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Abstract

In this thesis we present an experimental investigation into the effects of tempera-

ture gradient in inhomogeneous superconducting circuits using a novel measuring

method that allows the detection of genuine thermoelectric flux and its full separa-

tion from spurious effects present in all other measurement attempts to date. The

method is based on the Andreev interferometer, a hybrid quantum interference de-

vice. A large number of interferometers were fabricated and tested to optimise the

parameters of the device for sensitive magnetometry whilst minimising the intrusive

effects of the read-out. To this end, a ‘folded cross’ geometry of the interferometer

was developed to minimise spurious flux coupling during measurement. Investiga-

tion of the critical current in the interferometer led to a novel π-junction device. To

avoid hysteresis during measurements a full investigation into the Josephson screen-

ing current and its effects on the interferometer was undertaken. Further device

fabrication and investigation iterations allowed us to establish the design rules for

an interferometer optimised for specific experiments. The practical elements of both

the nano-fabrication and the experimental low-temperature, low-noise set-up are dis-

cussed. Installation of an experimental set-up in a dilution fridge as well as a 3He

system allowed for investigation of the devices in a wide temperature range between

20 mK and 1.6 K. The experiment presented explains why previous measurements

were in gross discrepancy with theoretically predicted values. A theory was tested

that calculates the thermoelectric flux by minimizing the energy of the system and

uses the relationship between the thermoelectric current to the heat flow in the loop.

An excellent agreement with the experimental results was found.
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CHAPTER 1

Introduction

Investigations into thermoelectric effects in superconductors have been carried out

for almost 100 years. The early work in the 1920s and 1930s [1–5] saw no evidence

of any thermoelectric effects present in superconductors; in fact, the very existence

of thermoelectric effects was in question due to the requirement, given by Meissner,

that any thermoelectric current must be completely cancelled with a counter-flowing

supercurrent. In 1944, Ginzburg [6] stated that the complete cancellation of the ther-

moelectric current does not generally occur in inhomogeneous superconductors, and

thus the thermoelectric effect may indeed be observed in a superconductor. In 1974,

both Galperin et al [7] and Garland & van Harlingen [8] predicted the generation

of a thermoelectric magnetic flux in a loop made of two different superconductors -

the bimetallic loop.

A number of attempts were made to experimentally verify this prediction during

the 1970s and 1980s [9–13], resulting in a large range of reported thermoelectric flux

values, all in disagreement with one another. Furthermore, some of the results were

in discrepancy with the predicted values by up to five orders of magnitude. Some

of the earlier works [13] discussed the possibility that their results could be masked

by the temperature dependent penetration depth λ(T) that also arises when the
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bimetallic loop is subjected to a temperature gradient.

In 2003, during his Nobel Prize lecture, Ginzburg [14] discussed the field of

superconductivity and superfluidity, and highlighted the existence of thermoelectric

effects in superconductors as a topic of particular interest. Chapter 2 of this thesis

discusses some of the theory and experiments conducted in the field of thermoelectric

effects in superconductors.

The motivation of the work presented in this thesis was to observe the ther-

moelectic flux in a nano-fabricated bimetallic loop. In contrast to the previous

experimental efforts, that used macroscopic bimetallic loops measured with a cou-

pled SQUID, we use a nano-fabricated bimetallic loop that is coupled to a hybrid

interferometer on the same chip. All other necessary components of the experiment,

a heater, a thermometer and a magnetic field source, are also nano-fabricated onto

the same chip. The hybrid interferometer is used as a read-out device relying on the

properties of Andreev reflection; the physics behind this phenomenon, and hybrid

devices in general, are discussed in Chapter 3.

Details of the nano-fabrication techniques required to make the multi-layer de-

vices are covered in Chapter 4. All samples were fabricated using the facilities

available at the clean rooms of Royal Holloway, University of London. The low tem-

perature facilities at Royal Holloway are discussed in Chapter 5, including details of

the experimental set up of both a pumped 3He system and a dilution refrigerator.

As the work in this thesis is based around the hybrid quantum interferometer as

a read-out device it is necessary to investigate and optimise the device for optimal

operation as a detector of thermoelectric magnetic flux. A number of experiments

are performed in Chapter 6 that show that the hybrid interferometer can be oper-

ated in different regimes and can be tuned by application of a bias current. Both the

hysteretic and non-hysteretic regimes are investigated - the non-hysteretic regime

provides a sinusoidal relationship of the resistance to the phase of the junction and

is used later in the detection of thermoflux. The hysteretic regime is investigated

in its own right and is shown to behave as a latching read-out device. The crit-
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ical current dependence on temperature, junction length and control current are

also demonstrated. Finally a novel observation of the superconducting π-effect is

presented.

The full details of the investigation into the detection of thermoelectric flux, in

a bimetallic loop using an optimised hybrid interferometer are presented in Chapter

7. In this chapter, a set of equations describing the components of the magnetic

flux in each of the loops are shown which relate the measurable quantities to the

equation of a plane. The spurious flux caused by the temperature dependent λ-effect

is separated to reveal only the true thermoelectric flux.
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CHAPTER 2

Thermoelectric Paradox in Superconductors

2.1 Theory of Thermoelectric Phenomena

When a normal metal is heated at one end, a temperature gradient is produced.

This causes a diffusion of the charge carriers from one end to the other, resulting

in a potential difference between the two ends of the metal. The ‘conversion’ of a

temperature gradient to a voltage difference is known as the thermoelectric effect.

The transport equation for the electrical current density in a normal metal is given

by [15],

~j = σ ~E − η~∇T, (2.1)

where σ is the electrical conductivity, ~E is the electric field, η is the thermoelectric

coefficient and ∇T is the temperature gradient across the system.

Consider two normal metals with differing thermopowers connected together at a

junction. A voltmeter is connected across either end of the metals (see Figure 2.1).

The voltage difference measured when the junction is heated is given by,

∆V =

∫ T2

T1

(SA − SB)dT. (2.2)
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Figure 2.1: Typical measurement setup to observe the Seebeck Effect: Two different
metals, A and B, are coupled and heated to T2 at the junction. A voltmeter is connected
across regions of same temperature T1.

This is defined as the Seebeck effect where SA and SB are the Seebeck coefficients

of the two metals. T2 is the temperature of the junction where the two metals meet

- this point is heated. The other end of each metal is maintained at a constant

temperature T1. Closely related to the Seebeck effect is the Peltier effect and the

Thomson effect, each connected to one another via the Thomson relations [16]. After

the discovery of superconducting materials it was only a matter of time before their

thermoelectric properties were investigated. The first attempt to measure thermo-

electric phenomena in a circuit of two superconductors, subject to a temperature

gradient, was made by Meissner in 1927 [1]. No Seebeck effect was observed in

this experiment. Further experiments by Borelius et al [2], Keesom & Matthijs [3],

Casimir & Rademakers [4], and Burton et al [5] similarly showed no evidence of an

observable Seebeck effect. However, lack of experimental observation of the Seebeck

effect in a superconducting circuit does not mean that there are no thermoelectric

effects in superconductors [14, 15].

In 1944 Ginzburg [6] claimed that there could be thermoelectric effects in a super-

conducting circuit. The two-fluid model (see, for instance, [17,18]) states that both

a superconducting current, ~js, and a normal current, ~jq, carried in the form of quasi-

particles, exist in the superconductor. Consider a length of bulk superconductor

such that the ends are at temperatures T1 and T2, as shown in Figure 2.2. As a

result of this temperature gradient, normal quasiparticles will flow from hot to cold
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resulting in a current flow,

~jq = −η∇T. (2.3)

The normal quasiparticle current is compensated by a flow of the supercurrent in

the opposite direction. Obeying the Meissner effect, the total current in the interior

of a bulk isotropic homogeneous superconductor must be equal to zero [19, 20], ~j =

~jq + ~js = 0 thus,

~js = −~jq = η∇T. (2.4)

From this requirement it was considered impossible to observe the effects of the

thermoelectric current in a superconductor when it is exactly cancelled. This led

to textbooks of the day claiming that the thermoelectric effect is entirely absent

from superconductors [21]. However, in the case of a non-uniform or anisotropic

superconductor the quasiparticle current and supercurrent do not exactly cancel

one another, leading to a finite current flow within the magnetic field penetration

depth, λ(T ). An example of a non-uniform superconducting system is described in

the next section.

Figure 2.2: A rod of superconducting material with an established temperature gradient
across its length is shown. The normal component of the current flows from one end of
the rod to the other. Due to the requirement that the total current in a superconductor
must be equal to zero the superconducting component flows in the opposite direction to
compensate the normal current flow.

2.1.1 The Bimetallic Loop

It was suggested in 1974, by two separate groups [7, 8], that a non-uniform super-

conductor can be created by forming a closed ring of two different superconductors,

resulting in the superconducting thermocouple or bimetallic loop. A simple schematic
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of the bimetallic loop is shown in Figure 2.3.

From the second Ginzburg-Landau equation the supercurrent can be written as,

~js =
~nse

2m
∇θ − e2

mc
ns
~A. (2.5)

Recall that ~jn = −~js, therefore,

∇θ = 2m

~nse
η∇T +

2e

~c
~A. (2.6)

Equation 2.6 is then integrated over the contour passing through the interior of the

bimetallic ring. Ginzburg-Landau theory also requires that the wavefunction must

be single-valued, that is,

∮

∇θdl = 2πn, n = 0, 1, 2, . . . (2.7)

Therefore, integrating Equation. 2.6 results in,

2πn = −2m

~e

∫ T2

T1

(

σ1α1

ns1

− σ2α2

ns2

)

dT +
2πΦ

Φ0

, (2.8)

where,

∆θ =
2m

~e

(

σ1α1

ns1
− σ2α2

ns2

)

∆T. (2.9)
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Figure 2.3: A bimetalic loop made of two different superconductors (S1 - purple, S2 -
green) with junctions maintained at temperatures T1 and T2, where T2 > T1. In the bulk
of the superconductor the normal current is cancelled by a counterflowing supercurrent.

At this point, most studies in the available literature connected ∆θ to ΦTh/Φ0.

As stated previously, a potential difference will appear across a thermocouple made

of two differing normal metals. Although Van Harlingen et al [12] note that the anal-

ogous situation in a superconducting thermocouple is a quantum mechanical phase

difference ∆θ appearing across the thermocouple they too immediately connect ∆θ

to ΦTh/Φ0.

A more recent paper by Gurevich et al, published in 2006 [22], takes a different ap-

proach. When a bimetallic loop is subject to a temperature gradient, a circulating

current Ics is established within the superconducting penetration depth λ(T ) (see

Section 2.3). Gurevich et al suggest a method of calculating the circulating current

by minimising the total energy of the bimetallic loop,

W =
1

2
(In − Ics)

2Lk +
1

2
I2csL, (2.10)
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which results in,

Ics = In
Lk

Lk + L , (2.11)

where Lk is the kinetic inductance of the loop and L is the geometric inductance.

The method detailed above results in the thermoelectric flux, ΦTh, being determined

by the product of the circulating current and the geometrical inductance,

ΦTh = LIcs = In
LkL

Lk + L . (2.12)

This argument differs from that of Equations 2.8 and 2.9 which rely on complete

compensation of the currents, ~jn = −~js, thus Ics = 0. Gurevich et al show that if

the circulating current is zero then no thermoelectric flux should be observed.

2.2 Experimental Read-Out of Thermoflux

The first experimental measurement of thermoflux was presented by Zavaritskii in

1974 [9]. A closed superconducting loop of Sn-Pb was measured and showed results

comparable to that predicted by theory. However, a series of experiments performed

after Zavaritskii show discrepancies with theory. In 1976, Falco [10] observed ther-

moflux of the order 10−3 Φ0K
−1 using SQUID detection of flux in a Nb-Ta bimetallic

loop. A number of experiments by van Harlingen et al [11,12] were performed using

a geometry analogous to that of the bimetallic ring. The device was a toroid made

from two different superconductors (In and Pb) coupled to a SQUID magnetome-

ter (schematic of toroid and measurement setup shown in Figure 2.4). The results

from this experiment showed a very large discrepancy from theory with reported

thermoflux as large as 105Φ0 K
−1.
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Figure 2.4: Experimental setup of experiment performed by van Harlingen et al [11, 12].
(a) shows the device which is a toroid made of two different superconductors, in this case,
indium and lead. Heating of one of the faces results in a temperature difference and a
magnetic flux forming within the toroidal cavity. (b) shows a more detailed look at the
means of detecting the thermoflux - a superconducting flux transformer allows coupling
between the toroid and the SQUID magnetometer. The flux in the cavity induces a current
in the transformer which is then detected by the SQUID. Image edited from [12].

The authors note that, despite taking all possible precautions, it is possible their

results are due to measurement of ‘spurious effects’. A possible explanation of the

large discrepancies between some of the experiments and theory was given by Pe-

grum & Guénault [13]; they make the suggestion that the previous experiments may

have been measuring a change in flux due to the temperature induced changes in

the superconducting penetration depth, λ(T ) (see Section 2.3). Pegrum & Guénault

subsequently note that the trapped flux in the system should be very small in order

to observe true thermoflux. To achieve this, one must have the ability to control

the number (kΦ0) of trapped flux within the bimetallic loop in their experiment.

With no control of the flux trapped inside the bimetallic loop, large measurements

of the λ(T )-effect can be mistaken for unusually large thermoelectric flux observa-

tions. Kozub [23] makes the assertion that previous measurements may be including

a spurious component from the redistribution of flux caused by the temperature de-

pendence of λ(T ). Gurevich et al [22] also cast doubt on the experiments presented

by van Harlingen et al. In particular, although the authors take great care to reduce

background magnetic field in their bimetallic device (the toroid), a large magnetic

field is able to penetrate the gap between the toroid and the measuring coil. Again,

due to the temperature dependent nature of λ(T ) the magnetic flux trapped in the
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gap can indeed be temperature dependent and mistaken for a very large thermoflux.

In 1985, Kozub [24] suggested another mechanism for the observation of thermoflux

far higher than that predicted by theory. Consider the contact region between the

two superconductors, one with higher Tc and one with lower Tc; it is possible that

there is a large contact thermoelectric contribution to the measured flux due to

phonon drag [25]. At the contact, the phonons from one superconductor (with high

Tc) are irradiated into the other superconductor ‘dragging’ the quasiparticles with

them. Due to this effect, the measured thermoflux can exceed theory by up to two

orders of magnitude (by a factor of ǫF/ΘD [24–26]). However, the enhancement fac-

tor from phonon drag is insufficient to resolve the disparity between theory and the

experimental results.

2.3 Temperature Dependent λ(T)-effects in

Superconductors

When a superconducting material is placed into a magnetic field it is expected that,

due to the Meissner effect, the magnetic field will be expelled from the supercon-

ductor. This is not precisely what happens; instead the magnetic field is able to

penetrate the superconductor up to a certain distance from the surface. Consider

a superconductor, the surface of which resides on the plane x = 0. By solving the

second London equation, subject to boundary conditions B(0) = B0 and B(∞) = 0,

we arrive at the following,

B = B0e
−x/λ, (2.13)

where,

λ =

√

m

µ0nse2
, (2.14)

m is the effective mass, e is the charge and ns is the density of Cooper pairs. The

consequence of the penetration depth is that the magnetic field can indeed penetrate

a superconductor decaying over the characteristic decay length, λ. As λ depends on
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the number density of superconducting carriers it follows that the penetration depth

is a temperature dependent quantity; as temperature is increased the penetration

depth increases. The temperature dependence of λ is given by,

λ(T ) =
λ(0)

[1− (T/Tc)4]1/2
, (2.15)

where d is the film thickness. The values of λ(0) are given for a number of super-

conductors in Table 2.1

Table 2.1: Penetration depth values given for a selection of superconductors. Materials
used within this work shown in bold. Data collated from [20,27].

Al Cd In Nb Pb Sn Tl YBCO
λ(0) (nm) 50 130 64 47 39 51 92 170

It is important to note that the λ(T )-effect can mask the true thermoelectric flux: In

1978, further measurements of superconducting loops by Guénault & Webster [28]

show evidence of a thermally generated magnetic flux. The experimental set-up

was identical to that of [13] but this time the authors measured a loop made of a

single superconductor - tin. As this is a uniform superconductor, the thermoflux, as

defined by Ginzburg, should not be observed; this experiment serves as a test of the

temperature dependence of the λ(T )-effect. The temperature dependence of this

flux varied as (1− (T/Tc)
4)−1/2 as expected for a penetration depth effect. The sign

and magnitude of the signal depends on the flux trapped within the loop unlike a

true signal of thermoflux which should depend only on the direction of the tempera-

ture gradient. This experiment further highlights the importance of controlling the

trapped flux within the bimetallic loop and accounting for the λ(T )-effect inherent

in any of these measurements.

When the penetration depth varies due to a change in temperature it is clear that

the effective area of the superconducting loop will also change. The geometrical loop

inductance and thus the mutual inductance between two loops are also subject to

change.
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Brandt and Clem [29] state that in superconducting ring structures, such as SQUIDs,

a finite λ(T ) is of particular importance. Some of the magnetic flux is able to pen-

etrate not only the free space inside the SQUID loop but also in some of the su-

perconducting film making up the ring. As well as a change of effective area, the

geometrical inductance is altered.

Hao et al [30] have performed an experiment to determine the temperature de-

pendent penetration depth in washer-type SQUIDs. They state that conventional

rule-of-thumb expressions for inductance and effective area do not take into account

the flux penetration into the thin-film superconductor. The measured penetration

depth is shown in Figure 2.5. Note that the authors present the Pearl length, Λ,

which is related to the London penetration depth by Λ = (λ20/d)/[1− (T/Tc)
4].

