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Abstract

This thesis presents top quark measurements where b-jets are identi�ed by searching for “soft”

muons produced within them. This method, a form of soft muon tagging, discriminates be-

tween b-jets and jets from other quark types, by using the quality of the match (χ2
match) between

the muon tracks recorded in the inner detector and muon system of the ATLAS detector. The

data/MC e�ciency scale factor is obtained on ATLAS data at
√
s = 8 TeV using a tag and

probe method on muons from J/ψ decays. The number of muons which are selected by the

χ2
match-tagger is obtained from a �t to the invariant mass of the pair. A measurement of the top

quark pair production in the lepton plus jets channel using the soft muon tagger on ATLAS

data at
√
s = 7 TeV is presented. The multijet background component was estimated using

data-driven methods known as the matrix method and the ABCD method. The measured cross

section is in good agreement with theoretical calculations and other measurements from AT-

LAS and CMS. The �nal measured cross section is:

σtt̄ = 165± 2 (stat.)± 17 (syst.) ± 3 (lumi.) pb

The viability of using the χ2
match-based soft muon tagger in the search for boosted resonant

production of tt̄ pairs via the theoretical Z ′ boson is also presented. Due to the large boost in

the event, the products of the top quarks merge in a collimated cone. The performance of the

χ2
match-tagger in identifying the W muon and as a b-tagger is tested. It is found that the tagger

provides an additional acceptance to the W muon of 8 % over the current method known as

mini-isolation. As a b-tagger the χ2
match-tagger adds an extra 12 % more b-jets when compared

to using the MV1 tagger only.
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Preface

This thesis describes various top measurements performed using a novel method, referred to

as soft muon tagging (SMT), for identifying the decay of b-quarks by tagging the muons pro-

duced from the semileptonic decay of these quarks. The implementation of soft muon tagging

used here relies on the quality of the match between tracks in the inner detector and muon

systems of the ATLAS detector. In addition, the calibration of this methodology is also de-

scribed here. Chapter 2 includes an introductory overview of the Standard Model of particle

physics. Chapter 3 includes a more detailed description of top quark physics, including the

production mechanisms and decay modes; the experimental signature of top events at hadron

colliders; and some of the latest results in the �eld of top quark measurements. Chapter 4

includes: a description of the ATLAS detector and all its components relevant to the study

of the top quark, including the inner detector and muon systems. This is followed by an in-

troduction to particle physics event simulation; and object reconstruction techniques used at

ATLAS including the SMT tagger in Chapter 5. The measurement of the data/simulation SMT

e�ciency scale-factor on 2012 ATLAS data is detailed in Chapter 6. The measurement of the

top quark pair production cross section using the SMT tagger was performed and is detailed in

Chapter 7. Chapter 8 includes a feasibility study measuring the potential performance of the

SMT tagger in the search for theoretical particles that produce pairs of top quarks with very

high momentum.

The calibration presented in Chapter 6 is based on a standard method for calibration widely

used in the ATLAS collaboration. The object selection used are based on a previous calibration

performed by a former member of the RHUL top quark group. This selection was however

adapted to work with 2012 ATLAS data and completely reimplemented by me using up-to-

date software tools and a di�erent type of data-sample. All results, plots and/or diagrams
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presented are my own unless otherwise noted. The cross section measurement presented in

Chapter 7 is the result of the joint RHUL-QMUL work group and includes contributions from

current and past members of the group. The multijet background estimation in the electron

channel using data-driven techniques was contributed by me and is described in more detail

in Section 7.3.1. I have contributed a chapter detailing this estimation to the published paper

in:

J Blanco et al. “Measurement of the top quark pair production cross-section with ATLAS

in pp collisions at
√
s = 7 TeV in the single-lepton channel using semileptonic b decays”. In:

ATLAS-COM-CONF-2012-056 (Mar. 2012)

Finally, Chapter 8 includes a comparison between the SMT tagger and a lepton identi�ca-

tion technique known as mini-isolation. This technique was devised and developed by other

members of the ATLAS collaboration, however the performance measurement presented here

is my own work. Once again all results, plots or diagrams in this chapter are my own unless

stated otherwise.
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Chapter 1

Introduction and motivation

The Large Hadron Collider or LHC [2], is the most powerful collider in the world and gives

scientists a probe to study the universe at an unprecedented energy level. The ATLAS experi-

ment is a general-purpose detector serviced by the LHC designed to record and measure every

aspect of the outgoing spray of particles resulting from the colliding LHC beams.

High energy research can be divided into several categories: testing the established the-

ory known as the Standard Model of particle physics (SM) [3], improvement of previously

measured parameters and the search for new physics. The SM has stood the test of time and

rigorous experimental testing. A crucial part of the theory, the Higgs mechanism [4, 5, 6,

7, 8], was experimentally validated in 2012 when the ATLAS [9] and CMS [10] experiments

independently con�rmed the production of the Higgs boson in LHC collisions [11, 12].

Top quark physics concerns itself with the study of the heaviest known quark described by

the SM. Due to its large mass the top quark does not bind to other quarks to form a composite

particle known as a hadron. The top is the only quark that can therefore be studied directly on

its own. The mass of the top quark is a parameter of the SM and many beyond the SM (BSM)

theories, however it is not predicted and must be experimentally measured.

Due to the large centre of mass energy at the LHC, top quarks are produced in large quan-

tities allowing for detailed studies of many top quark properties. Top quarks can be produced

either in single-top events or, more likely at the LHC, into a pair with one top and one antitop

(tt̄ pair). The top quark decays overwhelmingly into a W boson and a b-quark. Subsequently

the W can decay leptonically, into a lepton and lepton neutrino; or hadronically, into a pair
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of quarks. Top quark pair events are classi�ed into three groups depending on the manner in

which the W bosons decay: “all-hadronic”, where both W bosons decay hadronically; “dilep-

ton”, where both bosons decay into leptons; and �nally, “lepton plus jets” where one boson

decays leptonically and the other hadronically.

The b-quark binds with other quarks to form hadrons. This hadron then decays into a col-

limated shower of particles known as a jet. Identi�cation of these b-jets is an important part

of any top quark analysis and there are several methods of b-tagging in use. The soft muon

tagger (SMT tagger), with which this thesis concerns itself, is one such b-tagger. B-hadrons

can decay so as to produce a low momentum muon (also known as a soft muon) which then

emerges buried within the subsequent jet. The SMT tagger uses the quality of the reconstruc-

tion of so-called combined muons, which rely on both inner detector and muon spectrometer

information for reconstruction. The quality of the matching between the inner detector and

muon spectrometer tracks is encapsulated in the χ2 of the match. Muon reconstruction and

the SMT tagger are described in more detail in Section 5.2.4.

Measurement of the top quark pair production probability, denoted by the cross section

σtt̄, is an important early measurement to make. In particular as the cross section depends on

the centre of mass energy of the collision, such a measurement tests the predictive power of

the Standard Model at an energy level never studied before. Any new physics processes which

share the same signature as tt̄ production will result in an excess in the cross section above

the theoretically measured value.

An example of new physics include theories that posit the existence of a very heavy boson

known as the Z ′ [13, 14, 15]. This boson could decay to a tt̄ pair where each top quark has a

large amount of momentum.

In this thesis the SMT tagger is calibrated and used as part of a cross section measurement

and its performance is evaluated in searching for high momentum tops emerging from Z ′

decays. Measuring the top quark pair production cross section using the SMT tagger is of

interest as it tests a di�erent aspect of theory, namely the description of semileptonic b-decays,

compared to lifetime-based taggers. Such a measurement was carried out and is detailed in

Chapter 7.

Other soft muon tagging techniques exist, these however depend on the presence of a jet

in the event to work. The SMT tagger, in its χ2
match form, only relies on the presence of a muon
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to measure its performance. The calibration of the tagger on 2012 ATLAS data is presented in

Chapter 6.

In addition, this means that the tagger can be used to identify muons emerging from the

W rather than from semileptonic b-decays. The performance of such a technique is studied in

Chapter 8 where the tagger is tested in two ways. Firstly, the tagger is used to identify the muon

emerging from the W boson decay. Its performance is compared to the nominal approach, as

well as a novel method speci�cally designed for boosted top searches known as mini-isolation.

Secondly, the tagger is used to identify the b-jets in the event and its performance in this regime

is compared to the standard MV1 tagger.
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Chapter 2

The Standard Model of particle

physics

Particle physics is the study of the fundamental constituents of matter and their interactions.

The best current description of these interactions is known as The Standard Model of Particle

Physics (SM); a group of theories that cover all currently known particles and their interactions.

The SM was developed throughout the latter half of the twentieth century and has stood the

test of time and rigorous examination by numerous experiments. Many of its parameters have

also been measured with great precision e.g. the electron magnetic moment g is known to

10−13 [16]. The last piece to be con�rmed was the existence of the Higgs boson, which in turn

points to the existence of the so-called Higgs �eld. Evidence of this particle was observed by

the ATLAS and CMS experiments at CERN in 2013 [11, 12]. Despite its tremendous success, the

SM cannot explain all observed phenomena in the universe. Firstly, the theory does not predict

the value of all of its parameters and many of them, like the number of particle generations,

must be measured empirically. The theory also does not describe gravity the most familiar of

the fundamental forces. Furthermore, the SM does not provide a candidate for dark matter or

dark energy, which according to recent measurements accounts for more than 90 % of the total

energy density in the universe [17]. The clear asymmetry between matter and antimatter is

also not fully explained in the realm of the SM. Because of these de�ciencies there is a strong

focus on developing theories which go beyond the standard model (BSM) to provide an answer

to these open questions.

22



Chapter 2: The Standard Model of particle physics

In this chapter an introductory overview of the Standard Model is provided. For a more

detailed description of the theory see references [18, 3] on which this chapter is largely based.

The SM describes the interactions of the fundamental constituents of our universe in terms

of the three di�erent fundamental forces: the strong, weak and electromagnetic (EM), each de-

scribed by a speci�c theory. The most familiar of the forces, gravity is not described. The SM

classi�es particles into several categories depending on their properties and allowed interac-

tions. Particles which have a half-integer spins (e.g. S = 1
2 , 3

2 ,. . . ) are known as fermions, these

are the basic constituents of matter. Particles with integer spins (e.g. S = 0, 1,. . . ) are known

as bosons, these mediate interactions between fermions and other bosons.

Fermions can be divided into two subgroups: quarks, which can interact via the strong,

weak and electromagnetic forces; and leptons which can only interact via the weak and elec-

tromagnetic forces. There are six known leptons: electron e, muon µ and tau τ , which all

have electric charge1 Q = 1; and the corresponding electrically neutral neutrino νe, νµ and

ντ . Analogously, six quark �avours are known: u, c and t, with electric charge Q = +2/3 and

d, s and b, with electric charge Q = −1/3.

Quarks and leptons are divided into three generations which di�er only by the mass and

�avour of their constituent fermions, each generation being heavier than the previous. A

summary of all elementary particles described by the SM can be found in Table 2.1.

For every matter fermion f there is an equivalent antimatter partner f̄ which possesses

the same characteristics as its matter companion but is opposite in electric charge. Thus 12

matter particles are combined with 12 antimatter partners for a total of 24 elementary particles

which form all visible matter in the universe.

Interactions between fermions occur via the exchange of spin one particles known as

bosons. As shown in Table 2.2, each force is mediated by one or more bosons. The strong

force is mediated by a set of massless bosons known as the gluons, the weak by a neutral

massive boson known as the Z boson and a pair of charged massive bosons known as the W

bosons. Finally, the electromagnetic force is mediated by the massless photon. Each boson has

an antimatter partner however some, like the photon, are indistinguishable from their matter

version. A summary of the properties of the SM bosons is shown in Table 2.1.

Each fermion has a set of so-called quantum numbers which classify the type of interac-

1The electric charge is always stated in units of elementary charge e
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tions that can occur. For example, each lepton has a lepton number associated with it, electrons

have an electron lepton number Le = +1, while the positron has Le = −1. Muons and taus

have their own respective lepton numbers, Lµ and Lτ . Each neutrino has lepton number

Lf = 1 and their anti-matter counterpart have Lf = −1. Each of these lepton numbers is

approximately conserved separately across interaction vertices. The conservation is only ap-

proximate due to the non-zero mass of neutrinos. Another example of a quantum number is

baryon number B. Each quark has B = 1
3 and antiquarks have B = −1

3 .

2.1 Quantum electrodynamics

The interaction of particles via the electromagnetic force is described by quantum electrody-

namics (QED). These interactions are mediated by the massless neutral boson known as the

photon and the strength of the interaction is characterized by the �ne-structure constantα. All

electrically charged fermions are allowed to interact and since the photon itself is not charged,

no self-interaction is allowed within QED. Figure 2.1 shows the single vertex described by QED

where two fermions interact via a photon. Note that the electric charge is conserved across

the vertex, so for example γ → e+e+ is not allowed within QED.

γ

f f

Figure 2.1: The fundamental interaction vertex described by QED. The straight-lines repre-
sent any charged fermion, while the wavy line is a photon. All possible QED vertices can be
obtained by simply rotating this vertex.

By combining di�erent forms of this vertex one can build every possible QED interaction.

The interaction e+e− → e+e− is known as Bhabha scattering. Two leading order (LO) dia-

grams contribute to this interaction, annihilation (Figure 2.2a) and scattering (Figure 2.2b). A

leading order diagram is that which has the lowest number of vertices for a given initial and

�nal state. Adding extra vertices while retaining the initial and �nal state, by the addition of

loops for example, produces higher-order diagrams. These are sequentially labelled as next to
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+2
3 2.3 MeV

u

Up

−1
3 4.8 MeV

d

Down

+2
3 1.275 GeV

c

Charm

−1
3 95 MeV

s

Strange

+2
3 173.07 GeV

t

Top

-1
3 4.18 GeV

b

Bo�om

−1 0.511 MeV

e

Electron

0 < 2.2 eV

νe

Electron Neutrino

−1 105.7 MeV

µ

Muon

0 < 0.17 MeV

νµ

Muon Neutrino

−1 1.777 GeV

τ

Tau

0 15.5 MeV

ντ

Tau Neutrino

I II III

Fermions (s = 1
2)

Le
pt

on
s

�
ar

ks

0 0 MeV

γ

Photon (EM)

±1 80.4 GeV

W±

W boson (Weak)

0 91.2 GeV

Z0

Z boson (Weak)

0 0 MeV

g

Gluon (Strong)

0 126.07 GeV

H0

Higgs boson

q mass

symbol

name (force)

Bosons (s = 1) Higgs (s = 0)

Table 2.1: A summary of all elementary particles described by the SM [19]. Note the various
groupings and divisions including by spin, generation and particle type. For each particle the
charge (q), mass and name are shown as per the legend on the bottom-right.

Name Relative Strength Boson

Strong 1038 Gluons
Electromagnetic 1036 Photon
Weak 1025 W and Z
Gravity 1 Graviton*

Table 2.2: A summary of the four fundamental forces ordered by approximated relative
strength. These are included to demonstrate the large di�erences in strength that span many
orders of magnitude. A more accurate determination of the interaction strength depends on
the details of the interaction itself. ∗ The graviton is the theoretical boson responsible for
mediating gravitational interactions and is not part of the SM.
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leading order (NLO), next to next to leading order (NNLO), and so on.

γ

e−

e+

e−

e+

(a) Electron-positron pair annihilation.

γ

e−

e+

e−

e+

(b) Electron-positron pair scattering.

Figure 2.2: Feynman diagrams of the process e+e− → e+e− allowed in QED at leading order.
Additional vertices can be added to produce higher-order diagrams of the same process.

2.2 Quantum chromodynamics

Interactions via the strong force are described in the theory of quantum chromodynamics

(QCD). These interactions are mediated by a set of massless neutral bosons known as gluons.

QCD introduces the concept of colour which dictates which interactions are allowed via the

strong force. Colour can take three states, red (anti-red), blue (anti-blue), green (anti-green):

r =


1

0

0

 , g =


0

1

0

 , b =


0

0

1

 (2.1)

r̄ =

(
1 0 0

)
, ḡ =

(
0 1 0

)
, b̄ =

(
0 0 1

)
(2.2)

Both quarks and gluons possess colour and as a result gluons can self-interact in a three

gluon vertex (Figure 2.3b) or a four gluon vertex (Figure 2.3c). As with electrical charge, colour-

charge must also be conserved. In the scattering process q → qg, shown in Figure 2.3a, the

�avour of the quark does not change but the colour-charge does. The di�erence in colour is

carried away by the scattered gluon. Thus each gluon has two colour states associated with it, a

colour state and an anti-colour state. Naively one would expect nine di�erent types of gluons

that participate in interaction, because of the nine combinations of colour and anti-colour.
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However the SU(3) symmetry on which QCD is based results in a colour octet:

(rb̄+ br̄)/
√

2

−i(rb̄− br̄)/
√

2

(rr̄ + bb̄)/
√

2

(rḡ + gr̄)/
√

2

−i(rḡ − gr̄)/
√

2

(bḡ + gb̄)/
√

2

−i(bḡ − gb̄)/
√

2

(rr̄ + bb̄− 2gḡ)/
√

6

(2.3)

and the overall colourless “colour singlet”:

(rr̄ + gḡ + bb̄)/
√

3 (2.4)

There are eight di�erent gluons that can participate in interactions each with a di�erent

colour-charge combination, and a ninth colourless gluon that does not interact. Gluons being

colour-charged has far reaching consequences for QCD.

In the realm of QED the vacuum around an electric charge becomes polarized as opposite

charges get attracted and like charges are repelled. This has the e�ect of partially cancelling

out the electric �eld experienced at a �nite distance from the central charge. This e�ect is

known as screening and also occurs with colour-charge. Quark-antiquark pairs screen the

true colour-charge of the central real quark.

However, since gluons also carry colour they cause the opposite e�ect (anti-screening)

to amplify and change the observed colour of the quark. Which e�ect, screening or anti-

screening, wins out depends on the number of colours in the theory and the number of quark

�avours. Currently, three colour states and six di�erent quark �avours are known. This makes

screening the overall dominant e�ect and as a result, the colour potential decreases with dis-

tance and quarks experience very little potential when very near to each other. This phe-

nomenon is known as asymptotic freedom and forces quarks to form bound colourless states

known as hadrons.

Hadrons can be divided into two categories: mesons, which contain a quark and an anti-

quark (qq̄); and baryons, which are made of three anti/quarks each with a di�erent anti/colour-

charge to result in a colourless composite particle. Common examples of baryons are protons

(uud) and neutrons (udd) which are the building blocks of atomic nuclei. The pion π0 = uū/dd̄

is a meson which is commonly produced in hadron colliders. Due to their quark con�guration,
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baryons have baryon number B = +1 while mesons have B = 0.

g

q q

(a) Quark-gluon vertex

g

g

g

(b) Three-gluon vertex
g

g

g

g

(c) Four-gluon vertex

Figure 2.3: The fundamental interaction vertices described by quantum chromodynamics.
Shown are (a) gluon emission from a quark, (b) gluon emission from a gluon, and (c) the four-
gluon vertex.

2.3 Weak interactions

The �nal type of interaction involves the so-called weak force. The weak force is responsi-

ble for common nuclear processes such as for β− decay (n → pe−ν̄e). Interactions via the

weak force are mediated by three massive bosons: the neutral Z0 boson and the W+ and W−

bosons. Since these posses mass the range of interaction is very short, unlike electromagnetic

interactions via a massless photon.

All fermions can interact via the weak force, but to start let’s consider weak interactions

involving only leptons. A valid interaction via the weak force occurs via a combination of the

fundamental vertices shown in Figure 2.4, while conserving electric charge and lepton �avour.

Weak bosons also couple to each other via the vertex Z → W−W+. As the W bosons have

charge they also couple to the photon.

Weak interactions involving quarks are more complicated than those with only leptons.

The neutral vertex is similar to that of the leptonic version, a quark scattering o� a Z boson.

However, the charged current changes the �avour of an up-type quark into a down-type quark

(or vice-versa) with an associatedW boson of the appropriate charge (Figure 2.4c). This change

in �avour can also happen across quark generations. The semileptonic decay of b-quarks is an

example of �avour changing charged weak interactions. The b-quark (in a B meson bound

state) transitions into a c-quark by emitting a W boson. In order to account for such an inter-

action and preserve the universality of weak interactions, Nicola Cabibbo postulated [20] that
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Z0

f f̄

(a) Neutral vertex

W

` ν`

(b) Charged vertex (leptons)

W

q̄ q′

(c) Charged vertex (quarks)

Figure 2.4: The fundamental interaction vertices described the weak theory. Shown are the
(a) neutral vertex, (b) charged vertex with leptons, and (c) charged vertex with quarks. Where
f = e, µ, τ and ν` is the corresponding lepton neutrino of the same �avour.

the states that couple to the charged current are really a mixture of ‘rotated’ quark states:

u
d′


 c

s′

 (2.5)

where

d′ = d cos θc + s sin θc (2.6a)

s′ = −d sin θc + s cos θc (2.6b)

This introduces an arbitrary parameter into the theory known as the quark mixing angle

or the Cabibbo angle θc. The introduction of quark mixing has the e�ect of attenuating the

interaction strength at vertices involving multiple quark generations. Interactions which cross

one generation are said to be Cabibbo Suppressed while those that cross two generations are

Doubly Cabibbo suppressed.

Taking into account the three quark generations, quark mixing can be expressed in matrix

notation as shown in Equation 2.7. This unitary matrix is known as the Cabibbo-Kobayashi-

Maskawa matrix (CKM matrix) after Cabibbo who initially postulated quark mixing, and Makoto

Kobayashi and Toshihide Maskawa who later added an additional generation, containing the

top and bottom quarks, to the matrix [21]. The interaction strength at a given vertex is then

proportional to |Vij |2.
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
d′

s′

b′

 = VCKM


d

s

b

 =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




d

s

b

 (2.7)

Several parametrizations of the CKM matrix exist, the Chau-Keung parametrization [22]

uses angles θ12, θ23, θ13 and a phase δ:

VCKM =


c12c13 s12c13 s13 exp(−iδ)

−s12c23 − c12s23s13 exp(iδ) c12c23 − s12s23s13 exp(iδ) s23c13

s12s23 − c12c23s13 exp(iδ) −c12s23 − s12c23s13 exp(iδ) c23c13

 (2.8)

where cij = cos θij and sij = sin θij for i = 1,2,3. This parametrization has the advantage that

each angle θij relates to a speci�c transition from one generation to the other. If θ13 = θ23 = 0

the third generation is not coupled to the other two and the matrix is reduced to the one

postulated by Cabibbo. Note that θ12 is the Cabibbo angle described earlier.

Another parametrization due to Wolfenstein [23] expresses all elements in terms of the

Cabibbo angle by de�ning λ ≡ s12 = sin θ12 and then expressing the other elements in powers

of λ

VCKM ≈


1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 (2.9)

whereA, ρ and η are all real numbers that express the order of magnitude di�erences between

s12 and the other elements in the matrix.

All the elements should be the same irrespective of which parametrization is used. The

elements of the CKM matrix have been measured and the latest accepted results [19] are sum-

marized in Equation 2.11.

The unitarity of the CKM matrix implies that the probability of transition from any up-type
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quark to any down-type is the same,

∑
k

|Vik|2 =
∑
i

|Vik|2 = 1 (2.10)

for all i quark generations [24]. The term Vtb is approximately unity and by far dominates

over the other Vtj terms. This means that the top quark transitions almost exclusively into a

b-quark (t → Wb) with transitions t → Ws and t → Wd having a probability of less than

1%. The soft muon tagger which is the focus of this thesis relies on weak semileptonic decays

of b-quarks. From 2.11 [19] one can see that the transition b→ c dominates over b→ u. This

thesis concerns itself with tt̄ events in the lepton plus jets channel where oneW boson decays

hadronically with a rate governed by the elements of the matrix.

VCKM =


0.97427± 0.00015 0.22534± 00065 0.00351 + 0.00015

− 0.00014

0.22520± 0.00065 0.97344± 0.00016 0.0412 + 0.0011
− 0.0005

0.00867 + 0.00029
− 0.00031 0.0404 + 0.0011

− 0.0005 0.999146 + 0.000021
− 0.000046

 (2.11)

An additional unique feature of weak interactions is that the charge conjugation-parity

(CP ) symmetry is violated. The operator C denotes the change of a particle by its antiparticle

partner and P denotes a spatial inversion. A clear violation of C and P was observed in the

radioactive decay of Cobalt-60, where the resulting electrons were preferentially emitted in the

opposite direction of the nuclear spin of the Cobalt [25]. Thus weak currents only couple to left-

handed neutrinos (or right-handed anti-neutrinos) which is a violation of parity. Additionally

charge symmetry is also violated since a left-handed neutrino is preferentially picked over a

left-handed anti-neutrino. Finally in 1964 CP violation was observed in the decay of neutral

kaon [26].

Thus the probability of ā→ b̄ is not equal to that of a→ b. The existence of CP violation

has interesting consequences for the formation of the early universe. The preferential produc-

tion of matter over antimatter inCP violating interactions would shift the balance in favour of

matter resulting in a universe similar to our own. In terms of the Wolfenstein parametrization

of the CKM matrix, if η = 0 there is no CP violation. This parameter has been measured to
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be non-zero pointing to CP violation [19].

