with certainty), the

capacity is simply 1 − ρ. Then we see that the code rate exceeds capacity

whenever we have ρ ≥ 0.8, meaning that the fraction of known bits must be at

least 0.2 to achieve arbitrarily reliable, efficient decoding. The analysis in [44]

needs that fraction to be at least 0.27, though a fraction as low as 0.24 could

45

be handled in practice. Thus a capacity analysis suggests that there should

be room to improve the HS algorithm further, but capacity shows that it is

impossible to go below a fraction 0.2 of known bits with an efficient algorithm.

Similar remarks apply to the HMM algorithm: here the relevant cross-over

probability δ at which a capacity of 1/5 is reached is δ = 0.243, which is in

remarkable agreement with the maximum value of 0.237 for δ arising in the

analysis of [42], but still a little above the figure of 0.20 achieved experimentally

in [42]. Again, the capacity analysis indicates that going above a noise level

of 0.243 is likely to be very difficult, if not impossible, for an efficient HMM-

style algorithm. See Section 3.3 for further details on list decoding and its

application to the analysis of the HS and HMM algorithms.

Informed by our coding-theoretic viewpoint, we derive a new key recovery

algorithm that works for any (memoryless) binary channel and therefore is ap-

plicable to the cold boot setting (and more), in contrast to the HS and HMM

algorithms. In essence, we modify the HMM algorithm to use a likelihood

statistic in place of the Hamming metric when selecting from the candidate

codewords. We keep the L codewords having the highest values of this likeli-

hood statistic and reject the others; from a coding perspective, our algorithm

uses maximum likelihood list decoding, where L is the size of the list, which

is a user-specified parameter. An important consequence of this algorithmic

choice is that our algorithm has deterministic running time O(L2tn/t) and,

when implemented using a stack, deterministic memory consumption O(L+t).

This stands in contrast to the running time and memory usage of the HS and

HMM algorithms, which may blow up when the erasure/error rates are high.

We note that private RSA keys are big enough that they may cross regions

when stored in memory. We can handle this by changing the likelihood statis-

tic used in our algorithm at the appropriate transition points, requiring only

a simple modification to our approach.

46

Also using coding-theoretic tools, we are able to give an analysis of the

success probability of our new algorithm. We show that, as t→∞, its success

probability tends to 1 provided the code rate (1/5 when sk = (p, q, d, dp, dq))

remains below the channel capacity. Moreover, from the converse to Shan-

non’s theorem, we are unlikely to be able to improve this result if reliable key

recovery is required. Our analysis is very simple but non-rigorous: it assumes

the code behaves like a random code and follows from a direct application

of Shannon’s noisy-channel coding theorem. We note that it seems unlikely

that a rigorous proof for the full case will be easy to obtain: such a proof

would likely yield a Shannon-style random coding bound for list decoding on

non-symmetric channels, and such bounds are (to the best of our knowledge)

not currently known, despite list decoding having been the subject of many

decades of study in the information theory community.

As a complement to our theoretical analysis, and as validation of it, we

include the results of extensive experiments using our new algorithm. These

demonstrate that our approach matches or outperforms the HS and HMM

algorithms in the cases they are designed for, and achieves results close to

the limits imposed by our capacity analysis more generally. For example,

in the symmetric case with δ = 0.20, we can achieve a 19% success rate in

recovering keys for t = 18 and L = 32. This is comparable to the results of [42].

Furthermore, for the same t and L we achieve a 3% success rate for δ = 0.22,

whilst [42] does not report any experiments for an error rate this high. As

another example, our algorithm can handle the idealised cold boot scenario

by setting α = 0 (in which case all the 1 bits in r are known with certainty,

i.e. we are in a 1 → 0 region). Here, our capacity analysis puts a bound of

0.666 on β for reliable key recovery. Using our algorithm, we can recover keys

for β = 0.6 with a 14% success rate using t = 18 and L = 32, whereas the HS

algorithm can only reach β = 0.52 (and this under the assumption that the

47

experimental results reported in [44] for a mixture of known 0 and 1 bits do

translate to the same performance for the case where only 1 bits are known).

In the same setting, we can even recover keys up to β = 0.63 with a non-zero

success rate. We also have similar experimental results for the ‘true’ cold boot

setting where both α and β are non-zero, and for the situation where sk is of

the form (p, q, d) or (p, q).

3.1.3 Further related work

In recent work that is independent of ours, Sarkar and Maitra [73] revisited

the work of [42], applying the HMM algorithm to break Chinese Remainder

implementations of RSA with low weight decryption exponents and giving

ad hoc heuristics to improve the algorithm. Also in recent independent work,

Kunihiro et al. [52] generalised the work of [44] and [42] to consider a combined

erasure and symmetric error setting, where each bit of the private key is either

erased or flipped. The practical motivation for considering this type of channel

is unclear.

Key recovery for various types of symmetric key have been considered in

[76, 47, 2].

3.2 The HS and HMM algorithms

In this section we describe the work of [44, 42], maintaining the notation of

these papers as far as is possible.

Let (N, e) be the RSA public key, where N = pq is an n-bit RSA modulus,

and p, q are balanced primes. As with [44, 42], we assume throughout that e is

small, say e = 3 or e = 216+1; for empirical justification of this assumption, see

48

[82]. We start by assuming that private keys sk follow the PKCS#1 standard

and so are of the form (N, p, q, e, d, dp, dq, q
−1
p), where d is the decryption key,

dp = d mod p− 1, dq = d mod q− 1 and qp = q−1 mod p. However, neither

the algorithms of [44, 42] nor ours make use of q−1
p , so we henceforth omit this

information. Furthermore, we assume N and e are publicly known, so we work

only with the tuple sk = (p, q, d, dp, dq). We will also consider attacks where

the private key contains less information – either sk = (p, q, d) or sk = (p, q).

Now assume we are given a degraded version of the key s̃k = (p̃, q̃, d̃, d̃p, d̃q).

We start with the four RSA equations:

N = pq (3.2.1)

ed = k(N − p− q + 1) + 1 (3.2.2)

edp = kp(p− 1) + 1 (3.2.3)

edq = kq(q − 1) + 1, (3.2.4)

where k, kp and kq are integers to be determined. A method for doing so is

given in [44]: first it is shown that 0 < k < e; then, since e is small, we may

enumerate

d(k′) :=

⌊
k′(N + 1) + 1

e

⌋
for all 0 < k′ < e. We then find the k′ such that d(k′) is ‘closest’ to d̃ in

the most significant half of the bits. Simple procedures for doing this are

given in [44, 42]. In the more general setting where bit flips can occur in

both directions and with different probabilities, we proceed as follows. First,

we estimate parameters α = P(0 → 1) and β = P(1 → 0) from known bits.

This may be done, for example, by comparing the public key with its noisy

version from the degraded memory [42]. Second, we compute for each k′ an

approximate log-likelihood using the expression

n01 logα + n00 log(1− α) + n10 log β + n11 log(1− β)

49

where n01 is the number of positions in the most significant half where a 0

appears in d(k′) and a 1 appears in d̃, etc (see page 63 for an explanation

of this expression). Finally, we select the k′ that provides the highest log-

likelihood.

At the end of this procedure, with high probability we will have k′ = k

and we will have recovered the most significant half of the bits of d. Now we

wish to find kp and kq. By manipulating the above equations we see that

k2
p − (k(N − 1) + 1)kp − k ≡ 0 mod e.

If e is prime (as in the most common case e = 216 + 1) there will only be

two solutions to this equation. One will be kp and the other kq. If e is not

prime we will have to try all possible pairs of solutions in the remainder of the

algorithm.

Now, for integers x, we define τ(x) := max{i ∈ N : 2i | x}. Then it is

easy to see that 2τ(kp)+1 divides kp(p−1), 2τ(kq)+1 divides kq(q−1) and 2τ(k)+2

divides kφ(N). These facts, along with relations (3.2.2) – (3.2.4), allow us to

see that

dp ≡ e−1 mod 2τ(kp)+1

dq ≡ e−1 mod 2τ(kq)+1

d ≡ e−1 mod 2τ(k)+2.

This allows us to correct the least significant bits of d, dp and dq. Furthermore

we can calculate slice(0), where we define

slice(i) := (p[i], q[i], d[i+ τ(k)], dp[i+ τ(kp)], dq[i+ τ(kq)]),

with x[i] denoting the ith bit of the string x.

Now we are ready to explain the main idea behind the algorithm of [44].

Suppose we have a solution (p′, q′, d′, d′p, d
′
q) from slice(0) to slice(i− 1). Then

50

[44] uses a multivariate version of Hensel’s Lemma to show that the bits in-

volved in slice(i) must satisfy the following congruences:

p[i] + q[i] = (N − p′q′)[i] mod 2

d[i+ τ(k)] + p[i] + q[i] = (k(N + 1) + 1− k(p′ + q′)− ed′)[i+ τ(k)] mod 2

dp[i+ τ(kp)] + p[i] = (kp(p
′ − 1) + 1− ed′p)[i+ τ(kp)] mod 2

dq[i+ τ(kq)] + q[i] = (kq(q
′ − 1) + 1− ed′q)[i+ τ(kq)] mod 2.

Because we have four constraints on five unknowns, there are exactly two

possible solutions for slice(i), rather than thirty-two. This is then used in [44]

as the basis of building a search tree for the unknown private key bits. At each

node in the tree, representing a partial solution up to slice(i− 1), at most two

successor nodes are added by the above procedure. Moreover, since a random

fraction of the bits is assumed to be known with certainty, the tree can be

pruned of any partial solutions that are not consistent with these known bits.

Clearly, if the fraction of known bits is large enough, then the tree will be

highly pruned and the number of nodes in the tree will be small. The analysis

of [44] shows that if the fraction of known bits is at least 0.27, then the tree’s

size remains close to linear in n, the size of the RSA modulus, meaning that

an efficient algorithm results. A similar algorithm and analysis can be given

for the case where sk is of the form (p, q, d) or (p, q); in each case, there are

exactly two possible solutions for each slice(i).

Instead of doing Hensel lifting bit-by-bit and pruning on each bit, the

HMM algorithm performs t Hensel lifts for some parameter t, yielding, for each

surviving candidate solution on slice(0) to slice(i− 1), a tree of depth t whose

2t leaf nodes represent candidate solutions on slices slice(0) to slice(i+ t− 1),

involving 5t new bits (in slice(i) to slice(i + t − 1)). A solution is kept for

the next iteration if the Hamming distance between the 5t new bits and the

corresponding vector of noisy bits is less than some threshold C. Clearly the

51

HS algorithm could also be modified in this way, lifting t times and then doing

pruning based on matching known key bits. Alternatively, one can view the

HS algorithm as being the special case t = 1 of the HMM algorithm (with

a different pruning procedure). The HMM algorithm can also be adapted to

work with sk of the form (p, q, d) or (p, q). Henecka et al. [42] showed how to

select C and t so as to guarantee that their algorithm is efficient and produces

the correct solution with a reasonable success rate. In particular, they were

able to show that this is the case provided the probability of a bit flip δ is at

most 0.237.

Some additional remarks on these algorithms follow. Firstly, the HMM

algorithm is iterative: at each stage in the algorithm, candidate solutions on

t new slices are constructed. Then roughly n/2t iterations or stages of the

algorithm are needed, since all the quantities being recovered contain at most

n/2 bits. As pointed out in [42], only half this number of stages is required

since once we have the least significant half of the bits of the private key,

the entire private key can be recovered using a result of Coppersmith [20].

Secondly, the analysis in [42] is based on the heuristic that every candidate

solution on bit slices i to i + t − 1 ‘is an ensemble of t randomly chosen

bit slices’ when the starting solution on bit slices 0 to i − 1 is an incorrect

solution. Equivalently, it is assumed that each of the 2t vectors of 5t bits

s = (slice(i), . . . , slice(i+ t− 1)) representing all candidate solutions generated

from a single incorrect partial solution is uniformly distributed. This seems

to be well-supported by experimental evidence [44, 42]. Note also that, in

the analysis of [42], these 2t vectors do not need to be independent of one

another, though independence of the bits of any given candidate is needed

at one point in the analysis of [42] (in order to be able to apply Hoeffding’s

bound). Thirdly, at their conclusion, the HS and HMM algorithms output lists

of candidate solutions rather than a single solution, but it is easy to verify the

52

correctness of each candidate by using a trial encryption and decryption, say.

Thus the success rate of the algorithms is defined to be the probability that the

correct solution is on the output list. We adopt the same measure of success in

the remainder of this chapter. However, if the output list becomes too large,

then it is clear that the algorithm will be inefficient. Ultimately, we seek a

trade-off between the success and efficiency.

3.3 The Coding-Theoretic Viewpoint

In this section, we develop our coding-theoretic viewpoint on the HS and HMM

algorithms, using it to derive limits on the performance of these and similar

algorithms. In particular, we will explain how channel capacity plays a crucial

role in setting these limits.

We begin by defining the parameter m. We set m = 5 when sk =

(p, q, d, dp, dq), m = 3 when sk = (p, q, d), and m = 2 when sk = (p, q). Con-

sider a stage of the HMM algorithm, commencing with M partial solutions

that have survived the previous stage’s pruning step. The HMM algorithm

produces a total of M2t candidate solutions on mt bits, prior to pruning. We

label these s1, . . . , sM2t , let C denote the set of all M2t candidates, and use r

to denote the corresponding vector of mt noisy bits in sk.

Now we think of C as being a code. This code has rate R ≥ 1/m, but its

other standard parameters such as its minimum distance are unknown (and

immaterial to our analysis). The problem of recovering the correct candidate

sc given r is clearly just the problem of decoding this code. Now both the HS

and HMM algorithms have pruning steps that output lists of candidates for the

correct solution, with the list size being dynamic in both cases and depending

on the number of candidates surviving the relevant filtering process (based

53

either on exact matches for the HS algorithm or on Hamming distance for the

HMM algorithm). In this sense, the HS and HMM algorithms are performing

types of list decoding, an alternative to the usual unique decoding of codes

that was originally proposed by Elias [27].

To complete the picture, we need to discuss what error and channel models

are used in [44, 42], and what models are appropriate to the cold boot set-

ting. As noted in the introduction, [44] assumes that some bits of r are known

exactly, while no information at all is known about the other bits. This corre-

sponds to an erasure model for errors, and an erasure channel. Usually, this is

defined in terms of a parameter ρ representing the fraction of erasures. So 1−ρ

represents the fraction of known bits, a parameter denoted δ in [44]. On the

other hand, [42] assumes that all bits of r are obtained from the correct sc by

independent bit flipping with probability δ. In standard coding terminology,

we have a (memoryless) binary symmetric channel with crossover probability

δ. From the experimental data reported in [36, 37], an appropriate model for

the cold boot setting would be a binary non-symmetric channel with crossover

probabilities (α, β), with α being small and β being significantly larger in a

1 → 0 region (and vice-versa in a 0 → 1 region). In an idealised cold boot

case, we could assume α = 0, meaning that a 0 → 1 bit flip can never occur,

so that all 1 bits in r are known with certainty. This is better known as a

Z-channel in the coding-theoretic literature.

This viewpoint highlights the exact differences between the settings con-

sidered in [44, 42] and the true cold boot setting. It also reveals that, while

the HS algorithm can be applied for the Z-channel seen in the idealised cold

boot setting, there is no guarantee that the performance proven for it in [44]

for the erasure channel will transfer to the Z-channel. Moreover, one might

hope for substantial improvements to the HS algorithm if one could somehow

take into account the (partial) information known about 0 bits as well as the

54

exact information known about 1 bits.

3.3.1 The link to channel capacity

We can use this coding viewpoint to derive limits on the performance of any

procedure for selecting which candidate solutions to keep in the HS and HMM

algorithms. To see why, we recall that the converse to Shannon’s noisy-channel

coding theorem [74] states that no combination of code and decoding procedure

can jointly achieve arbitrarily reliable decoding when the code rate exceeds the

capacity of the channel. Our code rate is at least 1/m where m = 2, 3 or 5,

and the channel capacity can be calculated as a function of the channel model

and its parameters.

Two caveats must be made here. Firstly, capacity only puts limits on reli-

able decoding, and even decoding with low success probability is of interest in

cryptanalysis. Secondly, Shannon’s result applies only to decoding algorithms

that output a single codeword s, while both the HS and HMM algorithms

are permitted to output many candidates at each stage, with the final output

list only being required to contain the correct private key. Perhaps such list-

outputting algorithms can surpass the bounds imposed by Shannon’s theorem?

Indeed, the HS algorithm is guaranteed to output the correct key provided the

algorithm terminates. Similarly, the threshold C in the HMM algorithm can

always be set to a value that ensures that every candidate passes the test and

is kept for the next stage, thus guaranteeing that the algorithm is always suc-

cessful. However, neither of these variants would be efficient and in fact there

are analogues of the converse of Shannon’s noisy-channel coding theorem that

essentially show that capacity is the barrier for efficient list decoding too.

For the binary symmetric channel, it is shown in [33, Theorem 3.4] that if

C is any code of length n = mt and rate 1−H2(δ) + ε (for some ε > 0), then

55

there exists a word r is such that the Hamming sphere of radius δn around r

contains at least 2εn/2 codewords. Here H2(·) is the binary entropy function:

H2(x) = −x log2(x)− (1− x) log2(1− x),

and 1−H2(δ) is just the capacity of the channel. The proof also shows that,

over a random choice of r, the average number of codewords in a sphere of

radius δn around r is 2εn/2. Since the expected number of errors in r is δn,

we expect the correct codeword to be in this sphere, along with 2εn/2 other

codewords. This implies that, if the rate of the code exceeds the channel

capacity 1−H2(δ) by a constant amount ε, then C cannot be list decoded using

a polynomial-sized list, either in the worst case or on average, as n→∞.

An analogous result can be proved for the erasure channel, based on a

similarly simple counting argument as was used in the proof of [33, Theorem

3.4]: if ρ is the erasure probability and C is any code of rate 1 − ρ + ε (i.e. ε

above the erasure channel’s capacity), then it can be shown that on average

there will be 2εn codewords that differ from r in its erasure positions, assuming

r contains ρn erasure symbols. Hence, reliable list decoding for C cannot be

achieved using a polynomial-sized list. The justification for this is as follows.

Suppose C is a code of rate 1 − ρ + ε, where ρ is the erasure probability.

Furthermore, suppose that we receive a codeword r that contains ρn errors

(the expected number when degrading an n-bit string). There are 2ρn bit

strings of length n that could have degraded to r, since there are two options

(either a 1 or 0 bit) for each of the erasure symbols, of which there are ρn.

Denote this set of strings as B. We now need to calculate the expected size of

B ∩ C, the intersection of B and C. We have that

E(|B ∩ C|) =
|B||C|

2n
.

Now, we know that the rate of the code C is (log2|C|)/n, but we also know

56

that the rate is 1− ρ+ ε, by assumption. Hence,

|C| = 2n(1−ρ+ε).

Therefore, it follows that

E(|B ∩ C|) =
|B||C|

2n

=
2ρn · 2n(1−ρ+ε)

2n

= 2εn,

which verifies that there will be an exponential number of codewords to con-

sider when the code rate exceeds the channel capacity.

In the next sub-section, we will examine in more detail the implications of

these results on list decoding for the HS and HMM algorithms.

3.3.2 Implications of the capacity analysis

3.3.2.1 The binary symmetric channel and the HMM algorithm:

If the HMM algorithm is to have reasonable success probability in recovering

the key, then at each stage, it must set the threshold C in such a way that

all words si ∈ C with dH(si, r) ≈ δmt are accepted by the algorithm. This

is because mt bits are considered at each stage of the algorithm, and each

bit has a probability δ of flipping. Hence, δmt is the expected number of

errors occurring in r, and if the threshold is set below this value, then the

correct codeword is highly likely to be rejected by the algorithm. Recall that

we have rate R ≥ 1/m. Now suppose δ is such that R = 1 − H2(δ) + ε,

for some ε > 0, i.e. δ is chosen so that the code rate is just above capacity.

Then the argument above shows that there will be on average at least 2εmt/2

codewords on the output list at each stage. Thus, as soon as δ is such that

R exceeds capacity by a constant amount ε, then there must be a blow-up in

57

the algorithm’s output size at each stage, and the algorithm will be inefficient

asymptotically.

We write CBSC(δ) = 1 − H2(δ) for the capacity of the binary symmetric

channel. Table 3.1 shows that CBSC(δ) = 0.2 when δ = 0.243. Thus our

capacity analysis shows that the best error rate one could hope to deal with in

the HMM algorithm when m = 5 is δ = 0.243. Notice that this value is rather

close to, but slightly higher than, the corresponding value of 0.237 arising from

the analysis in [42]. The same is true for the other entries in this table. This

means that significantly improving the theoretical performance of the HMM

algorithm whilst keeping the algorithm efficient will not be possible. The

experimental work in [42] gives results up to a maximum δ of 0.20; compared

to the capacity bound of 0.243, it appears that there is some room for practical

improvement in the symmetric case. Similarly, when m = 2 and 3 the capacity

analysis suggests that the theoretical limit for δ is 0.11 and 0.174, respectively.

However, [42] only achieved experimental results for δ up to 0.08 and 0.14,

respectively.

3.3.2.2 The erasure channel and the HS algorithm:

As noted above, for the erasure channel, the capacity is 1 − ρ, where ρ is

the probability that a bit is erased by the channel. Note that the list output

by the HS algorithm is independent of whether pruning is done after each

lift or in one pass at the end (but obviously doing so on a lift-by-lift basis is

more efficient in terms of the total number of candidates examined). Then

considering the HS algorithm in its entirety (i.e. over n/2 Hensel lifts), we see

that it acts as nothing more than a list decoder for the erasure channel, with

the code C being the set of all 2n/2 words on mn/2 bits generated by doing

n/2 Hensel lifts without any pruning, and the received word r being the noisy

58

version of the entire private key sk.

Then our analysis above applies to show that the HS algorithm will produce

an exponentially large output list, and will therefore be inefficient, when the

rate (which in this case is exactly 1/m) exceeds the capacity 1−ρ. For m = 5,

we have rate 0.2 and so our analysis shows that the HS algorithm will produce

an exponentially large output list whenever ρ exceeds 0.8. Now [44] reports

good results (in the sense of having a reasonable running time) for ρ as high

as 0.76 (corresponding to Heninger and Shacham’s parameter δ, the fraction

of known bits in the private key, being equal to 0.24 and assuming that 1

and 0 bits are equiprobable in the private key), leaving a gap between the

experimental performance and the theoretical bound. Similar remarks apply

for the cases m = 2 and 3: for m = 2, the HS algorithm should be successful

for ρ = 0.43 (δ = 0.57), while the bound from capacity is 0.50; for m = 3,

we have ρ = 0.58 (δ = 0.42) and the capacity bound is 0.67. Hence, further

improvements for m = 2 and 3 are not ruled out by the capacity analysis.

3.3.2.3 The Z-channel:

We may also apply the above capacity analysis to the idealised cold boot

setting, where the crossover probabilities are of the form (0, β), assuming we

are in a 1 → 0 region. Here we have a Z-channel, whose capacity can be

written as:

CZ(β) = log2(1 + (1− β)β
β

1−β).

Solving the equation CZ(β) = R for R = 1/5, 1/3, 1/2 gives us the entries in

Table 3.2. We point out the large gap between these figures and what we would

expect to obtain both theoretically and experimentally if we were to directly

apply the HS algorithm to the idealised cold boot setting. For example, when

m = 5, the analysis of [44] suggests that key recovery should be successful

59

provided that β does not exceed 0.46 (the value of δ = 0.27 translates into a β

value of 0.46 via the formula δ = (1−β)/2 given in [44]), whereas the capacity

analysis suggests a maximum β value of 0.666. This illustrates that the HS

algorithm is not well-matched to the Z-channel: an algorithm to recover the

key should incorporate information from both 1 bits and possibly incorrect 0

bits, while the HS algorithm exploits only information obtained from the 1

bits known with certainty. Our new algorithm will substantially close the gap

between the HS algorithm and the capacity analysis.

3.3.2.4 The true cold boot setting:

For the true cold boot setting, we must consider the general case of a memory-

less, binary channel with crossover probabilities (α, β). We can calculate the

capacity C(α, β) of this channel and obtain the regions for which C(α, β) > R

for R = 1/5, 1/3, 1/2. The results are shown in Figure 3.1. Notice that

these plots include as special cases the data from Tables 3.1 and 3.2. If we set

α = 0.001, say, we see that the maximum achievable β is quite close to that in

the idealised cold boot setting. Note also that the plots are symmetric about

the lines y = x and y = 1 − x, reflecting the fact that capacity is preserved

under the transformations (α, β)→ (β, α) and (α, β)→ (1− α, 1− β).

However, we must caution that capacity-based bounds for list decoding

for the general binary non-symmetric channel (including the Z-channel) are

not known in the coding-theoretic literature. Strictly speaking, then, our

capacity analysis for this case does not bound the performance of key recovery

algorithms that are allowed to output many key candidates, but only the

limited class of algorithms that output a single key candidate. This said, our

capacity analysis sets a target for our new algorithm, which follows.

60

sk R δ
(p, q, d, dp, dq) 1/5 0.243

(p, q, d) 1/3 0.174
(p, q) 1/2 0.110

Table 3.1: Private key-type, equiv-
alent rate R, and maximum
crossover probability δ allowing
reliable key recovery, symmetric
channel case.

sk R β
(p, q, d, dp, dq) 1/5 0.666

(p, q, d) 1/3 0.486
(p, q) 1/2 0.304

Table 3.2: Private key-type, equiv-
alent rate R, and maximum error
probability β allowing reliable key
recovery, Z-channel case.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.1: Plots showing achievable (α, β) pairs for private keys containing 5
components (top left), 3 components (top right) and 2 components (bottom).
The vertical axis is β, the horizontal axis is α. Axes range from 0 to 1 at
intervals of 0.2. The shaded area in each case represents the unachievable
region.

61

3.4 The New Algorithm and Its Analysis

In this section we give our new algorithm for noisy RSA key recovery that

works for any memoryless, binary channel, as characterised by the cross-over

probabilities (α, β). Our algorithm has the same basic structure as the HMM

algorithm, but uses a different procedure to decide which candidate solutions

to retain and which to reject. Specifically, we use a likelihood measure in place

of Hamming distance.

Recall that we label the M2t candidate solutions on mt bits arising at some

stage in the HMM algorithm s1, . . . , sM2t , and let us name the corresponding

vector of mt noisy bits in the RSA private key r. Then the Maximum Likeli-

hood (ML) estimate for the correct candidate solution is simply:

arg max
1≤i≤M2t

P(si|r).

That is, the choice of i that maximises the conditional probability P(si|r).

Using Bayes’ theorem, this can be rewritten as:

arg max
1≤i≤M2t

P(r|si)P(si)

P(r)
.

Here, P(r) is a constant for a given set of bits r. Let us make the further

mild assumption that P(si) is also a constant, independent of i. Then the ML

estimate is obtained from

arg max
1≤i≤M2t

(P(r|si)) = arg max
1≤i≤M2t

(
(1− α)n

i
00αn

i
01(1− β)n

i
11βn

i
10

)
,

where α = P(0 → 1) and β = P(1 → 0) are the crossover probabilities, ni00

denotes the number of positions where si and r both have 0 bits, ni01 denotes

the number of positions where si has a 0 and r has a 1, and so on. Note that the

previous equation used the fact that bit flips are assumed to be independent,

so the expression is merely the product of the individual probabilities for each

bit of the sent codeword.

62

Algorithm 1 Pseudo-code for the maximum likelihood list decoding algo-
rithm for reconstructing RSA private keys.

Input: list← slice(0)
Output: list

for stage = 1 to n/2t do
– Replace each entry in list with a set of 2t candidate solutions obtained

by Hensel lifting
– Calculate the log-likelihood logP(r|si) for each entry si on list
– Keep the L entries in list having the highest log-likelihoods and delete

the remainder.

Equivalently, we may maximise the log of these probabilities, and so we

seek:

arg max
1≤i≤M2t

(logP(r|si))

= arg max
1≤i≤M2t

(
ni00 log(1− α) + ni01 logα + ni11 log(1− β) + ni10 log β

)
,

which provides us with a simpler form for computational purposes.

Then our proposed algorithm is simply this: select at each stage from the

candidates generated by Hensel lifting those L candidates si that produce the

highest values of the log-likelihood logP(r|si) as in the equation above. These

candidates are then passed to the next stage. So at each stage, except the

first, we will generate a total of L2t candidates and keep the best L. We may

then test each entry in the final list by trial encryption and decryption to

recover a single candidate for the private key. Pseudo-code for this algorithm

is shown in Algorithm 1. Note that here we assume there are n/2t stages;

this number can be halved as in the HS and HMM algorithms by using the

previously-mentioned methods of Coppersmith.

Our algorithm has fixed running time O(L2t) for each of the n/2t stages,

and fixed memory consumption O(L2t). This is a consequence of choosing to

keep the L best candidates at each stage in place of all candidates surpassing

some threshold as in the HMM algorithm. In practice, we do not generate all

63

L2t candidates and then filter. Instead, we generate the candidates using a

depth-first search approach, implemented using a stack. The stack is initialised

with the L starting candidates at each stage. We then filter each candidate

as it is produced, adding it to the list only if its log-likelihood is superior

to the worst entry currently on the list (expunging the worst entry if this is

the case). This radically reduces the memory consumption of the algorithm

for large t, from O(L2t) down to O(L + t). The main overhead is then the

Hensel lifting to generate candidate solutions; the subsequent computation of

log-likelihoods for each candidate is relatively cheap. Notice that if α = 0

(as in the Z-channel for an idealised cold boot setting), then any instance of

a 0 → 1 bit flip is very heavily penalised by the log-likelihood statistic – it

adds a −∞ term to logP(r|si). In practice, for α = 0, we just reject any

solution containing a 0→ 1 transition since we know that such an occurrence

is impossible. For the erasure channel, we reject any candidate solution that

does not match r in the known bits.

A special case of our algorithm arises when L = 1 and corresponds to

just keeping the single ML candidate at each stage. This algorithm then

corresponds to Maximum Likelihood (ML) decoding. However, at a given

stage, it is likely that the correct solution will be rejected because an incorrect

solution happens to have the highest likelihood. This is especially so in view

of how similar some candidates will be to the correct solution. Therefore, ML

decoding is likely to go awry at some stage of the algorithm.

This approach is broadly comparable to that taken in [42]: whereas He-

necka et al. use a threshold to accept or reject solutions and thus also keep

lists of ‘likely’ partial solutions, we avoid having to set a threshold and instead

simply keep a list of the best L solutions according to our likelihood statistic.

We reiterate that the approach of [42] is formulated only in a case equivalent

to that of a binary symmetric channel, where the crossover probabilities are

64

equal, while our modified algorithm can handle this case, the Z-channel case

implicit in [44], and a realistic model of the cold boot setting where bit flips in

both directions are possible but may have substantially different probabilities.

3.4.1 Asymptotic analysis of our algorithm

We next give two analyses of our algorithm, using tools from coding theory

to assist us. The first analysis uses a strong randomness assumption, that the

L2t candidates si generated at each stage of Algorithm 1 are independent and

uniformly random mt-bit vectors. It shows that, asymptotically, our algorithm

will be successful in recovering the RSA private key provided 1/m is less than

the capacity of the memoryless, binary channel with crossover probabilities

(α, β). Unfortunately, it is easy to see that our strong randomness assumption

is in fact not true for the codes C generated in our algorithm, because of the

iterative nature of the Hensel lifting. The second analysis attempts to prove

a similar result for the symmetric case under weaker (and therefore more

realistic) randomness assumptions, but is unfortunately flawed.

3.4.1.1 First analysis:

The first analysis is very simple and is based on the following:

Strong randomness assumption: The L2t candidates sc generated at each

stage of Algorithm 1 are independent and uniformly random mt-bit vectors.

Our first analysis then proceeds as follows. As before we consider the set

C = {si : 1 ≤ i ≤ L2t} of candidate solutions at a given stage as a code

of length mt and rate (t + log2 L)/mt. One codeword sc (corresponding to

the correct private key bits) is selected and sent over a memoryless, binary

65

channel with crossover probabilities (α, β) to produce the received vector r.

The problem of recovering the correct sent codeword, given r, is the problem

of decoding this code. Under our strong randomness assumption, the set of

L2t candidates at each stage is a random code. Now Shannon’s noisy-channel

coding theorem [74] states that, as mt → ∞, the use of random codes in

combination with Maximum Likelihood (ML) decoding achieves arbitrarily

small decoding error probability, provided that the code rate stays below the

capacity of the channel.3 For fixed L and m, for our code, this holds provided

1/m is strictly less than the capacity as t→∞. Our algorithm does not quite

implement ML decoding at each stage, but it always includes the ML candidate

in its output list at each stage, since it selects the L most likely candidates.

Hence, at each stage, it will be successful in including the correct candidate

sc in its output list provided that ML decoding is also successful. Finally the

arbitrarily small error probability per stage guaranteed by Shannon’s theorem

translates into a success rate at each stage that can be made arbitrarily close

to 1 as t → ∞. Since the algorithm runs over n/2t stages, by setting t

appropriately as a function of n, we can achieve an overall success rate that is

also arbitrarily close to 1.

Summarising, the above analysis shows that, asymptotically, our algorithm

will be successful in recovering the RSA private key provided 1/m is less than

the capacity of the memoryless, binary channel with crossover probabilities

(α, β). This concludes the first analysis.

Unfortunately, it is easy to see that our strong randomness assumption

is in fact not true for the codes C generated in our algorithm: because of

the iterative nature of the Hensel lifting, the 2t candidates arising from one

starting point are arranged in a tree of depth t, with adjacent leaves in the

3The usual proof of Shannon’s theorem does not employ ML decoding but instead uses a
less powerful decoding algorithm based on jointly typical sequences. However ML decoding
will do at least as well as any alternative procedure.

66

tree agreeing in the first m(t − 1) bits, groups of 4 leaves agreeing in the

first m(t − 2) bits, and so on. Nevertheless, this strong assumption allows

a very simple analysis of our algorithm, and the bounds that it yields are

well-supported by our experiments to follow.

3.4.1.2 Second analysis:

Now we attempt to give a rigorous analysis of our algorithm under reasonable

assumptions in the symmetric case (where α = β = δ).

At each stage the algorithm generates a forest of L trees (one for each

of the L surviving candidates), which we denote T0, . . . , TL−1, with each tree

Ti being of depth t and having 2t leaves (see Figure 3.2 for a visualisation).

The internal nodes in each tree represent partial candidate solutions generated

during the Hensel lifting and each leaf represents a candidate solution on mt

bits.

67

T0
�
�
�
��

Q
Q
Q
QQ

��
�
��

HHH
HH

��
�
��

HHH
HH

s1

s2

s3

s4

T1
�
�
�
��

Q
Q
Q
QQ

��
�
��

HHH
HH

��
�
��

H
HHHH

s5

s6

s7

s8

T2
�
�
�
��

Q
Q
Q
QQ

��
�
��

HHH
HH

��
��
�

H
HHHH

s9

s10

s11

s12

Figure 3.2: Example of the forest of candidate solutions with L = 3 and t = 2.

Now consider two leaves in some Ti that have a common ancestor node

at depth `, and no common ancestor at any depth `′ > ` (e.g. s1 and s2 of

Figure 3.2 have a common ancestor at depth ` = 1, whilst s1 and s3 have a

common ancestor at depth ` = 0). These two leaves are equal in their first

m` bits, with the next m bits being generated as two distinct solutions to a

system of m − 1 linear equations. On the other hand, the last m(t − ` − 1)

bits of two such candidates are generated starting from distinct solutions on

68

m bits at level ` + 1 of the tree. Informally, the closer together in a tree two

leaves are, the more correlated their bits are. We now make the following

assumptions about the candidate solution bits at the leaves of these trees:

Weak randomness assumptions: At any stage in the algorithm:

• The bits of all candidate solutions are uniformly distributed over {0, 1}.

• For some k ≥ 1, leaves in the same tree (Ti) are independent on the last

m(t− `−k) bits, provided the leaves have no common ancestor at depth

greater than `.

• The bits at leaves in distinct trees are independent of each other across

all mt bits.

In the above assumptions, k ≥ 1 is a parameter which determines the

number of fully independent bits in leaves of the tree. From Equations (3.2.2)

to (3.2.4) it is clear that the assumption certainly does not hold for k = 1

for any RSA moduli; but experimental evidence indicates that k = 5 usually

suffices to make the bits approximately independent (for smaller k, there are

often certain pairs of bit slices that never appear). The question of whether it

is possible to prove independence (or some approximation to it) for sufficiently

large k is open.

To attempt to bound the success rate of our algorithm under these as-

sumptions, we adapt a standard result on list decoding of random codes, see

for example [28, 33]. Let C denote the code of L2t candidate solutions on mt

bits at a given stage and let r denote the noisy RSA private key bits. In the

symmetric case, the log likelihood expression for logP(r|si) simplifies to

(ni00 + ni11) log(1− δ) + (ni01 + ni10) log δ

69

where now ni01+ni10 = dH(r, si) and ni00+ni11 = mt−dH(r, si). Thus maximising

likelihood is equivalent to minimising Hamming distance and we may assume

that our algorithm outputs the L codewords from C that are closest to r in

the Hamming metric.

We proposed the following theorem in [64], but we have since discovered

that it is inapplicable to our algorithm. We will first see the proof, and then

we will explain why we cannot use this theorem to bound the success of our

algorithm.

Theorem 3.4.1. Let c > 0 be a constant, and write R = 1/m. Suppose δ is

such that

R ≤ 1− (1− c)H2

(
δ

1− c

)
−
(
c+

1

L

)
Then with notation as above, and under our weak randomness assumptions,

we have:

P(r, S ⊂ C, |S| = L+ 1 : dH(r, s) ≤ δmt ∀s ∈ S) ≤ LL+12−mt/L +
L+ 1

2bctc−k+1
.

In particular, for fixed c > 0, k and L, the above probability tends to 0 as

t→∞.

The theorem merits some interpretation. The standard bound on list de-

coding for random codes over the symmetric channel [28, 33] states that, pro-

vided R ≤ 1 − H2(δ) − 1/L, then a rate R random code of length n is such

that the probability

P(r, S ⊂ C, |S| = L+ 1 : dH(r, s) ≤ δn ∀s ∈ S)

tends to zero as n→∞. Here, 1−H2(δ) is just the classical Shannon capacity

of the channel. One interprets this result as saying that list decoding for a list

of length L will be successful provided the rate is not too close to capacity.

Our theorem shows that, for a random subset S of size L+ 1, the same is true

70

for our code C, up to a small defect induced by c. Since c > 0 is arbitrary, we

obtain, qualitatively, a bound of the same strength in the asymptotic setting,

i.e. as t→∞.

Finally, we note that the argument we use in the proof of Theorem 3.4.1

is specific to the symmetric case.

Proof. (of Theorem 3.4.1) For S ⊂ C with |S| = L+ 1, we say that S is bad if

any 2 words in S correspond to leaves from the same tree having a common

ancestor at depth greater than or equal to `c := bctc − k. Otherwise, we say

that S is good. Note that if S is bad, then some pair of words in S will have

their first m`c bits in common, while if S is good, then all pairs of words in

S will have (at least) their last m(t− `c − k) bits independent and uniformly

random.

