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Abstract

This thesis is concerned with a wide class of truncated stochastic approximation

(SA) procedures. These procedures have three main characteristics: truncations

with random moving bounds, a matrix valued random step-size sequence, and a dy-

namically changing random regression function. Convergence, rate of convergence,

and asymptotic linearity of the SA procedures are established in a very general set-

ting. Main results are supplemented with corollaries to establish different sets of

sufficient conditions, with the main emphases on the parametric statistical estima-

tion. The theory is illustrated by examples and special cases. Properties of these

procedures are illustrated and discussed using a simulation study.
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Chapter 1

Introduction

1.1 Introductory remarks

In the thesis, we deal with a large class of truncated Stochastic Approximation (SA)

procedures with moving random bounds. Although the proposed class of procedures

can be applied to a wider range of problems, our main motivation comes from appli-

cations to parametric statistical estimation theory. The main three features of the

class of SA procedures considered here are: dynamically changing random regression

functions, matrix-valued random step-size sequences, and truncations with random

moving bounds.

The main idea can be easily explained in the case of the classical problem of

finding a unique zero, say z0, of a real valued function R(z) : R → R when only

noisy measurements of R are available. To estimate z0, consider a sequence defined

recursively as

Zt = Zt−1 + γt (R(Zt−1) + εt) , t = 1, 2, . . . (1.1.1)

where εt is a sequence of zero-mean random variables and γt is a deterministic
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sequence of positive numbers.

Recursion (1.1.1) is a classical Robbins-Monro Stochastic approximation (SA)

procedure. Under certain conditions Zt converges to the root z0 of function R

(see Section 1.2 for details). One of the most important applications of the above

procedures is to that of the statistical parameter estimation.

Suppose that X1, . . . , Xt are i.i.d. random variables and f(x, θ) is the common

probability density function, where θ ∈ Rm is an unknown parameter. Define a

recursive estimation procedure for θ by

θ̂t = θ̂t−1 +
1

t
i(θ̂t−1)

−1 f
′T (Xt, θ̂t−1)

f(Xt, θ̂t−1)
, t ≥ 1, (1.1.2)

where θ̂0 ∈ Rm is some starting value, and i(θ) is the one-step Fisher information

matrix (f ′ denotes the row-vector of partial derivatives of f w.r.t. the components

of θ). This estimator was introduced in Sakrison [62] and studied by a number

of authors (see Section 1.2 for references). In particular, it has been shown that

under certain conditions the recursive estimator θ̂t is asymptotically equivalent to

the maximum likelihood estimator, i.e., it is consistent and asymptotically efficient.

One can analyse (1.1.2) by rewriting it in the form of stochastic approximation with

γt = 1/t,

R(z) = i(z)−1Eθ

{
f ′T (Xt, z)

f(Xt, z)

}
and εt = i(θ̂t−1)

−1

(
f ′T (Xt, θ̂t−1)

f(Xt, θ̂t−1)
−R(θ̂t−1)

)
.

Indeed, one can easily check that given certain standard assumptions, R(θ) = 0 and

εt is a martingale difference w.r.t. the filtration Ft generated by the observations.

So, the on-line recursive parameter estimation can be considered in the frame-

work of the classical SA theory. However, the requirement of the i.i.d. model is too
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restrictive in many applications.

Suppose now that we have a stochastic processes X1, X2, . . . and let ft(x, θ) =

ft(x, θ|X1, . . . , Xt−1) be the conditional probability density function of the observa-

tion Xt given X1, . . . , Xt−1, where θ ∈ Rm an unknown parameter. Then one can

define (see detials in Section 3.1) the recursive estimator of θ by

θ̂t = θ̂t−1 + γt(θ̂t−1)ψt(θ̂t−1), t ≥ 1, (1.1.3)

where ψt(v) = ψt(X1, . . . , Xt; v), t = 1, 2, . . . , are suitably chosen functions which

may, in general, depend on the vector of all past and present random variables

and have the property that the process ψt(θ) is P θ- martingale difference, i.e.,

Eθ {ψt(θ) | Ft−1} = 0 for each t. For example, a choice

ψt(v) = lt(v) =
[f ′t(Xt, v)]T

ft(Xt, v)

yields a likelihood type estimation procedure.

It turns out (see Sharia [69]) that to obtain an estimator with asymptotically

optimal properties, a state-dependent matrix-valued random step-size sequences are

needed. For the above procedure, a step size sequence γt(u) with the property

γ−1t (v)− γ−1t−1(v) = Eθ{ψt(v)lTt (v) | Ft−1}

is an optimal choice if we want to obtain on-line estimators with certain good asymp-

totic properties. For example, to derive a recursive procedure which has the same

asymptotic properties as the maximum likelihood estimator (e.g., consistency and
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asymptotic efficiency), we need to take

ψt(v) =
[f ′t(Xt, v)]T

ft(Xt, v)
and γt(v) = I−1t (v),

where It(v) is the conditional Fisher information matrix (see Section 1.3). The

recursion (1.1.3) can be written in the form of SA. Indeed, denote

Rt(z) = Eθ {ψt(Xt, z) | Ft−1} and εt(z) = (ψt(Xt, z)−Rt(z)) ,

where θ is arbitrary, but fixed value of the parameter. Then, Rt(θ) = 0 for each t,

and εt(z) is a martingale difference.

In order to study these procedures in an unified manner, Sharia [70] introduced

a SA of the following form

Zt =
[
Zt−1 + γt(Zt−1)

{
Rt(Zt−1) + εt(Zt−1)

}]
Ut
, t = 1, 2, . . .

where Z0 ∈ Rm is some starting value, Rt(z) is predictable with the property that

Rt(z
0) = 0 for all t’s, γt(z) is a matrix-valued predictable step-size sequence, Ut ⊂

Rm is a random sequence of truncation sets (see Section 2.1 for details).

Now, let us assume that at each step we have additional information about the

root z0. Lets us, e.g., assume that at each step t, z0 ∈ [αt, βt], where αt and βt

are random variables such that −∞ < αt ≤ βt < ∞. Then, one can consider a

procedure, which at each step t produces approximations from interval [αt, βt]. For

example, a truncated classical SA procedure in this case can be derived using the

following recursion
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Zt =
[
Zt−1 + γt (R(Zt−1) + εt)

]βt
αt
, t = 1, 2, . . . (1.1.4)

where [v]ba is the truncation operator, that is,

[v]ba =


a if v < a,

v if a ≤ v ≤ b,

b if v > b.

Truncated procedures may be useful in a number of circumstances. For example,

if the functions in the procedure are defined only for certain values of the parameter,

then the recursion should produce points only from this set. Truncations may also

be useful when certain standard assumptions, e.g., conditions on the growth rate

of the relevant functions are not satisfied. Truncations may also help to make an

efficient use of auxiliary information concerning the value of the unknown parameter.

For example, we might have auxiliary information about the parameters, e.g. a set,

possibly time dependent, that contains the value of the unknown parameter. Also,

sometimes a consistent, but not necessarily efficient auxiliary estimator θ̃t can be

easily available having a rate dt. Then to obtain asymptotically efficient estimator,

we can construct a procedure with shrinking bounds by truncating the recursive

procedure in a neighbourhood of θ with [αt, βt] = [θ̃t − δt, θ̃t + δt], δt → 0.

Thus, the SA procedures studied in the thesis have the following main char-

acteristics: (1) inhomogeneous random functions Rt; (2) state dependent matrix

valued random step sizes; (3) truncations with random and moving (shrinking or

expanding) bounds. The main motivation for these comes from parametric statis-

tical applications: (1) is needed for recursive parameter estimation procedures for
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non i.i.d. models, (2) is required to guarantee asymptotic optimality and efficiency

of statistical estimation, (3) is needed for various different adaptive truncations, in

particular, for the ones arising by auxiliary estimators. These procedures were in-

troduced in Sharia [70]. Note that this approach is completely new as far as (1)

and (2) are concerned. However, SA with truncations have been studied by various

authors. (See Section 1.2 for comparison of this approach to the ones existing in the

literature).

The thesis is organised as follows. Section 1.2 reviews some of the results in SA

theory which are relevant to the thesis. Section 1.3 briefly describes general theory

of parametric statistical estimation for discrete time stochastic processes. The main

results of the thesis are given in Chapter 2. In particular, this chapter contains

new results on the rate of convergence and asymptotic linearity of SA procedures

under quite mild conditions. Also, a convergence result in Section 2.1 generalises the

corresponding result in Sharia [70] by considering time dependent random Lyapunov

type functions (see Lemma 2.2.1). This generalisation turns out to be quite useful

as it allows to derive convergence results of the recursive parameter estimators in

AR(m) models. Chapters 3 and 4 contain applications to parametric statistical

estimation.

Section 2.3 contains new sets of sufficient conditions to derive the rate of con-

vergence of SA procedures (see e.g., Lemma 2.3.7, Corollary 2.3.10 and Corollary

2.3.11). Section 2.4 contains new results on asymptotic linearity of SA procedures.

In particular, this section establishes that under quite mild conditions, SA proce-

dures are asymptotically linear in the statistical sense, that is, they can be rep-

resented as weighted sums of random variables. Therefore, a suitable form of the

central limit theorem can be applied to derive asymptotic distribution of a corre-
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sponding SA process.

Section 2.5 also contains some new results (see Remark 2.5.10 and Section 2.6).

Some results in Chapter 3 are new (e.g., Lemmas 3.2.4, 3.2.6 and Corollary 3.2.7).

Chapter 4 contains application to the on-line parameter estimation in the autore-

gressive processes. The results presented in Sections 4.2 and 4.3 are also new, they

generalize the corresponding results in one-dimensional case in Sharia [68].

Finally, in Chapter 5, some simulation results are presented to illustrate the

theoretical results of the thesis.

Each chapter contains a brief introduction and a summary to explain novelty of

the results presented in a given chapter. Main lemmas and theorems are followed by

various corollaries and remarks containing sufficient conditions for the convergence

and explaining some of the assumptions.

1.2 Robbins-Monro procedures

In 1951, Herbert Robbins and Sutton Monro introduced the basic stochastic ap-

proximation algorithms. Due to a large number of applications and the theoretical

interests, their work attracted attention in the statistics literature immediately. Af-

ter a series of important developments and improvements in the following 40 years,

SA was developed as an important area of optimization and system control. It also

became a powerful tool in many different fields including stochastic system control,

recursive algorithms analysis and on-line parameter estimation. For the past 20

years, the SA type methods found many new applications, because of the growing

need of on-line methods in a number of emerging disciplines. These areas broadly

cover the adaptive control, signal processing, artificial neural networks and learning
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algorithms.

The Robbins-Monro (RM) SA was developed to find a unique zero of a real

valued function R(z) : R→ R when only noisy measurements of R are available. In

other words, one can only observe

Yt(z) = R(z) + ξt, (1.2.1)

where ξt are i.i.d. zero-mean random variables.

If the random noise ξt can be neglected and R(x) is continuously differentiable,

then the problem reduces to a standard problem of numerical analysis. However

when only the noisy values of R(z) are available, standard deterministic numerical

methods do not work. In order to find an approximate value of z0, Herbert Robbins

and Sutton Monro [58] proposed a recursive procedure generated by

Zt = Zt−1 + γtYt(Zt−1) (1.2.2)

where γt > 0 is a non-increasing real sequence. They asserted that Zt converges to

z0 in the mean square sense under the following conditions:

(1) (z − z0)R(z) < 0 for each z ∈ R\{z0};

(2)
∑∞

t=1 γt =∞ and
∑∞

t=1 γ
2
t <∞;

(3) Yt(z) is uniformly bounded.

It is easy to see that, on average, at each step the procedure moves towards the root

z0. Indeed, since E{ξt | Ft−1} = 0, we have

E {Zt − Zt−1 | Ft−1} = γtR(Zt−1)
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(Ft is the σ-field generated by the random variables Z1, . . . , Zt). If we suppose now

that at time t−1, Zt−1 < z0. Then, by condition (1), we have E {Zt − Zt−1 | Ft−1} >

0 . So, the next step Zt will be in the direction of z0. If at time t − 1, Zt−1 > z0,

then by the same reason, E {Zt − Zt−1 | Ft−1} < 0. So, on average, at each step

the procedure moves towards z0. Now, the second part of condition (2) ensures

that the magnitude of the jumps Zt − Zt−1 decreases, so that Zt does note oscillate

around z0 without approaching it. On the other hand, the first part of condition (2)

is needed to guarantee that the jumps do not decrease too rapidly so that Zt has

enough ”time” to reach z0.

Robbins and Monro introduced their procedure in their seminal work published

in 1951 which became one of the most cited articles in the history of Statistics.

Later in 1952, inspired by this work, Kiefer and Wolfowitz [35] developed a SA

method to find the maximum (or minimum) of a function, which is known as the

Kiefer-Wolfowitz (KW) procedure.

The convergence of Robbins-Monro (RM) and KW procedures were initially

proved in the mean square sense. Blum [9] established the almost sure (a.s.) con-

vergence of RM and KW procedures under weaker assumptions. Dvoretzky [20]

introduced a wider class of SA procedures, which allowed the study of RM and KW

procedures in an unified manner.

Gladyshev [25] proved the convergence of RM procedures using a different ap-

proach, based on conditional expectation of ‖Zt − z0‖2 with respect to Ft−1. Based

on Gladyshev’s work, Robbins and Siegmund [59] then established a general conver-

gence theorem with martingale-difference measurement errors ξt.

To study the asymptotic normality of SA procedures, Burkholder [12], Hodges

and Lehmann [31] and Chung [17] considered recursions for E{(Zt − z0)k} with

9



k ≥ 2. They showed that under certain conditions,
√
t(Zt − z0) is asymptotically

normal. Sacks [61] proposed a different approach to study asymptotic behaviour by

replacing the function R by its linear approximation in some neighbourhood of the

root, and achieved the same results under weaker conditions. Lai and Robbins [42]

(see also Lai and Robbins [43] and Wei [75]) generalized the asymptotic normal-

ity by adjusting the step-size sequences. These procedures are known as adaptive

stochastic approximation.

Ljung [51] introduced the ordinary differential equation (ODE) method as a new

way to analyse SA procedures. Using the fact that the effects of random noises

average out asymptotically, Ljiung showed that the asymptotic behaviour could be

described by certain ODEs. The ODE approach has become very popular, especially

in the study of stability and asymptotic behaviour of SA procedures (see Kushner

[37], Kushner and Clark [36] and Kushner and Shwartz [39]). This approach was

also extensively explored in the seminal papers by Benmaim et al [4], [6] and [7].

Apart from the above approaches, a number of different techniques have been

developed. For example, Delyon [19] asserted a purely deterministic method which

was based on the deterministic conditions on the random noises. Polyak and Judit-

sky [56] proposed an averaging method, which accelerates Robbins-Monro procedure

by using slower step-size sequences and averaging the values of the procedure for the

last several steps. Other recent developments in SA theory can be found in Borkar

[10], Lazrieva et al [47] and Benveniste et al [8].

Truncated SA procedures were studied in Hasminskii and Nevelson [28], Fabian

[23], Chen and Zhu [16], Chen et al [15], Andradóttir [2] and Sharia [64], [68] and

[70]. For example, an idea of truncations with shrinking bounds goes back to [28]

and [23]. Truncations with expanding bounds were considered in [2] and also, in
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the context of recursive parametric estimation, in [64] (see also [68]). Truncations

with adaptive truncation sets of the Robbins-Monro SA were introduced in [15], and

further explored and extended in Chen and Zhu [16], Andrieu, Moulines and Priouret

[3], Tadić [72] and [73] and Lelong [49]. The latter algorithms are designed in such a

way, that the procedure is pulled back to a certain pre-specified point or a set, every

time the sequence leaves the truncation region. Truncation procedures considered

in [70] are different from the latter ones and are similar to the the ones introduced

in [28], [23] and [2]. A detailed comparison of these two different approaches can be

found in [2].

Applications of SA can be found in a very wide range of fields. It plays an

important role in adaptive control, machine learning and queueing theory. For

example, Haykin [29] and Benaim [5] used SA method into learning approximation

in neural networks. Watkins and Dayan [74] developed Q-learning and applied SA

type procedures in Markov decision problems.

Due to its recursive nature, SA methods are naturally applied to construct on-

line parameter estimation procedures. In 1965, Sakrison [62] proposed recursive SA

type versions of the MLEs. In the i.i.d. models, these estimators were developed by

Nevelson and Has’minskii [54], Fabian [23] and Poljak and Tsypkin [55]. Asymp-

totic behaviour of this type of SA procedures for non-i.i.d. models was studied by

Campbell [13], Englund, Holst and Ruppert [21], Ljung and Soderstrom [50], Lai

and Ying [45] and Sharia [65], [66], [67] and [68].
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1.3 General statistical model

Let Xt, t = 1, 2, . . . , be observations taking values in a measurable space (X,B(X))

equipped with a σ-finite measure µ. Suppose that the distribution of the process

Xt depends on an unknown parameter θ ∈ Θ, where Θ is an open subset of Rm.

Suppose also that for each t = 1, 2, . . . , there exist regular conditional probability

densities (see e.g. in Sharia [70]) of Xt given past observations X1, X2, . . . , Xt−1,

which will be denoted by

ft(θ, xt | xt−11 ) = ft(θ, xt | x1, . . . , xt−1),

where xt−11 = (x1, ..., xt−1) and f1(θ, x1 | x01) = f1(θ, x1) is a density function of the

observation X1. Note that the conditional probability densities are regular, if they

correspond to the regular conditional distributions. The regularity is needed in order

to write conditional expectations as integrals w.r.t. the corresponding conditional

probability density functions (see e.g., Shiryayev [71], Theorem 2.7.3 and Definitions

2.7.4). Denote by Ft (t = 1, 2, . . . ) the σ-field generated by the random variables

X1, . . . , Xt, i.e.

Ft = σ(X1, . . . , Xt).

There is no loss of generality in assuming that the basic space is the canonical space

(Ω,F) := (X∞,B(X∞)) ,

where X∞ = {x : x = (x1, x2, . . . ), xi ∈ X} and B(X∞) is the σ-field generated

by the cylindrical sets. Using Tulcea’s theorem on extending a measure and the

existence of a random sequence (see, e.g., Shiryayev [71], Ch.II, §9, Theorem 2), we
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can construct the family {
P θ, θ ∈ Θ

}
of corresponding distributions on (X∞,B(X∞)) and identify X = (Xt)t=1,2,... with

the coordinate process on (X∞,B(X∞)), that is, Xt(x) = xt, t = 1, 2, . . . .

Assume that ft(θ, xt | xt−11 ) is differentiable w.r.t. θ and denote by f ′t(θ) the

row-vector of partial derivatives of ft with respect to the components of θ, that is,

f ′t(θ, xt | xt−11 ) =
∂

∂θ
ft(θ, xt | xt−11 ) =

(
∂ft(θ, xt | xt−11 )

∂θ(1)
, ...,

∂ft(θ, xt | xt−11 )

∂θ(m)

)

and

lt(θ, xt | xt−11 ) =
[f ′t(θ, xt | xt−11 )]T

ft(θ, xt | xt−11 )

(with the convention 0/0 = 0).

The one-step Fisher information matrix for t = 1, 2, . . . is defined as

it(θ | xt−11 ) =

∫
lt(θ, z | xt−11 )[lt(θ, z | xt−11 )]Tft(θ, z | xt−11 )µ(dz).

We shall use the notation

ft(θ) = ft(θ,Xt | X t−1
1 ), lt(θ) = lt(θ,Xt | X t−1

1 ),

it(θ) = it(θ | X t−1
1 ).

By definition, it(θ) is a version of the conditional expectation w.r.t. Ft−1, i.e.

it(θ) = Eθ
{
lt(θ)[lt(θ)]

T | Ft−1
}
.

13



Everywhere in the present work conditional expectations are meant to be calculated

as integrals w.r.t. the conditional probability densities.

The Fisher information at time t is

It(θ) =
t∑

s=1

is(θ).

The matrix It(θ) is a form of conditional information which reduces to the standard

Fisher information in the case where the Xt, t = 1, 2, . . . , are independent random

variables.

An estimator (or statistic) based on t (t = 1, 2, . . . ) observations is any Ft

measurable random variable

θ̂t = θ̂t(X1, . . . , Xt).

An estimator is said to be strongly consistent if

P θ{ lim
t→∞

θ̂t = θ} = 1

for each θ ∈ Θ.

Let for each t = 1, 2, . . .

ψt(θ, xt, xt−1, . . . , x1) : Θ× Xt 7→ Rm

be Borel functions. Denote

ψt(θ) = ψt(θ,Xt, Xt−1, . . . , X1).
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The process ψt(θ)(t = 1, 2, . . . ) is said to be an influence process if

Eθ {ψt(θ) | Ft−1} = 0 (1.3.1)

(we assume that the conditional expectation in (1.3.1) is well-defined).

For fixed t, the function ψt(θ) is called an influence function (or influence curve).

Note that condition (1.3.1) means that the sequence

St(θ) =
t∑

s=1

ψs(θ)

is a P θ-martingale.

Note also that if differentiation of ft(θ) is allowed under the integral sign, i.e.

0 =
∂

∂θ

∫
ft(θ, z | xt−11 )µ(dz) =

∫
f ′t(θ, z | xt−11 )µ(dz)

then lt(θ) is an influence process.

Suppose that ψt(θ) (t = 1, 2, . . . ) is an influence process. An M-estimator of θ

is a solution of the equation

t∑
s=1

ψs(θ) = 0. (1.3.2)

The choice ψt(θ) = lt(θ), yields the maximum likelihood estimator (MLE). Besides

MLE-s, this class of estimators includes estimators constructed with special prop-

erties as robustness. Under certain regularity and ergodicity conditions (see e.g.,

Serfling [63], Huber [33] and Lehman and Casella [48]), it can be proved that there

exists a consistent sequence of solutions of (1.3.2) which has the property of local
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asymptotic linearity in the following sense.

We say that a discrete time stochastic process ξt (t = 1, 2, ...) is predictable, if ξt

is Ft−1 measurable for each t = 1, 2, ....