2.3.1 Electroweak uni�cation and the Englert-Brout-Higgs mechanism

The uni�cation of the electromagnetic and weak theories was �rst proposed by Glashow and

later developed by Weinberg and Salam into the electroweak theory [27, 28, 29]. The theory

postulates that while at low energies the two forces are to be treated separately, at higher the

two can be seen as a single force. Thus the two forces are di�erent manifestation of the same

“electroweak” interaction. There were several stumbling blocks to the uni�cation of the forces.

Firstly, the boson which drives the electromagnetic interaction, the photon, is massless while

the weak bosons are both massive. Evidence for the massive nature of these bosons has been

established by experimental results from the UA1 experiment at CERN [30].

Thus the symmetry of the theory must be spontaneously broken in some way. A mecha-

nism for electroweak symmetry breaking (EWSB) was proposed and developed by Anderson,

Brout, Englert, Higgs, Guralnik, Hagen, Kibble, and t’ Hooft which introduces masses to the

weak bosons and posits the existence of an additional scalar (spin S = 0) boson known as the

Higgs boson.

Gauge theories

Gauge invariance is one of the underlying invariances which underpins the Standard Model.

Given the so-called Dirac Lagrangian2

L = i~ψ̄γµ∂µψ −m2ψ̄ψ (2.12)

which describes a free particle of spin-1
2 with mass m [3]. Note that it is invariant under the

transformation

ψ → eiθψ (2.13)

where θ is a real number, since the adjoint ψ̄ → e−iθψ̄ and the two terms cancel out. This is

known as a (global) gauge transformation since θ is the same at all points of space-time. A (local)

2A Lagrangian is a mathematical function that describes the underlying dynamics of a system as a function of
time and space coordinates (xµ) and their time derivatives.
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gauge transformation occurs when the phase is di�erent for di�erent points in space-time

ψ → eiθ(x)ψ (2.14)

The Dirac Lagrangian in Eq. 2.12 is not invariant under a local gauge transformation since

extra terms are created by the derivative. Local gauge variance results in divergences in the

theory when trying to calculated the cross-section. Thus to preserve the good behaviour of

the theory local gauge invariance must be imposed. In the case of the Dirac Lagrangian, this

is done by modifying the derivative to a gauge covariant derivative. This generates terms that

cancel the extra terms introduced by the local gauge transformation, thereby restoring the

invariance. As it turns out this results in the introduction of a new massless vector �eld that

couples to ψ.

The new Lagrangian then describes a spin-1
2 particle with mass m that interacts with a

free massless �eld. This new �eld can be identi�ed as the electromagnetic �eld and the spin-1
2

particles are electrons and positrons. Thus the resulting Lagrangian describes all interactions

that form part of quantum electrodynamics.

A similar procedure can be applied to the colour quark model and obtain a description of

all QCD interactions. However requiring that the weak theory be a gauge theory (invariant

under local gauge transformation) encounters a problem since the weak bosons are known to

be massive. There must be some mechanism via which the W± and Z0 obtain mass.

The Englert-Brout-Higgs mechanism

The Englert-Brout-Higgs mechanism3 posits the existence of a complex scalar �eld doublet

that when introduced into the electroweak Lagrangian results in the weak �elds acquiring a

mass term. In other words theW± and Z0 interact with the Higgs �eld and obtain a mass. An

additional consequence of introducing the Higgs �eld is the inclusion of a scalar boson particle,

the so-called “Higgs boson”. Finally, the Higgs �eld also couples to fermions via the Yukawa

coupling generating gauge invariant mass terms for the fermions as well4. This coupling is

dependent on the mass of the fermion involved, for a more massive particle the coupling is

stronger. This is another reason for the top quark being an object of much study.

3Here the ATLAS naming convention is used.
4For a more complete description of the mathematical procedure see [3].
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The SM Lagrangian in its current form including the Higgs potential is shown in Equa-

tion 2.15. This expression describes all possible particle interactions that form part of the SM,

of particular interest are the fermion mass term which couples the fermion �eld ψ to the scalar

Higgs �eld φ and the Higgs kinetic and potential terms.

L =− 1

4
W a
µνW

µνa︸ ︷︷ ︸
Weak Field

− 1

4
BµνB

µν︸ ︷︷ ︸
EM Field

− 1

4
GaµνG

µνa︸ ︷︷ ︸
Strong Field

+ ψ̄ /Dµψ︸ ︷︷ ︸
Fermion Kinetic

+ λψ̄ψφ︸ ︷︷ ︸
Fermion Mass

(2.15)

+ |Dµφ
2|︸ ︷︷ ︸

Higgs Kinetic

− V (φ)︸ ︷︷ ︸
Higgs Potential

The Higgs boson, and consequently the EBH mechanism, was the last remaining piece

of the SM that resisted experimental con�rmation. In late 2012, the ATLAS and CMS col-

laborations announced [12, 11] the discovery of a Higgs-like particle with a mass around

125 GeV [31], con�rming the last missing component of the SM. However, the remaining un-

explained phenomenon have yet to be theoretically described and experimentally con�rmed.

Due to its large mass, the top quark is of much interest to BSM searches.
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Top quark physics

The third generation of quarks was �rst proposed by Kobayashi and Maskawa in a paper pub-

lished in 1973 [21] as a way to explain the CP violation observed in kaon decays [26]. The

existence of the third generation in the quark sector was con�rmed when the lighter of the

two constituents, the b-quark, was discovered in 1977 [32].

Due to its large mass, direct production of the top quark required the construction of very

powerful accelerators. However, its mass was constrained in precision electroweak measure-

ments at LEP in 1995 to be [33]:

mtop = 174 + 21.5
− 25.5 GeV (3.1)

The top quark was then discovered by the CDF and D0 experiments at Fermilab in 1995 [34,

35] and then observed at CERN again in 2010 [36, 37].

The large mass of the top quark makes it a very interesting object of study. The current

world average for the mass of the top quark, based on results from Tevatron and the LHC [19],

is

mt = 173.07± 0.52 (stat.)± 0.72 (syst.) GeV

Due to its mass the top quark has an extremely short lifetime τ ≈ 0.5× 10−24 s, too short

to interact via the strong force and hadronize into a bound state [38]. Instead the top quark

decays weakly producing aW boson and a b-quark almost exclusively. This allows experimen-

talists to directly study the properties of a bare quark. An impossibility with the other quarks
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which bind with other quarks to form hadrons. Measurement of top quark properties (mass,

charge, forward-backward asymmetry, couplings, etc. . . ) forms a large part of high energy

physics research. Measurement of these properties provide rigorous tests of the SM, and could

point towards the existence of new physics or exclude some BSM theories.

From an experimental perspective, top quark decays produce a very interesting signature

with leptons, jets and missing energy due to the escaping neutrino1. Therefore, the study of

top quark decays relies on all parts of a general purpose detector such as ATLAS or CMS.

Finally, tt̄ pair production also is a major background for many other SM and BSM searches,

so understanding this process well is fundamental to almost all areas of HEP research.

3.1 Top quark production

Top quarks can be produced in two ways: single top production and tt̄ pair production. In the

SM the dominant top quark pair production mechanism proceeds via the strong force. The

production cross section of pp → tt̄ depends on the mass of the top mt, the centre of mass

energy
√
s = 2Ebeam and the fraction of the momentum taken by the partons2 of the colliding

protons.

In order to produce a tt̄ pair the total energy carried by the interacting partons must be

larger than twice the mass of the top. Let us de�ne the e�ective centre of mass energy ŝ

which re�ects the true amount of energy available for interaction. Given two colliding partons,

denoted i and j carrying xi and xj fractions of the centre of mass energy
√
s, then

ŝ = xi
√
sxj
√
s = xixjs (3.2)

assuming that both partons carry the same fraction of the total energy, i.e. xi ≈ xj then the

minimum value of x required for tt̄ production is

x ≈ 2mt√
s

(3.3)

At the LHC the minimum threshold at
√
s = 7 TeV(14 TeV) is approximately 0.05(0.025).

1Neutrinos do not interact with the detector material and thus escape without being detected, missing energy
is described in more detail in Chapter 4

2The constituents of hadrons: quarks and gluons
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At such low values of x the fraction of proton momentum carried by the gluons is large [39]

and thus gluon fusion interactions dominate as can be seen in Figure 3.1.
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Figure 3.1: MSTW 2008 NLO parton distribution functions.

Gluon fusion processes represent 80(90)% of the total cross section, with the remainder

contribution coming from quark pair annihilation. The Feynman diagrams for these interac-

tions are shown in Figure 3.2. The theoretical inclusive tt̄ production cross sections at the LHC

has been calculated to NNLO [40, 41]:

√
s = 7 TeV: σtt̄ = 158 + 13.5

− 12.2 pb
√
s = 8 TeV: σtt̄ = 252.9 + 6.4

− 8.6 ± 11.7 pb

Single top production occurs via the weak force almost exclusively through theWtb vertex

since |Vtb| � |Vts|, |Vtd|. At LO there are several production mechanisms for single-top events:

• Weak quark-antiquark annihilation forming a W which subsequently decays into a tb̄

(Figure 3.3a).

• The so-called tW production, where a b-quark absorbs a gluon and decays to a top quark

and W boson (Figure 3.3b).

• b-quark scattering o� a W boson, where the b comes from gluon splitting (Figure 3.3c)

or from the proton (Figure 3.3d).
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Figure 3.2: The leading order Feynman diagrams for tt̄ production.

The cross sections for pp → t + X at the LHC have been estimated at NLO, for the t-

channel [42]:

√
s = 7 TeV: σt-chan

t = 66± 2 pb
√
s = 8 TeV: σt-chan

t = 87± 3 pb

, and for tW production [43, 44, 45, 46]:

√
s = 7 TeV: σtW = 15.6± 1.2 pb
√
s = 8 TeV: σtW = 22.2± 1.5 pb

As top quark pair production can proceed via the strong force it occurs overwhelmingly

more often than single top production. The production cross section of tt̄ is approximately

two times larger than the single-top cross section.

38



Chapter 3: Top quark physics

W+

q

q̄′

t

b̄

(a) s-channel

b

b

g

t

W−

(b) tW -channel

W

b

g

q

b̄

t

q′

(c) Associated with a q and b̄

W

b

q

t

q′

(d) Associated with a q

Figure 3.3: Example Feynman diagrams for single top quark at leading order.

3.2 Top quark decay modes

The top quark decays almost exclusively into a W boson and a b-quark. The world average

measured ratio of branching ratios Γ(t → Wb)/Γ(t → Wq(q = b, s, d)) is 0.91± 0.04 [19].

Note that there is some tension between this measured result and the naive expectation from

the CKM matrix. The measured value is 2σ away from the expected CKM result, meaning

there is perhaps some room for additional quark generations not accounted for by the CKM

matrix.

As the LHC collides proton-proton beams, the overwhelming majority of events produced

will feature multiple hadronic jets, a stream of particles resulting from the hadronization of

quarks in the detector, most of which will originate from “light” quarks3. Unlike light hadrons,

B-hadrons have a su�ciently large lifetime that they travel a certain distance before decaying.

Additional features such as the semileptonic decay of b-quarks can be exploited to determine

the presence of such a quark in the detector. Collectively analysis techniques that permit

the detection of b-jets are known as b-tagging. Top quark pairs will produce two b-quarks,

making b-tagging techniques a central part of any tt̄ analysis. More information on b-tagging

3The term light quarks usually refers to quarks in the �rst two generations. Light jets are those originating
from those quarks
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techniques, including the Soft Muon Tagger, is provided in Chapter 4.

The other part of the top decay, theW boson, is used to classify tt̄ events. TheW boson can

decay leptonically (W → `ν`) or hadronically (W → qq̄′) driven by the CKM vertex element.

The branching ratios of W boson decays are presented in Table 3.1.

W decay to Branching ratio [%]

e+ ν 10.75± 0.13

µ+ ν 10.57± 0.15

τ + ν 11.25± 0.20

Hadrons 67.60± 0.27

Table 3.1: Branching ratios of W boson decay. Hadrons refers to all possible combinations
of qq̄′ where q̄′ denotes the antiquark of a �avour di�erent to that of the �rst quark [19].

Top quark pair events are labelled as “dilepton”, “all-hadronic” or “lepton plus jets” de-

pending on the combination of W boson decays present. The probability for a tt̄ event to be

of a given type is dependent on the branching ratios of W boson decays shown previously.

As can be seen from Figure 3.4 the all-hadronic events dominate, followed by the lepton plus

jets and dilepton. Each event type requires a di�erent analysis approach due to their distinct

backgrounds, branching ratio, detector signature and reconstruction requirements. Note that

some lepton plus jets analyses do not explicitly treat taus directly. Nevertheless tau decays

enter into these analysis via its decay to an electron or muon. Thus the true branching ratio is

marginally smaller than that shown in the Figure 3.4.

The all-hadronic �nal state includes four light quarks which will hadronize to form four

light �avour (LF) jets and two b-quarks leading to two b-jets. Due to the large hadronic activity

the all-hadronic channel is very challenging. As mentioned before, hadronic collisions produce

events with a large number of jets in the �nal state. The background to the all-hadronic chan-

nel are therefore very high. As shown in Figure 3.4 the all-hadronic channel has the largest

branching ratio of the three.

The dilepton �nal state includes two leptons, large missing energy from two neutrinos

which escape the detector and two b-jets. In contrast to the all-hadronic channel, dilepton

events are very clean due to the presence of leptons and missing energy, however the branching

ratio is very small and reconstruction of the top quarks is challenging due to the presence of
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All-hadronic

Lepton+Jets

Dilepton
45.7%

43.8%

10.5%

Figure 3.4: Branching ratios of all possible tt̄ decays. These probabilities are based on the
branching ratios ofW boson decay shown in Table 3.1. Note that the lepton plus jets branching
ratio here includes all three leptons.

the two neutrinos. Finally, the lepton plus jets channel has a larger branching ratio than the

dilepton while having a distinct signature with a lepton and missing energy as well as LF jets

and b-jets.

Lepton plus jets analyses do have some acceptance to τ events, but they are not usually

treated as the signal lepton. The τ lepton is unstable and decays primarily via the weak force

producing hadrons in the �nal state. Events with τ leptons enter lepton plus jets analyses

when the τ decays leptonically into a muon or electron. The reconstruction of τ leptons is a

complex task and τ plus jet events are treated separately with dedicated analyses. An example

of the full lepton plus jets chain is shown in Figure 3.6.

The lepton plus jets channel has the advantage of a more distinct signature than the all-

hadronic event as well as a su�ering from less background. The branching ratio of lepton plus

jets event is also approximately twice that of the dilepton channel. As a result the lepton plus

jets channel has been chosen as the focus of this thesis.

3.3 Latest developments in top physics

This section discusses a few of the latest measurements in the area of top quark pair production

with a focus on LHC results. Top quark decays provide the only probe to study the properties of
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Figure 3.5: Example event display of a dilepton tt̄ event recorded by ATLAS. The electrons
are shown as yellow energy depositions in the green EM calorimeter. These are associated
with a green and orange upward-pointing tracks in the ID. Some hadronic activity is noted in
the red hadronic calorimeter on the opposite side.
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Figure 3.6: Feynman diagram of lepton plus jets channel including tt̄ production via gluon
fusion and decay with a leptonically decaying W+. All other production mechanisms are also
considered and the �nal state where the W− decays leptonically is also taken into account.

a bare quark. Measurements of its properties provide a stringent test of the SM and could show

hints of new physics from BSM theories. Moreover, due to its �nal state signature top quark

pair production, particularly in the lepton plus jets channel, form the background to many

searches for new physics. All parts of the detector are utilized in the reconstruction of `+jets

events and so it is possible to use these events to tune or calibrate analysis and reconstruction

techniques.

Cross section measurement

Measurement of the production cross section of the top quark at di�erent centre of mass ener-

gies4 is a benchmark test of the SM. Any statistically signi�cant deviation from the predicted

value could point to the presence of new physics. Some BSM theories posit the existence of

particles which could decay to produce a tt̄ pair. If such theory is correct this would be ob-

served in an increase in the cross section measured away from the predicted SM value. Precise

knowledge of the cross section is also vital from an experimental perspective, for example

when attempting to reduce and estimate the amount of top quark background present in other

4The production cross section is dependent on the centre of mass energy of the collision.
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analyses. Searches for the Higgs boson exploit many di�erent channels such as tt̄H → tt̄bb̄

which have tt̄ events as a background. The type of events predicted by the BSM theory, super-

symmetry (SUSY) include a large amount of missing energy, leptons and jets in the �nal state.

Top quark pair events mimic these processes and constitute a large background.

A summary of all tt̄ cross section measurements from the LHC at
√
s = 7 TeV is shown in

Figure 3.7 and a comparison against the Tevatron measurement at
√
s = 1.96 TeV is shown in

Figure 3.9. Early results at
√
s = 8 TeV are shown in Figure 3.8.
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Figure 3.7: A summary of all tt̄ production cross section measurements performed at the LHC
at
√
s = 7 TeV [47]. The theory prediction shown as a dotted black line associated uncertain-

ties as grey bands. The results shown above the black line have been statistically combined,
producing the results labelled as combined. Many of these analyses have been superseded
and the results are shown below the line. Other analyses performed but not included in the
combination are also shown below the line, such as the analysis described in Chapter 7.
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Figure 3.9: A summary of the most precise tt̄ production cross section measurements per-
formed at the LHC at

√
s = 7 and 8 TeV and the Tevatron at

√
s = 1.96 TeV compared to the

theoretical prediction [47]. The Tevatron results should be compared against the prediction
for pp̄ collisions while the LHC against the pp collision predictions.

Top mass measurement

The mass of the top mt is a fundamental parameter of the SM. Measurements of the top

mass have been carried out in all tt̄ channels at both ATLAS and CMS [48]. These results are

summarized in Figure 3.10, which includes the combined LHC measurement:

mt = 173.29± 0.23 (stat.)± 0.92 (syst.) GeV

Boosted top resonance searches

Some BSM theories predict the existence of additional particles with large masses that can

decay into a pair of top quarks with very large transverse momenta. The decay products of

these highly boosted tops emerge in a collimated cone. Boosted top searches have been carried

out at ATLAS [49], looking for the decay products of a heavy boson known as the Z ′ [13, 14,

15] and Kaluza-Klein gluons [50, 51, 52, 53, 54]. A narrow leptophobic Z ′ with a mass of less

than 1.74 TeV is excluded and a Kaluza-Klein gluon is excluded for masses below 2.07 TeV as

shown in Figure 3.11.
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The LHC and the ATLAS Detector

The Large Hadron Collider (LHC) [2] is a proton-proton ring collider located at the Euro-

pean Centre for Nuclear Research (CERN). The main LHC ring is housed in the tunnel which

previously contained the Large Electron-Positron (LEP) collider. The LHC ring is 27 km in

circumference and located as deep as 175 m underground. The LHC services seven di�er-

ent experiments located around the beam-pipe as shown in Figure 4.1. There are four main

experiments: A toroidal LHC apparatus (ATLAS, the experiment used for this thesis), the com-

pact muon solenoid (CMS), a large ion collider (ALICE) experiment [55], and the LHC beauty

(LHCb) experiment [56].

ATLAS and CMS are general purpose detectors designed to support a varied physics pro-

gramme, from SM physics like top quark measurements to BSM searches such as supersym-

metry. ALICE and LHCb are more specialized experiments which focus on heavy ions and

B-physics, respectively.

4.1 The large hadron collider

The LHC accelerates two beams of protons in opposite directions and then collides them at

the four interaction points (IPs) where the experiments are located. The protons come from

hydrogen gas where the orbiting electron is removed by an electric �eld, leaving behind a bare

proton. The beam acceleration occurs in several stages exploiting smaller experiments present

at CERN. During 2010 and 2011 protons were accelerated to a beam energy of 3.5 TeV, creating

a centre of mass energy of 7 TeV and then 4 TeV per beam in 2012 for a centre of mass energy of
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Figure 4.1: The layout of the CERN complex of experiments including the main four LHC
experiments located at di�erent points around the ring [57].
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8 TeV. Each beam is made of multiple bunches of protons, with as many as hundreds of billions

of protons in each bunch. Bunches are grouped into bunch trains with a designed bunch spacing

of 25 ns between each of the bunches that compose a single train. The bunch spacing and size

of the bunch can be altered to adjust the amount of collisions and time between collisions.

During 2011 a 50 ns bunch spacing was used to allow for early low luminosity analyses to be

performed. The variation in the number of colliding bunches is shown in Figure 4.2a.
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(a) The number of bunches colliding per unit time at the LHC for the 2010, 2011 and 2012 pp
collision periods.
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(b) The peak luminosity per unit time at the LHC for the 2010, 2011 and 2012 pp collision periods.

Figure 4.2: Shown are (a) the number of bunches colliding at the LHC and (b) the peak lumi-
nosity per unit time [58].

The acceleration of the proton beams occurs in several stages in di�erent accelerators. The

beams are �rst accelerated in a linear collider (LINAC 2) to an energy of 50 MeV before being

injected into the proton synchrotron booster (PSB). The beams are then boosted to 1.4 GeV by a

varying magnetic �eld in the circular PSB. Beams are then passed into the proton synchrotron
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(PS) and then the super proton synchrotron (SPS) where the beam energy increases to 26 GeV

and then 450 GeV. At this stage the beam is injected into the LHC and then accelerated to the

�nal desired energy. The design energy is 7 TeV per beam for a total of 14 GeV centre of mass

energy. The whole process can take a couple of hours, from the initial injection of the protons

to stable beam conditions in the LHC.

As bunches overlap the protons that make up the bunches interact, the result of this in-

teraction is known as an event. The number of events is proportional to the instantaneous

luminosity L of the collider. L is a measure of the �ux of particles per unit area per unit time

can be de�ned as:

L = fnb
N1N2

A
(4.1)

where f is the frequency of revolution of the beam, nb the number of colliding pairs of bunches

in the beam, N1 and N2 are the number of particles in each colliding bunch and A is the cross

section of the beam [59]. The peak luminosity evolution at the LHC is shown in Figure 4.2b.

The total amount of data collected is measured by the integrated luminosity Lint de�ned

as the time integral of L. Integrated luminosity has units of inverse area, usually expressed

in terms of barns (b)1. The probability for a given process to occur is expressed as the cross

section σ and the total number of events which proceed via said process is de�ned as:

σ

∫
Ldt (4.2)

The integrated luminosity delivered by the LHC and collected by the ATLAS detector in

2011 and 2012 is shown in Figure 4.3. The ATLAS detector does not record all data delivered

by the LHC; approximately 6.5% was not recorded.

4.1.1 Pile-up

Due to the large number of interactions and the short time between collisions, multiple events

can overlap into a single event. This has detrimental e�ects on physics analyses and is a deter-

mining factor in setting the instantaneous luminosity with which to perform data collection.

This overlapping e�ect is collectively known as pile-up and is categorized into two types:

11 b−1=10−28 m−2
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Figure 4.3: Distribution of the total integrated luminosity delivered by the LHC and the
recorded by ATLAS for the 2011 and 2012 pp collision period [58, 59].

in-time pile-up, where multiple pp collisions occur during the same bunch crossing; and out-

of-time pile-up, where the electric signals produced by previous collisions still remain to be

read-out. This occurs when the time spacing between interactions is smaller than the read-out

speed of the electronics. The number of interactions per crossing µ is shown in Figure 4.4,

note that on average approximately thirty interactions occurred per bunch crossing in 2012.

In comparison, in 2011 the average interactions per bunch crossing 〈µ〉 varied from 5 in early

2011 to 15 at the end of the year.

4.2 The ATLAS detector

The ATLAS [9] experiment is a general-purpose detector which wraps around the IP providing

large angular coverage. ATLAS is approximately cylindrical with a diameter of 25 m, a total

length of 44 m and weighs 7000 t. The detector is made of several layers of instrumentation

located at successively increasing radii as shown in Figure 4.5:

1. Inner Detector (ID): Located nearest to the beam-pipe and designed to measure the

track of charged-particles.

2. EM Calorimeter: Used for identi�cation and measurement of electrons and photons.
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Figure 4.4: Number of interactions per bunch crossing for the 2012 pp data-taking period at
ATLAS per day. Both the average number of interactions for all bunches and the maximum
number of interactions are shown [58].

3. Hadronic Calorimeter: Used for the measurement of hadronic activity from hadroniz-

ing partons and missing transverse energy.

4. Muon Spectrometer (MS): The outermost detection layer, used for muon identi�cation

and measurement.

Between these detection layers are magnets responsible for bending the path of the charged

particles for the purpose of momentum measurement and particle identi�cation. Triggering

and data acquisition (TDAQ) systems also form part of the detector for the purposes of record-

ing the data signals coming from the tracking and measurement systems. A brief description

of these is provided in the coming sections. For a more detailed technical description of the

detector and all subsystems see [9].

Lepton plus jets tt̄ events produce a �nal state that includes hadronic activity, electrons,

muons and missing energy, so all elements of the detector are used in the reconstruction of

such events. Additionally, the match χ2
match tagger which is central to this thesis, relies on the

reconstruction and �tting of ID tracks and MS tracks. A detailed description of this algorithm

is provided in Section 5.2.2.