Now, over a uniformly random choice of S ′ ⊂ C of size 2, we have

P(S ′ bad) ≤ 2t−`c − 1

L2t
≤ 1

L2lc

since there are L2t leaves in total and, given a choice of a first leaf, there are

2t−`c − 1 choices of other leaves below the first leaf’s ancestor node at depth

`c. Applying a union bound over pairs of words from S of size L+ 1, we get:

P(S bad) ≤
(
L+ 1

2

)
· 1

L2`c
≤ L+ 1

2`c+1
.

Notice that, for our choice of `c, P(S bad) becomes arbitrarily small as t→∞

for fixed L.

Let E(r, S) denote the event that dH(r, s) ≤ δmt for all s ∈ S. Now, to

bound the probability of E(r, S) over random choices of r, S, we condition on

S being good or bad:

P(E(r, S)) = P(E(r, S)|S good) · P(S good) + P(E(r, S)|S bad) · P(S bad)

≤ P(E(r, S)|S good) + P(S bad).

71

Here, we already have a bound for the second term which tends to 0 for fixed

L as t→∞. We proceed to bound the first term. Now for fixed r and good S,

we know that all words in S are uniformly and independently distributed on

their last m(t−`c−k) bits. Moreover, r is randomly distributed. We will focus

the remainder of the proof on these last m(t− `c − k) bits. If dH(r, s) ≤ δmt

then the Hamming distance is certainly less than or equal to δmt for the last

m(t− `c − k) bits. Hence, when S is good, for each s ∈ S, we have:

P(dH(r, s) ≤ δmt) ≤ Vol(δmt,m(t− `c − k))

2m(t−`c−k)

where Vol(a, b) denotes the volume of a Hamming ball of radius a in b-

dimensional Hamming space. Approximating `c by ct − k, and using the

standard volume bound

Vol(δb, b) ≤ 2bH2(δ),

we obtain, after some simplification:

P(dH(r, s) ≤ δmt) ≤ 2(mt(1−c))H2(δ/(1−c))

2mt(1−c)
.

Now we use a union bound, noting that there are 2mt choices for r, at most

(L2t)
L+1

choices for S of size L+ 1, and everything is independent on the last

m(t− `c − k) bits, to obtain:

P(E(r, S)|S good) ≤ 2mt · (L2t)
L+1 ·

(
2(mt(1−c))H2(δ/(1−c))

2mt(1−c)

)L+1

= LL+1(2mt)1+(1/m)(L+1)+(1−c)(L+1)H2(δ/(1−c))−(L+1)(1−c).

Now we select parameters so that the exponent of 2mt here simplifies. This

exponent is

1 +
1

m
(L+ 1) + (1− c)(L+ 1)H2

(
δ

1− c

)
− (L+ 1)(1− c) (3.4.1)

= 1 + (L+ 1)

[
1

m
+ (1− c)H2

(
δ

1− c

)
− (1− c)

]
. (3.4.2)

Suppose we set δ such that

1

m
= 1− (1− c)H2

(
δ

1− c

)
−
(
c+

1

L

)
,

72

(such a value δ will always exist provided c is sufficiently small and m = 2, 3

or 5). After some manipulation, we find that for this carefully chosen value of

δ, the exponent of 2mt in (3.4.2) simplifies to −1/L, and hence, for this value

of δ, we have:

P(E(r, S)|S good) ≤ LL+1(2mt)−1/L.

Moreover, for sufficiently small c, the above bound also holds for every δ such

that
1

m
≤ 1− (1− c)H2

(
δ

1− c

)
− (c+

1

L
). (3.4.3)

This follows easily from noting that 1−(1−c)H2

(
δ

1−c

)
is a decreasing function

of δ for 0 ≤ δ ≤ (1− c)/2.

Putting everything together, we have that, provided δ satisfies (3.4.3),

P(E(r, S)) ≤ LL+12−mt/L +
L+ 1

2bctc−k+1

which concludes the proof.

We originally believed that a sufficient condition for our algorithm to be

successful on average is that

P(r, S ⊂ C, |S| = L+ 1 : dH(r, s) ≤ δmt ∀s ∈ S)

should be sufficiently small over random choices of r and subset S of C with

|S| = L+1. For, if this is the case, then, given that r will have on average δmt

bits in error compared to the correct codeword sc, this bound on probability

dictates that there is a small chance that L wrong codewords will be close

enough to r that they are all preferred over sc in the list output by the algo-

rithm. Hence the algorithm is highly likely to output the correct sc in its list

when this probability is small. However, we have since realised that this line

of reasoning is incorrect. Standard list-decoding results usually assume the

existence of a random code, and in such scenarios every set of solutions has

73

an equal distribution. Hence, to bound the probability of a set of size L + 1

being in a particular Hamming ball, it is sufficient to bound the probability

of a random set of size L + 1 being in this Hamming ball, and then use a

union bound over all possible sets of size L + 1. Unfortunately, in our sce-

nario the code is not random, and hence such an approach does not bound the

success of our algorithm. In particular, whilst the probability may be small

over a random choice of set S, our algorithm considers all possible sets S of

size L + 1, which is where the reasoning breaks down. Consequently, we are

unable to provide a rigorous success analysis of our algorithm even in the case

of symmetric errors. In addition, based on our analysis of the literature, the

state-of-the-art appears to be that no random coding bounds are known for

list decoding for asymmetric channels. However, we note that the motivation

for this chapter is the study of practical cold boot attacks, and we will shortly

see that our algorithm is very successful in practice.

3.5 Experimental Results

For our experiments using our algorithm, we used a multi-threaded ‘C’ imple-

mentation and Shoup’s NTL library for large integer arithmetic. The stack-

based, depth-first approach to generating trees of candidates greatly reduced

the amount of memory consumed by the algorithm. Because of certain thread-

safety issues in NTL, we had to introduce some artificial delays into our code,

making all of our running times higher than they could otherwise have been.

We ran our code on an 8x virtual CPU hosted on a 2x Intel Xeon X5650,

clocked at 2.67 GHz (IBM BladeCenter HS22V). Except where noted below,

our experiments were run for 100 trials using a randomly-generated RSA key

for each trial. Also except where noted, our results refer to private keys of the

form sk = (p, q, d, dp, dq) and are all for 1024-bit RSA moduli.

74

δ 0.08 0.10 0.12 0.14 0.16 0.18 0.2 0.22
t 6 8 10 12 16 18 18 18
L 4 4 8 32 32 32 32 64

Suc. 0.982 0.991 0.985 0.978 0.82 0.61 0.19 0.03
T (ms) 95 172 211 1852 35062 161512 160325 325193

Table 3.3: Success probabilities for the symmetric case ((α, β) = (δ, δ)). Ex-
periments with δ ≤ 0.14 are based on 500 trials. Capacity bound on δ is
0.243.

3.5.1 The symmetric and cold boot channels

We have conducted extensive experiments using our algorithm for the sym-

metric case considered in [42]. Our results are shown in Table 3.3. For small

values of δ, we achieve a success rate of 1 or very close to 1 using only moderate

amounts of computation. By contrast the HMM algorithm does not achieve

such high success rate for small δ. This cannot be solved by increasing t in the

HMM algorithm because this leads to a blow-up in running time. For larger

δ, the success rate of our algorithm is comparable to that of [42] for similar

values of t. We were able to obtain a non-zero success rate for δ = 0.22, while

[42] only reached δ = 0.20. The bound from capacity is 0.243.

For the idealised cold boot setting where α = 0, our experimental results

are shown in Table 3.4. Recall that the HS algorithm can also be applied to

this case. Translating the fraction of known bits (1− ρ) to the idealised cold

boot setting, and assuming the HS algorithm works just as well when only

1 bits are known (instead of a mixture of 0 and 1 bits), the maximum value

of β that could be handled by the HS algorithm theoretically would be 0.46

(though results reported in [44] would allow β as high as 0.52). Our algorithm

still has a reasonable success rate for β as high as 0.6 and non-zero success rate

even for β = 0.63, beating the HS algorithm by some margin. Our capacity

75

ρ 0.2 0.3 0.4 0.5 0.55 0.6 0.62 0.63
t 6 8 12 18 18 18 18 18
L 4 8 8 16 16 16 64 64

Suc. 0.99 0.95 0.94 0.80 0.40 0.14 0.05 0.01
T (ms) 90 129 1135 154562 155328 156515 288531 282957

Table 3.4: Success probabilities for the idealised cold boot case (α = 0).
Capacity bound on β is 0.666.

β 0.1 0.2 0.3 0.4 0.5 0.55 0.6 0.61
t 6 6 8 12 16 18 18 18
L 4 4 8 8 16 32 64 64

Suc. 1 0.99 0.99 0.98 0.61 0.33 0.11 0.04
T (ms) 71 73 281 2385 22316 171356 333614 339198

Table 3.5: Success probabilities for the true cold boot case with α = 0.001.
Capacity bound on β is 0.658.

analysis for this case suggests that the maximum value of β will be 0.666.

Thus our algorithm is operating within 5% of capacity here.

We present experimental results for the true cold boot setting in Table 3.5.

Given α = 0.001, it follows from our asymptotic analysis that the theoretical

maximum value of β which can be handled by our algorithms is 0.658. Our

β 0.1 0.15 0.20 0.25 0.30 0.35 0.40 0.43
t 6 10 14 16 18 18 18 18
L 4 16 16 16 16 16 32 64

Suc. 1 0.99 0.97 0.95 0.60 0.58 0.11 0.05
T (ms) 62 402 3056 12135 62537 62139 121358 120985

Table 3.6: Success probabilities for the true cold boot case with α = 0.001
and sk = (p, q, d). Capacity bound on β is 0.479.

76

β 0.05 0.1 0.15 0.20 0.26
t 10 12 16 18 18
L 8 8 16 32 64

Suc. 0.96 0.80 0.65 0.31 0.08
T (ms) 318 629 6451 61213 131600

Table 3.7: Success probabilities for the true cold boot case with α = 0.001
and sk = (p, q). Capacity bound on β is 0.298.

algorithm still has a non-zero success rate for β as high as 0.61. We reiter-

ate that this true cold boot setting is not handled by any of the algorithms

previously reported in the literature.

Furthermore, for private keys of the form sk = (p, q, d) and sk = (p, q), our

algorithm performs very well in the true cold boot setting. For sk = (p, q, d),

the maximum value of β suggested by our capacity analysis is 0.479. With

β = 0.4, t = 20 and L = 16 our success rate is 0.11 and we have non-zero

success rate even with β = 0.43. Similarly, when sk = (p, q) our capacity

analysis shows that the maximum β is 0.298. When β = 0.2, t = 18 and

L = 16 we still have a success rate of 0.31, but we can even recover keys with

non-zero success rate for β as high as 0.26. Tables 3.6 and 3.7 show our results

for these cases.

3.6 Conclusions

In this chapter we have introduced a coding-theoretic viewpoint to the problem

of recovering an RSA private key from a noisy version of the key. This provides

new insights on the HS [44] and HMM [42] algorithms and leads to a new

algorithm which is efficiently implementable and enjoys good performance at

high error rates. In particular, it is the first algorithm that works for the

77

true cold boot case, where both P(0 → 1) and P(1 → 0) are non-zero. Open

problems include developing a rigorous asymptotic analysis of our algorithm.

Another open problem is to provide a threshold-based approach (à la [42]) for

the case of non-symmetric errors (P(0 → 1) 6= P(1 → 0)). This is a problem

we will address in the next chapter.

78

Chapter 4

Cold Boot Attacks in the
Discrete Logarithm Setting

In this chapter we will discuss cold boot attacks in the discrete logarithm

setting. For an introduction to the nature of cold boot attacks, please refer

to Section 3.1. We begin by discussing prior work in this area (the LKBC

algorithm [55]), then we proceed to discuss a statistical test that we will use

within our key-recovery algorithms. Once armed with this statistical test

we will study certain elliptic curve discrete logarithm implementations, and

we will study how these implementations may be vulnerable to cold boot

attacks. Finally, we provide details of some experimental results to support

the theoretical analysis of our algorithms.

4.1 The LKBC Algorithm and Its Limitations

Published cold boot analyses almost ubiquitously assume that attackers can

obtain a (noisy) copy of a private key that has some form of redundancy. For

instance, in the previous chapter we discussed how the PKCS#1 standard

advises storing the additional values p, q, dp, dq, and q−1
p as part of the RSA

private key to increase the efficiency of decryption and signing operations. It

79

is this redundancy that was exploited by previous authors to recover private

keys even when they were subjected to very high noise levels (since more

redundancy will allow the attacker to deal with higher noise levels). As far as

we are aware, there has only been one paper (by Lee et al. [55]) that discussed

the possibility of key recovery in the discrete logarithm setting. Their attack

model assumes that an attacker only has access to the public key gx and a

decayed version of the private key x. Consequently, given that there is no

further redundancy, their proposed algorithm would be unable to efficiently

recover keys that were affected by particularly high noise levels. There are

several more drawbacks to the analysis of [55], which we will discuss after

giving a brief summary of the LKBC algorithm.

At the heart of the LKBC is a technique courtesy of Heiman [41]. Suppose

we have an (unknown) n-bit private key denoted x, and the public key is

y = gx. Furthermore, suppose we know the Hamming weight of x is t (i.e. the

number of 1 bits in the binary representation of x is t). Heiman proposed

splitting the exponent as x = x1 + x2, where x1 has Hamming weight t1, and

x2 has Hamming weight t2 (with t = t1 + t2). Heiman then proposed cycling

through pairs of possible x1 and x2, and computing gx1 and yg−x2 for each

pair. When a pair (x1, x2) is found such that gx1 = yg−x2 , then we must

have x = x1 + x2, which reveals the private key. The LKBC makes use of

this algorithm (with several slight modifications that are irrelevant for our

discussion). The authors of the LKBC algorithm assume that an adversary

obtains the noisy private key (denoted x′) and the adversary knows an upper

bound for the number of bits that have flipped, say k. For each value of

k′ ≤ k, the LKBC algorithm uses the modified Heiman algorithm and cycles

through possible values x1 and x2 such that the Hamming distance between

x1 + x2 and x′ is k′. When a pair (x1, x2) is found such that gx1 = yg−x2 ,

the algorithm outputs x1 + x2. When pairs x1 and x2 have been exhausted,

80

the LKBC algorithm increments k′ by one. If the algorithm does not output

anything for k′ ≤ k, then the algorithm fails. From this brief discussion, it

is clear to see that the LKBC algorithm is not very sophisticated and various

improvements should be possible.

A particular drawback of the LKBC algorithm is the assumption that an

adversary knows an upper bound for the number of errors in the private key.

Such an assumption is far too strong. If δ is the probability that an individual

bit flips, then an adversary may compute an upper bound for the noise rate

δmax (the computation of the upper bound was considered in [42]1), but this is

not the same as computing an upper bound for the number of bits that have

flipped. The only upper bound that can be known is the trivial upper bound:

the number of bits in the key. Lee et al. used the näıve method of assuming

that the upper bound on the number of flipped bits is bn · δmaxc, where n is

the number of bits in the private key x. Whilst this may suffice in the ma-

jority of cases, there will clearly be occasions when the total number of errors

exceeds this value. If this happens, the LKBC algorithm will fail, but there is

no probability analysis discussing how often this happens. Furthermore, the

algorithm of LKBC does not explicitly consider the true cold boot scenario.

In a one-to-zero region, the probability of a 1 → 0 flip is much higher than a

0 → 1 flip. The LKBC algorithm implicitly works in this scenario since they

assume an upper bound on the noise rate. However, if the probabilities of

bit flips are different for zeros and ones, then perhaps the algorithm could be

enhanced by employing an algorithm that takes this discrepancy into account.

LKBC do attempt to model the cold boot scenario by providing an analysis in

the case of unidirectional errors. That is, in a 1→ 0 region, they assume that

0 bits do not flip. Unfortunately, this is not a true reflection of what occurs

1This computation was specifically for RSA keys, but a similar result will hold for any
algorithm in which an adversary has access to the noisy and original versions of the public
key.

81

in a cold boot attack. In a 1→ 0 region, a 0 bit will flip with an approximate

probability of 0.001. If just a single 0 bit flips to a 1, the unidirectional LKBC

algorithm will fail. If a 160-bit discrete logarithm key is chosen uniformly and

zeros degrade with probability 0.001, then at least one 0 will flip (and the

LKBC algorithm will instantly fail) approximately 8% of the time. Further-

more, for larger key sizes this probability of failure obviously increases, so the

LKBC analysis certainly does not naturally extend to these cases.

4.2 Our Contributions

Given the above discussion on the results of [55], it is natural to ask whether, in

practical discrete logarithm-based software implementations, there are any pri-

vate key representations that contain redundancy that can be used to improve

cold boot key-recovery algorithms. It turns out that such cases are common,

and they will form the basis of this chapter. The scenarios we consider are

taken from two wide-spread ECC implementations found in TLS libraries: the

windowed non-adjacent form (wNAF) representation used in OpenSSL, and

the PolarSSL comb-based approach. By exploiting redundancies in the respec-

tive in-memory representations of private keys we are able to improve upon

the results from [55] by providing an algorithm that is applicable to the true

cold boot scenario; something that cannot be said for the LKBC algorithm.

Our techniques are based on a novel statistical test that allows a trade-off

between success rate and execution speed. We stress that this test is not only

applicable to the discrete logarithm setting, but is applicable to all types of

key. In particular, it complements the framework of the previous chapter for

the RSA setting.

Recall that in the previous chapter we proposed using an ML approach

82

(see Algorithm 1), which has a bounded running-time, but no lower bound

on the success rate of the algorithm is provided. In contrast, for our discrete

logarithm algorithm we succeed in lower-bounding the success rate. Further-

more, the statistical test used within our algorithms may also be applied to

the RSA setting to obtain a threshold-based approach (à la [42]), which comes

with a theoretical lower bound on success probability. Although we provide

no bound on the running-time of our primary algorithm, we note that var-

ious modifications allow an attacker to seek his own compromise between a

preferred success rate and a desired running-time.

4.3 Multinomial Distributions and the Multi-

nomial Test

The general strategy behind key-recovery procedures for cold boot attacks

is to only consider small parts of the targeted key at a time. For instance,

RSA-based reconstruction procedures usually start with the least significant

bits (LSBs) such as we did in the previous chapter, along with the following

works: [42, 44, 51, 52, 55, 73]. However, it is also possible to begin with the

most significant bits (MSB) [72]. It is typical to use an iterative process to

guess a couple of bits of the key and assess the plausibility of the guess on the

basis of both a model of the decay process and the available redundancy in the

encoding. Previous cold boot papers have proposed various methods by which

the plausibility of the guess is ascertained. In Chapter 3 we used a maximum-

likelihood estimate when deciding whether to discard a candidate solution, and

in [42] a threshold-based approach was used. The theoretical success rate of

the algorithm is usually based on assumptions that are typically only true for

a specific type of key being considered (i.e. RSA or AES), and are possibly not

easy to generalise. In this section we propose a general statistical test that can

83

be used in various scenarios. The test is based on multinomial distributions

and works well for scenarios where the distribution of private key bits is known

(such as RSA, where it is generally assumed key bits are uniformly random),

but can also be modified to work even when the attacker knows nothing about

the distribution of the private key.

We will now study the multinomial distribution and its associated test.

Multinomial distributions are a generalisation of the binomial distribution.

The distribution has k mutually exclusive events with probabilities

p = (p1, . . . , pk), where
∑k

i=1 pi = 1 and for all i we have pi 6= 0. If there

are n trials, we let the random variables X1, . . . , Xk denote the number of

times the ith event occurs and say that X = (X1, . . . , Xk) follows a multino-

mial distribution with parameters n and p. Given a set of observed values,

x = (x1, . . . , xk), we can use a multinomial test to see if these values are con-

sistent with the probability vector p (which is the null hypothesis, denoted

H0). The alternative hypothesis (denoted H1) for the probability vector is

π = (x1/n, . . . , xk/n), where each component is the maximum-likelihood es-

timate for each probability. The two hypotheses can be compared via the

calculation −2
∑k

i=1 xi ln(pi/πi), which is called the multinomial test statistic.

When the null hypothesis is true, the distribution of this statistic converges

to the chi-squared distribution with k − 1 degrees of freedom as n→∞ [54].

We will now see how the multinomial test statistic may be applied in cold

boot key recovery algorithms. Let si denote a (partial) candidate solution for

the private key (including the redundant representation) across a section of

bits. When comparing a partial candidate solution si to the noisy information

r we define ni01 to be the number of positions at which there is a 0 in the can-

didate solution and a 1 in the corresponding position in the noisy information

r. We define ni00, ni10, and ni11 correspondingly, so n = n00 + n01 + n11 + n10.

Crucially, this count only considers the newly-guessed bits generated at the

84

relevant phase of the algorithm, while all previous bits are ignored. It is clear

that these counts follow a multinomial distribution. Let α := P(0→ 1) denote

the probability that a 0 bit flips to a 1 in the execution of the cold boot attack,

and let β := P(1 → 0) denote the probability that a 1 flips to a 0. For the

correct candidate solution, sc, the we know that (nc00, n
c
01, n

c
11, n

c
10) follows a

multinomial distribution with p = (p0(1 − α), p0α, p1(1 − β), p1β), where pb,

b ∈ {0, 1}, is the probability of a b-bit appearing in the correct candidate so-

lution. We therefore set this to be the null hypothesis (denoted H0). Notice

that we require α, β 6= 0 since each component of the probability vector must

be non-zero. The test may be modified to cover the case when α or β is zero,

but we defer this discussion to the Section 4.7. For each candidate solution we

could use the previous set of probabilities as the null hypothesis of the multi-

nomial test. We would like to test whether our guessed candidate solution is

consistent with this probability vector. The alternative hypothesis is that the

set of probabilities for the four bit-pairs is equal to the maximum-likelihood

estimates for each category. That is, H1 : p = (ni00/n, n
i
01/n, n

i
11/n, n

i
10/n) for

each candidate i. We define our first statistical test, which we call Correlate′,

to be

Correlate′(si, r) := −2ni00 ln

(
np0(1− α)

ni00

)
− 2ni01 ln

(
np0α

ni01

)
−2ni11 ln

(
np1(1− β)

ni11

)
− 2ni10 ln

(
np1β

ni10

)
,(4.3.1)

where the values in brackets are the null hypothesis values divided by the

alternative hypothesis values, and we define n log(1/n) = 0 if n = 0. Correlate′

outputs a numerical value (≥ 0) for each candidate. We now need to discuss

when we consider this test to pass or fail. It is well known that when the null

hypothesis is correct the distribution of the right-hand side of Equation (4.3.1)

converges to a chi-squared distribution with k−1 degrees of freedom as n→∞.

In our analysis we have k = 4, hence the test statistic converges to a chi-

squared distribution with three degrees of freedom. We can therefore set a

85

threshold C such that any candidate whose test statistic is less than C is

retained, otherwise the candidate is discarded. We therefore define

CorrelateC(si, r) = pass ⇔ Correlate′(si, r) < C ,

where C would be an additional (user-chosen) input to the algorithm. The

chi-squared distribution can tell us how to set the threshold C to achieve any

desired success rate. If we set the threshold C such that
∫ C

0
χ2

3(x)dx = γ

(where χ2
3(x) is the probability of the chi-squared distribution equalling x

when there are three degrees of freedom), we know that, asymptotically, the

probability that the correct candidate’s correlation value Correlate′(si, r) is less

than C is equal to γ. Recall that the Correlate′ test only considers the newly

generated bits at each stage of the algorithm, and all previous bits are ignored.

This eases the success rate analysis of the algorithm since the probability of

passing each Correlate test is independent in this case. Therefore, if the private

key has been parsed into m distinct parts, and the attacker applies a Correlate

test to each of the m parts, the probability that the correct private key is

recovered is γm, assuming the same threshold C was used for each Correlate

test.

When analysing the success, the only issue yet to be addressed is specifying

the values that p0 and p1 should take. If the distribution of the private key is

known, then it is easy to assign values to these parameters. For example, in

the RSA setting of the previous chapter, we assumed that the entire private

key would have approximately an equal number of zeros and ones. Therefore,

if we were to use the Correlate′ test (Equation (4.3.1)) in the RSA setting we

would set p0 = p1 = 1/2. Notice that this immediately gives us a threshold-

based approach for recovering noisy RSA private keys that have been degraded

according to an asymmetric binary channel (i.e. α 6= β). Such an approach

is currently lacking in the literature. Specifically, Algorithm 1 would take

an extra input parameter C, and we would replace the last two lines by the

86

following:

• Compute Correlate′ for each candidate si.

• Keep all si having Correlate′ value less than C and delete all other si.

In other settings (such as the key types we consider in this chapter) it may

not be possible to accurately assign values to these parameters. The approach

we use to overcome this issue is to conduct two separate multinomial tests: one

for the 0 bits and another for the 1 bits. The advantage of using two separate

tests is that we do not need to estimate the values of p0 and p1, and hence

our algorithm’s success rate will not be harmed by a poor estimation of these

parameters. For the correct solution, each 0 can flip to a 1 with probability

α or it can remain a 0 with probability 1 − α. Hence, if there are n0 zeros

in the correct solution, then (n01, n00) follows a multinomial distribution with

parameters n0 and p = (α, 1−α). Similarly, if there are n1 ones in the correct

solution, then (n10, n11) follows a multinomial distribution with parameters

n1 and p = (β, 1 − β). We may now use the multinomial test to examine

each candidate solution without having to estimate p0 and p1. Specifically, we

define

Correlate0(si, r) := −2ni00 ln

(
n0(1− α)

ni00

)
− 2ni01 ln

(
n0α

ni01

)
(4.3.2)

and

Correlate1(si, r) := −2ni11 ln

(
n1(1− β)

ni11

)
− 2ni10 ln

(
n1β

ni10

)
. (4.3.3)

Then we define

CorrelateC(si, r) := pass ⇔ Correlate0(si, r) < C ∧ Correlate1(si, r) < C.

(4.3.4)

Notice that Correlate0 and Correlate1 are functions with one degree of free-

dom. Therefore the probability that Correlateb < C is γ =
∫ C

0
χ2

1(x)dx, for

87

b ∈ {0, 1}, where χ2
1(x) is the probability density function of the chi-squared

variable with only one degree of freedom.

To complete the picture of this statistical test, we would like to bound the

probability of a Type II error (i.e. not rejecting the null hypothesis when it is

false). This would allow us to bound the running-time of an algorithm that

implements this statistical test. Such an analysis is currently lacking from the

literature, and appears difficult to obtain. We will discuss this issue in more

detail in Section 4.8.

4.3.1 Convergence of the multinomial test

One issue with the approach proposed in the previous section is that the

Correlate function will only consider a small number of bits at a time, but the

convergence of the test to the chi-squared distribution is an asymptotic result.

Hence, given the small sample sizes, there will be some discrepancy between

what we observe in practice and what is predicted by the chi-squared statistic.

There are various modifications that can be made to the multinomial test in

order to force a better agreement with the chi-squared test [75, 80], which we

will briefly discuss now.

The first modification was due to Williams [80]. Williams’ idea was to

multiply the threshold C by a factor q, where

q = 1 +
−1 +

∑k
i=1 p

−1
i

6n(k − 1)
.

An alternative result by Smith, Rae, Manderscheid and Silbergeld [75] suggests

that the correcting-factor q should be

q = 1 +
1

6n(k − 1)
·

(
−1 +

(
k∑
i=1

p−1
i

)
+ n−1

k∑
i=1

(p−1
i − p−2

i)

)
.

The Williams method always produces a factor q > 1. However, the method

of Smith et al. will sometimes produce values of q that are less than zero. This

88

results in a negative threshold C for the multinomial test, which will mean a

success rate of zero (because the multinomial test outputs values greater than

or equal to zero, so no candidate will have a value less than the threshold).

A closer inspection of the result of Smith et al. reveals why the threshold will

sometimes be negative. The range of the chi-squared distribution is [0,∞)

whereas the range of the multinomial test statistic is [0,−2n ln pmin], where

pmin is the minimum value in the probability vector of the null hypothesis. At

first sight, it may appear that the result of [75] is intended to decrease the

discrepancy between the theoretical and practical results for small values of

n. However, the intention of their work is to reduce the discrepancy for finite

values of n. That is, their result attempts to address the difference between

the finite range of the multinomial test statistic and the infinite range of the

chi-squared distribution. Consequently, their result is still an asymptotic re-

sult. They show that their modified test statistic converges to the chi-squared

distribution more quickly than the standard multinomial test statistic. How-

ever, since their result is asymptotic in nature, it will produce some impractical

(i.e. negative) thresholds for small values of n, and is therefore inappropriate

for our algorithms.

4.4 Exponentiation Algorithms

We now turn to a discussion of the discrete logarithm setting. Specifically,

we will consider textbook methods for point multiplication in the discrete

logarithm setting before proceeding to the specialised algorithms of OpenSSL

and PolarSSL that will form the basis of this chapter.

A core part of any DLP-based cryptosystem realised in the elliptic curve

setting is a point multiplication routine. Here, a curve point P , also referred

to as a base point, is multiplied with a scalar a ∈ N to obtain another curve

89

point Q = aP . The overall performance of this operation depends on various

factors, including the representation of field elements (e.g. ‘pseudo-Mersenne’

vs. ‘Montgomery-friendly’ moduli for prime fields), the availability of opti-

mised formulas for basic group operations like point addition and doubling

(e.g. ‘Weierstrass’ vs. ‘Edwards’ curves), the representation of curve points

(e.g. ‘affine’ vs. ‘projective’), and the scheduler that specifies how the basic

group operations are combined to achieve a full point multiplication algorithm

(see [18] for a recent survey on available options and tradeoffs in all these cat-

egories). In the context of cold boot attacks particularly, the scheduler seems

to be an interesting target to analyse: in ECC-based cryptosystems, secret

keys typically correspond with scalars, i.e. with precisely the information with

which the scheduler works. In the following we give a brief overview of the

most relevant of such algorithms [38]. We analyse their resilience against cold

book attacks in later sections of this chapter.

4.4.1 (Windowed) double-and-add

The textbook method for performing point multiplication is the double-and-

add algorithm.2 Given scalar a ∈ N and an appropriate length parameter ` ∈

N, it requires that a is represented by its binary expansion [a]1 = (a`, . . . , a0),

where a =
∑`

i=0 ai2
i and a`, . . . , a0 ∈ {0, 1}. Given [a]1, and denoting right-

shifting a by k positions with a� k, we observe

aP =

(∑̀
i=0

ai2
i

)
P =

(
`−1∑
i=0

ai+12i+1

)
P + a0P = 2(a� 1)P + a0P.

This recursion can be unrolled to

aP = 2(2(2(. . .+ a3P) + a2P) + a1P) + a0P. (4.4.1)

2This is known as the square-and-multiply algorithm if the group is written
multiplicatively.

90

The double-and-add algorithm for computing Q = aP is now immediate: it

initialises Q with O and iteratively updates Q ← 2Q + aiP , where the ai

are considered ‘left-to-right’ (i.e. i counts backwards from ` down to 0). The

whole procedure takes approximately `/2 additions and ` doublings per point

multiplication, if uniform exponents are assumed.

A common approach to improve the efficiency of this algorithm is to de-

crease the number of required additions by applying a window technique.

More precisely, for fixed window size w, we define the notion of windowed

binary expansion as above, this time relaxing the requirement on the ai to

a`, . . . , a0 ∈ [0 .. 2w − 1] and using notation [a]w = (a`, . . . , a0). While such

an encoding is in general not unique, it can be shown to uniquely exist [38]

if one additionally requires either that ai = 0 for all i 6≡ 0 (mod w) (fixed

window), or that all non-zero ai be odd and that all w-length subsequences of

[a]w contain at most one such element (sliding window).

Observe that, if we assume the fixed-window case and that points

P, 2P, . . . , (2w − 1)P are precomputed, then w − 1 out of w additions vanish

from Equation (4.4.1). Even more additions potentially vanish in the sliding-

window case; moreover, as here all non-zero coefficients ai are odd, fewer

precomputed points have to be tabulated.

Example 1. For a = 30 and ` = 6 we have [a]1 = (0, 0, 1, 1, 1, 1, 0). Win-

dowed binary expansions for w = 2 are (0, 0, 1, 0, 3, 0, 2) (fixed window) and

(0, 0, 0, 3, 0, 3, 0) (sliding window).

4.4.2 (Windowed) signed-digit representations

Many different ways to represent elliptic curve points have been proposed [38,

18]; a common property of all these encodings is that group negation is a cheap

operation. For instance, for curves in Weierstrass form that are defined over

91

prime fields, e.g. the five ‘prime curves’ standardised by NIST, the negative

of a point (x, y) is simply (x,−y). A general consequence of this is that point

subtraction performs as efficiently as point addition. This is exploited in point

multiplication algorithms that are based on the signed-digit representation of

scalars.

Formally, for fixed window size w, we denote by [a]±w = (a`, . . . , a0) any

decomposition of a ∈ N such that a =
∑`

i=0 ai2
i and ai ∈ [−2w−1 .. 2w−1 −

1]. As Equation (4.4.1) still holds if some of the coefficients ai are negative,

a ‘double-and-add-or-subtract’ algorithm that operates on such signed-digit

representations is readily derived. The key idea is that the extra freedom

obtained by allowing coefficients to be negative will make it possible to find

particularly sparse scalar representations, i.e. representations for which only a

minimum number of group additions/subtractions is required.

We describe three common signed-digit normal forms for representing

scalars a ∈ N. The first one, non-adjacent form (NAF), limits the digit set

to {0,±1} and requires that no two consecutive coefficients be non-zero. The

second and third are defined with respect to a window size w. Specifically,

while the fixed-window NAF is an encoding of the form [a]±w that requires

ai = 0 for all i 6≡ 0 (mod w), the sliding-window NAF (wNAF) ensures that

all non-zero ai are odd and all w-length subsequences of [a]±w contain at most

one such element. All three types of encoding are unique. Note that in the

w = 1 case the notions of NAF and wNAF coincide. Observe also that storing

a NAF or wNAF might require one extra digit over the plain binary expan-

sion. For an example of the latter, consider that the binary expansion of the

decimal number 15 is the sequence (1, 1, 1, 1), while its NAF is (1, 0, 0, 0, 1̄),

where we write 1̄ for −1.

Example 2. The NAF of a = 30 is (0, 1, 0, 0, 0, 1̄, 0). For window size w = 2

the fixed-window NAF is (1, 0, 2̄, 0, 0, 0, 2̄) and the wNAF is (0, 1, 0, 0, 0, 1̄, 0).

92

Algorithm 2 Textbook wNAF encoding. Operator ‘smod’ computes signed
remainders of integer divisions by powers of two. Precisely, for integers a, b we
have b = a smod 2w iff ∃k : a = k2w + b ∧ b ∈ [−2w−1 .. 2w−1 − 1].

Input: scalar a, length parameter `, window size w
Output: wNAF (b`, . . . , b0)

1: for i← 0 to ` do
2: if a is odd then
3: bi ← a smod 2w

4: else
5: bi ← 0

6: a← (a− bi)� 1

7: return (b`, . . . , b0)

Algorithm 2 gives instructions on how to derive the wNAF of a scalar

a ∈ N. Observe that the computation is conducted in a greedy right-to-left

fashion, with a (w−1)-look-ahead. As the latter property will become relevant

in our later analyses, we state it formally.

Fact 1 (Suffix property of wNAF). Fix a scalar a ∈ N and a window size w.

Denote a’s binary expansion with (a`, . . . , a0) and its wNAF with (b`, . . . , b0),

for an appropriate length parameter `. Then for all 0 ≤ t ≤ `−w+ 1 it holds

that (bt, . . . , b0) is fully determined by (at+w−1, . . . , a0).

4.4.3 Point multiplication in OpenSSL

We give details about the elliptic curve point multiplication routine used in

OpenSSL. Specifically, we studied the code from file crypto/ec/ec mult.c

of OpenSSL version 1.0.1h from March 2012, which is the latest stable re-

lease. Particularly relevant for this work is the function compute wNAF de-

fined in line 193, which computes a so-called modified wNAF. In brief, while

a regular wNAF requires every w-length subsequence of digits to contain at

most one non-zero element, in modified wNAFs [61] this requirement is re-

laxed for the most significant non-zero position. For instance, in case w = 2

93

Algorithm 3 OpenSSL’s wNAF encoding

Input: scalar a, length parameter `, window size w
Output: modified wNAF (b`, . . . , b0)

1: compute b = (b`, . . . , b0) using Algorithm 2
2: if b has prefix 0∗10w−1β with β < 0 then
3: β̄ ← 2w−1 + β
4: in b, replace substring 10w−1β by 010w−2β̄

5: return b

this allows to encode decimal number 11 as (1, 1, 0, 1̄), while the corresponding

(strict) wNAF is (1, 0, 1̄, 0, 1̄) and hence involves one more doubling operation.

OpenSSL’s compute wNAF function computes the modified wNAF following

Algorithm 3, with default window size w = 4 (see line 816). The resulting co-

efficients ai ∈ [−2w−1 .. 2w−1−1] are encoded into an array of octets (data type

‘signed char’), using a standard two-complement in-memory representation.

For instance, we have

−3 7→ 11111101

−1 7→ 11111111

0 7→ 00000000

+1 7→ 00000001

+3 7→ 00000011 .

We confirmed that the OpenSSL forks LibreSSL3 (version 2.0.3 from July

2014) and BoringSSL4 (version from July 2014) use precisely the same expo-

nent encoding as described above.

4.4.4 Comb-based methods

The various methods for point multiplication that we studied in the preceding

sections aimed at requiring less point additions than the basic double-and-add

technique; the number of doubling operations, however, was left untouched

3http://www.libressl.org/, see file crypto/ec/ec mult.c
4https://boringssl.googlesource.com/, see file crypto/ec/wnaf.c

94

Algorithm 4 Textbook comb encoding

Input: scalar a, parameters w, d
Output: coefficients Kd−1, . . . , K0

1: for i← 0 to d− 1 do
2: Ki ← (ai+(w−1)d, . . . , ai+d, ai)

3: return Kd−1, . . . , K0

(or was even increased). In contrast, comb-based methods [57] manage with

significantly fewer doublings, at the expense of some pre-computation depen-

dent on the base point. In the following we give a rudimentary introduction

to comb-based multiplication techniques. See [38] for further details.

Fix a base point P and parameters w, d ∈ N. For any scalar a ∈ N with

0 ≤ a < 2wd let [a]1 = (awd−1, . . . , a0) denote its binary expansion. For all

i ∈ [0 .. d − 1] let Ki = (Ki
w−1, . . . , K

i
0) where Ki

j = ai+jd, as formalised by

Algorithm 4 and illustrated in Figure 4.1. That is, since values Ki
j ∈ {0, 1}

are assigned such that

a =
wd−1∑
i=0

2iai =
d−1∑
i=0

w−1∑
j=0

2i+jdKi
j =

d−1∑
i=0

2i
w−1∑
j=0

2jdKi
j

we have that

aP =
d−1∑
i=0

2iT (Ki
w−1, . . . , K

i
0) where T : (kw−1, . . . , k0) 7→

w−1∑
j=0

2jdkjP.

The fundamental idea behind comb-based point multiplication is to precom-

pute table T ; as we have seen, the remaining part of the computation of aP

can then be conducted with not more than d additions and doublings.

As first observed by Hedabou et al. [39], implementations of the described

point multiplication method might offer only limited resilience against side-

channel attacks based on simple power analysis (SPA). This comes from the

fact that any vector Ki = (Ki
w−1, . . . , K

i
0) is equal to (0, . . . , 0) with probabil-

ity 2−w and that, in the multiplication process, this condition implies adding

95

Kd−1
w−1 Kd−1

1 K0
1 K0

0

awd−1 a2d−1 ad a0

1
Figure 4.1: Visualisation of the comb method, for parameters (w, d) = (4, 10).
The cells represent the bits of the scalar, the bold rectangles mark the prongs
of a comb positioned at offset i = 2.

neutral element T (0, . . . , 0) = O to the current accumulator: an event that is

likely to be detectable by analysing power traces.