Definition 1.3.1 An estimator θ̂t is said to be locally asymptotically linear if for

each θ ∈ Θ there exist an influence process ψt(θ) and a predictable process γt(θ)

where det(γt(θ)) 6= 0 and γt(θ) −→ 0 such that

θ̂t = θ + γt(θ)
t∑

s=1

ψs(θ) +Kθ
t ,

and

AtK
θ
t

P θ−→ 0,

where At = At(θ) is a predictable matrix valued stochastic process such that

det(At) 6= 0, A−1t
P θ−→ 0 and AtγtAt

P θ−→ η

for some random matrix η and t = 1, 2, .... (The symbol “
P θ−→” denotes the conver-

gence in probability P θ).

Asymptotic behaviour of an asymptotic linear estimator can be studied using

suitable forms of the Central Limit Theorem (CLT) for martingales. For example,

the next theorem, which is a simple corollary of the martingale CLT when Θ ⊂ R,

shows that under certain conditions asymptotic linearity implies asymptotic nor-

mality.

Let L(ξ|P ) denote the distribution of a random variable ξ w.r.t probability P ,

N (0, σ2) is a Gaussian distribution with parameters (0, σ2) and “
w−→” denotes the

weak convergence.
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Theorem 1.3.2 (Shiryayev [71], Ch.VII, §8, Theorem 4) Suppose that θ ∈ R and

for the influence process ψt(θ) there exists a non-random sequence of positive num-

bers γt(θ) such that

(1)

jψt (θ) := Eθ
{
ψ2
t (θ) | Ft−1

}
<∞,

(2)

γt(θ)
t∑

s=1

jψs (θ)→ ηψ(θ)

for some non-random ηψ(θ) ≥ 0,

(3) The Lindeberg condition holds, that is,

for each ε > 0

γt(θ)
t∑

s=1

Eθ
{
ψ2
s(θ)I {|ψs(θ)| ≥ ε} | Fs−1

} P θ−→ 0,

where I is the indicator function.

Then

L

(
γ
1/2
t (θ)

t∑
s=1

ψs(θ) | P θ

)
w−→ N (0, ηψ(θ)).

In the case of i.i.d. observations, influence functions usually depend only on θ

and the current observation Xt, i.e.,

ψt(θ) = ψ(θ,Xt).

In this case, if ψt(θ) has a finite second moment

jψ(θ) = jψt (θ) = Eθ
{
ψ2
t (θ)

}
17



and if γt(θ) = t−1γ(θ) for some non-random γ(θ), then conditions (1), (2) and (3)

are trivially satisfied, and therefore

L

(
t−1/2

t∑
s=1

ψs(θ) | P θ

)
ω−→ N (0, γ2(θ)jψ(θ)). (1.3.3)

In particular, if estimator θ̂t is locally asymptotically linear with

ψt(θ) = lt(θ) = l(θ,Xt)

and

γt(θ) = I−1t (θ) = [ti(θ)]−1,

and if the likelihood function lt(θ) has a finite second moment then it follows from

(1.3.3) that θ̂t is asymptotically normal with parameters (0, i−1(θ)), i.e.

L
(
t1/2(θ̂t − θ) | P θ

)
ω−→ N (0, i−1(θ)),

that is, for large t, distribution of θ̂t can be approximated by N (θ, (ti(θ)−1)). Note

that I−1t (θ) = [ti(θ)]−1 is the Cramer-Rao lower bound for the variance of any

unbiased estimator of θ. Details of martingale CLT in multi-dimensional cases can

be found, e.g., in Heyde [30] (Theorem 12.6).

In the general situation we will use the following definition.

An estimator is said to be asymptotically efficient if it is asymptotically linear

with

ψt(θ) = lt(θ) and γt(θ) = I−1t (θ),
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that is,

θ̂t = θ + I−1t (θ)
t∑

s=1

ls(θ) +Kθ
t

where I−1t −→ 0 and I
1/2
t Kθ

t
P θ−→ 0.

Sometimes this kind of efficiency is called asymptotically first order efficiency.

The motivation behind this general definition is the same as in the classical scheme

of i.i.d. observations. Under certain regularity and ergodicity conditions,
∑t

s=1 ls(θ)

is a P θ-martingale and a martingale CLT can be applied to deduce that for large

t, distribution of θ̂t can be approximated by N (θ, I−1t (θ)). Note that asymptotic

efficient estimators are not unique, as the same asymptotic distribution can be shared

by many different estimators. However, under relatively mild conditions, for any

asymptotic efficient estimators θ̂t,

I
1/2
t (θ̂t − Tt)

P θ−→ 0

where Tt is the MLE (see, e.g., Hall and Heyde [27], Theorem 6.2).

That is, asymptotic efficient estimators are asymptotically equivalent to the MLE

in the sense of leading to the same asymptotic distribution. For a detailed discussion

of this notion see e.g., Hall and Heyde [27].
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Chapter 2

Robbins-Monro Type Stochastic

Approximation

This chapter contains main results of this thesis. Three main properties of the

RM type SA are established: convergence, rate of convergence, and asymptotic

linearity. The basic notations and conventions are given in Section 2.1. In Section

2.2, convergence and rate of convergence of the RM type SA are studied using the

Robbins-Siegmund Lemma [59] and a sequence of the Lyapunov functions. The

convergence result generalises the previous results in Sharia [70]. The result on the

rate of convergence in Section 2.2 and asymptotic linearity in Section 2.4, are new

in the field of SA. However, similar ways of analysis are developed in Sharia [66] and

[69] to establish the corresponding properties in the parameter estimation context.

Section 2.3 contains a number of corollaries, which help to verify conditions for the

convergence and rate of convergence for specific statistical models in the following

chapters. Finally, Section 2.5 contains discussion of the results of this chapter when

applied to the classical SA problems.
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2.1 Basic notions

Let (Ω, F , F = (Ft)t≥0, P ) be a stochastic basis satisfying the usual conditions.

Suppose that for each t = 1, 2, . . . , we have (B(Rm)×F)-measurable functions

Rt(z) = Rt(z, ω) : Rm × Ω 7−→ Rm

εt(z) = εt(z, ω) : Rm × Ω 7−→ Rm

γt(z) = γt(z, ω) : Rm × Ω 7−→ Rm×m

such that for each z ∈ Rm, the processes Rt(z) and γt(z) are predictable, i.e.,

Rt(z) and γt(z) are Ft−1 measurable for each t. Suppose also that for each z ∈

Rm, the process εt(z) is a martingale-difference, i.e., εt(z) is Ft measurable and

E {εt(z) | Ft−1} = 0. We also assume that

Rt(z
o) = 0

for each t = 1, 2, . . . , where z0 ∈ Rm is a non-random vector.

Suppose that h = h(z) is a real valued function of z ∈ Rm. We denote by h′(z)

the row-vector of partial derivatives of h with respect to the components of z, that

is,

h′(z) =

(
∂

∂z(1)
h(z), . . . ,

∂

∂z(m)
h(z)

)
.

Also, we denote by h′′(z) the matrix of second partial derivatives.

For any at ∈ Rm (t = 1, 2, ...), we denote that ∆at = at − at−1. Denote by

[a]+ and [a]− the positive and negative parts of a ∈ R, i.e. [a]+ = max(a, 0) and

[a]− = min(a, 0). The m×m identity matrix is denoted by I.
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Assume that Z0 ∈ Rm is some starting value and consider the procedure

Zt = ΦUt

(
Zt−1 + γt(Zt−1)[Rt(Zt−1) + εt(Zt−1)]

)
, t = 1, 2, . . . (2.1.1)

where Rt(z), εt(z), γt(z) are random fields defined above,

E {Rt(Zt−1) + εt(Zt−1) | Ft−1} = Rt(Zt−1), (2.1.2)

E
{
εTt (Zt−1)εt(Zt−1) | Ft−1

}
=
[
E
{
εTt (z)εt(z) | Ft−1

}]
z=Zt−1

, (2.1.3)

and the conditional expectations (2.1.2) and (2.1.3) are assumed to be finite. Here

ΦUt(u) is the truncation operator such that

ΦUt(z) =


z if z ∈ Ut

z∗ if z /∈ Ut,
(2.1.4)

where z∗ ∈ Ut minimizes the distance to z.

Denote ∆t = Zt − z0 where Zt is defined by (2.1.1).

A random sequence of sets Ut = Ut(ω) is admissible for z0 if (see Sharia [69] and

[70])

• Ut(ω) is a closed convex subset of Rm, for each t and ω;

• the truncation ΦUt(z) is Ft measurable, for each t and z ∈ Rm;

• there exists t0(ω) <∞ such that z0 ∈ Ut(ω) whenever t > t0(ω), for almost all ω

(i.e., z0 ∈ Ut eventually).

One can use truncations which are based on the prior knowledge about the

unknown root ( Ut = Rm if there is no prior knowldge). Truncations may provide

a simple tool to achieve an efficient use of information available in the estimation
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process. Let us assume that a consistent, but not necessarily efficient auxiliary

estimator Z̃t is available. Then one can use Z̃t to truncate the recursive procedure

in a neighbourhood of z0 by taking a ’spherical’ Ut = S(Z̃t, dt) with Z̃t as the center

and dt −→ 0 as the radius. That is,

ΦUt(u) =


u if ‖u− Z̃t‖ ≤ dt

Z̃t + dt
‖u−Z̃t‖

(u− Z̃t) if ‖u− Z̃t‖ > dt.

Obviously, such a procedure is consistent. However, since the main goal is to con-

struct an efficient estimator, care should be taken to ensure that the truncations do

not shrink to z0 too rapidly, otherwise Zt will have the same asymptotic properties

as Z̃t.

The need of truncations may naturally arise from various reasons. One obvious

consideration is that the functions in the procedure may only be defined for certain

values of the parameter. In this case one would want the procedure to produce

points only from this set
(

see Example 3.2.1
)

. Truncations may also be useful when

the standard assumptions such as restrictions on the growth rate of the relevant

functions are not satisfied.

Remark 2.1.1 Note that (2.1.2) in fact means that the sequence εt(Zt−1) is a

martingale-difference. conditions (2.1.2) and (2.1.3) obviously hold if, e.g., the mea-

surement errors εt(u) are independent random variables, or if they are state inde-

pendent. In general, since we assume that all conditional expectations are calculated

as integrals w.r.t. corresponding regular conditional probability measures (see the

convention below), these conditions can be checked using disintegration formula (see

Theorem 5.4 in Kallenberg [34]).
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Convention.

• Everywhere in the present work convergence and all relations between random

variables are meant with probability one w.r.t. the measure P unless specified oth-

erwise. (For example, for random variables ξ and η, the relation ξ < η means that

P (ξ < η) = 1.)

• A sequence of random variables (ζt)t≥1 has some property eventually if for every

ω in a set Ω0 of P probability 1, the realisation ζt(ω) has this property for all t

greater than some t0(ω) <∞.

• Assume that all conditional expectations are calculated as integrals w.r.t. corre-

sponding regular conditional probability measures.

2.2 Convergence Lemmas

Lemma 2.2.1 Suppose that Zt is a process defined by (2.1.1), (2.1.2) and (2.1.3).

Let Vt(u) : Rm −→ R be a sequence of real valued non-negative functions hav-

ing continuous and bounded partial second derivatives. Denote ∆t = Zt − z0 and

∆Vt(u) = Vt(u)− Vt−1(u). Suppose also that

(V1)

Vt(∆t) ≤ Vt

(
∆t−1 + γt(Zt−1)[Rt(Zt−1) + εt(Zt−1)]

)
eventually.

(V2)
∞∑
t=1

(1 + Vt−1(∆t−1))
−1[Kt(∆t−1)]

+ <∞, P -a.s.,

where
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Kt(u) = ∆Vt(u) + V ′t (u)γt(z
0 + u)Rt(z

0 + u) + ηt(z
0 + u)

and

ηt(v) =
1

2
sup
u
E

{[
Rt(v) + εt(v)

]T
γTt (v)V ′′t (u)γt(v)

[
Rt(v) + εt(v)

]∣∣∣Ft−1} .
Then Vt(∆t) converges (P -a.s.) to a finite limit for any initial value Z0.

Furthermore, if truncation sequence Ut is admissible for z0, conditions (V1) and

(V2) hold, and there exists a set A ∈ F with P (A) > 0 such that for each ε ∈ (0, 1)

(V3)
∞∑
t=1

inf
ε≤Vt(u)≤1/ε

z0+u∈Ut−1

[Kt(u)]− =∞ on A, (2.2.1)

then Vt(∆t) −→ 0 (P -a.s.) for any initial value Z0.

Proof. Rewrite (2.1.1) in the form

∆t = ∆t−1 + γt(Zt−1)[Rt(Zt−1) + εt(Zt−1)].

By (V1), using the Taylor expansion,

Vt(∆t) ≤ Vt(∆t−1) + V ′t (∆t−1)γt(Zt−1)[Rt(Zt−1) + εt(Zt−1)]

+
1

2
[Rt(Zt−1) + εt(Zt−1)]

TγTt (Zt−1)V
′′
t (∆̃t−1)γt(Zt−1)[Rt(Zt−1) + εt(Zt−1)],

where ∆̃t−1 ∈ Rm is Ft−1-measurale. Since

Vt(∆t−1) = Vt−1(∆t−1) + ∆Vt(∆t−1),
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we have

E{Vt(∆t)|Ft−1} ≤ Vt−1(∆t−1) +Kt(∆t−1),

by using (2.1.2) and (2.1.3). Then, applying the obvious decomposition Kt = [Kt]+−

[Kt]−, the previous inequality can be rewritten as

E{Vt(∆t)|Ft−1} ≤ Vt−1(∆t−1)(1 +Bt) +Bt − [Kt(∆t−1)]
−,

where Bt = (1 + Vt−1(∆t−1))
−1[Kt(∆t−1)]

+.

According to Lemma A.1 in Appendix A (with Xt = Vt(∆t), βt−1 = ξt−1 = Bt

and ζt = [Kt(∆t−1)]
−), by (V2)

∑∞
t=1Bt <∞, it would imply that Vt(∆t) and

Yt =
t∑

s=1

[Ks(∆s−1)]
−

converge to some finite limits.

Therefore, it follows that Vt(∆t)→ r ≥ 0.

To prove the second assertion, suppose that r > 0, then there exist ε > 0 such

that ε ≤ Vt(∆t) ≤ 1/ε eventually. By (V3), this implies that for some t0,

∞∑
s=t0

[Ks(∆s−1)]
− ≥

∞∑
s=t0

inf
ε≤Vs(u)≤1/ε

z0+u∈Us−1

[Ks(u)]− =∞

on the set A, which contradicts the existence of a finite limit of Yt. Hence, r = 0

and Vt(∆t) −→ 0. �

Remark 2.2.2 The conditions of the above Lemma are difficult to interpret. There-

fore, the rest of the section and Section 2.3 are devoted to formulate lemmas and

corollaries (Lemmas 2.2.5 and 2.3.7, Corollaries 2.3.1, 2.3.2, 2.3.4, 2.3.5, 2.3.10
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and 2.3.11) containing sufficient conditions for the convergence and the rate of con-

vergence, and remarks (Remarks 2.2.3, 2.2.4, 2.3.6, 2.3.8, 2.3.9 and 2.3.12) ex-

plaining some of the assumptions. These corollaries are presented in such a way,

that each subsequent corollary imposes conditions that are more restrictive than the

previous one. For example, Corollary 2.3.11 and Remark 2.3.12 contains conditions

which are most restrictive than all the previous ones, but are written in the simplest

possible way.

Remark 2.2.3 Consider truncation sets Ut = S(αt, rt), where S denotes a closed

sphere in Rm with center at αt ∈ Rm and radius rt. Let z′t = ΦUt(zt) and suppose

that z0 ∈ Ut. Let Ct be a positive definite matrix and denote by λmaxt and λmint the

largest and smallest eigenvalues of Ct respectively. Then (z′t − z0)TCt(z
′
t − z0) ≤

(zt − z0)TCt(zt − z0)
(

i.e., (V1) holds with Vt(u) = uTCtu
)

, if λmaxt v2t ≤ λmint r2t ,

where vt = ‖αt−z0‖. (See Proposition A.7 in Appendix A for details.) In particular,

if Ct is a scalar matrix (i.e., Ct = cI), condition (V1) automatically holds.

Remark 2.2.4 When condition (V1) holds, a typical choice of Vt(u) is Vt(u) =

uTCtu, where {Ct} is a set of predictable positive semi-definite matrix process.

Particularly, one can take Ct such that Ct/at goes to a finite matrix where at −→∞.

Then, if conditions of Lemma 2.2.1 hold, we have at‖Zt− z0‖2 tends to a finite limit

and Zt −→ z0.

Lemma 2.2.5 Suppose that (V1) and (V2) in Lemma 2.2.1 hold with Vt(u) = V (u).

Suppose also that truncation sequence Ut is admissible for z0 and

(L1) for each M > 0,

inf
‖u‖≥M

V (u) > δ > 0

for some δ;
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(L2) there exists a set A ∈ F with P (A > 0) such that for each ε ∈ (0, 1),

∞∑
t=1

inf
ε≤V (u)≤1/ε

z0+u∈Ut−1

[Nt(u)]− =∞ on A,

where

Nt(u) = V ′(u)γt(z
o + u)Rt(z

o + u) (2.2.2)

+
1

2
sup
v
‖V ′′(v)‖E

{
‖γt(zo + u)

[
Rt(z

o + u) + εt(z
o + u)

]
‖2 | Ft−1

}
.

Then Zt −→ z0 (P -a.s.), for any initial value Z0.

Proof. Take Vt(u) = V (u) in Lemma 2.2.1. condition (V3) follows from (L2)

immediately, which implies that V (∆t) −→ 0 (a.s.). Now, ∆t −→ 0 follows (L1) by

contradiction. Indeed, suppose that ∆t 6−→ 0 on a set, say B of positive probability.

Then, for any fixed ω from this set, there would exist a sequence tk −→ ∞ such

that ‖∆tk‖ ≥ ε for some ε > 0, and (2.2.5) would imply that V (∆tk) > δ > 0 for

large k-s, which contradicts the P -a.s. convergence V (∆t) −→ 0. �

2.3 Sufficient conditions for convergence and rate

of convergence

Corollary 2.3.1 Let Zt be a process defined by (2.1.1), (2.1.2) and (2.1.3). Suppose

that Ut are admissible truncations for z0, at is a non-negative predictable scalar

process and
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(C1) for all z ∈ Ut−1

[
2(z − zo)TRt(z) + a−1t E {‖Rt(z) + εt(z)‖2 | Ft−1}

]+
1 + ‖z − zo‖2

≤ qt (2.3.1)

eventually, where
∞∑
t=1

qta
−1
t <∞, P -a.s.

Then ‖Zt − z0‖ converges (P -a.s.) to a finite limit.

Proof. Consider Lemma 2.2.1 with Vt(u) = uTu = ‖u‖2 and the step-size sequence

γt(z) = a−1t I. Since Ut are admissible, condition (V1) holds. Also, we have ∆Vt(u) =

0, V ′(u) = 2uT and V ′′(u) = 2I. Therefore,

Kt(u) = 2uTa−1t Rt(z
o + u) + a−2t E

{
‖Rt(z

o + u) + εt(z
o + u)‖2 | Ft−1

}
. (2.3.2)

Since zo + ∆t−1 = Zt−1 ∈ Ut−1,

[Kt(∆t−1)]
+

1 + V (∆t−1)

= a−1t

[
2∆T

t−1Rt(z
o + ∆t−1) + γtE {‖Rt(z

o + ∆t−1) + εt(z
o + ∆t−1)‖2 | Ft−1}

]+
1 + ‖∆t−1‖2

≤ a−1t qt.

Since
∑∞

t=1 qta
−1
t < ∞ (P -a.s.), it follows from (C1) that condition (V2) hold.

Therefore, ‖Zt − z0‖ converges to a finite limit (P -a.s.). �

Corollary 2.3.2 Suppose that the conditions of Corollary 2.3.1 hold and
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(C2) for each ε ∈ (0, 1),

∞∑
t=1

inf
ε≤‖u‖≤1/ε

z0+u∈Ut−1

[Nt(u)]− =∞, P -a.s.,

where

Nt(u) = 2uTa−1t Rt(z
o + u) + a−2t E

{
‖Rt(z

o + u) + εt(z
o + u)‖2 | Ft−1

}

Then Zt −→ zo (P -a.s.), for any initial value Z0.

Proof. Let us show that the conditions of Lemma 2.2.5 are satisfied with V (u) =

uTu = ‖u‖2 and γt(z) = a−1t I. It follows from the proof of Corollary 2.3.1 that all

the conditions of Lemma 2.2.1 hold with V (u) = uTu. Hence, ‖Zt − z0‖ converges.

Since

inf
‖u‖≥ε

‖u‖2 ≥ ε2,

condition (L1) also trivially holds. Finally, (L2) is a consequence of (C2). Therefore,

Zt −→ zo (P -a.s.). �

Remark 2.3.3 Similar results of Corollary 2.3.1 and 2.3.2 can be found in Sharia

[70].

Corollary 2.3.4 Suppose that Zt is a process defined by (2.1.1), (2.1.2) and (2.1.3),

Ut are admissible truncations for z0 and

(D1) for large t’s

(z − z0)TRt(z) ≤ 0 if z ∈ Ut−1
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(D2) There exists a predictable process rt > 0 such that

sup
z∈Ut−1

E {‖Rt(z) + εt(z)‖2 | Ft−1}
1 + ‖z − zo‖2

≤ rt

eventually, and
∞∑
t=1

rta
−2
t <∞, P -a.s.,

Then ‖Zt − z0‖ converges (P -a.s.) to a finite limit.

Proof. Using condition (D1),

[
2(z − zo)TRt(z) + a−1t E

{
‖Rt(z) + ε(z)‖2 | Ft−1

}]+
≤ a−1t E

{
‖Rt(z) + ε(z)‖2 | Ft−1

}
eventually. Hence conditions of Corollary 2.3.1 hold with qt = rta

−1
t and the result

follows. �

Corollary 2.3.5 Suppose that the conditions of Corollary 2.3.4 are satisfied and

(D3) for each ε ∈ (0, 1), there exists a predictable process νt > 0 such that

inf
ε≤‖z−zo‖≤1/ε

z∈Ut−1

−(z − z0)TRt(z) > νt (2.3.3)

eventually, where
∞∑
t=1

νta
−1
t =∞, P -a.s.

Then Zt converges (P -a.s.) to z0.