54



Chapter 4: The LHC and the ATLAS Detector

Figure 4.5: An overview diagram of the ATLAS experiment. Shown are all detection and
tracking systems and the toroid magnet which encompasses them. Note also the muon system
on the outside of the detector [9].

A cylindrical coordinate system as used by all ATLAS publications has been adopted here.

The coordinate system is constructed so that the z-axis is parallel to the beam axis, and is

positive in the direction of LHCb. The x-axis is positive in the direction going from the IP

to the centre of the LHC ring, and the positive y-axis points upwards. Thus the x-y plane is

transverse to the beam direction. All transverse variables such as the transverse momentum pT,

transverse energyET and missing transverse energyEmiss
T are measured along this plane. The

distance perpendicular to the beam-pipe is denoted by R, the azimuthal angle φ is measured

around the beam axis, and the polar angle θ is the angle from the beam axis. The pseudorapidity

is de�ned as η = − ln tan(θ/2). The distance in the η-φ plane between two objects is denoted

by ∆R and de�ned as ∆R =
√

∆η2 + ∆φ2. Finally side A of the detector is de�ned as the

positive z side and side C is the negative z. The transverse impact parameter d0 is de�ned

as the distance of closest approach (perigee) of a track to the primary vertex (PV), and the

longitudinal impact parameter z0 is the distance in z between the perigee and the primary

vertex.
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4.2.1 Inner detector

The inner detector, shown in Figure 4.6, is a tracking detector located closest to the beam-pipe

and used for momentum and impact parameter measurement, vertex and track reconstruction,

and particle identi�cation. The ID is designed to provide hermetic high-resolution tracking in

the range |η| < 2.5.

Figure 4.6: Drawing of the ATLAS inner detector [9].

The entire ID is contained within the central solenoid (CS) that generates a 2 T magnetic

�eld for the purpose of momentum measurement. The trajectory of a charged particle is bent

in the presence of a magnetic �eld by an amount proportional to the momentum of the particle

r =
pT
qB

(4.3)

where r is the bending radius, pT is the transverse momentum of the particle, q is the charge of

the particle, and B is the magnetic �eld strength. Thus the momentum of the particle can be

measured by reconstructing its trajectory through the detector. A particle with larger pT would

have a more straight trajectory than a particle with low pT in the same magnetic �eld. For a

central track with pT = 5 GeV the relative resolution on the measured transverse momentum

is ∼ 1.5 % [9].

The reconstruction of interaction vertices is paramount, particularly when considering the
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large amount of pile-up observed at ATLAS. Interaction vertices are reconstructed by �tting all

reconstructed tracks to a point. The primary vertex (PV) is then de�ned as the vertex with the

largest amount of momentum associated with it. The reconstruction of secondary interaction

vertices is used for the identi�cation of short-lived particles such as B-hadrons and τ .

Figure 4.7: An event display of an event as reconstructed by the ATLAS inner detector [9].
Shown are the results of the vertexing algorithm where each line represents a track. The purple
tracks have been �tted to a secondary vertex.

The ID is made of three separate tracking and detection systems located at increasing radii

away from the beam-pipe, the full arrangement can be seen in Figure 4.8, and a plane-view is

shown in Figure 4.9.

Pixel detector

The pixel detector is located nearest to the beam-pipe and provides high-granularity and preci-

sion for secondary vertex reconstruction. As a charged particle passes through a silicon pixel,

several electron-hole pairs are created. The electrons and holes begin drifting in opposite di-

rections under the in�uence of a voltage, and the charges are read out as a hit through an

electrode. The pixel detector consists of three silicon pixel sensor layers in the barrel region

located at approximately 5 cm, 9 cm and 12 cm from the IP, and three disks at each side lo-

cated at constant R providing coverage up to |η| < 2.5. The barrel modules are overlapped in

a turbine pattern to provide hermetic coverage. In the barrel region the modules provide an
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Figure 4.8: Plan-view of a quarter-section of the ATLAS ID showing the major detector el-
ements with its active dimensions and envelopes [9]. Note also the η markers showing the
maximum coverage up to η = 2.5.

Figure 4.9: A drawing in the transverse plane of the ATLAS ID showing all major detection
elements in the barrel regions [9]. A charged particle track is shown traversing all the detector
elements as a solid line.
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intrinsic resolution of 10 µm in R-φ and 115 µm in z [9]. The disk sections have an intrinsic

resolution of 10 µm (R-φ) and 115 µm (R).

Semiconductor tracker

The semiconductor tracker (SCT) located in the intermediate radius range is designed to pro-

vide eight hits per track contributing to the measurement of momentum, impact parameter,

and vertex position. The SCT is made of four layers of stereo-pair silicon micro-strip sensors

in the barrel region at increasing radii. The intrinsic resolutions are 17 µm (R-φ) and 580 µm

(z). At the end-caps nine disks of silicon micro-strip modules provide large pseudorapidity

coverage with a resolution of 17 µm (R-φ) and 580 µm (R) [9].

Transition radiation tracker

The transition radiation tracker (TRT) is the outermost tracking layer of the ID, and acts as

both a tracker and transition radiation detector. Transition radiation (TR) is produced when

a charged particle crosses the boundary between two materials with di�erent dielectric con-

stants. The probability of producing TR photons depends on the Lorentz factor of the particle

γ = E/m. Thus for two particles of the same energy, a lighter particle will, on average, emit

more ionization than a heavier particle.

The TRT is designed to provide up to 36 hits per track using straw-tube sensors. Each

straw is 4 mm in diameter and is made of two 35 µm thick Kapton multi-layer �lms bonded

back-to-back. At the centre of each straw is a gold-plated tungsten wire with a diameter of

31 µm. Each straw is �lled with a mixture of gas (70 % Xenon, 27 % CO2 and 3 % O2). The tubes

are surrounded by polypropylene-polyethylene �bres that act as radiators and allow for the

production of TR, which later ionizes the gas mixture and is read-out through the gold-plated

wire.

In the barrel, the 144 cm long straw-tubes are arranged in modules which contain between

329 and 793 straws. The end-cap disks are made of radially distributed 36 cm long straw-tubes.

Each tube provides an intrinsic resolution of 130 µm along its length [9]. The combination of

a large number of hits over a large radius allows measurements in the TRT to be made with

an accuracy that can complement those made by the pixel detector.
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4.2.2 Calorimetry

The ATLAS calorimeter is responsible for the measurement of the energy of particles that

emerge from the event. Sampling calorimeters are used for this purpose, layers of absorber

material (passive) are placed in the path of the particles forcing them to interact and shower.

The amount of energy lost by the incident particle depends on the type of material the particle

traverses, the energy of the particle, and the type of particle. At high energy, electrons lose

energy predominantly via Bremsstrahlung, while the energy of photons is dissipated via pair

production. The characteristic length associated with this energy loss is a material property

known as the radiation length X0.

For electrons, the energy as a function of material length traversed is

E = E0e
−x/X0 (4.4)

where E0 is the initial energy, x is the distance traversed, and E is the energy of the particle

at x. As an electron traverses one X0 of material, its energy is reduced by a factor of 1/e. For

photons, the average number of photons traversing through a material length x is reduced ex-

ponentially by a factor of 7
9X0 [60]. Thus the longitudinal length of the shower is proportional

to the logarithm of the energy of the incoming particle.

The number of shower particles changes as a function of the hadronic interaction length

λint as

N = N0e
−x/λint (4.5)

where N is the number of shower particles at length x and N0 is the initial number of inci-

dent particles. This is the characteristic length used when discussing the construction of the

hadronic calorimeter. For a given material the λint is much larger than X0, therefore hadronic

showers tend to be much broader and deeper than EM showers. Note that on average 1/3

of the particle content of hadronic showers is electromagnetic, mostly due to pion decay into

photons.

The energy of the resulting shower is measured by some sampling material (active) located

behind the absorbers, this energy is proportional to the energy of the incident particle.

The type and thickness of material used is varied through the pseudorapidity range to
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improve energy measurement and reduce punch-through of particles into the muon system

behind. Due to the intense radiation produced during collisions, radiation hardness is also an

important factor in material choice.

The ATLAS calorimeter consists of the EM calorimeter, designed to measure photons and

electrons covering |η| < 3.2; the hadronic calorimeter (HCal), which measures hadronic ac-

tivity at |η| < 3.2; and the forward calorimeter (FCal) which provides energy measurement

capability in at 3.1 < |η| < 4.9. As can be seen in Figure 4.10, the calorimetry envelopes the

ID and CS providing hermetic coverage symmetric in φ. This is particularly important for the

measurement of Emiss
T resulting from weakly interacting particles escaping the detector.

Figure 4.10: A cut-away diagram of the ATLAS detector highlighting the calorimetry system.
Shown are the ECal barrel and end-cap, the HCal barrel and end-cap and the FCal end-cap [9].

Electromagnetic calorimeter

The EM calorimeter is made of a barrel section (|η| < 1.475) and two end-caps (1.375 < |η| <

3.2). The barrel consists of two half-barrels separated by a 4 mm gap at z = 0. The end-caps

consist of two coaxial wheels, the outer ring covering 1.375 < |η| < 2.5 and the inner ring

covering the range 2.5 < |η| < 3.2. The pseudorapidity region 1.37 < |η| < 1.52, known

as the “crack” region, is not used for precision physics due to the large amount of material
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between the interaction point and the calorimeter.

The EM calorimeter employs liquid argon (LAr) as the active material due to its intrinsic

radiation hardness and response over time, and lead as the passive material arranged in an

accordion geometry for full φ symmetry. Particles interact with the lead absorbers creating a

shower which ionizes the layers of LAr. A potential is applied across the LAr material allowing

for signal read-out via Kapton/copper electrodes. The total thickness of the EM calorimeter is

> 24X0 in the barrel and > 26X0 in the end-caps. The amount of material is optimized in

pseudorapidity to enhance energy resolution. The amount of material, measured in terms of

X0, before and in the EM calorimeter is shown in Figure 4.11.

Pseudorapidity
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0X

0

5

10

15

20

25

30

35

40

Pseudorapidity
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0X

0

5

10

15

20

25

30

35

40 Layer 3
Layer 2
Layer 1
Before accordion

Pseudorapidity
1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

0X

0
5

10
15
20
25
30
35
40
45

Pseudorapidity
1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

0X

0
5

10
15
20
25
30
35
40
45 Layer 3

Layer 2
Layer 1
Before accordion

Figure 4.11: Cumulative amounts of material, in units of radiation lengthX0, as a function of
|η| in front and in the EM calorimeter at the ATLAS detector [61]. The left-hand plot shows
the amount of material in the barrel region and the right-hand plot shows the material in the
endcap region.

In the region devoted to precision physics the EM calorimeter is divided into three seg-

ments as shown in Figure 4.12, the strip layer is designed to improve particle identi�cation

and pseudorapidity measurement. The design energy resolution for all components of the

calorimeter are shown in Table 4.1.

Hadronic calorimeter

The hadronic calorimeter uses di�erent types of passive and active material to accommodate

for the varying conditions in di�erent regions of the detector. The structure of the detector

and the materials used must provide good energy resolution, full symmetric coverage for the

purpose of Emiss
T measurement, full containment of all hadronic activity to prevent punch-

through to the muon system, and be su�ciently radiation hard. The hadronic calorimeter
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Figure 4.12: Cut-away diagram of the EM calorimeter barrel at η = 0 [9]. Shown are the three
di�erent layers with varying cell structures. The strip section is designed to enhance particle
identi�cation and position measurement in η.
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Section Resolution

EM barrel 10%√
E
⊕ 0.7%

EM endcap 10%√
E
⊕ 0.7%

HCal barrel & endcap 50%√
E
⊕ 3%

Forward 100%√
E
⊕ 10%

Table 4.1: Design energy resolution of all ATLAS calorimeter components [9]. The resolution
is made of a sampling term (1/√E) associated with the choice of passive and active materials and
the construction of the layers, and a constant term associated with the depth of the detector,
cracks and dead material.

consists of two parts: a scintillator tile calorimeter in the barrel region and a LAr calorimeter

in the end-cap.

The tile calorimeter is located directly outside the EM calorimeter. The barrel portion

covers |η| < 1.0 and the two extended barrels cover the range 0.8 < |η| < 1.7. The tile

calorimeter uses steel as the passive material and scintillating tiles as the active material. The

resulting hadronic showers enter the scintillating tiles and produce photons which are passed

to photomultiplier tubes. The total detector thickness which is tile-instrumented is 9.7λint at

η = 0.

The hadronic end-cap (HEC) uses LAr technology due to its radiation-hardness in this

challenging high pseudorapidity region. The HEC consists of two independent wheels per end-

cap covering the range 1.5 < |η| < 3.2 overlapping the tile calorimeter at low pseudorapidity

and the forward calorimeter located at high pseudorapidity.

Forward calorimeter

The forward calorimeter (FCal) is responsible for energy measurement in the very high pseu-

dorapidity range 3.1 < |η| < 4.9 of both electromagnetic and hadronic activity. Due to the

large amount of radiation in this region, LAr is employed as the active material. The FCal con-

sists of three layers: the �rst made primarily of copper, designed mostly for the measurement

of electromagnetic activity, while the two outer tungsten layers are responsible for hadronic

activity measurement.
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4.2.3 Muon spectrometer

The muon spectrometer is the outermost layer of the ATLAS detector (Figure 4.13) and is

responsible for the precision measurement of pT of charged-particles that pass-through the

ATLAS calorimetry. It is designed to have a precision of 10 % at a momentum of 1 TeV [9].

Muon tracking performance is vital to the SMT tagger described in Section 5.2.4, as it relies on

the precise reconstruction of muon tracks in the ID and MS.

Due to their larger mass, muons tend to have a larger transverse momentum and do not

lose as much energy through photon emission. As a result, muons tend to traverse the hadronic

calorimeter and escape the detector volume. The muon system provides measurement of these

particles up to |η| < 2.7 and triggering up to |η| < 2.4. Measurement of pT is facilitated by

the magnetic �eld generated by the large toroid magnet in the barrel region |η| < 1.4 and

two smaller end-cap magnets in 1.6 < |η| < 2.7. In the transition region at 1.4 < |η| < 1.6,

de�ection is provided by both barrel and end-cap �elds.

The structure of the MS is delimited by the magnet system. In the barrel region, three

cylindrical layers of precision-tracking chambers are located in and on the coils of the barrel

toroid magnet at radii of 5 m, 7.5 m and 10 m. End-cap region coverage is provided by three

chamber planes perpendicular to the z-axis. These are located in front and behind the end-cap

toroid magnet at distances |z| ≈ 7.4 m, 10.8 m, 14 m and 21.5 m from the interaction point.

The MS contains four di�erent types of chambers responsible for precision-tracking and/or

triggering in various pseudorapidity ranges, as shown in Table 4.2. The arrangement of these

chambers is shown in Figure 4.14.

In the barrel region, precision-measurement is performed by monitored drift tube (MDT)

chambers. These chambers consist of three to eight pressurized aluminium drift tubes, each

containing a tungsten-rhenium wire anode and a mixture of argon and carbon dioxide gas. An

average spatial resolution of 80 µm per tube and 35 µm per chamber is achieved. The end-cap

region is instrumented with cathode-strip chambers (CSC) due to their higher rate capability

and time resolution. CSCs are multi-wire chambers with cathode planes segmented into strips

in orthogonal directions, this allows both coordinates to be measured simultaneously. The

resolution of a chamber is 40 µm in the bending plane (R-z) and 5 mm in the transverse plane.

Triggering on muon tracks is another essential role of the muon spectrometer. To this end,

each precision-measurement chamber is complemented with fast triggering chambers. As with
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Figure 4.13: Cut-away drawing of the ATLAS muon system [9].

Figure 4.14: Plan view of quarter-section of the ATLAS muon spectrometer [62].
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Monitored drift tubes MDT

— Coverage |η| < 2.7 (innermost layer: |η| < 2.0)
— Number of chambers 1150
— Function Precision tracking

Cathode strip chambers CSC

— Coverage 2.0 < |η| < 2.7

— Number of chambers 32
— Function Precision tracking

Resistive place chambers RPC

— Coverage |η| < 1.05

— Number of chambers 606
— Function Triggering, second coordinate

Thin gap chambers TGC

— Coverage 1.05 < |η| < 2.7 (2.4 for triggering)
— Number of chambers 3588
— Function Triggering, second coordinate

Table 4.2: Main parameters of the muon system [9].

the measurement layers, two di�erent types of chambers are used for the barrel and end-cap

regions. In the barrel region (|η < 1.05), resistive plate chambers (RPC) are attached to the

same support structure as the MDTs. The RPCs are made of two resistive plates, 2 mm apart,

between which a potential di�erence is applied. The gap between the plates is �lled with a

mixture of C2H2F4/Iso-C4H10/SF6. The signal is read out via metallic strips mounted to the

outer faces of the resistive plates. The end-cap region (1.05 < |η| < 2.4) is populated with

thin gap chambers (TGC). TGCs are multi-wire chambers like those used in the CSC, however

the distance between the wire and the cathode is smaller in the TGC. A summary of the spatial

and temporal resolution for the measurement and triggering layers is shown in Table 4.3.

4.2.4 Magnet system

The structure of the ATLAS detector is de�ned by its large magnet systems as shown in Fig-

ure 4.16. The system consists of two sets of magnets: the CS and three air-core toroids.
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Figure 4.15: Transverse view of the muon system [9].

The CS is located nearest to the beam and provides a 2 T magnetic �eld for the ID for the

purpose of tracking, particle identi�cation and pT measurement.

The barrel toroids extend to |η| < 1.4 and are made of eight coils, generating a 0.5 T

magnetic �eld for the MS. In the high pseudorapidity range, magnetic de�ection is provided

by two end-cap toroids extending from 1.6 < |η| < 2.4. As in the barrel, the end-cap toroids

are made of eight coils o�set by 22.5° with respect to the barrel coils. Each end-cap generates

a 1 T magnetic �eld for the MS. The so-called transition region between the two magnets is

covered by the overlap of the end-cap and barrel �elds.

4.2.5 Beam-pipe

The beam-pipe section located within the ATLAS experiment is approximately 38 m in length

and made of seven parts. The central chamber has an inner diameter of 58 mm and is con-

structed from 0.8 mm thick beryllium due to the material’s transparency to particles, high

speci�c sti�ness and compatibility with ultra-high vacuum. The beam-pipe is centred around

the IP and integrated with the pixel detector. The additional layers are made of stainless steel
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Chamber Resolution in

R/z φ Time

MDT 35 µm (z) — —
CSC 40 µm (R) 5 mm 7 ns
RPC 10 mm (z) 10 mm 1.5 ns
TGC 2-6 mm (R) 3-7 mm 4 ns

Table 4.3: Summary of spatial and temporal resolutions per chamber for all chamber types
used in the ATLAS muon spectrometer. Adapted from [9].

located symmetrically on both sides of the IP.

4.2.6 Triggering and data-acquisition

At the design luminosity of the LHC L = 10× 1034 cm−2 s−1, the expected bunch crossing

rate is approximately 40 MHz. At an average event size of 1.3 MB per event, the total amount

of data produced at ATLAS is 50 TB s−1. The maximum rate of data storage at ATLAS is ap-

proximately 300 MB s−1, so the rate must be reduced.

The trigger and data acquisition system (TDAQ) is responsible for reducing the rate by

recording only “interesting” events. This is known as online selection as it happens before

the data is stored. In contrast, o�ine selection happens after the data has been recorded, for

example when performing a cross section measurement. The overwhelming majority of events

produced at the LHC are of no interest to physics analysis.

At ATLAS, trigger decisions are carried out in three sequential levels: Level 1 (L1), Level

2 (L2) and Event Filter (EF), each successive level reduces the rate by applying more com-

plex selection criteria. The hardware-based L1 trigger, performs the initial selection based

on reduced-granularity information from the MS trigger chambers and all calorimeters. Data

from the calorimeter trigger towers, shown in Figure 4.12, is used to search for high transverse-

momentum muons, photons, electrons, hadronic decays of τ leptons, hadronic jets, large miss-

ing transverse energy, and large total transverse energy. The central trigger processor applies

the trigger ‘menu’ which includes a combination of selection criteria. Events which are of in-

terest to physics analyses can be produced at such a rate as to overwhelm the capabilities of

the DAQ. A trigger can be con�gured with a so-called prescale that reduces the amount of data
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Figure 4.16: Diagram of the ATLAS toroid magnet system [9]. The red central solenoid is
located closest to the beam surrounded by layers of tile calorimetry. The eight barrel toroid
magnets are shown along with the o�set end-cap toroids at each end.

recorded. There are two types of prescale, a deterministic prescale that records one event in

every S events �ring the trigger, and a non-deterministic prescale which records events with

a probability 1/S based on the outcome of a pseudo-random number generator [63].

The L1 trigger also constructs regions of interest (RoIs) around the detector where inter-

esting features have been found. The η and φ information of the RoI along with information

about the decision is stored and passed to the higher level triggers.

The L2 selection makes use of RoIs and the full granularity of the detector to further reduce

the event rate to approximately 3.5 kHz, and �nally the EF implements selections commonly

used for o�ine analysis to reduce the rate to 200 Hz.
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Data Simulation and Object Selection

5.1 Monte Carlo simulation

The simulation of data is paramount to HEP research, from the initial detector design phase all

the way through to �nalized analyses. Monte Carlo (MC) generators simulate various inter-

actions, creating kinematic collision event data that re�ect our best understanding of nature.

These processes are then passed through detector simulation and all the object reconstruction

algorithms, resulting in a dataset with an identical format to collision data. More information

on the ATLAS simulation infrastructure can be found in [64].

The simulation of data happens in three phases: event generation, detector simulation and

digitization.

5.1.1 Event generation

Event generators model complex physics processes that occur during a particle collision. Many

di�erent generators exist to model a variety of beam types (pp, pp̄, e+e−, etc. . . ) and event

types. Hadronic event generators simulate all components of the interaction: the hard scatter-

ing process, parton showering, hadronizing, hadronic decay, the underlying event, and photon

radiation [65]. A schematic diagram of a hadronic event as modelled by an event generator is

shown in Figure 5.1.

First, the hard interaction of a pair of partons originating from the colliding protons is

simulated. An example of such an interaction is qq̄ → Z/γ∗ → e+e−. Calculating the cross
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Figure 5.1: Sketch of a proton-proton collision as modelled by the event generator [66]. Shown
are the incoming protons beams as green arrows on the left and right sides of the diagram. The
partons shown in blue, interact in the hard interaction (red blob) producing a parton shower,
also depicted in red, which eventually hadronize (light green blobs) and �nally decay into
�nal state particles shown in dark green. The underlying event is shown at the bottom of the
diagram as the purple blob, note also the beam remnants as light blue blobs that also form part
of the underlying event. Photon emission is shown in yellow and occurs at all stages of the
event generation.
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section for such an interaction involves the convolution of the parton density function (PDF)

and the matrix element (ME).

The PDF fi(x,Q2), describes the probability of �nding, within the proton, a parton of

�avour i carrying a fraction x of the proton momentum, via a hard interaction with energy

scale Q. The ME describes the interaction between the two partons and corresponds to one

or more of the Feynman diagrams associated with the interaction1. Di�erent generators are

capable of treating diagrams at di�erent orders, though the hard interaction is usually modelled

at LO or NLO.

The next step is parton-showering which simulates the emission of gluons by coloured par-

tons and gluon splitting. A cascade of partons is produced, as shown in Figure 5.1, and modelled

by perturbation theory for energies above 1 GeV. All coloured objects are then combined into

colourless hadrons in a process known as hadronization, these hadrons are subsequently al-

lowed to decay. Finally, the remaining coloured partons not involved in the hard interaction,

are allowed to interact forming the underlying event. The kinematic information of the original

event without the e�ects of the detector is kept in the data set and is usually referred to as the

truth information.

5.1.2 Detector simulation

The generated events are then passed through a detector simulation that mimics the response

of the detector to particles traversing through it. A description of the entire detector is im-

plemented in the GEANT4 tool-kit [67], including a map of the magnetic �elds, the position

of the detector components and material description. The software then simulates the sig-

nal voltages produced in all tracking and calorimeter components of the detector, these are

then passed through a simulation of the read-out electronics and TDAQ taking into account

known losses and ine�ciencies. All of this information is then passed on to the reconstruction

software that “rebuilds” the physics objects from the detector hits.

1For a rigorous discussion of matrix elements and the Feynman rules, see [18, 3]
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5.2 Object reconstruction

The process of converting the raw data from the detector into physics objects (electrons, muons

and so on) is known as object reconstruction. The reconstruction algorithms are identical for

both collision data and simulated data. As lepton plus jets decays of tt̄ are the focus of this

thesis, the reconstruction procedures of all types of objects (excluding photons) are relevant.

This includes electron, muon and jet reconstruction as well as b-tagging algorithms. The soft

muon tagger relies on STACO combined (STACO CB) muons, therefore some details of the

muon reconstruction algorithms are discussed here.

