
Applications of Game Theory in

Information Security

Viet Hoang Pham

Thesis submitted to

Royal Holloway, University of London

for the degree of

Doctor of Philosophy

2015

Declaration

All results presented in this thesis were produced under the supervision of Prof. Carlos

Cid, during the course of study toward a PhD Information Security at Royal Holloway,

University of London. They have not been submitted for any other degree in any other

university or education establishment.

All research are carried out by myself and partly in collaboration with others. Some of

the results were previously published in the following publications, in which all authors

contributed equally:

• Viet Pham and Carlos Cid. Are we compromised? Modelling security assessment

games. In Decision and Game Theory for Security, pages 234-247. Springer,

2012.

• MHR Khouzani, Viet Pham and Carlos Cid. Incentive engineering for outsourced

computation in the face of collusion. Workshop on the Economics of Information

Security. 2014.

• Viet Pham, MHR Khouzani and Carlos Cid. Optimal contracts for outsourced

computation. Decision and Game Theory for Security. 2014.

• MHR Khouzani, Viet Pham and Carlos Cid. Strategic discovery and sharing

of vulnerabilities in competitive environments. Decision and Game Theory for

Security. 2014.

Other than these, the remaining part of the thesis comes from my own original research.

Signed: .

(Viet Hoang Pham)

Date: 09 May 2015

2

Acknowledgement

I would like to thank my supervisor, Professor Carlos Cid, for his excellent support

and guidance throughout my studies at Royal Holloway. He has enlightened me with

many insights an expert with complete view of the field would have acquired. Beside

supervision, he is also a kind friend who is always available for helps and advices. I am

deeply indebted to him for all his contributions to the completion of this thesis.

My collaborator and friend, Dr. Arman Khouzani, has also been of great helps dur-

ing my research and studies. His experience and knowledge have enabled our successes

in pursuing many exciting results.

Foremost, I am thankful to my parents for their unlimited love, and support

throughout my whole life. Their continuous encouragement and faith have always

been the main sources of my courage and inspiration.

My fiancee, Penying Rochanakul, has always been side-by-side to share both my

joys and challenges. I deeply appreciate her selfless time, care and love as essential and

never-fading supplies for my energetic life.

I am grateful to all my officemates in McCrea 355 since the past four years and

now, as well as others in the department of Mathematics. We have together created

an excellent environment, both academically and socially.

Finally, I would like to thank the college for its financial sponsorship, without which

I would not be able to commence and carry on this PhD study.

3

Abstract

A new trend of research in information security revolves around the idea of treating

individuals not as their intrinsic characteristics, e.g., honest or dishonest, but as utility

maximisers. This is a special feature of the field of economics of security, namely

rational security. Looking into the economic incentives of participants in a security

scenario brings different insights and solutions than traditional security research in

cryptography or formal method. First, traditional security mechanisms assume a set

of permanently honest parties, which does not necessarily hold in economic models

with utility-driven behaviours. Second, the notion of capabilities/powers/advantages of

dishonest parties in traditional mechanisms may be too strong for certain scenarios (e.g.,

many civil purposes), leading to either impossibility results or practically infeasible

security solutions.

In this thesis, we examine several security problems where above issues would

emerge alongside traditional security research. We use game theory to study strate-

gies and economic incentives of participants in these problems, e.g., attackers and

defenders. Our goal is to provide, for each scenario, useful insights about the trend of

behaviours/decisions these participants should take, which would be useful in under-

standing and predicting their actual courses of actions, thus helping future research or

realistic solution design. When possible, we also propose security solutions, such as

protocols or contracts that, under rational security, would lead to desirable outcomes

in which, for example, attacks do not occur. Our research involves both high-level (e.g.,

investment) and low-level (e.g., network communication) security problems.

4

Contents

1 Introduction 12

1.1 Motivation . 12

1.1.1 The Nature of Information Security 12

1.1.2 The Role of Rationality . 14

1.2 Basics Concepts in Game Theory . 15

1.2.1 Strategic-Form Games . 16

1.2.2 Incomplete Information Bayesian Games 18

1.2.3 Extensive-Form Games . 19

1.3 Basic Cryptographic Primitives . 22

1.4 Examples of Applications . 26

1.4.1 Network Security . 26

1.4.2 Security Investment . 27

1.5 Outline of Thesis Contributions . 28

2 Test It Before Flipping It: Security Assessment Games 32

2.1 Introduction . 32

2.2 Related Work . 34

2.3 FlipIt: The Game . 35

2.4 Test It before Flipping it . 38

2.5 Dealing with Complex Systems . 41

2.6 Hardening Control over Time . 48

2.7 Conclusion . 58

3 Strategic Information Sharing in Competitive Environments 60

3.1 Introduction . 60

3.2 Related Work . 63

3.3 Model . 65

3.4 Analysis of the Game . 69

5

Contents

3.4.1 Second Stage: Sharing the Bug Discoveries 70

3.4.2 First Stage: Investment for Bug Discovery 72

3.4.3 The Case of δ < τ . 72

3.4.4 The Case of δ > τ . 76

3.5 Mediation: Encouraging Information Sharing 79

3.5.1 Game’s First Stage: Investment in the Presence of the Mediator 82

3.6 Conclusion . 83

4 Optimal Contracts for Outsourced Computations 85

4.1 Introduction . 85

4.2 Related Work . 88

4.3 Problem Definition: General Setup . 90

4.3.1 Eliminating Clever Guesses . 93

4.4 Contracts for Single Agent . 95

4.4.1 Optimal Contract for a Single Agent 96

4.4.2 A Risk-Averse Agent . 100

4.4.3 Optimal Contract for a Single Agent: Two-Level Reward 101

4.5 Optimal Contracts for Multiple Agents 104

4.5.1 Optimal Contracts for Two Agents 105

4.5.2 Global Optimality of Two-Agent Contracts 109

4.6 Side-Channel (Information Leakage) . 113

4.7 Colluding Agents . 117

4.8 Contract Implementation . 123

4.8.1 Intermediate Steps and Hash Functions 123

4.8.2 Enforcing The Principal’s Auditing 123

4.8.3 Enforcing Probabilistic Behaviours 125

4.9 Conclusion . 134

5 Rational Security for Unauthenticated Communication 136

5.1 Introduction . 137

5.2 Related Work . 139

5.3 The Nature of MitM Attacks . 141

5.3.1 Defining Query-Response MitM Attacks 141

5.3.2 Solution Motivation and Overview 145

5.4 Defining Security Game . 147

5.4.1 Specifying Environment Parameters 148

5.4.2 The High-Level Protocol . 150

5.4.3 Game Formalisation . 156

6

Contents

5.5 Game Analysis . 158

5.5.1 Simplifying Attack Strategies . 159

5.5.2 Finding Good Equilibria . 165

5.5.3 Solutions for Adversaries with Feedbacks 171

5.6 Protocol Implementation . 176

5.6.1 Definitions of Security . 177

5.6.2 Protocol Construction . 180

5.7 Practical Considerations . 189

5.7.1 Multiple Executions . 189

5.7.2 Small Query/Response Spaces 190

5.7.3 Uninteresting Impersonations . 190

5.7.4 Proof-of-Works May Fail . 191

5.7.5 Bootstrapping of Security . 192

5.7.6 Attack Detection . 193

5.7.7 Examples of Application . 193

5.8 Conclusions . 194

6 Conclusion 196

Bibliography 197

A Basic of Karush-Kuhn-Tucker (KKT) Optimisation 212

B Mathematica Code for KKT Optimisation 214

C A Key-Exchange Protocol for Definition 1.16 216

D A Proof-of-Work Scheme for Definition 1.17 220

7

List of Figures

2.1 An example of FlipIt(P, P) game with periodic strategies with defender’s

phase t0 and attacker’s phase t1. Each arrow indicates a flip to take over

control of the resource. 35

2.2 An example of a FlipIt(S, S) game with period state checking strategies. 40

2.3 A FlipIt(H,P) game with the attacker’s flipping cost over time k1,i <

k1,i+1. 49

2.4 Example number of attacks under optimal hardening strategies taking

into account (red plot) and ignoring (blue plot) z(s, α0, α1), given pa-

rameters α0 = 1
15 , α1 = 1

14.5 , k0 = 2, k1 = 0.1, with (a) λ = 0.3 and

µ ∈ [1, 5], or (b) µ = 1 and λ ∈ [0, 5]. 58

3.1 Venn diagram illustration of the sets of bugs. 69

3.2 (a) Example best response curves for the case of δ < τ , investigated in

§3.4.3. In the figure θi > θj . The intersection gives the simultaneous

best response pair in the first stage of the game as: (p∗i , p
∗
j) = ([1 −

(κθi)
−1]+, 0). The parameters used are: λ = 100, τ = 0.5, l = 1,

θi = 0.04, θj = 0.02. (b) Example best response curves for the case of

δ < τ and different θis and θjs. 73

3.3 Example depiction of the optimal and achieved social welfare (3.3a) and

security utility (3.3b) for the case of δ < τ as functions of κ = λ(τ + l). 75

3.4 Example illustration of the comparative statics for the case of δ > τ .

The parameters used are λ = 1.5, l = 0.5, θi = 1, θj = 0.9, τ = 0.9, and

the value of δ is increased from δ = 1 to δ′ = 1.2. Notice the shift in the

equilibrium value towards “up” and “right” as a result. 79

3.5 Illustration of opportunistic sharing vs. matched sharing when δ > τ ,

with δ = 10, τ = 1, θi = θj = 0.1, with (a) l = 1 and (b) l = 10. 83

8

List of Figures

4.1 Change of contract parameters r∗, λ∗ w.r.t. the maximum enforceable

fine F (Prop. 4.1, case of γ > K
Λ2), where K = 450, γ = 1200, Λ = 0.7,

and c = 400. 99

4.2 Optimal contract parameters w.r.t (a) the auditing cost γ, withK = 450,

Λ = 0.8, c = 400, and (b) auditing capacity Λ, with K = 450, γ = 450,

c = 450. 100

4.3 Optimal contract expense with (a) c = 400, Λ = 0.7, γ = 1200, R = 500,

(b) c = 400, Λ = 0.7, R = 500, F = 600, and (c) c = 400, γ = 1200,

R = 500, F = 600. 104

4.4 Optimal contract (where c = 400, γ = 250) w.r.t. (a) max. enforceable

fine F (Λ = 0.5); and (b) auditing capacity Λ (F1 = 600). Recall ρ = λ
1−α

is the conditional probability of auditing given the job is assigned to a

single agent. 110

4.5 Communication protocol for the contract 131

5.1 Attacks on a query-response conversation 143

5.2 Example communication transcript with successful oMitM attack 144

5.3 MitM attacks as machine execution . 145

5.4 Example query-response communication with n = 2 rounds 147

5.5 (Qry,Res) operation with bridge B . 151

5.6 The set of Qry client strategies over the choices of n, c, r. 153

5.7 The set of Res server strategies over the choices of n′ and c′. 154

5.8 Operation of store-then-forward bridge B1 (resp. B2) where (src, dst) =

(Qry,Adv) (resp. (Adv,Res)). 155

5.9 Generic adversary’s strategies where optional steps can be skipped. . . . 160

5.10 Illustration of the game tree, where triangles indicate omitted subgames. 166

5.11 Protocol Send and Receive for messages other than responses ri. 181

5.12 Protocol Send and Receive for delaying responses ri. 185

5.13 Adversary-user cost ratio . 192

9

List of Tables

2.1 List of main notations . 39

3.1 List of main notations . 68

4.1 List of main notations . 94

5.1 Table of losses in different scenarios. 149

10

List of Notations

∆(·), D(·) probability distributions over set

BRi best-response function of player i

x||y the concatenation of x and y

|M | length of bit string M

{0, 1}n all binary strings of length n

{0, 1}∗ all binary strings

[n] the set of natural numbers {1, . . . , n}
E[·] expected value

o← A output(s) o of PPT algorithm(s) A

e←$ S uniform sampling of a set S for element e ∈ S
e←D S sampling of a set S for element e ∈ S with distribution D
PrD[e] probability of element e within probability space D
Pr[e : o | c] probability that an experiment e gives outcome o given condition c

11

Chapter 1

Introduction

The concept of rationality-driven behaviours has long been subliminally acknowledged

and accepted in human society. As the main tool for modelling and analysing such

behaviours within interactive environments, game-theoretic reasoning has brought sig-

nificant contributions to the fundamentals of economics. It also pervades to other fields

such as political sciences, biology, and is potentially applicable to all problem contexts

with multiple decision-makers of unaligned interests. In a typical example of such,

game-theoretic studies of information security problems has recently emerged as a new

research direction, spanning across many subfields such as cryptography, network se-

curity, privacy, etc. In this chapter we explain the advantage of this direction and

therefore motivate our interests in applications of game theory to information security.

For the purpose of self-containment, we also discuss basic game concepts that will occur

frequently throughout the content of the thesis.

1.1 Motivation

Our research is motivated by the fact that traditional treatments of security problems

may be too strict to adapt to the dynamic changes of reality, which are often led by

economic incentives. We explain this further by contrasting the two different views on

participants in a security problem, namely honest/malicious versus rational agents.

1.1.1 The Nature of Information Security

The world nowadays values information as one of the most important and strategic

assets for the survival and growth of communities and businesses [130]. As information

technology evolves, a wide range of systems are being utilised, from personal devices

such as PCs and mobile phones, to sophisticated server farms, mainframes, or super-

12

1.1. Motivation

computers (for organisations). The better collection, refinement and effective process-

ing make information even more valuable as a resource. Hence, whilst businesses gain

remarkable benefit through effective gathering and use of information, the lack of such

effectiveness would also lead to disruptions, delays, or failures in operations.

The need to protect such effectiveness from deliberate corruptions gives rise to what

is called information security, termed in US Code, title 44, section 3542 as “protecting

information and information systems from unauthorised access, use, disclosure, disrup-

tion, modification, or destruction...” [140]. There are two important observations from

this definition, namely the act of protecting, and what to protect from. The need for

information security thus implies the existence of threats, such as malicious attackers,

to information and/or information systems. The existence of threats in turn leads to

the emergence of defenders in response to the need of protection.

From the above description, information security conveys a set of games, or in-

teractive situations, between the attackers (who might be referred to as “bad guys”

based on social knowledge) and the defenders, the “good guys”. Alternatively these

two sides may be termed malicious and honest agents, respectively. Depending on the

specific types of targets, attackers can also be of different types. For example, there

are organisational insiders who seek sensitive/secret information over illegal accesses

to database or wiretapping communication channels, spies that aims at sabotaging

information infrastructures, or simply script-kiddies digging around the Internet for

trivially vulnerable websites, etc. For each type of attacker, a corresponding defender

exists, perhaps not restricted to prevent attacks from happening, but to minimise the

risk-damage product caused by such attacks.

A traditional view of security problems is that for each scenario there is a clearly

defined set of attackers and defenders whose types and purposes remain unchanged

over time. To account for the worst case, security solutions are often designed so that

even the most powerful adversaries, e.g., ones with infinite power, would gain little

by committing the attack. Such solutions are then utilised in all scenarios, thanks to

the security guarantees they hold. Notable examples of such attitude are the seminal

model of mutually authenticated communication by Bellare and Rogaway [17] and the

Dolev-Yao threat model [47]. Another distinguished example is the general concept of

multiparty protocols, such as multiparty computation [95] and secret sharing [135], in

which parties are either honest or dishonest. Although the context does not explicitly

define the nature of each party, any existing security solution operates on a specific

configuration of their honesty.

13

1.1. Motivation

1.1.2 The Role of Rationality

Whether provably secure, traditional treatment of security might be problematic when

bridging from theory into practice. In fact, there might be cases in which strongly

secure solutions are either too expensive or restrictive for deployments, especially if

the threat level is low, i.e., the solution is an overkill. For example, the Public Key

Infrastructure (PKI), although has been cryptographically implemented and is thus

strongly secure, is not universally deployed for securing Internet communications. This

could be due to the unaffordable cost of adopting PKI, e.g., in peer-to-peer network

of Internet users. Alternatively, the communication (e.g. news surfing) may be not

sensitive enough to require such extreme guarantee of security.

Even if technical security solutions are being employed, the overall security also

depends on the decision making process of users of such solutions. This becomes more

and more significant as the involvement of users’ decision increase, for example in leap-

of-faith protocols [112]. Here a user must decide whether to trust the peer it is talking

with. The user may be careful enough to attempt to verify the peer’s trustworthiness,

or it might just be lazy and forgo the checking. Another notorious example is phone-

to-phone communication via Bluetooth, in which phone holders are supposed to match

the random strings appeared on each other’s screen [146]. Lazy users might skip this

step and are thus exposed to the threat of man-in-the-middle attacks [33].

Another problem not captured in traditional security solutions is the dynamic

changes in the types of agents, e.g., from honest to dishonest/malicious. This can be

easily seen in multiparty protocols that assume the honesty of certain parties. In real-

ity, any party might as well deviate from its supposed honesty if there is enough benefit

in doing so. For example, Halpern and Teague [67] argue that a party in multiparty

computation may withdraw its participation as soon as it receives the computation

result, thus leaving the computation process incomplete. Since no party can be fully

trusted to be honest, existing solutions would fail to deliver their security guarantees.

A similar issue also occurs in attacker-defender paradigm. An attacker may cease its

attack if that is costly whilst the gain is small. Meanwhile, misaligned incentives [6]

may neutralise security measures because defenders are not motivated enough to utilise

them properly.

In one way, we may argue that agents’ behaviours in traditional security treatments

are irrational, that is, they act in a way against their preferences. For example, the

adversary model for a cryptographic protocol used in daily life communication (such

as TLS) is assumed to be very powerful, e.g., it is willing to spend its effort breaking a

1024-bit RSA key. However, except for critical-mission purposes, the cost of breaking

this key may not be paid well, if such key is only used for a small HTTP server.

14

1.2. Basics Concepts in Game Theory

Likewise, the assumed honest/dishonest parties in multiparty protocols, as well as

those of misaligned incentives [6] are all seemingly irrational. From economic viewpoint

however, this phenomenon is instead termed bounded rationality [57]. In other words,

agents are in fact still rational, but their knowledge and capacity is bounded that lead

to inaccurate analysis of the situations, and hence suboptimal decision making.

To address this issue, one needs to revise the concept of rationality and re-model

agents following this concept [5]. It is not difficult to realise that in not just security,

a rational agent must have preferences over its choices. Such preferences could, for

example be economic benefits, morality, reputation, etc, as consequences of the cho-

sen behaviour. Based on a well-defined system of preferences, a rational agent would

behave in the most preferred way. In contexts like security scenarios however, the

situation might be further complicated, because an agent’s outcome (which determine

preferences) depends not just on its behaviour, but also other agents involved (e.g.,

attackers, collaborators). The rationality of an agent must also take into account these

externalities.

Note that in the description above, we do not mention security as part of rationality.

Thus, when adopting rationality, the “security battle” among honest and malicious

agents is more like a game where security is really not the matter, but that each game

player selects an action/strategy/move1 in a way aligned with its preferences, and

that such preferences persist over time. By modelling agents as being rational instead

of having definite type (e.g., honest, dishonest), we would thus be able to capture

their actual behaviours in each realistic scenario where the security game is played.

Consequently, this leads to our interest in using game theory, a rich mathematical

toolset for modelling rational agents, to model and analyse security problems, as well

as to design rational solutions.

1.2 Basics Concepts in Game Theory

Subliminal existence of game theory appeared as early as the 18th century [19]. It was,

however, not widely studied and developed as a field of mathematics, until early 20th

century, with notable work by von Neumann and Morgenstern [103]. Game theoretic

studies focus on situations involving more than one party, with unaligned interests. In

other words, a party’s outcome is influenced not only by his/her actions, but also by

the choices of others. As a result, such situations are referred to as games.

Game-theoretic studies involve formalisation of the context in which the game is

1These are used with the same meaning, in different texts: what a player chooses to do in a strategic-
form game. For consistency we denote by action what a player can actually perform, and by strategy
how the action is chosen, e.g., a probability distribution over an action space.

15

1.2. Basics Concepts in Game Theory

played, as well as analysis of players’ strategic behaviours driven by their rationality.

Formal models often consist of several important components, including a list of players,

their available actions/strategies, their preferences over outcomes resulted from chosen

strategies. For convenience of analysis we assume that players’ preferences can be

effectively represented by assigning real values to outcomes. Such assignment is called

a utility function, and is generally unique for each player. Results from analysis of

game models could be used in various ways, e.g., as recommendations for players, as a

guide for altering the context so as to drive the strategic behaviours of the players. In

the game-theoretic jargon, the latter is referred to as mechanism design.

In the following subsections we discuss several important game concepts which

are used in our research. These are strategic-form games with players’ simultaneous

moves, extensive-form games with sequential moves [83], and incomplete information

games [68] in which players might be uncertain about the game structure, such as

payoff functions, or others’ set of strategies. For each game we also discuss important

equilibrium concepts that are useful for the purpose of game analysis and mechanism

designs. Note that for simplicity of presentation we only consider finite games, i.e.,

games with finite strategy sets/spaces. The definition for games with sets of infinite

strategies can be adapted easily as needed.

1.2.1 Strategic-Form Games

The simplest but also central game concept is one-shot, or strategic form, or simultane-

ous games. Often these games model situations in which players move simultaneously.

However, in reality there is hardly any situation in which moves are made absolutely

simultaneously. A better description of these games is that players play independently.

In other words, each player obverses no information about others’ decisions, and hence

independently selects a pure strategy2. Thus, whether moves are simultaneous of se-

quential does not matter. The game can be defined formally as follows:

Definition 1.1. A strategic-form game is a tuple 〈N, {Ai}i∈N , {ui}i∈N 〉 where N is the

set of players, for each i ∈ N , Ai is a non-empty non-singleton set of pure strategies

available for player i, and ui : A → R is player i’s utility/payoff function, where A =

×i∈NAi. For each strategy profile a = (ai)i∈N ∈ A and i ∈ N , denote ui(ai,a−i) =

ui(a), where a−i = (aj)j 6=i .

Although simple, the above definition captures all the necessary information of a

game. Indeed, each tuple a = (ai)i∈N ∈ A, which can be called as either strategy

2A pure strategy is a deterministic selection of actions, i.e., it is equivalent to an action. This is in
contrast with a mixed strategy that chooses an action probabilistically.

16

1.2. Basics Concepts in Game Theory

profile or outcome, represents what may happen at the end, whereas A is the set of all

possible outcomes. The rationality of each player is depicted via its utility function, so

that for two outcomes a,a′ ∈ A with ui(a) > ui(a
′), it means that player i prefers a

to a′. Inherently, each player must know exactly about what others can do ({Ai}) as

well as their preferences ({ui}).
To support analysis of games, a number of solution concepts have been constructed.

Basically, solution concepts refer to strategies/outcomes with some particular feature(s)

which can be either interesting, or desirable. A fundamental notion in non-cooperative

game theory is the best-response:

Definition 1.2. Let 〈N, {Ai}i∈N , {ui}i∈N 〉 be a strategic-form game. For each player

i ∈ N let A−i = ×j 6=iAj, player i’s best-response BRi : A−i → 2Ai is defined as

BRi(a−i) = arg max
ai∈Ai

ui(ai,a−i)

While the best-response function simply states which action(s) a player should fol-

low in response to specific action tuples by the rest, it leads to more interesting solution

concepts, e.g., dominant equilibrium and Nash equilibrium. Dominant equilibrium is

an outcome in which no player needs to care about how others may act, as its chosen

action is always the best response. This is probably the most desirable feature of any

game, because if a game with this feature happens in real life, such outcome is very

likely to occur. Nash equilibrium, a central breakthrough in game theory however,

relaxes the former “difficult-to-achieve” solution, in that each player’s action needs to

be a best-response to only what others have chosen in the outcome. In other words,

if the outcome has already been designated to occur, then no individual player would

benefit by acting in a different way. These two concepts are formalised as follows:

Definition 1.3. Let 〈N, {Ai}i∈N , {ui}i∈N 〉 be a strategic-form game. For each player

i ∈ N , a strategy ai ∈ Ai is dominant if ai ∈ ∩a−i∈A−iBRi(a−i). An outcome a ∈ A is

a dominant equilibrium if for each i ∈ N , ai ∈ a is a dominant strategy of player i.

Definition 1.4. Let 〈N, {Ai}i∈N , {ui}i∈N 〉 be a strategic-form game. An outcome a ∈
A is a Nash equilibrium if ai ∈ BRi(a−i) for all i ∈ N .

The reason why some outcome is called an equilibrium is because each player,

knowing exactly the actions that will be taken by others, do not want to deviate from

the “equilibrium”. This left out other interesting equilibria in which such knowledge is

imperfect, i.e., each player only has knowledge on the probability distribution over the

actions of others. This leads to the concept of mixed-strategy version of a game, made

famous by von Neumann and Morgenstern [103]:

17

1.2. Basics Concepts in Game Theory

Definition 1.5. Let Γ = 〈N, {Ai}i∈N , {ui}i∈N 〉 be a strategic-form game such that A

is finite. A mixed-strategy version of Γ is a strategic-form game 〈N, {Ai}i∈N , {Ui}i∈N 〉
such that for each player i ∈ N , Ai is the set of all probability distribution over Ai,

and that for all (∆i(Ai))i∈N ∈ ×i∈NAi = A,

Ui((∆i(Ai))i∈N) =
∑
a∈A

(∏
i∈N

Pr
∆i

[ai]

)
ui(a)

An interesting result with mixed-strategy version of a game with finite actions is

that there always exists a Nash equilibrium [103]. When each player’ actions form a

compact metric space, Glicksberg [59] extends Kakutani’s fixed point theorem [76] and

shows the same conclusion, i.e., there is always a Nash equilibrium. Note here, that the

mixed-strategy version of a mixed-strategy game is of no difference, since eventually

each player’s strategy is a probability measure over the set of deterministic actions.

1.2.2 Incomplete Information Bayesian Games

Incomplete information refers to situations in which there is an oblivion by at least one

player about the exact outcome preferences of either itself or some other. This happens

due to the existence of the so-called state of the Nature, which is decided probabilisti-

cally by some relevant random source, which we call the Nature. For example, consider

a game played among a large population, in which each player must decide whether to

buy a lottery ticket. Even if a player knows every other’s decision, it cannot determine

its own utility, which is the earning from the lottery subtracted by the ticket price.

This is because the outcome of the lottery is probabilistically decided by the Nature,

which in this case is the lottery company. In security games, although it is known

that every player is rational, an “evil mind” player would have different preferences

to a “benign” player. Such type of a player is often unknown to the others, and is

decided probabilistically by Nature whose distribution depends on, for example, living

environments, education background, etc.

The simplest appearance of the Nature is in Bayesian games, which is a strategic-

form game, except that the utility function of each player probabilistically depends

on the state of the Nature. Note here that the probability distribution over these

states is private to each player i (depicted by pi), which represents its knowledge about

the Nature. To be even more generic, Bayesian games allow the Nature to leak some

information about its state, called signal, to players, so that they can probabilistically

work out their expected utilities. This comes from the fact that in reality, even if no

signal is given, data acquisition and statistical analysis might be used to learn about

18

1.2. Basics Concepts in Game Theory

the state of the Nature. Bayesian games are defined in the following:

Definition 1.6. A Bayesian game is a tuple 〈N,Ω, 〈Ai, Ti, Ci, τi, pi, ui〉i∈N 〉 where Ω

is the set of nature states, and for each i ∈ N ,

• Ai is the set of i’s all available actions,

• Ti is the set of i’s signals/types, with τi : Ω→ Ti is the state-to-signal mapping,

• Ci : Ti → 2Ai is the set of i’s available actions after receiving ti ∈ Ti,

• pi is a probability measure over Ω, and,

• ui : Ω×A→ R is player i’s utility function

The adaptation of Nash equilibrium into Bayesian games, called Bayesian Nash

equilibrium, naturally follows from Definition 1.5:

Definition 1.7. Let G = 〈N,Ω, 〈Ai, Ti, Ci, τi, pi, ui〉i∈N 〉 be a Bayesian game. A strate-

gic form of G is a tuple 〈N, {Ai}i∈N , {Ui}i∈N 〉 where for each i ∈ N , Ai = ×t∈TiCi(t),
and denote ai ∈ Ai of the form ai : Ti → Ai, and

Ui(a) =
∑
ω∈Ω

pi(ω)ui(ω, (aj(τj(ω)))i∈N)

for all a ∈ ×i∈NAi.

Definition 1.8. Let G = 〈N,Ω, 〈Ai, Ti, Ci, τi, pi, ui〉i∈N 〉 be a Bayesian game and G′ =

〈N, {Ai}i∈N , {Ui}i∈N 〉 be its strategic form. A Bayesian Nash equilibrium of G is a

Nash equilibrium of the mixed-strategy version of G′.

1.2.3 Extensive-Form Games

A fundamental assumption in strategic-form games is that players’ actions are inde-

pendent. This does not hold in many situations, e.g., in chess games where each player’

moves are observable to its opponent. Such situations can alternatively be modelled in

extensive form, a game tree that specifies the order of plays, as well as what each player

can do at each of its turns. A general notion of extensive-form games also comes with

incomplete (with the Nature participating in the game) and imperfect information, as

defined below:

Definition 1.9. An extensive-form game Γ is a tuple 〈N,K,H,A, ρ, {ui}i∈N 〉 where

• N is the set of players,

19

1.2. Basics Concepts in Game Theory

• A is the set of all possible actions,

• K = 〈V,E, r, p〉 is a rooted tree with nodes V , node-to-player mapping r : V →
{0} ∪ N , edges E = {(v, v′) : v is the successor}, and edge-to-action mapping

p : E → A such that p(v, v′) = p(v, v′′) iff v′ = v′′ for all v, v′, v′′ ∈ V ,

• H is a partition of V such that all nodes within each information set H ∈H

(i) belong the same player, i.e., there exists i ∈ {0} ∪ N such that r(v) = i for

all v ∈ H (denoted by r(H)) and, (ii) have the same set of available actions, i.e.,

for all v, v′ ∈ H, {p((v, ·) ∈ E)} = {p((v′, ·) ∈ E)} (denoted by A(H)),

• ρ = {ρH : A(H)→ [0, 1] | H ∈H ∧ r(v) = 0 ∀ v ∈ H} is the family of probability

distributions over the states of the Nature and,

• ui : T → R, where T ∈ V is the set of terminal nodes.

In essence, each information set H ∈H represents the imperfection in knowledge of

a player about what has happened in the history, i.e., it is oblivious about which node

in H it is currently in. Therefore, the third condition of Definition 1.9 requires that a

player’s action must be the same for every node in the same information set. Because

of the dependence in the course of actions, we also need to be clear about what exactly

is a player’s strategy in this game, and the utility it receives from doing so. This can

be best captured by representing the game in strategic form:

Definition 1.10. Let Γ = 〈N,K,H,A, ρ, {ui}i∈N 〉 be an extensive-form game. The

strategic form of Γ is a tuple 〈N, {Ai}i∈N , {Ui}i∈N 〉 such that

• for each i ∈ N , Ai = {ai : H → A} where each ai maps an information set

H ∈H with r(H) = i to an action in A(H) ⊆ A.

• for each outcome a ∈ ×i∈NAi, define oa : E → [0, 1] such that for (v, v′) ∈ E,

if r(v) = 0 then o(v, v′) = ρH0(p(v, v′)) for H0 3 v, else o(v, v′) = 1 when

ar(H)(H) = p(v, v′) for H 3 v, and 0 otherwise, then

Ui(a) =
∑
t∈T

ui(t)
∏

(v,v′)∈path(t)

oa(v, v′) (1.1)

where path(t) is the set of edges from the root to t.

As can be seen, because players’ actions in an extensive-form game are not in-

dependent, a pure strategy of a player must be a plan of actions for every possible

situation that could happen during the game. Such plan can be made in advance,

20

1.2. Basics Concepts in Game Theory

and is thus independent of others’ plans. While the formalisation of Nash equilibrium

for extensive-form game is trivial with the above definition, it is noticeable that such

equilibrium might have a problem, well-known as non-credible threats.

Indeed, from (1.1) we see that ui(t) only enters the utility if every edge leading to

t is chosen with non-zero probability. This indicates a possibility that some part of

the plans of actions does not affect the utility, and thus can be arbitrarily set. Thus,

a player may plan for that part irrationally, i.e., selecting non best-response action,

while still guaranteeing Nash equilibrium. Even worse, sometimes such irrationality is

the only way to make sure that the current outcome is in equilibrium. This is what

referred to as non-credible threat: a threat of acting in a way that would otherwise not

occur when triggered. Hence, a Nash equilibrium with such threats is hardly realistic.

A refinement of this, called subgame-perfect equilibrium (SPE), safely eliminates non-

credible threats:

Definition 1.11. Let Γ = 〈N,K,H,A, ρ, {ui}i∈N 〉 be an extensive-form game. A

subgame of Γ, defined over a node v ∈ H ∈ H where H is singleton, is a tuple

〈N,K′,H,A, ρ, {ui}i∈N 〉 such that K′ is a subtree of K containing v and all its succes-

sors. An outcome a of the strategic form of Γ is said to be a subgame-perfect equilibrium

if, for every subgame Γ′ of Γ, the induced outcome of a on Γ′ is a Nash equilibrium of

the strategic form of Γ′.

According the above definition, a subgame-perfect equilibrium is only a proper

refinement of Nash equilibrium if there is at least one singleton information set in the

game tree. In other words, in each subgame at least one player must know exactly what

has happened in the history, which include players’ exact past actions and all realised

states of the Nature. However, there might be games in which all information sets are

non-singleton, and thus the only valid subgame of the game tree is itself, which reduces

any SPE to a Nash equilibrium. This motivates further refinements, and consequently

led to the concept of Perfect Bayesian equilibrium (PBE). Unlike an SPE that requires

one player with perfect knowledge of history for each subgame, a PBE only requires a

player with a belief about history which is consistent (following Bayes’ rule) with the

strategy profile forming the equilibrium. Since the notion SPE appears in many results

of our research, we describe it formally below:

Definition 1.12. Let Γ = 〈N,K,H,A, ρ, {ui}i∈N 〉 be an extensive-form game, and

a be a strategy profile of the strategic form of Γ. For every information set H ∈ H,

a belief of player i = r(v) for v ∈ H is a probability distribution over H. A belief

system is the collection of beliefs for all information sets H ∈ H. A belief system

is said to be consistent with a if for every H ∈ H that can be reached with positive

21

1.3. Basic Cryptographic Primitives

probability, the belief over H is identical to the posterior distribution over H derived

from a using Bayes’ rule.

Definition 1.13. Let Γ = 〈N,K,H,A, ρ, {ui}i∈N 〉 be an extensive-form game. A

strategy profile a of the strategic form of Γ and a belief system µ are said to form a

Perfect Bayesian equilibrium if (i) µ is consistent with a and, (ii) for every information

set H ∈H with i = r(H) 6= 0, then player i’s utility is maximal given a belief over H

derived from µ and other players’ strategies in a, that is,

ai ∈ arg max
ai∈Ai

∑
v∗∈H

Pr
µ

[v∗]
∑
t∈Tv∗

ui(t)
∏

(v,v′)∈path(v∗,t)

oa′(v, v′)

where a′ = (ai,a−i), Tv∗ is the set of terminal nodes of K preceded by v∗, path(v∗, t)

is the set of edges from v∗ to t, and o· is as defined in Definition 1.10.

For compatibility with game-theoretic literature, with respect to a PBE we call the

information sets that can be reached with positive probabilities as on the equilibrium

path, and otherwise as off the equilibrium path. Unlike previous solution concepts, the

specification of PBE requires not just a strategy profile, but also a belief system. This

is because for information sets that are off the equilibrium path, there might be many

valid beliefs, each of which would lead to a distinct belief system. This gives rooms to

even further refinements of PBE along the development of game theory. In this thesis

however, we only utilise the notion of PBE, and thus we may safely ignore the need

to specify a belief system for each PBE, as the strategy profile alone would convey the

most important parts of the corresponding belief system.

1.3 Basic Cryptographic Primitives

Although cryptography is not the main focus of our research, in some of our works pre-

sented in this thesis we rely on cryptographic techniques to make sure that our game

models are realistic. To complete the formal treatments of our solutions, in this section

we define standard cryptographic primitives that would be used in our solutions, par-

ticularly in Chapter 4 (Section 4.8) and Chapter 5 (Section 5.6). We start by recalling

the central notion of negligible function, which is then followed by the definitions of key

exchange, proof-of-works, authenticated encryption, and non-malleable commitments.

Note that the definitions for authenticated encryption and non-malleable commitment

are borrowed from standard cryptographic definitions, meaning that there are existing

constructions satisfying them. However, our definitions of key exchange and proof-of-

works have been adapted to our needs. For completeness of solutions in Appendices C

22

1.3. Basic Cryptographic Primitives

and D we show constructions that satisfy such adaptations.

Definition 1.14. A negligible function is ε : N → R such that for every positive

polynomial poly there exists an integer n0 > 0 such that for all n ≥ n0 we have |ε(n)| ≤
1/poly(n). A non-negligible function is a function which is not negligible.

Definition 1.15. Let A1, . . . An be probabilistic polynomial-time (PPT) algorithms.

A parallel execution of A1, . . . , An that respectively output o1, . . . , on is denoted by

(o1, . . . , on)← (A1, . . . , An).

Definition 1.16 ([30]). Let K be a key space. A secure key-exchange protocol is a

tuple of PPT algorithms (I,R) satisfying for some negligible function ε the following

properties:

• Correctness: Pr[(k1, k2)← (I(n),R(n)) : k1 = k2 ∈ K] = 1,

• Synchronisation: if the adversary modifies the communication, then it is hard to

make endpoints agree on the same key, i.e., for all PPT adversaries Adv

Pr [(k1, ·, k2)← (I(n),Adv,R(n)) : k1 = k2 6=⊥ | trI 6= trR] ≤ ε(n)

where trI and trR are transcripts of messages during the communication in the

views of I(n) and R(n), respectively,

• Key indistinguishability: the adversary must either make the endpoints accepting

different keys, or else it has no knowledge about the agreed key, i.e., denote by

D the distribution over K of k given that (k, ·, k)← (I(n),R(n)), for all stateful3

PPT adversaries Adv define

ΠAdv
IND-KE =

[
(k0, ·, k2)← (I(n),Adv,R(n)); k1 ←D K; b←$ {0, 1}; b′ ← Adv(kb)

]
,

then either of the following holds:

Pr
[
ΠAdv

IND-KE : b = b′ | k0 = k2 6=⊥
]
≤ 1/2 + ε(n)

Pr
[
ΠAdv

IND-KE : k0 = k2 6=⊥
]
≤ ε(n)

Definition 1.17. Denote by cost(Alg) a realisation of the computational cost when exe-

cuting a probabilistic algorithm Alg. A proof-of-work mechanism is a tuple (Prove,Verify)

3By “stateful” we mean that the adversary remembers what it has done within the same experiment.
This is to simplify the presentation of the definition by avoiding messages passing between stages of
an experiment.

23

1.3. Basic Cryptographic Primitives

of PPT algorithms satisfying for some negligible function ε that for all cost values

c ∈ [cmin, cmax], all proof identifiers id ∈ ID for some ID space ID, the following prop-

erties are satisfied:

• Correctness:

Pr

 (sig1, sig2)← (Proven(c, id),Verifyn(c, id)) :

sig1 = sig2 = true ∧ cost(Proven(c, id)) ≥ c− ε(n)

 = 1 and,

• Verifiability: even with helps from past or current communication, any save in

computation cost would result in a reduce in convincing the verifier by at least

the same proportion, i.e., for all PPT algorithms Adv = (Adv1,Adv2) and all

probabilities p:

Pr

s← Adv1Proven(·,·)(n, c, id); (·, sig)← (Adv2Proven(·,·)(n, c, id, s),

Verifyn(c, id)) : cost(Adv2) ≤ c · p ∧ sig = true

 4 ≤ p+ ε(n)

where Adv2 is not allowed to trigger Prove with id, and cost(Adv2) ignores the

executions of Prove(·, ·).

Definition 1.18. With respect to a message space M, an authenticated encryption

scheme is a tuple of PPT algorithms (K,Enc,Dec) satisfying for some negligible function

ε the following properties:

• Correctness: for all m ∈M and all Pr[k ← K(n) : Deck(Enck(m)) = m] = 1,

• IND-CPA: the content of ciphertexts convey no information about the plaintexts,

i.e., for all stateful PPT adversaries Adv

Pr

k ← K(n); (m0,m1)← AdvEnck(·); b←$ {0, 1};

b′ ← AdvEnck(·)(Enck(mb)) : b = b′

 ≤ 1/2 + ε(n)

• IND-CTXT: it is hard for an adversary to produce a ciphertext (other than those

produced by the sender) that can be accepted by the receiver, i.e., for all stateful

4Here Adv1Prove(·,·) represents the fact that the adversary may rely on knowledge from past executions
of this proof-of-work mechanism, and Adv2Prove(·,·) indicates that the adversary might try to exploit
computational effort from the client, but for a different proof with id′ 6= id.

24

1.3. Basic Cryptographic Primitives

PPT adversaries Adv

Pr[k ← K(n); c← AdvEnck(·) : Deck(c) 6=⊥ ∧ c 6∈ C] ≤ ε(n)

where C is the set of ciphertexts output by Enck(·) to Adv.

Definition 1.19 ([43]). With respect to a message space M, a non-malleable commit-

ment scheme under common reference string (CRS) model is a tuple of PPT algorithms

(Setup,Commit,Open) satisfying for some negligible function ε the following properties:

• Correctness: for all m ∈M

Pr[CK← Setup(n) : OpenCK(CommitCK(m)) = m] = 1,

• Hiding: the commit value conveys no information about the message being com-

mitted, i.e., for all stateful PPT adversaries Adv

Pr

CK← Setup(n); (m0,m1)← Adv(CK); b←$ {0, 1};

(c, d)← CommitCK(mb); b
′ ← Adv(c) : b = b′

 ≤ 1/2 + ε(n),

• Binding: a commit value is only valid for one message, i.e., for all PPT adver-

saries Adv

Pr

CK← Setup(n); (c, d, d′)← Adv(CK);m← OpenCK(c, d);

m′ ← OpenCK(c, d′) : m 6= m′ ∧m,m′ 6=⊥

 ≤ ε(n)

• Non-malleability (w.r.t opening): given a commit value of a message, until re-

ceiving the corresponding opening value, it is hard to commit to any other related

message, i.e., for every stateful PPT adversary Adv there exists a PPT adversary

Adv′ such that p1 − p2 ≤ ε(n) for all efficiently sampleable distribution D over

M, and all polynomial-time computable relation R, where

p1 = Pr

CK← Setup(n);m←DM; (c1, d1)← CommitCK(m); c2 ← Adv(CK, c1);

d2 ← Adv(CK, c1, c2, d1);m′ ← OpenCK(c2, d2) : c1 6= c2 ∧R(m,m′) = 1


p2 = Pr[m←DM;m′ ← Adv′ : R(m,m′) = 1]

25

1.4. Examples of Applications

1.4 Examples of Applications

The diversity of problem contexts in information security suggests a rich set of oppor-

tunities for game-theoretic studies. Indeed, research on game modelling of security has

established a wide range of results on different problems and areas. A major game

model used in these works is the attacker-defender game [3, 3.1], which is played be-

tween some attacker(s) and defender(s) in a strict competition, i.e., they have opposite

preferences over outcomes. Alternatively, many research also consider defenders-only

games, in which the defenders try to collaborate (whilst being individually selfish) in

mitigating a particular source of threat. As an illustration, we briefly review some of

the most notable game-theoretic studies on network security and security investment

– the areas that draw the most attention from intellectual fore.

1.4.1 Network Security

Network security has witnessed enormous efforts in game-theoretic modelling of secu-

rity. This is partly due to the diversity in problem contexts it covers, and party because

these contexts often involve multiple participants with independent behaviours and con-

flict of interests, e.g., in client-server model, peer-to-peer model, and a wide range of

adversary models. The most common approach to modelling network security problems

is to use attacker-defender game, for example zero-sum games [121] as in [2,27,91,153],

that is, the total utility of the players are always zero. Attacker-defender games can

also be extended to multiple defenders or attackers [4, 123].

Game-theoretic studies of security at TCP/IP access layer is one of the most active

approaches. There are work that rely on the attacker-defender model, for example by

Kashyap et al. [78], Altman et al. [4], or Buchegger and Alpan [27], who address the

problem of signal jamming in wireless networks. Effective, efficient, and secure signal

transmission is also investigated in defenders-only type of games, such as in the work

of Sagduyu and Ephremides [128], Raya et al. [123]. Unlike other work that rely on

non-cooperative players, Saad et al. [127] use coalitional games to study cooperation

among defenders in minimising eavesdropping.

Security games also appear naturally at higher network layers as well as over inter-

networks. A popular line of work focuses on the problem of intrusion detection [9].

Again the attacker-defender model proves its usefulness, such as in a simple zero-sum

stochastic game designed by Alpcan and Başar [2], and later by Zhu and Başar [151]

with more realistic game models. This problem is also studied in collaborative settings

where multiple intrusion detection systems (IDSs) cooperate, forming defenders-only

games. For example, while Zhou et al. [150] consider rational IDSs being malicious,

26

1.4. Examples of Applications

Zhu et al. [152] focus on the problem of free-riding, i.e., some IDS might be lazy

and does not contribute. Another typical ground for game modelling is the issue of

Distributed Denial of Service (DDoS), which often involves a large body of Internet

nodes. Spyridopoulos et al. [138] and Jafarian et al. [74] study different defense mech-

anisms against DDoS attacks under attacker-defender game model, as well as provide

simulation results to strengthen their results. Meanwhile, Yan and Eidenbenz [148]

investigate economics incentives for ISPs to collaborate in defending DDoS attacks,

under defenders-only model.

1.4.2 Security Investment

Another natural place for game-theoretic modelling is in the organisational decision-

making process of strategic investment in security. This problem is made interesting by

the dependency of such process on not only the potential attackers, but also on other

relevant parties in the environment, such as markets, alliances, competitors, etc.

A well-known game model for studying security investment is the interdependent

security game (IDS) proposed by Heal and Kunreuther [84]. This is a defenders-only

game among entities whose security are tightly linked to each others, e.g., security of

airports against terrorists. Entities have an option to invest in a certain mechanism

with interdependent effects in security. Alternatively, they may ignore it as freeriders,

or because it becomes ineffective due to the lack of deployments by others. Different

contexts for IDS games have been proposed, each with a distinct type of security

interdependency. Grossklags et al. [65, 66] consider several models, including weakest

link, best shot, and total effort : a player’s security is determined by the smallest,

largest, or total investment by all players, respectively. There are also models that

consider negative externalities, i.e., deployments that have negative security effects on

other players, such as by Hausken [69] and Miura-Ko et al. [98]. Several mechanisms

have been proposed toward improving security and social utilities, e.g., using insurance

[65,66,109,111], auditing [22], information sharing [64,109]. Further, Laszka et al. [86]

provide a comprehensive survey of existing research on IDS games.

There are other topics in security investment which also benefit from game-theoretic

analysis. A notable example is sharing of security information between firms (with in-

dependent security) as part of strategic security investment. Several works [54, 64, 71]

of this type model “one-shot” games in which players’ strategies are either investment

or information sharing, or both. Others consider multi-stage games [71, 89] where in-

formation sharing may occur at one of the stages. In contrast to the above, another

emerging line of research exploits the attacker-defender theme, notably the FlipIt game

proposed by van Dijk et al. [141] that models strategic security plans against advanced

27

1.5. Outline of Thesis Contributions

persistent threats (APTs) in taking over the control of a resource. Several follow-ups

on FlipIt have appeared, e.g., an extension of the defender’s strategies by Pham and

Cid [114], an extension to multiple resources by Laszka et al. [87], as well as several

empirical studies by Reitter et al. [124] and Nochenson et al. [106]. Last but not

least, the growth of cloud and distributed computing also suggest a need for studies

on security of outsourcing against dishonest contractors. Most of existing results come

from cryptographic research, e.g., verifiable computation with fully-homomorphic en-

cryption [55], probabilistically checkable proof [131, 133]. There are however emerging

game-theoretic studies, such as by Belenkiy et al. [14], Nix and Kantarcioglu [104]

which apply principal-agent model [58, ch.7] to incentivise honesty among contractors.

Khouzani et al. [80] pursue this approach further to consider the problem of collusion

between contractors.

1.5 Outline of Thesis Contributions

This section summarises the content of the remaining of the thesis, as well as explaining

my shares of contribution for each of the works mentioned. There are four independent

pieces of research, as presented in the next four consecutive chapters. The thesis ends

with a conclusion chapter, along with an appendix. The main chapters are summarised

below.

Test It Before Flipping It: Security Assessment Games

Strategic security investments are an important part in organisational decision making,

due to the need for protection of information systems. Following a break to RSA [40],

Dijk et al. [141] employ the notion of games of timing in economics [21] to propose a

game called FlipIt that captures organisational strategies for security investment against

an advanced persistent threat (APT) adversary. APTs are growing threats that cause

detrimental effects to critical infrastructures [20]. In particular, FlipIt is a two-person

game whose gameplay starts at zero time, and flows indefinitely. During the game play,

players (attacker, defender) must decide when to make a move (usually system reset)

to take over control of a single resource (e.g. computer system), the action of which

incurs a cost, but which yields benefits from controlling the resource for the amount

of time until it is taken by the opponent. In their paper, Dijk et al. consider several

different types of moving strategies, including non-adaptive plans of moves that are

decided before the gameplay begins, such as periodic, randomised strategies, as well as

adaptive moves, i.e., moves decided during the gameplay based on observed history.

Our work is an extension to FlipIt by enriching further the types of moves that can be

28

1.5. Outline of Thesis Contributions

made during the gameplay. We take on the argument that system resets are not enough

in optimising organisational return on security investment, and that security assessment

should also be taken into the strategies. To do so, we introduce the strategies called

state checking, which allows a player to check if it is in control of the resource, and only

make a move if not. We perform analysis to compare between this and the blind move

strategies proposed by Dijk et al., with restriction to periodic type of strategies. Our

analysis yields conditions under which one type of strategy is preferred over another,

and vice versa. Further, we introduce another type move, called hardening, which allows

the defender not just to check then move, but also patch the system vulnerability (after

being taken by the attacker), so that later on it becomes harder for the attacker to take

over. Our analysis of hardening strategies give further insights on how enterprises

should spend on deep investigation to fix security problems of their infrastructures in

the event of breaches.

This work is published in [115], in which all authors contribute equally. Particu-

larly, I participate in seeking the research problem, proposing and revising the model,

performing the analysis, as well as presenting the work in text format.

Strategic Information Sharing in Competitive Environments

In an inter-connected world where no single organisation can really stand alone and

survive, there is a new trend of cooperation in which businesses do not just selfishly

spend on protecting their information assets, but also gathering and exchanging security

intelligence in helping themselves becoming more secure. The establishment of the

US “National Coordinating Center for Communications (NCC)” as the “Information

Sharing and Analysis Center (ISAC)” for telecommunications [108] is a sign of this

trend. Meanwhile, many investigations on information sharing in general [52,136,143],

as well as that specifically for security intelligence [53, 64, 70, 71] have been made by

academics, hoping to devise a effective and efficient system for information exchange.

Most of these works consider the problem of how firms should invest in securing their

systems, as well as how to share information to others.

Different from previous works, we consider the question of how much firms should

invest security research (e.g., Google Project Zero [50]), i.e., gaining information about

the security of their platforms, alongside sharing the research results. Also, we model

information as the number of vulnerabilities discovered instead of a value within [0,1]

as in other works. We consider a two-stage game played between two competing firms

in the same market who need to consider trade-offs between competition and sharing

information for mutual goods. Our analysis of the equilibrium points indicates insights

about firms’ expected trends of decisions. Further, we introduce the notion of a me-

29

1.5. Outline of Thesis Contributions

diator, and illustrate its effect on the firms’ behaviours, which surprisingly can bring

positive as well as negative outcomes to the individual firms, as well as social welfare.

This work is published in [81], in which all authors contribute fairly equally. In par-

ticular, I contribute mainly on designing/revising the model as well as in the analysis,

with less efforts on presentation of the research results.

Optimal Contracts for Outsourced Computations

The idea of outsourcing complex computation tasks has been proposed and imple-

mented in a variety of applications. These include search for extra-terrestrial life

(SETI@Home), investigation of protein folding and computational drug design (Fold-

ing@Home and Rosetta@home). Businesses from different sections including finance,

energy infrastructure, mining and commodities transport, technology and innovation

[107] have also realised the benefits of outsourcing (data, computation, etc.) and “mov-

ing to the cloud”. In all of these scenarios, there is a concern for the outsourcer (client)

about the correctness of the returned results. With efforts from the cryptography com-

munity, many mechanisms have been proposed to address this concern, coming under

the name verifiable computation, e.g., homomorphic encryption [56], Probabilistically

Checkable Proofs (PCPs) [132,134], and then better schemes such as Pepper [131] and

Ginger [133]. However, these mechanisms are still practically infeasible, due to the

complexity of the computation process. From another route, there are economic studies

that aim at forming principal-agent contracts that rationally discourage workers/agents

from being dishonest.

Motivated by previous works that employ principal-agent contracts, we make an

attempt to design more rigorous and general contracts for outsourcing, which are op-

timal in terms of outsourcing expense. Our contract design utilise auditing, reward,

punishment in attracting workers, whilst at the same time encouraging their honesty.

Further, we take into account several obstacles in reality not addressed by previous

works, such as limited budget for expenditure, limited ability to punish, and limited

capacity for auditing. In addition, we consider the problem of information leakage that

gives workers extra advantages in cheating, as well as propose bounty hunter scheme

to deter collusions among workers. Our results are presented as optimal contract pa-

rameters and expected cost, given different conditions of the environment parameters.

This work is published in [116] and [80], in which all authors contribute fairly

equally. In particular, I contribute equally with others on designing and revising the

game model, discussion of results, and presentation of the works. I am also responsible

for all programming tasks that form the statements of the main theorems.

30

1.5. Outline of Thesis Contributions

Rational Security for Unauthenticated Communication

Due to physical and geographical separation, secure communication is vital in our inter-

networked world. Various aspects of security have been established for this need, e.g.,

confidentiality, integrity, non-repudiation. Security services that can offer these aspects

often operate on top of a mechanism that guarantees authenticity/correct identifica-

tion of communicating parties. However, authentication in general is not an easy task.

Although there exist effective authentication mechanisms such as Public Key Infras-

tructure (PKI) or Web of Trust (WoT), they are not efficient enough to be applicable

to the vast majority of everyday connections such as news surfing or peer-to-peer file

sharing. Quasi-authentication methods such as leap-of-faith have been proposed, but

only work well in small and static environments, and hence is less scalable. Barak et

al., on the other hand, consider the question: “What security can be achieved in the

presence of an attacker, without authentication?” [10]. They give an answer in the

form of a relaxed notion of security, which can easily be achieved using secure mul-

tiparty computation (SMPC) and digital signatures. Such relaxation states that, the

most an adversary can do is to sequentially impersonate communicating endpoints. In

other words, it cannot concurrently communicate with two or more endpoints and use

information obtained from one side to talk with another. This strictly minimises the

capability of an adversary as a man-in-the-middle attacker.

Inspired by this work, we also consider the same question, and arrive at the same

notion of relaxation for security. However, we realise that the solution provided in

[10] might be practically unfavourable. In particular, the use of SMPC may cause

unbearable overhead in computation. Also, it is not compatible with modules unaware

of SMPC, as these modules must be heavily reformatted in order to participate in the

protocol execution. Motivated by this, we approach the question and the prescribed

notion of security from a game-theoretic viewpoint to look for a more practical solution.

We start by proposing formalisation of the notion of security, called online-man-in-the-

middle (oMitM), with focus on query-response protocol, the most primal and common

form of Internet communication nowadays. Then, we develop a game-theoretic model

to study the equilibrium conditions under which a rational adversary would not violate

oMitM security. The game is played between the adversary and the communicating

endpoints. Finally, we develop a cryptographic protocol for the endpoints, so as to

force the adversary into playing the prescribed game, and thus being encouraged to

conform with oMitM security.

This work has not been published, and is fully a work of my own.

31

Chapter 2

Test It Before Flipping It:

Security Assessment Games

Security assessments are an integral part of organisations’ strategies for protecting their

digital assets and critical IT infrastructure. In this chapter we propose a game-theoretic

modelling of a particular form of security assessment – one which addresses the question

“are we compromised?”. We do so by extending FlipIt, a game model recently proposed

by van Dijk et al. [141], which itself can be used to model the interaction between

defenders and attackers under the Advanced Persistent Threat (APT) scenario. Our

extension gives players the option to “test” the state of the game before making a move.

This allows one to study the scenario in which organisations have the option to perform

periodic security assessments of such nature, and the benefits they may bring.

2.1 Introduction

The protection of digital assets and critical IT infrastructure is an ever-growing con-

cern for individuals, companies and nations. Information security is now a priority area

for investment, given the growing threats from hackers, competitors, organised crimi-

nal gangs and enemy nation-states, and the potential for loss of privacy and revenue,

negative reputational impact and effects in public welfare. In addition to direct in-

vestment in suitable and robust IT infrastructure, the performance of frequent security

assessments is also considered an important component of the defense strategy against

cyber-attacks. A security assessment is the process of determining how effectively an

entity being assessed meets specific security objectives [100]. A common method of

assessment is penetration testing, where security professionals target the network and

other IT resources, to try to identify and verify any vulnerabilities found. Popular

32

2.1. Introduction

penetration testing methodologies and frameworks work by essentially mimicking the

popular forms of attack used by hackers.

The nature of cyber-attacks has however been steadily changing in recent years.

While previously the typical threats were script kiddies, more interested in defacing

websites for fun and pride, attacks motivated by financial gains are increasingly be-

coming more prevalent. Particularly in the corporate and government spheres, the

threat of espionage and theft of intellectual property and state secrets are growing

causes of concern. With these goals in mind, the methods used by attackers have also

evolved. A form of attack that has received much attention recently are the so-called

Advanced Persistent Threats (APT), which can often be seen as a signal of interna-

tional cyber warfare [20]. The premises in this form of attack are that IT networks and

systems are vulnerable, and therefore can be compromised by adversaries with enough

resources and motivation; furthermore, attacks are stealthy in nature [35, 142], and

adversaries can remain in control of the network and systems for long periods without

detection. Recent examples of cyber attacks that fit this profile are the security breach

at RSA Data Security [40], and the Stuxnet [85] worm infection of Iranian systems.