Proof. It follows from the poof of Corollary 2.3.4 that conditions of Corollary 2.3.1

hold. Let us prove that (C2) of Corollary 2.3.2 holds. Using the obvious inequality
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[a]− ≥ −a, we have

[Nt(u)]− ≥ −2uTa−1t R(zo + u)− a−2t E
{
‖Rt(z

o + u) + εt(z
o + u)‖2 | Ft−1

}
.

By conditions (D2) of Corollary 2.3.4 and taking the supremum of the conditional

expectation above over the set {u : ε ≤ ‖u‖ ≤ 1/ε}, we obtain

sup
E {‖Rt(z

o + u) + εt(z
o + u)‖2 | Ft−1}

1 + ‖u‖2
(1 + ‖u‖2) ≤ rt(1 + ‖1/ε‖2).

Then, by (D3), taking the infimum over the same set,

inf [Nt(u)]− ≥ 2a−1t νt − a−2t rt(1 + ‖1/ε‖2).

Condition (C2) is now immediate from (D3) and (D2) of Corollary 2.3.4. Hence,

according to Corollary 2.3.2, Zt converges (a.s.) to z0. �

Remark 2.3.6 The rest of this section is concerned with the rate of convergence

of (2.1.1). In most applications, checking conditions of Lemma 2.3.7 and Corollary

2.3.10 below is very difficult without establishing the convergence of Zt first. There-

fore, although formally not required, we can assume that Zt −→ z0 convergence

has already been established (using the lemmas and corollaries above or otherwise).

In this case, conditions for the rate of convergence below can be regarded as lo-

cal in z0, that is, they can be derived using certain continuity and differentiability

assumptions of the corresponding functions at point z0 (see examples in Chapter 3).

Lemma 2.3.7 Suppose that Zt is a process defined by (2.1.1), (2.1.2) and (2.1.3).

Let {Ct} be a predictable positive definite m×m matrix process, and λmaxt and λmint
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be the largest and the smallest eigenvalues of Ct respectively. Denote ∆t = Zt − z0.

Suppose also that (V1) of Lemma 2.2.1 holds with Vt(u) = uTCtu and

(R1) there exists a predictable non-negative scalar process Pt such that

2∆T
t−1Ctγt(z

0 + ∆t−1)Rt(z
0 + ∆t−1)

λmaxt

+ Pt ≤ −ρt‖∆t−1‖2,

eventually, where ρt is a predictable non-negative scalar process satisfying

∞∑
t=1

[
λmaxt − λmint−1

λmint−1
− λmaxt

λmint−1
ρt

]+
<∞;

(R2)

∞∑
t=1

λmaxt

[
E

{∥∥∥γt(z0 + ∆t−1)
[
Rt(z

0 + ∆t−1) + εt(z
0 + ∆t−1)

]∥∥∥2 | Ft−1}− Pt]+
1 + λmint−1 ‖∆t−1‖2

<∞.

Then (Zt − z0)TCt(Zt − z0) converges to a finite limit (a.s.).

Proof. Let us check the conditions of Lemma 2.2.1 with Vt(u) = uTCtu.

Denote that Rt = Rt(z
0 +∆t−1), γt = γt(z

0 +∆t−1) and εt = εt(z
0 +∆t−1). Since

V ′t (u) = 2uTCt and V ′′t (u) = 2Ct,

Kt(∆t−1) = ∆Vt(∆t−1) + 2∆T
t−1CtγtRt + E

{
[γt(Rt + εt)]

TCtγt(Rt + εt) | Ft−1
}

Because Ct is positive definite, λmint ‖u‖2 ≤ uTCtu ≤ λmaxt ‖u‖2 for any u ∈ Rm.

Therefore

∆Vt(∆t−1) ≤ (λmaxt − λmint−1 )‖∆t−1‖2
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and denoting

P̃t = λmaxt (Dt − Pt)

where

Dt = E
{
‖γt(Rt + εt)‖2 | Ft−1

}
,

we have

Kt(∆t−1) ≤ (λmaxt − λmint−1 )‖∆t−1‖2 + 2∆T
t−1CtγtRt + λmaxt Dt

= (λmaxt − λmint−1 )‖∆t−1‖2 + 2∆T
t−1CtγtRt + λmaxt Pt + P̃t

By (R1), we have

2∆T
t−1CtγtRt ≤ −λmaxt (ρt‖∆t−1‖2 + Pt).

Therefore,

Kt(∆t−1) ≤ (λmaxt − λmint−1 )‖∆t−1‖2 − λmaxt (ρt‖∆t−1‖2 + Pt) + λmaxt Pt + P̃t

≤ (λmaxt − λmint−1 − λmaxt ρt)‖∆t−1‖2 + P̃t

= rtλ
min
t−1 ‖∆t−1‖2 + P̃t,

where

rt = (λmaxt − λmint−1 − λmaxt ρt)/λ
min
t−1 .

Now, since λmint−1 ≥ 0, using the inequality [a+ b]+ ≤ [a]+ + [b]+, we have

[Kt(∆t−1)]
+ ≤ λmint−1 ‖∆t−1‖2[rt]+ + [P̃t]+.
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Also, since Vt−1(∆t−1) = ∆T
t−1Ct−1∆t−1 ≥ λmint−1 ‖∆t−1‖2,

[Kt(∆t−1)]
+

1 + Vt−1(∆t−1)
≤ [Kt(∆t−1)]

+

1 + λmint−1 ‖∆t−1‖2

≤
λmint−1 ‖∆t−1‖2[rt]+

1 + λmint−1 ‖∆t−1‖2
+

[P̃t]+

1 + λmint−1 ‖∆t−1‖2

≤ [rt]
+ +

[P̃t]+

1 + λmint−1 ‖∆t−1‖2
.

By (R2),
∑∞

t=1[P̃t]+/(1 + λmint−1 ‖∆t−1‖2) <∞ and according to (R1)

∞∑
t=1

[rt]
+ =

∞∑
t=1

[
λmaxt − λmint−1

λmint−1
− λmaxt

λmint−1
ρt

]+
<∞.

Thus,
∞∑
t−1

[Kt(∆t−1)]
+

1 + Vt−1(∆t−1)
<∞,

the condition (V2) of Lemma 2.2.1 has been satisfied. Thus, (V1) and (V2) hold,

and (Zt − z0)TCt(Zt − z0) converges to a finite limit (a.s.). �

Remark 2.3.8 The choice Pt = 0 means that (R2) becomes more restrictive im-

posing stronger probabilistic restrictions on the model. Now, if ∆T
t−1Ctγt(z

0 +

∆t−1)Rt(z
0 + ∆t−1) is eventually negative with a ”high enough” absolute value,

then it is possible to introduce a non-zero Pt without jeopardizing (R1). One possi-

bility might be Pt = ‖γtRt‖2. In that case, since γt and Rt are predictable processes,

and sequence εt is a martingale-difference,

E{‖γt(Rt + εt)‖2|Ft−1} = ‖γtRt‖2 + E{‖γtεt‖2|Ft−1}.
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Then condition (R2) can be rewritten as

∞∑
t=1

λmaxt E{‖γt(z0 + ∆t−1)εt(z
0 + ∆t−1)‖2|Ft−1} <∞.

Remark 2.3.9 The next corollary is a special case of Lemma 2.3.7 when the step-

size matrix sequence, γt, is a sequence of scalar matrix, i.e. γt(Zt−1) = a−1t I, where

at is a non-decreasing positive sequence.

Corollary 2.3.10 Let Zt be a process defined by (2.1.1), (2.1.2) and (2.1.3) with

γt(Zt−1) = a−1t I, where at > 0 is a non-decreasing sequence. Suppose that truncation

sequence Ut is admissible and

(W1)

∆T
t−1Rt(Zt−1) ≤ −

1

2
∆at‖∆t−1‖2

eventually;

(W2) let δ < 1,

∞∑
t=1

aδ−2t E
{
‖Rt(Zt−1) + εt(Zt−1)‖2 | Ft−1

}
<∞.

Then aδt‖Zt − z0‖2 converges to a finite limit (P -a.s.).

Proof. Consider Lemma 2.3.7 with γt = γt(z) = a−1t I, Ct = aδtI, Pt = 0 and

ρt = ∆at/at. To check (R2), denote the infinite sum in (R2) by Q, then

Q ≤
∞∑
t=1

λmaxt

[
E

{∥∥∥γt[Rt(z
0 + ∆t−1) + εt(z

0 + ∆t−1)
]∥∥∥2 | Ft−1}− Pt]+

≤
∞∑
t=1

λmaxt ‖γt‖2E
{
‖(Rt(Zt−1) + εt(Zt−1))‖2 | Ft−1

}
.

36



Now, since λmint = λmaxt = aδt and ‖γt‖2 = a−2t , condition (W2) leads to (R2).

Since ρt = ∆at/at < 1 and (at/at−1)
δ ≤ at/at−1,

∞∑
t=1

[
λmaxt − λmint−1

λmint−1
− λmaxt

λmint−1
ρt

]+
=

∞∑
t=1

[
aδt − aδt−1
aδt−1

− aδt
aδt−1

ρt

]+
=

∞∑
t=1

[
(1− ρt)

aδt
aδt−1

− 1

]+
≤

∞∑
t=1

[
(1− ∆at

at
)
at
at−1

− 1

]+
= 0 .

Therefore, (W1) leads to (R1). According to Remark 2.2.3, condition (V1) holds

since Vt(u) = aδt‖u‖2. Thus, all the conditions of Lemma 2.3.7 hold and aδt‖Zt−z0‖2

converges to a finite limit (P -a.s.). �

Corollary 2.3.11 Let Zt be a process defined by (2.1.1), (2.1.2) and (2.1.3) where

z0 ∈ R, γt(Zt−1) = 1/t and the truncation sequence Ut is admissible. Suppose that

Zt −→ z0 and

(Y1) R′t(z
0) ≤ −1/2 for large t’s;

(Y2) Rt(z) and σ2
t (z) = E(ε2t (z)|Ft−1) are locally uniformly bounded at z0 w.r.t. t;

that is, there exists a constant K such that |Rt(ξt)| ≤ K and |σ2
t (ξt)| ≤ K for

large t’s, for any ξt −→ z0.

Then tδ(Zt − z0)2 converges to a finite limit (P -a.s.), for any δ < 1.

Proof. Consider Corollary 2.3.10 with at = t. In the one-dimensional case, condi-

tion (W1) can be rewritten as

Rt(z
0 + ∆t−1)

∆t−1
≤ −1

2
.
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Condition (W1) now follows from (Y1).

Since E{εt(z)|Ft−1} = 0, using (Y2) we have for any δ < 1,

∞∑
t=1

tδ−2E
{

(Rt(Zt−1) + εt(Zt−1))
2 | Ft−1

}
=

∞∑
t=1

tδ−2R2
t (Zt−1) +

∞∑
t=1

tδ−2E
{
ε2t (Zt−1) | Ft−1

}
< ∞.

Thus, condition (W2) holds. Therefore, tδ(Zt − z0)2 converges to a finite limit

(P -a.s.), for any δ < 1. �

Remark 2.3.12 Corollary 2.3.11 gives simple (but more restrictive) sufficient con-

ditions in one-dimensional cases to derive the rate of convergence. It is easy to see

that all conditions of Corollary 2.3.11 trivially hold, if e.g., Rt(z) = R(z) and εt are

state independent i.i.d. random variables with a finite second moment.

2.4 Asymptotic linearity

In this section, we establish conditions for asymptotic linearity of process defined

by (2.1.1). Once asymptotic linearity is established, one can use a suitable form of

the CLT to derive asymptotic distribution of Zt (see Section 1.3 for details).

Theorem 2.4.1 Suppose that process Zt is defined by (2.1.1), (2.1.2), (2.1.3) and

(E1)

Zt = Zt−1 + γt(Zt−1)[Rt(Zt−1) + εt(Zt−1)] (2.4.1)

eventually.
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Suppose also that there exists a sequence of invertible random matrices At such

that

(E2)

A−1t −→ 0

in probability and

Atγt(z
0)At −→ η

in probability, where η <∞ (a.s.) is a finite matrix.

(E3)

lim
t→∞

A−1t

t∑
s=1

[
∆γ−1s (z0)∆s−1 + R̃s(z

0 + ∆s−1)
]

= 0

in probability, where

∆γ−1s (z0) = γ−1s (z0)− γ−1s−1(z0),

∆s = Zs − z0 and R̃s(z) = γ−1s (z0)γs(z)Rs(z).

(E4)

lim
t→∞

A−1t

t∑
s=1

[
ε̃s(z

0 + ∆s−1)− εs(z0)
]

= 0

in probability, where

ε̃s(z) = γ−1s (z0)γs(z)εs(z).

Then At(Zt −Z∗t ) −→ 0 in probability where Z∗t = z0 + γt(z
0)
∑t

s=1 εs(z
0). That

is, Zt is locally asymptotically linear in z0 with γt = γt(z
0) and ψt = εt(z

0).
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Proof. Using the notation γt = γt(z
0), εt = εt(z

0) and ∆t = Zt− z0, (2.4.1) can

be rewritten as

∆t −∆t−1 = γtR̃t(Zt−1) + γtε̃t(Zt−1).

Multiplying both sides by γ−1t , we have

t∑
s=1

[γ−1s ∆s − γ−1s−1∆s−1] =
t∑

s=1

[∆γ−1s ∆s−1 + R̃s(Zs−1) + ε̃s(Zs−1)].

Since the sum on the left hand side reduces to γ−1t ∆t − γ−10 ∆0, we obtain

∆t = γt

[
Ht +

t∑
s=1

ε̃s(Zs−1) + γ−10 ∆0

]
,

where

Ht =
t∑

s=1

[∆γ−1s ∆s−1 + R̃s(Zs−1)].

Since Zt − Z∗t = ∆t − (Z∗t − z0), we have

Zt − Z∗t = γt

[
Ht + γ−10 ∆0

]
+ γt

t∑
s=1

[
ε̃s(Zt−1)− εs

]
,

and

At(Zt − Z∗t ) = AtγtAtA
−1
t

[
Ht + γ−10 ∆0

]
+ AtγtAtA

−1
t

t∑
s=1

[
ε̃s(Zt−1)− εs

]
.

By conditions (E2), (E3) and (E4), we have

AtγtAt
P−→ η, A−1t

[
Ht + γ−10 ∆0

]
P−→ 0 and A−1t

t∑
s=1

[
ε̃s(Zt−1)− εs

]
P−→ 0
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Therefore, At(Zt − Z∗t ) −→ 0 in probability, that is, Zt is locally asymptotically

linear. �

Proposition 2.4.2 Suppose that At in Theorem 2.4.1 are positive definite diagonal

matrices with non-decreasing elements (i.e. A
(j,j)
t−1 ≤ A

(j,j)
t for j = 1...m, where A

(j,j)
t

is the jth diagonal element of At) and

(Q1)

A−2t

t∑
s=1

As

[
∆γ−1s (z0)∆s−1 + R̃s(z

0 + ∆s−1)
]
−→ 0

in probability P , where R̃t is defined in (E3). Then (E3) in Theorem 2.4.1 holds.

Proof. Denote

χs = As[∆γ
−1
s (z0)∆s−1 + R̃s(z

0 + ∆s−1)],

then

A−1t

t∑
s=1

[∆γ−1s (z0)∆s−1 + R̃s(z
0 + ∆s−1)] = A−1t

t∑
s=1

A−1s χs .

Consider equation

t∑
s=1

Ps∆Qs = PtQt −
t∑

s=1

∆PsQs−1 with P0Q0 = 0

and let Ps = A−1s , Qs =
∑s

m=1 χm, then we obtain

A−1t

t∑
s=1

A−1s χs = A−2t

t∑
s=1

χs + Gt ,

41



where

Gt = −A−1t
t∑

s=1

∆A−1s

s−1∑
m=1

χm .

Since As are diagonal,

∆A−1s = A−1s − A−1s−1 = −A−1s (As − As−1)A−1s−1 = −∆AsA
−1
s A−1s−1.

Therefore,

Gt = A−1t

t∑
s=1

∆As

{
A−1s A−1s−1

s−1∑
m=1

χm

}
.

Since 0 ≤ A
(j,j)
s−1 ≤ A

(j,j)
s for all j (where A

(j,j)
s is the j-th diagonal component of As),

A−2s−1

s−1∑
m=1

χm −→ 0 =⇒ A−1s A−1s−1

s−1∑
m=1

χm −→ 0.

Because of the diagonality, we can apply the Toeplitz Lemma to components of Gt,

which gives

A−1t

t∑
s=1

[∆γ−1s (z0)∆s− 1 + R̃s(z
0 + ∆s−1)] = A−2t

t∑
s=1

χs + Gt −→ 0 .

Therefore, condition (E3) of Theorem 2.4.1 holds. �

Proposition 2.4.3 Suppose that At in Theorem 2.4.1 are positive definite diagonal

matrices with non-decreasing elements. Denote by α(j) the j-th component of α ∈ Rm

and by A(j,j) the j-th diagonal component of matrix A. Suppose also that

(Q2)

E
{
ε̃s(z

0 + ∆s−1)− εs(z0)
∣∣∣Fs−1} = 0;
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(Q3)

lim
t→∞

(A
(j,j)
t )−2

t∑
s=1

E
{[
ε̃(j)s (z0 + ∆s−1)− ε(j)s (z0)

]2∣∣∣Fs−1} = 0

in probability P for all j = 1, ...,m, where ε̃s is defined in (E4). Then (E4) in

Theorem 2.4.1 holds.

Proof. Denote Mt =
∑t

s=1

[
ε̃s(z

0 + ∆s−1)− εs(z0)
]
. By (Q2), Mt is a martingale.

Then the quadratic characteristic 〈M (j)〉t of martingale M
(j)
t is

〈M (j)〉t =
t∑

s=1

Ez0
{[
ε̃(j)s (z0 + ∆s−1)− ε(j)s (z0)

]2∣∣∣Fs−1}.
Use the Lenglart-Rebolledo inequality (see e.g., Liptser and Shiryayev [57], Section

1.9), we have

P
{

(M
(j)
t ) ≥ K2(A

(j,j)
t )2

}
≤ ε

K
+ P

{
〈M (j)〉t ≥ ε(A

(j,j)
t )2

}

for each K > 0 and ε > 0. Now by (Q3), 〈M (j)〉t/(A(j,j)
t )2 −→ 0 in probability P

and therefore M
(j)
t /A

(j,j)
t −→ 0 in probability P . Since At is diagonal, (E4) holds.

�

Remark 2.4.4 Condition (E3) in Theorem 2.4.1 gives a useful suggestion for the

optimal choice of the step-size sequence γt(z
0). Consider condition (Q1) in the

one-dimensional case. Since Rt(z
0) = 0, we have

At

[
∆γ−1t (z0)∆t−1 + R̃t(z

0 + ∆t−1)
]

=

[
∆γ−1t (z0) + et

Rt(z
0 + ∆t−1)−Rt(z

0)

∆t−1

]
At∆t−1,

where et = γ−1t (z0)γt(z
0 + ∆t−1). In most applications, the rate of At is

√
t and
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√
t∆t is stochastically bounded. Therefore, for (Q1) to hold, one should at least

have the convergence

∆γ−1t (z0) + et
Rt(z

0 + ∆t−1)−Rt(z
0)

∆t−1
−→ 0.

If γt(z) is continuous, given that ∆t −→ 0, we expect et −→ 1. Therefore, we should

have

∆γ−1t (z0) ≈ −R′t(z0).

Using the similar arguments for the multi-dimensional cases, we expect the above

relation hold for large t’s, where R′t(z
0) is the matrix of derivatives of Rt(z) at z = z0.

So, an optimal choice of the step-size sequence should be

γ−1t (z) = −
t∑

s=1

R′s(z),

or a sequence which asymptotically equivalent to this sum.

Remark 2.4.5 (a) Condition (E1) in Theorem 2.4.1 holds if the truncations in

(2.1.1) do not occur for large t’s. More precisely, (E1) holds if the truncations in

(2.1.1) do not occur for t > T , for some, possibly random T .

(b) Let us now consider the case when Ut is a shrinking sequence. For example,

suppose that a consistent, but not necessarily efficient, auxiliary estimator Z̃t is

available. Then one can take the truncations on Ut = S(Z̃t, rt), which is a sequence

of closed spherical sets in Rm with center at Z̃t and radius rt −→ 0. Such a procedure

is obviously consistent, as ‖Zt − Z̃t‖ ≤ rt −→ 0 and Z̃t −→ z0. However, if rt

decreases too rapidly, condition (E1) may fail to hold. Intuitively, it is quite obvious

that if rt decreases too rapidly, it may result in Zt having the same asymptotic
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properties as Z̃t. This truncation will be admissible if ‖Z̃t − z0‖ < rt eventually.

In these circumstances, (E1) will hold if the procedure generates the sequence Zt

which converges to z0 faster than rt converges to 0.

(c) The considerations described in (b) lead to the following construction. Suppose

that an auxiliary estimator Z̃t has a convergence rate dt, in the sense that dt is a

sequence of positive r.v.’s such that dt −→ ∞ and dt(Z̃t − z0) → 0 P -a.s. Let us

consider the following truncation sets

Ut = S
(
Z̃t, c(d

−1
t + a−1t )

)
,

where c and at are positive and at −→∞. Then the truncation sequence is obviously

admissible since ‖Z̃t − z0‖ < cd−1t eventually. Now, if we can claim (using Lemma

2.3.7 or otherwise) that at‖Zt−z0‖ −→ 0, then (E1) holds. Indeed, suppose that the

truncations in (2.1.1) occur infinitely many times on a set A of positive probability.

This would imply that Zt appears on the surface of the spheres infinitely many times

on A. Since z0 ∈ S(Z̃t, cd
−1
t ), we obtain that ‖Zt− z0‖ ≥ ca−1t infinitely many times

on A, which contradicts our assumptions.

Another possible choice of the truncation sequence is

Ut = S
(
Z̃t, c

(
d−1t ∨ a−1t

))
.

(Here, a ∨ b = max(a, b) and a ∧ b = min(a, b)). If we can claim by Lemma 2.2.1 or

otherwise that at‖Zt − z0‖ → 0, then (E1) holds. Indeed, suppose that on a set A

of positive probability the truncations in (2.1.1) occur infinitely many times. This

would imply that

‖Z̃t − Zt‖ = c(d−1t ∨ a−1t )
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and

1 = c−1(dt ∧ at)‖Z̃t − Zt‖ ≤ c−1(dt ∧ at)‖Z̃t − z0‖+ c−1(dt ∧ at)‖Zt − z0‖

infinitely many times on A which contradicts our assumptions.