To mitigate the threat, [39] proposes a comb-based scheduler where the sit-

uation Ki = (0, . . . , 0) does not occur. In a nutshell, it (a) considers only odd

scalars (this guarantees K0 6= (0, . . . , 0)), (b) introduces for each i ∈ [0 .. d−1]

a flag σi ∈ {±1} that defaults to σi = +1 and indicates whether the corre-

sponding Ki should be considered ‘positive’ or ‘negative’, and (c) examines

vectors K1, . . . , Kd−1 (in that order) and for each particular Ki that is equal

to (0, . . . , 0) it updates Ki ← Ki−1 and σi−1 ← −1. Observe that restric-

tion (a) does not impose a real limitation in groups of prime order q because

aP = −(−aP) = −(q − a)P and either a or q − a is odd. Observe also

that the steps introduced in (c) do not affect the overall outcome of the point

multiplication as for all integers x we have x = 2 · x+ (−1) · x.

In [40], the same authors improve on their proposal by first encoding (odd)

scalars a =
∑
ai2

i using only signed binary digits ai ∈ {±1}, and then comput-

ing vectors Ki from these coefficients. This not only avoids the Ki = (0, . . . , 0)

situation but also reduces the size of the precomputed table by a factor of two.

96

4.4.5 Point multiplication in PolarSSL

We analysed the source code of the point multiplication routine deployed in

PolarSSL version 1.3.8, published on July 11 2014.5 The scheduler (function

ecp comb fixed in file library/ecp.c) is comb-based, and comments around

the code give explicit credit to the results of [39]. However, as a matter of fact

the actually implemented algorithm significantly improves on the referred-to

work, as we detail below. We believe that this is the first description of this

point multiplication method in the academic literature.

PolarSSL borrows from [39] both the restriction to handle only odd scalars

and the introduction of flags σi ∈ {±1} that indicate whether correspond-

ing Ki are considered ‘positive’ or ‘negative’. The novelty here is that the

iteration over K1, . . . , Kd−1, that before was solely concerned with fixing the

Ki = (0, . . . , 0) condition, is now replaced by an iteration over the same values

where action is taken roughly every second time, namely whenever Ki
0 = 0.

Concretely, in this case the algorithm sets σi−1 ← −1 (similarly to [39]) and

replaces Ki by Ki � Ki−1, where addition ‘�’ is understood position-wise,

carrying over into Ki+1. This method ensures that all Ki have Ki
0 = 1 (as

is easily shown by an inductive argument), and effectively makes the pre-

computed table T half the size. On the downside, for recording the carries

of the final ‘�’ step, vector Kd−1, . . . , K0 has to be extended by an auxiliary

component Kd. More details on the procedure are given in Algorithm 5. Note

that in Algorithm 5, for same-size bit-vectors α, β, γ, δ, ε we write (α, β) = γ�δ

iff 2αi + βi = γi + δi for all i. Correspondingly we write (α, β) = γ � δ � ε iff

2αi + βi = γi + δi + εi. That is, the addition is bit-wise and the sum is stored

in βi, with αi taking the carry.

We conclude by describing how resulting sequence (σd, Kd), . . . , (σ0, K0) is

5Available at https://polarssl.org.

97

Algorithm 5 PolarSSL’s comb encoding

Input: odd scalar a, parameters w, d
Output: coefficients Kd, (σd−1, Kd−1), . . . , (σ0, K0)

1: compute (K̄d−1, . . . , K̄0) using Algorithm 4
2: K0 ← K̄0

3: c← (0, . . . , 0)
4: for i← 1 to d− 1 do
5: if K̄i

0 = 0 then
6: (c,Ki)← K̄i �Ki−1 � c
7: σi−1 ← −1
8: else
9: (c,Ki)← K̄i � c

10: σi−1 ← +1

11: return c, (+1, Kd−1), (σd−2, Kd−2,) . . . , (σ0, K0)

encoded in computer memory. PolarSSL imposes the requirement w ∈ [2 .. 7]

(in practice w ∈ {4, 5} is used, see line 1382 of ecp.c) and can hence store each

Ki in a separate octet (data type ‘unsigned char’). The remaining eighth

bit is used to store the corresponding sign indicator; precisely, σi = +1 and

σi = −1 are encoded as 0 and 1, respectively. For example, if w = 3 and

σi = −1 and Ki = (1, 0, 1), the in-memory representation is 10000101.

Similarly to Fact 1 we can state a suffix property for this encoding.

Fact 2 (Suffix property of PolarSSL’s comb encoding). Fix a scalar a ∈ N

and parameters w, d. Denote a’s binary expansion with (awd−1, . . . , a0), its

(textbook) comb encoding with (K̄d−1, . . . , K̄0) where K̄i
j = ai+jd, and its

PolarSSL comb encoding with (Kd, σd−1, Kd−1, . . . , σ0, K0). Then it holds

for all 1 ≤ t ≤ d that (Kt−1, σt−2, Kt−2, . . . , σ0, K0) is fully determined by

(K̄t−1, . . . , K̄0).

98

4.5 General Procedures for Recovering Noisy

Keys

Next we present our algorithms that recover the private keys of DL-based

cryptosystems from noisy memory images. Separate algorithms are proposed

for OpenSSL and PolarSSL and, thus, each will have its own analysis of success

probability. We start with specifying the attack model.

4.5.1 Attack model

In both OpenSSL and PolarSSL, discrete logarithm secret keys and their NAF

or comb encodings reside in computer memory simultaneously, at least for a

short period of time. Our cold boot attack model hence assumes that the

adversary can obtain noisy versions of the original private key and its encoding,

and aims at recovering the private key. We assume that a 0 bit will flip with

probability α = P(0→ 1) and a 1 bit will flip with probability β = P(1→ 0).

Furthermore, we assume that the attacker knows the values of α and β. Such

an assumption is possible because an adversary can easily estimate them using

an analysis similar to [42]. We refer the reader to that paper for the details.

4.5.2 NAF encodings

Algorithm 6 attempts to recover a key that has been encoded with either the

textbook wNAF or the modified NAF of OpenSSL (from Algorithms 2 and 3,

respectively). It takes several inputs: the public key, Q = aP ; the noisy

memory image, M∗; the length of the private key, `; the window size, w; a

variable parameter, t; and a constant k.

99

Algorithm 6 Generic key-recovery algorithm for textbook and
OpenSSL wNAF.

Input: noisy memory image M∗, reference public key Q = aP ,
parameters `, w, t, k; use k = 0 for textbook wNAF recovery,
and k > 0 otherwise.

Output: secret key a or ⊥
1: CandSet← ∅
2: for all x ∈ {0, 1}t+w−1 do
3: calculate partial representation Mx of x
4: if Correlate(Mx,M∗) = pass then
5: add x to CandSet
6: for i← 2 to b(`− k + 1− w)/tc do
7: CandSet′ ← ∅
8: for all x ∈ {0, 1}t × CandSet do
9: calculate partial representation Mx of x

10: if Correlate(Mx,M∗) = pass then
11: add x to CandSet′
12: CandSet← CandSet′
13: for all x ∈ {0, 1}k+(`−k−w+1 mod t) × CandSet do
14: a←

∑`−1
i=0 2ixi

15: if Q = aP then
16: return a
17: return ⊥

We first discuss the textbook NAF, for which k = 0. The algorithm will

output either a (the private key) or ⊥, which represents failure. The recovery

procedure begins by initialising a set CandSet to be empty. The set CandSet

will store (partial) candidate solutions for the private key a. At each stage

of the algorithm we wish to compute t new wNAF digits for each candidate

solution. To be certain of outputting the first t signed digits of the wNAF,

the algorithm requires knowledge of the least t + w − 1 bits of the binary

representation (cf. Fact 1). Hence, the first stage of the algorithm (cf. lines 1–5)

takes all bit strings of length t+w−1 (giving us the ability to calculate the least

t signed digits of the wNAF), converts them to integers, then calculates their

corresponding wNAFs for positions bt−1, . . . , b0 (prepending zeros if necessary,

100

and ignoring any bj for j ≥ t if they exist). The algorithm then compares

each bit string and its corresponding wNAF against M∗ via the Correlate

function (see Section 4.3). If the candidate passes the Correlate test, then the

candidate solution is added to the set CandSet, otherwise it is discarded. Once

all bit strings of length t+w−1 have been checked, we move on to the second

stage of the algorithm (cf. lines 6–12). We first initialise a set CandSet′ to be

empty. For each string x in CandSet, we prepend all bit strings of length t to

x (giving us the ability to compute the next t signed digits of the wNAF). We

then calculate the wNAFs of (the integer conversions of) all the strings. Again,

we prepend zeros to the wNAF if necessary, and we ignore any bj for j ≥ 2t.

Then the algorithm compares each bit string and its corresponding wNAF

against M∗ via the Correlate function. If the candidate solution passes the

test it is added to CandSet′. When all appropriate strings have been checked,

we overwrite CandSet ← CandSet′. If we let `′ denote the length of the

partial candidates, then we repeat the previous stage of the algorithm until

`′ > `− t (because, at this point, prepending t bits to the candidate solutions

would result in them having a greater length than the private key a). At

this juncture the algorithm will prepend all bit-strings of length ` − `′ to all

the strings in CandSet (cf. lines 13–16). Each of these new strings x is then

compared against the public key Q = aP , via the calculation xP . If there is

a match with Q = aP , then the algorithm outputs x, otherwise the algorithm

outputs ⊥.

We will now discuss the modifications that we make for the OpenSSL

implementation of the wNAF encoding. From Algorithm 3 it is clear that

the OpenSSL wNAF only modifies the textbook wNAF in (at most) the most

significant w+1 digits (excluding leading zeros). Algorithm 6 relies on the fact

that textbook wNAFs can be built up in a bit-by-bit fashion from the least

significant bit (cf. Fact 1), but this is no longer possible with the modified

101

wNAF. Therefore, when dealing with the OpenSSL NAF, we include an extra

parameter k > 0 in Algorithm 6, where k ∈ N>0. The only difference is that

instead of entering the final stage of the algorithm when `′ > ` − t, we now

enter the final stage when `′ > `− t− k. That is, we stop k bits earlier than

we normally would for the textbook wNAF, and then the final stage appends

` − `′ bits to each string in CandSet and checks whether any of these new

strings matches the private key, a. The reasoning behind this is that if the bit

representation of an integer has a leading 1 in position i, then the standard

wNAF will only be affected in positions i+ 1 to i−w+ 1. In Algorithm 6, at

most we compute `− k −w + 1 signed digits for each candidate solution. For

a uniformly random private key a, the higher we set k, the more likely it is

that the textbook wNAF and modified wNAF of a agree in the positions our

algorithm computes (since a uniformly random key is more likely to have a

leading 1 in bit positions `−1 to `−k−1, meaning the first `−k−w+1 signed

digits remain unaffected). This will be discussed in more detail in Section 4.5.4.

However, there is a trade-off between running-time and success. A higher k

results in a higher success, but the last stage of Algorithm 6 appends bit-

strings of at least length k to all surviving candidates. Hence, the greater k

is, the longer the running-time of this final phase. A typical value for k would

be below 10.

4.5.3 Comb encodings

In this section we consider key-recovery for comb-based methods. The text-

book comb encoding together with the original key merely represents a rep-

etition code, and there are standard techniques to recover the key for such a

code. Hence, we shall proceed straight to the discussion of PolarSSL combs.

To prevent side-channel attacks (cf. Section 4.4.4), the PolarSSL comb uses

a lookahead algorithm, so we will need a more sophisticated algorithm than

102

the standard techniques used for repetition codes. The pseudocode for our

algorithm can be found in Algorithm 7. The inputs are: the noisy mem-

ory image, M∗; the public key, Q = aP ; the length of the comb (i.e. the

number of prongs), w; the number of comb positions, d; and a variable pa-

rameter t. To calculate component K0 of the comb requires knowledge of bits

a(w−1)d, ad, . . . , a0 (and only these bits). If we want to calculate K1 and σ0,

we additionally need bits a1+(w−1)d, a1+d, . . . , a1, and so on (cf. Fact 2). Our

algorithm considers t-many comb components at each stage. During the first

stage (cf. lines 1–9) we wish to compute Kt−1, (σt−2, Kt−2), . . . , (σ0, K0) for

each candidate solution. To calculate these components only requires knowl-

edge of tw bits (in the appropriate positions of the key). Since PolarSSL only

handles odd scalars, there are 2tw−1 candidate solutions across these tw bits.

For each of these candidate strings, we compare the bits of the string x and

its comb with the noisy versions via the Correlate function. If the candidate

passes the Correlate test, the string is added to CandSet (which we initialize

to empty), otherwise it is discarded. We then (cf. lines 10–20) repeat the

procedure by combining each surviving candidate with all possible bit com-

binations in the tw positions that will allow us to compute the next t comb

components, which are K2t−1, (σ2t−2, K2t−2), . . . , (σt, Kt). If `′ denotes the

length of the current candidates, the algorithm exits this particular For loop

when dw − `′ ≤ tw (i.e. when adding t more K̄j would result in there being

more K̄j than exist for the private key). At this point, the algorithm fills in

all the missing bits with all possible combinations (cf. lines 21–26). Then the

algorithm checks whether any of the strings is a match for the private key

(by using the public information Q = aP). If there is a match, the algorithm

outputs the string, otherwise it outputs ⊥.

103

Algorithm 7 Generic key-recovery algorithm for PolarSSL comb
method.

Input: noisy memory image M∗, reference public key Q = aP ,
parameters d, w, t

Output: secret key a or ⊥
1: CandSet← ∅
2: for all x ∈ {0, 1}tw−1 × {1} do
3: for j ← 0 to t− 1 do
4: K̄j ← (x(j+1)w−1, . . . , xjw)

5: compute Kt−1, (σt−2, Kt−2), . . . , (σ0, K0)
6: using lines 2–10 of Algorithm 5
7: calculate partial representation Mx

8: if Correlate(Mx,M∗) = pass then
9: add x to CandSet

10: for i← 2 to dd/te − 1 do
11: CandSet′ ← ∅
12: for all x ∈ {0, 1}tw × CandSet do
13: for j ← 0 to it− 1 do
14: K̄j ← (x(j+1)w−1, . . . , xjw)

15: compute Kit−1, (σit−2, Kit−2), . . . , (σ0, K0)
16: using lines 2–10 of Algorithm 5
17: calculate partial representation Mx

18: if Correlate(Mx,M∗) = pass then
19: add x to CandSet′
20: CandSet← CandSet′
21: for all x ∈ {0, 1}wd−(dd/te−1)tw × CandSet do
22: for j ← 0 to d− 1 do
23: K̄j ← (x(j+1)w−1, . . . , xjw)

24: a←
∑d−1

j=0

∑w−1
i=0 2j+idK̄j

i

25: if Q = aP then
26: return a
27: return ⊥

Remark 1. We note that in some cases there is a simple way to slightly increase

the efficiency of Algorithm 7. If ` is the length of the private key, but ` 6=

wd, then the private key will have to be prepended with wd − ` zero bits.

Algorithm 7 can be improved by utilising this information and only considering

candidate solutions with zeros in these particular positions. However, as in

104

practice w = 4 or w = 5 is used and we consider ` = 160 in our simulations,

there will be no need for prepended zeros and our algorithm will run exactly

as presented in Algorithm 7.

Remark 2 (Optimality of Algorithms 6 and 7). We do not claim that Algo-

rithms 6 or 7 are the optimal procedures for recovering keys in their respective

scenarios. However, these algorithms are appealing because we are able to

provide a theoretical analysis of the success rate (cf. Section 4.3). Further-

more, the experimental results we obtain from these algorithms are good in

practice, as we shall see in the coming sections.

4.5.4 Success analysis of OpenSSL implementation

We now analyse the success probability of Algorithm 6 when combined with the

Correlate test from Section 4.3. The success probability is relatively straight-

forward to calculate if the input is an image of a textbook wNAF: the correct

candidate will pass the Correlate test (Equation (4.3.4)) with probability γ2,

where γ =
∫ C

0
χ2

1(x)dx. Hence, the probability of recovering the correct key

would be γ2·b(`+1−w)/tc because there are b(`+1−w)/tc-many Correlate tests to

pass and the probability of passing each test is independent (because Correlate

considers only the newly computed bits at each stage).

However, since a modified NAF is used in OpenSSL, the corresponding

analysis of success will differ slightly. Fortunately, the difference between

textbook NAF and modified NAF is only in the most significant w + 1 bits

(and sometimes there is no difference at all): if the leading 1 bit of the discrete

logarithm key is in position i then, at most, only signed digits i − w + 1

to i + 1 of the standard wNAF will be affected by the transformation to

the modified wNAF. Therefore the standard and modified wNAFs will agree

up to position i − w. Algorithm 6 only computes the least significant j =

105

` − k − w + 1 − (` − k − w + 1 mod t) digits of the wNAF, i.e., bj−1, . . . , b0.

Therefore, we must now bound the probability that a randomly chosen private

key’s standard wNAF is equal to its modified NAF up to digit bj−1. If the

private key has a 1 bit anywhere between positions j + w − 1 and `− 1 then

the computed NAF digits will be identical to the modified wNAF digits up to

position j − 1, and then the multinomial test will behave exactly as expected

(having probability γ of passing each test). The probability of a 1 bit appearing

in any of these positions is precisely

1− 2−k−(`−k−w+1 mod t) .

If we let M-NAF denote the modified wNAF, and wNAFj−1 (resp. M-NAFj−1)

denote digits 0 to j − 1 of wNAF (resp. M-NAF), then it follows that

P(success) ≥ P(success|wNAFj−1 = M-NAFj−1)P(wNAFj−1 = M-NAFj−1)

=
(
1− 2−k−(`−k−w+1 mod t)

)
· γ2·b(`−k+1−w)/tc .

Thus, by setting the thresholds k and C (and, hence, γ) appropriately, we can

achieve any desired success rate (potentially at the expense of a long running

time since larger k and C will result in a longer running time).

If either α = 0 or β = 0 our algorithm has a slightly different analysis.

Since neither α nor β will be zero in practice, we have relegated this analysis

to Section 4.7.

4.5.5 Success analysis of PolarSSL implementation

Given the previous discussion regarding the success of recovering keys of the

NAF algorithms, it is now very easy to analyse the success of Algorithm 7. It

is clear from the algorithm that there are dd/te − 1 Correlate tests to pass.

The correlate function is described in Equation (4.3.4), and the correct can-

didate has probability γ2 of passing the test, where γ =
∫ C

0
χ2

1(x)dx. Since

106

each Correlate test only considers the newly calculated bits, the probability of

passing each Correlate test is independent, so we have P(success) = γ2·(dd/te−1).

4.6 Implemented Simulations of Key Recov-

ery

We present the results of some simulations of Algorithms 6 and 7 using the

Correlate test from Equation (4.3.4). Unless otherwise stated, we ran 100

tests for each given set of parameters. The results for OpenSSL can be seen

in Table 4.1 and those for PolarSSL in Table 4.2. The values displayed in

these tables are merely to support the validity of our theoretical analysis,

and they do not represent the practical limits of our algorithms. However,

it is clear that any algorithm attempting key recovery in the PolarSSL and

OpenSSL settings will not be able to match the performance of the RSA

algorithm of Chapter 3. We discuss the reasons why in Section 4.10. For each

set of parameters, the table shows the predicted theoretical success of the

algorithms and the success rate we achieved with our 100 simulations. Note

that as the noise rate increases the success rate will slowly decline. However,

for OpenSSL, the success rate for β = 0.15 was higher than for β = 0.10,

despite all other parameters being the same. This is merely an outlier, and

a result of the limited number of simulations we ran. If we were to perform

a much larger number of simulations, we expect this outlier to disappear.

All values we have used for α and β are typical values that might arise in a

real cold boot attack, but the higher values of β are much rarer in practice.

For small values of β (which are most common) our algorithms have a good

success rate. For example, for OpenSSL we have a success rate of 45% when

β = 0.05. Furthermore, for small values such as this we could significantly

improve the success rate by increasing the threshold C. For such small values

107

w α β t C k χ2 est. prac. suc.

2 0.001 0.01 7 6 3 0.51 0.92
2 0.001 0.05 10 3.5 3 0.15 0.45
2 0.001 0.10 10 3.5 3 0.15 0.17
2 0.001 0.15 10 3.5 3 0.15 0.20
2 0.001 0.20 14 2 3 0.02 0.07
2 0.001 0.25 12 2 3 0.01 0.06
2 0.001 0.30 12 2 3 0.01 0.04
2 0.001 0.35 14 0.75 3 0 0.02

Table 4.1: Results of simulations of cold boot attacks against the point mul-
tipliers of OpenSSL. All simulations used 160-bit keys, and we ran 100 sim-
ulations for each row in the table. The theoretically estimated success prob-
abilities, based on the convergence to the chi-squared distribution, are in the
columns labelled ‘χ2 est’. Note that the effective success rates of our imple-
mented attacks, in columns ‘prac. suc.’, are generally much larger.

of β this would not greatly affect the running time. Note that the majority

of the experiments were conducted in a 1 → 0 region (where α � β). This

choice will not affect the theoretical success rate of the algorithm, but is likely

to have an impact on the running-time. In the PolarSSL setting, the difference

in performance of our algorithm between a 1 → 0 and 0 → 1 region will be

very small, due to the approximately equal distribution of 1 and 0 bits in the

private key. However, for OpenSSL there will be a noticeable difference, which

is explored further in Section 4.9.

4.7 Analysis of Success for the Z-Channel

Throughout this chapter we have assumed that both α := P(0 → 1) and

β := P(1 → 0) are non-zero (as they are likely to be in practice), and the

analyses of Sections 4.5.4 and 4.5.5 were dependent on this fact. Here we

briefly discuss how to handle the case when either α or β is zero (if both are

zero, then no bits will flip, hence the noisy key will be identical to the original

key). We will first discuss the OpenSSL case (see Section 4.5.2). We assume

108

w d α β t C χ2 est. prac. suc.

4 40 0.001 0.01 2 7 0.73 0.81
4 40 0.001 0.02 2 5 0.38 0.65
4 40 0.001 0.03 2 4 0.17 0.60
4 40 0.001 0.05 2 3.5 0.09 0.58
4 40 0.001 0.06 2 3 0.04 0.55
4 40 0.001 0.07 2 3 0.04 0.52
4 40 0.001 0.08 2 2.5 0.01 0.37
4 40 0.001 0.10 2 2.5 0.01 0.08

Table 4.2: Results of simulations of cold boot attacks against the point mul-
tipliers of PolarSSL. All simulations used 160-bit keys, and we ran 100 sim-
ulations for each row in the table.. The theoretically estimated success prob-
abilities, based on the convergence to the chi-squared distribution, are in the
columns labelled ‘χ2 est’. Note that the effective success rates of our imple-
mented attacks, in columns ‘prac. suc.’, are generally much larger.

that α = 0 (the case β = 0 follows easily), so there will be no 0 to 1 bit

flips from the original key to the noisy key. We cannot perform a multinomial

test on the 0s of the candidate solutions (because this requires non-zero α),

so instead we merely discard any candidate solution in which a 0 must have

flipped to a 1. Notice that it is impossible to reject the correct solution via

this test (because P(n01 = 0) = 1 for the correct candidate). The Correlate

test is then

CorrelateC(si, r) = pass ⇔ Correlate1(si, r) < C ∧ ni01 = 0. (4.7.1)

Recall that the pruning phase used by the HS algorithm [44] only considered

whether ni01 = 0. Hence, in the Z-channel, our Correlate test is an extension of

the HS algorithm because we also consider the extra information concerning

1 → 0 flips, whereas this information was ignored by the HS algorithm. The

theoretical success rate of Algorithm 6 with k = 0 is γb(`+1−w)/tc, and its

success rate is at least
(
1− 2−k−(`−k−w+1 mod t)

)
· γb(`−k+1−w)/tc if k > 0, where

γ is the probability of passing a single multinomial test. If instead we have

109

β = 0, then

CorrelateC(si, r) = pass ⇔ Correlate0(si, r) < C ∧ ni10 = 0. (4.7.2)

The success of the PolarSSL algorithm (see Section 4.5.3) now follows

easily. The Correlate functions are those in Equations (4.7.1) and (4.7.2)

(for α = 0 and β = 0 respectively) and the success rate can be estimated

by γdd/te−1.

4.8 Running-Time Analysis

So far we have provided a theoretical analysis for the success rate of our key-

recovery procedures from Section 4.5. To complete the picture, we would also

like to be able to provide an analysis of the running-time of the algorithms.

Unfortunately, such an analysis appears to be very difficult to obtain in our

setting. If we were able to bound the probability of a ‘Type II error’ (not

rejecting an incorrect solution) in the multinomial test, this would allow us

to bound the running-time. In the RSA setting, a typical assumption is that

incorrect candidate solutions are uniformly random and independent of all

previous key bits.6 In the two scenarios we consider, such assumptions clearly

do not hold. The bits of a particular candidate wNAF or comb solution are

entirely dependent on all the previous key bits. Given that we cannot employ

any independence assumptions, we are unable to provide a theoretical analysis

of the running-time of our algorithms.

Notice, however, that the Correlate function can be modified to produce a

test that has a bounded running-time. We have previously suggested setting a

threshold and discarding any solutions that do not have a Correlate value that

6The analyses of [42, 44] used such an assumption, whereas Chapter 3 made use of a
slightly weaker assumption.

110

falls below this threshold. This meant that the algorithm would output lists

of a variable size. Instead, we can modify our algorithms to output shorter (or

even fixed-sized) lists, thereby allowing the running-time to be easily bounded.

The Correlate test could be modified so that it computes Correlate0 and

Correlate1 (Equations (4.3.2) and (4.3.3) respectively), and then sums these

two values. Then the algorithm would output the L-many candidates with

the lowest values of Correlate0 + Correlate1, where L is a parameter chosen

by the attacker. This algorithm clearly has a bounded running-time, but a

theoretical analysis of success rate is lacking for this particular approach. Note

that this approach would be broadly comparable to the technique we used in

Chapter 3 for the RSA setting, except there we used a maximum-likelihood

test, as opposed to the multinomial test we used in this chapter. We could also

use a maximum-likelihood approach as our Correlate function in this chapter,

but due to the way we generate candidate solutions it is unlikely that such

an algorithm would be successful since the algorithm would have difficulty

distinguishing the good and bad solutions (see Section 4.10 for an expanded

exposition of this point). Fortunately, the multinomial test does not need to

distinguish the good and bad solutions. It only requires the correct solution

to be ‘sufficiently close’ to the noisy information, and therefore the success

rate is independent of the number (and distributions) of incorrect candidates.

Indeed, preliminary experiments were conducted using the ML approach, but

non-zero success rates proved elusive for our limited number of trials.

4.9 Comparison of Ground States

In this section we study the impact of the ground states on our cold boot

recovery algorithms. Recall that there are two ground states: 0 and 1. In a

0 region, 1 bits have a reasonably high chance of flipping to a 0, but 0 bits will

111

α β C suc. min. LQ med. UQ max.

0.001 0.01 4 0.338 1 2 2 4 120
0.01 0.001 4 0.524 1 48 144 483 82944
0.01 0.001 2.5 0.195 2 16 48 144 2880

Table 4.3: Quartile data for the number of candidate solutions that passed the
final Correlate test of Algorithm 6 (i.e., the size of CandSet at line 13). For
each set of parameters we ran 1000 tests with 160-bit keys, and we set t = 7.

have a very low probability (typically 0.001) of flipping to a 1. In a 1 region the

opposite is true. Typically, RSA cold boot analyses assume that private keys

consist of approximately an equal number of 0 and 1 bits. Indeed, we made

this exact assumption in Chapter 3. Evidently then, the recovery algorithms

would run equally well in both types of region. In contrast, in an OpenSSL

wNAF there are significantly more 0 bits than 1 bits, particularly for larger

w. As a result our algorithm may have different performance depending on

the type of decay region. The theoretical success rate is obviously unaffected,

but the running-time varies significantly, as Table 4.3 shows. Note that results

were implemented with the textbook NAF, rather than the modified version.

For all tests we set the key size to be 160 bits and we conducted 1000 tests

for each set of parameters. We chose to run 1000 tests in order to eradicate any

statistical anomalies that might arise from using small sample sizes. For the

first two sets of parameters we set w to be 2, the threshold C was 4, and t was

7. For the first set of parameters, we set α = P(0→ 1) = 0.001 and β = P(1→

0) = 0.01, to represent a 1-to-0 region. For the second set, we reversed these

values, so α = P(0 → 1) = 0.01 and β = P(1 → 0) = 0.001, which represents

a 0-to-1 region. For each test in which we successfully recovered the private

key we kept a record of the number of solutions that passed the final Correlate

test. Table 4.3 displays the quartiles of this data (the minimum, lower quartile,

median, upper quartile and maximum). It is clear from the table that the

112

algorithm had to consider many more solutions in the 0-to-1 region, which

results in a much greater running time. However, this could be partially

explained by the much higher success rate in the 0-to-1 region. In the 1-to-0

region, the success rate was 0.338, compared to 0.524 in the 0-to-1 region. This

elevated success rate will obviously result in more candidates being checked,

but this is not the only reason. The convergence of the multinomial test to

the chi-squared distribution is dependent on the expected values of n10 and

n01 (the higher they are, the better the convergence), where we recall that nij

is the number of i bits in the candidate solution that map to j bits in the

noisy version of the key. By changing the values of α and β, we change the

expected values of nij, which results in varying success probabilities, despite

having the same threshold. To counteract this problem, we ran another set

of experiments. For α = 0.01 and β = 0.001 we re-ran the simulations, but

with the threshold now set to C = 2.5. The success probability for this new

set of tests was 0.195, which is much lower than the success for the 1-to-0

region. Despite this, however, the quartiles were still much higher for the

0-to-1 region. The explanation for this phenomenon appears to be simple.

In a wNAF, the 1 bits are sparse. In a 1-to-0 region, if we observe a 1 bit

in the noisy version of the key then, with high probability, the private key

has a 1 bit in that particular position. Since 1 bits are infrequent, there will

be very few candidate solutions that have a 1 bit in the necessary positions.

Conversely, in a 0-to-1 region, if we observe a 0 bit in the noisy key then, with

high probability, the private key has a 0 bit in the corresponding position.

Unfortunately, since 0 bits are abundant in a wNAF, there are typically many

candidates that have 0 bits in these positions. Hence, whilst the success is

unaffected by the ground state, the running-time will be much greater in a

0-to-1 region because there will be many more incorrect candidates that pass

the Correlate test.

113

For the PolarSSL comb the distribution of bits is not uniform (since some

bits are always set to be 1), which will result in slightly different performances

in the two regions. The running-time will not vary considerably, but for par-

ticularly small values of α and β we might see a slight difference in the success

rates of simulations.

4.10 Comparison with the RSA Setting

At first glance our experimental results for both OpenSSL’s wNAF and

PolarSSL’s comb multiplier (Tables 4.1 and 4.2) appear to be inferior to cor-

responding results in the RSA setting. Whilst this is true, it should not come

as a surprise. Analyses in the RSA setting enjoy several benefits. The ma-

jor advantage they had was the relationship between key bits via equations

such as N = pq, where N is the public exponent, and p and q are the private

primes. There are four such equations relating the five components of the

RSA private key. Heninger et al. [44] showed that if there is a partial solution

for the private RSA key and an adversary wishes to discover the next bit of

each of the five private key components, then the RSA equations give only

two possible solutions for the string of five bits, rather than the thirty-two

solutions that would need to be checked in a brute-force search. Hence, when

the RSA algorithms calculate possible solutions across a new set of 5t bits, if

there are M surviving candidates from the previous pruning phase, there will

be M · 2t possible solutions to check at the next stage. These solutions may

then be tested to discard unlikely candidates. In the NAF and comb settings,

such strong structure in the private key does not exist. Hence, when we con-

sider solutions in a string of 5t bits, if M candidates pass the previous pruning

phase, then we have to consider M · 25t solutions (compared to M · 2t for the

RSA setting), and then discard unlikely candidates. Furthermore, when the

114

RSA algorithms calculate the two possible solutions for a particular set of five

bits, the two solutions have a Hamming distance of four. Consequently, if

the correct key has high likelihood of coming from the noisy information (as

expected), then the second possible solution will have a low likelihood. This

allows the RSA algorithms to easily discard incorrect candidates with high

probability. Unfortunately, in our settings we will have to consider many so-

lutions that have Hamming distance less than four from the correct solution.

The solutions with low Hamming distance from the correct key will have a

high probability of passing the threshold test. Bearing these facts in mind, it

is quite clear that any algorithm in the NAF or comb settings will not be able

to compete with the RSA algorithms in terms of the cross-over probabilities

that can be handled for the asymmetric channel. Furthermore, the discussion

above highlights why a maximum-likelihood approach is unlikely to be suc-

cessful in this setting: there are too many incorrect candidates to consider,

so there is a high probability that some of these will have a higher ML value

than the correct candidate.

4.11 Conclusions

In this chapter we have proposed key-recovery algorithms for various discrete

logarithm cryptosystems, with particular emphasis on the widely deployed

PolarSSL and OpenSSL implementations. These algorithms represent a large

improvement over previous key-recovery algorithms for discrete logarithm cold

boot attacks. We provided a theoretical analysis that lower-bounds the success

of our algorithms. Furthermore, the statistical test we use in our framework

provides an avenue to derive an algorithm with arbitrarily high success rates

in the RSA setting when the errors are asymmetric. Such results were only

previously available in the symmetric setting. We provided results of several

115

key-recovery simulations, both for PolarSSL and OpenSSL, that fully support

our theoretical analyses and show that our attacks are practical. An open

problem is to bound the running-time of our algorithms, but as previously

discussed, this appears to be a difficult problem. It would be possible to apply

the coding-theoretic techniques of Chapter 3 to our algorithms, but given the

nature of the OpenSSL and PolarSSL encodings (such as the high proportion

of 0 bits for OpenSSL), the bounds obtained will be very far from what is

achievable in practice. For this reason, we omit such an analysis from this

chapter.

116

Part II

Related Randomness Attacks

117

Chapter 5

Related Randomness Attacks
for Public-Key Encryption

In this chapter we will look at cryptography from the perspective of the im-

plementer. Previously we studied how to subvert traditional security notions

to compromise security of cryptographic schemes. We will now study how to

strengthen security models in order that they capture attacks not currently

modelled in the literature. Not only will we present new, more applicable

models, but we will show how to construct schemes that are secure in these

new models.

5.1 Introduction

Modern cryptographic primitives are heavy consumers of randomness. Unfor-

tunately, random number generators (RNGs) used to provide this randomness

often fail in practice [26, 31, 34, 35, 22, 3, 25, 60]. This is due to issues in-

cluding poor algorithmic design, software bugs, insufficient or poor estimation

of system entropy, and the handling of randomness across virtual machine

resets [68]. The results of randomness failures can be catastrophic and news-

worthy in practice – DSA, ECDSA and Schnorr private signing keys can be

118

exposed [12, 68]; plaintext recovery for low entropy plaintext becomes possi-

ble in the the public-key encryption setting; key generation processes can be

severely weakened [22, 56, 43, 13]; ephemeral Diffie-Hellman keys can become

predictable leading to compromise of session keys [31]; and electronic wallet

security can be compromised [15].

Evidently, randomness failures are a major problem in practice. The cryp-

tography research community has begun to address this problem only relatively

recently [69, 70, 48, 4, 81, 68]. Accepting that randomness failures are endemic

and unlikely to be eliminated in totality, a basic approach is to try to hedge

against randomness failures, that is, to design cryptographic primitives that

still offer a degree of security in the face of randomness failures.

Work in this direction can be summarised as follows:

• For signatures, there is a folklore de-randomisation technique which

neatly sidesteps security issues arising from randomness failures: sim-

ply augment the signature scheme’s private key with a key for a pseudo-

random function (PRF), and derive any randomness needed during sign-

ing by applying this PRF to the message to be signed; meanwhile verifi-

cation proceeds as normal. This does require a small modification to the

original signing scheme (the inclusion of an additional private key com-

ponent), but renders trivial the problem of dealing with bad randomness

for signatures. We believe the first formalisation of this technique ap-

peared in 1998, courtesy of M’Räıhi et al. [62], but more recently this

technique has been formalised in RFC 6979 [66] with regards to imple-

mentations of DSA and ECDSA.

• In the private-key (symmetric) encryption setting, Rogaway [69] argued

for the use of nonce-based encryption, thus reducing reliance on random-

ness. Rogaway and Shrimpton [70] initiated the study of misuse-resistant

119

authenticated encryption (MRAE), considering the residual security of

AE schemes when nonces are repeated. Katz and Kamara [48] consid-

ered the security of symmetric encryption in a chosen-randomness set-

ting, wherein the adversary has complete control over the randomness

used for encryption (except for the challenge encryption which uses fresh

randomness). We will briefly encounter the model of Kamara and Katz

in Section 5.7.

• In the public-key encryption (PKE) setting, Bellare et al. [4] considered

security under chosen distribution attack, wherein the joint distribution

of message and randomness is specified by the adversary, subject to con-

taining a reasonable amount of min entropy. The PKE scheme designer’s

challenge is to find a way of ‘extracting’ this entropy in a secure way.

Bellare et al. gave several designs for PKE schemes achieving this notion

in the Random Oracle Model (ROM) and in the standard model. This

is a powerful and general approach, but does have its limitations: under

extreme failure conditions, the joint message-randomness distribution

may simply fail to contain sufficient entropy, at which point all security

guarantees may be lost; moreover, for technical reasons, the model in

[4] requires the target public key to be hidden from the adversary until

all encryption queries have been made. This is impractical in real world

applications.

• Also in the PKE setting, Yilek [81], inspired by virtual machine reset

attacks in [68], considered the scenario where the adversary does not

know the randomness (in contrast to the chosen-randomness setting of

[48]), but can instead force the reuse of random values that are otherwise

well-distributed and unknown to the adversary. This is referred to in

[81] as the Reset Attack (RA) setting. To fully reflect the reality of

randomness failures in this setting, Yilek provides the adversary with

120

the ability to encrypt chosen messages under adversarially generated

public keys using the unknown but repeated random values. This makes

his model very powerful, to the extent that certain trivial attacks must

be excluded by assuming the adversary is equality-pattern respecting. In

[81], Yilek also gave a general construction in which the random coins of

the encryption algorithm are used as a key to a PRF, the input to the

PRF is the public key concatenated with the message to be encrypted,

and the output of the PRF is then used as the ‘randomness’ for the

encryption algorithm. This is sufficient to achieve security in his RA

setting. Note that the RA security model is incomparable with the

CDA model of [4]. Neither notion of security implies the other.

• Ristenpart and Yilek [68] studied the use of ‘hedging’ as a general tech-

nique for protecting against broad classes of randomness failures in

already-deployed systems, and implemented and benchmarked this tech-

nique in OpenSSL. Hedging in the sense of [68] involves replacing the

random value r required in some cryptographic scheme with a hash of

r together with other contextual information, such as a message, algo-

rithm or unique operation identifier, etc. Their results, while applying

to a variety of different randomness failure types (see in particular [68,

Figure 3]), all have their security analyses restricted to the ROM.