5.2.1 Electron reconstruction

The electron reconstruction [68] procedure at ATLAS depends on the pseudorapidity of the

candidate. Only electrons that lie within the coverage of the ID are used here, therefore only

the relevant procedure is described. The algorithm used in the central region identi�es energy

deposits in the EM calorimeter and associates them with reconstructed ID tracks. Firstly, clus-

ters are seeded from energy deposits with totalET above 2.5 GeV using a sliding-window algo-

rithm with window size 3×5 in units of 0.025×0.025 in (η,φ) space. Tracks with pT > 0.5 GeV

are then extrapolated to the middle layer of the EM calorimeter2 and matched to the cluster

seed using cuts in the (η,φ) space. In case of multiple matches, tracks with pixel or SCT hits are

given priority and the match with the smallest ∆R distance is chosen. Finally, the size of the

cluster associated with the candidate electron is enlarged to 3× 7 and 5× 5 in the barrel and

end-cap regions respectively. The energy of the electron is then the sum of four contributions

taking into account energy deposited before the EM material, and leakages to other clusters as

well as beyond the EM calorimeter.

Electron identi�cation for central electron candidates is done by applying sequential cuts

on calorimeter, tracking and combined track-cluster variables. Several sets of selection criteria,

labelled loose, medium and tight, are designed for use in analyses. These sets provide increasing

background-rejection power at the cost of e�ciency by introducing new cuts at each stage, or

by tightening previous cuts. The cut de�nitions are listed in Appendix A.

Additional requirements can be made on the so-called isolation of the electron. Three sets

2As it absorbs the largest fraction of the shower energy
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of isolation strategies are used at ATLAS [69]:

• Calorimeter isolation: The calorimeter isolation Econe∆R
T is de�ned as the sum of

transverse energy deposited in the cells around the electron in a cone of size ∆R. The

contribution from the electron itself is removed within ∆η×∆φ = 0.125×0.175 around

the electron cluster barycentre. It is corrected for energy leakage from the electron into

the isolation cone and for the e�ect of pile-up. At ATLAS the nominal cone sizes used

are ∆R=0.2, 0.3 and 0.4.

• Track isolation: The tracking isolation N cone∆R
trk is de�ned as the number of tracks in

a cone around the electron, excluding the track of the electron itself.

• Momentum isolation: The momentum isolation pcone∆R
T is de�ned by the sum of the

transverse momentum of tracks with pT > 0.4 GeV in a cone around the electron, ex-

cluding the electron track itself.

5.2.2 Muon reconstruction

Muon reconstruction makes use of the information provided by both the inner detector and

the muon spectrometer systems. Several di�erent strategies exist [70]:

• Standalone reconstruction: Uses MS information only, �rst constructing segments

from several hits in a given chamber and then �tting segments from all three stations to

hits from the four MS components. Tracks are then extrapolated back to the interaction

point taking into account energy loss and multiple scattering.

• Tagging ID tracks reconstruction: Uses MS or calorimeter information to tag ID

tracks as muons. An ID track is segment-tagged (ST) if, once extrapolated to the MS,

it is associated with at least one local track segment in the MDT or CSC chambers. An

ID track is calorimeter-tagged (CaloTag) if it could be associated to an energy deposit in

the calorimeter compatible with a minimum ionizing particle.

• Combined track reconstruction: Standalone muon tracks are extrapolated back to

the vertex and matched to ID tracks within (|η| < 2.5) and combined. This results in an

improved momentum sensitivity from ID and MS information.
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These strategies can be implemented in a variety of ways. There are two prominent fam-

ilies, STACO and MUID, that contain reconstruction packages which exploit one or a combi-

nation of these strategies. The STACO combined algorithm is used by the SMT tagger and is

described in more detail below.

STACO Combined algorithm

The STACO package [71] combines ID and MS tracks by performing a statistical combination

of the two independent tracks using track parameters (η, φ, pT, d0, and z0) and their covariance

matrices. The quality of the �t is represented in the resulting χ2
match:

χ2
match = (TMS −TID)T (CMS + CID)−1(TMS −TID) (5.1)

whereTMS andTID contain the track parameters for the MS track and the ID track respectively,

TMS or ID =



η

φ

pT

d0

z0


(5.2)

and CMS and CID are the covariance matrices, de�ned as

Cij = (Ti − 〈Ti〉)(Tj − 〈Tj〉) (5.3)

where 〈Ti〉 is the expectation value of Ti. The full covariance matrix is shown in Appendix C.

If more than one possible combination per track exists, the best combined χ2
match is chosen

and then the track is removed from the pool of tracks to be matched. The algorithm continues

making associations until no more tracks remain.

Finally, tracking, calorimeter and momentum isolation variables are de�ned in a similar

way as with electrons.
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MUID algorithm

The MUID reconstruction package [61] implements all muon reconstruction strategies de-

scribed before. The MUID standalone (SA) algorithm uses tracks and segments reconstructed

at the muon spectrometer by the Moore algorithm [72], and extrapolates inwards to obtain

track parameters at the vertex. The MuGirl algorithm [73] searches for MS tracks and seg-

ments using an ID track as a seed. If the full track re�t is successful a combined muon is made,

otherwise a tagged muon is made. The MUID family also contains a combined muon algorithm

that use a global �t of the tracks reconstructed in the ID and in the MS.

5.2.3 Jet reconstruction

As quarks and gluons hadronize and fragment they produce a large number of soft hadrons and

high energy photons. This process results in an object known as a “jet”. A jet reconstruction

algorithm attempts to recombine all these components to reconstruct the four-momentum vec-

tor of the original quark/gluon. The reconstructed jets are the closest physical representation

of a hard quark or a gluon available to experimentalists. The development of jet reconstruc-

tion algorithms is driven by theoretical and experimental requirements. From a theoretical

perspective, it is crucial that jet algorithms be infra-red and collinear (IRC) safe. The proba-

bility of gluon emission approaches in�nity in the collinear and soft regime. These in�nities

cancel out with virtual gluon emission. If jets resulting from hard particles are merged or split

due to soft emission or collinear splitting these probabilities do not cancel and a divergence

occurs. A jet algorithm is said to be IRC safe when the reconstructed jets remain unchanged

under the addition of a soft emission or a collinear splitting. Jet algorithms should also be

able to work given parton, hadron, or calorimeter information. From an experimental per-

spective, jet algorithms should be stable under increased luminosity or centre of mass energy,

be computationally e�cient and fast, and work independently of detector technology.

There are many di�erent jet reconstruction algorithms such as the Cambridge/Aachen, kT

and SISCone, however only the ATLAS default known as the anti-kT algorithm is used here.
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Anti-kT algorithm

The anti-kT algorithm is a clustering algorithm that sequentially combines objects to form

cone-shaped jets [74]. This algorithm has been found to be more resilient to the e�ects of pile-

up and underlying event, and the shape of the jet is una�ected by soft radiation producing

circular jets. It is also computationally e�cient and fast given a smart implementation [75].

The clustering process begins by measuring two distances: the distance between all parti-

cles dij , and the distance between particle i and the beam diB de�ned as

dij = min(k−2
T,i , k

−2
T,j)

∆2
ij

R2

diB = k−2
T,i

where ∆2
ij = (yi − yj)2 +(φi − φj)2, and kT,i, yi and φi are the transverse momentum, rapid-

ity, and azimuthal angle of object i. The parameterR de�nes the characteristic cone size of the

jet, note that by construction not all anti-kT jets are conical. For every object both distances

are calculated, if dij is the smallest then objects i and j are combined forming proto-jets, if

qiB is smallest the object is labelled as a �nal jet and removed from the list of objects to be

combined. This process continues until all objects are removed.

In general, soft particles will tend to combine with hard objects before combining with

other soft objects. If two hard objects lie at 2R from each-other, they will both form conical

shapes with radius R. Otherwise partially conical jets will form depending on the relative

magnitudes of kT of each particle. The standard value of R used for ATLAS analyses is 0.4,

this is used here unless stated otherwise.

Jet calibration

The process of jet calibration corrects the jet energy as measured in the detector with the

intention of recovering the energy of the original stable particle jet that entered the detector.

Clusters of energy deposits in the calorimeter, known as topo-clusters, are constructed from

topologically connected calorimeter cells [76]. Calorimeter jets are constructed from topo-

clusters that enter the clustering algorithm as massless particles.

These clusters are initially reconstructed at the EM scale, which correctly measures the

energy of particles in EM showers. If jet reconstruction is carried on these clusters the jets
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are known as EM jets. An additional collection of topo-clusters is created by calibrating the

calorimeter cells to correctly reconstruct the response of the calorimeter to hadrons. The

main calibration scheme is known as local cluster weighting (LCW) [76]. In this scheme each

topo-cluster is classi�ed as electromagnetic or hadronic based on shower shape variables, then

simulation-derived corrections are applied to each cluster. These correct for the e�ects of non-

compensation, signal losses due to threshold e�ects, and energy loss in non-instrumented re-

gions of the calorimeter. These corrected topo-clusters are then used in the jet reconstruction

algorithms, to build LCW jets.

Additional corrections are applied to topo-clusters at either EM or LCW scale in an attempt

to restore the jet energy scale (JES) to that of jets reconstructed from simulated stable particles.

Additional corrections are applied to compensate for the e�ects of pile-up, align the jet to

point to the primary vertex rather than the ATLAS centre, and other corrections derived from

MC simulations. Jets corrected in this way are said to be at the EM+JES scale or LCW+JES

scale depending on the scale of the topo-clusters. Each calibration methodology has some

uncertainties associated with it, which vary with jet pT and η [77].

5.2.4 b-jet tagging techniques

Identi�cation of heavy �avour (HF) jets, from b- or c-quarks, is very important in the study

of many types of events including tt̄ events. Identi�cation of b-jets is generally known as

b-tagging. Many b-taggers have been developed at ATLAS to achieve the highest e�ciency

along with strong rejection of LF jets. These algorithms exploit a variety of strategies including

impact parameters (IP3D), secondary vertex reconstruction (SV1) and the topology of the b- and

c-hadron decays (JetFitter). The output of these variables are used as inputs into multivariate

algorithms to provide enhanced b-tagging capabilities. The default algorithm at ATLAS is

known as the MV1 tagger is one such algorithm. Finally, soft lepton tagging (SLT) exploits the

production of leptons within some b-jets to provide separation from LF. The performance of

these b-taggers is shown in Figure 5.2. The tagger used in this thesis is an implementation of

soft lepton tagging described in more detail below.
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Figure 5.2: Light jet rejection as a function of the b-jet tagging e�ciency, comparing some of
taggers used at ATLAS as measured in simulated tt̄ events [78].
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The SV0 and SV1 algorithms

The SV0 algorithm [79] reconstructs secondary vertices using tracks within the cone of the

candidate jet. These secondary vertices are located at a decay lengthL from the primary vertex.

A cut is then applied on the decay length signi�cance L/σL < 5.72, this is an operating point

that yields a b-tagging e�ciency of 50 % as measured on simulated inclusive tt̄ events.

The SV1 algorithm is an extension of the SV0 algorithm. In order to improve the tagging

performance, three properties of the secondary vertex are used as inputs to a likelihood ratio:

the invariant mass of the tracks associated to the vertex, the ratio of the sum of the energies of

the tracks in the vertex to the sum of the energies of the tracks in the jet, and the number of two-

track vertices. The ∆R between the jet axis and the line joining the primary and secondary

vertices is also used.

The JetFitter algorithm

The JetFitter algorithm [78] uses a Kalman �lter to �nd a line along which the b quark, c quark,

and the primary vertices lie along with their position on the line, giving an approximated �ight-

path for theB-hadron. Discrimination is based on a likelihood using similar variables as in the

SV1 algorithm and variables such as the �ight length signi�cances of the secondary vertices.

The IP3D algorithm

The IP3D algorithm makes use of the transverse and longitudinal impact parameter signi�-

cances in two-dimensional histograms to discriminate between b, c and LF jets. A likelihood-

ratio method is used: the IP signi�cances are compared to pre-de�ned smoothed and normal-

ized distributions for b- and light-jets hypotheses. This produces a weight distribution for each

model and a cut is applied to select jets. The IP3D algorithm is often combined with the JetFitter

(IP3D+JetFitter) or SV1 algorithm (IP3D+SV1) to provide additional discriminating power.

The MV1 algorithm

The MV1 algorithm uses the output weights of the IP3D, SV1 and JetFitter algorithms as inputs

to an arti�cial neural network. The working point used at ATLAS is de�ned so as to achieve a

b-tagging e�ciency of 70 % with an associated mistag rate of less than 1.5 % [80] depending on
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the pseudorapidity and transverse momentum of the jet in question. Note that this e�ciency

is not constant with respect to the jet pT as can be seen from Figure 5.3. The performance at

low pT degrades as the decay length is shorter so �nding the secondary vertex is more di�cult.
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Figure 5.3: The light jet rejection factor as a function of b-tagging e�ciency as measured in
simulated tt̄ events for the MV1, SV0, IP3D+SV1, and the JetFitterCombNN taggers [81].

Soft lepton tagging

Soft lepton tagging (SLT) algorithms attempt to identify leptons produced in the semileptonic

decay of b and c quarks for the purpose of determining the presence of HF quarks. The term

“semileptonic” here refers to the decay of a B-hadron in such a way as to produce a lepton-

neutrino pair with an additional hadron. The lepton produced is known as a soft lepton due to

its relatively low transverse momentum.

A soft muon can be produced in a variety of ways starting from a b-quark, either directly

via b → µν̄µX , where X is any hadron; or indirectly, via a c, c̄ or a τ lepton. The direct and

indirect via a c production mechanisms are shown in Figure 5.4. The branching ratio for each

82



Chapter 5: Data Simulation and Object Selection

of these decays is shown in Table 5.1. The total BR for the production of a soft muon from a b

quark is 20.1± 1.0 %, thus the probability for a tt̄ event to contain at least one semileptonic b

decay is approximately 36 %.

Figure 5.4: Feynman diagram of one of the mechanisms for lepton production via semileptonic
b decay. Shown are the direct b→ µ and indirect b→ c→ µ.

Mode Muon BR [%]

b→ µ− 10.95 + 0.29
− 0.25

b→ c→ µ+ 8.02± 0.19

b→ c̄→ µ− 1.6 ± 0.5

b→ τ− → µ− 0.42± 0.04

All modes 21.0 ± 1.0

Table 5.1: Branching ratio for the production of a muon from a b-quark in both direct and
indirect modes [19].

The soft muon tagger used in this analysis is based on the quality of the �t between the

ID track and MS track as represented by the χ2
match. Several tagger-speci�c cuts (summarized

in Table 5.2) are placed on the candidate muons and jets. Candidate SMT muons are required

to lie within the coverage of the ID and have su�cient transverse momentum for reliable

reconstruction. Requirements are made on the impact parameters of the muon ID track to

remove contributions from spurious matches between ID and MS tracks, and from pile-up

vertices. Finally, the main cut on the quality of the �t χ2
DoF = χ2

match/NDoF is set at less than

3.2. This is an operating-point that provides a b-jet (semileptonic b-jet) identi�cation e�ciency

of 10 % (50 %) and a LF rejection factor of 200 per jet. Candidate jets are required to have more

than three charged tracks associated with them or a jet EM fraction smaller than 0.8. These

criteria ensure that the jet did not originate from the muon itself. Finally, the muon is associated

to the jet with a cut ∆R
jet
µ < 0.5. The following chapter describes the calibration of the SMT

tagger.
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Muon cuts

Muon to jet association ∆R
jet
µ < 0.5

Reconstruction
|η| < 2.5

pT > 4 GeV

Pile-up reduction
|d0| < 3 mm
|z0 sin θ| < 3 mm

Track matching quality χ2
DoF < 3.2

Muon-jet rejection
Jet N charged

trk > 3 or
Jet EM fraction < 0.8

Table 5.2: Jet and muon SMT Cuts.

5.2.5 Missing energy reconstruction

Missing energy is reconstructed by combining information from energy depositions in the

calorimeter, as well as information from the muon spectrometer [82]. An energy imbalance in

the detector is then treated as missing energy. The two components of the vector Emiss
T are

calculated thus:

Emiss
x(y) = Emiss,calo

x(y) + Emiss,µ
x(y) (5.4)

ID tracking information is used to recover low-pT that are missed in the calorimeters, and

for muons in regions not covered by the MS. The magnitude of the missing energy Emiss
T ,

which is normally used in event selections, are calculated as:

Emiss
T =

√
(Emiss

x )2 + (Emiss
y )2 (5.5)

The calorimeter term is constructed by associating calorimeter cells with reconstructed and

identi�ed high-pT objects in order: electrons, photons, hadronically decaying τ -leptons, jets,

and muons. Calorimeter cells not associated are also included in the summation asEmiss,CellOut
x(y) .

Thus each components of the calorimeter term of the missing energy are the linear sum of each

contribution:

Emiss,calo
x(y) = Emiss,e

x(y) +Emiss,γ
x(y) +Emiss,τ

x(y) +E
miss,jets
x(y) +E

miss,softjets
x(y) +Emiss,CellOut

x(y) +(Emiss,µ
x(y) ) (5.6)
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where the muon term is not always added [82].

Each component is calculated as the negative sum of calibrated cell energies for each cor-

responding object, as:

Emiss,term
x = −

N term
cell∑
i=1

Ei sin θi cosφi (5.7)

Emiss,term
y = −

N term
cell∑
i=1

Ei cos θi sinφi (5.8)

where Ei, θi, and φi are the energy and angular position of the cell.

The muon term of the missing transverse energy is calculated as the negative sum of the

momenta of muon tracks reconstructed in |η| < 2.7:

Emiss,µ
x(y) = −

∑
muons

pµx(y) (5.9)

For muons in the region covered by the ID, only combined muons are considered to remove

contributions from fake muon sources such as energetic hadrons that “punch through” the

calorimeter. In this region, muons which are well separated from jets, ∆R > 0.3, are treated

separately from muons which are non-isolated:

• Isolated muons: The combined track pT corrected for energy losses in the calorimeter

is used the summation. The muon calorimeter energy term is not included to avoid

double-counting.

• Non-isolated muons: The muon momentum as measured in the spectrometer after

energy loss is used. The muon term Emiss,µ
x(y) is then added to the calorimeter term in

Equation 5.6.

Outside of the coverage of the ID (2.5 < |η| < 2.7) there is no combined track requirement

and the pT as measured in the MS is used for both isolated and non-isolated muons. For more

information on the measurement and calibration of Emiss
T at ATLAS see [82].
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Calibration of the soft muon tagger

for 2012 ATLAS data

High-energy physics relies heavily on the use of simulated data to inform the development

of analysis techniques. It is paramount that the simulation describe nature as closely as pos-

sible. However, the simulation cannot perfectly recreate conditions within the detector and

some kinematic variables are not accurately simulated. This includes the quality of matching

between ID and MS tracks which are fundamental for the SMT tagger.

Selection and reconstruction techniques are said to be calibrated when the discrepancy

between simulation and collision data is quanti�ed. This process has to be repeated on new

collision data and/or when simulation is changed in a relevant and signi�cant way.

The di�erence in e�ciency between collision data and simulation of the muon reconstruc-

tion procedure and the χ2
match tagger selection are accounted for by a scale factor (SF),

SF =
εData

εMC (6.1)

which is used to rescale the simulation so that it matches the data more closely.

One of the advantages of using the χ2
match tagger over other forms of b-tagging is that the

presence of a jet is not required to measure the χ2
match of a muon. This means that the calibra-

tion can be performed on isolated muons such as those from J/ψ → µµ or Z → µµ using

the so called tag and probe method. This calibration relies on muons with low pT from J/ψ

decays. Within ATLAS, the nominal calibration of the reconstruction e�ciency is performed
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onZ → µµ due to the smaller uncertainty using high pT muons. The SF at low pT are obtained

by extrapolating back into the low momentum range.

The tag and probe method is implemented as follows: a STACO combined muon is des-

ignated as the tag, this muon must pass a stringent set of cuts implying that it is indeed a

muon from a J/ψ. The second muon, which is designated as the probe, is simply an ID track.

To ensure that the probe is the second muon from the J/ψ decay, the invariant mass of the

combined tag and probe system is required to be in a window centred around the J/ψ mass.

The complete selection used in the calibration is detailed in Section 6.1. These probes are used

to measure the reconstruction e�ciency and the χ2
match tagger e�ciency by using a �t to their

invariant mass distribution as described in Section 6.2. This procedure is performed in various

bins of kinematic variables such as transverse momentum and angular position. The binning

is described in more detail in Section 6.3.2. The results of this analysis are then presented in

Section 6.3.

The procedure used here is based on a previous calibration of the χ2
match tagger performed

on 2011 ATLAS collision data detailed in [83]. It di�ers from the 2011 calibration in several

ways which will be highlighted and explained.

Software, collision data and simulated samples

The dataset used is made of those luminosity blocks selected by the recommended standard

good runs list (GRL) which corresponds to all pp collision periods in 2012. The GRL selects only

those luminosity blocks where detector conditions are appropriate for physics data-taking.

This requires that all relevant detector components are operational, and that stable beam con-

ditions have been achieved. In total this represents an integrated luminosity of 20.1 fb−1.

The e�ciency scale factor is measured against a sample containing almost 10 million

J/ψ → µµ events. At event generation, �lters are applied so the sample only contains events

where both truth muons have a momentum of at least 4 GeV and they must lie within the

pseudorapidity range |η| < 2.5. This selection matches the object selection used by most

analyses.
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6.1 Tag and probe selection

The tag and probe procedure is as follows: �rst, require the presence of a STACO CB muon

which passes a very stringent selection. This strongly implies that this is a real muon and thus

is labelled as the tag. A very loose selection is then applied to all ID tracks to construct a pool of

candidate probes. Pairs of tag and probes are formed by requiring that the combined invariant

mass lie within a J/ψmass window and the pair pass additional pairing cuts. This then implies

that the probe is likely the other muon from the J/ψ decay and as such is a suitable test-bed

to measure the performance of the muon reconstruction algorithm. All selection criteria are

detailed and explained in Section 6.1.2.

Probes which are reconstructed into STACO CB muons are labelled as muon probes. The

reconstruction performance is quanti�ed by the portion of probes, which are likely to be real

muons, that are reconstructed into muons. The performance of the χ2
match tagger is estimated

in a similar way, by measuring the proportion of muon probes which are selected by the χ2
match

algorithm.

6.1.1 Trigger requirements

In order for an event to be included in the analysis it must have �red at least one of the trigger

chains listed in Appendix D. Only the primary trigger, EF_mu6_Trk_Jpsi_loose which con-

tributes the majority of events, is described here.

As stated in the trigger name, this is an EF trigger which requires the presence of a muon

with a momentum of at least 6 GeV and an ID track with a combined invariant mass in the

range 2.6 GeV < minv < 3.6 GeV. This mass window is loose enough to contain the entirety

of the J/ψ peak and side-bands that allow for background removal. Double muon triggers are

not used to avoid introducing a bias by requiring the presence of two good muons.

While all triggers are operational in all periods, most are heavily prescaled by a factor

which is period dependent. This does not have a �rst-order e�ect on the e�ciency as only

ratios of event yields are compared between collision data and simulation. However, the e�ec-

tive integrated luminosity is reduced to approximately 200 nb−1 as a result of the prescale. A

short study was carried out to examine the e�ects of multiple prescaled triggers on the scale

factors. The measurement was carried out using only the primary trigger and the results were
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Tag selection

Reconstruction cuts
STACO combined muon
|η| < 2.5

pT > 4 GeV

Pileup reduction

|d0| < 0.3 mm
|z0| < 1.5 mm
|d0/σd0 | < 3

|z0/σz0 | < 3

Table 6.1: Tag selection criteria.

compared to the nominal calibration which included all the triggers, no signi�cant discrepancy

between the two was observed.

6.1.2 Selection cuts

The selection criteria for tags, probes, muon probes and SMT muons are listed and detailed

below. All cuts are applied on the kinematic properties as measured in the ID due to its better

resolution. Also note that all objects must pass a set of track quality criteria as recommended by

the ATLAS muon combined performance (MCP) group. These cuts require a certain number of

detector elements be active to ensure good quality track reconstruction. The selection criteria

are listed in Appendix E.

The tag selection is summarized in Table 6.1. The tag is a STACO combined muon with a

pseudorapdity and transverse momentum that allow for reliable reconstruction. The require-

ments on the impact parameter variables are in place to remove spurious muons from pile-up

events and the decay-in-�ight of long-lived hadrons. Finally, the tag muon is required to have

�red at least one of the triggers under which the event was recorded. This is done by matching

the reconstructed trigger object to the tag muon via a ∆R cut of less than 0.01.

The probe selection is a subset of the tag selection and only requires an ID track with

|η| < 2.5 and pT > 4 GeV.

The pairing selection, summarized in Table 6.2, is designed to construct pairs of tag and

probe candidates which likely come from the same J/ψ decay. The main component of the

selection is the invariant mass window cut. The tag and the probe are required to be well

89



Chapter 6: Calibration of the soft muon tagger

separated in η-φ space to prevent the objects from entering each others isolation cones.

Pairing criteria

Opposite charge qtag 6= qprobe

Mass window |mJ/ψ −mtag, probe| ≤ 2 GeV
Overlap reduction 0.2 < ∆R

tag
probe < 3.5

Pileup reduction ∆z0 < 0.2 mm

Table 6.2: Pairing criteria.