2.5 Classical problem of stochastic approximation

Consider the classical problem of stochastic approximation when function R is not

dynamically changing with R(z0) = 0. Let us take a step-size sequence γt = a−1t I,

where at −→ ∞ is a predictable scalar process (at = t usually) and consider the

procedure

Zt = ΦUt

(
Zt−1 + a−1t [R(Zt−1) + εt(Zt−1)]

)
. (2.5.1)

Corollary 2.5.1 Suppose that Zt is a process defined by (2.5.1), truncation sequence

Ut is admissible, and

(H1) for any z ∈ Rm with the property that z ∈ Ut eventually,

(z − z0)TR(z) ≤ 0;

(H2) there exists a predictable process pt such that

sup
z∈Ut−1

‖R(z)‖2

1 + ‖z − z0‖2
≤ pt,

where
∞∑
t=1

a−2t pt <∞;
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(H3) there exists a predictable process et such that

sup
z∈Ut−1

E{‖εt(z)‖2|Ft−1}
1 + ‖z − z0‖2

≤ et

eventually where
∞∑
t=1

eta
−2
t <∞ P -a.s..

Then ‖Zt − z0‖ converges to a finite limit (a.s.) for any initial value Z0.

Proof. Consider Corollary 2.3.4 with Rt = R. Condition (D1) holds immediately.

Since E {εt(u) | Ft−1} = 0, we have

E
{
‖R(z) + ε(z)‖2 | Ft−1

}
= ‖R(z)‖2 + E

{
‖εt(z)‖2 | Ft−1

}
.

Now condition (D2) holds with rt = pt + et. Thus, by Corollary 2.3.4, ‖Zt − z0‖

converges to a finite limit (a.s.). �

Remark 2.5.2 Suppose that εt is an error term which does not depend on z and

denote

σ2
t = E

{
‖εt‖2 | Ft−1

}
Then condition (H3) holds if

∞∑
t=1

σ2
t a
−2
t <∞, P -a.s.. (2.5.2)

This shows that the requirement on the error terms are quite weak. In particular,

the conditional variances do not have to be bounded w.r.t. t.
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Remark 2.5.3 To compare the above result to that of Kushner-Clark setting, let us

assume boundedness of Zt. Then there exists a compact set U such that Zt ∈ U .

Without lost of generality, we can assume that z0 ∈ U . Then Zt in Corollary 2.5.1

can be assumed to be generated using the truncations on Ut ∩ U . Let us assume

that
∑∞

s=1 a
−2
t < ∞. Then, condition (H2) will hold if , e.g., R(z) is a continuos

function. Also, in this case, given that the error terms εt(z) are continuous in z

with some uniformity w.r.t. t, they will in fact behave in the same way as state

independent error terms. Therefore, a condition of the type in Remark 2.5.2 will be

sufficient for (H3).

Remark 2.5.4 A more general result of Corollary 2.5.1 can be found in Sharia [70]

(Corollary 2.10).

Corollary 2.5.5 Suppose that the conditions of Corollary 2.5.1 are satisfied and

(H4)

(z − z0)TR(z) < 0 for all z ∈ Ut\{z0},

eventually;

(H5)
∞∑
t=1

a−1t =∞.

Then Zt −→ z0 (a.s.).

Proof. Consider Corollaries 2.3.4 and 2.3.5 with νt = ν. Conditions of Corollary

2.5.1 imply that conditions (D1) and (D2) hold (according to the proof of Corollary
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2.5.1). By (H4), there exists constant ν > 0 such that for each ε ∈ (0, 1)

inf
ε≤‖z−zo‖≤1/ε

z∈Ut−1

−(z − z0)TR(u) > ν

eventually and by (H5)
∞∑
t=1

νa−1t = ν

∞∑
t=1

a−1t =∞.

Thus, (D3) is satisfied. Therefore, Zt −→ z0 (a.s.). �

Remark 2.5.6 If the truncation sets are bounded, then some of the conditions

above can be weakened considerably. For example, condition (H2) in Corollary

2.5.1 will automatically hold given that
∑∞

t=1 a
−2
t <∞.

Also if it is only required that Zt converges to a finite limit, the step-size sequence

at can go to infinity at any rate as long as
∑∞

t=1 a
−2
t <∞. However, in order to have

Zt −→ z0, one must ensure that at does not increase too fast. Also, the variances of

the error terms can go to infinity as t tends to infinity, as long as the sum in (H3)

is bounded.

Corollary 2.5.7 Suppose that Zt, defined by (2.5.1), converges to z0 (a.s.) and

truncation sequence Ut is admissible. Suppose also that

(B1)

uTR(z0 + u) ≤ −1

2
‖u‖2

for small u’s;
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(B2)
∞∑
t=1

[
∆at − 1

at−1

]+
<∞;

(B3) there exist δ ∈ (0, 1) such that

∞∑
t=1

aδ−2t ‖R(z0 + vt)‖2 <∞

and
∞∑
t=1

aδ−2t E{‖εt(z0 + vt)‖2|Ft−1} <∞,

where vt ∈ Ut is any predictable process with the property vt −→ 0.

Then aδt‖Zt − z0‖2 converges (a.s.) to a finite limit.

Proof. Since γt = a−1t I in this case, the result follows from Lemma 2.3.7 if we take

Rt = R, ρt = a−1t , Pt = 0 and Ct = aδtI.

Here, λmaxt = λmint = aδt . Since at ≥ at−1 eventually, δ < 1 and by (B2),

∞∑
t=1

[
λmaxt − λmint−1

λmint−1
− λmaxt

λmint−1
ρt

]+
=

∞∑
t=1

[
aδt − aδt−1
aδt−1

− aδt
aδt−1at

]+
=

∞∑
t=1

[
(
at
at−1

)δ(1− a−1t )− 1

]+
≤

∞∑
t=1

[
at
at−1

(1− a−1t )− 1

]+
+ C

=
∞∑
t=1

[
∆at − 1

at−1

]+
+ C

< ∞,

for some constant C. So (B1) leads to (R1).
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Since Zt −→ z0, by (B3) we have

∞∑
t=1

λmaxt [E {‖γt(Rt + εt)‖2 | Ft−1} − Pt]+

1 + λmint−1 ‖∆t−1‖2

≤
∞∑
t=1

λmaxt

[
E
{
‖γt(Rt + εt)‖2 | Ft−1

}
− Pt

]+
=

∞∑
t=1

aδtE
{
‖a−1t (Rt + εt)‖2 | Ft−1

}
≤

∞∑
t=1

aδ−2t ‖R(Zt−1)‖2 +
∞∑
t=1

aδ−2t E{‖εt(Zt−1)‖2|Ft−1}

< ∞.

(R2) has been met. Therefore, according to Lemma 2.3.7, aδt‖Zt−z0‖2 converges

(a.s.) to a finite limit. �

Remark 2.5.8 It follows from Proposition A.11 in Appendix A that if at = tε with

ε > 1, then (B2) doesn’t hold. However, condition (B2) holds if at = tε for all ε ≤ 1.

Indeed,

∞∑
t=1

[
∆at − 1

at−1

]+
=

∞∑
t=1

[(
t

t− 1

)ε
− 1− 1

(t− 1)ε

]+
≤

∞∑
t=1

[
t

t− 1
− 1− 1

t− 1

]+
= 0.

Corollary 2.5.9 Suppose that Zt −→ z0, where Zt is defined by (2.5.1) with at = tε

where ε ∈ (1/2, 1], truncation sequence Ut is admissible for z0, and (B1) in Corollary

2.5.7 holds. Suppose also that R is continuous at z0 and there exists 0 < δ < 2−1/ε

such that
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(BB)
∞∑
t=1

t(δ−2)εE{‖εt(z0 + vt)‖2|Ft−1} <∞.

where vt ∈ Ut is any predictable process with the property vt −→ 0.

Then tδ‖Zt − z0‖2 converges to a finite limit (a.s.).

Proof. Since at = tε where ε ∈ (1/2, 1], (B2) is satisfied. (See Remark 2.5.8)

Since R is continuous at z0 and Zt −→ z0, R(Zt−1) is bounded. Also, we have

(δ − 2)ε < −1, then

∞∑
t=1

aδ−2t ‖R(Zt−1)‖2 =
∞∑
t=1

t(δ−2)ε‖R(Zt−1)‖2 <∞

and

∞∑
t=1

aδ−2t E{‖εt(z0 + vt)‖2|Ft−1} =
∞∑
t=1

t(δ−2)εE{‖εt(z0 + vt)‖2|Ft−1} <∞.

as vt −→ 0.

Thus, (B3) has been met. Now, condition (B1), (B2) and (B3) hold, according

to Corollary 2.5.7, tδ‖Zt − z0‖2 converges to a finite limit (a.s.). �

Remark 2.5.10 Suppose that at = tε with ε ∈ (1/2, 1) and suptE{‖εt(z)‖2|Ft−1} <

∞ (e.g., assume that εt = εt(z) are state independent and i.i.d.). Then, since

(δ − 2)ε < −1, condition (BB) in Corollary 2.5.9 automatically holds for any

δ < 2 − 1/ε. It therefore follows that the step-size sequence at = tε, ε ∈ (1/2, 1)

produces SA procedures which converge with the rate t−α where α < 1 − 1
2ε

. For

example, the step-size at = t3/4 would produce the SA procedures, whcih converge

with the rate t−1/3.
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Corollary 2.5.11 Suppose that Zt is defined by (2.5.1) and tδ/2(Zt − z0) −→ 0 for

any δ ∈ (0, 1) and at = t. Suppose also that

(A1)

Zt = Zt−1 +
1

t
[R(Zt−1) + εt(Zt−1)]

eventually;

(A2)

R(z0 + u) = −u+ α(u)

where

‖α(u)‖ = O(u1+ε)

as u→ 0 for some ε > 0;

(A3)

t−1
t∑

s=1

E
{[
εs(z

0 + us)− εs(z0)
]2∣∣∣Fs−1} <∞,

where us is any predictable process with the property us −→ 0.

Then Zt is asymptotically linear.

Proof. Let us check the conditions in Theorem 2.4.1. Condition (E1) follows from

(A1). Let At =
√
tI, then AtγtAt = I (note that γt = 1/t). Condition (E2) holds.

On the other hand, since R̃(z) = R(z),

A−2t

t∑
s=1

As

[
∆γ−1s ∆s−1 + R̃s(Zs−1)

]
=

1

t

t∑
s=1

√
s[a∆s−1 +R(z0 + ∆s−1)]

=
1

t

t∑
s=1

√
sα(∆s−1).
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There exists a constant K > 0 such that

‖
√
sα(∆s−1)‖ ≤ K

∥∥√s(∆s−1)
1+ε
∥∥

= K

∥∥∥∥√ s

s− 1

[
(s− 1)1/2(1+ε)∆s−1

]1+ε∥∥∥∥ .
Since 1/2(1 + ε) < 1/2, we have (s−1)1/2(1+ε)∆s−1 −→ 0, and therefore ‖

√
sα(∆s−1)‖ −→

0 as ∆s −→ 0. Thus, by the Toeplitz Lemma (see Lamma A.4 in Appendix A),

1

t

t∑
s=1

‖
√
sα(∆s−1)‖ −→ 0

and

A−2t

t∑
s=1

As

[
∆γ−1s ∆s−1 + R̃s(Zs−1)

]
=

1

t

t∑
s=1

√
sα(∆s−1) −→ 0.

According to Proposition 2.4.2, condition (E3) in Theorem 2.4.1 is satisfied.

Since ε̃t(z) = εt(z) and (A3), conditions (Q2) and (Q3) in Proposition 2.4.3 hold.

Therefore condition (E4) in Theorem 2.4.1 holds. Thus, all the conditions of Theo-

rem 2.4.1 hold and Zt is asymptotically linear. �

Remark 2.5.12 Using asymptotic linearity, asymptotic normality is a immediate

consequence of Corollary 2.5.11 in the classical SA. Indeed, we have
√
t(Zt−Z∗t ) −→

0 in probability, where

Z∗t = z0 +
1

t

t∑
s=1

εs(z
0).

So, Zt and Z∗t have the same asymptotic distribution. Now, it remains only

to apply the CLT for martingales (see e.g. Theorem 1.3.2 for the one-dimensional
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case).

Example 2.5.13 Let l be a positive integer and

R(z) = −
l∑

i=1

Ci(z − z0)i, (2.5.3)

where z, z0 ∈ R and Ci are constants such that

(z − z0)R(z) < 0 for all z ∈ R\{0}.

Consider a truncation sequence Ut = [−ut, ut], where ut −→ ∞ is a sequence of

positive numbers. Suppose that

∞∑
t=1

a−1t =∞ and
∞∑
t=1

u2lt a−2t <∞. (2.5.4)

Then, provided that the measurement errors satisfy condition (H3) of Corollary

2.5.1, the truncated procedure (2.5.1) converges a.s. to z0.

Indeed, condition (H1) of Corollary 2.5.1, (H4) and (H5) of Corollary 2.5.5 triv-

ially hold. For large t’s,

sup
z∈[−ut−1,ut−1]

‖R(z)‖2

1 + ‖z − z0‖2
≤ sup

z∈[−ut−1,ut−1]

[
l∑

i=1

Ci(z − z0)i
]2

≤ sup
z∈[−ut−1,ut−1]

l∑
i=1

C2
i (z − z0)2i

≤
l∑

i=1

C2
i (2ut)

2i

≤ l4lC2
l u

2l
t ,
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which implies condition (H2) of Corollary 2.5.1.

One can always choose a suitable sequence ut which satisfies (2.5.4). For example,

if the degree of the polynomial is known to be l (or at most l), and at = 1/t, then

one can take ut = Ctr/2l, where C and r are some positive constants and r < 1.

One can also take a truncation sequence which is independent of l, e.g., ut = C log t,

where C is a positive constant.

Suppose also that

C1 ≥
1

2
, at = tε where ε ∈ (0, 1]

and condition (BB) in Corollary 2.5.11 holds (e.g., one can assume for simplicity that

εts are state independent and i.i.d.). Then tα(Zt − z0)
a.s.−−→ 0 for any α < 1− 1/2ε.

Indeed, since R′(z0) = −C1 ≤ −1/2, condition (B1) of Corollary 2.5.7 holds.

The above convergence is a consequence of Corollary 2.5.9 and Remark 2.5.10.

Furthermore, conditions in Corollary 2.5.11 are satisfied if at = C1t and the

measurement errors are state free. Then Zt is locally asymptotically linear. Now,

depending on the nature of the error terms, one can apply a suitable form of the CLT

to obtain the asymptotic normality of Zt (e,g,. Theorem 1.3.2 if εt is martingale-

difference).

Remark 2.5.14 A similar simpler example was considered by Chen [14]. However,

our approach is different and is similar to that considered in Sharia [64] (see Section

1.2 for details). We plan to compare performances of these two approaches for the

general polynomial functions in our future work.

56



2.6 Summary

In this chapter, some results are new in the field of SA. In particular, dynamically

changing Lyapunov functions are used to verify the conditions for convergence. The

convergence result given in this section generalises the corresponding result in Sharia

[70] by considering time dependent random Lyapunov type functions (see Lemma

2.2.1). This generalisation turns out to be quite useful as it can be used to derive

convergence results of the recursive parameter estimators in AR(m) models (see

details in Chapter 4).

Note also that the proof of the convergence lemma (Lemma 2.2.1) is based on

the Robbins-Siegmund Lemma (see Lemma A.1 in Appendix A). This lemma is,

in fact, a special case of the theorem on the convergence sets of nonnegative semi-

martingales (see, e.g., Lazrieva et al [46]). This observation might be useful if one

wants to generalise the results of the thesis to the continuous time SA.

Sufficient conditions for the rate of convergence is derived in Lemma 2.3.7, Corol-

laries 2.3.10 and 2.3.11, which are also new.

The results in section 2.4, show that under quite mild conditions, the SA process

is asymptotically linear in the statistical sense, that is, it can be represented as

a weighted sum of random variables. Therefore, a suitable form of the central

limit theorem can be applied to derive the corresponding asymptotic distribution.

Furthermore, the results in this section help to identify step-size sequences that are

optimal for a given set of R functions (see Remark 2.4.4). Corollaries 2.4.2 and

2.4.3 give sufficient conditions to derive asymptotic linearity by using the Toeplitz

Lemma. The same idea is also used in Sharia [69]. These corollaries will be used in

verifying asymptotic linearity of specific statistical models later in Chapters 3 and

4.
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In Section 2.5, the above results are applied to the functions which are not

dynamically changing against time t. In this case, the conditions are similar to

those in the well known classical SA (see e.g., Lai and Robbins [43]). It shows that

the conditions we used in the thesis are minimal in the sense that they do not impose

any additional restrictions when applied to the classical case.

Furthermore, Section 2.5 contains new results even for the classical SA problem.

In particular, truncations with moving bounds gives a possibility to use SA in the

cases when classical conditions on the function R do not hold (see Example 2.5.13).

Also, Remark 2.5.10 highlights a very interesting link between the rate of the

step-size sequence and the rate of convergence of the SA process in the classical

case. This observation would not surprise experts working in this field. However,

we failed to find it in a written form in the existing literature.
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Chapter 3

Application to Parameter

Estimation

This chapter is devoted to the application of the results established in the previous

chapters to the problems of parametric statistical estimation. In i.i.d. models, the

classical SA method can directly be applied to parametric statistical estimation

problems and this approach has been exploited by a number of authors (see Section

1.2 for details). However, as it was mentioned in the introduction, to be able to

apply SA to the parametric statistical problems in the general statistical model, one

needs to consider generalisation presented in the previous chapters.

A class of recursive on-line SA type procedures for the general statistical model

is introduced in Section 3.1. A brief comparison between the recursive estimation

method and the Newton-Raphson type iterations is also given in this section.

Recursive estimation for specific models is discussed in Section 3.2, including the

i.i.d. cases, the exponential family of Markov processes, and linear procedures.
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3.1 Recursive on-Line estimation for the general

statistical model

Let Xt, t = 1, 2, . . . , be observations taking values in a measurable space (X,B(X))

equipped with a σ-finite measure µ. Suppose that the distribution of the process

Xt depends on an unknown parameter θ ∈ Θ, where Θ is an open subset of Rm.

Consider an estimating equation

t∑
s=1

ψs(v) = 0, (3.1.1)

where ψs(v) = ψs(v,Xs, Xs−1, ..., X1) is an influence process. Then an M-estimator

θ̂t of θ is defined as a solution of equation (3.1.1) (see Section 1.3 for details). If ψs(v)

functions are linear w.r.t. v, then the estimator derived from (3.1.1) is naturally on-

line. For example, if X1, X2, . . . , Xt are i.i.d. N(θ, σ2) r.v.’s, then the likelihood

equation is
t∑

s=1

xs − θ
σ2

= 0

and the MLE is θ̂t = X̄, which can be written as

1

t

t∑
s=1

Xs =
1

t

t−1∑
s=1

Xs +
1

t
Xt =

t− 1

t

1

t− 1

t−1∑
s=1

Xs +
1

t
Xt.

That is,

θ̂t = θ̂t−1 +
1

t
(Xt − θ̂t−1). (3.1.2)

So, the estimator θ̂t at each step t is obtained from the estimator at the previous

step θ̂t−1 and the new information Xt.

In general, to find a possible form of an approximate recursive relation, consider
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θ̂t defined as a root of the estimating equation (3.1.1). Denoting the left hand side

of (3.1.1) by Mt(v) and assuming that the difference θ̂t − θ̂t−1 is “small” we can

write Mt(θ̂t) ≈Mt(θ̂t−1) +M ′
t(θ̂t−1)(θ̂t − θ̂t−1) and

0 = Mt(θ̂t)−Mt−1(θ̂t−1) ≈M ′
t(θ̂t−1)(θ̂t − θ̂t−1) + ψt(θ̂t−1).

Therefore,

θ̂t ≈ θ̂t−1 −
ψt(θ̂t−1)

M ′
t(θ̂t−1)

,

where M ′
t(θ) =

∑t
s=1 ψ

′
s(θ). Now, depending on the nature of the underlying model,

M ′
t(θ) can be replaced by a simpler expression. For instance, in the i.i.d. models

with ψ(x, v) = f ′(x, v)/f(x, v) (the MLE case), by the strong law of large numbers,

M ′
t(θ)

t
=

1

t

t∑
s=1

(f ′(Xs, θ)/f(Xs, θ))
′ ≈ Eθ

[
(f ′(X1, θ)/f(X1, θ))

′]
= −i(θ)

for large t’s, where i(θ) is the one-step Fisher information. So, in this case, one can

consider

θ̂t = θ̂t−1 +
1

t i(θ̂t−1)

f ′(Xt, θ̂t−1)

f(Xt, θ̂t−1)
, t ≥ 1, (3.1.3)

to construct an estimator which is “asymptotically equivalent” to the MLE.

Note that the MLE in the i.i.d. normal case has exactly this form, indeed, (3.1.2)

can trivially be rewritten as

θ̂t = θ̂t−1 +
1

t 1/σ2︸︷︷︸
i(θ)

(Xt − θ̂t−1)
σ2︸ ︷︷ ︸

f ′(Xt,θ̂t−1)

f(Xt,θ̂t−1)

.

61



Motivated by the above argument, one can consider a class of estimators

θ̂t = ΦUt

(
θ̂t−1 + γt(θ̂t−1)ψt(θ̂t−1)

)
, t ≥ 1, (3.1.4)

where ψt is a suitably chosen vector process, γt is a step-size matrix process, and θ̂0 ∈

Rm is some initial value. In particular, if Ut = Rm and ψs(θ) = f ′s(Xs, θ)/fs(Xs, θ),

where fs(x, θ) = fs(x, θ|X1, . . . , Xs−1) is the conditional pdf of the observation Xs

given X1, . . . , Xs−1, we obtain

θ̂t = θ̂t−1 + I−1t (θ̂t−1)
f ′t
T (Xt, θ̂t−1)

ft(Xt, θ̂t−1)
, t ≥ 1, (3.1.5)

where, It(θ) is the conditional Fisher information matrix, f ′t is the row-vector of

partial derivatives of ft w.r.t. the components of θ.