These developments should in turn motivate a reflection on whether current meth-

ods of security assessment remain sound under the changing nature of attacks. A

security assessment is typically seen to be trying to answer the question “are we vul-

nerable?” (and if so, how can we fix it?). Under APT’s premise, the answer for this

question is certainly “yes”. Thus a security assessment needs also to address the ques-

tion “are we compromised?”, and organisations need to consider cost-effective ways in

which they can can regain control of their IT assets if the answer is positive. This

current gap should certainly be the cause of concern for professionals involved in the

security of highly-targeted organisations.1

In this chapter we propose a simple game-theoretic modelling of this form of se-

curity assessment, and study its application in two-player security games. Our model

extends the recently proposed game FlipIt by van Diijk et al. [141], which itself can

be used to model the interaction between defenders and attackers under the APT sce-

nario. Our extension gives players the option to “test” the state of the game (i.e.

answer the question “are we compromised”). This allows one to study the scenario

in which organisations have the option of performing periodic security assessments of

such nature, and the benefits they may bring. In particular, how these assessments can

fit into an organisation’s security investment strategy. Proposals of models for security

1In fact these points were emphatically argued in a recent testimony before the U.S.-China Eco-
nomic and Security Review Commission Hearing on “Developments in China’s Cyber and Nuclear
Capabilities”, where one of the participants stressed the need of periodic security assessments of the
latter nature [12].

33

2.2. Related Work

investment and security testing have appeared before in the literature (e.g. [23,24,63]);

here we leverage on the elegance of FlipIt to investigate strategies for the application

of this form of security assessment.

This chapter is organised as follows. We start with a review of related literature

in Section 2.2. In Section 2.3 we describe the game FlipIt. In Section 2.4 we propose

our extension to the game, by introducing the option of a security assessment which

discloses the state of the game. We study further extensions in Sections 2.6 and 2.5,

which address the probabilistic effectiveness of security assessment, as well as the ability

to harden security over time. We finish with a conclusion in Section 2.7. For reader’s

convenience, we summarise the important notations in [table]

2.2 Related Work

The idea of a non-cooperative game in which players decide when to make a move

appears long before the proposal of FlipIt, and is referred to as “games of timing” [21].

A typical game of timing consists of two players with zero-sum utility. Each player

has a pool of resource to spend within a time interval (usually [0,1]). The players

must select strategies to spend their resources over time so as to gain the most from

each other at the end of the interval. The game becomes interesting when there are

trade-offs between early and late expenses of one’s resource. For example, consider

two shooters in a duel with limited resource (ammunitions) walking toward each other.

While conserving shots for later would increase accuracy (as distance shortened), early

fires would reduce the chance of being shot in the first place [106].

Following a detailed survey by Radzik [120], studies of games of timing consider

several different categories. In one dimension, players’ resources are separated between

discrete and non-discrete types, that is, they either consist of finite number of indivisible

amounts, or can be distributed arbitrarily over the time interval, respectively. From

another perspective, games can also be categorised based on information conditions

of the players. For example, Karlin [77] distinguishes between games in which players

have complete information about each other’s expenditure over time, and otherwise

games with limited information.

Applying to attacker-defender interaction in information security, van Dijk et al.

[141] propose FlipIt with as a game of timing with distinguishable features. In FlipIt,

the time interval is not bounded, but rather from 0 to ∞. This is to reflect the

persistence of the APT attacker. Secondly, players’ resources in FlipIt are costly (and

hence unlimited), making it a non-zero sum game. FlipIt also belongs to the class of

games with limited information. For example, non-adaptive games give no information

34

2.3. FlipIt: The Game

Defender

Attacker
t

t0

t1
0

Figure 2.1: An example of FlipIt(P, P) game with periodic strategies with defender’s
phase t0 and attacker’s phase t1. Each arrow indicates a flip to take over control of the
resource.

to the players.

Our contributions. Our work is the first extension of FlipIt following the original

proposal of the game. We focus on enriching the defense strategies, hoping to gather

interesting insights for realistic security strategies. As explained and motivated in Sec-

tion 2.3, we pick the FlipIt game with periodic moves as the basis for our extension.

We contrast the strategies of blind-reset and check-then-reset of information systems.

We also consider the investment strategies for hardening security when a breach oc-

curs. Our theoretical results are then explained in executive language as emphases and

recommendations for real-world security tactics.

2.3 FlipIt: The Game

Proposed by van Dijk et al. [141] in response to a data breach against RSA Security

[40], the original FlipIt games capture the battle between a defender and an advanced

persistent threat (APT) attacker for the control of a resource. The game is modelled

over infinite time, in which a player makes a move to gain control of the resource; it

remains in this state until the opponent makes its own move to take over. This control-

alternating process repeats infinitely as time passes, and the utility of each player is

determined by the total/average amount of time it controls the resource, as well as the

cost required to take over the resource from its opponent. An example of the game

play is illustrated in Figure 2.1.

Formally, we consider FlipIt as a strategic-form game 〈N, {Ai}, {ui}〉 where the set

of players N = {0, 1} contains the defender and the attacker, denoted by player 0 and

1, respectively. FlipIt models a situation starting from some time moment t = 0 and

is continuously indefinite, during which the control of a resource R is being alternated

between the attacker and the defender. Particularly, let Ci(t) be 1 if player i controls

the resource at time t, and 0 otherwise, where C0(0) = 1, i.e., the game starts with the

defender controlling the resource. A player can claim control of the resource by making

a move, or flip. For instance, if the defender moves at time t, then C0(t) = 1; similarly,

35

2.3. FlipIt: The Game

we have C0(t′) = 0 if the attacker moves at time t′. This allows the total control time

of player i until time t to be computed as

Gi(t) =

∫ t

0
Ci(t)dt.

Denote player i’s number of moves until time t by ni(t), and the constant cost for each

move by ki; then the net benefit of player i is given by

Bi(t) = Gi(t)− ni(t)ki.

Alternatively, since the game continues indefinitely, a player’s utility can be represented

by its average benefit per unit time:

ui(t) =
Bi(t)

t
=
Gi(t)

t
− ni(t)

t
ki = γi(t)− αi(t)ki.

We call γi(t) and αi(t) the average gain rate and the average move rate of player i

up to time t, respectively. One may further assume that the functions γi(t) and αi(t)

converge to the values γi and αi, respectively, as t → ∞. We can then conveniently

represent player i’s utility without the time dimension as simply

ui = lim
t→∞

ui(t) = γi − αiki. (2.1)

What remains to be modelled are γi and αi, which strongly depend on how the

players strategically act in the game. While the original work [141] discusses several

types of strategies for each player, we focus only on the so-called periodic strategies

with random phase (Figure 2.1), which is the main tool in our research. In this case,

we assume that before start, each player chooses a rate αi > 0 so that as the game

progresses, player i moves at rate αi, i.e., after every δi = 1/αi units of time. Further-

more, player i does not start moving immediately at t = 0, but selects uniformly at

random a starting point in the interval [0, δi]; this is called phase. The use of random

phase illustrates the fact that the defender and the attacker in reality only know each

other’s flipping period, not the exact flipping time. While players cannot control their

phases, their game action is determined by the chosen move rates, i.e, α0 (defender)

and α1 (attacker). For convenience, we denote the strategy space for periodic moving

strategies for both players as

A0 = A1 = P = {Pα|α > 0}.

36

2.3. FlipIt: The Game

Assume that players move periodically following a strategy/action profile (Pα0 , Pα1) ∈
A0×A1, their average benefit, or utilities, can be computed in the following two cases:

• α0 ≥ α1: since δ0 = 1/α0 ≤ 1/α1 = δ1, let r = α1/α0 = δ0/δ1 ∈ [0, 1]. Let t∗ be

a moment when an attacker’s move/flip occurs, then the next attacker’s move is

at time t∗ + δ1. Since the defender moves every period of δ0 and that δ0 ≤ δ1, it

must move exactly once at some t ∈ [t∗, t∗ + δ0] ⊂ [t∗, t∗ + δ1], as seen below:

time
tt∗

δ1

δ0

δ1 − δ0

Due to the assumption of random phase, t is uniformly distributed within [t∗, t∗+

δ0], yielding a gain (t∗ + δ0 − t) + (δ1 − δ0) = t∗ + δ1 − t, and thus the defender’s

expected control time within [t∗, t∗ + δ0] is:

G∗0 =

∫ t∗+δ0

t∗

t∗ + δ1 − t
δ0

dt = δ1 −
δ0

2
= δ1(1− r

2
). (2.2)

This implies that the defender’s average gain is γ0 = G∗0/δ1 = 1 − r/2; it also

means that the attacker’s average gain is γ1 = 1− γ0 = r/2. Therefore, we have

the players’ utilities as

u0(Pα0 , Pα1) = 1− r

2
− α0k0 = 1− α1

2α0
− α0k0,

u1(Pα0 , Pα1) =
r

2
− α1k0 =

α1

2α0
− α1k1.

• α0 ≤ α1: similar analysis gives the following

u0(Pα0 , Pα1) =
r

2
− α0k0 =

α0

2α1
− α0k0,

u1(Pα0 , Pα1) = 1− r

2
− α1k0 = 1− α0

2α1
− α1k1.

We note that when a player has lost the control due to the opponent’s move, it does

not immediately move to regain it but rather needs to wait for its periodic move. This

is because moves are presumably “stealthy”, and neither player knows at any time

who is controlling the resource. In addition to the periodic move scenario, [141] also

studies strategies involving randomised moves, as well as adaptive strategies based on

37

2.4. Test It before Flipping it

the opponent’s past moves. Although we do not consider these here, we note that

the modelling presented in this chapter may be similarly applied to other scenarios

discussed in [141]. For reader’s convenience, we summarise the notion of FlipIt game

with periodic strategies, as well as important notations below.

Definition 2.1. Let k0 and k1 are per-move cost for player 0 and 1, respectively.

A FlipIt game is a strategic-form game 〈N, {Ai}, {ui}〉, denoted as FlipIt(A0, A1) with

utility functions as in (2.1). A FlipIt game with periodic strategies is of the form

FlipIt(P, P) where P = {Pα|α > 0}, such that for every action profile (Pα0 , Pα1) ∈ P 2

players’ utilities are:

ui(Pαi , Pα−i) =


1− α−i

2αi
− αiki if αi ≥ α−i, or

αi
2α−i

− αiki otherwise.

Remark. We choose FlipIt with periodic strategies to base our work on due to several

reasons. FlipIt is a simple, though elegant, model of real-world IT security attacker-

defender interaction that emphasises the persistence aspect of the attacker. Also,

strategies for organisational security are often determined in the very early phase of the

business, and they are normally deterministic (quarterly assessments, periodic guard

patrolling, etc.) rather than being oblivious and temporary [101]. This suggests us

to consider periodic strategies, as it would be most applicable to reality. In another

aspect, the original model assumes complete “stealthiness” of players’ moves, since no

player obtain any information during the game. As will be described, our extension

proposes state-checking, indicating that a player might obtain useful information while

playing and thus might adapt its strategy. However, we do not consider the advan-

tage of adaptive strategies. Instead, we stick to a comparable model in order to reveal

more accurately the differences our extensions make to the original model. Finally, our

choice takes into account simplicity of modelling to enable effective analysis and useful

insights into the problem.

2.4 Test It before Flipping it

The original FlipIt game proposed by van Dijk [141] models different types of strategies

for a player to regain control of a resource (i.e. to move) based on some pre-defined or

on-the-fly tactics, which however possess some limitations. In particular, a player may

waste many moves if they happen while it is still controlling the resource. This becomes

more serious if its periodic movement is significantly faster than the opponent’s. Even

if a move really serves its purpose, i.e., to regain control, it may still be an “almost”

38

2.4. Test It before Flipping it

Table 2.1: List of main notations

parameter definition

αi periodic moving/state-checking rate of player i

δi a period between two consecutive move/state check of player i

ki cost of each move/flip to player i

ci cost of each state check to player i

hi cost of each security hardening to player i

Pαi a periodic moving strategy with rate αi of player i

Sαi a periodic state-checking strategy with rate αi of player i

Hαi,hi a periodic state-checking strategy with rate αi and hardening cost hi of player i

p probability that a defender’s state check succeeds in finding a breach

f the function that updates the attack cost after each hardening

µ the maximum increase in attack cost after each hardening

λ the effectiveness of the hardening process

waste. This happens, for example, when the opponent’s move is immediately (but

coincidently) after such a move, rendering it ineffective.

Rather than blindly moving, an interesting question is whether knowing the state

of control would be more beneficial to a player. In terms of information security assess-

ment, this can be represented by the question “are we compromised?”. The intuition

behind this addition is rather simple. Knowing the state of control would prevent a

waste move while the resource is still at hand. Also, even though it may not prevent an

“almost” waste, it may suggest a timely response to a lost of control. This, of course,

depends on how regularly the knowledge of the control state is updated.

To model such situations, we introduce a new class of strategies to FlipIt, namely

the state checking strategies, as illustrated in Figure 2.2. As opposed to the ability to

move/flip, a player is now able to check the game state, and then move/flip if necessary.

In particular, we consider a strategy class S = {Sα|α > 0} such that, given a strategy

Sα ∈ S, with δ = 1/α, player i may:

• perform a periodic state checking with period δ and state-checking cost ci, with

the first check occurring at a uniformly random time phase, i.e., within [0, δ];

• if a state check indicates a loss of control, immediately perform a move/flip (at

39

2.4. Test It before Flipping it

t
t0

t1
0

check
move

−c0 −(c0 + k0)

Figure 2.2: An example of a FlipIt(S, S) game with period state checking strategies.

cost ki) to regain its control.

In addition to the original game FlipIt(P, P), several games might be introduced

given S, for example FlipIt(S, P), FlipIt(S ∪ P, P), and FlipIt(S ∪ P, S ∪ P). To study

such games, it is important to notice that in all cases, the expected control time for

each player can be formulated in the same way as that in FlipIt(P, P), using only δ0

(or α0) and δ1 (or α1). Indeed, at a time t, if a player −i is occupying the resource,

a blind move action (specified by Pαi) or a check-then-move action (specified by Sαi)

would yield the same effect, i.e., allowing player i to regain control. In contrast, if i

is in control of the resource, then neither action yields any change. As this happens

independently of the opponent’s strategy, Pαi and Sα′i would yield the same average

control time as long as αi = α′i.

The main difference between Pαi and Sαi are in the cost of operating. With a

strategy Sαi , the average state checking cost for player i is αici. There is however the

average cost of moving, which is much less than in periodic moving, since a move is

only made when a loss of control is confirmed. This means that player i’s number

of moves is at most player −i’s number of moves, i.e., min(αi, α−i). This allows the

construction of its utility to become

ui(Sαi , Pα−i ∨ Sα−i) =

1− α−i
2αi
− ciαi − kiα−i if αi ≥ α−i, or

αi
2α−i

− ciαi − kiαi if αi < α−i.
(2.3)

Given this new type of strategies S, a natural approach is to compare between S and P ,

that is, in which situations one is preferred over the other. The following proposition

provides such comparison based on the relation between the costs of moving and state

checking.

Proposition 2.1. In the game FlipIt(P ∪ S, P ∪ S), if ci ≤ ki/4, player i does not

prefer periodic moving. Otherwise, when ci ≥ ki player i does not prefer state checking.

Proof. This proposition is a special case of Proposition 2.2, when p = 1.

40

2.5. Dealing with Complex Systems

Corollary 2.1. Consider the game FlipIt(P ∪ S, P ∪ S) with ki/4 < ci < ki. Player i

prefers a state checking strategy if and only if α1−i ≤ 2(
√
ki−
√
ci)

2

k2i
.

Discussions. The above results point out that when the cost of checking is suffi-

ciently low, i.e., at most a quarter of the moving cost, it is always worth performing a

check-then-move strategy. Indeed, as a low checking cost suggests a frequent checking

schedule, a player is more closely up-to-date with its state of control of the resource.

This helps the player to improve its expected control time, while keeping the moving

cost at a reasonable level by eliminating wasted moves. Conversely, it is also intuitively

clear that when the cost of checking exceeds that of moving, it is unreasonable to per-

form check-then-move. Interestingly, Corollary 2.1 also indicates that, when the two

cost are comparable, the best response for the opponent playing too fast (exceeding

threshold t =
2(
√
ki−
√
ci)

2

k2i
) is to either simply move at every step or not play at all,

because at every step it is likely that without state checking the player is aware of

its loss of control of the resource. Because ∂t/∂c < 0 and ∂t/∂k > 0, such threshold

also agrees with the fact that state checking is more preferable when the checking cost

ci is low and the moving cost ki is high. In the realm of information security, many

situations may suggest that state checking strategies indeed outperform their moving

counterparts. Consider an information system as the resource; the defender’s act of

moving/flipping is often expensive, as it might involve resets and restores of the system.

This becomes more serious for large organisations, or those that require uninterrupted,

real-time system availability and reliability, such as e-commerce, large computing fa-

cilities. On the other hand, checking for successful take-over of the system might be

significantly cheaper and thus can be performed frequently, using intrusion detection

systems (IDSs), auditing schemes, logging, etc. In such cases, it is recommended that

funds are allocated for more frequent auditing of the system security to maximise the

organisational benefit from the information system.

2.5 Dealing with Complex Systems

In this section, we study a different extension to the previous model to capture situa-

tions in which the control of a resource might be difficult to measure, and that state

checking might be inaccurate. This disregards an inherent but hidden assumption that

with a cost ci, player i can always determine who is in control of the resource. Again,

it addresses another important issue with organisational information security by exac-

erbating the question “are we compromised?” by “how certain are we whether we are

compromised?”. An answer to such question reflects not just how often security should

41

2.5. Dealing with Complex Systems

be assessed, but also how the assessment should be done. We extend the previous state-

checking model with a probability p that the state check succeeds in determining a loss

of control, applied to the defender only. The reason for such bias is obvious: while the

defender must examine every component of its system as a mean of state checking, the

attacker only needs to consider what it has previously compromised, which normally

happens with certainty. For the sake of analysis, we explicitly make two assumptions:

A1. There exists no false positive in state checking, i.e., no false alarm on attack

exists. In other words, the defender would only consider that a breach occurs if

an evidence is found in favour of it. 2

A2. Once a false negative occurs, it will persist until the attacker’s next interaction

with the resource, i.e., either via a state check, or a move/flip. 3

Based on these assumptions, we may reformulate the defender’s utility functions

from what is given in (2.3), with the help of Lemma 2.1.

Lemma 2.1. Consider the game FlipIt(S, P ∪ S) in which the defender’s state check

succeeds with probability p, along with assumption A1 and A2. Then the defender’s

utility function is

u0(Sα0 , Pα1 ∨ Sα1) =


p

(
1− α1

2α0

)
− c0α0 − pk0α1 if α0 ≥ α1, or

p

(
α0

2α1

)
− c0α0 − pk0α0 otherwise.

(2.4)

Proof. Like in most other proofs, we consider two cases. The first case is α0 ≥ α1 which

implies δ0 ≤ δ1. In that case for every time interval [t, t+ δ1] between two consecutive

attacker’s moves/state-checks, the defender’s utility given that it performs the state

check at time t0 ∈ [t, t+ δ0] is p(t+ δ1− t0). For t0 > t+ δ0 it means that the defender

has already done a check before that for the same attack, and it has not succeeded,

then the check at t0 also fails (due to assumption A2). Thus the defender’s average

2 Although false positives are normal in intrusion detection (especially when automated), our rea-
soning is that, for the purpose of system reset, a careful investigation should be done both automatically
and manually to verify the alleged breach. For simplicity we therefore neglect the possibility of false
positive.

3 In defending this assumption, if the attacker’s move has been stealthy and that the defender fails
to detect it, then if the attacker takes no further action, the defender receives no useful information
to have a better chance in rediscovering the breach. Although in reality the state-checking process
may be probabilistic and would succeed without further information, we assume otherwise to take into
account the worst-case scenario.

42

2.5. Dealing with Complex Systems

control rate is

1

δ1δ0

∫ t+δ0

t
p(t+ δ1 − t0)dt = p

(
1− α1

2α0

)
For every attacker’s move there is a probability p that it is discovered, which is the

only situation the defender might make a move (due to A1), and thus the defender’s

cost due to moving/flipping is pk0α1. For the case α0 < α1, which implies δ0 > δ1,

we consider interval [t0, t0 + δ0] between two consecutive defender’ state-checks. We

notice right before t0 the resource is controlled by the attacker, and if the state check

succeeds at t0 then the defender’s average control time is 1
2α1

, and otherwise it is 0.

However, every state check independently succeeds with probability p, and hence the

defender’s average control rate is pα0

2α1
. Because each check succeeds with probability p,

the defender’s move rate is thus α0p, yielding the cost pk0α0.

Similar to the its predecessor, with this model we are also interested in the con-

ditions under which state checking is preferred to mere flipping, and vice versa. This

concern is reflected in Proposition 2.2, which generalises the result given in Proposi-

tion 2.1, and thus emphasises a preference for strategies involving inexpensive state

checking, i.e., equal to at most a p/4-fraction of the flipping cost.

Proposition 2.2. Consider the game FlipIt(P ∪ S, P ∪ S) with the defender’s utility

(2.4). Let Pα1 or Sα1 be the attacker’s strategy. The defender prefers Sα0 over Pα0 if

c0 ≤
k0p

4
and α1 ≥

1

2k0
min

(
1,

[
2(1− p)

p

]2
)
. (2.5)

Proof. To compare between two classes of strategies, we first compute the best response

function for each class. For simplicity of presentation, we use BRP0 (·) = α0 to signify

that the best periodic flipping response is with rate α0, and similarly BRS0 (·) = α0

for the best periodic state-checking response. We reuse the best response for periodic

flipping strategies from the original model in [141] as follows:

BRP0 (Pα1 ∨ Sα1) =


0, if α1 > α1[
0,
√

α1
2k0

]
, if α1 = α1√

α1
2k0
, if α1 < α1

(2.6)

where α1 = 1
2k0

. For periodic state checking, we consider two cases:

43

2.5. Dealing with Complex Systems

• α0 ≥ α1: from (2.4) we compute the best response of α0 to α1 as

∂u0(α0, α1)

∂α0
=
pα1

2α2
0

− c0 = 0⇔ α0 = BRS0 (Pα1 ∨ Sα1) =

√
pα1

2c0
≥ α1

This is thus valid only when α1 ≤ p
2c0

.

• α0 ≤ α1: since the derivative of u0 with respect to α0 is now

∂u0(α0, α1)

∂α0
=

p

2α1
− (c0 + k0p)

we can further divide this case to three sub-cases:

• p

2α1
− (c0 + k0p) > 0⇔ α1 <

p

2(c0 + k0p)
: BRS0 (Pα1 ∨ Sα1) = α1

• p

2α1
− (c0 + k0p) = 0⇔ α1 =

p

2(c0 + k0p)
: BRS0 (Pα1 ∨ Sα1) ∈

[
0,

p

2(c0 + k0p)

]
• p

2α1
− (c0 + k0p) < 0⇔ α1 >

p

2(c0 + k0p)
: BRS0 (Pα1 ∨ Sα1) = 0

We now combine these observations, this time by considering different values of α1:

• α1 ≥ p
2c0

: for α0 ≥ α1, since
√

pα1

2c0
≤ α1, u0 decreases, thus it maximises at

α0 = α1. For α0 ≤ α1, since α1 ≥ p
2c0
≥ p

2(c0+k0p)
, u0 maximises at α0 = 0. Thus

in overall, BRS0 (Pα1 ∨ Sα1) = 0.

• p
2(c0+k0p)

< α1 <
p

2c0
: we consider two cases

– α0 ≤ α1: since α1 >
p

2(c0+k0p)
, we have BRS0 (Pα1 ∨ Sα1) = 0 and u0 = 0.

– α0 ≥ α1: since BRS0 (Pα1 ∨ Sα1) =
√

pα1

2c0
we have the defender’s utility

u0 = p

1− α1

2
√

pα1

2c0

− c0

√
pα1

2c0
− pk0α1 = 0

⇔ α1
∗ =

p

c0 + k0p+
√
c0(c0 + 2k0p)

∈
[

p

2(c0 + k0p)
,
p

2c0

]
,

so that u0 < 0 (resp. u0 > 0) when α1 > α1
∗ (resp. α1 < α1

∗).

44

2.5. Dealing with Complex Systems

Compare these two subcases we may conclude that

BRS0 (Pα1 ∨ Sα1) =


0, if α1

∗ < α1 <
p

2c0

0 or
√

pα1

2c0
, if α1 = α1

∗√
pα1

2c0
, if p

2(c0+k0p)
< α1 < α1

∗

• α1 ≤ p
2(c0+k0p)

: again, two sub-cases exist:

– α0 ≥ α1: u0 maximises at α0 =
√

pα1

2c0
> α1

– α0 ≤ α1: u0 maximises at α0 = α1

Since u0 is continuous over α0, it thus maximises at
√

pα1

2c0
= BRS0 (Pα1 ∨ Sα1).

The above analysis concludes the defender’s utility function for state checking as

BRS0 (Pα1 ∨ Sα1) =


0, if α1 > α1

∗

0 or
√

pα1

2k0
, if α1 = α1

∗√
pα1

2k0
, if α1 < α1

∗

(2.7)

where α1
∗ = p

c0+k0p+
√
c0(c0+2k0p)

. To compare between BRP0 (Pα1 ∨Sα1) and BRS0 (Pα1 ∨
Sα1) we first notice that since c0 ≤ k0p/4, we also have α1

∗ ≥ α1:

α1
∗ − α1 =

p

c0 + k0p+
√
c0(c0 + 2k0p)

− 1

2k0

=

√
4c2

0 + 4c0k0p+ (k0p)2 −
√

4c2
0 + 8c0k0p

2k2
0p

≥
√

4c2
0 + 4c0k0p+ 4c0(k0p)−

√
4c2

0 + 8c0k0p

2k2
0p

= 0

We are now ready to compare BRP0 and BRS0 for different choices of α1:

• α1 ≥ α1
∗: since BRP0 (Pα1 ∨ Sα1) = 0 and BRS0 (Pα1 ∨ Sα1) = 0 or

√
pα1

2c0
, both

yielding 0 utility, and thus periodic state checking is as good as periodic flipping.

• α1 ≤ α1 < α1
∗: since BRP0 (Pα1 ∨Sα1) = 0, thus periodic flipping achieves at most

0 utility, hence periodic state checking is preferred.

• α1 < α1: we compare the optimal utility between two types of strategies:

45

2.5. Dealing with Complex Systems

– BRP0 (Pα1 ∨ Sα1) =
√

α1
2k0

, the defender’s utility is:

u0 = 1− α1

2α0
− k0α0 = 1−

√
2k0α1

– BRS0 (Pα1 ∨ Sα1) =
√

pα1

2c0
, the defender’s utility is:

u∗0 = p

(
1− α1

2α0

)
− c0α0 − pk0α1 = p− k0pα1 −

√
2c0pα1

We then study the condition under which u∗0 ≥ u0:

u∗0 − u0 = p− 1 +
√

2α1(
√
k0 −

√
c0p)− k0pα1

≥ p− 1 +
√

2α1(
√
k0 −

√
k0
p

2
)− k0pα1 (2.8)

The right-hand side of (2.8) is non-negative if and only if α1 satisfies

1

2k0
min

(
1,

[
2(1− p)

p

]2
)
≤ α1 ≤

1

2k0
max

(
1,

[
2(1− p)

p

]2
)

Since we only consider α1 < α1 = 1/(2k0), we thus conclude that u∗0 ≥ u0, that

is, periodic state checking is preferred, whenever α1 satisfies (2.5).

Corollary 2.2. Consider the game FlipIt(P ∪ S, P ∪ S) with the defender’s utility

function (2.4). Let α1 (resp. α1
∗) be the minimum value for the attacker’s move rate

α1 to drop a periodic-moving (resp. state-checking) defender from the game. Then,

α1
∗ ≥ α1 if and only if c0 ≤ k0p/4.

Discussions. Proposition 2.2 points out a simple condition under which the defender

would prefer state-checking over periodic flipping, involving only the costs of checking,

flipping and the checking effectiveness p. It also emphasises in (2.5) that state-checking

is only efficient against frequently active attackers. Otherwise, if the attacker infre-

quently interacts with the resource, then by assumption A2 the defender receives little

information to improve its chance of attack detection, thus periodic flipping would be

more desirable even if it is excessively expensive. The need for c0 ≤ k0/4 is further

strengthened by Corollary 2.2 which addresses the situation when the attacker plays

too fast, e.g., α1 > 1/(2k0), and periodic moving cannot afford for positive payoff, lead-

ing to the system being indefensible [141]. This issue becomes more realistic when the

46

2.5. Dealing with Complex Systems

attacker is given chances to perform state checking, since in the information security

realm, the attacker’s state checking can be inexpensive, e.g., reconnecting to backdoors,

re-logging in with stolen passwords, etc. In this case, periodic state checking is more

robust as they survive higher attack rates.

Another intrinsic part of Proposition 2.2 is its implication over what is the right

cost for state checking. Indeed, flipping in security often involves procedures with

high certainty (system reset, backup restores, failovers, etc.), hence their costs are

normally determined rather than decided. In contrast, an organisation may choose to

invest arbitrarily in administering its security, for example through guard patrolling,

antivirus software, firewalls, etc., subject to how much it desires the situation to be

in control. While the goal is to satisfy the condition c0 ≤ pk0/4, it is hindered by

an inherent constraint that p typically decreases/increases with c0, that is, less efforts

for state checking yields less certainty on its effectiveness. We study this issue by

modelling the connection between c0 and p, along with an environment parameter v > 0

specifying how effectively the amount c0 might be spent. For example, this parameter

may deteriorate as the resource becomes increasingly more sophisticated. On the other

hand, it may increase with the skills of the team performing state checking. We model

p as the function of c0, parameterised by v in the following way

pv(c0) = 1− 1

vc0 + 1
. (2.9)

It is not difficult to see that, by modelling the probability of successful state checking

as in (2.9), the value 1/v represents the cost required for detection of attacks to succeed

with a fair coin-flipping chance, i.e., 50%. Note that this does not mean state checking

with cost c0 ≤ 1/v can be replaced by “coin-flipping detection” of attacks, as it may

violate assumption A1 to create many false positives, and hence waste moves would

become a credible threat to the net utility. We now analyse the threshold under which

the cost for state checking suggests it to overpower merely periodic flipping strategies.

Corollary 2.3. Consider the game FlipIt(P ∪S, P ∪S) with the defender’s utility func-

tion (2.4), where p satisfies (2.9). Then, if c0 ≤ k0/4−1/v and α1 ≥ 1
2k0

min
[
1, 4

(c0v)2

]
,

it is better for the defender to perform periodic state checking.

From the threshold for state-checking cost given in Corollary 2.3, we may also

evaluate whether state checking is at all justifiable given specific characteristics of

the environments. Indeed, if the productivity of information security is too low, i.e.,

v ≤ 4/k0, the use of state checking in most cases would not improve the overall utility,

as too much cost is required to produce little benefit. This refers to situations when

47

2.6. Hardening Control over Time

there is a mismatch between the scope of the resource being administered, and of the

team performing administration, which means either the resource is too complex, or

the administration is immature. In turn, such situations may apply to fast-growing

organisations with slower catching-up with technology as well as security evaluation.

Another example is with small to medium-sized firms whose businesses strongly rely

on information systems, as many of them would spend little research in foreseeing the

non-trivial impact of low security administration to the net income.

In overall, Corollary 2.3 recommends firms not just about hiring an administration

team with highest quality-price ratio, but also to spend their concerns on easing the

administration of their resource. In reality, the latter can be accomplished in a variety

of ways, such as removing redundant components, restructuring the system toward

simplification, avoiding complicated dependencies using separation of duties, etc. Oth-

erwise, even the most desirable administration team might still be insufficient for a

positive return on investment.

2.6 Hardening Control over Time

Besides reactive measures such as state checking and moving, a proactive concern is on

how to prevent losses of control from happening. In many cases this is more desirable

because it is possible that consequences from attacks might have been overlooked, and

thus it is better that attacks are prevented given the current realisation of potential

losses. In the context of FlipIt, it may mean, for example, preventing a player from

participating in the game, or to stop it after the game has run for some time. Follow-

ing the analysis of the original FlipIt game, as well as those involving state checking

strategies, it is not difficult to see that in order for a player to stop its opponent from

participating in the game, it needs to play quick enough. Assume in the best case that

state checking succeeds with probability p = 1, and based on the best response func-

tions for periodic moving (2.6) and periodic state checking (2.7), player i should pick

a strategy Pαi or Sαi with αi exceeding the following threshold in order to discourage

the opponent’s moves altogether:

αthreshold
i = max

(
1

2k−i
,
k−i + c−i −

√
c−i(2k−i + c−i)

k2
−i

)
.

While this is desirable, it is sometimes infeasible to play fast enough if the state

checking or moving costs are high. A different preventive approach for a player is to

somehow make it increasingly more difficult for its opponent to take over the resource

over time. When the level of difficulty reaches some threshold, its opponent will au-

48

2.6. Hardening Control over Time

t

−k1,0 −k1,1 −k1,2 −k1,3 −k1,4

t0

t1
0

check

move
harden

−c0 −(c0 + k0 + h0)

Figure 2.3: A FlipIt(H,P) game with the attacker’s flipping cost over time k1,i < k1,i+1.

tomatically cease playing, and thus resulting in a long-term benefit for the player. In

FlipIt type of games, this can be modelled by having a player spending an additional

periodic hardening cost hi every time it regains control, so that the opponent would

have to spend more and more whenever trying to take over the resource. In particular,

we define a new class of strategies, called periodic hardening, denoted by

H = {Hα,h|α, h > 0}

where Hαi,hi represents player i’s strategy in which it performs state checking at rate

αi and every time it regains control, player i also spends a cost of hi to make subse-

quent take-overs by the opponent more difficult/costly (Figure 2.3). This cost hi could

feature, for example, some penetration testing process that results in vulnerabilities

being patched, similar to that modelled in [23]. It modifies the net utility of player i

who performs state checking with hardening as follows, with mi(t) being the number

of state checks occurred prior to t:

Bi(t) = Gi(t)− (ki + hi)ni(t)− cimi(t).

Our focus in the section is to study how the defender may efficiently spend the

budget for control hardening in response to the attacker’s strategy. Because of the

hardening process which aims at stopping the attacker’s moves/flips at some point in

time, players’ expected utilities do not remain the same over time, and thus the use of

average benefit as players’ preferences over outcomes does not accurately reflect reality.

It is rather suggestive that we represent such preferences via either players’ net benefit

or net loss over a finite time interval (long enough to practically capture “infinity”).

The following result establishes the net loss of the defender, which entails the cost of

all security operations and the loss of control over the resource (to the attacker). We

inherently use this as the defender’s “utility” in order to capture its preferences over

the set of hardening strategies H.

49

2.6. Hardening Control over Time

Lemma 2.2. Consider the game FlipIt(H,P)4. Let (Hα0,h0 , Pα1) ∈ H×P be an action

profile, and s be the number of effective5 moves/flips that the attacker makes following

(Hα0,h0 , Pα1). The defender’s expected net loss at time t ≥ (s+ 1) max(1
α0
, 1
α1

) is:

L0(t) = G(α0, α1, t) +


s

[
1

2α0
+ k0 + h0

]
if α0 ≥ α1, or

s

[(
1− α0

2α1

)
1

α0
+ k0 + h0

]
+ z(s, α0, α1) otherwise,

for some function G independent of s, and z such that for all s, s′ ∈ N+ it holds that

|z(s)− z(s′)| ≤ α0

6α2
1
.

Proof. We first notice that the defender’s net loss comes from several factors: the loss

of control over the resource, the cost of state checking, the cost of moving, and the cost

of hardening. We compute such loss in two cases:

• α0 ≥ α1: this also implies δ0 = 1/α0 ≤ 1/α1 = δ1. Let t1 ∈ [0, δ1] be the

first moment when the attacker makes a move/state-check. We use the same ar-

gument as in (2.2) to show that the defender’s expected control time within

[t1 + iδ1, t1 + (i+ 1)δ1] is δ1(1 − r/2) for i ∈ {0, . . . , s − 1} and r = α1/α0.

This means that the defender’s expected loss in control time over the period

[t1, t1 + sδ1] is

Lcontrol0 = s
(
δ1 − δ1

(
1− r

2

))
= s

(
δ1 − δ1

(
1− α1

2α0

))
=

s

2α0

On the other hand, the defender’s expected number of state-checks over the same

period is Lcheck0 = sδ1α0c = sα0
α1
c. Because each period of the form [t1 + iδ1, t1 +

(i+1)δ1] is preceded by a state-check (and move if necessary) by the attacker, such

period starts by the attacker’s control over the resource, i.e., C1(t1 + iδ1) = 1.

Also, since δ0 ≤ δ1, it is guaranteed that within such period the defender will

certainly perform a state-check, and subsequently a move/flip. Despite (possibly)

many state-checks, only one move would be made by the defender within this

period. Therefore, the total number of defender’s moves/flips within [t1, t1 + sδ1]

is s, and thus its loss due to moving/flipping is Lflip0 = k0s. Finally, the same

argument yields the loss due to hardening, which is Lharden0 = h0s. The defender’s

4Since our main focus is on the defender’s strategies, in this section we omit the attacker’s state-
checking strategies since Sα1 and Pα1 bring identical effect to the defender’s utility.

5By effective move we mean a move that results in a change of control from one player to another.

50

2.6. Hardening Control over Time

net loss within [t1, t1 + sδ1] is

Lcontrol0 + Lcheck0 + Lflip0 + Lharden0 = s

[
1

2α0
+ k0 + h0 + c0

α0

α1

]
(2.10)

Taking the expected value of the above over the choice of t1 yields the same value

as it does not depend on t1. For the defender’s loss over other time periods, i.e.,

[0, t1) and (t1 + sδ1, t), we notice that they end and start with the defender’s

control of the resource, respectively. In other words, C0(t′) = 0 for t′ < t1 or

t′ > t1 + sδ1. Also, since the attacker makes no move within these periods, the

defender’s expected loss is only in the cost of state checking, i.e.,

g(t1, α0, α1, t) = c0(t1 + t− sδ1)α0 = c0(t1 + t− s

α1
)α0

Due to uniformly random phase selection in the attacker’s first move/state-check,

the defender’s expected net loss before the attacker’s first move and after its last

move is :∫ δ1

0

1

δ1
g(t1, α0, α1, t)dt = c0tα0 +

c0α0

2α1
− c0sα0

α1
= G(α0, α1, t)−

c0sα0

α1
.

Summing the above with (2.10) we get the lemma statement for α0 ≥ α1.

• α0 < α1: this also implies δ0 = 1/α0 > 1/α1 = δ1. We first notice that because

t ≥ (s + 1) max(δ0, δ1), the number of defender’s moves is exactly s in response

to s flips by the attacker. Hence the expected loss due to flipping, state-checking,

and hardening are the same as before, i.e.,

k0s+ tc0α0 + h0s (2.11)

Let t0 be the first moment the defender performs a state-check. We notice that

within [0, t0] the attacker moves/flips at most once because the defender’s first

move is at t0, meaning that there are at least s − 1 attacker’s moves after t0.

Therefore, using the same argument as in (2.2) we may infer that the defender’s

expected loss in control time between its two consecutive state-check [t0 +iδ0, t0 +

(i+ 1)δ0] for i ∈ [0, s− 2] is δ0(1− α0
2α1

). The defender’s expected loss in control

time within [t0, t0 + (s− 1)δ0] is thus

(s− 1)δ0

(
1− α0

2α1

)
=
s− 1

α0

(
1− α0

2α1

)
. (2.12)

51

2.6. Hardening Control over Time

Next we consider the defender’s expected loss within the interval [t0+(s−1)δ0, t0+

sδ0]. Unlike previous intervals of the same length, an attacker’s move does not

occur in this interval with certainty. Indeed, if the attacker makes a move before

t0, then it has already finished s moves before reaching this interval. We thus

only consider the case in which the attacker does not move before t0, which also

means that t0 ∈ [0, δ1] and that the attacker’s first move is t1 ∈ [t0, δ1]. This

allows us to capture the loss of control in [t0 +(s−1)δ0, t0 +sδ0] by the following:

z(s, α0, α1) =

∫ δ1

0

1

δ0

∫ δ1

t0

1

δ1

(
sδ0 + t0 −

(
t1 +

⌈
(s− 1)δ0 + t0 − t1

δ1

⌉
δ1

))
dt1dt0

(2.13)

where t1 +
⌈

(s−1)δ0+t0−t1
δ1

⌉
δ1 is the first attacker’s flip/state check within [t0 +

(s − 1)δ0, t0 + sδ0]. It is not difficult to see that z(s, α0, α1) is bounded by the

following expressions, to which their difference is:

1

δ0δ1

∫ δ1

0

∫ δ1

t0

(δ0 + t0 − t1) dt1dt0 −
1

δ0δ1

∫ δ1

0

∫ δ1

t0

(δ0 − t1) dt1dt0 =
δ2

1

6δ0
=

α0

6α2
1

The remaining interval to be considered is [0, t0]. It is easy to see that the

defender’s expected loss within this interval is independent of s, and hence we

denote it as Lcontrol0 (t0) > 0. Based on (2.11) and (2.12) define G as

G(α0, α1, t) = Lcontrol0 (t0)− 1

α0

(
1− α0

2α1

)
+ tc0α0

and we thus succeed in constructing G and z that satisfy the lemma for α0 < α1.

In the next step we model the correlation between the hardening cost and the num-

ber of attacks that would eventually happen. Such correlation captures the effectiveness

of the hardening process, and is vital to measuring the optimal hardening cost in any

situation. Particularly, the value of s is influenced by the attacker’s benefit from a

move, the original move cost, and the hardening cost. We model the relation among

these variable by a a cost update function f , such that at the i-th attack (attacker’s

move), the attack cost becomes f(k1, h0, i − 1). Attacker’s moves/flips stop at the

(s+ 1)-th attempt if the cost involved is greater than the attacker’s expected control,

which is expressed below.

Lemma 2.3. Consider the game FlipIt(H,P). Let Hα0,h0 and Pα1 be strategies of

the defender and attacker, respectively. Let f be a cost update function such that the

52

2.6. Hardening Control over Time

attacker’s move cost after i moves is f(k1, h0, i). Suppose that the attacker stops at

the first attack of which the cost is greater than the expected gain, then the attacker’s

actual number of moves is minimum s such that :

f(k1, h0, s) ≥

δ0/2 if α0 ≥ α1, or

δ0 − δ1/2− z(s, α0, α1) + z(s+ 1, α0, α1) otherwise,
(2.14)

where z is same as in Lemma 2.2.

Proof. The proof of this lemma follows the same line as that of Lemma 2.2. Consider

the case α0 ≥ α1. The attacker’s (s+ 1)-th attack/move/flip is followed by the period

[t1 + sδ1, t1 + (s + 1)δ1], where t1 is the time of the attacker’s first move. Because

δ0 = 1/α0 < 1/α1 = δ1 and due to uniformly random phase, the attacker’s expected

control time would be δ0/2 based on (2.2). This proves to the lemma statement for

α0 ≥ α1. For the case α0 < α1 we notice from the proof of Lemma 2.2 that within

the period [t0 + (s− 1)δ0, t0 + sδ0] the attacker’s expected control time is z(s, α0, α1).

However without limit on attacks it should normally be δ0− δ1/2 following (2.2). This

means that δ0−δ1/2−z(s, α0, α1) is the attacker’s expected control time resulted from

the (s+1)-th attack within the same time interval. However, the (s+1)-th attack may

also occur in the next interval, i.e., [t0+sδ0, t0+(s+1)δ0], which yields z(s+1, α0, α1) as

the attacker’s expected control time. Summing up the two expressions give the lemma

statement for α0 < α1.

In reality, the structure of f strongly depends on how control of the resource can

be hardened. For demonstration, we consider two distinct examples of constructions

for f as below:

f1(k1, h0, i) = k1 + iλh0 and f2(k1, h0, i) = k1 + i
µh0

h0 + λ
. (2.15)

The former construction captures a linear relation between the hardening cost and the

attack cost, with λ ≥ 0 being the effectiveness of the hardening process. In the context

of information security, this happens, for instance when the resource contains a large

number of identical but also independent subsystems, so that the control becomes more

secure as more subsystems are hardened. In that case, the attacker would only control

the resource if it manages to compromise most (if not all) of these subsystems. A real-

world example of such resource is a multi-party system used for secret-sharing [118].

The attacker might only get the secret if it compromises most of parties involved in

the secret-sharing scheme. The latter construction f2 follows an idea similar to that

from Gordon and Loeb [63], in which the cost of attack is also raised (f ′2(h0) > 0),

53

2.6. Hardening Control over Time

but at a decreasing rate (f ′′2 (h0) < 0). In other words, it becomes increasingly difficult

to raise attack cost as security approaches optimality. The continuous decrease in the

increasing rate implies an upperbound on the maximum achievable attack cost. This

is facilitated by µ ≥ 0, the maximum increase in attack cost after each attack, whereas

λ > 0 represents the effectiveness of the hardening process. Construction f2 also agrees

with [24] and [23] which suggest a weakest-link model in which attack cost increases

linearly to the number of steps. This means that optimisation of security is more

effective if it is done over many steps/attacks because the defender receives information

that would be useful for the hardening process: the exploited vulnerabilities. We

express this property of f2 in the lemma below, in which the former statement indicates

that knowledge about exploited vulnerabilities makes the process of hardening easier,

whereas the latter signifies that such knowledge also contributes directly to increasing

the attack cost.

Lemma 2.4. Let f2(k1, h0, i) = k1 + i µh0h0+λ , then for all k1, h, h
′, µ, λ ∈ R+ and i, i′ ∈

N+ then the following hold:

f2(k1, h, i) = f2(k1, h
′, i′) ∧ i > i′ =⇒ i′

∂f2

∂h0
(h, i) > i

∂f2

∂h0
(h′, i′) ∧ h < h′ (2.16)

h · i = h′ · i′ ∧ i > i′ =⇒ f2(k1, h, i) > f2(k1, h
′, i′) (2.17)

Proof. We prove the first statement by showing that h < h′. Indeed,

f2(k1, h, i) = f2(k1, h
′, i′) ∧ i > i′ ⇒ i

µh

h+ λ
= i′

µh′

h′ + λ
∧ i > i′ ⇒ µh

h+ λ
<

µh′

h′ + λ

However, µh0
h0+λ is increasing in h0 since its derivative is λµ

(h0+λ)2
> 0, and hence h < h′.

The other part of the first statement follows straightforwardly:

i′
∂f2

∂h0
(h, i) = i′i

λµ

(h+ λ)2
> i′i

λµ

(h′ + λ)2
= i

∂f2

∂h0
(h′, i′)

The second statement is also straightforward, as hi = h′i′ and i > i′ implies h < h′,

therefore

f2(k1, h, i) = k1 + i
µh

h+ λ
= k1 + i′

µh′

h+ λ
> k1 + i′

µh′

h′ + λ
= f2(k1, h

′, i′).

Next we study the optimal hardening strategy of the defender given its chosen rate

of assessment α0 as well as that other attacker, i.e., α1. We give two results respectively

for our two construction of cost update function f1 and f2.

54

2.6. Hardening Control over Time

Proposition 2.3. Consider the game FlipIt(H, P) with cost update function f1(k1, h0, i) =

k1 + iλh0. Let α0 and α1 be the rates of chosen by the defender and the attacker, re-

spectively. The defender’s optimal choice of h0 is such that the attacker stops after at

most one attack.

Proof. Let B(s, α0, α1) := RHS((2.14)) denote the right-hand side of (2.14). In this

case B(s, α0, α1) is the attacker’s expected gain as the result of the s-th attack/move.

Suppose that s is the number of attacker’s moves, then

f1(k1, h1, s) ≥ B ⇐⇒ k1 + sλh0 ≥ B ⇐⇒ h0 ≥
B − k1

λs

From the expression of the defender’s expected net loss as in Lemma 2.2 it is easy to

see that the defender should select h0 = B−k1
λs as the optimal hardening cost given

s. Consider a different number of attacker’s moves s′ > s with corresponding optimal

hardening cost h′0 = B−k1
λs′ . Consider the case α0 ≥ α1, we have

∂L(t)

∂s
=
∂
(
G(α0, α1, t) + s

[
1

2α0
+ k + B−k1

λs

])
∂s

=
1

2α0
+ k0 > 0

Therefore it is optimal that s = 1 and h0 = B−k1
λ . For the case α0 < α1 we have

L0(t, s′)− L0(t, s) = (s′ − s)
[

2α1 − α0

α1α0
+ k0

]
+ h′0s

′ − h0s+ z(s′, α0, α1)− z(s, α0, α1)

= (s′ − s)
[

2α1 − α0

α1α0
+ k0

]
+ z(s′, α0, α1)− z(s, α0, α1)

≥ (s′ − s)2α0 − α0

α2
1

+ z(s′, α0, α1)− z(s, α0, α1)

≥ (s′ − s) α0

6α2
1

+ z(s′, α0, α1)− z(s, α0, α1)

≥ α0

6α2
1

− α0

6α2
1

= 0

This again concludes that it is optimal for the defender to pick h0 such that s = 1, in

which case h0 = B−k1
λ .

Proposition 2.4. Consider the game FlipIt(H,P) with cost update function f2(k1, h0, i) =

k1 + i µh0h0+λ . Let α0 and α1 be the rates chosen by the defender and the attacker, respec-

tively. Define the following:

na =
RHS((2.14))− k1

µ
and L∗ = k0 +

1

α0
max

(
1

2
, 1− α0

2α1

)
.

55

2.6. Hardening Control over Time

Assume that z(s, α0, α1) is identical6 for all s ∈ N+, the following hold:

• the number of attacker’s moves is at least dnae.

• the optimal hardening cost is

h0 =
naλ

s− na
where s =

⌈
na +

1

2

(√
L∗ + 4n2

aλ√
L∗

− 1

)⌉
(2.18)

is the corresponding number of attacks.

Proof. Let B(s, α0, α1) := RHS((2.14)) we formulate the number of attacks s:

f2(k1, h0, s) ≥ B ⇐⇒ k1 + s
µh0

h0 + λ
≥ B =⇒ s =

⌈
(B − k1)(h0 + λ)

µh0

⌉
Note that similar to the proof of Proposition 2.3, it is optimal to choose h0 such that

the above satisfies and that s ∈ N+. The minimum number of attacker’s moves is:

lim
h0→∞

s(h0) = lim
h0→∞

⌈
(λ+ h0)(B − k1)

µh0

⌉
=

⌈
B − k1

µ

⌉
= dnae

For the second statement of the proposition, we notice that

L0(h0, t) = G(α0, α1, t)+(h0+L∗)

⌈
(λ+ h0)na

h0

⌉
+

0 if α0 ≥ 0, or

z(s, α0, α1) otherwise.
(2.19)

which is minimised when h0 = (λ + h0)na/m, or equivalently h0 = λna
m−na for some

positive integer m ≥ dnae due to the fact that l′(h0) < 0 for l(h0) = (λ+h0)na
h0

. In this

case, m is the number of the attacker’s moves. Minimisation of L0(h0, t) over h0 ∈ R+

is equivalent to minimisation of the following over m ∈ N+:

L0(m) = (h0(m) + L∗)m = m

(
λna

m− na
+ L∗

)
.

Since L′0(m) = L∗ − n2
aλ

(m−na)2
with m ∈ R has at most two roots, L0(m) has at most

one globally minimum point. A solution m∗ ∈ R+ of the equation L0(m) = L0(m+ 1)

would (if exists) allows minimisation of L0(m) at m = dm∗e ∈ N+. We thus proceed

6 We assume this in order to simplify the result and proof. Later on in the discussion we will
reconcile the result with the fact that z(s, α0, α1) is not identical for all s ∈ N+, which in fact will point
out interesting insights.

6This loss includes the attacker’s occupation of the resource and the cost spent on protecting the
resource.

56

2.6. Hardening Control over Time

to compute m in the following

L0(m∗) = c0(m∗ + 1)⇐⇒ m∗
(

λna
m∗ − na

+ L∗
)

= (m∗ + 1)

(
λna

m∗ + 1− na
+ L∗

)
⇐⇒ n2

aλ

(m∗ − na)(m∗ + 1− na)
− L∗ = 0

⇐⇒ m∗ = na +
1

2

(
±
√
L∗ + 4n2

aλ√
L∗

− 1

)

=⇒ m = dm∗e =

⌈
na +

1

2

(√
L∗ + 4n2

aλ√
L∗

− 1

)⌉

which completes the proof of Proposition 2.4. Note that we only take the greater

solution of m∗ because limm→±∞ L0(m) = ±∞ implies that the greater solution of m∗

is the minimum point whereas the other is the maximum point.

Discussions. The above propositions stress a need for appropriate decision over the

investment for hardening the resource control. In information security, hardening may

mean, for example, system patching, penetration testing, adding security layers, etc.

Proposition 2.3 suggests that when the attack cost can be raised linearly to the hard-

ening cost, then it is best for the defender to spend enough in improving security (after

a breach) of the resource once and for all, so that attacks no longer occurs. In the

provided example, this means hardening all involved subsystems even if only some of

them were breached in the previous incident. This is due to the fact that the effec-

tiveness of hardening remains constant over time, and thus the sooner it is done the

better. On the other hand, Proposition 2.4 provides different insights into the effects

of non-linear cost update function f2 on hardening strategies. First of all, Proposition

2.4 assumes the homogeneity of z(s, α0, α1) over s ∈ N+. While the expression of z is

given in (2.13), it essentially captures the potential advantage of the defender in terms

of “better-than-uniform” knowledge about the attacker’s phase, which was chosen at

uniformly random before the game. Indeed, if the defender’s phase is t0 ∈ [0, δ1], and

if a state check at t0 does not reveal an attack, then the defender can infer that the

attacker’s phase is t1 ∈ [t0, δ1] rather than t1 ∈ [0, δ1]. By allowing homogeneity of

z(s, α0, α1) over s, Proposition 2.4 provides optimal hardening strategies whilst ignor-

ing the advantage of “better-than-uniform” knowledge. It consequently allows us to

emphasise the effect of such knowledge to hardening strategies, which we demonstrate

in Figure 2.4. This figure points out three important insights:

• By increasing the bound µ, the defender tends to perform more aggressive hard-

ening and aims at stopping sooner. One may think of µ as an indicator of the

57

2.7. Conclusion

1 2 3 4 5

2

4

6

8

10

12

µ

(a)

0 1 2 3 4 5

8

10

12

λ

(b)

Figure 2.4: Example number of attacks under optimal hardening strategies taking into
account (red plot) and ignoring (blue plot) z(s, α0, α1), given parameters α0 = 1

15 , α1 =
1

14.5 , k0 = 2, k1 = 0.1, with (a) λ = 0.3 and µ ∈ [1, 5], or (b) µ = 1 and λ ∈ [0, 5].

potential of the hardening process, in which case the figure agrees with the fact

that the defender should “squeeze” such potential as much as possible to stop

attacks as soon as possible.

• By raising the parameter λ, the defender becomes more relax and tends to prolong

the hardening process, thus suffering from more attacks. As an explanation, we

notice that λ has significant contribution to the effectiveness of hardening at low

hardening cost h0. This can be thought of as “boost” in security improvement at

the beginning of every step, and starts to fade as more is invested. Such a boost

is mainly due to discovery of a vulnerability following an exploit/breach, which

in this case is the attacker’s move.

• The knowledge about attacker’s phase as represented by z(s, α0, α1) has consid-

erable effects on the optimal hardening strategies, which in this case results in

the number of attacks being reduced in many cases.

2.7 Conclusion

In this chapter we investigate the concern on the choices of long-term strategic security

plans for protecting organisational assets. These choices are represented by questions

such as “are we vulnerable?” and “are we compromised?” This concern has become

increasingly more important for large businesses as well as governmental units in the

era where attackers are advanced, and have the resources to be persistent. To do so,

58

2.7. Conclusion

we extend the FlipIt game between an attacker and a defender periodically taking

over a resource from each other, with the trade-off between the cost of taking over,

and the duration of the control. In our model, in addition from taking over, we allow

players to check who is controlling the resource. We compare between blind take-over

strategies and those that involve “check first, then take over”, and show a threshold

for the checking cost, under which the latter tactic is preferred.

In further extensions, we study strategic plans on how organisations would ratio-

nally invest in security improvement to discourage attackers. Our analysis on specific

models proposed suggests that there are cases in which a system must suffer from many

attacks to become sufficiently secure to deter attackers. In reality, this is because secu-

rity breaches serve as valuable information for improving system security. In another

aspect, we relax our hidden assumption so that state checking might be incorrect, and

study not just the frequency of security assessment, but also how quality-price-ratio

may even discourage assessment of security. Since our models mostly deal with the de-

fender’s utility, the lessons learned may apply to not just advanced persistent threats

(APTs), but also a pool of non-persistent threats that occurs with known frequency,

e.g., from a community of underground hackers.

59

Chapter 3

Strategic Information Sharing in

Competitive Environments

In this chapter, we study incentives behind investments by competing companies in

discovery of their security vulnerabilities and sharing of their findings. Specifically,

we consider a game between competing firms that utilise a common platform in their

systems, where the goal is to unveil and fix vulnerabilities of this platform. The game

consists of two stages: firms must decide how much to invest in researching vulnerabil-

ities, and thereafter, how much of their findings to share with their competitors. We

fully characterise the Perfect Bayesian Equilibria (PBE) of this game, and translate

them into realistic insights about firms’ strategies. Further, we develop a monetary-

free sharing mechanism that encourages both investment and sharing, a missing feature

when sharing is arbitrary or opportunistic. This is achieved via a light-handed medi-

ator: it receives a set of discovered bugs from each firm and moderate the sharing in

a way that eliminates firms’ concerns on losing competitive advantages. This research

provides an understanding of the origins of inefficiency and paves the path towards

more efficient sharing of cyber-intelligence among private companies.

