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Abstract

Network Protocols are critical to the operation of the Internet and hence the se-

curity of these protocols is paramount. Our work covers the security of three widely

deployed protocols: Domain Name System (DNS), Transport Layer Security (TLS)

and Datagram Transport Layer Security (DTLS). Our work shows that the design or

implementation of some variants of these protocols are vulnerable to attacks that com-

promise their fundamental security features. In all of the cases we include experimental

results demonstrating the feasibility of our attacks in realistic network environments.

We propose a number of countermeasures for the attacks, some of which have already

been implemented in practice.

We start by describing the structure of DNS and present a number of existing DNS

security protocols. We then focus on DepenDNS, a security protocol that is intended to

protect DNS clients against cache poisoning attacks. We demonstrate that DepenDNS

suffers from operational deficiencies, and is vulnerable to cache poisoning and denial of

service attacks.

We then give an overview of Transport Layer Security (TLS) and Datagram Trans-

port Layer Security (DTLS), and draw the similarities and differences between the two

protocols. We describe the padding oracle concept and present a number of recent

attacks against TLS.

We then present new techniques to conduct a full plaintext recovery attack against

the OpenSSL implementation of DTLS, and a partial plaintext recovery attack against

the GnuTLS implementation of TLS and DTLS. Our attacks exploit timing-based side

channels that would not have been exploitable without our new techniques. We also

describe countermeasures for the attacks.

We then present new distinguishing and plaintext recovery attacks against all ver-

sions of TLS and DTLS and in almost all implementations of the two protocols. Our

attacks are based on timing-based side channels and exploit TLS and DTLS design and

implementation decisions. We describe how to conduct a full plaintext recovery attack

against implementations that follow the standard, and a partial plaintext recovery at-

tack against implementations that do not. We discuss a number of countermeasures

for the attacks, and describe their practicality and effectiveness.

We conclude the thesis by discussing the wider implications of our work on the

design and implementation of secure network protocols.
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Chapter 1

Introduction

1.1 Context

The evolution of secure network protocols has been largely driven by the discovery and

the successful exploitation of weaknesses in either the design or the implementation

of these protocols. The Domain Name System (DNS) and Transport Layer Security

(TLS) provide good examples that demonstrate this broken reactive model of evolution.

Maintaining the security of DNS has been a continues challenge with high-profile

and high-impact attacks frequently emerging (for example, Kaminsky’s cache poisoning

attack against DNS), which are usually followed by the development of ad hoc security

protocols that try to protect DNS from these attacks. In most cases, attacks against

DNS have exploited trivial, and on occasion known, weaknesses. Most of these attacks

would have been prevented if the basic DNS security mechanisms had been deployed.

TLS, on the other hand, is by far the most widely deployed secure network protocol

today, and which best show-cases the failure of this ad hoc approach of designing and

implementing secure network protocols. Attacks of different severity and practicality

levels have been published against TLS (and its predecessor, Secure Socket Layer),

triggering ad hoc and non-coordinated responses from the Internet Engineering Task

Force (IETF) who maintain the protocol specification, and the TLS open and closed

source code development community. Alarmingly, the number of attacks against TLS

has recently been on the rise including, for example, BEAST, CRIME, Lucky 13 (our

attack discussed in Chapter 5) and BREACH.

Our work takes advantage of previously unknown weaknesses introduced by this

ad hoc approach to develop attacks that exploit the above mentioned protocols using

basic, but novel, techniques.

19



Chapter 1. Introduction 1.2. Contributions

1.2 Contributions

The work presented in this thesis reflects our analysis of three secure network protocols:

DepenDNS (a DNS security protocol), TLS and Datagram TLS (DTLS). We describe

a number of weaknesses in the design and implementation of these protocols that could

be exploited by an adversary to conduct various, and in many cases severe, attacks that

undermine their fundamental security goals. The impact and applicability of our work

goes beyond academia and extends to cover the larger community of secure network

protocol researchers, designers and software implementers. Our work demonstrates

again the (in)security of the MAC-then-Encode-then-Encrypt (MEE) construction for

TLS and DTLS, using new techniques to exploit design and implementation decisions

made for the two protocols to build attacks. We describe how to use these new tech-

niques to recover TLS and DTLS-protected plaintext. In addition, we demonstrate

that a number of DNS security protocol implementations are impractical and, in the

case of DepenDNS, are ineffective.

We took the route of: identifying and verifying potential design or implementation

weaknesses, practically exploiting these weaknesses, and then responsibly disclosing

our research results. We responsibly disclosed our findings, working closely with the

(D)TLS standards’ design and development community to address the newly discovered

weaknesses; a large number of open source software developers and vendors had to

modify their code in response to our attacks. During our research, we collaborated

with the authors of the IETF (D)TLS standards, various vendors such as Google and

Microsoft, and open source software developers maintaining cryptographic libraries

such as OpenSSL and GnuTLS.

Our work promotes further the use of secure TLS modes of operation such as authen-

ticated encryption (AE) and the proper implementation of secure network protocols,

while considering clarity, effectiveness, practicality and ease of deployment.

Secure network protocols are implemented as part of a system. The interaction

between the secure network protocols and the other components of the system, espe-

cially their upper and lower-layers, plays a critical role in defining the system’s overall

security. We demonstrate this in the different chapters of this thesis. For example, we

demonstrate how to use application layer messages to construct a new realisation of

Vaudenay’s padding oracle [102] in the context of DTLS in Chapter 4.

1.3 Publications

This thesis contains published research materials with K.G. Paterson:
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An Analysis of DepenDNS [7]: Published in the 13th Information Security Con-

ference (ISC), and forming the basis of Chapter 2.

Plaintext-Recovery Attacks Against Datagram TLS [5]: Published in the 19th

Network and Distributed System Security (NDSS) Symposium, where we received one

of the two distinguished paper awards1. The work in [5] forms the basis of Chapter 4.

Lucky Thirteen: Breaking the TLS and DTLS Record Protocols [6]: Pub-

lished in the 34th IEEE Security and Privacy (IEEE S&P) Symposium, and forming

the basis of Chapter 5.

1.4 Thesis Outline

In Chapter 2, we give an introduction to DNS, the services it provides and the standard

security mechanisms available to protect DNS from denial of service and cache poisoning

attacks. We then describe a number of security protocols that have been proposed to

further secure DNS and give an overview of their current deployment status. We

analyse a particular protocol, DepenDNS, in detail and demonstrate that the protocol

is vulnerable to a number of attacks despite the protocol designers’ claims. We also

describe a number of issues that make DepenDNS impractical to deploy. We conclude

the chapter by summarising our findings and giving our perspective on the ongoing

efforts to secure DNS.

In Chapter 3, we provide the necessary background information and prerequisite

material that are needed to establish an understanding of the TLS and DTLS pro-

tocols. We provide background information about the TCP/IP protocol suite and

describe three fundamental networking protocols: IP, TCP and UDP. We then in-

troduce Transport Layer Security (TLS), describe how the protocol is structured and

discuss its modes of operation. We also introduce Datagram Transport Layer Security

(DTLS) and describe the differences between TLS and DTLS. We then present in detail

the padding oracle concept and describe how an attack can be theoretically mounted

against TLS using the oracle. Finally, we present a number of recent attacks against

the two protocols, serving as a forerunner to our attacks on DTLS and TLS, which we

present in Chapters 4 and 5.

In Chapter 4, we present our attacks against the OpenSSL implementation of DTLS

with the MAC-then-Encode-then-Encrypt construction. We report our experimental

results demonstrating efficient and reliable recovery of full DTLS plaintexts in the

OpenSSL case. We then discusses how similar attacks can recover partial plaintexts in

1http://www.internetsociety.org/events/ndss-symposium-2012/papers
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the GnuTLS implementation of TLS and DTLS.

In Chapter 5, we present a family of attacks that apply to the MAC-then-Encode-

then-Encrypt construction in all TLS and DTLS implementations that are compliant

with TLS 1.1 or 1.2, or with DTLS 1.0 or 1.2. Our attacks also apply to implementa-

tions of SSL 3.0 and TLS 1.0 that incorporate padding oracle attack countermeasures.

We first provide further background on the HMAC calculation. We then present the

basic distinguishing attack against RFC-compliant implementations of TLS and DTLS,

followed by a description of our plaintext recovery attacks in the context of TLS. We ex-

plain how to modify them to apply to DTLS. We report on the experimental validation

of our attacks for the OpenSSL implementation. We then describe the modifications

needed to make our attacks applicable to other implementations. We finally give guid-

ance on how to implement the MAC-then-Encode-then-Encrypt construction so as to

avoid the attacks.

We conclude the thesis by discussing the wider implications of our work on the

design and implementation of secure network protocols.
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Chapter 2

The Domain Name System

2.1 Introduction

We start the chapter by giving an introduction to the Domain Name System (DNS),

the services it provides and the standard security mechanisms available to secure DNS

against denial of service and cache poisoning attacks. We then describe a number of

security protocols that have been proposed to further secure DNS and give an overview

of their current deployment status. We analyse a particular protocol, DepenDNS, in

detail and show that the protocol is vulnerable to a number of attacks despite the

protocol designers’ claims. We also describe a number of issues that make DepenDNS

impractical to deploy. We conclude the chapter by summarising our findings and giving

our perspective on the ongoing efforts to secure DNS.

2.2 Introduction to the Domain Name System

The Domain Name System (DNS) [65, 66] is a fundamental service that is critical to

the proper operation of the Internet. While people are quite good at remembering

names, they are not good at remembering IP addresses and hence the need for DNS to

help translate names to IP addresses that the Internet can route. The most common

service that DNS provides is mapping names to IP addresses (for example, translating

“www.example.com” to 192.0.43.10). In addition to mapping names to IP addresses,

DNS provides other services such as mapping IP addresses to names (commonly referred

to as reverse DNS) and assigning aliases to domain names.

Domain names, IP addresses and other information are maintained on DNS servers

in the form of persistent or cached entries referred to as Resource Records (RRs). RRs

share the structure described in RFC 1035 [66] and shown in Figure 2.1.
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0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

/ NAME /

/ /

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| TYPE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| CLASS |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| TTL |

| |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| RDLENGTH |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

/ RDATA /

/ /

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Figure 2.1: Resource Record structure. The structure shows the fields in a RR that
are explained in Section 2.2.

The 2-byte TYPE field shown in Figure 2.1 contains the RR type code. Examples

of commonly used types include:

• A: The address record used for serving IPv4 host addresses.

• AAAA: The address record for serving IPv6 host addresses.

• CNAME: The canonical name record used for serving an alias of a host name.

Multiple CNAMEs can be created such that the same host name that a user queries

would resolve to multiple canonical names pointing to different IP addresses,

hosted on different servers that could be geographically distributed. Figure 2.2

shows an example where two CNAMEs are created to serve “www.gov.uk”1.

• MX: The mail exchange record used for serving the mail server host name.

• NS: The name server record used to identify the authoritative name server hosting

the domain.

• PTR: The pointer record used in reverse DNS look-ups to map an IP address to a

host name.

1The reader may receive a different output when trying the same DNS query. The values he receives
would largely depend on the source of the DNS requests.
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www.gov.uk canonical name = www.gov.uk.edgekey.net.

www.gov.uk.edgekey.net canonical name = e6452.b.akamaiedge.net.

Name: e6452.b.akamaiedge.net

Address: 23.14.4.23

Figure 2.2: DNS look-up showing two CNAME RRs being served for the host name
“www.gov.uk”.

The time-to-live (TTL) value associated with an RR specifies how long, in seconds,

should DNS clients or resolvers cache an RR. For example, a TTL value of 3600 indicates

that the RR should be cached for only an hour, while a TTL value of 0 indicates that

the RR should not be cached. The receiver of an RR can choose to ignore the TTL

value it receives and assign a value of its choice.

The other fields that make up an RR include:

• NAME: The domain name that owns the RR.

• CLASS: The CLASS code. The reader may think of this field as the category of

the record and is typically set to 1 for an Internet CLASS.

• RDLENGTH: The length of the RDATA field in octets (bytes).

• RDATA: A variable length string that describes the RR. The format of this record

varies according to the TYPE and CLASS of the RR. For example, the RDATA

field may contain a host name and an IPv4 address in case it was for an A RR.

DNS can be thought of as a distributed database with a hierarchical structure that

is made up of name servers hosting the database and serving RRs. This hierarchy

is shown in Figure 2.3. The root domain (“.”) is at the top of the hierarchy and is

served presently by thirteen root operators with servers distributed around the world2.

The list of the current root servers is shown in Table 2.1. Typically, DNS server

packages (for example, ISC BIND3 and Microsoft DNS4) would embed this information

in their code. This clearly makes changing the IP address of a root server a daunting

task. The second level in the hierarchy contains top-level domains (TLDs) that can be

classified as generic (gTLD) such as “.com”, or country code (ccTLD) such as “.uk”.

