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Abstract

Just infinite profinite groups have proved to be a very fascinating family of

groups and a rich source of interesting examples in Group Theory. For a long

time after the classification of finite simple groups, just infinite groups where

considered the next classifiable family of groups. This proved to be much

harder than expected and one of the many obstacles to this classification was

the existence of hereditarily just infinite groups.

This thesis is concerned with the study of a generalisation of a new family

of hereditarily just infinite profinite groups which are not virtually pro-p in-

troduced by John Wilson in 2010, the generalised Wilson groups, GW groups

for short. Even though these examples are important, only few properties are

known. We start this work with a short overview of the known properties

of generalised Wilson groups. Then, generalising a result of Bondarenko, we

show that GW groups are finitely generated and we manage to produce ex-

plicit generators for GW groups. We then consider other generation-related

profinite properties such as lower rank and finite presentability. We show that

some generalised Wilson groups are new examples of profinite groups with

finite lower rank. Moreover, we show that the direct product of certain hered-

itarily just infinite groups of finite lower rank still has finite lower rank. On

the other hand we show that “most” GW groups are not finitely presentable.

In later chapters we look more closely at the subgroup structure of generalised

Wilson groups. In particular we prove an embedding theorem for finitely gen-

erated profinite groups with specified composition factors in GW groups with

the same set of composition factors. We study subgroup growth functions

for some GW groups. Then, we prove that these groups are new examples

of profinite groups with complete Hausdorff dimension spectrum. Finally, we

analyze which GW groups are self-similar.
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Chapter 1

Preliminaries and Notation

We begin with some basic definitions and properties of abstract and profinite

groups. Most of the content of this chapter is well-known and in many cases

we will include references to the location of the proofs. On the other hand,

we included the proof of a few elementary lemmas to help the reader become

familiar with some of the notions.

Throughout this thesis we will write N = {1, 2, 3, . . .} for the set of positive

integers and n = {1, . . . , n} for n ∈ N. The identity element of a group will

be denoted by e.

The symmetric group acting on the right on a set X will be denoted by

Sym(X), i.e. for every function σ ∈ Sym(X) and every point x ∈ X we set

σ · x = σ−1(x). This is because, even though we will write functions on the

left, all the actions considered in this thesis will be right actions. We will use

the convention Sym(n) = Sym(n) for n ∈ N.

1.1 Group actions

Definition 1.1.1. Let G be a group and let X be a set. A (right) action of

G on X is a function f : X ×G→ X such that

1. f(f(x, g), h) = f(x, gh) for every x ∈ X and g, h ∈ G;

2. f(x, e) = x for every x ∈ X.
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As it is customary to do, when there is no room for confusion we will drop

the symbol f and we will write the image of the element (x, g) via f as xg. In

our new notation the previous two properties become

1. (xg)h = xgh for every x ∈ X and g, h ∈ G;

2. xe = x for every x ∈ X.

An action f of the group G on the set X induces a homomorphism ϕf from

G to Sym(X) defined by ϕf (g)(x) = xg. It is standard to verify that this is

indeed a homomorphism and, vice versa, any homomorphism ψ : G→ Sym(X)

from a group G to the symmetric group on a set X induces an action fψ of G

on X by setting fψ(x, g) = ψ(g) · x for x ∈ X and g ∈ G.

Definition 1.1.2. An action f of the group G on the set X is said to be

faithful if the kernel of the associated homomorphism ϕf is trivial.

Equivalently, an action of the group G on the non-empty set X is faithful if

and only if for every non-identity element g ∈ G there exists x ∈ X such that

xg 6= x. In general, we can define more than one action of isomorphic abstract

groups. For instance, consider the actions f1 and f2 of the group Alt(5) on

the sets 5 and Alt(5) respectively defined by

f1 : 5× Alt(5) → 5
(i, σ) 7→ σ−1(i)

and
f2 : Alt(5)× Alt(5) → Alt(5)

(x, g) 7→ x · g ,

the action f1 is called the natural action of Alt(5) and f2 is called the (right)

regular action of Alt(5). The action f1 moves 5 points, while the action f2

moves 60 points. The next definition is a way of telling when different actions

“are the same”.

Definition 1.1.3. Let f1 : X × G → X and f2 : Y ×H → Y be two actions

of the groups G and H on the sets X and Y respectively. We say that f1 and

f2 are equivalent if there exist an isomorphism ϕ : G → H and a bijection
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λ : X → Y such that

λ(f1(x, g)) = f2(λ(x), ϕ(g))

for every x ∈ X and every g ∈ G.

In particular, if f1 : X × G → X and f2 : Y ×H → Y are equivalent we

have |X| = |Y |. Therefore the natural action and the regular action of Alt(5)

are not equivalent.

Up to equivalence of group actions we can always suppose, without loss of

generality, that an action of the group G on the set X of size n is an action of

G on the set n. This identification will be carried out in all this thesis without

special mention.

Definition 1.1.4. A permutation group G is a subgroup of the symmetric

group Sym(n) acting on the right on n elements.

In this thesis we will work only with permutation groups that are not the

trivial subgroup of the symmetric group, so when we will write “permutation

group” we will intend “non-trivial permutation group”.

Specifying a permutation group is equivalent to give a couple (G, f) where

f is a faithful action of the finite group G. We will say that two permutation

groups are equivalent if the associated actions are.

Definition 1.1.5. Let G ≤ Sym(n) be a permutation group. The stabiliser

of x ∈ n is the subgroup of G defined by

StG(x) = {g ∈ G|xg = x}.

The orbit of x ∈ n is the subset of n defined by

xG = {xg | g ∈ G}.

The permutation group G ≤ Sym(n) is said to be:
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• transitive if for every x, y ∈ n there exists g ∈ G such that xg = y;

• imprimitive if there exists a non-trivial partition B of n that is pre-

served by the action of G. In this case, the elements of B are called

blocks for the action of G;

• primitive if G is transitive and it is not imprimitive;

• regular if G is transitive and the stabiliser of every point in n is trivial.

Since a permutation group has both a group structure and an action

built in, we can consider permutation groups with both group-theoretical and

action-theoretical properties. When this is the case, we write first all the

group-theoretical properties and then all the action-theoretical ones. For ex-

ample, when we will write d-generated perfect transitive permutation group we

intend a transitive permutation group that is perfect and d-generated as an

abstract group.

1.2 Wreath products and their actions

The main current of research in Group Theory of the last century was the study

of the “building blocks” of finite groups, namely the finite simple groups. After

the completion of the Classification of Finite Simple Groups, the main open

problem in this current is the classification of the possible ways of building a

finite group out of these fundamental components, in other words the study

of group extensions.

Definition 1.2.1. Let A, B and G be finite groups. We say that G is an

extension of A by B if there exists a normal subgroup N of G such that

N ∼= A and G/N ∼= B.

No classification of all the extensions of an arbitrary group is known. Some

particular extensions can be classified via homological methods, but these will
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not be mentioned in this work. Here we are going to define an easy construction

which gives an “universal extension” in a sense that we are going to specify

below.

Let A be a finite group and let B ≤ Sym(n) be a permutation group. We

can define an action of B on An by: for (a1, . . . , an) ∈ An and b ∈ B

(a1, . . . , an)b
−1

= (a1b , . . . , anb). (1.2.1)

Thus, the previous action defines an homomorphism B → Aut(An).

Definition 1.2.2. Let A be a group and let B ≤ Sym(n) be a permutation

group. The abstract wreath product of A and B is the finite group AwrB =

AnoB with the semidirect product obtained from the homomorphism induced

by the action (1.2.1). The subgroup An ≤ AwrB is called the base group of

AwrB. The projection of the semidirect product π : AwrB → B is called the

standard projection of AwrB.

We report the following classical theorem about wreath products.

Theorem 1.2.3. ([7, Theorem 2.6A], Universal Embedding Theorem) Let G

be a finite group and N CG. Set K = G/N and consider K as a permutation

group K ≤ Sym(|K|) with the action on itself by right multiplication. Then

there is an embedding φ : G → NwrK such that φ maps N onto Imφ ∩ N |K|

where N |K| is the base group of NwrK.

By the previous theorem, NwrK contains an isomorphic copy of every

extension of N by K. In this sense the wreath product of N by K is an

“universal extension” of N by K.

Lemma 1.2.4. Let A be a finite non-abelian simple group and let n be a

natural number. Suppose that N is a normal subgroup of An. For i ∈ n, let

πi be the projection from An to the i-th coordinate. Then

N = π1(N)× . . .× πn(N)
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where either πi(N) is either trivial or the whole of A. In particular, N is

isomorphic to Aj for some j = 0, 1, . . . , n.

Proof. It is clear that N is contained in the product of its projections. Now,

fix i ∈ n. For every a ∈ A and for every (k1, . . . , kn) ∈ N we have that

[(k1, . . . , kn), (e, . . . , e, a, e, . . . , e)] = (e, . . . , e, [ki, a], e, . . . , e) ∈ N

where a and [ki, a] are in the i-th position of the above n-tuples. Therefore

the subgroup [π1(N), A]× . . .× [πn(N), A] is contained in N . Now, for every

i ∈ n the subgroup [πi(N), A] is normal in the non-abelian simple group A.

Therefore either [πi(N), A] = A or [πi(N), A] = {e}. In the former case we

deduce that πi(N) = A. Since A is non-abelian, in the latter case we have

that πi(N) = {e}. We have the other inclusion and the result follows.

The following lemma is straightforward and will be used many times in the

next chapters.

Lemma 1.2.5. Let A be a finite non-abelian simple group and let B ≤ Sym(n)

be a permutation group. Then An is a minimal normal subgroup of AwrB if

and only if A is simple and B is transitive. Moreover, in such case An is the

unique minimal normal subgroup of AwrB.

Proof. Suppose that A is simple and B is transitive and let N be a normal

subgroup of AwrB contained in An. For i ∈ n, let πi be the projection from

An to the i-th coordinate.

By Lemma 1.2.4, N is the direct product of the groups πi(N) for i ∈ n.

On the other hand, by the transitivity of B and the normality of N , we see

that the projections πi(N) of N must be pair-wise isomorphic. It follows that

either N = An or N is trivial. Thus An is minimal normal.

For the converse, suppose that An is a minimal normal subgroup of AwrB.

First suppose by contradiction that A is not simple; then there exists a non-

trivial proper normal subgroup N of A. But this produces a non-trivial proper
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normal subgroup Nn of AwrB contained in An, a contradiction. Now suppose

that B is not transitive and pick one element x ∈ n. Consider the orbit xB of

x, hence the subgroup N = {(a1, . . . , an) ∈ An | aj = e for j /∈ xB} is normal

in AwrB and properly contained in An, again a contradiction.

Suppose that An is minimal normal in AwrB and let N be another minimal

normal subgroup of AwrB. Since N and An are both minimal normal, we must

have that N ∩ An = {e}. Pick (c1, . . . , cn)d ∈ N . Then, for all (a1, . . . , an) in

An,

h = ((c1, . . . , cn)d)(a1,...,an) = (ca11 , . . . , c
an
n )(a1, . . . , an)−1(a1, . . . , an)d

−1

d ∈ N

and (c1, . . . , cn)dh−1 ∈ N ∩ An = {e}. Therefore ((c1, . . . , cn)d)(a1,...,an) =

(c1, . . . , cn)d for every (a1, . . . , an) ∈ An and, by the simplicity of the group A,

(c1, . . . , cn) = (e, . . . , e) and N is contained in B. Suppose now that d ∈ N

and pick (a1, . . . , an) ∈ An, then d(a1,...,an) = (a1, . . . , an)−1(a1, . . . , an)d
−1
d ∈

N ≤ B, so d must fix all the n-tuples of An. By the faithfulness of the action

of B, this implies that N = 1.

If the group A is also a permutation group we can define two actions of

the abstract wreath product AwrB.

Definition 1.2.6. Let A ≤ Sym(m) and B ≤ Sym(n) be two permutation

groups.

The permutational wreath action of AwrB is the action on the set

m× n defined by: for (x, y) ∈m× n and (a1, . . . , an)b ∈ AwrB

(x, y)(a1,...,an)b = (xay , yb). (1.2.2)

The permutation group AwrB ≤ Sym(mn) with the action (1.2.2) is called the

permutational wreath product of A by B and it is denoted by A oB.

The product action of AwrB is the action on the set mn defined by: for

(x1, . . . , xn) ∈mn and (a1, . . . , an)b ∈ AwrB{
(x1, . . . , xn)(a1,...,an) = (xa11 , . . . , x

an
n )

(x1, . . . , xn)b
−1

= (x1b , . . . , xnb)
. (1.2.3)
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The permutation group AwrB ≤ Sym(mn) with the action (1.2.3) is called the

exponentiation of A by B and it is denoted by A o○B.

We will briefly discuss the main features of the permutation groups just

defined. The permutational wreath product A o B is an imprimitive permu-

tation group with blocks Bj = {(i, j)|i ∈ m} for j ∈ n. Moreover, A o B is

transitive if and only A and B are.

On the other hand, A o○B is transitive if and only if A is, and the expo-

nentiation A o○B is primitive for “reasonable” permutation groups A and B

as the following theorem shows.

Theorem 1.2.7. ([7, Theorem 2.7A]) Let A ≤ Sym(m) and B ≤ Sym(n) be

non-trivial permutation groups. Then the exponentiation A o○B is primitive if

and only if it satisfies both of the following conditions:

1. A is primitive but not regular;

2. B is transitive.

1.3 Topological notions

1.3.1 General Topology

For the convenience of the reader we include here some basic topological defi-

nition.

Definition 1.3.1. Let X be a topological space. The space X is said to be

discrete if every subset of X is open. Equivalently, X is discrete if for every

x ∈ X the singleton subset {x} of X is open.

The space X is said pre-compact if, for every collection {Ai}i∈I of open

subsets Ai of X such that X =
⋃
i∈I Ai, there exist n ∈ N and i1, . . . , in ∈ I

for which X = Ai1 ∪ . . . ∪ Ain.

16



Remark 1.3.2. Let X be a topological space. We say that a collection of

subsets {Ai}i∈I of X satisfies the finite intersection property if for any

finite subcollection J of I the intersection
⋂
j∈J Aj is non-empty.

Taking complements we see that the topological space X is pre-compact if

and only if any collection of closed subsets with the finite intersection property

in X has non-trivial intersection.

Definition 1.3.3. Let X be topological space. The space X is called Haus-

dorff if for every x, y ∈ X there exist A and B open neighbourhoods of x and

y respectively such that A ∩B = ∅.

The space X is said to be compact if it is pre-compact and Hausdorff.

Definition 1.3.4. Let X be a topological space. The space X is said to be

disconnected if there exist non-empty open subsets A and B of X such that

X = A ∪ B and A ∩ B = ∅. The space X is said connected if it is not

disconnected. The maximal connected subsets (ordered by set-theoretic inclu-

sion) of X are called connected components. If the connected components

of X consist of the singletons {x}, for x ∈ X, we say that X is totally

disconnected.

Definition 1.3.5. Let X be a topological space and let Y be a subset of X. A

point y in Y is said to be interior in Y if there exists an open subset U of Y

such that y ∈ U . The interior of Y , denoted by Y̊ , is the set of all interior

points of Y . The closure of Y , denoted by Y , is the smallest closed subset of

X that contains Y .

The closure of a subspace Y in the topological space X can be obtained as

the intersection of all closed subspaces of X that contain Y .

The next theorem is a fundamental result in the theory of compact topo-

logical spaces and has many application in different parts of mathematics.

Theorem 1.3.6. (Baire Category Theorem) Let X be a compact topological
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space. Let {Ci}i∈N be a countable collection of closed subsets Ci of X such that

each Ci has empty interior. Then the union
⋃
i∈NCi has empty interior.

1.3.2 Topological groups

Definition 1.3.7. A topological group is a group G equipped with a topology

such that the maps

mult : G×G → G
(g, h) 7→ gh

and
inv : G → G

g 7→ g−1

are continuous.

Since a topological group has both a group structure and a topology built

in, we can consider objects with both group-theoretical and topological proper-

ties. For example, we can consider closed subgroups or open normal subgroups.

For a topological group G, we will write H ≤o G when H is a subgroup of

G which is open with respect to the topology of G. We will use a similar

convention for closed, closed normal, open and open normal subgroups.

We will now describe a property of topological groups that will be used

many times in the introductory chapters. Let G be a topological group and

choose g ∈ G. Then the map ϕg : G→ G defined by ϕg(x) = gx is a homeo-

morphism of G. In fact, multiplication by g and by g−1 in G are continuous

by the definition of a topological group and they are the inverse of each other.

This means that a topological group is a homogeneous topological space, in

the sense that the topology near a point “looks like” the topology near any

other point. We will use this fact in the proof of the next lemma.

Lemma 1.3.8. Let G be a finite topological group. If {x} is closed in G for

all x ∈ G, then G is discrete.

Proof. We have that G r {e} is the union of {x} for x ∈ G such that x 6= e.

By hypothesis this is a closed set and therefore {e} is open. For every g ∈ G,
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the map ϕg from G to G defined by h 7→ gh is a homeomorphism, thus

{g} = ϕg({e}) is open and G is discrete.

In particular, a finite Hausdorff topological group satisfies the hypothesis of

the previous lemma. Hence the only Hausdorff topology on a finite topological

group is the discrete topology.

1.3.3 A little measure theory

Definition 1.3.9. Let S be a set and Σ a subset of the set 2S (the power set

of S). We say that Σ is a σ-algebra if it satisfies the following properties:

1) X ∈ Σ;

2) if A ∈ Σ, then S r A ∈ Σ;

3) if Ai ∈ Σ for i in a countable set I, then
⋃
i∈I Ai ∈ Σ.

Definition 1.3.10. Let S be a set and let Σ be a σ-algebra. A function µ :

Σ→ [0,+∞] is called a measure on Σ if it satisfies the following properties:

1) µ(∅) = 0;

2) for all {Ei}i∈N such that Ei ∩ Ej = ∅ for i 6= j,

µ

(⋃
i∈N

Ei

)
=
∑
i∈N

µ(Ei).

Let G be a compact topological group. Let B be the smallest σ-algebra

that contains all open subsets of G; this is called the Borel algebra. Let

g ∈ G and S a subset of G. Define gS = {gs | s ∈ S} and Sg = {sg | s ∈ S}.

We say that a measure µ on B is left-invariant if µ(gB) = µ(B) for every

B ∈ B and g ∈ G. We say that a measure µ on B is right-invariant if

µ(Bg) = µ(B) for every B ∈ B and g ∈ G.

The next theorem is of fundamental importance in the theory of locally

compact topological groups, but we will state and use it only in the instance

of compact topological groups.
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Theorem 1.3.11. (Haar’s Theorem) Let G be a compact topological group

and let B be the Borel algebra of G. Then there exists a unique measure µ on

B such that µ(G) = 1 and µ is left-invariant and right-invariant.

The unique measure on the Borel algebra of a compact topological group

G described in Haar’s Theorem will be called the Haar measure of G.

1.3.4 Metric on topological groups

Definition 1.3.12. Let X be a topological space. A metric (or distance) on

X is a function d : X ×X → [0,+∞) such that for every x, y, z ∈ X

1) d(x, y) = 0 if and only x = y;

2) d(x, y) = d(y, x);

3) d(x, z) ≤ d(x, y) + d(y, z).

A metric space is a couple (X, d) where X is a topological space and d is

a metric on X. The ball of radius r ∈ [0,+∞) around x ∈ X in the metric

space (X, d) is the subset

B(x, r) = {y ∈ X | d(x, y) < r}.

Definition 1.3.13. Let X be a topological space. A collection {Bi}i∈I of open

subsets Bi of X is said to be a base of X if for every open subset U of X

there exists J ⊆ I such that U =
⋃
j∈J Bj.

The topological space X is said to be countably based if there exists a

base {Bn}n∈N of X with only countably many elements.

Remark 1.3.14. Let G be a topological group and suppose that there exists

a countable descending chain of open normal subgroups {Gn}n∈N of G with

G1 = G and
⋂
n∈NGn = {e}. Then we can define a distance on G in the

following way: for x, y ∈ G set

d(x, y) = inf
{
|G : Gi|−1 | xy−1 ∈ Gi

}
. (1.3.1)
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Therefore every countably based topological group admits a metric. In partic-

ular, every countably based profinite group is a metric space with the metric

(1.3.1).

It is interesting to notice that the converse of the previous remark holds

by the following deep topological theorem.

Theorem 1.3.15. ([20, 7.3]) Let G be a topological group. Then G admits a

metric if and only if G is countably based.

1.4 Inverse limits and profinite groups

Profinite groups have wide application in different parts of mathematics. For

example, they come up naturally in Group Theory, Number Theory and Anal-

ysis. Here we are going to recall the basic definitions and fix the notation that

we will need in the forthcoming chapters. Our exposition follows closely the

fundamental [31, Chapter 1].

A directed set is a partially ordered set (I,≤) such that for all i, j ∈ I

there exists k ∈ I for which i ≤ k and j ≤ k.