3.1 Introduction

Businesses across different sectors of the economy, from telecommunication and finance

to energy, healthcare and transportation, increasingly rely on cyberspace and IT ser-

vices. Past incidents of cyber-attacks and consequent damages have left little doubt in

the minds of business managers and policy makers about the importance of investment

in cyber-security. Gathering and exchange of security intelligence is identified as a key

factor in enhancing the effectiveness of individual cyber-security measures.

60

3.1. Introduction

Steps have been taken by governments to provide the environments to galvanise

and coordinate exchange of cyber-security information across private companies: UK

launched the “cyber-security Information Sharing Partnership” [117] after a pilot pro-

gram in 2011/12 as a “joint, collaborative initiative between industry and government

to share cyber threat and vulnerability information in order to increase overall situa-

tional awareness of the cyber threat”. In the US, the “National Coordinating Center

for Communications (NCC)” acts as the “Information Sharing and Analysis Center

(ISAC)” for telecommunications [108].

While “Information Sharing and Analysis Centers (ISACs)” – such as Information

Technology (IT)-ISAC and Financial Services (FS)-ISAC – can provide the platform for

exchange of cyber-intelligence, the role of incentives cannot be ignored. Providing the

means of communication in the presence of strategic and competing profit-maximising

entities does not necessarily lead to exchange of their cyber-security information. In

order to understand the incentives of firms in creating and sharing information secu-

rity knowledge, it is important to identify the distinct nature of the security infor-

mation being shared. Some example categories of the type of cyber-intelligence to be

shared are: (a) steps, protocols and measures a firm has taken to improve its secu-

rity; (b) past incidents of successful or unsuccessful attacks and the resulting privacy,

intellectual property and financial losses; and (c) discovered security vulnerabilities.

Sharing each of these types of information have specific incentive implications. For

instance, “public disclosure” of security breach incidents can harm the consumers and

investors’ confidence and lead to a statistically significant decreases in the market value

of firms [29,34,60]. In this work, we particularly focus on the third type of information:

sharing discovered security vulnerabilities, or bugs for short.

From the societal point of view, sharing knowledge of security vulnerabilities among

firms is a positive move: it improves the overall efficiency of discovery efforts of the

vulnerabilities. It moreover enhances the cyber protection of an entire industry against

future cyber-attacks by reducing the common exploitable threats. It is often the case

that different organisations of an economic sector bear similar vulnerabilities and face

similar threats in their information systems [90]. This is partly due to the adoption of

common implementations, libraries or operating systems across different organisation.

For instance, the Heartbleed bug (formally, CVE-2014-0160), a buffer-over-read vul-

nerability in the OpenSSL cryptographic library exposed in April 2014, affects around

half a million certificates issued by trusted certificate authorities [102]. Another reason

why different technological companies face common threats is the incorporation of dis-

covered vulnerabilities into hacking toolkits which enables even less sophisticated users

to configure the same malware to attack across different organisations [90].

61

3.1. Introduction

Recognising the need for cyber-protection, different companies invest in finding

their security vulnerabilities. These can be “bugs” for example in their application

level software, operating system or implementation of a network protocol, which we

will generally refer to as the common platform. No company knows exactly how many

bugs there are in a software they are using. More investment and effort in security

research increases the chances of discovering them, but there is always a factor of

luck involved. Each company patches and rectifies the vulnerabilities it finds, which

is usually the much easier part than finding them in the first place. Each bug that

is not discovered by a company, and hence not rectified, is potentially exploitable by

cyber-attackers.

When a bug is indeed successfully exploited, the victim suffers direct losses. These

can include outage of their service, recovery costs, losses of important data, user com-

pensation, legal fines, etc. However, a company may also be affected by incidents of

cyber-attacks on other companies in that economic sector: On one hand, the whole

sector of economy may suffer a blow: as customers may lose confidence in the whole

“service” and seek alternative “safer” means. For instance, if one or a few major online

banking companies are hit by a cyber-attack, then some customers may lose confidence

in the whole sector and switch to traditional banking altogether. Moreover, investors

and stock holders may too lose confidence in the whole industry in favour of alternative

options for investment. These two effects translate to a net market value loss of the

whole sector, which bites all of the companies upon a successful attack on anyone of

them. However, on the other hand, if (and once) a bug is exploited in competitor(s)

that a company has discovered before (and has hence taken care of), it can have the op-

posite effect of boosting the confidence of customers as well as the investors: customers

may switch to use and investors redirect their capital to the “safer” company. In other

words, discovering a bug in a common software may give a company a “competitive

edge” compared to others.

The two effects work in the opposite direction of each other in terms of incentives for

sharing the found vulnerabilities. The sharing strategies, in turn, affect the investment

decisions to discover the bugs in the first place: On the one hand, sharing information

translates to a more effective discovery process and hence encourages investment, as

the findings of one company is fortified by another’s since the process of finding the

bugs is probabilistic in nature. But on the other hand, there can be a tendency of

free-riding on the discovery investment of other companies and hence get away with

less investment. Further complicating the problem is the presence of uncertainty and

information asymmetry: companies ought to make their discovery investment decisions

in the face of uncertainties about the total number of bugs, and they need to make

62

3.2. Related Work

decision about sharing of their findings not knowing the number of findings of the other

company.

This chapter is organised as follows: In Section 3.3, we model the interdependent

security research investment and information sharing decisions of two strategic and

competing firms as a two stage Bayesian game. We fully determine the Perfect Bayesian

Equilibria of the game in closed-form in Section 3.4. Specifically, in Subsection 3.4.1,

we derive the Bayesian equilibrium strategies of the firms about sharing of their finding

for a given investment pair, and given their findings. In particular, we establish that

sharing strategies are unique and dominant strategies in the simple forms of “full-

sharing” or “no sharing”, completely determined by the competitive nature of the

security findings. In Subsection 3.4.2, we derive the investment strategies of the firms

knowing their subsequent sharing strategies. We show how “full sharing” leads to free-

riding and inefficiently low investments. Also how “no sharing” is socially inefficient

by preventing mutual benefit of sharing, double-efforts and potential over-investment.

Finally, in Section 3.5, we provide a light-weight mediation mechanism free of monetary-

transfers that enable (partial) sharing of the information when the firms fail to achieve

any sharing on their own.

3.2 Related Work

Information sharing in general has appeared very early in modern economic research,

particularly on trade associations (e.g. in [52,136,143]) where the effect of information

sharing is captured as improvement in the efficiency of production, i.e., reducing the

marginal cost of production, or improving demand, or both. On the other hand, affects

of security and security breaches on organisations also receive extensive attention from

academics with different focus, for example, privacy [36], data integrity [8], password

security [154], and secure applications [139]. In a seminal work, Gordon and Loeb [63]

present a model for optimising security investment, taking into account potential loss

due to security breaches on different vulnerabilities.

Information sharing in the context of cyber-security is investigated in several notable

works. As an example, Gordon et al. [64] consider a game in which two firms must

decide how much to invest in security and how much information to share. Their work

examine incentives to information sharing, as well as how it affects both expenditures

in security and the overall level of security in presence of freeriding alongside cross-

firm cooperation. In an extension, Gal-Or and Ghose [53] study the effects of the

same problem, however on competing firms trying to sell their products. Here they

add to the firms’ strategies a choice of product price after investment of security and

63

3.2. Related Work

information sharing. With such model their work produce several implications on how

information sharing and security investment affect demands and price competition on

firms. Another recent work is by Liu et al. [89] with a focus on designing an information

sharing network such as FS-ISAC that encourage firms to participate, using mechanisms

such as member fees and insurance plans. Other works also exist, e.g., by Xiong and

Chen [147] for repeated games, Hausken [71], and Gao et al. [54] on games between the

social planner, firms and the attacker.

Our contributions. As a common feature among aforementioned models, there is

no specification of the type of security information to be shared. The decision of how

much information to share is modelled as a normalised continuous variable between zero

and one, zero corresponding to no sharing and one corresponding to full sharing. Also,

these works consider investment on perimeters/mechanisms that harden the security

of firms’ information infrastructures.

In contrast, we consider the question of how much firms should invest security re-

search, i.e., gaining information about the security of their platforms. An example of

such investment is by Google, especially on its Project Zero [50]. The reason why firms

(especially large ones) should make such investment is rather obvious. As outstanding

targets for zero-day exploits [97], large firms should actively uncover their vulnerabil-

ities instead of waiting for the community which largely involve potential attackers.

Nevertheless, this type of investment is more connected to information sharing, as such

research results can be shared among firms that utilise the same platforms (e.g., Linux

OS, Apache web server). Indeed, the relation between security investments and infor-

mation sharing is rather loose in the previous literature. For instance, the effective

amount of shared information is heuristically chosen as the product of the investment

decision and sharing decision [64].

In order to meaningfully capture sharing of information and connection investment,

we do not model information by the [0,1] scale as in other works, but as the discovered

security vulnerabilities by each player, and hence, the sharing decisions in our model is

the “number” of bugs to be shared. Our work specifically models the relation between

the investment strategies for “generation” of security information (via security research)

and that of sharing them. Moreover, we develop a mediation mechanism that enables

sharing in the face of competition as a novel contribution.

64

3.3. Model

3.3 Model

Our model considers a game between firm i and firm j, denoted by N = {i, j}, where

each decides how much to invest in security research on a common “platform”, and

subsequently how many of their found security vulnerabilities to share with the other.

The platform has an unknown number of security vulnerabilities, or “bugs”, which,

if not discovered and rectified, may be exploited with ramifications for both firms.

Before the game starts, the nature determines the total number of bugs following some

distribution. Let the random variable representing the total number of bugs be B with

the sample space of N+1 and known mean value λ. The realisation of B is not observed

by any of the firms. The game play consists of two stages: investment and sharing, as

described in the following:

1. Investment: In this stage, the players, while unaware of the total number of bugs

in the platform, “simultaneously” decide how much to invest in bug discovery,

and make it publicly known. Note that simultaneous move in the context of game

theory just implies that neither one of the players can assume pre-commitment to

a decision by the other players. A player’s investment c determines the probability

p ∈ [0, 1) that each bug is discovered. For simplicity, we assume that the bugs are

homogeneous, in that they are equally difficult to discover. Moreover, we assume

discovery of each bug is independent across the bugs and across the firms. The

research investment c and discovery probability p are related through function π

as p = π(c), with limc→∞ π(c) = 12. We naturally assume that ∂π(c)/∂c > 0,

as well as ∂2π(c)/∂c2 ≤ 0: The chance of finding bugs should be improved

with more investment, and it is increasingly more difficult to improve the success

of bug discoveries. In general we assume that the two firms have distinct cost-

probability relations, denoted as πi(c) and πj(c). Because we assume both πi

and πj are strictly increasing, there is a one-to-one mapping between investment

and discovery probability. Indeed, ci = π−1
i (pi) and cj = π−1

j (pj). Hence, we

can equivalently represent each player’s strategy in this stage by its choice of

discovery probability, i.e., pi and pj .

2. Sharing: After investments are made, each player privately and independently

“discovers” some bugs in the platform. Also both players are informed of each

1We adopt the convention that random variables are denoted by capital letters and their realisations
by lower case. Also, N+ := N ∪ {0}.

2 This constraint captures a famous consensus: there is no such thing as perfect security [129].
Indeed, the fact that π(c) = 1 would imply that all security vulnerabilities are discovered, which
should not be possible in reality. Hence we let this happen at the cost c at ∞.

65

3.3. Model

others’ investment decisions 3. Subsequently, each independently decides how

many of its findings to share with the other. Note that the discoveries are not

part of the strategies of the players and is rather determined probabilistically

–by “nature”– once the investments are made. Since the discoveries are private,

they cause an “incompleteness of information” of players about each other. From

game-theoretic viewpoint this sharing stage appears naturally as a Bayesian game.

In particular, firms i and j respectively discover Ni and Nj bugs in the platform,

which are random variables with the common sample space of {0, 1, . . . , B}.4
The set of discovered bugs may have an overlap, i.e., some identical bugs may be

discovered by both firms. We denote the number of common bugs by Nij . The

sample space of Nij is {0, 1, . . . ,min(Ni, Nj)}. Given the total number of bugs

B and investment levels ci and cj , the nature determines the number of bugs

discovered by each firm and the number of commonly discovered bugs Ni, Nj

and Nij . The quadruple (B,Ni, Nj , Nij) is the random variable over the set of

possible “states of the world” Ω. Note that due to the revelation of investments

pi and pj at the end of the first stage, the probability distribution D(λ, pi, pj) of

(B,Ni, Nj , Nij) over Ω is publicly known. For each nature state (b, ni, nj , nij) ∈
Ω, firm i (resp. j) observes ni (resp. nj), i.e., the number of bugs it has discovered,

as its “type”. For each realisation of the number of found bugs and announced

investments, a firm must decide how many of its found bugs to share with the

other. Due to the homogeneity assumption of bugs, the bugs to be shared can be

assumed to be picked uniformly randomly. A (pure) strategy of firm i is thus a

mapping si(pj , ni) : [0, 1]× N+ → N+ such that si(pj , ni) ≤ ni.5 Let σi = (pi, si)

denote the pure strategies of player i for the whole game. After both σi and σj

are decided, the overall utilities of each player is determined as the result of its

investment together with the expected losses/gains from security incidents.

In what follows, we describe the expected utility of the two players after two stages

of actions. We assume risk-neutral players, that is, the players care equally about their

utility of expected outcome and their expected utility. Hence, the utilities are linear

sums of the (negative of the) expected costs per each bug minus the investment cost

for discovery of the bugs. Note that at the time of taking the decision about sharing

the discovered bugs, the investments for discovering the bugs are “sunk” costs, i.e.,

they are already spent and will not affect the cost to go of different actions to take.

Each bug, if not discovered by or informed to a player, will be successfully exploited on

3 This feature of our model also reflects reality in which organisations inform the public about their
investment in security research, e.g., Microsoft [13], IBM [73].

4By {0, 1, . . . , B}, it is meant that given the realisation B = b, the set is {0, 1, . . . , b}.
5Since pi is part of player i’s strategy, it needs not be included as an argument to si.

66

3.3. Model

that player by attackers with a probability, which without loss of generality, we take

to be one. We assume that the exploitation probabilities and the severity of bugs are

homogeneously distributed. For each bug there are three types of losses/damages:6

• Direct loss l > 0 : affecting only the compromised firm (e.g. outage/denial of

its services, compromise/corruption of its data, etc.).

• Market shrinkage τ ≥ 0 : the common loss as a result of a successful attack

that affects both, even the firm that is not compromised. This is the effect of the

market shrinkage after a successful attack as a result of a portion of both demand

and investment moving away from (abandoning) the whole service/technology in

favour of “safer” alternatives, or simply relinquishing that sector altogether.

• Competitive loss δ ≥ 0 : when only one firm is compromised by attackers, the

compromised firm loses δ while the other gains δ. This represents the shifting of

demand and/or public investment (stocks) upon a successful attack.

Given the notions described above, there are four possibilities of net cost for each

bug that a player may incur: (a) The bug is known by both players (either through

own discovery or through the information shared by the other firm). In this case, the

utility of the players is (0, 0), as neither one of the players loses anything.7 (b) The bug

is known by player i, but not player j. In this case, the utility pair is (δ−τ,−δ−τ − l):
the bug will be exploited at firm j, which causes its direct loss l and a competitive

advantage δ for firm i, while both of them will lose τ due to market shrinkage. (c) The

bug is known by player j, but not player i. This is the mirror situation to case-b: the

utility pair is (−δ− τ − l, δ− τ). (d) The bug is known by neither player. Here, there is

no competitive advantage of one over the other, but there is still the market shrinkage

effect, besides the direct losses to both. Hence, the utilities are (−τ − l,−τ − l).
To facilitate the computation of the expected utilities, we define the following aux-

iliary random variables (as also depicted by a Venn diagram in Figure 3.1): let Bi,j ,

Bi,¬j , B¬i,j and B¬i,¬j represent the number of bugs that, respectively, both players,

only player i, only only player j, and neither player knows about. Let the (expected)

utility of players be denoted by u, which is a function from the strategy profile of the

players and the state of the world to the set of real numbers. The expectation is taken

with respect to the realisation of Bi,j , Bi,¬j , B¬i,j and B¬i,¬j given B, Ni, Nj and

Nij , and the sharing strategies. We are now ready to compute the expected utility of

6For simplicity of exposition, we assume the losses and damages are symmetrical; it is straightfor-
ward to generalise the results to non-symmetric cases.

7The assumption is that once the bug is discovered, its “fix” is immediate and costless.

67

3.3. Model

Table 3.1: List of main notations

Parameter Definition

B, b Random variable for the total number of bugs, and a realisation

Ni, ni Random variable for the number of bugs discovered by i, and a realisation

Nij Random variable for the number of common bugs discovered by both

ai Action of player i: how many discovered bugs to share

λ Expected number of the total number of bugs

pi, pj Probability that each bug is discovered by player i,j

ui, uj Expected utilities of player i, j

ci, cj Discovery investment cost of player i,j

l Direct loss upon exploitation of an (undiscovered) bug by attackers

δ Loss (gain) in utility of the player who is the only one attacked (not attacked) –

capturing the market competition effect

τ Loss in utility of both players if a bug is exploited in either one of them – capturing

the total market section shrinkage effect

p = π(c) The relation relating the level of investment c to the discovery probability of a bug p.

In this work, we use p = π(c) = 1− e−θc.

player i given a realisation of the state of the world ω = (b, ni, nj , nij), and σi = (pi, si),

σj = (pj , sj):

ui(ω, σi, σj) = −ci(pi) + 0 ·Bi,j + (δ − τ) ·Bi,¬j
+ (−δ − τ − l) ·B¬i,j + (−τ − l) ·B¬i,¬j (3.1)

In what follows we analyse further the structure of this utility function and derive the

“outcome” of the game and study its properties. For readers’ reference, we summarise

our game notion below.

Definition 3.1. A vulnerability sharing game is a game played between players in the

set N = {i, j} consisting of two stages:

1. Investment: i and j independently select pi, pj ∈ [0, 1), respectively.

2. Sharing: players are informed with pi, pj and participate in a Bayesian game

〈N,Ω, 〈Ai, Ti, Ci, τi, pi, ui〉i∈N 〉 with N = {i, j}, Ω = {(b, ni, nj , nij) | b, ni, nj , nij ∈
N+∧ni, nj ≤ b∧ni,j ≤ min(ni, nj)}, Ai = Aj = N+, Ti = Tj = N+, Ci = Cj = C :

68

3.4. Analysis of the Game

B Nij

B¬i,¬j Ni Nj

Bi,¬j B¬i,j

si(Ni) sj(Nj)

Bi,j

Figure 3.1: Venn diagram illustration of the sets of bugs.

N+ → 2N
+

such that C(t) = {0} ∪ [t], τi : Ω→ Ti such that τi(b, ni, nj , nij) = ni

and similarly τj(b, ni, nj , nij) = nj, pi = pj following a probability distribution

D(λ, pi, pj) over Ω, and ui as in (3.1).

3.4 Analysis of the Game

When dealing with strategic entities with inter-dependent utilities, investigating equi-

libria, most notably Nash Equilibria, is a method of predicting their decisions. Our

game contains sequential moves, and thus an ordinary Nash equilibrium concept would

potentially cause the problem of “non-credible threats”. Also note that our game con-

tains simultaneous actions in each stage, and hence is of “imperfect information”. We

therefore examine possible perfect Bayesian equilibria (PBE), a solution concept that

effectively eliminates non-credible threats in sequential games with incomplete and

imperfect information.

In short, a PBE is a strategy profile such that, given any player’s belief about the

game history that is consistent with that profile, then that player’s remaining part of

strategy (from the belief onward) is its best response. To find the set of PBEs, we

notice from Definition 3.1 that since the investment decisions are announced before

sharing, each Bayesian game in the second stage is a proper subgame of the whole

game. This means that we can use backward induction and first construct (si, sj)

as a Bayesian Nash equilibrium (BNE) of the Bayesian game in the second stage for

all choices of pi and pj . This in turn determines the utility of the players for each

choice of (pi, pj), which allows us to build a simple strategic-form game with actions

pi and pj corresponding to the first stage of the game. The remaining task will be

to find a Nash equilibrium for this game, which will lead to a proper PBE for the

whole two-stage game. We thus proceed by studying the second stage of the game

69

3.4. Analysis of the Game

(information sharing), and then proceed to analyse players’ investments given their

equilibrium sharing strategies.

3.4.1 Second Stage: Sharing the Bug Discoveries

The first step of the analysis is to construct the expected values of players’ utilities (3.1)

from the probability distribution D(λ, pi, pj) over the states of the Nature. This can

effectively be done by computing the expected values of Bi,j , Bi,¬j , B¬i,j and B¬i,¬j .

Since E(Bi,j) is multiplied by zero, we can safely ignore it. For the rest, we have:

E[Bi,¬j |ω, σi, σj] = (ni − nij)(1−
si(pj , ni)

ni
) (3.2a)

E[B¬i,j |ω, σi, σj] = (nj − nij)(1−
sj(pi, nj)

nj
) (3.2b)

E[B¬i,¬j |ω, σi, σj] = b− ni − nj + nij (3.2c)

In (3.2a),(3.2b), we have in part used the fact that the bugs to be shared are chosen

uniformly randomly across the discovered bugs. Replacing in (3.1), we obtain:

E [ui(ω, σi, σj)] = −ci(pi) + (δ − τ)(ni − nij)(1−
si(pj , ni)

ni
)+

(−δ − τ − l)(nj − nij)(1−
sj(pi, nj)

nj
) + (−τ − l)(b− ni − nj + nij) (3.3)

We are looking for strategy profiles (strategy pairs (si, sj) in our two-player context)

that are simultaneous best responses to each other, given the information that each

player has, notably including its number of discovered bugs. In the Bayesian Nash

equilibria of the game, each candidate strategy for a player must be a maximiser of

its expected utility given the strategy of the other player and given its observed type

(number of discovered bugs).8 Formally, for a given pi and pj , we are looking for the

strategy pairs (s∗i , s
∗
j), such that:

∀ni∈N+, s∗i (pj , ni) ∈ arg max
si(pj ,ni)

E[ui(ω, (pi, si(pj , ni)), (pj , s
∗
j (pi, nj)))|ni] (3.4)

and simultaneously vice versa for j. Such pairs constitute the (pure) Bayesian Nash

Equilibria of the second stage of our game. The pair (s∗i , s
∗
j) is further, a Dominant

8To analyse the game, each player must specify its actions for all of its possible types, and not just
the realised (and observed) type. This is because, the expected utility of each player depends on the
possible actions of the other player(s) weighted against their potential types, since the type of other
player(s) are not directly observed.

70

3.4. Analysis of the Game

(pure) Bayesian Nash Equilibrium iff:

∀ni∈N+,∀sj , s∗i (pj , ni)∈arg max
si(pj ,ni)

E[ui(ω, (pi, si(pj , ni)), (pj , sj(pi, nj)))|ni] (3.5)

and simultaneously vice versa for j. We are now ready to express the main result of

this section:

Proposition 3.1. Suppose pi, pj < 1. If δ < τ , the unique dominant pure Bayesian

Nash Equilibrium of the second stage of the game is (s∗i (pj , ni), s
∗
j (pi, nj)) = (ni, nj),

i.e., sharing all the discovered bugs. If δ > τ , it is (s∗i (pj , ni), s
∗
j (pi, nj)) = (0, 0), i.e.,

sharing no information at all. When δ = τ , any strategy pair becomes a Bayesian Nash

Equilibrium. This proposition holds irrespective of the distribution of the total number

of bugs.

Proof. According to (3.5), a pair (s∗i , s
∗
j) constitutes a Dominant Bayesian Equilibrium

if, for each type of a player, its corresponding action is the best (provided the knowledge

of its type), irrespective of the strategy of the other player. From (3.3), the only term in

the expression of ui(ω, σi, σj) that involves si is the second term: (δ− τ)[(ni−nij)(1−
si(pj , ni)/ni)]. Hence, with the assumption of pj < 1 in mind, the maximisation of

E[ui(ω, σi, σj)|ni] with respect to si(pj , ni) reduces to maximising (δ−τ)(1−si(pj , ni)),
which yields the proposition.9

Discussion. The proposition makes intuitive sense: when δ > τ , each bug that is only

known by a player wins it a strictly positive (expected) competitive gain of (δ − τ),

as the competitive shift in the demand and public investment outweighs the overall

drop in the demand and fall in the stock market of the whole market section. Hence it

rather not share any of its findings, irrespective of what the other player chooses. This

is because the players have no means of making their decisions “contingent” on the

decision of the other.10 Similarly, when δ < τ , the competitive shift in the demand and

capital, falls short of the whole market section shrinkage. Therefore, the players prefer

to share all their findings to (selfishly) keep themselves from being hurt. Perhaps

the surprising result is that the dominant strategy of the players turned out to be

9Although the proposition leaves out the cases in which the condition pi, pj < 1 are not satisfied,
they are not difficult to analyse: suppose pj = 1, then E[(ni − nij)(1 − si(pj , ni)/ni)|ni] = 0, and
hence the expression for E[ui(ω, σi, σj)|ni] will not depend on si at all. Hence, in any Bayesian Nash
Equilibria, the choice of si becomes arbitrary. Similar situation happens for sj when pi = 1. Intuitively,
if the other player “knows every bug for certain”, then a player cannot affect its utility through its
action: it cannot gain any competitive advantage if δ > τ , or help prevent market shrinkage when
δ > τ . Note that realistically, we can safely assume pi, pj < 1, as no practical amount of investment
leads to absolute certainly of finding all bugs.

10We will see in §3.5 how this situation can be altered in the presence of a mediator.

71

3.4. Analysis of the Game

completely determined by the relative values of only two parameters δ and τ . This

proposition fully determines the sharing strategy of the firms. Notably, aside from the

special case of δ = τ , the equilibrium is unique and hence, there is no ambiguity in

selection of the equilibrium.

Apparently, our result only serve as relaxed prediction of firms’ behaviour in reality.

This is mainly due to the simplicity of our model along with its assumptions. For

example, if losses (l, δ, and τ) associated with different vulnerabilities are not identical,

the conditions in Proposition 3.1 might need to be stricter. Likewise, changes to this

result might be observed if losses between two firms are not symmetric as in our model.

Next, we investigate how each firm invests for discovering the bugs knowing the

subsequent sharing strategies.

3.4.2 First Stage: Investment for Bug Discovery

In the first stage of the game, each player decides about its investment amount for the

discovery of bugs, heeding the strategy of the other player in the second stage. To

obtain closed-form results, we need to model the relation between investment decision

and the chance of finding bugs. A simple candidate for such relation is the following:

p = π(c) = 1−e−θc, where θ represents a measure of the efficiency of the investment: a

larger θ corresponds to a higher efficiency of the investment. As the level of investment

increases to infinity, the probability of discovery of each bug asymptotically approaches

unity. The two firms may be different in how “efficient” they are in their investment. A

firm with more prepared talents can expect higher chances of discovery with less invest-

ment. To capture the potential heterogeneity in the investment efficiencies, we consider

two potentially different θi and θj . Our investment-discovery probability relation has

the extra property that the relative efficiency of the investment stays constant for all

investment values, specifically: (∂πi/∂c)/(∂πj/∂c) = θi/θj . This relation can also be

equivalently represented in its inverse form: ci(pi) = − ln(1− pi)/θi for pi ∈ [0, 1), and

likewise for j. Note that the condition of Proposition 3.1 pi, pj < 1 is automatically

satisfied when limp→1 c(p)→∞, as is the case in our example.

To analyse this stage, we note that Proposition (3.1) fully determines (s∗i , s
∗
j) for

each profile of (pi, pj). This allows us to treat the first stage as a “one-shot” game of

investment with action profiles of the form (pi, pj).

3.4.3 The Case of δ < τ

For the case of δ < τ , from Proposition 3.1, the dominant strategy of both players is

to share all of their findings, i.e., si(pj , ni) = ni and sj(pi, nj) = nj for all ni, ni ∈ N+.

72

3.4. Analysis of the Game

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

pBR(pi)

pBR(pj)

p∗i = 1− 1

κθi

pj

p i

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

θj = 0.02θj = 0.0056

θi = 0.04

θi = 0.0052

pj

p i

(b)

Figure 3.2: (a) Example best response curves for the case of δ < τ , investigated in
§3.4.3. In the figure θi > θj . The intersection gives the simultaneous best response pair
in the first stage of the game as: (p∗i , p

∗
j) = ([1 − (κθi)

−1]+, 0). The parameters used
are: λ = 100, τ = 0.5, l = 1, θi = 0.04, θj = 0.02. (b) Example best response curves
for the case of δ < τ and different θis and θjs.

Then, the second and third terms in (3.3) become zero, and we get:

E[ui(ω, (pi, s
∗
i), (pj , s

∗
j))] = −ci(pi) + (−τ − l)E[B −Ni −Nj +Nij]

= −ci(pi) + (−τ − l)λ(1− pj)(1− pi)

The best response pBRi as a relation over pj is hence:

pBRi (pj) = [c′−1
i (κ(1− pj))]+, 11 where κ := λ(τ + l). (3.6)

Note that when pBRi > 0, ∂pBRi /∂pj = −κ/c′′i (pBRi) < 0, i.e., more investment

by the other player leaves less incentive for a player to invest. Similarly, we have:

E[ui(ω, (pi, s
∗
i), (pj , s

∗
j))] = −cj(pj) + (−τ − l)(1 − pi)λ(1 − pj), and hence: pBRj (pi) =

[c′−1
j (κ(1 − pi))]

+. The fixed points of the best response correspondence (pi, pj) ⇒

([c′−1
i (κ(1 − pj))]+, [c′−1

j (κ(1 − pi))]+) constitute the outcome of the first stage. For

our example cost function c(p) = − ln(1 − p)/θ, the simultaneous best response in

(3.6)translates to the following (Figure 3.2a):

pBRi (pj) = [1− 1

θiκ(1− pj)
]+, pBRj (pi) = [1− 1

θjκ(1− pi)
]+.

11We use the conventions: f ′(x) := df(x)/ dx and a+ := max{0, a}.

73

3.4. Analysis of the Game

This, together with Proposition 3.1, lead to the following result:12

Proposition 3.2. If δ < τ and θi > θj, the Perfect Bayesian Equilibrium (PBE) of

the two-stage game is ((p∗i , s
∗
i (pj , ni)), (p

∗
j , s
∗
j (pi, nj))) = (([1− 1

κθi
]+, ni), (0, nj)) for all

ni, nj ∈ N+ and all pi, pj ∈ [0, 1), where κ := λ(τ + l). That is, only the more efficient

firm invests in discovery of the bugs to achieve discovery probability of [1 − (κθi)
−1]+

– and all the findings are then shared.13

Discussion. The less efficient firm free-rides on the bug discovery investment of the

more efficient company, knowing that all the findings will be shared. This might leap

the reader to the conclusion that the PBE outcome is socially inefficient simply because

of the existence of “free-riding”. However, a social planner may also prefer that the

investment is done by the more efficient firm as opposed to distributing the investment

among both, hence garnering a higher social return on the aggregate investments. In

what follows, we will evaluate the social utility and the socially efficient outcome and

compare the two.

Investigating social welfare:

Let W represent the expected (utilitarian) social utility, defined simply as the sum of

the expected utilities of the two firms, i.e., W := ui+uj .
14 First off, it is straightforward

to argue that in the socially optimal outcome, all the findings are shared (the social

utility can only be improved by sharing the findings, as the investment decisions are

now disentangled from the sharing decisions). The expected optimal social utility is

hence as follows:

E[W]=−ci − cj − 2(τ + l)E[B¬i,¬j]=−ci(pi)− cj(pj)− 2κ(1− pi)(1− pj) (3.7)

In our sample cost function, maximising E[W] hence yields: (p̂i, p̂j) = ([1−(2κθi)
−1]+, 0).

Comparing the socially optimal solution with the PBE outcome, we have p̂j = p∗j = 0,

and when 2κθi > 1, we have: p̂i > p∗i . That is, to maximise the social utility (sum of

the expected utilities of the two firms), the less efficient firm, as in the PBE outcome,

makes no investment free-rides on the investment of the more efficient firm. However,

12The exact values of the investments depend on the cost function adopted, however, the qualitative
observations hold for a wide class of such functions.

13 When θi = θj = θ, i.e., the two firms are homogeneous in terms of their efficiencies of bug
discovery investments, the equilibrium point is not unique and becomes the set: {(p∗i , p∗j) ∈ [0, 1]2, p∗i =
[1− (θκ(1− pj))−1]+}.

14Other notions of social welfare exist, e.g., the egalitarian objective W := min(ui, uj).

74

3.4. Analysis of the Game

2 4

−4

−2

0.5 1

W (p̂i, p̂j)

W (p∗i , p
∗
j)

κ
S
o
ci
al

W
el
fa
re

(a)

2 4

−4

−2

optimal S

S(p∗i , p
∗
j)

1
κ

S
ec
u
ri
ty

W
el
fa
re

(b)

Figure 3.3: Example depiction of the optimal and achieved social welfare (3.3a) and
security utility (3.3b) for the case of δ < τ as functions of κ = λ(τ + l).

compared to the PBE outcome, the more efficient firm invests more. This makes intu-

itive sense: the less efficient firm offers a lower return on investment (offers less “return”

in turning investment into probability of bug discovery) and hence should not invest

at all. Instead, the investments must be made by the more efficient firm and all the

findings be shared. Moreover, the more efficient firm must consider the aggregate losses

and invest more carrying the burden of the two, compared to the PBE, where it only

considers the effect of its investment on its own losses. Note that even when the players

are homogeneous in terms of their efficiencies, i.e., when θi = θj , the socially optimal

investment turns out to choose only one of the firms to invest. This is because if both

firms independently research, they may waste efforts if the results turn out to be the

same, e.g., they discover the same bugs. The value of the optimum social welfare is:

W (p̂i, p̂j) = − ln(2κθi)/θi − 1/θi for κθi > 1/2, and: − 2κ for κθi ≤ 1/2. (3.8)

The social welfare that is achieved at the equilibrium outcome of the game is:

W (p∗i , p
∗
j) := − ln(κθi)/θi − 2/θi for κθi > 1, and: − 2κ for κθi ≤ 1. (3.9)

An example comparison between the two is depicted in Figure 3.3a.

Here, we define another metric of social welfare in the context of economics of

network security. Let the security utility uS of a player be the negative of the costs of

security attacks. Security utility, such defined, is related to the utility of a player as

uS = u + c, that is, it includes all the security damages but excludes the investment

cost. Now, let the security welfare S, as a metric of the aggregate security of the two

firms, be the sum of their security utilities: S := uSi + uSj . The security utility is

75

3.4. Analysis of the Game

related to the utilitarian social welfare in the following way: S = W + ci(pi) + cj(pj).

The optimal S is achieved by picking pi = 1 and sharing all the findings, which yields

S = 0. Figure 3.3b illustrates a comparison between the achieved security utility at

the equilibrium and the optimal S.

Comparative statics

15 Recall from Proposition (3.2), that for δ < τ , in part we have: (p∗i , p
∗
j) = ([1 −

1/(κθi)]
+, 0). Hence, as long as δ < τ , θi > θj and p∗i > 0 (i.e., for 1 < κθi), we have

the following straightforward observations:

∂p∗i
∂τ

,
∂p∗i
∂l

,
∂p∗i
∂λ

,
∂p∗i
∂θi

> 0,
∂p∗j
∂τ

,
∂p∗j
∂l

,
∂p∗j
∂λ

,
∂p∗j
∂θj

= 0.

We also have ∂p∗i /∂θj = 0, and perhaps most interesting of all ∂p∗i /∂δ = 0; intuitively,

player i shares all of its findings and thus removes any dependence of its utility (and

hence its best strategy) on δ. Also, note that even though ∂p∗i /∂θi > 0, i.e., more

efficiency in investment means higher choice of probability of discovery, this does not

necessarily translate to higher choice of investment. In fact, we have: ∂ci(p
∗
i)/∂θi < 0

for 1 < κθi < e, and ∂ci(p
∗
i)/∂θi > 0 for κθi > e. Moreover, from (3.9), for p∗i > 0

we have: W ∗ := W (p∗i , p
∗
j) = − ln(κθi)/θi − 2/θi and S∗ := S(p∗i , p

∗
j) = −2/θi. Hence,

when δ < τ , θi > θj and 1 < κθi, we have:

∂W ∗

∂τ
,
∂W ∗

∂l
,
∂W ∗

∂λ
< 0,

∂W ∗

∂θi
> 0,

∂S∗

∂τ
,
∂S∗

∂l
,
∂S∗

∂λ
= 0,

∂S∗

∂θi
> 0.

3.4.4 The Case of δ > τ

Following Proposition 3.1, the dominant strategy of the players in the second stage is

to share none of their findings, i.e., si(pj , ni) = 0 and sj(pi, nj) = 0 for all ni, ni ∈ N+

and all pi, pj ∈ [0, 1). Then from (3.3), we obtain:

E[ui(ω, (pi, s
∗
i), (pj , s

∗
j))] = −ci(pi) + (δ − τ)λpi(1− pj)

+ (−δ − τ − l)pjλ(1− pi) + (−τ − l)(1− pj)λ(1− pi) (3.10)

The best response relation for player i is therefore:

pBRi (pj) = [c′−1
i (λ(δ + l + pjτ))]+.

15In economics, comparative statics is the study of the change in the “equilibrium” outcome when a
change in a parameter is/would be introduced.

76

3.4. Analysis of the Game

A point to observe is that for pBRi > 0, we have: ∂pBRi /∂pj = λτ/c′′i (p
BR
i) > 0, i.e., more

investment by the other player leads to more investment by a player. This is in sharp

contrast to the previous case of δ < τ . Similarly: pBRj (pi) = [c′−1
j (λ(δ+ l+ piτ))]+. For

our example cost function, the simultaneous best response is therefore the solution the

following system (Figure 3.2b):

pBRi (pj) = [1− 1

θiλ(δ + l + pjτ)
]+, pBRj (pi) = [1− 1

θjλ(δ + l + piτ)
]+. (3.11)

Straightforward algebraic investigation reveals that the solution is unique and given as

follows:

If ∆ ≥ 0:


p∗i =

[
−λθiθj((δ + l)2 − τ2) + τ(θi − θj) +

√
∆
]+

2τθiθj(δ + l + τ)

p∗j =

[
−λθiθj((δ + l)2 − τ2)− τ(θi − θj) +

√
∆
]+

2τθiθj(δ + l + τ)

, (3.12)

and if ∆ < 0: (p∗i , p
∗
j) = (0, 0), where ∆ :=

(
τ(θi + θj)− λθiθj(δ + l + τ)2

)2 − 4τ2θiθj .

This, along with Proposition 3.1, fully determines the PBE:

Proposition 3.3. When δ > τ , the Perfect Bayesian Equilibria (PBE) of the secu-

rity information sharing game is unique, in which (p∗i , p
∗
j) are provided in (3.12), and

(s∗i (pj , ni), s
∗
j (pi, nj)) = (0, 0) for all ni, nj ∈ N+ and all pi, pj ∈ [0, 1). That is, both of

the firms may invest – to achieve discovery probabilities as given in (3.12) – and none

of the consequent findings are shared.

Discussion. When δ > τ , the competitive gain outweighs the market shrinkage of

not sharing the found bugs. Knowing that the found bugs will not be shared, both

players, notably even the less efficient player, invest in discovery of the bugs on their

own. This is because of two facts: 1- Since the findings are not shared, the firm would

be exposed in its bugs if it does not discover and rectify them if it does not invest. 2-

Since the other firm invests and expectedly discovers some bugs, the firm will further

suffer through the competitive effect of being the sole victim of such bugs if it does not

invest.

Comparison to socially optimal outcome:

The social optimal outcome certainly shares the found bugs. Compared to the case of

δ < τ , both players invest strictly more in discovery of the bugs. The social inefficiency

of the outcome for the case of δ < τ was due to underinvestment. Here, it is primarily

due to lack of sharing of the found bugs: if a player would receive information of a

77

3.4. Analysis of the Game

bug that has not discovered itself, the social utility would have improved by preventing

the potential direct losses in that player as well as the market shrinkage losses in

both players. Another source of social inefficiency is the fact that “both” players

make discovery investment: there is a positive probability that the same bug can

be discovered independently by both firms. The investment could have been more

efficient by preventing such cases of “duplicate effort”, if directed to only one player

and the subsequent findings are shared. Anther source of social inefficiency, which is

again rooted in lack of information sharing of the players, is the possibility of “over-

investment” in bug discovery. The optimal expected social utility is the same as was

computed in (3.8). Note in particular that it does not depend on the value of δ. Sharing

the information in the social optimal removes the competitive effect of δ. However, in

the case of δ > τ , the investment value of both players increases with δ. This means

that the threat of competitive losses due to being the sole victim of a security attack

can drive both firms to invest inefficiently large values in bug discovery, when they

know the discoveries, as competitive advantages, will not be shared. A combination of

all of these three effects is responsible for a high social inefficiency in this case.

Comparative Statics

Given δ > τ and our example cost functions, we note that players’ best response

functions as in (3.11) are increasing and concave. Investigating the best-response ex-

pressions in (3.11) further reveals:

∂pBRi
∂τ

,
∂pBRi
∂l

,
∂pBRi
∂λ

,
∂pBRi
∂θi

,
∂pBRi
∂δ

> 0,
∂pBRj
∂τ

,
∂pBRj
∂l

,
∂pBRj
∂λ

,
∂pBRj
∂θj

,
∂pBRj
∂δ

> 0.

This means that player i is willing to invest more as any of the following parameters

increases: τ , l, λ, θi, and similarly for player j (with θi replaced by θj). Investigating the

effect on the equilibrium point is a bit trickier. For simplicity of exposition, we illustrate

the “shift” in the equilibrium pair pictorially. In Figure 3.4, the effect of increasing δ is

depicted. Note that, on the “pi–pj” plane, pBRi (pj) shifts “up” and pBRj (pi) shifts “right”

as the value of δ increases. Hence, the intersection, which indicates the equilibrium,

moves towards up and right. The algebraic details of the analysis is removed for brevity.

Analysing the effect of each parameter in turn reveals:

∂p∗i
∂τ

,
∂p∗i
∂l

,
∂p∗i
∂λ

,
∂p∗i
∂δ

,
∂p∗i
∂θi

,
∂p∗i
∂θj
≥ 0,

∂p∗j
∂τ

,
∂p∗j
∂l

,
∂p∗j
∂λ

,
∂p∗j
∂δ

,
∂p∗j
∂θj

,
∂p∗j
∂θi
≥ 0.

In words, the above inequalities indicate that if any of the following parameters in-

creases, then firms would invest more: τ , l, λ, and δ. Indeed, the higher these parame-

78

3.5. Mediation: Encouraging Information Sharing

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

pBRi (pj , δ)

pBRi (pj , δ
′)

pBRj (pi, δ)

pBRj (pi, δ
′)

pj

pi

Figure 3.4: Example illustration of the comparative statics for the case of δ > τ . The
parameters used are λ = 1.5, l = 0.5, θi = 1, θj = 0.9, τ = 0.9, and the value of δ is
increased from δ = 1 to δ′ = 1.2. Notice the shift in the equilibrium value towards
“up” and “right” as a result.

ters, the more severe impacts of security incidents would be, and thus both firms have

to secure themselves, especially when they receive no aid from the other. An interest-

ing result is the effect of improvement in the investment efficiency of the competitor:

If θj is improved, then firm i invests more in vulnerability research. Intuitively, this

is due to the fact that an improvement in the discovery probability of the competitor

firm j means more competitive pressure on firm i. This is because each bug that is

discovered exclusively by firm j brings it a net advantage of δ− τ at the cost of firm i.

Thus the increase in efficiency of firm j forces firm i to also improve its probability of

discovery, which happens by increasing its investment. This means that the utility of

player i decreases as the result of an improvement in player j’s efficiency. Specifically,

∂ui(p
∗
i , p
∗
j)/∂θj < 0. This is while, ∂uj(p

∗
i , p
∗
j)/∂θj > 0. Due to these opposing effects of

efficiencies on individual utilities, in general, the equilibrium social welfare, W (p∗i , p
∗
j),

which is the sum of the two utilities at the equilibrium, may increase or decrease as

θi or θj is improved. Note, however, that the equilibrium security welfare, S(p∗i , p
∗
j),

always improves when θi or θj increases.

3.5 Mediation: Encouraging Information Sharing

Our analysis in the previous section characterised the players’ behaviour in equilibria.

For the case of δ < τ , which pertain to a the case where security acts effectively as a

79

3.5. Mediation: Encouraging Information Sharing

“common good”, sharing of security findings becomes inevitable, and exactly because

of that, free-riding emerges, which in turn leads to underinvestment. In contrast,

when δ > τ , which represents cases where security effectively becomes a “competitive

advantage”, firms would individually strive for their security and refrain from sharing

their findings. We observed that none of these outcomes are in line with desirable social

planning.

In this section, we make a preliminary attempt to remedy one of the sources of social

inefficiency, specifically, failure in information sharing in the “competitive advantage”

case. We develop a mediation mechanism that partially removes the negative incentives

of sharing the information while allowing the players to gain from its positive effects.

Informally put, our mediation plan states that if a firm wants to be informed about n

bugs that it failed but the other firm succeeded to discover, it must reveal in exchange n

bugs that the other firm is not aware of. Note that this was not possible in the previous

sections, as there was no means of making the sharing actions of a firm “contingent”

on the action of the other. The mediator effectively ensures that no net “competitive

advantage” is lost by sharing the vulnerability findings, as any leakage of an “exclusive”

discovery is matched by an “exclusive” discovery of the competitor. We will hence refer

to our mediation plan as “matched sharing”.

Matched sharing operates in two steps: (i) each player/firm submit its set of found

bugs to the mediator, along with a specification of a “threshold” as the maximum

number of bugs it is willing to exchange with the other firm. (ii) Subsequently, based

on the reported sets and the players’ thresholds, the mediator moderates the exchange

of as many bugs as possible in the following manner: the mediator marks the bugs

that are exclusive to each player, i.e., that the other player has not discovered them.

Then the information of a bug is transferred from player i to player j iff a) there is an

exclusive bug to match, i.e., to transfer from player j to i, and b) if the total number of

bugs transferred so far does not exceed either one of the players’ requested maximum

threshold. Note that the mediator is not a strategic player, and its behaviour is known

to and trusted by both players.

From the above description, a sharing action of a player entails the selection of

the threshold on exchange number. Note specifically, that we can without loss of

generality assume that both players submit all of their findings to the mediator.16

This is because the players can restrict the sharing of their findings by specifying the

16 Assuming that both parties have established trust with the mediator. Although out of the scope
of our work, it is worth mentioning that trust establishment is non-trivial, and may itself be a research
problem, e.g., incentive analysis. A potential solution for this might come from cryptography, namely
multi-party computation. In this case, the two firms can themselves securely simulate the mediator (if
the mediator’s algorithm is known), so that no trust is needed. This can itself be a topic for future
research.

80

3.5. Mediation: Encouraging Information Sharing

threshold. For instance, no sharing corresponds to requesting a threshold of “zero”.

Note that due to the nature of the Bayesian game, each player must pick this bound

for every realisation of bugs it discovers (given the investment decisions). Formally,

we can reuse the notations si(pj , ni) and sj(pi, nj) to represent the sharing strategies,

with the different interpretation that si and sj denote the threshold, i.e., the maximum

number of their bugs to be shared by the mediator to the other player. Hence, the

expressions in (3.2) in the presence of the mediator and the new interpretation of the

strategies become:

E[Bi,¬j |ω, si, sj] = ni − nij −min{si(pj , ni), sj(pi, nj), ni − nij , nj − nij}
E[B¬i,j |ω, si, sj] = nj − nij −min{si(pj , ni), sj(pi, nj), ni − nij , nj − nij}

and, as before, E[B¬i,¬j |ω, si, sj] = b − ni − nj + nij . In words, the term represented

by the min function determines the number of bugs that are exchanged between the

players, which should be no more than the bounds set by both firms, as well as what

each firm individually has to offer. This in turn gives:

ui(ω, σi, σj) =− ci(pi) + δ(ni − nj)− τ(b− nij)− l(b− ni)
+ (2τ + l) min{si(pj , ni), sj(pi, nj), ni − nij , nj − nij} (3.13)

As we can see, the only term that involves si(pj , ni) is the last term. Maximisation

of the expected utility of player i given the strategy of player j therefore translates to

maximising min{si(pj , ni), sj(pi, nj), ni − nij , nj − nij}. Hence, we have the following

result:

Proposition 3.4. Suppose pi, pj < 1. The weakly dominant pure Bayesian Nash

Equilibrium of the second stage of the game is (s∗i (pj , ni), s
∗
j (pi, nj)) = (ni, nj) for all

ni, nj ∈ N+ and pi, pj ∈ [0, 1), i.e., asking the mediator to share the maximum number

of exclusive bugs. This proposition holds irrespective of the distribution of the total

number of bugs, or correlation in the discovery of bugs.

Proof. First, note that irrespective of the choice of sj , si(pi, ni) = ni maximises the

expression min{si(pj , ni), sj(pi, ni), ni − nij , nj − nij}, and likewise for sj(pi, nj) = nj .

Hence (si(pj , ni), sj(pi, nj)) = (ni, nj) for all ni, nj ∈ N+ and pi, pj ∈ [0, 1) belongs to

the set of pure Bayesian Nash equilibria of the second stage of the game. To see the

weak dominance, consider the cases where nj > ni > 0 and nij = 0. Note that Pr[Nj >

ni ∧ Nij = 0 | Ni = ni] > 0. Consider the strategy of player j as sj(pi, nj) = nj for all

nj ∈ N+. Then ui(ω, (pi, ni), (pj , sj)) > ui(ω, (pi, s
′
i), (pj , sj)) for any s′i(pj , ni) < ni,

because: min{ni, sj(pi, nj), ni − nij , nj − nij} > min{s′i(pj , ni), sj(pi, nj), ni − nij , nj −
nij} for any s′i(pj , ni) < ni when nj > ni, nij = 0 and sj(pi, nj) = nj .

81

3.5. Mediation: Encouraging Information Sharing

3.5.1 Game’s First Stage: Investment in the Presence of the Mediator

Given the weakly dominant equilibrium in Proposition 3.4, min{s∗i (pj , Ni), s
∗
j (pi, Nj), Ni−

Nij , Nj −Nij} = min{Ni, Nj} −Nij . Hence, the utility of player i in (3.13) becomes:

E
[
ui(ω, pi, pj , s

∗
i , s

∗
j)
]

= −ci(pi) + δE[Ni −Nj]− τE[B −Nij]− qlE[B −Ni]

+ (2τ + l)(E[min{Ni, Nj}]− E[Nij])

= −ci(pi) + λδ(pi − pj)− λτ(1− pipj)− λl(1− pi) + (2τ + l)(E[min{Ni, Nj}]− λpipj)

The term E[min{Ni, Nj}] depends on the specific distribution of the total number of

bugs. A good candidate is the Poisson distribution. The presence of this term in the

utility function prevents a closed-form solutions for the best responses and the equilib-

rium points. Instead, we pictorially illustrate in Figure 3.5 the potential usefulness of

the mediator when δ > τ , i.e., when players are motivated more by competition than

aggregate security. Figure 3.5a depicts the equilibrium points of players’ investments

in two cases: sharing in the absence of the mediator (which leads to no sharing) and

our “matched sharing”. These are set in the context of low security damage (l) com-

pared to competitive advantage (δ) and inefficient investment (θi = θj = 0.1). The end

result is that with matched sharing, both players invest more in finding vulnerabilities,

which guarantees a better security for both. However, the social welfare, as well as

the individual utilities of both players, worsens with the introduction of the matched

sharing, as it exacerbates the already inefficiently high investments of the players in

this example.

In contrast, Figure 3.5b shows the effect of our mediator plan in situations with

either a significant security damage value (large l) or efficient investments (high θi, θj),

or both. In such scenarios, equilibrium points of the two cases are relatively close to

each other, i.e., they make similar levels of investments. With the help of the mediator,

players would share their intelligences and thus gain extra value in security, making

mediation a superior solution to opportunistic sharing. This suggests the potential

of our matched sharing mediation scheme, and that it should be in the interest of

the social planner to monitor environment parameters and establish trusted mediation

among firms whenever appropriate for players/societal benefits.

Remark. In explaining the adverse effect of the mediator to social welfare and indi-

vidual utilities in Figure 3.5a, we notice that following our model, the expected number

bugs commonly discovered by both firms are relatively high (taken straightforwardly

from the probabilistic model). As a result, this indicates that matched sharing would

not be very useful, since both firms would actually not exchange much information, al-

82

3.6. Conclusion

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
pBRj (pi)

pBRi (pj)

No sharing (p∗i , p
∗
j)

Matched sharing (p∗i , p
∗
j)

pj

p i

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
pBRj (pi)

pBRi (pj)

No sharing (p∗i , p
∗
j)

Matched sharing (p∗i , p
∗
j)

pj

p i

(b)

Figure 3.5: Illustration of opportunistic sharing vs. matched sharing when δ > τ , with
δ = 10, τ = 1, θi = θj = 0.1, with (a) l = 1 and (b) l = 10.

though they would be willing to share everything. In reality however, numerous factors

might be introduced that affect this figure. For example, large and complex software

systems are likely to possess a large number of unknown vulnerabilities, thus reducing

the chance for common discoveries. Further, different research teams have different

methodologies and procedures, making their chances of uncovering each bug unidenti-

cal. All these together would hopefully lessen the expected number of vulnerabilities

found by both firms, and thus encouraging the presence of the mediator. Also, efforts

in maintaining tight cooperation in the security community (conferences, seminars, dis-

cussion groups) might prove useful to eliminating common discoveries of bugs at an

early phase of the research procedure.

3.6 Conclusion

In this work, we focused on the problem of sharing cybersecurity information, as an en-

visioned pillar of cybersecurity planning for a more secure infrastructure. We analysed

the strategic decisions of two competing firms with regards to investment for discovery

of security vulnerabilities (generating valuable cyber-intelligence) and subsequently, to

share their findings. We showed that sharing becomes a dominant strategy when secu-

rity tends to behaves as a common good, i.e., when the common losses as a result of

security attacks outweigh the competitive gains of being protected. We analysed how in

turn this leads to free-riding of less efficient firm and the under-investment of the more

efficient firm. We also established that when security effectively becomes a competitive

advantage, i.e., when there is a net positive gain when a competitor is a sole victim of

an attack, then sharing no information becomes the dominant strategy, with negative

83

3.6. Conclusion

implication on the social efficiency. Finally, we provided a monetary-free light-weight

mediation mechanism that (partially) enables sharing of the found vulnerabilities in

cases where they fail to achieve any sharing on their own.

Future Research This work has the potential to be extended in many directions.

We have already made some grounds in extending our results to the multi-player sit-

uation. An interesting addition is considering “features” for the found bugs, such as

severity (seriousness of the potential damage), sophistication (exploitability), etc., and

hence letting the sharing strategies depend on the type of the found bug as well. Inves-

tigating the behaviour of risk-averse players – as opposed to risk-neutral in this work

– is another problem. Identifying other types of “security information” to share is an-

other interesting direction, for instance, revealing past incidents of successful attacks

and resultant losses carries some market implications that sharing merely discovered

security vulnerabilities does not. Also, we assumed that both firms use a common im-

plementation (the “platform”). If instead, for instance, the firms are using a common

protocol but with their private implementations of it, then “some” of the discovered

bugs may be just exclusive to that party’s implementation. Sharing found bugs now

requires a modified analysis. Investigating other means of encouraging sharing is an-

other important direction. An example is “bargaining”: A player starts by sharing one

bug, then the other player matches with a bug of its own findings, and so on, until one

stops. Another example is a generalisation of the “matched sharing” mechanism in this

work by allowing unequal number of matching that may involve some randomisation

as well. An exchange market of vulnerabilities is another idea, although it may suffer

from adverse selection and moral hazard.

84

Chapter 4

Optimal Contracts for

Outsourced Computations

While expensive cryptographically verifiable computation aims at defeating malicious

agents, many civil purposes of outsourced computation tolerate a weaker notion of se-

curity, i.e., “lazy-but-honest” contractors. Targeting this type of agents, we develop

optimal contracts for outsourcing of computational tasks via appropriate use of rewards,

punishments, auditing rate, and “redundancy”. Our contracts provably minimise the

expense of the outsourcer (principal) while guaranteeing correct computation. Further-

more, we incorporate practical restrictions of the maximum enforceable fine, limited

and/or costly auditing, and bounded budget of the outsourcer. By examining the

optimal contracts, we provide insights on how resources should be utilised when au-

diting capacity and enforceability are limited. Additionally, we consider the effect of

side-channel information and collusion among contractors. Through careful design of

incentives, we demonstrate that it can still be optimal to use multiple contractors even

if they are to collude. Finally, we present a light-weight cryptographic implementation

of the contracts to mitigate the double moral hazard problem between the principal

and the agents.

4.1 Introduction

The idea of outsourcing complex computation tasks has been proposed and imple-

mented in a variety of applications. Research projects involving complex analysis on a

huge multitude of data have utilised parallel processing of their computations on the

processors of millions of volunteering Internet users. These include search for extra-

terrestrial life (SETI@Home), investigation of protein folding and computational drug

85

4.1. Introduction

design (Folding@Home and Rosetta@home). Businesses from different sections includ-

ing finance, energy infrastructure, mining and commodities transport, technology and

innovation [107] have also realised the benefits of outsourcing (data, computation, etc.)

and “moving to the cloud”. The cloud, as a dedicated infrastructure with specialised

man-force and powerful computing capabilities, along with the ability to pool demands

from different clients and dynamic assignment of the resources can reduce the cost of

computation. On the other hand, the outsourcer is also relieved from the dedicated

investment in its computing infrastructure and in addition, has the total flexibility of

pay-per-use paradigm, to flex-on or to flex-off services effortlessly [107]. The growing

trend of outsourced computing have made possible small virtualised computers and

smart devices with powerful computational power, with applications in critical mission

scenarios as well as everyday use.