Multiple levels exist underneath the TLDs. The domain names located in the lower

levels are generally served by their corresponding organisations. For example, the

Internet Assigned Numbers Authority (IANA)5 hosts the domain “example.com” [3].

2http://www.root-servers.org
3http://www.isc.org/downloads/BIND
4http://technet.microsoft.com/en-US/network/bb629410.asp
5http://www.iana.org
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root(.)

.uk

.ac

.rhul

www .isg

www . . .

mail . . .

. . .

. . .

.com

.example

www

.yahoo

www

. . .

. . .

Figure 2.3: The Domain Name System structure. The figure shows the DNS root
domain (“.”) in the top of the hierarchy. The figure also show two TLDs, “.com” and
“.uk” and sample levels that exist under the “.uk” TLD.

The operation of DNS is based on queries (requests) and responses (replies). A client

initiates the process by sending a DNS resolution query for a host name (for example,

“www.example.com”) to its DNS resolver which in return searches its cache entries

for the name being requested. If an entry does not exist, resolvers may go through a

recursive DNS look-up process that starts from the root servers and continues all the

way down to the authoritative name servers (ANSs) responsible for hosting the domain

being requested (for example “example.com”). Resolvers capable of performing this

recursive DNS look-up are referred to as recursive DNS (RDNS) resolvers; we refer to

them in this chapter as resolvers in short. A resolver can also be configured to forward

DNS queries to other resolvers (referred to as upstream resolvers) to perform recursive

DNS look-ups on its behalf.

Information about domains and their records are contained within DNS zones. An

ANS maintains the zone’s database and responds to DNS queries for hosts that exist

in the zone. Upon receiving an answer from an ANS, a resolver caches and forwards

the answer to the requesting client.

2.2.1 DNS and Content Delivery Networks

Content Delivery Networks (CDNs) are built to enhance the user’s experience when

trying to access an Internet resource like a website. A Content Delivery Network
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Root Server Host Name IP Address Operator

a.root-servers.net 198.41.0.4 VeriSign, Inc.

b.root-servers.net 192.228.79.201 University of Southern California (ISI)

c.root-servers.net 192.33.4.12 Cogent Communications

d.root-servers.net 199.7.91.13 University of Maryland

e.root-servers.net 192.203.230.10 NASA (Ames Research Center)

f.root-servers.net 192.5.5.241 Internet Systems Consortium, Inc.

g.root-servers.net 192.112.36.4 US Department of Defence (NIC)

h.root-servers.net 128.63.2.53 US Army (Research Lab)

i.root-servers.net 192.36.148.17 Netnod

j.root-servers.net 192.58.128.30 VeriSign, Inc.

k.root-servers.net 193.0.14.129 RIPE NCC

l.root-servers.net 199.7.83.42 ICANN

m.root-servers.net 202.12.27.33 WIDE Project

Table 2.1: DNS root servers.

consists of a set of surrogate servers distributed around the world. The surrogate

servers are deployed in multiple locations in order to optimise the end user experience

by choosing the nearest surrogate server to the user [101]. For example, web requests

generated by a UK-based end user for a website hosted by a CDN will generally be

served by a surrogate server that is located in the UK. Most CDN providers deploy DNS

redirection to forward the client’s request to the closest server containing the resource

being requested. One of the characteristics of DNS records served by CDNs is that they

have a low TTL value. Serving a low TTL value causes more frequent DNS look-ups for

the same host name, allowing the DNS server hosting the DNS entry to possibly serve

different IP addresses, based on factors such as the availability of the surrogate servers

or the client’s proximity to the surrogate servers. By way of example, the following

shows the TTL value for “134.g.akamai.net”, which is the CNAME RR corresponding to

“www.live.com”. It can be seen that the TTL value is set to only 20 seconds.

$ dig www.live.com

...

www.live.com. 1216 IN CNAME search.msn.com.edgesuite.net.

search.msn.com.edgesuite.net. 2382 IN CNAME a134.g.akamai.net.

a134.g.akamai.net. 20 IN A 88.221.94.72

a134.g.akamai.net. 20 IN A 88.221.94.34

...
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CDNs have proven lately to be a very attractive option for hosting rich web content

such as video. In fact, high profile websites such as YouTube, CNN and BBC commonly

make use of commercial CDNs such as Akamai and Limelight [96].

2.3 Security of DNS

Threats targeting DNS and DNS caches in particular are not new. They have existed

since the day DNS was introduced. However, the topic gained significant visibility

and attention after a number of high-profile attacks such as Kaminsky’s DNS cache

poisoning attack [50], described in Section 2.3.3. Kaminsky discovered a fundamental

flaw within DNS implementations that could allow remote attackers to corrupt the

cache of a DNS server within a matter of seconds, exploiting a combination of old

(known) and new (previously unknown) vulnerabilities.

Attacks against DNS can be classified as denial of service (DoS) or cache poisoning

attacks. The former targets the availability of the DNS service or data, while the

latter targets the integrity of the DNS data. Typically, denial of service attacks target

ANSs while cache poisoning attacks target resolvers. DNS information served over

the Internet is considered public. Guaranteeing the integrity and authenticity of the

Internet DNS data are of top concern. Although confidentiality is generally not a

concern, keeping DNS information confidential might be required in private networks

(for example, networks serving internal corporate users). A good description of threats

against DNS is given in RFC 3833 [13].

2.3.1 DNS Cache Poisoning

Cache poisoning, in the context of DNS, refers to act of intentionally corrupting the

data contained in DNS caches. DNS messages, including queries and responses, are

communicated in clear using User Datagram Protocol (UDP) [77], and possibly Trans-

mission Control Protocol (TCP) [79, 18], with no integrity check mechanisms in place

[66], other than the basic, non-cryptographically generated, UDP and TCP checksums

that are mainly targeted to detect network errors. We provide further background in-

formation on UDP and TCP in Chapter 3 of this thesis. The lack of a proper integrity

check mechanism makes DNS vulnerable to attacks involving unauthorised data mod-

ification, in which an attacker may alter the data in various ways, with an ultimate

objective of poisoning the content of a resolver’s cache, or possibly a DNS client’s cache.

Such attacks are referred to as DNS cache poisoning and they present potential security

threats to users. For example, a user can unknowing be redirected to a malicious web

site, which mimics the actual one in attempt to harvest the user’s personal information;
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all as a result of receiving a poisoned DNS RR pointing to the malicious web server IP

address.

DNS cache poisoning is commonly achieved through blind injection of spoofed DNS

replies, where the attacker has no access to the information contained in the original

DNS query. This becomes a trivial attack in the man-in-the-middle (MITM) setting,

in which the attacker has visibility of all DNS data and hence can respond to DNS

queries using information of his choice.

In a cache poisoning attack, the attacker may target:

• Resolvers: These servers contain cached entries and generally serve a large number

of users. An attacker may try to poison the resolver’s cache for a domain or a

number of domains, or even try to gain control of the underlying system running

the DNS service.

• Clients: Although spoofing DNS responses from a resolver to a particular DNS

client is possible, this might not be a cost effective attack, unless the client under

attack is of high-value to the attacker.

The attacker can also target ANSs. These servers contain persistent DNS entries for

zones. An attacker may try to control a zone (for example, “.rhul.ac.uk”) by controlling

the underlying system running the DNS service. An attacker gaining control of a server

acting as an ANS would have full control over the DNS zone. Attackers taking control

of ANSs that are high in the DNS hierarchy (for example “.com”) can cause major

Internet service disruption. However, an attack of this type does not fall under the

cache poisoning category. In the next sections, we further describe the cache poisoning

attack in the context of resolvers.

To successfully poison the cache of a DNS server, an attacker may spoof a DNS

response and deliver it to the requester ahead of the legitimate one. Subsequent re-

sponses for the same DNS query should be ignored by the requester as per RFC 1034

[65]. To be accepted by the requester, the spoofed response must also pass the standard

security controls incorporated within DNS. These include comparing the DNS 16-bit

transaction identifier (TXID) and the randomised UDP source port in queries and re-

sponses [46]. The value of TXID is assigned by the program running the DNS service

while the UDP source port assignment is handled by the underlying operating system.

In RFC 6335 [27], IANA divides port numbers into three ranges:

• 0 - 1023: Well known ports;

• 1024 - 49151: Registered ports;
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• 49152 - 65535: Ephemeral ports.

Operating systems are expected to use the ephemeral port range when assigning

random UDP source ports for DNS queries. However, operating system developers can

choose to ignore this and use a smaller pool of ports for UDP source assignment or

even assign sequential UDP source ports. For example, Windows Server 2008 assigns a

random source UDP port numbered 49152 or above6, while earlier versions of Microsoft

Windows assign it from a much smaller range of ports7, only 1024 to 5000. The Linux

2.4 kernel is configured by default to assign a port from the range 32768 to 61000. This

clearly shows that DNS heavily relies on the specific implementation of the underlying

operating system for the UDP source port assignment. Operating systems not properly

randomising the UDP source port was one of the weaknesses that Kaminsky exploited

in his attack [50].

Using a random TXID value introduces 16 bits of entropy, while using a random

UDP source port adds a variable amount of entropy that depends on the operating

system configuration and the number of already used UDP ports. This added entropy

makes it harder to perform blind injection.

The following are definitions for some of DNS related concepts that we will use in

the coming sections.

Definition 2.1. Window of opportunity: The moment right after sending a DNS

query to the moment right before the arrival of the (first) valid response. This applies

to queries and responses between a resolver and an ANS or between a resolver and

its upstream resolver, if it was configured with one. This also applies to queries and

responses between a client and its resolver. This definition assumes that the domain

name being requested is not in the cache of the resolver or the client. Responses received

outside the window of opportunity should be rejected by the DNS query initiator [66].

Definition 2.2. Outstanding DNS query: A DNS query that has been sent by a

resolver or a client and is waiting for a response.

Definition 2.3. Valid DNS Response: A DNS response that meets the security re-

quirements enforced by the initiator of the DNS query.

For example, the security requirements could be matching the TXID and the UDP

source port contained in the original query.

Definition 2.4. Collision: Having two or more valid DNS responses for the same

query.

6http://technet.microsoft.com/en-us/library/dd197515(v=ws.10).aspx
7http://support.microsoft.com/kb/832017
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In the case of a collision, typically, one of the responses will be spoofed by the

attacker and the other will be the legitimate response.

Definition 2.5. DNS blind injection: An injection of a DNS response by an attacker

with the goal of causing a collision and ultimately poisoning the DNS cache.

There are cases, as we see later, in which the attacker has partial information about

the legitimate DNS response (for example, the domain name being requested). We refer

to this type of injection as partially sighted injection.

RFC 5452 [46] gives an overview of the success probability of DNS cache poisoning

attacks. The success probability, P , of an attacker poisoning the cache of a resolver

after n spoofed DNS responses that arrive within the window of opportunity is equal

to n divided by the size of the DNS problem space, i.e. the number of possible TXID

and UDP port combinations. This assumes that the query is for a host name that is

not in the resolver’s cache. The value of P is calculated as:

P =
n

N · U · T
, (2.1)

where N is the number of ANSs serving the domain name being requested, with an

average value of around 2.4 according to [46], U is the number of available UDP ports

to choose from, and T is the number of TXIDs available (maximum of 216). Here, we

assume that the TXID and UDP source port are randomly selected.

The attacker can initiate queries for domain names that are not in the cache of a

resolver and follow that with spoofed responses in a partially sighted injection mode, in

which the attacker has information about the domain name being requested. We would

expect that the attacker can increase the number of concurrent queries for the same

domain to increase the success probability. If this is the case, then for d simultaneous

outstanding queries, the success probability, Pd, is calculated as:

Pd =
n · d

N · U · T
. (2.2)

Equation (2.2) applies when the value of d is small, relative to the amount of entropy

available. As the value of d increases, the attacker can start exploiting the “birthday

paradox”8, significantly raising the chance of success. Therefore, for d incoming queries

to the same domain name, DNS resolvers are expected to rate-limit the number of

requests they send to the same ANS hosting the domain name being queried [46]. This

is to thwart the birthday paradox attack, which we further discuss in Section 2.3.2.

If we assume that the window of opportunity is W seconds in size and that the

8http://www.secureworks.com/resources/articles/other_articles/dns-cache-poisoning
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attacker can send r spoofed responses per second, all arriving within the window of

opportunity, then the success probability can be calculated as:

P =
W · r

N · U · T
, (2.3)

where we assume d = 1.

Some resolver implementations contained flaws in the TXID or the source UDP

port randomisation processes, resulting in an insufficient amount of entropy in DNS

queries and making it easier for an attacker to predict the values of the TXID or the

source UDP port [50]. Other situations include the implementation of Network Address

Translation (NAT) in front of DNS resolvers. A NAT device may replace the original

random source port with a sequential one of its choice, also causing a reduction in the

unpredictability of the UDP source port. We assume that the attacker has no access

to the DNS query and hence must guess the two random variables, the TXID and the

UDP source port. A more severe scenario is when the attacker acts as a MITM. In this

case, attackers have visibility of all DNS data and hence can respond to DNS queries

using information of their choice.