It should be noted that recursions (3.1.3) and (3.1.5) resemble the Newton-

Raphson or the one-step Newton-Raphson iterative procedures. In the i.i.d. case,

the Newton-Raphson iteration for the likelihood equation is

ϑk = ϑk−1 + J−1(ϑk−1)
t∑

s=1

f ′(Xs, ϑk−1)

f(Xs, ϑk−1)
, k ≥ 1, (3.1.6)

where −J(v) is the second derivative of the log-likelihood function, that is,

t∑
s=1

∂

∂v
(f ′(Xs, v)/f(Xs, v))

or its expectation, that is, −ti(v). In the latter case, the iterative scheme is often

called the method of scoring. The main feature of the scheme (3.1.6) is that t is

fixed, and ϑk, at each step k = 1, 2, . . . , is the k’th approximation to a root, say
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θ̃t, of the likelihood equation
∑t

s=1 (f ′(Xs, v)/f(Xs, v)) = 0. Also, if a new (t+ 1)st

observation is available, the whole procedure has to be repeated again. Note also,

that the one-step Newton-Raphson is a simplified version of (3.1.6) when an auxiliary
√
t-consistent estimator, say θ̃t is available. Then, the one-step Newton-Raphson

improves θ̃t in one step (that is, k = 1) by

θ̂t = θ̃t + J−1(θ̃t)
t∑

s=1

f ′(Xs, θ̃t)

f(Xs, θ̃t)
. (3.1.7)

As one can see the procedure (3.1.3) is quite different. It does not require an auxiliary

estimator and it adjusts the value of the estimator at each instant of time with the

arrival of the new observation. A theoretical implication of this is that by studying

the procedures (3.1.3), or in general (3.1.4), we study the asymptotic behaviour

of the estimator. As far as applications are concerned, there are advantages in

using (3.1.3), (3.1.4), or (3.1.5), since these procedures are easy to use and, unlike

other methods, do not require storing all the data. Also, these procedures naturally

allow for on-line implementation, which is particulary convenient for sequential data

processing.

It should be noted that the recursive procedure (3.1.4) is not a numerical so-

lution of (3.1.1). Nevertheless, recursive estimator (3.1.4) and the corresponding

M -estimator are expected to have the same asymptotic properties under quite mild

conditions.

As it was mentioned in Section 1.1, in the i.i.d. case, (3.1.3) can be regarded as

a classical stochastic approximation procedure and in the general statistics model,

63



(3.1.4) can be rewritten in the SA form by introducing

Rt(v) = Eθ {ψt(Xt, v) | Ft−1} and εt(v) = (ψt(Xt, v)−Rt(v)) .

Following the argument in Remark 2.4.4 (see also Sharia [69]), an optimal step-size

sequence would be

γ−1t (v) = −
t∑

s=1

R′s(v) (3.1.8)

If ψt(v) = ψt(Xt, v) is differentiable w.r.t. v and differentiation of Rt(v) = Eθ{ψt(v) |

Ft−1} is allowed under the integral sign, then R′t(v) = Eθ{ψ′t(v) | Ft−1}. This implies

that, for a given sequence of estimating functions ψt(v), another possible choice of

the normalizing sequence is

γt(v)−1 = −
t∑

s=1

Eθ{ψ′s(v) | Fs−1}, (3.1.9)

or any sequence with the increments

Mγ−1t (v) = γ−1t (v)− γ−1t−1(v) = −Eθ{ψ′t(v) | Ft−1}.

Also, since ψt(θ) is a P θ-martingale difference,

0 =

∫
ψt(θ, x | X t−1

1 )ft(θ, x | X t−1
1 )µ(dx),

and if the differentiation w.r.t. θ is allowed under the integral sign, then (see Sharia

[69] for detials)

Eθ{ψ′t(θ) | Ft−1} = −Eθ{ψt(θ)lTt (θ) | Ft−1},
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where lt(θ) = [f ′t(θ,Xt|X t−1
1 )]T/ft(θ,Xt|X t−1

1 ). Therefore, another possible choice of

the normalizing sequence is any sequence with the increments

Mγ−1t (θ) = γ−1t (θ)− γ−1t−1(θ) = Eθ{ψt(θ)lTt (θ) | Ft−1}.

Therefore, since the process

M θ
t =

t∑
s=1

ψs(θ)

is a P θ-martingale, the above sequence can be rewritten as the mutual quadratic

characteristic of the martingales

γ−1t (θ) =
t∑

s=1

Eθ{ψs(θ)lTs (θ)|Ft−1} = 〈M θ, Lθ〉t

where Lθt =
∑t

s=1 ls(θ) is the score martingale.

Let us consider a likelihood case, that is ψt(θ) = lt(θ), the above sequence is the

conditional Fisher information It(θ), and the corresponding recursive procedure is

θ̂t = ΦUt

(
θ̂t−1 + I−1t (θ̂t−1)lt(θ̂t−1)

)
, t ≥ 1, (3.1.10)

Also, given that the model possesses certain ergodicity properties, asymptotic lin-

earity of (3.1.10) implies asymptotic efficiency. In particular, in the case of i.i.d.

observations, it follows that the above recursive procedure is asymptotically normal

with parameters (0, i−1(θ)).
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3.2 Special models and examples

3.2.1 The i.i.d. case

Consider the classical scheme of i.i.d. observations X1, X2, ... having a common

probability density function f(θ, x) w.r.t. some σ- finite measure µ, where θ ∈ Rm.

Suppose that ψ(θ, z) is an estimating function with

Eθ {ψ(θ,X1)} =

∫
ψ(θ, z)f(θ, z)µ(dz) = 0.

A recursive estimator θ̂t can be defined by

θ̂t = ΦUt

(
θ̂t−1 + a−1t γ(θ̂t−1)ψ(θ̂t−1, Xt)

)
(3.2.1)

where at is a non-decreasing real sequence, γ(θ) is a invertible m ×m matrix and

truncation sequence Ut is admissible for θ.

The i.i.d. scheme can be analysed in the framework of classical stochastic ap-

proximation. Everywhere in the following example, Ft is the σ-algebra generated by

X1, . . . , Xt, P
θ is the family of corresponding measures, and θ > 0 is an arbitrary

but fixed value of the parameter. It is easy to see that (3.2.1) can be rewritten in

the form of (2.5.1) with

Zt = θ̂t

γt(u) = a−1t I

R(u) = γ(u)Eθ {ψ(u,Xt)}

εt(u) = γ(u)ψ(u,Xt)−R(u)
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Example 3.2.1 Let X1, X2, . . . be i.i.d. random variables from Gamma(θ, 1) (θ >

0). Then the common probability density function is

f(x, θ) =
1

Γ(θ)
xθ−1e−x, θ > 0, x > 0,

where Γ(θ) is the Gamma function. Denote that

log′Γ(θ) =
d

dθ
logΓ(θ), log′′Γ(θ) =

d2

dθ2
logΓ(θ).

Then

f ′(x, θ)

f(x, θ)
= logx− log′Γ(θ) and i(θ) = log′′Γ(θ),

where i(θ) is the one-step Fisher information. Then a recursive likelihood estimation

procedure can be defined as

θ̂t = ΦUt

(
θ̂t−1 +

1

t log′′Γ(θ̂t−1)

[
logXt − log′Γ(θ̂t−1)

])
(3.2.2)

with Ut = [αt, βt] where αt ↓ 0 and βt ↑ ∞ are sequences of positive numbers.

Let us rewrite (3.2.2) in the form of the stochastic approximation, i.e.,

θ̂t = ΦUt

(
θ̂t−1 +

1

t

[
R(θ̂t−1) + εt(θ̂t−1)

])
(3.2.3)

where

R(u) = Rθ(u) =
1

log′′Γ(u)
Eθ{logXt − log′ Γ(u)} =

1

log′′Γ(u)
(log′ Γ(θ)− log′ Γ(u))
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and

εt(u) =
1

log′′Γ(u)
[logXt − log′Γ(u)]−R(u).

Since Eθ {logXt | Ft−1} = Eθ {logXt} = log′ Γ(θ) and θ̂t−1 is Ft−1 - measurable,

we have Eθ

{
εt(θ̂t−1) | Ft−1

}
= 0 and hence (2.1.2) holds. Since Eθ

{
log2Xt

}
<∞,

condition (2.1.3) can be checked in the similar way. Obviously, R(θ) = 0, and since

log′ Γ is increasing (see, e.g., Whittaker and Watson [76], 12.16), condition (H1) of

Corollary 2.5.1 and conditions of Corollary 2.5.5 hold with z0 = θ and at = t (see

Appendix B for details). Then it can be shown that if

∞∑
t=1

α2
t−1

t
=∞ and

∞∑
t=1

log2 αt−1 + log2 βt−1
t2

<∞, (3.2.4)

then all the conditions of Corollary 2.5.1 hold and therefore, θ̂t is strongly consistent,

i.e.,

θ̂t
a.s.−−→ θ as t −→∞.

For instance, the sequences,

αt = C1(log (t+ 2))−
1
2 and βt = C2(t+ 2)

with some positive constants C1 and C2, obviously satisfy (3.2.4).

Note that since θ ∈ (0,∞), it may seem unnecessary to use the upper truncations

βt < ∞. However, without upper truncations (i.e. if βt = ∞), the standard

restriction on the growth of R does not hold. Also, with βt =∞ the procedure fails

condition (H2) of Corollary 2.5.1.
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Since

R′(u) =
dR(u)

du
= − log′′Γ(u)

log′′Γ(u)
− log′′′Γ(u)

[log′′Γ(u)]2
(log′ Γ(θ)− log′ Γ(u))

= −1− log′′′Γ(u)

[log′′Γ(u)]2
(log′ Γ(θ)− log′ Γ(u)) ,

we have R′(θ) = −1 ≤ −1/2 and condition (B1) of Corollary 2.5.7 holds. Since

Eθ {εt(u) | Ft−1} = 0, we have

Eθ
{

[R(u) + ε(u)]2 | Ft−1
}

= R2(u) + Eθ
{
ε2t (u) | Ft−1

}
. (3.2.5)

Using (3.2.5) and (B.5) in Appendix B,

Eθ
{
ε2t (u) | Ft−1

}
≤ Eθ

{
[R(u) + ε(u)]2 | Ft−1

}
= log′′Γ(θ) + (log′ Γ(θ)− log′ Γ(u))

2
,

which is obviously a continuous function of u.

Thus, for any vt −→ 0, Eθ {ε2t (θ + vt) | Ft−1} converges to a finite limit and so

condition (BB) in Corollary 2.5.9 holds. Therefore, conditions in Corollary 2.5.9 are

satisfied with at = t and we have tδ(θ̂t − θ)2
a.s.−−→ 0 for any δ < 1.

Furthermore, since the second derivative of R(u) exists, R′(θ) = −1, and R(θ) =

0, by the Taylor expansion,

R(θ + u) = −u+R′′(ũ)u2

for small u’s and for some ũ > 0. Therefore, condition (A2) in Corollary 2.5.11
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holds. It is also easy to check that

Eθ

{[
εs(θ + us)− εs(θ)

]2∣∣∣Fs−1} −→ 0

for any predictable process us −→ 0. Condition (A3) is immediate from the Toeplitz

Lemma. Thus, estimator θ̂t defined by (3.2.3) is asymptotic linear. Now, using the

CLT for i.i.d. r.v.’s, it follows that θ̂t is asymptotically efficient.

Remark 3.2.2 Note that the discussion of convergence in the above example is

from Sharia [70].

3.2.2 Exponential family of Markov processes

Consider a time-homogeneous Markov process Xt (t=1,2...). We say that Xt belongs

to the exponential family of Markov processes, if the conditional probability density

function of Xt given Xt−1 is ft(θ, xt|xt−1) = f(xt; θ, xt−1), where

f(y; θ, x) = h(x, y)exp{θTm(y, x)− β(θ;x)}

where m(y, x) is a 1×m vector and β(θ;x) is a scalar.

It follows from the standard exponential family theory (see Feigin [24]) that

lt(θ) =
d

dθ
logf(Xt; θ,Xt−1) = m(Xt, Xt−1)− [β′(θ;Xt−1)]

T

is a martingale-difference and the conditional Fisher information is

It(θ) =
t∑

s=1

β′′(θ;Xs−1).
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Therefore, a maximum likelihood recursive procedure can be defined as

θ̂t = θ̂t−1 +
( t∑
s=1

β′′(θ̂s−1;Xs−1)
)−1(

m(Xt, Xt−1)− [β′(θ̂t−1;Xt−1)]
T
)

for t ≥ 1.

Locating the actual value of parameter θ is now the same as finding the root of

function Rt(z) = Eθ{lt(z)|Ft−1}.

Since Eθ{lt(θ)|Ft−1} = 0, we have

Eθ{m(Xt, Xt−1)|Ft−1} = [β′(θ;Xt−1)]
T

and

Eθ{lt(θ + u)} = [β′(θ;Xt−1)− β′(θ + u;Xt−1)]
T .

Now suppose that θ is one-dimensional and consider the class of conditionally

additive exponential families, that is,

f(y; θ, x) = h(x, y)exp
{
θm(y, x)− ϕ(θ)h(x)

}
,

where h(·) ≥ 0 and ϕ′′(·) ≥ 0. Then the conditional Fisher information is

It(θ) = ϕ′′(θ)Ht where Ht =
t∑

s=1

h(Xs−1).

and

Eθ{l2t (θ)|Ft−1} = ϕ′′(θ)h(Xt−1) (3.2.6)

(see details also in Feigin [24]).
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Therefore, a maximum likelihood recursive procedure can be defined as

θ̂t = θ̂t−1 +
(
ϕ′′(θ̂t−1)Ht

)−1(
m(Xt, Xt−1)− ϕ′(θ̂t−1)h(Xt−1)

)
(3.2.7)

for t ≥ 1.

We can rewrite (3.2.7) in the form of (2.1.1) with

Zt = θ̂t

γt(θ + u) =
(
ϕ′′(θ + u)Ht

)−1
Rt(θ + u) = [ϕ′(θ)− ϕ′(θ + u)]h(Xt−1)

εt(θ + u) = lt(θ + u)− Eθ{lt(θ + u)|Ft−1},

and truncations Ut = Rm.

Lemma 3.2.3 Let θ̂t be estimators defined by (3.2.7). Suppose that Ht
a.s.−−→∞ and

either ϕ′ is a linear function or the following conditions hold:

(M1)

h(Xt−1)

Ht

a.s.−−→ 0;

(M2) for any finite a and b,

0 < inf
u∈[a,b]

ϕ′′(u) ≤ sup
u∈[a,b]

ϕ′′(u) <∞;

(M3) there exists a constant K such that

1 + [ϕ′(u)]2

[ϕ′′(u)]2
≤ K(1 + u2)
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for each u ∈ R.

Then θ̂t converges to θ (a.s.), for any initial value θ̂0.

Proof. See details in Sharia [66].

Lemma 3.2.4 Suppose that θ̂t
a.s.−−→ θ where θ̂t is defined by (3.2.7) with Ht −→∞.

Suppose also that ϕ′′(·) is a continuous function and is positive in a neighbourhood

of θ. Then Hδ
t (θ̂t − θ)2

a.s.−−→ 0 for any δ < 1.

Proof. Let us check the conditions of Lemma 2.3.7 with Ct = Hδ
t I, ρt = h(Xt−1)/Ht

and Pt = 0. Since Ut = R, condition (V1) of Lemma 2.2.1 holds trivially.

Since

ϕ′(θ)− ϕ′(θ + u) = −uϕ′′(θ + ũ) with |ũ| ≤ |u|,

we have

[
2∆t−1Ctγt(θ + ∆t−1)Rt(θ + ∆t−1)

λmaxt

+ Pt
]

1

ρt∆2
t−1

=

[
−2

Hδ
t h(Xt−1)ϕ

′′(θ + ∆̃t−1)

Htϕ′′(θ + ∆t−1)
∆2
t−1

]
Ht

h(Xt−1)∆2
t−1

= −2
ϕ′′(θ + ∆̃t−1)

ϕ′′(θ + ∆t−1)
Hδ
t

Since ∆t −→ 0, we have ∆̃t −→ 0 and = ϕ′′(θ+∆̃t−1)/ϕ
′′(θ+∆t−1) −→ 1. Therefore,

[
2∆T

t−1Ctγt(Zt−1)Rt(Zt−1)

λmaxt

+ Pt
]

1

ρt∆2
t−1

< −1

eventually. Meantime, since ht ≥ 0 and (Ht/Ht−1)
δ ≤ Ht/Ht−1 (indeed, Ht ≥
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Ht−1 > 0 and δ ≤ 1) and h(Xt−1)/Ht < 1, we have

∞∑
t=1

[
λmaxt − λmint−1

λmint−1
− λmaxt

λmint−1
ρt

]+
=

∞∑
t=1

[
Hδ
t −Hδ

t−1

Hδ
t−1

− Hδ
t

Hδ
t−1

h(Xt−1)

Ht

]+
=

∞∑
t=1

[
(1− h(Xt−1)

Ht

)(
Ht

Ht−1
)δ − 1

]+
≤

∞∑
t=1

[
(1− h(Xt−1)

Ht

)
Ht

Ht−1
− 1

]+
=

∞∑
t=1

[
Ht − h(Xt−1)

Ht−1
− 1

]+
= 0 <∞.

Condition (R1) has been satisfied.

According to Proposition A.8 in Appendix A,
∑∞

t=1 h(Xt−1)/H
2−δ
t <∞, and by

(3.2.6),

∞∑
t=1

λmaxt [E {‖γt(Zt−1)[Rt(Zt−1) + εt(Zt−1)]‖2 | Ft−1} − Pt]+

1 + λmint−1 ‖∆t−1‖2

≤
∞∑
t=1

λmaxt

[
γ2t (θ + ∆t−1)E

{
l2t (θ + ∆t−1) | Ft−1

}]+
≤

∞∑
t=1

[
h(Xt−1)

ϕ′′(θ + ∆t−1)H
2−δ
t

]+
< ∞

as ∆t −→ 0. (R2) is now satisfied. Therefore, by Lemma 2.3.7, Hδ
t (θ̂t− θ)2

a.s.−−→ 0.�

Lemma 3.2.5 Suppose that condition M1 and M3 hold in Lemma 3.2.3. Then θ̂t

is asymptotically linear, if function ϕ′′(·) is locally Lipschitz, that is, for any θ there
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exists a constant Kθ and 0 < εθ ≤ 1/2 such that

|ϕ′′(θ + u)− ϕ′′(θ)| ≤ Kθ|u|εθ .

Proof. See details in Sharia [69].

3.2.3 Linear procedures

Consider the linear recursive procedure

Zt = Zt−1 + γt(ht − βtZt−1) (3.2.8)

where γt is a predictable positive definite matrix process, βt is a predictable pos-

itive semi-definite matrix process and ht is an adapted vector process (i.e., ht is

Ft-measurable for t ≥ 1). The following result gives a sufficient condition for con-

vergence and asymptotic linearity of the estimator defined by (3.2.8) in the case

when ht − βtz
0 is a martingale-difference, i.e., E{ht|Ft−1} = βtz

0. We can view

(3.2.8) as a SA procedure designed for finding z0, which is the root of function

Rt(u) = E{ht − βtu|Ft−1} = E{ht|Ft−1} − βtu = βt(z
0 − u)

with the random noise

εt(u) = ht − βtu−Rt(u) = ht − E{ht|Ft−1} = ht − βtz0.

Lemma 3.2.6 Suppose that Zt is defined by (3.2.8), Ct is a sequence of m × m

positive semi-definite matrices and
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(J1) ∆Ct − 2Ctγtβt + βtγtCtγtβt is negative semi-definite eventually;

(J2)
∞∑
t=1

E
{

(ht − βtz0)TγtCtγt(ht − βtz0)|Ft−1
}
<∞ .

Then (Zt − z0)TCt(Zt − z0) converges to a finite limit (a.s.).

proof. Consider Lemma 2.2.1 with Vt(u) = uTCtu and truncations Ut = Rm, then

(V1) holds trivially and we have V ′t (u) = 2uTCt and V ′′t (u) = 2Ct. Then

V ′t (∆t−1)γt(z
0 + ∆t−1)Rt(z

0 + ∆t−1) = 2∆T
t−1Ctγt(Zt−1)Rt(Zt−1)

= −∆T
t−12Ctγtβt∆t−1 .

Since εt is a martingale-difference,

E{(Rt + εt)
TγtCtγt(Rt + εt)|Ft−1}

= RT
t γtCtγtRt + E{εTt γtCtγtεt|Ft−1}

= ∆T
t−1βtγtCtγtβt∆t−1 + E

{
(ht − βtz0)TγtCtγt(ht − βtz0)|Ft−1

}
.
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Hence,

∞∑
t=1

[Kt(∆t−1)]
+

1 + Vt−1(∆t−1)

≤
∞∑
t=1

[
∆Vt(∆t−1) + V ′t (∆t−1)γtRt(Zt−1)

+
1

2
E
{[
Rt(Zt−1) + εt(Zt−1)

]T
γt(Zt−1)V

′′
t γt(Zt−1)

[
Rt(Zt−1) + εt(Zt−1)

]
|Ft−1

}]+

=
∞∑
t=1

[
∆T
t−1(∆Ct − 2Ctγtβt + βtγtCtγtβt)∆t−1

+E
{

(ht − βtz0)TγtCtγt(ht − βtz0)|Ft−1
}]+

≤
∞∑
t=1

(
[∆T

t−1(∆Ct − 2Ctγtβt + βtγtCtγtβt)∆t−1]
+

+E
{

(ht − βtz0)TγtCtγt(ht − βtz0)|Ft−1
})
.

Thus, by (J1) and (J2),

∞∑
t=1

[Kt(∆t−1)]
+

1 + Vt−1(∆t−1)
≤ E

{
(ht − βtz0)TγtCtγt(ht − βtz0)|Ft−1

}
<∞.

Therefore, condition (V2) holds. According to Lemma 2.2.1, (Zt − z0)TCt(Zt − z0)

converges to a finite limit (a.s.).

�

Corollary 3.2.7 Suppose that Zt is defined by (3.2.8), at is an non-decreasing pos-

itive predictable process and

(G1) ∆γ−1t − 2βt + βtγtβt is negative semi-definite eventually;
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(G2)
∞∑
t=1

a−1t E{(ht − βtz0)Tγt(ht − βtz0)|Ft−1} <∞.

Then a−1t (Zt − z0)Tγ−1t (Zt − z0) converges to a finite limit (a.s.).