Figure 2.5: Penetration depth Λ(T ) vs T . Image taken from Hao et al [30].
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2.4 Summary

In this chapter, the field of thermoelectric effects in superconductors have been in-

troduced. A brief history of some of the earliest experiments are presented which

searched for Seebeck effects in superconductors - all of these early experiments lacked

an experimental observation of the Seebeck effect. A brief discussion of Ginzburg’s

1944 prediction has been presented which states that a thermoelectric current can be

carried by the normal quasiparticles which exist in a superconductor. The supercon-

ducting bimetallic loop is introduced as a possible system in which the thermoelec-

tric magnetic flux may be observed. A summary of the previous experimental efforts

towards observing the thermoelectric magnetic flux are also presented. The large

discrepancy between experimental results and the values expected from the theory

is highlighted: Possible causes of this discrepancy are also mentioned including the

temperature-dependent λ-effect which is discussed in more detail in the latter part

of this chapter.
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CHAPTER 3

Hybrid Quantum Interference Devices

3.1 Andreev Reflections and Proximity Effects in

Hybrid SN Systems

3.1.1 The Superconducting Proximity Effect

When a normal metal is placed in good contact with a superconductor, Cooper pairs

will penetrate into the normal metal and remain coherent for a certain distance. A

result of this is that a thin layer of normal metal close to the SN boundary will

become superconducting. There is also a reduction in the Cooper pair density in

the superconductor close to the SN boundary. This can be described in terms of

the superconducting order parameter Ψ. Ginzburg & Landau described the order

parameter such that |Ψ(r)|2 = ns, where ns is the density of Cooper pairs [31].

Consider the situation where a normal metal and superconductor are in contact

such that the interface between them is at x = 0. In the normal metal the order

parameter will be small (ψ ≪ 1) so the first Ginzburg-Landau equation can be
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Figure 3.1: Variation of the order parameter about the NS interface.

written in the following form;

−ξ2n
d2ψ

dx2
+ ψ = 0. (3.1)

Using the condition that ψ will tend to zero deep in the normal metal (as x → ∞)

the solution is given as,

ψ = ψ0e
−|x|/ξn. (3.2)

The above is a simplified model but is qualitatively descriptive of the order parameter

penetration. A more rigorous treatment is given in [32] which derives the coherence

length as given in Equation 3.3. In the clean limit, when the mean free path, ln is

larger than the coherence length (i.e. ln > ξ0) the normal coherence length is given

as,

ξn =
~vF

2πkBT
. (3.3)

In the opposite case, in the dirty limit (ln < ξ0), the coherence length is given as,

ξn =

√

~vFln
6πkBT

. (3.4)

The superconducting coherence length [33] is given by,

ξ0 = a
~vF
kBTc

, (3.5)
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where the microscopic BCS theory finds a = 0.18 [34]. A physical interpretation of

this quantity is that of the size of the Cooper pair state.

3.1.2 Andreev Reflection:

A Microscopic Mechanism of the Proximity Effect

Consider the interface between a superconductor and a normal metal. At low tem-

peratures, (∆ ≫ kBT ) a quasiparticle of energy within kBT of the Fermi energy,

incident on the SN boundary is unable to enter the superconductor. The energy

gap, ∆, restricts tunnelling of the normal quasiparticle as there are no states avail-

able in the superconductor [35]. In 1964, Andreev [36] proposed a mechanism to

explain how charge transport can take place across an SN interface. When an elec-

tron with an energy above the Fermi level is incident on the SN interface, it combines

with another electron from below the Fermi level forming a Cooper pair. Whilst the

Cooper pair is able to travel into the superconducting condensate, a hole is Andreev

reflected back into the normal metal. The Andreev reflection is a retro-reflection

of the electron as a hole, whereby the velocity and charge are reversed, resulting in

the hole retracing the path of the incoming electron. In contrast to an ‘ordinary’

reflection, all components of momentum are conserved during an Andreev reflec-

tion [37, 38]. An important feature of Andreev reflection is that the reflected hole

will acquire a macroscopic phase χ from the superconductor. The superconducting

order parameter is given as ∆eiχ; therefore, the phase change associated with an

incident electron of energy ǫ = ǫF + δǫ is given as,

δφ = χ+ arccos

(

δǫ

∆

)

. (3.6)

The distance over which the superconducting correlations can travel into the normal

metal whilst remaining coherent is given by the energy dependent coherence length
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scale [39] described by,

Lδǫ =

√

~D

δǫ
, (3.7)

where D = 1
3
vFl is the diffusion constant. At δǫ = kBT the above equation is

identical to the dirty limit coherence length given by Equation 3.4. It is useful to

define the energy at which the electrons will remain coherent over the entire length

of the normal metal conductor. This energy is defined by letting Lδǫ = L and is

known as the Thouless energy [40],

ǫTh =
~D

L2
. (3.8)

There is, of course, an ultimate upper limit on the length over which the electrons

will remain coherent. This is considered by recognising that scattering events will

affect the phase, causing the electrons to lose coherence. The length at which the

electrons are no longer correlated is known as the phase breaking length, Lφ =
√

Dτφ

where τφ is the normal metal phase breaking time [41]. It will be seen later that this

length scale is important, allowing for long-range proximity effects.

3.1.3 The Josephson Effect in SNS Junctions

In 1962, Brian Josephson [42] predicted that a supercurrent will flow between two

superconducting electrodes separated by a tunnelling barrier. He defined the super-

current in terms of the phase difference between the two electrodes as follows in the

fundamental Josephson current-phase relation,

Is = Ic sin(χ1 − χ2) = Ic sinφ, (3.9)

where χ1,2 are the macroscopic phases of the superconducting electrodes and Ic

is the critical current of the junction. This fundamental relationship is known as

the dc Josephson Effect. The critical current defines the maximum dissipationless

supercurrent that the junction can support; if the current exceeds Ic then a finite
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voltage drop will be present across the junction. The second fundamental Josephson

equation, the ac Josephson effect, relates a time-varying phase to a fixed voltage drop

across the junction,

φ̇ =
2e

~
V̄ =

2π

Φ0

V̄ . (3.10)

Although Josephson’s predictions were based on an insulating tunnel junction be-

tween two superconductors (SIS), Josephson junction behaviour has been observed

in a number of different ‘weak links’. A weak link is simply defined as the region

between two superconducting electrodes through which the critical current is much

reduced from that of the electrodes [43]. In addition to the aforementioned SIS

geometry, the weak link can be made by sandwiching a normal metal between two

superconducting electrodes creating a SNS junction. Weak links can also be manu-

factured in any number of ScS geometries where ‘c’ denotes a constriction [33].

Figure 3.2: Superconducting wavefunctions overlapping in the normal region of a SNS
junction. Finite order parameter and thus finite supercurrent observed in the normal
region.

Consider now the SNS geometry where a normal metal is placed between two super-

conducting electrodes as shown in Figure 3.2. With a normal metal of sufficiently

small length (L < 2ξn) the superconducting wavefunctions will overlap. This means
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that coherent Cooper pairs can travel the length of the normal metal and support

a finite supercurrent through the system. The critical current in the normal part of

the SNS junction is lower than the critical current in the superconducting electrodes.

This is due to the reduced condensate amplitude in this region, and thus, a reduced

Cooper pair density. It was shown by de Gennes [44, 45] that the critical current is

related to the length of the junction,

Ic(L) ∝ e−L/ξN . (3.11)

It follows that the temperature dependence should be given by [46],

Ic(T ) ∝ e
√

−T/T0 , (3.12)

where T0 is a fitting parameter.

However, experimental results from Courtois et al [47] show a better fit to the typical

ballistic dependence of,

Ic(T ) ∝ e−T/T1 , (3.13)

where T1 is a fitting parameter.

An experimental and theoretical study in 2001 by Dubos et al [45, 46] explained

the measured temperature dependence using quasiclassical Green’s functions in the

diffusive limit. For long junctions (L > ξn) the critical current can be written as,

eRNIc =
32

3 + 2
√
2
ǫTh

[

L

ξn

]3

e−L/ξn , (3.14)

Leading to a temperature dependence of

Ic = T 3/2e−
√
T . (3.15)
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3.1.4 Phase-periodic Electron Transport

In 1982, Spivak & Khmelnitskii [48] predicted that the weak localization correction

to the resistance of a normal metal between two superconducting electrodes should

oscillate as a function of the phase difference between the superconductors. The

first experimental observation of phase interference effects in a SNS junction was

presented by Petrashov et al in 1993 [49]. The device consisted of normal metal

rings with superconducting ‘mirrors’ placed in different geometries (see Figure 3.3).

Evidence of giant amplitude conductance oscillations were observed with a value of

δG ≈ 3 × 102(e2/h), two orders of magnitude higher than expected. An additional

h/4e period was also evident in the oscillations of some of the devices. Due to the

geometry of these devices it was impossible to control the phase between the super-

conductors.

Figure 3.3: (a) shows the typical Aharonov-Bohm dependence of the resistance on mag-
netic field. Oscillations with flux quantum period, Φ0 = h/2e are visible. (b) shows the
device with superconducting ‘mirrors’ perpendicular to the current flow - this geometry
also shows the h/2e oscillations but at an enhanced amplitude of almost two orders of
magnitude. (c) shows the device with the ‘mirrors’ parallel to the current flow. A similar
amplitude enhancement to that of (b) was seen in addition to a h/4e period of the oscilla-
tions. This extra periodicity was attributed to Andreev reflections at the interfaces. Image
taken from [49].

In 1994, an experiment performed by de Vegvar et al [50] also showed phase de-

pendent resistance oscillations. The geometry of this device was a Nb-Au-Nb SNS

junction connected in parallel to an array of SIS junctions. By passing a current

through the SIS array the phase difference between the superconducting electrodes

could be tuned. Although the devices showed h/2e periodicity, the oscillations
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demonstrated arbitrary phase at ∆φ = 0. Also in 1994 Petrashov et al [51] im-

proved upon their previous experiment by connecting the superconducting ‘mirrors’

with a superconducting wire. Attached to the loop was a control line; this geometry

allowed direct manipulation of the phase difference between the superconductors

using either a ‘control current’ or by varying the magnetic field, and thus, the flux,

linking the loop. The geometry of the device and phase dependent resistance oscil-

lations are shown in Figure 3.4. The phase difference between the superconductors

Figure 3.4: Schematic and SEM image of sample geometry from Petrashov’s experi-
ment [52]. Silver (or antimony) was used as the normal metal and was connected to
aluminium superconducting leads which formed a loop with a control current line. Os-
cillations showing phase-dependent resistance oscillations where the phase is controlled
using either a magnetic field or a control current. Note the non-sinusoidal nature of the
oscillations. Data shown taken from the Al/Ag sample, Al/Sb not shown.

is described [52] by,

φ = 2π
Φext + LIctrl

Φ0
. (3.16)

3.1.5 The Re-entrance Effect

The results from Petrashov’s 1995 experiment [52] showing large amplitude conduc-

tance oscillations were analysed by Nazarov & Stoof [53]. They concluded that

the diffusion coefficient, D, of the quasiparticles is altered by penetrating supercon-

ductivity causing a maximum in the conductance at temperatures close to to the

Thouless energy, ǫTh = ~D/L2. A remarkable feature of the conductance of an SN

interface is that, at low energies (low temperature and low bias), it does not decrease
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toward zero as one would expect from BTK theory [54]. Instead it was observed that

as the SN interface is lowered in temperature the conductance will increase back to

its normal-state value1 in the absence of electron-electron interactions [55,56]. This

non-monotonic behaviour of the SN conductance is known as the re-entrance effect.

The re-entrance effect can be explained by accounting for the two separate terms

that contribute to the conductance of the normal metal [57];

δσ(ǫ) = δσDOS(ǫ) + δσAN(ǫ). (3.17)

The first term, δσDOS(ǫ), is related to a decrease of the density of states in the normal

metal as the temperature is reduced which results in a decrease of the conductance.

The second term, δσAN(ǫ), is known as the anomalous (or Maki-Thompson [58, 59])

contribution and results in an increase of the conductance. It is found that at ǫ = 0

the two contributions are exactly equal leading to a ‘re-entrance’ of the conductance

to its normal state value. At higher energies the anomalous term exceeds that of

the DOS term resulting in a maximum in the conductance which occurs when the

energy in the system is roughly equal to the Thouless energy (i.e. ǫTh ≈ eV, kBT ).

The effect of the two contributions to the conductance is shown in Figure 3.5.

1For an interesting discussion on why there is a finite resistance at a SN interface see Ref [38]
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Figure 3.5: Temperature dependence of the conductance. The total conductance δσ is
shown by the solid line. The total conductance is determined from two contributions. The
density of states term, δσDOS, is shown by the dotted line. The anomalous term δσAN is
depicted by the dashed line. Image edited from [60].

The first experimental observation of re-entrance was performed by the group of

Pannetier [61] using a copper loop in contact with a superconducting aluminium

island. When all involved energies were below that of the Thouless energy, the pre-

dicted re-entrance of the conductance was observed.

Further experiments performed by Petrashov et al in 1996 [62] and 1998 [63] con-

firmed the predictions of Nazarov & Stoof showing a maximum in the oscillation

amplitude close to the Thouless energy with a reduced amplitude at both higher

and lower temperatures. The theoretical predictions and the experimental results

can be seen in Figure 3.6.
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Figure 3.6: (left) shows the theoretical curves predicted by Nazarov and Stoof showing
the a maxima in the resistance oscillations. (right) Experimental data taken by Petrashov
et al for two Ag-Pb devices confirming the maxima in the resistance oscillations occurring
close to ǫTh. Images taken from [53] and [63] respectively.

It is shown in Equation 3.11 that for a typical short Josephson junction the critical

current decays exponentially as L/ξn. In contrast to this result are the conductance

oscillations which decay as a power law in 1/T [64]. The separation of these two

different contributions was shown by Courtois et al [65] demonstrating the contrast-

ing short-range and long-range effects of the two contributions. Their results can be

seen in Figure 3.7.
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Figure 3.7: Temperature dependence of the critical current, Ic, shown (squares) on the
left axis demonstrating the exponential decay with increasing temperature. The circles
(right axis) demostrate the 1/T dependence of the long range conductance oscillations.
Image edited from [65].

3.2 Metastable States in Hybrid Interferometers

It was also observed that the phase-dependent resistance oscillations were non-

sinusoidal for the Ag/Al structure in Petrashov’s experiment. It was suggested

by van Wees et al [66] that due to L being comparable to ξn a supercurrent must

flow between the two electrodes. An additional flux term due to the supercurrent-

induced flux through the loop is added so the total flux threading the loop is given

as,

Φ = Φext −LIc sin
(

2πΦ

Φ0

)

, (3.18)

which can be rewritten conveniently as;

ϕ = ϕext − β sin(ϕ), (3.19)

where ϕ = 2πΦ/Φ0, ϕext = 2πΦext/Φ0 and β = 2πLIc/Φ0.

Of importance is the screening term, β; at values of β > 1 the curve describing
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ϕ(ϕext) becomes increasingly non-linear. This gives rise to stable and unstable

branches. In order to investigate this, Likharev’s treatment [67] of the rf-SQUID is

discussed. The potential energy of the system is given by,

US(ϕ) = EJ

[

1− cosϕ+
(ϕ− ϕext)

2

2β

]

+ const. (3.20)

It is shown in Figure 3.8 that several minima in the energy-phase diagram are present

when β > 1. The extrema occur at;

ϕ− ϕext

β
= − sinϕ. (3.21)

The critical flux ϕc can be determined from the inflection point criterion U ′′
S (ϕ) = 0.

Therefore, cos(ϕc) = −1/β. With this substituted back into Equation 3.20, the

critical flux can be found at,

ϕc =
π

2
+ arcsin(β−1) +

√

β2 − 1. (3.22)

This system can be modelled as a particle travelling in the potential given by Equa-

tion 3.20 [67,68]. By splitting the potential into its parabolic and oscillating compo-

nents and varying ϕext, one can observe a shift of the oscillating component relative

to the parabolic part, as shown in Figure 3.8. At zero applied flux the particle is

trapped in a single minimum. By increasing ϕext the particles energy is smoothly

raised until, at ϕext = π, the two energy wells are at the same energy and the particle

is trapped in one of them. Further increase of ϕext results in a tilting of the system

trapping the particle in a higher energy state. The barrier between the wells is low-

ered as the external flux is increased. Eventually the barrier is reduced sufficiently

to allow escape of the particle to the lower well. The escape of the particle results

in a sudden change of phase in the system, observed experimentally as a sharp drop

in the measured resistance.
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Figure 3.8: (a) ϕext = 0: With zero applied flux the particle sits in the single minima.
(b) ϕext = π As the flux is increased the particle is trapped in the right-hand-side well and
increases in energy. (c) ϕext = 2π: Profile of potential is 2π-periodic so identical to the
first image, however the particle is now trapped in a higher energy state. (d) ϕext = ϕc: As
applied flux reaches its critical value the barrier is reduced sufficiently to allow the particle
to fall down to the lower energy state.

The experimentally observed response of the resistance is shown in the data from

Petrashov et al [62] shown in Figure 3.9. They show the temperature dependence of

β and the corresponding changes to the magnetoresistance line-shapes. A discussion

of the screening effect in superconducting systems can be found in Refs [67, 69].

Figure 3.9: Left panel shows a sinusoidal line-shape which would be expected to have
β < 1, this data is taken at T = 3.75 K. As the temperature is reduced to T = 1.3 K
a hysteretic line-shape is observed corresponding to β > 1. The jumps in the resistance
correspond with the unstable branches of the non-linear ϕ(ϕext) dependence. Image taken
from [62].
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3.2.1 Control of the Screening Current with Bias Current

It has already been discussed that the critical current of a SNS junction can be

varied by changing the temperature of the junction. It is also possible to change the

critical current using a ‘control current’ applied perpendicularly to the junction as

shown in Figure 3.10.

Figure 3.10: Schematic of SNS junction with normal control line attached. Normal metal
is shown in orange, superconductor is shown in blue. A control current is driven through
the normal metal part of the cross, perpendicular to the SNS junction.

As there is a finite voltage difference across the control line, the electrons in the

control current have a higher energy than the electrons at equilibrium in the SNS

junction. The excess of high energy electrons modifies the electronic distribution

in the SNS junction. The occupation of bound states carrying current in opposite

directions are equilibrated resulting in a reduction of the supercurrent magnitude

[70]. A more in-depth discussion regarding the Andreev bound states and the effect

of a non-equilibrium distribution function is described in the following paragraphs.

When a quasiparticle is Andreev reflected at both NS interfaces an Andreev bound

state is created. In essence a quasiparticle reflected at both NS interfaces can be

considered as the transport of a Cooper pair between the superconducting electrodes.

This means that the Andreev bound state contributes to the supercurrent across the
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junction. A discrete spectrum of bound states are formed at equally spaced energy

levels up to ∆ [71]. Each level can contribute to the current in a positive or negative

direction. At ϕ = 0 the net supercurrent is zero; however, a phase difference results

in a finite supercurrent determined by the contribution of each electron and hole

component.