2.3.2 DNS Cache Poisoning and the Birthday Paradox

Some implementations of DNS such as old versions of ISC BIND (version 9.2.8 and

earlier9) send simultaneous DNS requests to the same ANS for the same domain name.

An attacker can take advantage of this behaviour by sending d DNS queries followed

by an equal or higher number of spoofed DNS responses, arriving within the window

of opportunity, to exploit the “birthday paradox”. The attack was first published in

200210 and gives the attacker an opportunity to match a valid response using fewer

spoofed DNS responses, hoping for a collision. The more DNS queries the attacker

sends, accompanied with an equal or higher number of spoofed responses that arrive

within the window of opportunity, the greater the probability of collision.

If the attacker issues d DNS queries for the same domain name served by the same

ANS, and sends d spoofed responses, then the probability of a collision (having two

or more valid DNS responses for the same query) in the DNS responses which would

result in successfully poisoning the DNS cache can be calculated using the following

lower bound formula:

P = 1−
(

1− 1

U · T

)d(d−1)/2
. (2.4)

9http://www.isc.org/downloads/BIND
10http://www.kb.cert.org/vuls/id/457875
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The attack becomes more serious when an implementation fails to properly ran-

domise the values of the TXID or the UDP source port. To protect against the birth-

day attack, resolvers should be configured to limit the number of requests they send

for a domain name. For example, Google Public DNS11, a free global DNS resolution

service, never allows more than a single outstanding query on one of its resolvers, for

the same domain name, query type, and ANS IP address.

To demonstrate the effect of exploiting the birthday paradox, let us take the case

when an implementation fails to randomise the UDP source port, leaving TXID as

the only source of entropy. Figure 2.4 shows the success probability, calculated using

equation (2.4), as the value of the number of outstanding queries, d, increases. The

attacker can achieve a success probability of 0.5 with only 300 outstanding queries and

matching spoofed responses, and 0.99 with only 776 outstanding queries and matching

spoofed replies; compare this to Figure 2.5, when only one query is sent from the

resolver to the ANS. In both cases, we assume that the value of the 16-bit TXID has

been randomly assigned.

S
u
c
c
e
s
s
P
r
o
b
a
b
i
l
i
t
y

0 500 1000 1500
0.0

0.2

0.4

0.6

0.8

1.0

Number of Outstanding Queries

Figure 2.4: Birthday attack success probability with variable d outstanding queries and
when relying on a random TXID only. The figure shows that the attacker can achieve
a success probability of 0.5 with only 300 outstanding queries and matching spoofed
responses, and 0.99 with only 776 outstanding queries and matching spoofed replies

2.3.3 Kaminsky Attack Against DNS

In this section, we give a short overview of Kaminsky’s attack [50], one of the most high-

profile attacks against DNS. Kaminsky’s cache poisoning attack against DNS exploited

two basic vulnerabilities in a number of DNS implementations. Not properly randomis-

ing the source UDP port is a known weaknesses that Kaminsky exploited in his attack,

11https://developers.google.com/speed/public-dns/docs/security.html
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Figure 2.5: Birthday attack success probability with only one outstanding query and
when relying on a random TXID only. The reader would compare this to Figure 2.4,
which shows the birthday attack success probability with variable d outstanding queries
and when relying on a random TXID only

taking advantage of the fact that many implementations have ignored randomising the

source UDP port. He also exploited a previously unknown vulnerability that allows an

attacker to overwrite a cached DNS RR, even if the RR’s TTL has not expired. Let us

assume that the attacker tries to poison a resolver’s cache NS entry for the domain name

“foo.com”. If successful, then the attacker can serve DNS queries generated by this

resolver for any host name under “foo.com” (for example “www.foo.com”) using data

of his choice. This will impact all the clients that are configured to use the targeted

resolver. The attack proceeds as follows.

The attacker sends DNS queries for different random host names under “foo.com”,

which are unlikely to be in the resolver’s cache (for example “123456.foo.com”), forcing

the resolver to query the ANS serving “foo.com” for every queried host name. The

attacker simultaneously floods the resolver with spoofed DNS responses, but with DNS

delegation information that contains a forged NS RR pointing to a DNS server controlled

by the attacker. A vulnerability existed in many DNS implementations which allowed

the overwrite of cached RRs using delegation information contained in DNS responses,

and which the resolver will happily accept. Kaminsky demonstrated that combining

lack of proper UDP source port randomisation and this vulnerability results in a severe

attack against DNS, allowing an attacker to poison a resolver’s cache in a very short

period of time, in matter of seconds in some cases. The reader can refer to [39] for

greater detail on the attack.
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2.4 Securing DNS Against Cache Poisoning Attacks

The amount of entropy introduced by using random TXID and random UDP source

port has proven to be insufficient to protect against cache poisoning attacks, mostly be-

cause of implementation issues12,13,14,15. This has resulted in various security protocols

being proposed to add further controls to secure DNS from cache poisoning attacks.

These protocols do not eliminate the use of a random TXID and a random UDP source

port; they build on-top of these basic DNS security controls and are executed only

when the standard DNS security checks pass. These protocols use techniques that can

be implemented in clients, resolvers, ANSs, or a combination of them. Examples of

such protocols include Domain Name Cross Referencing (DoX) [108], 0x20-Bit encod-

ing [29], ConfiDNS [76], WSEC DNS [75] and DNS Security Extensions (DNSSEC)

[1]. In this section, we give an overview for some of these protocols before focusing on

DepenDNS [97], the protocol that we analyse in more detail in Section 2.5.

2.4.1 Domain Name Cross Referencing

Domain Name Cross Referencing (DoX) [108] is a resolver-based protocol that forms

peer-to-peer networks of resolvers. Resolvers in a DoX peer-to-peer network establish

and maintain verification channels. A resolver joins a verification channel and gets

assigned k random peers, where a peer is just another participating resolver in the

same peer-to-peer verification channel. The exact process of how a resolver joins a

verification channel is described in [108].

In DoX, each resolver maintains its own verification cache, vCache, which contains

record entries that have been previously verified by DoX. The vCache is kept sepa-

rate from the standard DNS cache that is maintained by the DNS program running

on the system. DNS response messages received from ANSs are evaluated by DoX’s

consistency check shown in Algorithm 1. A resolver running DoX accepts a DNS re-

sponse, Rd, if an entry for the domain name being queried exists in its vCache, Rv, and

Rv = Rd, else the resolver checks if Rd is consistent with what its k peers have in their

vCaches. It does this by sending Rv and Rd to its k peers. Every peer is expected to

compare Rd with its vCache entry for the domain name in Rd or with a fresh response

from the ANS hosting the domain name in question. Every peer would then reply back

to the resolver with Agree, Disagree or DiffView:

• An Agree reply indicates to the resolver that the peer found Rd to be legitimate,

12http://www.cert.org/advisories/CA-1997-22.html
13http://www.kb.cert.org/vuls/id/457875
14http://www.cvedetails.com/cve/CVE-2008-1447
15http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2926
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either by finding a similar entry in its vCache or after contacting the ANS serving

the domain name contained in Rd and receiving a response, Ra, that is similar

to Rd.

• A Disagree reply indicates that the peer found Rd to be different from the

version it has in its vCache and different from the response it received from the

ANS serving the domain name, Ra.

• A DiffView reply indicates that the peer found Rv, which it received from the

resolver, to be different from the entry it has in its vCache. However, it found

Ra = Rd.

A threshold value, thresh, is maintained by the resolver and is used to accept or

reject Rd. If no peer replies with Disagree then the record is accepted by DoX. Else,

the resolver issues a fresh query to the ANS serving the domain name being requested.

The DNS response is then saved to Ra. Rd is accepted and the resolver’s vCache

is updated, when Ra = Rd and the number of received Agree replies is higher than

thresh. Else Rd is rejected by the resolver and is assumed to be the result of a cache

poisoning attempt.

An issue that DoX must address is how to populate an empty vCache on start-up.

The authors of [108] propose a safe start-up phase for resolvers to build up their vCache.

However, they do not give details on how to implement this safe start-up phase. We

are not aware of practical DNS implementations that have made use of DoX.

2.4.2 0x20-Bit Encoding

0x20-Bit encoding [29] is another resolver-based protocol that tries to increase the

entropy size beyond what the random TXID and the UDP source port provide. It

achieves this by encoding DNS queries using a combination of lower and upper case

characters, i.e randomising the case pattern in name requests for the ranges (A..Z) and

(a..z), (0x41..0x5A) and (0x61..0x7A) respectively. The protocol’s encoding relies on

ANSs retaining the original string in their response and ANSs replying to any case

pattern, i.e. it is required that DNS queries are case-insensitive. For example, DNS

queries for “Www.rHul.AC.uk” and “www.rhul.ac.uk” would resolve to the same IP

addresses, while preserving the case pattern in the responses. This behaviour follows

the standard, RFC 1034 [65], which states that no significance should be attached to

the case of domain names, i.e. two names with the same spelling but different case

pattern are to be treated as if identical.

The authors of [29] propose the following simple algorithm to produce an 0x20-

encoded domain name:
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Algorithm 1: DoX Consistency Check Algorithm

input : DNS query received from the DNS client, Q
input : k DoX peers received after joining a verification channel
input : thresh

output: Poison Detected, OK or WARNING

Rd ← DNS Lookup(Q);
Rv ← vCache Lookup(Q);

if Rd = Rv then
return OK;

else
Send (Rv, Rd) to k peers and get the first m results;
If #Disagree = 0 return OK;
else

Ra ← ANS Lookup(Q);

if Ra 6= Rd then
Poison Detected;

else if Ra = Rd and #Agree > thresh then
return OK;

else
return WARNING;

1. The resolver normalises the DNS query, or response, field by converting each

letter in the domain name to lower case.

2. The resolver encrypts the normalised version using some algorithm such as AES.

3. The resolver uses the output of Step 2 to encode the domain name such that:

(a) if the ith bit of the encrypted output is 0, then make the ith letter in the

queried domain name upper case, i.e. perform an OR operation between the

character and 0x20, hence the name of the protocol.

(b) else make the ith letter in the queried domain name lower case.

The resolver then sends the encoded version of the query to the ANS hosting the

domain name or to its upstream resolver if it was configured with one. Upon receiving

the DNS response, the resolver applies the same algorithm to the DNS response and

compares the newly produced encoded version with the name contained in the DNS

response it received. The resolver rejects the response if the two do not match and
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considers it a cache poisoning attempt. This assumes that the same key was used when

encrypting the normalised version of the query and response messages.

Clearly, the additional entropy introduced by this encoding technique depends on

the number of letters contained in the domain name being queried. For example, 0x20-

Bit encoding would add only three more bits of entropy to DNS queries for “123.net”.

The following shows the success probability of poisoning the cache of a resolver when

implementing the protocol:

P =
n

N · U · T ·B
, (2.5)

where B is the number of characters in the domain name being queried. The other

symbols are the same ones used in equation (2.1). According to [29], the protocol adds

an average of 12 additional bits of entropy. The authors of [29] also claim that over

99.7% of all DNS servers they have analysed could support 0x20-Bit encoding.

Google Public DNS resolution service implements 0x20-Bit encoding. In a report

published by Google16, two major issues have been identified when implementing the

protocol:

• Some ANSs would respond with different character cases than the ones in the

DNS query.

• Some ANSs are case sensitive and would respond with NXDOMAIN due to case

mismatch. Receiving a NXDOMAIN RR indicates to the resolver that the name

being queried does not exist in the DNS zone served by the queried ANS.

To overcome these issues, Google created a whitelist containing ANSs that would

support 0x20-Bit encoding. Only queries to ANSs in this whitelist are encoded. Ac-

cording to Google, the whitelisted ANSs account for more than 70% of Google’s DNS

traffic.

2.4.3 WSEC DNS

Wildcard secure (WSEC) DNS increases the entropy of DNS queries by randomising

names contained in newly introduced TXT and CNAME RR queries. These queries are

sent by resolvers to ANSs that support the protocol. Additional TXT and CNAME RRs

are created in DNS zones served by ANSs to support WSEC DNS. The administrator

of an ANS is expected to perform the following tasks to make use of WSEC DNS:

• Add two specific TXT RRs to the configuration of the DNS zone to indicate to

resolvers that WSEC DNS is supported by this ANS for this zone. Figure 2.6

16https://developers.google.com/speed/public-dns/docs/security.html
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;; Respond to DNS TXT queries and indicate that WSEC DNS is supported

;; for this zone.

* 86400 IN TXT |wsecdns=enabled|

_test_._wsecdns_ 86400 IN TXT |wsecdns=enabled|

Figure 2.6: TXT RRs added for WSEC DNS.