Definition 1.4.1. An inverse system ({Xi}i∈I , ϕij) of topological groups

indexed by a directed set I consists of a family {Xi}i∈I of topological groups

Xi, with i ∈ I, and a family {ϕij : Xj → Xi|i, j ∈ I, i ≤ j} of continuous

homomorphisms such that ϕii is the identity map on Xi for each i ∈ I and

ϕijϕjk = ϕik whenever i ≤ j ≤ k.

In the next chapters we will consider inverse limits of finite groups. Re-

member that the only possible way of defining a Hausdorff topology on a finite

set is with the discrete topology.

Let ({Xi}i∈I , ϕij) be an inverse system of topological groups and let Y be

a topological group. We shall call a family {ψi : Y → Xi|i ∈ I} of continuous

homomorphisms compatible with ({Xi}i∈I , ϕij) if ϕijψj = ψi whenever i ≤ j,

or equivalently if the following diagrams
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Y

ψj

��

ψi

��
Xj ϕij

// Xi

Figure 1.1: Diagram definition of compatible maps.

are commutative for every i ≤ j.

Definition 1.4.2. An inverse limit (X,ϕi) of an inverse system of topo-

logical groups ({Xi}i∈I , ϕij) is a topological group X together with a family

{ϕi : X → Xi} of continuous homomorphisms compatible with ({Xi}i∈I , ϕij)

and with the following universal property: whenever {ψi : Y → Xi} is a family

of continuous homomorphisms compatible with ({Xi}i∈I , ϕij) from a topolog-

ical group Y , there is a unique continuous homomorphism ψ : Y → X such

that ϕiψ = ψi for each i ∈ I.

Thus we require that there is a unique ψ such that each of the following

diagrams are commutative.

Y

ψ

��

ψi

  
X ϕi

// Xi

Figure 1.2: Diagram definition of inverse limit.

It is possible to show that inverse limits are unique up to isomorphism. We

will denote the inverse limit of the inverse system ({Xi}i∈I , ϕij) by lim←−Xi, as

it is customary to drop the reference to the maps ϕij. Furthermore, inverse

limits inherit many properties from the associated inverse system. We are
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just going to list below some basic facts that will be relevant to us in the

forthcoming chapters.

Proposition 1.4.3. ([31, Proposition 1.1.5(d)-(e)]) Let ({Xi}i∈I , ϕij) be an

inverse system of topological groups. If each Xi is a compact Hausdorff topo-

logical group, so is lim←−Xi.

In view of the previous proposition, all the finite groups considered in this

thesis will be equipped with the discrete topology (see Lemma 1.3.8).

Let C be a class of finite groups. We call a group F a C-group if F ∈ C,

and we call G a pro-C group if it is an inverse limit of C-groups.

Lemma 1.4.4. Let C be a class of finite groups. Then every C-group is a

pro-C group.

Proof. Let F ∈ C and consider the trivial poset 1 = {1}. Then 1 is a directed

set and ({F}, idF ) is clearly an inverse system of C-groups indexed by 1. Now,

(F, idF ) satisfies the requirements of the inverse limit of ({F}, idF ) and, by

uniqueness, we have lim←−F = F .

We say that C is closed for subgroups (respectively quotients) if every

subgroup (respectively quotient) of a C-group is a C-group, and we say that C

is closed for finite direct products if F1 × F2 ∈ C whenever F1 ∈ C and

F2 ∈ C. Some important classes are:

• the class of all finite groups,

• the class of finite p-groups where p is a fixed prime,

• the class of finite nilpotent groups,

• the class of finite solvable groups.

All the classes listed above are closed for subgroups, finite direct products and

quotients. An inverse limit of finite p-groups is called a pro-p group and an

inverse limit of finite nilpotent groups is called pronilpotent group.
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Theorem 1.4.5. ([31, Theorem 1.2.3]) Let C be a class of finite groups which

is closed for subgroups, finite direct products and quotients, and let G be a

topological group. The following are equivalent:

1. G is a pro-C group;

2. G is compact and
⋂
{N |N CO G, G/N ∈ C} = {e};

3. G is compact and totally disconnected, and G/N ∈ C for every N CO G.

Corollary 1.4.6. ([31, Corollary 1.2.4]) Let G be a topological group. The

following are equivalent:

1. G is profinite;

2. G is compact and
⋂
{N |N CO G} = {e};

3. G is compact and totally disconnected.

We call a family I of normal subgroups of a group G a filter base if for

all K1, K2 ∈ I there is a subgroup K3 ∈ I which is contained in K1 ∩K2.

Theorem 1.4.7. ([31, Theorem 1.2.5(a)]) Let G be a profinite group. If I is

a filter base of closed normal subgroups of G such that
⋂
{N |N ∈ I} = {e}

then

G ∼= lim←−
N∈I

G/N.

Moreover

H ∼= lim←−
N∈I

H/(H ∩N)

for each closed subgroup H and

G/K ∼= lim←−
N∈I

G/KN

for each closed normal subgroup K.
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From the previous theorem, closed subgroups of profinite groups and quo-

tients modulo closed normal subgroups of profinite groups are themselves profi-

nite groups.

The next lemma will come in handy in many occasions during the rest of

this work.

Proposition 1.4.8. ([31, Exercise 1.6.8]) Let I be a directed set.

Let ({Gi}i∈I , uij) and ({Hi}i∈I , vij) be inverse systems of finite groups and

let (G, ui) and (H, vi) be their respective inverse limits. Consider a set of

homomorphisms {ai : Gi → Hi|i ∈ I} such that vijaj = aiuij for all i ≤ j.

Then exists a continuous homomorphism a : G → H such that via = aiui.

Moreover, if the ai’s are isomorphisms, then a is a continuous isomorphism.

Proof. For i ≤ j we have the commutative diagrams

G

uj

��

ui

��
Gj uij

// Gi

H

vj

~~

vi

  
Hj vij

// Hi

Figure 1.3: Inverse limits of ({Gi}i∈I , uij) and ({Hi}i∈I , vij).

so uijuj = ui and vijvj = vi. Consider the homomorphisms aiui : G → Hi;

then we have the following diagram
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G

uj

��

ui

��
Gj

aj
~~

uij
// Gi

ai
��

Hj vij
// Hi

Figure 1.4: (G, aiui) is compatible with (Hi, vij).

where the big triangle commutes because vijajuj = aiuijuj = aiui and so

(G, aiui) is compatible with the inverse system (Hi, vij). By the universal

property of (H, vi) there exist a continuous homomorphism a : G → H that

completes the previous diagram

H

vi

��

vj

��

G

a

OO

uj

~~

ui

��
Gj

aj
~~

uij
// Gi

ai
��

Hj vij
// Hi

Figure 1.5: Existence of the homomorphism a : G→ H.

as required.

For the last part, it is not too difficult to see that ({ker ai}i∈I , uij |ker aj) is

an inverse system of topological groups and the continuous homomorphisms
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ui|ker a, i ∈ I, are compatible with it. Since (G, ui) is the inverse limit of

({Gi}i∈I , uij), it follows that ker a = lim←−i∈I ker ai. The proof of the fact that

Im a = lim←−i∈I Im ai is very similar and will be left out. In particular, if all ai’s

are isomorphisms then ker a is trivial and Im a is the whole of H; therefore a

is a continuous isomorphism.
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Chapter 2

Main definitions and state of
the art

In this chapter we introduce the main concepts and definitions that we will

consider in this thesis and we will also give a short introduction and basic

properties of the profinite properties that will be used. As in the previous

chapter, we will include the proof of a few elementary lemmas to contribute

to the clarity of the exposition.

2.1 Hereditarily just infinite profinite groups

The next definition is central in this thesis and all the profinite groups in the

next chapters will have this property.

Definition 2.1.1. We say that a profinite group G is just infinite if it is

infinite, and every non-trivial closed normal subgroup of G is open. We say G

is hereditarily just infinite if in addition H is just infinite for every open

subgroup H of G.

Hereditarily just infinite groups appear naturally in the classification of

just infinite profinite groups with no non-trivial abelian subnormal subgroups

obtained by J. Wilson in [30].
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Theorem 2.1.2. ([30]) Let G be a just infinite profinite group with no non-

trivial abelian normal subgroup. Then either G is a branch group, or G con-

tains an open normal subgroup which is isomorphic to the direct product of a

finite number of copies of some hereditarily just infinite profinite group.

Branch groups are certain subgroups of the automorphism group of a

rooted tree and they have received a considerable amount of attention in the

past years, while hereditarily just infinite groups remained a little in the back-

ground.

For some time after the appearance of [30], there was the feeling that it

would be possible to characterize hereditarily just infinite groups. In par-

ticular, all hereditarily just infinite groups known in the beginning of the

millennium were virtually pro-p. The construction of a family of hereditarily

just infinite profinite groups which are not virtually pro-p was carried out in

[32, Construction A] and the aim of this thesis is a better understanding of

the properties of this family. We will give the construction of these groups in

Section 2.2.

In this thesis we will deal mostly with the profinite groups obtained from

a generalisation of [32, Construction A], so we will not use general results

regarding hereditarily just infinite profinite groups. On the other hand we

would like to mention a few results of C. Reid about the general structure of

hereditarily just infinite profinite groups which are not virtually pronilpotent.

We need a few accessory definitions.

Definition 2.1.3. A finite group G is said to have a central decomposition

if there exist an integer n and proper subgroups H1, . . . , Hn of G such that G

is generated by H1, . . . , Hn and whenever i 6= j, then [Hi, Hj] = 1. The finite

group G is said to be centrally indecomposable if G admits no central

decomposition.

29



Definition 2.1.4. Let H be a finite perfect group and fix a surjective ho-

momorphism F → H with kernel R from an appropriate free group F . The

Schur multiplier of H is the finite group R/[F,R]. We denote the Schur

multiplier of the finite perfect group H by M(H).

Definition 2.1.5. Let C be a class of finite groups. We say that C satisfies

(∗) if C satisfies the following property:

(∗) The class C consists of characteristically simple groups. For each prime

p, if C contains some elementary abelian p-group, then within the class of finite

groups, C contains all elementary abelian p-groups and all direct powers of non-

abelian simple groups S such that p divides the order of the Schur multiplier

of S.

We remind the reader that it is easy to prove that a characteristically

simple group is isomorphic to the direct power of a finite simple group.

Definition 2.1.6. Let G be a finite group. Let 1 < A E G and define MG(A)

to be the intersection of all maximal G-invariant subgroups of A. We say

that A is narrow in G and write A Enar G if there is a unique maximal G-

invariant subgroup of A, in other words MG(A) is the maximal G-invariant

subgroup of A.

In [23] the author obtained a classification of hereditarily just infinite profi-

nite groups which are not virtually-pronilpotent via their inverse limits and it

can be found in the next theorem.

Theorem 2.1.7. ([23, Theorem 5.4]) Let G be a hereditarily just infinite profi-

nite group that is not virtually pronilpotent. For each n ∈ N, let Cn be a class

of finite groups such that G has infinitely many chief factors in Cn, and suppose

also that Cn satisfies condition (∗). Then G is the inverse limit of an inverse

system Λ = {(Gn)n∈N, ρn : Gn+1 → Gn} satisfying the following description:

Each Gn has a specified subgroup An such that, letting Pn = ρn(An+1):
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(i) An > Pn > {e};

(ii) An Enar Gn;

(iii)′ any subgroup of G normalized by An either is contained in MGn(An) or

properly contains PnCGn(Pn) (or both);

(iv) Pn is a minimal normal subgroup of Gn;

(v) Pn ∈ Cn for all n.

Conversely, let Λ be an inverse system satisfying the above description (ig-

noring condition (v)). Then the inverse limit of Λ is hereditarily just infinite

and not virtually pronilpotent. Indeed the following weaker condition suffices

in place of (iii)′:

(iii)′′ CGn(Pn) < An for all n, and for infinitely many n, every normal sub-

group U of Gn containing An is centrally indecomposable.

The classes Cn that appear in the previous theorem are just an expedient

used in the proof and they will not play a role in the rest of this thesis. We

will only apply [23, Theorem 5.4] in the next section to show that certain

inverse limits of finite groups are hereditarily just infinite non-(virtually pro-

p) profinite groups. We will never deal with condition (v) of the previous

theorem.

2.2 Inverse limits of iterated wreath products

The main object of study in this thesis will be a sub-family of a family of

profinite groups that received a lot of attention in the past: the infinitely

iterated wreath products.

Definition 2.2.1. Let S = (Sn)n∈N be a sequence of finite groups. An n-th

iterated wreath product of the sequence S is the finite group Ŝn inductively
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defined by the following process: Ŝ1 = S1, then choose a transitive and faithful

action of Ŝn on m̂n points and define Ŝn+1 = Sn+1wrŜn. The new sequence

of permutation groups (Ŝn ≤ Sym(m̂n))n∈N, together with the standard projec-

tions πn : Ŝn+1 → Ŝn, forms an inverse system of finite groups. The inverse

limit lim←−n∈N Ŝn is called an infinitely iterated wreath product of type S.

We will write IIWP of type S for short.

We would like to point out that non-equivalent choices for the action of Ŝn

yield non-isomorphic iterated wreath products. IIWPs were first defined by

P. Hall in [12] and then considered in many other papers, e.g. [4, 21, 19, 3],

where many of their interesting properties were discovered. IIWPs are inter-

esting profinite groups and they provide counterexamples to many problems in

Group Theory. Just to mention one, see [15, Section 13.3] where the authors

use IIWPs to solve part of the “Gap Conjecture” for the subgroup growth

of a profinite group (for more on subgroup growth of profinite groups see

Section A). This thesis will be focused on a particular kind of IIWPs: the

generalised Wilson groups.

Definition 2.2.2. Let S = (Sn ≤ Sym(mn))n∈N be a sequence of non-abelian

simple transitive permutation groups and let (kn)n∈N be an increasing sequence

of positive integers with k1 ≥ 2. A generalised Wilson group of type

(S, (kn)n∈N) is an infinitely iterated wreath product of type S, lim←− Ŝk, where

for n ∈ N the action of Ŝkn is chosen to be the product action of the wreath

product SknwrŜkn−1. We will write GW group for short.

A generalised Wilson group is just an infinitely iterated wreath product

where we choose the action of the iterated wreath products to be the product

action infinitely many times.

Definition 2.2.3. The n-th iterated exponentiation S̃n of the sequence

S is inductively defined as follows: m̃1 = m1, S̃1 = S1 and m̃n+1 = mm̃n
n+1,
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S̃n+1 = Sn+1 o○S̃n ≤ Sym(m̃n+1), for n ∈ N. The infinitely iterated expo-

nentiation of type S is the inverse limit lim←− S̃n. We will write IIE of type

S for short.

An infinitely iterated exponentiation is just an infinitely iterated wreath

product where we choose the action of the iterated wreath products to be the

product action every time. Notice that an infinitely iterated exponentiation

of type S is a generalised Wilson group of type (S, (n)n∈N).

In [32] the author proves that a GW group of type (S, (kn)n∈N) is hereditar-

ily just infinite and not virtually pro-p in the special case where S2n+1 = S2n,

kn = 2n + 1 and the action of the group S̃kn is the “standard wreath action”

(i.e. with S̃kn−1 acting on itself by right multiplication) for all n. We are now

going to show that [23, Theorem 5.4] (see Theorem 2.1.7) applies to every

generalised Wilson group.

Proposition 2.2.4. Let S = (Sn ≤ Sym(mn))n∈N be a sequence of non-

abelian simple transitive permutation groups and let (kn)n∈N be an increasing

sequence of positive integers with k1 ≥ 2. Let G = lim←− Ŝk be a GW group

of type (S, (kn)n∈N). Then G is hereditarily just infinite and not virtually

pronilpotent.

Proof. Let G = lim←− Ŝk be as in the hypotheses. We will show that G sat-

isfies conditions (i) − (iv) of Theorem 2.1.7. By Proposition 1.4.8 with the

homomorphisms {an = idŜkn+1
}n∈N, we have that G ∼= lim←− Ŝkn+1.

Now, let πn,m : Ŝm → Ŝn be the standard projection of the wreath product

for m ≥ n. Let ρn = πkn−1+1,kn+1 be the projection from Ŝkn+1 to Ŝkn−1+1.

Define the subgroups An = ker(πkn−1,kn+1) and Pn = ker(πkn,kn+1) of Ŝkn+1

for all n ∈ N. Therefore ρn(An) = Pn−1 and property (i) of Theorem 2.1.7 is

satisfied. By Lemma 1.2.5, Pn is a unique minimal normal subgroup of Ŝkn+1,

so (iv) of Theorem 2.1.7 is satisfied.
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By the choice of the sequence S, the center of Pn is trivial and the action

of Ŝkn is faithful, thus CŜkn+1
(Pn) = {e}. Moreover, any normal subgroup of

Ŝkn+1 containing An must contain Pn and therefore it is centrally indecompos-

able; in fact, if U1, U2 C Ŝkn+1 and An ≤ U1, U2 then [U1, U2] ≥ Pn. So (iii)′′

of Theorem 2.1.7 is satisfied.

All that is left to prove is that An is narrow in Ŝkn+1. Observe that a

maximal Ŝkn+1-invariant subgroup of An must contain K = ker(ρn), therefore

a maximal Ŝkn+1-invariant subgroup of An corresponds to a Ŝkn−1+1-invariant

subgroup of Pn−1. We observe that the group Pn−1 is isomorphic to S
m̂kn−1

kn−1+1

and since Ŝkn−1 acts on the labels of the components of Pn−1 with the product

action, by hypothesis and by Lemma 1.2.5, the only invariant Ŝkn−1+1-subgroup

of Pn−1 is Pn−1 itself and thus the unique Ŝkn+1-invariant subgroup of An is

K. Hence property (ii) of Theorem 2.1.7 is met.

Pn

K

An

Ŝkn+1

∼= Ŝkn−1+1

S
m̂kn−1

kn−1+1
∼= Pn−1 ∼=

Figure 2.1: GW groups are hereditarily just infinite.

Therefore, by Theorem 2.1.7, generalised Wilson groups are hereditarily

just infinite profinite groups and they are not virtually pro-p.

The existence of hereditarily just infinite and not virtually pro-p profinite

groups was unknown before the publication of [32]. We take the opportunity
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to list here the known results about generalised Wilson groups. To this end

we need to state an accessory definition. Let G be a group and let X =

{x1, . . . , xk} be a subset of G, as customary we will denote by 〈x1, . . . , xk〉 the

smallest subgroup of G containing X.

Definition 2.2.5. Let G be a finitely generated profinite group and let k be a

positive integer. Let µ be the Haar measure of Gk. The profinite group G is

said to be positively k-generated if

µ
(
{(x1, . . . , xk) ∈ Gk | 〈x1, . . . , xk〉 = G}

)
> 0.

Remark 2.2.6. Let G be a finitely generated profinite group (see Section 2.3.1

for the definition). Then the set X = {(x1, . . . , xk) ∈ Gk | 〈x1, . . . , xk〉 = G}

is in the Borel algebra of Gk and hence measurable. In fact, for N CO G, let

πN be the continuous projection map from G to G/N , then

X =
⋂

NCOG

π−1N

(
{(x1, . . . , xk) ∈ (G/N)k | 〈x1, . . . , xk〉N = G/N}

)
,

which is a countable intersection of pre-images of finite (and hence closed)

subsets of the finite groups (G/N)k.

Let B be the Borel σ-algebra of G. Since (G, µ,B) is a probability space, the

previous definition can be interpreted in the following sense: in a positively

k-generated profinite group “the probability that k randomly chosen elements

generate the whole G is positive”.

The following theorem by M. Quick generalizes a result by Bhattacharjee

about iterated wreath products of alternating groups (see [3]).

Theorem 2.2.7. ([21, Theorem 1]) Let S = (Sn)n∈N be a sequence of finite

groups. Suppose we choose a transitive and faithful action of S1 on at least

35 points. Then the infinitely iterated wreath product lim←− Ŝk is positively 2-

generated for any choice of the action of Ŝk, k ≥ 2.
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The author of [21] is mainly interested in asymptotic results, so hypotheses

as the one in the previous theorem arise naturally in the proofs. The proof of

[21, Theorem 1] relies on the classification of finite non-abelian simple groups.

Therefore GW groups of type (S, (kn)n∈N) with S = (Sk ≤ Sym(mk))k∈N

are positively 2-generated provided that m1 is large enough (m1 > 35).

The following theorem by Lucchini and Menegazzo is one of a long series

of results about monolithic finite groups. A monolithic finite group is a finite

group with a unique minimal normal subgroup.

Theorem 2.2.8. ([16, Theorem A]) Let G be a finite non-cyclic group with a

unique minimal normal subgroup N . Then d(G) = max{2, d(G/N)}.

By [16, Theorem A], the infinitely iterated exponentiation of type S is

always 2-generated, and again this result relies on the classification of finite

simple groups.

These were the only results about generalised Wilson groups known to the

author, other than the ones proved in this thesis.

2.3 Overview of the profinite properties stud-

ied

In this thesis we are going to study various properties of profinite groups.

Some of these are well known, while others are maybe familiar only to the

specialists. We will include here a short state of the art for each property.

2.3.1 Finite topological generation

The study of the number of generators of a group is one of the main trends in

Group Theory. Here we present an account of the properties of this invariant

and list some results that will be used later on.

Definition 2.3.1. Let G be a group and let X be a non-empty subset of G.
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The subgroup generated by X in G is the smallest subgroup of G that

contains X, it is denoted by 〈X〉.