5.1.1 Motivation

Inspired by the challenge of preserving security under randomness failures, we

initiate the study of security for PKE in what we call the Related Randomness

Attack (RRA) setting. Our RRA setting builds on the RA setting from [81]

and brings the theory of hedging PKE against randomness failures closer to

practice. As we shall see, it also has interesting connections with related-key

121

attacks for PRFs and PKE, as developed in [7, 5, 6, 8, 79], and leakage resilient

cryptography (and in particular, the techniques developed in [23] to provide

security for PKE in the auxiliary input setting).

In our RRA setting, the adversary can now not only force the reuse of exist-

ing random values as in the RA setting, but can also force the use of functions

of those random values. This power is analogous to the power granted to the

adversary in the Related-Key Attack (RKA) setting, wherein an adversary is

able to tamper with private (or secret) keys used during cryptographic opera-

tions ([14, 5, 49]). The RA setting arises as the special case of our RRA setting

where only the identity function is allowed. The extra adversarial power in

the RRA setting allows the modelling of reset attacks in which the adversary

does not have an exact reset capability, but where the randomness used after

a reset is in some way related to that used on previous resets. Such behaviours

were observed in the experimental work in [68]. Furthermore, our RRA set-

ting allows modelling of situations where the randomness used in a scheme

comes from a PRNG which is not regularly refreshed with new entropy, but

which steps forward under some deterministic state evolution function Next

and output function Out; here the appropriate functions in our RRA setting

would be the compositions Out(Nexti(·)).

More generally, RRA security has a strong theoretical motivation as being

a stepping stone towards giving the adversary enhanced control over the inputs

to cryptographic algorithms – messages (in the standard PKE setting), keys

(in the RKA setting), and now randomness (in our new RRA setting).

5.1.2 Bad randomness in practice

In this section we will consider an example of a public-key encryption scheme

that is secure according to traditional notions, but is trivially insecure when

122

Algorithm ElG.K(1λ):

(G, q, g)←$ GenGrp(1λ)
x←$ {0, . . . , q − 1}
pk = gx

sk = x
return (pk, sk).

Algorithm ElG.E(pk,m):

r ←$ {0, . . . , q − 1}
c1 ← gr

c2 ← m · pkr
return (c1, c2).

Algorithm ElG.D(sk, c):

m← (csk1)−1 · c2.

Figure 5.1: The ElGamal public-key encryption scheme.

an adversary can obtain encryptions under related randomness. Let us con-

sider the ElGamal encryption scheme [30], which can be seen in Figure 5.1.

Suppose an adversary submits the query (m0,m1) to his challenge oracle. The

challenger will return the encryption (c1, c2) = (gr, yr ·mb), where r was the

randomness chosen for encryption, y is the public key and b is the bit chosen

in the CPA/CCA game. Now suppose that the adversary somehow manages

to obtain an encryption of message m under randomness r/2. The ciphertext

will be of the form (gr/2, yr/2 ·m). The adversary can simply square the right

hand side to obtain yr · m2, and then multiply by the inverse of m2 to find

yr. Once the adversary has yr, he simply multiplies c2 by the inverse of yr,

which reveals mb. Hence, the ElGamal encryption is trivially insecure if an

adversary has access to an encryption oracle that encrypts with randomness

that is related to that used in the challenge query. The question then is, can

encryption schemes be made secure even if the adversary has access to such

an oracle? The answer to this question is ‘yes’, as we shall see in the coming

sections.

The previous example was merely theoretical, but we will now briefly dis-

cuss the Sony PS3 randomness failure that resulted in private signing keys

being exposed [12]. Before we discuss the vulnerability we must briefly discuss

Digital Signatures. Digital signature schemes are designed to provide message

integrity in the public-key setting. Each user will generate his own key pair

123

(pk, sk), of which pk is made public and sk remains private. To provide in-

tegrity, the user ‘signs’ a message m with the private key, and outputs the

message, and the signature, denoted σ. In order to verify the integrity of the

message, the receiver inputs the message m, the signature σ and public key pk

to the Verify algorithm. If the Verify algorithm outputs 1, then the signature

is valid for the message, otherwise the signature is invalid. An ideal security

property of such is scheme is that no adversary can produce signatures on a

message of his choosing, but the security games and notions are irrelevant for

our next discussion.

A popular digital signature scheme is ECDSA (Elliptic Curve Digital Sig-

nature Algorithm), which can be seen in Figure 5.2. The security of the

scheme relies on the fact that a uniformly random r is chosen for each sig-

nature. Unfortunately, it was discovered that Sony’s PS3 implementation of

the algorithm was using the same ‘random’ value r for every signature. This

allowed hackers to recover Sony’s signing key, which obviously allowed them

to forge signatures on any software they desired. We will now discuss how the

hackers were able to obtain the signing key.

The algorithms for ECDSA can be seen in Figure 5.2. In the key generation

phase, P is a point on the elliptic curve and q is a prime, both of which are

randomly chosen. Suppose that the hacker obtains two signatures (k, s) and

(k, s′) for messages m and m′ respectively for which the q most significant bits

of Hash(m) and Hash(m′) are distinct. Since the signatures are public and

the first components of both signatures agree, the adversary can detect that

the same randomness was used for both signatures, and can therefore proceed

with the following attack. The values z and z′ are easy to compute because

they both use the public hash function. The hacker has the two values s and

s′, and can compute s− s′ = r−1(z− z′) mod q. It is then possible to compute

r = (z−z′)/(s−s′) mod q. Finally, we know that s = r−1(z+kd) mod q. The

124

hacker now knows s, r, z and k, and can now obtain the signing key d via the

computation d = (sr − z)k−1 mod q.

Alg. ECDSA.K(1λ):

(G, P, q)←$ GenGrp(1λ)
d←$ {0, . . . , q − 1}
pk = dP
sk = d
return (vk, sk).

Alg. ECDSA.S(sk,m):

e = Hash(m)
z = MSBq(e)
r ←$ {0, . . . , q − 1}, (1)
R← rP = (x1, y1)
k = x1 mod q
if k = 0,

return to line (1)
s = r−1(z + kd) mod q
if s = 0,

return to line (1)
return σ = (k, s).

Alg. ECDSA.V(pk,m, σ):

e = Hash(m)
z = MSBq(e)
w ← s−1 mod q
u1 ← zw mod q
u2 ← kw mod q
(x1, y1)← u1P + u2dP
if k ≡ x1 mod q

return 1
else

return 0.

Figure 5.2: The ECDSA scheme.

5.1.3 Our contributions

RRA security model In this chapter, we provide a strong model and se-

curity definition for PKE in the RRA setting, which we name RRA-ATK

security (where ATK = CPA or CCA) . Our model is inspired by that of

Yilek for the RA setting: via access to an Enc oracle, we allow the adver-

sary to get arbitrary messages encrypted under arbitrary public keys, using

functions φ of an initial set of uniformly random, but unknown, values. The

public keys can even be maliciously generated, and the adversary can of course

know all the corresponding private keys. The adversary is tasked with winning

an indistinguishability-style game, via an LR oracle which gives access to en-

cryptions of left or right messages with respect to an honestly generated target

public key pk∗, but again where the adversary can force the use of functions

φ of the initial random values. When the functions φ are limited to coming

from some set Φ, we speak of a Φ-restricted adversary.

125

Because the adversary may know all but one of the private keys, it can

check that its challenger is behaving correctly with respect to its encryption

queries. This also rules out the possibility of achieving RRA-ATK security

for any randomness recovering PKE scheme, like RSA-OAEP [10] and PKE

schemes based on the Fujisaki-Okamoto transformation [29]. Moreover, the

encryption queries concern public keys that are outside the control of the

challenger. This increases the technical challenge of achieving security in the

RRA setting. This facet of the RRA setting bears comparison with the RKA

setting for PKE [6, 8, 79]. In the RKA setting, the tampering via related key

functions only affects the PKE scheme’s private key, and so only comes into

play when simulating decryption queries. By contrast, it is encryption queries

that require special treatment in our RRA setting.

Given the power of the adversary in the RRA setting, we cannot hope to

achieve security against all sets of adversarial queries. So we must restrict

the adversary from achieving ‘trivial wins’. In particular, no matter what set

of functions Φ the adversary uses to modify the random values, it can win

simply by making the same combination of messages and functions in its LR

queries as in its encryption queries under target public key pk∗. These must

then be ruled out by identifying forbidden combinations of queries. Thus

we must assume the adversary is equality-pattern respecting, for a suitable

definition that extends that of [81]. However, this alone is not enough: from

the RKA setting and the results of [24], we already know that certain sets

of functions Φ are too powerful, in allowing trivial wins for the adversary in

that setting. We should not be surprised that the same is true in our RRA

setting. For example, if constant functions are allowed in the RRA setting, an

adversary would trivially be able to determine which of two challenge message

is encrypted in a ciphertext from the LR oracle. Analogously to [7], we identify

collision-resistance and output-unpredictability as necessary conditions on the

126

set of functions Φ which the adversary uses to transform random values in its

attack.

ROM construction We are able to show that, in the ROM, these neces-

sary conditions on the function set Φ are actually also sufficient. More specif-

ically, we show how to transform any IND-ATK secure PKE scheme PKE into

a new PKE scheme Hash-PKE that is RRA-ATK secure, for equality-pattern

respecting, Φ-restricted adversaries, simply by hashing the random input to-

gether with the public key and message during encryption. In fact, this is

just an application of the hedging approach from [68], and an instance of

the randomized-encrypt-with-hash (REwH) scheme from [4]. Our result then

shows that this approach also provides security in our new RRA setting.

Standard model constructions Having dealt with the ROM, we then

turn our attention to constructions in the standard model. Reinforcing the

connections to RKA security, we are able to show that any Φ-restricted RKA-

PRF can be used to build a RRA-ATK secure PKE scheme for Φ-restricted

adversaries, thus transferring security from the RKA setting for PRFs to the

RRA setting for PKE. But the limited range of RKA-PRFs currently available

in the literature [58, 5] essentially restricts the obtained RRA-ATK secure

PKE scheme to a class of functions Φ consisting of polynomial functions. In

the hope of achieving an RRA-ATK secure PKE scheme for richer classes of

functions, we must seek alternative methods of construction.

Unfortunately, we have not been able to achieve our full RRA-ATK security

notion for more interesting function classes using other constructions. So we

must resort to exploring alternative versions of this notion in order to make

progress. We relax RRA-ATK security along two independent dimensions: the

degree of control that the adversary enjoys over the public keys under which it

127

can force encryptions for related random values, and the degree of adaptivity

it has in the selection of functions φ ∈ Φ:

• We first consider the situation where the public keys are all honestly

generated at the start of the security game, and the public keys and

all but one of the private keys are then given to the adversary — the

honest-key, related randomness attack (HK-RRA) setting. This is a

reasonable relaxation in that, in practice, all the public keys that the

adversary might be able to induce a user to encrypt under would be

properly generated by users and then certified by a CA ahead of time.

In this setting, we provide a generic construction for a scheme achiev-

ing HK-RRA-ATK security based on combining any IND-ATK secure

PKE scheme with a Correlated-Input Secure (CIS) hash function [32].

Currently known instantiations of CIS hash functions allow us to obtain

selective, HK-RRA-ATK security for Φ-restricted adversaries where Φ

is a large class of polynomial functions. Here, selectivity refers to the

adversary committing at the start of the game to the set of functions it

will use.

• In the next chapter we will consider the situation where there is no

restriction on public keys, but the adversary is committed up-front to

a vector of functions φ = (φ1, . . . , φq) that it will use in its attack, and

where security is in the end quantified over all choices of φ from some

set Φ. This quantification is subtly different from allowing the adversary

a fully adaptive choice of functions φ ∈ Φ (for a detailed discussion, see

Sections 5.2 and 6.1). In this situation, we refer to the function-vector,

related randomness attack (FV-RRA) model. Here, we are able to give

a direct construction for a PKE scheme that is FV-RRA-ATK secure

solely under the DDH assumption, assuming the component functions

φi of φ are simultaneously hard to invert on a random input. Our scheme

128

is inspired by a PKE scheme of Boneh et al. [17] that is secure in the

so-called auxiliary input setting, wherein the adversary is given a hard-

to-invert function of the secret key as part of its input. By swapping the

roles of secret key and randomness in the Boneh et al. scheme, we are

able to obtain security in a setting where a hard-to-invert function of the

encryption randomness is leaked to the adversary. This leakage is then

sufficient to allow us to simulate the encryptions for adversarially chosen

public keys. For technical reasons, to obtain a construction, we must also

limit our adversary to using the identity function when accessing its LR

oracle. We then attempt to extend this model by providing definitions

that allow an adversary to specify functions when querying its LR oracle.

We prove that security in this setting can be reduced to the security of

a particular type of reconstructive extractor (for a new definition, which

we introduce), and we show that the proof technique can be used to

provide a transform that converts any IND-ATK-secure scheme into an

FV-RRA-ATK-secure scheme.

To summarise, in the standard model, we can achieve our full security no-

tion, RRA-ATK security, but only for a limited class of functions Φ (inherited

from known results on RKA-PRFs), whilst our alternative security notions

allow us to protect against different classes Φ (in the case of the Function-

Vector setting) or provide easier routes to achieve security (in the case of the

Honest-Key setting).

5.2 Related Randomness Security for Public-

Key Encryption

We now formalise our notions of related randomness security for PKE. We

give a detailed treatment of our strongest notion, before sketching restricted

129

versions. The description of our security notions will utilise code-based games

and the associated language (see Section 2.1.3 or [11] for a more thorough

treatment).

Our strongest security notion, RRA-CCA security, is defined via the game

in Figure 5.3. Here, a challenge key pair (pk∗, sk∗) for a PKE scheme PKE =

(PKE.K, PKE.E, PKE.D) with randomness space Rnd is honestly generated, and

the adversary is considered successful if it wins an indistinguishability game

with respect to messages encrypted under pk∗. Extending the standard PKE

setting, the adversary is able to control which one of polynomially many ran-

dom values ri ∈ Rnd is used in responding to each encryption query for pk∗;

furthermore, the adversary is able to obtain the encryption of messages of its

choice under arbitrary (possibly maliciously generated) public keys. Extend-

ing the model of Yilek [81], our adversary not only specifies which one of the

random values ri is to be used in each query, but also specifies, for each query

he makes, a function φ on Rnd; the value φ(ri) is used for encryption in place

of ri. In the CCA setting, the adversary also has access to a regular decryption

oracle for private key sk∗. Note that if the adversary uses only the identity

function, then we recover the Resettability Attack (RA) model of Yilek [81].

It is not difficult to see that, as in the RA setting, an adversary may triv-

ially win this game if no restrictions are placed on oracle queries. To see why,

consider an adversary that requests the encryption of m under the target pub-

lic key using coins φ(ri) (that is, PKE.E(pk∗,m;φ(ri))) and submits LR query

(m,m′, i, φ). The adversary guesses b is 0 if the two ciphertexts match, other-

wise he guesses b is 1. This adversary wins the game with probability 1. As

in the RA setting, such wins are unavoidable in our setting since encryption

essentially becomes deterministic when the same random coins and functions

φ are used. We will shortly introduce an equality-pattern respecting definition

for adversaries, designed to prevent trivial wins of this kind. This extends

130

the related RA definition from [81]. However, restrictions on the functions φ

will also be required. To illustrate the issue, consider as an extreme case the

constant function φC (with φC(r) = C for all r ∈ Rnd). Suppose the adversary

submits LR query (m0,m1, j, φC) for any m0 6= m1 and any j ∈ N; the adver-

sary receives a ciphertext c∗ and then computes c0 = PKE.E(pk∗,m0;C); the

adversary outputs guess b′ = 0 if and only if c∗ = c0. It is easy to see that this

adversary wins the RRA-ATK game with probability 1. This example is anal-

ogous to one in the related-key attack setting for PRFs in [7]. Hence, we will

need to restrict the class of functions which the adversary is allowed to access

in its queries to come from some set Φ, in which case we speak of Φ-restricted

adversaries. We have already seen that constant functions must be excluded

from Φ if we are to have any hope of achieving our related randomness security

notion.

Thus we have two sets of constraints that we need to consider to prevent

trivial wins: those on messages and randomness indices (analogous to the RA

setting from [81]) and those on functions φ (analogous to the RKA setting

for PRFs from [7]). Let us deal with the first set of constraints first and

define what it means for an adversary to be equality-pattern respecting. The

following definition is adapted from [81] for our purposes.

Definition 5.2.1. Let A be a Φ-restricted adversary in Game RRA-ATK that

queries r different randomness indices to its LR and Enc oracles and makes

qi,φ queries to its LR oracle with index i and function φ ∈ Φ. Let Ei,φ be

the set of all messages m such that A makes Enc query (pk∗,m, i, φ). Let

(mi,φ,1
0 ,mi,φ,1

1), . . . , (m
i,φ,qi,φ
0 ,m

i,φ,qi,φ
1) be A’s LR queries for index i ∈ [r] and

φ ∈ Φ. Suppose that for all pairs (i, φ) ∈ [r]× Φ and for all j 6= k ∈ [qi,φ], we

have:

mi,φ,j
0 = mi,φ,k

0 iff mi,φ,j
1 = mi,φ,k

1

131

proc. Initialise(λ):

b←$ {0, 1};
(pk∗, sk∗)←$ PKE.K(1λ);
CoinTab← ∅;
S ← ∅; return pk∗.

proc. Dec(c):

if c ∈ S
return ⊥

else
return PKE.D(sk∗, c).

proc. LR(m0,m1, i, φ):

if CoinTab[i] =⊥
CoinTab[i]←$ Rnd

ri ← CoinTab[i]
c← PKE.E(pk∗,mb;φ(ri))
S ← S ∪ {c}
return c.

proc. Enc(pk,m, i, φ):

if CoinTab[i] =⊥
CoinTab[i]←$ Rnd

ri ← CoinTab[i]
c← PKE.E(pk,m;φ(ri))
return c.

proc. Finalise(b′):

if b = b′

return 1
else

return 0.

Figure 5.3: Game RRA-ATK. (Note that if ATK = CPA, then the adversary’s
access to proc. Dec is removed.)

and that, for all pairs (i, φ) ∈ [r]× Φ, and for all j ∈ [qi,φ], we have:

mi,φ,j
0 /∈ Ei,φ ∧mi,φ,j

1 /∈ Ei,φ.

Then we say that A is equality-pattern respecting.

Notice that if the adversary is restricted to using only the identity function,

then this definition reduces to the equality-pattern respecting definition for the

RA setting, cf. [81, Appendix A].

Definition 5.2.2. We define the advantage of an equality-pattern respecting,

RRA-ATK adversary A against a PKE scheme PKE to be

Advrra-atk
PKE,A (λ) := 2 · P[RRA-ATKAPKE(λ)⇒ 1]− 1.

A PKE scheme PKE is said to be Φ-RRA-ATK secure if the advantage of any Φ-

restricted, equality-pattern respecting, RRA-ATK adversary against PKE that

runs in polynomial time is negligible in the security parameter λ.

132

5.2.1 Alternative security notions

The above definition for Φ-RRA-ATK security is very powerful: it allows

an adversary to submit any public key to its encryption oracle and allows

the adversary to adaptively choose the functions φ, the only restriction being

that they lie in Φ. In Section 5.2.3 we will exhibit conditions that are both

necessary and sufficient for achieving security in this sense in the ROM (given a

starting PKE scheme that satisfies the usual definition of IND-ATK security).

In the standard model, we will give a construction that relies on RKA-PRFs.

Since constructions for these are currently limited in terms of the function

classes they can handle, we will now consider alternative definitions of the

Φ-RRA-ATK notion.

The first alternative notion we consider is called Honest-Key Related Ran-

domness (HK-RRA) security. The security game is given in Figure 5.4 and

has two parameters, λ and `. Informally, the game itself generates a poly-

nomial number ` of key pairs and returns the public keys to the adversary.

The adversary then chooses which public key he wishes to be the target key,

and is given the private keys corresponding to all the non-target public keys.

Meanwhile, the adversary’s queries to its Enc oracle are restricted to using

the public keys generated by the game. Suitable Φ-HK-RRA-ATK security

notions follow by analogy with our earlier definitions.

One may consider notions intermediate between Φ-RRA-ATK security and

Φ-HK-RRA-ATK security. For example, a registered key notion could be

defined, in which the adversary chooses and registers key pairs (pk, sk), with

registration involving a test for validity by some procedure, and all queries

involve only registered public keys. One may also consider weaker variants of

these notions in which the adversary’s choice of functions φ is non-adaptive

(or selective). That is, the adversary must submit a set of functions {φ} ⊂ Φ

133

proc. Initialise(λ, `):

b←$ {0, 1};
Keys← ∅;
target← false;
CoinTab← ∅;
S ← ∅; (pk∗, sk∗)← ∅
for i = 1 to `

(pki, ski)←$ PKE.K(1λ)
Keys← Keys ∪ pki

return Keys.

proc. Target(j):

if target = true

return ⊥
else

(pk∗, sk∗)← (pkj , skj)
target← true

return {ski}i 6=j .

proc. Enc(pk,m, i, φ):

if target = false

return ⊥
if pk /∈ Keys

return ⊥
if CoinTab[i] =⊥

CoinTab[i]←$ Rnd

ri ← CoinTab[i]
c← PKE.E(pk,m;φ(ri))
return c.

proc. Dec(c):

if target = false

return ⊥
if c ∈ S

return ⊥
else

return PKE.D(sk∗, c).

proc. LR(m0,m1, i, φ):

if target = false

return ⊥
if CoinTab[i] =⊥

CoinTab[i]←$ Rnd

ri ← CoinTab[i]
c← PKE.E(pk∗,mb;φ(ri))
S ← S ∪ {c}
return c.

proc. Finalise(b′):

if b = b′

return 1
else

return 0.

Figure 5.4: Game `-HK-RRA-ATK. (Note that if ATK = CPA, then the
adversary’s access to proc. Dec is removed.)

of polynomial size to the game before he is allowed to see the target public key

(or set of public keys, if playing in the Honest-Key setting). In this setting,

we refer to Φ-sHK-RRA-ATK security.

Comparison of security notions The notion of HK-RRA-ATK security

is easily seen to be a strictly weaker notion than full RRA-ATK security.

A separation can be established by considering a scheme where public keys

generated by the key generation algorithm always have a certain bit set to 0,

and where the encryption algorithm, given a public key with this bit set to

1 (i.e. a maliciously generated public key), will expose the randomness used

for the encryption. Likewise, the selective models are easily seen to be weaker

than their adaptive counterparts.

It is not hard to see that our RRA security notions are incomparable with

the CDA security notions of [4]. In the RA setting, Yilek defines only an

134

equivalent of our full RRA-ATK notion; it is clear that RRA-ATK security is

stronger than his RA-ATK security whenever the function set Φ contains the

identity function. The same would carry over to relaxed versions of RA-ATK

security.

5.2.2 A simplifying lemma

Lemma 5.2.1. Consider an equality-pattern respecting, RRA-ATK adversary

A that queries qr distinct randomness indices and makes at most qLR LR

queries. Then there exists an equality-pattern respecting, RRA-ATK adver-

sary B that queries at most one randomness index and makes at most qLR

LR queries such that

Advrra-atk
PKE,A (λ) ≤ qr ·Advrra-atk

PKE,B (λ),

where B runs in approximately the same time as A. In the CCA setting, B

makes the same number of decryption queries as A.

Proof. To keep the notation from becoming too cluttered, we denote by

AG(qLR,qr) an adversary A playing the RRA-ATK game that makes qLR LR

queries and queries qr distinct randomness indices. To prove the lemma we will

use an alternative, but equivalent, notion of adversarial advantage, namely:

Advrra-atk
PKE,A (λ) = P[AG(qLR,qr) ⇒ 1 | b = 1]− P[AG(qLR,qr) ⇒ 1 | b = 0].

Notice that we are now interested in the output of the adversary, rather than

the output of the game. Let G0 denote the RRA-ATK security game in Fig-

ure 5.3 where b = 0. Let Gqr denote the same game where b = 1. If games Gj

are as defined in Figure 5.5, then

Advrra-atk
PKE,A (λ) = P[AGqr ⇒ 1]− P[AG0 ⇒ 1]

=

qr−1∑
j=0

P[AGj+1 ⇒ 1]− P[AGj ⇒ 1].

135

proc. Initialise(λ):

(pk∗, sk∗)←$ PKE.K(1λ);
CoinTab← ∅;
S ← ∅; return pk∗.

proc. Enc(pk,m, i, φ):

if CoinTab[i] =⊥
CoinTab[i]←$ Rnd

ri ← CoinTab[i]
c← PKE.E(pk,m;φ(ri))
return c.

proc. LR(m0,m1, i, φ):

if CoinTab[i] =⊥
CoinTab[i]←$ Rnd

ri ← CoinTab[i]
if i ≤ qr − j,

c← PKE.E(pk∗,m0;φ(ri))
if i > qr − j,

c← PKE.E(pk∗,m1;φ(ri))
S ← S ∪ {c}
return c.

proc. Dec(c):

if c ∈ S
return ⊥

else
return PKE.D(sk∗, c).

proc. Finalise(b′):

if b = b′

return 1
else

return 0.

Figure 5.5: The game Gj used in the proof of Lemma 5.2.1.

Without loss of generality, we will assume that games j∗ and j∗ + 1 have

the largest difference. Then,

Advrra-atk
PKE,A (λ) ≤ qr · (P[AGj∗+1 ⇒ 1]− P[AGj∗ ⇒ 1]).

The only difference between games j∗ and j∗ + 1 is in how the LR oracle

responds to a query with randomness index qr − j∗. If A can distinguish

between games j∗ and j∗ + 1, then we can use this adversary to build an

adversary B winning the RRA-ATK game and using only 1 randomness index.

The Initialise procedure for B’s RRA-ATK game is run, returning a target

public key pk∗ to B. Then adversary B sets up the simulation for A.

Setup

CoinTab← ∅;

S ← ∅.

Then B forwards the key pk∗ to A. Adversary B will simulate either game

Gj∗ or Gj∗+1 for A by answering A’s oracle queries as follows:

Enc query (pk,m, l, φ)

If l = qr − j∗, B submits (pk,m, φ) to its Enc oracle, and returns the

result to A.

136

Otherwise, if CoinTab[l] =⊥, B chooses CoinTab[l]←$ Rnd,

rl ← CoinTab[l], and B returns PKE.E(pk,m;φ(rl)).

LR query (m0,m1, l, φ)

If l = qr − j∗, B submits (φ,m0,m1) to its LR oracle and returns the

result to A.

Otherwise, if CoinTab[l] =⊥, B chooses CoinTab[l]←$ Rnd

rl ← CoinTab[l]:

if l < qr − j∗, B returns PKE.E(pk∗,m0;φ(rl)),

else if l > qr − j∗, B returns PKE.E(pk∗,m1;φ(rl)).

B updates S to include the ciphertext returned to A.

Dec query c

If c ∈ S, then B returns ⊥.

Otherwise B submits c to its Dec oracle and the output is returned to

A.

When A halts with output bit b′, B halts and outputs the same bit b′.

When b = 0 (and B receives an encryption of m0), it perfectly simulates Gj∗

for A. When b = 1, B provides a perfect simulation of Gj∗+1. It follows that

Advrra-atk
PKE,A (λ) ≤ qr · (P[AGj∗+1 ⇒ 1]− P[AGj∗ ⇒ 1])

= qr · (P[B ⇒ 1|b = 1]− P[B ⇒ 1|b = 0])

= qr ·Advrra-atk
PKE,B (λ).

This completes the proof.

The above lemma shows that we need only consider adversaries that use

one randomness index. The lemma actually applies for all variations of related

randomness security considered above, not just our strongest RRA-ATK no-

tion. This enables us to make a simplifying step at the beginning of all our

proofs (at the cost of a qr factor in all advantages), and to use the following

simplified equality-pattern definition in all our proofs:

137

Definition 5.2.3. Let A be a Φ-restricted adversary in Game RRA-ATK that

queries 1 randomness index (assumed to be j = 1) to its LR and Enc or-

acles and makes qφ queries to its LR oracle with function φ. Let Eφ be

the set of all messages m such that A makes Enc query (pk∗,m, 1, φ). Let

(mφ,1
0 ,mφ,1

1), . . . , (m
φ,qφ
0 ,m

φ,qφ
1) be A’s LR queries with function φ and ran-

domness index 1. Suppose that for all φ ∈ Φ and for all j 6= k ∈ [qφ], we

have:

mφ,j
0 = mφ,k

0 iff mφ,j
1 = mφ,k

1

and that, for all φ ∈ Φ and for all j ∈ [qφ], we have:

mφ,j
0 /∈ Eφ ∧mφ,j

1 /∈ Eφ.

Then we say that A is equality-pattern respecting.

Yilek claimed in [81] that a further simplification is possible in his Reset

Attack (RA) setting, namely that there is a reduction from any adversary

making q LR queries to an adversary making just one LR query. One might

hope that a corresponding result would be possible in our Related Randomness

setting. Only a sketch proof is given for the RA setting claim in [81], but it

appears to be flawed (see the paragraph below). While we do not have a sepa-

ration between models with one and q > 1 LR queries for either Yilek’s RA or

our RRA setting, neither have we been able to prove the desired simplification

from q to one LR query.

To see why Yilek’s proof is flawed, consider an adversary with one LR

query, which we will call A1. This adversary is supposed to simulate the game

for Aq, the adversary with q LR queries. Adversary A1 first guesses an index

i ∈ {1, . . . , q}. When adversary Aq makes its ith LR query, A1 passes the

query to its own LR oracle. For all other queries, A1 is supposed to pass either

m0 or m1 to its Enc oracle. However, this simulation is not always possible

because of the necessary equality-pattern restrictions in the RA setting. For

138

example, an adversary making two LR queries may submit the pairs (m0,m1)

and (m1,m0) to its LR oracle, as these are equality-pattern respecting in the

model of [81]. Without loss of generality, the simulating adversary A1 passes

the pair (m0,m1) to its LR oracle, and then, for LR query (m1,m0), submits

either m0 or m1 to its Enc oracle. However, A1 would no longer be equality-

pattern respecting, even though the original adversary is. Fortunately, the

main construction in [81] is still secure against an adversary making multiple

LR queries.

5.2.3 Function restrictions

Above, we briefly alluded to the fact that the class of functions Φ used

by our RRA adversaries must be restricted in various ways. The example

given showed that constant functions must always be excluded. Here, we ex-

hibit much stronger necessary conditions on Φ that must be satisfied, namely

output-unpredictability and collision-resistance. These notions are closely re-

lated to notions with the same names arising in the setting of related-key

security for PRFs that was considered in [7]. Here, however, we are concerned

with functions acting on the randomness used in PKE schemes rather than on

PRF keys.

Definition 5.2.4 (Output-unpredictability for Φ). Let Φ be a set of functions

from Rnd to Rnd. Let α and β be positive integers. Then the (α, β)-output-

unpredictability of Φ is defined to be

InSecup
Φ (α, β) = max

P⊆Φ,X⊆R,|P |≤α,|X|≤β
{P [r ←$ Rnd : {φ(r) : φ ∈ P} ∩X 6= ∅]} .

Informally, the definition of output-unpredictability measures the (max-

imum) probability that a function (from a polynomial-sized set P) maps a

random input r to a polynomial-sized set X.

139

Definition 5.2.5 (Collision-resistance for Φ). Let Φ be a set of functions from

Rnd to Rnd. Let α be a positive integer. Then the α-collision-resistance of Φ

is defined to be

InSeccr
Φ (α) = max

P⊆Φ,|P |≤α
{P [r ←$ Rnd : |{φ(r) : φ ∈ P}| < |P |]} .

The previous definition is merely measuring the (maximum) probability

that two functions (from a polynomial-sized set P) map the same random r

to the same output.

Regarding these two definitions, we have the two following results.

Theorem 5.2.1 (Necessity of output-unpredictability). Let Φ be a class of func-

tions from Rnd to Rnd. Suppose there are natural numbers α = poly1(λ) and

β = poly2(λ) such that InSecup
Φ (α, β) = p, where p := p(λ) is non-negligible.

Then no PKE scheme can be RRA-ATK secure with respect to the class of

functions Φ.

Proof. By definition, there exists a set P ⊆ Φ and a set X ⊆ Rnd, both of

polynomial size, such that

P [r ←$ Rnd : {φ(r) : φ ∈ P} ∩X 6= ∅] = p.

We will construct a polynomial-time adversary A that has advantage at least p

against any scheme PKE. Let pk∗ denote the target public key in the RRA-ATK

security game. The adversary, A, chooses two distinct messages m0 and m1

and computes E0 = {PKE.E(pk∗,m0; r) : r ∈ X} and E1 = {PKE.E(pk∗,m1; r) :

r ∈ X}. Then A requests LR oracle outputs for (m0,m1, 1, φ) for all φ ∈ P .

Let Eφ = {PKE.E(pk∗,mb;φ(r1)) : φ ∈ P} denote the set of responses to A’s

LR queries. If Eb∩Eφ 6= ∅, then A outputs b, otherwise A chooses b←$ {0, 1}

140

and outputs b. Let pred denote the event that Eb ∩ Eφ 6= ∅, then

Advrra-atk
PKE,A (λ) = 2 · P[RRA-ATKAPKE(λ)⇒ 1]− 1

= 2 · P[RRA-ATKAPKE(λ)⇒ 1 | pred] · P[pred]

+2 · P[RRA-ATKAPKE(λ)⇒ 1 | pred] · P[pred]− 1

= 2

(
p+ ε+

1

2
(1− p− ε)

)
− 1

= p+ ε.

The third line follows because if pred occurs then A wins with probability 1,

whilst if pred does not occur then A guesses and hence wins with probability

1/2. If any of the functions φ maps into X, then there will be a collision

in EX and Eb for some b, hence event pred will definitely occur. Therefore

P[pred] ≥ p. Let P[pred] = p + ε for some ε ≥ 0. The result easily follows.

No Dec queries are required for this attack, so it applies to both the CPA and

CCA settings.

Theorem 5.2.2 (Necessity of collision-resistance). Let Φ be a class of functions

from Rnd to Rnd. Suppose there is a natural number α = poly1(λ) such that

InSeccr
Φ (α) = p, where p := p(λ) is non-negligible. Then no PKE scheme can

be RRA-ATK secure with respect to the class of functions Φ.

Proof. By definition, there exists a subset P ⊆ Φ of polynomial size such that

P [r ←$ Rnd : |{φ(r) : φ ∈ P}| < |P |] = p.

We construct a polynomial-time adversary A that has advantage at least p/2.

Let the target public key be pk∗. Then A chooses |P | + 1 distinct messages

m0,m1, . . . ,m|P | and assigns an index to each φ ∈ P . For i from 1 to |P |,

A requests LR oracle output for query (m0,mi, 1, φi). Let the output of the

LR oracle for the ith query be ci. Let collr denote the event that φi(r1) =

φj(r1) for some i 6= j, where r1 is the randomness chosen by the game for

141

index 1. Let collc denote that two cipher texts output by the LR oracle

collide. Adversary A outputs b = 0 if ci = cj for some i 6= j. Otherwise, A

chooses b←$ {0, 1} and outputs b. Then,

Advrra-atk
PKE,A (λ) = 2 · P[RRA-ATKAPKE(λ)⇒ 1]− 1

= 2 · P[RRA-ATKAPKE(λ)⇒ 1 | collc] · P[collc]

+2 · P[RRA-ATKAPKE(λ)⇒ 1 | collc] · P[collc]− 1

= 2

(
1

2
p+ ε+

1

2
(1− 1

2
p− ε)

)
− 1

=
1

2
p+ ε.

This follows because collc occurs whenever b = 0 and collr occurs. Hence,

P[collc] ≥ P[b = 0 ∩ collr] = p/2. If we let P[collc] = p/2 + ε for some ε ≥ 0,

then the claim follows easily since A wins with probability 1 if collc occurs,

whilst if collc does not occur then A guesses and hence wins with probability

1/2. No Dec queries are required for this attack, so this argument applies

equally well to both the CPA and CCA settings.

These restrictions might seem to rule out the possibility of defending

against some of the more interesting classes of functions. However, this is

not the case. We note that many classes of functions that arise from practi-

cal attacks satisfy the output-unprecdictability and collision-resistance condi-

tions. For example, the class of functions that flip bits at certain positions,

or the class of functions that fix the value of certain bits, are both output-

unpredictable and collision-resistant (provided at least a polynomial number

of bits are not fixed, in the latter case).

142

Alg. Hash-PKE.K(1λ):

(pk, sk)←$ PKE.K(1λ).

Alg. Hash-PKE.E(pk,m):

r ←$ Rnd

c← PKE.E(pk,m;H(pk||m||r))
return c.

Alg. Hash-PKE.D(sk, c):

m← PKE.D(sk,m)
return m.

Figure 5.6: Scheme Hash-PKE built from a PKE scheme PKE and a hash function
H.

5.3 Construction in the Random Oracle

Model

We have seen that the class of functions Φ must be collision-resistant and

output-unpredictable in order for a scheme to be secure against related ran-

domness attacks. In the ROM, these two conditions are in fact also sufficient

to ensure security in our strongest RRA-ATK models, in the following sense:

given a hash function H, any PKE scheme PKE that is IND-ATK secure, and

a set of functions Φ that is both collision-resistant and output-unpredictable,

the scheme Hash-PKE constructed from PKE as in Figure 5.6 is Φ-RRA-ATK

secure in the ROM. The next result formalises this claim.

Theorem 5.3.1. Suppose A is a Φ-restricted, equality-pattern respecting ad-

versary in the RRA-ATK game against the scheme Hash-PKE defined in Fig-

ure 5.6. Suppose A requests encryptions for qφ distinct functions, queries qr

randomness indices, and makes qRO random oracle queries. Then there exists

an IND-ATK adversary C against PKE such that

Advrra-atk
Hash-PKE,A(λ) ≤ qr · qLR ·Advind-atk

PKE,C (λ) + 2qr · InSecΦ
cr(qφ)

+ 2qr · InSecΦ
up(qφ, qRO).

Adversary C’s running time is approximately the same as that of A. In the

CCA game, C makes the same number of decryption queries as A.

Proof. First, we invoke Lemma 5.2.1, so that we now only have to prove the

theorem for an adversary using just one randomness value, which we assume

143

to be r∗. Without loss of generality, we assume that queries to the random

oracle take the form pk||m||r, where pk is a public key, m is a message and

r is a randomness value. Let pred denote the event that A makes a query

X = pk||m||r to the random oracle and this value X is used by the Enc or

LR oracle as an input to the random oracle to encrypt a message m with

randomness φ(r∗) under public key pk. Let coll denote the event that A

queries distinct functions φ1 and φ2 such that φ1(r∗) = φ2(r∗). Then

Advrra-atk
Hash-PKE,A(λ) = 2 · P[RRA-RO-ATKAHash-PKE ⇒ 1]− 1

≤ 2 · P[RRA-RO-ATKAHash-PKE ⇒ 1 | coll ∪ pred]

+ 2 · P[coll ∪ pred]− 1

≤ 2 · P[IND-ATKBPKE ⇒ 1]− 1 + 2 · P[coll] + 2 · P[pred]

≤ Advind-atk
PKE,B (λ) + 2 · InSecΦ

cr(qφ) + 2 · InSecΦ
up(qφ, qRO)

≤ qLRAdvind-atk
PKE,C (λ) + 2InSecΦ

cr(qφ) + 2InSecΦ
up(qφ, qRO).

The third line follows because if neither coll nor pred occurs, then the

inputs to the random oracle are distinct and unknown, so the outputs may be

replaced with random values chosen independently and uniformly at random.