In the 2011 calibration analysis, the track of the tag and the probe were re�tted to a common

vertex and the quality of the re�t, expressed by a χ2, was part of the pairing criteria. This cut

is meant to reduce the e�ects of pile-up on the measurement by ensuring both objects have a

common origin. Due to operational reasons it is not possible to perform the re�tting in this

case. Instead, a cut on ∆z0 = |z0, tag − z0, probe| is applied. If several pairings are made for a

single tag, the pair with the smallest ∆z0 is used.

The STACO CB reconstruction e�ciency is not measured by applying the algorithm on

the probe collection but rather a probe is said to be a muon probe if it matches a combined

muon from the STACO collection. This is done by requiring the ∆R between the probe and

the STACO CB muon be less than 0.01. Probes which are matched become the numerator of

the reconstruction e�ciency and the denominator is de�ned as the number of probes:

εreco =
Nmuon probe
Nprobe

(6.2)

A muon probe is said to be an SMT muon if it passes the selection listed in Table 6.3 that

matches the cuts de�ned in Section 5.2.4. The χ2
DoF distribution of muon probes is shown in

Figure 6.1.

SMT selection

Pileup reduction
|d0| < 3 mm
|z0 sin(θ)| < 3 mm

Match quality χ2
match/NDoF < 3.2

Table 6.3: SMT criteria.

90



Chapter 6: Calibration of the soft muon tagger

0 1 2 3 4 5 6

m
u
o
n
 p

ro
b
e
s

N

0

2

4

6

8

10

12

14

16

18

20

3
10×

Data Period B

µµ→ψJ/MC12 Prompt 

ATLAS

 = 8 TeVs

| < 1.1η0.1 < |

DoF

2χ
0 1 2 3 4 5 6

D
a

ta
/M

C

0.8

1

1.2

1.4

Figure 6.1: The distribution of χ2
DoF for all muon probes for ATLAS collision data (solid dots)

and simulated prompt J/ψ (dotted line). Note that the collision data distribution includes
sources of background.

The denominator of the SMT e�ciency is the number of muon probes and the numerator

is the number of muon probes which pass the SMT selection:

εSMT =
NSMT

Nmuon probe
(6.3)

6.2 Invariant mass �tting

The pairing criteria are very e�ective at selecting J/ψ events, however non-J/ψ background

events also pass the selection. These include combinatorial background where the wrong tag

and probe pair is constructed, and Drell-Yan which appears as a continuum below the J/ψ

peak.

The number of probes is extracted from a �t to the invariant mass of the dimuon system.

The invariant mass is �tted with the sum of a quadratic polynomial, for the background; and

a Gaussian function, for the signal. The yield is obtained by subtracting the integral of the

background function from the binned data, this is used instead of relying on an accurate �t to

the signal peak.
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The integration is performed in a window with a width three times larger than the width

of the �tted Gaussian, denoted as 3σ in Figure 6.2. The composite �t line, the background-only

distribution and the implied signal Gaussian peak are also shown.

3σ 3σ 5σ5σ

Composite Fit

Implied Signal

Background + Variation

m(µ+,µ-) [GeV]

Figure 6.2: Drawing of the components of the �tting procedure. The composite �t is shown
along with the corresponding implied signal and background. The two variations of the back-
ground shape are also shown, these are exaggerated for illustration purposes.

The J/ψ peak does not follow a Gaussian shape exactly, but rather the best �t is obtained

by the so-called Crystal Ball function shown in Figure 6.3. This is a convolution of a Gaussian

function with a power tail at low invariant mass to account for the energy loss due to photon

emission.

Di�erent combinations of signal and background functions were tested to determine the

most stable combination. For the signal, the sum of two Gaussian functions was tested, while

for the background a linear function, an exponential function, and the sum of two exponen-

tial functions were tried. It was found that none of these yielded good stable �ts in the entire

pseudorapidity range. For example, the linear function resulted in a mismodelling of the back-

ground at the probe level which led to negative e�ciencies or extremely large uncertainties.

From an operational perspective, using a Gaussian function allowed for good stable �ts

over the hundreds of bins used, and simpli�ed the �tting procedure as a whole. Any mismod-

elling of the background because of the choice of a Gaussian in lieu of the Crystal Ball �t, is
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Figure 6.3: Diagram of crystal ball distributions with varying tail sizes [84]. The parameters
x̄ and σ are the mean and width of the Gaussian, while α and n respectively determine the
start and shape of the power-tail.

taken into account by the background uncertainty described in the next section.

Several di�erent sets of initial �t conditions were tested and those which yielded the best

and most stable �ts across the entire η and pT range were used.

The width at the probe level is obtained from the �t and is then used in the �ts to the

muon probe and SMT distributions. The mean is obtained independently from the �t to each

individual distributions. The mean is expected to lie very close to the true J/ψ mass, however

this is not forced in the �tting procedure. Instead the �t is allowed to set the mean in a window

with a width of approximately 1.2 GeV.

6.2.1 Uncertainty measurement

The uncertainty on the e�ciency is made up of three components: the statistical uncertainty

on the e�ciency is estimated as a binomial error,

σstat. =

√
ε(1− ε)
N

(6.4)

where ε is the measured e�ciency and N is, in this case the denominator of the e�ciency

measured.
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The second component of the e�ciency uncertainty quanti�es the error in the background

�t. The uncertainty is determined by constructing two functions that denote the maximum

upward and downward �uctuation of the background �t. The e�ciency is measured using one

of these �uctuations and the result is compared to the nominal e�ciency.

After the �t of the composite function is carried out, a downward variation of the back-

ground is de�ned as:

fdown(x) = aminx
2 + bmaxx+ cmin (6.5)

where the maximum and minimum the parameters (Xmin /max) are obtained by varying the

central value by the uncertainty obtained from the �t, Xmax /min = Xcentral ± σX

The upward variation of the background �t is de�ned as the opposite:

fup(x) = amaxx
2 + bminx+ cmax (6.6)

These background variations result in the maximum deviation from the nominal integral

(Figure 6.2). The uncertainty on the e�ciency is determined by obtaining the maximum e�-

ciency in both directions. If the nominal e�ciency is de�ned as

εnominal =
Nnominal

numerator
Nnominal

denominator
(6.7)

then the variations are de�ned as,

εup =
N

up
numerator

Ndown
denominator

, εdown =
Ndown

numerator
N

up
denominator

(6.8)

where Nup/down are the yields obtained from the integration of the upward/downward varia-

tions of the background function.

Finally the uncertainty on the background is given by the average of the di�erences be-

tween εup and εdown, and the nominal e�ciency:

σbkg =
1

2
(|εup − εnominal|+ |εdown − εnominal|) (6.9)

The �nal component of the uncertainty is obtained by varying the integration window. The

nominal value is de�ned as 3σgaus away from the centre of the �tted Gaussian. An uncertainty
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is constructed by measuring the e�ciency with a wide integration window corresponding to

5σ. The integration window uncertainty is de�ned as:

σsig. = |ε5σ − ε3σ| (6.10)

The total uncertainty on the e�ciency is given by the sum in quadrature of all the uncer-

tainty components. The uncertainty on the e�ciency is then carried over to the scale factor

determination. As expected the invariant mass distribution for all probes contains a large

amount of background, particularly in data (Figure 6.4). The “shoulders” at each side of the

J/ψ peak are the result of the main J/ψ trigger which includes a mass window cut more

stringent than that required by the pairing selection. Requiring that the probe match a STACO

CB muon greatly reduces the amount of background. Applying the SMT requirements also

reduces the background though not as substantially.

6.3 E�ciencies

The e�ciency is monitored as a function of a variety of kinematic variables, including the

isolation, transverse momentum, azimuthal angle, and the pseudorapidity of the probe.

6.3.1 The 2011 calibration

The selection and �tting procedure used for this calibration are based on the 2011 analysis [83].

In that calibration, the e�ciencies measured exhibited no dependence on φ, an asymmetric

dependence on η particularly in the forward regions of the detector, and a dependence on pT.

The scale factors were close to unity within their uncertainty across the entire η and pT range

examined as shown in Table 6.4.

6.3.2 E�ciency binning

The binning in most variables is governed by the amount of data required to produce stable,

good quality �ts. The binning in pseudorapidity, summarized in Table 6.5, corresponds with

di�erent regions of the ATLAS detector and di�erentiates between the positive and negative

sides. The chosen pT binning is shown in Table 6.6.
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Figure 6.4: Invariant mass distributions of tag and probe pairs at (a) probe level, (b) muon
probe level, and (c) SMT level in collision data for probes in barrel A with a pT of 5 to 6 GeV.
Shown are all the components of the �t including: composite nominal �t (solid curve), nomi-
nal background (dashed curve), background variations (dashed-dot curves), implied J/ψ peak
(long dashed red curve), the 3σ and 5σ integration windows used for systematics (vertical
lines).
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pT range [GeV] Scale Factor in

Side A Crack Barrel Transition End-cap Forward
4–5 0.974± 0.009 0.981± 0.003 0.987± 0.007 0.981± 0.003 0.991± 0.005

5–6 0.996± 0.008 0.983± 0.003 0.987± 0.008 0.988± 0.004 0.980± 0.006

6–7 0.990± 0.009 0.984± 0.003 0.960± 0.010 0.984± 0.005 0.981± 0.006

7–8 0.966± 0.013 0.987± 0.004 0.978± 0.008 0.990± 0.006 0.982± 0.007

8–10 0.983± 0.011 0.981± 0.003 1.005± 0.009 0.988± 0.005 0.954± 0.008

10–12 0.928± 0.019 0.979± 0.004 1.002± 0.009 0.991± 0.006 0.984± 0.011

Side C Crack Barrel Transition End-cap Forward
4–5 0.984± 0.008 0.978± 0.003 0.992± 0.007 0.979± 0.003 1.005± 0.006

5–6 0.992± 0.007 0.991± 0.002 0.982± 0.009 0.986± 0.004 1.012± 0.007

6–7 0.989± 0.008 0.981± 0.003 0.980± 0.008 0.990± 0.005 1.003± 0.010

7–8 0.931± 0.017 0.983± 0.003 0.970± 0.053 0.985± 0.006 1.047± 0.010

8–10 0.981± 0.017 0.987± 0.003 0.968± 0.009 0.990± 0.005 1.100± 0.008

10–12 0.974± 0.015 0.976± 0.004 0.970± 0.011 1.002± 0.006 1.083± 0.010

Table 6.4: Data/MC Scale Factors for 2011 Data in all �ve regions of the detector as a function
of pT. The uncertainties include systematic and statistical components as described in [83].

Name |η| range

Crack 0.0–0.1

Barrel 0.1–1.1

Transition 1.1–1.3

End-cap 1.3–2.0

Forward 2.0–2.5

Table 6.5: Pseudorapidity regions of the ATLAS detector.

97



Chapter 6: Calibration of the soft muon tagger

6.4 Results

The reconstruction and χ2
match tagging e�ciencies are presented in the following pages as

a function of η, φ and pT. The STACO CB reconstruction e�ciencies and scale factors as

measured in side A and C of the detector are shown in Figure 6.5 and Figure 6.6 respectively.

The e�ciencies exhibit a strong dependence on transverse momentum and pseudorapidity.

The reconstruction e�ciency for muons in the crack region appears to su�er from low data

particularly in the high-pT range, this is expected due to the MS being only partially equipped

in the region around η = 0. In the transition region the MS coverage in φ is not uniform due

to some chambers not being installed.

The χ2
match tagging e�ciency exhibits an asymmetric dependence on the muon probe pseu-

dorapidity, but no dependence on the azimuthal angle φ (Figure 6.7). As expected, there is a

strong dependence on the transverse momentum of the muon probe (Figure 6.8). As in the 2011

analysis it was decided to bin the SF as a function of pT and η, distinguishing between side A

and C of the detector. The scale factor and e�ciency distributions are presented in the next

pages for the crack region (Figure 6.9), the barrel region (Figure 6.10), the transition region

(Figure 6.11), the endcap region (Figure 6.12), and the forward region (Figure 6.13).

The SMT scale factors and their total uncertainties are summarized in Table 6.6. As an

example of the typical uncertainties obtained, the SMT e�ciencies measured for muon probes

with pT in the range 5–6 GeV in the positive barrel region are

εData = (94.15± 0.32 (bkg.) ± 0.02 (sig.) ± 0.10 (stat.))%

εMC = (89.01± 0.01 (bkg.) ± 0.01 (sig.) ± 0.07 (stat.))%

As expected, the background uncertainty dominates in collision data while in simulation it

represents the smallest source of uncertainty. The width of the J/ψ peak increases for forward

probes, overwhelming the background distribution delimited by the trigger “shoulders”. This

is re�ected in increased �t parameter uncertainties and a larger background uncertainty.

Isolation dependence

The muons from the J/ψs used in this calibration are produced in isolation, meaning there

is very little energetic activity surrounding them in the detector. In contrast, muons from
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(c) Transition A.
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(d) End-cap A.
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Figure 6.5: Distribution of the STACO CB reconstruction e�ciency as measured in data and
MC, and the associated scale factor as a function of the probe pT measured in side A for all
detector regions.
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(b) Barrel C.
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(c) Transition C.
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(d) End-cap C.
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Figure 6.6: Distribution of the STACO CB reconstruction e�ciency as measured in data and
MC, and the associated scale factor as a function of the probe pT measured in side C for all
detector regions.

100



Chapter 6: Calibration of the soft muon tagger

phi

-3 -2 -1 0 1 2 3

 T
ag

ge
r 

E
ffi

ci
en

cy
m

at
ch

2 χ

0.7

0.8

0.9

1

data
µµ→Ψ/Jmc12 

-1 dt = 20.1 fbL ∫ = 8 TeV s

φ
-3 -2 -1 0 1 2 3

D
at

a/
M

C
 S

ca
le

 F
ac

to
r

1.06

1.07

1.08

(a) χ2
match e�ciency and scale factor as a function of the azimuthal angle φ of

the probe muon.

eta

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

 T
ag

ge
r 

E
ffi

ci
en

cy
m

at
ch

2 χ

0.7

0.8

0.9

1

data
µµ→Ψ/Jmc12 

-1 dt = 20.1 fbL ∫ = 8 TeV s

η
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

D
at

a/
M

C
 S

ca
le

 F
ac

to
r

1.06

1.08

1.1

1.12

1.14

(b) χ2
match e�ciency and scale factor as a function of the pseudorapidity η of

the probe muon.

Figure 6.7: Distribution of theχ2
match e�ciency as measured in data and MC, and the associated

scale factor with respect to the (a) azimuthal angle φ and (b) the pseudorapidity η of the muon
probe.

101



Chapter 6: Calibration of the soft muon tagger

pT range [GeV] Scale Factor in

Side A Crack Barrel Transition End-cap Forward
4–5 1.051± 0.014 1.053± 0.001 1.045± 0.005 1.059± 0.002 1.088± 0.002

5–6 1.051± 0.005 1.058± 0.001 1.057± 0.005 1.062± 0.010 1.106± 0.003

6–7 1.068± 0.006 1.066± 0.001 1.069± 0.004 1.066± 0.002 1.132± 0.003

7–8 1.061± 0.006 1.063± 0.001 1.065± 0.004 1.062± 0.002 1.142± 0.003

8–10 1.061± 0.016 1.063± 0.001 1.068± 0.004 1.063± 0.002 1.161± 0.003

10–12 1.057± 0.024 1.071± 0.006 1.062± 0.007 1.060± 0.015 1.171± 0.006

12–14 1.059± 0.016 1.062± 0.003 1.070± 0.010 1.057± 0.020 1.178± 0.012

14–16 1.043± 0.068 1.069± 0.013 1.076± 0.043 1.069± 0.006 1.204± 0.013

16–20 1.027± 0.077 1.077± 0.006 1.112± 0.019 1.067± 0.004 1.208± 0.009

Side C Crack Barrel Transition End-cap Forward
4–5 1.044± 0.014 1.055± 0.001 1.053± 0.004 1.056± 0.002 1.064± 0.005

5–6 1.069± 0.005 1.057± 0.001 1.050± 0.015 1.061± 0.008 1.083± 0.003

6–7 1.080± 0.005 1.068± 0.004 1.065± 0.004 1.065± 0.002 1.095± 0.003

7–8 1.064± 0.017 1.068± 0.005 1.061± 0.005 1.066± 0.002 1.100± 0.004

8–10 1.070± 0.007 1.067± 0.004 1.054± 0.005 1.061± 0.002 1.101± 0.003

10–12 1.089± 0.010 1.073± 0.003 1.083± 0.022 1.062± 0.003 1.107± 0.006

12–14 1.095± 0.015 1.069± 0.009 1.063± 0.028 1.049± 0.005 1.114± 0.008

14–16 1.059± 0.032 1.076± 0.006 1.085± 0.014 1.061± 0.006 1.107± 0.013

16–20 1.109± 0.032 1.088± 0.003 1.096± 0.021 1.050± 0.004 1.120± 0.009

Table 6.6: Data/MC Scale Factors for 2012 Data in all �ve regions of the detector as a func-
tion of pT. The uncertainties include systematic and statistical components as described in
Section 6.2.1.
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Figure 6.8: Distribution of theχ2
match e�ciency as measured in data and MC, and the associated

scale factor with respect to the transverse momentum of the muon probe.

semileptonic decay of b-quarks in tt̄ events are produced amongst the tracks associated with

the b-jet.

For the results of the calibration on J/ψ to be applicable, the performance of the χ2
match

tagger must not a�ected by the isolation of the muon. In this calibration, the nine isolation

variables de�ned in Section 5.2.1 are considered.

The isolated nature of muons in J/ψ events limits the number of muons available at higher

isolation values. This is more signi�cant in simulation compared to the collision data which

contains non-isolated muons. There appears to be no dependence on any of the isolation

variables examined (Figures 6.14, 6.15 and 6.16).

Dependence on d0

The dependence on the impact parameter d0 was examined and no direct dependence is ob-

served. The scale factor shows no structure with respect to d0 when binned in pT (Figure 6.17).

Since the scale factors are binned in η and pT, the correlation between d0 and pT is taken into

account.
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Figure 6.9: χ2
match e�ciencies and scale factors in the crack region of the detector for side (a)

A and (b) C.
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Figure 6.10: χ2
match e�ciencies and scale factors in the barrel region of the detector for side

(a) A and (b) C.
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Figure 6.11: χ2
match e�ciencies and scale factors in the transition region of the detector for

side (a) A and (b) C.
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Figure 6.12: χ2
match e�ciencies and scale factors in the end-cap region of the detector for side

(a) A and (b) C.

107



Chapter 6: Calibration of the soft muon tagger

4 6 8 10 12 14 16 18 20

 ta
gg

er
 e

ffi
ci

en
cy

m
at

ch
2

χ

0.5

0.6

0.7

0.8

0.9

1

data

µµ→Ψ/Jmc12 

 < 2.5η2.0 < 

-1 dt = 20.1 fbL ∫ = 8 TeV s

 [GeV]
T

p
4 6 8 10 12 14 16 18 20

D
at

a/
M

C
 S

ca
le

 F
ac

to
r

1.05

1.1

1.15

1.2

(a) Forward A Region.

4 6 8 10 12 14 16 18 20

 ta
gg

er
 e

ffi
ci

en
cy

m
at

ch
2

χ

0.5

0.6

0.7

0.8

0.9

1

data

µµ→Ψ/Jmc12 

 < -2.0η-2.5 < 

-1 dt = 20.1 fbL ∫ = 8 TeV s

 [GeV]
T

p
4 6 8 10 12 14 16 18 20

D
at

a/
M

C
 S

ca
le

 F
ac

to
r

1.06

1.08

1.1

1.12

1.14

(b) Forward C Region.

Figure 6.13: χ2
match e�ciencies and scale factors in the forward region of the detector for side

(a) A and (b) C.
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Figure 6.14: χ2
DoF e�ciencies and scale factor with respect to

∑
ET for a muon probe that

passes the SMT requirements.
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Figure 6.15: χ2
DoF e�ciencies and scale factor with respect to

∑
pT for a muon probe that

passes the SMT requirements.
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Figure 6.16: χ2
DoF e�ciencies and scale factor with toNtracks for a muon probe that passes the

SMT requirements.
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Figure 6.17: Distribution of the χ2
match e�ciencies and scale factor with respect to impact

parameter d0 for muon probes with pT in the ranges (a) 4–6 GeV, (b) 6–8 GeV and (c) 8–10 GeV.
The measurement was carried out only on Period B of 2012 ATLAS collision data.
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6.5 Scale factor discrepancy

A discrepancy between the 2011 and 2012 scale factors is observed. The SFs in the 2011 analysis

do not deviate substantially from unity, while the 2012 SFs deviate as much as 15 %. The

e�ciency measured in the 2012 collision data appears to be consistent with the 2011 result,

however in simulation the e�ciency is measured to be lower. The di�erence in SF appears to

come from a mismodelling of the χ2
DoF variable.

A number of factors can contribute to such a mismodelling including inaccurate descrip-

tion of the alignment of detector components, and the description of the material used in the

detector. Both of these can result in mismodelling of the kinematic variables that make up the

χ2
DoF variable.

In order to �nd the source of the discrepancy the components of the χ2
DoF variable were

examined. The pull of a kinematic variable is de�ned here as

Xpull =
X ID −XMS√
σ2
X ID + σ2

XMS

(6.11)

where X is any of the �ve kinematic components of χ2
match, and σ is the uncertainty on that

variable. The pulls are shown in terms of the azimuthal angle, the polar angle, the longitudinal

and transverse impact parameters and the charge over momentum (q/p) of the muon probe

in in Figure 6.18. The transverse momentum is related to the q/p by pT = |1/(q/p)| sin(θ)

and the pseudorapidity is de�ned in terms of the angle θ in Section 4. All distributions ap-

pear to su�er from some mismodelling in MC, with the θ distributions being the worst. By

construction the two variables are strongly correlated [85], so its not unexpected to observe a

discrepancy simultaneously in both of these arguments. Such a discrepancy could be caused

by a mismodelling of the alignment of the detector components.

A study to test the e�ects of di�erent alignment pro�les was carried out. Several samples

with di�erent alignment pro�les were compared to a small sample of 8 TeV collision data from

a single run. These include the nominal prompt J/ψ sample used in this calibration, the J/ψ

sample used for the 2011 calibration, aZ → µµ sample where the detector is perfectly aligned,

a 2011 Z → µµ sample with an updated detector geometry description, and a Z → µµ sample

with the nominal smeared alignment. The smeared alignment is produced by distorting the
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Figure 6.18: Distribution of the pull (see 6.11) of components of χ2
DoF as measured in the ID

for muon probes in the barrel region for collision data (squares) and prompt J/ψ simulation
(dotted). Shown are (a) θ, (b) φ, (c) d0, (d) z0 and (e) q/p. Also shown is the goodness-of-�t
χ2

DoF between the collision data and the simulation. These distributions are based on smaller
samples and are normalized to unit area.
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ideal alignment sample within the current measured alignment uncertainties. This procedure

is not designed to perfectly represent the details in the misalignment of the ATLAS detector,

but rather simulates a detector which is as well aligned as the real detector. These two pro�les

are compared in small samples of Z → µµ events.

A sample of well reconstructed muons is selected by matching STACO CB muons to truth

muons1 from Z or J/ψ. The χ2
DoF distribution of these muons is then compared for muons

with pT between 4 and 25 GeV.

As expected, the alignment pro�le does have an e�ect on the χ2
DoF distribution, particularly

in the lower end (Figure 6.19). However, this e�ect is not su�ciently large to account, on its

own, for the discrepancy between simulation and data in all bins. A pseudo-e�ciency of the

χ2
match selection is obtained by taking the area under the curve below 3.2 and dividing it to the

total area. The results are summarized in Table 6.7. The overall di�erence between the 2011

and 2012 J/ψ samples is approximately 5 %, not su�cient to cover the discrepancy between

data and MC.

Sample Pseudo-e�ciency [%]

Data
√
s = 8 TeV 94.35± 0.02

J/ψ → µµ

Nominal 2011 95.22± 0.02

Nominal 2012 90.59± 0.02

Z → µµ

Nominal 2012 92.44± 0.03

Ideal alignment 2012 91.37± 0.03

New geometry 2011 91.43± 0.03

Table 6.7: Summary of χ2
match tagger e�ciencies as measured in all tested samples.

6.5.1 Future developments

As can be seen from Figure 6.18e, the momentum appears to be well modelled in both data and

simulation. As a result, an alternative variable known as the momentum imbalance is currently

1These are the muons present in the truth information.
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Figure 6.19: Distribution of χ2
DoF of STACO CB muons from collision data (circle), a nominal

2012 Z → µµ sample (solid), a 2012 Z → µµ sample with ideal detector alignment (dashed),
a 2011 Z → µµ sample with updated detector description (dashed-double dot), J/ψ → µµ
with nominal alignment at

√
s = 8 TeV (solid) and J/ψ → µµ with smeared alignment at√

s = 7 TeV as used in the 2011 analysis (dotted). Distributions are normalized to unit area.
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being studied. The momentum imbalance is de�ned as

Mom. Imb. =
pID − pME

pID (6.12)

where pID is the momentum of the muon track as measured in the ID and pME is measured in

the MS extrapolated (ME) back to the primary vertex. This extrapolation takes into account

the loss of momentum that occurs when the muon traverses through the detector material.