Proof. Consider Lemma 3.2.6 with Ct = (atγt)
−1, condition (J2) is satisfied imme-

diately.

For all u ∈ Rm, since

uT∆Ctu = uT [(atγt)
−1 − (at−1γt−1)

−1]u

≤ uT (atγt)
−1u− uT (atγt−1)

−1u = uTa−1t ∆γ−1t u,

we have

uT (∆Ct − 2Ctγtβt + βtγtCtγtβt)u ≤ uTa−1t (∆γ−1t − 2βt + βtγtβt)u

is non-negative eventually. Condition (J1) is now satisfied. Therefore, a−1t (Zt −

z0)Tγ−1t (Zt − z0) converges to a finite limit (a.s.). �

Remark 3.2.8 In the case when the minimum eigenvalue λmint of Ct goes to infinity,

it can be derived that ‖Zt − z0‖ −→ 0 (a.s.) if all conditions hold in Lemma 3.2.6.

Corollary 3.2.9 Suppose that ∆γ−1t = βt, then (G1) in Corollary 3.2.7 holds.
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Proof. Since ∆γ−1t is positive semi-definite, ∆γt is negative semi-definite
(

see Horn

and Johnson [32], Corollary 7.7.4(a)
)

and

∆γ−1t − 2βt + βtγtβt = −∆γ−1t + ∆γ−1t γt∆γ
−1
t

= −∆γ−1t + γ−1t − 2γ−1t−1 + γ−1t−1γtγ
−1
t−1

= −γ−1t−1 + γ−1t−1(γt−1 + ∆γt)γ
−1
t−1

= γ−1t−1∆γtγ
−1
t−1

is also negative semi-definite. �

Proposition 3.2.10 Suppose that Zt is defined by (3.2.8), γt −→ 0 and

γ
1/2
t

t∑
s=1

(∆γ−1s − βs)∆s−1 −→ 0 (3.2.9)

in probability, where ∆t = Zt − z0.

Then Zt is asymptotically linear, that is,

γ
1/2
t (Zt − z0) = γ

−1/2
t

t∑
s=1

εs(z
0) + rt(z

0),

where rt(z
0) −→ 0 in probability.

Proof. Let us check the conditions of Theorem 2.4.1 for At = γ
−1/2
t . Condition

(E1) and (E2) trivially holds. Since εt(u) = ht − βtz0 is state free, (E4) also holds.

79



Since βt and Zt−1 are Ft−1-measurable,

R̃t(Zt−1) = Rt(Zt−1) = E{ht − βtZt−1|Ft−1}

= E{ht|Ft−1} − βtZt−1

= βtz
0 − βtZt−1

= −βt∆t−1 .

Therefore,

A−1t

t∑
s=1

(
∆γ−1s (z0)∆s−1 + R̃s(Zt−1)

)
= γ

1/2
t

t∑
s=1

(∆γ−1s − βs)∆s−1 ,

and (E3) is equivalent to (3.2.9). Thus, all the conditions of Theorem 2.4.1 hold,

and Zt is asymptotically linear. �

3.3 Summary

This chapter illustrates how the SA theory is applied to recursive parameter es-

timation for the general statistical model. As it is mentioned in Section 3.1, the

recursive estimation procedure given in this chapter is not an approximate solution

of the corresponding estimating equation. However, it shares the same asymptotic

properties as the corresponding non-recursive estimator. In addition, the recursive

procedures do not require storing all the data to generate new estimates. These

results demonstrate that the SA type recursive likelihood estimation requires min-

imum assumptions for the i.i.d. model (see Section 3.2). The result on rate of

convergence in Section 3.2.2 improves the previous results in recursive estimation

by Sharia [66] and [69], derived in the context of statistical parametric estimation.
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A new set of conditions to derive the rate of convergence for Linear processes is also

derived in Section 3.2.3.
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Chapter 4

Parameter Estimation in

Autoregressive Models

In this chapter, we use the results obtained in the previous chapters to study on-line

procedures for AR(m) processes.

In Section 4.1 we propose a general class of on-line recursive procedures using the

ideas introduced in Chapter 3. In Section 4.2 we study asymptotic behaviour of the

recursive LS estimators. In Section 4.3 we present asymptotic results for the general

class of truncated recursive estimators, which includes recursive MLE procedures.

An example of an AR process with the Students innovations is also presented to

demonstrate how the SA theory works for AR models.

4.1 On-line recursive estimators

Consider an AR(m) process

Xt = θ(1)Xt−1 + θ(2)Xt−2 + · · ·+ θ(m)Xt−m + ξt = θTX t−1
t−m + ξt (4.1.1)
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where θ = (θ(1), ..., θ(m))T , X t−1
t−m = (Xt−1, ..., Xt−m)T and ξt is a sequence of inde-

pendent random variables. If the pdf of ξt w.r.t. Lebesgue’s measure is gt(x), then

the conditional distribution function of Xt given the past observation is

ft(x, θ|X t−1
1 ) = ft(x, θ|X t−1

t−m) = gt(x− θTX t−1
t−m)

and

f ′Tt (θ, x|X t−1
1 )

ft(θ, x|X t−1
1 )

= −
g′t(x− θTX t−1

t−m)

gt(x− θTX t−1
t−m)

X t−1
t−m. (4.1.2)

Also, the one-step conditional Fisher information at t is

Eθ

{
f ′Tt (θ,Xt)f

′
t(θ,Xt)

f 2
t (θ,Xt)

∣∣∣Ft−1}

= Eθ

{[
g′t(Xt − θTX t−1

t−m)

gt(Xt − θTX t−1
t−m)

]2
X t−1
t−m(X t−1

t−m)T
∣∣∣Ft−1}

= X t−1
t−m(X t−1

t−m)TEθ

{[
g′t(Xt − θTX t−1

t−m)

gt(Xt − θTX t−1
t−m)

]2 ∣∣∣Ft−1}

= X t−1
t−m(X t−1

t−m)T
∫ ∞
−∞

[
g′t(x− θTX t−1

t−m)

gt(x− θTX t−1
t−m)

]2
gt(x− θTX t−1

t−m)dx

= X t−1
t−m(X t−1

t−m)T lgt

where

lgt =

∫ +∞

−∞

(
g′t(x)

gt(x)

)2

gt(x)dx.

Therefore, the conditional Fisher information matrix is now

It =
t∑

s=1

lgsX
s−1
s−m(Xs−1

s−m)T .
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Note also that I−1t can be generated as

I−1t = I−1t−1 − lgtI−1t−1X t−1
t−m(1 + lgt(X

t−1
t−m)T I−1t−1X

t−1
t−m)−1(X t−1

t−m)T I−1t−1. (4.1.3)

(Recursion (4.1.3) is known as the Riccati equation. See also Lemma A.5 in Ap-

pendix A for a simple proof.)

So, the on-line likelihood procedure introduced in Section 3.1 in this case can be

derived by the following recursion

θ̂t = θ̂t−1 − I−1t X t−1
t−m

g′t
gt

(Xt − θ̂Tt−1X t−1
t−m) (4.1.4)

where I−1t is also derived on-line using formula (4.1.3).

In general, to include robust estimation procedures, and also to use any available

auxiliary information, one can use the following class of procedures

θ̂t = ΦUt

(
θ̂t−1 + γtH(X t−1

t−m)ϕt(Xt − θ̂Tt−1X t−1
t−m)

)
, (4.1.5)

where ϕt : R 7→ R and H : Rm 7→ Rm are suitably chosen functions, and γt is a

m×m matrix valued step-size sequence.

Here, truncation sequence Ut represents auxiliary knowledge about the unknown

parameter which is incorporated in the procedure through the truncation operator

Φ. For example, for an AR(2) process, if the roots of the corresponding polynomial

lie outside of the unit circle, one can take Ut = U where U is a triangle defined by

U = { (θ(1), θ(2)) : |θ(2)| < 1, θ(1) + θ(2) < 1, θ(2) − θ(1) < 1 }. (4.1.6)
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As we can see in Section 4.2, for AR processes one can always construct on-line

LS estimators, θ̂LSt , which are consistent under very mild conditions. However, the

LS estimators are not asymptotically efficient unless the innovations are Gaussian

r.v.’s. Therefore, one can construct the following system of on-line procedures using

the LS truncations

θ̂t = ΦUt

(
θ̂t−1 − I−1t X t−1

t−m
g′t
gt

(Xt − θ̂Tt−1X t−1
t−m)

)
(4.1.7)

where I−1t is derived by (4.1.3) and Ut = Ut(θ̂
LS
t ) is sequence of sets that converge

to the ”true” value of the parameter θ. For example, one of the possible choices for

Ut is a sphere in Rm with the center at θ̂LSt and radius ct−ε, where c is a positive

constant and 0 < ε < 1/2 (see Example 4.3.6).

4.2 Recursive least squares procedures

Recursive least squares (RLS) estimator of θ = (θ(1), . . . , θ(m))T is generated (see

Lai and Wei [44]) by the following procedure

θ̂t = θ̂t−1 + Î−1t X t−1
t−m[Xt − (X t−1

t−m)T θ̂t−1], (4.2.1)

Î−1t = Î−1t−1 − Î−1t−1X t−1
t−m[1 + (X t−1

t−m)T Î−1t−1X
t−1
t−m]−1(X t−1

t−m)T Î−1t−1. (4.2.2)
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It is easy to see that (4.2.1) is a special case of the linear process (3.2.8) with

γt = Î−1t (= γTt ),

ht = X t−1
t−mXt = X t−1

t−m

[
(X t−1

t−m)T z0 + ξt

]
,

βt = X t−1
t−m(X t−1

t−m)T .

Corollary 4.2.1 Consider θ̂t defined by (4.2.1) and (4.2.2). If there exists a non-

decreasing sequence at > 0 such that

∞∑
t=1

a−1t (X t−1
t−m)T Î−1t X t−1

t−mE{ξ2t |Ft−1} <∞

Then a−1t (θ̂t − θ)T Ît(θ̂t − θ) converges to a finite limit (a.s.).

Proof. Check the condition of Corollary 3.2.7. Obviously, matrix γt = Î−1t =

c · I +
∑t

s=1X
s−1
s−m(Xs−1

s−m)T is positive definite and ∆Î−1t = βt = X t−1
t−m(X t−1

t−m)T is

positive semi-definite. By Corollary 3.2.9, condition (G1) holds. We also have

∞∑
t=1

a−1t E{(ht − βtz0)Tγt(ht − βtz0)|Ft−1}

=
∞∑
t=1

a−1t E{ξt(X t−1
t−m)T Î−1t X t−1

t−mξt|Ft−1}

=
∞∑
t=1

a−1t (X t−1
t−m)T Î−1t X t−1

t−mE{ξ2t |Ft−1}

< ∞,

which leads to (G2). Therefore, conditions of Corollary 3.2.7 hold. �

Corollary 4.2.2 Consider θ̂t defined by (4.2.1) and (4.2.2). Suppose that
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(P1) There exists a non-decreasing sequence {κt} such that

Ît
κt
−→ G

where G <∞ is a positive definite m×m matrix,

(P2) {ξt} is a martingale-difference and

E
{
ξ2t | Ft−1

}
= O(κδt )

(a.s.) for any δ > 0.

Then κ1−δt ‖θ̂t − θ‖2 −→ 0 (a.s.) for all δ > 0.

Proof. Concider Corollary 4.2.1 with at = κδt for a certain δ > 0. Since

E {ξ2t | Ft−1} = O(κ
δ/2
t ), there exists (a possibly positive) constant K such that

∞∑
t=1

a−1t (X t−1
t−m)T Î−1t X t−1

t−mE{ξ2t |Ft−1} ≤
∞∑
t=1

κ−δt (X t−1
t−m)T Î−1t X t−1

t−mKκ
δ/2
t

= K
∞∑
t=1

κ
−δ/2
t (X t−1

t−m)T Î−1t X t−1
t−m

According to Lemma A.3 in the Appendix A,

∞∑
t=1

κ
−δ/2
t (X t−1

t−m)T Î−1t X t−1
t−m <∞

Therefore, (θ̂t − θ)T Ît(θ̂t − θ)/κδt tends to a finite limit for all δ > 0. As Ît/κt

tends to a finite matrix, it can be deduced that κ1−δt ‖θ̂t− θ‖2 tends to a finite limit.

�
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Remark 4.2.3 If Xt defined by (4.1.1) is a strongly stationary process, then one

can take κt = t and t1−δ‖θ̂t − θ‖2 converges to a finite limit by Corollary 4.2.2.

Note that the convergence of the LS estimator is well known under the stationary

assumption. (see e.g., Shiryayev [71], Ch.VII, §5). This section is presented to

demonstrate that the conditions made here are minimal. That is, for well-known

models, the results of this work do not assume any additional restrictions. Moreover,

convergence can be derived using the results given above, without the stationary

requirement, as long as κ−1t
∑∞

t=1X
t−1
t−m(X t−1

t−m)T tends to a positive define matrix.

4.3 On-line recursive M-estimators with trunca-

tions

Consider an AR(m) process, Xt, defined by (4.1.1) and denote by gt(x) the pdf of

ξt w.r.t. Lebesgue’s measure. For all v ∈ R, define

Pt(v) =

∫ ∞
−∞

ϕt (z − v) gt(z)dz

and

Qt(v) =

∫ ∞
−∞

[ϕt (z − v)]2 gt(z)dz.
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Recursive estimating procedure (4.1.5) can be considered in the form of (2.1.1) with

Zt = θ̂t

Rt(u) = H(X t−1
t−m)Eθ

{
ϕt(Xt − uTX t−1

t−m)
∣∣∣Ft−1}

= H(X t−1
t−m)Eθ

{
ϕt[ξt − (u− θ)TX t−1

t−m]
∣∣∣Ft−1}

= H(X t−1
t−m)Pt

(
(u− θ)TX t−1

t−m

)
εt(u) = H(X t−1

t−m)ϕt(Xt − uTX t−1
t−m)−Rt(u)

= H(X t−1
t−m)ϕt

(
ξt + (θ − u)TX t−1

t−m

)
−Rt(u). (4.3.1)

Corollary 4.3.1 Suppose that θ̂t is generated by (4.1.5), condition (V1) of Lemma

2.2.1 holds and there exists a non-decreasing predictable process at > 0 such that

(T1) for all u ∈ Rm×1 ∩ Ut−1,

uT (a−1t γ−1t − a−1t−1γ−1t−1)u+ 2a−1t uTH(X t−1
t−m)Pt(u

TX t−1
t−m) ≤ 0

eventually;

(T2) for any predictable vector process dt ∈ Ut−1,

∞∑
t=1

a−1t [H(X t−1
t−m)]TγtH(X t−1

t−m)Qt(d
T
t X

t−1
t−m)

1 + a−1t−1d
T
t γ
−1
t−1dt

<∞;

then a−1t (θ̂t − θ)Tγ−1t (θ̂t − θ) converges to a finite limit almost surely.

Furthermore, if there exists a set A ∈ F with P (A) > 0 such that for each

ε ∈ (0, 1)
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(T3)

∞∑
t=1

inf
ε≤|u|≤1/ε

θ+u∈Ut−1

−uT (a−1t γ−1t − a−1t−1γ−1t−1)u− 2a−1t uTH(X t−1
t−m)Pt(u

TX t−1
t−m) =∞

on A,

(T4)
∞∑
t=1

sup
ε≤|u|≤1/ε

θ+u∈Ut−1

a−1t [H(X t−1
t−m)]TγtH(X t−1

t−m)Qt(u
TX t−1

t−m) <∞ on A,

then a−1t (θ̂t − θ)Tγ−1t (θ̂t − θ) −→ 0 (a.s.), for any starting point θ̂0.

Proof. Consider Lemma 2.2.1 with Vt(u) = uTCtu where Ct = a−1t γ−1t . Since

V ′t (u) = 2uTCt and V ′′t (u) = 2Ct, by (T1), we have

[Kt(u)]+

=
[
∆Vt(u) + V ′t (u)γt(θ + u)Rt(θ + u) + ηt(θ + u)

]+
=

[
uT (a−1t γ−1t − a−1t−1γ−1t−1)u+ 2uTa−1t γ−1t γtH(X t−1

t−m)Pt(u
TX t−1

t−m) + ηt(θ + u)
]+

≤ [ηt(θ + u)]+,

90



where

ηt(θ + u)

=
1

2
sup
v
E
{[
Rt(θ + u) + εt(θ + u)

]T
γt(θ + u)V ′′t (v)

γt(θ + u)
[
Rt(θ + u) + εt(θ + u)

]∣∣∣Ft−1}
= E

{[
H(X t−1

t−m)ϕt

(
Xt − (θ + u)TX t−1

t−m

)]T
γta
−1
t γ−1t

γt

[
H(X t−1

t−m)ϕt

(
Xt − (θ + u)TX t−1

t−m

)]∣∣∣Ft−1}
= E

{
a−1t [H(X t−1

t−m)]TγtH(X t−1
t−m)ϕ2

t (ξt − uTX t−1
t−m)

∣∣∣Ft−1}
= a−1t [H(X t−1

t−m)]TγtH(X t−1
t−m)E

{
ϕ2
t (ξt − uTX t−1

t−m)
∣∣∣Ft−1}

= a−1t [H(X t−1
t−m)]TγtH(X t−1

t−m)Qt(u
TX t−1

t−m).

Therefore,

∞∑
t=1

[Kt(∆t−1)]
+

1 + Vt−1(∆t−1)
≤

∞∑
t=1

ηt(θ + ∆t−1)

1 + a−1t−1∆
T
t−1γ

−1
t−1∆t−1

=
∞∑
t=1

a−1t [H(X t−1
t−m)]TγtH(X t−1

t−m)Qt(∆
T
t−1X

t−1
t−m)

1 + a−1t−1∆
T
t−1γ

−1
t−1∆t−1

< ∞.

Condition (V2) holds.

Furthermore, since [a]− ≥ −a,

[Kt(u)]−

≥ −uT (a−1t γ−1t − a−1t−1γ−1t−1)u− 2uTa−1t γ−1t γtH(X t−1
t−m)Pt(u

TX t−1
t−m)

−a−1t [H(X t−1
t−m)]TγtH(X t−1

t−m)Qt(u
TX t−1

t−m)
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Then, condition (V3) follows immediately from (T3) and (T4). Now, all the condi-

tions of Lemma 2.2.1 hold and a−1t (θ̂t − θ)Tγ−1t (θ̂t − θ) −→ 0 (a.s.). �

Corollary 4.3.2 Let θ̂t be estimators generated by (4.1.5) with Ut = Rm and H(u) =

u. Suppose that there exists a non-decreasing predictable process at > 0 such that

condition (T2) and (T4) in Corollary 4.3.1 hold and

(F1) the pdf gt(z) is bell-shaped (i.e., unimodal) and symmetric about zero;

(F2) for each t, ϕt(v) is an odd function such that ϕt(v) > 0 for v > 0 and
∫
|ϕt(z−

v)|gt(z)dz <∞ for all v ∈ R;

(F3) atγt = M eventually, where M is a constant matrix.

Then ‖θ̂t − θ‖2 converges to a finite limit (a.s.).

Furthermore, if the process Xt defined by (4.1.1) is strongly stationary, then

‖θ̂t − θ‖2 −→ 0 (a.s.), for any admissible truncations Ut and starting point θ̂0.

Proof. Consider Corollary 4.3.1 with Ut = Rm and H(u) = u. Condition (V1)

holds trivially. It follows from (F1), (F2) and Lemma A.9 that if v 6= 0,

vPt(v) = v

∫ ∞
−∞

ϕt (z − v) gt(z)dz < 0.

Therefore,

uTH(X t−1
t−m)Eθ

{
ϕt(ξt − uTX t−1

t−m)
∣∣∣Ft−1}

= uTX t−1
t−mEθ

{
ϕt(ξt − uTX t−1

t−m)
∣∣∣Ft−1}

= uTX t−1
t−mPt(u

TX t−1
t−m)

≤ 0.
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By (F3), uT (a−1t γ−1t − a−1t−1γ
−1
t−1)u = 0 eventually. Thus (T1) holds. By the first

assertion of Corollary 4.3.1, condition (T1) and (T2) imply that ‖θ̂t− θ‖2 converges

to a finite limit almost surely.

It is now sufficient to prove that for each ε ∈ (0, 1),

∞∑
t=1

a−1t inf
ε≤|u|≤1/ε

θ+u∈Ut−1

−uTX t−1
t−mPt(u

TX t−1
t−m) =∞, (4.3.2)

with the convention that the infu∈U v(u) of a function v(u) is 1 whenever U = ∅. By

Lemma A.9, infε≤|u|≤1/ε−uTxPt(uTx) > 0 for any x 6= 0. Now, it is easy to see that

inf
ε≤|u|≤1/ε

θ+u∈Ut−1

−uTxPt(uTx) ≥ min

(
inf

ε≤|u|≤1/ε
−uTxPt(uTx), 1

)
> 0

for any x ∈ Rm×1\{0}. Since the process Xt is strongly stationary, it follows from

the ergodic theorem that in probability P θ,

lim
t→∞

1

t
It > 0 and lim

t→∞

1

t

t∑
s=1

min

(
inf

ε≤|u|≤1/ε
−uTXs−1

s−mPs(u
TXs−1

s−m), 1

)
> 0.

These imply that (see e.g., Proposition A4 in [67])

M

∞∑
t=1

a−1t inf
ε≤|u|≤1/ε

θ+u∈Ut−1

−uTX t−1
t−mPt(u

TX t−1
t−m)

≥
∞∑
t=1

I−1t min

(
inf

ε≤|u|≤1/ε
−uTX t−1

t−mPt(u
TX t−1

t−m), 1

)
= ∞

Thus, (T3) holds. Therefore, all the conditions of Corollary 4.3.1 hold and we have

‖θ̂t − θ‖2 −→ 0 (a.s.). �
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Consider a truncated estimator generated from

θ̂t = ΦUt

(
θ̂t−1 + I−1t X t−1

t−mϕt(Xt − θ̂Tt−1X t−1
t−m)

)
, (4.3.3)

and

Ut = S(θLSt , ctε) (4.3.4)

which is a closed sphere set in Rm with the center at θ̂LSt and radius ctε, where

1/4 < ε < 1/2, c > 0 is a constant and θ̂LSt is the recursive least squares estimators

defined by (4.2.1) and (4.2.2).