In all of these scenarios, there is a concern for the outsourcer (client) about the

correctness of the returned results. The provider of computation services (the servers)

have an economic incentive to return guessed results as opposed to performing the com-

putation completely and honestly, and thereby save on the computation work. Hence,

to make this paradigm viable and guarantee soundness of the results, there must be

an auditing mechanism in place. The auditing however is not free: it either creates

computational overhead for the client, the server, or both. For example, cryptographic

verification methods, such as homomorphic encryption [56] and Probabilistically Check-

able Proofs (PCPs) [132,134], have been developed (and are being improved upon) that

provide a proof of correctness for each and every outsourced computation task. Audit-

ing can also be done through a trusted third party for a fee, say, via re-computation.

Alternatively, a redundancy scheme can be employed in which the same job is out-

sourced to multiple servers and the results are checked against each other. Here it is

important to assume that these servers are totally uncorrelated.

Irrespective of the auditing mechanism, the outsourcer can set an extremely large

fine for detected wrong results, and make cheating theoretically impossible. However,

in practice, an extremely large fine is a non-credible threat. A more reasonable as-

sumption is a cap on the maximum enforceable fine, with the special interesting case

where the cap is zero. In this work we provide a concrete and general approach based

on Principal-Agent modelling from game theory to optimal contract designs for out-

sourcing from the client (principal) to the servers (agents). Specifically, we assume a

general maximum enforceable fine, maximum budget, and costly and/or limited au-

diting rate. We formulate the utilities of both the principal and the agents, as well

as essential constraints that guarantee honest computation (incentive compatibility)

along with their acceptance of the offer (participation). This allows us to effectively

86

4.1. Introduction

and systematically compute the optimal contract such that the principal’s expense is

minimised. Our work hence provides a benchmark enabling meaningful comparison

among different deployments of computation outsourcing.

In a further step, we relax the assumption that multiple servers in the redundancy

scheme are uncorrelated, and instead address two main threats that previous research

neglect to point out: side-channel information leakage and collusion. In particular, we

firstly notice that irrespective of the method of auditing (directly or through redun-

dancy), it is critical that the tasks for which the auditing occurs are not earmarked, or

else the contractor would know when it could get away with cheating. In cases where

the contractors cannot communicate, this is a good assumption. However, the agents

may be able to find a side channel that enables them to find out whether the same task

is outsourced to multiple agents for redundancy check or not. Second, the contractors

may further collude to report the same guessed result and hence undermine the whole

scheme. It is thus questionable whether the outsourcing scheme can still provide any

benefit in the face of these two challenges, and if so, how exactly. Specifically, we

consider an outsourcer that can use a hybrid of direct auditing and auditing through

redundancy. We develop the optimal contracts in closed-form in the presence of a side

channel and compare its characteristics with optimal contracts in the absence of such

side information. Moreover, we develop two “bounty” schemes and provide sufficient

conditions to make redundancy scheme a preferred method over direct auditing even

in the presence of collusion.

The chapter is structured as follows: In Section 4.2, we briefly overview previous

results in relation to our approach and describe our contributions. This is followed by

a detailed motivation of our contract model in Section 4.3, along with descriptions of

important constraints that make the problem non-trivial. In Section 4.4, we compute

optimal contracts involving only one agent, and explore related improvements. In Sec-

tion 4.5, we allow the principal to also potentially outsource the same task to multiple

non-colluding agents as an alternative means of auditing and develop optimal hybrid

contracts. We further establish the global optimality of our hybrid two-agent contracts

among all possible contracts involving any number of non-colluding agents with respect

to the notion of Nash Equilibria. In Section 4.6, we develop optimal contracts when

the outsourcer suspects that the agents may find out (through leakage of information)

about whether the same task is sent to another agent. Subsequently in Section 4.7,

we focus on the case where the agents potentially collude with each other. We then

comment in Section 4.8 the cryptographic implementation of our contracts, i.e., how

to enforce the terms and policies in an automated way. This section addresses the

problem of double moral hazard, in which not only the agents/contractors can cheat,

87

4.2. Related Work

but also the principal/outsourcer. Finally, in Section 4.9, we conclude the chapter with

a summary of the results and remark on some potential future directions.

4.2 Related Work

A line of research is focused on designing reliable verification techniques for outsourcing

of special-purpose computations. For instance, [144] investigates outsourcing of linear

optimisations. Another notable examples are queries on outsourced databases, includ-

ing typical queries [7,37] and aggregation [149]. Their main paradigm is for the querier

to rely on trusted information directly given by the data owner (outsourcer) to verify

the results returned by the servers.

Verification methods for general-purpose computing also appear in several remark-

able works. In [99] verification is performed by re-executing parts of the computation.

A variation is presented in [31] in which the authors utilise redundancy over multiple

agents, assuming that at least one of them is honest. Outsourced computation has also

caught attraction in cryptographic research: in a seminal work, the authors of [55] for-

mally define verifiable computation and give a non-interactive solution. Their solution

uses Yao’s garbled circuits to represent the computation and homomorphic encryption

to hide such circuits from the agents. More efficient but interactive solutions that

use probabilistically-checkable proofs (PCPs) have since been developed such as Pep-

per [131] and Ginger [133]. All of these verification techniques are, however, costly

in terms of computation, memory, incentive rewards, etc., either to the prover or the

verifier, or both. For example, the scheme in [99] requires partial re-execution of the

tasks, and the verification in [31] incurs cost in the redundancy of the number of com-

puting agents. Also, efficient protocols like Pepper still incurs a cost in the order of

m3 [131] on the principal, where m is the size of the problem. The cost of employing

verifiable computing across these different schemes hence raises the important question

of how to use them economically, especially when there is a flexibility in parameters

that govern the overall cost to the outsourcer.

Incentive-based solutions such as [14,104] have studied contracts that the outsourcer

may offer to the agents and through a combination of auditing, fines and rewards, honest

computation is enforced. They make use of principal-agent model to design contracts

that the agents would accept and become honest. In [14], Belenkiy et al. focus on

designing contracts for distributed computing projects with a large pool of agents.

They focus on minimising the fine-to-reward ratio as a mean to attract agents/workers,

as well as consider the case of irrational/malicious agents. However, their work do not

emphasise on ensuring/incentivising complete honesty of agents. Nix and Kantarcioglu,

88

4.2. Related Work

on the other hand, attempt to design contracts that incentivise complete honesty of

agents. They employ redundancy as a mean for detecting cheating agents.

On the other hand, the problems of information leakage and collusion among players

have also been studied in the game-theoretic community. Many notable works on

information leakage focus on the games with espionage [93]. Here espionage means

that a player is able to observe (with noise) the strategy of another before deciding on

his own. While Matsui [93] considers repeated games of this form, Solan and Yariv [137]

study the normal form game in which a player is able to purchase espionage information.

The most well-known concept of collusion in non-cooperative games is cheap talk [94].

A game with cheap talk allows players to take part in arbitrary communication with

each other before they pick their own strategies. This gives an opportunity for them to

coordinate their decisions beforehand. One main problem with cheap talk, as explained

by Farrell [51], is that players can lie about their supposed strategy. For example,

Croson et al. [41] show that lies and non-credible threats together influence bargaining

offers and responses. Further, the whole cheap talk process may itself be a bargain.

From another perspective, a subfield of game theory is dedicated to collusion, namely

cooperative game theory [26]. However, the main goal of cooperative game theory is

to form stable coalitional structures, and which is more applicable at societal level

problems than in strategic environments.

Regarding the problem of double moral hazard in principal-agent model, [42] sug-

gests that it could be resolved if the principal owning an enterprise can force the agent

to purchase that enterprise at prenegotiable price. This serves as a threat to both the

principal and the agent, given that at the time of making the efforts, the principal

has observed the agents’ efforts, but not the eventual profit of the enterprise. Other

mechanisms have also been proposed to address this problem in different situations,

such as incomplete insurance [39] and money back [92].

Our contributions. Motivated by lack of feasibility in current techniques for veri-

fiable computation, we abstract the verification techniques as an auditing tool with a

exogenous cost and provide incentive-based contracts that minimise the expected cost

of the principal. Our model can be applied to any special-purpose or generic verifica-

tion scheme. Our contributions generalise the results in [14, 104] by (1) extending the

feasibility of honesty enforcing schemes for any bound on the enforceable fines and any

auditing capacity; (2) explicitly accounting for the cost of auditing and treating the

auditing rate as one of the choice variables; and (3) providing optimal contract that

minimise the aggregate cost of the principal as a combination of incentive payments

and auditing costs. In short, our work extends efficiency of incentive-based solutions

89

4.3. Problem Definition: General Setup

by minimising the expense of the outsourcer. It also extends applicability by employ-

ing a general abstraction of verification method that can be captured by the notion

of cost and auditing capacity. We also address the problem of leakage of information

about task allocation during contract implementation, and that agents can collude in

cheating the principal through a simple bounty hunter scheme. Finally, we also address

the problem of double moral hazard commonly seen in principal-agent models. Our

situation is slightly harder than others in economic context, in that the principal has

complete advantage in cheating, as its utility can be completely realised before spend-

ing any efforts. To resolve this, we make use of cryptographic mechanisms to allow

agents detect that the principal has cheated and punish it accordingly.

4.3 Problem Definition: General Setup

In this section, we describe the general setting of the problem and basic assumptions

behind our model. A list of notations is provided in Table 4.1 for reference.

The outsourcer, which we refer to as the principal1 has a deterministic computation

task to be executed to obtain the output (result). Instead of executing the task itself,

the principal hires a set of agents2 to do this. The principal aims to enforce fully honest

computation of the task through setting a contract, involving rewards, auditing, and

punishments (fines).

The principal and the agents are each selfish non-cooperative expected utility max-

imisers. Initially, we assume that everybody is risk-neutral, i.e., they have no strict

preference between their expected utility and their utility of expected reward, and

hence [58, ch.2.4], their utilities are linear function of the costs (with negative sign)

and the rewards (with positive sign). Moreover, we assume that agents are “lazy but

not malicious”, that is, they do not have any interest in potentially reporting dishonest

computations other than saving in their computation cost. Suppose the range and the

probability distribution of the computation result is known. Generating a guessed out-

put according to this distribution has zero computation cost and accuracy probability

of q0 (which can be negligibly small if the range of the output is large). For the sake

of generality, as in [15], suppose each agent also has access to a private and indepen-

dent tricky algorithm Alg that generates the correct output with probability q1, where

q0 < q1 < 1, at the cost of c(q1) ≥ c(q0) = 0. The cost of honest computation is c(1),

which is strictly greater than c(q1).3 To enforce honesty of the agents, the principal

1Also called the boss [15], master [38], outsourcer [32], client [56], data owner [105], etc.
2Also referred to as the workers, servers, clouds, or contractors.
3 Using the same method in [15], we will explain at the end of this section how to discourage the

use of this tricky algorithm Alg, and thus eliminating the need for q0 and q1 in our analysis.

90

4.3. Problem Definition: General Setup

audits the returned result with probability λ. We assume that auditing is perfect, i.e.,

if the output is indeed correct, the audit definitely confirms it (no “false positives”),

and if the output is incorrect, the audit surely detects it (no “false negatives”). In the

most basic contract, the principal decides on an auditing rate λ, sets a penalty (fine)

f for detected erroneous answers and reward r otherwise. What make the problem

non-trivial are the following observations:

1. Costly detectability of cheating: that auditing all of the results is either

infeasible or undesirable. Regarding the infeasibility, suppose that in the long

run the principal has a continuous demand (e.g. the Folding@Home project) of

tasks awaiting computation, appearing at a rate ρ tasks per unit time. Also,

suppose that each audit takes the principal ν machine cycles, and the compu-

tation capacity of the principal’s machine is κ cycles per unit time. Then the

maximum feasible rate of verification is κ
νρ .4 Moreover, auditing (e.g. through

re-computation) may be costly as it will consume the computation power of the

principal’s machine and slow it down, or it will require obtaining additional hard-

ware. The principal chooses the probability of auditing of a task λ ∈ [0,Λ], where

0 < Λ ≤ 1 is associated with the computational capacity of the principal. The

principal incurs the cost Γ(λ) which is non-decreasing in λ. For simplicity of ex-

position, we assume a linear relation: Γ(λ) = γλ for a given γ ≥ 0. An alternative

to the occasional redoing of the whole computation by the principal can be using

a third-party cloud that is highly reliable but costly (with per access cost of γ).

For this scenario, the maximum auditing rate Λ is one, i.e., all of the tasks could

be audited, albeit at an excessive cost.

2. Limited enforceability of the fines: The problem of verifiable computing

could become trivial if there is no bound on the fine that can be practically

levied on a wrongdoer: as long as there is even a tiniest probability of detection,

then the principal can make the expected utility of the smallest likelihood of

cheating become negative by setting the fine for erroneous results large enough.

The issue with this argument is that such a fine may be extremely large and

hence, become an incredible threat, in that, if the cheating of an agent is indeed

caught, the fine is practically or legally non-collectable. Thus, existence (fea-

sibility) results of honesty enforcement that rely on choosing a “large enough”

4Note that even when the principal is verifying at full capacity, it should not pick the next immediate
task to verify after finishing the previous one, since it may create a “learnable” pattern of audited tasks,
which the agent can use to only be honest when computing them. This however can be avoided if the
principal picks uniformly randomly tasks at the rate of κ

νρ
and store them in a queue. However, the

practical buffer has a storage limit. Consequently, the maximum feasible auditing rate with no essential
pattern is strictly less than the full capacity rate κ

νρ
.

91

4.3. Problem Definition: General Setup

fine are rather straightforward and uninteresting. In particular, such approaches

leave unanswered the question of whether honest computation is still attainable

for a bounded enforceable fine below their prescriptive threshold. Moreover, such

results do not provide a good metric of comparison between alternative incentive

schemes, or across different choices of parameters for a particular scheme. We

will explicitly introduce F ≥ 0 in our model to represent the maximum enforce-

able fine and obtain the optimal contracts subject to f ≤ F . This can be the

“security deposit”, prepaid by the agent to the principal, that is collectible upon

a provable detection of an erroneous result. A special case of interest is F = 0,

i.e., when the only means of punishment is refusal to pay the reward.

3. Limited budget: As with the maximum enforceable fine to make it a credible

threat, the maximum instantaneous “budget” of the principal leads to a bound

on the reward to make it a credible promise. Let the maximum instantaneous

payable reward by the principal be R. Thus, we require: r ≤ R.

In the language of game theory, the contract offering and computation process above

can be conveniently captured using the notion of Stackelberg game [82]. The general

notion of game can be expressed as follows:

Definition 4.1. Let P denote the principal and A denote the set of agents. Let O be the

a set of possible contract offers, and {Di}i∈A be the set of agents’ decision spaces, with

H ∈ Di denotes the decision to accept the contract and perform honest computation.

Let {bi}i∈A with bi : O × (×i∈ADi) → R be the set of agents’ benefit functions, and

C : O × (×i∈ADi) → R be the principal’s cost function such that C(o, (di)i∈A) = ∞5 if

some di 6= H . With respect to the above, an outsourced computation game consists

of the following stages:

1. Leader: the principal P picks a contract offer o ∈ O, and

2. Followers: the agents A participate in a strategic-form game Γo = 〈A, {Di}i∈N ′ ,
{ui}i∈A〉 with ui((di)i∈A) = bi(o, (di)i∈A). Suppose the agents select a strategy

profile (di)i∈A, the principal P receives utility uP (o, (di)i∈A) = −C(o, (di)i∈A).

The main objective of this work is to find an optimal contract for the principal,

which implies its minimum expense whilst guaranteeing agents’ participation and fully

honest computation. This can be translated to finding an equilibrium point of the

above game involving a principal’s offer o ∈ O and the agents’ strategy profile d ∈
×i∈ADi such that d = {H , . . . ,H }. Indeed, from standard techniques for analysing

5This emphasises that the principal strictly aims at having its offer accepted and honestly executed.

92

4.3. Problem Definition: General Setup

Stackelberg games, an effective way to find such equilibrium is to look for a contract

offer that yields minimum cost to the principal, given that the contract terms are

attractive enough to guarantee agents’ participation and honesty. In other words, it

means to solve the following optimisation problem:

min
o∈O

C(o,H , . . . ,H)

s.t. d = (H , . . . ,H) is a Nash equilibrium of Γo.
6 (4.1)

For the rest of the chapter, we strictly rely on the above optimisation problem to

compute the desirable contracts for the principal under various settings.

4.3.1 Eliminating Clever Guesses

An inherent problem of outsourced computation is that the agent can be lazy and

cleverly guess (using a tricky algorithm Alg) the result, instead of honestly computing

for it. Even worse, if the guess is correct, it is unlikely to be distinguishable from an

honestly computed one. For instance, consider the question of whether a large natural

number is a prime: the deterministic guess of “no” is most likely correct. When the

principal receives an answer, it then performs recomputation to check if a number is

prime, then compare with the received answer. Thus, a correct guess would get away

with a reward. Since we want to ensure honesty, it is desirable to punish the agent

even if the returned output is correct. However, this might be infeasible if the principal

cannot bind the correctness of the result to the honesty of the agent.

One way to mitigate the possibility of “clever” guesses is to enlarge the output

range by requiring the agent to return not just the final computation output, but also

snapshots of intermediate steps of the computing process [15]. Consider the example

of computation that checks primarity of a number above. A completely random guess

would have success chance q0 = 0.5. A tricky algorithm that always answer “no” would

succeed with probability q1 increasing with the value of the input. If we require as

part of the output not just the answer, but also temporary data produced during the

primarity test, a completely random guess would have success chance q0 = 2−b where b

is the size of the output in bits. On the other hand, a much more tricky and complicated

algorithm Alg′ is required to guess both the answer and the temporary data, if the agent

wants to keep up with the success probability q1 as previously. The principal, on the

other hand, also needs to perform recomputation and collects temporary data as well

as the answer to compare with the agent’s report.

6When there is only one agent, then the requirement effectively becomes H ∈ arg maxd∈D u(d).

93

4.3. Problem Definition: General Setup

Table 4.1: List of main notations

parameter definition

λ probability of auditing an outsourced computation by the principal

Λ the physical upper-bound on λ

γ cost of auditing (incurred by the principal)

q probability of a correct computation by the agent

q0 the correctness probability of a random guess from the output space

q1 the correctness probability of a guess from the output space by tricky algorithm Alg

c(q) the expected cost of computation to an agent for the correctness level of q

c(1), c cost of an honest computation to an agent

f fine collected from agent upon detection of an erroneous computation

F the maximum enforceable fine

r reward to the agent for an unaudited or audited and correct computation

R the maximum feasible reward

z the reserve utility (a.k.a., fallback utility or aspiration) of the agent

H auxiliary coefficient defined as c(1) + z (§4.4)

K auxiliary coefficient defined as (c(1)− c(q1))/(1− q1) (§4.4)

C the expected cost of the contract to the principal

α probability of using two agents for the same computation (§4.5.1)

F0 auxiliary coefficient defined as c/Λ− c (Proposition 4.5, §4.5.1)

F1 auxiliary coefficient defined as c[c− γ]+/[2γ − c]+ (Proposition 4.5, §4.5.1)

β probability of auditing by the principal if the task is assigned to two agents and the returned

results are different

ν probability of auditing by the principal if the task is assigned to two agents and the returned

results are the same

94

4.4. Contracts for Single Agent

As borrowed from [15], we make an assumption that it is practically impossible to

design an algorithm Alg′ that can help the agent effectively and efficiently guess both

the temporary data and the answer accurately 7. In other words, we assume that for

all possible attempts to design a PPT algorithm Alg′ for any relevant computation

in reality, q1 = ε(b), where ε is a negligible function, and b is the size of the output

required. Both q0 and q1 are thus assumed to be negligible in b, meaning that we can

set b arbitrarily large so that we can neglect q0 and q1 altogether. This means that for

convenience of our analysis, we may reasonably assume further that q0 = q1 = 0 for the

rest of this chapter. As an extra step, in Section 4.8.1 we will discuss the use of hash

function to resolve the case when the size b of output is large, which might be prohibitive

for transmission of result. Nevertheless, from now on we assume q0 = q1 = 0, which

suggest us to also assume the worst-case scenario that c(q0) = c(q1) = 0, that is, the cost

of making a totally incorrect guess is zero. As a result, we may also eliminate all agents’

strategies of employing any tricky algorithm other than a “completely” incorrect guess,

as they yield the same effect. We also denote c = c(1), the cost of honest computation.

4.4 Contracts for Single Agent

In this section, we consider the case where the contract is designed for and proposed

to only one computing agent. We provide the optimal contract for the basic model in

subsection 4.4.1. In subsection 4.4.2, we investigate what happens if the risk-neutrality

assumption of the agents is relaxed. We close the case of single-agent in subsection 4.4.3

by generalising our results to contracts in which the principal is allowed to reward

unaudited and verified tasks potentially differently. In Section 4.5, we will investigate

the multi-agent case.

In this first type of contracts, we consider an outsourced computation game having

the following set of contract offers

O = {(r, f, λ) | r ∈ [0, R] ∧ f ∈ [0, F] ∧ λ ∈ [0,Λ]}

Since there is only one agent, the game Γo for o ∈ O effectively becomes itself an

optimisation problem. Denote the agent by A, we now construct its decision space and

utility function. In particular, the agent’s action given the parameters o = (r, f, λ) of

the contract set by the principal, is first whether to accept it, and if so, whether to

honestly compute it, or make a guess. This means that we can set the agent’s decision

7Although theoretically there exist computations whose temporary data can be easily guessed, but
we believe that real-world computations which require outsourcing are complex enough for guessing of
intermediate step data to be infeasible.

95

4.4. Contracts for Single Agent

to be D = {⊥, 0, 1}, that is, the agent is free to either reject (⊥) the contract or accept

it and be correct with chosen probability 0 or 1, respectively.

4.4.1 Optimal Contract for a Single Agent

The principal chooses the contract by setting the rate of auditing and reward and

punishment values, in order to maximise its own utility and ensure fully honest com-

putation. Following (4.1), the contract parameter o = (r, f, λ) should be chosen such

that 1 = arg maxD uA(q). This can be broken into two parts: uA(1) ≥ uA(0) and

uA(1) ≥ uA(⊥). The former guarantees that if the agent accepts the contract, it will

perform the computation honestly, and the latter ensures that the agent will accept

contract. With respect to the Principal-Agent modelling in game theory (e.g. [58, ch.7]

or [122, ch.6]), we will refer to the former as the incentive compatibility constraint,

which appears as follows:

uA(1) = r − c ≥ uA(0) = (1− λ)r − λf (4.2)

The agent accepts the contract if its expected utility is larger than its reserve utility, z ≥
0.8 Given incentive compatibility, the latter condition, called participation constraint,

is hence:9

uA(1) = r − c ≥ uA(⊥) = z. (4.3)

Given the above requirements and based on the general optimisation problem in (4.1),

the optimal contract for the case of single agent reduces to the solution of the following:

min
r,f,λ
C := r + γλ (4.4a)

s.t. r ≤ R, 0 ≤ f ≤ F, 0 ≤ λ ≤ Λ, (4.4b)

r ≥ H, rλ+ fλ ≥ K (4.4c)

8The reserve utility (also referred to as the fall-back utility or aspiration wage) is the minimum utility
that the agent aspires to attain or can obtain from other offers. Naturally, z ≥ 0. Note that an implicit
assumption here is that the agent is replaceable by any other agent with the same fall-back utility, i.e.,
there are many agents available with the same reserve utility. Without this assumption, the agent has
negotiation power by refusing the contract knowing that it cannot be replaced. Alternatively, z can
be thought as to (exogenously) capture the negotiation power of the agents. This is an assumption we
make throughout this work.

9Participation constraint is sometimes also called Individual Rationality constraint.

96

4.4. Contracts for Single Agent

where (4.4c) is derived from (4.2) and (4.3) in which we have used the auxiliary coeffi-

cients H := c+ z and K := c for brevity. Then:

Proposition 4.1. With the parameters given in Table 4.1, the contract that enforces
honest computation and is accepted by the agent, and minimises the cost of the principal
is by setting f∗ = F and choosing λ∗, r∗ as given by the following:10

γ ≤
K

Λ2
:


[
K

Λ
−H]+ ≤ F : λ∗ =

K

H + F
, r∗ = H, C∗ = H +

γK

H + F

[
K

Λ
−R]+ ≤ F < [

K

Λ
−H]+ : λ∗ = Λ, r∗ =

K

Λ
− F, C∗ =

K

Λ
+ γΛ− F

(4.5)

γ >
K

Λ2
:



[
√
Kγ −H]+ ≤ F : λ∗ =

K

H + F
, r∗ = H, C∗ = H +

γK

H + F

[
√
Kγ −R]+ ≤ F < [

√
Kγ −H]+ : λ∗ =

√
K

γ
, r∗ =

√
Kγ − F, C∗ = 2

√
Kγ − F

[
K

Λ
−R]+ ≤ F < [

√
Kγ −R]+ : λ∗ =

K

R+ F
, r∗ = R, C∗ = R+

γK

R+ F

(4.6)

For F < [KΛ − R]+, the optimisation is infeasible, i.e., there is no honesty-enforcing

contract that is also accepted by the agent.

Proof. We present the proof for the case of γ > 0. The case of γ = 0 follows more

simply. For simplicity, let us fix a feasible fine and compute the solution in terms

of f . In the end, we will show that f = F is indeed optimal.11 We will ignore the

constraint of λ ≥ 0 since it is strictly implied by the constraints in (4.4c) (the incentive

compatibility). Furthermore, r ≥ H implies r > 0.

We use the Karush-Kuhn-Tucker (KKT) conditions [11] to solve the above nonlin-

ear (non-convex) programming.12 Note that our cost and constraint functions are all

continuously differentiable. We first use the Mangasarian–Fromovitz constraint quali-

fication (MFCQ) to establish that any minimum must satisfy the KKT conditions, i.e.,

KKT are necessary conditions of optimality. In the absence of equality constraints,

the MFCQ condition means that the gradients of the active inequality constraints are

positive-linearly independent at optimum points. For reader’s convenience, we sum-

marise the notion of KKT and MFCQ in Appendix A.

In the special case of R = H, the constraints r ≥ H and r ≤ R imply r = H = R,

and hence, the optimisation problem can be rewritten with only λ as a variable, which is

simple to analyse. When R > H, only one of the constraints r−R ≤ 0 and H − r ≤ 0

is ever active. We will investigate them one at a time. The gradients of the other

inequality constraints r − R ≤ 0, λ − Λ ≤ 0 and K − rλ − fλ ≤ 0 are respectively:

10The notation x+ := max{0, x}.
11Alternatively, the following simple argument shows from the beginning that f must be at its

maximum value F : Note that the principal can increase the auditing rate λ, or reward r or the fine f
in order to enforce the incentive compatibility constraint. Of these three variables, only increasing the
fine is costless to the principal.

12The nonconvexity arises due to the second inequality in (4.4c).

97

4.4. Contracts for Single Agent

(1, 0), (0, 1) and (−λ,−r − f). Note that only for f = K/Λ − R, the last three

inequalities can be all active. For this case, the domain of feasible solutions reduces to

the singleton point of r = R, λ = Λ. For f < K/Λ − R, no feasible solution exists.

For all other cases, at most two of the constraints are active at a time, whose gradients

can never be linearly dependent: (1, 0) and (0, 1) are clearly linearly independent, and

both elements of (−λ,−r − f) are strictly negative, hence it is linearly independent

from each of the other two. Now, consider the H − r ≤ 0 constraint whose gradient

is (−1, 0). Note that three of the constraints may be simultaneously active, but their

gradient will not be positive-linearly dependent, because both elements of (−λ,−r−f)

are strictly negative. Hence, the MFCQ normality condition holds.

To systematically obtain the KKT conditions, we introduce the dual multipliers µ1,

µ2, µ3 and µ4, and transform the problem in (4.4) as follows:

min
r,f,λ,µi

C̄ = r + γλ+ µ1(r −R)+µ2(λ− Λ) + µ3(H − r) + µ4(K − fλ− rλ)

s.t.: primary feasibility: r ≤ R, λ ≤ Λ, r ≥ H, rλ+ fλ ≥ K (4.7a)

duality feasibility: µ1, µ2, µ3, µ4 ≥ 0, (4.7b)

complementary slackness: µ1(r −R) = 0, µ2(λ− Λ) = 0, (4.7c)

µ3(H − r) = 0, µ4(K − fλ− rλ) = 0. (4.7d)

The first order conditions of optimality are:

∂C̄
∂r

= 0⇔ µ4λ = 1 + µ1 − µ3,
∂C̄
∂λ

= 0⇔ µ4r = γ + µ2 − fµ4. (4.8)

The full solution as in the proposition with F replaced by f is now derived by straight-

forward investigation of the above conditions. This can be done algorithmically by

exhausting the possibilities in the complementary slackness. For readers’ interest we

provide the code to do this in Mathematica, which is given in Appendix B. This same

code is used for all optimisation problems in this chapter. The proof then concludes

by noting that the cost such found is strictly decreasing in f , and hence f∗ = F .

Discussion. The first observation is that the optimal contract should fully utilise the

maximum enforceable fine and punish at no less than F . For large values of enforce-

able fines, we note that r∗ is at H, the minimum value to ensure participation, and

limF→∞ λ
∗ = 0, which yields limF→∞ C∗ = H. These are compatible with intuition as

a huge fine implies that honesty can be enforced with minimum compensation and mi-

nuscule rate of inspection. When auditing is cheap (γ ≤ K/Λ2), increasing the auditing

rate is the better option to compensate for lower values of F to maintain incentive com-

98

4.4. Contracts for Single Agent

0 200 400 600 800 1,000

0.4

0.6

0.8

1

λ∗

r∗

infeasible

Maximum enforceable fine (F)

Figure 4.1: Change of contract parameters r∗, λ∗ w.r.t. the maximum enforceable fine
F (Prop. 4.1, case of γ > K

Λ2), where K = 450, γ = 1200, Λ = 0.7, and c = 400.

patibility (honest computation). This is unless the auditing rate is at its maximum Λ,

in which case, reward must increase above H to maintain incentive compatibility and

compensate for the low value of F . Note that in this case, the participation constraint

is not active and is satisfied with a slack, while the incentive compatibility constraint

is satisfied tightly. For yet lower values of enforceable fine F , even maximum reward

r = R and auditing rate λ = Λ might not impose a strong enough threat against

cheating, hence the infeasibility region. When auditing is expensive (γ > K/Λ2), in

order to retain incentive compatibility in the situation of very low fine F , the principal

should increase reward, and only consider more frequent auditing if the reward budget

R has been reached. Figure 4.1 depicts the optimal parameters of the contract versus

the maximum enforceable fine for the latter case (γ > K/Λ2).

Note that the infeasible region does not necessarily exist. Specifically, when the

principal’s instantaneous budget R is larger than K/Λ, then there is always a feasible

contract. Then even for F = 0, i.e., no enforceable fine, a contract that enforces

honest computing is feasible, albeit by using high values of reward and/or auditing

rate. In such cases, the principal “punishes” audited erroneous computations only

through not rewarding the agent. However, it is clear that honesty cannot be enforced

with zero auditing rate, and hence the case of Λ = 0 trivially leads to infeasibility.

Moreover, to satisfy the participation constraint at all, R has to be at least as large as

H. Hence, for R < H, likewise, there exists no feasible contract for any F . We also

show that except for the special case of γ = 0, the optimal contract has the feature

that it is unique. Figures 4.2a and 4.2b depict the change in the structure of the

optimal contract versus varying auditing cost γ and the maximum auditing capacity,

respectively. From Figure 4.2a, we can see that for larger values of γ, the optimal

contract utilises lower values of inspection rate λ∗ while using higher values of reward r

99

4.4. Contracts for Single Agent

0 500 1,000 1,500 2,000 2,500
0.4

0.6

0.8

1

λ∗

r∗

Auditing cost (γ)

(a)

0.6 0.7 0.8 0.9
0.4

0.6

0.8

λ

r

Auditing capacity (Λ)

(b)

Figure 4.2: Optimal contract parameters w.r.t (a) the auditing cost γ, with K = 450,
Λ = 0.8, c = 400, and (b) auditing capacity Λ, with K = 450, γ = 450, c = 450.

to enforce honest computation. This transition progress culminates when the payment

reaches its threshold R, after which the contract remains unchanged. In contrast,

Figure 4.2b shows how increasing the maximum auditing capacity affects the optimal

contract in the opposite trend: as the principal is more capable of auditing, it should

consider more frequent auditing and lessen the reward for honest computation. The

payment, however, can never be lowered below H to maintain participation.

4.4.2 A Risk-Averse Agent

So far, we modelled the agent as risk-neutral, i.e., one that is indifferent between its

expected utility and utility of expectation, leading to a linear utility function. However,

empirically, individuals tend to show risk-aversion regarding decisions that affect their

income. By definition, (strict) risk aversion is (strict) preference of expected utility over

utility of expectation. Following Jensen’s inequality, this is equivalent to assuming a

(strictly) concave utility function (ref. e.g. [58, ch.2.4]). We have the following simple

but re-assuring result:

Proposition 4.2. The optimal contract given in Proposition 4.1 developed for a risk-

neutral agent stays feasible for any risk-averse agent as well.

Proof. Assume that the agent values its utility uA by a (strictly) concave function u.

The only two constraints in the optimal contract that may change are the incentive

compatibility and participation: (4.2), (4.3). The new participation constraint is: u(r−
c) ≥ u(z). Due to the increasing property of u(·), this new constraints translates back

to r − c ≥ z, hence no change here.

100

4.4. Contracts for Single Agent

For analysing the new incentive-compatibility constraint, let us represent the mixed

action of the agent by L(x, y, 1 − x − y) which means making a random guess with

probability x, using the tricky algorithm with probability y, and doing the honest com-

putation with probability 1 − x − y. With a slight abuse of notation, let X[L] be the

random variable representing the utility of the agent given its mixed action L. Then

the risk-neutral incentive compatibility constraint as given in (4.2) is ensuring that

E [X[L(0, 0, 1)]] ≥ E [X[L(x, y, 1− x− y)]]. Because u(·) is increasing, this inequality

implies: u (E [X[L(0, 0, 1)]]) ≥ u (E [X[L(x, y, 1− x− y)]]). Further, following Jensen’s

inequality, since u is concave, u (E [X[L(x, y, 1− x− y)]]) ≥ E [u (X[L(x, y, 1− x− y)])].

Note that X[L(0, 0, 1)] is a deterministic random variable (specifically, payoff of r−c(1)

w.p. one). Hence: u (E [X[L(x, y, 1− x− y)]]) = E [u (X[L(x, y, 1− x− y)])]. There-

fore, we have shown that (4.2) implies: E [u (X[L(x, y, 1− x− y)])] ≥ E [u (X[L(x, y,

1− x− y)])], which is the incentive compatibility constraint for a risk-averse agent.

Note that even though the feasibility of our contract is guaranteed, its optimality

might no longer hold. This is because a lower value of fine and/or rewards could

potentially maintain incentive compatibility, as intuitively, cheating with a chance of

getting caught can be seen as a lottery. However, because the level of risk-averseness

of an agent is unknown, we argue that it is best practice to design the optimal contract

for the worst case with respect to risk, i.e., risk neutrality. Specially, if a contract

is designed assuming a particular degree of risk-aversion of the agent but the agent

turns out to be less risk-averse than assumed, then the incentive-compatibility for

honest computation may be violated, failing the principal’s intolerance of erroneous

computations. Accordingly, for the rest of this chapter, we will retain risk-neutrality

for agents.

4.4.3 Optimal Contract for a Single Agent: Two-Level Reward

In our contracts so far, verified correct results and unaudited results are rewarded iden-

tically at r. Suppose, alternatively, that the principal rewards r0 for accepted but not

audited results and r1 for corroborated correct answers, and as before, penalises f for

detected wrong computations. This way, the principal may hope to save significantly

by, for example, not paying for unaudited computations. The new incentive compat-

ibility and participation constraints are: (1 − λ)r0 + λr1 − c ≥ (1 − λ)r0 − λf and

(1 − λ)r0 + λr1 − c ≥ 0, respectively. The optimisation of (4.4) for a contract with

two-level reward changes to:

min
r0,r1,f,γ

C := r1λ+ r0(1− λ) + γλ

101

4.4. Contracts for Single Agent

s.t. r0, r1 ≤ R, f ≤ F, 0 ≤ λ ≤ Λ, r1λ+ r0(1− λ) ≥ c, r1λ ≥ c− fλ.

Proposition 4.3. For F ≥ [c/Λ − R]+, the optimal single-agent contract for two-

level rewarding is given as: f∗ = F , λ∗ = c/(F +R), r∗1 = R, r∗0 = Fc/(R− c+ F),

C∗ = c (1 + (γ + c−R)/(F +R)). For F < [c/Λ−R]+, the contract is infeasible.

Proof. The solution can be found by first verifying the MFCQ requirement, then con-

struction of KKT conditions, and finally solving these conditions using exhaustive

search to find the optimal regions. While we omit presentation of the last step as it

involves a large search, we detail the first two steps, and refer to the appendix for a

Mathematica program for searching the KKT conditions. For this we note that it is

obviously best to set f = F , and assume this from now on. Thus the minimisation

problem has only three variables r0, r1 and λ.

We verify the MFCQ conditions in the following. When R = c, it is obvious that

r0 = r1 = c, and hence there is only one variable left, i.e., λ, therefore the problem

becomes trivial. When R > c, the gradients of all inequalities on r0, r1 and λ are

v1 = ∇(r0 −R) = (1, 0, 0); v2 = ∇(r1 −R) = (0, 1, 0); v3 = ∇(−λ) = (0, 0,−1);

v4 = ∇(λ− Λ) = (0, 0, 1); v5 = ∇(c− r0(1− λ)− r1λ) = (λ− 1,−λ, r0 − r1);

v6 = ∇(c− fλ− r1λ) = (0,−λ,−f − r1)

We now show the MFCQ requirement: there exist no ai ≥ 0 with i ∈ 1, 6, not all

zero, such that
∑6

i=1 aivi = 0, in that ai > 0 implies the i-th inequality is active.

We proceed by going through each vector, and rule them out of the potential linear

dependencies one-by-one, until none is left. Consider a1 > 0 which implies r0 = R,

then to form linear-dependency, we need a5 > 0. Consequently, due to the negative

value −λ of the second component of v5, we need either a2 > 0 or a6 > 0 to form

a dependency. However, the second component of v6 is also negative, therefore it is

required that a2 > 0, which implies r1 = R. This, together with r0 = R, contradict

with the fact that c = r0(1− λ)− r1λ = R (due to a5 > 0) because we assume earlier

that R > c. This concludes that a1 = 0, and we thus ignore v1.

If a2 > 0, then to form dependencies we need either a5 > 0 or a6 > 0. The

former cannot be satisfied, because it would require a1 > 0, thus contradicting with

our conclusion above. In the latter a6 > 0, along with others, eventually implies

c = Λ(R+F). In that situation, we have the incentive-compatibility constraint satisfied

only when r1 = R and λ = Λ, and thus the problem becomes trivial. Assuming

c < Λ(R + F) nullifies the chance that a6 > 0, which consequently leads to setting

a2 = 0, since a2 > 0 leads to no positive-linear dependency.

102

4.4. Contracts for Single Agent

Next we set a3 > 0, which implies λ = 0. This is contradict with the incentive-

compatibility constraint, thus we must have a3 = 0. For a4 > 0, we need either a5 > 0

or a6 > 0. If we set a5 > 0, either we need both λ = 1 and λ = 0 since there is no

other available vectors that can form a dependency with v5, which is also not possible.

In case a6 > 0, we then need λ = 0, which does not satisfy incentive-compatibility.

Thus it also holds that a4 = 0. It is then trivial to show that v5 and v6 cannot be

positive-linearly dependent.

Given that the MFCQ requirement is satisfied, an exhaustive search in solving KKT

conditions would yield global minimums for our contract optimisation. The conditions

can be expressed as follows:

min
r,f,λ,µi

C̄ = r1λ+ r0(1− λ) + γλ+ µ1(r0 −R) + µ2(r1 −R) + µ3(−λ)

+ µ4(λ− Λ) + µ5(c− r0(1− λ)− r1λ) + µ6(c− fλ− r1λ)

s.t.: primary feasibility: r0, r1 ≤ R, 0 ≤ λ ≤ Λ, (4.10a)

c− r0(1− λ)− r1λ, c− fλ− r1λ ≤ 0 (4.10b)

duality feasibility: µ1, µ2, µ3, µ4, µ5, µ6 ≥ 0, (4.10c)

complementary slackness: µ1(r0 −R) = 0, µ2(r1 −R) = 0, µ3(−λ) = 0, (4.10d)

µ4(λ− Λ) = 0, µ5(c− r0(1− λ)− r1λ) = 0, (4.10e)

µ6(c− fλ− r1λ) = 0. (4.10f)

The first order conditions of optimality are:

∂C̄
∂r0

= 0⇔ 1− λ+ µ1 − µ5(1− λ) = 0 (4.11)

∂C̄
∂r1

= 0⇔ λ+ µ2 − µ5λ− µ6λ = 0 (4.12)

∂C̄
∂λ

= 0⇔ (r1 − r0)(1− µ5) + γ − µ3 + µ4 − Fµ6 − r1µ6 = 0 (4.13)

Solving the above would give the solution as in the proposition statement.

Discussion of the two level reward contract. First, note that there is no im-

provement in terms of the infeasibility region compared with the single-level reward

contract. However, the achieved cost is always better. This was to be expected as the

single-level rewarding can be thought of as a special case of two-level. However, the

behaviour of the optimal contract now does not depend on the value of the auditing

cost γ. This is where the strength of the two-level rewarding lies: for high values of γ,

the two-level contract increasingly outperforms the single reward-level contract.

103

4.5. Optimal Contracts for Multiple Agents

0 100 200 300 400
0

500

1,000

one level

two level
infeasible

Maximum enforceable fine (F)

(a)

0 200 400 600 800

200

400

600

one level

two level

Auditing cost (γ)

(b)

0 0.2 0.4 0.6 0.8
0

200

400

600

800

one level

two level

infeasible

Auditing capacity (Λ)

(c)

Figure 4.3: Optimal contract expense with (a) c = 400, Λ = 0.7, γ = 1200, R = 500,
(b) c = 400, Λ = 0.7, R = 500, F = 600, and (c) c = 400, γ = 1200, R = 500, F = 600.

Note that the optimal reward for audited and correct results r1 is at the principal’s

maximum budget R irrespective of the value of F . The value of reward for unaudited

results r0 is always strictly less than c, i.e., the cost of honest computation (and hence

strictly less than r1 as well). The value of r0, unlike r1, depends on F : For higher values

of maximum enforceable fine, in fact somewhat unexpectedly, the optimal contract

chooses increasing values of reward r∗0. Still intuitively, a larger threat allows less

necessity for auditing, and thus the contract starts to behave as a “lottery”, in which

the low-chance “winner” receives r∗1 = R and the “loser” r0 < c < R. For completeness,

we visualise in Figure 4.3 the comparison between one-level and two-level reward in

terms of optimal contract expense of the principal.

4.5 Optimal Contracts for Multiple Agents

When there are more than one agent available, the set of possible contracts gets ex-

tended. Specifically, as e.g. [15] and [105] discuss, the principal has the option of

submitting the same task to multiple agents and comparing the outcomes. We will

refer to this option as the redundancy scheme. If the returned results do not match, it

is clear that at least one agent is cheating. Furthermore, as [105] assumes, if the agents

are non-colluding, and returning the intermediate steps along with the computation

result is required, then the probability that the results produced by cheating will be

the same will be negligible, which we again assume to be zero (for simplicity). Hence,

the returned results are correct if and only if they are the same.

In the next subsection, we develop optimal contracts considering two agents. Sub-

sequently, we establish the global optimality of two-agent contracts among any number

of agents with respect to the notion of Nash Equilibrium.

104

4.5. Optimal Contracts for Multiple Agents

4.5.1 Optimal Contracts for Two Agents

Consider the case that there are two agents available A = {1, 2}. As in the single-agent

case, consider a principal that has a computation task and a maximum auditing rate

of Λ. Then, in general, a principal can use a hybrid scheme: it may choose to send

the same job to both of the agents sometimes, and otherwise to one randomly selected

agents. Sending the same task to two agents provides a definite verification, however,

at the cost of paying twice the reward, since both agents must be rewarded for honest

computation. Hence, an optimal choice of redundancy scheme is not immediately

clear, even less so if this schemes is randomised with just choosing one agent and doing

independent audits. In this section, we investigate optimal contracts among all hybrid

schemes.

As the first step, we construct the set of possible contracts the principal P may offer

to the agents. Let α ∈ [0, 1] be the probability that the principal utilises the redundancy

scheme, and hence with probability 1 − α it employs only one of the agents (selected

equally likely)13. If the principal chooses both agents to assign the computation, then

it will reward both agents r if the returned results are identical. Otherwise it with

punish both agents a fine f . In case only one agent if employed, then P audits with

probability ρ. Since auditing only occurs when a single agent receives the task, the

likelihood that the task will ever be audited is λ = ρ(1−α). If we consider α and λ as

parameters of the contract, then it must be the case that α+ λ ≤ 1. Also, because we

account for double rewarding, thus the maximum reward r for each agent must be no

more than R/2. This creates the following set of possible contracts:

O = {(r, f, α, λ) | r ∈ [0, R/2] ∧ f ∈ [0, F] ∧ α ∈ [0, 1] ∧ λ ∈ [0,Λ] ∧ α+ λ ≤ 1}

To form the agents’ behaviours and the game Γo, we firstly assume that neither

there is any collusion between, nor any communication. Therefore, on the event that

any of the agents receives a task, it has no information about the busy/idle state of the

other agent. Excluding the option ⊥ to reject the offer, each agent must choose to be

honest with probability q ∈ [q0, 1] with q0 = 0 due to our argument in subsection 4.3.1.

This makes players’ decision spaces D1 = D2 = D = {⊥}∪[0, 1], where we denote 0 ∈ D
by C and 1 ∈ D by H . We then assume that if either of the agents rejects the offer,

then no contract is signed, and thus their utilities are 0, that is, ui(⊥, ·) = ui(·,⊥) = 0

for i ∈ {1, 2}. Otherwise, let d1, d2 ∈ [0, 1] be “non-rejecting” strategies of agent 1 and

2, respectively. The utilities of the agents can be expressed as follows:

13We will formally show through the proof of proposition 4.6 that equal randomisation is the best
option. Intuitively, this removes any information that the agents may infer upon receiving a task.

105

4.5. Optimal Contracts for Multiple Agents

Proposition 4.4. Let o = (r, f, α, λ) be a two-agent contract and d1, d2 ∈ [0, 1] be the

strategies of the agents, then their utilities are:

ui(di, d−i) =
1

2
(r + (2(−1 + did−i)f + (−1 + 2did−i)r)α− cdi(1 + α) + (−1 + di)(f + r)λ)

Proof. The utility of agent i comprises two parts: when it is the only employed agent,

and when both agents are employed. They occur with probabilities (1 − α)/2 and α,

respectively. Let ρ = λ/(1−α) be the probability that the agent will be audited given

that it is the only employed agent, then agent i’s expected utility for former case is:

1− α
2

((1− (1− di)ρ)r − (1− di)ρf − cdi)

=
1− α

2

((
1− (1− di)

λ

1− α

)
r − (1− di)

λ

1− αf − cdi
)

=
1

2
(cdi(−1 + α) + (−1 + di)fλ− r(−1 + α+ λ− diλ))

Similarly, agent i’s expected utility for the latter case is

α(did−ir − (1− did−i)f − cdi)

Summing the above two terms would give agent i’s net utility as in the proposition

statement.

An important point about the expression of ui(di, d−i) in the above proposition

is that ui is linearly in di. We then recall from our basic optimisation problem (4.1)

that we want (H ,H) to be a Nash equilibrium, meaning that ui(H ,H) ≥ ui(⊥, ·),
and that H = arg maxdi∈[0,1] ui(di,H). Note that it is also possible that (C ,C) is

another equilibrium, but such is a rather uninteresting because both agents would be

punished with higher chance, and thus receive worse utility than with (H ,H), both

individually and socially. Due to the linearity of ui in di, the latter is satisfied when

ui(H ,H) ≥ ui(C ,H). Following the above proposition, the values of these two sides

are :

uA(H ,H) =
1 + α

2
(r − c), uA(C ,H) =(1− α− λ)

r

2
− (α+

λ

2
)f.

Assume for simplicity that agents’ reserve utility is u(⊥, ·) = z = 0, we have the

participation and incentive compatibility constraints respectively as

r − c ≥ 0, r ≥ (1 + α)c/(λ+ 2α)− f.

106

4.5. Optimal Contracts for Multiple Agents

On the other hand, given that agents’ strategy profile is (H ,H), the expected cost of

the contract to the principal is:

C = 2rα+ γλ+ r(1− α) = (1 + α)r + γλ.

Therefore, the optimal contracts for two agents that make (H ,H) an equilibrium can

be found by soling the following optimisation problem, as given in Proposition 4.5:

min
r,f,α,λ

C := r(1 + α) + γλ subject to:

r ≤ R/2, f ≤ F, 0 ≤ λ ≤ Λ, λ ≤ 1− α, α ≥ 0, r ≥ c, r ≥ c(1 + α)

λ+ 2α
− f.

Proposition 4.5. Let F0 = c/Λ − c and F1 = c[c − γ]+/[2γ − c]+,14 the optimal

one-level reward two-agent contract that makes (H ,H) a Nash equilibrium is:

F1 ≤ F : f∗ = F, α∗ =
c

2F + c
, λ∗ = 0, r∗ = c, C∗ = c(1 +

c

2F + c
)

F0 ≤ F < F1 : f∗ = F, α∗ = 0, λ∗ =
c

c+ F
, r∗ = c, C∗ = c(1 +

γ

F + c
)

F < min(F0, F1) : f∗ = F, α∗ =
c− Λ(c+ F)

c+ 2F
, λ∗ = Λ, r∗ = c, C∗ =

c(c+ F)(2− Λ)

c+ 2F
+ γΛ

Proof. Similar to the optimisation of previous contracts, we use the KKT conditions to

find the optimal contract for two agents. For simplicity we assume that f = F , as this

does not affect the optimal solution. Then, we employ dual multipliers µi, for i = 1, 7,

such that

min
r,λ,α,µi

C̄ =r(1 + α) + γλ+ µ1(r −R) + µ2(c− r)

+ µ3(c(1 + α)− (f + r)(λ+ 2α)) + µ4(−α)

+ µ5(−λ) + µ6(λ− Λ) + µ7(λ− (1− α))

s.t.: primary feasibility: c ≤ r ≤ R, 0 ≤ λ ≤ Λ, α ≥ 0, λ ≤ 1− α,
c(1 + α) ≤ (f + r)(λ+ 2α)

duality feasibility: µ1, µ2, µ3, µ4 ≥ 0,

complementary slackness: µ1(r −R) = 0, µ2(c− r) = 0,

µ3(c(1 + α)− (f + r)(λ+ 2α)) = 0, µ4(−α) = 0,

µ5(−λ) = 0, µ6(λ− Λ) = 0, µ7(λ− (1− α)) = 0.

14We adopt the convention that x/0 = +∞ for x > 0.

107

4.5. Optimal Contracts for Multiple Agents

Along with these are the stationarity conditions:

∂C̄
∂r

= 0⇔ 1 + α+ µ1 − µ2 − µ3(λ+ 2α) = 0

∂C̄
∂λ

= 0⇔ γ − µ3(f + r)− µ5 + µ6 + µ7 = 0

∂C̄
∂α

= 0⇔ r − µ3(2f + 2r − c)− µ4 + µ7 = 0

Solving the system of these equalities and inequalities give us the solution as expressed

in the proposition. The last step is to prove that this solution is the global optimal.

Like in the previous contracts, our optimisation problem is not convex, therefore, we

rely on the MFCQ conditions to satisfy for all local minimisers. Recall that R ≥ c > 0,

γ > 0, F ≥ 0, and 1 ≥ Λ > 0. We first consider the case R = c, which implies r = c.

The optimisation problem now reduces to two variables λ and α, which is convex,

and hence can be effectively solved using the KKT method, which gives the optimal

contract identical to that in the proposition.

When R > c, we consider the gradients of all inequality constraints on three vari-

ables α, λ and r:

v1 = ∇(r −R) = (0, 0, 1); v2 = ∇(c− r) = (0, 0,−1);

v3 = ∇(c(1 + α)− (f + r)(λ+ 2α)) = (c− 2(f + r),−(f + r),−2α− λ);

v4 = ∇(−α) = (−1, 0, 0); v5 = ∇(−λ) = (0,−1, 0);

v6 = ∇(λ− Λ) = (0, 1, 0); v7 = ∇(λ− (1− α)) = (1, 1, 0).

We now prove that there are no positive-linear dependencies among these vector, i.e.,

there exist no ai ≥ 0 with i = 1, 7 not all zero, such that
∑7

i=1 aivi = 0, in that

ai > 0 implies the i-th inequality is active. We first starts with a1 > 0, which implies

r = R, and that either a2 > 0 or a3 > 0 to form a linear dependency. However,

a2 > 0 implies r = c < R, which is contradicting, and thus we have a3 > 0. However,

the first component of v3 is c − 2(f + r) < 0, therefore we need a7 > 0 for linear

dependency, giving λ = 1 − α. If no other vectors are involved, then it must be that

c−2(f+r) = −(f+r) (because v7 = (1, 1, 0)), implying c = f+r = f+R > c, which is

contradictory. Otherwise when c−2(f+r) < −(f+r), we need a5 > 0, as it is the only

remaining vector with the second component being negative, implying λ = 0 and thus

α = 1. Plugging this to the active third constraint would give 2c−2(f +R) = 0, which

is not possible. This concludes that a1 = 0 in all linear dependency. This also indicates

a2 = 0, as otherwise there is no vector (apart from v1) with the third component being

positive to form a linear dependency with v2.

108

4.5. Optimal Contracts for Multiple Agents

Meanwhile, a3 > 0 implies the last component of v3 is −2α− λ = 0, or α = λ = 0.

However, we recall that a3 > 0 implies a7 > 0, which means that λ = 1 − α, which is

impossible when α = λ = 0. This concludes that a3 = 0. For if a4 > 0 and α = 0,

then because the first component of v4 is negative, we need a7 > 0 and λ = 1 − α,

which likewise implies a5 > 0 and λ = 0, which is again contradicting, thus a4 = 0.

Finally, a5 and a6 cannot be both positive, because that means Λ = 0. This concludes

the proof that there is no positive-linear dependency in all possible contracts.

Corollary 4.1. If auditing is more expensive than the cost of honest computation

(γ ≥ c), the optimal contract only uses the redundancy scheme. When γ ≤ c/2, either

there is no redundancy scheme (α = 0) or the whole auditing capacity is used (λ∗ = Λ).

The first part of the corollary is quite intuitive: when γ > c, any instance of

outsourcing to a single agent and performing independent auditing can be replaced by

the redundancy scheme (job duplication) and strictly lower the cost by γ − c.

Further Discussion. First, note that in our optimal two-agent contract, as long as

R ≥ 2c, there is no infeasible region: there is always a contract that makes (H ,H) an

equilibrium. Moreover, the payment to any of the agents is never more than the cost of

honest computation. Figure 4.4a provides a pictorial representation of the proposition

where c/2 < γ < c and Λ = 0.5. When the enforceable fine is large, the redundancy

scheme is preferable. This is despite the fact that the redundancy scheme is more

expensive than auditing: it costs an extra c as opposed to γ < c. In other words, for

high values of fine, the redundancy scheme is a more effective threat against cheating

than independent auditing. When F is less than F1, the independent auditing becomes

the preferred method. For lower values of F , when the auditing capacity is all used up,

the redundancy scheme is added to compensate for the low value of fine to maintain

incentive compatibility. Figure 4.4b depicts the effect of auditing capacity, Λ, on the

optimal contract where c/2 < γ < c. When Λ = 0, redundancy scheme is the only

means to enforce honest computation. If furthermore no fine can be enforced (F = 0),

then α = 1: the job should be always duplicated. As Λ increases, there is a gradual

transition from using redundancy scheme to independent auditing (F < F1).

4.5.2 Global Optimality of Two-Agent Contracts

In developing the optimal contracts for two-agent case, we made a few critical assump-

tions: (a) the independent auditing is perfect; (b) the agents are non-colluding and

non-communicating; (c) the range of intermediate steps is large enough that the prob-

ability of any two guessed results to be same, or the guessed result to be the correct

109

4.5. Optimal Contracts for Multiple Agents

0 500 1,000
0

0.2

0.4

α∗

λ∗

Maximum enforceable fine (F)

(a)

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

α∗(F = 1)

α∗(F = 50)

α∗(F = 150)

ρ∗(F = 1)
ρ∗(F = 50)

ρ∗(F =150)

Auditing capacity (Λ)

(b)

Figure 4.4: Optimal contract (where c = 400, γ = 250) w.r.t. (a) max. enforceable fine
F (Λ = 0.5); and (b) auditing capacity Λ (F1 = 600). Recall ρ = λ

1−α is the conditional
probability of auditing given the job is assigned to a single agent.

result, is negligible; and (d) the agents are lazy but non-malicious. It turns out that

these assumptions are sufficient to warrant global optimality of two-agent contracts

among contracts that engage any number of agents in the following notion:

Proposition 4.6. The contract that hires at most two agents and chooses its terms

according to proposition 4.5, is globally optimal, that is, it achieves the least cost to

the principal among all contracts that employ any number of agents and aim to make

honest computation a Nash Equilibrium.

Proof. Our approach in proving global optimality is to show that any other form of

contract gives neither a stronger mean of punishment, nor less cost of operation to the

principal. First, we provide an argument that if the optimal contract indeed assigns a

task to more than one agent, then it does not benefit from hiring them in a “sequential”

manner. Next, we prove that two-agent contract is the best solution among all “non-

sequential” contracts by converting any given contract to a two-agent contract and

improving the cost of the outsourcer.

Suppose that the optimal contract hired the agents sequentially for a given task.