The momentum imbalance distribution for the aforementioned samples is shown in Fig-

ure 6.20. Measurements of the e�ciency using momentum imbalance have been carried out,

and the collision data results appear to be well-modelled in simulation. The selection using

momentum imbalance requires Mom. Imb. < 0.1 as background sources tend to peak above

this threshold. From full studies currently being carried out, the momentum imbalance at this

operating point exhibits similar performance to the χ2
match version of the tagger.

The pseudo-e�ciency for this selection as measured in the aforementioned samples are

shown in Table 6.8. These appear to be less a�ected by the transition from 2011 reconstruc-

tion and 2012 reconstruction techniques. In addition, changes in the detector alignment and

geometry description a�ect the pseudo-e�ciency substantially less than the χ2
DoF selection.

Sample Pseudo-e�ciency [%]

J/ψ → µµ

Nominal 2011 92.81± 0.02

Nominal 2012 93.57± 0.02

Z → µµ

New geometry 2011 94.20± 0.03

Nominal 2012 94.19± 0.03

Ideal alignment 2012 94.46± 0.02

Table 6.8: Summary of momentum imbalance e�ciencies as measured in all tested samples.

Following a comparison of the reconstruction e�ciencies with those obtained by mem-

bers of the MCP group, the pairing selection has been loosened to allow for multiple probes

per tag. It is possible for the correct probe to be further away from the tag in z0 than other

spurious tracks. By forcing the selection of the closest ID track in z0, the sample of probes

is contaminated with non-muons resulting in a lower than expected reconstruction e�ciency.
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Figure 6.20: Distribution of momentum imbalance of STACO CB muons from a nominal 2012
Z → µµ sample (solid), a 2012 Z → µµ sample with ideal detector alignment (dashed), a
2011 Z → µµ sample with updated detector description (dashed-double dot), J/ψ → µµ with
nominal alignment at

√
s = 8 TeV (solid) and J/ψ → µµwith smeared at

√
s = 7 TeV as used

in the 2011 analysis (dotted). Distributions are normalized to unit area.
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This increases the data available for invariant mass �tting and more importantly, has increased

the reconstruction e�ciency across the η-pT phase space.

Overall, the mismodelling of χ2
match in simulation cannot be fully explained in all tested

bins by the description of the alignment alone. Additional testing could be performed on sam-

ples with di�erent material description. If the χ2
match distribution is substantially a�ected, this

along with the alignment description could explain the di�erence between collision data and

simulation.
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Measurement of the tt̄ cross section

in the `+jets channel using SMT

This section describes a tt̄ cross section measurement carried out by the joint RHUL and QMUL

group.

Presented here is a measurement of the top quark pair production cross section at
√
s =

7 TeV in the lepton plus jets channel, with at least one of the b-quarks in the event decaying

semileptonically producing a soft muon. The presence of such a jet is determined by the use

of the χ2
match-based SMT tagger described in Section 5.2.4.

7.1 Collision data and simulated samples

This measurement is based on collision data recorded by ATLAS in 2011 at the LHC running

with
√
s = 7 TeV. After applying quality cuts based on the beam and detector conditions, the

dataset contains an integrated luminosity of (4.66± 0.08) fb−1. Several simulated samples are

used in this analysis, including the signal process and all backgrounds excluding the multijet

background source. The tt̄ signal sample was simulated with MC@NLO v4.01 [86, 87] inter-

faced to HERWIG [88] for parton showering and hadronization, and JIMMY [89] for underlying

event simulation. The W/Z+jets samples were generated using ALPGEN [90] interfaced into

HERWIG+JIMMY. The single top samples were generated using MC@NLO interfaced to HER-

WIG+JIMMY for the s andWt channels, and AcerMC [91] interfaced to PYTHIA [92] for the t

channel. Finally, the diboson samples (WW/WZ/ZZ) were generated using HERWIG alone.
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Source Branching Ratio [%] (Ratio to PDG)

PDG HERWIG PYTHIA

b→ µ 10.95± 0.29 9.57± 0.03 ( 1.14±0.03 ) 10.01± 0.03 ( 1.09±0.03 )
b→ τ → µ 0.42± 0.04 0.70± 0.02 ( 0.60±0.06 ) 0.67± 0.01 ( 0.62±0.06 )
b→ c→ µ+ 8.02± 0.19 8.24± 0.03 ( 0.97±0.02 ) 8.89± 0.03 ( 0.90±0.02 )
b→ c̄→ µ− 1.60± 0.50 2.51± 0.02 ( 0.64±0.20 ) 2.66± 0.02 ( 0.60±0.19 )

Table 7.1: List of the b → µ branching ratios used in the HERWIG and PYTHIA generators
compared to the reference PDG values [19].

This analysis is based on the tagging of muons from semileptonic decays of b-quarks. In

order to obtain accurate event yields it is important that the simulation correctly models the

inclusive production rate of soft muons, and the individual BR for all production chains (Ta-

ble 5.1). To this end, each event with a soft muon is re-weighted such that the BRs conform

with the latest measured values as quoted in Ref. [19]. The reference BR and the values used

by HERWIG and PYTHIA are shown in Table 7.1.

7.2 Object identi�cation and event selection

The selection criteria used in this analysis are based on the nominal
√
s = 7 TeV selections

recommended by the ATLAS top group. Some alterations have been implemented to adapt to

the usage of the χ2
match tagger instead of the standard MV1 method for b-jet tagging. Collision

and simulation events are required to have �red an inclusive single electron or muon trigger

with o�ine-reconstructed candidates with pT > 25 GeV for electrons and pT > 20 GeV for

muons. Electrons are required to have |η| < 2.47 and not lie within the transition between

the barrel and end-cap calorimeters (1.37 < |η| < 1.52). They must satisfy the tight identi-

�cation criteria as described in Appendix A. Electrons are required to be isolated using cuts

on calorimeter isolation (Econe20
T ) and momentum isolation (pcone30

T ) as de�ned in Section 6.4.

The cut values for both are de�ned so as to maintain an e�ciency of 90 %. The isolation re-

quirements are designed to reduce the amount of multijet background where reconstructed

electrons are not produced in isolation.

Muon candidates are reconstructed using the MUID combined algorithm (see Section 5.2.2),
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and must lie within the coverage of ID (|η| < 2.5). The combined track is obtained by �tting

hits in the ID and MS. The muon is required to be isolated in both tracking and calorimeter

isolation withEcone20
T < 4 GeV and pcone30

T < 2.5 GeV, and to be well separated from the jet by

at least ∆R > 0.4. Events must contain exactly one selected muon or one selected electron.

Jets are reconstructed using the anti-kt algorithm with a distance parameter R = 0.4.

Topo-clusters at the EM scale are used as inputs to the algorithm and JES corrections are applied

to the resulting jets. They are also required to have a pT > 25 GeV and |η| < 2.5. The jet vertex

fraction (JVF) de�ned as:

JVF =

∑
pT of jet tracks from PV∑
pT of all jet tracks (7.1)

has to be larger than 0.75. The JVF cut is implemented to remove jets from minimum bias

interactions. Finally, jets within ∆R < 0.2 of an electron are rejected.

The transverse mass of theW bosonmT,W is reconstructed from the signal lepton and the

missing transverse energy:

mT,W =
√

2p`Tp
ν
T[1− cosφ` − φν ] (7.2)

where Emiss
T is associated with the neutrino to calculate pνT and φν .

In the e+jets analysis, a large amount of missing transverse energy is required (> 30 GeV)

to account for the escaping neutrino. A cut is also applied on the measuredmT,W , which must

be larger than 30 GeV. In the µ+jets channel the Emiss
T cut is looser (Emiss

T > 20 GeV) and a

triangular cut Emiss
T +mT,W > 60 GeV is applied.

For both channels, a minimum of three selected jets is required. Given the �nal-state sig-

nature, it is reasonable to request four or more jets in the event. It was found that the three

jets inclusive selection yielded a lower statistical uncertainty, and more importantly a smaller

event generator systematic uncertainty. These uncertainties are described in more detail in

Section 7.4.

All events which pass these selections are labelled as “pretag” events. Those events which

contain at least one jet tagged by the SMT algorithm are labelled as “tagged” events. In the

µ+jets channel, requirements are placed on the invariant mass of the soft muon and the sig-

nal muon mµµ to remove contributions from dimuon Υ (8 GeV ≤ mµµ ≤ 11 GeV) and Z
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(80 GeV ≤ mµµ ≤ 100 GeV) decays. Finally, the signal muon must be a di�erent object than

the soft muon (∆R > 0.01).

The e�ciency of the full selection as measured on the tt̄ signal sample is 1.42 % in the

e+jets channel and 2.15 % in the µ+jets channel. These e�ciencies include both lepton plus

jets and dilepton events with at least three jets and at least one jet tagged by the SMT algorithm.

Acceptance to fully hadronic events is negligible.

7.3 Background estimation

Lepton plus jets tt̄ events have a varied �nal state signature that includes a lepton, multiple

jets including b-jets and missing energy. As a result tt̄ analyses must take into account several

sources of background: diboson, W+jets, Z+jets, single-top and multijet.

W+jets events (e.g. Figure 7.1a) enter the signal region due to the presence of a real lepton,

missing transverse energy, and one or two real b-jets or mistagged LF jets. Gluon emissions can

also occur resulting in additional jets. The W+jets background is estimated using data-driven

methods.

Z+jets events (e.g. Figure 7.1b) can pass the selection if one of the two leptons is not

identi�ed. This can happen if, for example, the lepton enters the crack region. This results in

an overall imbalance of momentum interpreted as missing energy. The Z boson can be created

in association with a gluon which results in real b-jets or mistagged LF jets. This source of

background, along with single-top and diboson, is estimated from MC simulation.

Diboson production (e.g. Figure 7.1c) such as WW , ZZ or WZ enters the signal region

due to the presence of real leptons, missing energy (from real or missed leptons), and HF or

mistagged LF jets.

Multijet events which contain LF and/or b-quarks enter the signal region when they con-

tain a reconstructed lepton that passes the isolation requirement. These can include both real

electrons and objects that fake electrons. Real electron sources include photon conversions

in the detector material, and semileptonic decay of b- and c-quarks. Fake electrons can be re-

constructed from tracks overlapping with photons, and jets with few charged tracks or small

amounts of energy deposited in the hadronic calorimeter.

There are several sources of real muons including those from the decay-in-�ight of pions or
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Figure 7.1: Some of the Feynman diagrams of background processes fromW/Z+jets, diboson
and single-top.

kaons within the tracking region. There are also several objects that fake the muon signature

such as hadrons that do not shower in the detector material, and punch-through hadrons from

hadronic showers 1. The semileptonic decay of b- and c-quarks can also produce muons which

constitute a background to the signalW -muon. However, in this analysis these soft muons are

exploited by the SMT tagger.

A signi�cant amount of fakeEmiss
T must also be reconstructed for the multijet events to pass

the selection. There are numerous sources of fake Emiss
T such as uninstrumented sections of

the detector, noisy or dead calorimeter cells, misreconstruction of physics objects, fake muons

from punch-through and pile-up. Although the probability of each of these processes is small,

the large production cross section for multijet make it an important background.

Using simulation to model these e�ects is not possible as they depend on the conditions

in the detector, some of which are random or short-lived. The data sample required for such

a study would also have to be very large, making this approach impractical. As a result the

multijet background is estimated using data-driven methods.

1Hadrons which are not contained within the calorimetry and enter the muon system
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Figure 7.2: Feynman diagrams of some of the multijet background sources. Shown are (a) bb̄
which produce a real lepton and multiple jets, and (b) where one of the quark jets is misiden-
ti�ed as an electron.
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7.3.1 Multijet in the electron channel

The estimation of the multijet background in the electron channel is done using two di�erent

methodologies. The matrix method [93], which is used to obtain the central value, and the

so-called ABCD method as a cross-check.

The pretag estimate is obtained using the matrix method, while the tagged estimate is

obtained by scaling the pretag values by an SMT multijet event tagging-rate.

The matrix method is implemented as follows: in addition to the standard electron se-

lection, a looser selection is de�ned where the isolation requirement is removed. Events are

categorized by whether they pass the standard selection or only loose selection2. The number

of events in each category is the sum of events with “real” electrons and “fake” electrons3 as

follows:

N loose = N loose
real +N loose

fake (7.3)

N std = rN loose
real + fN loose

fake (7.4)

where r and f are the portion of loose events that pass the standard selection, given that the

event contains a “real” or “fake” electron.

Given a measured N std and N loose in data, and if f and r are known the number of events

with a fake electron that passes the standard selection can be calculated:

N std
fake = fN loose

fake = f
N std − rN loose

(f − r)
(7.5)

The relative e�ciency r is measured from an inclusive sample of Z → ee events and f

is measured from a sample of events with exactly one loose electron, at least one jet with a

pT > 25 GeV, and Emiss
T < 20 GeV. This sample is enriched with events that have low missing

energy and one electron likely coming from a jet faking a lepton. An uncertainty of 50 % is

assigned to the pretag estimate to cover the respective uncertainties on f and r. The values of

r and f are binned as a function of lepton pseudorapidity.

To derive the tagged estimate, the pretag estimates are scaled by the probability of SMT

tagging a multijet event. The tagging probability of multijet events Rmultijet
SMT is derived from

2All muons that pass the standard selection by construction also pass the loose selection
3Here, fake means background muons that are not the signal muon.
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control regions de�ned by the isolation of the electron and the Emiss
T cut de�ned in the event

selection, as shown in Figure 7.3.

Background
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d

Control
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at
ed Signal

D

High-Emiss
TLow-Emiss

T

Figure 7.3: Diagram of theEmiss
T -isolation phase space. Shown are the four regions as de�ned

by the event selection.

These four regions are labelled A through D: a background-dominated region (A), con-

taining events with low-Emiss
T and no isolated electrons; a control region (B) with an isolated

electron; a control region (C) with low-Emiss
T ; and the signal region (D), with events that pass

the event selection. Events in each region represent a di�erent multijet process that allows

these to pass the event selection.

The tagging-rate is simply de�ned as

R
multijet
SMT =

N
multijet
tagged

N
multijet
pretag

(7.6)

whereN is the number of events in the region. Contaminations from non-multijet events such

asW+jets,Z+jets, tt̄, single-top, and diboson events are subtracted using MC simulation. Thus

the yield in each region is de�ned as

Nmultijet = Ndata −NW+jets −NZ+jets −N tt̄ −Ndiboson −N single-top (7.7)
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The largest sources of contamination are tt̄, W+jets, and Z+jets, as shown in Table 7.2 for

pretag level and in Table 7.3 for tag level. Single-top and diboson contribute less than 1 % in

most bins and are therefore not shown here. As expected, Region A contains the least amount

of contamination from other processes and is dominated by multijet events. Regions B and C

are dominated by W+jets in all jet-bins because of the presence a real lepton and Emiss
T from a

real neutrino. TheZ+jets contamination is most signi�cant in region C due to the requirement

of an isolated electron but low-Emiss
T .

Jet-bin Contamination by [%]

tt̄ W+jets Z+jets

Region A

1 0.01± 0.00 6.99± 1.74 2.57± 0.01

2 0.13± 0.02 6.44± 1.61 3.87± 0.04

3 1.14± 0.18 5.72± 1.43 4.77± 0.09

≥3 2.24± 0.34 5.64± 1.41 4.90± 0.08

Region B

1 0.12± 0.02 39.1 ± 9.8 1.64± 0.02

2 1.47± 0.22 30.6 ± 7.6 2.61± 0.05

3 8.42± 1.27 22.7 ± 5.7 3.21± 0.09

≥3 14.0 ± 2.0 20.2 ± 5.0 3.14± 0.08

Region C

1 0.02± 0.00 43.3 ± 11.0 20.0 ± 0.4

2 0.49± 0.07 36.4 ± 9.0 26.4 ± 1.1

3 4.63± 0.70 29.6 ± 7.4 29.9 ± 0.3

≥3 8.77± 1.32 28.0 ± 7.0 29.2 ± 0.2

Table 7.2: The portion of contamination in data in all control regions at pretag level. The
uncertainties shown include statistical and systematic contributions.

The distributions of various kinematic variables are shown in Figure 7.4 after contamina-

tion is removed in region B. The Emiss
T distribution exhibits a long tail due to the aforemen-

tioned sources of fake reconstructed missing energy. The momentum distributions at both pre-

tag and tag level point to the presence of hard objects reconstructed as leptons in the multijet

background likely coming from misidenti�ed jets. The χ2
DoF distribution of the SMT muons
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Jet-bin Contamination by [%]

tt̄ W+jets Z+jets

Region A

1 0.05± 0.02 4.46± 1.13 0.43± 0.05

2 0.82± 0.12 4.89± 1.25 1.33± 0.15

3 5.64± 0.54 4.97± 1.34 1.54± 0.27

≥3 10.4 ± 1.7 4.50± 1.19 1.75± 0.24

Region B

1 1.09± 0.23 26.6 ± 6.7 0.43± 0.11

2 8.71± 1.40 29.9 ± 7.5 1.02± 0.18

3 28.3 ± 4.5 12.2 ± 3.2 1.08± 0.24

≥3 38.9 ± 6.0 9.84± 2.51 0.95± 0.16

Region C

1 0.36± 0.09 53.6 ± 13.4 4.78± 0.26

2 4.86± 0.80 41.5 ± 10.4 11.5 ± 0.6

3 26.5 ± 4.2 30.6 ± 7.8 11.7 ± 0.9

≥3 40.5 ± 6.2 24.2 ± 6.1 10.1 ± 0.6

Table 7.3: The portion of contamination in data in all control regions at tagged level. The
uncertainties shown include statistical and systematic contributions.
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peaks at low χ2
DoF values pointing to a good quality of �t between the ID and MS tracks of the

muon. As expected the SMT muons are soft just as those in tt̄ events. One possible source of

these soft muons is semileptonic decays of HF quarks.
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Figure 7.4: Kinematic distributions measured in region B (high-Emiss
T and non-isolated) at

pretag and tagged level. These distributions are obtained by subtracting non-multijet contri-
butions using simulation.

The normalization of the tt̄ contribution is initially based on the theoretical cross section.

An estimate for the multijet contribution is determined using this cross section and a new

measured tt̄ cross section is obtained. This cross section is used to rescale the tt̄ contribution

and a new cross section is obtained. This process is repeated until the measured cross section
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stabilizes. Only two iterations are needed.

The uncertainty on the tagging-rate contains statistical and systematic contributions. The

systematic uncertainty includes the uncertainty on the cross section of the tt̄ and W+jets

samples, 15 % and 25 % respectively; uncertainty from the calibration of the SMT tagger; and

uncertainties associated with the BR re-weighting. For more detail on the tagger-speci�c un-

certainty, see Section 7.4. The dominant source of uncertainty depends on the region and

jet-bin. In regions where contamination is high, the uncertainty from W+jets and tt̄ are more

signi�cant.

The �nal tagging-rate is the unweighted average of all three regions. This de�nition was

chosen as no single type of multijet process is favoured over the others. The uncertainty is

half the largest di�erence in rates between the regions. This covers the entire range of possible

tagging-rate values. The tagging-rates per region for each jet-bin, including uncertainty, are

shown in Table 7.4.

Jet-bin SMT tagging-rate RSMT [%]

Region A Region B Region C Average

1 1.17± 0.01 1.10± 0.10 0.609± 0.056 0.962± 0.446

2 2.25± 0.03 2.49± 0.10 1.55 ± 0.17 2.09 ± 0.47

3 3.44± 0.09 4.31± 0.21 2.27 ± 0.85 3.34 ± 1.02

≥3 3.84± 0.09 5.14± 0.41 2.52 ± 1.30 3.83 ± 1.31

Table 7.4: Results of the SMT multijet tagging-rate measurement in region A (inverted-Emiss
T ,

non-isolated), B (High-Emiss
T , non-isolated) and C (low-Emiss

T , isolated).

The multijet background estimates in the e+jets channel are shown in Table 7.5. The un-

certainties on the �nal pretag and tagged estimates are dominated by the 50 % uncertainty on

the e�ciencies associated with the matrix method pretag estimate.

The ABCD method

The ABCD method relies on a pair of uncorrelated variables to extrapolate the amount of

multijet events from a set of control regions into the signal region. First, a two-dimensional

phase-space is constructed, in this case the same construct shown in Figure 7.3 is used. If these
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Jet-bin Multijet event yield

Pretag Tagged

1 145 000± 72 000 1390± 700

2 39 600± 19 800 830± 416

3 11 300± 5700 378± 190

≥3 16 200± 8100 620± 311

Table 7.5: Results of the matrix method estimation of the multijet background in the e+jets
channel. The uncertainties are combined statistical and systematics.

two variables are uncorrelated then the following relation holds

N
multijet
D

N
multijet
C

=
N

multijet
B

N
multijet
A

(7.8)

where NMultijet
X is the number of multijet events in region X. As with the matrix method, the

value of NMultijet is obtained by subtracting the contribution of other processes from the data

value using simulation.

This allows an estimation of the number of multijet events that pass the event selection by

extrapolating from the background region into the signal region. The uncertainty on the �nal

estimate includes statistical contributions from the yield in each region and the systematic

uncertainty on the W+jets and tt̄ samples as described. The multijet estimates in all regions

at pretag and tagged level are presented in Table 7.6. The uncertainty on the estimate in some

jet-bins is smaller than the matrix method estimate. However, in the signal jet-bin (≥3) the

uncertainty at tag level is very large. The matrix method estimate is therefore used as the

central value and the ABCD estimate is used as a cross-check. Comparing the results from the

matrix method and the ABCD method, it appears that both produce compatible results within

their uncertainties.

7.3.2 Multijet background in the muon channel

The procedure in the muon channel is similar to that used for the electron channel. A pretag

estimate of the multijet fraction in the signal region is obtained using the matrix method. The

“real” muon selection e�ciency r is measured from an inclusive sample of Z → µµ events.
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Jet-Bin Multijet event yield

Pretag Tag

1 99 000± 48 000 565± 264

2 33 500± 13 000 572± 272

3 9500± 3320 270± 220

≥3 13 000± 5000 438± 449

Table 7.6: Results of the ABCD method estimation of the multijet background in the e+jets
channel. The uncertainty contains statistical and systematic components.

Control region SMT tagging-rate [%]

Inverted isolation 5.7± 0.1

Inverted triangular cut 4.0± 0.5

Unweighted average 4.9± 0.8

Table 7.7: Summary of tagging-rates as measured in data in the two multijet-dominated re-
gions. The uncertainty quoted includes statistical and systematic contributions. The uncer-
tainty on the unweighted average is set as half of the di�erence between control regions [1].

The “fake” muon selection e�ciency f is obtained from data using two di�erent samples:

• A background-dominated control region where the Emiss
T +mT,W cut is inverted and an

additional cut of mT,W < 20 GeV is applied.

• A �t to the transverse impact parameter signi�cance distribution where both Emiss
T +

mT,W and Emiss
T cuts are inverted.

The central value of the pretag estimate is obtained from an average of these two regions

and was found to be 27 000± 5400. An uncertainty of 20 % is assigned to the �nal estimate to

account for the uncertainty associated with each region and the di�erence between them.

The SMT event tagging-rate is obtained from two control regions de�ned by inverting the

Emiss
T and Emiss

T + mT,W cuts, and by inverting the muon isolation requirement. As with the

electron analysis, contamination from other non-multijet processes is subtracted using MC

simulation. The associated sources of uncertainty are the same as those considered in the

electron channel.
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The �nal multijet estimate at tagged level is obtained by multiplying the average pretag es-

timate by the unweighted tagging-rate. The uncertainty on the unweighted tagging-rate is set

to half the di�erence between the two control regions, as this is larger than the individual un-

certainties combined. The �nal uncertainty is obtained by combining the uncertainties on the

pretag estimate and the tagging-rate. The �nal tagged estimate was found to be 1310± 350.

7.3.3 W+jets background

The W+jets background is the most dominant background since these events contain a real

lepton andEmiss
T from the escaping neutrino. Events can be classi�ed intoW+HF, which is the

largest contribution; andW+LF where a LF jet is mistagged. Due to the signi�cant uncertainty

on the overall normalization of W+jets and the presence of a mistagged LF jet, a data-driven

method known as W charge asymmetry [94] is used to estimate this background.