Is =

m
∑

n=0

[I+(En)f
+(En) + I−(En)f

−(En)], (3.23)

where I−(En) and I+(En) define the current contribution of the electron and the

hole, which are of equal magnitude and opposite direction. f− and f+ define the

occupation probability of the state. Clearly the occupations can be defined as

f+(En) + f−(En) = 1, and thus, f+(En) = 1 − f−(En). Equation 3.23 can sub-

sequently be expressed as,

Is =
m
∑

n=0

I(En)[1− 2f(En)]. (3.24)

In the diffusive regime the discrete Andreev states are replaced with an energy

dependent spectral current [72],

Is ∝
∫ ∞

−∞
ℑ(jE)[1− 2f(E)]dE. (3.25)

It is clear from Equations 3.23, 3.24 and 3.25 that the supercurrent is dependent

on the occupation of the electronic states. Volkov [73] first proposed, in 1995, that

the supercurrent in a SINIS junction could be changed by varying the distribution

function of the wire, also suggesting that the SINIS may become a π-junction if the

voltage exceeds a certain value. In 1998, Morpurgo et al [70] also claimed that the

distribution function has an effect on the supercurrent in an SNS junction.

The distribution function of a mesoscopic normal metal wire is determined by the

quasiparticle-quasiparticle interactions; this is the dominant inelastic scattering pro-

cess occurring at low temperatures. Consider a mesoscopic normal wire between

two bulk normal reservoirs. The steady state distribution function for this system
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is satisfied by the Boltzmann equation [74–76];

1

τD

∂2f(x, E)

∂x2
+ Icoll(x, E{f}) = 0, (3.26)

where x is the position along the wire, E is the energy, τD = L2/D defines the

electron diffusion time, and Icoll is defined as the ‘collision integral’. In the absence

of electron-phonon scattering events, (i.e. τph > τD) only electron-electron scattering

processes are considered. Two possible scenarios can now occur depending on if

electron-electron scattering can take place over the length of the wire or not. In the

case that τee < τD, electrons are able to interact with one another over the length of

the wire and thus the distribution function is determined by these inelastic collisions.

In this regime the distribution function is described by a typical Fermi function but

with an elevated effective temperature,

Teff =
√

T 2 + x(1− x)(aV )2, (3.27)

where a is a constant, which at the centre of the wire is equal to 3.2KmV−1.

Morpurgo et al [77] show that as the voltage (and Teff) is increased, the critical

current through the SNS junction is reduced as shown in Figure 3.11.
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Figure 3.11: Critical current as a function of the effective temperature. The deviation be-
tween perfect agreement between the two is attributed by the authors to the non-negligible
electron-phonon interaction above 1K. Image taken from [77].

Let us now consider the second regime, where τee > τD. In this case no electron-

electron scattering takes place through the mesoscopic wire, which means Icoll = 0.

Therefore the Boltzmann equation can be solved as follows,

f0(x, E) = (1− x)

(

1

1 + exp[E/kBT ]

)

+ x

(

1

1 + exp[(E + eV )/kBT ]

)

. (3.28)

The form of the solution taken at an equal distance between the two reservoirs biased

at ±V is given as,

f(E) =
1

2

(

1

1 + exp[(E + eV )/kBT ]
+

1

1 + exp[(E − eV )/kBT ]

)

. (3.29)

The distribution function f(E) is effectively describing the superposition of two

Fermi-Dirac distributions, one from the reservoir biased at +V , and one from the

reservoir biased at −V . This manifests as a double-step feature in the distribution

function of the normal wire.
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3.2.2 Experimental Observations of π-states

The following discussion describes what happens to the observable supercurrent

when the non-equilibrium double-step distribution function is controlled. As the

control voltage is increased, the width of the double-step function also increases.

An increasing number of states are thus excluded from the contribution to the su-

percurrent as the control voltage is increased. Figure 3.12 shows the theoretical

plot by Heikkilä [78]. The black line represents the spectrum of supercurrent states,

whilst the solid blue line shows a typical double-step distribution function. By in-

tegrating this function it is clear that the states corresponding to f(E) = 0 are

excluded from contributing to the observable supercurrent. The supercurrent is re-

duced to zero when the contribution of positive and negative supercurrent-carrying

states are equalised. Increasing the control voltage further results in an interesting

case whereby all the positive supercurrent-carrying states are excluded and only

negative states contribute to the observable supercurrent. At this point, the Joseph-

son current-phase relation changes from Is = Ic sin φ to Is = Ic sin(φ + π) with the

supercurrent now exhibiting π-junction behaviour.

Baselmans et al [79] (see also later work in Ref [80]) were the first group to experi-

mentally observe π-junction behaviour as shown in Figure 3.13. They fabricated a

Nb-Au-Nb SNS junction with a perpendicularly attached gold control line. In order

to create the desired step-like distribution function, the control line was connected at

either end to ‘bulk’ (475µm thick) gold reservoirs which were biased with a voltage

difference, V .
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Figure 3.12: (a) shows the spectrum of supercurrent-carrying states (black, right axis).
The occupation number of correlated pairs is also shown (left-axis). Both an equilibrium
distribution (red) and a non-equlibrium double-step distribution (blue) are shown. (b)
shows the voltage dependence of the supercurrent (blue). The temperature dependence of
the supercurrent is also shown (dashed). Image edited from [78].

Experimentally, upon an increase of the control voltage a suppression and re-emergence

of the critical current was observed. This is because it is the magnitude of the su-

percurrent that is actually measured. In order to show that the system does indeed

enter the π-state, Baselmans et al also measured the phase dependent resistance,

∆R, at control voltages corresponding to the two different states. Figure 3.13 (e)

shows that the phase of the system does change and proves that the π-state was

observed.

Shaikhaidarov et al [81] reproduced the π-effect experiment in a similar geometry

to Baselmans et al. In addition, they showed that it was possible to observe the

π-effect with no current being driven through one of the SN interfaces - the so called

‘dangling arm’ experiment. Huang et al [82] fabricated a similar device to that mea-

sured by Shaikhaidarov, this time omitting one of the normal reservoirs entirely,

resulting in a three terminal device. Again the π-junction behaviour was observed.
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Figure 3.13: Highlights of the experiment by Baselmans et al. (a) gives an example of the
double-step distribution function. (b) shows the sample geometry with the SNS junction
with a gold control line attached perpendicularly to the centre of the SNS. Note that the
points 1,2 and 3 correspond to the different distribution functions. (c) is the measurement
of the critical current as a function of the control voltage It is clear that as the control
voltage is increased the critical current through the SNS junction is reduced. The critical
voltage is reached at approximately 0.52 meV at which point the system enters the π-state.
(d) shows the I-V curves at three different control voltages. (e) shows the change of sign
of the control line subject to the same three control voltages. The change of sign of ∆R is
considered proof that the system enters the π-state. Image edited from [79].

3.3 Hybrid Quantum Interference Devices

and Applications

Having gone through some of the basic physics behind the interferometer and its

properties, it is interesting to have a look at some of the applications these types

of devices have been used for. Clearly the device shares many similarities with

SQUIDs; in fact, a number of experiments have been performed using a HyQUID in-

stead. It is known that superconducting circuits interrupted by Josephson junctions

can contain a persistent current, which can flow either clockwise or counter-clockwise

providing two qubit states [83]. Qubits are the building blocks of quantum comput-

ing, and superconducting circuits are one of the proposed systems that have received

a lot of attention in recent years. Spectroscopy of a persistent current qubit was
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performed by Chiorescu et al [84] using a galvanically coupled SQUID circuit. In

2005, Petrashov et al combined the Andreev interferometer loop with a four-junction

Josephson circuit (see Figure 3.14) in order to probe the persistent current states

of the quantum circuit [85]. They were able to perform a continuous readout of the

ground state. Full details of the experiment can be found in Refs [86, 87].

Figure 3.14: SEM images of the device made by Petrashov et al [85]. (left) shows the
main superconducting loop connected to the Andreev interferometer and the four-junction
Josephson circuit. (middle) shows the typical interferometer - there is a phase difference
between c and d which is determined by measuring the oscillating resistance across a and
b. (right) shows a higher magnification image of the Josephson circuit.

More recently the HyQUID has been adapted to incorporate a ferromagnetic disc

into the device with the hope of seeing effects of the long range triplet in supercon-

ductors [88,89]. In 2010, Giazotto et al [90] presented a very similar device called the

superconducting quantum interference proximity transistor (SQUIPT) comprised of

a superconducting loop interrupted by a normal metal. The device also showed the

typical periodic magnetoresistance oscillations as shown in Figure 3.15 (b). An im-

portant figure of merit that the authors measure and discuss is the ‘flux-to-voltage

transfer function’ (shown in Figure 3.15 (c)).
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Figure 3.15: (left) SEM image showing SNS contact of device using Al for superconductor
and Cu for the normal metal. Interferometer attached to superconducting loop not shown.
(center) Magnetoresistance oscillations taken at different bias currents. (right) Flux-to-
voltage transfer function ∂V/∂Φ at different bias currents. Image edited from Giazotto et

al [90].
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3.4 Summary

In this chapter, the physics of Andreev reflection and the proximity effect has been in-

troduced. A number of important length and energy-scales are discussed which lead

to the phase-periodic electron transport across a normal metal junction between two

superconductors. A number of early experiments are discussed, particularly those

which demonstrated control of the phase-periodic oscillations by means of either an

externally applied magnetic flux or current. The possibility of metastable states

existing in hybrid interferometers are discussed by modelling the system as an rf-

SQUID. The metastable states occur when the screening parameter β ≈ LIc > 1.

As the value of β can be varied by changing the critical current of the junction,

experiments exhibiting direct control over the critical current with a control current

are discussed. Further control of the supercurrent has been shown during the discus-

sion of previous experiments in which a π-state is observed. Finally, a few examples

of hybrid interferometers which have been used experimentally as read-out devices

are highlighted.
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CHAPTER 4

Design and Fabrication of Hybrid Nanostructures

All the samples made during this work use a positive resist lithography process. A

simplified overview of the whole process is explained here and depicted in Figure

4.1. The first step of any pattern transfer process is the spin coating of a resist.

The resist is a polymer that is sensitive to exposure to light or electrons, causing

the structure to change. In the case of a positive resist the structure of the resist is

weakened by scission of the polymer chains [91]. The resist is typically applied to

the substrate using a spin coating process. The wafer is held in place by a vacuum

plate and the liquid resist is dispensed on to it. The spin coater is then accelerated

to a ‘low’ speed of around 500 rpm before accelerating to a pre-programmed ‘high’

speed which determines the final resist film thickness. Once the spin programme

is finished it is necessary to bake the wafer on a hot plate in order to remove any

remaining solvents.

In order to transfer a pattern to the resist, one must perform the lithography process.

Optical (or photo-) lithography is performed by exposing the resist to a UV light

source. The resist is covered with a quartz mask containing a printed chromium

pattern. The UV light is able to penetrate the quartz but is blocked by the chromium

pattern resulting in an inverse of the mask pattern being transferred to the resist.
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Photo-lithography is able to expose large areas of substrates quickly and easily

making it ideal for patterning of whole wafers. The main disadvantage of photo-

lithography is that the minimum feature size is ultimately diffraction limited to a

few hundred nanometers [92]. An alternative lithography method for small features

sizes is electron beam lithography. Unlike photo-lithography, where the UV floods

the entire area and must be blocked by a physical mask, the electron beam is guided

over the resist and thus ‘writes’ the pattern.

The weakened areas of resist are removed using a developer solution. The bare

substrate is left in the areas that were exposed during the lithography process. It

should be noted that a two-level resist profile is used - the bottom layer of resist

is chosen to develop more quickly that the top layer. This results in a well defined

pattern on the top resist which determines the geometry of the deposited film. The

bottom layer is developed to a greater extent forming an undercut which greatly aids

a clean lift-off. The development process is typically not perfect, and some resist

residual may be left behind which can affect the quality of the deposited film. The

residual resist is removed by bombardment of either argon or oxygen plasma. This

process is known as plasma etching. Argon is an inert gas, and thus the etching is

an entirely mechanical process (ion milling). When oxygen gas is used there is also

a reactive ion etch taking place.

Once the residual resist is removed and the exposed substrate is clean, thin film

deposition can take place. A thermal evaporation technique is used in this work

utilising the Edwards 306 Coating System. This is a thermal evaporation system

in which materials can be deposited in a low pressure environment. The deposition

process takes place in a bell jar evacuated to low pressures using two-stage pumping

system. Initial evaporation down to approximately 200mbar is performed by a

rotary pump before switching to a diffusion pump to achieve a base pressure of

around 2 × 10−6 mbar. It is necessary to achieve sufficient vacuum to ensure the

source-to-wafer distance is less than the mean free path of the source particles [91].

If the vacuum is insufficient the source particles will be scattered by any residual
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gases in the chamber.

The source material is placed on a tungsten boat held between two electrodes. A

current is passed though the highly resistive boat which heats the material to a high

enough temperature to allow evaporation to take place. The material is deposited

on the sample (both resist and exposed substrate).

To reveal the final patterned sample the remaining resist must be removed - this is the

lift-off process. The sample is placed into a lift-off remover solution (and sometimes

heated) which removes of the remaining resist and any deposited material on top

of the resist and walls. This reveals only the desired pattern still adhered to the

substrate. It has been necessary throughout this project to process bare silicon oxide

wafers into usable chips. Once the chips are fabricated the nano-structure devices

are fabricated onto the chips. These two separate processes follow the fabrication

stages discussed above and shown in Figure 4.1. Some of the specifics are discussed

in more detail in the following two sections.

41



Resist - Top

Resist - Bottom

Substrate

Resist - Top

Resist - Bottom

Substrate

Undercut

Resist - Top

Resist - Bottom

Substrate Residual Resist

Development

Plasma Etching

Thin Film Deposition

Lift-o�

Resist - Top Layer

Resist - Bottom Layer

Substrate

Ultra Violet Irradiation

Mask

Optical Lithography

Resist - Top Layer

Resist - Bottom Layer

Substrate

Electron Beam

Electron Beam Lithography

Beam will scan to 

next part of pattern

Substrate

Deposited Metal

Resist - Top Layer

Resist - Bottom Layer

Substrate

Resist Pro!le

Figure 4.1: Overview of fabrication process: The resist profile is created by spinning two
different resists onto the substrate. The lithography is performed using either a focussed
electron beam which ‘writes’ the pattern into the resist, or a mask in conjunction with
ultra violet irradiation which transfers the whole pattern at once. Development of the resist
results in the weakened areas of resist being washed away revealing the desired pattern.
Some residual resist may be left on the substrate which is removed using a plasma etching

process. Once the substrate is clean, thin film deposition is performed to evaporate a thin
film of the chosen metal onto the substrate. The remaining resist and unwanted metal is
removed during lift-off leaving material in the desired pattern.
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4.1 Wafer Processing and Chip Preparation

In order to connect the devices to electronic measuring equipment, a standardised

chip was used. The chips are made on a 3 inch SiO wafer, each with 7 × 7mm

dimensions. Each chip contains 16 gold contact pads with leads converging to a

80 × 80µm exposure field as shown in Figure 4.2. The gold contacts allow the

samples to be connected to the measuring set-ups using either pogo-pins or wire

bonding. In order to ensure that the resist is applied onto a good surface it is

important that the wafer is thoroughly cleaned. Dust and other large particulates

can be removed by submerging the wafer in acetone in an ultrasonic bath. The

acetone wash is followed by rinsing in isopropanol to remove any acetone film left

behind. Any remaining organic matter is removed using an oxygen plasma etch.

7 mm

7
m

m

80 µm

8
0

µ
m

Figure 4.2: Single 7 × 7mm silicon chip after deposition of gold contact pads and leads.
Zoomed-in section shows the 80 × 80 µm exposure field where electron beam lithography
takes place. Red circles highlight distinctive features known as ‘marks’. The marks are
used to allow the SEM to correctly align the first exposure.

4.1.1 Resist Deposition

The resist profile used for photo-lithography of the wafers is a typical two-resist

system: First a layer of LOR-5B is deposited at 3000 rpm followed by baking for

5 minutes at 150 ◦C, resulting in a film thickness of approximately 500 nm. Next, a
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photoresist, S1813, is deposited and spun at 4500 rpm prior to baking for 5 minutes

at 90 ◦C to form the top layer of 120 nm thickness.

4.1.2 Photo-lithography and Development

The photo-lithography step is performed in an enclosed box with a mercury ultra-

violet light source. The wafer is typically exposed for 2 minutes although the exact

time depends on the light emittance measured prior to exposure. Once the exposure

is complete the weakened resist is removed by placing the wafer in Microposit Devel-

oper MF319 - again the times are variable but typically 90 seconds is sufficient. Any

residual resist is removed by performing a 30 second oxygen etch using the Oxford

Plasmalab 80.

4.1.3 Thin-Film Deposition of Contact Pads and Leads

The whole wafer is secured to a plate which faces the source material. Gold is the

material that is used for the sample contact pads and leads on the generic chip design.

However, as gold is a low reactivity metal it is necessary to deposit a thin (10 nm)

layer of nichrome as an adhesion promoter prior to the gold deposition [93]. The

evaporation system contains three electrodes which allows deposition of up to two

different materials without breaking vacuum. Once the nichrome layer is deposited,

80 nm of 99.9999% purity gold is then deposited on top.

4.1.4 Lift-off

With a layer of nichrome and gold deposited on the entire wafer it is necessary to

remove the remaining resist and excess metal, leaving only the desired chip pattern

remaining. The wafer is placed into Microposit Remover 1165 and heated to 60 ◦C

on the hot plate. Once the pattern is revealed the wafer is rinsed in isopropanol

and dried with a nitrogen gun prior to observation under the optical microscope to

check for any unremoved material or defects. The completed wafer is then coated in
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a protective layer of resist and then cut into individual chips using a diamond wafer

cutter. The chips are then ready for device fabrication.

4.2 Device Fabrication

As mentioned in the general overview, optical lithography is diffraction limited - this

restricts its use to rather large scale structures. For the devices measured in this work

it is necessary to utilise electron-beam lithography for smaller structures. Apart from

the chip production all other lithography performed was e-beam lithography. Prior

to electron beam lithography, the chips must be coated in electron-beam sensitive

resists. During the course of this work a number of different resist profiles were

used but typically a two layer resist profile was necessary to provide the undercut

properties previously discussed. Most commonly the bilayer was made with a bottom

resist of Copolymer 6% in Ethyl Lactate and a top layer of PMMA (2, 4, 6 or 9%)

in Anisole.