Corollary 4.3.3 Let θ̂t be estimators generated by (4.3.3) and (4.3.4). Suppose that

Xt defined by (4.1.1) is strongly stationary and

(S1) ξt are independent and have finite fourth moments for each t;

(S2) there exists t0 > 0 and τ > 0 such that

sup
−τ<v<τ
t>t0

Qt(v) <∞;

(S3) the function Pt(v) are differentiable at v = 0 and

d

dv
Pt(v)

∣∣∣
v=0
≤ − lgt

2
,

for large t’s;

(S4) there exists non-decreasing predictable process at > 0 such that

∞∑
t=1

a−1t (X t−1
t−m)T I−1t X t−1

t−m <∞.
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Then a−1t (θ̂t − θ)T It(θ̂t − θ) converges to a finite limit (a.s.).

Proof. Since Xt is strongly stationary, from the ergodic theorem,

lim
t→∞

X4
t

t
−→ 0,

which implies that X t−1
t−m/t

1/4 −→ 0. It follows from Remark 4.2.3 that tε‖θ̂LSt −

θ‖ −→ 0. So, θ ∈ Ut = S(θ̂LSt , ct−ε) eventually. Then we have θ̂t ∈ S(θ̂LSt , ct−ε) and

we obtain that tε‖θ̂t − θ‖ = tε‖∆t‖ ≤ 2c eventually, therefore, tε∆t is also bounded.

Now, since ε ≥ 1/4, we have

∆T
t−1X

t−1
t−m = ∆T

t−1(t− 1)ε(t− 1)−εXt−1 −→ 0.

Now consider Corollary 4.3.1 with γt = I−1t and H(u) = u. Since Xt is strongly

stationary and Ct = a−1t It, according to Remark 2.2.3, (V1) holds. By (S2) and

(S4), condition (T2) holds immediately. By (S3), we have

uT (a−1t γ−1t − a−1t−1γ−1t−1)u+ 2a−1t uTH(X t−1
t−m)Pt(u

TX t−1
t−m)

≤ a−1t uT (It − It−1)u+ 2a−1t uTX t−1
t−mPt(u

TX t−1
t−m)

≤ a−1t uT lgtX
t−1
t−m(X t−1

t−m)Tu− a−1t lgt(u
TX t−1

t−m)2

= 0.

Thus, condition (T1) holds. By the first assertion of Corollary 4.3.1, a−1t (θ̂t −

θ)T It(θ̂t − θ) converges to a finite limit almost surely. �
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Remark 4.3.4 Suppose that ξt are i.i.d. and Xt is strongly stationary. Then

It
t
−→ G

where G < ∞ is a positive definite m × m matrix. According to Lemma A.3,

condition (S4) holds if we take at = tδ. It follows from Corollary 4.3.3 that t1−δ‖θ̂t−

θ‖2 −→ 0 (a.s.) for all δ > 0, if other conditions are satisfied.

Corollary 4.3.5 Let θ̂t be estimators generated by (4.3.3) and (4.3.4). Suppose that

all conditions in Corollary 4.3.3 are satisfied, ξt are i.i.d. r.v.′s and

(Z1)

Pt(v) = P (v) = −lgv + v1+ε0O(1)

for some ε0 > 0 as v −→ 0 where lg = lgt;

(Z2) ∫ ∞
−∞

[
ϕ(z − u)− ϕ(z)

]2
g(z)dz −→ 0

as u −→ 0.

Then θ̂t is locally asymptotically linear.

Proof. Consider Theorem 2.4.1 with At =
√
tI. Since Xt is strongly stationary,

It/t converges and condition (E2) holds. Since all conditions of Corollary 4.3.3 are

satisfied
(

with at = tδ
)

, t1/2−δ(θ̂t− θ) −→ 0 for any δ > 0. Then, it is easy to check

that condition (E1) holds (see Remark 2.4.5(c) for details). It follows from the proof
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of Corollary 4.3.3 that ∆T
t−1X

t−1
t−m −→ 0 and t−

1
4X t−1

t−m −→ 0, we have

A−1t

[
∆γ−1t ∆t−1 + R̃t(θ + ∆t−1)

]
= t−1/2X t−1

t−m
[
lg(X

t−1
t−m)T∆t−1 + P (∆T

t−1X
t−1
t−m)

]
= t−1/2X t−1

t−m(∆T
t−1X

t−1
t−m)1+ε0O(1)

= t−1−
δ0
2 X t−1

t−m(X t−1
t−m)T t

1−δ0
2 ∆t−1(t

1
2
−δ0∆T

t−1t
δ0
ε0

+δ0− 1
2X t−1

t−m)ε0O(1),

for some 0 < δ0 < ε0/4(1 + ε0).

By the proof of Lemma A.3 in Appendix A,

∞∑
t=m+1

(X t−1
t−m)TX t−1

t−m

t1+δ0/2
<∞. (4.3.5)

Since X t−1
t−m(X t−1

t−m)T is positive semi-definite, (4.3.5) leads to

∞∑
t=m+1

X t−1
t−m(X t−1

t−m)T

t1+δ0/2
<∞.

Also, we have

t
1
2
−δ0∆t−1 =

(
t

t− 1

) 1
2
−δ0

(t− 1)
1
2
−δ0∆t−1 −→ 0

and

t
δ0
ε0

+δ0− 1
2X t−1

t−m ≤ t−
1
4X t−1

t−m −→ 0.

Thus,
∞∑
t=1

A−1t

[
∆γ−1t ∆t−1 + R̃t(θ + ∆t−1)

]
<∞.

97



It is now following the Kronecker lemma for matrices that condition (Q1) in Propo-

sition 2.4.2 holds, which leads to condition (E3).
(

see Lemma A.6 in Appendix A

for the Kronecker lemma with Bt = A2
t and αt = A−1[∆γ−1t ∆t−1 + R̃t(θ̂t−1)]

)
.

On the other hand, since

E{ε̃t(u)|Ft−1} = E{εt(u)|Ft−1} = 0

for any u ∈ Rm, condition (Q2) in Proposition 2.4.3 holds. Also, by (4.3.1) we have

for j = 1, ...,m,

[
ε̃
(j)
t (θ + ∆t−1)− ε(j)t (θ)

]2
= X2

t−j

[
ϕ
(
ξt −∆T

t−1X
t−1
t−m

)
− P (∆T

t−1X
t−1
t−m)− ϕ(ξt)

]2
≤ 2X2

t−j

[
ϕ
(
ξt −∆T

t−1X
t−1
t−m

)
− ϕ(ξt)

]2
+ 2X2

t−jP
2(∆T

t−1X
t−1
t−m).

Then

E

{[
ε̃
(j)
t (θ + ∆t−1)− ε(j)t (θ)

]2∣∣∣Ft−1}
≤ 2X2

t−j

∫ ∞
−∞

[
ϕ
(
z −∆T

t−1X
t−1
t−m

)
− ϕ(z)

]2
g(z)dz + 2X2

t−jP
2(∆T

t−1X
t−1
t−m).

Since ∆T
t−1X

t−1
t−m −→ 0 and 0 < t−1

∑t
s=1X

2
s−j < ∞, by (Z2) and the Toeplitz

lemma, we have

t−1
t∑

s=1

X2
s−j

∫ ∞
−∞

[
ϕ
(
z −∆T

s−1X
s−1
s−m

)
− ϕ(z)

]2
g(z)dz −→ 0
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and

t−1
t∑

s=1

X2
s−jP

2(∆T
s−1X

s−1
s−m) −→ 0.

So, (Q3) holds. According to Proposition 2.4.3, condition (E4) in Theorem 2.4.1

holds. Therefore, all the conditions of Theorem 2.4.1 hold which imply that θ̂t is

locally asymptotically linear. �

Example 4.3.6 Suppose that ξt are independent Student random variables with α

degrees of freedom. Consider the following recursive likelihood procedure

θ̂t = ΦUt

(
θ̂t−1 − I−1t X t−1

t−m
g′

g
(Xt − θ̂Tt−1X t−1

t−m)
)

(4.3.6)

The pdf of ξt is

g(z) = Cα

(
1 +

z2

α

)−α−1
2

where Cα = Γ((α + 1)/2)/(
√
πα Γ(α/2)). Since

g′(z)

g(z)
= −(α + 1)

z

α + z2
,

we have

lgt = lg =

∫ (
g′(z)

g(z)

)2

g(z) dz

= Cα(α + 1)2
∫

z2 dz

(α + z2)2(1 + z2

α
)
α+1
2

= Cα
(α + 1)2√

α

∫
z2 dz

(1 + z2)
α+5
2

= Cα
(α + 1)2√

α

√
πΓ((α + 5)/2− 3/2)

2Γ((α + 5)/2)

=
α + 1

α + 3
.
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We may rewrite (4.3.6) as

θ̂t = ΦUt

(
θ̂t−1 + Î−1t (α + 3)X t−1

t−m
Xt − θ̂Tt−1X t−1

t−m

α + (Xt − θ̂Tt−1X t−1
t−m)2

)
(4.3.7)

where Ît =
∑t

s=1X
s−1
s−m(Xs−1

s−m)T + cI or in a recursive form as (4.2.2).

Suppose that α ≥ 5, {Xt} is strongly stationary and (4.3.7) is truncated by

Ut = S(θ̂LSt , tε), where 1/4 < ε < 1/2. Then t1/2−δ‖θ̂t − θ‖ converges to a finite

limit almost surely for all δ > 0. Indeed, consider Corollary 4.3.3 with ϕt = g′/g.

The random innovation ξt has a finite fourth moment since α ≥ 5, limv→0 Pt(v)/v =

−lgt ≤ −lgt/2, and (S4) holds with at = tδ for any δ > 0. Furthermore, conditions

of Corollary 4.3.5 are also satisfied, and θ̂t is asymptotic linear.

4.4 Summary

Recursive estimation for AR processes has been studied by a number of authors (see

e.g., Lai and Ying [45] and Chen [15] and [16] ). However, these methods where

mostly focused on linear cases, resulting in recursive least squares type procedures.

The class of recursive parameter estimators considered in this chapter covers non-

linear cases, and also makes it possible to incorporate auxiliary information into

the estimation process, by considering truncations with moving bounds. This class

was introduced and studied by Sharia [68] for AR(1) processes. In this chapter, we

applied the results obtained in the previous chapters to study similar procedures for

AR(m) processes. In particular, convergence, rate of convergence and asymptotic

linearity of recursive estimators are established for multi-dimensional AR models .

Two important cases are considered in detail: the recursive least squares (RLS),

and the recursive likelihood with the RLS truncations.
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The results for the RLS are derived from the corollaries presented in Section

3.2.3. This section demonstrates that, the conditions are minimal in the sense that

they do not impose any additional restrictions when applied to the well known

models. Although the asymptotic behaviour of the RLS is well known, to our best

knowledge, convergence and the rate of convergence of the RLS obtained in this

chapter cannot be derived from any other result in Stochastic Approximation. For

example, Lai and Ying [45] study procedures similar to the RLS above for general

linear time series models. However, the result given by [45] for AR models is more

restrictive than the one in this thesis.

In Section 4.3, the RSL are used as an auxiliary estimator to carry out the trun-

cations. This guarantees the convergence of the truncated likelihood type procedure,

and given an appropriate choice of the step-size sequence, leads to the asymptotically

efficient estimation.
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Chapter 5

Simulations

Monte-Carlo simulations for the RM type SA procedures are presented in the follow-

ing three specific cases: polynomials with integer degrees, estimation of the shape

parameter of the Gamma distribution, and estimation in Autoregressive model of

order 2.

5.1 Finding roots of polynomials

Let us consider a problem described in Example 2.5.13 with

R(z) = −(z − z0)7 + 2(z − z0)6 − 5(z − z0)5 − 3(z − z0),

and suppose that the random errors are independent Student random variables with

degrees of freedom 7.

Figure 5.1 shows 30 steps of 3 estimators generated from procedure (2.5.1) with

at = 3t and starting points at −2, 0 and 5 respectively, where the root z0 = 2

and truncation sequence Ut = [− log 3t, log 3t]. As we can see, the estimators go
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towards the root following a zigzag path. Note that the SA without truncations

fails to satisfy the standard condition on the rate of growth at infinity. Here, slowly

expanding truncations are used to artificially slow down the growth of R at infinity,

and Figure 5.1 gives us an illustration of how it works.

Also, using Corollary 2.5.11 (with 1
3
R(z) instead of R(z)), we obtain that our

estimators are asymptotically linear and since the error terms are i.i.d., it follows

that the estimators are asymptotically normal. A histogram of estimators at iterate

30 over 500 replications (with Z0 = 0) is shown in Figure 5.2.

0 5 10 15 20 25 30

-1
0

1
2

3

Observations

Start at -2
Start at 0
Start at 5

Figure 5.1: Realizations of the estimator (2.5.1)
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Figure 5.2: Histogram of estimator at step 30

5.2 Estimation of the shape parameter of the Gamma

distribution

Let us consider procedure (3.2.2) in Example 3.2.1 with following two sets of trun-

cations Ut = [αt, βt]

(1) FT – Fixed truncations: αt = α and βt = β where 0 < α < β.

(2) MT – Moving truncations: αt = C1[log(t + 2)](−1/2) and βt = C2(t + 2) where

C1 and C2 are positive constants.

Figure 5.3 shows realizations of procedures (3.2.2) when θ = 0.1 and the starting

point θ̂0 = 1, C1 = 0.1, C2 = 1 in MT, and α = 0.003, β = 100 in FT. As we can see,

the MT estimator approaches the true value of θ following a zigzag path. However,

the FT estimator moves very slowly towards the true value of θ, this might be due

to singularity at 0 of the functions appearing in the procedure. Increasing α might
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Figure 5.3: Performance of procedure (3.2.2)

fix the problem. However, unless we have additional information about location of

the parameter θ, we need to use the recursive procedures with moving truncations.

5.3 An AR(2) example

Let us consider the process

Xt = −0.9Xt−1 − 0.5Xt−2 + ξt.
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where ξt are i.i.d. Student random variables with 5 degrees of freedom.

Let us consider the following recursive estimators:

(1) RLS – the recursive least squares estimator defined by procedure (4.2.1) in

Section 4.2.

(2) RML – the recursive maximum likelihood estimator defined by procedure (4.1.4).

(3) RMLtri – the RML estimator truncated in the stationarity region (4.1.6) of

AR(2) which is a triangular region on R2.

(4) RMLls – the RML estimator truncated by RLS, which is defined by procedure

(4.3.3) and (4.3.4). The estimator is forced to the nearest point in the sphere

whose center is the current RLS and radius is ctε, where c is a positive tuning

constant.

All the estimators are simulated with starting point (0.4,−0.6), c = 1.5, ε =

−1/3 and Î0 = I.

Figure 5.4 shows realizations of the estimating procedures for 50 steps. As we

can see, all the estimators go up and down around the true parameters. Simulations

show that typical realizations of all 4 graphs are very similar.

Figures 5.5 shows the MSEs for the first 50 steps (observations) and Figure 5.6

shows the MSEs of the estimators form the step 400 to 500 based on 50 replications.

As we can see, RMLls has the smallest MSE. Therefore, it is more efficient than

RLS. This demonstrates the idea of moving bound truncations, that is, one can

force a convergent but not necessarily efficient estimator to the true parameter by

truncations, and this truncated estimator may have both convergence and efficiency.
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Figure 5.4: Realizations of the estimator

Remark 5.3.1 Step-size sequences suggested in Remark 2.4.4 and in Section 3.1

have been derived from the asymptotic considerations. In practice, especially if the

number of observations is small or moderately large, behaviour of step-size sequences

for the first several steps might also be important. According to Remark 2.4.4, to

achieve asymptotic linearity, we have to choose a step-size sequence in such a way

that Mγt(z) ≈ −R′t(z) for large t’s. So, we can consider any sequence of the form

C + ctγt, where ct is non-negative with ct = 1 for large t’s, and C is a constant.

In practice, we can treat ct and C as tuning constants to manage behaviour of
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Figure 5.5: Mean Square Errors of each process

the procedure for the first several steps (see Sharia [67], Remark 4.4). A reasonable

shape of the graph against t is similar to those in Figure 5.4, that is, some oscillation

at the beginning of the procedure and then settling down at a particular level.
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Figure 5.6: Mean Square Errors of each process
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Chapter 6

Conclusions

In this thesis, a large class of truncated SA procedures with moving random bounds

is studied. The procedures have the following features: (1) inhomogeneous random

functions Rt; (2) state dependent matrix valued random step sizes; (3) truncations

with random and moving (shrinking or expanding) bounds. These are mainly moti-

vated by parametric statistical applications. In particular, (1) is required to include

recursive parameter estimation procedures for non-i.i.d. models, (2) is needed to

guarantee asymptotic optimality and efficiency of statistical estimation, (3) is re-

quired to accommodate various different adaptive truncations, including the ones

arising by auxiliary estimators. Asymptotic behaviour of these procedures is stud-

ied under very general conditions and the results might be of interest even for the

procedures without truncations (i.e., when Ut = Rm) and with a deterministic and

homogeneous regression function Rt(z) = R(z).

Three main asymptotic properties of the RM type SA are established: conver-

gence, rate of convergence, and asymptotic linearity.

Convergence and rate of convergence of the RM type SA are studied using the
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Robbins-Siegmund Lemma and by considering time dependent random Lyapunov

type functions.

It is also shown, that under quite mild conditions, the SA process is asymptoti-

cally linear in the statistical sense, that is, it can be represented as a weighted sum

of random variables. Therefore, a suitable form of the central limit theorem can

be applied to derive the corresponding asymptotic distribution. Furthermore, these

results help to identify step-size sequences that are optimal for a given set of Rt

functions.

The above results have been applied to deterministic and time homogeneous

regression functions. The results demonstrate that conditions we used in the thesis

are minimal in the sense that they do not impose any additional restrictions when

applied to the classical case. Furthermore, Section 2.5 contains new results even

for the classical SA problem. In particular, truncations with moving bounds give

a possibility to use SA in the cases when classical conditions on the function R do

not hold. Also, a very interesting link between the rate of the step-size sequence

and the rate of convergence of the SA process is given in the classical case. This

observation would not surprise experts working in this field. However, we failed to

find it in a written form in the existing literature.

Applications of the theoretical results of the thesis to the problems of parametric

statistical estimation for various statistical models are also presented. A particular

attention is given to the on-line estimation of the parameters for AR(m) processes.

Two important cases are considered in detail: the recursive least squares (RLS), and

the recursive likelihood with the RLS truncations.

Finally, Monte-Carlo simulations are also presented for some specific cases.

The material has been arranged in five chapters. Each chapter contains a brief
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introduction and a summary to explain novelty of the results presented in a given

chapter. Main lemmas and theorems are followed by various corollaries and remarks

containing sufficient conditions for the convergence and explaining some of the as-

sumptions. These corollaries are presented in such a way, that each subsequent

corollary imposes conditions that are more restrictive than the previous one.

We believe that the results of the thesis are of a publishable quality. One paper,

based on the material presented in Chapters 2 and 3, is almost ready for publication.

The second paper will contain results presented in Chapter 4. In the nearest future,

we also plan to study parameter estimation for the exponential family of Markov

chains presented in Chapter 3 in more details.
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Appendix A

Lemmas and Propositions

Lemma A.1 Let F0, F1, . . . be an non decreasing sequence of σ-algebras and Xn,

βn, ξn, ζn ∈ Fn, n ≥ 0, be nonnegative random valuables such that

E(Xn|Fn−1) ≤ Xn−1(1 + βn−1) + ξn−1 − ζn−1, n ≥ 1

eventually. Then

{
∞∑
i=1

ξi−1 <∞

}
∩

{
∞∑
i=1

βi−1 <∞

}
⊆ {X →} ∩

{
∞∑
i=1

ζi−1 <∞

}
P -a.s.,

where {X →} denotes the set where limn→∞Xn exists and is finite.

Proof. The proof can be found in Robbins and Siegmund [60]. Note also that

this lemma is a special case of the theorem on the convergence sets of nonnegative

semi-martingales (see, e.g., Lazrieva et al [46]). �
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Lemma A.2 Let {αt} be a sequence of real m × 1 column vector and It = I +∑t
s=1 αsα

T
s . Then

αTt I
−1
t αt ≤ 1.

Proof. Denote βt = I−1t αt, then αt = Itβt and

αTt I
−1
t αt = (Itβt)

Tβt = βTt Itβt ≥ βTt αtα
T
t βt = (αTt βt)

2 = (βTt Itβt)
2 = (αTt I

−1
t αt)

2.

So,

αTt I
−1
t αt ≥ (αTt I

−1
t αt)

2

and this implies that αTt I
−1
t αt ≤ 1. �

Lemma A.3 Suppose {αt} is a sequence of real m × 1 column vector, It = I +∑t
s=1 αsα

T
s diverges and real process κt satisfying:

It
κt
→ G,

where G is a finite positive definite m×m matrix. Then

∞∑
t=N

1

κδt
αTt I

−1
t αt <∞

for any δ > 0.

Proof. tr(It) = m +
∑t

s=1 α
T
s αs is a non-decreasing sequence of positive numbers,

we have (see Proposition A2 in Sharia [66])

∞∑
t=1

αTt αt
[tr(It)]1+δ

<

∞∑
t=1

αTt αt

(
∑t

s=1 α
T
s αs)

1+δ
<∞.
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Since
It
κt

convergent,
tr(It)
κt

tends to a finite limit, and

∞∑
t=1

αTt αt
κt1+δ

=
∞∑
t=1

αTt αt
tr(It)1+δ

[
tr(It)

κt

]1+δ
<∞

Finally, since Gt is positive definite,

κtI
−1
t → G−1 =⇒ κtλ

max
t convergent,

where λmaxt is the largest eigenvalue of I−1t , then

∞∑
t=1

1

κδt
αTt I

−1
t αt ≤

∞∑
t=1

αTt αt

κ1+δt

· κtλmaxt <∞.

�

Lemma A.4 (The Toeplitz Lemma)

Let {an} be a sequence of non-negative real numbers such that
∑∞

n=1{an} di-

verges. If νn −→ ν∞ as n −→∞, then

lim
n−→∞

∑n
i=1 aiνi∑n
i=1 ai

= ν∞ .