Hence, a standard IND-ATK adversary B can simulate this game for A. For

A’s Enc queries, B chooses a fresh random value and uses this to encrypt. For

LR queries, B forwards the message pair to his own LR oracle. Dec queries

are forwarded to B’s Dec oracle and B returns a random value for random

oracle queries. From A’s perspective, B provides a perfect simulation. When

A outputs a bit, B outputs the same bit. The final line comes from a straight-

forward hybrid argument. B is allowed multiple LR queries, but this may be

simulated by a standard IND adversary that is allowed only one LR query,

with a security loss. The simulator C guesses an index j ∈ {1 . . . , qLR} and

forwards the target public key. For B’s ith query, if i < j (resp. i > j) C en-

crypts m0 (resp. m1) with fresh randomness and returns the ciphertext to B.

144

If i = j, C forwards (m0,m1) to his own LR oracle and forwards the output to

B. At the end of the simulation C outputs the same bit as B. This completes

the proof.

Bellare et al. [4] introduced the randomised-encrypt-with-hash (REwH)

method to protect against randomness failures in public-key encryption. This

method amounts to incorporating as much context as possible via hashing

when setting up randomness. It was further developed in [68] as a general

purpose technique applicable to multiple cryptographic primitives. The con-

struction in Figure 5.6 can be seen as an instance of this method, in that the

‘random value’ used during encryption is replaced with a hash of the public

key, the message to be encrypted, and the actual random value. Theorem

5.3.1 then shows that hedging in this way not only protects against the vari-

ous forms of randomness failure considered in [4, 68], but also protects against

failures in our related randomness setting, to the maximum extent possible.

Now that we have shown a necessary and sufficient condition for RRA

security in the ROM, the challenge is to extend our results to the standard

model. The remainder of this chapter is concerned with achieving this goal.

5.4 Related Randomness Security for PKE

from RKA-PRFs

Since the RA setting of Yilek [81] is a special case of our RRA setting, an

obvious way to try to achieve RRA security is to extend the main construction

from [81]. Recall that the construction of Yilek combines a PRF with an IND-

ATK secure PKE scheme. Specifically, the randomness r is used as a key for

the PRF, and the input to the PRF is the ‘context’ pk||m; the output from the

PRF is then used as the actual randomness for encryption. This construction

145

Alg. PRF-PKE.K(1λ):

(pk, sk)←$ PKE.K(1λ).

Alg. PRF-PKE.E(pk,m):

r ←$ Rnd

r′ ← Fr(pk||m)
c← PKE.E(pk,m; r′)
return c.

Alg. PRF-PKE.D(sk, c):

m← PKE.D(sk, c)
return m.

Figure 5.7: Scheme PRF-PKE built from a standard PKE scheme, PKE and a
PRF, F .

extends directly to our setting, and security is guaranteed against Φ-restricted

adversaries in our strongest RRA-ATK models, under the assumption that the

PRF is Φ-RKA-secure (that is, secure against related-key attacks for the same

class of functions Φ). Thus the construction transfers RKA security for PRFs

to RRA-ATK security for PKE. Figure 5.7 formalises the construction, and

Theorem 5.4.1 our security result. Notice that our RO scheme in Section 5.3

may be interpreted as an instantiation of the scheme in Figure 5.7, since a

random oracle can be viewed as an (unkeyed) RKA-PRF.

Theorem 5.4.1. SupposeA is a Φ-restricted, equality-pattern respecting adver-

sary in the RRA-ATK game against the scheme PRF-PKE defined in Figure 5.7.

Suppose A makes qLR LR queries, qs Enc queries, and uses qr randomness

indices. Then there exists a Φ-restricted RKA-PRF adversary B and an IND-

ATK adversary C such that

Advrra-atk
PRF-PKE,A(λ) ≤ qLR · qr ·Advind-atk

PKE,C (λ) + 2qr ·Advrka-prf
F,B (λ).

Adversaries B and C run in approximately the same time as A. Adversary C

makes one LR query and the same number of Dec queries as A. Adversary

B makes at most qLR + s queries to its oracle.

Proof. We first apply Lemma 5.2.1, so that we may concentrate on an adver-

sary using just one randomness value. Let G0 be the real RRA-ATK security

game played by an adversary A against the scheme PRF-PKE and let G1 be the

game where outputs of the PRF F are replaced with values chosen uniformly

146

at random. That is, in G1, each encryption uses fresh random coins rather

than using outputs from F . We first claim that there is an adversary B against

the Φ-RKA-PRF security of F such that

P[GA0 ⇒ 1]− P[GA1 ⇒ 1] ≤ Advrka-prf
F,B (λ).

Our construction of Adversary B is as follows. Adversary B flips a bit b and

generates a key pair (pk∗, sk∗). Then, B gives pk∗ to A and runs A. When A

submits an Enc query (pk,m, 1, φ), B sends (φ, pk||m) to its oracle, uses the

output, r′ to encrypt, so that c← PKE.E(pk,m; r′), and returns c to A. When

A submits an LR query (m0,m1, 1, φ), B sends (φ, pk∗||mb) to its oracle and

uses the output, r′, to encrypt, setting c← PKE.E(pk∗,mb; r
′) and returning c

to A. In the CCA game, B generated sk∗ so he may use this to respond to

any decryption queries. At the end of the simulation, when A outputs a bit

b′, B outputs 1 if and only if b = b′. If B is in the real world, he simulates G0,

otherwise he simulates G1.

Now adversary A’s queries in game G1 can be simulated by an IND-ATK

adversary C against PKE as follows. The adversary C must guess an index

j ∈ {1, . . . , qLR}. For the ith LR query made by A, when i < j (resp. i > j)

C responds with an encryption of m0 (resp. m1). For the jth LR query made

by A, C forwards the query to his own LR oracle and returns the output. At

the end of the simulation C outputs the same bit as A playing G1. A standard

hybrid argument shows that

2 · P[GA1 ⇒ 1]− 1 ≤ qLR ·Advind-atk
PKE,C (λ).

Hence,

Advrra-atk
PRF-PKE,A(λ) = 2 · P[GA0 ⇒ 1]− 1

= 2(P[GA0 ⇒ 1]− P[GA1 ⇒ 1]) + 2 · P[GA1 ⇒ 1]− 1

≤ 2 ·Advrka-prf
F,B (λ) + qLR ·Advind-atk

PKE,C (λ).

147

Combining with the randomness reduction lemma gives the desired result.

The previous theorem is seductively simple, but currently of limited ap-

plication because the set of known RKA-secure PRFs is rather sparse. RKA-

PRFs were first formalised in 2003 by Bellare and Kohno [7], and some initial

(though not fully satisfactory) constructions were given in [7] and [58]. Set-

ting these aside, the only known constructions are due to Bellare and Cash

[5] and Abdalla et al. [1]. Bellare et al. gave a first construction for an RKA-

PRF (based on the Naor-Reingold PRF) that is provably secure under the

DDH assumption for related key functions Φ corresponding to component-

wise multiplication on the key-space (Z∗p)n+1. They also provided a second

construction achieving a similar result under the DLIN assumption. A third

construction for related key functions Φ corresponding to component-wise ad-

dition on the key-space (Zp)n was recently withdrawn by the authors of [5].

However, the recent work of Abdalla et al. [1] has since repaired this with-

drawn construction. In addition, by employing a slightly stronger assumption

(the Decisional Diffie-Hellman Inversion assumption) the authors are able to

avoid the exponential-time security reduction that was inherent in the (flawed)

proof of [5]. Moreover, using this stronger Decisional Diffie-Hellman Inversion

assumption, Abdalla et al. were able to provide an RKA-PRF that is secure

against bounded-polynomial RKD functions that act component-wise on the

key space. For their particular construction, the key space is Znp and the RKD

functions φ are a collection of functions, so φ = (φ1, . . . , φn), with each φi

acting on component i of the key space. Additionally their RKD functions

have the constraints that no φi can be a constant function, and all φi must be

polynomials in one variable of bounded degree.

The limited nature of existing RKA-PRF families forces us to find alter-

native approaches to achieving security in the RRA setting. The application

148

for RKA-PRFs implied by Theorem 5.4.1 also provides yet more motivation

for the fundamental problem of constructing RKA-PRFs for richer classes of

related key function.

5.5 Related Randomness PKE from CIS Hash

Functions

To address some of the limitations encountered in the previous approach, we

show how a PKE scheme secure in the RRA setting can be constructed using

correlated-input secure (CIS) hash functions as introduced in [32]. Whilst the

currently known instantiations of CIS hash functions only allow us to obtain

selective HK-RRA-ATK security for a class of polynomial functions, this av-

enue is still worth exploring. Any advances in the state-of-the-art concerning

CIS hash functions will be immediately applicable to the theorem we prove

in this section, resulting in improvements to results concerning related ran-

domness attacks. Furthermore, there is evidence to suggest that achieving

CIS hash security is easier than obtaining RKA-PRF security. As we will see

shortly, any CIS hash can be used to construct an RKA-secure weak PRF.

Therefore, it is likely in future that the scheme presented in this chapter may

protect against larger classes of functions than our RKA-PRF construction

(although this is not currently the case).

Before proceeding, it is worth comparing the classes of polynomial func-

tions that our RKA-PRF and CIS hash constructions protect against. Cur-

rent instantiations of CIS hash functions are secure against selective, uniform-

output, bounded-degree polynomials. In comparison, as mentioned in the

previous section, there are RKA-PRFs that are secure against adaptive, non-

constant, bounded-degree polynomials. Hence, the RKA-PRF construction

149

enjoys two advantages over the concrete instantiation we will see in this chap-

ter: adaptivity of function selection, and a relaxed requirement on the output

distribution of the polynomials (they need not be uniform-output). However,

for the reasons outlined above, we study our CIS hash construction in the

hope that stronger results concerning CIS hashes will be available in future.

In its strongest form, a CIS hash function h (with key k, sampled by

the key generation algorithm CI-HASH.K) will yield output hk(x) which is still

pseudorandom, even when given the hash value of multiple correlated input

values (hk(φ1(x)), . . . , hk(φq(x))), where the correlation functions φ1, . . . , φq

are maliciously chosen. This type of CIS hash function is closely related to

RKA-secure PRFs. In fact, the authors of [32] show that given a CIS hash

function h, an RKA-secure weak PRF F can be obtained simply by exchanging

the role of the key and the input of h:

FK(x) := hx(K).

Recall that weak PRF security does not allow an adversary to choose the

function inputs, but instead, the inputs are chosen uniformly at random in

the security game.

The authors of [32] furthermore give a concrete construction of a CIS hash

function secure for a class of correlation functions consisting of uniform-output

polynomials of bounded degree, by which uniform-output means its output

range is equal to its domain (that is, evaluating the polynomial on all values

in the domain will again yield the elements of the domain), albeit in a restricted

security model where the adversary’s function queries are non-adaptive. This

then yields a non-adaptive, RKA-secure weak PRF.

Unfortunately, such a PRF this is not sufficient for our purposes. Sur-

prisingly, however, by making a relatively simple modification to the above

150

proc. Initialise(λ, `):

(K,D,R, h)← GenFun(1λ)
For i = 1 to `
ki ←$ K \ {ki−1, . . . , k1}

x←$ D
b←$ {0, 1}
S ← ∅
func← false

chal← false

return (K,D,R, h).

proc. Functions(φ1, . . . , φq):

if func = true

return ⊥
func← true

return k1, . . . , k`.

proc. Hash(i, j):

if func = false

return ⊥
if chal = true,

return ⊥
S ← S ∪ {(i, j)}
return hki(φj(x)).

proc. Chal(i∗, j∗):

if func = false

return ⊥
if chal = true,

return ⊥
if (i∗, j∗) ∈ S,

return ⊥
y0 ←$ R
y1 ← hki∗ (φj∗(x))
chal← true

return yb.

proc. Finalise(b′):

if b = b′, return 1.

Figure 5.8: Game `-MK-SCI-PR for a familyH of keyed hash functions defined
by GenFun.

construction of PRFs from CIS hash functions, it is possible to obtain a prim-

itive similar to an RKA-secure (standard) PRF. More specifically, consider a

CIS hash function h and a standard PRF f . We introduce a public parameter

c of F that will correspond to the key for h, and then, instead of using the

output of h directly, we use h to derive a key for f . More specifically, we define

Fc,K(x) := fhc(K)(x).

Whilst not strictly an RKA-secure PRF due to the presence of the public

parameter c, this primitive allows adaptively chosen inputs x, while remaining

secure under related-key attacks. This ‘partial’ RKA-secure PRF will allow us

to obtain HK-RRA-ATK secure encryption schemes for the function families

of the underlying CIS hash function h. However, to achieve this, we need to

extend the definitions and theorems of [32] to the multi-key setting (reflecting

the fact that, in the HK-RRA setting, the adversary can interact with multiple

public keys).

We formally define multi-key selective correlated-input pseudorandomness

(MK-SCI-PR) for a family of keyed hash functions via the security game shown

151

Alg. CI-Hash-PKE.K(1λ):

(pk, sk)←$ PKE.K(1λ)
k ←$ CI-HASH.K(1λ)

(p̂k, ŝk)← (pk||k, sk).

Alg. CI-Hash-PKE.E(p̂k,m):

(pk||k)← p̂k
r ←$ Rnd

r′ ← hk(r)

r′′ ← Fr′(p̂k||m)
c← PKE.E(pk,m; r′′)
return c.

Alg. CI-Hash-PKE.D(ŝk, c):

m← PKE.D(ŝk, c)
return m.

Figure 5.9: Scheme CI-Hash-PKE built from PKE scheme PKE, PRF F , and
hash function family H.

in Figure 5.8. The definition is selective in the sense that the adversary is

required to submit the correlation functions before seeing the hash function

keys used in the game. As in the definition of related randomness security, we

consider Φ-restricted adversaries, which are adversaries who are restricted to

submit correlation functions belonging to a given class of functions Φ.

Definition 5.5.1. A family H of keyed hash functions is said to be (Φ, `)-

MK-SCI-PR secure if for all Φ-restricted adversaries A, the advantage of A

against H, defined as

Adv`-mk-sci-pr
H,A (λ) := 2 · P[`-MK-SCI-PRAH(λ)⇒ 1]− 1,

is negligible in the security parameter λ.

Based on an ordinary PKE scheme PKE, a PRF F , and a family of hash

functions H, we construct a PKE scheme CI-Hash-PKE as shown in Figure 5.9.

The following theorem establishes the selective `-HK-RRA-ATK security of

this scheme based on the IND-ATK security of PKE, the multi-key selective

CIS security of H, and the (regular) pseudorandomness of F .

Theorem 5.5.1. Suppose A is a Φ-restricted, equality pattern respecting adver-

sary in the selective `-HK-RRA-ATK game against the scheme CI-Hash-PKE in

Figure 5.9. Suppose A makes qLR LR queries, uses qr randomness indices, and

uses qφ functions in its oracle queries. Then there exists a Φ-restricted, multi-

key, selective correlated-input secure hash adversary B, a PRF adversary C

152

and an IND-ATK adversary D such that

Adv`-shk-rra-atk
CI-Hash-PKE,A(λ) ≤ 2qφ · qr ·Adv`-mk-sci-pr

H,B (λ) + 2qφ · qr ·Advprf
F,C(λ)

+ ` · qLR · qr ·Advind-atk
PKE,D (λ) +

`2 · qr
|HashKeySpace|

.

Adversaries B, C and D run in approximately the same time as A. Adver-

sary C makes at most qLR queries, and D makes one LR query and as many

Dec queries as A.

Proof. First, we invoke Lemma 5.2.1, so that we now only have to prove the

theorem for an adversary using just one randomness value. We prove the

theorem via a sequence of game hops and hybrid arguments. Let G0 be the

real correlated-input secure hash PKE game, which is the non-adaptive version

of the game in Figure 5.4. The game G1 is the same except for queries on the

target key. Rather than using the outputs of the hash function, the game picks

uniformly random values and uses these values as keys for the PRF.

Adv`-hk-rra-atk
CI-Hash-PKE,A(λ) = 2 · P[GA0]− 1

≤ 2 · (P[GA0 | coll] + P[coll])− 1

= 2 · (P[GA0 | coll]− P[GA1 | coll]) + 2 · P[coll]− 1

+2 · P[GA1 | coll].

If there are no collisions in the hash function keys, then the difference

between G0 and G1 is negligible. This can be stated formally as:

Lemma 5.5.1. The difference between the success probability of A in games

G0 and G1 is bounded by the advantage of a multi-key, CIS hash adversary

B. That is:

P[GA0 | coll]− P[GA1 | coll] ≤ Adv`-mk-sci-pr
H,B (λ).

153

Proof. We will prove this via a hybrid argument. Let G0,i denote the game in

which, for the target public key, for function k ≤ qφ− i the output of the hash

function is real, whereas for function k > qφ − i the output is random, rather

than using the hash function. Notice that G0 = G0,0 and G1 = G0,qφ , so

P[GA0 | coll]− P[GA1 | coll] =

qφ−1∑
i=0

P[GA0,i | coll]− P[GA0,i+1 | coll]

≤ qφ · (P[GA0,j∗ | coll]− P[GA0,j∗+1 | coll]),

where we have assumed (without loss of generality) that hybrid games j∗ and

j∗ + 1 have the largest difference. If an adversary can distinguish games j∗

and j∗ + 1 when there are no collisions of hash keys, then we may use this

adversary to construct a multi-key CIS hash adversary that distinguishes with

the same probability. The CIS hash adversary B will simulate either the game

G0,j∗ or G0,j∗+1 for A.

Adversary B initiates the CIS hash game and is given the description of a

hash function. Then, B sets up the game for A.

Setup

b←$ {0, 1}

funchoice← false; target← false

Keys← ∅; Functions← ∅, S ← ∅; (ˆpk∗, ˆsk∗)← ∅.

When B has finished this setup procedure, he forwards the description of the

hash function to A. Adversary B will then answer A’s Func and Target

queries as follows:

Func query (φ1, . . . , φqφ)

if functions = true, B returns ⊥

otherwise B forwards the query to his challenger and receives k1, . . . , k`

for i = 1 to `, B generates (pki, ski)←$ PKE.K(1λ)

B sets p̂ki = pki||ki, and ŝki = ski

154

functions← true

B returns {p̂ki} to A.

Target query (j)

if target = true, B returns ⊥

otherwise B sets (ˆpk∗, ˆsk∗)← (ˆpkj, ˆskj)

target← true

for i 6= j, B returns {ŝki}.

Adversary A is denied access to the other oracles until target=true and

functions=true. When target=true and functions=true, B submits

(i, κ) to his CIS hash oracle for all (i, κ) 6= (j, j∗) Then B submits (j, j∗)

to his CIS challenge oracle. B keeps a table of inputs and outputs to the CIS

oracle. B’s challenge oracle will return a value r, which is either the real output

for hkj(φqφ−j∗(r)) or a uniformly random value. This value r should be stored

alongside (kj, qφ − j∗) in the table. For input pairs (kj, κ), where κ > qφ − j∗,

B replaces the oracle outputs in the table with uniformly random values. N.B.

Adversary B could, and would in practice, generate this table ‘on-the-fly’ in

response to A’s Enc and LR queries. However, to keep our presentation clear

and uncluttered, we adopt the current approach of generating the whole table

before answering A’s Enc or LR queries.

Enc query (p̂k,m, 1, κ)

if target = false or functions = false, return ⊥

B parses p̂k = pki||ki
B finds (ki, κ, ri,κ) in the table and returns PKE.E(pk,m;Fri,κ(p̂k||m)).

LR query (m0,m1, 1, κ)

if target = false or functions = false, return ⊥

B finds (kj, κ) in the table and gets corresponding value rj,κ

B returns PKE.E(pk∗,mb;Frj,κ(p̂k
∗
||mb))

B adds the ciphertext to the set S.

155

Dec query (c)

if target = false or functions = false, return ⊥

if c is not in S, B returns PKE.D(skj, c)

else B returns ⊥.

At the end of the simulation, B outputs 1 if A outputs b = b′. If B is in

the real world, he simulates G0,j∗ perfectly. In the random world, he simulates

G0,j∗+1 perfectly. Hence, we may conclude that

P[GA0,j∗ | coll]− P[GA0,j∗+1 | coll] ≤ Adv`-mk-sci-pr
H,B (λ).

Game 2 is the same as G1, except that, for the target public key, a fresh

output is chosen for each encryption rather than using the PRF. If an adversary

can distinguish games 1 and 2 when there are no collisions in the hash keys,

then we may use this adversary to win the PRF game.

Lemma 5.5.2. The difference between the success probabilities of any adver-

sary A is bounded by a PRF adversary B as follows:

P[GA1 | coll]− P[GA2 | coll] ≤ qφ ·Advprf
F,C(λ).

Proof. Let G1,i denote the game in which, for function k ≤ i, a uniformly

random value is chosen rather than using the PRF, whereas for k > i the PRF

is used. Observe that G1 = G1,0 and G2 = G1,qφ , from which we see that

P[GA1 | coll]− P[GA2 | coll] =

qφ−1∑
i=0

P[GA1,i | coll]− P[GA1,i+1 | coll]

≤ qφ · (P[GA1,j∗ | coll]− P[GA1,j∗+1 | coll]).

Again, we have assumed without las of generality that hybrid games j∗ and

j∗ + 1 have the largest difference. If an adversary can distinguish games G1,j∗

156

and G1,j∗+1, then we may use this adversary to construct a PRF adversary with

the same advantage in the PRF game. The PRF adversary C will simulate

either game G1,j∗ or G1,j∗+1. Adversary C’s setup procedure for the simulation

is as follows:

Setup

b←$ {0, 1}

r ←$ Rnd

choose qφ − j∗ − 1 uniformly random PRF keys ρj∗+2, . . . , ρqφ

funchoice← false; target← false

Keys← ∅; Functions← ∅; S ← ∅; (ˆpk∗, ˆsk∗)← ∅.

When C finishes this setup procedure, he forwards the description of the

hash function to A. Then C responds to A’s queries as follows:

Func query (φ1, . . . , φqφ)

if functions = true, C returns ⊥

otherwise C chooses hash keys k1, . . . , k` uniformly at random, making

sure they are all distinct

for i = 1 to `, C generates (pki, ski)←$ PKE.K(1λ)

C sets p̂ki = pki||ki and ŝki = ski

functions← true

C returns {p̂ki} to A.

Target query (j)

if target← true, C returns ⊥

otherwise C sets (ˆpk∗, ˆsk∗)← (ˆpkj, ˆskj)

target← true

for i 6= j, C returns {ŝki}.

Enc query (p̂k,m, 1, κ)

C parses p̂k = pki||ki

157

if i = j

if κ < j∗ + 1, C chooses r′ ←$ Rnd

else if κ = j∗ + 1, C submits p̂ki||m to his oracle and receives r′

else if κ > j∗ + 1, C computes r′ ← Fρκ(p̂k||m)

else C computes r′ ← Fhki (φκ(r))(m)

C returns c← PKE.E(pki,m; r′).

LR query (m0,m1, 1, κ)

if κ < j∗ + 1, C chooses r′ ←$ Rnd

else if κ = j∗ + 1, C submits ˆpkj||mb to his oracle and receives output r′

else if κ > j∗ + 1, C computes r′ ← Fρκ(p̂kj||mb)

C returns PKE.E(pk∗,mb; r
′) C adds the ciphertext c to S.

Dec query (c)

if c is not in S, C returns PKE.D(skj, c)

else C returns ⊥.

At the end of the simulation, C outputs 1 if and only if A outputs b = b′.

If C is in the real world, he simulates G1,j∗ perfectly. In the random world, he

simulates G1,j∗+1 perfectly. Hence, we may conclude that

P[GA1,j∗ | coll]− P[GA1,j∗+1 | coll] ≤ Advprf
F,C(λ).

Finally, the success in game G2 may be related to that of a standard IND-

ATK adversary. Specifically:

Lemma 5.5.3. For any adversary A, we may bound A’s advantage by an IND-

ATK adversary’s advantage as follows:

2 · P[GA2 | coll]− 1 ≤ ` · qLR ·Advind-atk
PKE,D (λ).

Proof. Again, we use a hybrid argument. Let G2,i denote the game in which,

for the kth LR query, if k ≤ qLR − i, LR queries are answered with an

158

encryption of m0, whilst if k > qLR − i LR queries are answered with an

encryption of m1. We have

2 · P[GA2 | coll]− 1 = P[AG2,qLR ⇒ 1 | coll]− P[AG2,0 ⇒ 1 | coll]

≤ qLR · (P[AG2,j∗+1 ⇒ 1 | coll]− P[AG2,j∗ ⇒ 1 | coll]).

If an adversary A can distinguish the games G2,j∗ and G2,j∗+1, then we may

construct an adversary that distinguishes in the standard IND-ATK game.

The IND-ATK adversary D first runs his Initialise procedure and is given

a public key pk∗. Then D sets-up the simulation for A as follows:

Setup

choose a uniformly random t ∈ {1, . . . , `}

choose r ←$ Rnd

ctr← 1

funchoice← false; target← false

Keys← ∅; Functions← ∅; S ← ∅; (ˆpk∗, ˆsk∗)← ∅.

When completed, the IND-ATK adversary D forwards the description of the

hash function to A and answers A’s oracle queries as follows:

Func query (φ1, . . . , φqφ)

if functions = true, D returns ⊥

otherwise D chooses hash keys k1, . . . , k` uniformly at random, making

sure they are all distinct

for i ∈ {1, . . . , t− 1, t+ 1, . . . , `} D generates (pki, ski)←$ PKE.K(1λ)

D sets pkt = pk∗

for i = 1 to `, D sets p̂ki = pki||ki and ŝki = ski

functions← true

D returns {p̂ki} to A.

Target query (j)

159

if target = true, D returns ⊥

D sets (ˆpk∗, ˆsk∗)← (ˆpkj, ˆskj)

target← true

for i 6= j, D returns {ŝki}.

Enc query (p̂k,m, 1, κ)

D parses p̂k = pki||ki
if i = j, D chooses r′ ←$ Rnd

else D computes r′ ← Fhhi (φκ(r))(m)

D returns c← PKE.E(pki,m; r′).

LR query (m0,m1, 1, κ)

if ctr = qLR − j∗, D submits (m0,m1) to his LR oracle and receives c

else, D chooses r′ ←$ Rnd

if ctr < qLR − j∗, D computes c← PKE.E(pkj,m0; r′)

else if ctr > qLR − j∗, D computes c← PKE.E(pkj,m1; r′)

ctr← ctr + 1

D adds the ciphertext c to the set S

D returns c.

Dec query (c)

if c is not in S, D returns PKE.D(skj, c).

else D returns ⊥.

At the end of the simulation, if A has chosen pkt as his target public key

then D outputs the same bit as A, otherwise D outputs a uniformly random

bit. IfA has chosen pkt as his target public key (which he does with probability

1/`) then, when D is given an encryption of m0, he simulates G2,j∗ perfectly.

If he receives an encryption of m1, he simulates G2,j∗+1 perfectly. Hence, we

may conclude that

1

`
(P[AG2,j∗+1 ⇒ 1 | coll]− P[AG2,j∗ ⇒ 1 | coll] ≤ Advind-atk

PKE,D (λ).

160

The theorem follows by combining the preceding lemmas.

It remains to show that we can instantiate a hash function satisfying the

above defined multi-key correlated-input security notion. This is achieved

by extending the security results for the CIS hash function defined in [32].

Concretely, the CIS hash function from [32] is defined as follows:

GenFun(1λ) : Pick a group G of prime order p, a generator g, and set the

keyspace to K = Zp, the domain to D = Zp, and the range to R = G.

Return (K,D,R, h, g) where h is a description of the function defined

below.

hk(x) : For k ∈ K and x ∈ D, return

hk(x) = g
1

x+a ,

where 1/(x+ a) is computed modulo p.

Based on the q-Decisional Diffie Hellman Inversion (q-DDHI) assumption in

G (see Section 2.1.2), and extending the results of [32], it was shown in [65]

that the above hash function achieves multi-key correlated-input pseudoran-

domness for a class of functions consisting of uniform-output polynomials of

bounded degree.

Note 1. Our ‘partial’ RKA-secure PRF is only secure when an adversary’s

function queries are non-adaptive, which is why we are only able to prove

selective HK-RRA-ATK security.

Note 2. The above construction is only shown to achieve HK-RRA-ATK se-

curity, as opposed to RRA-ATK security. The technical reason for this is that

public keys include a hash key, and the CIS hash function is only assumed

to be secure for honestly generated keys. An alternative solution would be

to introduce a common reference string (CRS) containing a single hash key,

and let all users make use of this. While this requires a trusted third party to

161

initially set up the CRS, it would be possible to show RRA-ATK security of

the above construction in a security model appropriately extended to model

the presence of a CRS.

Likewise, if we had a multi-key CIS hash function that remained secure

for maliciously chosen keys, then we would be able to obtain full RRA-ATK

security for the above construction. Unfortunately, we are currently unaware

of how to obtain such CIS hash functions.

5.6 Related Work

Since the publication of the material in this chapter, there has appeared

another academic paper concerning related randomness attacks by Yuen et

al. [83]. The paper considers various cryptosystems including Identity Based

Encryption (IBE), PKE, and Digital Signatures. They allow an adversary to

tamper with both the private key and the randomness for encryption (or sign-

ing, in the case of signatures). In the PKE setting, when the adversary is not

allowed to tamper with the private key, their results are broadly comparable

to our results in Section 5.4. However, the paper by Yuen et al. makes no

mention of multiple randomness indices or multiple LR queries. In addition,

adversaries are not allowed to see encryptions under maliciously chosen public

keys, whereas they are in the work presented in this thesis. Hence, whilst some

results of [83] are broadly similar to ours, there are some major differences in

the security models that seem to make the different models incomparable.

162

5.7 A Brief Detour into Symmetric Encryp-

tion

In this section we will briefly explore bad randomness for symmetric-key en-

cryption (SKE). The reason for this brief detour is that we are able to improve

on current results in this area by using the techniques of the previous sections.

We will see that there are symmetric encryption schemes in the literature that

are easily seen to be secure when an adversary is able to choose the random-

ness for encryption, as long as we impose suitable equality-pattern restrictions

on adversarial queries. Recall that these equality-patterns were also required

in the public-key setting in order to prevent trivial wins by an adversary.

By imposing these minimal conditions on adversaries, we achieve a rather

strong result. In order to keep the notation consistent with other sections, we

will henceforth refer to symmetric encryption schemes as Data Encapsulation

Mechanisms (DEMs).

Figure 5.10 defines the Chosen Ciphertext and Randomness Attack

(CCRA) game in the symmetric setting. The CCRA notion was first proposed

by Kamara and Katz [48], but the game we present is a modified version of their

game. Notice that the Related Randomness Attack game for PKE (Figure 5.3)

allowed adversaries to access an Enc oracle, but the CCRA game (Figure 5.10)

does not have such an oracle. This is because the Enc oracle was designed to

give adversaries the ability to see encryptions under an adversarially-chosen

public keys with the unknown randomness φ(r). In this new setting, the ran-

domness is clearly not unknown (because it is adversarially-chosen), so the

adversary does not need the Enc oracle.

Definition 5.7.1. Let A be an adversary in Game CCRA. Suppose A makes

q LR queries with randomness r. Let (mr,1
0 ,mr,1

1), . . . , (mr,q
0 ,mr,q

1) be A’s

LR queries for randomness r. Suppose that for all r ∈ Rnd and for all

163

proc. Initialise(λ):

b←$ {0, 1};
K ←$ SKE.K(1λ).

proc. LR(m0,m1, r):

c← SKE.E(K,mb; r)
S ← S ∪ {c}
return c.

proc. Dec(c):

if c ∈ S
return ⊥

else
return SKE.D(K, c).

proc. Finalise(b′):

if b = b′

return 1
else

return 0.

Figure 5.10: Game CCRA.

Alg. PRF-SKE.K(1λ):

K1 ←$ SKE.K(1λ)
K2 ←$ PRF.K(1λ)
K ← (K1, K2)
return K.

Alg. PRF-SKE.E(K,m; r):

r′ ← FK2(m||r)
c← SKE.E(K1,m; r′)
return c.

Alg. PRF-SKE.D(K, c):

m← SKE.D(K1, c)
return m.

Figure 5.11: Scheme PRF-SKE built from a standard SKE scheme SKE and a
PRF F .

j 6= k ∈ [q], we have:

mr,j
0 = mr,k

0 iff mr,j
1 = mr,k

1 .

Then we say that A is equality-pattern respecting.

Definition 5.7.2. We define the advantage of an equality-pattern respecting,

CCRA adversary A against an SKE scheme SKE to be

Advccra
SKE,A(λ) := 2 · P[CCRAASKE(λ)⇒ 1]− 1.

An SKE scheme SKE is said to be CCRA secure if the advantage of any equality-

pattern respecting, CCRA adversary against SKE that runs in polynomial time

is negligible in the security parameter λ.

The scheme in Figure 5.11 was proposed in [48] with the intention of pro-

tecting against (their definition of) Chosen Ciphertext and Randomness At-

tacks. Their model allowed an adversary to see encryptions under the target

private key using adversarially-chosen randomness. However, the adversary

was not allowed to choose the randomness for the challenge encryptions. In-

stead, the LR queries used fresh, uniform randomness. However, the en-

cryption algorithm presented in [48] is actually secure in our stronger model

(Figure 5.10), as we shall now see.

164

Theorem 5.7.1. Consider an equality-pattern respecting, CCRA adversary A

attacking scheme PRF-SKE in Figure 5.11. There exists a PRF adversary B

and an IND-CCA adversary C such that

Advccra
PRF-SKE,A(λ) ≤ 2 ·Advprf

F,B(λ) + Advind-cca
SKE,A (λ),

where C makes the same number of decryption queries as A, and the running

times of B and C are approximately the same as that of A.

Proof. Let G0 denote the CCRA game, and let G1 denote the game where

every encryption uses fresh, uniform randomness (instead of using the PRF).

Then

Advccra
PRF-SKE,A(λ) = 2 · P[CCRAAPRF-SKE(λ)⇒ 1]− 1

= 2 · P[GA0 ⇒ 1]− 1

= 2 · (P[GA0 ⇒ 1]− P[GA1 ⇒ 1]) + 2 · P[GA1 ⇒ 1]− 1.

If adversary A can distinguish games 0 and 1, then we may construct an

adversary B that wins the PRF game. The adversary B runs as follows. First,

B randomly picks a bit b ←$ {0, 1}, then runs SKE.K to obtain a uniformly

random key K. When A submits LR query (m0,m1, r), B forwards mb||r to

his oracle and obtains output r′. Then B calculates c← SKE.E(K,mb; r
′) and

returns c to A. When A submits decryption query c, B returns SKE.D(K, c).

Finally, when A halts and outputs bit b′, A halts and outputs 1 if and only if

b = b′. It follows that

P[GA0 ⇒ 1]− P[GA1 ⇒ 1] ≤ Advprf
F,B(λ).

Furthermore, the game G1 may be simulated by a standard IND-CCA adver-

sary (since fresh, uniform randomness is used for every encryption). Hence

2 · P[GA1 ⇒ 1]− 1 ≤ Advind-cca
SKE,C (λ).

The theorem follows by combing the three previous equations.

165

5.8 Conclusions

In this chapter we have introduced models for a new type of attack, which we

call the Related Randomness Attack. We have proved necessary and sufficient

conditions for achieving this new notion of security in the Random Oracle

Model, and we have provided two generic transforms in the standard model

that convert IND-ATK secure PKE schemes into schemes that are secure with

respect to our new related randomness notion. Furthermore, we have been able

to provide concrete instantiations of these schemes. In addition, our transforms

develop interesting connections with RKA-PRFs and CIS hash functions.

Open problems include achieving security against broader classes of func-

tions, and an interesting direction for future research would be to develop

this related randomness theme further, by examining security in a combined

RKA/RRA setting, where the adversary would be able to simultaneously tam-

per with all the inputs to a PKE scheme. Initial research in this direction was

recently presented by Yuen et al. [83].

166

Chapter 6

Function-Vector Related
Randomness Attacks

The previous standard model constructions for PKE secure against Related

Randomness Attacks from Chapter 5 concerned polynomial functions φ of cer-

tain types (i.e. non-constant and bounded degree). In this chapter we turn

our attention to alternative classes of functions. We begin by formalising an

alternative notion of Related Randomness Attacks, which we call the Function-

Vector Related Randomness Attack. The new security game is closely con-

nected to the game for PKE with auxiliary-inputs. We exploit this connection

by taking a well-known scheme that is secure in the auxiliary-input game, and

we modify it in such a way that we can prove its security in our new related

randomness game. The class of functions φ for which our scheme is secure is

the set of hard-to-invert functions. Unfortunately, our basic Function-Vector

game restricts challenge functions to the identity function. In order to gener-

alise this approach, we provide security games for a setting where challenge

functions are not limited to the identity function, and we show that a partic-

ular type of reconstructive-extractor will yield a secure PKE scheme in this

model when combined with other primitives.

167

6.1 Function-Vector Related Randomness Se-

curity

In the standard model, in Sections 5.4 and 5.5, we considered Related Ran-

domness Attacks and Honest-Key Related Randomness Attacks, respectively.

For each model, we provided instantiations of PKE schemes that were secure

against certain classes of polynomial functions. In this section we turn our

attention to an alternative notion, which we call Function-Vector Related Ran-

domness Attack (FV-RRA) security, and is based on the game in Figure 6.1.

Here, the adversary is parametrised by a vector of functions φ = (φ1, . . . , φq),

and is limited to using only these functions in its oracle queries. Additionally,

we restrict the adversary by demanding that the LR queries use only the iden-

tity function. However, once again, the adversary has complete freedom over

public keys submitted to its encryption oracle. Furthermore, security will be

quantified over all choices of vector from a particular class. Specifically, in our

construction in Section 6.1, we will demand that security holds over all vec-

tors φ that are simultaneously hard-to-invert on a common random input r.

This quantification actually makes our notion rather strong. In this section we

will introduce the formal definitions and the security model for our notion of

Function-Vector Related Randomness Attacks. We begin with the definition

of an equality-pattern respecting adversary, which should be familiar from the

previous chapter. Here, the definition has been adapted specifically to our new

security game in Figure 6.1. Recall that the equality-patterns are designed to

prevent trivial wins for an adversary (by checking ciphertext equality). For

the constructions we will see, there will be no intersection between functions

used for LR queries and functions used for Enc queries. Hence, an adversary

cannot trivially win the game by matching Enc and LR queries, and we can

therefore use the simplified definition seen below.

Definition 6.1.1. LetA be an adversary in Game φ-FV-RRA-ATK that queries

168

proc. Initialise(λ):

b←$ {0, 1};
(pk∗, sk∗)←$ PKE.K(1λ);
CoinTab← ∅; S ← ∅;
return pk∗.

proc. Dec(c):

if c ∈ S
return ⊥

else
return PKE.D(sk∗, c).

proc. LR(m0,m1, i):

if CoinTab[i] =⊥,
CoinTab[i]←$ Rnd

ri ← CoinTab[i]
c← PKE.E(pk∗,mb; ri)
S ← S ∪ {c}
return c.

proc. Enc(pk,m, i, j):

if CoinTab[i] =⊥,
CoinTab[i]←$ Rnd

ri ← CoinTab[i]
c← PKE.E(pk,m;φj(ri))
return c.

proc. Finalise(b′):

if b = b′

return 1
else

return 0.