TheW charge asymmetry method relies on the charge asymmetry in the production ofW -

bosons. As the LHC is a proton-proton collider, up-type valence quarks are more prevalent,

resulting in an increased rate of W+ production via ud̄ → W+ or cs̄ → W+ compared to

W− production involving down-type quarks. The ratio of these production cross sections r

is theoretically well understood [95]. It is thus possible to use this ratio as measured in MC

simulation to determine an overall normalization in data from the following formula:

NW+ +NW− =
NMC
W+ +NMC

W−

NMC
W+ −NMC

W−
(D+ −D−) (7.9)

=
rMC + 1

rMC − 1
(D+ −D−) (7.10)

where rMC is the ratio as measured in MC and D± are the number of events in data with a

positively- or negatively-charged lepton. Contributions from other charge asymmetric pro-

cesses, namely single-top and diboson are removed using MC simulation. This results in

an overall normalization for the W+jets background at the pretag level. The �avour of the

quarks produced in association with the W -boson is particularly important when performing

b-tagging. Events are categorized by the �avour of these accompanying quarks into Wc+jets,

Wbb̄+jets, Wcc̄+jets and W+LF. The tagged level estimate is obtained by multiplying the pre-

tag estimate via a tagging-rate, obtained separately for bb̄, cc̄, c and LF separately. The overall
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Channel W+jets event yield
Pretag Tagged

e+jets 59 300± 5400 1640± 330

µ+jets 117 200± 9300 2900± 500

Table 7.8: Results of the W+jets background estimation at pretag and tagged level for the
three-jets inclusive selection [1].

tagged estimate is then obtained using the following formula:

Wtag = RLF
tagW

LF
pretag +

HF=c,cc,bb∑
HF

RHF
tagW

HF
pretag (7.11)

where RLF
tag is de�ned as the probability to mistag a LF event and RHF

tag is the probability to

correctly tag a HF event. The tagging-rates are obtained from simulation with the SMT scale

factors and BR reweighing applied to each tagged jet. The results of the estimation are sum-

marized in Table 7.8.

7.3.4 Background shapes

Kinematic distributions are shown at the tagged level in Figures 7.5 for events with at least

three jets in both electron and muon channels. The multijet distributions are taken from data

normalized to the obtained estimates. In the electron channel, the multijet shapes are obtained

from region B, as de�ned in Figure 7.3, with the contamination from non-multijet processes

removed. The multijet shapes in the muon channel are obtained from the loose selection in

data, after the application of per-event weights obtained from the matrix method. SMT muon

distributions for both background and signal are shown in Figure 7.6. It is noted that the

χ2
DoF distribution is shifted in both channels in data compared to the simulation. Any such

discrepancies are accounted for by the χ2
DoF scale factor. Good agreement between data and

estimations, both simulation-based and data-driven, is observed in all distributions.
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Figure 3: From the top to the bottom, the transverse momentum pT of the lepton from the W, the W
transverse mass mT(W) and the transverse missing energy Emiss

T in the e+jets channel (left) and µ+jets
channel (right). This figure shows only events with at least three jets and at least one SMT tagged jet.
“Other” denotes the smaller Z+jets, single top and diboson backgrounds which are estimated with Monte
Carlo. Uncertainties include statistical and systematic contributions as detailed in Table 8.

12

Figure 7.5: Distributions for tagged events in the e+jets (left) and µ+jets (right) channels of
(from top to bottom): lepton pT, transverse W mass, and missing transverse energy [1].
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Figure 4: From the top left to the bottom right, the transverse momentum pT, the �2
match(note that the cut

is applied at �2
match < 3.2) and the transverse momentum relative to the jet axis prel

T of the soft muons in
the e+jets channel (left) and µ+jets channel (right). This figure shows only events with at least three jets
and at least one SMT tagged jet. “Other” denotes the smaller Z+jets, single top and diboson backgrounds
which are estimated with Monte Carlo. Uncertainties include statistical and systematic contributions as
detailed in Table 8.
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Figure 7.6: Distributions of SMT variables in the e+jets (left) and µ+jets (right) of (from top
to bottom): SMT muon pT and SMT muon χ2

DoF [1].
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7.4 Systematic uncertainties

The uncertainties associated with the cross section include various sources such as signal sim-

ulation, object reconstruction, background estimation, integrated luminosity determination

and tagger uncertainties (Table 7.9). The SMT tagger uncertainty is made of the STACO CB

reconstruction uncertainty and the uncertainty on the χ2
match e�ciency measurement.

The signal modelling uncertainties are evaluated by repeating the cross section measure-

ment while substituting the main tt̄ sample with alternate ones. The NLO generator uncer-

tainty covers any di�erences in the modelling of kinematic distributions at parton level as a

result of the hard interaction in di�erent generators. This is evaluated by comparing the signal

acceptance in ALPGEN and POWHEG [96, 97] samples to the nominal sample. Initial and �nal

state radiation (ISR/FSR) uncertainty covers the di�erences in modelling of soft radiation from

initial and �nal state particles. This uncertainty is evaluated in studies on samples generated

with AcerMC and PYTHIA, and by varying parameters which a�ect ISR/FSR simulation in the

range consistent with experimental data [98, 99]. The PDF uncertainty is evaluated using three

PDF sets: the nominal CT10 [100], MSTW [101], and NNPDF [102]. Several uncertainties are

related to each PDF set. Each variation is evaluated by an event-by-event re-weighting of the

signal tt̄ MC. The total uncertainty assigned to σtt̄ is then half the spread of the envelope of

all PDF uncertainties [1].

The largest uncertainties come from the background estimation methods, JES corrections,

and SMT tagger uncertainties. In the multijet background estimate, the uncertainty associated

with the matrix method pretag estimates is the largest contribution at 50 % of the estimate.

The tagger uncertainties, including the b → µX BR re-weighting uncertainty, contribute

approximately +3.2 %/ − 3.4 % to the total uncertainty. In comparison, the total b-tagging

uncertainty as measured by another `+jets analysis using JetProb is +4.1 %/ − 3.8 % [103].

This is larger than the total SMT tagger uncertainty despite including the BR re-weighting

uncertainty. Overall, the analysis is dominated by the systematic uncertainty and reduced

acceptance due to the BR of b→ µ is not signi�cant in this case.
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Source Relative cross section uncertainty [%]

e+jets µ+jets Combined

Statistical Uncertainty ±1.5 ±1.3 ±1.0

Object Selection

Lepton Energy Resolution +0.4/− 0.3 +0.2/− 0.01 +0.2/− 0.1

Lepton Reco., ID, Trigger +2.4/− 2.5 +1.5/− 1.5 +1.5/− 1.8

Jet Energy Scale +3.8/− 4.3 +3.2/− 3.6 +3.5/− 3.8

Jet Energy Resolution ±0.2 ±0.5 ±0.2

Jet Reconstruction E�ciency ±0.06 ±0.06 ±0.06

Jet Vertex Fraction +1.2/− 1.4 +1.2/− 1.4 +1.2/− 1.4

Emiss
T Uncertainty ±0.06 ±0.08 ±0.07

SMT Calibration

STACO Reconstruction E�. ±1.3 ±1.3 ±1.3

Muon χ2
match E�. ±0.6 ±0.6 ±0.6

Background Estimates

Multijet Normalisation ±5.2 ±3.9 ±4.4

W+jets Normalisation ±5.2 ±5.7 ±5.5

Other Bkg Normalisation ±0.2 ±0.2 ±0.1

Other Bkg Systematics +1.6/− 1.5 +2.5/− 2.0 +2.2/− 1.8

Signal Simulation

b→ µX Branching Ratio +2.9/− 3.0 +2.9/− 3.1 +2.9/− 3.1

ISR/FSR ±2.4 ±0.9 ±1.5

PDF ±3.2 ±3.0 ±3.1

NLO Generator ±3.2 ±3.2 ±3.2

Parton Shower ±2.2 ±2.2 ±2.2

Total Systematics +11.1/− 11.3 +10.2/− 10.3 +10.5/− 10.6

Integrated Luminosity ±1.8 ±1.8 ±1.8

Table 7.9: List of cross section uncertainty sources for the three-jets inclusive selection [1].
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Sample Event yields in

e+jets µ+jets

Pretag Tagged Pretag Tagged

Data 124 424 9165 227 318 14 940

MC

tt̄ 31 900± 1300 5980± 350 52 100± 1600 9100± 500

Z+jets 9900 + 2500
− 1400 270 + 40

− 30 11500 + 2400
− 1600 780 + 140

− 100

Diboson 1190 + 220
− 180 40± 10 2030 + 350

− 300 60± 10

Single top 4300± 400 630± 60 7200± 600 980± 80

Data-Driven

Multijet 16 200± 8100 620± 310 27 000± 5400 1310± 350

W+jets 59 300± 5400 1640± 330 117 200± 9300 2900± 500

Measured tt̄ 6000± 500 8900± 600

Table 7.10: Summary of event yields for signal and background events, as well as the yield
measured in data [1].

7.5 Results and conclusion

The event yields in data, signal tt̄ MC and background contributions that pass the event selec-

tion for both pretag and tagged in the muon and electron channels are shown in Table 7.10.

The �nal cross section is determined by a cut-and-count method and is calculated as

σtt̄ =
Ndata −Nbkg∫

Ldt× ε× BR(noFullHad)
(7.12)

whereNdata is the total number of events in collision data that pass the event selection,Nbkg is

the estimated number of background events that pass the event selection, ε is the estimated se-

lection e�ciency (Table 7.11), and BR(noFullHad) is the semileptonic and dilepton total branch-

ing ratio. This BR was calculated using a W → `ν branching ratio of 0.108 per �avour, and

has a value of 0.543. The combined cross section is obtained by combining e+jets and µ+jets

event yields.

The �nal measured cross sections at
√
s = 7 TeV are shown below. The combined mea-
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Channel Event selection e�ciency [%]

e+jets 1.42± 0.02

µ+jets 2.15± 0.02

Combined 3.57± 0.03

Table 7.11: The event selection e�ciencies for the muon, electron and combined channels as
measured on the signal tt̄ sample [1].

surement is obtained by the sum of the event yields in both channels:

σ
e+jets
tt̄

= 167± 3 (stat.)± 20 (syst.) ± 3 (lumi.) pb (7.13)

σ
µ+jets
tt̄

= 164± 2 (stat.)± 17 (syst.) ± 3 (lumi.) pb (7.14)

σtt̄ = 165± 2 (stat.)± 17 (syst.) ± 3 (lumi.) pb (7.15)

The two channels appear to be in agreement with each other. No excess of events is ob-

served and the combined cross section is in good agreement with the latest theoretical SM

cross section at σtt̄ = 158 + 13.5
− 12.2 pb. The result is also in agreement within uncertainty with

other ATLAS measurements made with di�erent methods. These results, including the one

obtained in this analysis, are summarized in Figure 3.7.
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Muon identi�cation in a boosted tt̄

environment

The search for BSM theories is an important part of particle physics research. Many of these

theories posit the existence of very heavy particles that can only be produced by very energetic

collisions. The LHC provides a unique opportunity to produce such collisions and search for

very heavy particles.

Several BSM theories predict the existence of high mass particles that can decay into top

quark pairs. An example of such a theory is the topcolor assisted technicolor model (TC2) [13,

14, 15] which predicts the existence of a leptophobic Z ′ boson. The Z ′ could potentially have

a mass on the order of several TeV. Due to its large mass, the decay products of the Z ′ would

emerge with a large momentum. These particles are said to be boosted particles.

One of the possible decay modes of the Z ′ is into a top quark pair. These would emerge

with a very large momentum and decay into a W boson and a b quark in a collimated cone. In

the detector, these events would appear as two back-to-back particle jets. The hadronic decay

of theW would produce three jets which merge into a singular fat jet. If theW decays lepton-

ically, the lepton is expected to lie very close to or within the b-jet. This makes reconstruction

of such objects more di�cult and requires specialized techniques, particularly when dealing

with multiple merged jets. In contrast, low boost events where all products are well separated

are said to be resolved.

Presented here are the results of a study conducted to determine the viability of using
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the χ2
match tagger to tag W muons from boosted top quark decays. This is in contrast to the

cross section analysis detailed in a previous chapter where the muon tagged came from the

semileptonic decay of b-quarks.

The boost of the top quarks is expected to be related to the mass of the Z ′ produced, so a

higher mass Z ′ would decay into more collimated jets. The environment that results is thus

very similar to that of a semileptonic b-decay: a muon buried inside a b-jet.

Searches for heavy bosons have been carried out and so far no evidence for such a reso-

nance has been observed, and limits have been placed on the production rate of these resonance

for various benchmark models. A leptophobic topcolor Z ′ of mass less than 1.74 TeV has been

excluded using 4.7 fb−1 of ATLAS collision data at
√
s = 7 TeV [49] using both resolved and

boosted reconstruction approaches. A more recent analysis using 14.3 fb−1 of
√
s = 8 TeV

data excluded a Z ′ with a mass less than 1.8 TeV at 95 % con�dence level [104] with the same

combined reconstruction approach. The analysis detailed here is based on the 7 TeV analy-

sis. Similar analyses performed with data collected by CMS using both a resolved and boosted

reconstruction have excluded Z ′ candidates for similar benchmark models [105, 106, 107].

As the boost increases, the nominal isolation requirements used in the resolved tt̄ analysis,

namely cuts onEcone∆R
T and/or pcone∆R

T with a prede�ned cone size, begin to remove too many

leptons. This results in very low lepton selection e�ciency and poor acceptance in the higher

mass range. As a result, much e�ort has gone into adapting the isolation requirements to

boosted events.

The χ2
match tagger could serve as a replacement for the traditional isolation requirements,

or as a complement to other methodologies. A novel approach known as mini-isolation (MI)

was developed by the ATLAS tt̄ resonance group.

The results of a preliminary study of the e�ciency of both of these methodologies are

presented. In addition, the χ2
match tagger performance as a b-tagger in boosted tt̄ events is

compared to the nominal approach that relies on the standard MV1 tagger. This study focuses

on top pair production in the lepton plus jets channel.
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8.1 Data samples

The simulated data used in this analysis is generated using
√
s = 7 TeV with 2011 data con-

ditions. Signal Z ′ samples were generated at various mass points: 1.0, 1.3, 1.6, 2.0, 2.5 and

3.0 TeV. All simulated samples were generated using PYTHIA [92] with CTEQ6LI [108] PDF

sets with a Z ′ width of 3 % of the boson mass. The irreducible tt̄ background events are gen-

erated with MC@NLO v4.01 [86, 87] interfaced to HERWIG [88] for parton showering and

hadronization, and JIMMY [89] for underlying event simulation.

The analysis is based on the truth information created by the event generator. This includes

the kinematic information of particles in the event, as well as the child-parent connection

between particles. For example, the Z ′ has two daughter particles associated with it: the top

and antitop, which are in turn connected to the W bosons and b-quarks. By navigating up or

down these chains it is possible to ascertain the origin of a given particle.

8.2 Boosted event topology

In order to perform an e�ective feasibility study it is important to understand how a boosted

event looks in the detector. It is expected that events with more strongly boosted tops would

exhibit a stronger collimation between theW muon and the b-quark. This results in a situation

very similar to that exploited for b-tagging in Section 7; a muon from the semileptonic decay

of a b-quark emerges from within the b-jet as shown in Figure 8.1. It is possible then to use

the χ2
match tagger1 to tag W muons in boosted events. As the tagger is designed to work in

energetically “busy” sectors of the detector, it is ideally suited to probe highly boosted events

where the decay products are collimated.

As can be seen from Figure 8.2, the increase in boost does result in the W muon and b-

quark emerging closer to each other. Note that the fraction of events below the χ2
match tagger

requirement of ∆R
jet
µ < 0.5 increases with top quark pT. Additionally, as can be seen in

Figure 8.3 the top pT distribution peaks at just below half of the mass of the Z ′ boson, thus the

large portion of the candidate muons in the sample will pass the aforementioned separation

requirement. The decay products of the boosted top quark appear to emerge primarily back to

1Since signal muons in this analysis have large pT, the tagger is now referred to as the χ2
match tagger not soft

muon tagger to re�ect this di�erence
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Wb

µ νµb

t

(a) Resolved top quark topology

b
µ νµ

Wb

t

(b) Boosted top quark topology

Figure 8.1: Diagrams of possible con�gurations of �nal-state objects in (a) a resolved and (b)
a boosted event.

back as seen in Figure 8.4, while the b-quarks from non-resonant tt̄ emerge closer more often.

8.3 Signal muon selection

Since the signal muon in boosted tt̄ events emerge near or within jets, the standard isolation

requirements used in SM tt̄ analyses erroneously remove W muons. The portion of muons

removed increases with collimation and thusZ ′mass. Using the nominal isolation requirement

then limits the reach to higher Z ′ masses that have yet to be probed.

The ATLAS boosted tt̄ resonance analysis proposed an alternative variable to replace the

nominal isolation requirement called mini-isolation (MI). The absolute MI is de�ned as the sum

of the measured transverse momenta of all tracks in a cone of size ∆R = kT/p
`
T around the

lepton, where kT is an adjustable scale2 and p`T is the momentum of the lepton. This study uses

the relative MI where the absolute value is scaled by the momentum of the lepton:

Rel. MI =
MI

p`T
(8.1)

where p`T is the transverse momentum of the lepton.

MI adapts to the strong collimation of the top products with increasing boost by shrinking

2For convenience, mini-isolation with a kT value of 10GeV is referred to as MI10.
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Figure 8.2: The angular separation (∆R) between the truth W muon and the corresponding
b-quark for all examined Z ′ mass points and non-resonant tt̄. Uncertainties are omitted for
clarity.
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Figure 8.3: The transverse momentum of the top/anti-top quarks in the event for all examined
Z ′ mass points and non-resonant tt̄. Uncertainties are omitted for clarity.
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Figure 8.4: The angular separation (∆R) between the b and b̄ in the event for all examined Z ′
mass points and non-resonant tt̄. Uncertainties are omitted for clarity.

the size of the cone for higher boost top quarks.

The goal of this study is to improve the acceptance at higher Z ′ masses by removing the

nominal isolation requirement, and instead use the χ2
match tagger to identify the signal muons.

The performance of the χ2
match tagger is measured against the conventional isolation cri-

teria, and MI with kT = 10 GeV. The resolved isolation criteria requires the muon to have an

Econe20
T < 2.5 GeV and Econe30

T < 4.0 GeV. For mini-isolation, the lepton is deemed isolated if

the
∑
pT is less than 5 % of the lepton pT. The χ2

match tagger operates with the same selection

used in Chapter 6 with the standard operating-point of χ2
DoF < 3.2.

Two separate selections are applied: one forχ2
match tagger and one for the resolved isolation

and mini-isolation. As mini-isolation and the resolved isolation both use MUID, they share the

same set of reconstruction criteria, while the χ2
match tagger selection is moderately di�erent.

All chains require a high-pT muon (pT > 20 GeV) within the pseudorapidity coverage of the

ID (|η| < 2.5) that passes the MCP tracking cuts detailed in Appendix E. Mini-isolation and

resolved isolation make use of muons reconstructed by the MUID algorithm that pass the

so-called Tight identi�cation criteria. An additional requirement on the impact parameter

(|z0| < 3.0 mm) is used to reduce non-prompt muons. The χ2
match tagger uses the STACO

combined algorithm for muon reconstruction with no additional requirements. The cut�ows
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for all three selections are shown in Figure 8.7.

The distribution of pseudorapidity for χ2
match tagged muons, as expected, is similar for all

mZ′ samples as shown in Figure 8.5b. Interestingly, in Figure 8.5a, the average transverse

momentum of the χ2
match muon increases with mZ′ up to 1.6 TeV then stabilizes for higher

masses. This suggests that the b-quark takes a larger portion of the top quark momentum

above a certain threshold. As expected the angular separation between the χ2
match tagged muon

and the jet in the event decreases with increasedmZ′ as shown in Figure 8.5c. Finally, the χ2
DoF

distribution is not a�ected by changes in mZ′ as shown in Figure 8.5d. Thus the e�ciency of

the χ2
match tagger should be stable through-out the mass range. Similar comments can be made

about MI10 muons with regards to their transverse momentum (Figure 8.6a), pseudorapidity

(Figure 8.6b) and angular separation from the nearest jet (Figure 8.6c). The size of the cone used

in MI is inversely proportional to the lepton pT. As expected, the cone size distributions are

much wider with longer tails at lowmZ′ and more narrow at highmZ′ as shown in Figure 8.6d.

8.4 E�ciency de�nition

The e�ciency measurement was designed to provide an accurate representation of the perfor-

mance of the χ2
match tagger and a fair comparison with mini-isolation. Additional sources of

ine�ciency such as muon reconstruction are separated out into an additional e�ciency which

is also quoted. See Figure 8.7 for a summary of the e�ciency measurement.

Firstly, events where a W boson decays into a muon are selected using truth information.

These events are then used to measure the e�ciency. Note that at each stage the denominator

is the numerator of the previous e�ciency. Thus the complete e�ciency is given by the product

of all the e�ciency components. This allows for an estimation of the number ofW muons that

would be selected.

First, the truth W muons are matched to STACO/MUID muons if the angular separation

(∆R) between them is less than 0.0015. The matching e�ciency is de�ned as:

εmatch =
STACO/MUID muons matched to truth W muon

Truth W muons (8.2)

The selections then diverge and the two sets of reconstruction cuts described earlier are

applied independently with an e�ciency de�ned as:

148



Chapter 8: Muon identi�cation in a boosted tt̄ environment

 [GeV]
T

p

0 50 100 150 200 250 300 350 400

A
rb

itr
ar

y 
U

ni
ts

0

0.05

0.1

0.15

0.2

0.25

0.3

' 1.0 TeVZ
' 1.3 TeVZ
' 1.6 TeVZ
' 2.0 TeVZ
' 2.5 TeVZ
' 3.0 TeVZ

tt

 = 7 TeVs
 Muons2

D.o.F
χ

(a) Muon transverse momentum

η
-3 -2 -1 0 1 2 3

A
rb

itr
ar

y 
U

ni
ts

0

0.02

0.04

0.06

0.08

0.1

0.12
' 1.0 TeVZ
' 1.3 TeVZ
' 1.6 TeVZ
' 2.0 TeVZ
' 2.5 TeVZ
' 3.0 TeVZ

tt

 = 7 TeVs
 Muons2

D.o.F
χ

(b) Muon pseudorapidity

jet
µSMT R∆

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
rb

itr
ar

y 
U

ni
ts

0

0.01

0.02

0.03

0.04

0.05

0.06
' 1.0 TeVZ
' 1.3 TeVZ
' 1.6 TeVZ
' 2.0 TeVZ
' 2.5 TeVZ
' 3.0 TeVZ

tt

 = 7 TeVs
 Muons2

D.o.F
χ

(c) Angular separation from nearest jet

2
D.o.F

χ
0 0.5 1 1.5 2 2.5 3

A
rb

itr
ar

y 
U

ni
ts

0

0.02

0.04

0.06

0.08

0.1

0.12
' 1.0 TeVZ
' 1.3 TeVZ
' 1.6 TeVZ
' 2.0 TeVZ
' 2.5 TeVZ
' 3.0 TeVZ

tt

 = 7 TeVs
 Muons2

D.o.F
χ

(d) STACO combined χ2
DoF

Figure 8.5: Distributions for all tested Z ′ mass points of (a) the transverse momentum and (b)
pseudorapidity of muons which pass the χ2

match tagger selection, the (c) angular separation
between those muons and the nearest jet in the event, and (d) the χ2

match used in the selection.
All distributions normalized to unit area.
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Figure 8.7: Structure of the e�ciency measurement including both cut-�ows.
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εreco =
STACO/MUID muons that pass reconstruction cuts
STACO/MUID muons matched to truth W muon (8.3)

Next the muons are required to be within ∆R < 0.5 from a jet. The impetus behind the

analysis is to probe highly boosted events exploiting the capabilities of χ2
match tagging. This

selection ensures that the muons available for χ2
match tagging are indeed close to a jet. This

selection also has an e�ciency associated with it de�ned as:

εnon-iso =
Muons with ∆R

jet
µ < 0.5

STACO/MUID muons that pass reconstruction cuts (8.4)

The �nal step is the application of either the mini-isolation selection or the χ2
match tagger

selection discussed above. These selections are associated with the �nal and most interesting

sets of e�ciencies, de�ned as:

εχ2
match/MI10/Res. =

Muons which pass χ2
match/MI10/Res. selection

Muons with ∆R
jet
µ < 0.5

(8.5)

In the nominal analysis described in [49] muons which are within ∆R = 0.1 of the jet

would be removed. The goal of the analysis is to exploit the χ2
match tagger to accept additional

events where the signal muon emerges very close to the jet axis, thus overlap removal 3 is not

traditionally part of the χ2
match tagging selection. Two sets of e�ciencies are provided here:

one without overlap (de�ned in Eq 8.5) and one with overlap removal, de�ned below

εχ2
match/MI10/Res.+overlap =

Muons which pass the χ2
match/MI10/Res. selection with ∆R

jet
µ > 0.1

Muons with ∆R
jet
µ < 0.5

(8.6)

8.5 Results

The results of the reconstruction portion of the analysis chains are summarized in Table 8.1 for

the χ2
match chain and in Table 8.2 for the mini-isolation chain. The matching e�ciency (εmatch)

is stable with respect to Z ′ mass for both MUID and STACO, meaning that both algorithms

3True objects may be reconstructed as two di�erent objects, such as an electron and jet. Overlap removal is
the act of selecting the true object from two overlapping reconstructed objects.
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are able to reconstruct the signal muon irrespective of boost. Within the uncertainty neither

algorithm appears to be better than other at reconstruction of these muons. The e�ciencies

of both reconstruction selections (εreco) are compatible within uncertainties and appear to be

slightly lower at low Z ′ mass, likely due to the pT requirement on the muon. Finally, the

collimation e�ect due to increased boost is clearly visible in the non-isolation e�ciency. A

marked increase with Z ′ mass is noted as the products of the top quarks get pushed closer

together. Note that the results obtained at mZ′ = 2.5 TeV su�er from lack of data compared

to the other mass points. Once again, this e�ect those not appear to a�ect one reconstruction

algorithm more than the other and the e�ciencies are compatible within uncertainty.

mZ′ [GeV] N from W
muons E�ciency [%]

εSTACO
match εSTACO

reco εSTACO
non-iso.