;; Respond with a CNAME RRs to requests coming from WSEC-capable resolvers

*._wsecdns_.www IN CNAME www

*._test_.wsecdns_.www IN CNAME _test_.wsecdns_

Figure 2.7: CNAME RRs added for WSEC DNS.

shows examples of RRs added to a zone’s configuration file. The use of “*”

indicates that this is a wildcard entry and hence the name of the protocol, wildcard

secure DNS. An ANS responds to TXT queries, covered by this wildcard, with

|wsecdns=enabled|.

• Add two CNAME RRs for each WSEC-protected host name. An example is shown

in Figure 2.7.

WSEC DNS Process

Let us take the example when the host name being queried is “www.example.com”

and when WSEC DNS is being used. The client sends a DNS query to its WSEC-

capable resolver. Upon receiving this request, the resolver sends a specially formatted

discovery DNS TXT RR query to the ANS serving the host name being queried. The

query is in the form of 〈rand〉. test . wsecdns .www.example.com, where 〈rand〉 is

a random alphanumeric string generated by the resolver. The ANS replies with a TXT

RR containing |wsecdns=enabled| if it was configured for WSEC DNS.

The resolver now knows whether this ANS supports WSEC DNS for the host name

being queried or not. If it does, then the resolver sends a specially crafted A RR query

in the form of 〈rand〉. wsecdns .www.example.com, where 〈rand〉 is another random

alphanumeric string generated by the resolver and is the source of the added entropy.

The ANS responds with a CNAME RR containing “www.example.com”, an alias for the

name being requested, 〈rand〉. wsecdns .www.example.com. It also attaches the A

RR for “www.example.com” to the same response.

There are a couple of reasons why WSEC DNS is unattractive. First, changes

are required on every participating ANS and DNS resolver. The large number of

DNS servers and the fact that ANSs are decoupled from resolvers make this a very
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difficult task to accomplish. Second, a WSEC DNS look-up would require two round

trips instead of one, with larger query and response message sizes when compared

to standard DNS query and response messages, increasing the amount of DNS traffic

generated by ANSs and resolvers. We are not aware of practical DNS implementations

that make use of WSEC DNS.

2.4.4 DNSSEC

The protocols we have described so far, other than 0x20-Bit encoding that can use

AES to randomise the case pattern, do not deploy cryptographic controls to secure

DNS. Examples of DNS security protocols that make significant use of cryptography

include DNSSEC [1], Transaction SIGnature (TSIG) [103] and DNSCurve17 . Out of

the three protocols, DNSSEC is by far the most prominent in terms of acceptance,

industry support and deployment. The use of DNSSEC requires changes to resolvers

and ANSs. DNSSEC provides data origin authentication and integrity services to DNS

using digital signatures [10]. It also provides means of public key distribution needed for

the operation of the protocol. DNSSEC relies on resolvers verifying the authenticity of

responses received from ANSs to counter DNS poisoning attacks. DNSSEC is supported

by most of today’s commercial and open source DNS implementations. For example,

in Google Public DNS, a free Internet-based DNS service, support for DNSSEC came

in January 2013.

Enabling DNSSEC on resolvers requires assigning an initial DNSSEC trust anchor.

This is generally performed outside DNSSEC. DNSSEC Look-aside Validation (DLV),

a protocol implemented today by a number of DNS packages, can be used for this

purpose.

Definition 2.6. A DNSSEC trust anchor is a public key that acts as the entry point

for a chain of authority.

The signed DNS root would make an ideal trust anchor to consider since it gives the

receiver access to all possible chains of trust used when validating a DNSSEC response.

DNSSEC deploys cryptographic measures to ensure the authenticity of the DNS data

exchanged by digitally signing the DNS records. RSA and SHA-1 are to be used to

sign the DNS records [12, 89]. When an ANS hosting a signed zone receives a DNS

query, it responses with two RRs: the RR being queried and an RR for the digital

signature associated with queried RR. DNSSEC introduces a number of new RRs to

contain digital signatures, public keys and key hashes [10]:

17http://www.dnscurve.org
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• DNSKEY: A record containing the public key for the zone. DNSKEY can contain

either a Zone Signing Key (ZSK) or a Key Signing Key (KSK). The ZSK is used

to sign the RRs in a zone, while the KSK is only used to sign the DNSKEY RR.

• Resource record signature (RRSIG): A record holding the signatures for a specific

record type.

• Delegation signer (DS): A record that is submitted to the zone’s parent. DS RRs

are included only in the parent’s zone, and correspond to NS RRs providing a link

between the parent and the zone. DS RRs are part of the chain of trust from the

zone’s parent to the zone.

• Next secure (NSEC): A record used to provide proof of non-existence of a RR.

Each name in a zone has an NSEC RR added when signed to allow both positive

answers and negative answers to queries to be cryptographically secure.

• Next secure version 3 (NSEC3): This record is used in negative answers to prove

that a name does not exist. It is similar in function to the NSEC record, but has

some advantages in certain situations. Zones signed with NSEC are “walkable.”

This means that the entire contents of a zone can be retrieved simply by following

the NSEC chain. Also, every name within a zone must be signed and have NSEC

records. NSEC3 uses cryptographic hashes to prevent zone walking while retaining

the ability to prove negative answers.

The DNSSEC specifications were first published in 1999 in RFC 2535 [1]. This RFC

was then obsoleted by RFC 4033 [10] in 2005. A number of supporting RFCs such as

[12, 11, 34, 59, 45, 89] have also been published for DNSSEC.

Eleven years after the release of RFC 2535, in June 2010, the Internet Corporation

for Assigned Names and Numbers (ICANN)18 held the first Key Signing Key (KSK)

ceremony event for the root’s zone. DNSSEC for the root zone is a joint effort between

ICANN and VeriSign, with support from the U.S. Department of Commerce. ICANN, a

non-profit corporation, maintains an updated database19 about the global deployment

of DNSSEC. As of 15th of July 2013, there were:

• 317 TLDs in the root zone in total, 111 of which have been signed. Examples of

signed TLDs include “.uk”, “.com” and “.org”.

• 107 TLDs having trust anchors published as DS records in the root zone.

18http://www.icann.org
19http://stats.research.icann.org/dns/tld_report

41

http://www.icann.org
http://stats.research.icann.org/dns/tld_report


Chapter 2. The Domain Name System 2.5. DepenDNS

• Only 3 TLDs having trust anchors published in the Internet Systems Consortium

(ISC) DNSSEC Look-aside Validation (DLV) repository.

Despite the fact that the DNS root, “.”, was signed in 2010, DNSSEC has not

gained the expected momentum or adoption levels, at least in the last three years.

This is clearly reflected in the numbers published on ICANN’s web site20, where for

example only three TLDs have trust anchors published in the ISC DLV repository. An

Asia-Pacific Network Information Centre (APNIC) report21 shows that in February

2013, around 3.3% of users had DNSSEC validating resolvers. In May 2013, this value

rose to 8.1%, a 4.8% increase. This increase has been mainly attributed to the Google

Public DNS service fully enabling DNSSEC. According to the APNIC report: “Of the

2.34M unique IP addresses of clients who ran this experiment, we saw 174,082 clients

use Google Public DNS servers, or 7.4% of all tested clients”. These numbers relate to

DNSSEC on resolvers; they do not provide an overview of how many ANSs and zones

have DNSSEC configured. Although DNSSEC has had a slow start, we believe that

the adoption level will pick up over time. The adoption of DNSSEC by the Google

Public DNS servers and other major Internet service providers will further push in

this direction. The adoption of DNSSEC is being tracked by SecSpider22, a DNSSEC

monitoring project that is sponsored by VeriSign.

2.5 DepenDNS

2.5.1 Introduction to DepenDNS

DepenDNS [97] is proposed as a client-based DNS implementation designed to protect

clients from cache poisoning attacks. The fundamental concept behind DepnDNS is

sending the same DNS query to multiple resolvers and then evaluating the responses.

The evaluation is based on an algorithm referred to as π in [97]. DepenDNS is supposed

to be practical, efficient and secure, according to [97].

The authors of [97] position DepenDNS as a comprehensive solution against cache

poisoning attacks. Therefore, the protocol should be able to protect clients from vari-

ous DNS cache poisoning attacks including the following three generic spoofing attack

scenarios:

• Scenario 1: A spoofing attack against a client in which the attacker sends

spoofed DNS replies to the client. We assume that the attacker has no access to

20http://stats.research.icann.org/dns/tld_report
21http://labs.apnic.net/blabs/?p=368
22http://secspider.cs.ucla.edu/growth.html
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the DNS requests and hence is not aware of the host names being requested. Let

us suppose that this attack has a success probability of p1 when DepenDNS is

not deployed.

• Scenario 2: A spoofing attack against the DNS resolver. We assume that the

attacker has no access to DNS requests and hence is not aware of the host names

being requested. In this scenario, the attacker tries to poison the resolver’s DNS

cache for an arbitrary host name at any point in time. Let us assume that

the attack has a success probability of p2. The impact of this attack is higher

compared to scenario 1 since it would affect all clients served by the targeted

resolver when requesting entries that have been poisoned.

• Scenario 3: The attacker has control over the DNS resolver and hence has

visibility of the DNS requests. The probability of success of a spoofing attack is

1 when DepenDNS is not deployed.

The reader can think of the above scenarios from an abstract point of view, in which

the exact implementation is irrelevant. For example, a random 16-bit TXID may or

may not be in use. The objective of using this approach is to evaluate the effectiveness

of the DepenDNS protocol regardless of the underlying implementation. In addition,

the spoofing approaches discussed above can also be used to conduct other types of

attacks than cache poisoning, as we demonstrate in this section.

When DepenDNS is deployed, clients should be able to detect and prevent the above

three generic attacks and hence decrease their success probabilities to a minimal value.

This is supposed to be achieved by querying multiple DNS resolvers and evaluating the

responses against a set of pre-defined conditions.

The fundamental security objective of DepenDNS is to protect clients from bogus

IP addresses sent by DNS resolvers. These bogus IP addresses would have either

arrived from an already poisoned resolver’s cache or as a result of a spoofed DNS

response message directed against the client. The former is the more likely scenario.

An attacker would target a DNS resolver serving a large number of clients in order to

achieve a higher impact. The protocol proposed in [97] describes how a client running

DepenDNS can detect and reject such bogus IP addresses.

The protocol relies on forwarding the same DNS query to multiple resolvers and then

evaluating the replies using an algorithm π. Algorithm π runs on the client’s machine

and accepts or rejects each IP address suggested by the resolvers. The decision is based

on comparing a number of parameters against a set of pre-defined thresholds. Accepted

IP addresses are passed to the client and are saved in a history table maintained by
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DepenDNS. The resolvers and authoritative servers are not involved in the IP addresses

selection process carried out by DepenDNS.

The concept of invoking multiple resolvers in the DNS resolution process has been

proposed by other DNS security protocols such as DoX [108], described earlier in Sec-

tion 2.4.1. The motivation behind using multiple resolvers is that the probability of

poisoning several resolvers at the same time should be much lower than that of poison-

ing one resolver. Although DepenDNS makes use of the same approach, the parameters

defined and the calculations carried out by its algorithm π are different.

Our work focuses on evaluating the security and deployability aspects of DepenDNS.

Our approach consists of analysing the proposed protocol, investigating the existence of

vulnerabilities and eventually attacking the protocol. First, we start with an explana-

tion of the operation of DepenDNS and how algorithm π’s calculations are performed.

The reader will find that our explanation of algorithm π and the symbols we use differ

slightly from the original DepenDNS paper [97]. Our aim is to give the reader a concise

and clear description of the algorithm. Second, we provide a review of the protocol and

highlight a number of unclear assumptions made in [97]. We also consider a number of

practical deployment issues that should have been addressed in [97]. Third, we analyse

if DepenDNS is vulnerable to cache poisoning, Denial of Service (DoS) and amplifica-

tion attacks. We have discovered scenarios in which we were able to successfully exploit

the protocol. The attacks that we have performed against DepenDNS are based on a

full implementation of the protocol and the use of real data collected over a period of

time. This data was collected using our implementation of the protocol. DNS responses

received from public Internet DNS servers, in response to DNS queries that we gener-

ate, are evaluated by our implementation of the protocol. Further information about

out experimental results are provided in later in the chapter. We clearly highlight any

assumptions made for our attacks to be successful. Fourth, we study the performance

and accuracy of DepenDNS.

2.5.2 DepenDNS Algorithm π

The decision making process of DepenDNS is carried out by algorithm π. This algo-

rithm expects the following inputs [97]:

• The IP addresses returned by all the resolvers being queried for the given host

name.

• Access to a history table containing the previously accepted IP addresses for the

given host name. This is a separate table that is maintained by DepenDNS and
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is different from the client’s DNS cache table. In Section 2.5.3 we further analyse

the suggestions made in [97] on how to build and maintain the history data.