4.2.1 Electron Beam Lithography

The e-beam lithography system used during this work is a JEOL JSM-6460 Scanning

Electron Microscope (SEM) with the addition of the NanoMaker software package

that allows control of the beam for patterning. The SEM provides a focused beam

of electrons that are incident on the electron sensitive resist, which, similarly to the

photo-lithography process, weakens it making it more susceptible to removal by a

developer solution. It is also possible, through overexposure of the resist, to harden

the exposed areas through a cross-linking process [91]. This would be classified as

a negative process and is not used in this work - over exposure is thus avoided in

this work. One cause of over exposure is the failure to account for the proximity

effect. Electrons incident on the resist and substrate undergo scattering processes

leading to energy losses and changes of direction. The electrons will travel through

the resist until either all energy is dissipated, or they are backscattered out of the
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resist. Figure 4.3 shows simulations of the energy dissipation of electrons incident

on a layer of PMMA and silicon substrate, at different accelerating voltages. Larger

and closely spaced features will have a large energy density deposited in the film

due to superposition of backscattered electrons [94].

Figure 4.3: Monte Carlo simulations of energy dissipation of electrons incident on a
silicon substrate with a layer of PMMA resist. Simulations are performed for accelerating
voltages of 10 kV and 20 kV. It can be seen that the spread of scattered electrons within
the resist is reduced at the higher accelerating voltage. Image taken from [94].

This problem is overcome through use of a proximity correction calculation. The

proximity correction spatially shapes the dose incident on the resist to compensate

for the backscattered electrons. An example of a design file after proximity correction

has been applied is shown in Figure 4.4. The larger structures have a reduced applied

dose at their centers - this is to reduce the total received dose so that the shape is

formed as desired. Fine features such as the Andreev cross and marks are given

a flat rate - this is to avoid them being broken up into smaller components which

could lead to problems due to misalignment because of the stitching of the different

pieces.
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Figure 4.4: Example of a proximity corrected sample design. Note that the large parts
of the design have a smaller dose at the center to reduce the total dose received. Small
features receive a user defined flat dose to avoid splitting fine elements into many pieces.
The colour key gives the relative dose values.

4.2.2 Thin Film Deposition of Devices

Deposition of the materials for the devices also takes place in the Edwards Coating

system. The system has additional functionality for the actual device fabrication.

Two 7 mm samples can be mounted on a rotating platform which allows multiple

angle depositions (useful for Josephson junctions or multiple material devices to be

fabricated without breaking vacuum). The sample holder is situated approximately

20 cm from the source electrodes. Another use for the rotating sample holder is that

the chips can face the source material for deposition or can be turned 180◦ to face

into a small glass chamber. The chamber is connected to a gas line and can be

filled with either argon or oxygen at a controllable pressure or flow. The samples

are subjected to a 20 second in-situ argon etch prior to deposition without breaking

vacuum in order to clean any residual resist from the substrate. The oxygen gas
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can be used to grow insulating aluminium-oxide tunnel barriers in traditional SIS

Josephson junction fabrication. Lift-off is performed as described in Section 4.1.4

revealing the desired pattern. The chip is cleaned and is then ready for measuring

or further layers of material deposition.

Figure 4.5: Simplified schematic of the Edwards 306 Coating System.
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4.3 Summary

In this chapter, an overview of all the techniques required for fabrication of the

devices is shown. The patterning of gold contact pads and leads onto bare silicon

wafers to create the ‘blank chips’ is highlighted in the first part of this chapter.

The latter half of this chapter goes into more detail regarding the nano-fabrication

techniques required to make accurate multi-layer devices. A brief discussion of the

proximity effect which occurs when using electron-beam lithography is presented. A

solution to this problem using proximity correction software is also shown.
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CHAPTER 5

Experimental Setup and Low-Temperature

Equipment

All of the experiments presented in this thesis use materials that exhibit the phe-

nomenon of superconductivity. In order to observe the interesting behaviour that

appears in the superconducting phase the samples must be cooled to below their

superconducting transition temperature, Tc. Two different cryostats have been used

throughout this work, a Heliox 3He cryostat with a base temperature of 240mK,

and a dilution refrigerator with a base temperature of approximately 20mK.

5.1 Heliox Top-Loading 3
He Cryostat

The majority of the samples presented in this thesis were measured in the Heliox

top-loading 3He cryostat. The base temperature of 240mK is well below the Tc of

aluminium (∼ 1.2K) which was the superconductor most commonly used during

this work. The cryostat comprises of two main vacuum chambers, the outer vacuum

can (OVC) and the inner vacuum can (IVC). The space between the OVC and

the IVC is known as the main bath and is filled with liquid 4He which is at a

temperature of approximately 4.2K. The main bath is used to reduce the heat load
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of the surroundings on the components inside the IVC. A smaller vessel located

inside the IVC also contains liquid 4He that is constantly filled from the main bath -

this is known as the 1K pot. By pumping on the 4He in the pot with a rotary pump

the vapour pressure is reduced and evaporative cooling can occur. This allows the

pot to cool to approximately 1.4K [95]. The next drop in temperature comes with

the use of 3He which is condensed whilst flowing through pipes in contact with the

1K pot before filling the sample space. The liquid 3He is cooled further through use

of a charcoal sorption pump. The sorption pump absorbs gas when cooled below

40K increasing the rate of evaporation and thus reducing temperature of the 3He

sample space to approximately 240mK.

The system is inherently single-shot due to the finite capacity of the sorb to pump

the helium gas. Once the sorb is full, the cycle can restart by heating the sorb to

45K causing re-condensation of the helium. The amount of time for measurements

in between each re-condensation cycle was approximately 36 hours. The sorb is also

used to control the temperature of the sample space. Directly applying heat to the

helium results in a greatly increased evaporation rate and thus shorter lifetime of the

cycle. Instead the sorb is heated, which controls the pressure of the 3He vapour and

thus its temperature [96]. This allows stable control of the temperature in order to

investigate the temperature dependent properties of samples, typically in the range

of 0.25 to 1.4K.

The Heliox cryostat is a top-loading design; this means that the measurement probe

is mounted at room temperature and then lowered into the bottom of the fridge.

The probe has a maximum capacity of four 16-pad samples which are contacted

using a spring-loaded pogo-pin mechanism. As the sample holder is screwed onto

the bottom of the probe the sample pads make contact with the pogo-pins. The

spring-loaded pins push back at the sample ensuring good contact between probe and

device even in the case that the metal contracts due to the change in temperatures.

The pogo pins are connected to 16-way Fischer connectors at the top of the probe

with constantan twisted pairs.
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5.2 Dilution Refrigerator

For some of the samples measured in this thesis a dilution fridge was used in order

to enter the sub-50 mK range. The principle of the dilution refrigerator was first

proposed by London, Clarke and Mendoza in 1962 [97] based on London’s earlier

suggestion in 1951 that cooling could be achieved by making use of the entropy of

mixing of 3He and 4He [98]. The first experimental realisations of the dilution fridge

occured concurrently in Manchester, by Hall et al [99], and in Dubna, by Neganov

et al [100], both claiming a base temperature of approximately 25 mK.

The main cooling process of the dilution fridge takes place in the mixing chamber

where a mixture of 3He and 4He separate into a concentrated phase (3He rich) and

a dilute phase (4He rich). The separation of the two phases occurs at approximately

0.7K. As the mixture is cooled further the top concentrated phase tends to 100% of

3He whilst the dilute phase tends to 6.6% of 3He. This limit of 6.6% in the dilute

phase is maintained even as T → 0. The 3He is pumped from the dilute phase in

the still (see Figure 5.1). In order to maintain the 6.6% concentration in the dilute

phase, 3He is evaporated across the phase boundary from the concentrated phase.

The cooling occurs due to this evaporation across the phase boundary. Unlike the

Heliox 3He cryostat discussed in Section 5.1, the dilution refrigerator is able to run

continuously if the pumped 3He gas from the dilute phase is cooled and returned to

the concentrated phase.
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Figure 5.1: Schematic of the 3He-4He dilution fridge
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5.2.1 Thermometry and Filtering

Of utmost importance to all low temperature work is the ability to accurately deter-

mine the temperature. Initially, the fridge was equipped with three thermometers;

• Rhodium Iron (RhFe) - calibrated between 1.4 - 300K

• Carbon Glass

• Cerium Magnesium Nitrate (CMN)

Unfortunately, the CMN thermometer was not functioning, most likely due to a

faulty circuit. Instead a RuO2 surface mount resistor was mounted to the mixing

chamber. The initial cooldown of the cryostat resulted in a base temperature of

300mK, clearly this is comparable to the Heliox 3He cryostat and unacceptable for

a dilution unit.

The poor base temperature achieved was attributed to either heat leaks (including

insufficient filtering) or faulty thermometry. Due to time constraints all possible

problems were tackled prior to the next cool-down.

A large possible heat leak was found in the form of a microwave guide travelling

from room temperature down to the mixing chamber (this was used on a previous

experiment by another group). The microwave guide was removed and the holes

remaining at each stage were plugged to stop photons from hot parts of the fridge

travelling down to the mixing chamber and sample holder.

Additional thermometry was acquired and added to the mixing chamber. A germa-

nium resistance thermometer already attached to its own copper post was screwed

directly into the mixing chamber. The Ge thermometer was previously used on the

fridge and detailed records were kept of its use in parallel with that of the old work-

ing CMN thermometer so it was possible to be confident of its temperature reading

down to approximately 50mK. The previous RuO2 thermometer was discarded and

replaced by four more from a single batch of resistors - one of the batch, not used,

was calibrated against a 3He melting curve thermometer [101] with all remaining
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tested thermometers behaving similarly [102].

With regard to filtering, two possible filters were considered to reduce high ampli-

tude noise reaching the devices causing local heating. TUSONIX π-filters are a

cheap commercial L-C low-pass filter and although showing adequate attenuation

characteristics (see Figure 5.2). It was decided to not use them due to experiencing

poor results from thermal cycling [103].

The second type of filter investigated are the copper powder filters first developed

by Martinis et al [104] in 1987. The filters discussed here follow the improved design

proposed by Lukashenko et al [105]. The concept of operation of these filters is that

the measurement lines are in close contact with a fine copper powder. High frequency

components are then dissipated in the powder in the form of eddy currents. Due to

the large surface area of the powder the damping of the high frequency components

can be quite considerable. An outline of the filter design is summarised here (see

also Figure 5.3 (a)). The copper powder is mixed with epoxy so that epoxy/Cu rods

can be machined. The measurement wire is wrapped tightly around the rod termi-

nated by an MCX connector at both ends (Each MCX connector is also soldered to

a discoidal capacitor to provide some low-frequency cut-off). The entire assembly is

then inserted into a cylindrical copper shield and filled with more epoxy/Cu mixture.
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Figure 5.2: Comparison of the TUSONIX π-filters and the copper powder filters. Both
have similar transmission properties however copper powder filters were chosen for their
reproducibility following thermal cycling [103].

A large batch of Cu-powder filters made by Dr. Chris Checkley were obtained and

tested. Figure 5.2 shows the reproducible transmission characteristics of the filters.

It was also known that the filters held up well under thermal cycling having been

used on another experimental set-up [106, 107] so these were chosen to be installed

on the dilution fridge. Once the measurement lines have been filtered it is necessary

for the wires to be shielded. For this reason a ‘horseshoe’ type filter mount was

made by Massimo Venti with a cinch connector to attach to the sample holder. The

sample holder was also made by Massimo Venti for the experiment discussed in [106],

see Figure 5.3 holder for photographs of both filter and sample holder.

Once the changes discussed above were made it was possible to cool-down the cryo-

stat again. The Ge resistance thermometer indicated that temperatures below 50

mK were obtained. The surface mount RuO2 resistance thermometers showed that

the base temperature of the fridge reached approximately 16mK.
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Figure 5.3: (a) Schematic of copper powder filters. Image edited from [105] (b) Copper
sample holder used for dilution fridge measurements - was made for previous experiments
detailed in [106]. (c) and (d) show the copper powder filter mount to allow filtering between
mixing chamber stage and sample holder. (e) Filter mount connected to sample holder.

5.2.2 Wiring and Magnetic Field Control

Unlike the Heliox 3He cryostat, the dilution refrigerator was not set up for any trans-

port measurements. All measurement lines had to be installed from the 1K plate

down the mixing chamber and subsequently, the sample holder. For the main sam-

ple, 16 manganin wires, in 8 twisted pairs were made and attached to the 1K plate.

The lines were thermally anchored at each plate (still, cold and mixing chamber)

by winding around a copper pillar and securing with GE varnish. The manganin
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twisted pairs were terminated at a cinch connector. The other side of the cinch

connector had copper lines, thermally anchored to the mixing chamber plate, that

were wired into the Cu-powder filters, ultimately terminating at the sample holder

PCB.

Magnetic field control was provided by a small superconducting solenoid. The coil

was made by winding superconducting NbTi wire around a small epoxy/Cu cylinder.

The superconducting wire was run inside existing coaxial ports up to the top of the

fridge.

The thermometer lines were installed similarly to the sample measurement lines -

manganin twisted pairs thermally anchored at each plate until converting to copper

lines thermally anchored at the plate of interest.
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5.3 Electrical Measurement Technique

In order to measure the resistance of the devices, conventional 4-terminal transport

measurements were undertaken. A Signal Recovery 7621 Lock-in Amplifier was

used to provide the ac signal to the device. To allow for differential resistance

measurements or any measurements with a dc offset an adder was used to combine

the ac and dc signals. This combined signal is connected to a bias resistor (typically

Rbias=100 kΩ) to drive a current (µA range) through the device. Voltage probes are

connected to the device and fed to a pre-amplifier (×100 gain) before being passed

to the lock-in amplifier. The lock-in amplifier compares the measured signal with

that of the reference signal, any signal from frequencies other than the reference

frequency are reduced close to zero thereby considerably reducing the noise in the

measurement. Typically, frequencies are chosen to avoid large sources of noise in

a lab environment (i.e. 50Hz mains hum), the value used throughout this work is

187Hz. The dc current is provided by a Yokogawa 7651 DC Current Source. The

adder and pre-amplifier are powered by battery packs to further reduce mains noise

in the measurement set up. The measured voltage is then recorded on a PC after

phase detection from the lock-in.
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Figure 5.4: Simplified schematic of the typical measuring set-up. Differential resistance
measurements are achieved using a 4-point measurement technique as shown. The ac source
is provided by the lock-in amplifier and added to a variable dc source. The resulting signal
is an oscillating part on top of a stepped dc signal. Magnetoresistance measurements are
performed by measuring the resistance whilst sweeping the magnetic flux using either an
on-chip flux source or a superconducting solenoid.

60



5.4 Summary

This chapter discusses the experimental set-up used throughout the work presented

in this thesis. Two separate cryostats are discussed; a pumped 3He system and a

dilution fridge. The working principles behind both systems are explained. The

pumped 3He system was set-up for use prior to the start of this work and needed

no further engineering. The dilution fridge, on the other hand, required full re-

wiring, thermometry installation and filtering. The work done to prepare the dilution

fridge for device measurement is discussed in some detail. The conventional 4-point

transport measurement technique is also explained.
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CHAPTER 6

Optimisations of the Hybrid Interferometer for

Sensitive Magnetometry

In this Chapter a number of experiments are presented which were designed to inves-

tigate some of the key characteristics and parameters of the hybrid interferometers.

6.1 Superconducting Phase-Periodic Transport

Consider a SNS junction with the two superconducting electrodes connected to form

a closed loop - this is the basis of the hybrid interferometer device. In this geometry,

the phase between the two SN contacts can be varied by changing the magnetic field.

A schematic and a scanning electron micrograph of the measured device is given in

Figure 6.1. The phase difference ϕ between the two superconducting contacts, c and

d, depends on the magnetic flux threading the loop, ϕ = 2π Φ
Φ0

. The resistance of

the normal mesoscopic wire is measured between a and b. The resistance measured

is a function of the phase between c and d, and thus the flux threading the loop,

R = R0 − r cosϕ. (6.1)
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Therefore, if the magnetic flux through the loop is varied whilst measuring the

differential resistance it is possible to observe phase periodic oscillations of resistance.

Extrema in the resistance occur at Φ = nΦ0 where n = (2m + 1)/2 for maxima

and n = 2m for minima, where m = 0,±1,±2,±3 · · · . For the purpose of this

investigation however, this view is considered incomplete. As discussed in Section

3.1.4, in a system where ξn is comparable to L, an additional flux term due to the

supercurrent-induced flux must be considered. The phase would now be described

by ϕ = ϕext − β sinϕ. The resistance is now written as,

R = R0 − r cos(ϕext − β sinϕ), (6.2)

where β = 2πLIc/Φ0 is the screening parameter. The relationship between total and

externally applied magnetic flux is shown in Figure 6.2. If β = 0 there is a linear

relationship between the two parameters. As β increases, the relationship becomes

increasingly non-linear as shown by the β = 0.9 curve in the figure. At β > 1 the

system becomes multi-valued. Experimentally, certain values of Φ are inaccessible

- as the external flux is increased it will reach a critical value at which point the

gradient of the Φ−Φext curve becomes negative. The system then jumps to the next

stable value of Φ. Reversing the direction of the applied flux reveals a hysteresis in

the system.
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Figure 6.1: (top) shows a schematic of the hybrid interferometer device. The normal
metal cross (shown in orange) is connected to a superconducting loop (shown in blue). A
spacer (shown in green) insulates the two layers from one another. (bottom left) shows the
full device SEM image. (bottom right) shows an image at higher magnification showing
the accuracy of the superconducting contact placement with respect to the normal cross.
Resistance is measured between a and b, whilst a phase difference occurs between c and d.
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Figure 6.2: Relationship between the total flux through the loop, Φ, as a function of the
externally applied flux Φext. As the screening parameter β increases, the curve becomes
increasingly non-linear. At β > 1 a negative slope arises leading to inaccessible regions of
phase. Due to the inaccessible regions, the phase jumps from one branch to the other; an
example of which is indicated by the arrows on the plot.

The screening parameter can be varied by changing either the loop inductance, L,

or the critical current, Ic. In the experiments presented here the loop inductance is

related to the geometry of the loop, which is determined during the fabrication pro-

cess. The critical current can be varied, as was discussed in Sections 3.1.3 & 3.2.1,

by temperature, or an applied bias current. Due to the screening parameter, the

flux jumps shown in Figure 6.2 can be observed in the magnetoresistance oscillations.