Figure 6.1: Game φ-FV-RRA-ATK, where φ = (φ1, . . . , φq). (As usual, if
ATK = CPA, then the adversary’s access to proc. Dec is removed.)

r different randomness indices to its LR and Enc oracles and makes qi queries

to its LR oracle with index i. Let (mi,1
0 ,m

i,1
1), . . . , (mi,qi

0 ,mi,qi
1) be A’s LR

queries for index i ∈ [r]. Suppose that for all i ∈ [r] and for all j 6= k ∈ [qi],

we have

mi,j
0 = mi,k

0 iff mi,j
1 = mi,k

1 .

Then we say that A is equality-pattern respecting.

The following definition encompasses our notion of security with respect

to the security game in Figure 6.1.

Definition 6.1.2. Let φ = (φ1, . . . , φq) be a vector of q := q(λ) functions.

We define the advantage of an equality-pattern respecting, φ-FV-RRA-ATK

adversary A against a PKE scheme PKE to be

Adv
φ-fv-rra-atk
PKE,A (λ) := 2 · P[φ-FV-RRA-ATKAPKE(λ)⇒ 1]− 1.

If Φ is a set of vectors of functions, then a PKE scheme PKE is said to be Φ-

FV-RRA-ATK secure if, for all φ ∈ Φ, the advantage of any equality-pattern

respecting φ-FV-RRA-ATK adversary against PKE that runs in polynomial

time is negligible in the security parameter λ.

169

In order or to simplify proofs of security in this model, we will utilise the

lemma below. It is an easy extension of Lemma 5.2.1 and is therefore presented

without a proof.

Lemma 6.1.1. Consider an equality-pattern respecting, φ-FV-RRA-ATK ad-

versary A that queries qr distinct randomness indices and makes at most qLR

LR queries. There exists an equality-pattern respecting, φ-FV-RRA-ATK

adversary B that queries at most one randomness index and makes at most

qLR LR queries such that

Adv
φ-fv-rra-atk
PKE,A (λ) ≤ qr ·Adv

φ-fv-rra-atk
PKE,B (λ),

where B runs in approximately the same time as A. In the CCA setting, B

makes the same number of decryption queries as A.

In Section 6.3 we will provide definitions for a slightly stronger model in

which the challenge functions are not required to be the identity. Unfortu-

nately, we are unable to provide any concrete instantiations that achieve this

strong notion, so we defer discussion of this security game and definition to

the second half of this chapter

Comparison of security notions The relation between full RRA-ATK se-

curity and FV-RRA-ATK security is not immediately obvious. Aside from the

restriction on LR-queries in FV-RRA-ATK security, there is a subtle distinc-

tion between requiring security for all vectors φ of functions from a particular

set Φ and requiring security for a fully adaptive choice of functions φ ∈ Φ.

In particular, the former notion will allow a security reduction to consider

multiple runs of an adversary with different random coins for a fixed choice

of function vector φ, whereas the latter notion will leave open the possibility

that an adversary will chose a different sequence of functions φ in each run.

Also note that FV-RRA-ATK security guarantees that there is no choice of φ

170

for which the considered scheme is weak, even if this choice might be compu-

tationally hard for an adaptive adversary to find. Furthermore, the relation

between the notions might also be influenced by the considered class of func-

tions Φ. It remains future work to fully explore and categorise the possible

notions of RRA security.

6.1.1 The modified BHHO scheme

In this section we will propose a construction for a PKE scheme that is Φ-

FV-RRA-CPA secure for the set Φ of vectors of functions that are hard-to-

invert, in a sense that we make precise next.

Definition 6.1.3. Let φ = (φ1, . . . , φq) denote a vector of functions on a set

Rndλ, where q := q(λ) is polynomial in the security parameter λ. Let δ(λ) be

a function. We say that φ is δ(λ)-hard-to-invert if, for all polynomial-time

algorithms A and all sufficiently large λ, we have:

P[r ← A(φ1(r), . . . , φq(r)) : r ←$ Rndλ] ≤ δ(λ).

We say that a set of vectors of functions Φ is δ-hard-to-invert if each vector

φ ∈ Φ is δ-hard-to-invert (note that the vectors in such a set Φ need not all

be of the same dimension, but we assume they each have dimension that is

polynomial in λ).

We will now construct a PKE scheme that offers Φ-FV-RRA-CPA security,

where Φ is the set of all sufficiently hard-to-invert vectors of functions on the

scheme’s randomness space Rnd. As noted in Section 5.2, security in this

setting is quantified over all vectors in Φ, and the adversary is allowed to

work with any set of public keys (even maliciously generated) in its attack.

This makes our result relatively strong.

To ease the security analysis of our scheme, we will use a variant of the

171

standard DDH assumption.

Definition 6.1.4. Let G be a cyclic group of prime order p. The game q-DDH in

G selects generators g1, . . . , gq from G and a bit b←$ {0, 1}. The game chooses

(r1, . . . , rq)←$ Zqp and r ←$ Zp. If b = 1, the game returns g1, . . . , gq, g
r
1, . . . , g

r
q

to the adversary. Otherwise, the game returns g1, . . . , gq, g
r1
1 , . . . , g

rq
q to the

adversary. When the adversary returns a bit b′, the game outputs 1 if and

only if b = b′. We then define the advantage of a q-DDH adversary A to be

Advq-ddh
G,A (λ) := 2 · P[q-DDHAG(λ)⇒ 1]− 1.

Assumption 6.1.1 (The q-Decisional Diffie Hellman (q-DDH) Assumption).

For any polynomial-time adversary A, and any q that is polynomial in λ, we

have:

Advq-ddh
G,A (λ) ≤ negl(λ).

The q-DDH assumption follows from the standard Decisional Diffie Hell-

man assumption [63].

With these definitions in hand, Figure 6.2 defines our PKE scheme mBHHO

which offers security in the FV-RRA-CPA setting. This scheme is obtained

by modifying a PKE scheme of Boneh et al. [17] (the BHHO scheme) that

Dodis et al. [23] showed to be secure in the auxiliary-input setting. In the

auxiliary-input setting, the adversary plays the IND-ATK game, but is given

some additional information. Specifically, the adversary is given a function

of the private key h(sk), where h maps from the domain of private keys to

arbitrarily-long bit strings. Dodis et al. showed that the BHHO scheme was

secure in this model, and our idea is to switch the roles of the randomness

and private key in the BHHO scheme, and hence obtain a scheme that is

secure when we leak h(r) for some random value r. We can then interpret this

function h as a vector of related randomness functions.

172

We will now discuss the scheme in more detail. The scheme makes use

of a KDF f and a PRF F with certain domains and ranges, and a DEM

DEM. To arrive at our modified scheme mBHHO, we swap the roles of secret key

and randomness in the original BHHO scheme. This then enables us to provide

the values φi(r) as auxiliary inputs without undermining the usual IND-CPA

security of the scheme; in turn, these values enables our security reduction to

properly handle Enc queries involving any function φi. For technical reasons

discussed below, we also need to set the randomness space of the scheme to

be {0, 1}k where k := k(λ) denotes a polynomial function of λ. Theorem 6.1.2

gives our formal result concerning the FV-RRA-CPA security of this scheme,

but before we discuss the theorem and proof we will introduce a theorem of

Dodis et al. [23] that we will require in our proof.

Theorem 6.1.1. Let p be a prime, and let H be an arbitrary subset of Zp.

Let f : Hn → {0, 1}∗ be any (possibly randomised) function. If there is a

distinguisher D that runs in time t such that

|P[r← Hn, y ← f(r), s← Znp : D(y, s, 〈r, s〉) = 1]

− P[r← Hn, y ← f(r), s← Znp , u← Zp : D(y, s, u) = 1]| = ε

then there is an inverter A that runs in time t′ = t ·poly(n, |H|, 1/ε) such that

P[r← Hn, y ← f(r) : A(y) = r] ≥ ε3

512 · n · p3
. (6.1.1)

The bound we have quoted is slightly different to the bound stated in [23],

and we discuss this further in Section 6.2. Throughout the remainder of this

thesis, we will use the bound stated in Equation (6.1.1).

Theorem 6.1.2. Let Φ be the set of δ-hard-to-invert vectors of functions on

{0, 1}k. Consider any polynomial-size vector of functions φ ∈ Φ and any

equality-pattern respecting, φ-FV-RRA-CPA adversary A against mBHHO.

Suppose A makes qLR LR queries and uses qr randomness indices. Then

173

Alg. mBHHO.K(1λ):

g1, . . . , gk ←$ G
x←$ Zp
pk = (g1, . . . , gk, g

x
1 . . . , g

x
k)

sk = x.

Alg. mBHHO.E(pk,m):

r ←$ {0, 1}k
c1 =

∏k
i=1 g

ri
i

(K, r′)← f(
∏k
i=1(gxi)ri)

r′′ ← Fr′(pk||m)
c2 = DEM.E(K,m; r′′)
return (c1, c2).

Alg. mBHHO.D(sk, (c1, c2)):

(K, r′)← f(cx1)
m← DEM.D(K, c2)
return m.

Figure 6.2: Modified BHHO scheme mBHHO, constructed using a PRF, F , a
KDF, f , and a DEM DEM.

there exists a k-DDH adversary B, a KDF adversary D, a PRF adversary E ,

and an IND-CPA adversary F , all running in polynomial time, such that

Adv
φ-fv-rra-cpa
mBHHO,A (λ) < 2qr ·Advk-ddh

G,B (λ) + 2qr ·Advkdf
f,D(λ)

+ 2qr ·Advprf
F,E(λ) + qr ·Advind-cpa

DEM,F (λ)

+ 2qr
3
√

512δkp4.

In particular, when δ is sufficiently small, the advantage of A is negligible in

the security parameter λ.

Proof. In what follows, we let r1,i denote the ith bit of r1 and, without loss of

generality, we assume that the function of vectors is of size q = poly(λ). First,

we invoke Lemma 5.2.1, so that we now only have to prove the theorem for an

adversary using just one randomness value, which we will call r1. The proof

then uses a sequence of games, as follows:

G0: G0 is the real game with the scheme defined in Figure 6.2.

G1: G1 is the same as G0, except the target public key components gx1 , . . . , g
x
k

are replaced with gu1 , . . . , guk where g is a group generator and ui ←$ Zp.

If A’s success probability is significantly different in games G0 and G1,

then we can use A to construct an adversary B that wins the k-DDH

game.

174

G2: G2 is the same as G1, except for the challenge ciphertexts, which use gw

as the input to the KDF where w ←$ Zp, rather than using
∏k

i=1(gui)r1,i .

If A’s success probability is significantly different in games G1 and G2,

then we can use A to build an adversary C that inverts the vector of

functions (φ1, . . . , φq).

G3: G3 is the same as G2, except that the output of the KDF for the challenge

ciphertexts is replaced by a uniformly random value. If A’s success

probability is significantly different in games G2 and G3, then we can

use A to build an adversary D that wins the KDF security game.

G4: G4 is the same as G3, except that the PRF outputs used in constructing

the challenge ciphertexts are replaced by uniformly random values. If

A’s success probability is significantly different in games G3 and G4,

then we can use A to build an adversary E that wins the PRF security

game. Finally, A’s success in G4 can be related to that of an IND-CPA

adversary F against the DEM component of the scheme.

We now analyse each of the game transitions in more detail.

G0 – G1: We will prove the following:

Lemma 6.1.2. For any adversary A, there exists a λ-DDH adversary B such

that

P[GA0 ⇒ 1]− P[GA1 ⇒ 1] ≤ Advλ-ddh
G,B (λ).

Proof. The k-DDH adversary B with access to φ = (φ1, . . . , φq) will simu-

late either G0 or G1 for A. Adversary B is given g1, . . . , gk, g
′
1, . . . , g

′
k, where

g′1, . . . , g
′
k is either gx1 , . . . , g

x
k or gu1 , . . . , guk for uniformly random ui. Ad-

versary B sets b ←$ {0, 1} and r1 ←$ {0, 1}k. It then simulates proc. Ini-

tialise in the φ-FV-RRA-CPA security game by forwarding the public-key

pk∗ = (g1, . . . , gk, g
′
1, . . . , g

′
k) to A. Then B answers A’s queries as follows:

175

Enc query (pk,m, i)

B returns mBHHO.E(pk,m;φi(r1)) to A.

LR query (m0,m1)

B returns mBHHO.E(pk∗,mb; r1) to A.

When A halts and outputs a bit b′, B halts and outputs 1 if and only if

b = b′. If g′1, . . . , g
′
k = gx1 , . . . , g

x
k , then B perfectly simulates G0. If g′1, . . . , g

′
k =

gu1 , . . . , guk , then B perfectly simulates G1. Since the distributions of

gu1 , . . . , guk and gx11 , . . . , g
xk
k are identical, we may conclude that

P[GA0 ⇒ 1]− P[GA1 ⇒ 1] = P[B ⇒ 1|(g′1, . . . , . . . , g′k) = (gx1 , . . . , g
x
k)]

−P[B ⇒ 1|(g′1, . . . , . . . , g′k) = (gu1 , . . . , guk)]

= Advk-ddh
G,B (λ).

G1 – G2: We will show that if A’s success probability is significantly different

in games G1 and G2, then we can use A to build an adversary C that inverts

the vector of functions φ = (φ1, . . . , φq). Specifically, we show:

Lemma 6.1.3. For any polynomial-time adversary A, we have

|P[GA1 ⇒ 1]− P[GA2 ⇒ 1]| < 3
√

512δp4k.

Here, recall that p is the size of the group G while φ is a δ-hard-to-invert

vector of functions.

Proof. If the success of A differs between games G1 and G2, then we can

construct an adversary C that inverts the vector of functions φ on input r1.

First, we consider an intermediate step. Suppose adversaryA′ is attempting to

distinguish tuples of the form T1 = (g1, . . . , gk,
∏k

i=1 g
r1,i
i ,φ(r1), u, 〈r1, u〉) from

tuples of the form T2 = (g1, . . . , gk,
∏k

i=1 g
r1,i
i ,φ(r1), u, w), where w is uniformly

176

random. If A can distinguish games 1 and 2 with probability ε, then A′ can

distinguish the previous two tuples with probability ε. The simulation runs

as follows. Distinguisher A′ is given a tuple (g1, . . . , gk,
∏k

i=1 g
r1,i
i ,φ(r1), u, z),

where z is either 〈r1, u〉 or uniformly random. Then A′ chooses a uniformly

random generator g and bit b. A′ uses the generators and the vector u to form

a public key pk∗ = (g1, . . . , gk, g
u1 , . . . , guk), where ui is the ith component of

the vector u, and forwards this public key to A. Then the distinguisher A′

will answer the oracle queries of A as follows:

Enc query (pk,m, i)

return mBHHO.E(pk,m;φ(r1)) to A.

LR query (m0,m1)

c1 ←
∏k

i=1 g
r1,i
i

(K, r)← f(gz)

r′ ← Fr(pk
∗||mb)

c2 ← DEM.E(K,mb; r
′)

return (c1, c2) to A.

When A outputs bit b′, A′ outputs 1 if and only if b = b′. It follows that

|P[GA1 ⇒ 1]− P[GA2 ⇒ 1]| = |P[A′T1 ⇒ 1]− P[A′T2 ⇒ 1]|,

where A′Ti ⇒ 1 denotes that A′ outputs 1 when given tuple Ti.

Now we shall use the distinguisher A′ to construct our adversary C that will

invert the vector of functions by using a modified version of Theorem 1 of [23].

The theorem shows how an adversary may invert a function when given access

to a distinguisher that distinguishes tuples of the form (φ(r1), u, 〈r1, u〉) from

tuples of the form (φ(r1), u, w), where w is uniformly random. We therefore

need a slight modification of their proof in order to invert the function when

given tuples of the form T1 or T2 since these tuples require the extra parameters

g1, . . . , gk,
∏k

i=1 g
r1,i
i . The inverter C can easily choose the generators, but the

177

value
∏k

i=1 g
r1,i
i must be guessed by C (since he does not have the necessary

information to form this value correctly), hence C’s advantage is conditioned

on the probability that he correctly supplies this value to A′. The modified

theorem we require is as follows:

Theorem 6.1.3. Let p be a prime, let G be a group of size p, and let H = Z2.

Let φ : Zk2 → {0, 1}∗ be a vector of functions, and let g1, . . . , gk be generators of

G. To ease notation, let (r1, u, {gi})← params denote the event that r1 ← Zk2,

u← Zkp, and {gi}i=1...k ← Gk. If there is a distinguisher A′ that runs in time

t such that

ε = |P[(r1, u, {gi})← params : A′(g1, . . . , gk,
k∏
i=1

g
r1,i
i ,φ(r1), u, 〈r1, u〉)⇒ 1]

−P(r1, u, {gi})← params, w ← Zp : A′(g1, . . . , gk,
k∏
i=1

g
r1,i
i ,φ(r1), u, w)⇒ 1]|,

then there is an inverter C that runs in time t′ = poly(k, 2, 1/ε) such that

P[r1 ← Zk2 : C(φ(r1))⇒ r1] ≥ ε3

512p4k
.

Proof. The proof is very similar to that of Theorem 1 of [23], so we highlight

only the modifications. Before C runs the simulation he first chooses generators

g1, . . . , gk because these must be provided to A′ (but they are not needed in

[23]). Next, C needs to calculate the value
∏k

i=1 g
r1,i
i since this must also

be given to A′ (but is also not needed in [23]). Unfortunately, C does not

have the required information to do this, so he randomly guesses an element

g∗ ∈ G. Everything then proceeds as in the proof of Theorem 1 of [23], except

when C is required to run A′ he runs this algorithm with the extra inputs

g1, . . . , gk, g
∗ (as well as the inputs that were required in [23]). If C’s guess

g∗ for
∏k

i=1 g
r1,i
i is correct then C will provide tuples of the correct form to

A′. Hence, we condition on the probability that the guess is correct (1/p,

the size of the group) and when the guess is correct we may use the same

178

argument as Theorem 1 of [23] to bound C’s advantage (notice that we ignore

the probability of inverting when the guess is incorrect because the probability

is always greater than or equal to zero and we only need a lower bound for C).

We obtain:

P[C(φ(r1))⇒ r1] =
1

p
· P[C(φ(r1))⇒ r1 | g∗ =

k∏
i=1

g
r1,i
i]

+
p− 1

p
· P[C(φ(r1))⇒ r1 | g∗ 6=

k∏
i=1

g
r1,i
i]

>
1

p
· P[C(φ(r1))⇒ r1 | g∗ =

k∏
i=1

g
r1,i
i]

≥
|P[A′T1 ⇒ 1]− P[A′T2 ⇒ 1]|3

512p4k

=
ε3

512p4k
.

Here, the first line conditions on g∗ being correct or not. The second line

ignores the (positive) probability of inverting when g∗ is not correct. The

third line uses Theorem 6.1.1, and the final line follows from the fact that the

advantage of A′ is defined to be ε. Since A′ has the same advantage as A, we

may conclude that

P[C(φ(r1))⇒ r1] >
|P[GA1 ⇒ 1]− P[GA2 ⇒ 1]|3

512p4k
.

Furthermore, we must have

|P[GA1 ⇒ 1]− P[GA2 ⇒ 1]| < 3
√

512δp4k

because otherwise C would invert the vector of functions with probability

greater than δ, which is impossible by assumption.

G2 – G3: We will prove the following:

179

Lemma 6.1.4. For any adversary A, there exists a KDF adversary D such that

P[GA2 ⇒ 1]− P[GA3 ⇒ 1] ≤ Advkdf
f,D(λ).

Proof. The KDF adversary D against f with access to φ will simulate ei-

ther the game G2 or G3 for A. Adversary D is given as input a value Z

that is either a uniformly random value from the range of the KDF or an

output of the KDF on a uniformly random value from the domain of the

KDF. Adversary D simulates proc. Initialise in the φ-FV-RRA-CPA secu-

rity game by setting b←$ {0, 1}, r1 ←$ {0, 1}k and by choosing and forward-

ing pk∗ = (g1, . . . , gk, g
u1 , . . . , guk) to A. Adversary D then answers A’s oracle

queries as follows:

Enc query (pk,m, i)

return mBHHO.E(pk,m;φ(r1)) to A.

LR query (m0,m1)

c1 ←
∏k

i=1 g
r1,i
i

(K, r)← Z

r′ ← Fr(pk
∗||mb)

c2 = DEM.E(K,mb; r
′)

return (c1, c2) to A.

When A halts and outputs a bit b′, D halts and outputs 1 if and only if b = b′.

When D is given a random Z, it simulates G3 perfectly. Otherwise, it provides

a perfect simulation for G2. Hence,

P[GA2 ⇒ 1]− P[GA3 ⇒ 1] = P[KDFRealDf (λ)⇒ 1]− P[KDFRandD$ (λ)⇒ 1]

= Advkdf
f,D(λ).

G3 – G4: Notice that we now have a uniformly random output from the KDF

180

in the LR queries, which means we now have a uniformly random key for the

PRF in these queries. Hence, we can prove the following:

Lemma 6.1.5. For any adversary A, there exists a PRF adversary E such that

P[GA3 ⇒ 1]− P[GA4 ⇒ 1] ≤ Advprf
F,E(λ).

Proof. The PRF adversary E will simulate either G3 or G4 for A. Adversary

E simulates proc. Initialise in the φ-FV-RRA-CPA security game by setting

b ←$ {0, 1}, r1 ←$ {0, 1}k, K ←$ DEM.K(λ) and by choosing and forwarding

pk∗ = (g1, . . . , gk, g
u1 , . . . , guk) to A. Adversary E then answers A’s oracle

queries as follows:

Enc query (pk,m, i)

return mBHHO.E(pk,m;φi(r1)) to A.

LR query (m0,m1)

c1 =
∏k

i=1 g
r1,i
i

forward pk∗||mb to E ’s PRF oracle, receiving output r∗

c2 = DEM.E(K,mb; r
∗)

return (c1, c2) to A.

When A halts and outputs b′, E halts and outputs 1 if and only if b = b′.

When E is playing the game PRFReal (in which case the oracle outputs are

those of the PRF), he simulates G3 perfectly. Otherwise, when E is playing the

game PRFRand (and the oracle outputs are uniformly random), he simulates

G4 perfectly. Hence,

P[GA3 ⇒ 1]− P[GA4 ⇒ 1] = P[PRFRealEF (λ)⇒ 1]–P[PRFRandE$ (λ)⇒ 1]

= Advprf
F,E(λ).

Finally, since in handling A’s LR queries, the outputs of the KDF f and the

181

PRF F have now both been replaced with uniformly random values, we have

uniformly random K and r′′. Hence, the game G4 may be simulated by a

standard IND-CPA DEM adversary, F . More formally:

Lemma 6.1.6. For any adversary A, there exists an IND-CPA DEM adversary

F such that

2 · P[GA4 ⇒ 1]− 1 ≤ Advind-cpa
DEM,F (λ).

Proof. The adversary F will simulate G4 for A. Adversary F chooses r1 ←$

{0, 1}k and generates a public key pk∗ of the form (g1, . . . , gk, g
u1 , . . . , guk).

Adversary F gives pk∗ to A, and answers A’s oracles queries as follows:

Enc query (pk,m, i)

return mBHHO.E(pk,m;φi(r1)).

LR query (m0,m1)

c1 =
∏k

i=1 g
r1,i
i

forward (m0,m1) to F ’s encryption oracle, receiving as output c2

return (c1, c2) to A.

When A halts and outputs b′, F halts and outputs b′. We conclude that

2 · P[GA4 ⇒ 1]− 1 ≤ Advind-cpa
DEM,F (λ).

The theorem follows by combining all these inequalities.

The class of related randomness functions which our scheme mBHHO can

tolerate is quite different from those in our previous constructions: bounded-

degree polynomials are certainly not hard-to-invert in general. Our proof of

Theorem 6.1.2 actually shows that even if φ(r) were to completely leak to the

adversary (instead of merely being indirectly accessible via Enc queries), the

182

scheme mBHHO would still be secure. This would not be the case if the analogous

φ(r) values were to leak in our earlier schemes PRF-PKE and CI-Hash-PKE, since

the adversary could actually reconstruct r from this leakage for the relevant

φ functions and win the security game. Furthermore, the functions are not

required to be collision-resistant or output-unpredictable. These restrictions

are only strictly required of the functions queried to the LR oracle. However,

since an adversary is restricted to using only the identity function (which is

collision-resistant and output-unpredictable) in its LR queries, the functions

in Φ do not need to satisfy these conditions.

6.2 Goldreich-Levin Theorem for Large Fields

In this section we will discuss and repair what we believe to be an error in

the proof of the Goldreich-Levin theorem for large fields that was presented in

[23]. Recall that we used the repaired version in the proof of Theorem 6.1.2.

For a fixed m and a prime p, the proof requires that the adversary find the

smallest natural number c such that pc > m. Then it is necessary to find

a subset S ⊂ Z(p)c\{0c} of cardinality m such that all elements of S are

pairwise linearly independent. However, when pc and m are too close (in the

sense of their difference), it will not be possible to find such a set. For example,

the authors of [23] suggest setting the first coordinate of every element to be

1, and then choosing all other coordinates arbitrarily. Unfortunately, using

this method there are only pc−1 possible vectors (since the first component

is fixed, and the other c − 1 components can take values from 0 to p − 1).

Therefore, if m > pc−1 this method will be unable to yield a set S of cardinality

m. Notice also that we almost always have m > pc−1, since by definition of

c we know m ≥ pc−1. As an extreme example, consider what happens if

pc = m+ 1. Clearly finding m = pc − 1 pairwise linearly independent vectors

183

in Z(p)c\{0c} (which only contains pc − 1 distinct vectors) is impossible. One

way to circumvent this issue is to insist that c be the smallest value such that

pc−1 > m. It is then possible to find m pairwise linearly independent vectors

from S ⊂ Z(p)c\{0c} by using the method outlined above (setting the first

coordinate of every vector to be 1, and then choosing all other coordinates

arbitrarily).

The success analysis of the Goldreich-Levin algorithm in [23] shows that

the adversary A will succeed in recovering the input to the leakage function

with probability ε/4pc. Then, since c is defined to be the smallest integer such

that pc > m, we know that pc−1 ≤ m. This allows the authors to deduce that

4pc = 4pc−1 · p ≤ 4mp

and then m is bounded to give the desired result. With the modification

outlined above, we instead have that c is the smallest integer such that pc−1 >

m, which means that pc−2 ≤ m. We would then have

4pc = 4pc−2 · p2 ≤ 4mp2.

The value m is fixed, so is bounded in exactly the same way. Hence, the

only modification to the theorem statement is that an extra p appears in the

denominator of the bound. That is, instead of the success of the inverter being

at least
ε3

512np2
,

it should be
ε3

512np3
.

6.3 Generalised FV-RRA Security

In this section we extend the results of the previous section by providing a

more generic approach to achieving FV-RRA-ATK security. In addition, we

184

will demonstrate how to achieve the CCA notion of function-vector security

(recall that our scheme in the previous section only attained the CPA notion).

Furthermore, we will provide a transform that will convert any IND-ATK

secure scheme into an FV-RRA-ATK secure scheme. We shall also generalise

the notion of FV-RRA-ATK security to allow an adversary to use functions in

his LR queries (recall that in the original game the adversary was restricted

to using only the identity function for LR queries). We prove a general result

in this extended attack model, but unfortunately we are unable to provide

any concrete instantiations that are secure according to this strong notion.

As a further contribution, we will explore connections between reconstructive

extractors and CIS hash functions, which were introduced in the previous

chapter.

The transform achieving FV-RRA-ATK security makes use of a technical

tool called an auxiliary-input reconstructive extractor. Classically, an extractor

is a function Ext, which, given an input and a seed, produces an output that is

statistically indistinguishable from elements chosen uniformly at random from

some set Σ, provided the input is chosen from a distribution with sufficient

min-entropy and the seed is chosen uniformly at random. A reconstructive

extractor is an extractor with the additional property that, roughly speaking,

allows the efficient reconstruction of the input x from any distinguisher D that

successfully distinguishes the output of the extractor from random. This is

formalised in terms of the existence of an oracle machine Rec outputting x.

Then an auxiliary-input reconstructive extractor is a reconstructive extractor

in which the output still remains indistinguishable when the distinguisher D is

also given access to the output of a leakage function h(·) on input x. Our actual

definition (Definition 6.3.4) extends this idea further still: the distinguisher

D is given either a set of uniformly random values or the set of outputs of

the extractor when evaluated on φ(x) for all φ ∈ φ, where φ is a vector of

185

functions defined by the game.

Equipped with an auxiliary-input reconstructive extractor, our transform

to achieve FV-RRA-ATK security is conceptually simple:

• We append a uniformly random extractor seed to each public key.

• The encryption algorithm consumes a random value r from some set of

bit strings; this is fed into the extractor (using the seed from the public

key). The output of the extractor is used as a key for a PRF, and the

input to the PRF is the public key appended with the message. Finally,

the output of the PRF is used as the actual randomness for encryption,

and we simply encrypt with the original encryption algorithm.

• Decryption works exactly as in the original decryption algorithm.

Intuitively, a challenge encryption constructed using randomness value φ(r)

remains secure, since the extractor guarantees an output indistinguishable

from random, even when the adversary gains access to encryptions under the

related randomness values φ′(r). Hence, the PRF, which uses the extractor

output as a key, will guarantee that independent randomness values are used

for different public key and messages pairs, which implies that the adversary

is forced to break the security of the underlying PKE scheme to learn any-

thing about the encrypted challenge messages. That this approach attains

FV-RRA-ATK security is formally proven in Theorem 6.3.1.

The schemes obtained from using our transform with this extractor have

significant benefits compared to the concrete FV-RRA-CPA-secure scheme

from Section 6.1. For example, we obtain shorter public keys and a tighter se-

curity reduction compared to the scheme from Section 6.1. Most importantly,

we obtain FV-RRA-CCA security in a completely generic way.

186

proc. Initialise(λ):

b←$ {0, 1};
(pk∗, sk∗)←$ PKE.K(1λ);
CoinTab← ∅; S ← ∅;
return pk∗.

proc. Dec(c):

if c ∈ S
return ⊥

else
return PKE.D(sk∗, c).

proc. LR(m0,m1, i, j):

If CoinTab[i] =⊥
CoinTab[i]←$ Rnd

ri ← CoinTab[i]
c← PKE.E(pk∗,mb;φj(ri))
S ← S ∪ {c}
return c.

proc. Enc(pk,m, i, j):

if CoinTab[i] =⊥
CoinTab[i]←$ Rnd

ri ← CoinTab[i]
c← PKE.E(pk,m;φ′j(ri))

return c.

proc. Finalise(b′):

if b = b′

return 1
else

return 0.

Figure 6.3: Game (φ,φ′)-FV-RRA-ATK, where φ = (φ1, . . . , φq) and φ′ =
(φ′1, . . . , φ

′
q′). (If ATK = CPA, then the adversary’s access to proc. Dec is

removed.)

6.3.1 Extended function-vector related randomness se-
curity

In this section we will introduce the new definitions that aim to generalise

the FV-RRA-ATK notion from Section 5.2. Our generalisation will allow an

adversary to manipulate the randomness used for the LR queries, instead of

being restricted to using only the identity function. The security game for

our new notion is in Figure 6.3. The major difference is that the game is

parametrised by two sets of functions, φ and φ′. An adversary may only use

functions from φ in its LR queries, and the functions in φ′ may only be used

for Enc queries. Notice that if φ = {id}, then this definition simplifies to

the basic FV-RRA-ATK notion. This simplification will be needed when we

discuss an extension of standard auxiliary-input reconstructive extractors in

Section 6.3.2.

The following definition is an adaptation of Definition 5.2.1. It has been

modified to be applicable to the generalised function-vector setting. Recall

that this definition captures natural restrictions that must be placed on an

adversary in order to prevent trivial wins.

187

Definition 6.3.1. Let A be an adversary in Game (φ,φ′)-FV-RRA-ATK that

queries r different randomness indices to its LR and Enc oracles and

makes qi,φ queries to its LR oracle with index i and function φ ∈ Φ. Let

(mi,φ,1
0 ,mi,φ,1

1), . . . , (m
i,φ,qi,φ
0 ,m

i,φ,qi,φ
1) be A’s LR queries for index i ∈ [r] and

φ ∈ Φ. Suppose that for all pairs (i, φ) ∈ [r]×Φ and for all j 6= k ∈ [qi,φ], we

have

mi,φ,j
0 = mi,φ,k

0 iff mi,φ,j
1 = mi,φ,k

1 .

Then we say that A is equality-pattern respecting.

Note that any adversary that is not equality-pattern respecting can trivially

win the game in Figure 6.3. More specifically, the adversary can simply queries

its LR oracle with the tuples (m0,m1, i, j) and (m0,m2, i, j), where m0,m1

and m2 are all distinct. The values i and j can be arbitrary values from

the appropriate domain. If the bit b is equal to 0, the adversary will receive

identical ciphertexts, whereas the ciphertexts will differ if b equals 1. This

results in a trivial win for an adversary. In contrast, an equality-respecting

adversary cannot exploit the available oracles in this particular way, and is

forced to mount a non-trivial attack against the scheme to win the security

game.

With the above definition in place, we can now formally define our gener-

alised notion of FV-RRA-ATK security.

Definition 6.3.2. Let φ = (φ1, . . . , φq) and φ′ = (φ′1, . . . , φ
′
q′) be vectors of

q := q(λ) and q′ := q′(λ) functions respectively. We define the advantage of

an equality-pattern respecting, (φ,φ′)-FV-RRA-ATK adversary A against a

PKE scheme PKE to be

Adv
(φ,φ′)-fv-rra-atk
PKE,A (λ) := 2 · P[(φ,φ′)-FV-RRA-ATKAPKE(λ)⇒ 1]− 1.

If Φ and Φ′ are sets of vectors of functions, then a PKE scheme PKE is said

to be (Φ,Φ′)-FV-RRA-ATK secure if, for all φ ∈ Φ and for all φ′ ∈ Φ′, the

188

advantage of any equality-pattern respecting, (φ,φ′)-FV-RRA-ATK adversary

against PKE that runs in polynomial time is negligible in the security parameter

λ.

Similar to the notion defined in Section 5.2 it is possible to reduce the above

defined FV-RRA-ATK security to a simpler notion in which the security game

involves only a single uniformly random value used in all oracle queries. The

following lemma follows easily from Lemma 5.2.1 of Section 5.2 and is therefore

presented without a proof.

Lemma 6.3.1. Consider an equality-pattern respecting, (φ,φ′)-FV-RRA-ATK

adversary A that queries qr distinct randomness indices and makes at most

qLR LR queries. Then there exists an equality-pattern respecting, (φ,φ′)-

FV-RRA-ATK adversary B that queries at most one randomness index and

makes at most qLR LR queries such that

Adv
(φ,φ′)-fv-rra-atk
PKE,A (λ) ≤ qr ·Adv

(φ,φ′)-fv-rra-atk
PKE,B (λ),

where B runs in approximately the same time as A. In the CCA setting, B

makes the same number of decryption queries as A.

6.3.2 Obtaining FV-RRA security from auxiliary-input
reconstructive extractors

In this section we will explore the main result of this section. We will improve

upon the approach of Section 6.1 by proposing a transform that converts any

IND-ATK scheme into an FV-RRA-ATK scheme via the use of an auxiliary-

input reconstructive extractor. We then provide an instantiation of our trans-

form that not only meets the stronger FV-RRA-CCA notion, but also provides

shorter public keys and a tighter security reduction compared to the scheme

from Section 6.1.

189

Before introducing the extractors we utilise in our transform, we first need

to define the notion of a vector of functions being δ-hard-to-compute with

respect to another vector of functions.

Definition 6.3.3. Let φ = (φ1, . . . , φq) and φ′ = (φ′1, . . . , φ
′
q′) denote vectors

of functions on a set Rndλ, where q := q(λ) and q′ := q′(λ) are polynomial in

the security parameter λ. Let δ(λ) be a function. We say that φ is δ(λ)-hard-

to-compute with respect to φ′ if, for all polynomial time algorithms A and all

sufficiently large λ, we have

P[φi(r)← A(φ′1(r), . . . , φ′q(r)) : r ←$ Rndλ] ≤ δ(λ),

for all i ∈ {1, . . . , q}. We say that a set of vectors of functions Φ is δ-hard-to-

compute with respect to Φ′ if each vector φ ∈ Φ is δ-hard-to-compute with

respect to every vector in Φ′ (note that the vectors in such a set Φ need not

all be of the same dimension, but we assume they each have dimension that is

polynomial in λ). If δ = negl(λ), then we simply say that Φ is hard-to-compute

with respect to Φ′.

With this definition to hand, we may now introduce our generalised defi-

nition of an auxiliary-input reconstructive extractor.

Definition 6.3.4. An (ε, δ,Φ,Φ′)-auxiliary-input reconstructive extractor is a

pair of functions (Ext, Rec) such that Ext is an extractor that maps from

{0, 1}n × {0, 1}d to Σ, and Rec is an oracle machine that on input (1n, 1/ε)

runs in time poly(n, 1/ε, log(|Σ|)). Furthermore, for every x ∈ {0, 1}n, every

φ = (φ1, . . . , φq) ∈ Φ, every φ′ ∈ Φ′, and every function D such that

|Ps←${0,1}d [D(s, {Ext(φi(x), s)}i∈{1,...,q},φ′(x)) = 1]−

Ps←${0,1}d
σi←$Σ

[D(s, {σi}i∈{1,...,q},φ′(x)) = 1]| ≥ ε

we require that

P[RecD(1n, 1/ε,φ′(x)) = φi(x)] ≥ δ

190

Alg. EXT-PKE.K(1λ):

(pk, sk)← PKE.K(1λ)
s← seeds

p̂k ← (pk, s)

ŝk ← (sk)

return p̂k.

Alg. EXT-PKE.E(p̂k,m):

r ←$ Rnd

K ← Ext(r, s)

r′ ← FK(p̂k||m)
c← PKE.E(pk,m; r′)
return c.

Alg. EXT-PKE.D(ŝk, c):

m← PKE.D(sk, c)
return m.

Figure 6.4: Scheme EXT-PKE built from a reconstructive extractor, a PKE
scheme PKE, and a PRF F .

for some i ∈ {1, . . . , q}, where φ = (φ1, . . . , φq), q := q(λ) is polynomial, and

the probability is over the coin tosses of Rec. If, for every D with non-negligible

ε, Rec reconstructs φi(x) with non-negligible probability, we may simply say

that (Ext, Rec) is a (Φ,Φ′)-auxiliary-input reconstructive extractor.

Armed with this new definition of an auxiliary-input reconstructive ex-

tractor, we are ready to prove the main theorem which will establish the main

result of this section. We show that any extractor satisfying Definition 6.3.4

can be used in conjunction with an IND-ATK secure PKE scheme and a PRF

to meet the FV-RRA-ATK security notion in Figure 6.3. The encryption

scheme that achieves this result is in Figure 6.4. The algorithm works by

appending a uniformly random extractor seed to each public key, but leaving

the private key unmodified. The encryption algorithm generates a uniformly

random r, which is then fed into the extractor (using the seed from the public

key). The output of the extractor is used as a key for a PRF, and the input

to the PRF is the public key appended with the message. Finally, the output

of the PRF is used as the new randomness for encryption, and then we simply

encrypt with the standard encryption algorithm.