Proof. Proof can be found in Loève [52] (P.250). �

Lemma A.5 Let A and B be m ×m invertible matrices and there exists vector α

such that A = B + ααT . Then

A−1 = B−1 −B−1α(1 + αTB−1α)αTB−1
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Proof. Since

(1− αTA−1α)(1 + αTB−1α)

= 1− αTA−1α + αTB−1α− αTA−1ααTB−1α

= 1− αTA−1α + αTB−1α− αTA−1(A−B)B−1α

= 1− αTA−1α + αTB−1α + αTA−1α− αTB−1α

= 1,

we have

ααT = ααT (1− αTA−1α)(1 + αTB−1α)

= (ααT − ααTA−1ααT )(1 + αTB−1α)

= (B − A+ 2ααT − ααTA−1ααT )(1 + αTB−1α)

= [B − (A− ααT )A−1(A− ααT )](1 + αTB−1α)

= (B −BA−1B)(1 + αTB−1α).

Then

B−1ααTB−1 = (B−1 − A−1)(1 + αTB−1α)

and

B−1 − A−1 = B−1α(1 + αTB−1α)−1αTB−1.

�

Lemma A.6 (The Kronecker Lemma for Matrices)

Let αt be a sequence of real m×1 vectors for which ‖
∑∞

t=1 αt‖ <∞, and Bt be a

sequence of m×m positive definite real matrices such that Bt−Bt−1 is non-negative
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definite for all t ∈ Z+, tr−1(Bt) −→ 0 as t −→ 0 and λmax(Bt)/λ
min(Bt) is bounded.

Then

lim
t→∞

B−1t

t∑
s=1

Bsαs = 0.

Proof. A proof can be found in Anderson and Moore [1].

Proposition A.7 Consider a closed sphere U = S(α, r) in Rm with center at α ∈

Rm and radius r. Let z0 ∈ U and z /∈ U . Denote by z′ the closest point form z to

U , that is,

z′ = α +
r

‖z − α‖
(z − α).

Suppose also that C is a positive definite matrix such that

λmaxC v2 ≤ λminC r2, (A.1)

where λmaxC and λminC are the largest and smallest eigenvalues of C respectively and

v = ‖α− z0‖. Then

(z′ − z0)TC(z′ − z0) ≤ (z − z0)TC(z − z0).

Proof. For u, v ∈ Rm, define

‖u‖C = (uTCu)1/2 and (u, v)C = (uTCv)1/2.
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We have

|(z0 − α, z′ − α)C | ≤ ‖z0 − α‖C‖z′ − α‖C ≤
√
λmaxC ‖z0 − α‖‖z′ − α‖C

=
√
λmaxC v‖z′ − α‖C ≤

√
λminC r‖z′ − α‖C =

√
λminC ‖z′ − α‖‖z′ − α‖C

≤ ‖z′ − α‖2C . (A.2)

Since z /∈ U , we have

z′ = α +
r

‖z − α‖
(z − α) = (1− δ)α + δz,

where δ = r/‖z − α‖ < 1. Then

z − z′ = (1− δ)(z − α), z′ − α = δ(z − α)

and hence

z − z′ = 1− δ
δ

(z′ − α).

Therefore

(z′ − z0, z − z′)C = (z′ − α, z − z′)C + (α− z0, z − z′)C
1− δ
δ
‖z′ − α‖2C −

1− δ
δ

(z0 − α, z′ − α)C ≥ 0 (A.3)

due to (A.2). Since

z′ − z0 = z − z0 − (z − z′),
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we get

‖z′ − z0‖2C = ‖z − z0‖2C + ‖z − z′‖2C − 2(z − z0, z − z′)C

= ‖z − z0‖2C + ‖z − z′‖2C − 2‖z − z′‖2C − 2(z′ − z0, z − z′)C

= ‖z − z0‖2C − ‖z − z′‖2C − 2(z′ − z0, z − z′)C ≤ ‖z − z0‖2C

due to (A.3). �

Proposition A.8 If dt is a nondecreasing sequence of positive numbers such that

dt −→ +∞, then

(a)
∞∑
t=1

∆dt/dt = +∞

and

(b)
∞∑
t=1

∆dt/d
1+ε
t < +∞

for any ε > 0.

Proof. These can easily be obtained by elementary arguments (see, e.g., Sharia

[66], Appendix 2). �

Lemma A.9 Suppose that g 6≡ 0 is a nonnegative even function on R and g ↓ 0 on

R+. Suppose also that ϕ is a measurable odd function on R such that ϕ(z) > 0 for

z > 0 and
∫
R |ϕ(z − w)|g(z)dz <∞ for all w ∈ R. Then

w

∫ ∞
−∞

ϕ (z − w) g(z)dz < 0

for any w 6= 0. Furthermore, if g(z) is continuous, then for any ε ∈ (0, 1)

sup
ε≤|w|≤1/ε

w

∫ ∞
−∞

ϕ (z − w) g(z)dz < 0.
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Proof. The proof of this lemma is given in Sharia [67] (Lemma A.2 in Appendix

A). �

Lemma A.10 Let b ≥ a > 0. Then

b− a
a
≥ ln b− ln a.

proof. We have

b− a
a

=

∫ b

a

1

a
dτ ≥

∫ b

a

1

τ
dτ = ln b− ln a.

Proposition A.11 Suppose at, t ∈ N is a nondecreasing sequence of positive num-

bers such that
∞∑
t=1

1

at
<∞.

Then
∞∑
t=1

[
at+1 − at − 1

at

]+
= +∞.

Proof. Since
∞∑
t=1

[
at+1 − at − 1

at

]+
≥

∞∑
t=1

at+1 − at
at

−
∞∑
t=1

1

at

and the last series converges, it is sufficient to show that

∞∑
t=1

at+1 − at
at

= +∞.

The latter follows easily from Lemma A.10:

N∑
t=1

at+1 − at
at

≥
N∑
t=1

(ln at+1 − ln at) = ln aN+1 − ln a1 → +∞ as N →∞.
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It is clear that Proposition A.11 applies, e.g., to at = tε with any ε > 1.
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Appendix B

Properties of Gamma distribution

This appendix is from Sharia [70]. In Example 3.2.1, we will need the following

properties of the Gamma function (see, e.g., Whittaker and Watson [76], 12.16).

log′Γ is increasing, log′′Γ is decreasing and continuous, and

log′′Γ(x) =
1

x2
+
∞∑
n=1

1

(x+ n)2
.

The latter implies that

log′′Γ(x) ≤ 1

x2
+
∞∑
n=1

∫ n

n−1

dz

(x+ z)2
=

1

x2
+

1

x
=

1 + x

x2
(B.1)

and

log′′Γ(x) ≥
∞∑
n=0

∫ n+1

n

dz

(x+ z)2
=

1

x
. (B.2)

Also (see Cramer [18], 12.5.4),

log′Γ(x) ≤ ln(x). (B.3)
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Then,

Eθ {logX1} = log′Γ(θ) and Eθ
{

(logX1)
2} = log′′Γ(θ) + (log′Γ(θ))

2
(B.4)

and

Eθ

{
(logX1 − log′Γ(θ))

2
}

= log′′Γ(θ).

Let us show that the conditions of Corollary 2.3.4 hold. Denote ψt(u) = R(u)+εt(u),

since

Ψt(u) =
1

log′′Γ(u)
(logXt − log′Γ(u)) ,

using (B.4) and (B.2) we obtain

E {‖ψt(u)‖2 | Ft−1}
1 + ‖u− θ‖2

=
log′′Γ(θ) + (log′ Γ(θ)− log′ Γ(u))

2

(log′′Γ(u))2(1 + ‖u− θ‖2)
(B.5)

≤ u2

1 + (u− θ)2
(

log′′Γ(θ) + (log′ Γ(θ)− log′ Γ(u))
2
)
.

Now, u2/(1 + (u− θ)2) ≤ C. Here and further on in this subsection, C denotes

various constants which may depend on θ. So, using (B.3) we obtain

E {‖ψt(u)‖2 | Ft−1}
1 + ‖u− θ‖2

≤ C
(
log′′Γ(θ) + log′ Γ(θ)2 + log′ Γ(u)2

)
≤ C(1 + log2(u)).

For large t’s, since αt < 1 < βt, we have

sup
u∈[αt,βt]

log2(u) ≤
{

sup
αt≤u<1

log2(u)+ sup
1<u≤βt

log2(u)

}
≤ log2αt + log2βt.
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Condition (H2) and (H3) of Corollary 2.5.1 is now immediate from the second part

of (3.2.4). It remains to check that (D3) of Corollary 2.3.5 holds. Indeed,

−(u− θ)R(u) =
(u− θ) (log′ Γ(u)− log′ Γ(θ))

log′′Γ(u)
.

Since log′Γ is increasing and log′′Γ is decreasing and continuous, we have that for

each ε ∈ (0, 1),

inf
ε≤‖u−θ‖≤1/ε

u∈Ut−1

−(u−θ)R(u) ≥
infε≤‖u−θ‖≤1/ε (log′ Γ(u)− log′ Γ(θ)) (u− θ)

supu∈Ut−1
log′′Γ(u)

≥ C

log′′Γ(αt−1)

(B.6)

where C is a constant that may depend on ε and θ. Since αt−1 < 1 for large t’s,

it follows (B.1) that 1/log′′Γ(αt−1) ≥ α2
t−1/2. Condition (D3) of Corollary 2.3.5 is

now immediate from the first part of (3.2.4).

Note that with βt = ∞ the procedure fails condition (2) of Corollary 2.3.4.

Indeed, (B.5) and (B.1) implies that

sup
αt≤u

E {ψ2
t (u) | Ft−1}

1 + (u− θ)2
≥ sup

αt≤u

{
log′′Γ(θ) + (log′ Γ(θ)− log′ Γ(u))

2
}
u4

(1 + u)2(1 + (u− θ)2)
=∞ (B.7)
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Appendix C 
 
Codes of Monte-Carlo Simulations 
 
 
 
 
 
Codes of Section 5.1 
 
l=7                            ## Highest order of the polynomial 
p=0                           ## Start point  
df=7                          ## Degrees of freedom of the innovation 
n=30 -1                     ## Iterates  
z=2                           ## True parameter 
R=500                      ## No. of replications 
Final=0                     ## Define the set for Final estimators 
Plots=1                     ## 1--plot estimators, 2--hist 
 
for(j in 1:R){            ## Outer loop 
theta=p 
po=p  
for (i in 1:n){            ## Inner loop 
xi=rt(1,df)                 ## Random innovation 
po=po+(i)^(-1)*(-(po-z)-(po-z)^l+2*(po-z)^(l-1)-5*(po-z)^(l-2)+xi) 
 
if (po>log(i)){po=log(i)}       ## moving truncations which is indepent to the order 
if (po< -log(i)){po=-log(i)} 
 
theta=c(theta,po) 
}                                             ##End inner loop 
Final=c(Final,po) 
}                                             ##End outer loop 
Final=Final[2:(R+1)] 
 
if(Plots==2){ 
hist(Final,main="",xlab="") 
} 
if(Plots==1){ 
plot(theta,,'l' ,  
xlab="Observations",ylab="") 
lines(rep(z,(n+1)),lty=2) 
} 
### 
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Codes of Section 5.2 
 
s= 1                      ## Start point 
K=0.1                   ## True parameter  
n=50                     ## Iterates 
a=0.003                ## Fixed truncation LOWER bound 
b=100                   ## Fixed truncation UPPER bound 
R=100                  ## No. of replications 
Plots=1                 ## 1--plot estimators, 2--hist 
FinalF=0              ## Define the set of final Fix-Bounded estimators 
FinalM=0             ## Define the set of final Moving-Bounded estimators 
C=0.1                   ## Moving bound constant 
T=0                      ## Sum of Record of the last iterate when truncation works 
CI=1                     ## Constant before the normalizing process 
 
for(j in 1:R){        ## Outer loop 
thetaF=s 
thetaM=s 
gF=s 
gM=s 
for (i in 1:n){ ## Inner loop 
 
xi=rgamma(1,K,1) 
gF=gF+CI*(i*trigamma(gF))^(-1)*(log(xi)-digamma(gF)) 
 
if(gF<a){gF=a} 
if(gF>b){gF=b} 
#xi=rgamma(1,K,1) 
gM=gM+CI*(i*trigamma(gM))^(-1)*(log(xi)-digamma(gM)) 
 
if(gM<C*(log(i+2))^(-1/2)){gM=C*(log(i+2))^(-1/2);t=i} 
if(gM>(i+2)){gM=(i+2);t=i} 
 
thetaF=c(thetaF,gF) 
thetaM=c(thetaM,gM) 
}                                   ## End inner loop 
T=T+ t    
FinalF=c(FinalF,gF) 
FinalM=c(FinalF,gM) 
}                                   ## End outer loop 
 
par(mfrow=c(1,1)) 
FinalF=FinalF[2:(R+1)] 
FinalM=FinalM[2:(R+1)] 
if(Plots==2){ 
par(mfrow=c(1,2)) 
hist(FinalF,main="",xlab="") 
hist(FinalM,main="",xlab="") 
} 
if(Plots==1){ 
plot(thetaF,,'l' , xlab="Observations",ylab="",ylim=c(0,0.2)) 
lines(thetaM,col="blue") 
lines(rep(K,(n+1)),lty=2) 
legend("topright", col = c("blue", "black"),  
legend = c("MT", "FT"),  
lty = 1, merge = TRUE) 
} 
 
T/R 
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Codes of Section 5.3 
 
t1=-0.9 
t2=-0.5 
theta=c( t1, t2 )                               ## True value of the parameter 
s1=0.1                                             ## Start value of theta(1) 
s2=-0.2                                            ## Start value of theta(2) 
n=500 +1                                        ## No. of Iterates  
R=50                                               ## No. of replications 
df=5                                                ## Degree of Freedom  
CI=1                                                ## Initial enties of I_0, the mornalization process 
q=10 #%                                         ## First q% interats take constant K times the mornalization process 
K=1 
e=-1/3 ## epsilon, in charge of the shrinking rate of truncation process 
C=1.5 ## Constant in truncations  
t=0 ## t will be the latest iterates when the truncation works 
T=0 ## Sum of t over n replication 
Plots=4 ## 1--plot the MEAN, 2--plot the MSE, 3--both, 4--MSE for the last 100 iterates 
 
######################## Define arraies of Mean Square Errors  
MSEmlt=matrix(c(rep(0,(n-1))),1,(n-1))       ## Maximum Likelihood Truncated by trianglur region 
MSEmle=matrix(c(rep(0,(n-1))),1,(n-1))       ## Maximum Likelihood 
MSElse=matrix(c(rep(0,(n-1))),1,(n-1))        ## Least squares 
MSEmltls=matrix(c(rep(0,(n-1))),1,(n-1))    ## Maximum Likelihood Truncated by LS 
 
######################## Define arraies of Means 
MEANmlt=matrix(c(rep(0,(n*2-2))),2,(n-1))    ## Maximum Likelihood Truncated by trianglur region 
MEANmle=matrix(c(rep(0,(n*2-2))),2,(n-1))   ## Maximum Likelihood 
MEANlse=matrix(c(rep(0,(n*2-2))),2,(n-1))     ## Least squares 
MEANmltls=matrix(c(rep(0,(n*2-2))),2,(n-1))  ## Maximum Likelihood Truncated by LS 
 
for (j in 1:R){ #################################### Start outer loop 
######################### AR process 
u=c(rep(0,n+101)) 
for (i in 3:(n+101)){ 
u[i]=theta[1]*u[i-1]+theta[2]*u[i-2]+rt(1,df) 
} 
u=u[100:(n+101)] 
 
######################### initial variables of \hat I_0^{-1} 
im=matrix(c(1,0,0,1),2,2) * CI 
 
######################## Define arraies of estimators 
MLT=as.matrix(c(s1,s2))             ## Maximum Likelihood Truncated by trianglur region 
MLE=as.matrix(c(s1,s2))             ## Maximum Likelihood 
LSE=as.matrix(c(s1,s2))              ## Least squares 
MLTLS=as.matrix(c(s1,s2))        ## Maximum Likelihood Truncated by LS 
 
################## Start points 
tml=MLT 
ls=LSE 
ml=MLE 
tml2=MLTLS 
 
################## ################## Start inner loop 
for (i in 3:n){ 
 
################## Update \hat I_i^{-1} 



	
   128	
  

im=im-im%*%as.matrix(u[(i-1):(i-2)]) %*% ( 1/(1+ u[(i-1):(i-2)]%*%im%*%as.matrix(u[(i-1):(i-
2)])))%*%u[(i-1):(i-2)] %*%im 
 
if(i<(q*n)){im1=im*K} else{im1=im} ##### In order to apply q and K. 
 
################## Triangle Truncated MLE 
tml=tml+(df+3)*im1%*% as.matrix(u[(i-1):(i-2)]) %*%((u[i]-u[(i-1):(i-2)]%*%tml)/(df+(u[i]-u[(i-
1):(i-2)]%*%tml)^2)) 
 
x=tml[1] 
y=tml[2] 
 
if (y<=x+1&y>=x-3&y>=1-x){ 
y1=y-(y+x-1)/2 
x1=x-(x+y-1)/2 
} 
else{ 
if (y>=x+1&y>=-x-3&y<=1-x){ 
y1=y-(y-x-1)/2 
x1=x+(y-x-1)/2 
}else{ 
 
if (y<=-1&x>=-2&x<=2){ 
y1=-1 
x1=x 
}else{ 
 
if (y>=x+1&y>=1-x){ 
y1=1 
x1=0 
}else{ 
 
if (x>=2&y<=x-3){ 
y1=-1 
x1=2 
}else{ 
 
if (x<=-2&y<=-3-x){ 
y1=-1 
x1=-2 
} 
else { 
y1=y 
x1=x 
}}}}}} 
tml[1]=x1 
tml[2]=y1 
 
################# MLE 
ml=ml+(df+3)*im1%*% as.matrix(u[(i-1):(i-2)]) %*%((u[i]-u[(i-1):(i-2)]%*%ml)/(df+(u[i]-u[(i-1):(i-
2)]%*%ml)^2)) 
 
################ LS and MLE truncated by LS 
 
ls=ls+im%*% as.matrix(u[(i-1):(i-2)]) %*%(u[i]-u[(i-1):(i-2)]%*%ls) 
 
tml2=tml2+(df+3)*im1 %*% as.matrix(u[(i-1):(i-2)]) %*%((u[i]-u[(i-1):(i-2)]%*%tml2)/(df+(u[i]-
u[(i-1):(i-2)]%*%tml2)^2)) 
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if (norm(tml2-ls,”f”)>C*i^(e)){tml2=ls+C*i^(e)*(tml2-ls)/norm(tml2-ls,”f”);t=i} ## Truncated by 
Eular distance 
 
 
 
 
################# Store the current estimators 
LSE=cbind(LSE,ls) 
MLT=cbind(MLT,tml) 
MLE=cbind(MLE,ml) 
MLTLS=cbind(MLTLS,tml2) 
 
}############################################# End inner loop 
 
T=T+t                                                       ## Add up index No. of the latest step where truncation works 
 
######################## Update Mean Square Errors 
MSEmlt= MSEmlt*(j-1)/j +(((MLT-theta)[1,])^2+((MLT-theta)[2,])^2)/j 
MSEmle= MSEmle*(j-1)/j +(((MLE-theta)[1,])^2+((MLE-theta)[2,])^2)/j 
MSElse= MSElse*(j-1)/j +(((LSE-theta)[1,])^2+((LSE-theta)[2,])^2)/j 
MSEmltls= MSEmltls*(j-1)/j +(((MLTLS-theta)[1,])^2+((MLTLS-theta)[2,])^2)/j 
 
######################## Update Means 
MEANmlt= MEANmlt*(j-1)/j +MLT/j 
MEANmle= MEANmle*(j-1)/j +MLE/j 
MEANlse= MEANlse*(j-1)/j +LSE/j 
MEANmltls= MEANmltls*(j-1)/j +MLTLS/j 
 
}################## end outer loop 
par(mfrow=c(1,1)) 
if(Plots==3){par(mfrow=c(1,2))} 
 
########## Plotting the Mean 
if(Plots==1|Plots==3){ 
plot(MEANlse[1,],,'l' ,  
xlab="Observations",ylab="")                         ######### LS Lines 
lines(MEANlse[2,]) 
lines(rep(t1,(n-1)),lty=2) 
lines(rep(t2,(n-1)),lty=2) 
lines(MEANmle[1,],lty=1,col="blue")             ####### MLE Dotted Lines 
lines(MEANmle[2,],lty=1,col="blue") 
lines(MEANmltls[1,],lty=1,col="red")             ####### MLT Dotted Lines 
lines(MEANmltls[2,],lty=1,col="red") 
lines(MEANmlt[1,],lty=1,col="yellow")          ####### MLTLS Dotted Lines 
lines(MEANmlt[2,],lty=1,col="yellow") 
legend("topright", col = c("black", "blue", "yellow", "red"),  
legend = c("RLS", "RML", "RMLtri", "RMLls"),  
lty = 1, merge = TRUE) 
} 
 
########## Plotting MSE 
if(Plots==2|Plots==3){ 
plot(MSElse[1,],,'l',xlab="Observations",ylab="")      ######### RLS black lines 
lines(MSEmle[1,],lty=1,col="blue")                           ####### RML blue Lines 
lines(MSEmlt[1,],lty=1,col="yellow")                         ####### RMLtri yellow Lines 
lines(MSEmltls[1,],lty=1,col="red")                            ####### RMLls red Lines 
legend("topright", col = c("black", "blue", "yellow", "red"),  
legend = c("RLS", "RML", "RMLtri", "RMLls"),  
lty = 1, merge = TRUE) 
} 



	
   130	
  

 
########## Plotting MSE in later stage 
if(Plots==4){ 
plot(c((n-105):(n-5)),MSElse[1,(n-105):(n-5)],'l',xlab="Observations",ylab="",ylim=c(0.002,0.006)) 
lines(MSEmle[1,1:(n-5)],lty=1,col="blue")            ####### MLE blue Lines 
lines(MSEmlt[1,1:(n-5)],lty=1,col="yellow")         ####### MLT yellow Lines 
lines(MSEmltls[1,1:(n-5)],lty=1,col="red")            ####### MLTLS red Lines 
legend("topright", col = c("black", "blue", "yellow", "red"),  
legend = c("RLS", "RML", "RMLtri", "RMLls"),  
lty = 1, merge = TRUE) 
} 
 
T/R 
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[72] Tadić, V. Stochastic gradient algorithm with random truncations. European

journal of operational research 101, 2 (1997), 261–284.

138
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