Let G be a group and let X be a subset of G. It is an easy exercise to

prove that 〈X〉 = {xε11 · · ·xεnn | xi ∈ X, εi ∈ Z for n ∈ N and i ∈ n}.

Definition 2.3.2. Let G be a group. The minimal number of generators

of the group G is

d(G) = inf{|X| | X ⊆ G, 〈X〉 = G} ∈ N ∪ {∞}.

If d(G) is finite, the group G is said finitely generated. If the group G is

finitely generated and d = d(G), sometimes we will say that G is d-generated.

Remark 2.3.3. Let G be a finitely generated group, then G is countable. In

fact, let G = 〈X〉 where X is a finite subset of G, then

G =
⋃

n,m∈N

{xε11 · · ·xεnn | xi ∈ X, −m ≤ εi ≤ m for i ∈ n}

is a countable union of finite subsets.

Let G be a countable profinite group; then G is finite. In fact, suppose that

G is a countable profinite group. By Corollary 1.4.6, G is compact and totally

disconnected as a topological space. In particular G is Hausdorff, therefore

for every x ∈ X the singleton subset {x} is closed in G. Since the union⋃
x∈X{x} = G has non-empty interior, by Baire Category Theorem there

exists an element x0 ∈ X such that {x0} is open in G.

On the other hand, for g ∈ G, the map ϕg from G to G defined by ϕg(x) =

gx is an homeomorphism. It follows that for every x ∈ X the subset {x} is

open, therefore G is a discrete topological space. Since G is compact, G must

be finite.

We present a second interesting proof of the fact that a countable profinite

group must be finite using the Haar measure. Suppose by contradiction that
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G is a countable infinite profinite group and let µ be the Haar measure of G.

The subset {x} of G is closed for every x ∈ G, so Gr {x} is open and hence

it is in the Borel algebra B, thus its complement {x} is in B for every x ∈ G.

Now, µ is left invariant, therefore µ({x}) = µ({x · e}) = µ({e}) for all x ∈ G.

It follows that

1 = µ(G) =
∑
x∈G

µ({x}) = |G| · µ({e})

and either µ({e}) = 0, which implies µ(G) = 0, or µ({e}) > 0, which gives

µ(G) =∞. In both cases we have a contradiction, so G must be finite.

Hence, if G is an infinite profinite group, then G uncountable. Thus, an

infinite profinite group cannot be finitely generated in the above sense. Luckily

we have a generalisation of the concept of finite generation in the context of

infinite profinite groups.

Definition 2.3.4. Let G be a profinite group. The minimal number of

topological generators of the group G is

d(G) = inf{|X| | X ⊆ G, 〈X〉 = G} ∈ N ∪ {∞}.

If d(G) is finite, the profinite group G is said to be topologically finitely

generated. If the profinite group G is topologically finitely generated and

d = d(G), sometimes we will say that G is topologically d-generated.

Remark 2.3.5. Note that if G is a finite group and we want a Hausdorff topol-

ogy on G, then G must be discrete. Therefore the two notions of finite gener-

ation above coincide for a finite group. In the rest of the thesis we will abuse a

little the notation and we will drop the word “topological” when we deal with

topological generators of profinite groups. Since there is no room for confu-

sion, we can read the previous definition without the words “topological” and

“topologically”.

Proposition 2.3.6. ([31, Proposition 4.1.1]) Let G be a profinite group and

let X be a subset of G.
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(a) If X generates G topologically, then XK/K generates G/K topologically,

for each closed normal subgroup K of G.

(b) If XN/N generates G/N for each N CO G, then X generates G.

The next result tells us that a profinite group is finitely generated if and

only if the number of generators of its finite continuous images is uniformly

bounded. The proof is a standard compactness argument.

Lemma 2.3.7. Let G be a profinite group and let I be a filter base of open

normal subgroups of G. Then d(G) = sup{d(G/N)|N ∈ I}.

Proof. Set d = sup{d(G/N)|N ∈ I}. Clearly d(G) ≥ d. Thus, if d is infinite,

the claim follows. Suppose now that d is finite, we are going to prove that

d(G) ≤ d. By definition, d(G/N) ≤ d for every N ∈ I. By Corollary 1.4.6

and Theorem 1.4.5, G = lim←−N∈I G/N is a compact topological space. Let

πN : G → G/N be the projection maps of the inverse limit, for N ∈ I. For

every N ∈ I, put

D̃N = {(g1, . . . , gd) ∈ Gd | 〈πN(g1), . . . , πN(gd)〉 = G/N},

so D̃N is non-empty and D̃N is closed because it is the pre-image of the finite set

{(h1N, . . . , hdN) ∈ (G/N)d | 〈h1N, . . . , hdN〉 = G/N} via the continuous map

πN . Since I is a directed set, for every N1, . . . , Nr ∈ I there exists K ∈ I such

that Nl ≥ K for all l ∈ r. Thus, D̃N1∩. . .∩D̃Nr contains D̃K and the collection

{D̃N}N∈I has the finite intersection property. Set D =
⋂
N∈I D̃N , since the

group Gd is compact, it follows that D is non-empty. Hence, there exists

(x1, . . . , xd) ∈ D and, by construction, the set X = {x1, . . . , xd} generates the

profinite group G topologically. This concludes the proof.

The definition of number of generators for a profinite group is in many

ways a good generalisation of the minimal number of generators of an abstract

group. We list some nice properties in the next lemma. These properties will

be used without any special mention in the next chapters.
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Lemma 2.3.8. Let G be a finitely generated profinite group. Then

1. every open subgroup of G is finitely generated. In particular,

d(H)− 1 ≤ (d(G)− 1)|G : H|

for all H ≤o G;

2. if K is a normal closed subgroup of G, we have d(G/K) ≤ d(G);

3. for n ∈ N, there are only finitely many open subgroups of G of index less

than n. In particular, the number of open subgroups of index n in G is

at most n(n!)d(G)−1.

Proof. Let d(G) = d and choose a finite subset X = {x1, . . . , xd} of G such

that G = 〈X〉. Let I be a filter base of open normal subgroups of G.

1. Let H be an open subgroup of G and set n = |G : H|. By [31, Theo-

rem 1.2.5(a)], H is isomorphic to the inverse limit of the finite groups

H/(H∩N) ∼= HN/N , for N ∈ I. For every N ∈ I, HN/N is a subgroup

of G/N of index |G/N : HN/N | = |G : HN | ≤ n. By the Reidemeister-

Schreier index formula for abstract groups, the number of generators

of HN/N is at most (d − 1)n + 1. By Lemma 2.3.7, it follows that

d(H) ≤ (d− 1)n+ 1.

2. This follows readily from [31, Proposition 4.1.1].

3. Let H be an open subgroup of G such that |G : H| = n. The group G

acts by right multiplication on the right cosets of H in G. Any of the

n! labellings of the right cosets of H in G defines a continuous homo-

morphism ψ : G → Sym(n) such that ψ(G) is transitive and such that

there exists i ∈ n for which H = StG(i). On the other hand, for every

continuous homomorphism ψ : G → Sym(n) such that ψ(G) is transi-

tive, there are n subgroups of G of index n arising from ψ−1(StG(i)),
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for i ∈ n. Therefore, the number of open subgroups of index n in G is

exactly
|{ψ : G→ Sym(n) | ψ(G) is transitive}| · n

n!
.

Since G is d-generated, the total number of homomorphisms from G

to Sym(n) can be bounded above by (n!)d. Thus, the number of open

subgroups of index n in G is at most n(n!)d/n! = n(n!)d(G)−1.

2.3.2 Lower rank

This subsection follows closely the excellent account on lower rank given in

[25] by A. Shalev.

Definition 2.3.9. Let G be a profinite group. The lower rank of G is the

minimal positive integer r such that G has a base of open neighbourhoods of

the identity made of r-generated open subgroups.

Remark 2.3.10. The previous definition can also be stated in terms of inf and

sup as follows. The lower rank of a profinite group G is the integer lr(G)

defined by:

lr(G) = inf{sup{inf{d(Hi) | i ≥ N} | N ∈ N} | {Hi}i∈N ∈ C}

where C = {{Hi}i∈N|Hi ≤o G, G = H1 ≥ H2 ≥ . . . and
⋂
i∈NHi = {e}} is

the collection of all descending chains of open subgroups that form a base for

the topology of G. Sometimes this definition of lower rank is stated in terms

of the “liminf” of a net: lr(G) = lim inf{d(H)|H ≤o G}. This is just a short

form for the above definition. In this thesis we will use interchangeably the

previous equivalent definitions.

The lower rank comes up naturally when studying some probabilistic prop-

erties of profinite groups.
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Definition 2.3.11. Let G be a profinite group and k be a positive integer. Let

µ be the Haar measure of Gk. Define

Q(G, k) = µ
(
{(x1, . . . , xk) ∈ Gk | 〈x1, . . . , xk〉 is open in G}

)
.

The number Q(G, k) is the probability that k “randomly chosen” elements in

G generate an open subgroup of G.

What can we say about the profinite groups G that satisfy Q(G, k) = 1 for

some k ∈ N? This problem has been considered a few times in the literature.

It is proved in [17] that every profinite group with polynomial subgroup growth

satisfies Q(G, k) = 1 for some integer k. In particular, p-adic analytic pro-p

groups satisfy the property. In [1] the authors prove that a compact open

subgroup G of a simply connected, semisimple algebraic group over a nonar-

chimedean local field satisfies Q(G, 2) = 1; in particular, Q(SL1
d(FpJtK), 2) = 1

for p ≥ 5. The number Q(G, k) is relevant to us because of the following

lemma.

Lemma 2.3.12. Let k be an integer. Let G be a profinite group such that

Q(G, k) = 1. Then the lower rank of G is less than k.

Proof. Let µ be the Haar measure of Gk. Let H ≤o G. We will prove that

Q(H, k) = 1. First, let ν be the Haar measure of Hk and notice that ν(K) =

µ(K)/µ(Hk) for every K ≤o Hk. In fact, the function ν(K) = µ(K)/µ(Hk)

satisfies the requirements of the Haar measure of Hk and by Haar’s Theorem

we must have ν = ν.

Now, the set Y = {(y1, . . . , yk) ∈ Hk | 〈y1, . . . , yk〉 ≤o H} clearly contains

the intersection of X = {(x1, . . . , xk) ∈ Gk | 〈x1, . . . , xk〉 ≤o G} and Hk.

Notice that µ(X ∪Hk) ≥ µ(X) = 1. It follows that

ν(Y ) ≥ ν(X ∩Hk) =
µ(X ∩Hk)

µ(Hk)
=
µ(X) + µ(Hk)− µ(X ∪Hk)

µ(Hk)
=

=
1 + µ(Hk)− 1

µ(Hk)
= 1

42



and thus Q(H, k) = 1. Therefore, for every H ≤o G there exist an open

k-generated subgroup of G contained in H and this proves the lemma.

It is not known if the reverse of the previous lemma holds. For example,

by [5, Theorem 7], the Nottingham group N (Fp) over Fp has lower rank 2 for

p ≥ 5. Many experts believe that Q(N (Fp), 2) = 1 for p ≥ 5, but this is not

yet been proven.

Turning to the other end of the spectrum, it is easy to see that free profinite

groups have infinite lower rank by the Reidemeister-Schreier index formula.

Moreover, new examples of hereditarily just infinite pro-p groups with infinite

lower rank have been constructed in the recent work [9].

Calculating explicitly the lower rank of a profinite group is proved to be a

challenging problem. In fact, apart from compact p-adic analytic pro-p groups

(where the lower rank coincides with the number of generators of the p-adic

Lie algebra), no profinite groups are known to have finite lower rank strictly

greater than 2. In Section 4.2 we will show that some IIEs have finite lower

rank and we strongly suspect that these are likely to have lower rank strictly

greater than 2.

2.3.3 Hausdorff dimension

In p-adic analytic pro-p groups we have a natural concept of “dimension”. In

fact, a p-adic analytic group G has the structure of a manifold over Zp and we

say that the dimension of G is the unique natural number dim(G) such that G

is locally homeomorphic to Zdim(G)
p . It would be useful to have such a concept

of dimension in general profinite groups. The next theorem/definition is an

attempt to define such a concept.

The notion of Hausdorff dimension is well-known in Analysis. We will

not state here the full definition of Hausdorff dimension, but we will quote

a theorem by Barnea and Shalev that allows us to calculate the Hausdorff

dimension of a closed subgroup of a countably based profinite group. We
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remind the reader that for every descending chain G = {Gn}n∈N of open normal

subgroups of a profinite group G we can define an invariant metric by (1.3.1).

We will denote by dimH,G the Hausdorff dimension function of G with respect

to the metric induced by the chain G.

Theorem/Definition 2.3.1. ([2, Theorem 2.4]) Let G be an infinite count-

ably based profinite group and fix a descending chain G = {Gn}n∈N of open

normal subgroups of G such that
⋂
n∈NGn = {e} and G1 = G. Let H be a

closed subgroup of G. Then the Hausdorff dimension of H (with respect

to G) is

dimH,G(H) = lim inf
n→∞

log |HGn : Gn|
log |G : Gn|

.

The previous limit defines a real number in [0, 1].

Remark 2.3.13. ([2, Example 2.5]) Unfortunately the previous definition really

depends on the chain G. Let G = Zp × Zp and H = {0} × Zp. Consider the

chains G1 = {pn−1Zp × pn−1Zp}n∈N and G2 = {p2(n−1)Zp × pn−1Zp}n∈N. Then

the Hausdorff dimension of H with respect to G1 is

dimH,G1(H) = lim inf
n→∞

log |pn−1Zp × Zp : pn−1Zp × pn−1Zp|
log |Zp × Zp : pn−1Zp × pn−1Zp|

= lim inf
n→∞

n− 1

2(n− 1)
=

1

2
,

while the Hausdorff dimension of H with respect to G2 is

dimH,G1(H) = lim inf
n→∞

log |p2(n−1)Zp × Zp : p2(n−1)Zp × pn−1Zp|
log |Zp × Zp : p2(n−1)Zp × pn−1Zp|

= lim inf
n→∞

n− 1

3(n− 1)
=

1

3
.

Definition 2.3.14. Let G be an infinite countably based profinite group. Fix

a descending chain G = {Gn}n∈N of open subgroups such that
⋂
n∈NGn =

{e} and G1 = G. Let dimH,G be the Hausdorff dimension of G with respect

to G. The Hausdorff dimension spectrum of G is the set SpecG(G) =

{dimH,G(H) | H ≤c G}.
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Remark 2.3.15. The Hausdorff dimension spectrum of any profinite group G

(independently from the chain G) satisfies

{0, 1} ⊆ SpecG(G) ⊆ [0, 1].

In fact, the Hausdorff dimension of any open subgroup of G is 1 and finite

subgroups of G have Hausdorff dimension 0.

Of course, to have a “good” generalisation of dimension we would like the

Hausdorff dimension to agree with the usual dimension when this is available.

It turns out that this is the case for p-adic analytic pro-p groups, if we consider

the Hausdorff dimension with respect to a “natural” chain.

Theorem 2.3.16. ([2, Theorem 1.1]) Let G be a p-adic analytic pro-p group

and consider the chain G = {Gpn−1}n∈N. Then, for every H ≤c G, we have

dimH,G(H) =
dim(H)

dim(G)
.

Corollary 2.3.17. ([2, Corollary 1.2]) Let G be a p-adic analytic pro-p group

and consider the chain G = {Gpn−1}n∈N. Then SpecG(G) ⊆ {0, 1/d, . . . , 1}

where d = dimG.

The converse of the previous corollary is false.

Remark 2.3.18. ([10, Lemma 5.4.1]) Consider the finitely generated non-(p-

adic analytic) pro-p group G = (CpoZp)×Zp. Put G = {(CpoZp)p
n×pp2nZp}n≥0.

Then SpecG = {0, 1}.

The converse of [2, Corollary 1.2] might still be true if we restrict to the

chain {Gpn−1}n∈N in pro-p groups. This has not yet been proved.

By [2, Theorem 1.1], the Hausdorff dimension of pro-p groups with a man-

ifold structure over Zp is well-behaved. What about pro-p groups with a

manifold structure over FpJtK?

Theorem 2.3.19. ([2, Theorem 1.4]) Let p be a prime number and let d ≥ 2.

Consider the chain G = {ker (SLd(FpJtK)→ SLd(FpJtK/tnFpJtK))}n∈N. Then
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(i) SpecG (SLd(FpJtK)) contains intervals; in fact

SpecG (SLd(FpJtK)) ⊇ [0,
d(d+ 1)− 2

2(d2 − 1)
].

(ii) If p > 2 then 1 is an isolated point in SpecG (SLd(FpJtK)); in fact

SpecG (SLd(FpJtK)) ∩ (1− 1

d+ 1
, 1) = ∅.

Corollary 2.3.20. ([2, Corollary 1.5]) Let p > 2 be a prime number. Consider

the chain G = {ker (SL2(FpJtK)→ SL2(FpJtK/tnFpJtK))}n∈N. Then

SpecG (SL2(FpJtK)) = [0, 2/3] ∪ {1}.

We now turn to another question. Do there exist a profinite group G and

a descending chain G = {Gn}n∈N of open subgroups such that
⋂
n∈NGn = {e}

and G1 = G such that SpecG(G) = [0, 1]? In Giannelli’s thesis [10] and in an

unpublished work by Levài the following is shown.

Proposition 2.3.21. ([10, Esempio 5.3.1]) Let G = lim←−n∈NCp wr Cpn and

lim←−n∈NCpn = 〈a〉. Consider the chain G =
{
〈apn−1〉G

}
n∈N

. Then the Hausdorff

dimension spectrum of G, with respect to G, is the whole interval [0, 1].

The previous result is of interest because it is not even known if the spec-

trum of the free pro-p group on d generators is [0, 1] with respect to some chain

G. In Chapter 6 we will prove that the Hausdorff dimension spectrum of an

infinitely iterated exponentiation is [0, 1] with respect to its unique maximal

chain of open normal subgroups.
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Chapter 3

Generators of iterated
exponentiations of perfect
groups

The main objective of this chapter is the study of infinitely iterated exponen-

tiations. In particular we will deal with the topological number of generators

of special IIEs. Throughout this section d will denote a positive integer. The

content of this chapter has been published in [28].

3.1 Introduction

In [4] the following result is proved.

Theorem 3.1.1. ([4, Theorem 1]) Let S = (Gn ≤ Sym(Xn))n∈N be a sequence

of finite transitive permutation groups with uniformly bounded number of gen-

erators. Then the infinitely iterated permutational wreath product of type S

is finitely generated if and only if the profinite abelian group
∏

n≥1Gn/G
′
n is

finitely generated.

The group
∏

n≥1Gn/G
′
n is a continuous image of the infinitely iterated

permutational wreath product above (since it is its abelianization), therefore

the “only if” direction of the theorem is trivial.

In this chapter we will prove two parallel results to [4, Theorem 1]. We
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will show that an infinitely iterated exponentiation and an infinitely iterated

“mixed” wreath product of stride at most m of a sequence of finite d-generated

perfect transitive permutation groups are topologically finitely generated un-

der certain conditions. For the formal definition of “mixed” wreath product

and “stride” see Definition 3.1.3 in this section.

In Section 3.2 we prove our first main result of the chapter.

Theorem 3.1.2. Let d be an integer. Let S = (Sk ≤ Sym(mk))k∈N be a

sequence of finite transitive permutation groups such that each Sk is perfect

and at most d-generated as an abstract group. Suppose that for every k ∈ N

there exist elements i, j ∈mk such that StSk
(i) 6= StSk

(j). Then the infinitely

iterated exponentiation of the groups in S is topologically finitely generated.

The proof of Theorem 3.1.2 gives an explicit set of d+ d(S1) generators for

lim←− S̃k and this bound is asymptotically best possible (see Lemma 3.2.2). The

groups under study here are very different from the ones in [4]. We cannot

rely on the tree-like structure of iterated wreath products and the iterated

exponentiation of permutation groups is in general not associative. The non-

associativity of the exponentiation of permutation groups is the main reason

why we need to ask that the groups in the sequence S have non-regular actions.

Using the same methods of the proof of Theorem 3.1.2 we can improve

our bound for a sequence S of perfect 2-generated perfect groups (see Corol-

lary 3.2.8).

In Section 3.3 we use [13, Theorem 3.1] to exchange the exponentiation and

the permutational wreath product to obtain the finite generation of iterated

wreath products with “mixed” action.

Definition 3.1.3. Let (kn)n∈N be an increasing sequence of positive integers.

Define the sequence (Gn)n∈N of perfect transitive subgroups of Sym(rn) starting
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from the groups in S in the following way: G0 = {e} and for k ≥ 1

Gk =

{
Sk o○Gk−1 if k ∈ {k1, k2, . . .},
Sk oGk−1 otherwise.

The permutation groups Gn are called iterated mixed wreath products

of type (S, (kn)n∈N).

Let m be an integer. If the sequence (kn)n∈N is such that kn+1 − kn ≤ m

for every n ∈ N, we say that the iterated mixed wreath product Gn of type

(S, (kn)n∈N) has stride at most m.