If in the first step, more than one agent is hired, then there are two possibilities:

either (a) the returned results are the same, in which case, the computation is correct

and there is no point in hiring any more agents and any subsequent steps; or (b) the

returned results are different, which means that at least one of the agents has not

computed the task correctly, in which case, all of the agents can be punished which

includes the wrongdoer, and hence there is no need for any subsequent steps. If in the

first step only one agent is assigned the task, there are again two possibilities: (a) the

agent is audited, in which case the principal unequivocally knows whether cheating has

110

4.5. Optimal Contracts for Multiple Agents

occurred and hence, there is no need for subsequent steps; or (b) the returned result

is not audited. In the latter case, because agents never communicate, the agents that

are hired in the next immediate step can be combined with the single agent hired in

the first step as though they are all hired at the same time. Then, the argument for

multiple agents in the first step can be applied to remove the need for any subsequent

steps. Therefore, any optimal contract is either non-sequential or can be converted to

a non-sequential one.

Now, let αi be the probability that i agents are hired for i ∈ {2, . . . , N} where N is

the maximum number of agents. Let λj be the (unconditional) probability that agent

j is independently audited. Also let pji be the (conditional) probability that agent j

receives the task if i agents are assigned. The expected cost of the contract to the

principal is the following:

C = r
N∑
i=2

iαi + r(1−
N∑
i=1

αi) + γ

N∑
j=1

λj = r

N∑
i=2

(i− 1)αi + r + γ

N∑
j=1

λj

Let ϕj be the probability that agent j receives the task. Then: ϕj =
∑N

i=2 pjiαi +

pj1(1−∑N
i=2 αi). The expected utility of agent j for honest computation given that it

has received the message, and given that the rest of the agents are honest, is simply

r − c. Now, let us define ψj to be the probability that agent j is rewarded given its

strategy is to cheat. Given the honesty of all other agents, agent j is rewarded only

if it is the only one that is assigned the task and it is not audited on. This gives:

ψj = pj1(1 −∑N
i=2 αi) − λj . Therefore, the expected utility of agent j for cheating

given it is assigned the task and all other agents are honest is rψj/ϕj − f(ϕj −ψj)/ϕj .
Hence, the incentive compatibility constraint, i.e., uj(H ,H) ≥ uj(C ,H) with H

representing the honest strategy of other N − 1 agents, becomes: r ≥ ϕj
ϕj − ψj

c − f .

Taking into account the incentive compatibility of all agents, we have:

r + f

c
≥ max

j

∑N
i=2 pjiαi + pj1(1−∑N

i=2 αi)∑N
i=2 pjiαi + λj

The participation constraint given that the honesty of all agents is established is simply

r − c ≥ 0. Thus, the optimal contract is given by the following optimisation:

min
αi,λj ,pji,r,f

C = r
N∑
i=2

(i− 1)αi + r + γ
N∑
j=1

λj

s.t. Nr ≤ R, f ≤ F, λj , pj1, αi ≥ 0, λj ≤ (1−
N∑
i=2

αi)pj1,

N∑
j=1

pji = 1 ∀i,

111

4.5. Optimal Contracts for Multiple Agents

N∑
j=1

λj +
N∑
i=2

αi ≤ 1,
N∑
j=1

λj ≤ Λ,
r + f

c
≥ max

j

∑N
i=2 pjiαi + pj1(1−∑N

i=2 αi)∑N
i=2 pjiαi + λj

, r − c ≥ 0.

Now, suppose there is a claimed solution in which αi > 0 for at least one i ∈ {3, . . . , N}.
In what follows we construct an alternative solution that improves the cost to the

principal in which αi = 0 for all 3 ≤ i ≤ N . Consider this alternative contract:

α̂2 =

N∑
i=2

αi, α̂i = 0 ∀i ≥ 3, λ̂j =

N∑
k=1

λk/N, p̂ji = 1/N ∀i, j, r̂ = r, f̂ = f.

First, we show that given the feasibility of the claimed contract, this alternative contract

is also feasible, and subsequently, establish the improvement in the achieved cost. The

only non-trivial constraint to check for feasibility of the above contract is the incentive

compatibility constraint:

r + f

c
≥

1
N

∑N
i=2 αi + 1

N (1−∑N
i=2 αi)/N

1
N

∑N
i=2 αi + 1

N

∑N
j=1 λj

=
1∑N

i=2 αi +
∑N

j=1 λj
(4.15)

From the feasibility of the claimed contract, we have:

r + f

c
≥ max

j

∑N
i=2 pjiαi + pj1(1−∑N

i=2 αi)∑N
i=2 pjiαi + λj

⇒ r + f

c
≥
∑N

j=1

(∑N
i=2 pjiαi + pj1(1−∑N

i=2 αi)
)

∑N
j=1

(∑N
i=2 pjiαi + λj

)
=

(∑N
i=2

∑N
j=1 pjiαi +

∑N
j=1 pj1(1−∑N

i=2 αi)
)

(∑N
i=2

∑N
j=1 pjiαi +

∑N
j=1 λj

) =

∑N
i=2 αi + (1−∑N

i=2 αi)∑N
i=2 αi +

∑N
j=1 λj

which gives (4.15). This establishes that the new solution is also feasible. In the first

line of the above argument, we used the following simple lemma:

Lemma 4.1. If we have a ≥ maxj∈J
bj
cj

where cj > 0 for all j ∈ J , then a ≥
∑

j∈J bj∑
j∈J cj

.

Now: Ĉ = r̂
∑N

i=2(i−1)α̂i+ r̂+γλ̂ = r
∑N

i=2 αi+r+γ
∑N

j=1 λj ≤ r
∑N

i=2(i−1)αi+

r + γ
∑N

j=1 λj = C.

The above proposition shows that our contract for two agents is not just a special

case solution of multiple agents, but it is indeed the solution involving any number of

agents. In other words, given the stipulated assumptions, there is no advantage ever in

hiring more than two agents. Incidentally, we also show that the best contracts makes

112

4.6. Side-Channel (Information Leakage)

the probability of any of the agents to be hired equal. This makes intuitive sense, as

unequal probability of task assignment creates some “information” which the agents

can potentially exploit to their benefit, and to the detriment of the principal.

4.6 Side-Channel (Information Leakage)

One of the important assumptions we made in developing our optimal hybrid contract

was that the two agents do not communicate, and hence, upon receiving a task, an

agent is not aware whether the same task is assigned to another agent or not. The

principal uses this ambiguity in its favour to enhance the threat of auditing through

redundancy. However, if agents somehow gain access to this information, the threat

loses its efficacy. Specifically, if redundancy scheme is used, an agent can selectively be

honest if it finds out that the task is outsourced to another agent (hence the name side

channel), and be lax when it knows it is the only recipient of the task. If the principal

supposes such “information leakage”, then the contract optimisation problem must be

modified. Note that the agents now have two distinct information states: one in which

they are the only assignee and another in which, both of them have received the task.

We refer to them as lone recipient and redundancy information states, respectively.

The privacy of information states implies incompleteness of information, and thus the

game Γo played between the agents is no longer a simple “one-shot” game, but becomes

a Bayesian game. Particularly, Γo is of the form 〈A,Ω, 〈Di, Ti, Ci, τi, pi, ui〉i∈A〉, with

Ω = {1, 2, both}, representing employment of agent 1, 2, or both, respectively. For

each (s1, s2) = ω ∈ Ω, τ1(1) = L, τ1(2) = 0, τ1(both) = R, implying the lone recipient

state, unemployment, or redundancy state. Also, agents’ view on Ω is public, i.e.,

p1(s1, s2) = p2(s1, s2) = p(s1, s2) for a probability distribution p induced by the choice

of α in the chosen contract offer o = (r, f, α, λ). The new (ex-post) utility function

effectively becomes, for agents’ strategies d1, d2 : {L, 0, R} → [0, 1]:

ui(ω = i, d1, d2) = (1− (1− di(L))ρ)r − (1− di(L))ρf − cdi(L)

ui(ω = −i, d1, d2) = 0

ui(ω = both, d1, d2) = di(R)d−i(R)r − (1− di(R)d−i(R))f − cdi(R)

The constraints for the general optimisation problem in (4.1) must then be modified, so

that (H ,H) is a Bayesian Nash equilibrium, where H (·) = 1. Due to the fact that τi

is one-to-one, and that ui is linear in di, such requirement of equilibrium translates to

ui(·,H ,H) ≥ ui(·,C ,H) and ui(·,H ,H) ≥ ui(·,⊥,H) = 0, where C (·) = 0. The

new incentive compatibility constraint (preferring honest computation over cheating)

113

4.6. Side-Channel (Information Leakage)

for agent i in the lone recipient information state (ω = i) is thus:

r − c ≥ r(1− ρ)− fρ⇔ rλ ≥ c(1− α)− fλ (4.16)

For the redundancy information state, the incentive compatibility is: r − c ≥ −f ,

because if the agent cheats, the results will be different and the agent will definitely be

punished.15 This constraint is redundant, because the participation constraint is still

r − c ≥ 0, which also implies r − c ≥ −f . Here, we assume R ≥ 2c. This will allow us

to ignore the budget constraint, which is: r ≤ R if α = 0, and 2r ≤ R if α > 0. This

is because the optimal contract turns out to choose r∗ = c and hence, for R ≥ 2c, the

budget constraint is automatically satisfied. 16 Hence, the new optimisation problem

is the following:

min
r,f,α,λ

r(1 + α) + γλ subject to: (4.17a)

f ≤ F, 0 ≤ λ ≤ Λ, λ ≤ 1− α, α ≥ 0, r ≥ c, rλ+ fλ ≥ c(1− α). (4.17b)

The solution is given as the following proposition:

Proposition 4.7. The optimal two-agent contract with information leakage, i.e., where

the agents have access to the information of whether the same task is outsourced to the

other agent or not, enforces honesty in that makes (H ,H) a Nash equilibrium sets

f∗ = F , r∗ = c, and:

γ ≥ c

Λ
:

F ≥ [γ − c]+ : λ∗ =
c

c+ F
, α∗ = 0, C∗ = c+

γc

c+ F

F < [γ − c]+ : λ∗ = 0, α∗ = 1, C∗ = 2c

γ<
c

Λ
:


F ≥ [c/Λ− c]+ : λ∗ =

c

c+ F
, α∗ = 0, C∗ = c+

γc

c+ F

[γ − c]+≤F < [c/Λ− c]+: λ∗ =Λ, α∗ =1−Λ(1+
F

c
), C∗ =c(2−Λ(1+

F

c
))+γΛ

F < [γ − c]+ : λ∗ = 0, α∗ = 1, C∗ = 2c

Proof. We first argue that we can safely assume that the fine is at its maximum value,

i.e., f∗ = F : the principal can manipulate r, λ, α or f in order to enforce the incentive

compatibility constraint in the lone recipient information state. Among these variables,

only increasing the fine is costless to the principal. Moreover, the only two constraints

that f appears in is f ≤ F and the incentive compatibility constraint. Hence, any

15Note that even when the agents know that the redundancy scheme is being used, unless they
coordinate their reported results, guessed results will be the same only with negligible probability. We
will consider the case of collusion in the next section.

16Recall that for R < 2c, the outsourcer can never assign more than one agent with any positive
probability, and hence, the issue of information leakage is irrelevant.

114

4.6. Side-Channel (Information Leakage)

optimal contract can be transformed to one in which f = F , keeping all other pa-

rameters fixed. We use the Karush-Kuhn-Tucker (KKT) conditions [11] to solve the

above non-linear (non-convex) programming. The non-convexity arises due to the in-

centive compatibility constraint (the last constraint in (4.17b)). Note that our cost and

constraint functions are all continuously differentiable. We first use the Mangasarian–

Fromovitz constraint qualification (MFCQ) to establish that any minimum must satisfy

the KKT conditions, i.e., KKT are necessary conditions of optimality. In the absence

of equality constraints, the MFCQ condition means that the gradients of the active

inequality constraints are positive-linearly independent at optimum points.

As we mentioned before, we assume R ≥ 2c, since otherwise, never more than one

agent can be hired. It will turn out that the optimal contract will always choose r∗ = c,

hence the budget constraint of r ≤ R for α = 0 and r ≤ 2R for α > 0 is automatically

satisfied. The remaining inequalities (written in standard form) are −λ ≤ 0, λ−Λ ≤ 0,

λ + α − 1 ≤ 0, −α ≤ 0, c − r ≤ 0, c(1 − α) − Fλ − rλ ≤ 0. The gradients of these

inequality constraints with the order of variables as (λ, α, r) are: (−1, 0, 0), (1, 0, 0),

(1, 1, 0), (0,−1, 0), (0, 0,−1) and (−F − r,−c,−λ). We will consider the cases of α = 1

and α < 1 separately.

If α = 1, we must have λ = 0, which means the only possible active inequalities

are −λ ≤ 0, λ+ α ≤ 1 and c− r ≤ 0, with gradients (−1, 0, 0), (1, 1, 0) and (0, 0,−1).

These gradients are clearly linearly independent and the MFCQ condition holds. If

α < 1, from the last constraint, we must have λ > 0. Now consider two cases: Λ = 1 or

Λ < 1. When Λ = 1, then the constraint of λ ≤ Λ is implied by λ+ α ≤ 1 and α ≥ 0,

and can be removed. Now, if α = 0, then the last inequality c(1 − α) − Fλ − rλ is

implied by c−r ≥ 0 and hence can be removed. The standing inequalities will therefore

be λ + α ≤ 1, c − r ≤ 0, along with the active inequality of −α ≤ 0. The gradients

of these inequalities are respectively (1, 1, 0), (0, 0,−1) and (0,−1, 0), and are clearly

linearly independent. If, on the other hand, 0 < α < 1, then the standing constraints

are: λ+ α− 1 ≤ 0, c− r ≤ 0 and c(1− α)− Fλ− rλ ≤ 0, with the gradients: (1, 1, 0),

(0, 0,−1) and (−F−r,−c,−λ). The last three vectors are linearly independent because

all the elements of the last vector are non-zero given λ > 0. When Λ < 1, first suppose

α = 0. Then, the constraint of λ + α ≤ 1 is inferred from λ ≤ Λ, and hence can be

removed. The standing constraints are λ− Λ ≤ 0, c− r ≤ 0, c(1− α)− Fλ− rλ ≤ 0,

along with the active constraint of −α < 0. The gradients of these constraints are

(1, 0, 0), (0, 0,−1), (−F − r,−c,−λ) and (0,−1, 0). Note that except for the singleton

point of F = c(1/Λ − 1), never all four of these constraints are active.17 Now note

that any three of the gradients are linearly independent given λ > 0. Finally, when

17The optimal contract for such a point can be derived using a continuity argument.

115

4.6. Side-Channel (Information Leakage)

Λ < 1 and 0 < α < 1, the standing constraints are λ − Λ ≤ 0, λ + α − 1 ≤ 0,

c − r ≤ 0 and c(1 + α) − Fλ − rλ ≤ 0, with gradients (1, 0, 0), (1, 1, 0), (0, 0,−1) and

(−F−r,−c,−λ), respectively. As before, the only case that all four of these constraints

can be active is the single point of F = c− r. For all other values of F , at most three

of these constraints are active, whose gradients are linearly independent given λ > 0.

In summary, the MFCQ normality condition holds.

To systematically obtain the KKT conditions, we introduce the dual multipliers µ1

to µ6, and transform the problem in (4.17) as follows:

min
r,α,λ,µi

C̄ = r(1 + α) + γλ− µ1λ+ µ2(λ− Λ) + µ3(λ+ α− 1)

− µ4α+ µ5(c− r) + µ6 (c(1− α)− Fλ− rλ) (4.18)

subject to:

primal feasibility: 0 ≤ λ ≤ Λ, λ ≤ 1− α,
α ≥ 0, r ≥ c, rλ+ Fλ ≥ c(1− α) (4.19a)

dual feasibility: µ1, µ2, µ3, µ4, µ5, µ6 ≥ 0, (4.19b)

complementary slackness: µ1λ = 0, µ2(λ− Λ) = 0, (4.19c)

µ3(λ+ α− 1) = 0, µ4α = 0, (4.19d)

µ5(c− r) = 0, µ6 (c(1− α)− Fλ− rλ) = 0. (4.19e)

The first order conditions of optimality are:

∂C̄
∂λ

= 0⇔ γ − µ1 + µ2 + µ3 − µ6(F + r) = 0, (4.20)

∂C̄
∂α

= 0⇔ r + µ3 − µ4 − cµ6 = 0, (4.21)

∂C̄
∂r

= 0⇔ (1 + α)− µ5 − λµ6 = 0. (4.22)

The full solution is now derived as in the statement of the proposition by straightforward

investigation of the conditions (4.19) through (4.22).

Discussion Firstly, note that the cost of the above contract is clearly higher than

that of the contract with no information leakage, but lower than the cost of single-agent

contract. The latter is because the single-agent contract in (4.4) is a feasible solution

of the above optimisation by setting α = 0. In fact, the cost of the contract is capped

at 2c: when both agents are hired at all times (i.e., with probability one), the incentive

116

4.7. Colluding Agents

compatibility constraint and participation constraint are clearly satisfied with r = c,

giving the contract cost of 2c. This makes the redundancy scheme still an appealing

option specially when the cost of auditing is high or there is little (or zero) capacity for

auditing. Secondly, note that for γ < c, the redundancy scheme is never used for any

value of maximum enforceable fine. When the cost of independent auditing γ is higher

than the cost of honest computation c, if the enforceable fine is below the threshold

of γ − c, it is best to only use the redundancy scheme, but it has to be done with

certainty, i.e., α∗ = 1. Note that with information leakage, never probabilistic usage of

redundancy scheme alone is optimal, because the agents will choose to be lazy when

they know they are not audited. Also like the two-agent contract with no information

leakage (but unlike the single-agent), the optimal reward r∗ is never higher than the

cost of honest computation c, irrespective of the value of the maximum enforceable

fine. Moreover, we observe that for large values of enforceable fine, in contrast to the

no information leakage case, it is the independent auditing mechanism that is now the

preferred method.

4.7 Colluding Agents

Suppose the agents not only know the state of the other agents with respect to the task

assignment, but they can also coordinate their response to report the same guessed

result. This can save them from the cost of honest computation and at the same time,

go undetected. Hence, unlike before, returned results from multiple agents that are

the same may not be correct. The principal can audit the returned results (through

re-computation of the task) when they are the same. Consider two agents. As in the

information leakage setting, each agent has two distinct information state: being the

sole recipient, and being one of the two recipients.

The Bayesian game Γo for collusion is similar to the case of information leakage,

with the exception of players’ utilities when ω = both. This is because when both

agents cheat, they would be rewarded instead of being punished, and hence

ui(ω = both, d1, d2) = (1− (di + d−i − 2did−i))r − (di + d−i − 2did−i)f − cdi (4.23)

Note that similar to the case of information leakage, the principal still has to enforce

honesty when an agent is in its lone recipient information state. This implies ((4.16)):

r ≥ c

ρ
− f (4.24)

In this setting it might still be possible to make (H ,H) an equilibrium as in previous

117

4.7. Colluding Agents

settings. However, it is also possible for (C ,C) to be an equilibrium, in which case the

agents would receive utility ui(both,C ,C) = r which is better than ui(both,H ,H) =

r − c, as they manage to collude and cheat the principal whilst saving the cost of

computation. Thus the agents would prefer (C ,C) over (H ,H), and thus we might

fail to guarantee fully honest computation. One way to dissuade the agents from

colluding is to make collusion a less attractive equilibrium than honesty. To do so,

we add another threat: the returned results from the two agents are audited by the

principal with probability ν, (even) when they are the same. Note that the value of ν

enters the cost of the principal even if honest computation is indeed enforced. This is

because when honest computation is enforced, the returned results are the same too.

Specifically, there will be an additional term of γαν to the principal’s cost. With this

modification, agent i’s utility for redundancy changes from (4.23) to

ui(ω = both, d1, d2) = did−ir + (1− di)(1− d−i)(1− ν)r

− (di(1− d−i) + (1− di)d−i)f − (1− di)(1− d−i)νf

which implies ui(both,C ,C) = r(1 − ν) − fν. Therefore, to make honesty a more

attractive equilibrium than collusion, in the redundancy scheme information state, we

must have:

r − c ≥ r(1− ν)− fν ⇔ r ≥ c

ν
− f (4.25)

Hence, the corresponding optimal contract is given by the following optimisation:

min
r,f,α,λ,ν

r(1 + α) + γλ+ γαν, s. t. : r ≤ R, f ≤ F, 0 ≤ ρ ≤ 1, 0 ≤ ν ≤ 1 (4.26a)

and: ρ(1− α) + αν ≤ Λ, α ≥ 0, r ≥ c, r ≥ c

ρ
− f, r ≥ c

ν
− f. (4.26b)

We have the following proposition:

Proposition 4.8. The optimal contract that enforces honesty in lone information state

and makes collusion a less attractive equilibrium than honest computation in the redun-

dancy information state sets α∗ = 0, i.e., never uses the redundancy scheme at all. The

rest of the parameters of the contract are also according to the optimal contract for a

single agent provided in (4.6).

The result can be derived directly by examining the KKT conditions of the optimi-

sation problem in (4.26) after establishing that KKT conditions are indeed applicable.

However, we provide a simpler proof that delivers more intuition.

118

4.7. Colluding Agents

Proof. Consider a claimed optimal contract that selects an α > 0. We will construct

an alternative feasible contract that employs only one agent (αalt = 0) and strictly

improves the cost, hence reaching a contradiction.

The claimed contract has to satisfy inequalities (4.24) and (4.25) to be feasible.

Now consider an alternative contract alt that only selects one agent and audits it with

probability λalt = ρ(1− α) + αν. The values of the reward and fine are the same. Fist

we examine the change in the contract cost: Calt−C = [r+γ (ρ(1− α) + να)]− [r(1 +

α) + γρ(1 − α) + γνα] = αr, which is strictly positive based on the assumption that

α > 0. Now if we show that this alternative contract is feasible, then we have reached

the contradiction we are after.

The only non-trivial constraint that we need to verify to establish the feasibility of

the alternative contract is the incentive compatibility: we must have:

r − c ≥ r(1− λalt)− fλalt ⇒ r ≥ c

λalt
− f that is: r ≥ c

ρ(1− α) + να
− f

The last inequality can be inferred from (4.24) and (4.25) and the fact that for any

α ≥ 0, we have: ρ(1− α) + να ≤ min(ρ, ν). This completes the proof.

Intuitively, whenever the two agents are to be assigned, the principal can save the

reward to the second agent by assigning the task to only one of them. The principal

will audit the only agent as it would have audited the two agents. This works since

two colluding agents (so far) act as though a single agent anyway.

The above proposition is a negative result: the benefits of redundancy scheme seem

to be all lost if the principal suspects collusion between the agents. However, in what

follows, we introduce two schemes based on the idea of offering “bounties” that, at

least partially, save the redundancy scheme. These bounty schemes better utilise the

incentive of the agents against each other, creating a prisoner’s dilemma-like situation

to undermine collusion. That is, instead of trying to make collusion a less attractive

equilibrium, which we observed is futile in Proposition 4.8, these schemes make collusion

a non-equilibrium. The idea is as follows: when the returned results are different, with

probability β the principal can audit the task and reward the bounty in such cases to

the agent with the correct result (if any). The value of the bounty should be the largest

credible promise, i.e., R. The difference between the two schemes is how they treat the

unaudited cases when the returned results are different:

• Bounty scheme one: when the results are different and auditing does not occur,

both agents are punished at f , which implies,

ui(ω = both, d1, d2) = did−ir + (1− di)(1− d−i)(1− ν)r

119

4.7. Colluding Agents

+ (di(1− d−i) + (1− di)d−i)βR
− (di(1− d−i) + (1− di)d−i)(1− β)f − (1− di)(1− d−i)νf

• Bounty scheme two: when the returned results are different and the task is not

audited, both agents are rewarded at r, i.e.,

ui(ω = both, d1, d2) = did−ir + (1− di)(1− d−i)(1− ν)r

+ (di(1− d−i) + (1− di)d−i)βR
− (di(1− d−i) + (1− di)d−i)(1− β)r − (1− di)(1− d−i)νf

A nice feature of both schemes is that, if they indeed succeed to enforce honesty,

the bounties will never in fact be paid: All that is necessary is the credible promise

of the bounties. In what follows we analyse these two schemes. For both schemes, we

have:

ui(both,C ,C) = r(1− ν)− fν, ui(both,H ,H) = r − c

In bounty scheme one:

ui(both,H ,C) = −c+Rβ − f(1− β) ui(both,C ,H) = −f

In bounty scheme two:

ui(both,H ,C) = −c+Rβ + r(1− β), ui(both,C ,H) = r(1− β)− fβ

Making (H ,H) an equilibrium is automatic in scheme one: r − c ≥ −f for any

f ≥ 0, following the participation constraint r−c ≥ 0. Making (C ,C) a non-equilibrium

requires the following:

−c+Rβ − f(1− β) ≥ r(1− ν)− fν (4.27)

Similarly, making (C ,C) a non-equilibrium for scheme two requires:

−c+Rβ + r(1− β) ≥ r(1− ν)− fν. (4.28)

Moreover, to have (H ,H) an equilibrium in scheme two, one must ensure:

r − c ≥ r(1− β)− fβ (4.29)

120

4.7. Colluding Agents

In both cases, the value of β does not directly enter the cost of the contract to the

principal if honesty is indeed enforced. Hence, the principal can choose the maximum

possible value. In order to make it credible, the principal must have enough auditing

capacity. Specifically, λ+αβ ≤ Λ. Hence the maximum value of β is given as (Λ−λ)/α.

Replacing in (4.27) we obtain the following extra (incentive compatibility) constraint

for scheme one:

(R+ f)(Λ− λ) + (r + f)αν − (c+ r + f)α ≥ 0. (4.30)

Similarly, replacing β = (Λ− λ)/α in (4.28) and (4.29) yields the following for scheme

two:

(r + f)(Λ− λ)− αc ≥ 0, (R− r)(Λ− λ) + ν(r + f)α− cα ≥ 0 (4.31)

Hence, the contract optimisation for bounty schemes one and two are the same as in

(4.26) except that the last constraint in (4.26b), i.e., r ≥ c/ν − f , is replaced with

(4.30) and (4.31), respectively. It turns out, however, that these two innocuous-looking

optimisation problems do not lend easily to closed-form solutions.

In what follows we obtain partial solutions of these optimisations, which provide

insight on the applicability of redundancy scheme in the presence of collusion. First,

note that for any given set of parameters c, F , R, Λ, the best contract for the infor-

mation leakage setting yields a better cost than any feasible contract in the collusion

scenario (both bounty schemes). This is because, compared to (4.17), the optimisation

problem of finding the best contract for bounty schemes one and two each have: (A) an

additional non-negative term in the cost: γαν; and (B) an extra incentive compatibility

constraint, (4.30) in scheme one and (4.31) in scheme two. Therefore, in particular,

if a solution of the optimisation in (4.17) is a feasible solution for the optimisation of

schemes one and two, then it is also optimal for them as well. This happens for exam-

ple when the optimal information leakage contract chooses α = 0, as then, the extra

incentive compatibility constraint in (4.30) and (4.31) are trivially satisfied. Hence, in

the light of Proposition 4.7, we have the following result:

Corollary 4.2. For both schemes one and two, the optimal contract chooses α∗ = 0

for F ≥ [max(γ, c/Λ) − c]+. The rest of the parameters for such cases are f∗ = F ,

r∗ = c and λ∗ = c/(c+ F).

The corollary shows that for large values of the enforceable fine F , assigning a

single agent is the preferred method of outsourcing. However, the corollary leaves

out the question of whether redundancy scheme is ever the preferred method in the

121

4.7. Colluding Agents

presence of collusion with the introduction of the bounty schemes. The next result

provides a positive answer. In particular, we derive sufficient conditions under which,

the redundancy scheme is the preferred method even in the presence of collusion:

Corollary 4.3. In bounty scheme two, for F < [γ − c]+, if Λ ≥ c/min(c+ F,R− c),
the optimal contract chooses redundancy α∗ = 1. The rest of the parameters for such

a case are: r∗ = c, λ∗ = ν∗ = 0, f∗ = F .

The corollary is intuitive: the auditing capacity should be large enough to make

the promise of checking for bounty when the results are different a credible one.

Proof. The corollary follows from a similar logic as in the previous corollary: we will

find cases that the optimal solution of the information leakage contract optimisation in

(4.17) are feasible solutions of the optimisation problem for scheme two. An alternative

to α = 0 is α = 1: if ν = 0 is a feasible choice for scheme two with the parameters

that make α = 1 an optimal solution for the information leakage setting, then the

corresponding contract is optimal for scheme two. From Proposition 4.7, α∗ = 1 when

F < [γ − c]+. The rest of the parameters are λ∗ = 0, r∗ = c and f∗ = F . We

should investigate whether these parameters and ν = 0 satisfy (4.31), which becomes:

(c+ F)Λ ≥ c & (R− c)Λ ≥ c⇔ Λ ≥ c/min(c+ F,R− c), hence the corollary.

The following corollary provides a sufficient condition for scheme one to use the

redundancy scheme.

Corollary 4.4. In bounty scheme one, for F < [γ − c]+, if Λ ≥ 2c/R, the optimal

contract chooses redundancy α∗ = 1. The rest of the parameters for such a case are:

r∗ = c, λ∗ = ν∗ = 0, and notably f∗ = 0.

Proof. The proof is similar to that of Corollary 4.3, with the following exception: Note

from (4.30) that f plays a double edge sword role, and it is no more a priori clear that

maximum fine is the best option. In fact for this case it turns out to be exactly the

opposite. From Proposition 4.7, for F ≤ [γ − c]+, optimal contract is given by r∗ = c,

λ∗ = 0, α∗ = 1 and f∗ = F . However, the value of f ≥ 0 for this region does not affect

the cost and feasibility of the contract, and hence, any f ≥ 0 is in fact also optimal.

Replacing these parameters with a general f and along with ν = 0 in (4.30), we obtain:

(R+f)Λ ≥ 2c+f . Hence a sufficient condition for feasibility (and hence optimality) is

(R+ f)Λ ≥ 2c+ f . The value of f is arbitrarily, the best result is obtained for f = 0,

that is Λ ≥ 2c/R.

122

4.8. Contract Implementation

4.8 Contract Implementation

For completeness of the solutions, in this section we discuss notable technical concerns

on the implementation of our contracts.

4.8.1 Intermediate Steps and Hash Functions

As we discussed in Section 4.3.1, the use of intermediate steps as part of the output

would prevent trivial/clever guessing. However, the data representing intermediate

steps could be large and thus cumbersome for transmission. [15] proposes the use of

cryptographic hash as a sufficient representation of intermediate steps: Instead of send-

ing a large amount of data detailing these steps, the agent can only send the crypto-

graphic hash of such data. On receiving the agent’s hash hA, the principal repeats the

computation, and computes its own hash hP from the intermediate steps, then verifies

that hA = hP .

Informally, the use of hash function is considered secure if it is unlikely that the

agent can come up with the correct hash without knowing the correct intermediate

steps. The authors in [15] require such hash function to be a “random oracle”, i.e., a

function mapping in which each output is chosen uniformly randomly regardless of the

input. While this is a sufficient condition, the notion of random oracle is rather im-

practical, and also an overkill. Indeed, we argue that for this purpose of hash checking,

it is necessary and sufficient that the hash function is “collision resistant”, that is, it

should be difficult to find two different messages with the same hash.

Lastly, note that the process of hashing the intermediate steps may itself carry a

considerable cost. For instance, if the computation task is to hash a large string, then

the cost of hashing the intermediate steps (if the same hash function is used) would be

at least as much as computation cost. Therefore, either the cost of hashing intermediate

steps must be negligible compared to that of the original computation task, or it must

enter the contract model.

4.8.2 Enforcing The Principal’s Auditing

With regards to legal enforcement of the contract, it is necessary that behaviours of

contract participants are observable and verifiable. Actions such as “assigning a job”

or “paying a reward” are of this type. However, the principal’s action of “auditing a

job” is not necessarily observable to the computing agent(s)/contractor(s), as it might

be carried out offline by the principal. It is critical to ensure that the principal really

performs auditing, for two reasons. Firstly, the principal must establish to the agents

its commitment to auditing so as to make the threats credible. Secondly, the agent

123

4.8. Contract Implementation

needs an assurance that the principal cannot cheat and thus take away some of its

benefits (in two-level rewarding). In this subsection we discuss a simple method for an

agent to verify whether the principal has indeed properly performed an audit, where

the auditing method is a simple re-computation. Of course such verification is only

useful if it is a credible threat that the principal will be punished if it claims to have

made an audit but is found otherwise. In this case we assume that the contract can be

legally enforced by an authority (e.g., a court), and thus punishment on the principal’s

cheating/lying is guaranteed if there is enough evidence for the accusation.

Our audit mechanism relies on the use of a non-malleable commitment scheme

(Setup,Commit, Open). Assume existence of a common reference string CK← Setup(k)

for some security parameter k > 0. In its operation, the agent performs the computa-

tion to get a result rA, then produces (cA, dA)← CommitCK(rA||“agent”). The principal

also perform the same operation, except that if it is meant not to audit, then it produces

a random message of the same length. Whether or not this message is the result, we

denote it as rP , along with (cP , dP) ← CommitCK(rP ||“principal”). The principal and

the agent then exchange their commitment values cP and cA, respectively, followed by

the exchange of dP and dA. The principal and the agent then open the commitments

and learn the corresponding messages, say mA and mP , respectively. It is not difficult

to see that this mechanism has the following properties:

• Honest auditing: by checking if mP = rA||“principal”, an honest agent can verify

whether the principal has properly audited, since the use of intermediate steps as

part of the output in the previous subsection guarantees that the principal can-

not efficiently produce the correct output without honestly executing the whole

computation. The principal also does not receive any useful information from the

agent in creating mP due to the hiding property of commitment, and it cannot

produce a message mP related to mA due to the non-malleability of commitment,

and that mP cannot be the same as mA (due to the additional suffix).

• Honest computation: Due to the binding property of commitment, the agent

receives negligible advantage in producing a correct computation result from the

execution of this mechanism. Due to the hiding property of commitment, it also

cannot tell if the principal is meant to audit or not at the time of committing the

computation result.

Using the above mechanism, the principal has negligible advantage in cheating during

auditing, and thus for simplicity we assume from now on that the principal’s action of

“auditing a job” is securely observable and verifiable from the agent’s view.

124

4.8. Contract Implementation

4.8.3 Enforcing Probabilistic Behaviours

Another problem with unobservable strategies is the principal’s probabilistic behaviours.

This becomes clear if we recall our Stackelberg game notion presented in Definition 4.1.

Indeed, in the second stage of the game, the agents (followers) are informed of the con-

tract offer, after which they must decide their course of action. While informing the

offer to the agents can trivially be done, the realistic problem is on how to ensure that

the principal sticks to its chosen strategy, i.e., whether it correctly follows the offer

after the agents’ acceptance. Indeed, an offer can be considered unobservable, as it

might contain probabilistic behaviours, e.g., “employing two agents with probability

α”, are usually unverifiable. Our contracts unfortunately rely on these probabilistic

actions of the principal as explicitly stated in the terms and policies for auditing, task

duplication and/or rewarding (the latter in two-level reward contracts of subsection

4.4.3). Without an appropriate security measure, this is usually not possible, e.g., the

fact that the principal does not audit tells little about whether its auditing probabil-

ity is indeed λ = 0.3 or λ = 0.6. This important implementation issue has not been

discussed in previous works.

Usually this could be achieved cryptographically using multiparty computation

(MPC) [95], in which a sampling function on the principal’s behaviour is accurately and

securely computed among the contract participants. However, MPC assumes pairwise

secure communication among participants, which in this case implies a need for direct

communication between the agents. This poses a potential threat to our model: if

agents can freely communicate, they may as well collude and give identically incorrect

result, thus fooling the principal. Therefore we seek a mechanism that requires no

agent-to-agent communication, in that it is easy for the agents to catch the principal

cheating whenever the principal benefits from doing so.

In order to provably design such mechanism, we need to formalise the underly-

ing security requirements, which capture concepts such as “behaviour”, “deviation”,

“cheating”, “catch”. Informally, the behaviour of the principal is characterised by how

it plans to act (and will eventually do so) in implementing the contract. A plan of

actions for the principal essentially captures the its deterministic choices for all pos-

sible decision-making situations which might arise while executing the contract. An

example of such plan could be: give the task to both agents; if the result coming back

is the same, then reward both. Another example is: give the task to agent 1, then

audit on return. For convenience we denote the set of all possible plans as Ω, which

also contains an element ⊥ representing an invalid plan. The principal P is supposed

to pick a plan ω ∈ Ω according to a contract-specific probability distribution ∆(Ω),

but the agents do not know if P actually follows this distribution, or a different one to

125

4.8. Contract Implementation

its eventual benefit. As a result, we decide to let such a plan be picked by the agents

instead of the principal.

In order to pick a plan, the agents are required to communicate with each other,

with their messages routed through the principal. This requires a well-specified com-

munication protocol among the agents. Recall that our goal is to enforce the principal’s

behaviour to the contract terms. Essentially, the only way to ensure this is to employ a

mechanism that detects the principal’s cheating, as well as a viable option to punish the

principal (e.g., by a court) accordingly. This is one key requirement that our protocol

must satisfy. In addition, our communication protocol must ensure that it facilitates

the nature of the contract, that is, it should accurately emulate the actual action of

probabilistic sampling of behaviour by the principal itself.

More specifically, if the agents execute the protocol honestly, and that the principal

does not tamper with the protocol messages, then the plan picked at the end of the

execution must have probability measure according to ∆(Ω). We name this requirement

correctness. Also, if the principal is picking the plan on its own, the agents should not

know about this, at least until after running the computation task. By emulating such

event, the protocol must likewise ensure that, even though the agents pick the plan,

they should not be aware about such plan, until they have finished the computation

task and returned the result (if employed). We call this property hiding. Next, in order

to detect the principal’s cheating (if any), the agents (after finishing the computation)

need to be informed of the plan that was picked (before the computation) for the

principal. This must be done in a secure way, so that any attempt to inform the agents

of a different plan would be easily caught. We call this the revealing property. Finally,

if the expected punishment is not credible enough, then the threat of being caught

cheating would not deter the principal from deviating. Therefore, we need the last

property, called no revealing, that requires the execution to give the principal no better

benefit than being a honestly sticking to the protocol specification. We summarise

these properties below:

• Correctness: Honest execution of the protocol must ensure that the plan is

picked according to ∆(Ω).

• Hiding: Before the contract is executed, the agents must know nothing about

the plan they have picked for the principal.

• Revealing: After the contract is executed, there must be a secure way for the

previously picked plan to be revealed to the agents.

• No cheating: Suppose that the agents execute the protocol honestly, then the

principal receives no better benefit than being a honest principal.

126

4.8. Contract Implementation

Informally, detection of deviation is a process in which an agent contrasts what

it obverses as the principal’s behaviour against a plan ω ∈ Ω that was picked by

the agents. An inconsistency between the plan and the observed behaviour would

indicate to that agent of the principal’s deviation. Next, we define Bi to be the set of

possible principal’s behaviours observable to agent i, along with consistency relations

∼i such that ω ∼i b ⇔ b ∼i ω for all pairs (ω, b) ∈ Ω × Bi, for i = 1, 2. Here

an observable behaviour is a collection of actions that could be easily and costlessly

reproduced (in front of the judges) for verification. For example, the action of assigning

a job to an agent, or giving a reward (shown in the bank statement) are observable.

In order to capture the principal’s benefit from deviation, we need to define its utility

for each outcome of the contract execution. Essentially this utility is a function uP :

Ω2×(B1×B2\{(∅, ∅)})→ R, in which a tuple (ω1, ω2, b1, b2) ∈ Ω2×B1×B2 indicates the

agents’ views on the chosen plan (i.e., ω1 and ω2), and the principal’s actual behaviour

from each agent’s view (i.e., b1 and b2). Here ∅ denotes the fact that an agent is not

employed, and hence (∅, ∅) should be excluded, since in that case the principal will

need to form a new contract (possibly with different agents).

Our protocol relies heavily on commitments, and hence can be described by a tu-

ple (S, C,D) of setup, commit, and decommit algorithms. The protocol starts by a

honest generation of a common reference string CK by a reputable trusted third party.

This string CK is given securely to all protocol participants. The agents then randomly

choose their plan-picking seeds, and produce commitment and opening values for them.

The agents then exchange their commitment values via the principal, who is able to

intercept and modify such values arbitrarily. After this exchange, the agents proceed

to exchange their opening values, again via the principal. The principal, whilst being

able to open the seeds committed by the agents, however will not pass on the opening

values to the agents (to prevent them from learning each other’s seed) until after it

has assigned the computation tasks and received results from them. Upon receiving

the exchanged opening values, each agent learns the other’s seed, then constructs the

principal’s supposed action plan, and check whether the principal’s behaviour agrees

with such plan. In our adversary model, we assume that only one party can be mali-

cious/curious at a time. We formalise the security requirements below:

Definition 4.2. A secure contract implementation mechanism for ∆(Ω), B1, B2, ∼1,

∼2, and uP : Ω2 × (B1 × B2 \ {(∅, ∅)}) → R is a tuple of PPT algorithms (S, C,D)

satisfying for some negligible function ε the following properties:

• Correctness: an honest execution of the protocol must simulate the principal’s

action plan and the agents’ view in an ideal contract execution, i.e., given the

127

4.8. Contract Implementation

following experiment for k ∈ N:

Prot(∆(Ω), k) :

CK← S(k)

(c1, d1)← CCK(∆(Ω), k)

(c2, d2)← CCK(∆(Ω), k)

ω ← DCK(c1, d1, c2, d2)

return ω

it must hold that Prot(∆(Ω), k) and ∆(Ω) are statistically indistinguishable, i.e.,

sup
ω∈Ω
|Pr[ω ← Prot(∆(Ω), k)]− Pr[ω ← ∆(Ω)]| ≤ ε(k),

• Hiding: an agent who receives a commitment value does negligibly better in

guessing the eventual action plan ω than the one without such value, i.e., for

every PPT algorithm A = (A1, A2) (curious agent), there exists a PPT algorithm

A∗ = (A∗1, A
∗
2) such that

Pr

CK← S(k); (c, d)← CCK(∆(Ω), k); (c′, d′,m)← A1(∆(Ω),CK);

ω ← A2(c,m,∆(Ω),CK);ω′ ← DCK(c, d, c′, d′) : ⊥6= ω = ω′



− Pr

CK← S(k); (c, d)← CCK(∆(Ω), k); (c′, d′,m)← A∗1(∆(Ω),CK);

ω∗ ← A∗2(m,∆(Ω),CK);ω′ ← DCK(c, d, c′, d′) : ⊥6= ω∗ = ω′

 ≤ ε(k),

(4.32)

• Revealing: after sending a commitment, the principal is only able to convince

the other (honest) agent of exactly one action plan ω, i.e., for all PPT algorithm

P (cheating principal)

Pr


CK← S(k); (c, d)← CCK(∆(Ω), k); (c′, d1, d2)←

P (c, d,∆(Ω),CK);ω1 ← DCK(c, d, c′, d1);

ω2 ← DCK(c, d, c′, d2) : ω1 6= ω2 ∧ ω1, ω2 6=⊥

 ≤ ε(k) (4.33)

• No cheating: any principal would gain at most negligibly better than a honest

128

4.8. Contract Implementation

principal, i.e., given the following experiment

ΠP
Contract-cheat(∆(Ω), k) :

CK← S(k)

(c1, d1)← CCK(∆(Ω), k)

(c2, d2)← CCK(∆(Ω), k)

c′2 ← P (c1, c2)

c′1 ← P (d1)

if c′1 = c1 ∨ c′2 = c2 then return (⊥,⊥, ∅, ∅)18

(d′2, b1, b2)← P (d2)

ω1 ← DCK(c1, d1, c
′
2, d
′
2)

ω2 ← DCK(c′1, d
′
1, c2, d2)

return (ω1, ω2, b1, b2)

it must hold that for all stateful PPT algorithms P (cheating principal)

E[uP (ω1, ω2, b1, b2)|(ω1, ω2, b1, b2)← ΠP
Contract-cheat(∆(Ω), k); (b1, b2) 6= (∅, ∅)]

− E[uP (ω, ω, b1, b2)|(ω, b1, b2)← Prot(∆(Ω), k); (b1, b2) 6= (∅, ∅)] ≤ ε(k) (4.34)

Since the security definition above requires the notion of Ω, B1, B2, ∼1, ∼2, and

uP , we also need to specify them before designing our protocol. Note that since we

aim at designing a protocol that assumes no communication among the agents, our

protocol only needs to serve contracts against non-colluding agents. Therefore we do not

include action plans involving auditing when returned results are different (β-scheme)

or identical (ν-scheme), but instead focus on optimal contracts for non-colluding agents

as in Propositions 4.1, 4.3, and 4.5. In other words, we represent the set of plans as

Ω = {{A1, audit}, {A1, reward}, {A2, audit}, {A2, reward}, {A1, A2, reward},⊥}.
(4.35)

Particularly, a plan must specify the employed agent(s), as well as what to do when the

results are returned. The {A1, A2, reward} plan implies two-agent employment, and

that if the returned results are the same, then both agents are rewarded, or punished

18This is to prevent the cheating principal P from returning a commitment back to the same agent,
pretending that it comes from another one, as that would clearly nullify all the seeds for selecting
ωi ∈ Ω.

129

4.8. Contract Implementation

otherwise. Similarly we have the set of agents’ view on the principal’s behaviours:

B1 = {{A1, audit}, {A1, reward}, ∅} and B2 = {{A2, audit}, {A2, reward}, ∅}
(4.36)

Our construction of Bi relies on the assumption that the acts of auditing and blind

rewarding are distinguishable and verifiable to the agents. Note that we do not consider

punish as an observable action because we only aim to protect honest agents from being

cheated by the principal. Next, the consistency relations follow straightforwardly, i.e.,

for all bi ∈ Bi and ω ∈ Ω:

bi ∼i ω ⇐⇒ ω ∼i bi ⇐⇒

bi = ∅ ∧Ai 6∈ ω, or

bi 6= ∅ ∧ bi ⊂ ω
(4.37)

Interestingly, it is easy to notice that for every ω ∈ Ω and i ∈ {1, 2}, there is exactly

one b ∈ Bi such that b ∼i ω. Nevertheless, the principal’s utility is then either its cost

of executing the contract, or a fine from the court if being caught cheating by at least

one of the agents, i.e.,

uP (ω1, ω2, b1, b2) =

−r −max(r, γ) if b1 6∼1 ω1 ∨ b2 6∼2 ω2, or

contract executing cost otherwise.
(4.38)

We are now ready to construct our contract implementation protocol. For each proba-

bility distribution ∆(Ω) assume that there exists a PPT contract-generation algorithm

Gen∆(Ω)(·) which efficiently samples ∆(Ω), that is, there exists a negligible function εG

such that

sup
o∈Ω

∣∣∣Pr
[
r ←$ {0, 1}k;ω ← Gen∆(Ω)(r)

]
− Pr [ω ← ∆(Ω)]

∣∣∣ ≤ εG(k). (4.39)

Whilst the protocol construction can be seen in Figure 4.5, its security is described in

Proposition 4.9 and its proof.

Proposition 4.9. Let (Setup,Commit,Open) be a non-malleable commitment scheme.

Let Ω, Bi, ∼i and uP be as defined in (4.35), (4.36), (4.37), and (4.38), respectively.

Let ∆(Ω) be a probability distribution over Ω, and assume existence of Gen∆(Ω) as in

(4.39). Then there exists a secure contract implementation mechanism for ∆(Ω), Bi,
∼i and uP .

Proof. We show that ContractProtocol satisfies all the properties of a secure contract

implementation mechanism. The proof of correctness is rather trivial as it comes

130

4.8. Contract Implementation

Protocol ContractProtocol

proc S(k) : proc DCK(c1, d1, c2, d2) :

CK← Setup(k) r1 ← OpenCK(c1, d1)

return(CK) r2 ← OpenCK(c2, d2)

if r1 =⊥ ∨ r2 =⊥ then

proc CCK(∆(Ω), k) : return ⊥
r ←$ {0, 1}k r ← r1 ⊕ r2

(c, d)← CommitCK(r) ω ← Gen∆(Ω)(r)

return(c, d) return ω

Figure 4.5: Communication protocol for the contract

straightforwardly from the design of the contract generation algorithm Gen∆(Ω). In-

deed, the correctness experiment Prot(CK, k) produces two uniformly random nonces

r1, r2 ∈ {0, 1}k, and hence {0, 1}k 3 r = r1 ⊕ r2 is also uniformly random. Since

DCK(c1, d1, c2, d2) uses Gen∆(Ω) to generate ω, (4.39) directly implies the correctness

property.

For the hiding property, we assume that there exists a PPT algorithm A such that

no PPT algorithm A∗ can preserve (4.32) and construct an adversary A′ against the

hiding property of the commitment scheme. First, given the existence of A = (A1, A2),

let A∗ = (A∗1, A
∗
2) such that A∗1 = A1 and A∗2(m,∆(Ω),CK) = A2(c∗,m,∆(Ω),CK),

where (c∗, d∗)← CommitCK(0k). The fact that (4.32) does not hold thus implies

Pr

CK← S(k); (c, d)← CCK(∆(Ω), k); (c′, d′,m)← A1(∆(Ω),CK);

ω ← A2(c,m,∆(Ω),CK);ω′ ← DCK(c, d, c′, d′) :⊥6= ω = ω′



−Pr

CK← S(k); (c, d)← CCK(∆(Ω), k); (c′, d′,m)← A1(∆(Ω),CK);

ω∗ ← A2(c∗,m,∆(Ω),CK);ω′ ← DCK(c, d, c′, d′) : ⊥6= ω∗ = ω′

 = ε′(k) (4.40)

for some non-negligible function ε′. As a result, the attacker A′ against the commitment

scheme proceeds as in the following experiment:

ΠA′
NM-hide :

131

4.8. Contract Implementation

CK← Setup(k)

(c, d)← CCK(∆(Ω))

m0 ← OpenCK(c, d)

m1 ← 0k

(c′, d′,m)← A1(∆(Ω),CK)

ω ← D(c, d, c′, d′)

b←$ {0, 1}
(c∗, d∗)← CommitCK(mb)

ω′ ← A2(c∗,m,∆(Ω),CK)

if ω = ω′ then b′ ← 0

else b← 1

return b = b′

Denote (4.40) in short as p−q = ε′(k) we notice that when b = 0, A2’s view in ΠA′
NM-hide

is identical to the experiment associated with p. Thus, in that case Pr[ω = ω′] = p.

Similarly, when b = 1 we have Pr[ω 6= ω′] = 1− q. Therefore

Pr[true← ΠA′
NM-hide] = Pr[b = 0, b′ = 0] + Pr[b = 1, b′ = 1]

= Pr[b = 0] Pr[b′ = 0|b = 0] + Pr[b = 1] Pr[b′ = 1|b = 1]

=
1

2
p+

1

2
(1− q)

=
1

2
(q + ε′(k)) +

1

2
(1− q) =

1

2
+

1

2
ε′(k)

which contradicts with the hiding property of commitment since ε′(k)/2 is non-negligible.

This thus proves that the hiding property of the commitment scheme is broken, which

contradicts with our assumption on its security.

In a similar way, we show that an attacker P on the revealing property of contract

implementation can be used to construct an attacker P ′ on the binding property of the

commitment scheme. The proof, however, is rather straightforward:

ΠP ′
NM-bind :

CK← Setup(k)

(c, d)← CCK(∆(Ω))

(c′, d1, d2)← P (c,∆(Ω),CK)

m1 ← OpenCK(c′, d1)

132

4.8. Contract Implementation

m2 ← OpenCK(c′, d2)

return m1 6= m2 ∧m1,m2 6=⊥

By looking at the construction of D we notice that, ω1, ω2 6=⊥ from the experiment

in (4.33) implies m1,m2 6=⊥. Similarly, the correctness of the commitment scheme

guarantees that ω1 6= ω2 implies m1 6= m2. Thus, if P succeeds in breaking the

revealing property with non-negligible chance, then ΠP ′
NM-bind returns true with the

same probability, i.e., the binding property of the commitment scheme is broken.

What remains is to prove that the principal only gains negligibly better by cheating.

To show this, we notice that following (4.38), the principal’s utility is essentially its

cost in executing the contract, which includes the reward to the agents and the cost

of auditing. Denote by u1(ω1, b1) and u2(ω2, b2) the principal’s cost with respect to

agent 1 and 2, respectively. Since the contracts in Ω does not involve auditing both

agents, meaning that the auditing cost is always spent with respect to exactly one

agent, therefore we have:

uP (ω1, ω2, b1, b2) = u1(ω1, b1) + u2(ω2, b2)

Consider the experiment ΠP
Contract-cheat(∆(Ω), k) and utility function (4.38), we notice

that the principal would avoid making either ω1 =⊥ or ω2 =⊥, as it would cer-

tainly receive utility −r − max(r, γ) which is the maximum realisable expense for

executing the contract. It would also avoid making either b1 6∼1 ω1 or b2 6∼2 ω2

for the same reason. Let r1 ← OpenCK(c1, d1), r′2 ← OpenCK(c′2, d
′
2). Due to the

non-malleability property of commitment, r1 and r′2 are statistically independent, and

since r1 is generated uniformly randomly by CCK(∆(Ω), k), therefore r1 ⊕ r′2 is sta-

tistically indistinguishable from uniform randomness. Consequently this implies that

ω1 ← DCK(c1, d1, c
′
2, d
′
2) is statistically indistinguishable from ∆(Ω). A similar argu-

ment also applies to ω2 ← DCK(c′1, d
′
1, c2, d2). We thus have for some negligible function

ε2 such that:

E
[
uP (ω1, ω2, b1, b2)|(ω1, ω2, b1, b2)← ΠP

Contract-cheat(∆(Ω), k); (b1, b2) 6= (∅, ∅)
]

=
∑

(ω′1,ω
′
2,b
′
1,b
′
2)6=(·,·,∅,∅)

uP (ω′1, ω
′
2, b
′
1, b
′
2)

Pr[(ω1, ω2, b1, b2) = (ω′1, ω
′
2, b
′
1, b
′
2)]

Pr[(b1, b2) 6= (∅, ∅)]

≤
∑

(ω′1,ω
′
2,b
′
1,b
′
2)6=(·,·,∅,∅)

uP (ω′1, ω
′
2, b
′
1, b
′
2) Pr[(ω1, ω2, b1, b2) = (ω′1, ω

′
2, b
′
1, b
′
2)]

=
∑

(ω′1,ω
′
2,b
′
1,b
′
2)6=(·,·,∅,∅)

(u1(ω′1, b
′
1) + u2(ω′2, b

′
2)) Pr[(ω1, ω2, b1, b2) = (ω′1, ω

′
2, b
′
1, b
′
2)] (4.41)

133

4.9. Conclusion

=
∑

ω′1,ω
′
2,b
′
1,b
′
2

(u1(ω′1, b
′
1) + u2(ω′2, b

′
2)) Pr

[
(ω1, ω2, b1, b2) = (ω′1, ω

′
2, b
′
1, b
′
2)
]

(4.42)

=
∑
ω′1,b

′
1

u1(ω′1, b
′
1) Pr

[
(ω1, b1) = (ω′1, b

′
1)
]

+
∑
ω′2,b

′
2

u1(ω′2, b
′
2) Pr

[
(ω2, b2) = (ω′2, b

′
2)
]

(4.43)

=
∑

ω′1∼1b′1

u1(ω′1, b
′
1) Pr

[
(ω1, b1) = (ω′1, b

′
1)
]

+
∑

ω′2∼2b′2

u1(ω′2, b
′
2) Pr

[
(ω2, b2) = (ω′2, b

′
2)
]

(4.44)

= E[uP (ω, ω, b1, b2)|(ω, b1, b2)← Prot(∆(Ω), k); (b1, b2) 6= (∅, ∅)] + ε2(k).

For ease of comprehension, we note that (4.42) comes from (4.41) because u1(·, ∅) =

u2(·, ∅) = 0. Also, (4.43) yields (4.44) because earlier we argue that the principal

would let neither b1 6∼1 ω1 nor b2 6∼2 ω2. This completes the proof of the security of

ContractProtocol.

4.9 Conclusion

In this chapter, we provide an incentive analysis of outsourced computation with non-

malicious but selfish utility-maximising agents. We design contracts that minimise the

expected cost of the outsourcer whilst ensuring participation and honesty of computing

agents. We incorporate important real-world restrictions, in that the outsourcer can

only levy a restricted fine on dishonest agents and that auditing can be costly and/or

limited. We allow partial outsourcing, direct auditing and auditing through redun-

dancy, i.e., employing multiple agents and comparing the results, and optimised the

utility of the outsourcer among all hybrid possibilities.

We observe that outsourcing all or none of the tasks is optimal (and not partial

outsourcing). We show that when the enforceable fine is restricted, achieving honest

computation may still be feasible by appropriately increasing the reward above the sheer

cost of honest computation. We demonstrate that when auditing is more expensive than

the cost of honest computation, redundancy scheme is always the preferred method, and

when the auditing cost is less than half of the cost of honest computation, independent

auditing is preferable. When the cost of auditing is between half and the full cost

of honest computation, the preferred method depends on the maximum enforceable

fine: for large enforceable fines, redundancy scheme is preferred despite the fact that

it is more expensive “per use” than independent auditing, since owing to its higher

effectiveness, it can be used more sparingly. We established the global optimality of

contracts involving at most two agents among any arbitrary number of agents as far

134

4.9. Conclusion

as implementing honesty as a Nash Equilibrium is aimed for.

Another focus of this work is on the effect of side information and collusion on the

optimal contracts involving a hybrid of direct computation and redundancy scheme

(duplication of the same task to two agents and comparing the returned results). In

particular, we explicitly developed conditions in which the redundancy scheme fails to

be the preferred method and conditions in which it will be the preferred method even

under such adverse conditions. Notably, we showed that that making collusion a less

attractive equilibrium is not an effective way at all to save the redundancy scheme in

the face of collusion. Instead, an effective way is bounty-like schemes that attempt

to make collusion a dis-equilibrium. Overall, we noted that preference for redundancy

in the presence of side information or collusion occurs for high values of auditing cost

(expected), and low values of maximum enforceable fines, where the latter is in sharp

contrast with the cases that collusion or side information is absent. This work in part

provided insights on potentials and limitations of redundancy scheme as a method

of auditing. Finally, we present a light-weight cryptographic implementation of our

contracts that provides mutual affirmation on proper execution of the agreed terms

and conditions.