Theorem 6.3.1. If Φ is hard-to-compute with respect to Φ′ and (Ext, Rec)

is an (Φ,Φ′)-auxiliary-input reconstructive extractor, then the PKE scheme

EXT-PKE in Figure 6.4 is (Φ,Φ′)-FV-RRA-ATK secure when instantiated with

a secure PRF and an IND-ATK secure PKE scheme PKE. More precisely,

191

consider any polynomial-size vectors of functions φ ∈ Φ and φ′ ∈ Φ′,

any (ε, δ,Φ,Φ′)-auxiliary-input reconstructive extractor (Ext, Rec), and any

equality-pattern respecting, (φ,φ′)-FV-RRA-ATK adversary A against the

scheme EXT-PKE. Suppose A makes qLR LR queries and uses qr randomness

indices. Then, either Φ is not δ-hard-to-compute with respect to Φ′, or there

exists a PRF adversary B, and an IND-ATK adversary C, all running in poly-

nomial time, such that

Adv
(φ,φ′)-fv-rra-atk
EXT-PKE,A (λ) < 2qr · q ·Advprf

F,B(λ) + qr · qLR ·Advind-atk
PKE,C (λ) + 2qrε.

Proof. First, we invoke Lemma 6.3.1, so that we now only have to prove the

theorem for an adversary using just one randomness value. Furthermore, we

assume that an adversary never repeats a query. Identical queries will result in

identical outputs, hence any adversary that repeats a query may be replaced

by a more efficient adversary with the same advantage. We proceed via a

sequence of game hops. The games are as follows:

G0: G0 is the real game with the scheme defined in Figure 6.4.

G1: G1 is the same as G0, except for LR queries, where the output of the

extractor is replaced with a uniformly random value. If there existed

an adversary that could distinguish between these two games, then we

could use this adversary to compute one of the outputs of φi(r).

G2: G2 is the same as G1, except for LR queries, where the outputs of the

PRF are replaced with uniformly random values. Finally, G2 may be

simulated by a standard IND-ATK adversary.

G0 – G1: We will prove the following:

Lemma 6.3.2. For any adversary A, the difference in success probabilities in

192

games G0 and G1 is bounded by ε:

P[GA0 ⇒ 1]− P[GA1 ⇒ 1] < ε.

Proof. Consider a distinguisher D, attempting to distinguish whether the ex-

tractor game has returned a real or random output. Adversary D is given

a seed s, two vectors of functions φ = (φ1, . . . , φq) and φ′ = (φ′1, . . . , φ
′
q′),

the vector φ′ = (φ′1(r), . . . , φ′q′(r)), and a vector z which is either

{Ext(φi(r); s)}i∈{1,...,q} or {σ1, . . . , σq} where each σi is chosen uniformly at

random from the range Σ of the extractor. The distinguisher D sets-up the

simulation as follows:

Setup

(pk∗, sk∗)← PKE.K(1λ)

(p̂k
∗
, ŝk

∗
)← (pk∗||s, sk∗)

b←$ {0, 1}.

Adversary C forwards the public key p̂k
∗

to A. Then D answers A’s queries

as follows:

Enc query (p̂k,m, i)

D returns EXT-PKE.E(p̂k,m;φ′i(r)) to A.

LR query (m0,m1, i)

r′ ← Fzi(p̂k
∗
||mb)

c← PKE.E(pk∗,mb; r
′)

return c to A.

Dec query c

return PKE.D(sk∗, c).

When A halts and outputs b′, C halts and outputs 1 if and only if b = b′. If

z = {Ext(φi(r); s)}i∈{1,...,q} a perfect simulation of G0 is provided. Otherwise,

193

a perfect simulation of G1 is provided. Hence,

|P[GA0 ⇒ 1]− P[GA1 ⇒ 1]|

= |P[D(s, {Ext(φi(r); s)},φ′(r))⇒ 1]− P[D(s, {σi}i∈{1,...,q},φ′(r))⇒ 1]|.

If an adversary can distinguish outputs of the extractor from uniformly ran-

dom values with probability greater than or equal to ε in polynomial time, then

there exists an algorithm Rec that will output φi(r) (for some i ∈ {1, . . . , q})

with probability greater than δ (cf. Definition 6.3.4). However, this is a con-

tradiction since the φ is δ-hard-to-compute with respect to φ′. Hence, we

must have

P[GA0 ⇒ 1]− P[GA1 ⇒ 1] < ε.

G1 – G2: If an adversary can distinguish games 1 and 2 with a certain prob-

ability, then we may construct a PRF adversary B that wins the PRF game

with the same probability. Specifically:

Lemma 6.3.3. The difference between games G1 and G2 is bounded by the

advantage of a PRF adversary. More specifically,

P[GA1 ⇒ 1]− P[GA2 ⇒ 1] ≤ q ·Advprf
F,B(λ).

Proof. The proof uses a hybrid argument. Consider the hybrid game G1,j,

where the outputs of the PRF for functions {φi}i<j+1 are replaced with uni-

formly random values. Notice that G1 = G1,0 and G2 = G1,q. The setup

procedure of B is as follows:

Setup

b←$ {0, 1}

j ←$ {0, . . . , q − 1}

194

s←$ seeds

r ←$ Rnd

Kj+2, . . . , Kq ←$ PRF.K(1λ)

(pk∗, sk∗)← PKE.K(1λ)

(p̂k
∗
, ŝk

∗
)← (pk∗||s, sk∗).

The adversary B returns the public key p̂k
∗

to A, and answers A’s queries as

follows:

Enc query (p̂k,m, i)

return EXT-PKE.E(p̂k,m;φ′i(r)) to A.

LR query (m0,m1, i)

if i < j + 1

B chooses uniformly random r′

if i = j + 1

forward pk∗||mb to the PRF oracle; B receives output r′

if i > j + 1

quad compute r′ ← FKi(pk
∗||mb)

c← PKE.E(p̂k
∗
,mb; r

′)

return c to A.

Dec query c

return PKE.D(sk, c).

When A halts and outputs b′, B halts and outputs 1 if and only if b = b′.

When B’s outputs are from a PRF he simulates G1,j perfectly. Otherwise, if

B’s outputs are uniformly random he simulates G1,j+1 perfectly. Hence, since

there are q hybrid games, we have

P[GA1 ⇒ 1]− P[GA2 ⇒ 1] ≤ q ·Advprf
F,B(λ).

195

Finally, the success in game G2 may be related to the success of a standard

IND-ATK PKE adversary, C. More formally:

Lemma 6.3.4. The success probability of an adversary attacking G2 can be

bound as follows:

2 · P[GA2 ⇒ 1]− 1 ≤ qLR ·Advind-atk
PKE,C (λ).

Proof. The adversary C will simulate G2 for A. To setup, adversary C runs

the following procedure:

Setup

r ←$ Rnd

s←$ seeds

j ←$ {1, . . . , qLR}

ctr← 1 (pk∗, sk∗)← PKE.K(1λ)

(p̂k
∗
, ŝk

∗
)← (pk∗||s, sk∗).

Adversary C returns p̂k
∗

to A, and answers A’s oracles queries as follows:

Enc query (pk,m, i)

return EXT-PKE.E(pk,m;φ′i(r)).

LR query (m0,m1, i)

if ctr < j,

r′ ←$ Rnd

c← PKE.E(pk,m0; r′)

else if ctr > j,

r′ ←$ Rnd

c← PKE.E(pk,m1; r′)

else submit (m0,m1) to C’s LR oracle, receive c

ctr← ctr + 1

return c to A.

196

When A halts and outputs b′, C halts and outputs b′. Via a hybrid argument

we conclude that

2 · P[GA2 ⇒ 1]− 1 ≤ qLR ·Advind-atk
PKE,C (λ).

The theorem follows by combining all of these inequalities.

6.3.3 Instantiation of an auxiliary-input reconstructive
extractor

We have previously introduced a more general notion of FV-RRA-ATK secu-

rity, and we have shown that the existence of an auxiliary-input extractor in

the mould of Definition 6.3.4 would give rise to a scheme that meets this gener-

alised security notion. It now remains to see what extractors exist that satisfy

Definition 6.3.4. The strongest extractor we are aware of is the Goldreich-Levin

extractor, whose properties are analysed in Theorem 1 of [23], and whose re-

sult was stated in Theorem 6.1.1 of this thesis. Recall that the theorem states

the following (with the notation changed to remain consistent with ours, and

also fixing the error, as discussed in Section 6.2):

Theorem. Let p be a prime, and let H be an arbitrary subset of Zp. Let f :

Hn → {0, 1}∗ be any (possibly randomised) function. If there is a distinguisher

D that runs in time t such that

|P[r← Hn, y ← f(r), s← Znp : D(y, s, 〈r, s〉) = 1]

− P[r← Hn, y ← f(r), s← Znp , u← Zp : D(y, s, u) = 1]| = ε

then there is an inverter A that runs in time t′ = t ·poly(n, |H|, 1/ε) such that

P[r← Hn, y ← f(r) : A(y) = r] ≥ ε3

512 · n · p3
. (6.3.1)

197

Alg. EXT-PKE.K(1λ):

(pk, sk)← PKE.K(1λ)
s← Zλp
p̂k ← (pk, s)

ŝk ← (sk)

return p̂k.

Alg. EXT-PKE.E(p̂k,m):

r ←$ H
λ

K ← 〈r, s〉
r′ ← FK(p̂k||m)
c← PKE.E(pk,m; r′)
return c.

Alg. EXT-PKE.D(ŝk, c):

m← PKE.D(sk, c)
return m.

Figure 6.5: Scheme EIP-PKE (Euclidean Inner Product) built from a PKE
scheme PKE, and a PRF F . Here, H denotes a subset of Zq.

This theorem can be used to obtain an auxiliary-input reconstructive ex-

tractor. Now, consider the extractor Ext that maps from Hn×Znp to Zp (where

H is a subset of Zp) defined as

Ext(r, s) = 〈r, s〉.

If we match the notation of Theorem 6.1.1 with Definition 6.3.4, then Rec

is now A, Φ = {id}, φ′ is the function f , Φ′ is the set of δ-hard-to-invert

vectors of functions, and the extractor Ext is easily seen to be an (ε, δ, {id},Φ′)-

auxiliary-input reconstructive extractor, where

ε = 3
√

512δλp3.

Note that, in the proof of Dodis et al., the theorem is stated with one func-

tion f . However, we now use a vector of functions (φ1, . . . , φq) in our proof.

Fortunately this is not problematic, since we can interpret f as a function of

functions. That is, f(r) = (φ1(r), . . . , φq(r)).

By combining Theorem 6.1.1 with Theorem 6.3.1, we easily obtain the

following theorem.

Theorem 6.3.2. Let Φ be a set of hard-to-invert vectors of functions on {0, 1}λ.

Then PKE scheme EIP-PKE in Figure 6.5 is (id,Φ)-FV-RRA-ATK secure.

More precisely, consider any polynomial-size vector of functions φ ∈ Φ which

is δ-hard-to-invert, and any equality-pattern respecting, (id,φ)-FV-RRA-ATK

198

adversary A against EIP-PKE. Suppose A makes qLR LR queries and uses qr

randomness indices. Then there exists a PRF adversary B and an IND-ATK

adversary C, all running in polynomial time, such that

Adv
(id,φ)-fv-rra-atk
EIP-PKE,A (λ) < 2qr ·Advprf

F,B(λ)+qr ·qLR ·Advind-atk
PKE,C (λ)+2qr

3
√

512δλp3.

The above theorem does not achieve the strongest levels of security we desire

since the challenge functions modifying the input to the extractor are limited

to being the identity function, which is equivalent to the security game stud-

ied in Section 6.1. However, the schemes resulting from our transform using

the above reconstructive extractor still enjoy many advantages over the scheme

that was presented in Section 6.1. Most notably, Section 6.1 only gave one con-

crete scheme, which is only secure in the CPA version of the FV-RRA-ATK

game. Our theorem not only shows how to achieve CCA security, but also

shows how to convert any IND-CCA scheme into an FV-RRA-CCA secure

scheme. Furthermore, the security bound of our theorem is tighter than that

of Section 6.1, and our theorem facilitates the use of much smaller public keys.

For comparison, consider the scheme obtained from combining our transform

with the hybrid encryption scheme of Kurosawa and Desmedt (KD) [53]. The

KD scheme makes use of public keys consisting of the five components; four

group elements (which includes the group generators used in the scheme) and a

hash function key. When using our transform with the above Goldreich-Levin

extractor, the public key is modified to include λ components from H ⊂ Zq.

Hence, the public key of the transformed scheme will consist of λ+ 5 compo-

nents. In contrast, the modified BHHO scheme presented in earlier requires

public keys consisting of 2 · k(λ) group elements (where k is a polynomial).

Furthermore, the loss of security in the security reduction of the modified

BHHO scheme includes the component 3
√

512δkp4, which originates from the

reduction to the δ-hard-to-invert functions. In comparison, the correspond-

ing loss of security obtained from applying our transform is 3
√

512δλp3, which

199

leads to a much weaker requirement on the δ-hard-to-invert functions.

It would of course be desirable to find extractors that meet our strongest

definition, or alternative extractors that have, for example, shorter seeds. How-

ever, this seems difficult at present. A standard technique to obtain an (ε, δ)-

auxiliary-input reconstructive extractor is to use complexity-leveraging with

a standard reconstructive extractor. Unfortunately, this technique does not

appear to work in the FV-RRA-ATK setting. More specifically, if we wish to

use complexity-leveraging, we require the range of the auxiliary function to be

smaller than the domain. However, for our FV-RRA-ATK game to make sense,

we require that for each φ we have D(φ) = R(φ) = Rnd. Hence, complexity-

leveraging seems to be incompatible with the FV-RRA-ATK model.

6.4 Connections with Correlated-Input

Secure Hash Functions

We will now briefly explore the connections between (ε, δ,Φ,Φ′)-auxiliary-

input reconstructive extractors and correlated-input secure (CIS) hash func-

tions. In particular, we will show that any reconstructive extractor can be

used to construct a secure CIS hash function. Correlated-input secure hash

functions were first studied by Goyal et al. in [32]. They introduced several

definitions of security, but the one we shall be concerned with is the pseudo-

randomness notion, which we briefly studied in Section 5.5.

As noted in [32], CIS hash functions have applications to password-based

login and efficient searches on encrypted data. Furthermore, they share inter-

esting connections with Related-Key Attack PRFs (RKA-PRFs) and RKA-

secure symmetric encryption schemes. In particular, [32] highlighted that an

RKA-PRF can be obtained from a CIS hash function, simply by reversing

200

proc. Initialise(λ):

b←$ {0, 1};
hc ←$ H
r ←$ D(hc)
return hc.

proc. Challenge(j):

if b = 0,
z ←$ R(hc)
return z

else,
return hc(φj(r)).

proc. Query(i):

return hc(φ
′
i(r))

proc. Finalise(b′):

if b = b′, return 1
else, return 0.

Figure 6.6: The (φ,φ′)-CIS hash game, where φ = (φ1, . . . , φq) and φ′ =
(φ′1, . . . , φ

′
q′).

the roles of the input message and the key. Here, we show that they share

further connections with auxiliary-input reconstructive extractors. However,

to explore this connection we must consider a variant of the CIS hash security

game that was presented in [32]. The security game is shown in Figure 6.6

while our definition of security is given below.

Definition 6.4.1. The advantage of an adversary A against a family of hash

functions H in the (φ,φ′)-CIS game (Figure 6.6) is defined to be

Adv
(φ,φ′)-cis
H,A (λ) := 2 · P[(φ,φ′)-CISAH(λ)⇒ 1]− 1.

Definition 6.4.2. A family of hash functions H is said to be

(Φ,Φ′)-pseudorandom correlated-input secure if, for all φ ∈ Φ and for all

φ′ ∈ Φ′ ,and all polynomial time adversaries A, we have

Adv
(φ,φ′)-cis
H,A (λ) ≤ negl(λ).

Notice that in our new definition, instead of letting the adversary adap-

tively choose the functions, as in [32], the security game itself is parametrised

with function vectors φ and φ′, and security is required to hold for all choices

of φ ∈ Φ and φ′ ∈ Φ′. It is worth stressing that there is a subtle difference

between the two approaches to defining security for CIS hash functions, which

makes the two security notions incomparable.

With these definitions and notions in place we can define our hash function

201

as follows:

hc(r) := Ext(r, c).

The following theorem establishes the correlated-input security of the hash

function, based on the security of the underlying auxiliary-input reconstructive

extractor.

Theorem 6.4.1. Let Ext be an (ε, δ,Φ,Φ′)-auxiliary-input reconstructive ex-

tractor. For the hash function defined as hc(r) := Ext(c, r) and for any φ ∈ Φ

and φ′ ∈ Φ′, either Φ is not δ-hard-to-compute with respect to Φ′ or for all

polynomial time adversaries A, we have

Adv
(φ,φ′)-cis
H,A (λ) < ε.

Proof. We will firstly give an overview of the proof. If Φ is not δ-hard-to-invert

with respect to Φ′, then there is nothing to prove. Otherwise, if an adversary

A has advantage greater than or equal to ε in the CIS hash game, we would be

able to build an extractor adversary D that distinguishes the outputs of the

extractor from randomwith probability ε. This in turn would allow us to build

a function Rec that computes φi(r) for some i with probability greater than δ

(cf. Definition 6.3.4), which is not possible by assumption. Hence, we have a

contradiction, so the advantage of the adversary A must be less than ε. This

completes the overview of the proof, and we will now explain the reduction in

detail.

The extractor adversary D is given a seed s, a vector of functions φ′(r) for

some r, and {zi}i∈{1,...,q}, which is either {Ext(φi(r), s)}i∈{1,...,q} or {σi}i∈{1,...,q}
for randomly chosen sigmas. Adversary D forwards the seed s to A. Adversary

D then answers the oracle queries as follows.

Query i

D responds with Ext(φ′i(r), c).

202

Challenge j

D responds with zj.

When A outputs a bit b, D outputs the same bit b. It is clear that D

has the same advantage as A. Since D must have advantage less than ε, we

conclude that A also has advantage less than ε.

A concrete instantiation of such a CIS hash is possible via Equation (6.3.1).

If we define

hc(r) := 〈r, c〉, (6.4.1)

where c ∈ Zλp and r ∈ Hλ for H ⊂ Zp, then the following corollary is obvious.

Corollary 6.4.1. Consider the hash function defined in Equation 6.4.1. Let

Φ be the set of δ-hard-to-invert functions. Then, for all φ ∈ Φ, and all

polynomial time adversaries A, we have

Adv
(id,φ)-cis
H,A (λ) < 3

√
512δλp3.

6.5 Conclusions

In this chapter we have proposed an alternative security notion for Related

Randomness Attacks. Furthermore, we have provided constructions that are

secure in this new model when an adversary may only use hard-to-invert func-

tions in its oracle queries. The results of this chapter develop interesting con-

nections with auxiliary-input reconstructive extractors. Moreover, we show

that this specific type of extractor may be used to construct CIS hash func-

tions (albeit in a security game that differs slightly from the original), thereby

introducing connections to the previous chapter in which we used CIS hash

functions to obtain related randomness security in the honest-key setting. The

major open problem from this section is to find a concrete instantiation of the

203

most general type of auxiliary-input reconstructive extractor that we have

defined in this chapter.

204

Chapter 7

Related Randomness Attacks
for Key Encapsulation
Mechanisms

7.1 Introduction

In this chapter we will continue to study Related Randomness Attacks, but

we will turn our attention towards Key Encapsulation Mechanisms (KEMs).

A drawback to public-key encryption is that the message space is often re-

stricted in some manner. For example, in the case of ElGamal (Section 5.1.2,

Figure 5.1) the message space is a group G for which the Decisional Diffie-

Hellman problem is hard. Furthermore, the group operations required for

public-key encryption are much more costly than the corresponding opera-

tions required for symmetric schemes, resulting in PKE schemes being less

efficient than their SKE counterparts. Therefore, in practice it is common to

use a PKE scheme to transport an SKE private key, and then continue com-

munications via an SKE scheme with this transported key. KEM schemes are

a formalisation of the technique for transporting keys, whilst the KEM/DEM

setting formalises the whole process of transporting the key and then encrypt-

ing messages using the symmetric scheme. As a consequence, it is logical to

205

Alg. KEM-DEM.K(1λ):

(ek, dk)←$ KEM.K(1λ)
return (ek, dk).

Alg. KEM-DEM.E(ek,m):

r ←$ Rnd

(ckem, k)← KEM.E(ek; r)
cdem ← DEM.E(k,m)
return (ckem, cdem).

Alg. KEM-DEM.D(dk, ckem, cdem):

k ← KEM.D(dk, ckem)
m← DEM.D(k, cdem)
return m.

Figure 7.1: Standard construction of a PKE scheme KEM-PKE from a KEM
scheme KEM and a DEM scheme DEM.

study Related Randomness Attacks specifically in this setting.

To summarise the KEM/DEM setting, the KEM component encrypts an

encoding of a symmetric key, and then the DEM will be used to encrypt

the message with the symmetric key. This is the reason why the KEM/DEM

paradigm is slightly more efficient than exclusively using public key encryption

schemes (and there are fewer restrictions on the message space). Furthermore,

since the symmetric key is independent for every message sent, the DEM

scheme need only be one-time secure, which is a simpler notion to achieve than

the more general notions of symmetric security. The KEM/DEM approach was

formalised by Cramer and Shoup [21]. In Figure 7.1 we have reproduced their

original construction of a PKE scheme from a KEM and a DEM. Later in this

chapter, we will build upon this scheme to provide a KEM/DEM framework

for RRA-ATK PKE security.

Since KEM/DEM constructions yield public-key encryption schemes, it is

clear that the results of the previous chapters may be applied to the

KEM/DEM construction to trivially achieve RRA-ATK security. Why, then,

do we bother to study related randomness for the KEM/DEM paradigm? It is

possible that a study of RRA specifically for KEMs will lead to tighter security

reductions, or security against stronger classes of functions. In this chapter we

will encounter reasons to believe that achieving related randomness security

for KEMs may be simpler than achieving the notion for PKE schemes.

206

7.1.1 Our contributions

We will begin by defining Related Randomness Attacks in the KEM setting

and the relevant notions of security. Once we have established the necessary

definitions, we will present a plausible argument to suggest that achieving

RRA security in the KEM setting may be easier than for the PKE setting.

Subsequently, we will see how an RRA-secure KEM can be combined with

several other standard primitives to obtain an RRA-secure PKE scheme. In-

terestingly, this develops connections with the previous chapter since we show

that Theorem 6.1.2 is essentially a special case of Theorem 7.3.1 proved in this

chapter.

7.2 Related Randomness Security for KEMs

We begin by defining the RRA-CCA security game for KEMs, which can be

seen in Figure 7.2 (standard KEM definitions are in the introductory chap-

ter, Section 2.2.3). The notation K denotes the key space to which the KEM

scheme KEM maps. That is, KEM maps to C × K. Recall that in the PKE set-

ting we were required to place restrictions upon adversaries in order to prevent

trivial wins. We must similarly restrict KEM adversaries using an equality-

pattern notion reminiscent of Definition 5.2.1, though the KEM restrictions

will be much simpler to state than those for public-key encryption schemes.

Informally, a KEM adversary in the RRA-ATK game may not query a pair

(i, φ) to its real-or-random (RoR) oracle if the triple (ek∗, i, φ) was queried

to the Encap oracle, and vice versa, where ek∗ is the target encryption key.

If an adversary were allowed to make these oracle calls, then the adversary

would trivially win the game by simply comparing the outputs of the encap-

sulation and the real-or-random query. If the two keys are identical, then the

the adversary knows with high probability that he is in the real world. The

207

proc. Initialise(λ):

b←$ {0, 1};
CoinTab← ∅;
(ek∗, dk∗)←$ KEM.K(1λ);
S ← ∅; return ek∗.

proc. Encap(ek, j, φ):

if CoinTab[j] =⊥
CoinTab[j]←$ Rnd

rj ← CoinTab[j]
(c, k)← KEM.E(ek;φ(rj))
return (c, k).

proc. RoR(j, φ):

if CoinTab[j] =⊥
CoinTab[j]←$ Rnd

rj ← CoinTab[j]
(c, k0)← KEM.E(ek∗;φ(rj))
k1 ←$ K
S ← S ∪ {c}
return (c, kb).

proc. Decap(c):

if c ∈ S
return ⊥

else
return KEM.D(dk∗, c).

proc. Finalise(b′):

if b = b′

return 1
else

return 0.

Figure 7.2: Game RRA-CCA for KEMs. The access to proc. Decap is
removed for the RRA-CPA version of the game.

formalisation of the equality-pattern definition for KEMs is below.

Definition 7.2.1. LetA be a non-trivial KEM adversary that queries r different

indices to its oracles and makes qi RoR queries with index i. Let Φi be the set

of functions φ such that A makes Encap query (ek∗, i, φ). Let φi1, φ
i
2, . . . , φ

i
qi

be A’s RoR queries for index i. If for all i ∈ {1, . . . , r} and all j ∈ {1, . . . , qi}

we have

φij /∈ Φi,

then we say A is an equality-pattern respecting KEM adversary.

Definition 7.2.2. We define the advantage of an equality-pattern respecting

RRA-ATK adversary A against a KEM scheme KEM to be

Advrra-atk
KEM,A (λ) := 2 · P[RRA-ATKAKEM(λ)⇒ 1]− 1.

A KEM scheme KEM is said to be Φ-RRA-ATK secure if the advantage of any Φ-

restricted, equality-pattern respecting, RRA-ATK adversary against KEM that

runs in polynomial time is negligible in the security parameter λ.

208

proc. Initialise(λ, `):

b←$ {0, 1};
Keys← ∅;
target← false;
CoinTab← ∅;
S ← ∅; (ek∗, dk∗)← ∅
for i = 1 to `

(eki, dki)←$ KEM.K(1λ)
Keys← Keys ∪ eki

return Keys.

proc. Target(j):

if target = true

return ⊥
else

(ek∗, dk∗)← (ekj , dkj)
target← true

return {dki}i 6=j .

proc. Encap(ek, i, φ):

if target = false

return ⊥
if ek /∈ Keys

return ⊥
if CoinTab[i] =⊥

CoinTab[i]←$ Rnd

ri ← CoinTab[i]
(c, k)← KEM.E(ek;φ(ri))
return (c, k).

proc. Decap(c):

if target = false

return ⊥
if c ∈ S

return ⊥
else

return KEM.D(dk∗, c).

proc. RoR(i, φ):

if target = false,
return ⊥

if CoinTab[i] =⊥
CoinTab[i]←$ Rnd

ri ← CoinTab[i]
(c, k0)← KEM.E(ek∗;φ(ri))
k1 ←$ K
S ← S ∪ {c}
return (c, kb).

proc. Finalise(b′):

if b = b′

return 1
else

return 0.

Figure 7.3: Game `-HK-RRA-ATK. (Note that if ATK = CPA, then the
adversary’s access to proc. Decap is removed.)

7.2.1 Alternative security notions

Similar to the PKE setting, we can define variants of the RRA game for the

honest-key and the function-vector settings. The game for honest keys is in

Figure 7.3, and security is defined in the natural way. For the RRA and HK-

RRA games, we may define selective versions of these games. The games and

security definitions will not be given here, but they are obvious extensions of

the adaptive games.

For function-vector security, the game is in Figure 7.4, and the definition

of security is below.

Definition 7.2.3. Let φ = (φ1, . . . , φq) be a vector of q := q(λ) functions.

We define the advantage of an equality-pattern respecting, φ-FV-RRA-ATK

adversary A against a KEM scheme KEM to be

Adv
φ-fv-rra-atk
KEM,A (λ) := 2 · P[φ-FV-RRA-ATKAKEM(λ)⇒ 1]− 1.

209

proc. Initialise(λ):

b←$ {0, 1};
(ek∗, dk∗)←$ KEM.K(1λ);
CoinTab← ∅; S ← ∅;
return ek∗.

proc. Decap(c):

if c ∈ S
return ⊥

else
return KEM.D(dk∗, c).

proc. RoR(i):

if CoinTab[i] =⊥
CoinTab[i]←$ Rnd

ri ← CoinTab[i]
(c, k0)← PKE.E(ek∗; ri)
k1 ←$ K
S ← S ∪ {c}
return (c, kb).

proc. Encap(ek, i, j):

if CoinTab[i] =⊥
CoinTab[i]←$ Rnd

ri ← CoinTab[i]
(c, k)← KEM.E(ek;φj(ri))
return c.

proc. Finalise(b′):

if b = b′

return 1
else

return 0.

Figure 7.4: Game φ-FV-RRA-ATK, where φ = (φ1, . . . , φq). (As usual, if
ATK = CPA, then the adversary’s access to proc. Decap is removed.)

If Φ is a set of vectors of functions, then a KEM scheme KEM is said to be Φ-

FV-RRA-ATK secure if, for all φ ∈ Φ, the advantage of any equality-pattern

respecting, φ-FV-RRA-ATK adversary against KEM that runs in polynomial

time is negligible in the security parameter λ.

7.2.2 Simplifying lemmas

In this section we will prove some lemmas regarding the security of RRA-

KEMs. Specifically, we will show that it suffices to prove that the KEM is

secure when an adversary uses only one randomness index and one RoR query.

To prove that we only need to consider adversaries that use one randomness

index, we proceed exactly as in the PKE setting. The KEM adversary with one

randomness index simply selects his own randomness for the other indices and

uses these to simulate queries for different randomness indices. The theorem

statement is below, and the proof is omitted since it is nearly identical to the

proof of Lemma 5.2.1.

Lemma 7.2.1. Consider an equality-pattern respecting, RRA-ATK adversary

210

A that queries qr distinct randomness indices and makes at most qRoR RoR

queries. Then there exists an equality-pattern respecting, RRA-ATK adver-

sary B that queries at most one randomness index and makes at most qRoR

RoR queries such that

Advrra-atk
KEM,A (λ) ≤ qr ·Advrra-atk

KEM,B (λ),

where B runs in approximately the same time as A. In the CCA setting, B

makes the same number of decapsulation queries as A.

In the PKE setting we were unable to show that there is a security reduction

from an adversary with multiple LR queries to an adversary with just one

LR query. Instead, the reduction had to be made in the proof of the specific

scheme we were considering. In the KEM setting, a result of this kind is in

fact achievable. Using a standard hybrid argument, we can prove the following

lemma, which shows it is sufficient to consider an adversary that makes only

one RoR query and uses only one randomness index.

Lemma 7.2.2. Consider an equality-pattern respecting, RRA-ATK adversary

A that queries one distinct randomness index and makes at most qRoR RoR

queries. Then there exists an equality-pattern respecting, RRA-ATK adver-

sary B that queries at most one randomness index and makes at most one

RoR query such that

Advrra-atk
KEM,A (λ) ≤ qRoR ·Advrra-atk

KEM,B (λ),

where B runs in approximately the same time as A. In the CCA setting, B

makes the same number of decapsulation queries as A.

Proof. For 0 ≤ j ≤ qRoR, define Game Gj as in Figure 7.5. Note that G0

is identical to the RRA-CCA game in Figure 7.2 with b = 0, whilst GqRoR

is identical to the RRA-CCA game in Figure 7.2 with b = 1. Since we are

211

now considering an adversary that uses only one randomness index, this index

will be omitted from an adversary’s queries. The advantage of A may be

formulated as

Advrra-atk
KEM,A (λ) = P[AGqRoR ⇒ 1]− P[AG0 ⇒ 1]

=

qRoR−1∑
j=0

P[AGj+1 ⇒ 1]− P[AGj ⇒ 1]

≤ qRoR · (P[AGj∗+1 ⇒ 1]− P[AGj∗ ⇒ 1]),

for some index j∗ ∈ {1, . . . , qRoR}. The only difference between games j∗

and j∗ + 1 is how the game responds to the (j∗ + 1)th RoR query. If A can

distinguish between games j∗ and j∗+1, then we may construct an adversary B

that wins the RRA-CCA game and only uses one RoR query. The adversary

B runs the following set up procedure. Adversary B sets ctr = 1, S = ∅,

and forwards his encapsulation key ek∗ to A. Adversary B then simulates the

queries as follows:

Encap query (ek, φ)

B forwards (ek, φ) to his own Encap oracle

the answer is returned to A.

RoR query φ

if ctr ≤ j∗

B submits (ek∗, φ) to his Encap oracle

B receives (c, k0) and chooses k1 ←$ K

B sets ctr← ctr + 1, S ← S ∪ {c}, and returns (c, k1)

else if ctr = j∗ + 1

B submits φ to his RoR oracle

B sets ctr← ctr + 1, S ← S ∪ {c}, returns the oracle output to A

else

B submits φ to his Encap oracle

B sets ctr← ctr + 1, S ← S ∪ {c}, returns the oracle output to A.

212

proc. Initialise(λ):

(ek∗, dk∗)←$ KEM.K(1λ);
r ←$ Rnd;
S ← ∅; ctr = 1;
return ek∗.

proc. Encap(ek, φ):

(c, k)← KEM.E(ek;φ(r))
return (c, k).

proc. Decap(c):

if c ∈ S
return ⊥

else
return KEM.D(c).

proc˙RoR(φ):

(c, k0)← KEM.E(ek∗;φ(r))
if ctr > j

return (c, k0)
else

k1 ←$ K
return (c, k1)

S ← S ∪ {c}
return c.

proc. Finalise(b′):

if b = b′

return 1
else

return 0.

Figure 7.5: The game Gj for Lemma 7.2.2.

Decap query c

if c ∈ S

B returns ⊥

else

B forwards c to his Decap oracle

B returns the oracle output to A.

When A halts and outputs b′, B halts and outputs b′. When B is given

real keys, he simulates game j∗ perfectly. If the key is random, B simulates

game j∗ + 1 perfectly. The lemma now follows easily. Note, however, that

when ATK=CPA, the adversary B will not simulate Decap queries since no

Decap oracle exists in this version of the game.

These two lemmas have established that we only need to consider adver-

saries using one randomness index and one RoR query for RRA security of

KEMs. This gives us some indication as to why RRA-secure KEMs may be

easier to obtain than RRA-secure PKE schemes. For PKE we need to show

213

that a scheme is secure when the adversary has multiple LR queries, whereas

for KEMs we only need to prove security for one RoR query. If RRA security

is indeed easier to achieve in this setting, then we would like to find a way of

achieving RRA security for PKE via the RRA security of a KEM. The next

section will show how to realise this goal.

7.3 Related Randomness for the KEM/DEM

Paradigm

The CPA/CCA security proof of the scheme in Figure 7.1 (from [21]) only re-

quires the DEM to be secure against adversaries that have only one challenge

query, which is equivalent to one LR query in our setting (so called ‘one-time

security’). The reasoning behind this is straightforward. Since the KEM is

randomised, the probability of the KEM outputting a pair (c, k) more than

once is negligible (because otherwise we would be able to construct an algo-

rithm with a non-negligible advantage against the scheme). Therefore, even

though the PKE adversary will have multiple LR queries, each encryption by

the DEM will (with high probability) be computed using different DEM keys,

so the DEM need only be secure against one LR query. We will shortly see

that we require stronger assumptions in the RRA setting.

We will attempt to extend the construction of Figure 7.1 to the related

randomness setting. Specifically, we intend to combine an RRA-secure KEM

with other components to achieve RRA PKE security. Extending the scheme

of Figure 7.1 to the related randomness setting is not entirely straightforward.

First, one-time security will no longer suffice, since if an adversary reuses the

same KEM randomness in different oracle queries, then the DEM key output

by the KEM will be identical. Hence, the DEM key will be used more than once

and the scheme is no longer provably secure if we are using a one-time secure

214

Alg. KEM-PKE.K(1λ):

(ek, dk)←$ KEM.K(1λ)
return (ek, dk).

Alg. KEM-PKE.E(ek,m):

rkem ←$ Rnd

(ckem, kkem)← KEM.E(ek; rkem)
(kdem, rdem)← f(kkem)
cdem ← DEM.E(kdem,m;Frdem(m))
return c = (ckem, cdem).

Alg. KEM-PKE.D(dk, c):

(ckem, cdem)← c
kkem ← KEM.D(dk, ckem)
(kdem, rdem)← f(kkem)
m← DEM.D(kdem, cdem)
return m.

Figure 7.6: Construction of a PKE scheme KEM-PKE from a KEM scheme KEM,
a DEM scheme DEM, a KDF f , and a PRF, F .

DEM. A consequence of this is that we must necessarily use a randomised

DEM. This then presents its own difficulties. In the related randomness setting

the adversary can control the randomness, but we now have two randomness

sources, both of which can be controlled by the adversary. How, then, do we

overcome this issue? One approach is to borrow the techniques of the modified

BHHO scheme in Figure 6.2. The key that is output by the KEM will be fed

into a KDF, then the KDF will output two values. The first will be used as a

DEM key and the second will be used as a key for a PRF. The input to the PRF

will be the message that is to be encrypted, and the output of the PRF will be

used as the randomness for the DEM. Our proposed construction formalising

this idea can be found in Figure 7.6. Notice that we now have a randomised

DEM, but we need not give the adversary control of this randomness since the

algorithm never chooses the randomness with which to encrypt. Instead, the

randomness used for DEM encryption is a deterministic function of the KEM

randomness and the message.

The following theorem establishes the related randomness security of our

scheme in Figure 7.6.

Theorem 7.3.1. SupposeA is a Φ-restricted, equality-pattern respecting adver-

sary in the RRA-ATK game in Figure 5.3 against the PKE scheme KEM-PKE in

Figure 7.6. Suppose A makes at most qLR LR queries, at most s Enc queries,

215

queries qr randomness indices, and requests oracle outputs for at most qt dis-

tinct functions when using the target public key. Then there exists an equality-

pattern respecting, Φ-restricted KEM adversary B, a KDF adversary C, a PRF

adversary D, and an IND-ATK adversary E such that

Advrra-atk
KEM-PKE,A(λ) ≤ 2qtqr ·Advrra-atk

KEM,B (λ) + 2qtqr ·Advkdf
f,C (λ)

+ 2qtqr ·Advprf
F,D(λ) + qtqr ·Advind-atk

DEM,E (λ).

Adversary B makes one RoR query, uses only one randomness index, and

makes at most s encapsulation queries. Adversary C makes just one oracle

query, adversary D makes at most qLR+s oracle queries, and E makes at most

qLR + s Enc/LR queries.

Proof. We first invoke Lemma 5.2.1, so that we may now consider an adversary

that uses only one randomness index. We prove the theorem via a sequence

of game hops. The changes in each game refer only to queries using the target

public key. For oracle queries that do not use the target public key, the queries

are answered as in the real game.

G0: This is the real game as defined in Figure 5.3.

G1: This is the same as G0, except for encryptions under the target public

key. Whenever the game computes an encryption (ckem, cdem), the game

checks whether (ckem, ·) is in a look-up table. If not, then the game stores

(ckem, kkem) in the look-up table, where kkem was the key output by the

KEM during encryption. Whenever the game receives a decryption query

(ckem, cdem), the game checks whether (ckem, ·) is the look-up table. If so,

the game decrypts with the corresponding kkem. Otherwise, the game

decrypts normally. Notice that this game is syntactically equivalent to

G0. Hence P[GA0 ⇒ 1] = P[GA1 ⇒ 1].

216

G2: The same as G1, except for queries under the target encryption key.

Rather than return real KEM keys the encryption algorithm creates a

uniformly random key for each value φ queried. If an adversary can

distinguish G2 from G1, then we may construct an adversary that wins

the RRA-ATK game for KEMs.

G3: The same as G2, except for decryptions. Rather than use the outputs

of the KDF to decrypt, the game stores the KDF outputs with the

KEM keys (during encryption) in a look-up table, and uses these to

decrypt. This game is syntactically equivalent to G2. Hence, P[GA3 ⇒

1] = P[GA2 ⇒ 1].

G4: The same as G3, except outputs of the KDF are replaced by uniformly

random values. If an adversary can distinguish games G4 and G3, we

may construct an adversary that wins the KDF game.