1000 13 700 91.3± 0.2 85.5± 0.3 20.4± 0.4

1300 15 500 92.0± 0.2 86.4± 0.3 31.8± 0.4

1600 13 400 91.9± 0.2 87.5± 0.3 42.4± 0.5

2000 15 300 92.1± 0.2 87.9± 0.3 51.3± 0.5

2500 3310 91.9± 0.5 88.1± 0.6 57.7± 1.0

3000 15 300 91.8± 0.2 87.5± 0.3 51.4± 0.5

Table 8.1: Results of constructing the muon sample used to estimate the e�ciency of the
χ2

match tagger. Uncertainty is statistical only.

mZ′ [GeV] N from W
muons E�ciency [%]

εMUID
match εMUID

reco εMUID
non-iso

1000 13 700 91.7± 0.2 86.6± 0.3 20.3± 0.4

1300 15 500 92.2± 0.2 87.6± 0.3 31.9± 0.4

1600 13 400 92.2± 0.2 88.7± 0.3 42.2± 0.5

2000 15 300 92.5± 0.2 88.8± 0.3 51.2± 0.4

2500 3310 92.2± 0.5 89.1± 0.7 57.9± 0.9

3000 15 300 92.1± 0.2 88.5± 0.3 51.2± 0.4

Table 8.2: Results of constructing the muon sample used to estimate the e�ciency of mini-
isolation and resolved isolation. The uncertainty is statistical only.

The e�ciency of the resolved isolation is low and decreases with increasing boost to 18 % at
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mZ′ = 3.0 TeV as shown in Table 8.3, highlighting the need for a better isolation requirement.

mZ′ [GeV] E�ciency [%]

εRes. εRes.+overlap

1000 43.7± 1.1 35.5± 1.0

1300 38.5± 0.8 33.2± 0.7

1600 33.4± 0.7 29.4± 0.7

2000 26.7± 0.6 24.1± 0.5

2500 21.6± 1.0 19.5± 1.0

3000 20.8± 0.5 18.6± 0.5

Table 8.3: E�ciency of selecting a muon by using the resolved isolation. Uncertainty is sta-
tistical only.

The performance of MI and the χ2
match tagger was studied as a function of the angular

separation between the muon and the jet (Figure 8.8), and the pT of the muon (Figure 8.9).

The χ2
match tagger e�ciency shows some minor dependence on the angular separation to the

jet and as expected exhibits a dependence on the pT of the muon. Mini-isolation has a strong

dependence on the pT of the muon particularly in the low range. The e�ciency at high pT

plateaus at approximately 100 %, due to the mini-isolation cone containing only the muon

itself. The decrease in e�ciency at lower momentum is due to the increase in the cone size

and the inclusion of more tracks from the nearby jet in the cone. Note that the cone size is larger

than the one used for the nominal analysis for muons with pT < 50 GeV. The mini-isolation

e�ciency distribution exhibits a strong dependence on ∆R
jet
µ which varies as a function of top

boost in the event.

This e�ect was stronger before the introduction of truth matching to the analysis. A pos-

sible explanation for the dip was due to the background rejection capability of mini-isolation.

Muons which are very close to jets most likely come from semileptonic decay of b-quarks.

These should be rejected as they do not come from the W boson. Despite this correction the

e�ect persists. It is possible that the reconstructed muon is being mismatched to theW muon.

The matching criteria was tightened to ∆R < 0.001 in an attempt to reduce the likelihood of

muon mismatching. This had a negligible e�ect on the shape of the MI distribution. As ex-

pected changing the value of kT does change the shape of the distribution, but does not remove
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the dip.

An examination of the MI10 cone-size points to the explanation: low-pT muons will result

in a larger cone with a maximum size of ∆R = 0.4, if these happen to lie near to the jet they

are very likely to be rejected. The non-resonant tt̄ distribution exhibits a wider and lower dip

in the e�ciency. In other words the distance between the jet and the muon do not scale linearly

with the muon pT hence at lower boost the jet cone and the muon cone overlap signi�cantly.

The χ2
match tagger e�ciency is very high and fairly stable with Z ′ mass as shown in Ta-

ble 8.4. The inclusion of the overlap removal decreases the e�ciency by approximately 7 %–

10 % depending on the mass point examined. In comparison, the mini-isolation e�ciency is

lower across the mass range, with and without overlap, but only by 2 %–10 % depending on

the mass point examined. Crucially, the e�ciency of both taggers at higher Z ′ masses are very

similar. This means that the gains in acceptance provided by χ2
match is small in themZ′ that has

yet to be experimentally excluded. Also note that both methodologies have a higher e�ciency

than the resolved isolation shown in Table 8.3.

mZ′ [GeV] E�ciency [%]

ε
χ2

match
εMI10 ε

χ2
match+overlap εMI10+overlap

1000 94.5± 0.5 83.1± 0.8 80.4± 0.8 70.2± 1.0

1300 95.7± 0.3 89.0± 0.5 84.9± 0.6 79.4± 0.6

1600 95.7± 0.3 90.9± 0.4 85.8± 0.5 82.1± 0.6

2000 96.0± 0.3 92.0± 0.3 87.8± 0.4 85.5± 0.4

2500 96.2± 0.5 92.4± 0.7 87.1± 0.9 85.1± 0.9

3000 96.3± 0.2 92.5± 0.3 87.6± 0.4 85.1± 0.4

Table 8.4: E�ciency of selecting a muon by using the χ2
match tagger against MI, including the

additional acceptance provided by the χ2
match tagger. Uncertainty is statistical only.

8.5.1 Background

A preliminary estimation of the fake-rate for the χ2
match tagger and mini-isolation in a boosted

environment was carried out.

The dominant backgrounds for boosted tt̄ events include multijet events and SM resolved

tt̄. A measure of the acceptance of multijet background is provided here.
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This source is normally estimated using complex data-driven methods, however as this is a

preliminary study, a simulated sample of all-hadronic events is used instead. The all-hadronic

sample is constructed by requiring that no truth W muons be present. These events do not

perfectly represent the dominant multijet sources such as bb̄ production, but the lack of a signal

W muon make these events a suitable preliminary substitute.

The lack of an isolation requirement is expected to result in a substantial increase in the

amount of background selected. Soft muons from the semileptonic decay of HF quarks will

also be selected, this then increases acceptance to bb̄ events.

The same e�ciency de�nitions described in Section 8.4 are used here. No truth-matching

is carried out here due to the lack of a W muon, so only the χ2
match tagger and mini-isolation

fake rates are shown.

As expected, MI exhibits a low fake rate while maintaining very high signal e�ciency (Ta-

ble 8.5) with or without overlap removal. In comparison, removing the isolation requirement

entirely greatly increases the background acceptance when using the χ2
match tagger. Introduc-

ing overlap removal does reduce the background substantially for both selections but χ2
match

fake rate remains above 20 %.

The increase in signal acceptance does not make this methodology su�ciently advanta-

geous, particularly when considering the large increase in fake rate. An examination of the

b-tagging potential of the χ2
match tagger is presented in the next section.

mZ′ [GeV] Fake rate [%]

ε
χ2

match
εMI10 ε

χ2
match+overlap εMI10+overlap

1000 92.8± 0.3 4.1± 0.2 20.8± 0.5 2.4± 0.2

1300 92.4± 0.3 4.8± 0.2 28.9± 0.5 3.7± 0.2

1600 91.6± 0.3 5.5± 0.2 36.9± 0.5 4.5± 0.2

2000 91.1± 0.3 7.1± 0.2 45.5± 0.5 6.1± 0.2

2500 90.1± 0.6 6.4± 0.5 48.7± 1.1 5.6± 0.5

3000 90.1± 0.3 6.6± 0.2 46.1± 0.5 5.7± 0.2

Table 8.5: Fake rate of the χ2
match tagger and mini-isolation with and without overlap removal

as measured using all Z ′ mass points. The uncertainty is statistical only.
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mZ′ [GeV] Number of b-quarks from top εb to jet [%]

In the event Matched to a jet

1000 160 000 133 000 83.5± 0.1

1300 180 000 155 000 85.9± 0.1

1600 160 000 140 000 87.0± 0.1

2000 180 000 158 000 87.9± 0.1

2500 40 000 35 200 88.0± 0.2

3000 180 000 156 000 86.8± 0.1

Table 8.6: Summary of b-quark to jet matching e�ciencies for all tested Z ′ masses. The
uncertainty is statistical only.

8.6 B-tagging potential in boosted events

A study of the b-tagging performance of the SMT tagger was carried out and is presented

here along with a comparison against the nominal MV1 tagger. The performance is estimated

in simulation using the Z ′ samples described earlier. Using truth information, the b-quarks

from the top decays are identi�ed and then matched to reconstructed anti-kt jets of cone-size

∆R = 0.4. The matching is done by requiring the jet and b-quark lie within ∆R
jet
b < 0.3 of

each other. The value of the ∆R used here is a standard used at ATLAS for the purpose of

�avour tagging of jets from simulated data. These matched jets then tentatively form a pool

of jets on which the tagging performance can be measured. This matching procedure has an

e�ciency associated with it de�ned as

εb to jet =
b quarks with ∆Rbjet < 0.3

b quarks from t→Wb
(8.7)

The matching e�ciency remains above 80 % through-out the tested mass range (Table 8.6),

and there appears to be a trend of increasing matching e�ciency with mass range.

The tagging e�ciency can be de�ned in two ways. The �rst folds the e�ect of the low

b→ µ branching ratio into the �nal e�ciency. This makes the comparison with other taggers

possible and is denoted by εInc. SMT.

The second de�nition separates the e�ciency into two components: �rstly, the jet is as-

sociated with a STACO combined muon by requiring ∆Rµjet < 0.5. The associated e�ciency
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de�ned as,

εµ-match =
Number of b-jets with an associated muon

Number of b-jets (8.8)

and then both the muon and the jet are required to pass the SMT tagger selection. This step

has an associated e�ciency:

εSMT =
Number of jets/muons that pass the χ2

match tagger selection
Number of b-jets with an associated muon (8.9)

The second de�nition provides a more apt description of the performance of the SMT tag-

ger but makes comparisons with other taggers incorrect. The former de�nition of the e�ciency

is used here to allow for a proper comparison between the MV1 and SMT taggers.

As expected, as the boost increases the distance between the muon and the jet decreases

as shown in Table 8.7. This leads to an increase in the muon-to-jet matching e�ciency.

mZ′ [GeV] Jets matched to muon εµ-match [%]

1000 22 100± 100 17.1± 0.3

1300 28 400± 200 18.2± 0.2

1600 27 600± 200 20.4± 0.2

2000 33 500± 200 20.7± 0.2

2500 7540± 90 21.2± 0.5

3000 32 800± 200 21.5± 0.2

Table 8.7: Results of the muon to jet association in MC simulated inclusive Z ′ samples.

The tagging yields as well as the overlap yield between the taggers are shown in Ta-

ble 8.8. As expected the MV1 tagger selects the vast majority of the b-jets while the e�ect

of the semileptonic b-decay is also noted in the lower SMT yields.

The SMT tagging e�ciency appears to increase with mZ′ as shown in Table 8.9. Interest-

ingly, the performance of the MV1 tagger degrades substantially with increasing mZ′ mass.

Also note that the overlap between the MV1 tagger and the SMT tagger decreases with mZ′ .

This means that using the SMT tagger alongside the MV1 tagger can provide substantial in-

creases in yields at higher Z ′ masses.

The e�ciency for both taggers as a function of the jet pT is shown in Figure 8.10. The

performance of the MV1 tagger is clearly pT dependant while the SMT tagger is more stable
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mZ′ [GeV] Number of jets tagged by

SMT MV1 Both

1000 19 600± 100 96 900± 300 14 800± 100

1300 25 000± 200 109 000± 300 18 100± 100

1600 23 900± 200 93 100± 300 16 300± 100

2000 28 300± 200 96 200± 300 17 800± 100

2500 6250± 80 19 800± 100 3690± 60

3000 27 200± 200 89 400± 300 16 200± 100

Table 8.8: Results of the b-jet tagging study. Shown are the number of jets tagged by the SMT
tagger, the MV1 tagger, and both. These jets have been truth-matched to b-quarks.

mZ′ [GeV] εSMT [%] εMV1 [%] Overlap [%] Added Acceptance [%]

1000 14.7± 0.1 72.7± 0.1 75.3± 0.1 5

1300 16.2± 0.1 70.7± 0.1 72.4± 0.1 6

1600 17.2± 0.1 66.9± 0.1 68.0± 0.1 8

2000 17.9± 0.1 60.9± 0.1 63.0± 0.1 11

2500 17.8± 0.2 56.3± 0.2 59.0± 0.2 13

3000 17.4± 0.1 57.3± 0.1 60.0± 0.1 12

Table 8.9: Results of the b-tagging e�ciency estimation for the MV1 and SMT taggers. The
amount of overlap is shown out of the SMT tagged jets, while the added acceptance is mea-
sured as the number of jets tagged only by SMT over the number of MV1 tagged jets. The
uncertainties are statistical only.
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with respect to jet pT. The performance of the MV1 tagger is lower at both extremes of the

momentum distribution. At low jet pT the performance of secondary vertex reconstruction

is degraded due to the lower decay length. In contrast, at high jet pT the primary source of

b-tagging e�ciency loss comes from the shift in the jet axis away from the the B-hadron

direction. If the shift is very large, some of the B-hadron components may not be associated

with the jet and not enter into the discriminants that make up the MV1 tagger [109].

The performance of the SMT tagger in a boosted environment looks promising from this

preliminary study, however a more careful measurement of the performance needs to be con-

ducted. In addition, it is important to also perform a fake-rate study in such a boosted envi-

ronment. As was observed in the calibration of the tagger on both 2012 and 2011 data, the

e�ciency of tagging a soft muon is not a�ected by the isolation of that muon.
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Figure 8.10: The b-tagging e�ciency distributions as a function of jet pT for the MV1 tagger
and the SMT tagger as measured in all Z ′ mass points.
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Conclusions

This thesis explored alternative method for b-tagging and muon selection known as the χ2
match-

based soft muon tagger. The SMT tagger exploits the quality of the match between the ID

track and the MS track to tag soft muons produced in the decay of b-quarks. The tagger was

calibrated on 2012 ATLAS data and used as part of two tt̄ measurements. The �rst was the

measurement of the SM tt̄ production cross section in the lepton plus jets channel at
√
s =

7 TeV using the χ2
match-based SMT tagger. The second tested the viability of using the χ2

match-

tagger in the realm of boosted tt̄ searches at
√
s = 8 TeV.

The calibration of the χ2
match-based SMT tagger was carried out using low-pT muons from

J/ψ decays on 2012 ATLAS data at
√
s = 8 TeV. A tag and probe method was used to construct

a pool of muons on which to measure the e�ciency of the SMT tagger. The e�ciency of

the tagger monitored as a function of the angular position, the isolation, and the transverse

momentum of the candidate muons. No dependence was observed on the isolation of the muon,

this makes the calibration on the isolated J/ψ muons applicable to tt̄ events. No dependence

was observed with respect to the azimuthal angle. As in the previous calibration, a dependence

on the transverse momentum is observed, as well as a dependence on the pseudorapidity which

is asymmetric between the positive and negative sides of the detector. The distribution of the

STACO combined χ2
DoF appears to be mismodelled in simulation compared to data. This results

in a scale factor that deviates from unity by as much as 20 %. The discrepancy in χ2
DoF appears

to originate from a mismodelling of the transverse impact parameter or the correlated polar

angle. The e�ects of the detector alignment description on the χ2
DoF were noted. Di�erences
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between the 2011 and 2012 simulation change the distribution signi�cantly. A more thorough

examination of the alignment e�ects needs to be conducted to determine if this is the source

of the discrepancy.

The SM tt̄ production cross section at
√
s = 7 TeV has been measured in the lepton plus

jets channel using the χ2
match-based SMT tagger. The multijet background component in the

electron channel was measured using the matrix method and the ABCD method. The results

of both methodologies are in agreement within their uncertainties. The cross section mea-

sured agrees with the latest theoretical predictions and results from other ATLAS and CMS

measurements. The soft muon tagger contributes an uncertainty which is comparable to or

smaller than other taggers used in other ATLAS tt̄ cross section measurements.

The performance of the SMT tagger in a boosted environment has been measured in a

preliminary study using only simulated data. Using the tagger to select muons fromW bosons

yielded some additional acceptance to the mini-isolation approach, however the increase in

fake rate makes this methodology less advantageous, particularly since a dedicated treatment

of the background would have to be devised.

The SMT tagger appears to function well as a b-tagger in a boosted environment. Using the

SMT tagger alongside the MV1 yields an 10 % increase in the number of tagged b-jets compared

to the MV1 tagger alone. If the uncertainties due to the tagger remain similar to those estimated

in the SM tt̄ cross section measurement, it would be possible to repeat the resonant tt̄ search

using the SMT tagger instead. This would require a more thorough examination of the data/MC

discrepancy noted in the calibration, or the use of another variable in lieu of theχ2
DoF. The latter

is now being explored using the momentum imbalance which exhibits a similar performance

and is better modelled in simulation.
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Appendix A

Electron identi�cation criteria

Three sets of identi�cation criteria are de�ned and labelled as loose, medium and tight [110].

The selection criteria include tracking, calorimeter and track-cluster variables as detailed be-

low.

Category Description Variable

Loose

Acceptance |η| < 2.47

Hadronic leakage In |η| < 0.8 and |η| > 1.37: ratio of ET in the �rst
layer of the hadronic calorimeter to ET of the EM
cluster

Rhad,1

In 0.8 < |η| < 1.37: ratio of ET in whole hadronic
calorimeter to ET of the EM cluster

Rhad

Middle layer of the EM Ratio of energies in 3× 7 cells over 7× 7 cells Rη

Lateral width of the shower ωη2

Front layer of EM Total shower width ωstot

Energy di�erence of the largest and second largest
energy deposits in the cluster divided by their sum

Eratio

Track quality and track-
cluster matching

Number of hits in the pixel detector (> 0)

Number of hits int he silicon detectors (≥ 7)

|∆η| between the cluster position in the �rst layer
and the extrapolated track (< 0.015)

∆η1

Table A.1: Loose electron identi�cation criteria.
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Category Description Variable

Medium

Track quality and track-
cluster matching

Number of hits in the b-layer > 0 for |η| < 2.01

Number of hits in the pixel detector > 1 for |η| <
2.01

Transverse impact parameter |d0| < 5 mm d0

Tighter |η1| cut (< 0.005)

TRT Loose cut on TRT high-threshold fraction

Table A.2: Medium electron identi�cation criteria.

Category Description Variable

Tight

Track quality and track-
cluster matching

Transverse impact parameter cut |d0| < 1 mm

Asymmetric cut on ∆φ between the cluster posi-
tion in the middle layer and the extrapolated track

∆φ

Ratio of the cluster energy to the track momentum E/p

TRT Total number of hits in the TRT
Tighter cut on the TRT high-threshold fraction

Conversions Reject electron candidates matched to recon-
structed photon conversions

Table A.3: Tight electron identi�cation criteria.
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Muon identi�cation criteria

Muon identi�cation criteria are de�ned for MUID are presented below:

• Tight:

– Passes MUID Combined selection OR

– MUID Standalone at |η| > 2.5 AND has atleast three MDT+CSC stations OR

– MuGirl with extended track AND (at least two MDT+CSC stations OR less than

six MDT+CSC holes on track)

• Medium:

– Tight OR

– MuGirl with extended trackOR |η| < 0.2OR has at least two muon track segments

OR

– MuTagIMO at |η| < 0.2 OR has at least two muon track segments

• Loose:

– Medium OR

– MuGirl OR

– MuTagIMO OR

– MuidStandalone
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STACO Combined covariance matrix

The STACO CB covariance matrix encodes the uncertainty on each of the �ve track parameters

(diagonal terms) as well as the correlation in the uncertainty between parameters (o�-diagonal

terms). Given the �ve track parameters:

T = (d0, z0, φ, θ, q/p) (C.1)

the covariance matrix is:

CMS/ID =



σ2(d0) cov(d0, z0) cov(d0, φ) cov(d0, θ) cov(d0, q/p)

. σ2(z0) cov(z0, φ) cov(z0, θ) cov(z0, q/p)

. . σ2(φ) cov(φ, θ) cov(φ, q/p)

. . . σ2(θ) cov(θ, q/p)

. . . . σ2(q/p)


(C.2)

A covariance matrix is associated with each set of parameters, those measured in the inner

detector, and those measured in the muon systems.
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List of triggers used in calibration

The calibration analysis makes use of an OR of the triggers listed below. The triggers �re

based on a set of criteria summarized in the trigger name following the ATLAS trigger nam-

ing convention. The list includes generic single low-pT muon triggers such as EF_mu6 and

EF_mu15, single high-pT muons & jets triggers such as EF_mu24_j65_a4tchad and

the specialized J/ψ trigger EF_mu6_Trk_Jpsi_loose.

• EF_mu24_j65_a4tchad_EFxe40_tclcw

• EF_mu4T_j65_a4tchad_xe60_tclcw_loose

• EF_mu24_j65_a4tchad

• EF_mu18_tight_e7_medium1

• EF_mu4T_j65_a4tchad_xe70_tclcw_veryloose

• EF_mu24_j65_a4tchad_EFxe60_tclcw

• EF_mu24_tight_b35_mediumEF_j35_a4tchad

• EF_mu20i_tight_g5_loose_TauMass

• EF_mu6_Trk_Jpsi_loose

• EF_mu24i_tight

• EF_mu24i_tight_MuonEF
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• EF_mu24i_tight_MG

• EF_mu24i_tight_l2muonSA

• EF_mu24_tight_3j35_a4tchad

• EF_mu24_g20vh_loose

• EF_mu40_MSonly_barrel_tight

• EF_mu50_MSonly_barrel_tight

• EF_mu24_tight_EFxe40

• EF_mu24_tight_L2StarB

• EF_mu18_medium

• EF_mu24_medium

• EF_mu24_tight

• EF_mu24_tight_MuonEF

• EF_mu24_tight_MG

• EF_mu24_tight_L2StarC

• EF_mu36_tight

• EF_mu40_tight

• EF_mu20it_tight

• EF_mu24_g20vh_medium

• EF_mu18_2g10_medium

• EF_mu24_muCombTag_NoEF_tight

• EF_mu10i_loose_g12Tvh_medium

• EF_mu10i_loose_g12Tvh_medium_TauMass

170



Chapter D: List of triggers used in calibration

• EF_mu18_2g10_loose

• EF_mu10i_g10_medium_TauMass

• EF_mu20i_tight_g5_medium_TauMass

• EF_mu24_tight_3j45_a4tchad

• EF_mu24_tight_4j45_a4tchad

• EF_mu24_tight_4j35_a4tchad

• EF_mu4T

• EF_mu6

• EF_mu15

• EF_mu40_slow_tight

• EF_mu60_slow_tight1

• EF_mu22_IDTrkNoCut_tight

• EF_mu8_4j45_a4tchad_L2FS

• EF_mu6_Trk_Jpsi_loose_L2StarB

• EF_mu6_Trk_Jpsi_loose_L2StarA

• EF_mu24_j65_a4tchad_EFxe40wMu_tclcw

• EF_mu24_j65_a4tchad_EFxe60wMu_tclcw

• EF_mu6T_2b55_medium_2j55_a4tchad_L1J20_matched

• EF_mu24i_tight_muFast

• EF_mu4T_L2StarB

• EF_mu6_L2StarB

• EF_mu15_vbf_L1TAU8_MU10
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List of Muon Combined

Performance cuts

The following selection is the recommended track-based quality criteria as de�ned by the muon

combined performance group [111].

• Require a pixel b-layer hit on the muon EXCEPT where the extrapolated muon track

passed an uninstrumented or dead area of the b-layer.

• Number of pixel hits + number of crossed dead pixel sensors > 0.

• Number of SCT hits + number of crossed dead SCT sensors > 4.

• Number of pixel holes + number of SCT holes < 3.

• A successful TRT extension where expected (i.e. in the η acceptance of the TRT). An

unsuccessful extension corresponds to either no TRT hit associated, or a set of TRT

hits associated as outliers. Let NTRT hits denote the number of TRT hits on the muon

track, NTRT outliers the number of TRT outliers on the muon track, and n = NTRT hits +

NTRT outliers:

– Case 1: 0.1 < |η| < 1.9. Require n > 5 and NTRT outliers < 0.9n.

– Case 2: |η| ≥ 0.1 or |η| ≤ 1.9. If n > 5, then require NTRT outliers < 0.9n.
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