Future directions. Our work opens a number of potential avenues for future investi-

gation. One of the major scenarios which we have simplified in this work is the possible

interactions among the agents. Here we assume that agents share accurate information

about their state with respect to the job assignments to each others, and then each

individually and independently decides its action. However, the agents may be able to

deceive their peers by giving them wrong signals about their state with the objective of

winning the bounty. Also, we assume cheating agents, although able to collude, cannot

have a means of commitment among themselves. If enforceable commitments among

colluding agents are assumed, the analysis can become more complicated: the agents

may agree to pass the honest result to one another, or intentionally plan for one of

them to get the bounty, only to share it among themselves later. In terms of global

optimality, we established that when agents are non-colluding and non-communicating,

the optimal contracts developed assuming at most two agents per each task are in fact

globally optimal among all contracts involving any number of agents per task. However,

in the presence of information leakage and collusion, this becomes more challenging,

as more parameters (e.g., the bounty) can be involved to build contracts. This enables

further investigation which are interesting as future research.

135

Chapter 5

Rational Security for

Unauthenticated Communication

In the context of secure communication, cryptographic techniques often operate on the

basis of entity authentication. On the other hand, studies of security for unauthenti-

cated communication have often not been well motivated, and have thus received little

attention from the research community. This may be partly because cryptographic

definitions of security make it difficult to find an acceptable solution, but also due to

an argument that security, as a service, is not for free, whereas authentication carries

a cost for its own infrastructure.

In this chapter we provide an initial study of the security of unauthenticated com-

munications under the rational security model. We investigate a simple but prevalent

type of communication, namely, the query-response protocol, in which one party sends

a request for information, and the other replies. With a meaningful relaxation of attack

called online man-in-the-middle on query-response communication, we show a positive

theoretical result: even without any mean of authentication, such attacks can always

be rationally discouraged. Our notion of security is represented under the form of a

3-player game perfect Bayesian equilibrium, in which two communicating peers follow a

prescribed protocol, whilst the adversary choose to not perform the designated attack.

We justify in the chapter our assumptions and definitions in relation to real life sce-

narios, as well as discuss matters on the practicality of our theoretical result. We hope

that the work presented in this chapter motivates further research on rational security

of communication protocols, in particular more elaborate unauthenticated communi-

cation protocols.

136

5.1. Introduction

5.1 Introduction

Due to physical and geographical separation, secure communication is vital in our

inter-networked world. Various aspects of security have been established for this need,

e.g., confidentiality, integrity, non-repudiation. Security services, such as encryption

and message authentication, that can offer these aspects often operate on top of a

mechanism that guarantees authenticity/correct identification of communicating par-

ties. Typically, a secure communication (e.g. TLS-protected) between two networked

parties consists of three phase [44]. In the beginning, the parties present their identities

to one another. Next, they execute a key exchange protocol to establish a common

session key. Lastly, security services such as encryption and message authentication

are employed, using the common key, to protect messages in transmission. While the

common key (along with encryption and message authentication) guarantees that a

message on the line cannot be read or tampered with by anyone other than the sender

and intended receiver, it cannot assure who these sender and receiver actually are.

Therefore, an attacker can easily pretend to be the sender or receiver. Such assurance

can only be accomplished during the first phase, i.e., authentication. As a result, en-

tity authentication mechanisms become the “Achilles’ heel” of security systems, and in

their absence security services can seldom be considered fully effective.

Authentication in general is not an easy task. The most notable authentication

systems are Public Key Infrastructures (PKIs), but they mostly target communications

that create monetary or sensitive effects, such as banking, e-commerce or military.

Another example is Web of Trust (WoT), which can offer authentication for more

neutral communication, but is less secure and scalable, as it depends on the efforts of

selfish individuals within the WoT. When it is assumed that attacks during the first

connection between two parties are unlikely, then the so-called leap-of-faith (LoF) [112]

can be used to offer “quasi-authentication”. The parties will make a leap of faith that

no attack occurs, and remember each other’s authenticating credential, so that in the

future mutual authentication can be achieved.

Undoubtedly the vast majority of Internet communication is unauthenticated, e.g.,

WWW surfing, peer-to-peer networks such as BitTorrent. On the one hand, it is

arguable that these communications are often not worth protecting due to their low

values and sensitivity. On the other hand, the number of entities involved are beyond

the managerial capacity of nowadays infrastructures. We are thus intrigued by the

question: “What security can be achieved in the presence of an attacker, without

authentication?”, as similarly asked by Barak et al. [10].

The above question has unfortunately received little attention from the research

137

5.1. Introduction

community. One obvious reason is that, since definitions of security adopted in con-

ventional cryptographic and network security research are so strong, in the absence

of authentication they are simply too difficult, or even impossible to achieve. Notable

examples are the concepts of matching conversations and mutual authentication by Bel-

lare and Rogaway [18]. Moreover, popular adversarial models, e.g., PPT adversaries in

provable security, are often too powerful and much more highly motivated than what

one would encounter in most real-life cases.

Without authentication, two-party communication may suffer from two important

attacks: impersonation and man-in-the-middle (MitM). In impersonation attacks the

adversary pretends to be one of the parties, and communicates with the other. MitM

attacks, on the other hand, allow the adversary to control the communication between

the two parties. Here the MitM attacker has an advantage in communicating with each

party, as it may receive useful information from the other. It is thus natural to assume

that the latter are more powerful and hence more harmful than the former.

It is a theoretical implication that the lack of authentication directly leads to the

threat of impersonation, which is unavoidable. We therefore focus, instead, on what

can be done against MitM attacks. Specifically, we investigate a proliferated form

of communication: request-reply. Our works involve two steps. First we specialise

the generic notion of MitM attacks from cryptographic/formal method literatures, so

as emphasise the clear distinction between these and impersonation attacks in the

context of request-reply communication. Then, we devise an economic model involving

communicating parties and a potential adversary, within which we show that there is

always a mechanism that discourages MitM attacks. Of course the adversary may still

perform impersonation, but in our argument, that is the best it could do.

Our work is organised as follows. In Section 5.2 we review existing related liter-

ature, which indicates a lack of solutions for unauthenticated communication. Then

we establish our framework with a redefinition of MitM attacks in Section 5.3, and an

economic model in Section 5.4 representing the security problem. Under this model,

we progress by showing in Section 5.5 that there exists an equilibrium in which the

adversary does not attack. Section 5.6 shows a cryptographic implementation of such

equilibrium, thus making it a feasible solution. Although our solution is a proof-of-

concept that unauthenticated security is nontrivial, we nevertheless discuss concerns

regarding its practicality in Section 5.7.

138

5.2. Related Work

5.2 Related Work

Man-in-the-middle attacks have always been a central problem in communication se-

curity, both practically and theoretically. Formal treatments of such attacks have been

considered in several different ways. Most notable ones are summarised as below.

Ping-pong protocols. Dolev et al. [46, 47] defines successful attackers as ones who

can revert a function evaluation on a message sent over the communication channel.

Their focus on ping-pong protocols is particularly related to our context, as any protocol

implementing a query-response communication is of type ping-pong, i.e., the communi-

cation is stateless. However, their definition has the flavour of formal-method security,

and thus it alleviates many important low-level cryptographic requirements which may

be nontrivial to satisfy. Also, it mostly serves analysis of attacks on confidentiality,

and hence assumes authentication in the first place. Instead, we look at a more natural

problem (cryptographically) associated with man-in-the-middle attacks: lack of (even

weak) authentication.

Oracled-based security. Probably the most popular model of man-in-the-middle

attacks is via oracle-based models. Particularly, to model a security problem, one

would set up a context, with necessary information (keys, nonces, etc.) ready for the

communication, except that there are no communicating parties. Instead, all these

information are embedded into one or more input/output oracle(s), with which an

adversary can interact with. The adversary is successful if, given interaction with the

oracle(s), it is able to produce some legitimate messages. Man-in-the-middle attacks

are thus effectively captured, in that one can think of the oracle(s) as one endpoint

where the adversary receives helps in order to communicate with the other.

Oracled-based models are powerful in that the adversary is not bound to any com-

munication protocol, and is thus free on what it can do (as there is no worry about

attack detection). Meanwhile, each model is normally used to capture a very specific

and narrow security requirement, as otherwise the formal definition might become too

complicated to express. In fact, different security objectives have been captured using

oracle-based models, such as encryption (public-key [119], private-key [79]), message

authentication [16], digital signature [61].

Non-malleability. The more intuitive concept, but also more cumbersome to work

with, is non-malleability. Informally, a communication protocol is non-malleable if,

each party’s interaction with the adversary A can be simulated by an isolated algo-

rithm that does not interact with anyone. In other words, any information the adver-

139

5.2. Related Work

sary receives from the communication is not useful, as whatever it can do with such

information, it can also do without. This thus violates the common understanding of

man-in-the-middle attacks, in which an adversary must rely on manipulating of com-

munication messages. Non-malleability is introduced by Dolev et al. [45], applied to

several objectives, including commitment, encryption, and zero-knowledge proofs.

Unauthenticated communication. There have been some attempts to study se-

curity for unauthenticated communication. In [10] Barak et al. consider the problem of

multiparty computation, which usually require pairwise secure communication among

parties involved. They study the problem when there is completely no authentication.

Their idea is first to let parties exchange their public keys, then executing a secure mul-

tiparty protocol (SMPC). Relying on the power of SMPC, this mechanism ensures that

the adversary can only perform sequential impersonations, and not meaningful man-

in-the-middle attacks. For example, in attacking the communication between Alice

and Bob, the protocol ensures that, if the adversary wants to use information obtained

from Alice in talking to Bob, it must first completely finish a protocol execution with

Alice. In other words, the adversary cannot maintain concurrent conversations with

both sides and pass on messages online. In another work, Maurer and Wolf [96] pro-

pose key agreement protocols over unauthenticated public channels, which is secure

if the adversary cannot simulate either party and its knowledge. Finally, Pham and

Aura [113] devises a framework to analyse whether LoF is an acceptable replacement

for authentication without compromising too much security. Note that these solutions

still assume some form of correlation in protocol participant’s knowledge as well as

restriction in adversary’s capabilities.

Our contributions. Our work coincides with that of Barak et al. [10] in the research

question as well as objective, but using a different approach, and hence giving a solution

with different properties. Particularly, we consider the question of whether non-trivial

yet meaningful security can be achieved in completely unauthenticated settings. To

answer this, we propose the notion of online-man-in-the-middle (oMitM) attack, which

in turn yields a relaxed notion of security. In fact, our concept of oMitM attack/security

is the same as that developed by Barak et al. More specifically, it guarantees that either

the adversary will not tamper with the communication, or must do so sequentially (e.g.,

first finishing all communication with Alice, then starting with Bob, not concurrently).

Our argument is that while Barak et al. provides a cryptographic solution that sat-

isfies the relaxed security, its use of SMPC techniques make it practically unfavourable,

as it requires considerable efforts, only works well with static computation, and is not

140

5.3. The Nature of MitM Attacks

compatible with modules unfamiliar with SMPC [110]. Instead, we seek a solution that

operates totally beneath the actual communication. At this stage, our goal is to pro-

vide a solution for query-response protocols, the most primal form of communication

in the Internet.

In addition to a proposal of relaxed security, we develop a game-theoretic model

to study the conditions under which the adversary does not have an incentive to carry

oMitM attacks, and consider this as satisfaction of security. Our notion of security

is thus rational, as opposed to cryptographic one by Barak et al. We then develop

a cryptographic protocol operating beneath the query-response communications that

forces the adversary into playing a game we design for him and the two endpoints. By

playing this game in our designated equilibrium points, the adversary is incentivised to

at most perform sequential impersonation, not oMitM attacks. Compared to SMPC,

our solution is cheaper in complexity, and fully supports all dynamic changes in the

application-level communication.

5.3 The Nature of MitM Attacks

In this section we formally define the notion of communication which is convenient for

our study, which is then followed by the (weaker) notion of man-in-the-middle attack.

We also provide explanation of why we believe that such attack can be effectively and

efficiently discouraged in the lack of authentication facilities.

5.3.1 Defining Query-Response MitM Attacks

As the first study in the economics of unauthenticated communication, we focus on

the most primal and typical form of communication, i.e., single-round query-response.

A single-round query-response communication consists of two parties, a client and a

server. During the course of communication, the client sends a query q ∈ Q to the server

who, upon receipt of q, would send back a response r ∈ R. Because the communication

is considered single-rounded, this process happens only once from the client’s view. We

start by defining the queries and responses which are meaningful to the client and the

server:

Definition 5.1. A query-response space is a tuple 〈Q,R, F 〉, where Q 63⊥ and R 63⊥
are finite sets of strings with polynomially-bounded lengths , and F is the set of polynomial-

time computable functions from Q to R.

In the above definition, the finiteness of Q and R indicates that the client and

the server can recognise if a query/response is valid, e.g., a well-formatted HTTP

141

5.3. The Nature of MitM Attacks

query/response. Any other malformed query/response would be treated as ⊥. In

the next step we define communication transcripts, which is the central concept in

formalisation of attacks. In short, a communication transcript consists of messages

exchanged among parties during a protocol execution. We formalise this notion below:

Definition 5.2. A messaging event is a tuple (A,B,m, s, t) indicating that party A

starts sending a message m at time s and party B receives it at time t. With respect

to a query-response space 〈Q,R, F 〉, a communication transcript is a finite sequence

of messaging events 〈(Ai, Bi,mi, si, ti)〉n where mi ∈ Q ∪R ∪ {⊥} and si ≤ ti.

In this case the notion of “message” is context-specific, and thus is not necessarily a

physical message being sent over the network. For example, a HTTP request message is

sent from the client to the server after several IP packets to establish a TCP connection,

followed by a few more TCP segments if the request content is large enough. However,

in the context of HTTP, all these exchanges are counted as one message being sent.

At this moment, we assume that knowledge about a message is always atomic, that is,

it is either known in full or not at all. Note also that a messaging event (A,B,m, t)

has a universal meaning, rather than from any party’s viewpoint. We are now ready

to define a protocol for query-response communication:

Definition 5.3. Let 〈Q,R, F 〉 be a query-response space. A single-round protocol im-

plementing 〈Q,R, F 〉 is a tuple 〈Qry,Res〉 such that:

• Qry is a PPT algorithm that takes as input a query q ∈ Q,

• Res is a PPT algorithm that takes as input f ∈ F ,

• let C := Qry(q) and S := Res(f), denote by transcript the communication tran-

script w.r.t. 〈Q,R, F 〉 of an execution of C and S, then ∀q ∈ Q and ∀f ∈ F :

Pr[∃ (C, S, q, s1, t1), (S,C, rq, s2, t2) ∈ transcript : q = q ∧ rq = f(q)] = 1 (5.1)

where q and rq denote a query made by C and the corresponding response it

received, respectively.

Regarding Definition 5.3, one can think of Qry and Res as the protocol implemen-

tation for the client and the server, respectively. An example of Qry, in reality, is a

WWW browser, and the corresponding Res is the WWW server. A client will think of

a query q ∈ Q and enter it on the browser. The browser interacts (in some way) with

the server, and it presents a response r to the client. For correctness, the requirement

142

5.3. The Nature of MitM Attacks

C Adv
q

r

S
q1, . . . , qn

r1, . . . , rn

Figure 5.1: Attacks on a query-response conversation

(5.1) makes sure that when there is no attacks or errors, the server S must receive the

correct query q, and the client C must receive the correct response r = f(q).

The protocol defined in Definition 5.3 suffers from attacks as presented in Figure 5.1.

In this case there is potentially an adversary sitting in the middle of the conversation.

The simplest form of attacks is impersonation, in which the adversary simply drops the

conversation with one end and interacts only with the other. The more sophisticated

attacks are man-in-the-middle (MitM). In particular, the adversary captures traffic

from C representing a query q ∈ Q, and then makes a number of queries to S. By

receiving the traffic containing the replies, the adversary Adv somehow crafts a traffic

transmitting a response r ∈ R back to C. As benefits, the adversary for example learns

the content of q or f(q), or is able to make r different from f(q), and so on.

Without authentication, neither impersonation nor MitM attacks can be discour-

aged in cryptographic sense. This is because the adversary Adv has exactly the same

knowledge as the server S, except that of f , which it can replace by some arbitrary

f ′ ∈ F . Instead, let us consider a relaxing, but also natural form of attacks, which we

call online man-in-the-middle (oMitM): the attack must necessarily yield an informa-

tion flow from C to S and then back to C, both via the adversary Adv. In other words,

the adversary must rely on communication with each end in talking with the other.

A successful oMitM attack consequently requires both ends to be concurrently ac-

tive for at least some period of time. By “active” we mean that a party is engaged in

a protocol execution and has not finished it yet. The intuition is clear: if concurrent

activeness is not required, then any one-way/two-way impersonation would become a

valid attack, which is unavoidable and thus uninteresting. Indeed, referring to Fig-

ure 5.1, Adv is only considered a successful oMitM attacker if some qi correlate(s) with

q and r correlates with the corresponding ri. Due to atomicity of message knowledge,

this means that at least some query qi must be made after Adv receives q. Similarly, the

response r must be sent after Adv receives ri = f(qi) from S. In other words, for two

messaging events (C,Adv, q, sq, tq) and (Adv, C, r, sr, tr), there exist messaging events

(Adv, S, qi, s1, t1) and (S,Adv, ri, s2, t2) such that tq < s1 < t2 < sr. The flow of infor-

mation is thus from q to qi, ri, and finally to r. Since C and S must be active within

[sq, tr] and [t1, s2] respectively, the concurrent activeness period is at least [t1, s2]. We

visualise this in Figure 5.2 and summarise the notion of oMitM adversary below.

143

5.3. The Nature of MitM Attacks

Client (C) Adv Server(S)

time

q = q

rq

q′

r′

Figure 5.2: Example communication transcript with successful oMitM attack

In overall, our relaxation of security makes sense in that, a non-online MitM at-

tacker, although is able to modify the traffic, cannot exploit the power of a man in

the middle: using the convenience in access to information from one side in commu-

nicating with the other. In this case, such attacker might equivalently send a random

response back to C := Qry(q) without even talking to S := Res(f), and it thus becomes

a less-powerful attacker, i.e., an impersonator. Alternatively, it can also construct the

knowledge of f via massive querying, so that later on it can plausibly impersonate S

to C, which could however be very costly.

Definition 5.4. Let 〈Q,R, F 〉 be a query-response space, and 〈Qry,Res〉 be a single-

round protocol implementing it. For each q ∈ Q and each f ∈ F let C := Qry(q) and

S := Res(f) and Adv be a PPT algorithm. Denote by transcript the communication

transcript resulted from the execution of C, S and Adv. Then, Adv is said to be a

successful online man-in-the-middle (oMitM) attacker if there exist (C,Adv, q, sq, tq),

(Adv, C, rq, sr, tr), (Adv, S, q′, sq′ , tq′), (S,Adv, r′, sr′ , tr′) ∈ transcript such that

tq < sq′ < tr′ < sr ∧ q = q (5.2)

where q and rq denote a query made by C and the corresponding response it received,

respectively, and q′ and r′ denote a query received by S and the corresponding response

from S, respectively.

144

5.3. The Nature of MitM Attacks

M1 M2

q

r
paused

f

q′

r′

Client(C) Adv Server(S)

Figure 5.3: MitM attacks as machine execution

In this definition, the notion of adversary is formalised for each pair of query q and

function f , since the adversary may discretely choose its behaviour based on the re-

ceived query and/or the perceived response function. Also, because C, S, and Adv are

PPT algorithms, it is possible that (5.2) only holds with some probability p. In that

case, we consider that Adv succeeds with probability p. Note also that the definition

inherently assumes that Adv has complete knowledge of all messages during the com-

munication. This is a stricter adversary model than cryptography that allows partial

knowledge. However, we later show that this assumption is reasonable by making sure,

using several cryptographic techniques, that the adversary can intercept/capture either

all messages, or none at all.

5.3.2 Solution Motivation and Overview

Our approach to discouraging oMitM attacks stems straightforwardly from Definition

5.4. Indeed, the protocol execution of C := Qry(q) and S := Res(f) implies that Adv

would need to capture q, and then it must be able to make a query q′ to S for r′ = f(q′).

Therefore, if it is possible to make either or both of these two steps costly, there is a

potential that an adversary would refrain from attacking.

To visualise this approach, we model an oMitM attack as two concurrent executions

of the query-response protocol, one between the client C and Adv, and the other between

Adv and the server S, as can be seen in Figure 5.3. Each execution, including the

computation at both ends and the communication, can be thought of as inner operation

within a (Turing) machine. For convenience we name these machines M1 and M2 as in

the figure. In this case, M1 takes as input a query q ∈ Q, for instance from a user. It

outputs a response r to the user, as well as some query representing what Adv received

from C. Meanwhile, M2 takes as input some queries from Adv and a response function

f ∈ F , and outputs corresponding responses to Adv.

As the first step of an oMitM attack, Adv must be able to query the server with a

145

5.3. The Nature of MitM Attacks

request q′ related to q, e.g., q′ = q. The simplest way to do so is for Adv to honestly

follow Res, so that after termination M1 would correctly produce q, which can then

be used to construct q′. However, the termination of M1 also produces a response r,

that is, the client has already received a result for its query. Evidently, such response

was not influenced by any communication with the server, and thus the attack is not

a valid oMitM attack. Alternatively, Adv may pause the operation of M1 at some

point and make a copy of M1 along with its current states (memory, registers, etc.),

called M ′1. The adversary then resumes M ′1 and waits for it to output q, which should

be identical to the eventual output of M1. This would give Adv a chance to perform

relevant inquiries to the server before a response is produced to the client. Nevertheless,

this attack method only works if Adv has full knowledge of the circuitry of M1, which

involves the PPT algorithms implemented at both the client and Adv. Unfortunately,

this is not always guaranteed because the adversary may not know the realisation of the

probabilistic nature of the client. In fact, later on in our solution we actually introduce

randomness at the client side to prevent this attack from happening.

The remaining option for Adv is to pause M1, then examines its inner states to

extract information about q to produce a related query q′. After getting a response r′

for q′, it can then modify M1 so that on termination the output response r is related

to r′. However, there is again an obstacle for Adv, which is the potential difficulty in

obtaining information about q while examining M1. This is key to our solution. In

a nutshell, we exploit the fact that because there is a lack of obtainable information

about q, the adversary must make many different queries to the server in the hope

that at least one of them relates to q. By introducing a cost of making queries, the

attack may be discouraged if the total cost of querying exceeds the attack benefit. Note

however that the querying cost per query also applies to the client, but since the client

knows exactly its query, the total cost is much less.

Our solution involves several rounds of querying in the presence of Adv, an example

of which is found in Figure 5.4. In particular, the client picks, in addition to the desired

query q, a number of other random queries, so as to have a total, say n queries, one for

each round. The client then shuffles this set of queries randomly, denoted by q. Next,

given the shuffled order, the queries are made one-by-one to the server S , which in

fact are intercepted by Adv. For each query, Adv must decide whether to perform the

oMitM attack, and in overall it is only successful if the oMitM attack is carried on the

round where the actual query q is made. Meanwhile, to perform the oMitM attack on

each query, the adversary must execute the entire protocol1 with the actual server. In

order to guarantee a successful oMitM attack, the number of queries (e.g. n2) made

by Adv is thus much more than that made by the client (e.g. n). Any attempt to

146

5.4. Defining Security Game

Client (C) Adv Server(S)
q1 q1,1

r1,1

.

.

.
q1,n

r1,nr1

q2 q2,1

r2,1

.

.

.
q2,n

r2,nr2

Figure 5.4: Example query-response communication with n = 2 rounds

lessen the querying cost would also reduce the adversary’s chance of success. When the

cost reaches zero (no query), the adversary becomes at most an impersonator (with

certainty).

5.4 Defining Security Game

We recall from previous sections that strict security for unauthenticated communication

cannot be achieved, i.e., against all efficient adversaries. Therefore we seek the notion of

rational security, i.e., safety against rational adversaries who would only attack if there

is positive payoff in doing so. To study such possibility, we model the communication

as a strategic interaction, i.e., a game among three players: the querier (e.g. user),

the responder (e.g. server), and the adversary. Our goal is to design a communication

mechanism that restricts the possible actions of the players in the game, so that there

would exist an equilibrium point in which the adversary has no benefit in becoming an

oMitM attacker.

We present our result in the reverse order. In this section we describe the desirable

game which we want the players to play. The next section focuses on showing the

existence of equilibrium points. After that we show how players can be forced to play

this game via a cryptographic protocol. Indeed, we use cryptographic techniques to

1Later on we show, using cryptographic commitments, that the adversary must execute the entire
protocol with the server in order to receive any response from the server.

147

5.4. Defining Security Game

ensure that the adversary cannot perform outstanding behaviours, such as capturing

the content of query at early stages, or partially performing an otherwise atomic action

specified by the game.

5.4.1 Specifying Environment Parameters

Before formalising the game, we first need to identify assumptions about the oper-

ating environment that would help us construct players’ utility functions. Our first

assumption is about the gain of attacker and loss/damage on the client and server:

Assumption 1 (Transferability). Let LC < 0 and LS < 0 be the losses of the client and

the server compared to a normal attack-free communication, then GAdv = −(LC + LS)

is the benefit to the adversary.

Transferable/zero-sum utility is a natural assumption often used in game-theoretic

analysis, which is reasonable as it signifies the fact that benefit neither vanishes nor

expands, but is simply transferred from one hand to another. Our argument for using

zero-sum gain/loss is likewise. Indeed, assume otherwise that GAdv > −(LC + LS),

then, working under the assumption that there exists a “market” for such transactions,

the victims (client and server) can at least raise the potential value of the loss by

having an option to “sell” the attack to the adversary at price GAdv. In other words,

the victim would agree to let the attack happen, or even carry the attack against itself

where possible, so as to receive a “fee” of GAdv from the adversary. If the adversary

is able to attack without this agreement, the victim inherently loses this amount. On

the other hand, having GAdv < −(LC +LS) would undermine the determination of the

adversary, and thus is a bad assumption. This concludes our choice of transferability.

For the sake of simplicity, we also assign a single value of damage for each attack

type, i.e., impersonation and man-in-the-middle, instead of letting it to be influenced

by how the attack is carried out. In reality, the actual damage of an attack also depends

on, for example which response is returned to the client, or how much the adversary

learns about the query. However, in this case we assume either the average value or

the maximum damage, which may be taken from statistics. This can be summarised

as below, as well as in Table 5.1.

Assumption 2 (Simplified loss). Denote by LmitmC < 0 (resp. LmitmS < 0) the loss to

the client (resp. server) when Definition 5.4 is satisfied. Denote by LimpC < 0 (resp.

LimpS < 0) the utility contribution to the client (resp. server) otherwise.

Our next argument is about the relation among these losses. For simplicity we

assume the same ordering of losses for both the client and the server across all situations,

148

5.4. Defining Security Game

Client(C) Server(S) Attacker(Adv)

oMitM (Definition 5.4) LmitmC LmitmS GmitmAdv = −(LmitmC + LmitmS)

Impersonation LimpC LimpS GimpAdv = −(LimpC + LimpS)

No attack 0 0 0

Table 5.1: Table of losses in different scenarios.

i.e., for events A 6= B, LAC > LBC implies LAS > LBS (and vice versa), and similarly for <

and = relations. We also assume that Lmitm < Limp, as otherwise it would be the case

that GmitmAdv ≤ GimpAdv , and thus the adversary has no incentive in becoming an oMitM

adversary. We omit this case as there is no need for a solution against such adversary.

Assumption 3 (Utility ordering). We assume the following regarding losses of the

client and the server: LmitmC < LimpC and LmitmS < LimpS .

Finally, we introduce the most important component of our game model, which is

the cost of querying c, as it is our mean of discouraging oMitM attacks. In association

with the querying cost, there is also a cost of processing a query, denoted τ(c), which we

assume to be increasing but negligible, which implies that although the server/respon-

der would prefer less processing, but that is of least importance in its decision-making

process. In reality, querying/processing cost can be introduced in several ways, for

example as below:

• Efforts: the cost may stem from a requirement that before making a query,

the querier must perform some expensive tasks. Here the processing cost τ(c) is

the cost of verifying that the task is carried out properly. Expensive tasks are

normally facilitated using Proof-of-Work (PoW) mechanisms [28], which involves

solving a freshly generated puzzle with adjustable difficulty. PoW offers different

forms of cost, such as memory [48], network [1], and CPU (e.g., DDH [145], hash

inversion [75], factoring [49]).

• Time: in time-critical environments, cost may be introduced via mandatory

waiting time before a query can be made. Again, τ(c) comes from the fact that

the responder also has to wait before making a response.

• Monetary: it might be possible that a querier must pay to make a query. In

compatible with our model, we assume that the payment is not made to the

responder, but to some non-player party, such as the channel operator, e.g., the

ISP. Likewise τ(c) is shaped by the channel operator’s policy. We also assume

149

5.4. Defining Security Game

that the amount of payment is agreed between the querier and the responder,

whereas the bounds on such value is designated by the channel operator.

Assumption 4 (Querying cost). Denote by cmin ≥ 0 and cmax ≥ cmin ≥ 0 the minimum

and maximum possible costs for sending a query and receiving a response. The cost

is not transferable, that is, it does not come from one player to another. Let c ∈
[cmin, cmax] be the actual querying cost, then the cost of processing a query is τ(c),

which is an increasing but negligible function in c.

5.4.2 The High-Level Protocol

In order to specify the communication game, we first need to identify the actions/s-

trategies of involved players. In a nutshell, the game is informally described as follows:

the client and server will choose how to communicate, and the adversary will choose

how to attack. In this case we are not interested in the possibility that a party can

abstain from the communication process, and instead assume that they are always

willing to participate. This is because our main focus is to demonstrate that it is

possible to discourage oMitM attacks over impersonation, even though the former is

more beneficial to the adversary, rather than showing what exactly players should do

in reality.

As for the adversary, cryptographic literature imposes no boundary on its possible

strategies, apart from being probabilistically polynomial-time (PPT). On the contrary,

we employ restrictions on the strategies of the client and the server, mainly by forcing

them to follow some communication protocols. There are a few reasons in favour of

these restrictions. Firstly, choices made by the client and the server in an actual com-

munication are often preprogrammed into communication software, and thus they are

only able to act in certain ways that the software allows. Secondly, having unrestricted

actions may result in an optimal choice that is difficult to implement, for example it

may require sophisticated cooperation between human and machines. The last reason

is to avoid complication of game analysis, as for example the client could have strate-

gies involving out-of-band channels which are difficult to model. On the other hand,

we try not to restrict their strategies more than necessary, since that would render the

mechanism inflexible, and hence reduce its applicability.

We specify strategies for the client and the server as a set of protocols they may

choose in order to communicate with each other. Our protocols are aligned with the so-

lution overview captured in Figure 5.4. We start with a query-response space 〈Q,R, F 〉,
and let nmax ≤ b

√
|Q|c. Our sets of protocols for Qry and Res implementing 〈Q,R, F 〉

are given in Figure 5.6 and Figure 5.7, respectively. The protocol uses extra machines,

150

5.4. Defining Security Game

(Qry) Bridge B (Res)

“start”, (n, c) “start”, (n, c)

(n′, c′) (n′, c′)

q1 q1

r1

q2 q2

r2

.

.

.

qn∗ qn∗

rn∗r1, . . . , rn∗

Figure 5.5: (Qry,Res) operation with bridge B

which we call store-then-forward bridges, as can be seen in Figure 5.5. The involve-

ment of the adversary requires two bridges to facilitate protocol executions between

the adversary and the two endpoints. Although these machines do not exist in real-

ity, they can be implemented using cryptographic commitments, which we show later.

Nevertheless, the components of the (Qry,Res) protocol set can be explained as follows:

• ⊥: a message the does not belong to Q∪R.

• Senddst(m): a subroutine that sends a message m to the destination dst. When

it is invoked by src, then m is added to the tail of a queue at dst allocated for

messages from src.

• Receivesrc(m): a subroutine that receives a message m from the source src. When

invoked at dst, it takes a message m out from the head of its local queue allocated

for messages from src. If the queue is empty, it waits for a message to come, and

timeouts after reasonable waiting time.

• Senddstc (m): similar to Senddst(m), but incurs a cost c to complete.

• Receivesrcc (m): similar to Receivesrc(m), but its execution at dst implies a cost c

to the immediate sender who executed Senddstc (m). If it fails, then m is set as ⊥.

151

5.4. Defining Security Game

• QueryGen(q, n, r,D): given D as a prior probability distribution of q over Q,

selects an n-tuple q of distinct queries in Q such that qr = q, and that gives no

information about r. We provide a construction for this in Proposition 5.2.

• B1: a machine connected to the client C and Adv. Informally, it serves as a

“smart” bridge between Adv and C. Normally messages are simply forwarded in

between, with the exception of responses from Adv which will be accumulated

and stored in B1 and only get forwarded to C after all the rounds of querying are

completed. For this reason, B1 is called a store-then-forward bridge.

• B2: similar to B1, but bridges the adversary Adv and the server S.

• All above subroutines never fail, but only timeout after reasonable waiting time,

the effect of which we assume to not influence any player’s utility. If a timeout

occurs, then the corresponding algorithm is terminated. Note however that the

bridges never timeout.

The correctness of (Qry,Res) is given below:

Proposition 5.1. For any valid choices of n, c, r and n′, c′ and any query-response

space 〈Q,R, F 〉, (Qryn,c,r,Resn′,c′) is a single-round protocol implementing 〈Q,R, F 〉.

Proof. Given that there is no adversary, then the protocol involves C := Qryn,c,r(q),

S := Qryn′,c′(f), and bridge B, for some q ∈ Q and f ∈ F . The protocol starts with

the client C sending a message “start” to initiate the conversation. The server and

the client then exchange their round complexity parameters, i.e., (n′, c′) and (n, c),

respectively. The round complexity is agreed to be the maximum of the two choices:

n∗ = max(n, n′) and c∗ = max(c, c′), where n∗ is the number of queries/rounds the

client will make, and c∗ is the cost the client incurs in each querying round. This is

followed by a sequence of rounds, in each of which C make a query qi and the server

provides a response ri, which is held at B. After n∗ rounds, all responses are flushed

back to C, thus satisfying Definition 5.3.

Proposition 5.2. Let 〈Q,R, F 〉 be a query-response space, and D be a probability

distribution over Q. Define QueryGen(q, n, r,D) as follows:

Qq ← {q′ ∈ Q | Pr
D

[q′] = Pr
D

[q]}

if |Qq| < n then return ⊥
s← {q}
for i = 1 to n− 1

152

5.4. Defining Security Game

Protocol Qryn,c,r(q)

Parameters: n ∈ [nmax], c ∈ [cmin, cmax], r : [nmax] × [cmin, cmax] → [nmax] s.t.
r(n′, c) ≤ max(n′, n) ∀(n′, c) ∈ [nmax]× [cmin, cmax].

Channels: peer.

Input: A query q ∈ Q and a probability distribution D over Q.

Protocol.

Sendpeer(“start”)

Sendpeer(n, c)

Receivepeer(n′, c′)

if n′ 6∈ [nmax] ∨ c 6∈ [cmin, cmax] then return ⊥
n∗ ← max(n, n′)

c∗ ← max(c, c′)

q ← QueryGen(q, n∗, r(n′, c′),D)

if n′′ 6= n∗ then return ⊥
for i from 1 to n∗

Sendpeerc∗ (qi)

Receivepeer(sig)

if sig 6= “done” then return ⊥
for i from 1 to n∗

Receivepeer(Ri)

if ⊥∈ {R1, . . . , Rn∗} then return ⊥
return Rr(n′,c′)

Figure 5.6: The set of Qry client strategies over the choices of n, c, r.

153

5.4. Defining Security Game

Protocol Resn′,c′(f)

Parameters: n′ ∈ [nmax], c′ ∈ [cmin, cmax].

Channels: peer.

Input: A response function f ∈ F .

Protocol.

Receivepeer(sig)

while sig = “start” do

Receivepeer(n, c)

Sendpeer(n′, c′)

if n′ 6∈ [nmax] ∨ c 6∈ [cmin, cmax] then continue

n∗ ← max(n, n′)

c∗ ← max(c, c′)

for i from 1 to n∗

Receivepeerc∗ (q)

if q ∈ Q then Sendpeer(f(q))

else Sendpeer(⊥)

Sendpeer(“done”)

Receivepeer(sig)

Figure 5.7: The set of Res server strategies over the choices of n′ and c′.

154

5.4. Defining Security Game

Protocol B

Channels: src and dst.

Protocol:

while true do

Receivesrc(sig)

Senddst(sig)

Receivesrc(n, c)

Senddst(n, c)

Receivedst(n′, c′)

Sendsrc(n′, c′)

if sig 6= “start” ∨ n, n′ 6∈ [nmax] ∨ c, c′ 6∈ [cmin, cmax] then

continue

n∗ ← max(n, n′)

for i from 1 to n∗

Receivedst(Ri)

Receivedst(sig)

Sendsrc(sig)

for i from 1 to n∗

Senddst(Ri)

Figure 5.8: Operation of store-then-forward bridge B1 (resp. B2) where (src, dst) =
(Qry,Adv) (resp. (Adv,Res)).

155

5.4. Defining Security Game

qi ←$ Qq \ s
s← s ∪ {qi}

qn ← qr

qr ← q

return (q1, . . . , qn).

Then the output of QueryGen gives no information about r. In other words, for all

n ∈ N+, all distinguisher M and r0, r1 ∈ [n] we have

Pr[q ←D Q; q ← QueryGen(q, n, r0,D) : M(q, n) = 1]

= Pr[q ←D Q; q ← QueryGen(q, n, r1,D) : M(q, n) = 1]

Proof. To prove this result, we only need to show that QueryGen produces probabilis-

tically the same output regardless of the value of r, and since M receives the same

input, it must give the same output. Indeed, we first notice that QueryGen outputs

=⊥ with the same probability for both r0, and r1. This is because the condition for

outputting ⊥ is n > |Qq| which is independent of r. Assume otherwise that QueryGen

always outputs a valid query tuple, then it is easy to see from the algorithm above

that QueryGen is a simple random sampling without replacement of equal probabilities

over the set Qq. This means that any permutation of the sample will have the same

probability distribution. On the other hand, QueryGen(q, n, r0,D) can be converted

to QueryGen(q, n, r1,D) by swapping qn with qr0 , then qr1 with qn, which results in a

permutation. Thus any distinguisher would have the same view in both cases.

5.4.3 Game Formalisation

In the previous subsection we declare the strategies of players. Our next concern is

on the type of game that appropriately captures the players’ interactions. For this we

first notice that our oMitM attacks are defined over choices of query q and response

function f . In addition, our assumptions on losses (transferability, simplified losses)

indicate that players’ utilities are influenced by the type of attack, i.e., Definition 5.4,

which is subject to the value of the query q. Since the adversary and the server do not

know q before taking an action, they thus have incomplete knowledge of their utility.

This suggests us to consider using Bayesian games in the analysis.

We start with the standard definition of Bayesian game in Definition 1.6, i.e., a tuple

〈N,Ω, 〈Ai, Ti, Ci, τi, pi, ui〉i∈N 〉. Our game is played between the client, the server, and

the adversary, meaning that N = {C, S,Adv}. Here the state of nature essentially

156

5.4. Defining Security Game

captures the unknown parameter, i.e., q, and hence with respect to a query-response

space 〈Q,R, F 〉 we set Ω = Q. As a proof of concept, we assume that the query is

picked uniformly randomly from Q. In other words, pC(ω) = pAdv(ω) = pS(ω) = 1/|Q|
for all ω ∈ Ω.

Next, Ai captures available actions for players, in which the strategies for the client

and the server are described in Figure 5.6 and Figure 5.7, respectively. Meanwhile, the

adversary strategy set is the set of all possible PPT algorithms. For consistency, we

then have the client’s type and signal function as TC = Q and τC(q) = q for all q ∈ Ω.

Likewise, we also have TS = TAdv = {0} and τS(q) = τAdv(q) = 0 for all q ∈ Ω. As for

type-to-actions mappings Ci, we notice that since players’ strategies are in the form of

Turing machines, which accept all possible inputs, therefore Ci(ti) = Ai for all i ∈ N
and all ti ∈ Ti.

What is left to identify is ui : Ω× A→ R, i.e., the utility function for each player,

where A = AC × AS × AAdv. Essentially, the utility for each player is composed

of two parts: its gain/loss as the result of an attack, and the cost for carrying out

its action. Following Definition 5.4, the first part can inherently be inferred from the

communication transcript of C := Qry(q), S := Res(f) and Adv, where (Qry,Res,Adv) ∈
A. Note that even though B1 and B2 are network entities, but since they honestly bridge

messages (with delays), we do not consider them in the communication transcript.

Meanwhile, the cost of action is essentially the number of queries multiplied by the

cost of making query (resp. processing query) for the querier (resp. responder). For

the convenience of players’ utilities, for each (ω, a) = (q, (Qry,Res,Adv)) ∈ Ω × A we

define the following:

LC(ω, a) =

LmitmC if Definition 5.4 is satisfied, or

LimpC otherwise.

LS(ω, a) =

LmitmS if Definition 5.4 is satisfied, or

LimpS otherwise.

q(ω, a): the set of queries received by S

cC(ω, a): cost value c∗ in the description of Qry

cS(ω, a, q): cost value c in Receivec(q) in the description of Res

nC(ω, a): number of times Qry invokes Sendc∗

Then, players’ utilities can be constructed as follows:

uC(ω, a) = E [LC(ω, a)− cC(ω, a) ∗ nC(ω, a)] (5.3)

157

5.5. Game Analysis

uAdv(ω, a) = E

−(LC(ω, a) + LS(ω, a))−
∑

q∈q(ω,a)

cS(ω, a, q)

 (5.4)

uS(ω, a) = E

LS(ω, a)−
∑

q∈q(ω,a)

τ (cS(ω, a, q))

 (5.5)

We notice that in this case the cost of querying for the client is the same for each

query, as can be straightforwardly inferred from Figure 5.6. In contrast, at the server

side, there is a chance for the querying cost to change after each of the while loop,

hence the cost must be calculated per query, which explains the summation
∑

over

q(ω, a). Also, the utilities are of expected values due to the probabilistic nature of the

adversary. For convenience, the game is properly defined as follows:

Definition 5.5. Let 〈Q,R, F 〉 be a query response space. Let {Qry} and {Res} be

strategy spaces defined as in Figure 5.6 and Figure 5.7, respectively. With respect to

above components, an unauthenticated communication game is a Baysian game

〈N,Ω, 〈Ai, Ti, Ci, τi, pi, ui〉i∈N 〉 such that:

• N = {C, S,Adv},

• Ω = Q,

• AC = {Qry}, AS = {Res}, and AAdv is the set of all PPT algorithms,

• TC = Q, TS = {0}, and TAdv = {0},

• Ci = Ai,

• τC(ω) = q, τS(ω) = 0, and τAdv(ω) = 0 for all ω = q ∈ Ω,

• pC(ω) = pS(ω) = pAdv(ω) = 1/|Q| for all ω ∈ Ω,

• ui are as in (5.3), (5.4), (5.5).

5.5 Game Analysis

In this section we analyse the previously specified game and construct equilibria in

which the adversary cannot successfully perform an oMitM attack. In other words,

the outcome of the equilibrium is that with certainty Definition 5.4 is not satisfied.

To facilitate equilibria computation, we first provide categorisation of the adversary’s

strategies, along with elimination of weakly dominated strategies, thus making them

much more tractable than the set of all possible PPT algorithms.

158

5.5. Game Analysis

5.5.1 Simplifying Attack Strategies

In general, the behaviour of the adversary consists of two parts: external communica-

tion with different parties, and internal computation, which may happen in parallel or

in an arbitrarily mixed order. For the sake of our game analysis, we do not need to

study all details about adversary’s strategies. This is because the following is true with

regards to players’ utility functions:

• Players’ utilities can be computed solely from the observing the communication

among entities.

• Players utilities do not depend on the values of query/response messages, only

on their order appearance.

Hence, we omit the adversary’s internal computation, and only mention it briefly in

our analysis. In the following we construct the general algorithm that captures the

adversary’s possible communication, based mainly on its protocol execution with the

client C := Qry(q), for two reasons. Firstly, since the adversary cannot actively start

a protocol execution with C, the behaviour of C is fixed and well-known, which is

ideal for building a framework of the adversary’s strategies. Secondly, the timeline of

this execution would help us detect the type of attack that may occur. In Figure 5.9

we construct the general structure of Adv’s communication, which is supported by the

following result:

Lemma 5.1. Let 〈Q,R, F 〉 be a query-response space. For some cmin, cmax > 0, let

{Qry} and {Res} be defined according to Figure 5.6 and Figure 5.7, respectively. Let

G = 〈N,Ω, 〈Ai, Ti, Ci, τi, pi, ui〉i∈N 〉 be an unauthenticated communication game with

respect to above components. Let Areduced
Adv be the set of PPT algorithms such that their

communication framework are as in Figure 5.9 for all states of nature ω ∈ Ω and all

a−i ∈ A−i. Then AAdv reduces to Areduced
Adv via elimination of weakly dominated strategies

and/or equivalent strategies2.

Proof. Our proof has three steps. In the first step we show that the adversary Adv’s

communication with the client C must be as specified. Next, we explain why Adv only

communicates with the server S at certain points as in Figure 5.9. Finally, we prove

that Adv should communicate with S in a way suggested by Figure 5.9.

For the first part of the proof, we notice that the specification of the adversary Adv’s

communication with C in Figure 5.9 resembles that in Figure 5.7. Suppose otherwise

2Two strategies s and s′ of player i are equivalent if Eωui(ω, s, s−i) = Eωui(ω, s′, s−i) for all s−i ∈
A−i.

159

5.5. Game Analysis

Protocol Adv

Channels: C, S.

Protocol:

ReceiveC(“start”)

ReceiveC(nC , cC)

SendS(“start”)

SendS(n′, c′) where n′ 6∈ [nmax] ∨ c′ 6∈ [cmin, cmax]

ReceiveS(nS , cS)

SendC(nAdv, cAdv) for (nAdv, cAdv) ∈ P
n∗ ← max(nC , nAdv)

for i from 1 to n∗

ReceiveC(qi)

Execute Qry to S with (n′, c′) = (1, cmin) (Optional)

SendC(ri)

SendC(“done”)

Figure 5.9: Generic adversary’s strategies where optional steps can be skipped.

160

5.5. Game Analysis

that Adv either omit some of these steps, or arrange them in a different order, or both.

We discuss omission of steps as below:

• ReceiveC(“start”) and ReceiveC(nC , cC): skipping these steps has the same effect

as executing them and then ignoring the received messages.

• SendC(nAdv, cAdv), Send
C(ri), and SendC(“done”): skipping these steps will cause

the client C to timeout and acknowledges no response for any of its queries, and

thus together failing Definition 5.4. This is the worst case for the adversary since

executing these steps incur no cost. Thus it is in Adv’s best interest to execute

these steps.

• ReceiveC(qi): the reasons for executing this step are the same for previous two

cases. In other words, skipping it is the same as executing it and then ignoring

qi, and also reduces the chance that Definition 5.4 is satisfied.

Consider the option of shuffling the above steps in a different order. Assume that this

does not cause the client C to timeout or terminate, then the Adv receives the same

set of messages from C, and hence gains no additional benefit from their contents. The

only way shuffling could affect the adversary’s utility is via the order of appearance of

ReceiveC(qi) and SendC(ri), as they relate to Definition 5.4. However, if ReceiveC(qi)

occurs after SendC(ri), this means that for messaging events (C,Adv, qi, sq, tq) and

(Adv, C, ri, sr, tr) we have sr < tq, which clearly does not improve the chance for Defi-

nition 5.4 to be satisfied. Thus, shuffling of prescribed steps can be safely eliminated.

Next we show that communication with S should only be made at specific moments

relative to Adv’s communication with C. Suppose otherwise that communication with

S can occur at different stages below, we show that this is fruitless:

• Before ReceiveC(nC , cC): this has the same effect as for Adv to wait for ReceiveC(nC , cC)

to finish and then ignore the received messages while communicating with S.

• After SendC(nAdv, cAdv) and before ReceiveC(q1): similar to above, and addition-

ally, any communication with S at this stage does not improve the chance of

satisfying Definition 5.4, as there is yet any messaging event (C,Adv, q, s, t).

• After SendC(ri) and before ReceiveC(qi+1): this is similar to the previous point,

as any communication with S at this stage does not change Adv’s communi-

cation with C, and also does not fall between any pair of messaging events

(C,Adv, qi, sq, tq) and (C,Adv, ri, sr, tr).

The final part of the proof is to show that the prescribed communication with

the server S is optimal. Following Figure 5.9, the first three steps are SendS(“start”),

161

5.5. Game Analysis

SendS(n′, c′), and ReceiveS(nS , cS), which serve as initialisation of a query-response

process with the server. The purpose of this initialisation is to observe (nS , cS), which

is a server’s private information apart from its response function f ∈ F . The value of

(nS , cS) might be important to Adv in deciding (nAdv, cAdv) that would be sent back

to the client C, as it would contribute to influencing the adversary’s utility (5.4).

In addition, the use of invalid round parameters n′ 6∈ [nmax] or c′ 6∈ [cmin, cmax] will

cause the stateless server S to reset (Figure 5.7), thus creating no effect to any future

communication. It is therefore optimal for Adv to execute these steps to learn (nS , cS).

On the other hand, Adv needs not communicate further with S in order to decide

(nAdv, cAdv), because the best Adv can gain is information about f via the S’s responses

to queries. However, players’ utilities are independent of the value of f , and therefore

the adversary needs not learn it at this stage.

The remaining point is to reason why after each ReceiveC(qi), the adversary should

execute a query-response protocol with S at most once, with round parameters (n′, c′)

= (1, cmin). Indeed, the idea of communicating with S between ReceiveC(qi) and

SendC(ri) is to ensure that Definition 5.4 is satisfied once qi = q. In other words, this

communication must yield a communication transcript containing messaging events

(Adv, S, q′, sq′ , tq′) and (S,Adv, r′, sr′ , tr′) where r′ is the response by S to q′. Be-

cause of the feature of B2 that delays the bridging of responses, Adv must make

n = max(nS , n
′) number of queries. To send each query Adv must executing SendSc (q′),

where c = max(cS , c
′), or otherwise the server’s execution of ReceiveAdvc (q′) will fail,

causing r′ to be set as ⊥, thus failing Definition 5.4. In overall this incurs a cost c · n,

which is minimised by setting (n′, c′) = (1, cmin). This process can be conveniently

achieved by executing Qry1,cmin,r for arbitrary query-hiding function r. Note also that

to satisfy Definition 5.4 the adversary needs not execute Qry more than once. Therefore

it is amongst the optimal choices for the adversary to behave a prescribed.

The above lemma implies a significant elimination of attack strategies that allow

us to parameterise them. Indeed, there are only a few parameters in Figure 5.9 that

can be customised by the adversary:

• nAdv : P 2 → [nmax], cAdv : P 2 → [cmin, cmax]: the probabilistic choice of round

complexity when negotiating with Qry, decided by Adv after observing (nC , cC)

and (nS , cS).

• di : P 2 → {0, 1}: the adversary’s probabilistic decision whether to query S at

round i, where 1 indicates a communication to S and 0 otherwise. Potentially it

is a function of several parameters: other players’ choices of round complexity,

162

5.5. Game Analysis

the client’s choice of where (r) to hide q, the client’s choice of queries q. We

however show in Lemma 5.2 that the di only needs to depend on other player’s

round complexity parameters, i.e., (nC , cC) and (nS , cS). Also, as in the proof of

Lemma 5.1, the adversary’s utility does not depend on the response function f ,

and hence it needs not base the choice of di on its communication with S.

Lemma 5.2. Consider an unauthenticated communication game where the adver-

sary’s strategy is (nAdv, cAdv, d1, . . . , dnmax), then there exists an equivalent strategy

(n′Adv, c
′
Adv, d

′
1, . . . , d

′
nmax

) with probabilistic functions d′i : P 2 → {0, 1}.

Proof. We first set the probabilistic round complexity parameters n′Adv := nAdv and

c′Adv := cAdv. Let (nC , cC , r) and (nS , cS) be strategies of the client C and the server S,

respectively. Then it must be the case that di is probabilistically identical for all valid

r and i, as otherwise it is easy to construct a distinguisher that violates Proposition

5.2. Denote by Pr[di = 0 | nC , cC , nS , cS , q] the probability that di = 0 given player’s

strategies and query q, we construct a strategy such that for all i ∈ [nmax],

Pr[d′i = 0 | nC , cC , nS , cS] =
∑
Q

Pr[di = 0 | nC , cC , nS , cS , q].

Note that such construction is always possible, and it takes as input only (nC , cC , nS , cS)

before outputting the probabilistic decisions of d′i. Therefore we only need d′i : P 2 →
{0, 1}. This mixed strategy yields the same adversary’s utility since it leads to the

same expected number of queries made by the adversary to the server, i.e.,

nS

max(nAdv,nC)∑
i=1

Pr[d′i = 0 | nC , cC , nS , cS] = nS

max(nAdv,nC)∑
i=1

∑
Q

Pr[di = 0 | nC , cC , nS , cS , q]

(5.6)

as well as the same success probability of satisfying Definition 5.4 which is determined

by checking whether d′r(nAdv,cAdv)
= 1:

Pr[d′r(nAdv,cAdv)
= 1 | nC , cC , nS , cS] =

∑
Q

Pr[dr(nAdv,cAdv) = 1 | nC , cC , nS , cS , q]. (5.7)

Since we assume that the adversary is a PPT algorithm, each attack strategy can

thus have a probabilistic choice over nAdv, cAdv and di. For convenience of game analysis

however, we equivalently consider the deterministic choices as pure attack strategies,

and represent probabilistic choices by mixed strategies. The simplification of attack

strategies leads to more tractable players’ utility functions:

163

5.5. Game Analysis

Lemma 5.3. Consider an unauthenticated communication game where the client’s

strategy is (nC , cC , r), the server’s strategy is (nS , cS), and the adversary’s strategy is

categorised by a tuple (nAdv, cAdv, d1, . . . , dnmax), then players’ utilities are:

uC(ω, a) = LC(ω, a)−max(nC , n) max(cC , c) (5.8)

uAdv(ω, a) = −(LC(ω, a) + LS(ω, a))− cSnS
max(nC ,n)∑

i=1

di(param) (5.9)

uS(ω, a) = LS(ω, a)− τ(cS)nS

max(nC ,n)∑
i=1

di(param) (5.10)

where

param = (nC , cC , nS , cS), n = nAdv(param), c = cAdv(param),

LC(ω, a) =

LmitmC if dr(n,c)(param) = 1, or

LimpC otherwise.
, and,

LS(ω, a) =

LmitmS if dr(n,c)(param) = 1, or

LimpS otherwise.
.

Proof. The proof for this lemma is rather straightforward. We first notice that r(n, c)

is the round number of the querying round in which the actual query is made, i.e.,

qr(n,c) = q. Meanwhile, dr(n,c)(param) = 1 indicates that within this round, Adv

communicates with the server S after ReceiveC(qr(n,c)), and before SendC(rr(n,c)), thus

successfully satisfying Definition 5.4 with certainty. Therefore, players’ benefit from

attack is deterministic as expressed. The querying cost of their utilities are trivial,

where nS
∑max(nC ,n)

i=1 di(param) is the total number of queries Adv makes to S.

The above lemma allows us to simplify the notion of unauthenticated communi-

cation game, from Bayesian game to a simple strategic-form game. Indeed, players’

utilities as expressed in Lemma 5.2 depend on their strategies but the state of nature

ω ∈ Ω. In addition, players’ strategies also do not depend on ω. Therefore we can

redefine our game easily in strategic-form.

Definition 5.6. Let 〈Q,R, F 〉 be a query response space with some Ans ∈ F , and

[cmin, cmax] be a cost interval, with 0 ≤ cmin ≤ cmax. With respect to above compo-

nents, a refined unauthenticated communication game is a strategic-form game

〈N, {Ai}i∈N , {ui}i∈N 〉 such that:

• N = {C, S,Adv},

164

5.5. Game Analysis

• AC = {(nC , cC , r)}, AS = {(nS , cS)}, and AAdv = {(nAdv, cAdv, d1, . . . , dnmax)},

• ui are as in (5.8), (5.9) and (5.10).

5.5.2 Finding Good Equilibria

We apply the most intuitive method to find equilibrium for this three-player game. In

particular, we fix the strategy of one player, and find an equilibrium of the induced

game between the remaining players. This is repeated for every strategy, until we find

one that is also a best response against the choices (in equilibrium) of other players.

For this we realise that the utilities of the client and the server do not strongly depend

on each other’s strategy. Therefore, if we choose either one and fix its strategy, then

there is a better chance to reuse a two-player equilibrium for a new fixed strategy of

that player. In particular, we choose to fix the server’s strategy as it has a smaller

strategy set, and thus less repetition of equilibrium finding is required. In terms of

equilibrium type, our game formulation suggests that we use the notion of “one-shot”

Nash equilibrium. However, because the nature of communication is sequential, it is

thus more desirable to seek a refinement of such equilibrium, i.e., a perfect Bayesian

equilibrium. We achieve this by breaking players’ strategies/algorithms into steps and

represent the game in extensive form.

By fixing the server’s strategy, we are given aS = (nS , cS) for some (nS , cS) ∈ P ,

and the refined unauthenticated communication game is now played between the client

(C) and the adversary (Adv). Our goal is to find equilibria in which the adversary

would avoid oMitM attacks. In the language of security, this means to look for client

strategies that minimise the adversary’s information-theoretic advantages. In game

theory this would mean to minimise the adversary’s maximum possible gain. Our

approach is thus similar to finding minimax strategy in zero-sum games. In fact, our

game shares a similar structure to zero-sum games due to the transferability of payoff.