G5: The same as G4, except outputs of the PRF are replaced with uniformly

random values. If an adversary can distinguish games G5 and G4, we

may construct an adversary that wins the PRF game.

The differences between these games will now be studied in more detail.

G1 –G2: We will prove the following:

Lemma 7.3.1. For any adversary A, there exists a KEM adversary B that

makes one RoR query such that

P[GA0]− P[GA1] ≤ qt ·Advrra-atk
KEM,B (λ).

Proof. We first consider an adversary B that is allowed multiple LR queries.

The adversary B sets up the simulation by choosing b ←$ {0, 1}, setting

Q ← ∅, S ← ∅, and forwarding his own encapsulation key ek∗ to A. Adversary

B then simulates the oracle queries as follows:

217

Enc query (ek,m, φ)

if ek = ek∗

B submits φ to RoR oracle and receives (ckem, kkem)

B computes (kdem, rdem)← f(kkem)

B computes cdem ← DEM.E(kdem,m;Frdem(m))

if (ckem, ·) /∈ Q

B sets Q ← Q∪ (ckem, kkem)

B returns (ckem, cdem) to A

else

B submits (ek, φ) to his Encap oracle and obtains output (ckem, kkem)

B computes (kdem, rdem)← f(kkem)

B computes cdem ← DEM.E(kdem,m;Frdem(m))

B returns (ckem, cdem) to A.

LR query (m0,m1, φ)

B submits φ to its RoR oracle and receives (ckem, kkem)

B computes (kdem, rdem)← f(kkem)

B computes cdem ← DEM.E(kdem,mb;Frdem(mb))

if (ckem, ·) /∈ Q

B sets Q ← Q∪ (ckem, kkem)

S ← S ∪ {(ckem, cdem)}

B returns (ckem, cdem) to A.

Dec query (ckem, cdem)

if (ckem, cdem) ∈ S

return ⊥

if (ckem, ·) ∈ Q

B obtains corresponding kkem

else

B submits ckem to the decapsulation oracle, obtaining kkem

B computes (kdem, rdem)← f(kkem)

218

B returns m← DEM.D(kdem, cdem).

When A halts and outputs bit b′, adversary B halts and outputs 1 if b = b′.

If B’s oracle provides real encryptions then G1 is simulated perfectly. Other-

wise B perfectly simulates G2. Note that adversary B uses qt RoR challenge

queries, but the security can be reduced to a KEM adversary that has only one

RoR query courtesy of Lemma 7.2.2. Hence, we obtain the desired result.

G3 –G4: We will prove the following:

Lemma 7.3.2. For any adversary A there exists a KDF adversary C such that

P[GA3]− P[GA4] ≤ qt ·Advkdf
f,C (λ),

where adversary C makes only one query to its oracle.

Proof. The proof will first make use of a KDF adversary C that is allowed

multiple calls to its KDF oracle. The adversary C chooses a bit b ←$ {0, 1},

a randomness value r ←$ Rnd, sets Q ← ∅, KDFTab ← ∅, and generates a

KEM key pair (ek∗, dk∗) ←$ KEM.K(1λ). Adversary C then runs A, answering

the oracle calls as follows:

Enc query (ek,m, φ)

if ek = ek∗

C computes (ckem, kkem)← KEM.E(ek∗;φ(r))

if KDFTab[φ] =⊥

C invokes its oracle and sets the output (kdem, rdem) = KDFTab[φ]

if (ckem, ·) /∈ Q

C sets Q ← Q∪ (ckem, kdem)

C computes cdem ← DEM.E(kdem,m;Frdem(m))

C returns (ckem, cdem) to A

else

219

C computes (ckem, kkem)← KEM.E(ek;φ(r))

C computes (kdem, rdem)← f(kkem)

C computes cdem ← DEM.E(kdem,m;Frdem(m))

C returns (ckem, cdem) to A.

LR query (m0,m1, φ)

C computes (ckem, kkem)← KEM.E(ek∗;φ(r))

if KDFTab[φ] =⊥

C invokes its oracle and sets the output (kdem, rdem) = KDFTab[φ]

if (ckem, ·) /∈ Q

C sets Q ← Q∪ (ckem, kdem)

C computes cdem ← DEM.E(kdem,mb;Frdem(m))

S ← S ∪ {(ckem, cdem)}

C returns (ckem, cdem) to A.

Dec query (ckem, cdem)

if (ckem, cdem) ∈ S

return ⊥

if (ckem, ·) ∈ Q

C obtains corresponding kdem

else

C computes kkem ← kemdec(dk∗, ckem)

C computes (kdem, rdem)← f(kkem)

C returns m← DEM.D(kdem, cdem).

When A halts and outputs bit b′, adversary C halts and outputs 1 if b =

b′. If C’s oracle provides real KDF outputs then G3 is simulated perfectly.

Otherwise C perfectly simulates G4. The adversary C requires at most qt

oracle queries, but a standard security reduction shows the following relation

to an adversary C ′ that makes one oracle query:

Advkdf
C,f (λ) ≤ qt ·Advkdf

C′,f (λ).

220

The lemma follows easily from this observation.

G4 –G5: We will prove the following:

Lemma 7.3.3. For any adversary A there exists a PRF adversary D such that

P[GA4]− P[GA5] ≤ qt ·Advprf
F,D(λ).

Proof. Let G4/5,j be the game in which, for distinct function i ≤ j (queried

with the target public key), random values are output rather than using the

PRF. For i > j the PRF is used to generated the DEM randomness for

encryption. If an adversary can distinguish games G4/5,j and G4/5,j+1, then we

may use this adversary to win the PRF game. The PRF distinguisher D sets

up the simulation by choosing a bit b←$ {0, 1}, r ←$ Rnd, sets P ← ∅, Q ← ∅

and ctr← 1. Adversary D then generates a KEM key pair (ek∗, dk∗)← KEM.K,

generates DEM keys sk1, . . . , skqt and generates PRF keysKj+1, Kj+2, . . . , Kqt .

Adversary D answers A’s oracle queries as follows:

Enc query (ek,m, φ)

D computes (ckem, kkem)← KEM.E(ek, φ(r))

if ek = ek∗

if (φ, ·) ∈ P

retrieve corresponding i

else

P ← P ∪ {(φ, ctr)} and i← ctr

ctr← ctr + 1

if i < j + 1

D chooses r′ ←$ Rnddem

if i = j + 1

D submits m to its PRF oracle and receives response r′

else if i > j + 1

221

D computes r′ ← FKi(m)

D computes cdem ← DEM.E(ski,m; r′)

if (ckem, ·) /∈ Q

D sets Q ← Q∪ (ckem, i)

D returns (ckem, cdem) to A

else

D computes (kdem, rdem)← f(kkem)

D computes cdem ← DEM.E(kdem,m;Frdem(m))

D returns (ckem, cdem) to A.

LR query (m0,m1, φ)

D computes (ckem, kkem)← KEM.E(ek, φ(r))

if (φ, ·) ∈ P

retrieve corresponding i

else

P ← P ∪ {(φ, ctr)} and i← ctr

ctr← ctr + 1

if i < j + 1

D chooses r′ ←$ Rnddem

if i = j + 1

D submits m to its PRF oracle and receives response r′

else if i > j + 1

D computes r′ ← FKi(m)

if (ckem, ·) /∈ Q

D sets Q ← Q∪ (ckem, i)

D computes cdem ← DEM.E(ski,mb; r
′)

S ← S ∪ {(ckem, cdem)}

D returns (ckem, cdem) to A.

Dec query (ckem, cdem)

if (ckem, cdem) ∈ S

222

return ⊥

if (ckem, ·) ∈ Q

D obtains corresponding i

kdem ← ski

else

C computes kkem ← kemdec(dk∗, ckem)

D computes (kdem, rdem)← f(kkem)

D returns m← DEM.D(kdem, cdem).

When A outputs a bit b′, D outputs 1 if b = b′ and outputs 0 otherwise.

If PRF adversary D is in the real world then G4/5,j is simulated perfectly. If

D is in the random world then he provides a perfect simulation for G4/5,j+1.

Without loss of generality, we assume that hybrid games j and j + 1 have the

largest difference. Hence,

P[GA4]− P[GA5] = P[GA4/5,0]− P[GA4/5,qt]

=

qt−1∑
k=0

P[GA4/5,k+1]− P[GA4/5,k]

≤ qt · (P[GA4/5,j+1]− P[GA4/5,j])

= qt · (P[REALAF (λ)⇒ 1]− P[RANDAF (λ)⇒ 1])

= qt ·Advprf
F,D(λ).

Finally, a hybrid game related to G5 can be simulated by a standard

IND-ATK symmetric encryption adversary. Specifically, we have:

Lemma 7.3.4. For any adversary A there exists an adversary E such that

2 · P[GA5]− 1 ≤ qt ·Advind-atk
DEM,E (λ).

Proof. The adversary E sets up the simulation by choosing r ←$ Rnd, setting

P ← ∅, Q ← ∅ and ctr ← 1. Adversary E then generates a KEM key pair

223

(ek∗, dk∗)←$ KEM.K, and generates DEM keys sk1, . . . , skj−1, skj+1, . . . , skq ←$

DEM.K. Adversary E then answers A’s queries as follows:

Enc query (ek,m, φ)

E computes (ckem, kkem)← KEM.E(ek, φ(r))

if ek = ek∗

if φ ∈ P

retrieve corresponding i

else

P ← P ∪ {(φ, ctr)} and i← ctr

ctr← ctr + 1

if i 6= j

generate r ←$ Rnddem and compute cdem ← DEM.E(ski,m; r)

else

E submits (m,m) to its LR oracle, receives cdem ← DEM.E(skj,m)

if (ckem, ·) /∈ Q

E sets Q ← Q∪ (ckem, i)

E returns (ckem, cdem) to A

else

E computes (kdem, rdem)← f(kkem)

E computes cdem ← DEM.E(kdem,m; rdem)

E returns (ckem, cdem) to A.

LR query (m0,m1, φ)

E computes (ckem, kkem)← KEM.E(ek;φ(r))

if φ ∈ P

retrieve corresponding i

else

P ← P ∪ {(φ, ctr)} and i← ctr

ctr← ctr + 1

224

E generates r ←$ RndDEM

if i < qt − j

E computes cdem ← DEM.E(ski,m0; r)

else if i = qt − j,

E submits (m0,m1) to his LR oracle, receives cdem ← DEM.E(skj,mb)

else

E computes cdem ← DEM.E(ski,m1; r)

S ← S ∪ {(ckem, cdem)}

if (ckem, ·) /∈ Q

E sets Q ← Q∪ (ckem, i)

E returns (ckem, cdem) to A.

Dec query (ckem, cdem)

if (ckem, cdem) ∈ S

return ⊥

if (ckem, ·) ∈ Q

E obtains corresponding i

if i 6= j

return DEM.D(ski, cdem)

else

submit cdem to decryption oracle and forward the answer to A else

E computes kkem ← KEM.D(dk∗, ckem)

E computes (kdem, rdem)← f(kkem)

E returns m← DEM.D(kdem, cdem).

When A halts and outputs bit b, adversary E halts and outputs the same

bit b. If we let G5,j denote the game in which LR queries for key i ≤ qt − j

return an encryption of m0 and LR queries for key i > qt − j return an

225

encryption of m1, then

2 · P[GA5 ⇒ 1]− 1 = P[AG5,qt ⇒ 1]− P[AG5,0 ⇒ 1]

≤ qt · (P[AG5,j+1 ⇒ 1]− P[AG5,j ⇒ 1])

= qt · (P[E ⇒ 1 | b = 1]− P[E ⇒ 1 | b = 0])

= qt ·Advind-atk
DEM,E (λ).

The theorem follows by combining all of the previous inequalities.

7.4 Instantiations

In this section we investigate how the components needed for the construction

of KEM-PKE in Figure 7.6 can be efficiently instantiated.

Recall that in Theorem 6.1.2 of Section 6.1 we used a very similar scheme

that also made use of a KDF, a DEM, and a PRF as building blocks. It should

therefore come as no surprise that Theorem 6.1.2 is a special case of the the-

orem we just proved. Theorem 6.1.2 made no mention of the KEM/DEM

framework, but the theorem implicitly used a KEM that is secure in the

FV-RRA-CPA game (Figure 7.4). The description of the KEM, which we

call DDH-KEM, can be seen in Figure 7.7, and the next theorem establishes its

security in the function-vector model. The proof follows easily by using the

relevant game hops that appear in the proof of Theorem 6.1.2.

Theorem 7.4.1. Let Φ be the set of δ-hard-to-invert vectors of functions on

{0, 1}k. Consider any polynomial-size vector of functions φ ∈ Φ and any

equality-pattern respecting, φ-FV-RRA-CPA adversary A against DDH-KEM in

Figure 7.7. IfA uses only one randomness index, then there exists an adversary

226

Alg. DDH-KEM.K(1λ):

g1, . . . , gk ←$ G
x←$ Zp
ek = (g1, . . . , gk, g

x
1 . . . , g

x
k)

dk = x.

Alg. DDH-KEM.E(ek):

r ←$ {0, 1}k
c =

∏k
i=1 g

ri
i

k =
∏k

i=1(gxi)ri

return (c1, c2) .

Alg. DDH-KEM.D(dk, c):

k ← cx

return c2.

Figure 7.7: The KEM DDH-KEM implicitly used in Theorem 6.1.2.

B such that

Adv
φ-fv-rra-cpa
DDH-KEM,A (λ) ≤ 2 ·Advk-ddh

G,B (λ) + 3
√

512δkp4.

If we combine this previous theorem with Theorem 7.3.1, then the bound

on the advantage of the PKE adversary will be slightly different to the bound

obtained in Theorem 6.1.2. We will explain these discrepancies forthwith.

Firstly, in the first game hop of the proof of Theorem 7.3.1, the keys output

by KEM.E(ek∗;φ(r)) are replaced with uniformly random keys for all φ. It is

in fact only necessary to replace the outputs of the KEM for functions φ that

appear in the LR queries, but since the function φ can appear in both Enc and

LR queries, the proof required us to replace all outputs encrypted with the

target public key. In the FV-RRA-ATK, the restrictions mean that only the

identity function can be queried with the LR oracle, and it may not appear

in an Enc query. Hence, for the function-vector game we always have qt = 1.

Secondly, the proof of Theorem 6.1.2 modifies the public key and the later

game hops use the modified version of the public key. When combining the

proofs of Theorems 7.3.1 and 7.4.1, the KEM key is modified in order to then

replace the KEM key with a random value, but then the KEM key is switched

back to its original form before proceeding with the other game hops. Hence,

the general theorem (Theorem 7.3.1) requires twice as many DDH game hops,

resulting in a looser bound.

In addition to achieving RRA-KEM security via the method above, there

227

are also many alternatives that would allow us to construct secure RRA-KEM

schemes. In the previous chapters we have considered how PKE schemes may

be modified by RKA-PRFs, CIS hash functions and auxiliary-input reconstruc-

tive extractors. Each of these primitives can also be applied to KEM schemes

in order to achieve security against related randomness attacks, though not

necessarily the strongest type. For example, public-keys may need to be re-

stricted, or functions may only be selectively chosen. Since these techniques

are very similar to what we have seen in previous chapters, and also because

they will not provide us with PKE schemes that are secure against alternative

classes of functions, we will not discuss these variations further.

7.5 Conclusions

In this chapter we have generalised the approach used in constructing the

modified BHHO scheme (Section 6.1.1, Figure 6.2) by showing how to use

the KEM/DEM paradigm in order to achieve related randomness security

for PKE schemes. This main result of this chapter (Theorem 7.3.1) provides

alternatives to the transforms that appeared in Chapters 5 and 6, and the

result of Lemma 7.2.2 gives some indication that achieving related randomness

security via this route may be easier than using the corresponding results from

the previous two chapters. However, whilst it may be easier to prove results

in this setting, the security bounds are likely to be somewhat looser, as can

be seen by comparing Theorem 5.4.1 and Theorem 7.3.1.

228

Chapter 8

Conclusions

In this thesis we have analysed public-key encryption schemes in extended

attack models. These extended attack models can be categorised into two

distinct types, with each type corresponding to a distinct part of the thesis.

In the first part of this thesis we studied cold boot attacks, which are practical

attacks that are not covered by standard security games, such as the indis-

tinguishability notion. Observing matters from the attacker’s perspective, we

showed how to recover private keys from a cold boot attack. In particular,

our attacks targeted RSA private keys, and elliptic curve implementations in

OpenSSL and PolarSSL. We provided two algorithms for recovering private

keys. The first was a maximum-likelihood based approach, which was very suc-

cessful in practice, but lacked a rigorous theoretical analysis of its success rate.

The alternative algorithm used the multinomial test as a way of filtering po-

tential solutions. This algorithm has a simple theoretical analysis of its success

rate, but we were unable to provide an analysis of the running-time. An area

for further research would be to bound the success of the maximum-likelihood

approach, or to bound the running-time of the multinomial algorithm. Ad-

ditionally, it would be interesting to explore whether there are any practical

counter-measures to prevent such attacks. None so far has appeared in the

229

literature as far as we are aware.

In the second part of this thesis, when considering extended attack models,

we studied how to protect against these types of attacks rather than how to

exploit them. The specific attack under review was the related randomness

attack, which was introduced in this thesis. In this type of attack, an ad-

versary is allowed to see encryptions under related randomness values, rather

than having uniform randomness for every encryption. This type of attack is

designed to simulate events such as failures of random number generators. We

formalised several variants of this model, which restricted adversaries in cer-

tain ways. For example, in our weaker variants we restricted either the public

keys or the functions that could be used in an adversary’s oracle queries. For

each variant of the security game, we were able to provide a generic trans-

form that converts a standard, secure PKE scheme (in the indistinguishability

sense) into a PKE scheme that is secure with respect to our related randomness

notion. In the final chapter we extended these notions to Key Encapsulation

Mechanisms, and developed connections with the previous chapters. Open

problems include the design of stronger RKA-PRFs, CIS hash functions, and

auxiliary-input reconstructive extractors. As we have seen, each of these prim-

itives can be combined with standard PKE schemes in order to protect against

certain types of related randomness attack. Therefore, further advances with

regards to each of these primitives will immediately yield stronger results in

the related randomness attack setting. Furthermore, it may be interesting to

increase the power of an adversary by allowing him to tamper with private

keys as well as the randomness. As previously discussed, there is already some

work beginning to emerge in this direction.

230

Bibliography

[1] Michel Abdalla, Fabrice Benhamouda, Alain Passelègue, and Kenneth G.

Paterson, Related-key security for pseudorandom functions beyond the

linear barrier, Advances in Cryptology - CRYPTO 2014 - 34th Annual

Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,

Proceedings, Part I (Juan A. Garay and Rosario Gennaro, eds.), Lecture

Notes in Computer Science, vol. 8616, Springer, 2014, pp. 77–94.

[2] Martin R. Albrecht and Carlos Cid, Cold boot key recovery by solving

polynomial systems with noise, ACNS (Javier Lopez and Gene Tsudik,

eds.), Lecture Notes in Computer Science, vol. 6715, 2011, pp. 57–72.

[3] Andrew Becherer, Alex Stamos, and Nathan Wilcox, Cloud computing

security: Raining on the trendy new parade, BlackHat USA (2009).

[4] Mihir Bellare, Zvika Brakerski, Moni Naor, Thomas Ristenpart, Gil

Segev, Hovav Shacham, and Scott Yilek, Hedged public-key encryption:

How to protect against bad randomness, ASIACRYPT (Mitsuru Mat-

sui, ed.), Lecture Notes in Computer Science, vol. 5912, Springer, 2009,

pp. 232–249.

[5] Mihir Bellare and David Cash, Pseudorandom functions and permutations

provably secure against related-key attacks, in Rabin [67], pp. 666–684.

[6] Mihir Bellare, David Cash, and Rachel Miller, Cryptography secure

against related-key attacks and tampering, ASIACRYPT (Dong Hoon Lee

and Xiaoyun Wang, eds.), Lecture Notes in Computer Science, vol. 7073,

Springer, 2011, pp. 486–503.

231

[7] Mihir Bellare and Tadayoshi Kohno, A theoretical treatment of related-

key attacks: RKA-PRPs, RKA-PRFs, and applications, EUROCRYPT

(Eli Biham, ed.), Lecture Notes in Computer Science, vol. 2656, Springer,

2003, pp. 491–506.

[8] Mihir Bellare, Kenneth G. Paterson, and Susan Thomson, RKA security

beyond the linear barrier: IBE, encryption and signatures, in Wang and

Sako [78], pp. 331–348.

[9] Mihir Bellare and Phillip Rogaway, Random oracles are practical: A

paradigm for designing efficient protocols, CCS ’93, Proceedings of the

1st ACM Conference on Computer and Communications Security, Fair-

fax, Virginia, USA, November 3-5, 1993. (Dorothy E. Denning, Raymond

Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, eds.), ACM,

1993, pp. 62–73.

[10] , Optimal asymmetric encryption, EUROCRYPT (Alfredo De San-

tis, ed.), Lecture Notes in Computer Science, vol. 950, Springer, 1994,

pp. 92–111.

[11] , The security of triple encryption and a framework for code-based

game-playing proofs, in Vaudenay [77], pp. 409–426.

[12] Mike Bendel, Hackers describe PS3 security as epic fail, gain unrestricted

access, 2011, http://www.exophase.com/20540/hackers-describe-

ps3-security-as-epic-fail-gain-unrestricted-access/.

[13] Daniel J. Bernstein, Yun-An Chang, Chen-Mou Cheng, Li-Ping Chou,

Nadia Heninger, Tanja Lange, and Nicko van Someren, Factoring RSA

keys from certified smart cards: Coppersmith in the wild, Cryptology

ePrint Archive, Report 2013/599, 2013, http://eprint.iacr.org/.

232

[14] Eli Biham, New types of cryptoanalytic attacks using related keys (ex-

tended abstract), Advances in Cryptology - EUROCRYPT ’93, Workshop

on the Theory and Application of of Cryptographic Techniques, Lofthus,

Norway, May 23-27, 1993, Proceedings (Tor Helleseth, ed.), Lecture Notes

in Computer Science, vol. 765, Springer, 1993, pp. 398–409.

[15] Bitcoin.org, Android security vulnerability, 2013, http://bitcoin.org/

en/alert/2013-08-11-android.

[16] Dan Boneh, Twenty years of attacks on the RSA cryptosystem, NOTICES

OF THE AMS 46 (1999), 203–213.

[17] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky,

Circular-secure encryption from decision Diffie-Hellman, CRYPTO

(David Wagner, ed.), Lecture Notes in Computer Science, vol. 5157,

Springer, 2008, pp. 108–125.

[18] Joppe W. Bos, Craig Costello, Patrick Longa, and Michael Naehrig, Se-

lecting elliptic curves for cryptography: An efficiency and security analy-

sis, Cryptology ePrint Archive, Report 2014/130, 2014, http://eprint.

iacr.org/2014/130.

[19] David Brumley and Dan Boneh, Remote timing attacks are practical,

Computer Networks 48 (2005), no. 5, 701–716.

[20] Don Coppersmith, Small solutions to polynomial equations, and low ex-

ponent RSA vulnerabilities, J. Cryptology 10 (1997), no. 4, 233–260.

[21] Ronald Cramer and Victor Shoup, Design and analysis of practical public-

key encryption schemes secure against adaptive chosen ciphertext attack,

SIAM J. Comput. 33 (2003), no. 1, 167–226.

233

[22] Debian, Debian Security Advisory DSA-1571-1: OpenSSL – predictable

random number generator, 2008, http://www.debian.org/security/

2008/dsa-1571.

[23] Yevgeniy Dodis, Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and

Vinod Vaikuntanathan, Public-key encryption schemes with auxiliary in-

puts, TCC (Daniele Micciancio, ed.), Lecture Notes in Computer Science,

vol. 5978, Springer, 2010, pp. 361–381.

[24] Yevgeniy Dodis, Shien Jin Ong, Manoj Prabhakaran, and Amit Sahai,

On the (im)possibility of cryptography with imperfect randomness, FOCS,

IEEE Computer Society, 2004, pp. 196–205.

[25] Yevgeniy Dodis, David Pointcheval, Sylvain Ruhault, Damien Vergnaud,

and Daniel Wichs, Security analysis of pseudo-random number generators

with input: /dev/random is not robust, IACR Cryptology ePrint Archive

2013 (2013), 338.

[26] Leo Dorrendorf, Zvi Gutterman, and Benny Pinkas, Cryptanalysis of the

random number generator of the Windows operating system, ACM Trans.

Inf. Syst. Secur. 13 (2009), no. 1.

[27] Peter Elias, List decoding for noisy channels, Technical Report 335, Re-

search Laboratory of Electronics, MIT, 1957.

[28] , Error-correcting codes for list decoding, IEEE Transactions on

Information Theory 37 (1991), no. 1, 5–12.

[29] Eiichiro Fujisaki and Tatsuaki Okamoto, Secure integration of asymmetric

and symmetric encryption schemes, CRYPTO (Michael J. Wiener, ed.),

Lecture Notes in Computer Science, vol. 1666, Springer, 1999, pp. 537–

554.

234

[30] Taher El Gamal, A public key cryptosystem and a signature scheme based

on discrete logarithms, IEEE Transactions on Information Theory 31

(1985), no. 4, 469–472.

[31] Ian Goldberg and David Wagner, Randomness and the Netscape browser,

1996, http://www.drdobbs.com/windows/184409807.

[32] Vipul Goyal, Adam O’Neill, and Vanishree Rao, Correlated-input secure

hash functions, TCC (Yuval Ishai, ed.), Lecture Notes in Computer Sci-

ence, vol. 6597, Springer, 2011, pp. 182–200.

[33] Venkatesan Guruswami, Algorithmic results in list decoding, Foundations

and Trends in Theoretical Computer Science 2 (2006), no. 2.

[34] Zvi Gutterman and Dahlia Malkhi, Hold your sessions: An attack on java

session-id generation, CT-RSA (Alfred Menezes, ed.), Lecture Notes in

Computer Science, vol. 3376, Springer, 2005, pp. 44–57.

[35] Zvi Gutterman, Benny Pinkas, and Tzachy Reinman, Analysis of the linux

random number generator, IEEE Symposium on Security and Privacy,

IEEE Computer Society, 2006, pp. 371–385.

[36] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,

William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appel-

baum, and Edward W. Felten, Lest we remember: Cold boot attacks on

encryption keys, USENIX Security Symposium (Paul C. van Oorschot,

ed.), USENIX Association, 2008, pp. 45–60.

[37] , Lest we remember: cold-boot attacks on encryption keys, Com-

mun. ACM 52 (2009), no. 5, 91–98.

[38] Darrel Hankerson, Alfred Menezes, and Scott Vanstone, Guide to Elliptic

Curve Cryptography, Springer, 2004.

235

[39] Mustapha Hedabou, Pierre Pinel, and Lucien Bénéteau, A comb method

to render ECC resistant against side channel attacks, Cryptology ePrint

Archive, Report 2004/342, 2004, http://eprint.iacr.org/2004/342.

[40] Mustapha Hedabou, Pierre Pinel, and Lucien Bénéteau, Countermeasures

for preventing comb method against SCA attacks, Information Security

Practice and Experience, First International Conference, ISPEC 2005,

Singapore, April 11-14, 2005, Proceedings (Robert H. Deng, Feng Bao,

HweeHwa Pang, and Jianying Zhou, eds.), LNCS, vol. 3439, Springer,

2005, pp. 85–96.

[41] Rafi Heiman, A note on discrete logarithms with special structure, Ad-

vances in Cryptology - EUROCRYPT ’92, Workshop on the Theory and

Application of of Cryptographic Techniques, Balatonfüred, Hungary, May

24-28, 1992, Proceedings (Rainer A. Rueppel, ed.), Lecture Notes in Com-

puter Science, vol. 658, Springer, 1992, pp. 454–457.

[42] Wilko Henecka, Alexander May, and Alexander Meurer, Correcting errors

in RSA private keys, in Rabin [67], pp. 351–369.

[43] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman,

Mining your Ps and Qs: Detection of widespread weak keys in network

devices, Proceedings of the 21st USENIX Security Symposium, August

2012.

[44] Nadia Heninger and Hovav Shacham, Reconstructing RSA private keys

from random key bits, CRYPTO (Shai Halevi, ed.), Lecture Notes in

Computer Science, vol. 5677, Springer, 2009, pp. 1–17.

[45] Mathias Herrmann and Alexander May, Solving linear equations modulo

divisors: On factoring given any bits, Advances in Cryptology - ASI-

ACRYPT 2008, 14th International Conference on the Theory and Ap-

plication of Cryptology and Information Security, Melbourne, Australia,

236

December 7-11, 2008. Proceedings (Josef Pieprzyk, ed.), Lecture Notes in

Computer Science, vol. 5350, Springer, 2008, pp. 406–424.

[46] Jakob Jonsson and Burton S. Kaliski, Public-Key Cryptography Standards

(PKCS) #1: RSA Cryptography Specifications Version 2.1 (RFC 3447),

2003, https://www.ietf.org/rfc/rfc3447.txt.

[47] Abdel Alim Kamal and Amr M. Youssef, Applications of SAT solvers to

AES key recovery from decayed key schedule images, IACR Cryptology

ePrint Archive 2010 (2010), 324.

[48] Seny Kamara and Jonathan Katz, How to encrypt with a malicious ran-

dom number generator, FSE (Kaisa Nyberg, ed.), Lecture Notes in Com-

puter Science, vol. 5086, Springer, 2008, pp. 303–315.

[49] Lars R. Knudsen, Cryptanalysis of LOKI91, Advances in Cryptology -

AUSCRYPT ’92, Workshop on the Theory and Application of Crypto-

graphic Techniques, Gold Coast, Queensland, Australia, December 13-16,

1992, Proceedings (Jennifer Seberry and Yuliang Zheng, eds.), Lecture

Notes in Computer Science, vol. 718, Springer, 1992, pp. 196–208.

[50] Paul C. Kocher, Timing attacks on implementations of Diffie-Hellman,

RSA, DSS, and other systems, Advances in Cryptology - CRYPTO ’96,

16th Annual International Cryptology Conference, Santa Barbara, Cali-

fornia, USA, August 18-22, 1996, Proceedings (Neal Koblitz, ed.), Lecture

Notes in Computer Science, vol. 1109, Springer, 1996, pp. 104–113.

[51] Noboru Kunihiro and Junya Honda, RSA meets DPA: recovering RSA

secret keys from noisy analog data, Cryptographic Hardware and Embed-

ded Systems - CHES 2014 - 16th International Workshop, Busan, South

Korea, September 23-26, 2014. Proceedings (Lejla Batina and Matthew

Robshaw, eds.), Lecture Notes in Computer Science, vol. 8731, Springer,

2014, pp. 261–278.

237

[52] Noboru Kunihiro, Naoyuki Shinohara, and Tetsuya Izu, Recovering RSA

secret keys from noisy key bits with erasures and errors, Public Key Cryp-

tography (Kaoru Kurosawa and Goichiro Hanaoka, eds.), Lecture Notes

in Computer Science, vol. 7778, Springer, 2013, pp. 180–197.

[53] Kaoru Kurosawa and Yvo Desmedt, A new paradigm of hybrid encryption

scheme, Advances in Cryptology - CRYPTO 2004, 24th Annual Interna-

tional CryptologyConference, Santa Barbara, California, USA, August

15-19, 2004, Proceedings (Matthew K. Franklin, ed.), Lecture Notes in

Computer Science, vol. 3152, Springer, 2004, pp. 426–442.

[54] D. N. Lawley, A general method for approximating to the distribution

of likelihood ratio criteria, Biometrika 43 (1956), no. 3/4, pp. 295–303

(English).

[55] Hyung Tae Lee, HongTae Kim, Yoo-Jin Baek, and Jung Hee Cheon, Cor-

recting errors in private keys obtained from cold boot attacks, Information

Security and Cryptology - ICISC 2011 - 14th International Conference,

Seoul, Korea, November 30 - December 2, 2011. Revised Selected Pa-

pers (Howon Kim, ed.), Lecture Notes in Computer Science, vol. 7259,

Springer, 2011, pp. 74–87.

[56] Arjen K. Lenstra, James P. Hughes, Maxime Augier, Joppe W. Bos,

Thorsten Kleinjung, and Christophe Wachter, Public keys, CRYPTO

(Reihaneh Safavi-Naini and Ran Canetti, eds.), Lecture Notes in Com-

puter Science, vol. 7417, Springer, 2012, pp. 626–642.

[57] Chae Hoon Lim and Pil Joong Lee, More flexible exponentiation with

precomputation, Advances in Cryptology - CRYPTO ’94, 14th Annual

International Cryptology Conference, Santa Barbara, California, USA,

August 21-25, 1994, Proceedings (Yvo Desmedt, ed.), Lecture Notes in

Computer Science, vol. 839, Springer, 1994, pp. 95–107.

238

[58] Stefan Lucks, Ciphers secure against related-key attacks, in Roy and Meier

[71], pp. 359–370.

[59] Alexander May, Using lll-reduction for solving RSA and factorization

problems, The LLL Algorithm - Survey and Applications (Phong Q.

Nguyen and Brigitte Vallée, eds.), Information Security and Cryptog-

raphy, Springer, 2010, pp. 315–348.

[60] Kai Michaelis, Christopher Meyer, and Jörg Schwenk, Randomly failed!

the state of randomness in current java implementations, CT-RSA

(Ed Dawson, ed.), Lecture Notes in Computer Science, vol. 7779,

Springer, 2013, pp. 129–144.

[61] Bodo Möller, Improved techniques for fast exponentiation, Information

Security and Cryptology - ICISC 2002, 5th International Conference

Seoul, Korea, November 28-29, 2002, Revised Papers (Pil Joong Lee and

Chae Hoon Lim, eds.), Lecture Notes in Computer Science, vol. 2587,

Springer, 2002, pp. 298–312.

[62] David M’Räıhi, David Naccache, David Pointcheval, and Serge Vaudenay,

Computational alternatives to random number generators, Selected Areas

in Cryptography ’98, SAC’98, Kingston, Ontario, Canada, August 17-18,

1998, Proceedings (Stafford E. Tavares and Henk Meijer, eds.), Lecture

Notes in Computer Science, vol. 1556, Springer, 1998, pp. 72–80.

[63] Moni Naor and Omer Reingold, Number-theoretic constructions of effi-

cient pseudo-random functions, J. ACM 51 (2004), no. 2, 231–262.

[64] Kenneth G. Paterson, Antigoni Polychroniadou, and Dale L. Sibborn,

A coding-theoretic approach to recovering noisy RSA keys, in Wang and

Sako [78], pp. 386–403.

239

[65] Kenneth G. Paterson, Jacob C. N. Schuldt, and Dale L. Sibborn, Related

randomness attacks for public key encryption, IACR Cryptology ePrint

Archive 2014 (2014), 337.

[66] T. Pornin, Deterministic usage of the Digital Signature Algorithm (DSA)

and Elliptic Curve Digital Signature Algorithm (ECDSA), Internet Re-

quests for Comments, August 2013, http://www.rfc-editor.org/rfc/

rfc6979.txt.

[67] Tal Rabin (ed.), Advances in Cryptology - CRYPTO 2010, 30th Annual

Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010.

Proceedings, Lecture Notes in Computer Science, vol. 6223, Springer,

2010.

[68] Thomas Ristenpart and Scott Yilek, When good randomness goes bad:

Virtual machine reset vulnerabilities and hedging deployed cryptography,

NDSS, The Internet Society, 2010.

[69] Phillip Rogaway, Nonce-based symmetric encryption, in Roy and Meier

[71], pp. 348–359.

[70] Phillip Rogaway and Thomas Shrimpton, A provable-security treatment

of the key-wrap problem, in Vaudenay [77], pp. 373–390.

[71] Bimal K. Roy and Willi Meier (eds.), Fast Software Encryption, 11th

International Workshop, FSE 2004, Delhi, India, February 5-7, 2004,

Revised papers, Lecture Notes in Computer Science, vol. 3017, Springer,

2004.

[72] Santanu Sarkar, Sourav Sen Gupta, and Subhamoy Maitra, Reconstruc-

tion and error correction of RSA secret parameters from the MSB side,

WCC 2011 - Workshop on coding and cryptography (Paris, France), April

2011, pp. 7–16.

240

[73] Santanu Sarkar and Subhamoy Maitra, Side channel attack to actual

cryptanalysis: Breaking CRT-RSA with low weight decryption exponents,

Cryptographic Hardware and Embedded Systems - CHES 2012 - 14th

International Workshop, Leuven, Belgium, September 9-12, 2012. Pro-

ceedings (Emmanuel Prouff and Patrick Schaumont, eds.), Lecture Notes

in Computer Science, vol. 7428, Springer, 2012, pp. 476–493.

[74] Claude E. Shannon, A mathematical theory of communication, Bell Sys-

tem Technical Journal 27 (1948), 379–423 and 623–656.

[75] Paul J. Smith, Donald S. Rae, Ronald W. Manderscheid, and Sam Sil-

bergeld, Approximating the moments and distribution of the likelihood

ratio statistic for multinomial goodness of fit, Journal of the American

Statistical Association 76 (1981), no. 375, pp. 737–740 (English).

[76] Alex Tsow, An improved recovery algorithm for decayed AES key sched-

ule images, Selected Areas in Cryptography, 16th Annual International

Workshop, SAC 2009, Calgary, Alberta, Canada, August 13-14, 2009,

Revised Selected Papers (Michael J. Jacobson Jr., Vincent Rijmen, and

Reihaneh Safavi-Naini, eds.), Lecture Notes in Computer Science, vol.

5867, Springer, 2009, pp. 215–230.

[77] Serge Vaudenay (ed.), Advances in Cryptology - EUROCRYPT 2006, 25th

Annual International Conference on the Theory and Applications of Cryp-

tographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Pro-

ceedings, Lecture Notes in Computer Science, vol. 4004, Springer, 2006.

[78] Xiaoyun Wang and Kazue Sako (eds.), Advances in Cryptology - ASI-

ACRYPT 2012 - 18th International Conference on the Theory and Appli-

cation of Cryptology and Information Security, Beijing, China, December

2-6, 2012. Proceedings, Lecture Notes in Computer Science, vol. 7658,

Springer, 2012.

241

[79] Hoeteck Wee, Public key encryption against related key attacks, Public

Key Cryptography (Marc Fischlin, Johannes Buchmann, and Mark Man-

ulis, eds.), Lecture Notes in Computer Science, vol. 7293, Springer, 2012,

pp. 262–279.

[80] D. A. Williams, Improved likelihood ratio tests for complete contingency

tables, Biometrika 63 (1976), no. 1, pp. 33–37 (English).

[81] Scott Yilek, Resettable public-key encryption: How to encrypt on a vir-

tual machine, CT-RSA (Josef Pieprzyk, ed.), Lecture Notes in Computer

Science, vol. 5985, Springer, 2010, pp. 41–56.

[82] Scott Yilek, Eric Rescorla, Hovav Shacham, Brandon Enright, and Ste-

fan Savage, When private keys are public: results from the 2008 Debian

OpenSSL vulnerability, Internet Measurement Conference (Anja Feld-

mann and Laurent Mathy, eds.), ACM, 2009, pp. 15–27.

[83] Tsz Hon Yuen, Cong Zhang, Sherman S.M. Chow, and Siu Ming Yiu, Re-

lated randomness attacks for public key cryptosystems, Proceedings of the

10th ACM Symposium on Information, Computer and Communications

Security (New York, NY, USA), ASIA CCS ’15, ACM, 2015, pp. 215–223.

242