The output of algorithm π is a set of IP addresses that are supposed to be legitimate

for the host name being requested. The output is used to update the history table and is

forwarded to the requesting entity on the client’s machine. An example of a requesting

entity is a web browser. It is important to highlight that DepenDNS does not maintain

history information about rejected IP addresses. Algorithm π defines the following

parameters:

• t is the number of the resolvers to which the client is configured to send its DNS

request messages.

• Rj is the set of IP addresses returned by the jth resolver, where 1 ≤ j ≤ t. We

write Rj = {IP1j , IP2j , ..., IPlj}, where lj is the number of distinct IP addresses

returned by the jth resolver. In practice, a DNS reply may contain duplicate IP

addresses. DepenDNS normalises the reply by removing the repeated IP addresses

and including a single copy of each IP address in Rj .

• R is the set that contains all the distinct IP addresses in the replies from t

resolvers, i.e. R = R1 ∪R2 ∪ ... ∪Rt. We write R = {IP1, IP2, ..., IPm} where m

is the number of the distinct IP addresses returned by the t resolvers.

• nij is a variable that is set to 1 if IPi ∈ Rj and 0 otherwise.

• ni is the number of times IPi appears across all Rj , i.e. ni =
∑t

j=1 n
j
i .

• nmax = max(n1, n2, ..., nm).

• ckcurrent is a variable with value between 0 and 1. The value of ckcurrent is calculated

by dividing the number of occurrences of IP addresses in all Rj that share the

same leftmost 16 bits (represented by the integer k) by the total number of IP

addresses returned by the t resolvers. IP addresses that share the same leftmost

16 bits are considered to be part of the same class, k.

• H is the history data maintained by DepenDNS. H contains the IP addresses

that have been accepted by algorithm π for each host name.

• ckhistory is a variable parameter with value between 0 and 1. The value of ckhistory
is calculated in a similar way as ckcurrent but uses the information in H for the

host name being requested as input for calculation.
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• A is the set of IP addresses that are accepted by algorithm π for a specific DNS

request. Each run of algorithm π generates a new A.

In general, algorithm π makes the decision to accept or reject an IP address after

examining data related to the number of occurrences, history information and the

leftmost 16 bits of that IP address. For each address IPi, algorithm π calculates the

variables αi, βi, and γi as follows:

1. αi can be thought of as an indicator for the distance between ni and nmax. αi is

determined by comparing ni to nmax along with a tolerance variable that is set

to 20% in [97]. Specifically, we have:

αi =

1, if ni ≥ (0.8 · nmax);

0, otherwise.

2. βi is related to the history data of DepenDNS. βi is set to 1 if the IP address for

the host name under evaluation exists in H. This indicates that the IP address

has passed the evaluation process at some earlier point in time. Thus:

βi =

1, if IPi exists in the history data, H;

0, otherwise.

3. γi is related to the leftmost 16 bits of the IP address and is determined by

comparing ckcurrent and ckhistory. γi is set to 1 if the absolute difference between

ckcurrent and ckhistory is at most 0.1.

γi =


1, if IPi belongs to the kth class and

−0.1 ≤ ckcurrent − ckhistory ≤ 0.1;

0, otherwise.

Once αi, βi, and γi are calculated for each IPi, algorithm π constructs the following

sets:

• Rα, which contains the IP addresses in R with αi = 1. Thus Rα = {IPi ∈ R :

αi = 1}

• Rβ, which contains the IP addresses in R with βi = 1. Thus Rβ = {IPi ∈ R :

βi = 1}

• Rγ , which contains the IP addresses in R with γi = 1. Thus Rγ = {IPi ∈ R :

γi = 1}
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Algorithm π then calculates N , which is referred to as the dispersion strength in

[97]. N is calculated as follows:

N =
|Rα ∪Rβ ∪Rγ |

Mode(|R1|, |R2|, ..., |Rt|)
. (2.6)

Upon calculating N , algorithm π proceeds to calculate the grade, Gi, for each

address IPi. The value of Gi determines whether an IP address is accepted or not. Gi

is calculated as follows:

Gi = αi · (Gα − 10 · (N − 1)) +
1

2
· (βi + γi)(Gβγ + 10 · (N − 1)), (2.7)

where Gα and Gβγ represent the weights given to α and βγ and are set to 60 and 40

respectively in [97]. Note that N is the only variable in the above equation, since the

values of Gα and Gβγ are fixed. IP addresses with grades higher than or equal to 60

are accepted and are used to update A and H.

2.5.3 Protocol Review

According to [97], a good percentage of end-points should be able to make use of

DepenDNS, since it is intended to be a client-based protocol. This may result in a

large number of clients running DepenDNS. Such a potential large deployment of a

protocol should not only consider the security aspects of the protocol but should also

study the deployment challenges and the expected practical impacts.

In the previous section we described the calculations performed by algorithm π

along with the decision making process. To reach a decision on whether to accept or

reject an IP address, the protocol makes a number of explicit and implicit assumptions.

Unfortunately, some of these assumptions in [97] have not been justified or backed by

supporting information. In addition, the protocol has not addressed some important

operational aspects of DNS. In this section we examine the validity of some of the

assumptions made in [97]. We also highlight some of the characteristics of DNS that

the proposal in [97] has failed to recognise.

System Initialisation:

A client running DepenDNS needs to be configured with the IP addresses of the DNS

resolvers that it needs to query. The method by which the resolvers’ IP addresses are set

on the client is not discussed in [97]. This might seems to be a minor issue but we believe

that it has a great operational impact in the case of large scale deployments. Manual

configuration of the resolvers’ IP addresses is impractical and hence an automated IP
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assignment approach should be considered.

Managing the History Data of DepenDNS:

Variables that are related to the history data maintained by DNS have a significant

influence on the decisions made by the protocol. The values of βi and γi are determined

by the existence of history data and are part of the grade calculation. The values of

βi and γi are set to 0 in case no information exists in the history for the host name

being requested. This clearly introduces an operational challenge since the history is

expected to be empty initially. To address this challenge, [97] proposes either deploying

a centralised database that can be used when new domains are queried, or adjusting the

values of Gα and Gβγ accordingly. The first option is unrealistic and cannot be practi-

cally deployed: there are more than 233 million domain name registrations23 and there

exists no centralised database that contains information about all the domains; even

if one existed, it would be impossible to maintain such a database and track changes

in domains’ information around the world. The second option can be implemented.

However, the proposed changes in the values of Gα and Gβγ are not included in [97]

and there is no assurance provided that such changes will not negatively impact the

security properties of the protocol.

Tolerance Value Used to Calculate α:

The value of αi is set to 1 if ni ≥ (0.8 · nmax) for IPi. Else, αi is set to 0. The use of

a 20% tolerance level is not justified, nor is any guideline on how to select a suitable

value given in [97]. We would have expected more detailed discussion of how to select

such critical system parameters.

Tolerance Value Used to Calculate γ:

The value of γi is set to 1 if −0.1 ≤ ckcurrent− ckhistory ≤ 0.1 for IPi. Else, γi is set to 0.

As with α, the use of a 10% tolerance level for γ should have been justified.

Class Consideration by γ:

Algorithm π determines the value of γi based on the leftmost 16 bits of IPi. The authors

of [97] claim that a domain name may have several IP addresses but these IP addresses

usually share the same leftmost 16 bits. However, no evidence or experimental data to

support such a claim is offered in [97].

23http://www.verisigninc.com/assets/domain-name-brief-july2012.pdf

48

http://www.verisigninc.com/assets/domain-name-brief-july2012.pdf


Chapter 2. The Domain Name System 2.5. DepenDNS

Number of Resolvers:

The proposed implementation of the protocol considers the use of 20 resolvers. How-

ever, the proposal does not explain the reasons behind choosing this number of resolvers.

We use this number when analysing the protocol’s behaviour in the coming sections.

On the other hand, corporate networks generally deploy a small number of resolvers in-

ternally, typically 2 or 3. Adding 20 resolvers for the sake of implementing DepenDNS

is clearly an expensive exercise. Although service providers deploy a larger number

of servers compared to corporate entities, only few might employ such a number of

resolvers. This introduces another challenge, which is the method through which the

DNS resolvers are selected.

2.5.4 Attacking DepenDNS

The implementation of DepenDNS is supposed to provide a good level of protection

against DNS cache poisoning attacks. In Section 2.5.1 we referred to three attack sce-

narios that clients running DepenDNS should be able to detect and prevent. Each

attack has its own probability of success. In this section, we explore how the protocol

behaves under a number of conditions with the intention of trying to find and exploit

vulnerabilities in the protocol. We were able to find conditions under which we can poi-

son the cache of DepenDNS, perform a denial of service attack against the protocol, and

execute amplification attacks that can trigger the generation of high volume of network

traffic. Our cache poisoning and DoS attacks show that implementing DepenDNS has

no effect in lowering the probability of success of the three attack scenarios identified

in Section 2.5.1. We state any assumptions we make for our attacks to be successful.

General Assumptions

Our general assumptions are as follows:

Assumption 2.1. The attacker knows the IP address of one of the t resolvers that the

client communicates with.

Assumption 2.2. The attack is bounded to a single resolver.

This assumption is made to make our attack model realistic and also considers a

worst case scenario for the attacker: If an attack against DepenDNS is successful when

a message from a single resolver is bogus, then it will certainly be successful when two

or more resolvers are targeted.

Assumption 2.3. The client is configured to use 20 resolvers as suggested in [97], i.e

we set t = 20. Our attacks can still be successful for other values of t.
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The above general assumptions apply across all our attacks. However, some of the

attacks we conduct might require meeting extra conditions. We will clearly highlight

any additional assumptions we make.

DNS Cache Poisoning Attack

The fundamental security objective of DepenDNS is to protect clients from bogus IP

addresses received from DNS resolvers. Detecting these bogus IP addresses is based

on the calculations performed by algorithm π and the rejection is based on comparing

the grade of each IP address to 60. IP addresses having grades Gi with Gi ≥ 60 are

accepted and are added to A and H. In this attack we attempt to circumvent the

protocol by trying to achieve a grade of 60 or higher and eventually inject bogus IP

addresses for a host name into the history data of DepenDNS.

Assumption 2.4. The history table of DepenDNS contains IP addresses for the host

name being requested.

The attacker’s goal is to bypass the security controls implemented by DepenDNS

and have algorithm π accept false information in the form of bogus IP addresses. To

achieve this, the attacker needs to spoof an IP address, IPbogus, in a DNS response in

such a way that the resulting grade, Gbogus calculated using equation (2.7), exceeds 60.

Assumption 2.4 implies that the value of β is 0 for IPbogus, and αbogus is likely to be 0.

The reason for this is that nbogus is 1 since the attacker would target a single resolver

as per Assumption 2.2, making it difficult for nbogus to be above the threshold of nmax.

This leaves the attacker with one variable, γbogus, to focus on. The attacker needs to

make sure that γbogus for IPbogus is 1. To achieve this, the following conditions must

be met:

• The leftmost 16 bits of the bogus IP address are the same as the legitimate IP

addresses for the host name, i.e. IPbogus belongs to a valid kth class IP address

for the host name being requested.

• ckcurrent−ckhistory is within the pre-defined threshold, i.e.−0.1 ≤ ckcurrent−ckhistory ≤
0.1

Since the values αbogus and βbogus are 0, then the grade for IPbogus can be calculated

as

Gbogus =
1

2
(Gβγ + 10 · (N − 1)),

assuming γbogus is 1. For IPbogus to be accepted, the value of Gbogus must be 60 or
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higher, i.e. the following condition must be met:

1

2
(Gβγ + 10 · (N − 1)) ≥ 60.

Since Gβγ is 40, the condition that N ≥ 9 will guarantee that IPbogus achieves the

passing grade.

Our experiments have shown that the value of N is 1 or less for most host names.

However, this is not the case when the host name is served by a CDN. We have noticed

that the value of N is within a range that would allow attackers to inject bogus IP

addresses using the technique we have explained in this section. For example, Figure

2.8 shows that the average value of N for “www.live.com” is 13.5. We have found

similar results for other host names such as “maps.live.com”, “www.youtube.com” and

“www.vmware.com”.
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Figure 2.8: Value of N over time for “www.live.com”. The reader would notice that the
shows that the average value of N for “www.live.com” is 13.5. As described in Section
2.5.4, the condition that N ≥ 9 will guarantee that IPbogus achieves the passing grade,
allowing DNS cache poisoning to succeed.

Our full experimental results are described in Section 2.5.5; meanwhile, Table 2.2

provides the percentage of runs when N ≥ 9. A run is defined as the execution of

algorithm π against R and H when a host name is being requested. The table shows

that a high percentage of runs had N ≥ 9 for the host names listed earlier. This gives

the attacker an opportunity to launch her attack during the majority of runs. Please

note that this is based on real data collected over time and hence includes situations

when there are no response messages due to network connectivity issues, causing the

value of N to be 0.