The screening parameter causes deviations from a typical sinusoidal line-shape. Fig-

ure 6.3 shows experimental magnetoresistance measurements taken with different dc

offsets applied to the measuring current. At the lowest bias current shown (30µA)

the curves exhibit strong hysteresis when measured in positive and negative direc-

tions. At a critical flux, the system enters an unstable position and a sharp drop in

the resistance is observed. It shall be shown in Section 6.3 that the critical current

in the interferometer is reduced as the applied bias current is increased. It follows
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that an increase of the bias current results in a reduced screening parameter. It is

evident in Figure 6.3 (b) & (c) that the critical flux required to exhibit a drop in

resistance gets closer to Φ0/2 as the bias current is increased. Figure 6.3 (d) shows

oscillations with no sudden drop in the resistance. It is expected that the screening

parameter in the last case would be less than 1. The origin of the resistance drop is

the non-linearity of the Φ vs Φext relationship when β > 1.
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Figure 6.3: Magnetoresistance oscillations of device shown in Figure 6.1. Measurements
recorded with increasing bias current (a → d). As a consequence, the critical current is
reduced. Due to the definition of the screening parameter β = 2πLIc/Φ0, a decrease in
the critical current results in a reduction of β. It is clear in (a), (b) and (c) that at some
critical flux a sudden drop in the resistance is observed. (d) shows no evidence of entering
this ‘unstable’ state as no resistance drop is observed. Note that the amplitude of the
measurements are not the same at each bias current.

It is possible to obtain values of the screening parameter, β. Using Equation 6.2 the

oscillations can be fit using β as one of the fitting parameters. In the case of β > 1,
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large regions of the phase are inaccessible resulting in the sharp drops in resistance.

The sharp drop occurs when the theoretical curve takes on a negative gradient. An

example of two large β measurements are shown in Figure 6.4.

As β → 1 the curves tend to a more ‘cusp-like’ line-shape. Using Equation 6.2 it

is not possible to obtain reasonable fits to the measured line-shape (see Figure 6.5

(a)). A better fit is achieved when the second harmonic of the critical current is

taken into account. The total supercurrent is given by [108],

Is =
∑

j

β(j) sin(jϕ). (6.3)

The supercurrent used to fit the ‘cusp-like’ oscillations including the contributions

from the second harmonic is given as,

Is = β(1) sin(ϕ) + β(2) sin(2ϕ). (6.4)

The improvement in the fit when including the second harmonic of the supercurrent

is shown in Figure 6.5 (b).
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Figure 6.4: Magnetoresistance oscillations at two different bias currents, Ibias= 30 and
40µA. There is a clear jump in the resistance as Φext is increased. The red line is a fit
to the oscillations using Equation 6.2. The jump in resistance occurs due to the negative
slope of the calculated curve. The fitting parameter is the screening parameter β which
increases as Ibias is reduced.
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Figure 6.5: As the Ibias is increased and β approaches 1 the data becomes harder to fit
as shown by (a). Including the second harmonic of the supercurrent in the calculated fit
improves the quality of the fit as shown in (b).
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6.2 Metastable States in the Hybrid Interferometer

By utilising information gained in the preceding sections it is possible to fabricate a

device and bias it with the appropriate dc current in order to operate in the β > 1

regime. The sample is shown in Figure 6.6 and measurements were obtained at ap-

proximately 250mK. This device exhibited exactly the same line-shape progression

as detailed in Section 6.1.

Figure 6.6: SEM images of the sample used for the metastable state experiment. (left)
shows a low magnification image of the whole device including the interferometer, super-
conducting loop and the on-chip field source. (right) shows a higher magnification of the
interferometer and superconducting loop contacts. The thickness of the Ag and Al are
50 nm and 70 nm respectively. LSNS=500 nm.

As the device is operated in the β > 1 regime, the resistance oscillation line-shape

will be strongly hysteretic due to the unstable branches of the Φ vs Φext relation-

ship. As before, certain regions of the magnetoresistance oscillations are inaccessible

leading to the observed hysteresis. In this regime the investigated system can be

modelled as a particle trapped in a double well (see Section 3.1.4) with a potential

energy described by,

US(φ) = EJ

[

1− cosφ+
(φ− φext)

2

2β

]

+ const. (6.5)

The escape rate from such a system is given by,

Γ =
ω

2π
e
− U0

kBT . (6.6)
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The escape rate can be experimentally determined using a double-step flux pulse

profile, similar to that previously used by Lisenfeld [109], as shown in Figure 6.7.

Figure 6.7: Schematic of the pulsed measurement technique: (1) At the initialisation flux
the ‘particle’ is trapped in the minimum. (2) The flux is then increased to an intermediate
value which raises the potential of the system. (3) A short pulse that increases the flux
is applied for 200µs - it is possible that this pulse may lower the barrier enough to allow
the particle to enter the other potential well. (4) The flux is then reduced back to the
intermediate value which raises the barrier, a measurement pulse then is applied to the
Andreev cross to determine its resistance and thus what state it is in. By repeating this
hundreds of times for each flux step it is possible to determine the probability of changing
states. The physical representation of the two states is the two distinct resistance levels
depending on what branch of the hysteresis curve the device is on.
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The lowest flux level is the ‘initialisation’ flux, which prepares the system by putting

the particle in the single minimum. The flux is then increased to an intermediate

level at which the two wells are at similar potential energies. The second pulse,

Φstep, is applied for a time ∆t which lowers the barrier between the two wells. It is

during this time period that the particle may escape from its initial well. After ∆t

has elapsed the flux is reduced back to the intermediate state allowing the barrier

to increase again. A current pulse is then sent through the cross to measure the

voltage across the device. The ‘particle in a double well’ model describes the state

(or branch of the Φ vs Φext graph) that the system is in. Therefore, the voltage

measurement is sufficient to determine the state the system is residing in. This

process is repeated 100 times to obtain an averaged resistance value which will lie

somewhere between the two possible resistance states. This method is then repeated

for a number of different values of Φstep. The probability of the system being found

in a given state is found by balancing the escape rates Γ01 and Γ10, such that,

dP0

dt
= −Γ01P0(t) + Γ10P1(t), (6.7)

where P0(t) + P1(t) = 1 [110]. P0 and P1 describe the probabilities of finding

the system in the left or right well. Γ01 and Γ10 are the escape rates describing

the transition from the left to right well and vice versa. A simplification to the

expression can be made due to our method of measurement which involves always

initialising (at t=0) the system in the left well (for instance). The expression is then

simplified to,
dP0

dt
= −Γ01. (6.8)

Therefore the probabilities of finding the system in the left (P0) or right (P1) well

are described by,

P0 = e−Γ01∆t, (6.9)

P1 = 1− e−Γ01∆t. (6.10)
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Figure 6.8: Experimentally measured escape probability vs the amplitude of the flux
pulse Φstep. σ defines the width of the external flux between P1 = 0.1 and P1 = 0.9.
Measurements taken at 250mK.

The parameter σ displayed on the graph defines the difference in applied flux between

P = 0.1 and P = 0.9. The importance of this value is that it demonstrates that the

interferometer can detect changes in flux σ ≈ 0.01Φ0 with 80% fidelity. A similar

latching technique using a Josephson bifurcation amplifier [111] has been used to

probe the state of a superconducting flux qubit [112, 113].
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6.2.1 Time Domain Measurements

In this brief subsection, measurements are presented that show switching between

two distinct states. Although these measurements were performed at dilution fridge

temperatures of approximately 20mK the sample used showed similar magnetoresis-

tance properties as those used in the flux pulse experiments already presented. Once

again the interferometer is biased such that the line-shapes are strongly hysteretic.

Figure 6.9 shows a close-up of the measured magnetoresistance curves in the large-β

regime of the device. The solenoid current was swept forwards and backwards to

obtain the two sets of data.
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Figure 6.9: Close-up of magnetoresistance oscillations showing both forward and back-
ward sweeps of magnetic field. The measurement is taken as a precursor to a time trace
to observe switching events - by setting the magnetic field to one static position (dashed
line) two distinct states are available. The states are defined by their different resistance
values.
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Figure 6.10: Time trace of the resistance whilst magnetic field position is constant.
Distinct jumps are observed between the two states. The dwell time in the higher resistance
state is much smaller compared to that of the lower state.

It is clear from the image that if the magnetic field is held at a stationary position (see

dashed line) the device can exist in one of the two branches of the magnetoresistance

curve. This results in a possibility of the device being in one of two distinct resistance

states. In order to measure how stable the resistance states are the device was

initialised to the lower resistance state and then held stationary (solenoid current

held constant) for the duration of the measurement. The resistance of the cross

is then measured continuously as a function of time. Figure 6.10 shows distinct

jumps between the two resistance states as a function of time. It is possible that the

switching between the two states is evidence of ‘random telegraph signals’ typically

associated with two-level systems [106]. In this case it is seen that the dwell time in

the higher resistance state is very small and the system quickly returns to the lower

resistance state.

76



6.3 Investigation of the Critical Current in a SNS

Junction

So far, it has been seen that the line-shape of the phase-periodic resistance oscil-

lations can be controlled by changing the screening parameter of the system. As

the inductance L is set by the geometry during fabrication, the critical current is

changed to vary the screening parameter. Varying β has allowed us to work in both

hysteretic and non-hysteretic regimes. The following section describes the experi-

ments carried out to investigate how the critical current of a SNS junction can be

varied by geometry (length of the junction, LSNS), temperature and current bias.

The first experiment is designed to investigate how the critical current Ic of an SNS

junction varies with application of a perpendicular control current, Ictrl. In order to

investigate the SNS device fully a normal metal control line was added perpendicular

to the SNS junction. The control line was attached to an electrode at either end,

one normal and one superconducting. Each electrode then split into two to allow

4-point measurements to be carried out. The geometry is shown in Figure 6.11, note

that in this device the superconductors do not form a closed loop - instead each lead

is connected to a pad on the chip to be connected to the room-temperature electron-

ics. Four separate devices were fabricated, identical in their geometry except for the

distance between the two superconducting electrodes, LSNS. The four LSNS values

investigated were 0.5, 1, 1.5 and 2µm.
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Figure 6.11: (a) Schematic of the SNS sample; normal metal shown in red, supercon-
ductor shown in blue. Four samples were made with different LSNS (0.5, 1, 1.5 and 2µm).
The control line is attached perpendicular to the SNS junciton and was the same length in
each sample, Lctrl = 1.5 µm. (b) Scanning electron micrograph showing the normal cross
connected to 3 ‘S’, and 1 ‘N’ electrode. (c) is a lower magnification image showing the
extent of the measurement leads allowing for 4-point measurement of both the SNS line
and the control line.

The differential resistance was measured across the SNS junction, the results can

be seen in Figure 6.12. From the differential resistance measurements it is clearly

observed that the critical current of the junction reduces as the length of the normal

metal is increased. This dependence is to be expected as it has already been stated

(see Section 3.1.3) that the critical current is related to the length of the junction by

Ic(L) ∝ e−L/ξN . Figure 6.13 shows a plot of LSNS verses Ic and a fit to the equation

is obtained. The fitting parameter of importance is ξN=5.7 × 10−7 m. This is in

reasonable agreement with the coherence length, ξN=4.4×10−7 m, determined from

the resistivity of the silver, ρ=1.4× 10−8Ωm.
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Figure 6.12: (a) Differential resistance measurements of the SNS junction of the samples.
It is clear that an increase in the SNS length of the device results in a reduced critical
current. (b) shows the same data but at zoomed in on the critical current region. Note
that the increased noise in the 1.5 and 2µm sweeps between -10 and +10µA is because the
data shows two separate sets of measurements. The ‘noisier’ data is taken with a smaller
Iosc and is swept slower. Using high measuring currents and sweeping quickly can inhibit
transition to the superconducting state. Measurements taken at T=250mK, Ictrl = 0.
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Figure 6.13: Graph showing reduction of Ic as LSNS is increased. The critical current
values are determined from the experimental dV/dI measurements taken at base temper-
ature, T=245mK. Following a fit to Ic(L) ∝ e−L/ξN the coherence length is calculated to
be ξN=5.7× 10−7 m.
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A more recent theory by Zaikin [45] was also used to fit the data. In the long-

junction limit the critical current is given as Ic(L) ∝ (L3/ξ3N)e
−L/ξN . In this regime

the fitting parameter is calculated to be ξN=1.7×10−7 m. The fit is shown in Figure

6.14.
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Figure 6.14: Graph of Ic as LSNS is increased. The fit to Ic(L) ∝ (L3/ξ3N)e
−L/ξN given

in [45] yields a the coherence length of ξN=1.7 × 10−7 m.

6.3.1 Temperature Dependence of the Critical Current

It is clear that the critical current is strongly dependent on the length of the SNS

junction. It was also mentioned previously (see Section 3.2.1) that the temperature

affects the critical current of the junction. Results are presented here of the temper-

ature dependent measurements of three of the samples, LSNS = 0.5, 1, and 1.5µm.

The fourth sample (LSNS = 2µm) was not investigated further due to its very small

base temperature critical current. It is likely that any increase in bath temperature

would result in transition to the normal state for this sample. Measurements were

performed by heating the sorb and allowing the helium to re-condense. Differential

resistance measurements are performed on the SNS junctions whilst the fridge is

80



cooling. Figure 6.18 shows the temperature dependence of the critical current for

the three LSNS investigated.

200 400 600 800 1000

0

10

20

30

LSNS ( m)
 0.5
 1.0
 1.5

C
rit

ic
al

 C
ur

re
nt

 (
A

)

Temperature (mK)

Figure 6.15: Temperature dependence of the critical current for three SNS lengths:
LSNS = 0.5, 1, and 1.5µm.

The measured temperature dependencies are compared to the to existing SNS junc-

tion theory mentioned above described by Zaikin [45]. In this case the dependence

of critical current on length which, for the long-junction regime, is given by;

eRNIc =
32

3 + 2
√
2
ETh

[

L

ξn

]3

e−L/ξn , (6.11)

can be used to determine the critical current temperature dependence. By combining

the constants it is possible to fit the critical current temperature dependence as

follows,

Ic ∝
[

L

ξn

]3

e−L/ξn . (6.12)

Recall that the coherence length is given by ξn =
√

~D/2πkBT , thus the temperature
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dependence of the critical can be written as,

Ic ∝ AT 3/2e−B
√
T . (6.13)
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Figure 6.16: Temperature dependence of the critical current for 1.5µm sample. The data
is fit using Equation 6.13.
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Figure 6.17: Temperature dependence of the critical current for 1µm sample. The data
is fit using Equation 6.13.
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Figure 6.18: Temperature dependence of the critical current for 0.5µm sample. The data
is fit using Equation 6.13.
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Clearly the larger SNS junction measurements are better fit by the long-junction

theoretical approach. As LSNS is reduced the further the fit deviates from the data

set. It should be noted that the theoretical treatment considers only a diffusive

normal metal between two superconducting electrodes. The devices presented here

are also attached to a normal metal reservoir and an additional superconducting

electrode by the perpendicular control line. This type of geometry is not considered

within this theory.

6.3.2 Applying a Control Current: Observation of the π-effect

Two devices were fabricated differing only in configuration of the normal and super-

conducting leads. The geometry and configuration of the two samples are shown

in Figure 6.11 (SNN ) and Figure 6.19 (NNN ). Both samples contained a normal

metal cross made of silver. The cross is 50 nm in thickness and 100 nm wide. Two of

the arms of the cross are connected to aluminium electrodes 0.5µm apart to form

the SNS junction under investigation. The perpendicular control line has a different

geometry in each of the two samples. The first structure, designated as NNN, has

silver electrodes connected at either end of the control line 1.5µm apart from one an-

other. The second structure, designated as SNN has a silver electrode at one end of

the control line and a superconducting aluminium electrode at the other end, again,

1.5µm apart from one another. The electrodes are approximately 1µm wide. The

silver electrodes are 50 nm thick whilst the aluminium electrodes are 70 nm thick.
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Figure 6.19: Schematic of the NNN sample: Red indicates the normal metal components
made of silver, blue indicates the superconducting components made of aluminium. The
SNS junction weak link occurs between a and b with a length of LSNS = 0.5 µm. The
control line is defined by the length between the two normal reservoirs c and d, Lctrl=1.5µm

As mentioned above, the devices were made with an additional normal metal con-

nected perpendicularly to the the SNS junction forming a normal metal cross-like

structure. This allows one to apply a control current perpendicular to the SNS junc-

tion. Figure 6.20 shows a colourmap plot of differential resistance measurements of

the SNS junction whilst the control current is increased from 0 to 60µA in steps

of 1µA. It is expected that an additional current in the system is likely to cause a

reduction of the overall critical current available in the SNS junction (see Section

3.2.1) and this is indeed observed - full suppression of the critical current occurs

when the control current reaches 36µA. Further increase of the control current

results in a reappearance of the critical current prior to complete suppression at a

control current of 44µA. Further increase of the control current has no effect beyond

this point and a second reappearance is not observed.
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Figure 6.20: Colourmap plot of the differential resistance measurements of the SNS
junction. The applied control current is stepped from 0 to 60µA in 1µA increments.
Clear suppression of the critical current is observed at approximately Ictrl=36µA. In the
range 36µA < Ictrl < 44µA the critical current of the SNS junction reappears.

Typically the suppression and subsequent reappearance of critical currents in SNS

junctions is evidence of a transition of the system into the π-state as observed in

mesoscopic SNS systems by Baslemans et al [79, 80] (see Section 3.2.2). Previous

experimental observations of the π-junction effect are seen using 4-terminal devices:

two superconducting electrodes to form the SNS junction and two normal reservoirs

to provide the control current. The normal reservoirs are made of a thick layer of

normal metal (475 nm of Au, 1 mm in lateral dimensions [80]) - the reason bulk

reservoirs are used is to ensure the distribution functions are well-defined. In the

middle of the control line, the distribution function is expected to be a double-step

and thus positive supercurrent-carrying states can be excluded as discussed in Sec-

tion 3.2.1.

The device presented in this experiment does not have ‘bulk’ reservoirs as was nec-

essary in previous work. In addition the control line is attached to only one normal
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contact, the remaining contact is a superconducting electrode.