The groups Gn, together with the projections Gn → Gn−1, form an inverse

system of finite groups. We say that the profinite group lim←−Gn is an infinitely

iterated mixed wreath product of type (S, (kn)n∈N). If the groups Gn have

stride at most m we say that lim←−Gn has stride at most m.

We remark that an infinitely iterated exponentiation is an infinitely iter-

ated mixed wreath product of stride at most one.

The second main result of this section is the following. It will be proved

in Section 3.3.

Theorem 3.1.4. Let d be an integer. Let S = (Sk ≤ Sym(mk))k∈N be a

sequence of finite transitive permutation groups such that each Sk is perfect

and at most d-generated as an abstract group. Suppose that for every k ∈ N

there exist elements i, j ∈ mk such that StSk
(i) 6= StSk

(j). Let G = lim←−Gn

be an infinitely iterated mixed wreath product of type (S, (kn)n∈N) of stride at

most m. Then G is topologically finitely generated.

The hypotheses of Theorem 3.1.4 can be weakened in two ways (see Re-

mark 3.3.5). We conclude with Section 3.4 where we use the techniques of

this chapter to find the minimal number of generators of infinitely iterated

exponentiations and infinitely iterated mixed wreath products of particular

sequences S (see Corollary 3.4.2).
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3.2 Finite generation of IIEs of perfect groups

First we find a lower bound for the minimal number of generators of a wreath

product of perfect non-simple groups. This shows that the bound given by

Theorem 3.1.2 can be improved only by a multiplicative and an additive con-

stant. We will denote by tx the transpose of a vector x ∈ Zn.

In the next lemma we will use the following.

Theorem 3.2.1. ([29, Lemma 2]) Let B be a non-trivial finite perfect group

and s the order of a smallest simple image of B. Then d(Bsn) ≤ d(B) +n for

all integers n ≥ 0; and hence d(Bn) < d(B) + 1 + logs n for all n ≥ 1.

Lemma 3.2.2. Let N be a natural number. Let A be a finite simple group

and let B ≤ Sym(n) be a finite permutation group. Then

d(AN oB) ≥ max

{
1

n

(
d
(
AN
)
− d(A)− 1

)
, d(B)

}
.

Proof. Set G = AN oB = (AN)n oB and d(G) = d. It is clear that d ≥ d(B),

since B is a quotient of G. Let

γj = ((x
(j)
11 , . . . , x

(j)
1N), · · · , (x(j)n1 , . . . , x

(j)
nN))σj = (γ

(j)
1 , · · · , γ(j)n )σj ∈ AN oB,

for j = 1, . . . , d, be generators for G. Form the N ×nd matrix M with entries

Ml,n(j−1)+i = x
(j)
il for i = 1, . . . , n, j = 1, . . . , d and l = 1, . . . , N . For every

number m ∈ {1, . . . , nd} there exist unique i ∈ {1, . . . , n} and j ∈ {1, . . . , d}

such that m = n(j− 1) + i and the (n(j− 1) + i)-th column of M is the vector
t
γ
(j)
i :

M =
(
t
γ
(1)
1 , . . . ,

t
γ(1)n , . . . . . . ,

t
γ
(d)
1 , . . . ,

t
γ(d)n

)
.

Our goal is to show that N ≤ |A|nd. Suppose by contradiction that N > |A|nd.

Then, since the x
(j)
il are elements of A, we would have that two rows of M are

equal. Without loss of generality we can suppose that the first and the second

rows are equal. In particular it follows that x
(j)
i1 = x

(j)
i2 for every i = 1, . . . , n
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and for every j = 1, . . . , d. Since the action of B permutes as blocks for its ac-

tion the n N -tuples of (AN)n, any element ((y11, . . . , y1N), · · · , (yn1, . . . , ynN))τ

of the subgroup generated by the γj’s satisfies y11 = y12. This is a contradiction

with our assumption that the γj’s generate G.

Therefore N ≤ |A|nd and applying logarithms on both sides of the inequal-

ity we have

d ≥ 1

n log |A|
logN =

1

n
log|A|N >

1

n

(
d
(
AN
)
− d(A)− 1

)
,

where the last inequality holds by Theorem 3.2.1.

Before proving Theorem 3.1.2 we fix some notation.

Notation 1. An m̃k-tuple of elements in {1, . . . ,mk+1} will be denoted as

(i1, . . . , im̃k
)m̃k

. This notation will be convenient in particular when we will

have to deal with m̃k-tuples where all the coordinates are equal, for example

(1, . . . , 1)m̃k
. We will denote an element of the group Sm̃k

k+1 as (σ1, . . . , σm̃k
)m̃k

.

Definition 3.2.3. For (i1, . . . , in), (j1, . . . , jn) ∈ mn we say that (i1, . . . , in)

precedes (j1, . . . , jn), if and only if there exists 1 ≤ l ≤ n such that ik = jk

for 1 ≤ k ≤ l− 1 and il < jl. The relation “precedes” defines a total order on

{1, . . . ,m}n that is called the lexicographic order.

The following straightforward lemma is one of the key tricks to prove The-

orem 3.1.2.

Lemma 3.2.4. Let G ≤ Sym(m) and H ≤ Sym(n) be permutation groups.

Then the subgroup H of the exponentiation G o○H acts trivially on the subset

{(i, . . . , i) | i ∈m}.

Theorem 3.1.2 will now follow from an application of the next lemma.

Lemma 3.2.5. Let S = {Sk}k∈n be a sequence of transitive subgroups of

Sym(mk) and let d be an integer. Suppose that Sk is perfect and at most d-

generated for k = 2, . . . , n. Suppose that for every k ∈ n there exist elements
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i, j ∈mk such that StSk
(i) 6= StSk

(j). Then the iterated exponentiation S̃n of

the sequence S satisfies d(S̃n) ≤ d+ d(S1).

Proof. Let S1 = 〈α1(1), . . . , αd(S1)(1)〉, Sk = 〈α1(k), . . . , αd(k)〉, k = 2, . . . , n

and order the elements of {1, . . . ,mk+1}m̃k with respect to the lexicographic

order. Without loss of generality we can suppose that for every k ∈ n we have

StSk
(1) 6= StSk

(2). (3.2.1)

We will now define d elements of S̃n that together with the generators of

S1 will generate S̃n. Define the elements β1, . . . , βd ∈ S̃n as

βj = (αj(n), e, . . . , e)m̃n−1 · (αj(n− 1), e, . . . , e)m̃n−2 · · · (αj(2), e, . . . , e)m̃1

for j = 1, . . . , d. Note that the αj(k)’s are in the first place of the m̃k−1-tuples,

which corresponds to the element (1, . . . , 1)m̃k−1
∈ {1, . . . ,mk}m̃k−1 .

Let A = 〈α1(1), . . . , αd(S1)(1), β1, . . . , βd〉 ≤ S̃n. We claim that A = S̃n.

We will prove by induction on k that S̃k ≤ A for k = 1, . . . , n. Trivially

S̃1 = S1 ≤ A. Supposing by the inductive hypothesis that S̃k ≤ A, we have to

show that we can write any element of S̃k+1 as a product of the generators in

A. Because S̃k+1 = Sm̃k
k+1 · S̃k, it will suffice to show that Sm̃k

k+1 ≤ A.

By the transitivity of Sk there is an element t ∈ Sk such that 1t = 2 and

by the inductive hypothesis the element σ = (e, . . . , e, t)m̃k−1
∈ Sm̃k−1

k belongs

to A. By Lemma 3.2.4 it follows that for j = k, . . . , n

(1, . . . , 1)σm̃j
= (1, . . . , 1)m̃j

(3.2.2)

and from the definition of lexicographic order and exponentiation

(1, . . . , 1)σm̃k−1
= (1e, . . . , 1e, 1t)m̃k−1

= (1, . . . , 1, 2)m̃k−1
. (3.2.3)

We remind the reader that the element (1, . . . , 1, 2)m̃k−1
is the second element

in the set {1, . . . ,mk}m̃k−1 with respect to the lexicographic order. More-

over, since S̃k ≤ A, β′j = (αj(n), e, . . . , e)m̃n−1 · · · (αj(k + 1), e, . . . , e)m̃k
be-

longs to A. Set γj = [σ, β′j], then γj ∈ A. By (3.2.2), (αj(l), e, . . . , e)
σ
m̃l−1

=
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(αj(l), e, . . . , e)m̃l−1
for l = k+2, . . . , n and, by (3.2.3), (αj(k+1), e, . . . , e)σm̃k

=

(e, αj(k + 1), e, . . . , e)m̃k
. Therefore (β′j)

σ = (αj(n), e, . . . , e)m̃n−1 · · · (e, αj(k +

1), e, . . . , e)m̃k
with αj(k + 1) in second position in the last m̃k-tuple and so

γj = ((β′j)
σ)−1β′j = (αj(k + 1), αj(k + 1)−1, e, . . . , e)m̃k

.

By inductive hypothesis S̃k ≤ A, therefore A is transitive on m
m̃k−1

k . To

conclude the proof it is sufficient to show that we can write any element of

the form (λ, e, . . . , e)m̃k
in Sm̃k

k+1 as a word in the γj’s. We can then move λ

around, using the transitive action of S̃k.

As Sk+1 is perfect it is sufficient to prove that we can write any commutator

([λ1, λ2], e, . . . , e)m̃k
as a word in the γj’s. By (3.2.1) there are s ∈ Sk and

r ∈ mk, r 6= 2, such that 1s = 1 and 2s = r. By the inductive hypothesis

µ = (e, . . . , e, s)m̃k−1
belongs to A. Let λ1, λ2 ∈ Sk+1. Since the αj(k + 1)’s

generate Sk+1, there exist two d-variables words w1 and w2 such that λ1 =

w1(α1(k + 1), . . . , αd(k + 1)) and λ2 = w2(α1(k + 1), . . . , αd(k + 1)). Thus,

if we set δi = wi(α1(k + 1)−1, . . . , αd(k + 1)−1) for i = 1, 2, the elements

w1(γ1, . . . , γd) = (λ1, δ1, e, . . . , e)m̃k
and w2(γ1, . . . , γd) = (λ2, δ2, e, . . . , e)m̃k

belong to A. The definition of µ and an easy calculation now yield

[
(λ1, δ1, e, . . . , e)m̃k

, (λ2, δ2, e, . . . , e)
µ
m̃k

]
= ([λ1, λ2], e, . . . , e)m̃k

.

Thus for every λ ∈ Sk+1 the m̃k-tuple (λ, e, . . . , e)m̃k
is in A. It follows that

Sm̃k
k+1 ≤ A and S̃k+1 = Sm̃k

k+1 · S̃k ≤ A. The result follows by induction.

We would like to point out that in the previous proof we exhibited an

explicit set of d+ d(S1) generators for S̃n. We are now ready for the proof of

Theorem 3.1.2.

Proof of Theorem 3.1.2. For every n ∈ N, Lemma 3.2.5 gives us d +

d(S1) generators of S̃n, of the form described at the beginning of the proof

of Lemma 3.2.5, α1(1), . . . , αd(S1)(1), β
(n)
1 , . . . , β

(n)
d . For n ∈ N, let πn be the

inverse limit projection from lim←− S̃k to S̃n. Let a1(1), . . . , ad(S1)(1), b1, . . . , bd
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be the unique elements of lim←− S̃k such that πn(ai(1)) = αi(1) and πn(bj) = β
(n)
j

for all i ∈ d(S1), j ∈ d and n ∈ N. So a1(1), . . . , ad(S1)(1), b1, . . . , bd generate

lim←− S̃k by [31, Proposition 4.1.1].

We will use the following result on perfect permutation groups.

Lemma 3.2.6. ([24, Lemma 2]) Let S ≤ Sym(n) be a perfect permutation

group. Suppose that for all i, j ∈ n we have StS(i) 6= StS(j). Then there is

µ ∈ S and r ∈ n such that

nµ = n and rµ
2 6= r.

Using [24, Lemma 2] it is possible to improve the previous bound for 2-

generated groups with the same method.

Lemma 3.2.7. Let S = {Sk}k∈n be a sequence of perfect 2-generated transitive

subgroups of Sym(mk) such that for every k ∈ n and all i, j ∈ mk StSk
(i) 6=

StSk
(j). Then S̃n is generated by the generators of S1 together with another

suitable element.

Proof. Let Sk = 〈α1(k), α2(k)〉. By [24, Lemma 2], for k ∈ n, there exist

σk ∈ Sk and 1 ≤ rk ≤ mk such that r
σ2
k
k 6= rk. Let

β = (. . . , α1(n), . . . , α2(n), . . .)m̃n−1 · . . . · (. . . , α1(2), . . . , α2(2), . . .)m̃1

where the element α1(2) is in position rσ11 , α2(2) is in position r1, α1(k + 1)

is in position (rσkk , . . . , r
σk
k )m̃k−1

, α2(k + 1) is in position (rk, . . . , rk)m̃k−1
for

k = 2, . . . , n − 1 and the identity in all the unspecified positions. Set A =

〈α1(1), α2(1), β〉 and proceed exactly as in the proof of Lemma 3.2.5, with β

instead of βi and (σk, . . . , σk)m̃k−1
instead of σ, to show that A = S̃n.

Using Lemma 3.2.7 in place of Lemma 3.2.5 in the proof of Theorem 3.1.2

yields the following corollary.
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Corollary 3.2.8. Let S = {Sk}k∈N be a sequence of perfect 2-generated tran-

sitive subgroups of Sym(mk). Suppose that for every k ∈ N and all i, j ∈mk

we have StSk
(i) 6= StSk

(j). Then the infinitely iterated exponentiation lim←− S̃n
of S satisfies d

(
lim←− S̃n

)
≤ 3.

Again we would like to point out that in Corollary 3.2.8 we can find an

explicit set of three generators for lim←− S̃n.

As a consequence of [21], the minimal number of generators of the infinitely

iterated exponentiation of a sequence S of finite non-abelian simple transitive

permutation groups is two. However, perfect groups can be “far” from simple

and we conjecture that in the case of perfect non-simple groups Lemma 3.2.7

is best possible but we do not have an explicit example to confirm this.

3.3 Finite generation of mixed wreath prod-

ucts of perfect groups

We now proceed to the proof of Theorem 3.1.4. We will use the following.

Theorem 3.3.1. ([13, Theorem 3.1]) Let n1, n2 and n3 be integers and let

A ≤ Sym(n1), B ≤ Sym(n2) and C ≤ Sym(n3) be permutation groups. Then

A o○(B o C) and (A o○B) o○C are isomorphic as permutation groups.

The next lemma is an application of [13, Theorem 3.1] and it will be used

in the proof of Theorem 3.1.4. Remember that we denote by H̃n the iterated

exponentiation of the sequence of permutation groups {Hk}k∈n.

Lemma 3.3.2. Let S = {Sk}k∈N be a sequence of subgroups of Sym(mk). Let

{kn}n∈N be an increasing sequence of integers and let Gn be an iterated mixed

wreath product of type (S, {kn}n∈N). Set k0 = 0 and define the permutation

groups Ŝ
(i)
kn

for n ∈ N and i ∈ kn r kn−1 as follows: Ŝ
(kn)
kn

= Skn and Ŝ
(i)
kn

=

Ŝ
(i+1)
kn

o○Si. Define Hn = Ŝ
(kn−1+1)
kn

for n ∈ N. Then Gkn is isomorphic to H̃n

as a permutation group, for every n ∈ N.
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Proof. The proof is by induction on n. If n = 1 and k1 = 1 the claim is trivial.

If k1 > 1 repeated applications of [13, Theorem 3.1] yield Gk1
∼= H1.

Suppose that Gkn−1
∼= H̃n−1. By construction Gkn

∼= Skn o○Gkn−1 and

Gi
∼= Si o Gi−1 for i ∈ kn r kn−1. Therefore repeated applications of [13,

Theorem 3.1] yield Gkn
∼= (Ŝ

(i+1)
kn

o○Si) o○Gi−1 for i ∈ kn r kn−1. Thus

Gkn
∼= Ŝ

(kn−1+1)
kn

o○Gkn−1 and, by the inductive hypothesis, we conclude Gkn
∼=

Hn o○H̃n−1 ∼= H̃n. The claim follows by induction.

Lemma 3.3.3. Let A ≤ Sym(m) and B ≤ Sym(n) be permutation groups and

set G = A o○B. Suppose that m,n ≥ 2 and B is transitive. Then there exist

x, y ∈mn such that StG(x) 6= StG(y).

Proof. Consider the elements x = (1, . . . , 1)n and y = (2, 1, . . . , 1)n in mn.

Because B is transitive there exists b ∈ B such that 1b = 2, so xb = x and

yb = (1, 2, 1, . . . , 1)n 6= y. So b is in the stabiliser of x but not in the stabiliser

of y.

The following lemma follows directly from the definition of the exponenti-

ation of permutation groups.

Lemma 3.3.4. Let A ≤ Sym(m) and B ≤ Sym(n) be permutation groups and

suppose that A is transitive. Then A o○B is transitive.

Finally we use Lemma 3.2.5, Lemma 3.3.2, Lemma 3.3.3 and Lemma 3.3.4

to prove Theorem 3.1.4.

Proof of Theorem 3.1.4. Let G = lim←−Gn be an infinitely iterated mixed

wreath product of type (S, {kn}n∈N) and of stride at most m. We will use the

same setup and notation as in Lemma 3.3.2. We have that Gkn is isomorphic

to H̃n for every n ∈ N, hence it is sufficient to show that the sequence {Hn}n∈N
satisfies the hypotheses of Lemma 3.2.5. It is clear that every Hn is perfect

and it can be generated by md elements because it is an iterated wreath

product of length at most m made of d-generated groups. Since each Sk is
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transitive, the permutation group Hn = Ŝ
(kn−1+2)
kn

o○Skn−1+1 is transitive by

iterated applications of Lemma 3.3.4. Moreover, by Lemma 3.3.3, Hn satisfies

the hypothesis on the stabilisers in Lemma 3.2.5. The proof is completed by

applying Lemma 3.2.5 and [31, Proposition 4.1.1].

If the “inverse” iterated exponentiations Ŝn in Lemma 3.3.2 had a uniform

bound on the number of generators, it would be possible to prove that infinitely

iterated mixed wreath products of arbitrarily large stride are topologically

finitely generated. We do not know if this is the case.

Remark 3.3.5. We can weaken the hypothesis of Theorem 3.1.4 in the following

ways. Let {kn}n∈N be an increasing sequence of integers and S a sequence of

finite perfect, at most d-generated, transitive permutation groups such that:

• for every kn satisfying kn = kn−1 +1 there exist elements i, j ∈mkn that

have different stabilisers for the action of Skn .

• kn+1 − kn ≥ 2 for every n ∈ N.

The proof of Theorem 3.1.4 with these hypotheses remains the same.

3.4 An application

In this section we find explicitly two generators for the infinitely iterated ex-

ponentiation of particular sequences S. We start with a lemma.

Lemma 3.4.1. Let S = {Sk}k∈n, be a sequence of 2-generated perfect tran-

sitive subgroups of Sym(mk). Suppose that for every k ∈ n there exist two

generators ak, bk of Sk such that:

• fix(ak) and fix(bk) are non-empty,

• (|a1|, |bj|) = 1 and (|b1|, |aj|) = 1 for j = 2, . . . , n.

Then d(S̃n) = 2.
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Proof. Let uk ∈ fix(ak), vk ∈ fix(bk). In the spirit of Lemma 3.2.5 define the

following elements of m
m̃i−1

i

ui = (ui, . . . , ui)m̃i−1
and vi = (vi, . . . , vi)m̃i−1

for i = 2, . . . , n−1. By the transitivity of Sk there is σ ∈ Sk such that uσk = vk

and, by Lemma 3.2.4, µ = (σ, . . . , σ)m̃k
is such that

uµj = uj and vµ
−1

j = vj (3.4.1)

for every j ≥ k + 1 and by definition of exponentiation we have

uµk = (uσk , . . . , u
σ
k)m̃k

= v k. (3.4.2)

For the rest of the proof we will write the position of an element in a tuple

below the element itself. We claim that the elements

β1 = (e, . . . , e, an
un−1

, e . . . , e)m̃n−1 · · · (e, . . . , e, a3
u2

, e . . . , e)m̃2·

· (e, . . . , e, a2
v1

, e . . . , e)m̃1b1

and

β2 = (e, . . . , e, bn
vn−1

, e . . . , e)m̃n−1 · · · (e, . . . , e, b3
v2

, e . . . , e)m̃2 ·

· (e, . . . , e, b2
u1

, e . . . , e)m̃1a1

generate the group S̃n. Let A = 〈β1, β2〉, we will prove by induction that

S̃k ≤ A for k = 1, . . . , n. It follows from Lemma 3.2.4 and the definition of ui

and vi that (e, . . . , e, ai, e . . . , e)m̃i
commutes with (e, . . . , e, aj, e . . . , e)m̃j

for

i 6= j. Set p =
∏n

i=2 |ai| and q =
∏n

i=2 |bi|, then βp1 = bp1 and βq2 = aq1, so

S1 ≤ A.