Whilst the game tree is depicted in Figure 5.10, we fix the server’s strategy, i.e.,

(nS , cS) ∈ AS . The game play, following the communication and Definition 5.6 is:

1. The client picks a round complexity parameter (nC , cC) and send them out.

2. The adversary, on receipt of (nC , cC) and (nS , cS), picks a round complexity

parameter (nAdv, cAdv) and send them back.

3. The client decides where to hide its query, and the adversary (simultaneously)

decides which of the queries to perform oMitM attacks.

We start by analysing the smallest possible subgame, which basically emerges from each

node where (nC , cC) and (nAdv, cAdv) are set. To see this, we recall that (nAdv, cAdv) is

165

5.5. Game Analysis

S

C C

Adv Adv Adv Adv

C C C C

Adv Adv

outcome

(nS , cS)

(nC , cC) (nC , cC)

(nAdv, cAdv) (nAdv, cAdv)

r

d

Figure 5.10: Illustration of the game tree, where triangles indicate omitted subgames.

a function over (nC , cC) and (nS , cS), which means that Adv must have observed C’s

choice of these values. Likewise, r is a function over (nAdv, cAdv), and hence C must

have observed Adv’s choice before deciding where to hide q in the query list. Obviously

this can also be explained by looking at the protocol specifications, i.e., players must see

each other’s choice of round complexity parameters during negotiation before moving

on to the querying phase.

Getting back to the subgame, we can easily see that it is actually a “one-shot”

game, where informally, the client decides where to hide the actual query q, whilst the

adversary decides which of the queries from the client will be queried further to the

server in attempting an oMitM attack. Following (5.9), the attack is only successful if

q falls within the set of attempted queries. The following result establishes the Nash

equilibrium for each of these subgames.

Lemma 5.4. Let (nC , cC), (nS , cS) and (nAdv, cAdv) be given and let n∗ = max(nC , nAdv).

In the induced subgame let aC denote the client’s mixed strategy in which r ∈ [n∗] is

selected uniformly random. Let G = LimpC + LimpS − LmitmC − LmitmS . Denote the ad-

versary’s strategy by d ∈ Z2n∗ such that dk is the k-th most significant bit of d for all

k ∈ [n∗], i.e., dk = (d� (n− k)) ∧ 1. Then:

• If and only if G ≤ nScSn
∗ there exists a mixed-strategy Nash equilibrium of the

form (aC , d) for d = 0b0 . . . 0 (no oMitM attack).

166

5.5. Game Analysis

• If and only if G ≥ nScSn
∗ there exists a mixed-strategy Nash equilibrium of the

form (aC , d) for d = 0b1 . . . 1 (oMitM attack with certainty).

Proof. Let n = n∗ for convenience of presentation. The subgame involves the client

picking a round r ∈ [n] to hide the query, and the adversary decides which of the

rounds to mount oMitM attacks, that is, to query S within those rounds. We denote

the client’s action r by i = n− r, so that i ∈ Zn, and the adversary’s action d by j = d

so that j ∈ Z2n . To analyse the mixed-strategy version of this subgame, we utilise the

notion of payoff matrices in game theory. Essentially they are matrices MC and MAdv

of size n×2n such that uC(i, j) = (MC)i,j and uAdv(i, j) = (MAdv)i,j , respectively. This

also means that given pC and pAdv be column vectors of probabilities representing the

mixed strategies of the client and the adversary, respectively, then their mixed-strategy

utilities are respectively

UC(pC ,pAdv) = pT
CMCpAdv and UAdv(pC ,pAdv) = pT

CMAdvpAdv.

We start the proof by forming the payoff matrices for the client C and the adversary

Adv. Let one(j) be the number of occurrences of 1 in the binary form of j, and the

components of payoff matrices MC and MAdv at row i ∈ Zn and column j ∈ Z2n are

(MC)i,j =

L
imp
C − ncC if 2i ∧ j = 0

LmitmC − ncC otherwise

(MAdv)i,j =

G
imp
Adv − one(j)nScS if 2i ∧ j = 0

GmitmAdv − one(j)nScS otherwise

where GimpAdv = −(LimpC +LimpS) and GmitmAdv = −(LmitmC +LmitmS). Let pC be the client’s

mixed strategy with a uniform distribution, and pAdv be the adversary’s mixed strategy.

Then

UAdv(pC ,pAdv) = pT
CMAdvpAdv =

1

n

(
n−1∑
i=0

(MAdv)i

)
pAdv (5.11)

where (MAdv)i denotes the row vector with index i ∈ Zn of MAdv. We further notice

that for each column j ∈ Z2n of MAdv, there are exactly one(j) components with

value GmitmAdv − one(j)nScS , and the rest are GimpAdv − one(j)nScS . Hence, the sum of n

components of columns j are

n−1∑
i=0

(MAdv)i,j = one(j)GmitmAdv + (n− one(j))GimpAdv − one(j)nScSn

167

5.5. Game Analysis

= one(j)(GmitmAdv − nScSn) + (n− one(j))GimpAdv

Denote by p′Adv the adversary’s mixed strategy with 2n components of the form (1, 0, . . . , 0).

In words, by selecting p′Adv the adversary’s realised strategy is d = 0b0 . . . 0, i.e., it never

attempts an oMitM attack. It is easy to see that UAdv(pC ,p
′
Adv) = GimpAdv . Consider

GmitmAdv −G
imp
Adv ≤ nScSn we then have

UAdv(pC ,pAdv) =
1

n

(
n−1∑
i=0

(MAdv)i

)
pAdv

=
1

n

2n−1∑
j=0

(pAdv)j

(
one(j)(GmitmAdv − nScSn) + (n− one(j))GimpAdv

)

≤ 1

n

2n−1∑
j=0

(pAdv)j

(
one(j)GimpAdv + (n− one(j))GimpAdv

)
= GimpAdv = UAdv(pC ,p

′
Adv).

Therefore p′Adv is always the adversary’s best response. In addition, the client’s mixed-

strategy utility is always UC(pC ,p
′
Adv) = LimpC − ncC for all pC . Therefore (pC ,p

′
Adv).

Further, if GmitmAdv − GimpAdv < nScSn then p′Adv becomes the adversary’s strictly best

response.

Similarly, denote by p′′Adv the adversary’s mixed strategy with 2n components of

the form (0, . . . , 0, 1). In words, by selecting p′Adv the adversary’s realised strategy is

d = 0b1 . . . 1, i.e., it attempts oMitM attacks in all querying rounds with certainty. It

is easy to see that UAdv(pC ,p
′
Adv) = GmitmAdv −nSnCn. Consider GmitmAdv −G

imp
Adv ≥ nScSn

we likewise have

UAdv(pC ,pAdv) =
1

n

(
n−1∑
i=0

(MAdv)i

)
pAdv

=
1

n

2n−1∑
j=0

(pAdv)j

(
one(j)(GmitmAdv − nScSn) + (n− one(j))GimpAdv

)

≤ 1

n

2n−1∑
j=0

(pAdv)j
(
one(j)(GmitmAdv − nScSn) + (n− one(j))(GmitmAdv − nScSn)

)
= GmitmAdv − nScSn = UAdv(pC ,p

′′
Adv)

This eventually implies that (pC ,p
′′
Adv) is an equilibrium, and that p′′Adv is a strictly best

response when GmitmAdv −G
imp
Adv > nScSn. This concludes both claims of the proposition.

168

5.5. Game Analysis

The equilibria suggested in Lemma 5.4 provide strategies for the client and the

attacker during the querying phase that match the requirement for a PBE. Indeed,

given a belief about (nC , cC), (nS , cS) and (nAdv, cAdv), the client’s strategy taken from

an equilibrium is apparently optimal against the attacker’s attack strategy. Likewise,

given a belief about (nC , cC), (nS , cS), (nAdv, cAdv) and the client’s strategy from an

equilibrium, the attacker’s attack strategy from that same equilibrium is also optimal.

Nevertheless the equilibria indicates that the adversary would receive

uAdv = max
(
−(LimpC + LimpS),−(LmitmC + LmitmS)− nScSn∗

)
as the outcome of the whole game. By employing backward induction on the game tree

(Figure 5.10), we can see that the adversary would choose (nAdv, cAdv) such that n∗ is

minimised. This requires setting nAdv ≤ nC , thus making n∗ = nC , and we may as

well assume that nAdv = 1, since any value of nAdv ≤ nC would yield the same utility.

What remains is the choice of cAdv(nC , cC , nS , cS), which does not affect the adversary’s

utility, and therefore we assume that cAdv = cmin. In overall, the optimal utility of the

adversary is:

uAdv = max
(
−(LimpC + LimpS),−(LmitmC + LmitmS)− nScSnC

)
(5.12)

Here we assume that if there is a tie, then the adversary would prefer strategy d = j =

0b0 . . . 0 (impersonation) over strategy d = j = 0b1 . . . 1 (oMitM). At this stage, the

client’s utility, for each of its choice of (nC , cC) would then be

uC =− nC max(cC , cmin)

+

LmitmC if LimpC + LimpS − LmitmC − LmitmS > nScSn
∗, or,

LimpC otherwise.
(5.13)

Working backward another step, we need to analyse (5.13) to see how the client should

pick nC and cC . Let (n
(1)
C , c

(1)
C) be the client’s choice should it want oMitM to occur,

and (n
(2)
C , c

(2)
C) otherwise. (5.13) can be rewritten as

uC = max
(
−c(1)

C n
(1)
C + LmitmC ,−c(2)

C n
(2)
C + LimpC

)
(5.14)

where [nmax] 3 n(1)
C <

⌈
LimpC + LimpS − LmitmC − LmitmS

nScS

⌉
≤ n(2)

C ∈ [nmax]

Following the above expression, it is best to minimise the round complexity parameters,

169

5.5. Game Analysis

and hence it is in the client’s interest that

n
(1)
C = 1, n

(2)
C =

⌈
LimpC + LimpS − LmitmC − LmitmS

nScS

⌉
3, and c

(1)
C = c

(2)
C = cmin.

This gives the following optimal utility for the client:

uC = max
(
LmitmC − cmin, L

imp
C − cminn

(2)
C

)
(5.15)

Here also, we assume that if there is a tie, then the client would prefer to invoke

more rounds to stop an oMitM attack over experiencing it. This would complete the

construction of a subgame perfect equilibrium. For the reader, we summarise our

analysis above in a lemma:

Lemma 5.5. Let (nS , cS) be given, then the game between the client and the adversary

whose extensive form depicted in Figure 5.10 has a perfect Bayesian equilibrium in

which the client’s utility is as in (5.15).

We now have characterised an equilibrium point for the client and the adversary

given each choice of the server. To complete the equilibrium finding process, it is

necessary to check which of the server’s choice is also its best response against the

corresponding equilibrium. Nevertheless, we summarise the extensive form of the whole

game as follows:

1. Server: The server takes its action by selecting (nS , cS).

2. Client: Without observing (nS , cS), the client selects its pair of (nC , cC).

3. Adversary: On observing (nS , cS) and (nC , cC), the adversary picks (nAdv, cAdv).

4. Client: On observing (nAdv, cAdv), the client picks r ∈ [max(nC , nAdv)] as the

place to hide q.

5. Adversary: Without observing r, the adversary picks d ∈ {0, 1}[max(nC ,nAdv)].

We fully characterise desirable perfect Bayesian equilibria in the following proposition:

Proposition 5.3. Assume that there exist nC , nS ∈ [nmax] and cS ∈ [cmin, cmax] such

that nCnScS ≥ LimpC + LimpS − LmitmC − LmitmS and LimpC − LmitmC ≥ cmin(nC − 1), then

a refined unauthenticated communication game has a perfect Bayesian equilibrium in

which an oMitM attack does not occur, i.e., Definition 5.4 is not satisfied.

3In order to compute n
(2)
C the client needs to know (nS , cS), which is not possible, as the game tree

shows. However, under the Perfect Bayesian Equilibrium, the client is allowed to select n
(2)
C based on

its belief about (nS , cS), which should be available when such equilibrium point is clearly specified.

170

5.5. Game Analysis

Proof. The equilibrium involves the server’s strategy (nS , cS), the client’s strategy

(nC , cC = cmin, r) where r is as in Lemma 5.4, and the adversary’s strategy (nAdv =

1, cAdv = cmin, d1, . . . , dnmax) where di are as in Lemma 5.4. Following Lemma 5.5, the

conditions nCnScS ≥ LimpC + LimpS − LmitmC − LmitmS and LimpC − LmitmC ≥ cmin(nC − 1)

imply that if we assign (nS , cS) to be the server’s strategy, then the rest of players’

strategies form a perfect Bayesian equilibrium. On the other hand, the server’s utility

is LimpS , which is its maximum possible utility value, and thus (nS , cS) is thus part of

the equilibrium.

Corollary 5.1. Assume that nmax = cmax = +∞ and cmin = 0, then a refined unau-

thenticated communication game has a perfect Bayesian equilibrium in which an oMitM

attack does not occur.

5.5.3 Solutions for Adversaries with Feedbacks

In this subsection we consider an extra situation which might arise in reality: the

adversary is able to tell if it has received the actual query, based on its communication

with the server. We call this a feedback adversary. It is best to motivate this via an

example. Indeed, suppose that the server has to perform some extra processing on the

query before returning the response. This extra processing, though, is independent of

the response construction, as it only delays the response. The adversary knows the

construction of the response, but does not necessarily know the extra processing, and

thus may use the delay time as an advantage in guessing if the query it made to the

server somehow relates to the client’s actual query, as opposed to being some random

garbage. To deal with this extra issue we need to introduce the attacker’s advantage

into the model.

We start with the game definition as in Definition 5.6 with further restrictions on

the strategies of the client and the adversary as in Lemma 5.3 (Figure 5.10). Our

modification affects the adversary’s behaviour after round complexity parameters have

been exchanged. When (nC , cC), (nS , cS) and (nAdv, cAdv) are given, instead of picking

d ∈ {0, 1}n∗ at once, the value of each di ∈ {0, 1} is decided as below:

di := di

(
〈bnAdv,cAdv(j)dj〉j∈[i−1]

)
where bnAdv,cAdv(j) =

0 if j = r(nAdv, cAdv), or,

1 otherwise.

(5.16)

In other words, if the adversary consults the server at round j, then it receives a

feedback bit bnAdv,cAdv(j) of whether the client’s query at this round is q, i.e., whether

171

5.5. Game Analysis

j = r(nAdv, cAdv). If the adversary does not mount an oMitM attack at round j, then

bnAdv,cAdv(j)dj gives no information since dj = 0. Otherwise it conveys the feedback

via the value of bnAdv,cAdv(j). Also, the adversary’s decision in each round theoretically

depends on feedbacks it received from all previous rounds. We now provide equilibria

condition as in the previous analysis, starting with a modification of Lemma 5.4:

Lemma 5.6. Let (nC , cC), (nS , cS) and (nAdv, cAdv) be given, so that r ∈ [nmax] and

(di)i∈[n∗] are the remaining strategies to pick, where n∗ = max(nC , nAdv). Let G =

LimpC +LimpS −LmitmC −LmitmS and c = nScS. Let aC be the client’s mixed strategy such

that Pr[r = k] = c′/(G+(n∗−k)c′), where c′ > 0 satisfies that
∑n∗

j=1 c
′/(G+(n∗−j)c′) =

1. Then,

• if and only if
∑n∗−1

k=0 c/(G+ k · c) ≥ 1 there exists a Nash equilibrium of the form

(aC , (di)i∈[n∗]) in which di = 0 for all i ∈ [n∗] (no oMitM attack).

• if and only if
∑n∗−1

k=0 c/(G+ k · c) ≤ 1 there exists a Nash equilibrium of the form

(aC , (di)i∈[n∗]) in which di
(
〈bnAdv,cAdv(j)dj〉j∈[i−1]

)
= 1 iff bnAdv,cAdv(j)dj = 0 for

all j ∈ [i− 1] (oMitM attack success with certainty).

Proof. We first analyse the pure strategies of C and Adv. The strategy for C remains

the same as before, since C does not receive any information during the game play.

Adv’s action seems to be more complicated, as it depends on history, i.e., the value r

decided by the client’s strategy i, as depicted in (5.16). We prove that this complication

can be alleviated. For simplicity of presentation we let n = n∗ = max(nAdv, nC) and

c = nScS .

We show that the adversary’s strategy can be conveniently represented by a number

d ∈ Zn much like in Lemma 5.4 when it has no feedback. This is equivalent to showing

that at each of the n rounds, the adversary does not have to provide different decisions

against different client’s strategies r ∈ [n]. We show this by induction. For convenience

we denote by forward the adversary’s decision to mount an oMitM attack at a round,

and by respond the act of impersonating the server S. For round 1, Adv receives the

first query from C, and thus its decision is independent of the client’s strategy r.

Suppose our claim holds for round k, consider round k+1. If Adv responds (without

querying S) at round k, then Adv does not receive any feedback, and consequently

no further information about C’s strategy r, and thus its decision at round k + 1 is

independent of r. Otherwise, if Adv mounts an attack at round k, then it receives

a feedback that either the real query q or a random query qk was sent in round k.

In the former case, Adv can end the game by responding (without querying S) to all

the remaining queries, that is, to set dm = 0 for all m ∈ {k + 1, . . . , n}, because

172

5.5. Game Analysis

due to Definition 5.4 Adv already succeeded an oMitM attack, and thus any later

communication to S is unnecessary. Since this is without doubt the optimal strategy,

the adversary Adv needs not make a decision. In the latter case, Adv receives a new

query qk+1, and has to decide whether to forward (dk+1 = 1) or respond (dk+1 = 0).

This means that the adversary needs to plan its decision for only one case, i.e., when

r > k, which proves our claim by the principle of mathematical induction.

Consequently, we can represent Adv’s strategy by d ∈ Z2n , where for each k ∈ [n],

the k-th bit dk of d means the following (assuming always d−1 = 0):

• dk = 0: if dk−1 = 0, then respond; if dk−1 = 1 and feedback is 0, then responds

in all remaining rounds, i.e., {k + 1, . . . , n}; otherwise, respond in this round r

(and move to the next round).

• dk = 1: if dk−1 = 0, then forward; if dk−1 = 1 and feedback is 0, then responds in

all remaining rounds, i.e., {k+ 1, . . . , n}; otherwise, forward in this round r (and

move to the next round).

For compatibility with Lemma 5.4 and its proof, we replace the adversary’s strategy

d by symbol j ∈ Z2n , and the client’s strategy r by i = n − r, so that i ∈ Zn. In this

case i represents the number of remaining rounds after the real query q was sent by

the client C. The difference of this case compared to Lemma 5.4 is in Adv’ utility.

Indeed, suppose for example that n = 3, C’s strategy is i = 1 (sending q at round

r = 3 − 1 = 2) and Adv’s strategy is j = 3 = 0b011. In words, C sends q in the

second round, whereas Adv responds in the first round, forwards in the second round,

and forwards again in the third round if the second round query is not q, that is, if

2i ∧ j = 0. In Lemma 5.4 Adv’s utility would be GmitmAdv − 2c, whereas here it would be

GmitmAdv − c because Adv will respond in the last round, knowing that the second round

query is q (since 2i ∧ j = 21 ∧ 3 = 2 6= 0). While MC is identical to that in Lemma 5.4,

MAdv is such that

(MAdv)i,j =

G
imp
Adv − one(j)c if 2i ∧ j = 0

GmitmAdv − one(j � i)c otherwise

where � is the right-bit-shift operator.

Let c′ > 0 be such that
∑n−1

k=0 c
′/(GmitmAdv − G

imp
Adv + k · c′) = 1. Let column vector

pC with n components be C’s strategy, such that (pC)i = c′/(GmitmAdv −G
imp
Adv + i · c′) for

0 ≤ i ≤ n − 1. Clearly we have
∑

pi = 1 and pi > pj for i < j. In words, q appears

more and more likely toward the end of n rounds. In response to this, the best strategy

for Adv is to communicate with S at later rounds rather than early ones. In fact, it

173

5.5. Game Analysis

is obvious that, among all strategies j, j′ of Adv such that one(j) = one(j′), then Adv

would prefer j over j′ if j ≤ j′, since

GmitmAdv − one(j � i)c ≥ GmitmAdv − one(j′ � i)c.

This means that the adversary would prefer j of the form 0b0 . . . 01 . . . 1, for all j of

the above form. Thus, to prove the lemma statement it is sufficient to prove that

strategies of this form give Adv no better utility than simply responding to all queries

(d = 0b0 . . . 0). Let G1 = GmitmAdv and G0 = GimpAdv , the column vector of MAdv for each

such j is

(G1 − one(j)c,G1 − (one(j)− 1)c, . . . , G1 − c,G0 − one(j)c, . . . , G0 − one(j)c)

Let p
(j)
Adv denote a mixed strategy of the adversary that assigns j with probability 1. It

is easy to see that UAdv(pC ,p
(0)
Adv) = G0. Consider

∑n−1
k=0 c/(G

mitm
Adv −G

imp
Adv + k · c) ≥ 1,

which implies c′ ≤ c. Then the adversary’s mixed-strategy utility is

UAdv(pC ,p
(j)
Adv)

= pT
C MAdv p

(j)
Adv =

n−1∑
k=0

(pC)k(MAdv)j,k

=

one(j)−1∑
k=0

c′(G1 − c(one(j)− k))

G1 −G0 + c′k
+

n−1∑
k=one(j)

c′(G0 − c · one(j))
G1 −G0 + c′k

=

one(j)−1∑
k=0

c′(G1 − c′(one(j)− k))

G1 −G0 + c′k
+

n−1∑
k=one(j)

c′(G0 − c′ · one(j))
G1 −G0 + c′k

− (c− c′)

one(j)−1∑
k=0

c′(one(j)− k)

G1 −G0 + c′k
+

n−1∑
k=one(j)

c′ · one(j)
G1 −G0 + c′k


≤

one(j)−1∑
k=0

c′(G1 − c′(one(j)− k))

G1 −G0 + c′k
+

n−1∑
k=one(j)

c′(G0 − c′ · one(j))
G1 −G0 + c′k

=

one(j)−1∑
k=0

c′(G1 −G0 − c′(one(j)− k))

G1 −G0 + c′k
+

n−1∑
k=one(j)

c′(−c′one(j))
G1 −G0 + c′k

+G0

=

one(j)−1∑
k=0

c′(G1 −G0 + c′k)

G1 −G0 + c′k
+

n−1∑
k=0

c′(−c′one(j))
G1 −G0 + c′k

+G0

=c′one(j)− c′one(j) +G0 = G0 = UAdv

(
pC ,p

(0)
Adv

)

174

5.5. Game Analysis

This thus implies that (pC ,p
(0)
Adv) is a Nash equilibrium since given p

(0)
Adv the client’s

utility is independent of its strategy. Also, when
∑n−1

k=0 c/(G
mitm
Adv − G

imp
Adv + k · c) > 1

we have p
(0)
Adv as the adversary’s strictly best response against pC .

Next we consider the other case, i.e.,
∑n−1

k=0 c/(G
mitm
Adv − G

imp
Adv + k · c) ≤ 1, which

implies c ≤ c′. Inheriting the above manipulation we have

UAdv(pC ,p
(j)
Adv)

= G0 + (c′ − c)

one(j)−1∑
k=0

c′(one(j)− k)

G1 −G0 + c′k
+

n−1∑
k=one(j)

c′ · one(j)
G1 −G0 + c′k


= G0 + (c′ − c)

one(j)−1∑
k=0

c′(n− k)

G1 −G0 + c′k
+

n−1∑
k=one(j)

c′(n− k)

G1 −G0 + c′k


− (c′ − c)

one(j)−1∑
k=0

c′(n− one(j))

G1 −G0 + c′k
+

n−1∑
k=one(j)

c′(n− k − one(j))

G1 −G0 + c′k


= UAdv

(
pC ,p

(0b1...1)
Adv

)
− (c′ − c)

n− one(j)−
n−1∑

k=one(j)

c′k

G1 −G0 + c′k


≤ UAdv

(
pC ,p

(0b1...1)
Adv

)
− (c′ − c) (n− one(j)− (n− one(j))) = UAdv

(
pC ,p

(0b1...1)
Adv

)
Therefore

(
pC ,p

(0b1...1)
Adv

)
is a Nash equilibrium. Moreover, when

∑n−1
k=0 c/(G

mitm
Adv −

GimpAdv +k·c) > 1 we also have p
(0b1...1)
Adv as the adversary’s strictly best response. Together

with the previous conclusion we can infer the claims of the proposition.

Given this result, we again perform backward induction in a similar manner to

the previous subsection, by analysing how round parameters are chosen given that the

client and the adversary behave as in Lemma 5.6. Moving a step upward the game tree

Figure 5.10, the adversary would need to pick (n′, c′) knowing that its utility would be

uAdv = max

(
−(LimpC + LimpS),−(LmitmC + LmitmS)−

n∗∑
k=1

c · k · c′
G+ (n∗ − k)c′

)
(5.17)

It is thus best for the adversary to select n′ = 1 so that n∗ = max(nC , n
′) is minimised,

i.e., n∗ = nC . Again, for simplicity we also set c′ = cmin, as the choice of c′ does not

affect Adv’s utility. Working backward the game tree another step, the above choice of

175

5.6. Protocol Implementation

(n′, c′) yields the client’s utility as

uC =− nC max(cC , cmin) +

LmitmC if
∑n∗−1

k=0 c/(G+ k · c) < 1 or,

LimpC otherwise.

where n∗ = max(n′, nC) = nC . Let (n
(1)
C , c

(1)
C) and (n

(2)
C , c

(2)
C) be as before, then their

optimal values would be

n
(1)
C = 1, n

(2)
C = n, and c

(1)
C = c

(2)
C = cmin. (5.18)

where n ∈ N be minimum such that
∑n−1

k=0 c/(G + k · C) ≥ 1. The client’s utility can

then be shortened as in (5.15), giving the following alternative version of Proposition

5.3:

Proposition 5.4. Assume that there exist nC , nS ∈ [nmax] and cS ∈ [cmin, cmax] such

that
∑nC

k=0 c/(G+ k · c) ≥ 1 for c = nScS and G = LimpC + LimpS − LmitmC − LmitmS and

LimpC −LmitmC ≥ cmin(nC−1), then a refined unauthenticated communication game with

feedback adversary has a perfect Bayesian equilibrium in which an oMitM attack does

not occur, i.e., Definition 5.4 is not satisfied.

Proof. The proof for this is similar to that for Proposition 5.3, where server’s strategy

is (nS , cS), the client’s strategy is (nC , cC = cmin, r) where r is as in Lemma 5.5,

and the adversary’s strategy is (nAdv = 1, cAdv = cmin, d1, . . . , dnmax) with di are as in

Lemma 5.5.

Corollary 5.2. Assume that nmax = cmax = +∞ and cmin = 0, then a refined unau-

thenticated communication game with feedback adversary has a perfect Bayesian equi-

librium in which an oMitM attack does not occur.

5.6 Protocol Implementation

In our game model, we make use of several assumptions about the communication

among protocol participants. Particularly, we assume with respect to Definition 5.2

that message transmission is atomic, that is, either no information or the whole message

is conveyed. We also assume in Definition 5.4 that the communication relevant to an

oMitM is revealed in full to the adversary, which could be considered too strict for an

adversary model. Also, in the specification of the client and the server’ strategies, we

assume the unrealistic existence of store-then-forward bridges among the players, as

176

5.6. Protocol Implementation

well as the enforcement of cost when sending a query. All of these assumptions are

meant to simplify the model so that analysis is tractable.

In this section, we discuss techniques that would help realising above assumptions.

The main idea is to use cryptographic tools in restricting players’ abilities, so that

they would eventually behave in ways stated in the assumptions. Since we use cryp-

tographic techniques under computational security rather than information-theoretic

security, our implementation would introduce some negligible advantages to game play-

ers. This would result in at most some negligible gain in utility once a player deviates

from prescribed equilibria computed in Section 5.5. However, we do not discuss such

situations as they can be trivially captured by replacing the traditional notion of equi-

librium to computational one, e.g., ε-Nash equilibrium.

5.6.1 Definitions of Security

Our first step is to convert above assumptions into formal objectives. These objectives

allow us to later verify that our cryptographic implementation of Qry (Figure 5.6) and

Res (Figure 5.7) protocols reconciles with such assumptions. Informally the assump-

tions include:

• Atomic message transmission: a message destined to one party should be easily

intercepted by another. The interceptor, or adversary, would then have no reason

not to capture the whole message before performing any further action.

• Costly querying: the descriptions for Sendc and Receivec respectively used in

Figure 5.6 and Figure 5.7 requires that, even with knowledge from past queries

and current help from the client, if the adversary does not incur a cost c, the

server would not accept any query. However, we note that if the server rejects

the query, the adversary receives no useful information, which is same as if it

did not at all communicate with the server. Therefore, we may relax the above

requirement: if the adversary’s cost is c · p for some probability p, then the server

would accept the query with probability at most p. Given that, the adversary’s

cheapest way to cheat is to randomise between honestly executing Sendc and not

communicating with the server at all. Such randomisation is properly considered

in our game analysis. In this section we thus focus on satisfying this relaxation.

There are different types of cost as mentioned in Section 5.4.1. As an example,

in this section we use proof of work in the form of computation cost.

• Store-then-forward bridges: because such bridges are unrealistic, an implementa-

tion of delaying message transmission must occur solely between the sender and

177

5.6. Protocol Implementation

the receiver, and thus must ensure that during the delaying period, the intended

recipient of the message must neither learn any information about the message

(hiding) nor be able to produce any related message (non-malleability), and that

the sender must not be able to modify the content of the message during the

delaying period (binding).

We translate these descriptions into formal definitions as below:

Definition 5.7. An atomic message transmission process is a tuple of PPT algorithms

(Send,Receive) such that for all strings m and dst of polynomially-bounded lengths there

exists a PPT receiver Adv with

Pr[m′ ← AdvSend
dst(m) : m = m′] = 1

Definition 5.8. Denote by cost(Alg) a realisation of the computational cost when ex-

ecuting a probabilistic algorithm Alg. A secure costly message transmission process is

a tuple of PPT algorithms (Send,Receive) satisfying for some negligible function ε that

for all strings m, src and dst of polynomially-bounded lengths the following properties

are satisfied:

• Correctness:

Pr

 (sig1,m
′)← (Senddstc,n(m),Receivesrcc,n) :

sig1 = true ∧m′ = m ∧ cost(Senddstc,n(m)) ≥ c− ε(n)

 = 1,

• Message indistinguishability: if the adversary does not tamper with the commu-

nication messages, then it can infer no information about the high-level about the

protocol message being sent, i.e., for all PPT adversaries Adv = (Adv1,Adv2) and

all cost values c ∈ [cmin, cmax], define the following experiment:

ΠAdv
IND-MSG =

 (m0,m1, s)← Adv1Send
·
n,·(·)(n, c); b←$ {0, 1};

(·, ·)← (Senddstn,c(mb),Receive
src
n,c); b

′ ← Adv2(n, c, s, tr)


where tr denotes the message transcripts of the communication produced by Senddstn,c(mb)

and Receivesrcn,c, then

Pr
[
ΠAdv

IND-MSG : b = b′
]
≤ 1/2 + ε(n), (5.19)

178

5.6. Protocol Implementation

• Costly modification: if the adversary tampers with the communication, in order

to either capture the high-level protocol message being sent, or to modify it, then

it would cost the same as the adversary trying to send a message itself, i.e., for

all PPT adversaries Adv = (Adv1,Adv2) and all cost values c ∈ [cmin, cmax] define

the following experiment:

ΠAdv
MOD-MSG =

(s,m)← Adv1Send
·
n,·(·)(n, c); (sig, ·,m′)←

(Senddstn,c(m),Adv2(n, c, s),Receivesrcn,c)


then for all probabilities p ∈ [0, 1]

Pr
[
ΠAdv

MOD-MSG :⊥6= m′ | cost(Adv2) ≤ c · p ∧ trS 6= trR

]
≤ p+ ε(n) (5.20)

where trS and trR are message transcripts in the view of Senddstn,c(m) and Receivesrcn,c,

respectively.

Definition 5.9. Let Send = (Send1,Send2) and Receive = (Receive1,Receive2) be tuples

of PPT algorithms4. Then (Send,Receive) is a secure delayed message transmission

process if there exists a negligible function ε such that for all strings m, src and dst of

polynomially-bounded lengths the following properties are satisfied:

• Correctness:

Pr

(t, s)← (Send1dstn (m),Receive1srcn); (·,m′)←

(Send2dstn (m, t),Receive2srcn (s)) : m = m′

 = 1

• Hiding: for all stateful PPT adversaries Adv

Pr[(m0,m1)← Adv(dst); b←$ {0, 1}; b′ ← AdvSend1
dst
n (mb) : b = b′] ≤ 1/2 + ε(n)

• Binding: for all stateful PPT adversaries Adv

Pr

 s← Adv(dst); (m, ·)← (Receive2srcn (s),Adv);

(m′, ·)← (Receive2srcn (s),Adv) : m 6= m′ ∧m,m′ 6=⊥

 ≤ ε(n)

4Here Send1 and Receive1 resemble the transmission of a message from the sender to the bridge,
and Send2 and Receive2 represent forwarding it by the bridge to the receiver.

179

5.6. Protocol Implementation

• Non-malleability: for every stateful PPT adversary Adv, there exists a PPT ad-

versary Adv′ such that for all valid efficiently sampleable distribution D and all

polynomial-time computable relation R

Pr
[
ΠAdv,n,R,D

NM-Delay : R(m,m′) = 1
]
− Pr

[
ΠAdv′,n,R,D

NM-Delay-Sim

]
≤ ε(n),

where

ΠAdv,n,R,D
NM-Delay =

m← D; (s1, ·, t1)← (Receive1srcn ,Adv(src, dst),Send1dstn (m));

(m′, ·, ·)← (Receive2srcn (s1),Adv(src, dst),Send2dstn (m, t1))


ΠAdv′,n

NM-Delay-Sim =
[
m← D;m′ ← Adv′(src, dst, n) : R(m,m′) = 1

]
5.6.2 Protocol Construction

Our final step is to construct the process of sending and receiving messages in Figure 5.6

(client’s strategies)and Figure 5.7 (server’s strategies) using cryptographic techniques

mentioned in Section 1.3. The simplest way of sending messages that satisfies Definition

5.7 is to transmit them in plaintext. That way the adversary can effortlessly intercept

any message destined to any party. The problem is that most likely it would not

support Definition 5.8 and Definition 5.9 which require some form of binding between

a message being sent and the actual sender and receiver. Indeed, whilst Definition 5.8

requires that the cost of querying cannot be transferred between client-adversary and

adversary-server communications, Definition 5.9 also desires that a delayed message

from the server to the adversary must not be passable to the client.

The above observation suggests a need to securely bind the knowledge of the sender

and the receiver to the communication between them. We achieve this using a secure

key-exchange protocol (Definition 1.16) and an authenticated encryption mechanism

(Definition 1.18). The former facilitates the binding by forming a key between the

sender and the receiver, and the latter ensures that an adversary must properly execute

key exchange in order to receive the incoming message. All communication would

then be encrypted and authenticated. The details of the protocol are provided in

Figure 5.11, where “Enck(·) :” (resp. “Deck(·) :”) indicates a step in which a message

is encrypted then sent (resp. received then decrypted) using key k agreed previously.

Likewise,“Enck(·),Deck(·) :” indicates a step in which a number of encrypted messages

are sent and received. The security of this protocol is provided below.

Proposition 5.5. Assume that (I,R) is a secure-key exchange protocol, (Prove,Verify)

is a secure proof-of-work mechanism, and (K,Enc,Dec) with K’s output generated by

180

5.6. Protocol Implementation

Parameters: (I,R), (Prove,Verify), (K,Enc,Dec).

Protocol.

Senddstn,c(m) : Receivesrcn,c :

k ← I(n) k ← R(n)

if k is not valid then return ⊥ if k is not valid then return ⊥
Enck(·),Deck(·) : sig ← Prove(c, k) Enck(·),Deck(·) : sig ← Verify(c, k)

if sig 6= true then return ⊥ if sig 6= true then return ⊥
Enck(·) : m Deck(·) : m

return true return m

Figure 5.11: Protocol Send and Receive for messages other than responses ri.

(I,R) is a secure authenticated encryption mechanism with respect to some message

space M, then the tuple (Send,Receive) as in Figure 5.11 is an atomic (Definition 5.7)

and secure costly (Definition 5.8) message transmission process.

Proof. Before proceeding with the proof, we provide the following supporting lemma:

Lemma 5.7. Assume that (I,R) is a key-exchange protocol that satisfies the correct-

ness and key indistinguishability of Definition 1.16 and (K,Enc,Dec) with K’s output

generated by (I,R) is a secure authenticated encryption mechanism with respect to some

message space M, for all stateful PPT adversaries Adv define the following experiment

ΠAdv
MOD-SUP =

[
(k, ·, k′)← (I(n),Adv,R(n)); c← AdvEnck(·)

]
there exists a negligible function ε such that

Pr
[
ΠAdv

MOD-SUP : Deck(c) 6=⊥ ∧ c 6∈ C ∧ k = k′
]
≤ ε(n)

where C is the set of ciphertexts output by Enck(·).

Proof. We first assume that Pr
[
ΠAdv

MOD-SUP : k = k′
]

= ε1(n) is non-negligible. Given

k = k′, we notice that ΠAdv
MOD-SUP is the same as the IND-CTXT experiment in Definition

1.18, except that k is generated by (I(n),Adv,R(n)) characterised by some distribution

181

5.6. Protocol Implementation

D′ (given k = k′) instead of (I(n),R(n)) with distribution D. We also have

Pr[ΠAdv
MOD-SUP : Deck(c) 6=⊥ ∧ c 6∈ C | k = k′] (5.21)

=
∑
k∈D′

Pr[c← AdvEnck(·) : Deck(c) 6=⊥ ∧ c 6∈ C] = ε2(n),

Pr[IND-CTXT succeeds] (5.22)

=
∑
k∈D

Pr[c← AdvEnck(·) : Deck(c) 6=⊥ ∧ c 6∈ C] ≤ ε(n)

Note that Pr[IND-CTXT succeeds] ≤ ε(n) due to the fact that (K,Enc,Dec) is se-

cure given that K’s output is generated by (I,R). Suppose that ε2 is non-negligible,

then Pr
[
ΠAdv

MOD-SUP : Deck(c) 6=⊥ ∧ c 6∈ C | k = k′
]
− Pr [IND-CTXT succeeds] is non-

negligible. In other words, there exists some key k′′ such that PrD′ [k = k′′]− PrD[k =

k′′] > 0 is non-negligible. However, this means that we can use Adv as a valid adversary

against the key-exchange experiment in Definition 1.16, who returns 0 whenever given

kb = k′′. The attack success of such adversary is:

Pr

 (k0, ·, k2)← (I(n),Adv,R(n)); k1 ←D K;

b←$ {0, 1}; b′ ← Adv(kb) : b = b′ | k0 = k2


≥ 1/2 + 1/2 ε1(n)(Pr

D′
[k = k′]− Pr

D
[k = k′])

which violates the assumption that (I,R) is a secure key-exchange protocol since Pr[k0 =

k2] = ε1(n) which is non-negligible. Hence ε2 must be negligible, and so is the following:

Pr
[
ΠAdv

MOD-SUP : Deck(c) 6=⊥ ∧ c 6∈ C ∧ k = k′
]

= ε1(n)ε2(n)

The proof for atomicity is trivial since the behaviour of Send and Receive does not

depend on src and dst, therefore the adversary Adv can effortlessly execute Receive

and capture m. The correctness property is also straightforward. Indeed, because

I(n) and R(n) are executed correctly, the two ends receive the same key k. Because

(Prove,Verify) is a secure proof-of-work mechanism, and that Prove(c, k) and Verify(c, k)

are executed correctly, they both produce sig1 = true deterministically, and that the

cost of executing Prove(c, k) is bounded below by c−ε(n). Finally, the test for sig = true

in Senddstn,c(m) is passed, and thus m is sent over, ensuring that the receiver gets m′ = m

correctly. This concludes the proof of correctness.

Due to the correctness of the key exchange protocol (I,R), both ends would receive

182

5.6. Protocol Implementation

the same key k. The correctness of secure querying in (Prove,Verify) guarantees that

cost(Senddstn,c(m)) ≥ cost(Prove(c, k)) ≥ c− ε(n). It also indicates that both Prove(c, k)

and Verify(c, k) returns true, leading to Senddstn,c(m) and Receivesrcn,c returning true and

m′ = m, respectively. Thus the correctness property is complete. Also, the proof

for message indistinguishability comes straightforwardly from the IND-CPA property of

encryption, and thus can be omitted.

To prove the costly modification property, we consider several different modifications

the adversary can make to the communication between Senddstn,c(m) and Receivesrcn,c . For

simplicity of presentation we always assume cost(Adv2) ≤ c ·p∧ trS 6= trR and omit it in

all probability expressions. Let kS and kR be the session key perceived by Senddstn,c(m)

and Receivesrcn,c , respectively. Let kS be the set of keys perceived by all executions of

Send in the experiment, with kS ∈ kS . Consider the following cases:

• kR 6∈ kS : we note from the construction of Receive in Figure 5.11 that m′ 6=⊥
in the experiment ΠAdv

MOD-MSG implies that the proof-of-work verifier in Receive

returns sig1 = true. We also note that because kR 6∈ kS the adversary does

not interact with any Prove oracle with input id = kR. Therefore, due to the

verifiability property of proof-of-work (Definition 1.17) there exists a negligible

function ε1 such that

Pr
[
ΠAdv

MOD-MSG : m 6=⊥ | kR 6∈ kS

]
≤ Pr

[
ΠAdv

MOD-MSG : sig1 = true | kR 6∈ kS

]
≤ p+ ε1(n)

• kR ∈ kS : we break this down further to two sub-cases:

– kS = kR ∈ S: assume that this occurs with non-negligible probability,

then due to the synchronisation property of key exchange (Definition 1.16)

the adversary must not have modified the key-exchange communication.

Therefore, in order for trS 6= trR to hold, Adv must modify the consequent

encrypted messages. Lemma 5.7 however guarantees that Receive would

accept any modified ciphertext with negligible probability, and hence there

exists a negligible function ε2 such that

Pr
[
ΠAdv

MOD-MSG : m 6=⊥ | kS = kR ∈ S
]

Pr[kS = kR ∈ S] = ε2(n)

– kS 6= kR ∈ S: to be able to ensure that m′ 6=⊥, the adversary must convince

the Verify routine in Receive to return sig2 = true. We also note that because

183

5.6. Protocol Implementation

kR 6= kS the adversary does not interact with any Prove oracle with input

id = kR while communicating with Prove. Therefore,

Pr
[
ΠAdv

MOD-MSG : m 6=⊥ | kS 6= kR ∈ S
]

≤ Pr
[
ΠAdv

MOD-MSG : sig2 = true | kS 6= kR ∈ S
]

≤ p+ ε1(n)

In overall we thus have:

Pr
[
ΠAdv

MOD-MSG : m 6=⊥
]

= Pr
[
ΠAdv

MOD-MSG : m 6=⊥ | kR 6∈ kS

]
Pr[kR 6∈ kS]

+ Pr
[
ΠAdv

MOD-MSG : m 6=⊥ | kS = kR ∈ S
]

Pr[kS = kR ∈ S]

+ Pr
[
ΠAdv

MOD-MSG : m 6=⊥ | kS 6= kR ∈ S
]

Pr[kS 6= kR ∈ S]

≤ p+ ε3(n)

for some negligible function ε3.

We notice that in our design of Send and Receive, we have to perform key exchange

for every message transmission. This is in fact unnecessary, as the client and the

server can reuse the same key for every message transmission within the same protocol

execution. Our proof of security above also supports this as it implies stricter security

by mean of less flexibility to the adversary. We thus assume that this is the case from

now on. Let kC and kS be the keys perceived by the client and the server, respectively.

We moreover assume that kC 6= kS since Lemma 5.7 shows that if kC = kS then no

adversary is able to obtain any information. In fact, the best it can do is to either

behave as a router or simply drop the whole communication.

The remaining part of this protocol to construct is the message delayed transmission

procedures, i.e., (Send1, Send2) and (Receive1,Receive2) that implements the bridges in

Figure 5.8. The detailed algorithms for these procedures are given in Figure 5.12. The

security of this construction heavily relies on the properties of non-malleable commit-

ments, which can be shown below.

Proposition 5.6. Assume that (Setup,Commit,Open) is a non-malleable commitment

scheme. Let CK← Setup(n) be a common reference string, and kS , kC 6=⊥ be parame-

ters embedded in Send and Receive such that kS 6= kC in the presence of an adversary

and kS = kC otherwise. Then the tuple (Send,Receive) as in Figure 5.12 is an atomic

(Definition 5.7) and secure delayed (Definition 5.9) message transmission process.

184

5.6. Protocol Implementation

Parameters: n > 0, (Setup,Commit,Open), CK← Setup(n).

Protocol.

Senddstn,kS (m) : Receivesrcn,kC :

Send1dstn,kS (m) : Receive1srcn,kC :

if kS =⊥ then return ⊥ if kC =⊥ then return ⊥
(c, d)← CommitCK(kS ||m) DeckC (·) : c

EnckS (·) : c s← c

t← d return s

return t

Receive2dstn,kC (s) :

Send2dstn,kS (m, t) : c← s

d← t if kC =⊥ then return ⊥
if kS =⊥ then return ⊥ DeckC (·) : d

EnckS (·) : d k′||m← OpenCK(c, d)

return true if k′ 6= kC return ⊥
return m

Figure 5.12: Protocol Send and Receive for delaying responses ri.

185

5.6. Protocol Implementation

Proof. As usual, the correctness property is rather straightforward to prove. Note that

in the correctness experiment there is no adversary, and therefore kS = kC = k. In this

case it relies on the correctness of commitment and encryption/decryption. Further,

the fact that dst and src are not used anywhere in the protocol description, therefore

the atomicity property automatically applies.

In proving the hiding property, let ΠAdv
Hide-Delay denote the hiding experiment un-

der adversary Adv, and ΠAdv′

Hide-Commit denote the hiding experiment in the commitment

scheme under adversary Adv′. We assume that Adv succeeds in guessing with probabil-

ity 1/2 + ε′(n) for some non-negligible function ε′. Then we can construct an adversary

Adv′ against ΠAdv′

Hide-Commit from an adversary Adv against ΠAdv
Hide-Delay as follows:

1. Let Adv picks m0,m1.

2. Output m′0 = kS ||m0 and m′1 = kS ||m1.

3. Receive c← CommitCK(m′b).

4. Give EnckS (c) to Adv and receives bit b′.

5. Return b′.

We notice the view of Adv in this case is exactly the same as in ΠAdv
Hide-Delay, meaning

that it returns b = b′ with exactly the same probability, and therefore

Pr
[
ΠAdv

Hide-Delay succeeds
]

= Pr
[
ΠAdv′

Hide-Commit succeeds
]

= 1/2 + ε′(n)

which contradicts with the hiding property of commitment. Therefore, the hiding

property of this protocol holds.

The proof for the binding property is in a similar manner. Let ΠAdv
Bind-Delay and

ΠAdv′

Bind-Commit denote the binding experiments for the delayed message transmission and

commitment scheme, respectively. The three steps in the experiment ΠAdv
Bind-Delay involves

Adv giving out (c, d, d′). Assume that Adv succeeds with non-negligible probability

ε′(n), then we construct Adv′ against ΠAdv′

Bind-Commit as follows:

1. Let Adv picks c, d, d′ and gives c, EnckC (d) and EnckC (d′) to Adv′.

2. Perform decryption to get c, d, d′ and output them to ΠAdv′

Commit-Bind .

The success probability Adv′ is then

Pr
[
ΠAdv′

Commit-Bind succeeds
]

= Pr
[
t← OpenCK(c, d), t′ ← OpenCK(c, d′) : t 6= t′ ∧ t, t′ 6=⊥

]
186

5.6. Protocol Implementation

≥ Pr
[
k||m← t, k′||m′ ← t′ : t 6= t′ ∧ t, t′ 6=⊥ ∧ m 6= m′ ∧ k = k′ = kC

]
= Pr

[
m 6= m′ ∧ k = k′ = kC

]
= Pr

[
ΠAdv

Delay-Bind succeeds
]

= ε′(n).

This again contradicts with the binding property of commitment, and therefore the

binding property of the delayed message transmission protocol must also hold. The last

part of the proof is the non-malleability property. Assume that Adv has non-negligible

advantage in producing related messages, i.e., for all simulator Sim

Pr
[
ΠAdv,n,R,D

NM-Delay : R(m,m′) = 1
]
− Pr

[
ΠAdv′,n,R,D

NM-Delay-Sim

]
≥ ε′(n) (5.23)

for some non-negligible function ε′. For convenience we recall the operation of Adv

(following Definition 5.12) below:

1. Receives (from Send1) an encrypted commit value c1.

2. Output (to Receive1) an encrypted commit value c2.

3. Receives (from Send2) an encrypted decommit value d1.

4. Output (to Receive2) an encrypted commit value d2.

Define Adv1 as a slight modification of Adv as follows: whenever Adv outputs c2 = c1,

then Adv1 outputs c2 6= c1 and later d2 such that (c2, d2) ← CommitCK(k′||m′) such

that k′ 6= kC . Due to the binding property, if Adv outputs c2 = c1 then it would lead to

Receive2 receiving kS ||m′, and would eventually output ⊥ because the check kS = kC

fails. In the same vein Adv1 would also lead to Receive2 outputting ⊥. Thus Adv1 also

satisfies (5.23). Consider experiment ΠAdv′,n,R′,D′
NM-Commit with the adversary Adv′ constructed

as follows:

1. Define R′ as below:

R′(k||m, k′||m′) =


1 if kS = k ∧ kC = k′ ∧R(m,m′) = 1, or

1 if kS = k ∧ kC 6= k′ ∧R(m,⊥) = 1, or

0 otherwise.

2. Define distribution D′ of k||m such that PrD′ [kS ||m] = PrD[m] for all messages

m sampleable by D.

3. SampleD′ form = k||m (which guarantees k = kS), produce (c1, d1)← CommitCK(k||m),

send c1 to Adv1, who would give c2 6= c1 back, then output c2.

187

5.6. Protocol Implementation

4. Send d1 to Adv1 and receives back d2 from Adv1, then output d2.

5. Compute k′||m′ = m′ ← OpenCK(c2, d2).

The success probability of Adv′ is analysed as follows:

Pr
[
ΠAdv′,n,R′,D′

NM-Commit : c1 6= c2 ∧R′(m,m′) = 1
]

= Pr
[
k′ = kC ∧R(m,m′) = 1

]
+ Pr

[
k′ 6= kC ∧R(m,⊥) = 1

]
= Pr

[
ΠAdv1,n,R,D

NM-Delay : R(mt,m
′
t) = 1 ∧m′t 6=⊥

]
+ Pr

[
ΠAdv1,n,R,D

NM-Delay : R(mt,m
′
t) = 1 ∧m′t =⊥

]
= Pr

[
ΠAdv1,n,R,D

NM-Delay : R(mt,m
′
t) = 1

]
.

The above manipulation is made possible because the probability distribution over

the pair (mt,m
′
t) is the same as that of the pair (m,m′) in experiment ΠAdv1,n,R,D

NM-Delay ,

thank to the design of D′. Then for every simulator Sim on the simulation experiment

ΠSim,n,R,D
NM-Delay-Sim in the delayed message transmission scheme define a simulator Sim′ on

the simulation experiment ΠSim′,n,R′,D′
NM-Commit-Sim in the commitment scheme, as follows:

• if Sim outputs m′ 6=⊥, then Sim′ outputs m′ = kC ||m′,

• if Sim outputs m′ =⊥, then Sim′ outputs m′ = k′||m′, with k′ 6= kC .

We then have:

Pr
[
ΠSim′,n,R′,D′

NM-Commit-Sim : R′(m,m′) = 1
]

= Pr
[
k′ = kC ∧R(m,m′) = 1

]
+ Pr

[
k′ 6= kC ∧R(m,⊥) = 1

]
= Pr

[
ΠSim,n,R,D

NM-Delay-Sim : R(mt,m
′
t) = 1 ∧m′t 6=⊥

]
+ Pr

[
ΠSim,n,R,D

NM-Delay-Sim : R(mt,m
′
t) = 1 ∧m′t =⊥

]
= Pr

[
ΠSim,n,R,D

NM-Delay-Sim : R(mt,m
′
t) = 1

]
Again, this is made possible since the value of mt is distributed according to D, and

the distribution over m′t is the same as that output by Sim. This thus implies that

Pr
[
ΠAdv′,n,R′,D′

NM-Commit : c1 6= c2 ∧R′(m,m′) = 1
]
− Pr

[
ΠSim′,n,R′,D′

NM-Commit-Sim : R′(m,m′) = 1
]

= Pr
[
ΠAdv1,n,R,D

NM-Delay : R(mt,m
′
t) = 1

]
− Pr

[
ΠSim,n,R,D

NM-Delay-Sim : R(mt,m
′
t) = 1

]
≥ ε′(n)

for every simulator Sim′ and corresponding Sim, which is contradictory, and hence the

non-malleability of the delayed message transmission must hold.

188

5.7. Practical Considerations

5.7 Practical Considerations

In this section we discuss several concerns regarding the practicality of our protocol

implementation as well as of the overall game solution. These involve situations that

are not covered by definitions of both the game and the security, as well as limitation

rooted from environment parameters.

5.7.1 Multiple Executions

In our game model we only provide security for the client C to make a query once.

Security does not automatically expand when C makes the second query, or re-send

the previous query should the first execution of Qry fails for some reason. This is

because information exposed during the first execution may give Adv some advantage

in guessing the value of subsequent queries.

Several examples of this problem exist. In one case, suppose the adversary knows

that C would make the same query q every time. He would then perform oMitM attack

for the first query in order to learn the value of q, even if it results in an expected loss for

that communication session. However, in subsequent executions the adversary knows

in which round the real query would occur, and only attack at that round. Thus Adv’s

utility now becomes more promising.

In general, security (by definition) for multiple executions is guaranteed as long

as query indistinguishability is achieved, as in Proposition 5.2. Fortunately in most

communication nowadays it is not easy to predict what would happen next in a con-

versation unless the adversary spends enough efforts to study the previous “discussions”

as well as the parties involved. Our model is meant for unauthenticated communica-

tion, which mean that the purpose of communication is not very sensitive, e.g., WWW

surfing. Therefore above “information gathering” efforts account for cost that might

be unbearable to the adversary, and thus demotivate him.

Another technical problem is information leakage which might occur even if q is not

learned. Consider an adversary Adv who aborts the protocol with C after it receives

the first query q1. It costs Adv nothing to do so. However, there is 1/n∗ chance that q1

is q. As the protocol is aborted, C may re-execute it until she succeeds. By carrying

out this attack over and over again, Adv collects a set {q(i)
1 }, where each q

(i)
1 has 1/n∗

chance of being q. Thus, with no expense Adv can be certain that q ∈ {q(i)
1 } with high

probability. It may then ask S these queries to learn q.

The problem of leakage can be solved by persistently forcing the protocol to finish.

In other words, if C experiences an abort, then in the next time C would continue from

the last stage rather than restarting Qry. For security reason one needs to make sure

189

5.7. Practical Considerations

that an adversary cannot deny a protocol abort to C, nor can it claim a protocol abort

to S while it did not happen. To do so, it is possible to have both parties signing the

protocol execution as they proceed, using their own private key and a digital signature

scheme. These signatures are exchanged, so that later each party has a proof from the

other about the state of an execution.

5.7.2 Small Query/Response Spaces

The size of the query space Q may also influence the security of multiple executions.

Indeed, if Q is small, then C’s queries between two different executions may likely to

coincide. Although not considered as a valid oMitM attack by our definition, in case the

nature of the response is static, then if Adv encounters a query that was seen previously,

Adv does not need to query S for a reply and thus saves some efforts. Our protocol is

thus practically unsuitable for multiple executions when Q is small and responses are

static, i.e., they do not change over time. Otherwise, an example of dynamic responses

where our solution is applicable is: queries asking the result of a live football match.

While the query set Q is large in many conversations, e.g., human chat, remote con-

trol, WWW queries, the answers to queries might be restrictive. We exclude situations

when there is only one answer, because they are rather one-way communication than

query-response. In the worst case, a response may be either “yes” or “no”. Thus Adv

may simulate S’s response with high probability. What the client C can do, however,

is to execute Qry many times, each with a different query. This would lessen Adv’s

chance of giving all correct answers. In practice C can save these multiple executions

by examining all answers in a single execution, as opposed to accepting only the answer

to q as Qry does. This achieves the same effect with less cost.

5.7.3 Uninteresting Impersonations

In many scenarios, impersonation attacks are not attractive to adversaries. These

include, for example, WWW surfing, private chat between people unknown to the

adversary, remote login (apart from password stealing purposes). The main reason is

that it is hard to simulate the other end’s behaviour without causing suspicion. When

this happen we may consider Adv payoff GimpAdv = −(LimpC + LimpS) negative, because he

gains nothing while risking detection.

This means that if impersonation (with certainty) is the only available attack, Adv

would rather choose to not attack at all. To capture this, we need to modify Adv’s payoff

matrix MAdv (as in the proofs of Lemma 5.4 and Lemma 5.5) so that all values in the

first column (originally GimpAdv) are set by 0 to reflect Adv’s inactivity. Similarly, the first

190

5.7. Practical Considerations

column (originally LimpC −ncC) of MC must also be set by −max(nC , nS) max(cC , cS).

Assume that −LmitmC ≥ max(nC , nS) max(cC , cS)− nCcC , that is, the benefit of being

attack-free is greater than the extra cost for carrying out an attack-free communication,

it is not difficult to prove that with these changes Lemma 5.4 and Lemma 5.5 still

hold if G is replaced by GmitmAdv instead of the original value GmitmAdv − GimpAdv . Thus,

given appropriate choices (which we discuss later) by C and S that validate the above

assumption, no attack would happen. This also motivates our protocol construction.