6.3.3 Comparison of ‘SNN’ and ‘NNN’ Geometries

In order to investigate if the additional superconducting contact is responsible for

the transition to the π-state a comparison with a sample with two thin normal con-

trol contacts must be made. The SNN device is that shown previously in Figure

6.11. The second sample was fabricated with the same dimensions, however both

control line contacts were made of silver - the sample is referred to as NNN. The

thickness of the silver contacts were 50 nm which would not be considered ‘bulk’

and thus it was predicted that no π-effect would be observed in this sample. The

schematic for this sample is shown in Figure 6.19.

The comparison of SNN and NNN curves are shown in Figure 6.21. It is clear that

no reappearance of the critical current is observed in the NNN sample containing

only thin (50 nm) normal reservoirs at the end of the control line.
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Figure 6.21: Graph of the two different samples, NNN and SNN. Clear reappearence of
the critical current is exhibited in SNN. In the NNN sample no transition to the π-state
is observed, just full suppression of the critical current to zero.

Although the SNN device shows a clear reappearance of critical current it is neces-

sary to provide further evidence to confirm that a transition into the π-state occurs.

The differential resistance of the control line is measured whilst the current through

the SNS junction is varied. Given that, from the dc Josephson effect, the current-

phase relation is given by I = Ic sin(φ), the resistance of the control line should go

through a minima at ISNS=0. This is indeed observed in the measurements presented

here with a minima in the resistance of all sweeps up to the first suppression of the

critical current. Assuming the reappearance of the supercurrent is a transition to

the π-state the current-phase relation would be given by I = Ic sin(φ + π). In this

case, when ISNS=0, φ = π. Differential resistance measurements taken with control

currents in the region of the π-state exhibit a maxima at ISNS=0. This is considered

direct proof that the junction switches from a normal state to a π-state as a function

of the applied control current [79].
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Figure 6.22: dV/dI measurements close to ISNS=0. At Ictrl= 31µA the current-phase
relationship is described by I = Ic sin(φ) and a minimum in the resistance is observed at
ISNS=0. At Ictrl= 41µA, beyond the transition to the π-state, the current-phase relation-
ship is described by I = Ic sin(φ + π). The change of phase results in a maxima in the
resistance at ISNS=0.
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6.4 Summary

The experiments described in this chapter provide the groundwork for the choice

of device parameters used in the next chapter. In order to obtain a sinusoidal line-

shape, the strongly hysteretic regime investigated in Section 6.1 is to be avoided.

Although a device operated in the hysteretic regime could be potentially useful

as a latching read-out device, the experiments in the next chapter require a non-

hysteretic regime. It has already been seen that one device can be operated in

either regime by in-situ modification of the screening parameter β by means of

controlling the critical current. This would mean that any device could be used

and shifted to the required regime by application of additional bias current. The

disadvantage to operating a device that requires an additional bias current to enter

the sinusoidal non-hysteretic regime is that the device now has an extra current

present in the system. In the early sample designs such as those shown in Figures 6.1

and 6.6 it is quite clear that by having a comparatively large bias current present to

reduce β it is possible to couple extra flux into the system through the measurement

leads that are inside the loop area. This is a strong incentive to fabricate the

device with parameters that put the device in the non-hysteretic regime with zero

additional current. The previous point also highlights an important oversight which

is addressed in the following chapter. Regardless of the need for an additonal bias

current, the usual ac measuring current (which is typically small - 0.1 to 1µA)

is still present inside the interferometer loop and could lead to some flux pick-up.

In order to remedy this a folded interferometer cross was developed in which the

cross is split into two sections laid on top of one another with a SiO spacer layer

in between. The repositioning of the current and voltage leads of the measuring

cross to be outside of the interferometer loop reduces the spurious flux felt by the

system. The investigation into the length dependence and temperature dependence

of the critical current in the interferometer system provides a framework of design

rules. With this experimental data available it is possible to manufacture a device
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to work in either the hysteretic or non-hysteretic regime (whichever is appropriate

for the experiment) and to fabricate a device optimised for the experimental set-

up available, for instance in a 300mK 3He system or a 20mK dilution refrigerator.

Note also that the inductance of the measuring loop can also be varied during the

fabrication stage as it is a geometry dependent parameter. This too affects the value

of the screening parameter.
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CHAPTER 7

Resolving the Thermoelectric Paradox in

Inhomogenous Superconductors using HyQUIDs

This chapter presents the results of an investigation into thermoelectric effects in

inhomogeneous superconductors using the hybrid quantum interferometer as a read-

out device. It has already been discussed in Chapter 2 that applying a temperature

gradient to a normal conductor results in an electric current, ~jn = −ηn∇T where ηn

is the thermoelectric coefficient. Similarly it is found that application of a temper-

ature gradient to a superconductor results in a thermoelectric current ~jq = −ηs∇T
carried by normal quasiparticles. The normal quasiparticles are unpaired charge

carriers that exist in superconductors at finite temperatures.

A requirement of the Meissner effect is that the total current in a bulk superconduc-

tor must be zero, ~j = ~js + ~jq = 0, which implies that the thermoelectric current is

cancelled by a superconducting current ~js.

In order to measure the thermoelectric current in superconductors one must take ad-

vantage of the relationship between the supercurrent and the phase gradient of the

superconducting condensate wavefunction, Ψs(~r) = (ns/2)
1/2eiθ(~r). The supercurrent

is described as ~js = (e~ns/2m)∇θ(~r) which, when combined with the aforementioned

relation, ~js = −~jq = ηs∇T shows that a superconductor under the influence of a
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temperature gradient will create a phase difference ∆θ = (2mηs/e~ns)∆T across the

region of superconductor that has a non-zero thermoelectric current, ~jq.

7.1 Principles Behind Thermoflux Determination

To observe the thermoelectric effect in superconductors a bimetallic loop is used.

Two superconductors with different gap energies are connected in order to form a

single closed superconducting loop. A circulating supercurrent, Ics, is established

within the superconducting penetration depth, Λ(T ), which generates a thermoelec-

tric magnetic flux ΦTh = LIcs through the loop where L is the self-inductance of the

bimetallic loop. As the bimetallic loop is a closed superconducting circuit, Ginzburg-

Landau theory states that the wavefunction must be single valued, thus setting

the requirement that the flux through the loop must be quantized. The total flux

through the bimetallic loop is then Φ2 = Φ + ΦTh = kΦ0, where k = 0,±1,±2, · · · ,
are the number of flux quanta, Φ0 = h/2e trapped in the loop, and Φ is the applied

magnetic flux.

To measure the flux through the bimetallic loop an optimised hybrid interferometer

was fabricated to surround the bimetallic loop. This allows read-out of the flux

through the device. A schematic of the device is shown in Figure 7.1.
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Figure 7.1: Schematic of the experimental structure for thermoflux measurements. The
bimetallic loop is placed in a temperature gradient which results in a quasiparticle cur-
rent In and counter-flowing supercurrent Is. This causes a phase gradient ∆θ that causes
a circulating current Ics to flow within the Λ(T )-layer of the loop. The circulating cur-
rent thus generates a thermoelectric magnetic field and subsequently a thermoelectric flux
component. Image courtesy of E. Matrozova [114].

As discussed in the previous chapter the hybrid interferometer takes advantage of

the Andreev reflection mechanism to infer the phase difference between points c and

d on the image. The phase difference between c and d is related to the measurable

resistance between a and b by,

R = R0 − r cosϕ (7.1)

The phase difference ϕ is a function of the total flux through the interferometer

loop, ϕ = 2πΦ1/Φ0. One must now take account of all the contributions to this

total flux from both the interferometer (measuring) loop and the bimetallic loop.
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The formulae that follow were derived in [115]. The total flux is given by,

Φ1 = BA1 −L1I1 −M(I2 + Ics), (7.2)

where B is the externally applied magnetic field, A1 is the area of the measuring

loop, I1 = Ic1 sin(2πΦ1/Φ0) is the Josephson screening current circulating in the

measuring loop with a proximity induced critical current Ic1. I2 is the Meissner

current circulating in the bimetallic loop. L1 and L2 are the self-inductances of

the measuring and bimetallic loops respectively and M is the mutual inductance

between the two loops. It should be noted that information gained from the experi-

ments detailed in Chapter 6 allowed for an optimised design of the measuring loop.

In particular the loop and normal segment (between c and d) were made such that

it would operate in the β < 1 regime (i.e. sinusoidal line-shape) without the need

for additional dc current bias. This reduces the current being passed through the

device and thus minimises sources of additional flux. A further optimisation of the

device was achieved by folding the normal segment of the cross between a and b as

depicted in Figure 7.1. This reduces any current-induced flux being directly coupled

to the measuring loop.

The values of the magnetic field B are experimentally determined at the positions

corresponding to Φ1 = nΦ0 which correspond to the extrema of resistance (as dis-

cussed in Section 6.1). Recall that the maxima occur at n = (2m + 1)/2 and the

minima occur at n = 2m where m = 0,±1,±2,±3, · · · . As the inner loop is a

closed superconducting loop and is subject to flux quantisation we can also write an

equation describing the flux through the bimetallic loop,

Φ2 = BA2 −MI1 − L2I2 = kΦ0. (7.3)

It is now clear that the measured position of extrema depend on both n and k - the

position of extrema can now be defined as Bn,k.

As measurements are taken at the extrema, and it has already been stated that the
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experiment is in the β < 1 regime, a further simplification to the equations can

be made. As I1 = Ic sin (2πΦ1/Φ0)|Φ1=Φn
= 0, the positions of the extrema are

therefore independent of I1 which can now be omitted from Equations 7.2 and 7.3

leading to the simplified definitions of the flux through each loop, in the absence of

a temperature gradient,

Φ1 = Bn,kA1 −MI2 = nΦ0, (7.4)

Φ2 = Bn,kA2 −L2I2 = kΦ0. (7.5)

To determine the circulating current in the bimetallic loop, I2, we once again return

to the flux quantisation requirement (Φ2 = kΦ0) which implies that I2 = (Bn,kA2 −
kΦ0/L2). By substituting I2 into Equation 7.4 an expression for the measured values

of Bn,k can be written,

Bn,k

(

A1 −
M

L2
A2

)

+
M

L2
kΦ0 = nΦ0, (7.6)

where A = A1 − (M/L2)A2 is the effective area of the measuring loop, therefore,

Bn,kA +
M

L2
kΦ0 = nΦ0. (7.7)

7.1.1 The Influence of a Temperature Gradient

To investigate thermoelectric effects, one must be able to establish a temperature

gradient across the device. A bifilar heater line is fabricated on the chip which allows

local heating of one end of the bimetallic loop. This causes a temperature gradient

through the bimetallic loop to appear. In addition, the average temperature of both

the bimetallic loop and the measuring loops will increase. The temperature gradient

induces the thermoelectric current Ics, whilst the increased average temperature of

the loops changes the superconducting penetration depth, Λ(T ). A result of the

penetration depth change is that all the areas and inductances will also change
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and as such must be defined as A′, A′
1, A

′
2,L′

2 and M ′. The induced thermoelectric

current must be taken into account leading to a new definition of the current through

the bimetallic loop, I ′2 = (B′
n,kA

′
2 − kΦ0 + ΦTh)/L′

2. Although the total flux at the

resistance extrema remains intact (Φ1 = nΦ0), the measured positions in magnetic

field are now shifted to different values B′
n,k. Therefore, under the influence of a

temperature gradient the measured positions are described by,

B′
n,kA

′ +
M ′

L′
2

(kΦ0 − ΦTh) = nΦ0. (7.8)

Although care was taken in the fabrication of the bifilar heater line there will always

be some additional flux in the system generated by the heater current, Φh = const·Ih.
This term does not appear in any of the equations as it is easy to cancel this term

by taking measurements at both positive and negative heater currents. Averaging

these measurements simply cancels the heater flux term, < Φh > |±Ih = 0. Recall

Equations 7.7 and 7.8 which describe the measured positions of extrema with and

without a temperature gradient. The difference between the two values, ∆Bn,k =

Bn,k − B′
n,k allows for a determination of the thermoelectric flux in the system.

Using B0 = Φ0/A and rearranging Equation 7.7 we can now write the position of

the extrema, Bn,k, normalised to the oscillation period B0,

Bn,k =
nΦ0

A
− M

L2A
kΦ0, (7.9)

Bn,k

B0
= n− M

L2A
k. (7.10)

Similarly, Equation 7.8 describing the position of the extrema when a temperature

gradient is present can also be rearranged and written normalised to B0,

B′
n,k =

nΦ0

A′ − M ′

L′
2A

′ (kΦ0 − ΦTh), (7.11)

B′
n,k

B0
= n

A

A′ −
M ′

L′
2

A

A′

(

k − ΦTh

Φ0

)

. (7.12)
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The difference ∆Bn,k/B0 = (Bn,k − B′
n,k)/B0 is subsequently given by,

∆Bn,k

B0
=

(

1− A

A′

)

n−
(

M

L2
− A

A′
M ′

L′
2

)

k +
A

A′
M ′

L′
2

ΦTh

Φ0
, (7.13)

which can be stated as,
∆Bn,k

B0
= an− bk − c. (7.14)

When there is no heater current and therefore no temperature gradient, Equation

7.13 describes the equation of a plane in 3D space where the x, y and z coordinates

correspond to n, k and ∆Bn,k/B0 respectively.

7.1.2 Experimental Structure for Thermoflux Measurements

The preceding sections have emphasised some of the basic theory and equations

describing the experimental set-up. It is clear now that for the experiment to take

place the sample must contain a bimetallic ring in which the thermoelectric current

can flow, a means of establishing the temperature gradient through the ring and a

separate measuring loop, the hybrid interferometer. All of the equations discussed

so far rely on the ability to vary the magnetic flux through the devices. In our

experimental set-up this can be achieved by varying the field coarsely using a large

superconducting solenoid, however the majority of measurements take advantage

of the fine field tuning afforded by an on-chip antenna. Finally, in order to probe

the temperature of the bimetallic loop and thus determine the temperature gradient

applied, an SNS thermometer is also present on the chip. These five components

are fabricated on a single chip in a multi-layer nano-fabrication process.

The bimetallic loop is made out of two superconductors with differing superconduct-

ing gaps, lead and aluminium. The superconducting transition temperatures of the

two materials are also different, TAl
c ≃ 1.2K and TPb

c ≃ 7.2K. This ensures that the

concentrations of normal quasiparticles in the lead part of the loop is negligible in
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the range of temperatures investigated (0.25 - 1K). In order to establish a temper-

ature gradient across the loop a bifilar normal metal (silver) wire was fabricated on

the chip connected to a T-shaped silver wire which is connected to the top contact

of the bimetallic loop. The thermometer was also connected to the hot spot of the

heater, at the same distance as the heater-bimetallic loop distance.

The final sample is shown in a false colour scanning electron micrograph shown in

Figure 7.2. The electron-beam lithography was done in five separate layers. The

first layer made of 50 nm of silver contains the bottom layer of the interferometer

cross, the normal component of the thermometer and the bottom layer of the heater

lines. The second layer is a 30 nm spacer layer made of silicon monoxide. It is re-

quired to insulate the top and bottom layers of the folded components such as the

bifilar heater and the interferometer cross as well as allowing the heater line to be

separated from the interferometer loop. The third layer, again made of 50 nm of

silver, finalises the interferometers normal cross and bifilar heater line. The fourth

layer is made of 70 nm of aluminium and forms the superconduting measuring loop,

one half of the bimetallic loop and the superconducting contacts of the SNS ther-

mometer. The final layer, 150 nm of lead, is used to make the remaining half of the

bimetallic loop and to provide a fine field tuning source in the form of an on-chip

superconducting antenna. The area of the measuring loop and bimetallic loop are

defined as A1 = 377µm2 and A2 = 171µm2 respectively.
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Figure 7.2: (left) False colour scanning electron micrograph of the bimetallic loop coupled
to a bifilar heater and hybrid quantum interference device. The bimetallic loop is made
of two different superconductors (aluminium and lead). The hybrid quantum interference
device is used as a measuring loop and is made of aluminium. Fine field tuning is provided
by the on-chip antenna made of lead. (top right) shows the bifilar heater (f ) in close prox-
imity to both the top contact of the bimetallic loop (e) and the SNS thermometer (g). The
temperature T at (e) is measured by the thermometer at (g). (bottom right) highlights the
hybrid quantum interferometer cross in a folded geometry. The phase difference between
c and d is determined by the resistance measured between a and b. The false colouring is
used to differentiate different materials and components. Insulating pads between different
metallic layers, which are made of silicon-monoxide, can be seen in green.
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7.2 Investigation of the Influence of Temperature

Gradient on the Resistance Oscillations

7.2.1 Wide Range Field Measurements

Before measurements of ∆Bn,k = Bn,k − B′
n,k are undertaken, measurements of the

oscillations as a function of the large superconducting solenoid are taken. This allows

one to determine the range of magnetic fields available and the linearity of the oscil-

lations. Figure 7.3 (top left) shows a large number of oscillations (> 100) measured

by sweeping the large solenoid. Figure 7.3 (top right) shows the zoomed-in measure-

ment exhibiting sinusoidal line-shape magnetoresistance oscillations. Finally, Figure

7.3 (bottom) shows the value of the magnetic field recorded at the peak of each os-

cillations. A fit is applied showing the linear relationship between the peak number

(which corresponds to n) and the magnetic field. The period of oscillations is calcu-

lated from the fit to be 5.96 µT. Using the areas of the loops, A1 and A2, one can

calculate to effective area of the system to be Aeff = 342.8µm2. Using B0 = Φ0/Aeff

the expected period is calculated to be B0 = 6.03µT which is in excellent agreement

with the measured value from the linear dependence.
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Figure 7.3: (Top Left) shows a large range of magnetoresistance oscillations obtained
by sweeping the large field superconducting solenoid. (Top right) shows a smaller range
of oscillations taken with the superconducting solenoid. The sinusoidal line-shape and
periodicity is clearly seen. (Bottom) shows the detected peak position in magnetic field
plotted against the peak number. A fit to the data shows a linear relationship between the
magnetic field and the peak number n. The magnetic field period obtained from this data
is B0 = 5.96µT which is in excellent agreement with that calculated from the loop areas.