We have simulated the above attack by injecting a bogus IP address, 96.17.222.222,
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Host name Number of runs % of runs with N ≥ 9

www.live.com 1100 98.3

maps.live.com 1100 98.2

www.youtube.com 1100 98.5

www.vmware.com 1100 80.3

www.hsbc.com 1100 0

Table 2.2: Percentage of runs with N ≥ 9.

into the cache of one of the resolvers for the host name “www.live.com”. Our attack was

successful, and the bogus IP address was accepted by our implementation of algorithm

π and added to the history data.

Impact: An attacker can inject a bogus IP address that points to a malicious website

or inject IP addresses that can make the host being requested unreachable. The attack is

applicable when the host name is hosted by a CDN and the client is running DepenDNS.

Denial of Service Attack

Unlike a network-based Denial of Service (DoS) attack, our work targets the layer

where DepenDNS would operate and where the decision of accepting or rejecting an

IP address takes place. In our attack we try to force algorithm π into rejecting all IP

addresses in R for a host name, hence making the host unreachable by clients running

DepenDNS. The same spoofing attack scenarios listed in Section 2.5.1 can be used by

the attacker with the same success probabilities of p1, p2 and 1 respectively.

Assumption 2.5. The history data of DepenDNS does not contain information about

the host name being requested.

Consider a run of the algorithm π on a set of sets of returned IP addresses Rj ,

1 ≤ j ≤ t. The above assumption implies that the value of both βi and γi is 0 for each

IPi in R. As a result, Rβ = ∅, Rγ = ∅ and Gi = αi · (Gα− 10 · (N − 1)). For our attack

to succeed, all IPi in R should have a grade value, Gi, of less than 60. Therefore, the

following condition must be met for each i:

αi · (Gα − 10 · (N − 1)) < 60.

Since Gα is known to be 60, then N must be higher than 1 for all IPi to be rejected.

In our situation, N can be calculated as:

N =
|Rα|

Mode(|R1|, |R2|, ..., |Rt|)
,
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since Rβ = ∅ and Rγ = ∅.
To increase the value of N , an attacker would need to focus on increasing the size

of Rα or decreasing the modal value of |Rj |. Decreasing the modal value proved to

be very difficult since we assume that the attacker targets one resolver only (as per

Assumption 2.2).

Our experimental results presented in Section 2.5.5 show the value of N for a num-

ber of host names queried over a period of time. For example, the average value of N

for “www.live.com” is 3.5, meaning that the conditions for the DoS attack to succeed

are met. Correspondingly, Figure 2.9 shows that no IP addresses for “www.live.com”

were accepted during the vast majority of runs.
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Figure 2.9: Number of IP addresses accepted over time for “www.live.com”. With an
average value of N for “www.live.com” is 3.5, means that the conditions for the DoS
attack to succeed are met. The figure shows that no IP addresses for “www.live.com”
were accepted during the vast majority of runs.

On the other hand, we have noticed that the value of N can be easily influenced in

the case when the host name being requested is hosted by a CDN. Therefore, rather

than injecting bogus IP addresses in the DNS cache of a resolver, an attacker would

include a good number of correct IP addresses for the host name. The goal is to

maximise the number of IP addresses that pass the α test and hence increase the value

of |Rα|.
We simulated the attack using real data collected from querying 20 DNS resolvers

(the proposed number of resolvers to query as per [97]) for “www.youtube.com” and

we were able to force algorithm π into rejecting all IP addresses received from all 20

resolvers. We tested this for six consecutive runs and the attack was successful during

each run. Before the attack, a total of six IP addresses would have been accepted (see
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(a) Number of IP addresses accepted during six runs
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(b) Number of IP addresses rejected during six runs

Figure 2.10: Results of the attack against “www.youtube.com”. After injecting a
number of valid IP addresses as per the technique described in this section we found
that algorithm π starts rejecting all the IP addresses received from the 20 resolvers.
The two figures show the number of accepted and rejected IP addresses during the six
runs.

Section 2.5.5 for details). After injecting a number of valid IP addresses as per the

technique described in this section we found that algorithm π starts rejecting all the

IP addresses received from the 20 resolvers. Figures 2.10a and 2.10b show the number

of accepted and rejected IP addresses during the six runs.

Impact: An attacker can perform a DoS attack against a specific host name when it

is hosted by a CDN and when the client is running DepenDNS.

Amplification Attack

In this attack we try to exploit the fact that DepenDNS employs a number of resolvers,

t. The success of an amplification attack relies on the ability of the attacker to trigger

the generation of a large volume of traffic by sending requests of negligible size. The
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higher the amplification factor, the more severe the attack is. Such attacks are not

new for DNS. In fact, DNS has been the target of various DNS amplification attacks

[50], which rely on the fact that DNS response messages are significantly larger than

response messages. In practice, an attacker will employ a set of machines under her

control, like a botnet, to perform such attacks [50].

Assumption 2.6. In our attack, we take the average size of a DNS request message to

be 60 bytes and of a DNS response message to be 124 bytes. These numbers are based

on the data collected during our experiments. This takes into account the TCP/IP

headers.

Our attack uses clients running DepenDNS and does not require the use of a botnet.

We show how an implementation of DepenDNS can cause such attacks with a high

amplification factor. We also show a sample code for performing the amplification

attack.

Our attack is encoded in Hyper Text Markup Language (HTML) code. The sam-

ple code that we show in this section does not require the installation of any software

on the client’s machine and can be automatically executed by any application which

can interpret HTML or JavaScript. The HTML code can be delivered to clients by

email or can be published on a website which the client visits. To ensure a large scale

effect, the attacker would publish this code on a popular website with thousands of

concurrent visitors. Uploading the code onto social networking websites would be an

attractive choice to the attacker. Figure 2.11 shows an example of HTML code that

employs JavaScript. In the code in Figure 2.11, we use the image object, img, to force

the web browser to perform a DNS look-up. The size of the above code is 306 bytes.

The code generates two random strings, s1 and s2. These strings are then concate-

nated to build the host name in the image HTML tag, img. The attacker can change

the number of host names being requested by increasing the length of the loops. In

the above example, the variable “i” is incremented by one in every loop until reaching

10. Although changing the length of loops in the JavaScript to a higher value has a

negligible effect on the size of the code, it has a significant impact on the amplification

factor. For example, changing the length of the loops to 100 will increase the code size

by only 1 byte, but will cause the generation of at least 736 kbytes of DNS request

and response messages under Assumption 2.6. This number will be multiplied by the

number of search domains the client is configured for. For example, the expected traffic

will be at least 1.58 Mbytes if the client is configured for one search domain such as

“example.com”.

Impact: Although, this attack applies to the standard DNS implementation, DepenDNS
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<html>

<head>

<meta http-equiv="refresh" content="5">

</head>

<body>

<script>

for (i=1;i<=10;i++)

{

s1= String.fromCharCode(97+Math.round(Math.random()*25));

s2= String.fromCharCode(97+Math.round(Math.random()*25));

document.write(’<img src="ftp://’+s1+’.’+s2+’/f">’);

}

</script>

</body>

</html>

Figure 2.11: Sample HTML code that employs JavaScript and could be downloaded and
executed by the client’s browser, resulting potentially in a DNS amplification attack,
when DepenDNS is deployed.

amplifies it by a factor of 20 which makes it more attractive to attackers. Hence, an

attacker can turn clients running DepenDNS into a source of a serious DoS attack.

For example, an attacker could post this code to a popular website causing a storm of

DNS traffic on the Internet.

2.5.5 Experimental Results

In this section we evaluate the operation of DepenDNS under a number of scenarios

using real life data collected over a period of time. We queried 20 resolvers, all located

in the US, for the following host names every five minutes, with a total of 1100 queries

for each host name:

• “www.live.com”. This host name has a CNAME RR of “a134.g.akamai.net” and is

served by a CDN.

• “maps.live.com”. This host name has a CNAME RR of “a1234.g.akamai.net” and

is served by a CDN.

• “www.youtube.com”. This host name has a CNAME RR of “youtube-ui.l.google.com”

and is served by a CDN.

• “www.vmware.com”. This host name has a CNAME RR of ‘e508.g.akamaiedge.net‘”

and is served by a CDN.
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• “www.hsbc.com”.

We developed a perl script that implements DepenDNS. The script takes DNS

response messages from the 20 resolvers and runs them through an implementation of

Algorithm π. The script also maintains a history table as described in Section 2.5.2.

We collected the following set of information for each host name listed above:

• The value of N for each run.

• The number of accepted and rejected unique IP addresses for each run.

A run is defined as the execution of algorithm π against R and H when a host name

is being requested.

The results shown in this section validate the findings presented earlier in this

chapter. We divide our experiments into two categories based on the availability of

history information about the host name being requested.

Experimenting with no History Information

We present here the results of running DepenDNS without existing history information

about the host name being requested. The results of all the runs show the following

trends:

• A large percentage of valid replies are rejected by DepenDNS when the host name

being requested is hosted by a CDN. For example, Table 2.3 shows that 98.6% of

the unique IP addresses for “www.live.com” were rejected after 1100 runs.

• A large number of runs had no accepted IP addresses when the host name being

requested is hosted by a CDN. During these runs, the host name being requested

is considered unreachable by the client.

• IP addresses for host names that are not hosted by CDNs were accepted in all of

the runs.

• The value of N varies depending on the host name being requested.

Table 2.3 shows the results of running DepenDNS against the five host names. We

collected the following set of information for each host name that we evaluated:

• The value of N for each run, calculated using equation 2.6.

• The number of accepted and rejected unique IP addresses for each run.
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Host name After run Number of dis-
tinct accepted IP
addresses

% Number of dis-
tinct rejected IP
addresses

%

www.live.com 1100 8 1.4 567 98.6

maps.live.com 1100 7 2.7 251 97.3

www.youtube.com 1100 6 5.2 110 94.8

www.vmware.com 1100 16 19.5 66 80.5

www.hsbc.com 1100 1 100 0 0

Table 2.3: Summary results for all host names without existing history information.

Figures 2.12, 2.13, 2.14, 2.15 and 2.16 show the value of N , the number of accepted

IP addresses and the number of rejected IP addresses over time for the host names

in Table 2.3. The figures show that when starting with an empty H, the DepenDNS

history table, algorithm π rejects most of the IP addresses it receives for host names

served by CDNs.

The reader might notice some dips in the graphs shown below. These are due to

loss of network connectivity.
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Figure 2.12: Results for “www.live.com” starting without existing history information.
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Figure 2.13: Results for “maps.live.com” starting without existing history information.
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Figure 2.14: Results for “www.youtube.com” starting without existing history infor-
mation.
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Figure 2.15: Results for “www.vmware.com” starting without existing history infor-
mation.
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Figure 2.16: Results for “www.hsbc.com” starting without existing history information.
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Host name Age of history After run Number of
accepted IP
address

% Number of
rejected IP
address

%

www.live.com 1st run 1100 209 36.3 366 63.7

www.live.com 1 hour 1100 285 49.6 290 50.4

www.live.com 12 hours 1100 342 59.5 233 40.5

www.live.com 24 hours 1100 393 68.3 182 31.7

maps.live.com 1st run 1100 72 27.9 186 72.1

maps.live.com 1 hour 1100 105 40.7 153 59.3

maps.live.com 12 hours 1100 127 49.2 131 50.8

maps.live.com 24 hours 1100 156 60.5 102 39.5

www.youtube.com 1st run 1100 105 90.5 11 9.5

www.youtube.com 1 hour 1100 105 90.5 11 9.5

www.youtube.com 12 hours 1100 105 90.5 11 9.5

www.youtube.com 24 hours 1100 108 93.1 8 6.9

www.vmware.com 1st run 1100 47 57.3 35 42.7

www.vmware.com 1 hour 1100 63 76.8 19 23.2

www.vmware.com 12 hours 1100 70 85.4 12 14.6

www.vmware.com 24 hours 1100 74 90.2 8 9.8

www.hsbc.com 1st run 1100 1 100 0 0

www.hsbc.com 1 hour 1100 1 100 0 0

www.hsbc.com 12 hours 1100 1 100 0 0

www.hsbc.com 24 hours 1100 1 100 0 0

Table 2.4: Summary results for all host names with existing history information.

Experimenting with Existing History Information

In this section we evaluate DepenDNS when history information exists for the host name

being requested. The data used to initialise the history of DepenDNS was collected at

different points of time. We evaluate DepenDNS using history data collected in the

following different ways:

• The first set of replies received from the t resolvers.

• The collection of replies received from the t resolvers after one hour.

• The collection of replies received from the t resolvers after 12 hours.

• The collection replies received from the t resolvers after 24 hours.