By the inductive hypothesis the group S̃k is contained in A. Our goal is to

write any element of Sm̃k
k+1 as a word in β1, β2. Clearly the elements

β′1 = (e, . . . , e, an
un−1

, e . . . , e)m̃n−1 · · · (e, . . . , e, ak+1
uk

, e . . . , e)m̃k
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and

β′2 = (e, . . . , e, bn
vn−1

, e . . . , e)m̃n−1 · · · (e, . . . , e, bk+1
vk

, e . . . , e)m̃k

belong to A.

Let us now consider the commutators γi = [µi, β
′
i] for i = 1, 2. Following

exactly the steps of Lemma 3.2.5 we can use (3.4.1), (3.4.2) (instead of (3.2.2)

and (3.2.3)) and Lemma 3.2.4 to show Sm̃k
k+1 ≤ A. Therefore S̃k+1 = Sm̃k

k+1 ·S̃k ≤

A. The result follows by induction.

Since none of the groups S̃k is cyclic, the proof that lim←− S̃k is topologically

2-generated is now the same as the proof of Theorem 3.1.2 using Lemma 3.4.1

instead of Lemma 3.2.5. We have proved the following.

Corollary 3.4.2. Let S = {Sk}k∈N, be a sequence of 2-generated perfect tran-

sitive subgroups of Sym(mk). Suppose that for every k ∈ N there exist two

generators ak, bk of Sk such that:

• fix(ak) and fix(bk) are non-empty,

• (|a1|, |bj|) = 1 and (|b1|, |aj|) = 1 for j ≥ 2.

Then the infinitely iterated exponentiation lim←− S̃k is topologically 2-generated

and we produce explicitly two generators for the group.

Reproducing the steps of the proof of Corollary 3.4.2 we obtain the follow-

ing result.

Corollary 3.4.3. Let S = (Sk ≤ Sym(mk))k∈N, be a sequence of finite 2-

generated perfect transitive permutation groups. Suppose that for every k ∈ N

there exist two generators ak, bk of Sk such that:

• fix(ak) and fix(bk) are non-empty,

• (|a1|, |bj|) = 1 and (|b1|, |aj|) = 1 for j ≥ 2,

• (|a2j+1|, |a2j|) = 1 and (|b2j+1|, |b2j|) = 1 for j ∈ n.
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Then the infinitely iterated mixed wreath product of type (S, (2n + 1)n∈N),

lim←− S̃k, is topologically 2-generated and we produce explicitly two generators

for the group.

We conclude with two examples of sequences S that satisfy the hypotheses

of Corollary 3.4.2 and Corollary 3.4.3. In [18], the following fundamental result

is proved.

Theorem 3.4.4. (Main Theorem of [18]) Let n be a natural number. Suppose

that l1 and l2 are odd natural numbers such that l1, l2 < n and l1 + l2 > n.

Then there exist two cycles a and b in Alt(n) of order l1 and l2 respectively

such that 〈a, b〉 = Alt(n).

Remark 3.4.5. Using the main result of [18] we can produce sequences of per-

fect groups that satisfy the hypotheses of Corollary 3.4.2 and Corollary 3.4.3.

Let (mk)k∈N be a strictly increasing sequence of integers satisfying

there exist two primes pk, qk with mk−1 ≤ pk, qk < mk such that pk + qk > mk

and consider the alternating group Alt(mk) ≤ Sym(mk). By [18] we can

find two cycles ak, bk ∈ Alt(mk) of length pk and qk respectively such that

Alt(mk) = 〈ak, bk〉 and by our assumption ak, bk satisfy the hypotheses of

Corollary 3.4.2 and Corollary 3.4.3 for the sequence (Alt(mk) ≤ Sym(mk))k∈N.

Remark 3.4.6. Let m ≥ 48 be an integer. Consider the alternating groups

Alt(m). Then the elements a1 = (1 2 3) and

b1 =

{
(2 3 . . .m) if m is even

(3 4 . . .m) if m is odd

generate Alt(m). Notice that |b1| is always odd.

By Bertrand’s Postulate (proved by Chebyshev in 1850, see [8] for an el-

ementary proof by Erdös), there exists a prime p such that bm/2c < p ≤ m.

Since m ≥ 48, either p+ 4, p+ 8 and p+ 12 lie in the interval (bm/2c,m) or
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p− 4, p− 8 and p− 12 do. Suppose that t1 = p+ 4 and t2 = p+ 8 and p+ 12

lie in the interval. Again by [18], we can find two cycles a2 and b2 of length t2

and t1 respectively such that Alt(m) = 〈a2, b2〉. We claim that there are two

odd integers l1 and l2, bm/2c < l1, l2 ≤ m such that (l1, 3) = (l1, t1) = 1 and

(l2, |b1|) = (l2, p) = 1.

It is easy to see that (n, n+ 4) = 1 for every odd integer n. We can choose

l1 = t2, in fact (p+ 12, p+ 8) = 1 and clearly (p+ 12, 3) = 1. Remember that

|b1| is odd and |p− |b1|| < m/2, since p, |b1| ∈ (bm/2c,m). If p 6= |b1| − 2 we

choose l2 = |b1| − 2, while if p = |b1| − 2 we choose l2 = |b1| − 4. The proof of

the case where p − 4, p − 8 and p − 12 lie in the interval (bm/2c,m) follows

the same lines and it will be omitted.

Let a3 and b3 be the cycles of length l2 and l1 respectively which generate

Alt(m) by the main theorem of [18]. Let a2k+1 = a3, a2k = a2, b2k+1 = b3 and

b2k = b2 for k ≥ 2. Then by construction ak, bk satisfy the hypotheses of Corol-

lary 3.4.2 and Corollary 3.4.3 for the sequence S = (Alt(m) ≤ Sym(m))k∈N.
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Chapter 4

On generation properties of
generalised Wilson groups

The goal of this chapter is to study the behaviour of two profinite generation

properties in the family of generalised Wilson groups: lower rank and profinite

presentability. First, we will prove that there exist GW groups of finite lower

rank and that an arbitrary direct product of certain hereditarily just infinite

profinite groups with finite lower rank has again finite lower rank. Secondly, we

will show that many generalised Wilson groups are not topologically finitely

presentable. Most of the content of this chapter will appear as a research

paper in the future. The result in Section 4.3 is joint work with Benjamin

Klopsch.

4.1 Introduction

Let (mk)k∈N be a sequence of positive integers. Throughout this section we

denote by S a sequence of finite non-abelian simple transitive permutation

groups (Sk ≤ Sym(mk))k∈N.

In Section 4.2 we study the lower rank of an infinitely iterated exponen-

tiation (see Section 2.3.2 for the definition and some basic properties). Only

very few profinite groups are known to have finite lower rank; amongst them
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are: p-adic analytic pro-p groups for every prime p, SLd(FpJtK) and the Not-

tingham group N (Fp) for p ≥ 5. In view of the scarcity of known profinite

groups with finite lower rank, it is natural to search for new examples. Our

first result of this chapter is that certain infinitely iterated exponentiations are

examples of new profinite groups with finite lower rank.

Remember the notation for IIEs: for a sequence of integers (mk)k∈N we

write m̃1 = m1 and m̃k+1 = mm̃k
k+1. Recall that d(G) denotes the minimal

number of generators of the finite group G.

Theorem 4.1.1. Let S = (Sk ≤ Sym(mk))k∈N be a sequence of finite non-

abelian simple transitive permutation groups. Suppose there is a fixed r ∈ N

such that d(Sm̃n−1
n ) ≤ r for infinitely many n ∈ N. Then the infinitely iterated

exponentiation of type S has lower rank at most r.

In Section 4.3 we prove that the direct product of non-(virtually abelian)

hereditarily just infinite profinite groups is very well behaved with respect to

the lower rank.

Theorem 4.1.2. Let G1, . . . , Gn be non-(virtually abelian) hereditarily just in-

finite profinite groups with finite lower rank. Set r = max{lr(Gi)|i = 1, . . . , n}.

Suppose that for every open neighbourhood of the identity
∏n

i=1 Ui in G1×. . .×

Gn there exist Hi ≤o Gi with Hi ≤ Ui, d(Hi) ≤ r and Hi 6∼= Hj for j < i and

i, j = 1, . . . , n. Then lr(G1 × . . .×Gn) ≤ r.

In particular, the IIEs of type S = (Sk ≤ Sym(mk))k∈N satisfying the

hypotheses of Theorem 4.1.1 and with Si 6∼= Sj for i 6= j satisfy the hypotheses

of Theorem 4.1.2. Hence, taking direct products of certain infinitely iterated

exponentiations with finite lower rank produces new examples of profinite

groups with finite lower rank.

In Section 4.4 we work on the topological finite presentability of infinitely

iterated wreath products (see Section 4.4). As a consequence of [21, Theo-

rem A], any infinitely iterated wreath product of type S = (Sk ≤ Sym(mk))k∈N
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is 2-generated, provided that m1 > 35. It is then natural to ask whether in-

finitely iterated wreath products are finitely presentable. The following defi-

nition is well-known.

Definition 4.1.3. Let H be a finite perfect group and fix a surjective ho-

momorphism F → H with kernel R from an appropriate free group F . The

Schur multiplier of H is the finite group R/[F,R]. We denote the Schur

multiplier of the finite perfect group H by M(H).

It is possible to show that in the previous definition M(H) does not depend

on the choice of the homomorphism F → H, but only on the perfect group

H. The last result of this chapter is the following.

Theorem 4.1.4. Let S = (Sk ≤ Sym(mk))k∈N be a sequence of finite non-

abelian simple transitive permutation groups. Suppose that the profinite group∏
n∈NM(Sn) is not topologically finitely generated, then any infinitely iterated

wreath product of type S is not topologically finitely presentable.

As a corollary of Theorem 4.1.4 we obtain a sufficient condition for the

non-presentability of a generalised Wilson group.

Corollary 4.1.5. Let S = (Sk ≤ Sym(mk))k∈N be a sequence of finite non-

abelian simple transitive permutation groups and let (kn)n∈N an increasing se-

quence of integers. Suppose that the profinite group
∏

n∈NM(Sn) is not topo-

logically finitely generated, then a generalised Wilson group of type (S, (kn)n∈N)

is not topologically finitely presentable.

See Remark 4.4.4 for a number of cases where the hypothesis of Theo-

rem 4.1.4 holds.

4.2 IIEs with finite lower rank

In this section we discuss the lower rank of the infinitely iterated exponen-

tiation of type S for special sequences S. Remember that, for a sequence
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(mk)k∈N, we write m̃1 = m1 and m̃k+1 = mm̃k
k+1.

Proof of Theorem 4.1.1. Set G = lim←− S̃k. Consider the subgroups Nk =

ker(G → S̃k) for k ∈ N. It is clear that these subgroups form a base for the

topology at the identity and, by Lemma 1.2.5, they are the only open normal

subgroups of G. Moreover, Nk/Nk+1 is isomorphic to Sm̃k
k+1 for every k ≥ 1.

By definition of product action and by Lemma 1.2.5, Nk/Nk+1 is the unique

minimal normal subgroup of Ni/Nk+1 every k ∈ N and for every i = 1, . . . , k.

Repeated applications of Theorem 2.2.8 yield d(Nk−1) = d(Nk−1/Nk). By

hypothesis, d(S
m̃k−1

k ) ≤ r for infinitely many k and {Nk|d(Nk) ≤ r} is the

required base for the topology of G.

Remark 4.2.1. The hypotheses of Theorem 4.1.1 are satisfied, with r = 2, by

the sequences S = (PSL2(pn) ≤ Sym(pn + 1))n∈N where PSL2(pn) acts on the

projective line over Fpn and (pn)n∈N is any sequence of primes satisfying

pn ≥
1

4
(pn−1 + 1)(p2n−1 − 2pn−1 − 1)− 2.

This follows from the calculation of the Eulerian function for PSL2(p) (see

[11]). In particular, infinitely iterated exponentiations of these sequences have

lower rank 2.

We conjecture that there exists a GW group with infinite lower rank. One

strong candidate for this is the infinitely iterated exponentiation of a constant

sequence, i.e. Sk = S for k ∈ N.

The following straight-forward lemma provides a sufficient condition for a

profinite group to have infinite lower rank.

Lemma 4.2.2. Let G be a profinite group. Suppose there exists a function

f : N → N such that limn→∞ f(n) = ∞ and, for all Γ ≤o G with |G : Γ| = n,

d(Γ) ≥ f(n). Then G has infinite lower rank.

Any free profinite group satisfies the hypotheses of Lemma 4.2.2 by the
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Schereier index formula. Moreover, the converse of Lemma 4.2.2 does not

hold as shown in the next example.

Example 4.2.1. Let F3 be the free profinite group with 3 generators x, y, z

and let Zp be the pro-cyclic pro-p group with generator a. Set G = F3 × Zp.

It is easy to see that the lower rank of G is at least the lower rank of F3 (see

Lemma 4.3.1) and, by the Schereier index formula, the lower rank of F3 is

infinite. Thus G has infinite lower rank. On the other hand, for every n ∈ N,

Hn = 〈apn , x, y, z〉 is an open 4-generated subgroup of G with index pn.

We are also convinced that there are GW groups of arbitrary finite lower

rank, but a proof of this result has to involve an accurate study of the subgroup

structure of GW groups.

Conjecture 1. There exists a generalised Wilson group of lower rank r for

every r ∈ N ∪ {∞}.

A positive answer to this conjecture would produce interesting examples

as the only known family of profinite groups of arbitrary finite lower rank are

p-adic analytic pro-p groups, where the lower rank coincides with the number

of generators of the associated p-adic Lie algebra (see [14]).

4.3 Lower rank of direct products of heredi-

tarily just infinite profinite groups

The content of this section is joint work with Benjamin Klopsch.

In the previous section we proved that some profinite groups have finite

lower rank. Looking at the other end of the spectrum, namely profinite

groups with infinite lower rank, we are again in shortage of examples. By

the Reidemeister-Schereier index formula we have that any free profinite (or

pro-p) group has infinite lower rank. Moreover, Ershov and Jaikin-Zaipirain

constructed new hereditarily just infinite pro-p groups with infinite lower rank.
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These groups are a generalisation of the so called Tarski monsters (see [9, The-

orem 8.7]).

Since the number of generators of a profinite group G might grow taking

direct powers of G, a natural candidate to search for profinite groups with

large lower rank is the direct product of profinite groups. Next we prove a

basic lemma that justifies this intuition.

Lemma 4.3.1. Let G be a profinite group and let N be a closed normal sub-

group of G. Then lr(G/N) ≤ lr(G).

Proof. If the lower rank of G is infinite there is nothing to prove. Let r =

lr(G) < ∞. The projection G → G/N is a continuous surjective homomor-

phism. Let {Hi}i∈I be a collection of open subgroups of G that forms a base

of open neighbourhoods for the identity in G with d(Hi) ≤ r for i ∈ I. Now,

{HiN/N}i∈N is a collection of open subgroups of G/N that forms a base of

open neighbourhoods for the identity in G/N and d(HiN/N) ≤ d(Hi) ≤ r for

i ∈ I. Therefore lr(G/N) ≤ r.

Thus lr(G) ≤ lr(G × G) for every profinite group. In this light Theo-

rem 4.1.2 is rather unexpected. Before the proof of Theorem 4.1.2 we need to

prove a couple of lemmas.

Lemma 4.3.2. Let H be a non-(virtually abelian) hereditarily just infinite

profinite group and let L be an open subgroup of H. Then there exists a ∈ H

such that L is not contained in CH(a).

Proof. Suppose by contradiction that the subgroup L is contained in CH(a) for

all a ∈ H, then L is contained in the intersection of all CH(a) for a ∈ H, which

is Z(H). By hypothesis Z(H) is trivial, a contradiction with the assumption

that L was open in H.

Definition 4.3.3. Let H1, . . . , Hn be topological groups and let H = H1×. . .×

Hn. For i ∈ n, let πi be the continuous projection of H onto the i-th factor.
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We say that a subgroup K of H is a subdirect product of H if K is closed

and πi(K) = Hi for i ∈ n.

Let us now remark a couple of basic topological facts that will be used in

the next proofs.

Remark 4.3.4. Let G and H be profinite groups. Then the continuous pro-

jection π from G×H onto G is continuous and closed. Moreover, a function

f between topological spaces X and Y is continuous if and only if f(A) is

contained in f(A) for every subset A of X.

Let G be a group and let H be a subgroup of G. We will denote by HG the

normal closure of H in G, i.e. the smallest (by inclusion) normal subgroup

of G that contains H. It is easy to see that HG = 〈hg | h ∈ H, g ∈ G〉.

Lemma 4.3.5. Let H1, . . . , Hn be profinite groups and let H = H1× . . .×Hn.

Let π1 be the continuous projection of H onto the first factor. Let K be a

subdirect product of H and let (k1, . . . , kn) ∈ K. Define the subgroup

L = 〈(k1, . . . , kn)(h1,t2,...,tn) | h1 ∈ H1, (h1, t2, . . . , tn) ∈ K〉.

Then L is contained in K and π1(L) = 〈k1〉H1.

Proof. By its definition, L is contained in K. Since K is closed, L is contained

in K. By Remark 4.3.4, π1 is a closed map, thus the closed subgroup π1(L) of

H1 contains 〈k1〉H1 , it follows that π1(L) contains 〈k1〉H1 . On the other hand,

again by Remark 4.3.4, π1 is continuous and π1(L) = 〈k1〉H1 , it follows that

π1(L) is contained in 〈k1〉H1 .

The previous lemma holds in a similar fashion for every other projection

πj and an appropriate modification of L.

Lemma 4.3.6. Let G and H be profinite groups and let π be the continuous

projection from G×H onto H. Suppose that S is a abstract subgroup of G×H

such that π(S) = {e}, then π(S) = {e}.
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Proof. By Remark 4.3.4, π(S) ⊆ π(S) = {e} = {e}.

We are now ready for the proof of Theorem 4.1.2.

Proof of Theorem 4.1.2. Let F = Fd be the free profinite group on d

generators x1, . . . , xd. By the hypothesis, to show that lr(G1 × . . .×Gn) ≤ d,

it is sufficient to construct an open d-generated subgroup K ≤o H1× . . .×Hn

for every Hi as in the hypotheses. Let Hi = 〈hi1, . . . , hid〉 and choose profinite

presentations Ri → F
ϕi−→ Hi for Hi, i = 1, . . . , n. Set hk = (h1k, . . . , hnk), for

k ∈ d, and K = 〈hk|1 ≤ k ≤ d〉, clearly K is a d-generated closed subgroup of

H = H1 × . . .×Hn and K is a subdirect product of H. The rest of the proof

is devoted to show that K is open in H. To this end, it sufficient to produce

an open subgroup Ki of Hi such that {e} × . . .× {e} ×Ki × {e} × . . .× {e}

is contained in K for every coordinate i. Without loss of generality, modulo

renaming the coordinates, we can suppose i = 1. In the rest of this proof we

will use repeatedly the following fact.

Claim: For every 2 ≤ j ≤ d, the image of R1Rj in H1 is an open normal

subgroup of H1.

Proof of Claim: By hypothesis, R1 6= Rj. Moreover, F/R1
∼= H1 and F/Rj

∼=

Hj are just infinite groups and therefore R1 is not contained and does not

contain Rj. Hence R1Rj/R1 is a non-trivial closed normal subgroup of F/R1
∼=

H1 and, since H1 is just infinite, the Claim follows.

For i ∈ n, let πi be the continuous projection of H onto Hi. By the Claim

and by Lemma 4.3.2, there exists a1 ∈ H1 such that the image of R1R2 in H1

is not contained in CH1(a1). Since K is a subdirect product of H, there exist

l
(1)
i ∈ Hi, for i = 2, . . . , n, such that the n-tuple (a1, l

(1)
2 , . . . , l

(1)
n ) belongs to

K.

By the Claim and by the choice of the element a1, there exists a word

w2 = w2(x1, . . . , xd) ∈ R1R2 such that w2 /∈ R1 and w2(h11, . . . , h1d) does not
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belong to CH1(a1). By the choice of w2, the commutator

c1 = [w2(h1, . . . , hd), (a1, l
(1)
2 , . . . , l(1)n )] = ([w2(h11, . . . , h1d), a1], e, l

′
3, . . . , l

′
n)

belongs to K, where l′j = [w2(hj1, . . . , hjd), l
(1)
j ] for j = 3, . . . , n and the first

coordinate in non-trivial. Set

K(2) = 〈c(h1,t2,...,tn)1 | h1 ∈ H1, (h1, t2, . . . , tn) ∈ K〉.

By Lemma 4.3.5 and the choice of w2 and a1, K
(2) is contained in K and

π1(K
(2)) = 〈[w2(h11, . . . , h1d), a1]〉H1 is a non-trivial closed normal subgroup

of the just infinite group H1. Therefore π1(K
(2)) is open in H1 and, by

Lemma 4.3.6, we have π2(K
(2)) = {e}.

Let 2 ≤ i < n and suppose we defined a subgroup K(i) of H contained

in K such that π1(K
(i)) is open in H1 and πj(K

(i)) = {e}, for j = 2, . . . , i.

We are going to produce a subgroup K(i+1) of H contained in K such that

π1(K
(i+1)) is open in H1 and πj(K

(i+1)) = {e}, for j = 2, . . . , i+ 1.