7.2.2 Measurement of Flux Contributions: Λ(T )-effect

As discussed in the background section, previous published measurements of ther-

moflux failed to account for the temperature dependent penetration depth, the Λ(T )-

102



effect. The measurement technique used in this experiment aims to remedy this over-

sight. In addition to separating the Λ(T )-effect from the measurement, one must

also be in full control of the number of flux trapped inside the loop (this point was

highlighted in Ref [13]). The remainder of the experiment is done using the on-chip

fine field source which provides access to approximately 6-7 oscillations. The on-chip

source can be more accurately and quickly controlled than the large superconducting

solenoid which is generally used for much higher magnetic fields

Thermoflux is expected to add or subtract from the flux through the bimetallic loop

when a temperature gradient is applied. This would be detected as a small shift

in the oscillation as a function of the applied magnetic field when compared to the

measured oscillation when no temperature gradient is applied across the system. It

is evident that there are a number of effects present when a temperature gradient

is applied to the bimetallic loop which can mask or confuse actual detection of a

thermoflux signal.

Measurement of the device is achieved by measuring a sweep of five oscillations with

the fine field source. Each measurement is recorded as a triplet: one sweep with

zero applied heater current, one with positive applied heater current, and finally, one

with negative applied heater current. The triplet of sweeps are measured a number

of times (> 25) to reduce the signal-to-noise ratio. During analysis the positive

and negative sweeps are averaged together to remove any stray heater-line flux as

discussed in Section 7.1.1. The resulting data consists of a set of oscillations at zero

heater current and a set of oscillations at a finite heater current. An example of

the two sets of oscillations are shown in Figure 7.4. The finite heater current sweep

shows a clear shift when compared to the zero current data however it is not a

constant shift across the entire sweep; the period of the oscillations are also altered,

which is a signature of Λ(T )-effect.

103



-1 0 1

-1.0

-0.5

0.0

0.5

1.0  0
 <110>

 

 

R
es

is
ta

nc
e 

(r
)

B/B0

Figure 7.4: Graph showing the change to the period of oscillations when a heater current
(110µA) is applied.

To perform the analysis the maxima and minima for each oscillation in the data set

are determined approximately using a peak detection algorithm, peakdet.m [116]

in order to separate each oscillation. The ‘center’ of the oscillation is then defined

by finding the midpoint at every resistance level. The array of midpoint values is

then recorded and averaged. The difference between midpoints of the zero heater

current set and the finite heater current set are defined as the peak shift. Figure 7.5

shows an example of the difference between midpoints of each peak in the series of

five oscillations.
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Figure 7.5: Peak shift as a function of n (at constant k). Each data point describes
the difference between the zero-heater peak and the finite-heater peak. Due to the change
in period caused by Λ(T ) there is a finite gradient associated with the measurement. A
linear fit to each data set shows that the gradient increases as the applied heater current
increases - this is expected due to a higher average temperature of the system.

The shift in period due to Λ(T )-effect is evident in the data points shown in Figure

7.5. Two measurements are shown at different heater currents, 10 and 25µA. As

the change in period is directly related to the temperature dependent Λ(T )-effect it

is expected that a greater effect will be observed with higher heater currents, which

increase the average temperature across the device. A linear fit is applied to each set

of data which shows a distinct difference in the gradient of the slope. The gradient

of the fit describes the first term on the right hand side of Equation 7.13,

a =

(

1−
(

A

A′

))

. (7.15)

It is directly related to the change in Λ(T ) as the heater current (and thus temper-

ature) is varied.
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7.2.3 Controlling the Trapped Flux Quantum Number by

Thermocycling

An important part of this experiment is being able to have control over the number

of trapped flux, kΦ0, through the bimetallic loop where k = 0,±1,±2,±3 · · · . The

number of trapped flux within the loop is dependent on the magnetic environment

whilst the loop is cooled through its transition temperature. For example, if the

sample is cooled through Tc with zero external magnetic field applied the bimetallic

loop will trap a number of flux close to the magnitude of the residual geomagnetic

field.

A number of the previous experiments claiming to present results of thermoflux

failed to account for the number of trapped flux in their loops. This can result

in very large values of thermoflux that are actually including other effects such as

Λ(T )-effect contributions and finite trapped fluxes, kΦ0. Pegrum et al [13] state

that in order to see true thermoelectric flux, one would want only a small number

of trapped flux in the bimetallic loop, ideally zero.

In the work presented here we take advantage of our on-chip heater to raise and lower

the sample through its superconducting transition. When the sample is heated to

the normal state the magnetic field is tuned to a pre-calculated value. With the

field held constant the heater is turned off and the loop is lowered back through its

transition point allowing the magnetic flux to be trapped inside the loop. The field

required to trap an addition flux quantum is easily calculable from the area of the

bimetallic loop. Using the formula Φ0 = BA it is possible to change the number of

trapped flux in the bimetallic loop in steps of Φ0.

During this manipulation the heater current is raised to a relativiely high value of

1mA. Figure 7.6 shows a portion of the measurement of the resistance through the

interferometer loop as the heater current is ramped to 1 mA. There is a sudden jump

in the resistance as the bimetallic loop lets an additional Φ0 in. When the heater

current is subsequently reduced allowing the bimetallic loop to become supercon-
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ducting once again the resistance remains changed, indicating an altered number of

trapped flux through the bimetallic loop.

Figure 7.7 shows a set of oscillations after subsequent thermocycling operations.

Each set of oscillations represent a sweep where an additional kΦ0 has been trapped

in the bimetallic loop. It is clear that changing the number of flux trapped through

the loop changes only the phase of the oscillations leaving the period intact. The shift

∆B of the extrema is consistent with Equation 7.7 such that ∆B = (M/L2)(Φ0/A)

which is independent of n. The value of M/L2 can be determined for the shift and

is equal to 0.2, this value agrees well with that calculated. The value of M/L2 is of

importance and will be used later to calculate the absolute value of thermoflux.
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Figure 7.6: Measurements taken during a typical ‘thermocycling’ operation. The mag-
netic field is swept to a specific position using the antenna current. Once at the desired
magnetic field the heater current is ramped up to 1000µA (Only 0-100µA range shown
in figure) which raises the bimetallic loop above its transition temperature allowing flux
to freely enter the loop. The heater current is then ramped back down to zero - as the
loop cools through its transition point the flux is trapped inside the loop. By repeating
this process at different magnetic fields it is possible to alter the number of flux quanta
trapped in the loop on a one-by-one basis (see Figure 7.7).
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Figure 7.7: Magnetoresistance oscillations showing that the number of kΦ0 through the
loop can be manipulated by thermocycling the system at different pre-calculated magnetic
fields. The numbers 1 to 3 labelled above the oscillations refers to each cluster of three
oscillations. This is the n number which does not change with k.

A measurement of the ∆B/B0 vs k at a constant n reveals how the peak shift varies

as the number of flux trapped through the loop is changed using the thermocycling

method. An example of this measurement is shown in Figure 7.8. A linear fit shows

that the data is only dependent on the heater current through the system and is

independent of both n and k. In this case the gradient of the fit describes the second

term on the right hand side of Equation 7.13,

b =

(

M

L2
− A

A′
M ′

L′
2

)

. (7.16)

108



4 5 6 7
-0.08

-0.04

0.00

0.04

0.08

 

 

 10 A
 25 A

B
n,

k/B
0

k

n=14.5

Figure 7.8: Peak shift as a function of k (at constant n). Each data point describes the
difference between the zero-heater peak and the finite-heater peak.
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7.2.4 The Separation of Thermoflux Contribution

From Equation 7.14, the final contribution, defined as c, describes the shift at-

tributed to the thermoflux. As the thermoflux serves only to shift the points along

the ∆Bn,k/B0 axis by the same value one can define a reference plane,

∆BR
n,k

B0
= an− bk, (7.17)

where a and b are the gradients already experimentally determined. The plane essen-

tially gives the value of the contribution of the Λ(T )-effect to the values of ∆Bn,k/B0

that are measured. The reference plane is constructed for the four heater currents

of interest in Figure 7.9.
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Figure 7.9: Calculated reference planes defined by Equation 7.17 for a number of different
applied heater currents. The gradients a and b are experimentally determined values from
measurements of peak shift vs n (at constant k) and measurements of peak shift vs k (at
constant n). The final term in Equation 7.14 is associated with thermoflux and results in
a shift of the plane.
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In the unique situation that n = k = 0 the measured plane cuts the ∆Bn,k/B0 axis

at ∆B0,0/B0. In this case the value of thermoflux ΦTh = (L2/M)(∆B0,0/B0) can be

immediately determined. However, it is possible to calculate the value of ΦTh over a

wide range of n and k values and then determine the value of c from the difference

between the reference plane and the measured plane;

c =
(∆Bn,k −∆BR

n,k)

B0
=
A

A′
M ′

L′
2

ΦTh

Φ0
. (7.18)

Measuring c over a wide range of n and k means that ΦTh can be averaged over a

large set of data and thus determined more precisely. After averaging the value of

thermoflux is given as,

ΦTh ≈ 〈c(L2/M)Φ0〉. (7.19)

Note that the component A/A′ is ignored as it accounts for only ≈ 1% of the value of

c. Now that it is clear how to separate the Λ(T )-effects from the genuine thermoflux

signal it is advantageous to perform the experiment close to the line of intersection

between the zero heater current plane and the finite heater current plane, i.e. when

∆BR
n,k ≃ 0. This is achieved by using the fine field source and the thermocycling

procedure. Figure 7.10 shows a measurement of five oscillations (5n values), each

taken with a different number of trapped flux, k, in the system.
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Figure 7.10: Peak shift vs n at four successive values of k. Note that the mimimal
values of ∆Bn,k/B0 shift as k is varied. This graph also highlights that the gradient a is
independent of the number of flux (k) trapped in the bimetallic loop.
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From each graph (at each k) in Figure 7.10 the minimal value of ∆Bn,k/B0 are

chosen, representing where the Λ(T )-effect is minimal. A graph of the minimal

∆Bn,k/B0 values plotted against s = 2.5k/n is shown in Figure 7.11. It is important

to note that in this case n is not constant.
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Figure 7.11: Minimal peak shift values taken as a function of s = 2.5k/n. Note that n
is not constant in this plot.

Using the measured values of a and b, one can now calculate the corresponding

reference points (at the correct values of n and k) to compare with the measured

(∆Bn,k/B0)min. Both sets of points, measured and reference values, are plotted on

the same graph as shown for Ih = 25µA in Figure 7.12.
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Figure 7.12: Measured data points representing the minimal values of ∆Bn,k/B0 as a
function of k for IHeater = 25 µA. The difference between the two linear fits is equal to c,
as defined by Equation 7.19.

The difference between the two points is simply the value of c. A linear fit is then

applied to each of the lines showing clearly the constant difference between the two

sets of data. By subtracting the linear fit of the reference data from measured values

gives directly the value of c = (∆Bn,k − ∆BR
n,k/B0). The method is repeated for

the remaining heater currents of interest, 10, 15 and 20µA and is shown in Figure

7.13. It is clear from the figure that as the heater current is increased, so too is the

thermoflux contribution c, note that the value of c is independent of both k and n.

As we expect a larger heater current to provide a larger temperature gradient, the

result is of the expected dependence.
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Figure 7.13: Measured data points after subtraction of calculated reference values.

An important test of a genuine thermoelectric flux measurement is to see if the

direction of the flux changes when the sign of the temperature gradient is reversed. A

second device was fabricated with a mirror reversal of the aluminium and lead layers

in the bimetallic loop. Exchanging the position of the two superconducting metals

is equivalent to reversing the direction of the temperature gradient and thus the

circulating thermoelectric current. The measurement and analysis method already

detailed in this chapter for the first sample was repeated for the mirrored device. The

experimentally determined values of c = M
L2

ΦTh

Φ0
for the mirrored device are shown in

Figure 7.14. The identically performed experiment shows that the mirrored device

gives a reversed value of c. Once again the effect increases with applied heater

current and thus larger temperature gradient. At the highest heater current used

(Iheater=25µA) the measured value of the thermoflux was ΦTh ≈ 10−2Φ0.
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Figure 7.14: Measured data points after subtraction of calculated reference values for
the mirrored device.
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7.3 Comparison with Theory

7.3.1 Thermometry

The previous section detailed the experimental method and the required analysis

to show that application of a heater current to the bimetallic loop results in an

additional contirbution to the flux through the loop, the thermoflux. So far we have

only discussed the results in terms of the heater current applied, not the temperature

gradient. In order to determine the temperature gradient across the bimetallic loop

it is necessary to investigate the temperatures in the system under an applied heater

current. As the top contact of the loop is directly connected to the heater wire, it

is obvious that this is the ‘hot’ contact. As mentioned previously a proximity SNS

junction is connected to the other side of the heater wire at the same distance as

the top loop contact. Differential resistance (dV/dI) measurements are taken at a

range of applied heater currents to show the dependence as the temperature of the

contact is increased. As the loop contact and thermometer are equidistant from

the hot point of the heater wire it is expected that the thermometer gives a good

approximation to the temperature of the hot contact of the bimetallic loop. In order

to calibrate this thermometer it is necessary to also perform dV/dI measurements

as a function of the bath temperature. Figure 7.15 shows that the characteristics

of the dV/dI measurement change as a function of applied heater current. It can

be seen from the lower heater current values that the critical current, Ic, and the

retrapping current, Ir, can be of very different values. The value of interest is the

dV/dI zero bias position which is sensitive to both heater current and temperature.

The measurement taken with respect to bath temperature (Figure 7.16) also show a

sensitivity of the zero bias position. It is this position that can be calibrated between

the two to provide a temperature reading of the top contact of the bimetallic loop.

Note that the measurements at different temperatures were taken whilst the cryostat

was cooling. The temperature stated for each curve refers to the measured bath
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temperature at the mid-point of the measurement, the zero bias position.
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Figure 7.15: Differential resistance (dV/dI) measurements of the SNS thermometer taken
at different heater currents. Solid lines show measurement sweeps taken in the left to
right (forwards) direction, dashed lines show sweeps taken in the right to left (backwards)
direction.
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Figure 7.16: Differential resistance (dV/dI) measurements of the SNS thermometer taken
at different bath temperatures. Some measurements were taken in a left to right direction
and some vice versa. This was to ensure minimal non-measuring time was wasted as
the fridge was continuously cooling. Note that each sweep took approximately 4 minutes.
Stated temperatures are those of midway through the sweep - close to the zero bias point.

The bottom contact of the bimetallic loop is the ‘cold’ contact. The temperature

difference between this contact and the top contact define the temperature gradient

which drives the thermoelectric current. Due to no remaining free contacts on the

chip it was not possible to directly measure the temperature using a SNS thermome-

ter as was done for the upper ‘hot’ contact. In order to infer the temperature of the

contact the Andreev interferometer oscillations were measured as a function of the

bath temperature as well as at a range of different heater currents. Due to the close

proximity of the ‘cold’ contact and the Andreev interferometer it is expected that

any large temperature changes at the ‘cold’ contact will be observed as a reduction

of the Andreev interferometer oscillation amplitude. Figure 7.17 shows that the am-

plitude of the resistance oscillations reduce as the bath temperature is raised. The
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corresponding oscillations as a function of the heater current (Figure 7.18) applied

to the ‘hot’ contact show minimal change to the amplitude. Even at the highest

heater currents, 110 µA, the inferred temperature is around 300mK. The heater

current range of interest in this investigation is 0 to 25µA which show minimal

change of temperature (≃ +30mK). Figure 7.19 shows the temperature scale pro-

viding estimated temperature values for the ‘hot’ and ‘cold’ contacts. It is clearly

seen that applying a heater current shows a large response in the temperature of the

‘hot’ contact reaching temperatures close to 900mK at 25µA. The ‘cold’ contact

remains relatively unaffected by the application of a heater current remaining under

300 mK over our range of interest (up to 25µA), only reaching 300 mK at very

high heater currents of 110µA. The difference between the temperatures of the two

contacts implies that a heater current does indeed establish a temperature gradient

across the bimetallic loop.
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Figure 7.17: Andreev interferometer oscillations as a function of the bath temperature.
There is a clear reduction of the amplitude as the bath temperature approaches the alu-
minium transition temperature.
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Figure 7.18: Andreev interferometer oscillations as a function of the heater current
applied to the ‘hot’ contact. There is no change to the amplitude in the range of heater
currents important to measurements in this investigation (0 to 25µA). Even at high heater
currents of 110µA only small reductions of amplitude are observed corresponding to an
inferred temperature of ≃ 300mK.
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Figure 7.19: Temperatures corresponding to an applied heater current for the top and
bottom contacts of the loop. Temperatures for the ‘hot’ contact are measured by dV/dI of
thermometer connected directly to the contact. Temperatures for the bottom contact are
inferred by measuring the temperature dependence of the magnetoresistance oscillations
of the Andreev cross.

7.3.2 Calculation of the Circulating Current

As discussed previously the thermoelectric flux is related to the circulating current

around the loop ΦTh = L2Ics. The circulating current is subject to the current

conservation requirement that In(x) + Is(x) = Ics = const, where In(x) = Sjq is

the thermoelectric current and Is(x) is the counter-flowing supercurrent component.

S is the cross-sectional area of the aluminium wire of the bimetallic loop, x is the

distance from the hot contact of the loop. Recall that jq = −ηq∇T where ∇T can

now be written as dTq

dx
such that,

jq = −ηq
dTq
dx

= −σqαq
dTq
dx

, (7.20)
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where σq, αq and Tq are the electrical conductivity, the thermopower and the tem-

perature of the quasiparticles respectively.

In order to calculate the circulating current in the system the technique given by

Gurevich et al [22] is used whereby the total energy of the bimetallic loop is min-

imized. The total energy of the bimetallic loop is given by including two energy

contributions, the first describes the kinetic energy of the superconducting electrons

in the aluminium, Wk =
1
2
I2s (x)Lk(x). The second term is the energy of the magnetic

field created by the circulating current, Wm = 1
2
I2csL2; Lk is the kinetic inductance.