The results of all the runs show the following trends:

• A good percentage of valid replies are rejected by DepenDNS. The percentages

are listed in Table 2.4 for the five host names we have queried.
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• The value of N is high for host names hosted by CDNs. For example the value

of N is around 13.5 for “www.live.com” and 10 for “www.vmware.com”.

We present the value of N over time along with the number of accepted and rejected

IP addresses in each run for the host names that we have queried. The values presented

are the results of running DepenDNS using as history the data collected from the first

set of replies from the 20 resolvers. We collected the following set of information for

each host name that we evaluated:

• The value of N for each run.

• The number of accepted and rejected unique IP addresses for each run.

Figures 2.17, 2.18, 2.19, 2.20 and 2.21 show the value of N , the number of accepted

IP addresses and the number of rejected IP addresses over time for the host names in

Table 2.4. When compared to the results reported in the previous section, the figures

in this section show that when initialising H, in this case by populating it with the

first set of replies from the 20 resolvers, algorithm π performs better and rejects less

number of IP addresses received over time for host names served by CDNs.

The reader might notice some dips in the graphs shown below. These are due to

loss of network connectivity.
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Figure 2.17: Results for “www.live.com” with existing history information.
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Figure 2.18: Results for “maps.live.com” with existing history information.
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Figure 2.19: Results for “www.youtube.com” with existing history information.
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Figure 2.20: Results for “www.vmware.com” with existing history information.
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Figure 2.21: Results for “www.hsbc.com” with existing history information.
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Location of the t Resolvers

We have also conducted experiments that evaluate DepenDNS when the t resolvers

are distributed over multiple geographical locations. The objective was to compare

the results of these experiments to the ones we have presented earlier. The overall

results show a lower number of accepted IP addresses in each run when host names

that are served by CDNs. Rejecting more IP addresses is largely attributable to how

algorithm π calculates the value of N when the IP addresses it receives are served

by resolvers consulting CDNs located in different countries or geographies, causing, in

most cases, each resolver to reply with a different IP address based on the location (and

configuration) of the CDN’s DNS server. Host names that are not served by CDNs

such as “www.hsbc.com” exhibited the same behaviour that we saw when using DNS

resolvers located in the same geography.

2.6 Chapter Conclusion

DNS is critical to the operation of the Internet and hence maintaining the security of

DNS is paramount. In this chapter we discussed a number of vulnerabilities in the

protocol and its implementation, and how exploiting these vulnerabilities could impact

the DNS service availability or integrity.

In summary, only a few of the proposed DNS security protocols have been adopted

in practice; most of them have not been considered practical for deployment. The

main reason behind this is the significant effort required to change the underlying DNS

infrastructure to accommodate these new protocols. A good example is DNSSEC which

is one of the most visible initiatives to secure DNS. Here, the challenges associated with

the practical implementation of DNSSEC have lead to a significant delay in deploying

the technology.

We also argue that proposals which attempt to address challenges in critical infras-

tructures should carefully study the impact of their implementations. For example, our

analysis of DepenDNS has revealed a set of deficiencies in both the security controls

and the operational aspects of the protocol. Although the protection controls imple-

mented by DepenDNS do work for general web sites, domains that are hosted by CDNs

have proven to be more of a challenge. The designers of DepenDNS made various as-

sumptions, which were not justified or backed up by scientific evidence, for example the

recommended number of resolvers to use and the DepenDNS history table population

techniques. On the other hand, we have found conditions under which denial of service

and cache poisoning attacks can be launched against DepenDNS. We have also shown

that the implementation of DepenDNS can be exploited in an amplification attack. As

a result, we do not recommend adopting DepenDNS with its current proposed design.
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Chapter 3

TLS and DTLS

3.1 Introduction

In this chapter we provide the necessary background information and prerequisite ma-

terial that are needed to establish an understanding of the TLS and DTLS protocols.

First, we provide background information about the TCP/IP protocol suite and de-

scribe three fundamental networking protocols: IP, TCP and UDP. Second, we intro-

duce Transport Layer Security (TLS), describe how the TLS protocol is structured and

discuss its modes of operation. We also introduce Datagram Transport Layer Security

(DTLS) and describe the differences between TLS and DTLS. We then present in detail

the concept of padding oracles and show how an attack can be theoretically mounted

against TLS using a padding oracle. Finally, we present a number of attacks against

the TLS and DTLS protocols, serving as a forerunner to our attacks on DTLS and

TLS, which we present later in Chapters 4 and 5.

3.2 The TCP/IP Protocol Suite

The Transmission Control Protocol/Internet Protocol (TCP/IP) protocol suite [22,

95], also known as the Internet protocol suite, is a set of networking protocols that

are used on the Internet. The specifications of the protocol suite are managed by

the Internet Engineering Task Force (IETF) and were first published by the Defense

Advanced Research Projects Agency (DARPA) in RFC 791 [78]. This RFC was later

updated by RFCs 1349 [9], 2474 [69] and 6864 [98]. The structure of the TCP/IP

protocol suite consists of the following stack of layers, arranged from bottom-to-top:

link, internet, transport and application. A networking protocol is mapped to one,

or more, of these four layers. For example, the Hypertext Transfer Protocol (HTTP)
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0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Version| IHL |Type of Service| Total Length |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Identification |Flags| Fragment Offset |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time to Live | Protocol | Header Checksum |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Destination Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Options | Padding |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3.1: Structure of the IPv4 header as per RFC 791. The structure shows the
different fields that are available in an IPv4 packet. We descricbe some of these fields
in 3.2.1

maps to the application layer.

Every layer in the TCP/IP protocol stack maintains its own datagram (envelope)

structure and performs a number of operations such as fragmenting messages received

from its upper-layer (if necessary), assembling datagrams received from its lower-layer

(if necessary), and adding, verifying and removing its own datagram header. For ex-

ample, a message received from an application, such as a browser is first fragmented

(if necessary) by the transport layer before a fragment is encapsulated in a transport

layer datagram that contains a transport layer-specific header. This datagram is then

encapsulated in lower-layer (internet and link) datagrams as it propagates down the

TCP/IP protocol stack.

3.2.1 The Internet Protocol

The Internet Protocol (IP) is the core protocol that facilitates the operation of the

Internet. In this section, we provide a basic introduction to IP focusing on aspects

related to the attacks discussed in Chapters 4 and 5.

IP operates at the internet layer of the TCP/IP protocol stack [22, 95] and has its

own datagram (packet) structure. The structure of IPv4 [78] packet headers is shown

in Figure 3.1. We will be referring to IPv4 only from now on in this thesis.

IP is a connection-less protocol, i.e. no connection is established at the IP layer be-

tween the two communicating hosts. In addition, no information regarding a transac-

73



Chapter 3. TLS and DTLS 3.2. The TCP/IP Protocol Suite

tion state is maintained by hosts at this layer. Other than the 2-byte Header Checksum

field, shown in Figure 3.1, there is no error detection or control facilities built into

IP. According to [78], the value of the 2-byte Header Checksum field is assigned by

the sender to the 16-bit one’s complement of the one’s complement sum of all 16-bit

bytes in the IP header [78]. For the purpose of calculating the checksum, the Header

Checksum field is initially set to zero. Clearly, the Header Checksum must be calcu-

lated every time an IP datagram is created or a change is made to any of the other IP

header fields. The receiver of an IP datagram is expected to also compute the value

of Header Checksum for validation purposes. A receiver discards an IP datagram if

the checksum it calculates is different from what the Header Checksum field contains.

Obviously, using the Header Checksum field only provides weak integrity protection

since the value is calculated using a basic keyless algorithm over known information.

In practice, the Header Checksum field is mainly meant to detect changes resulting

from network errors.

IP Spoofing

IP spoofing is an integral part of many attacks. It refers to creating a valid IP packet

using a forged source IP address, typically with the objective of impersonating another

IP host. Generally, the receiver cannot reliably identify if a packet has been spoofed

using only information contained in the IP header. In this case, the receiver must rely

on upper layer protocols (for example, TLS and DTLS) to detect IP spoofing.

3.2.2 The Transmission Control Protocol

The Protocol field in an IPv4 header contains the identification number of the trans-

port protocol. For example, TCP is assigned to protocol number 6, while the User

Datagram Protocol (UDP) is assigned to protocol number 17. The protocol identifica-

tion numbers are managed by IANA [85].

The Transmission Control Protocol (TCP) [79] operates at the transport layer,

just above the IP layer as shown in Figure 3.2. The specifications of TCP are given

in RFC 793 [79]. Several RFCs [22, 80, 43, 42] were later published to update the

TCP specifications given in RFC 793. TCP is a reliable connection-oriented proto-

col; a three-way TCP handshake must complete successfully before a connection is

established between two hosts. TCP provides confirmation of reception through its

acknowledgement facility. TCP segments are retransmitted by the sender if not ac-

knowledged by the receiver within a timeout interval that is maintained by the sender.

TCP sequence numbers along with a window are used to maintain the state of the
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connection. The window indicates the range of acceptable sequence numbers beyond

the last successfully received one. The window is maintained by the receiver and its

value is communicated to the sender inside every acknowledgment sent. Sequence num-

bers are also used for re-ordering incoming TCP datagrams and discarding duplicate

TCP datagrams. The starting sequence number of a connection must be randomly

assigned. Implementations of TCP must maintain separate state information for every

TCP connection. A TCP connection progresses through a series of states during its

lifetime [79]: LISTEN, SYN-SENT, SYN-RECEIVED, ESTABLISHED, FIN-WAIT-1,

FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT and CLOSED .

IP

TCP UDP Others

TLS DTLS

HTTP RTP

Figure 3.2: Relationships between protocols. The figure shows the construct in which
protocols operate.

TCP maintains its own basic checksum field. According to RFC 793 [79] “The

checksum field is the 16 bit one’s complement of the one’s complement sum of all 16

bit words in the header and text. If a segment contains an odd number of header and

text octets to be checksummed, the last octet is padded on the right with zeros to form a

16 bit word for checksum purposes. The pad is not transmitted as part of the segment.

While computing the checksum, the checksum field itself is replaced with zeros.”

Spoofing a TCP datagram requires performing IP spoofing, described earlier, as well

as guessing the correct 4-byte TCP sequence number and the 2-byte TCP source port,

and updating the TCP Checksum field accordingly. The correct 4-byte TCP sequence

number and the 2-byte TCP source port are readily available to a Man-in-the-Middle

(MITM) or an attacker who has access to the TCP header information. The attacker

also needs to make sure that his spoofed TCP datagrams arrive ahead of the legitimate

ones. Otherwise, the spoofed datagrams would be discarded by the receiver on arrival.

Recall that in a MITM configuration, the attacker can control the flow of information,

and hence can delay, alter or drop legitimate datagrams.
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0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source Port | Destination Port |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Sequence Number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Acknowledgement Number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Data | |U|A|P|R|S|F| |

| Offset| Reserved |R|C|S|S|Y|I| Window |

| | |G|K|H|T|N|N| |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Checksum | Urgent Pointer |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Options | Padding |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| data |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3.3: Structure of the TCP header as per RFC 793. A number of TCP header
fields shown in this figure, such as Sequence Number, Acknowledgement Number,
Window and Checksum, and described in Section 3.2.2, are required to achieve the
TLS reliability feature that upper layer protocols such as TLS rely on. We describe
the relationship between TCP and TLS later in this chapter.

3.2.3 The User Datagram Protocol

Similar to TCP, the User Datagram Protocol (UDP) [77] is a protocol that operates

at the transport layer of the TCP/IP protocol stack, as shown in Figure 3.2. The

specifications of UDP are given in RFC 768 [77]. UDP is an unreliable connection-

less protocol that provides best-effort delivery of datagrams, allowing applications to

generate and send data at any time. The structure of a UDP datagram header is shown

in Figure 3.4, a much simpler structure than the TCP header. The reason behind this

simplicity is the minimal number of services that the UDP protocol provides when

compared to TCP. For example, unlike TCP, UDP does not require the establishment

of a connection before data is exchanged between to IP nodes. This UDP property

would be suitable, and in many cases desired, for applications where reliability is not

of a concern, DNS as one example.

Similar to TCP, UDP maintains its own a checksum field, Checksum. A UDP

datagram is discarded by the receiver if the Checksum field is found to be invalid. The

UDP Checksum field can be set to zero, indicating that the sender has not calculated
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0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source Port | Destination Port |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Length | Checksum |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| data |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3.4: Structure of the UDP header as per RFC 768.

the checksum for the UDP datagram, and that the field can be ignored by the receiver;

in this case, the receiver can choose to accept or reject the UDP datagram.

3.2.4 Implementing the TCP/IP Protocol Suite

Typically, operating systems would implement most of the TCP/IP protocol stack.