We remind the reader that ϕ1 : F → H1 is the epimorphism used in the

chosen presentation of H1. Notice that ϕ1(R1Ri+1) ∩ π1(K(i)) is a non-trivial

open subgroup of π1(K
(i)). By Lemma 4.3.2, there exists ai ∈ π1(K(i)) such

that ϕ1(R1Ri+1) ∩ π1(K(i)) is not contained in Cπ1(K(i))(ai) and there exist

l
(i)
j ∈ Hj, for j = i + 1, . . . , n, such that the n-tuple (ai, e, . . . , e, l

(i)
i+1, . . . , l

(i)
n )

belongs to K(i) ≤ K.

By the Claim and by the choice of the element ai, there exists a word

wi+1 = wi+1(x1, . . . , xd) ∈ R1Ri+1 such that wi+1 /∈ R1 and wi+1(h11, . . . , h1d)

does not belong to Cπ1(K(i))(ai). By the choice of wi+1, the commutator

ci = [wi+1(h1, . . . , hd), (ai, e, . . . , e, l
(i)
i+1, . . . , l

(i)
n )] =

= ([wi+1(h11, . . . , h1d), ai], e, . . . , e, l
′
i+2, . . . , l

′
n)

belongs to K, where l′j = [wi+1(hj1, . . . , hjd), l
(i)
j ] for j = i + 2, . . . , n and the

first coordinate in non-trivial. Define the subgroup

K(i+1) = 〈c(h1,t2,...,tn)i | h1 ∈ H1, (h1, t2, . . . , tn) ∈ K〉.
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By Lemma 4.3.5 and the choice of wi+1 and ai, K
(i+1) is contained in K.

Moreover, π1(K
(i+1)) is open in H1 and, by construction and Lemma 4.3.6,

πj(K
(i+1)) = {e} for j = 2, . . . , i+ 1.

By inductive process, the subgroup K(n) is contained in K, π1(K
(n)) is

open in H1 and πj(K
(n)) = {e} for j = 2, . . . , n.

It follows that K is open. This concludes the proof.

Theorem 4.1.2 can be applied to infinitely iterated exponentiations of type

S = (Sk ≤ Sym(mk))k∈N where, for i, j ∈ N, i 6= j, the permutation groups

Si and Sj are non-isomorphic and the sequence S satisfies the hypotheses of

Theorem 4.1.1.

4.4 Finite presentability of IIEs

We start with by recalling the definition of finite topological presentability.

Let G be a profinite group, recall that d(G) denotes the minimal size of a

subset of G which generates a dense subgroup of G.

Definition 4.4.1. Let N be a closed normal subgroup of the profinite group

G and let R be a subset of N , we say that N is (topologically) normally

generated in G by R if the G-conjugates of the elements of R generate a

dense subgroup of N .

Definition 4.4.2. Let G be a topologically d-generated profinite group. We

can define a continuous epimorphism F → G from the free profinite group

on d generators onto G; the kernel of this epimorphism is a closed normal

subgroup R of F . Let S be a set of topological generators for F and let R

be topologically normally generated by a subset R of R, then these give us a

profinite presentation of G and we write G = 〈S|R〉. We say that a finitely

generated profinite group G is topologically finitely presentable if there

exists a presentation G = 〈S|R〉 of G such that S and R are finite.
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The following lemma is an application of [22, Theorem 3] and it will be

used in the proof of Theorem 4.1.4.

Lemma 4.4.3. Let S = (Sk)k∈N be a sequence of finite perfect groups. Suppose

that
∏

n∈NM(Sn) is not topologically finitely generated. Then the sequence

(d(M(Ŝn)))n∈N is unbounded.

Proof. By [22, Theorem 3], if A is a perfect group and B is a perfect permuta-

tion group, then M(AoB) ∼= M(A)×M(B). Therefore M(Ŝn) =
∏n

k=1M(Sk),

the claim follows.

We will now use Lemma 4.4.3 to prove Theorem 4.1.4.

Proof of Theorem 4.1.4. Let G be an infinitely iterated wreath product

group of type S. If G is not topologically finitely generated, then G is not

finitely presentable. Now suppose that G is d-generated. Let F = F̂d be

the profinite free group of rank d, ϕ : F → G a continuous epimorphism,

R = kerϕ and let N be an open normal subgroup of F . Now, NR is an

open normal subgroup of F that contains R, thus F/NR is isomorphic to a

continuous quotient of G. By Lemma 1.2.5, the only open normal subgroups of

G are kernels of the inverse limit projections from G to Gn for some integer n.

Therefore, any continuous quotient of G is isomorphic, as an abstract group,

to an iterated wreath product.

The number of relations of G in the chosen presentation is the (possibly

infinite) number r(G) of normal generators for R as a subgroup of F . The

quotient R/[R,R] of R is abelian and R/[F,R] is a quotient of the latter, hence

r(G) ≥ d(R/[R,R]) ≥ d(R/[F,R]).

Set M = [F,NR]. The group R/(M ∩ R) is a quotient of R/[F,R], hence

d(R/[F,R]) is at greater than d(R/(M ∩R)).
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M ∩R
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[F,R]

oo

oo

∼= G

Gn
∼=

Figure 4.1: Subgroups in Theorem 4.1.4.

On the other hand, the group R/(M ∩ R) is isomorphic to NR/M and

NR/M = NR/[F,NR] is the Schur multiplier of an iterated wreath product.

Therefore r(G) ≥ d(NR/[F,NR]). By Lemma 4.4.3 and by hypothesis, the

last quantity is unbounded as N ranges between all open normal subgroups of

F . Thus G cannot be finitely presentable.

Remark 4.4.4. A sequence of finite non-abelian simple groups (Sk)k∈N such that

a fixed prime p divides M(Sn) for infinitely many n satisfies the hypotheses

of Theorem 4.1.4. Let C be the constant sequence (Alt(36) ≤ Sym(36))k∈N,

then every infinitely iterated wreath product of type C is finitely generated by

[21, Theorem 1], but it is not finitely presentable by Theorem 4.1.4. In fact

M(Alt(36)) has order two.

Looking at the tables of the ATLAS ([6]), we can see that roughly half of

the finite non-abelian simple groups have trivial Schur multiplier. On the other

hand, if S is a finite non-abelian simple group with non-trivial Schur multiplier

and S is not a Chevalley group PSLn(q) or a Steinberg group PSUn(q), with

n ≥ 2 and q power of a prime, then |M(S)| is divisible by 2 or 3 (possibly
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both)1. Therefore we can apply Theorem 4.1.4 to all sequences S which con-

tain infinitely many finite non-abelian simple groups with non-trivial Schur

multiplier and not isomorphic to PSLn(q) or PSUn(q).

We believe that no generalised Wilson group is finitely presentable, but we

do not have a proof of this general statement.

Conjecture 2. Every generalised Wilson group is not finitely presentable.

1The Schur multiplier of PSLn(q) is cyclic of order gcd(n, q−1) and the Schur multiplier
of PSUn(q) is cyclic of order gcd(n, q+ 1). Thus there are cases where the Schur multiplier
of PSLn(q) and PSUn(q) is divisible by 2 or 3, but we omitted these to keep the exposition
simple.
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Chapter 5

Embedding theorems for IIEs

The next chapter is devoted to the study of two properties: self-similarity and

embeddability of specific profinite groups in infinitely iterated exponentiations.

The results in Section 5.3 are joint work with Benjamin Klopsch.

5.1 Introduction

Let (mk)k∈N be a sequence of positive integers such that mk ≥ 2 for all k.

Throughout this chapter we denote by S a sequence of finite transitive permu-

tation groups (Sk ≤ Sym(mk))k∈N such that each Sk is a non-abelian simple

as an abstract group.

In Section 5.2 we study embedding of finitely generated profinite groups

with specified continuous composition factors in IIEs. The following is the

first main result of [32].

Theorem 5.1.1. ([32, Theorem A]) There exists a hereditarily just infinite

profinite group in which every countably based profinite group can be embedded.

Our first result is a generalisation of the previous theorem to finitely gen-

erated profinite groups with restricted composition factors.

Definition 5.1.2. Let G be a profinite group. A composition series of G

is a descending chain of closed subnormal subgroups (Gn)n∈N, with Gn+1 CGn
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for n ∈ N,
⋂
n∈NGn = {e} and such that Gn/Gn+1 is finite and simple for

every n. The quotients Gn/Gn+1 are called the composition factors of G.

For a finitely generated profinite group G it is possible to use the Jordan-

Hölder Theorem for finite groups to show that the multiset of composition

factors of G is countable and “unique” (intended in the same sense as for

finite groups).

Theorem 5.1.3. Let G be a finitely generated profinite group. Let X =

{Tn|n ∈ N} be the set of composition factors of G. Then there exists a sequence

S = {Sk ≤ Sym(|Sk|)}k∈N of permutation groups Sk ∈ X , each Sk acting on

itself by right multiplication, such that the infinitely iterated exponentiation of

type S contains a closed subgroup isomorphic to G.

Notice that the IIE constructed in the proof of Theorem 5.1.3 depends on

the profinite group G we start with. It would be interesting, for any fixed

set of composition factors X , to construct a “universal” infinitely iterated

exponentiation E with set of composition factors X such that every finitely

generated profinite group with composition factors in X can be embedded in

E. We do not know if this is the case.

Incidentally, to prove Theorem 5.1.3, we found a new way to embed an

iterated permutational wreath product in an iterated exponentiation of per-

mutation groups.

In Section 5.3 we find sufficient conditions on a sequence S of finite non-

abelian simple permutation groups for the infinitely iterated exponentiation

of type S to have a proper closed subgroup isomorphic to itself, i.e. self-

embeddable. In the proofs of Section 5.3 it will be handy to have a way of

saying when a permutation group is “embedded” in another.

Definition 5.1.4. Let G ≤ Sym(m) and H ≤ Sym(n) be permutation groups

with n ≤ m. We say that H a sub-permutation group of G if there exist
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I ⊆ m and H ′ ≤ G such that |I| = n, H ′ fixes I setwise and H ≤ Sym(n)

and H ′ ≤ Sym(I) are equivalent as permutation groups.

We would like to point out that, in the previous definition, H ′ does not

indicate the derived subgroup of H. Note that in the previous definition H ′

does not have to fix the points outside the subset I.

Example 5.1.1. With the notation of the previous definition, the group H =

〈(1 2)〉 ≤ Sym(2) is a sub-permutation group of G = 〈(1 2)(3 4)〉 ≤ Sym(4)

with I = {1, 2} ⊂ {1, 2, 3, 4} and H ′ = G.

Our second theorem of this chapter is the following.

Theorem 5.1.5. Let S = {Sk ≤ Sym(mk)}k∈N be a sequence of permuta-

tion groups. Suppose that there exist a fixed natural number N such that for

any k ≥ N , there are infinitely many j ∈ N such that Sk ≤ Sym(mk) is a

sub-permutation group of Sj ≤ Sym(mj). Let G be the infinitely iterated ex-

ponentiation of type S. Then there exists a proper closed subgroup H of G

isomorphic to G. In particular, the infinitely iterated exponentiation of type S

is self-similar.

Moreover, we prove that the conditions of Theorem 5.1.5 are also necessary

for the IIE of type a sequence made of finite minimal simple permutation

groups to admit a proper closed subgroup isomorphic to the whole group (see

Proposition 5.3.4).

5.2 Embedding of finitely generated profinite

groups with restricted composition factors

in IIEs

Let G be a finitely generated profinite group and let X = {Tn|n ∈ N} be

the countable set of composition factors of G. Repeated applications of The-

orem 1.2.3 and a standard compactness argument yield that there exist a
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function σG : N→ N and a continuous injective homomorphism

G ↪−−→ W (σG,X ) = lim←−
n∈N

TσG(n) o . . . o TσG(1), (5.2.1)

where each TσG(n) acts on itself by right multiplication.

The group W (σG,X ) is the infinitely iterated permutational wreath prod-

uct of type {TσG(n) ≤ Sym(|TσG(n)|)}n∈N. The function σG “keeps track” of

the order in which the groups of X appear in W (σG,X ).

By (5.2.1), to prove that a finitely generated profinite group with set of

composition factors X can be embedded as a closed subgroup of an infinitely

iterated exponentiation of a sequence of X -groups, it will suffice to show that,

for any function σ : N → N, W (σ,X ) is isomorphic to a closed subgroup of

the infinitely iterated exponentiation of a sequence of X -groups.

Notation 2. Let X be a set and n be a integer. If x ∈ Xn we will write

x(i) for the i-th component of the vector x and if I = {i1, . . . , im} ⊂ n with

i1 < . . . < im is a subset of indices we will write

x(I) = (xi1 , . . . , xim)

for the m-tuple of elements of the vector x in the I-positions. Let T be a

group and I = {i1, . . . , im} be a subset of n with i1 < . . . < im. We will write

T n(I) = {(x1, . . . , xn) ∈ T n | ∀i /∈ I xi = e and ∀j ∈ I xj ∈ T}

for the subgroup of T n with elements of T in the I-positions and the identity

element everywhere else. We will also write

diag(T n(I)) = {(x1, . . . , xn) ∈ T n(I) | ∀j, k ∈ I xj = xk} .

Notice that if T ≤ Sym(l) is a permutation group and I = {i1, . . . , im} ⊂ n

is a subset of indices, then T n(I) acts faithfully on lm. Furthermore, if we set

L = {x ∈ ln | ∀i, j ∈ I x(i) = x(j) and ∀k /∈ I x(k) = 1}, then T ≤ Sym(l) is

equivalent to diag(T n(I)) ≤ Sym(L).
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Before the proof of Theorem 5.1.3 we need to state an ancillary definition.

Let G ≤ Sym(n) be a permutation group and fix r ∈ n. We can define an

action of G on the subsets of n of size r by setting, for J ⊂ n with |J | = r

and g ∈ G, Jg = {jg | j ∈ J}. It is easy to check that this is an action of G

and in general this is not faithful.

Definition 5.2.1. Let G ≤ Sym(m) and H ≤ Sym(n) be a permutation groups

with n ≤ m. Consider the action of G on the subsets of {1, . . . ,m} defined

for J ⊆ {1, . . . ,m} and g ∈ G by Jg = {jg | j ∈ J}. We say that H is

P-embedded in G if there exists a collection of subsets I of {1, . . . ,m} such

that

(1) I = n and

(2) for all J1, J2 ∈ I, |J1| = |J2| and J1 ∩ J2 = ∅;

and there exists a subgroup and H ′ of G such that

(3) I is H ′-invariant,

(4) the action of H ′ on I is faithful;

(5) H ′|I ≤ Sym(I) is equivalent to H ≤ Sym(n).

The first four conditions of the previous definition ensure that the action

defined by Jg = {jg | j ∈ J} for J ∈ I and h ∈ H ′ makes H ′|I ≤ Sym(I) a

permutation group. If we take r = 1 in the previous definition we obtain the

definition of sub-permutation group given in the introduction of this chapter.

The previous definition seems rather technical, but the fact that H ≤ Sym(n)

is P-embedded in G ≤ Sym(m) just means that H acts on some subsets of m

the same way that it acts on n.

Example 5.2.1. Consider the permutation group V = 〈(1 2)(3 4), (1 3)(2 4)〉

acting on {1, 2, 3, 4} (the Klein group). Then H = 〈(1 2)(3 4)〉 ≤ Sym(4) is
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a sub-permutation group of V ≤ Sym(4), in fact H ′ = 〈(1 2)(3 4)〉 ≤ V is

isomorphic to H and this together with I = {1, 2, 3, 4} satisfy the required

properties.

On the other hand H ≤ Sym(4) is also P-embedded in V ≤ Sym(4).

Consider the set I = {{1, 3}, {1, 4}, {2, 3}, {2, 4}} ⊂ 2{1,2,3,4} and the subgroup

H ′ as before, then H ′|I ≤ Sym(I) is equivalent to H ≤ Sym(4).

We would like to point out that if a permutation group H ≤ Sym(n) is

P-embedded in another permutation group G ≤ Sym(m), then there exists an

embedding of H into G.

Notation 3. Let S = {Sk ≤ Sym(mk)}k∈N be a sequence of permutation

groups and let S0 ≤ Sym(m0) be a fixed permutation group. Define inductively

the following sets A1 = m1 and An+1 = mn+1 × An for n ∈ N. Put{
W1 = S1 ≤ Sym(A1)

Wn+1 = Sn+1 oWn ≤ Sym(An+1) for n ∈ N

The permutation group Wn ≤ Sym(An) is the n-th iterated permutational

wreath product of type S. Define inductively the following sets B0 = m0 and

Bn = mn
bn−1 for n ∈ N. Put{

E0 = S1 ≤ Sym(b0)

En = Sn o○En−1 ≤ Sym(Bn) for n ∈ N

The permutation group En ≤ Sym(Bn) is the (n+1)-th iterated exponentiation

of type {S0 ≤ Sym(m0), S1 ≤ Sym(m1), S2 ≤ Sym(m2), . . .}.

The proof of Theorem 5.1.3 is based on the following proposition.

Proposition 5.2.2. Let S = {Sk ≤ Sym(mk)}k∈N be a sequence of permu-

tation groups and let S0 ≤ Sym(m0) be a fixed permutation group. Then

the n-th iterated permutational wreath product of type S is P-embedded in the

(n+1)-th iterated exponentiation of type {S0 ≤ Sym(m0), S1 ≤ Sym(m1), S2 ≤

Sym(m2), . . .} for all n ∈ N.
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Proof. We will use Notation 3. Set |An| = an and |Bn| = bn for all n. We will

prove the proposition by induction on n.

For i ∈ A1, consider the following subset of B1 = m1
m0 ,

Z(i) = {x ∈ B1 | x(1) = i}.

It is clear that |Z(i)| = |Z(j)| and Z(i) ∩ Z(j) = ∅ for all i, j ∈ A1. Set

I1 = {Z(i) | i ∈ A1}, then |I1| = a1. Define a subgroup of E1 by setting

W ′
1 = {(σ, e, . . . , e)b0 | σ ∈ S1}. It is clear I1 is W ′

1-invariant. Consider the

maps

ϕ1 : W ′
1 −→ W1

(σ, e . . . , e)b0 7−→ σ
and

f1 : A1 −→ I1
i 7−→ Z(i)

.

Then clearly ϕ1 is an isomorphism and f1 is a bijection. Moreover, f1(i
σ) =

f1(i)
ϕ1(σ) for all i ∈ A1 and σ ∈ W1. Therefore (W ′

1)|I1 ≤ Sym(I1) is equivalent

to W1 ≤ Sym(A1) and W1 is P-embedded in E1.

Suppose by inductive hypothesis that there exist a subgroup W ′
n of En,

a subset In of 2Bn such that |In| = an, |Z1| = |Z2| and Z1 ∩ Z2 = ∅ for all

Z1, Z2 ∈ In, In is W ′
n-invariant and (W ′

n)|In ≤ Sym(In) is equivalent to Wn ≤

Sym(An) via an isomorphism ϕn : W ′
n → Wn and a bijection fn : An → In

satisfying fn(aϕn(g)) = fn(a)g for all a ∈ An and g ∈ W ′
n.

We are now going to prove that Wn+1 is P-embedded in En+1. Remember

Notation 2 and define the following subgroup of Sbnn+1:

(Sann+1)
′ =

∏
Z∈In

diag(Sbn(Z)).

Define the subgroup W ′
n+1 = (Sann+1)

′ ·W ′
n of En+1. We will now show that

W ′
n+1 is isomorphic to Wn+1. Remember that In = {fn(1), . . . , fn(an)}. For

all i ∈ an, fix an element zi ∈ fn(i). Then there exists a permutation ρ of

{1, . . . , an} such that zρ(1) < . . . < zρ(n). Set Z = {zρ(1), . . . , zρ(n)}. Remem-

bering Notation 2, define the following map

ϕn+1 : W ′
n+1 = (Sann+1)

′ ·W ′
n −→ Wn+1 = Sann+1 ·Wn

g · h 7−→ g(Z) · ϕn(h)
.
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The restriction of ϕn+1 to (Sann+1)
′ is clearly an isomorphism from (Sann+1)

′ to

Sann+1 by the definition of (Sann+1)
′ and it does not depend on the choice of the

zi’s. Furthermore, by induction |Wn| = |W ′
n| and the size of the image of W ′

n+1

via ϕn+1 is at least |(Sann+1)
′| · |W ′

n|, which is equal to the size of Wn+1. To prove

that ϕn+1 is an isomorphism it is now sufficient to show that

ϕn+1(g1 · h1 · g2 · h2) = ϕn+1(g1 · h1) · ϕn+1(g2 · h2) (5.2.2)

for all g
1
, g

2
∈ (Sann+1)

′ and all h1, h2 ∈ W ′
n. Simplifying (5.2.2) yields that we

just have to show that (
gh
)

(Z) = g(Z)ϕn(h)

for all g ∈ (Sann+1)
′ and h ∈ W ′

n. By inductive hypothesis Wn ≤ Sym(An) is

equivalent to (W ′
n)|In ≤ Sym(In), hence the previous equality is satisfied and

the map ϕn+1 is an isomorphism.