Is(x) is the supercurrent which counter-flows the thermoelectric current, In(x), in

the aluminium wire. The total current in the aluminium wire In(x) + Is(x) must be

equal to the current Ics in the lead wire in order to satisfy the current conservation

In(x) + Is(x) = Ics = const, where x is the distance from the hot contact of the

bimetallic loop. Calculating the total energy,

W =

∫ l0

0

dWk(x)

dx
dx+Wm, (7.21)

and taking into account the current conservation and the requirement that each

current must be continuous across the cold interface at x = l0: In(l0) = 0, Is(l0) = Ics,

the total energy is given by,

W =
1

2
(Ics − In(0))

2Lk(0)−
1

2
I2csLk(l0) +

1

2
I2csL2. (7.22)

Minimizing the energy with respect to the circulating current, and solving the equa-

tion,
dW

dIcs
= (Ics − In(0))Lk(0)− IcsLk(l0) + IcsL2 = 0, (7.23)

results in the circulating current being given as,

Ics =
In(0)Lk(0)

L2 + δLk

, (7.24)
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where δLk = Lk(0)− Lk(l0). Combining Equation 7.24 with the definition In(x) =

S~jq where jq is given by Equation 7.20, the thermoflux can be defined as,

ΦTh = −ηq(0)S
dTq
dx

L2Lk(0)

L2 + δLk
(7.25)

7.3.3 Heat Flow through the Aluminium Wire

One must now consider the quasiparticle heat flow through the aluminium wire of

the bimetallic loop. The heat flow through the aluminium wire is given by Fourier’s

law [117] of heat transport,

Qq = κqS
dTq
dx

(7.26)

where κq is the thermal conductivity.

To calculate the heat flow in the aluminium wire one must consider the rate at which

the quasiparticles gain energy in the wire and the rate at which the quasiparticles

transfer energy to the phonon system. The following equation describes these two

components, the former on the left hand side and the latter on the right hand side,

− d

dx

(

κqS
dTq
dx

)

dx = ΣS(T n
q − T n

p )dx, (7.27)

where Σ is the electron-phonon coupling constant [118] and n is the exponent of the

electron phonon relaxation [119]. The value of n is determined by the relationship

between the electron mean free path l and the phonon wavelength λp. The phonon

wavevector is given by,

qp =
2π

λp
≈ kBT

~νs
(7.28)

where νs ≈ 5 × 103 ms−1 is the velocity of sound. The mean free path in our

aluminium films is roughly 10 nm. This results in qpl < 1 at temperatures less than

1K. In this case our films are described by the disordered limit and subsequently the

exponent of the electron-phonon interaction is given by n=6 [118]. Integration of

Equation 7.27 over the length of the aluminium wire, l0, whilst taking into account
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that the quasiparticle heat flow at the cold interface must be zero yields,

κq(0)
dTq
dx

∣

∣

∣

∣

x=0

= l0〈Σ(T n
q − T n

p )〉. (7.29)

Typically the temperature of the quasiparticles is higher than the temperature of

the phonon system Tp < Tq. In thin films of thickness h < λp the Kapitza resistance

(thermal resistance) between the wire-substrate interface is negligible. This means

that the phonon temperature is very close to the bath temperature T0 [120]. There-

fore (T 6
q − T 6

p ) → T 6
q . The parameters ηq, κq and Σ depend on the quasiparticle

concentration [7, 121]. As the temperature is reduced it is expected that the quasi-

particle concentration also drops. The values are connected with their normal-state

counterparts such that ηq = ηnG(x), κq = κnG(x) and Σ = ΣnG(x) where G(x) is

calculated in Ref [7, 122] as,

G(x) =
3

2π2

∫ ∞

x

y2dy

cosh2(y/2)
, (7.30)

where x = ∆(Tq)/kBTq; ∆(Tq) is the superconducting gap.

The thermal conductivity is related to the electrical conductivity by the Wiedemann-

Franz law κn = σnL0Tq where L0 = 2.4 × 10−8V2K−2 is the Lorenz number [123]

and σn is the normal-state electrical conductivity. Thermoflux is thus given by the

following formula,

ΦTh = −αnΣnSl0〈T 6
qG(Tq)〉

1

L0

L2Lk(0)

L2 + δLk

. (7.31)

From Equation 7.31, it is implied that the thermoelectric flux is proportional to the

effective inductance of the loop and the thermoelectric current. The thermoelectric

current is related to the quasiparticle heat flow as discussed above. In order to

compare Equation 7.31 with the experiment, three important temperatures must be

discussed. The temperature Tq(0) of the hot end of the bimetallic loop is inferred

from the SNS thermometer. The dependence of the average temperature 〈Tq〉 on
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the heater current is inferred from the Λ(T )-effect dependence. By plotting the rela-

tive change in area ∆A/A as a function of both temperature and heater current, as

shown in Figure 7.20, a corresponding average temperature 〈Tq〉 can be determined.

As discussed in Section 7.3.1, T0 is determined from sensitivity of the interferometer

oscillations to the bath temperature. All three temperatures Tq(0), 〈Tq〉 and T0 are

plotted in Figure 7.21; it is seen that Tq(0) and 〈Tq〉 differ by approximately 50mK.
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Figure 7.20: The relative change of the effective area as a function of both temperature
(red, open circles - bottom axis) and heater current (black, solid circles - top axis). Using
the effective area change, one can find the correspondence between the heater current
applied and the average temperature 〈Tq〉 and T0.
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Figure 7.21: The three temperatures of interest Tq(0), 〈Tq〉 and T0 shown as a function
of the heater current. Tq(0) (black, solid circles) is determined from the SNS thermometer
measurements. 〈Tq〉 (red, open circles) is determined from the correspondence between
the relative change of the effective area as a function of temperature and heater current,
as shown in Figure 7.20. T0 (blue squares) is inferred from change in amplitude of the
Andreev interferometer oscillations when a heater current is applied - note that over the
range of interest (up to 25 µA) this value is unchanged from base temperature. The fit lines
are constructed by interpolating the data and are intended as a guide to the eye only. The
difference between Tq(0) and 〈Tq〉 over the range of interest is approximately 30-50mK.

127



0.2 0.4 0.6 0.8 1.0
-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

 Th
/

0

Temperature (K)

Figure 7.22: Measured thermoflux values at different hot spot temperatures for two
samples with different temperature gradient directions. The curve is given by the Equation
7.31 in the text.

The final dependence of the thermelectric magnetic flux vs temperature Tq(0) for

both samples is shown in Figure 7.22. The theoretical curves are calculated using the

formula given in Equation 7.31. The parameters used are the calculated inductance

of the bimetallic loop L2 = 1 × 10−10 H, the measured cross-sectional area of the

aluminium wire, S = 6× 10−14 m2, the measured length of the aluminium wire, l0 =

47 × 10−6 m as well as the thermopower, αn ≈ 2 × 10−8VK−1, and the electron-

phonon coupling Σ ≈ 5×1010Wm−3 K−6, both of which are close to measured values

available in the literature [118, 124]. It is assumed that 〈T 6
qG(Tq)〉 ≈ 〈Tq〉6〈G(Tq)〉;

this is a valid assumption for an even temperature distribution. From Equation 7.29,

the temperature gradient at the hot contact can be estimated as 5×104 Km−1, which

implies that the temperature reduces steeply from Tq(0) to 〈Tq〉 over a distance of
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approximately 1µm. Therefore δx ≈ (Tq(0)− 〈Tq〉)/(dTq/dx) ≪ l0.

The kinetic inductance is calculated by taking into account the strong critical current

suppression in the aluminium wire at the hot contact in close proximity to the silver

wire. Test structures of Al/Ag sandwiches showed critical currents of order 1µA; as

a reduced critical current occurs at the hot contact it is considered to be a Josephson

weak link interrupting the bimetallic loop. The kinetic inductance of a weak link is

given by Lk(0) = Φ0/2πIc(0) [67]; the critical current at the hot end is described by

Ic(0) = I0(1− Tq/Tc) where Tc = 1.15K for our device. The fitting parameter used

in Figure 7.22 is I0=6µA - excellent agreement with theory is shown. As all other

values in Equation 7.31 are either experimentally measured or taken from literature

the final fit shown in Figure 7.22 is considered to have only one free fitting parameter

- I0.
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7.4 Summary

The experiment presented in this chapter uses a single-chip that contains the entire

experimental device; the hybrid interferometer, the bimetallic loop, a heater, a ther-

mometer and an antenna for fine-field tuning. The control of single kΦ0 through

use of a thermocycling technique is presented. Complete control over both k and

n allow accurate experimental determination of gradients a and b, which in turn

allow reference values to be calculated. The reference values are compared to the

measured values which allow separation of the genuine thermoelectric magnetic flux

from spurious Λ(T )-effects - the experimental methods and the analysis techniques

are fully discussed. The circulating current in the system and the heat flow through

the aluminium half of the bimetallic loop are used to determine the thermoelectric

magnetic flux. The measured value of the thermoflux is shown to be in excellent

agreement with the theory presented here.
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CHAPTER 8

Conclusion

8.1 Conclusion

The primary aim of this project was to investigate the possibility of thermoelectric

effects being present in superconductors as first proposed by Ginzburg [14]. The

particular geometry used in this project is that of the bimetallic superconducting

ring which was previously investigated by a number of different groups in the 1970s

and 1980s [9–11, 13]. A “thermoelectric paradox” arose as the experimental results

agreed neither with one another or the theory; sometimes in discrepancy with the

theoretical values by up to five orders of magnitude. A possible reason for such

variation in the results obtained by different groups, and correspondingly, the lack

of agreement with theory was suggested to be due to thermoelectric effects being

masked by other concomitant effects.

One of the possible masking effects is due to the number of flux quanta trapped

inside the loop and the change in measured flux if additional flux is added or re-

moved. All of the previous experiments referenced above used large scale bimetallic

loops; a typical loop area would be 25 mm2. A magnetic field of the order of the

residual geomagnetic field (≈ 50 µT) is enough to trap 6 × 105 flux quanta within
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the superconducting loop.

A second effect that masks the detection of the thermoelectric flux is the temperature

dependence of the superconducting penetration depth, Λ(T ). Due to the change in

the penetration depth with temperature, a sample’s effective area will change under

the influence of an applied heat. It is also important to note that the previous exper-

iments all used a SQUID based read-out technique with the SQUID situated away

from the bimetallic loop. This necessitates the use of a coupling wire which, in turn,

can trap additional flux. The redistribution that arises due to the Λ(T )-effect can

also register a change in flux if the SQUID is not properly coupled to the bimetallic

loop.

During this project we have used the nano-fabrication facilities available at Royal

Holloway’s clean room. Using electron-beam lithography we have been able to make

structures with much smaller loop sizes than those reported in previous works. A

typical size of our superconducting loops is 200 µm2. As a comparison to the macro-

scopic loops discussed above our loops will trap only a small number (≈ 6) of flux

quanta when subject to the residual geomagnetic field.

To address the issue of having to use a coupled SQUID situated far away from

the bimetallic loop, as per previous work, we have successfully fabricated a hybrid

interferometer on the same chip, fully enclosing the bimetallic loop. This ensures

that no region of the bimetallic loop will be uncoupled to the hybrid interferometer

measuring loop. This eliminates any thermoelectric flux ‘false positives’ caused by

a redistribution of flux as a result of the Λ(T )-effect. Again, the interferometer loop

is of a similar area to the bimetallic loop (400 µm2).

The requirements of the hybrid interferometer are that it must operate at its opti-

mal working point with minimal, ideally zero, additional bias current. The mode

of operation must be free from hysteresis when the applied magnetic field is swept

back and forth. In addition, all possible causes of flux noise should be reduced to a

minimum. In order to ensure that the hybrid interferometer could satisfy the above

criteria and act as an appropriate read-out device for our thermoflux experiment a
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number of investigations were carried out. Initial experiments involved single SNS

junctions in which the critical current of the junction could be measured as a func-

tion of varying other parameters. The first parameter varied was the length of the

normal part (LN) of the SNS junction, this is obviously a value that is fixed during

the fabrication stage and thus a number of devices with different LN were made.

At a constant temperature of 240 mK, with identical measuring currents, it was

observed that the critical current in the junction reduces as a function of LN. This

result was as expected due to the formula given by de Gennes [44] that predicts the

relationship Ic(L) ∝ exp(−L/ξN). The fit of our experimental data to this theory

showed excellent agreement. A more recent theory by Zaikin et al [45] was also fit to

our data which showed reasonable agreement; however, the theory is only applicable

in the ‘long-junction’ regime (L > ξN) which some of our devices may not fall under.

Using the same devices we were also able to investigate the effect of temperature on

the critical current of the junctions. Again, we expected to see a reduction of the

critical current as the temperature of the cryostat was increased. We fit the data to

the simplified long-junction regime theory as per Ref [45]. It is not surprising that

the theory is in better agreement with the data for the longer junctions.

Our devices were fabricated with an additional set of measurement leads which con-

tact the normal junction perpendicularly at its center-point. This allowed us to

apply an additional dc bias current to the device. A reduction in the critical current

as the bias current was increased was observed; this was also expected from the

theory discussed in Section 3.2.1.

The next set of devices fabricated joined the two superconductors with a supercon-

ducting wire to form a superconducting loop interrupted by a normal metal junction.

A similar program of experiments to those described above were carried out. In this

case the screening parameter β ≈ LIc is important (see Section 3.2). As the induc-

tance L is fixed during fabrication, β can be varied simply by varying the critical

current. As the hybrid interferometer exhibits magnetoresistance oscillations we

were interested to see how they were affected by varying β. It was observed that
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the oscillations could evolve through a number of states as the screening parameter

was decreased (i.e., as the critical current was reduced). At low bias currents and

low temperatures the oscillations were strongly-hysteretic as a result of the flux-

phase relationship shown in Figure 6.2. As β is reduced the oscillations become

non-hysteretic forming a cusp-like sinusoidal shape at β ≈ 1. Further increase of

the screening parameter saw the oscillations become increasingly sinusoidal. This

evolution of line-shape was observed both as a function of temperature of the cryo-

stat and as a function of the applied bias current.

To reduce flux noise in the loop due to coupling of the measuring current a new in-

terferometer design was devised. In this design the perpendicular normal metal wire

was folded back on itself with an insulating spacer placed between. This removed

the measuring current from inside the measurement loop. The fabrication of this

design was challenging as it was necessary to have precise alignment (≈100 nm) to

ensure the two halves of the normal metal were in good contact.

As an aside to the main aim of optimising the interferometer for our purpose of

thermoelectric flux detection, some of the novel properties of our test devices were

investigated in their own right. Another set of the devices used to test the effect of

an additional bias current were fabricated but one of the normal metal reservoirs

was replaced with a superconducting reservoir of similar thickness. As the bias cur-

rent was increased in these devices the critical current reduced as seen previously.

Additional application of bias current, once the critical current had been suppressed,

resulted in a reappearance of the critical current before, once again, becoming fully

suppressed. This effect, known as the π-effect, is typically seen in devices with thick

(hundreds of nanometers) normal metal reservoirs whereas the effect here is seen in

a device with reservoirs only 50 nm thick; it is noted that the effect is only observed

when one of the normal reservoirs is replaced with a superconductor. Although great

care was taken to avoid operating the hybrid interferometer in the hysteretic regime

during our thermoflux experiment a brief investigation was performed to investigate

the behaviour of the device in this mode of operation. As the magnetoresistance
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oscillations exhibit a jump due to the unstable branch of the phase-flux relationship

the interferometer may be used in a ‘latching’ detector regime. As there is such a

large jump in resistance to a very small flux change the device can be initialised to a

starting value and await an event that will shift the flux and subsequently measure

a large change in the resistance value measured. This idea was tested during this

project by using a multi-level flux pulse profile that initialised the system at a set

point before applying a variable flux pulse that could tip the flux over the edge of

the resistance drop. After the flux pulse is turned off the resistance of the system is

remeasured. Due to the hysteresis in the magnetoresistance oscillations, if the flux

pulse was sufficient to overcome the resistance drop then the system is considered

to be in another state, it is not possible for the system to escape back into its initial

state from this point. By varying the size of the flux pulse we were able to experi-

mentally determine the fidelity of the read-out system.

With the aforementioned investigations providing a set of fabrication guidelines

for our proposed thermoelectric effect device, we designed and fabricated a com-

plex multi-layer sample containing all the necessary components on one chip. The

bimetallic loop was designed using lead and aluminium and made to have a small

area to avoid trapping large numbers of flux quanta at small magnetic fields. The

bimetallic loop was surrounded by a hybrid interferometer measuring loop specif-

ically designed to operate in the non-hysteretic regime without additional dc bias

current. A heater and thermometer were also included on the same chip, as well as

a lead antenna to provide a fine controllable magnetic field source. The reason for

fabricating the entire sample on one chip is to avoid the need for coupling pick up

coils, etc. that are inherent in the previous attempts at observing the thermoelectric

flux.

During the experiment we were able to demonstrate excellent control over the num-

ber of flux quanta in the loop, moving them in and out of the loop one-by-one using

a thermocycling operation. Using the magnetoresistance oscillations of the hybrid

interferometer we were able to separate the genuine thermoelectric flux generated
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as a result of the applied temperature gradient from the Λ(T )-effects that are also

present due to a raised average temperature of the bimetallic loop. As the previ-

ous measurements did not account for the out-of-control scatter of the number of

trapped flux quanta, their observed effects are explained by a large Λ(T )-effect con-

tribution that gives results in such large discrepancy with the theory.

Starting from the recently proposed technique for calculating the circulating current

in the loop by means of minimizing the total energy of the system [22], we were able

to theoretically deduce a formula for the circulating current in our system and sub-

sequently the thermoelectric flux. We also show that it is important to consider the

heat flow equations of the system to determine the value of the circulating current.

We find that our experimentally determined value of the thermoelectric flux is in

excellent agreement with the theory presented.
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8.2 Further Work

Further work should be carried out investigating the range of geometries in which

the novel π-effect can be observed. Varying the thickness of the reservoirs could give

a lower limit at which the reappearance of a critical current will be observed. This

result also deserves theoretical input to determine why the presence of the super-

conductor causes this effect and what similarities our design has to other measured

devices.

The work presented in this thesis has shown that the hybrid interferometer is a

device capable of being tuned (during fabrication, or in-situ) to operate at different

working points. Although primarily used here in the sinusoidal regime, our proof-

of-principle experiments of a latching read-out device are promising. As the device

utilises a variable pulse profile to operate, the act of probing a device-under-test

and the measurement of the interferometer state are separated. This could prove

particularly useful in measurements of superconducting quantum circuits such as

qubits as the back-action on the device would be minimal. This could serve to lower

the effect of measurement on the decoherence of the qubit.

The methods used to separate the thermoelectric flux from masking Λ(T )-effects can

be used to further explore thermoelectric phenomena in superconducting devices. An

avenue for potential further work in this area is to test some of the recently published

theories [125] that propose that a superconductor doped with magnetic impurities

can result in an enhancement of the thermoelectric effect. If true, this effect would

be observed using the techniques outlined in this thesis.
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