5.7.4 Proof-of-Works May Fail

Several works have criticised the effectiveness of POW mechanisms in deterring attack-

ers, notably [28,88]. The main problem is the difference in production frontiers, which

refers to the fact that the adversary and the user have different valuation of the same

cost, i.e., cost metric. For example, while the user cannot afford 10 minutes of com-

puting because he is in a hurry, the adversary can if he has more than one computer

and can divide the work load, thus shortening the computing time. Even if parallel

computing is not possible, the adversary can still survive 10 minutes computing if he

has spare time to wait. As a result, the cost for POW to sufficiently deter attacks would

surpass the client’s payoff.

Our solution has a feature that addresses this issue. We first let RC ≥ 1 denote

the ratio between C and Adv’s valuations of cost. In other words, if a computing cost

has value c to C, then it has value c/RC to Adv. Proposition 5.3 and Proposition

5.4 give NEs in which Adv does no better with an oMitM attack. This is possible as

costmitmAdv ≥ G, where costmitmAdv is the attack cost that guarantees an oMitM attack, and

G = LimpC +LimpS −LmitmC −LmitmS . When the difference of production frontiers is taken

into account, the new condition must be costmitmAdv ≥ G ·RC . This means that the client

C and the server S must change their choices of (nC , cC) and (nS , cS) to reflect this

update, which most likely results in an increase for C’s executing cost, which is at most

costC = max(nC , nS) max(cC , cS) (occurs when there is no attack).

Moreover, our solution is only useful if min(0, LimpC) − LmitmC ≥ costC . Let RU =

G/(LimpC − LmitmC) ≥ 1, the following condition is necessary

costmitmAdv /costC ≥ G ·RC/(LimpC − LmitmC) = RCRU (5.24)

and also this ratio should be as large as possible. There are at least two ways to raise

attack cost (and hence executing cost), either via increasing the number of rounds

n∗ = max(nC , nAdv), or by introducing higher querying cost. However, only the former

would help raising the ratio costmitmAdv /costC . Figure 5.13 shows how choices of n∗ in

191

5.7. Practical Considerations

0 10 20 30 40 50

0

10

20

30

40

50

Number of rounds (n∗)

co
st
m
it
m

A
d
v
/
co
st
C

without feedbacks
with feedbacks

Figure 5.13: Adversary-user cost ratio

Proposition 5.3 and Proposition 5.4 affect this ratio. It is thus evident that with ap-

propriate choices of n∗ and c∗ the aforementioned problem with POW can be overcome.

Note that the cost ratio for adversary with feedbacks assumption is not linear in n∗,

only approximately. Also, although theoretically one can raise n∗ arbitrarily high to

ensure (5.24), there are factors against that. First, raising n∗ more than necessary

would lead to prohibitive cost to the client C. Secondly, n∗ should be bounded by the

number of queries that can be made, i.e., |Q|, or else repetitions of queries might be

noticeable.

5.7.5 Bootstrapping of Security

The main practical limitation of our solution is that it is expensive due to the cost of

querying. It is therefore necessary to mitigate its use once security has been confirmed.

This is known as bootstrapping of security. A real-world example of bootstrapping is

Secure Shells (SSH). In SSH, the security bootstrapping happens when a client connects

to the server for the first time and receives its public key. The client must make a leap

of faith that the key belongs to the server, instead of an adversary who luckily appears

in the middle of the communication. This leap of faith is made once only, and future

communication is authenticated based on the trusted key.

In this scenario, the client C may execute Qry once with as many rounds as pos-

sible to deter oMitM attacks. Suppose then, that either the adversary decide not to

impersonate, or it does so but is then discovered by C (perhaps because the imposture

is not plausible enough). In the latter case C is alerted and may find a more secure

192

5.7. Practical Considerations

route to communicate with the server S. In both cases C succeeds in bootstrapping

security with S by, e.g., learning S’s public key, as in the case of SSH. In subsequent

communication, both parties would not need to use our solution any more.

There are a few problems with security bootstrapping, however. First, the adversary

Adv may impersonate C and force S to bootstrap security. This allows Adv to query

S in the future using normal methods that involve no cost. After that Adv can easily

arrange an oMitM attack no matter how C executes Qry, since it needs not pay to

query S. Secondly, even if Adv may not impersonate C to S, Adv may sacrifice by

launching an oMitM attack during C’s first communication with S, and suffer even

enormously negative utility. However, after (in)security is bootstrapped, both C and

S switch to normal communication, and Adv starts reaping positive utility as he stays

persistently in between.

Our argument is that in many cases the same adversary may not stay persistently

between C and S for longer than a period of, say length T . This length value may be

lessened, e.g., when C and/or S are mobile. In that case, both C and S may set the

bootstrapping period to be of length T , within which all communication must use our

solution. This clearly eliminates Adv’s advantage after security bootstrapping.

5.7.6 Attack Detection

The fact that our solution makes oMitM attacks more difficult than legitimate commu-

nication means that it might as well be used for MitM attack detection in addition to

deterrence. This can be achieved, for example through recognition of excessive number

of queries to S within a short time period, as they would be many times more than

normal (Figure 5.13). The attacks may also be realised by C, e.g., it takes too long to

receive a response, as Adv needs to execute Qry to communicate with the server S.

These uses of timing analysis to detect attacks may be defeated, for example if Adv

is able to assume a different identity for every connection to S, or if it has fast enough

computing power to shorten the execution time Qry, for example when querying requires

proof-of-work in terms of computation. Otherwise, the success of detection would likely

to reduce the cost of security bootstrapping, as attacks may be discovered before (Qry,

Res) finishes being executed.

5.7.7 Examples of Application

The structure of Q should depend strongly on the public knowledge of the client C’s

potential query q before it is sent out. As a result, it is mostly bound to each individual

server S, while in private conversation it may also be bound to each particular client

193

5.8. Conclusions

C. We illustrate this with two examples of application where our solution might be

applied: search engine and password authentication.

Search engine. When S is the search engine, q is in the form of a search phrase.

Depending on the search areas covered by S, the set Q should contain all possible

phrases in those areas. On the other hand, if C’s interest is well-known, e.g., C is a

nurse, then Q should discard all phrases that relate to for instance computer science.

When Q is very large, C does not need to store the whole Q, but a subset of it

is sufficient. An example could be a dictionary of words in nursing area, so that a

random search phrase could be formed by several of these words together.

Password authentication. In password authentication, a query is essentially a pass-

word. Therefore Q should contain all plausible passwords that following a particular

rule. Again, Q should be refined if information about C is exposed, e.g., C is English,

then Q should not contain passwords with Norwegian words. In general case, Q needs

not be stored, as passwords can be easily generated at random.

5.8 Conclusions

In this chapter we explore a topic that has not been well studied, i.e., security of

unauthenticated two-party client-server communication. With strong definitions of

adversaries and security used in cryptography or formal method security, it is generally

hard to derive a satisfying solution. Alternatively, we define a weaker, but meaningful

security notion, called online man-in-the-middle (oMitM) attacks, in which the attacker

communicate with both ends in parallel, and effectively use information from each side

in communicating with the other. For attacks that do not fall in this category we are

regarded as impersonation.

By assuming a fixed payoff for the adversary in each type of attacks, as well as

communicating parties’ losses and utilities, we use game theory to model a game that

captures interactions and behaviours of these entities. The game analysis points out

solution concepts in the form of Nash equilibria that discourage man-in-the-middle at-

tack. We implement the game by designing a communication protocol that equivalently

captures the players’ activities, with supports from cryptographic primitives. Finally,

we discuss additional practicality features regarding our solution.

Our solution relies on the use of cost in querying and multi-round requests to

make attacks more expensive than the communicating cost (Figure 5.13). It places the

very first steps in dealing with the known presence of an attacker in unauthenticated

communication. The communicating cost might be further optimised via bootstrapping

of security and attack detection. Therefore, our solution is reasonable given that the

194

5.8. Conclusions

risk is certain. That said, it might even be tailored less costly for scenarios where the

presence of an attacker is less certain (e.g. SSH remote login). This creates a motivation

for future research in economic approaches to unauthenticated communication.

195

Chapter 6

Conclusion

Following the proliferation of information technologies in business routines, security of

information infrastructures has become a major concern for societal entities, ranging

from individuals to large organisations, as well as governmental and critical infras-

tructures. While traditional treatments of security have been well-established in both

results and research community, the economics of information security bring a new

awareness to the problem of securing information. Indeed, this approach addresses

the rationality of participants involved in a security scenario, something which have

been assumed otherwise by traditional security research. Although in its infant stage,

this area of research possess many potentials, as the nature of security issues involves

scenarios consisting of multiple independent and selfish decision makers. This is thus

a “fertile” land for research that applies game-theoretic techniques to study potential

behaviours of the relevant decision makers. This thesis is no more than an effort to

contribute in developing further this new approach, with works on problems in differ-

ent subfields of information security. Our research employs game-theoretic analysis to

produce insights, as well as rational solutions for these problems.

Particularly, our work starts with addressing a high-level problem, i.e., organisa-

tional strategic security investments in protection against advanced persistent threats

(APTs). We extend FlipIt, a game of timing model developed by Dijk et al. [141], by

enriching it with different types of strategies. We then analyse, compare and contrast

these strategies to provide insights on how organisations should make their strategic

security plans in dealing with APTs. Moving to a more specific problem, in Chapter 3

we consider the needs for investing in security research, as well as sharing of security

information among firms, especially in competitive environments. Here firms must con-

sider the trade-offs between selfishly protecting themselves to earn competitiveness, or

“open their hearts” for mutual improvements and better social welfare. Our analysis

196

leads to insights about how firms would behave under different conditions of compe-

tition, markets, and risks from security breaches. Next, in Chapter 4 we look at the

problem of security for outsourced computation, i.e., the honesty of the contractors

who carry out the computation. As solutions, we design principal-agent contracts that

attract contractors, while at the same time encouraging them to be honest, as well as

optimising the outsourcer’s expenditure. We also consider the problem of information

leakage and collusion among agents. Finally, Chapter 5 is dedicated to an investigation

on a low-level problem: security of network communication. Here we study an issue

seldomly considered in the research community: unauthenticated communication. As

contributions, we formalise a relaxed yet meaningful notion of security, which otherwise

cannot be satisfied when there is no authentication. From game-theoretic modelling

and analysis, we develop a cryptographic protocol that rationally discourages the ad-

versary from violating our prescribed security.

In summary, by studying a breadth of problems in information security, it is in

our hope that the thesis contributes to demonstrating the potential of this research

approach, especially on using game-theoretic analysis. Indeed, our works alone open

a number of questions for future research, as can be seen throughout each chapter

individually.

197

Bibliography

[1] M. Abliz and T. Znati. A guided tour puzzle for denial of service prevention. In

ACSAC ’09, pages 279–288, 2009. 149

[2] T. Alpcan and T. Başar. An intrusion detection game with limited observa-

tions. In 12th Int. Symp. on Dynamic Games and Applications, Sophia Antipolis,

France, July 2006. 26

[3] T. Alpcan and T. Başar. Network Security: A Decision and Game Theoretic

Approach. Cambridge University Press, 2011. 26

[4] E. Altman, K. Avrachenkov, and A. Garnaev. Jamming in wireless networks:

The case of several jammers. In Game Theory for Networks, 2009. GameNets

’09. International Conference on, pages 585 –592, may 2009. 26

[5] P. Anand. Foundations of rational choice under risk. OUP Catalogue, 1995. 15

[6] R. Anderson and T. Moore. The economics of information security: A survey

and open questions. In Fourth bi-annual Conference on the Economics of the

Software and Internet Industries, Jan 2007. 14, 15

[7] M. J. Atallah, Y. Cho, and A. Kundu. Efficient data authentication in an envi-

ronment of untrusted third-party distributors. In IEEE ICDE, 2008. 88

[8] S. Ba, J. Stallaert, A. B. Whinston, and H. Zhang. Choice of transaction chan-

nels: The effects of product characteristics on market evolution. Journal of

management information systems, 21(4):173–197, 2005. 63

[9] R. Bace and P. Mell. Intrusion detection systems. NIST special publication. U.S.

Dept. of Commerce, Technology Administration, National Institute of Standards

and Technology, 2001. 26

[10] B. Barak, R. Canetti, Y. Lindell, R. Pass, and T. Rabin. Secure computation

without authentication. Journal of Cryptology, 24(4):720–760, 2011. 31, 137, 140

198

[11] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear programming: theory

and algorithms. John Wiley & Sons, 2013. 97, 115

[12] R. Bejtlich. Testimony before the USCC Hearing on “Developments in China’s

Cyber and Nuclear Capabilities”, March 26, 2012. http://www.uscc.gov/

hearings/2012hearings/written_testimonies/hr12_03_26.php. 33

[13] S. Bekker. Gates: Microsoft’s upping security R&D

budget. http://redmondmag.com/articles/2004/01/28/

gates-microsofts-upping-security-rd-budget.aspx. 66

[14] M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti, A. Küpçü, and A. Lysyanskaya.

Incentivizing outsourced computation. In NetEcon. ACM, 2008. 28, 88, 89

[15] M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti, A. Küpçü, and A. Lysyanskaya.

Incentivizing outsourced computation. In NetEcon. ACM, 2008. 90, 93, 95, 104,

123

[16] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chain-

ing message authentication code. Journal of Computer and System Sciences,

61(3):362–399, 2000. 139

[17] M. Bellare and P. Rogaway. Entity authentication and key distribution. In

CRYPTO ’93, volume 773 of LNCS, pages 232–249. Springer-Verlag, 1994. 13

[18] M. Bellare and P. Rogaway. Entity authentication and key distribution. In

CRYPTO ’93, volume 773 of LNCS, pages 232–249. Springer-Verlag, 1994. 138

[19] D. Bellhouse. The problem of Waldegrave. Journal Électronique d’Histoire des

Probabilités et de la Statistique, 3(2):null, 2007. 15

[20] C. G. Billo. Cyber warfare: An analysis of the means and motivations of selected

nation states. Technical report, Institute for Security Technology Studies at

Darthmouth College, 2004. 28, 33

[21] D. Blackwell. The noisy duel, one bullet each, arbitrary non-monotone accuracy.

1949. 28, 34

[22] R. Böhme. Security audits revisited. In A. Keromytis, editor, Financial Cryp-

tography and Data Security, volume 7397 of Lecture Notes in Computer Science,

pages 129–147. Springer Berlin Heidelberg, 2012. 27

199

http://www.uscc.gov/hearings/2012hearings/written_testimonies/hr12_03_26.php
http://www.uscc.gov/hearings/2012hearings/written_testimonies/hr12_03_26.php
http://redmondmag.com/articles/2004/01/28/gates-microsofts-upping-security-rd-budget.aspx
http://redmondmag.com/articles/2004/01/28/gates-microsofts-upping-security-rd-budget.aspx

[23] R. Böhme and M. Félegyházi. Optimal information security investment with

penetration testing. In GameSec, pages 21–37, 2010. 34, 49, 54

[24] R. Böhme and T. Moore. The iterated weakest link: A model of adaptive security

investment. In Workshop on the Economics of Information Security (WEIS),

2009. 34, 54

[25] D. Boneh. The decision diffie-hellman problem. In Algorithmic number theory,

pages 48–63. Springer, 1998. 216

[26] R. Branzei, D. Dimitrov, and S. Tijs. Models in cooperative game theory, volume

556. Springer Science & Business Media, 2008. 89

[27] S. Buchegger and T. Alpcan. Security games for vehicular networks. In Com-

munication, Control, and Computing, 2008 46th Annual Allerton Conference on,

pages 244 –251, sept. 2008. 26

[28] L. J. Camp and D. Liu. Proof of work can work. In Workshop on the Economics

of Information Security (WEIS). TPRC, 2006. 149, 191

[29] K. Campbell, L. A. Gordon, M. P. Loeb, and L. Zhou. The economic cost of

publicly announced information security breaches: empirical evidence from the

stock market. Journal of Computer Security, 11(3):431–448, 2003. 61

[30] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use

for building secure channels. EUROCRYPT 2001, pages 453–474, London, UK,

UK, 2001. Springer-Verlag. 23

[31] R. Canetti, B. Riva, and G. N. Rothblum. Practical delegation of computation

using multiple servers. In ACM CCS, 2011. 88

[32] B. Carbunar and M. V. Tripunitara. Payments for outsourced computations.

IEEE Transactions on Parallel and Distributed Systems, 23(2), 2012. 90

[33] M. C. Carlos, J. E. Martina, G. Price, and R. F. Custodio. A proposed framework

for analysing security ceremonies. In P. Samarati, W. Lou, and J. Zhou, editors,

Proceedings of the 7th International Conference on Security and Cryptography,

SECRYPT 12, pages 440–445. SciTePress, jul 2012. 14

[34] H. Cavusoglu, B. Mishra, and S. Raghunathan. The effect of internet security

breach announcements on market value: Capital market reactions for breached

firms and internet security developers. International Journal of Electronic Com-

merce, 9(1):70–104, 2004. 61

200

[35] E. Chabrow. Identifying undetected breaches identifying undetected

breaches: How data scientists analyze big data to spot vulnerabili-

ties, April 20, 2012. http://www.bankinfosecurity.co.uk/interviews/

identifying-undetected-breaches-i-1542. 33

[36] Y. E. Chan and K. E. Greenaway. Theoretical explanations for firms’ information

privacy behaviors. Journal of the Association for Information Systems, 6(6):7,

2005. 63

[37] H. Chen, X. Ma, W. Hsu, N. Li, and Q. Wang. Access control friendly query

verification for outsourced data publishing. In ESORICS, 2008. 88

[38] E. Christoforou, A. F. Anta, C. Georgiou, M. A. Mosteiro, and A. Sánchez.

Applying the dynamics of evolution to achieve reliability in master–worker com-

puting. Concurrency and Computation: Practice and Experience, 2013. 90

[39] R. Cooper and T. W. Ross. Product warranties and double moral hazard. The

RAND Journal of Economics, pages 103–113, 1985. 89

[40] A. Coviello. Open letter to RSA customers, March 17, 2011. http://www.rsa.

com/node.aspx?id=3872. 28, 33, 35

[41] R. Croson, T. Boles, and J. K. Murnighan. Cheap talk in bargaining experi-

ments: lying and threats in ultimatum games. Journal of Economic Behavior &

Organization, 51(2):143–159, 2003. 89

[42] J. S. Demski and D. E. Sappington. Resolving double moral hazard problems

with buyout agreements. The RAND Journal of Economics, pages 232–240, 1991.

89

[43] G. Di Crescenzo, Y. Ishai, and R. Ostrovsky. Non-interactive and non-malleable

commitment. STOC ’98, pages 141–150, New York, NY, USA, 1998. 25

[44] T. Dierks and E. Rescorla. RFC5246: The transport layer security (TLS) protocol

version 1.2, aug 2008. 137

[45] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM review,

45(4):727–784, 2003. 140

[46] D. Dolev, S. Even, and R. M. Karp. On the security of ping-pong protocols.

Information and Control, 55(1):57–68, 1982. 139

201

http://www.bankinfosecurity.co.uk/interviews/identifying-undetected-breaches-i-1542
http://www.bankinfosecurity.co.uk/interviews/identifying-undetected-breaches-i-1542
http://www.rsa.com/node.aspx?id=3872
http://www.rsa.com/node.aspx?id=3872

[47] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions

on Information Theory, 29:198–208, 1983. 13, 139

[48] C. Dwork, A. Goldberg, and M. Naor. On memory-bound functions for fighting

spam. In CRYPTO 2003, volume 2729 of LNCS, pages 426–444. Springer Berlin

Heidelberg, 2003. 149

[49] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. CRYPTO

’92, pages 139–147, London, UK, UK, 1993. Springer-Verlag. 149

[50] C. Evans. Announcing project zero. http://googleprojectzero.blogspot.

com/2014/07/announcing-project-zero.html. 29, 64

[51] J. Farrell. Meaning and credibility in cheap-talk games. Games and Economic

Behavior, 5(4):514–531, 1993. 89

[52] E. Gal-Or. Information sharing in oligopoly. Econometrica: Journal of the Econo-

metric Society, pages 329–343, 1985. 29, 63

[53] E. Gal-Or and A. Ghose. The economic incentives for sharing security informa-

tion. Information Systems Research, 16(2):186–208, 2005. 29, 63

[54] X. Gao, W. Zhong, and S. Mei. Security investment and information sharing

under an alternative security breach probability function. Information Systems

Frontiers, pages 1–16. 27, 64

[55] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing:

Outsourcing computation to untrusted workers. In CRYPTO. Springer, 2010.

28, 88

[56] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing:

Outsourcing computation to untrusted workers. In CRYPTO. Springer, 2010.

30, 86, 90

[57] G. Gigerenzer and R. Selten. Bounded rationality: The adaptive toolbox. Mit

Press, 2002. 15

[58] H. Gintis. Game Theory Evolving: A Problem-Centered Introduction to Modeling

Strategic Interaction. Princeton University Press, 2009. 28, 90, 96, 100

[59] I. L. Glicksberg. A further generalization of the kakutani fixed point theorem,

with application to nash equilibrium points. Proceedings of the American Math-

ematical Society, 3(1):170–174, 1952. 18

202

http://googleprojectzero.blogspot.com/2014/07/announcing-project-zero.html
http://googleprojectzero.blogspot.com/2014/07/announcing-project-zero.html

[60] S. Goel and H. A. Shawky. Estimating the market impact of security breach

announcements on firm values. Information & Management, 46(7):404–410, 2009.

61

[61] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme se-

cure against adaptive chosen-message attacks. SIAM Journal on Computing,

17(2):281–308, 1988. 139

[62] G. Gordon and R. Tibshirani. Karush-kuhn-tucker conditions. Optimization,

10(725/36):725. 212

[63] L. A. Gordon and M. P. Loeb. The economics of information security invest-

ment. ACM Transactions in Information System Security, 5(4):438–457, Novem-

ber 2002. 34, 53, 63

[64] L. A. Gordon, M. P. Loeb, and W. Lucyshyn. Sharing information on computer

systems security: An economic analysis. Journal of Accounting and Public Policy,

22(6):461–485, 2003. 27, 29, 63, 64

[65] J. Grossklags, N. Christin, and J. Chuang. Secure or insure?: a game-theoretic

analysis of information security games. In Proceeding of the 17th international

conference on World Wide Web, WWW ’08, pages 209–218, New York, NY, USA,

2008. ACM. 27

[66] J. Grossklags, B. Johnson, and N. Christin. The price of uncertainty in security

games. In T. Moore, D. Pym, and C. Ioannidis, editors, Economics of Information

Security and Privacy, pages 9–32. Springer US, 2010. 27

[67] J. Halpern and V. Teague. Rational secret sharing and multiparty computation:

extended abstract. In Proceedings of the thirty-sixth annual ACM symposium

on Theory of computing, STOC ’04, pages 623–632, New York, NY, USA, 2004.

ACM. 14

[68] J. C. Harsanyi. Games with incomplete information played by ”bayesian” players,

i-iii. part iii. the basic probability distribution of the game. Management Science,

14(7):pp. 486–502, 1968. 16

[69] K. Hausken. Income, interdependence, and substitution effects affecting incen-

tives for security investment. Journal of Accounting and Public Policy, 25(6):629

– 665, 2006. 27

203

[70] K. Hausken. Income, interdependence, and substitution effects affecting incen-

tives for security investment. Journal of Accounting and Public Policy, 25(6):629–

665, 2006. 29

[71] K. Hausken. Information sharing among firms and cyber attacks. Journal of

Accounting and Public Policy, 26(6):639–688, 2007. 27, 29, 64

[72] R. Henrion. On constraint qualifications. Journal of optimization theory and

applications, 72(1):187–197, 1992. 212

[73] IBM. IBM unveils industry’s first intelligent cloud security portfolio for

global businesses. https://www-03.ibm.com/press/us/en/pressrelease/

45326.wss. 66

[74] J. Jafarian, E. Al-Shaer, and Q. Duan. Formal approach for route agility against

persistent attackers. In J. Crampton, S. Jajodia, and K. Mayes, editors, Computer

Security – ESORICS 2013, volume 8134 of Lecture Notes in Computer Science,

pages 237–254. Springer Berlin Heidelberg, 2013. 27

[75] M. Jakobsson and A. Juels. Proofs of work and bread pudding protocols. CMS

’99, pages 258–272, Deventer, The Netherlands, 1999. Kluwer, B.V. 149

[76] S. Kakutani. A generalization of brouwer?s fixed point theorem. Duke mathe-

matical journal, 8(3):457–459, 1941. 18

[77] S. Karlin. Mathematical methods and theory in games, programming, and eco-

nomics. Addison-Wesley series in statistics. Addison-Wesley Pub. Co., 1959. 34

[78] A. Kashyap, T. Basar, and R. Srikant. Correlated jamming on mimo gaussian

fading channels. Information Theory, IEEE Transactions on, 50(9):2119 – 2123,

sept. 2004. 26

[79] J. Katz and M. Yung. Characterization of security notions for probabilistic

private-key encryption. Journal of Cryptology, 19(1):67–95, 2006. 139

[80] M. Khouzani, V. Pham, and C. Cid. Incentive engineering for outsourced com-

putation in the face of collusion. In Proceedings of WEIS 2014 – 13th Annual

Workshop on the Economics of Information Security, 2014. 28, 30

[81] M. Khouzani, V. Pham, and C. Cid. Strategic discovery and sharing of vulner-

abilities in competitive environments. In R. Poovendran and W. Saad, editors,

Decision and Game Theory for Security, volume 8840 of Lecture Notes in Com-

puter Science, pages 59–78. Springer International Publishing, 2014. 30

204

https://www-03.ibm.com/press/us/en/pressrelease/45326.wss
https://www-03.ibm.com/press/us/en/pressrelease/45326.wss

[82] D. Korzhyk, Z. Yin, C. Kiekintveld, V. Conitzer, and M. Tambe. Stackelberg vs.

nash in security games: An extended investigation of interchangeability, equiv-

alence, and uniqueness. Journal of Artificial Intelligence Research, 41:297–327,

2011. 92

[83] H. W. Kuhn. Extensive games and the problem of information. Annals of Math-

ematics Studies, 28, 1953. 16

[84] H. Kunreuther and G. Heal. Interdependent Security. Journal of Risk and Un-

certainty, 26(2):231–249, March 2007. 27

[85] R. Langner. Stuxnet: Dissecting a cyber warfare weapon. IEEE Security &

Privacy, 9(3):49–51, 2011. 33

[86] A. Laszka, M. Felegyhazi, and L. Buttyán. A survey of interdependent security

games. CrySyS, 2, 2012. 27

[87] A. Laszka, G. Horvath, M. Felegyhazi, and L. Buttyan. Flipthem: Modeling

targeted attacks with flipit for multiple resources. Technical report, Technical

report, Budapest University of Technology and Economics, 2013. 28

[88] B. Laurie and R. Clayton. ”proof-of-work” proves not to work. In IN WEAS 04,

2004. 191

[89] C. Z. Liu, H. Zafar, and Y. A. Au. Rethinking FS-ISAC: An IT security infor-

mation sharing network model for the financial services sector. 2013. 27, 64

[90] H. Lovells. DOJ and FTC clarify antitrust implications of cybersecurity informa-

tion sharing, April 2014. http://www.hoganlovells.com/ [Online; 22-April-2014].

61

[91] R. Mallik, R. Scholtz, and G. Papavassilopoulos. Analysis of an on-off jam-

ming situation as a dynamic game. Communications, IEEE Transactions on,

48(8):1360 –1373, aug 2000. 26

[92] D. P. Mann and J. P. Wissink. Money-back contracts with double moral hazard.

The RAND Journal of Economics, pages 285–292, 1988. 89

[93] A. Matsui. Information leakage forces cooperation. Games and Economic Be-

havior, 1(1):94–115, 1989. 89

[94] A. Matsui. Cheap-talk and cooperation in a society. Journal of Economic Theory,

54(2):245–258, 1991. 89

205

http://www.hldataprotection.com/2014/04/articles/cybersecurity-data-breaches/doj-and-ftc-clarify-antitrust-implications-of-cybersecurity-information-sharing/

[95] U. Maurer. Secure multi-party computation made simple. In Security in Com-

munication Networks, pages 14–28. Springer, 2003. 13, 125

[96] U. Maurer and S. Wolf. Secret key agreement over a non-authenticated channel

— Part I: Definitions and bounds. IEEE Transactions on Information Theory,

49(4):822–831, Apr. 2003. 140

[97] C. Miller. The legitimate vulnerability market: Inside the secretive world of 0-day

exploit sales. In In Sixth Workshop on the Economics of Information Security.

Citeseer, 2007. 64

[98] R. A. Miura-Ko, B. Yolken, J. Mitchell, and N. Bambos. Security decision-

making among interdependent organizations. In Computer Security Foundations

Symposium, 2008. CSF ’08. IEEE 21st, pages 66–80, June 2008. 27

[99] F. Monrose, P. Wyckoff, and A. D. Rubin. Distributed execution with remote

audit. In NDSS, 1999. 88

[100] National Institute of Standards and Technology. Technical Guide to Information

Security Testing and Assessment. Special Publication 800–115, 2008. 32

[101] National Institute of Standards and Technology. Recommended security controls

for federal information systems and organizations. Special Publication 800–53,

2009. 38

[102] Netcraft. Half a million widely trusted websites vulnerable to heartbleed bug,

April 2014. news.netcraft.com[Online; 08-April-2014]. 61

[103] J. V. Neumann and O. Morgenstern. Theory of Games and Economic Behavior.

Princeton University Press, 1944. 15, 17, 18

[104] R. Nix and M. Kantarcioglu. Contractual agreement design for enforcing honesty

in cloud outsourcing. In GameSec. Springer, 2012. 28, 88, 89

[105] R. Nix and M. Kantarcioglu. Contractual agreement design for enforcing honesty

in cloud outsourcing. In GameSec. Springer, 2012. 90, 104

[106] A. Nochenson, J. Grossklags, et al. A behavioral investigation of the flipit game.

In 12th Workshop on the Economics of Information Security (WEIS), 2013. 28,

34

[107] Norton Rose Fullbright. Outsourcing in a brave new world: An international

survey of current outsourcing practice and trends. Technical report, Norton Rose

Fullbright, 2011. 30, 86

206

http://news.netcraft.com/archives/2014/04/08/half-a-million-widely-trusted-websites-vulnerable-to-heartbleed-bug.html

[108] D. of Homeland Security. National cybersecurity and communications integration

center. www.us-cert.gov/nccic[Online; Accessed June-2014]. 29, 61

[109] H. Ogut, N. Menon, and S. Raghunathan. Cyber insurance and it security in-

vestment: Impact of interdependence risk. In WEIS, 2005. 27

[110] C. Orlandi. Is multiparty computation any good in practice? In Acoustics, Speech

and Signal Processing (ICASSP), 2011 IEEE International Conference on, pages

5848–5851. IEEE, 2011. 141

[111] R. Pal and P. Hui. Modeling internet security investments: Tackling topological

information uncertainty. In J. Baras, J. Katz, and E. Altman, editors, Deci-

sion and Game Theory for Security, volume 7037 of Lecture Notes in Computer

Science, pages 239–257. Springer Berlin Heidelberg, 2011. 27

[112] V. Pham and T. Aura. Security analysis of leap of faith protocols. In SecureComm

2011, volume 96 of LNICST, pages 337–355. Springer-Verlag, 2012. 14, 137

[113] V. Pham and T. Aura. Security analysis of leap of faith protocols. In SecureComm

2011, volume 96 of LNICST, pages 337–355. Springer-Verlag, 2012. 140

[114] V. Pham and C. Cid. Are we compromised? modelling security assessment games.

In Decision and Game Theory for Security, pages 234–247. Springer, 2012. 28

[115] V. Pham and C. Cid. Are we compromised? modelling security assessment games.

In GameSec 2012, volume 7638 of LNCS, pages 234–247. Springer-Verlag, 2012.

29

[116] V. Pham, M. Khouzani, and C. Cid. Optimal contracts for outsourced compu-

tation. In Decision and Game Theory for Security, pages 79–98. Springer, 2014.

30

[117] Press-Release. Government launches information sharing partnership on cyber

security, March 2013. www.gov.uk[Online; 27-March-2013]. 61

[118] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with

honest majority. In Proceedings of the twenty-first annual ACM symposium on

Theory of computing, pages 73–85. ACM, 1989. 53

[119] C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge

and chosen ciphertext attack. In Advances in Cryptology, CRYPTO’91, pages

433–444. Springer, 1992. 139

207

http://www.us-cert.gov/nccic
https://www.gov.uk/government/news/government-launches-information-sharing-partnership-on-cyber-security

[120] T. Radzik. Results and problems in games of timing. Lecture Notes-Monograph

Series, pages 269–292, 1996. 34

[121] T. Raghavan. Zero-sum two-person games. In R. Aumann and S. Hart, editors,

Handbook of Game Theory with Economic Applications, volume 2 of Handbook of

Game Theory with Economic Applications, chapter 20, pages 735–768. Elsevier,

00 1994. 26

[122] E. Rasmusen. Games and information: an introduction to game theory. 1994. 96

[123] M. Raya, M. H. Manshaei, M. Félegyhazi, and J.-P. Hubaux. Revocation games

in ephemeral networks. In Proceedings of the 15th ACM conference on Computer

and communications security, CCS ’08, pages 199–210, New York, NY, USA,

2008. ACM. 26

[124] D. Reitter, J. Grossklags, and A. Nochenson. Risk-seeking in a continuous game

of timing. In Proceedings of the 13th International Conference on Cognitive Mod-

eling (ICCM), pages 397–403, 2013. 28

[125] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release

crypto. Technical report, Cambridge, MA, USA, 1996. 220

[126] P. Rogaway. Formalizing human ignorance: Collision-resistant hashing without

the keys. In Progress in Cryptology-VIETCRYPT 2006, pages 211–228. Springer,

2006. 216

[127] W. Saad, Z. Hart, T. Basar, M. Debbah, and A. Hjørungnes. Physical layer

security: coalitional games for distributed cooperation. In Proceedings of the 7th

international conference on Modeling and Optimization in Mobile, Ad Hoc, and

Wireless Networks, WiOPT’09, pages 169–176. IEEE Press, 2009. 26

[128] Y. Sagduyu and A. Ephremides. A game-theoretic analysis of denial of service

attacks in wireless random access. In Modeling and Optimization in Mobile, Ad

Hoc and Wireless Networks and Workshops, 2007. WiOpt 2007. 5th International

Symposium on, pages 1 –10, april 2007. 26

[129] B. Schneier. The process of security. https://www.schneier.com/essays/

archives/2000/04/the_process_of_secur.html. 65

[130] J. Seth. Strategic importance of information technology. Advances in Telecom-

munications Management, pages 3–16, 1994. 12

208

https://www.schneier.com/essays/archives/2000/04/the_process_of_secur.html
https://www.schneier.com/essays/archives/2000/04/the_process_of_secur.html

[131] S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish. Making argument

systems for outsourced computation practical (sometimes). In NDSS, 2012. 28,

30, 88

[132] S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish. Making argument

systems for outsourced computation practical (sometimes). In NDSS, 2012. 30,

86

[133] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and M. Walfish. Taking

proof-based verified computation a few steps closer to practicality. In USENIX

Security, 2012. 28, 30, 88

[134] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and M. Walfish. Taking

proof-based verified computation a few steps closer to practicality. In USENIX

Security, 2012. 30, 86

[135] A. Shamir. How to share a secret. Commun. ACM, 22:612–613, November 1979.

13

[136] C. Shapiro. Exchange of cost information in oligopoly. The review of economic

studies, 53(3):433–446, 1986. 29, 63

[137] E. Solan and L. Yariv. Games with espionage. Games and Economic Behavior,

47(1):172–199, 2004. 89

[138] T. Spyridopoulos, G. Karanikas, T. Tryfonas, and G. Oikonomou. A game theo-

retic defence framework against dos/ddos cyber attacks. Computers & Security,

38(0):39 – 50, 2013. Cybercrime in the Digital Economy. 27

[139] T. Tryfonas. On security metaphors and how they shape the emerging prac-

tice of secure information systems development. Journal of Information System

Security, 3(3):21–50, 2007. 63

[140] USC. US code: Title 44, section 3542, Jan 2012. 13

[141] M. van Dijk, A. Juels, A. Oprea, and R. L. Rivest. Flipit: The game of “stealthy

takeover”. Cryptology ePrint Archive, Report 2012/103, 2012. 27, 28, 32, 33, 34,

35, 36, 37, 38, 43, 46, 196

[142] J. Vijayan. Breach, undetected since ’05, exposes data on Kingston customers,

July 17, 2007. http://www.computerworld.com/s/article/9027220/Breach_

undetected_since_05_exposes_data_on_Kingston_customers. 33

209

http://www.computerworld.com/s/article/9027220/Breach_undetected_since_05_exposes_data_on_Kingston_customers
http://www.computerworld.com/s/article/9027220/Breach_undetected_since_05_exposes_data_on_Kingston_customers

[143] X. Vives. Trade association disclosure rules, incentives to share information, and

welfare. RAND Journal of Economics, 21(3):409–430, 1990. 29, 63

[144] C. Wang, K. Ren, and J. Wang. Secure and practical outsourcing of linear

programming in cloud computing. In INFOCOM, 2011, 2011. 88

[145] B. Waters, A. Juels, J. A. Halderman, and E. W. Felten. New client puzzle

outsourcing techniques for dos resistance. ACM CCS ’04, pages 246–256, New

York, NY, USA, 2004. ACM. 149

[146] F.-L. Wong, F. Stajano, and J. Clulow. Repairing the bluetooth pairing protocol.

In B. Christianson, B. Crispo, J. Malcolm, and M. Roe, editors, Security Proto-

cols, volume 4631 of Lecture Notes in Computer Science, pages 31–45. Springer

Berlin Heidelberg, 2007. 14

[147] Q. Xiong and X. Chen. Incentive mechanism design based on repeated game the-

ory in security information sharing. In 2nd International Conference on Science

and Social Research (ICSSR 2013). Atlantis Press, 2013. 64

[148] G. Yan and S. Eidenbenz. Ddos mitigation in non-cooperative environments. In

A. Das, H. Pung, F. Lee, and L. Wong, editors, NETWORKING 2008 Ad Hoc

and Sensor Networks, Wireless Networks, Next Generation Internet, volume 4982

of Lecture Notes in Computer Science, pages 599–611. Springer Berlin Heidelberg,

2008. 27

[149] K. Yi, F. Li, G. Cormode, M. Hadjieleftheriou, G. Kollios, and D. Srivastava.

Small synopses for group-by query verification on outsourced data streams. ACM

TODS, 2009. 88

[150] C. Zhou, S. Karunasekera, and C. Leckie. A peer-to-peer collaborative intru-

sion detection system. In Networks, 2005. Jointly held with the 2005 IEEE 7th

Malaysia International Conference on Communication., 2005 13th IEEE Inter-

national Conference on, volume 1, page 6 pp., nov. 2005. 26

[151] Q. Zhu and T. Basar. Dynamic policy-based ids configuration. In Decision

and Control, 2009 held jointly with the 2009 28th Chinese Control Conference.

CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, pages 8600 –8605,

dec. 2009. 26

[152] Q. Zhu, C. Fung, R. Boutaba, and T. Basar. A game-theoretical approach to

incentive design in collaborative intrusion detection networks. In Game Theory

210

for Networks, 2009. GameNets ’09. International Conference on, pages 384 –392,

may 2009. 27

[153] Q. Zhu, H. Li, Z. Han, and T. Baş andar. A stochastic game model for jamming

in multi-channel cognitive radio systems. In Communications (ICC), 2010 IEEE

International Conference on, pages 1 –6, may 2010. 26

[154] M. Zviran and W. J. Haga. Password security: an empirical study. Journal of

Management Information Systems, pages 161–185, 1999. 63

211

Appendix A

Basic of Karush-Kuhn-Tucker

(KKT) Optimisation

Named after its developers William Karush, Harold W. Kuhn, and Albert W. Tucker,

the KKT conditions provide an essential tool for non-linear optimisation. It can be

stated in the following [62]. Consider the following optimisation problem:

min
x

f(x)

subject to: gi(x) ≤ 0 ∀i ∈ [n], and,

hj(x) = 0 ∀j ∈ [m],

for functions f, gi, hj : Rk → R and some n,m, k ∈ Z+. Suppose that f, gi.hj for i ∈ [n],

j ∈ [m] are continuously differentiable in x∗ ∈ Rk, then if x∗ is a local minimum of the

above problem and that it satisfies a regularity condition, there exist constants µi for

i ∈ [n], and λj for j ∈ [m] such that the following KKT conditions hold

Stationary: ∇f(x∗) +

n∑
i=1

µi∇gi(x∗) +

m∑
j=1

λj∇hj(x∗) = 0

Complementary slackness: µigi(x
∗) ∀ i ∈ [n]

Primal feasibility: gi(x
∗) ≤ 0 ∀ i ∈ [n], hj(x

∗) = 0 ∀ j ∈ [m]

Dual feasibility: µi ≥ 0 ∀ i ∈ [n]

There are many regularity conditions that x∗ can satisfy in order for it to qualify

the KKT conditions above. For the purpose of our work, we only mention the so-called

Mangasarian-Fromovitz constraint qualification (MFCQ) [72], i.e., the following vectors

212

are positive-linearly independent in Rk:

∇hj(x∗) ∀ j ∈ [m], ∇gi(x∗) ∀ i ∈ [n] s.t. gi(x
∗) = 0

Our process of optimising outsourcing contracts proceed as follows. We first prove

that the cost function to minimise f , along with gi (there is no hj) satisfies MFCQ

regularity condition for all non-trivial points x∗. This ensures that all interesting local

minima of f will satisfy the KKT conditions. The remainder of the work is to write a

program that solves KKT conditions to find all points that satisfy them, then comparing

the found results to eliminate points which are not local minima. The remaining points

thus form the global minima of f .

213

Appendix B

Mathematica Code for KKT

Optimisation

The program takes as input several parameters, including eqsys, var, sup, and supV ar.

It means to solve the following optimisation, for a tuple of k variables x and n con-

straints:

min
x
f(x) subject to gi(x) ≤ 0 ∀i ∈ [n].

To do so, set eqsys = {f(x), g1(x), . . . , gn(x)}, var = {x1, . . . ,xk}. The other param-

eter sup is of the form {inequality 1, . . . , inequality t}, which gives further restrictions

to the solution. For example in Section 4.5 we need to optimise two-agent contracts, in

which there are extra requirements such as Λ < 1, γ > 0, etc. These restrictions would

later be used to filter optimal solutions that are not meaningful, e.g., if it assumes that

c < 0, or Λ > 1. Finally, supV ar gives the list of parameters that appear in sup, e.g.,

c, Λ, γ.

Listing B.1: Optimisation using KKT conditions

1 Clear[KKT];

2 KKT[eqsys , var , sup , supVar] := (

3 min = eqsys [[1]];

4 len = Length[eqsys] − 1;

5 nMax = 2ˆ(Length[eqsys] − 1);

6 tmpEqSys =

7 Table[eqsys [[kh]] Subscript [\[Mu], kh − 1], {kh, 1,

8 len + 1}] /. {Subscript[\[Mu], 0] −> 1};
9 orgSys =

10 Table[D[Plus @@ tmpEqSys, var[[kh]]] == 0, {kh, 1, Length[var]}];
11 For[i = 0, i < nMax, i++, (

214

12 sys = orgSys;

13 newEqSys = {};
14 For[j = 0, j < len, j++, (

15 sys =

16 Union[sys,

17 If [Mod[BitShiftRight[i , j], 2] ==

18 0, {Subscript[\[Mu], j + 1] == 0}, {eqsys[[j + 2]] == 0}]];
19 newEqSys =

20 Union[newEqSys,

21 If [Mod[BitShiftRight[i , j], 2] ==

22 0, {eqsys [[j + 2]] <= 0}, {eqsys[[j + 2]] == 0}]];
23)];

24 sol =

25 Solve[sys ,

26 Union[var, Table[Subscript [\[Mu], kh], {kh, 1, len }]]];
27 If [sol == {}, , (
28 \[Mu]Conditions =

29 Table[Subscript [\[Mu], kh] >= 0, {kh, 1, len }];
30 For[mh = 1, mh <= Length[sol], mh++,

31 (Print [sol [[mh]]]; Print [”To reduce:”];

32 Print [And @@

33 Flatten[

34 Union[sup /. sol [[mh]],

35 newEqSys /. sol [[mh]], \[Mu]Conditions /. sol [[mh]]]]];

36 Print [”Start reducing ... ”];

37 abc = Reduce[

38 And @@ Flatten[

39 Union[sup /. sol [[mh]],

40 newEqSys /. sol [[mh]], \[Mu]Conditions /. sol [[mh]]]],

41 supVar];

42 If [abc == False, Continue[]];

43 Print [”Solution = ”, sol [[mh]] // FullSimplify , ”\n”,
44 ”\nConditions = ”,

45 And @@ Flatten[

46 Union[newEqSys /. sol[[mh]],

47 orgSys /. sol [[mh]], \[Mu]Conditions /. sol [[mh]]]] //

48 FullSimplify , ”\n\n”];)
49]

50)];

51) ;

52];) ;

215

Appendix C

A Key-Exchange Protocol for

Definition 1.16

In order for our schemes to work, we need the Decisional Diffie-Hellman (DDH) as-

sumption and the existence of a collision-resistant hash function, defined below:

Definition C.1 ([25]). Consider a generator G that on input n would output a cyclic

group G of prime order q and generator g. We say that the DDH problem is hard relative

to G if for all PPT algorithms A there exists a negligible function ε such that

|Pr[A(G, q, g, gx, gy, gxy) = 1]− Pr[A(G, q, g, gx, gy, gz) = 1]| ≤ ε(n)

where the probabilities are taken over G(n), and the uniform randomness of x, y, z ∈ Zq.

Definition C.2 ([126]). A tuple (Gen, H) where Gen is a key generator, and H is a

hash function, is said to be a collision-resistant hash function if for all PPT algorithms

A there exists a negligible function such that

Pr[k ← Gen(n); (m,m′)← A(k, n) : m 6= m′ ∧H(k,m) = H(k,m′)] ≤ ε(n).

The existence of the desired key-exchange protocol is stated in the following result:

Proposition C.1. Assume that the DDH problem is hard relative to some generator

G, and that there exist a collision-resistant hash function (Gen, H) and a non-malleable

commitment scheme (Setup,Commit,Open), then under the common-reference string

(CRS) model there exists a key-exchange protocol (I,R) satisfying the correctness and

key indistinguishability properties of Definition 1.16. Assume that there exists an au-

thenticated encryption scheme (K,Enc,Dec) where keys are generated by honest execu-

tions of (I,R), then there exists a protocol (I′,R′) satisfying Definition 1.16.

216

Proof. With the CRS assumption, we first assume that there exists a trusted third party

that generates (G, g, q)← G(n), k ← Gen(n) and CK← Setup(n), and distribute these

to the two parties performing key exchange. Then, we construct the protocol (I,R) as

follows:

1. I: generates x←$ Zq, gI = gx, (cI , dI)← CommitCK(gI), and sends cI .

2. R: generates y ←$ Zq, gR = gy, (cR, dR)← CommitCK(gR), and sends cR.

3. I: receives cR and sends dI .

4. R: receives dI and sends dR.

5. I: computes gR ← OpenCK(cR, dR), if gR =⊥, returns ⊥, otherwise computes

ksess ← H(k, gxR).

6. R: computes gI ← OpenCK(cI , dI), if gI =⊥, returns ⊥, otherwise computes

ksess ← H(k, gyI).

The correctness of this mechanism with respect to Definition 1.16 is straightforward,

kI = H(k, gxR) = H(k, gxy) = H(k, gyI) = kR.

For key indistinguishability, we first assume for some adversary Adv there exists a

non-negligible function ε′ such that

Pr[(k0, ·, k1)← (I(n),Adv,R(n)) : k0 = k1 6=⊥] = ε′(n)

Let g′R and g′I be the Diffie-Hellman components received by I and R, respectively.

Given that k0 = k1, two situations might have occurred:

• g′xR 6= g′yI : this means that H(k, g′xR) = k0 = k1 = H(k, g′yR), which only occurs

with negligible probability due to the collision property of hash function.

• g′xR = g′yI : Let trI and trR be the message transcripts of the communication

perceived by I and R, respectively. Consider two sub-cases:

– trI = trR: this indicates that Adv did not modify any message at all. There-

fore, it receives gx, gy, and that k0 = k1 = gxy. The key indistinguishability

thus becomes the DDH experiment, and thus the adversary’s success is at

most 1/2 plus some negligible probability.

217

– trI 6= trR: Let (c′I , d
′
I) and (c′R, d

′
R) be commitment values received by R and

I, respectively. If either c′I = cI or c′R = cR, then due to the binding property

of commitment, with at most negligible probability the adversary can make

both gI 6= g′I and gR 6= g′R. Otherwise we have either gI = g′I or gR = g′R.

This implies that k0 = k1 = gxy, and thus the key indistinguishably again

becomes the DDH experiment, which implies that the adversary’s success is

at most 1/2 plus some negligible probability.

Consider the case cI 6= c′I and cR 6= c′R. From the construction it is easy

to see that either the adversary does not receive dI before producing c′I ,

or it does not receive dR before producing c′R. Assume the former holds,

due to the non-malleability property of commitment, the value of gI and g′I
are statistically independent, and so are x and x′ which they respectively

correspond to. Due to the hiding property, gI and g′R are also statistically

independent, and so are x and y′. Therefore, we eventually have k0 = gxy
′

is

statistically indistinguishable from some gc for c ←$ Zq, and that it is also

statistically independent from k1 = gx
′y. This means that the probability

that k0 = k1 is negligible. A similar analysis also applies when we consider

that fact that the adversary does not receive dR before producing c′R.

The above points together imply that the adversary’s success probability in the key

indistinguishability is negligibly different from 1/2. We now construct (I′,R′) from (I,R)

that satisfies also the synchronisation property. Indeed, (I′,R′) inherits all six steps of

(I,R), along with the following additions:

7. I′: produces cI ← Encksess(trI), where trI is the transcript of all previous messages,

and sends cI .

8. R′: produces cR ← Encksess(trR), where trI is the transcript of all previous mes-

sages, and sends cR.

9. I′: computes trR ← Decksess(cR), and if trR 6= trI , then set ksess =⊥.

10. I′: computes trI ← Decksess(cI), and if trI 6= trR, then set ksess =⊥.

We note that (I′,R′) preserves the correctness and key indistinguishability properties

because the last four steps above do not have a possibility to change the value of ksess

to anything other than ⊥. The synchronisation property holds because if k0 = k1 and

trI 6= trR, due to Lemma 5.7 the adversary is able to produce valid ciphertexts that pass

the checks in step 9 and 10 above with negligible probability, that is, k0 = k1 6=⊥ with

negligible probability. Otherwise, if trI 6= trR the adversary’s only mean of modifying

218

the communication is to produce either c′I 6= cI or c′R 6= cR in steps 7 or 8, respectively.

However, the IND-CTXT property of encryption guarantees that these modifications are

accepted with negligible probability, i.e., they pass test 9 and 10 with negligible chances,

which also implies k0 = k1 6=⊥ occurs with negligible probability. This completes the

proof of security of key exchange.

219

Appendix D

A Proof-of-Work Scheme for

Definition 1.17

To satisfy Definition 1.17, we adapt the constant-time puzzle scheme proposed by

Rivest et al. [125]. First, we assume the existence a generator ModGen that on integer

input n > 0 outputs a pair of primes p, q of n-bit length, as well as a family of hash

functions (Gen, Hm) for all m ∈ Z+ that maps the message space {0, 1}∗ to hash space

Z∗m = Zm \ {0, 1}. Then suppose there exists a trusted third party that generates

k ← Gen(n) and makes k publicly and securely accessible. The (Prove,Verify) proceeds

as follows for integer cost c:

1. Verify: generates (p, q)← ModGen(n) and sends pq.

2. Prove: receives m, computes g ← Hpq(k, id), t ≡ g2c (mod m), and sends t.

3. Verify: receives t, computes g ← Hpq(k, id), e ≡ 2c (mod (p − 1)(q − 1)), t′ ≡
ge (mod pq), and returns true if t = t′ or ⊥ otherwise.

When cost c is non-integer, the prover and the verifier could engage in a proof-of-work

with cost bcc, and for the remainder r = c − bcc the prover could ask the verifier to

perform any simple costly computation, e.g., hashing the id repeatedly multiple times

until the observed cost matches r. Nevertheless, the security of this proof-of-work

mechanism is provided below, followed by a remark on the practicality of (D.1):

Proposition D.1. Assume that the cost of squaring in modular arithmetic is one (unit

cost), and that any computation with cost p ∈ [0, 1] would give the correct squaring

result with probability at most p. In other words, assume that for all PPT algorithms

A = (A1,A2), all positive integer c > 0, all g ∈ Z∗pq, and all probabilities p, there exists

220

a negligible function ε such that

Pr

(p, q)← ModGen(n), s← A1(g, c), t← Asq(·,·)
2 (s, g, c, pq) :

cost(A) ≤ c · p ∧ t ≡ g2c (mod pq)

 ≤ p+ ε(n) (D.1)

where sq on input g,m would output g2 (mod m), A is not allowed to query sq with

inputs of the form (g, ·), and that cost(A) ignores the computation cost of sq. Assume

that there exists a family of collision-resistant hash functions (Gen, Hm) for all m ∈ Z+,

then the proof-of-work scheme above satisfies Definition 1.17 for all integer costs c > 0.

Proof. As usual, the proof of correctness is rather trivial. We notice the totient function

φ(pq) = (p− 1)(q − 1), therefore

t ≡ g2c ≡ g2c (mod φ(pq)) ≡ ge ≡ t′(mod pq)

and thus Verify would return true. On the other hand, the computation of g2c (mod pq)

requires c successive squaring computations, which bears the cost of c. This thus proves

the correctness property of proof-of-work.

For the verifiability property, due to the collision-resistance property of hash func-

tions, A can find id′ 6= id such that g = Hm(k, id) = Hm(k, id′) = g′ with negligible

probability. Otherwise, the fact that Adv2 cannot query Prove with id matches that A
cannot ask sq to square g = Hm(k, id) with respect to any modulus. Meanwhile, the

adversary Adv1 is given id and c matches that A1 is given c and g. Thus, the verifia-

bility experiment becomes the squaring experiment as described in (D.1). Therefore,

given that (D.1) holds, the adversary Adv = (Adv1,Adv2) succeeds with probability at

most p+ ε(n).

Remark. The assumption expressed in (D.1) is made possible by several observa-

tions. First, A1 represents the adversary’s preparation before engaging in the process

of proving its proof-of-work, and therefore it should not be given pq, which is gener-

ated freshly by the verifier Verify. This can be strengthened by designing ModGen that

generates p and q at random. Meanwhile, the fact that cost(A2) ≤ c × p indicates a

success probability p+ ε(n) results from the fact that it is hard to reduce the number

of squaring computations, and that any attempt to lessen the code of each squaring

would reduce accuracy of the result. The former is ensured by the assumption of hard-

ness in integer factorisation: the chance for any adversary to factor pq for n-bit length

primes p and q is at most ε(n). Indeed, the only known effective way to lessen the

number of squaring computations is to compute 2c (mod φ(pq)), which is possible only

221

if knowledge of p and q are known. For the latter, we notice that during squaring

modulo pq, some steps can be omitted, for example the computation of the last few

bits of the remainder. In such case although the reduce in computation cost is small,

it is nevertheless non-negligible. However, this means that the adversary must guess

the unknown part of the result, and may succeeds with sharply reduced chance. We

thus reasonably assume that the fraction of save in cost is always less than the reduce

in accuracy, as in (D.1).

222

	Introduction
	Motivation
	The Nature of Information Security
	The Role of Rationality

	Basics Concepts in Game Theory
	Strategic-Form Games
	Incomplete Information Bayesian Games
	Extensive-Form Games

	Basic Cryptographic Primitives
	Examples of Applications
	Network Security
	Security Investment

	Outline of Thesis Contributions

	Test It Before Flipping It: Security Assessment Games
	Introduction
	Related Work
	FlipIt: The Game
	Test It before Flipping it
	Dealing with Complex Systems
	Hardening Control over Time
	Conclusion

	Strategic Information Sharing in Competitive Environments
	Introduction
	Related Work
	Model
	Analysis of the Game
	Second Stage: Sharing the Bug Discoveries
	First Stage: Investment for Bug Discovery
	The Case of <
	The Case of >

	Mediation: Encouraging Information Sharing
	Game's First Stage: Investment in the Presence of the Mediator

	Conclusion

	Optimal Contracts for Outsourced Computations
	Introduction
	Related Work
	Problem Definition: General Setup
	Eliminating Clever Guesses

	Contracts for Single Agent
	Optimal Contract for a Single Agent
	A Risk-Averse Agent
	Optimal Contract for a Single Agent: Two-Level Reward

	Optimal Contracts for Multiple Agents
	Optimal Contracts for Two Agents
	Global Optimality of Two-Agent Contracts

	Side-Channel (Information Leakage)
	Colluding Agents
	Contract Implementation
	Intermediate Steps and Hash Functions
	Enforcing The Principal's Auditing
	Enforcing Probabilistic Behaviours

	Conclusion

	Rational Security for Unauthenticated Communication
	Introduction
	Related Work
	The Nature of MitM Attacks
	Defining Query-Response MitM Attacks
	Solution Motivation and Overview

	Defining Security Game
	Specifying Environment Parameters
	The High-Level Protocol
	Game Formalisation

	Game Analysis
	Simplifying Attack Strategies
	Finding Good Equilibria
	Solutions for Adversaries with Feedbacks

	Protocol Implementation
	Definitions of Security
	Protocol Construction

	Practical Considerations
	Multiple Executions
	Small Query/Response Spaces
	Uninteresting Impersonations
	Proof-of-Works May Fail
	Bootstrapping of Security
	Attack Detection
	Examples of Application

	Conclusions

	Conclusion
	Bibliography
	Basic of Karush-Kuhn-Tucker (KKT) Optimisation
	Mathematica Code for KKT Optimisation
	A Key-Exchange Protocol for Definition 1.16
	A Proof-of-Work Scheme for Definition 1.17