We will now define a set In+1 ⊆ 2Bn+1 . For x ∈mn+1 and y ∈ An, define

the following subset of Bn+1 = mn+1
bn :

Z(x, y) =

{
x ∈mn+1

bn

∣∣∣∣ ∀i ∈ fn(y), x(i) = x and ∀y 6= l ∈ An,
∃u, v ∈ fn(l) such that x(u) 6= x(v)

}
.

The element y ∈ An corresponds to the set fn(y) ⊂ Bn and Z(x, y) is the

set of the bn-tuples of mn+1
bn that have the fn(y)-components all equal to x

and the fn(y′)-components not all equal for y′ 6= y. By inductive hypothesis

the elements of In are disjoint, hence Z(x, y) is well-defined for all x and y.

Again by inductive hypothesis, |fn(i)| = |fn(j)| for i, j ∈ An and it follows

that |Z(x, y)| is constant for all x and y. By definition the Z(x, y)’s are also

pair-wise disjoint. Set In+1 = {Z(x, y) | x ∈ mn+1, y ∈ An}. The fact that

the Z(x, y)’s are disjoint yields that |In+1| = an ·mn+1 = an+1.

Consider elements g ∈ (Sann+1)
′ and h ∈ W ′

n. By construction, for every

i ∈ an and every j ∈ fn(i) there exists gi ∈ Sn+1 such that g(j) = gi.

Therefore In+1 is (Sann+1)
′-invariant. Moreover, In is W ′

n-invariant by induction

and, by definition of product action, In+1 is also W ′
n-invariant.

82



All that is left to prove is that (W ′
n+1)|In+1 ≤ Sym(In+1) is equivalent to

Wn+1 ≤ Sym(An+1). Define the function fn+1 from An+1 = mn+1 × An to

In+1 by fn+1((x, y)) = Z(x, y) for all x ∈mn+1 and y ∈ An. We are going to

show that

fn+1((x, y)ϕn+1(g·h)) = fn+1((x, y))g·h (5.2.3)

for every gh ∈ W ′
n+1 and x ∈mn+1 and y ∈ An. Fix g ∈ (Sann+1)

′ and h ∈ W ′
n.

By construction of (Sann+1)
′, for every i ∈ an and every j ∈ fn(i) there exists

gi ∈ Sn+1 such that g(j) = gi. In particular, g(zi) = gi.

By definition of ϕn+1 and the definition of permutational wreath action,

the left-hand side of (5.2.3) is equal to fn+1((x
g(zy), yϕn(h))) = Z(xg(zy), yϕn(h)).

Pick x ∈ Z(x, y). By definition of Z(x, y), for every i ∈ fn(y) we have

x(i) = x and thus, for every j ∈ fn(y)h = fn(yϕn(h)) we have xgh(j) =

xgy = xg(zy). Again by definition of Z(x, y), for every y 6= l ∈ An there

exist u, v ∈ fn(l) such that x(u) 6= x(v), therefore xgh(uh) 6= xgh(vh) with

uh, vh ∈ fn(l)h = fn(lϕn(h)) and yϕn(h) 6= lϕn(h). This shows that xgh be-

longs to Z(xg(zy), yϕn(h)) and Z(x, y)gh ⊆ Z(xg(zy), yϕn(h)). The proof of the

opposite inclusion is exactly the same and will be omitted. Thus Z(x, y)gh =

Z(xg(zy), yϕn(h)). This concludes the proof of the proposition.

In Proposition 5.2.2 we proved more that what is needed for the proof of

Theorem 5.1.3. Furthermore, Proposition 5.2.2 is interesting in itself because it

provides an embedding of iterated permutational wreath products into iterated

exponentiations, a fact that did not seem to be known before. We are now

ready for the proof of Theorem 5.1.3.

Proof of Theorem 5.1.3. Let G be a finitely generated profinite group and

let X = {Tn | n ∈ N} be the set of composition factors of G. By (5.2.1), there

exists a function σ : N → N such that G can be embedded in the infinitely

iterated permutational wreath product W (σ,X ). To prove the theorem it is
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then sufficient to find an infinitely iterated permutational wreath product in

which W (σ,X ) can be embedded.

Consider the new sequence of finite simple permutation groups S = (Sn ≤

Sym(|Sn|))n∈N defined by Sn = Tσ(n) for n ≥ 1 with each group acting

on itself by right multiplication. Put S0 = T1 and consider the permuta-

tion group S0 ≤ Sym(|S0|) with S0 acting on itself by right multiplication.

Let E(σ,X ) = lim←−n≥0 S̃n be the infinitely iterated exponentiation of type

{S0 ≤ Sym(|S0|), S1 ≤ Sym(|S1|), S2 ≤ Sym(|S2|), . . .}. By Proposition 5.2.2

together with Notation 3, the group Wn can be embedded into En for n ∈ N.

Therefore, by Proposition 1.4.8, the profinite group W = lim←−Wn = W (σ,X )

can be embedded in E(σ,X ) = lim←−En.

Remark 5.2.3. In Theorem 5.1.3 we did not exclude the possibility of some

composition factors in X being cyclic. In this case Theorem 5.1.3 still holds,

but the infinitely iterated exponentiation lim←− S̃n might be virtually pro-p.

5.3 Self-similarity of IIEs

The content of this section is joint work with Benjamin Klopsch. Since IIEs are

finitely generated, the results in Section 5.2 yield that the infinitely iterated

exponentiation of a sequence S = {Sk ≤ Sym(mk)}k∈N can be embedded in

another IIE of type the sequence S ′ = {S0 ≤ Sym(m0), S1 ≤ Sym(m1), . . .}

where S0 ≤ Sym(m0) is an arbitrary finite simple permutation group. In this

section we are going to improve the results of the previous section showing

that certain infinitely iterated exponentiation are self-similar.

In this section we will show that certain infinitely iterated exponentiations

satisfy the definition of self-similar with n = 1. The proof of Theorem 5.1.5

relies on the following two core lemmas.

Notation 4. Let f : X → Y be a function and n a natural number. We will
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write f (n) to denote the function from Xn to Y n defined by

f (n)(x1, . . . , xn) = (f(x1), . . . , f(xn))

for x1, . . . , xn ∈ X. Notice that if f is a bijection, so is f (n). If ϕ is an

isomorphism from the group G to the group H, then ϕ(n) is an isomorphism

from the group Gn to the group Hn.

Lemma 5.3.1. Let A ≤ Sym(m), A1 ≤ Sym(m1), B ≤ Sym(n) and B1 ≤

Sym(n1) be permutation groups. Suppose that A1 ≤ Sym(m1) is a sub-permu-

tation group of A ≤ Sym(m) and B1 ≤ Sym(n1) is a sub-permutation group

of B ≤ Sym(n). Then A1 o○B1 ≤ Sym(mn1
1 ) is a sub-permutation group of

A o○B ≤ Sym(mn).

Proof. By hypothesis, there exist subgroups A2 ≤ A and B2 ≤ B, subsets I ⊆

m and J ⊆ n fixed set-wise by A2 and B2 respectively, bijections f : I →m1

and g : J → n1 and isomorphisms ϕ : A2 → A1 and ψ : B2 → B1 such that

f(xa) = f(x)ϕ(a) and g(yb) = g(y)ψ(b)

for all x ∈ I, y ∈ J , a ∈ A2 and b ∈ B2. We can suppose without loss of

generality that I = m1 ⊂ m, J = n1 ⊂ n and f(x) = x for x ∈ m1 and

g(y) = y for y ∈ n1. Consider the subset of mn defined by

Γ = {x ∈mn | ∀j ∈mrm1, x(j) = 1 and ∀j ∈m1, x(j) ∈m1} .

Remember Notation 2 and define the function γ : Γ→m1
n1 by γ(x) = x(n1),

for x ∈ Γ. It is clear that γ is a bijection. Set

H = {a ∈ An | ∀j ∈mrm1, a(j) = e and ∀j ∈m1, a(j) ∈ A2},

then H is normalized by B2 in A o○B and we can form the semidirect product

H oB2. Define the homomorphism

δ : H oB2 −→ A1 o○B1

a · b 7−→ (ϕ(n)(a))(n1) · ψ(b)
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It is now easy to check that δ is an isomorphism. All that is left to prove is

that A1 o○B1 ≤ Sym(mn1
1 ) and H oB2 ≤ Sym(Γ) are equivalent. Then, by all

our assumptions,

γ(xab) = xab(n1) = (x
a
1b

1b
, . . . , x

a
n1

b

n1
b ) = (xa11 , . . . , x

an1
n1 )ψ(b) =

= (x)(n1)(ϕ
(n)(a))(n1)ψ(b) = γ(x)δ(ab)

for all x ∈ Γ, a ∈ H and b ∈ B2.

Lemma 5.3.2. Let A ≤ Sym(m), B ≤ Sym(n) and C ≤ Sym(k) be per-

mutation groups. Then the permutation group A o○C ≤ Sym(mk) is a sub-

permutation group of A o○(B o○C) ≤ Sym(m(nk)).

Proof. Set G = A o○(B o○C) ≤ Sym(m(nk)). We will first prove that C is P-

embedded in B o○C (see Definition 5.2.1). First of all, C is isomorphic to the

subgroup C ′ = {(e, . . . , e)kc | c ∈ C} of B o○C. We now need to exhibit a

subset I ⊂ 2nk
with the required properties. For l ∈ k, put

Jl = {x ∈ nk | ∀i, j ∈ k r {l} xi = xj and xi 6= xl}

and I = {Jl | l ∈ k}. It is easy to check that the Jl’s satisfy the required

properties and that (C ′)|I ≤ Sym(I) is equivalent to C ≤ Sym(k).

We are now going to define a subgroup (Ak)′ of A(nk) isomorphic to Ak.

Remember Notation 2 and consider the subgroup (Ak)′ of G given by

(Ak)′ =
∏
J∈I

diag(An
k

(J)).

Remember that I = {Jl | l ∈ k}. For l ∈ k fix an element jl ∈ Jl. Then

there exists a permutation ρ of {1, . . . , k} such that jρ(1) < . . . < jρ(k). Set

J = {jρ(1), . . . , jρ(k)} and define the map

ϕ : (Ak)′ · C ′ −→ A o○C
a · c 7−→ a(J ) · c.
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Since C is P-embedded in B o○C and by the definition of the Jl’s, it follows

that ϕ is an isomorphism and that (Ak)′ is C-invariant.

We are now going to define a subset S of m(nk). For z ∈ mk, define the

element I(z) in m(nk) by

(I(z))(i) =

{
z(l) for i ∈ Jl
1 otherwise

.

Set S = {I(z) | z ∈ mk} ⊆ m(nk). Then the map f from S to mo given by

I(z) 7→ z is clearly a bijection. By definition of (Ak)′ and I(z), we have that

S is ((Ak)′ · C ′)-invariant and

f ((I(z))a·c) = f(I(z))ϕ(a·c)

for all a ∈ (Ak)′, c ∈ C and every z ∈mk. This concludes the proof.

We will now use Lemma 5.3.1 and Lemma 5.3.2 to prove Theorem 5.1.5.

Proof of Theorem 5.1.5. By [31, Exercise 1.6.8], it is sufficient to prove that,

for every n ∈ N, S̃n is a sub-permutation group of S̃m for some m = m(n)

depending on n. We will prove this by induction on n.

For the base of the induction just observe that S̃N−1 is trivially a sub-

permutation group of itself. Let n ≥ N and suppose by inductive hypothesis

that there exists an integer m(n) such that S̃n is a sub-permutation group

of S̃m(n). By hypothesis, there exists j > m(n) such that Sn+1 is a sub-

permutation group of Sj. By Lemma 5.3.1, Sn+1 o○S̃j−1 is a sub-permutation

group of S̃j. Moreover, by iterated applications of Lemma 5.3.2, we have that

Sn+1 o○S̃j−i is a sub-permutation group of S̃j for every i = 1, . . . , j − m(n).

Now, again by Lemma 5.3.1 and by inductive hypothesis, S̃n+1 = Sn+1 o○S̃n is

a sub-permutation group of S̃j. If we set j = m(n + 1) the claim follows by

induction.

Let S ≤ Sym(m) be a fixed finite simple permutation group. Theorem 5.1.5

yields that the infinitely iterated exponentiation of type {S ≤ Sym(m)}k∈N is
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self-similar. Another sequence that satisfies the hypotheses of Theorem 5.1.5

is A = {Alt(n + 4) ≤ Sym(n + 4)}n∈N and notice that there is no pair of iso-

morphic groups in the sequence A. It seems likely that a “general” sequence of

finite simple permutation groups will satisfy the hypotheses of Theorem 5.1.5.

Two questions are now natural: does there exist an infinitely iterated ex-

ponentiation which cannot be embedded continuously as a closed subgroup of

itself? Are the hypotheses of Theorem 5.1.5 also necessary? The next lemma

shows that the answer to both questions is positive if we restrict ourselves to

finite minimal simple permutation groups.

Definition 5.3.3. A finite non-abelian simple group S is said to be minimal

if every proper subgroup of S is solvable.

In particular, a finite non-abelian minimal simple group has no proper

subgroup isomorphic to a finite non-abelian simple group.

Proposition 5.3.4. Let S = {Sk ≤ Sym(mk)}k∈N be a sequence of finite min-

imal simple permutation groups. Then the infinitely iterated exponentiation of

type S can be embedded continuously as a closed subgroup of itself if and only

if there exist a natural number N such that for all k ≥ N , the permutation

group Sk ≤ Sym(mk) is equivalent to Sj ≤ Sym(mj) for infinitely many j ∈ N.

Proof. Let G be the infinitely iterated exponentiation of type S. The “if”

implication is the content of Theorem 5.1.5. For the converse, suppose that

for every N ∈ N there exist k ≥ N such that Sk ≤ Sym(mk) is equivalent

to Sj ≤ Sym(mj) for only finitely many j ∈ N. Moreover, assume that there

exists a closed subgroup H of G such that H ∼= G. We are going to show

that H = G. Put Nl = ker(G → S̃l) and Ml = ker(H → S̃l), for l ∈ N. By

Lemma 1.2.5, the Nl’s and the Ml’s are the unique open normal subgroups of

G and H respectively. Hence, for every n ∈ N there exists m = m(n) ∈ N such

that H ∩Nn = Mm. We are going to show that n = m for infinitely many n.
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By definition of Nn and Mm, H/Mm = HNn/Nn ≤ G/Nn, thus m ≤ n by

comparing sizes. Now, fix k ∈ N. By hypothesis there exists a label n such

that the permutation group Sk ≤ Sym(mk) is equivalent to Sn ≤ Sym(mn) and

Sk ≤ Sym(mk) is not equivalent to Sl ≤ Sym(ml) for every l > n. It is easy to

see (building explicit composition series) that the set of composition factors

of G is {Sl | l ∈ N} and the set of composition factors of Nn is {Sl | l > n}.

Thus, by definition of n, the group Nn does not have any composition factor

isomorphic to Sk.

Suppose by contradiction that m < n, then Mm = H ∩ Nn ≥ Mn−1

and Mn−1 ≤ Nn. By the choice of n and the definition of Mn, there exist

A ≤c Mn−1 and B Cc A such that A/B is isomorphic to Sk. In particular,

A ≤c Nn and thus A/B is a composition factor of Nn isomorphic to Sk, a

contradiction. Therefore n = m for infinitely many n ∈ N, it follows that

HNn = G for infinitely many n. Hence H = G.

Remark 5.3.5. Finite non-abelian minimal simple groups have been classified

by Thompson in the long series of papers [26, 27]. We report here the classi-

fication for completeness. The only finite non-abelian minimal simple groups

are: PSL2(2
p) for any prime p, PSL2(3

p) for any odd prime p, PSL2(p) where

p > 3 and 5 divides p2 + 1, Sz(2p) for any odd prime p and PSL3(3).

Let P = {pn | n ∈ N} be the set of all prime numbers. In particular, the

IIE of type P = {PSL2(2
pn) ≤ Sym(2pn +1)}n∈N, with PSL2(2

pn) acting on the

projective line over F2pn , cannot be embedded as a closed subgroup of itself.
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Chapter 6

Hausdorff dimension of IIEs

In this chapter we will study a quantitative property, the Hausdorff dimen-

sion, where we are interested to estimate the size of closed subgroups of our

profinite group. In particular, we are interested in determining the Hausdorff

dimension spectrum of IIEs. We refer the reader to Section 2.3.3 for more

general details on Hausdorff dimension. This chapter is the result of joint

work with Y. Barnea.

6.1 Introduction

Hausdorff dimension in profinite groups has been widely studied, but mostly in

the past only the Hausdorff dimension of pro-p groups was considered (there

are exceptions to this). A lot has been done on pro-p groups with “small”

Hausdorff dimension spectrum such as p-adic analytic groups. What can we

say about groups with “big” Hausdorff dimension spectrum? In an unpub-

lished work of Levài and in Giannelli’s Masters thesis ([10]) it is shown that

the Hausdorff dimension spectrum of lim←−n∈NCp wr Cpn is [0, 1] with respect to

a certain power filtration (see Section 2.3.3 for details), but this is only one of

a handful of “natural” examples. Here we show that certain infinitely iterated

exponentiations have complete Hausdorff dimension spectrum with respect to

their unique maximal descending chain of open normal subgroups.
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Theorem 6.1.1. Suppose that there exists a constant A > 0 and a natural

number M such that |Sk| ≤ |Sk+1|A for all k ≥ M and let G be the infinitely

iterated exponentiation of type S = (Sk ≤ Sym(mk))k∈N. Set Nk = ker(G →

S̃k) for k ∈ N and G = {Nk}k∈N. Then, for every α ∈ [0, 1] there is a closed

subgroup Hα of G such that dimH,G(H
α) = α. In particular SpecG(G) = [0, 1].

6.2 Proof of Theorem 6.1.1

Notation 5. For a number x ∈ R we will write

bxc = max {n ∈ Z | n ≤ x} and {x} = x− bxc.

for the integer part and the fractional part of x, respectively.

Before the proof of Theorem 6.1.1 we give a few lemmas that will be used

in the proof. The following lemma is straightforward.

Lemma 6.2.1. Let G ≤ Sym(n) be a permutation group and set S be a subset

of n. Then S is G-invariant if and only if the complement of S in n is

G-invariant.

The next two lemmas are of analytical flavour.

Lemma 6.2.2. Let (mk)k∈N be a sequence of positive integers with mk ≥ 2 for

every k. Let m̃1 = m1 and m̃k+1 = mm̃k
k+1 for k ≥ 1. Then

1. for every n ∈ N, m̃n ≥ n. In particular, limn→∞ m̃n =∞;

2. lim
n→∞

m̃n−1/m̃n = 0;

3. for every positive constant C there exists N = N(C) ∈ N such that

C · m̃n−1 ≤ m̃n for every n ≥ N .

Proof. 1. By induction. We have m1 ≥ 2 ≥ 1. Suppose m̃n−1 ≥ n − 1 for

n ≥ 2, then mm̃n−1
n ≥ 2m̃n−1 ≥ 2n−1 ≥ n.
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2. Let x = m̃n−1, then

0 ≤ x

mx
n

≤ x

2x

by hypothesis. Passing to the limits we obtain the claim.

3. Let x = m̃n−1. The claim follows readily from the fact that the function

2x/x tends to infinity as x does.

The previous lemma describes the very fast growth of the function m̃n :

N→ N. The next lemma is a standard result of calculus.

Lemma 6.2.3. Let {an}n∈N and {bn}n∈N two bounded real sequences. Suppose

that {an}n∈N converges to 0, then

lim
n→∞

anbn = 0.

We are now ready for the proof of Theorem 6.1.1. Remember that, for a

sequence of integers (mk)k∈N, we write m̃1 = m1 and m̃n+1 = mm̃n
n+1 for n ∈ N.

Proof of Theorem 6.1.1. Set Nk = ker(G → S̃k) for k ∈ N and let G =

{Nk}k∈N be the unique maximal descending chain of open normal subgroups

of G. Set dimH = dimH,G. By definition, dimH({1}) = 0 and dimH(G) = 1.

To prove the theorem it will be sufficient to build subgroups Hα
n ≤ S̃n such

that Hα
n+1 projects onto Hα

n and

lim
n→∞

log |Hα
n |

log |G : Nn|
= α (6.2.1)

for every α ∈ (0, 1). Suppose that α ∈ (0, 1), then there is a sequence

(pn/qn)n∈N of positive rationals such that limn→∞ pn/qn = α and pn/qn ≥ α.

Remember Notation 2 from Chapter 5 and define c1 = m1, o1 = 1 and

Kα
2 =

⌊
p1
q1
·m1

⌋∏
i=1

Sm1
2 (i) ≤ S̃2.
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By definition of exponentiation, it is clear that Kα
2 has c2 = m

m1−
⌊
p1
q1
·c1
⌋
·o1

2 =

m
m1−

⌊
p1
q1
·m1

⌋
2 orbits on m̃2. Again an easy computation shows that each orbit

of Kα
2 has the same cardinality o2 = m

⌊
p1
q1
·c1
⌋
·o1

2 . Suppose n ≥ 2 and assume

that for j = 2, . . . , n we already defined subgroups Kα
j ≤ S̃j such that:

(1) for j = 2, . . . , n, the subgroup Kα
j has exactly cj pairwise disjoint orbits

{Oj(1), . . . , Oj(cj)} for its action on m̃j,

(2) for j = 2, . . . , n and i ∈ cj , |Oj(i)| = oj,

(3) for j = 2, . . . , n, m̃j = cj · oj and

(4) for every j = 2, . . . , n, the subset On =
⋃bpn/qn·cnc
i=1 On(i) of mn

m̃n−1 is

Kα
j -invariant.

Define a new subgroup Kα
n+1 of Sm̃n

n+1 by

Kα
n+1 =

b pnqn ·cnc∏
i=1

Sm̃n
n+1(On(i)).

By definition of exponentiation, the number of orbits of Kα
n+1 on m̃n+1 corre-

sponds to the number of possible choices for the components of mn+1
m̃n that

are not moved by Kα
n+1, that is (mn+1)

m̃n−b pnqn ·cnc·on and the size of an orbit of

Kα
n+1 on m̃n+1 will simply be

on+1 =
m̃n+1

(mn+1)
m̃n−b pnqn ·cnc·on

= (mn+1)
b pnqn ·cnc·on .

Therefore Kα
n+1 satisfies properties (1)-(3), we will prove that Kα

n+1 also sat-

isfies property (4). By definition, On+1 is Kα
n+1-invariant. Let C be the com-

plement of On in mn
m̃n−1 . By definition of Kα

n+1 and exponentiation, for any

orbit O of Kα
n+1 on mn+1

m̃n and for any c ∈ C there exist fc ∈ mn+1 such

that

O = {x ∈mn+1
m̃n | x(c) = fc for c ∈ C}.
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It follows that any orbit of Kα
n+1 on mn+1

m̃n is identified by its values in the

C-coordinates. By Lemma 6.2.1, property (4) yields that C is Kα
j -invariant for

every j = 2, . . . , n− 1 and this implies that On+1 is Kα
j -invariant. Therefore,

property (4) is satisfied by Kα
n+1.

Set Hα
2 = Kα

2 and Hα
n+1 = Hα

n ·Kα
n+1 for n ≥ 2. By property (4), it follows

that Hα
n is a subgroup of S̃n and, by definition of Hα

n , it is clear that Hα
n+1

projects onto Hα
n . Set Hα = lim←−H

α
n .

We will now work on the quantity at the numerator of (6.2.1).

log |Hα
n | = log

(
n∏
k=2

|Sk|
⌊

pk−1
qk−1

·ck−1

⌋
·ok−1

)
=

n∑
k=2

⌊
pk−1
qk−1

· ck−1
⌋
· ok−1 · log |Sk|.

Set

ak =

(
pk−1
qk−1

m̃k−1 log |Sk|
)
k≥2

and bk =

(⌊
pk−1
qk−1

· ck−1
⌋
· ok−1 · log |Sk|

)
k≥2

,

then
∑n

k=2 bk is less than
∑n

k=2 ak for every n ≥ 2 and (bn/an)n≥2 tends to 1.

We shall now prove that for every real constant C > 0 there exists N(C) ∈ N

such that Cak−1 ≤ ak for every k ≥ N(C). Fix ε > 0, since (pn/qn)n∈N is

convergent, we have that there exists N2 ∈ N such that pn−1qn/qn−1pn ≤ 1 + ε

for every n ≥ N2. By Lemma 6.2.2 and the hypothesis on |Sk|, there exists

N1 ∈ N such that

Cak−1 = C
pk−2
qk−2

m̃k−2 log |Sk−1| = C

(
qk−1
pk−1

pk−2
qk−2

)
pk−1
qk−1

m̃k−2 log |Sk−1|

≤ C(1 + ε)Am̃k−2
pk−1
qk−1

log |Sk| ≤ m̃k−1
pk−1
qk−1

log |Sk| = ak (6.2.2)

for every k ≥ N(C) = max{N1, N2,M}. Next, we will use (6.2.2) to show by

induction on n that
∑n

k=N(2) ak ≤ 2an for n ≥ N(2). It is clear that aN(2) ≤

2aN(2). Suppose by inductive hypothesis that
∑n−1

k=N(2) ak ≤ 2an−1, then∑n
k=N(2) ak ≤ 2an−1 + an ≤ 2an, for n ≥ N(2). Summing up we can now show

that
∑n

k=2 ak ≤ 3an for all n large enough. By (6.2.2), (ak)k≥2 is increasing and

N(2)aN(2) ≤ N(2)an−1 ≤ an for all n ≥ max{N(2), N(N(2))}. Therefore we
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have
∑n

k=2 ak ≤ N(2)aN(2) + 2an ≤ 3an for every n ≥ max{N(2), N(N(2))}.

The above discussion yields

0 ≤ 1

an
·
n−1∑
k=2

ak ≤
3an−1
an

≤ 3an−1
an

for every n large enough. Hence, by Lemma 6.2.2 and Lemma 6.2.3, it follows

that

lim
n→∞

an−1
an

= lim
n→∞

m̃n−2 · pn−2

qn−2
· log |Sn−1|

m̃n−1 · pn−1

qn−1
· log |Sn|

= lim
n→∞

m̃n−2

m̃n−1
· dn = 0

where {dn}n∈N is a bounded sequence by hypothesis. In particular, we have

0 ≤ 1

bn

n−1∑
k=2

bk ·
bn
an
≤ 1

an
·
n−1∑
k=2

ak ≤
3an−1
an

and, since (bn/an)n≥2 tends to 1 for n that tends to infinity, it follows that

lim
n→∞

n∑
k=2

bk
bn

= 1. (6.2.3)

Set m̃0 = 1. It possible to reproduce exactly the above steps with the sequence

(m̃k log |Sk+1|)k≥0 instead of (ak)k≥2 to show that

lim
n→∞

n∑
k=1

m̃k log |Sk+1|
m̃n log |Sn+1|

= 1. (6.2.4)

Next, we will deal with the denominator of (6.2.1). We notice that⌊
pn
qn
· cn
⌋
· on

m̃n

=

pn
qn
· cn · on −

{
pn
qn
· cn
}
· on

m̃n

=
pn
qn

+

{
pn
qn
· cn
}
· on

m̃n

and, by definition of cn and Lemma 6.2.2, cn ≥ m̃α
n ≥ nα which tends to

infinity as n does. Moreover, remember that on/m̃n = 1/cn. Therefore

lim
n→∞

⌊
pn
qn
· cn
⌋
· on

m̃n

= lim
n→∞

pn
qn

= α. (6.2.5)
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Remember that that we set m̃0 = 1. Let us now summarize everything in the

computation of (6.2.1):

log |Hα
n |

log |G : Nn|
=

n∑
k=2

⌊
pk−1

qk−1
· ck−1

⌋
· ok−1 · log |Sk|

n∑
k=1

m̃k−1 · log |Sk|
=

=

1
bn
·

n∑
k=2

bk

1/(m̃n−1 · log |Sn|) ·
n∑
k=1

m̃k−1 · log |Sk|
·

⌊
pn−1

qn−1
· cn−1

⌋
· on−1 · log |Sn|

m̃n−1 · log |Sn|
.

By (6.2.3) and (6.2.4), the first factor of the product tends to 1 for n that

tends to infinity and, by (6.2.5), the limit of the second factor is α for n that

tends to infinity. Therefore dimH(Hα) = α, as expected.
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Appendix A

On Subgroup growth of IIEs

A.1 Introduction

The results in this section are mainly contained in the excellent book on sub-

group growth [15] by Lubotzky and Segal.

Definition A.1.1. Let G be a profinite group and n ∈ N. Define the number

sn(G) = |{H ≤o G | |G : H| ≤ n}|.

Let f : N→ R be a function. We say that the profinite group G has subgroup

growth type f if there exist a, b ∈ R such that a, b > 0 and{
sn(G) ≤ f(n)a for every n

sn(G) ≥ f(n)b for infinitely many n
.

The subgroup growth type of a profinite group G is the “best possible

upper bound” for the function sn(G) : N→ N.

We have already seen in Lemma 2.3.8 that the subgroup growth type of

a finitely generated profinite group G is at most n · (n!)d(G)−1. This bound is

best possible as shown in [15, Chapter 2], in fact, the free profinite group on

d generators has subgroup growth type n · (n!)d(G)−1.

Is it possible to classify the profinite groups that have specific a type of

subgroup growth function? This question led to a beautiful theory, developed

by many mathematicians over the past thirty years. One of the main results
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of this theory is the characterization of the profinite groups with polynomial

subgroup growth. We say that a profinite group G has polynomial subgroup

growth if there exists c ∈ N such that sn(G) ≤ nc for every n ∈ N. The rank

of a profinite group G is the integer defined by:

rk(G) = sup{d(H) | H ≤o G}.

Theorem A.1.2. ([15, Theorem 5.1]) Let G be a finitely generated profinite

group. Then G has polynomial subgroup growth if and only if G is virtually

soluble of finite rank.

Another question that we might ask is whether all the positive and increas-

ing functions from N to R are the subgroup growth type of a certain profinite

group. This question is known as the “Subgroup Growth Gap Problem”.

The answer is substantially “yes” and we are going to cite from [15, Chapter

13.3] some definitions and lemmas that will be used in Chapter 5.

Definition A.1.3. Let r, t be positive constants. Let (Sk)k∈N be a sequence of

finite groups satisfying the following conditions for all k:

N.1 |Sk| ≥ |Sk−1|;

N.2 rk(Sk) ≤ r;

N.3 Sk contains an elementary abelian subgroup Ek such that |Sk| ≤ |Ek|t;

N.4 if µk is the minimal index of any proper subgroup in Sk, then µk ≥ µk−1

and |Sk| ≤ µtk.

N.5 and limn→∞ µk =∞.

A sequence S satisfying conditions N.1-N.5 above is said nice with constants

r and t.
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Suppose that each Sk has a transitive and faithful action on mk points, so

we can embed Sk as a transitive subgroup of Sym(mk). Put m̂1 = m1 and

Ŝ1 = S1, m̂k+1 = mk+1 · m̂k and Ŝk+1 = Sk+1 o Ŝk ≤ Sym(m̂k+1) for k ∈ N.

Consider the infinitely iterated permutational wreath product lim←− Ŝk.

Lemma A.1.4. ([15, Lemma 13.3.1]) Let S = (Sk ≤ Sym(mk))k∈N be a nice

sequence of permutation groups with constants r and t. If n < µk+1 then

sn(lim←− Ŝk) ≤ n2trm̂k .

Lemma A.1.5. ([15, Lemma 13.3.2]) Let S = (Sk ≤ Sym(mk))k∈N be a nice

sequence of permutation groups with constants r and t. For n = |Sk+1|2m̂k we

have sn(lim←− Ŝk) ≥ nm̂k/8t.

Therefore, for a nice sequence S = (Sk ≤ Sym(mk))k∈N of permutation

groups with constants r and t, we have that the subgroup growth type of lim←− Ŝk
is nm̂l(n) where l(n) = min{k ∈ N | n < µk+1}. Notice that, by condition N.5,

l(n) exists for every natural number n.

In [15, Chapter 13.3] the authors actually prove something more. We

will say that a function f : N → R grows gently if f is unbounded, non-

decreasing, positive and there exist a positive constants A,N ∈ R such that

f(xlog x) ≤ Af(x)

for all x ≥ N .

Theorem A.1.6. ([15, Theorem 13.3.4]) Let f : N → R be a gently growing

function. Then there exists a a nice sequence of permutation groups S = (Sk ≤

Sym(mk))k∈N such that the infinitely iterated permutational wreath product

lim←− Ŝk has subgroup grow type nf(n).

[15, Theorem 13.3.4] solves the “Subgroup Growth Gap Problem” for gen-

tly growing functions. It is possible to show, via a very different construction,

that there are no gaps also for non-gently growing functions (see [15, Chap-

ter 13.2]).
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A.2 Subgroup growth of IIEs obtained from

nice sequences

In this section we concentrate on the subgroup growth of infinitely iterated

exponentiations of type S, where S is a nice sequence of finite non-abelian

simple permutation groups. The content of this section is an easy application

of the methods of [15, Chapter 13.3]. The next result is a basic tool that will

be used in the following proofs.

Proposition A.1. ([15, Proposition 1.9.1]) Let c, r be two constants such that

(c− 1)r ≥ 2. Suppose that 1 = Gk CGk−1 C . . .CG0 = G. Put Qi = Gi−1/Gi

and suppose that µ(Qi)
c ≥ |Qi| and rk(Qi) ≤ r for all i.

Then, for every n,

sn(G) ≤ nkcr.

Remember that for a sequence S = (Sk ≤ Sym(mk))k∈N of permutation

groups we set m̃0 = 1, m̃1 = m1, S̃1 = S1, m̃k+1 = mm̃k
k+1 and S̃k+1 =

Sk+1 o○S̃k ≤ Sym(m̃k+1) for k ∈ N.

Lemma A.1. Let S = (Sk ≤ Sym(mk))k∈N be a nice sequence of permutation

groups with constants r and t. If n < µk+1 then sn(lim←− S̃k) ≤ n3trm̃k .

Proof. The proof follows the steps of [15, Lemma 13.3.1]. Using a method

very similar to the one used in the proof of Theorem 6.1.1 it is possible to

show that
k∑
i=0

m̃i < 3m̃k

for every k large enough. If i > k then, by hypothesis, µi ≥ µk+1 > n so S
m̃i−1

i

has no proper subgroup of index n or less. Therefore every subgroup of index

less to n contains S
m̃i−1

i , and hence

sn(S̃i+1) = sn(S̃i) = . . . = sn(S̃k+1).

100



Now, S̃k+1 has a subnormal series of length
∑k

i=0 m̃i < 3m̃k, whose factors Sj

satisfy conditions N.2, N.4 and N.5 of a nice sequence of groups. Applying

[15, Proposition 1.9.1], we deduce that

sn(S̃k+1) ≤ n3trm̃k .

Lemma A.2. Let S = (Sk ≤ Sym(mk))k∈N be a nice sequence of permutation

groups with constants r and t. For n = |Sk+1|2m̃k we have sn(lim←− S̃k) ≥ nm̃k/8t.

Proof. Again we follow the proof of [15, Lemma 13.3.2]. By definition of S̃k+1

and by Lemma 6.2.2, it is clear that

|S̃k+1| =
k∏
i=0

|S|m̃i

i+1 ≤ |Sk+1|
∑k

i=0 m̃i < |Sk+1|2m̃k = n.

On the other hand, by property N.3 of a nice sequence, S̃k+1 contains Sm̃k
k+1

which in turn contains the elementary abelian subgroup Em̃k
k . Suppose that

Ek = Ce
p , then, again by property N.3 of a nice sequence, it follows that

pet ≥ |Sk+1|. Moreover, Em̃k
k has at least pe

2m̃2
k/4 subgroups. Since |S̃k+1| < n,

we have that

sn(lim←− Ŝk) ≥ sn(S̃k+1) = s|S̃k+1|(S̃k+1) ≥ pe
2m̃2

k/4 ≥ |Sk+1|m
2/4t = nm̃k/8t.

Let S = (Sk ≤ Sym(mk))k∈N be a nice sequence of finite non-abelian

simple permutation groups. By Lemma A.1 and Lemma A.2, the infinitely

iterated exponentiation G of type S has subgroup growth type nm̃l(n) where

l(n) = min{t | n < µt+1}.

Next we will show that it is possible to tune the parameters of the sequence

S to archive a wide range of subgroup growth types of IIEs. Remember that

we say that a function f : N → R grows gently if f is unbounded, non-

decreasing, positive and there exist a positive constants A,N ∈ R such that

f(xlog x) ≤ Af(x) for all x ≥ N .
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Lemma A.3. ([15, Lemma 13.3.3]) Let f : N → R be a gently growing func-

tion. Then there exist constants B,C ∈ R with B,C > 0 such that for every

integer m ≥ C there exists a prime p > m with

f(p) ≥ 2m ≥ Bf(pm).

Let f : N → R be a gently growing function and let B and C be the

constants defined in the previous lemma. We will now choose a sequence of

primes {pk}k∈N as in [15, Chapter 13.3]. Let p1 ≥ max{12, C} be a prime such

that f(p1) ≥ 12. Suppose we chose the primes p1, . . . , pk−1, set mi = 1 + pi for

i ∈ k − 1 and let m = 6m̃k−1. Then take pk = p where p > m is the prime

whose existence is guaranteed by [15, Lemma 13.3.3]. Thus

f(pk) ≥ 12m̃k−1 ≥ Bf(p
6m̃k−1

k )

for every k ∈ N. Let Sk = PSL2(Fpk), then rk(Sk) = 2, µk = 1 + pk = mk and

p2k < |Sk| =
pk(p

2
k − 1)

2
< |Ek|3 < p3k,

where Ek is a subgroup of order pk. Hence P = {Pk = PSL2(Fpk) ≤ Sym(pk +

1)}k∈N is a nice sequence with constants r = 2 and t = 3.

Proposition A.2. Let f : N → R be a gently growing function and let P =

{Pk = PSL2(Fpk) ≤ Sym(pk + 1)}k∈N as above. Then the infinitely iterated

exponentiation lim←− P̃k has subgroup grow type nf(n).

This result is very similar to [15, Theorem 13.3.4], where it is shown that

the same conclusion holds for the infinitely iterated permutational wreath

product of the sequence P .

On the other hand, condition N.5 is not always satisfied by a sequence S,

i.e. by the constant sequence A = (Alt(5) ≤ Sym(5))k∈N. The study of the

subgroup growth type of the IIE of type C is closely related to the study of the

behaviour of the function sn(Alt(5)k) for k a fixed integer. The only estimates

of this quantity are as follows.
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Corollary A.1. ([15, Corollary 1.9.2]) Let S be a finite non-abelian simple

group, let k be an integer and set G = Sk. Then there exists a constant c > 0

such that

sn(G) ≤ nc·rk(G)2

for every n ∈ N.

The previous corollary gives an upper bound but this is not sharp and

it does not provide a lower bound. We strongly suspect that the subgroup

growth type of the direct power of a finite non-abelian simple group is “very

fast” but we did not carry out all the computation to confirm this.
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Appendix B

Open problems

We list here a series of problems and conjectures that could lead the author’s

future research.

Problem 1. Let S = {Sk}k∈n be a sequence of non-abelian simple transitive

subgroups of Sym(mk) such that for every k ∈ n and all i, j ∈ mk StSk
(i) 6=

StSk
(j). By Theorem 2.2.8, d(lim←− S̃n) = 2.

Find explicitly two generators for the IIE of type S.

Problem 2. Does there exist a sequence S = {Sk}k∈n of 2-generated perfect

transitive subgroups of Sym(mk) such that the infinitely iterated exponentia-

tion of type S is not 2-generated? By Corollary 3.2.8, this would imply that

the IIE of type S is 3-generated.

Problem 3. Let d be an integer. Let S = {Sk}k∈n be a sequence of d-

generated perfect transitive subgroups of Sym(mk). Define inductively the

“reversed iterated exponentiation”: m̊1 = m1 and S̊1 = S1 ≤ Sym(m̊1),

m̊n+1 = m̊mn+1
n and S̊n+1 = S̊n o○Sn+1 ≤ Sym(m̊n+1) for n ∈ N.

Is d(S̊n) bounded above by a constant (depending on d) for every n ∈ N?

If this were the case any infinitely iterated mixed wreath product of type

(S, (kn)n∈N) would be finitely generated.

Problem 4. Does the infinitely iterated exponentiation of the sequence A =

{Alt(5) ≤ Sym(5)}k∈N have infinite lower rank?
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Problem 5. (Conjecture 1) Find a generalised Wilson group of lower rank r

for every r ∈ N ∪ {∞}.

Problem 6. (Conjecture 2) Prove that every generalised Wilson group is not

finitely presentable.

Problem 7. Let X be a set of finite simple groups. Does there exist an

infinitely iterated exponentiation E with set of composition factors X such

that every finitely generated profinite group with composition factors in X

can be embedded in E?

Problem 8. Let S = {Sk ≤ Sym(mk)}k∈N be a sequence of finite non-abelian

simple non-trivial permutation groups. Suppose that there exist a fixed natural

number N such that for any k ≥ N , there are infinitely many j ∈ N such that

Sk ≤ Sym(mk) is a sub-permutation group of Sj ≤ Sym(mj). Let G be the

infinitely iterated exponentiation of type S. By Theorem 5.1.5, there exists a

proper closed subgroup H of G isomorphic to G.

• Determine the possible Hausdorff dimensions of proper closed subgroups

of G isomorphic to G.

• Is it possible to find a proper open subgroup of G isomorphic to G?

Problem 9. Suppose that there exists a constant A > 0 and a natural number

M such that |Sk| ≤ |Sk+1|A for all k ≥ M and let G be the infinitely iterated

exponentiation of type S = (Sk ≤ Sym(mk))k∈N. Set Nk = ker(G → S̃k) for

k ∈ N and G = {Nk}k∈N. By Theorem 6.1.1, for every α ∈ [0, 1] there is a

closed subgroup Hα of G such that dimH,G(H
α) = α.

Is it possible to choose Hα finitely generated for every α ∈ [0, 1]?

Problem 10. Calculate the subgroup growth type of the infinitely iterated

exponentiation of type A = {Alt(5) ≤ Sym(5)}k∈N.
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