This includes performing tasks related to handling datagrams for the internet and

transport layers. Examples of these tasks include constructing datagrams, sending and

receiving datagrams, and maintaining datagram queues. The exact implementation of

the TCP/IP protocol suite is operating system-dependent. For example, in the case of

the Linux kernel, there are two datagram buffers for each direction of traffic (incoming

and outgoing traffic). The first buffer is located at the internet layer. The second

buffer is located at the transport layer and its maximum size is based on the number of

bytes the buffer can handle [26]. For example, the default maximum UDP buffer size

for a Linux kernel is 131071 bytes1. Operating systems are expected to implement the

standards’ mandatory requirements when handling datagrams. For example, operating

systems should handle incoming UDP datagrams in accordance to [95], “If the incoming

UDP datagrams arrive faster than the application can read them and if the queue fills

to a maximum value, UDP datagrams are discarded by UDP. UDP will continue to

discard UDP datagrams until there is space in the queue.”

3.3 Cryptographic Primitives

TLS and DTLS make use of a number of cryptographic primitives. In this section, we

give an introduction to cryptographic hash functions and message authentication codes

(MACs). We will refer to these cryptographic primitives in the course of this chapter

1http://access.redhat.com/site/documentation/en-US/JBoss_Enterprise_Web_Platform/5/

html/Administration_And_Configuration_Guide/jgroups-perf-udpbuffer.html
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and the next two chapters, and describe how they are deployed in the context of TLS

and DTLS.

3.3.1 Hash Functions

A hash function takes an input, M , a bitstring of arbitrary length and produces a

message digest, x, that is of fixed length. A cryptographic hash function, h, is designed

to withstand pre-image, second pre-image and collision attacks.

Definition 3.1. Pre-image resistance: For essentially all pre-specified outputs, it is

computationally infeasible to find any input which hashes to that output, i.e. to find

any pre-image x′ such that h(x′) = y when given any y for which a corresponding input

is not known.

Definition 3.2. Second pre-image resistance: It is computationally infeasible to find

any second input which has the same output as any specified input, i.e. given x, to

find a second pre-image x′ 6= x such that h(x) = h(x′).

Definition 3.3. Collision resistance: It is computationally infeasible to find any two

distinct inputs x and x′ which hash to the same output, i.e. such that h(x) = h(x′).

Hash functions are used in a wide variety of applications including the construc-

tion of other cryptographic primitives such as message authentication codes (MACs),

digital signatures, pseudo random functions (PRFs) and pseudorandom number gener-

ators (PRNGs). Clearly, the security of these applications relies on the cryptographic

strength of the underlying hash function used and its resistance to attacks. Widely

used hash functions include MD5 [87, 99], SHA-1 [71] and SHA-256 [71]. SHA-3 [71],

based on Keccak [20], is the latest addition to the list of hash functions. Today, it is

practically feasible to find collisions in MD5 [107], and hence MD5 should not be con-

sidered for constructing other cryptographic primitives [99]. SHA-1 collision resistance

has also been under attack [105, 106].

3.3.2 Message Authentication Codes

A MAC can be thought of as a fixed-size cryptographic tag, T , that is produced from

applying algorithm f on a variable-length message, M , along with a secret key, K.

The use of the secret key, K, in MAC allows the receiver to verify the integrity and

authenticity of the received message. Integrity and authenticity verification is a feature

that the use of hash functions, for example, cannot provide. Algorithm f can be

constructed using block ciphers (for example, CBC-MAC [70], OMAC [47] and PMAC

[109]), but can also be constructed using a cryptographic hash functions such as in the
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case of HMAC. The HMAC-based constructions [58] are the most commonly used MAC

realisations and are the ones supported by the different TLS versions [31, 32, 33]. The

different realisations of HMAC are denoted by HMAC-MD5, HMAC-SHA-1, HMAC-

SHA-256, etc. We give more detail on the construction of HMACs in Chapter 5.

3.4 Introduction to Transport Layer Security

Transport Layer Security (TLS) is arguably the most widely used secure communica-

tions protocol on the Internet today. TLS and its predecessor, Secure Sockets Layer

(SSL), establishes a secure channel between two parties. SSL was originally designed by

Netscape and was never formally published as a standard by the IETF. Starting with

SSL 2.0, a deprecated version that was released in 1994, Netscape’s intent was to build

a layer that can provide transparent protection services to a wide variety of application-

level traffic. SSL 2.0 suffered a number of severe security flaws [104] and was shortly

replaced by SSL 3.0, in 1995. Microsoft also responded to the flaws discovered in SSL

2.0 by creating their own protocol, called Private Communications Technology (PCT)

[19, 21], also in 1995. PCT was not implemented by platforms other than Microsoft

Internet Explorer and was eventually dropped by Microsoft. It is worth noting that a

recent IETF standard was published to prohibit the use of SSL 2.0 [100].

All versions of SSL were mainly developed and maintained by Netscape; the IETF

published RFC 6101 [38] for SSL 3.0, but for the historical record only. SSL was

later adopted by the IETF and was specified as an RFC standard in 1999 under the

name of TLS 1.0 [31]. It has since evolved through TLS 1.1 [32] to the current version

TLS 1.2 [33]. Various other RFCs define additional TLS cryptographic algorithms and

extensions such as the ones specified in [92, 90, 84, 52, 2, 93].

TLS is now used for securing a wide variety of application-level traffic: It serves,

for example, as the basis of the HTTPS protocol for encrypted web browsing, it is used

in conjunction with Internet Message Access Protocol (IMAP) or Simple Mail Transfer

Protocol (SMTP) to cryptographically protect email traffic, and it is a popular tool

to secure communication with embedded systems, mobile devices, and in payment

systems.

TLS and SSL require an underlying reliable transport protocol to operate. This is

mainly TCP, this being the dominant reliable transport protocol used on the Internet.

TLS relies on TCP’s reliability to reorder incoming datagrams and retransmit lost

datagrams. An example of another reliable protocol that TLS can operate over is the

Stream Control Transmission Protocol (SCTP) [72, 49]. DTLS, on the other hand,

operates over an unreliable protocol such as UDP. We give more detail on DTLS in
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Section 3.5.

TLS is actually a protocol suite, rather than a single protocol. The main component

of TLS is the Record Protocol, which uses symmetric key cryptography (block ciphers,

stream ciphers and MAC algorithms) in combination with sequence numbers to build

a secure channel for transporting application-layer data. Other major components

are the TLS Handshake Protocol, which is responsible for authentication, session key

establishment and cipher suite negotiation, and the TLS Alert Protocol, which carries

error messages and management traffic. There is also the Change Cipher Spec Protocol,

which is used to signal transitioning to a protected mode. In the next sections, we

describe these four protocols with more emphasis on the Record Protocol. The following

are (D)TLS-related definitions that we will be regularly referring to in the course of

this chapter and the rest of this thesis:

Definition 3.4. TLS cipher suite: A set of cryptographic algorithms that is agreed-on

between two TLS parties. This set identifies the authentication, key establishment,

bulk encryption and message authentication algorithms.

Every cipher suite is assigned a 2-byte identification number. For example, the

cipher suite TLS RSA WITH AES 128 CBC SHA is assigned number 0x2F, and indicates

the use of RSA for authentication and key establishment, AES using a 128-bit key in

CBC-mode for encryption, and HMAC-SHA-1 for generating message authentication

codes. IETF RFCs (for example, RFCs 5288 [90] and 5932 [52]) are published to

update the list of approved and supported cipher suites for the different TLS versions

[31, 32, 33]; new approved cipher suites are introduced, while existing cipher suites

that are considered insecure are dropped. TLS 1.2 introduced the option of using

authenticated encryption with additional data (AEAD) encryption modes [62] such as

GCM [64, 90]. In AEAD encryption, the plaintext is simultaneously encrypted and

integrity protected. AEAD ciphers take as input a single key, a nonce, a plaintext, and

additional data to be included in the authentication check [62].

Definition 3.5. TLS session: A virtual construct that maps to a specific cipher suite

and a specific active master secret. Every session is assigned a random session iden-

tifier, which is an arbitrary sequence of bytes. The length of the session identifier is 16

bytes in the case of SSL 2.0 and between 0 and 32 bytes in the case of SSL 3.0 and all

versions of TLS.

In Section 3.4.2, we discuss the key derivation process in (D)TLS and show how

master secret is computed.

Definition 3.6. TLS connection: A specific communication channel that carries the

actual application data and maps to a TCP connection.
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Every TLS connection is assigned its own encryption and MAC keys, and sequence

numbers. A TLS connection is created only after the successful establishment of a

session. The two ends of a TLS connection must agree on the same cipher suite to be

able to communicate. The cipher suite to use is negotiated by the two TLS parties as

described in Section 3.4.3.

3.4.1 Pseudo Random Functions in TLS

In addition to compressing data using HMAC, for integrity and authenticity purposes,

another construction is required to do expansion of secrets into blocks of data for

the purposes of key generation or validation. This is achieved by using a pseudo

random function (PRF), which takes in the case of TLS as input a secret, a seed

and an identifying label, and produces an output of arbitrary length. The PRF, as

we show in the coming sections, takes a key role in the TLS key derivation and the

Handshake Protocol; TLS relies on HMAC-based PRFs to perform key derivation, and

the generation and verification of particular messages. Unlike TLS 1.0 and TLS 1.1

which hard code the HMAC algorithms to use, TLS 1.2 specifies that the PRF must

be explicitly identified in the cipher suite and that it should be at least SHA-256. In

TLS 1.0 and TLS 1.1, the PRF output is created by splitting the secret, S, into two

halves, S1 and S2, and using S1 with MD5 and S2 with SHA-1, then performing an

XOR operation on the outputs of these two expansion functions. The PRF calculation

in TLS 1.2 does not require to split S; only one hash function is used.

3.4.2 TLS Key Derivation

The TLS key derivation process produces keys that are used for encryption, integrity

protection and authentication. This is achieved first by creating (or computing) and

then expanding a 48-byte pre-master secret, pre master secret. The process of es-

tablishing the pre-master secret depends on the key establishment method identified

in the selected cipher suite. The pre-master secret is set either by direct transmis-

sion of the RSA-encrypted secret, as described in Section 3.4.3, or by the transmis-

sion of Diffie-Hellman (DH) parameters that will allow each side to reach the same

pre master secret [33]. The length of pre master secret varies depending on the

key establishment method. For example, in the case of RSA, pre master secret is 48

bytes long and is composed of a 2-byte version number and a 46-byte random number

that is locally generated by the client and communicated “securely” to the server, using

RSA encryption under the server’s public key.

The pre-master secret is then expanded using a PRF to generate a 48-byte master
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secret, master secret. The master secret is specific to a TLS session and is main-

tained for the lifetime of a particular TLS session. In TLS, master secret is com-

puted by applying a PRF on the following inputs [33]: pre master secret, the string

“master secret” and ClientHello.random || ServerHello.random (random values ex-

changed in the Handshake Protocol, as we describe in Section 3.4.3). The master secret,

master secret, is associated with a TLS session and is used to generate the required

keying material for TLS connections under a session. The exact keying material to

generate depends on the selected cipher suite and can include encryption keys, MAC

keys and IVs for each of the TLS parties.

3.4.3 The TLS Handshake Protocol

Before application layer data can be exchanged between two TLS parties, a TLS con-

nection establishment phase must complete successfully. This phase is delivered by the

TLS Handshake Protocol. Figure 3.5 shows a typical sequence of the TLS Handshake

messages when RSA, a public-key encryption algorithm, is used for authentication and

key establishment. This Handshake Protocol example, which we explain in detail in

this section, also assumes that server authentication is performed using a certificate

that the client trusts; client authentication, on the other hand, is optional.

The Handshake Protocol example proceeds as follows (again, we assume that RSA

is used for key establishment):

The client usually initiates the TLS Handshake Protocol. It does this by sending

a ClientHello message, after successfully establishing the underlying TCP connec-

tion of course. Sending a ClientHello message indicates to the server the client’s

interest in starting a TLS handshake message exchange and informs the server about

the client’s preferences. The ClientHello message includes the following fields in se-

quence: a 2-byte protocol number (for example, 0x3 0x2 for TLS 1.1 and 0x3 0x3 for

TLS 1.2), a 32-byte number referred to as ClientRandom (28 bytes of which are to

be randomly generated), the session identifier, a variable number of bytes (multiple of

two) containing the list of cipher suites supported by the client for this connection, and

the compression methods the client supports (if any). All this information is sent in

plaintext. It is worth noting that TLS 1.2 [33] introduced a new handshake message,

HelloRequest, a notification message that the server can send requesting the client to

begin the handshake negotiation process.

The server responds with three TLS messages, transmitted in one or more TCP

datagrams. The first message is the ServerHello message, sent in plaintext in re-

sponse to the preferences offered by the client in its ClientHello message. The server

can ignore the client’s preferences and choose another cipher suite. The ServerHello
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Client Server

ClientHello -------->

ServerHello

Certificate

CertificateRequest(optional)

<-------- ServerHelloDone

Certificate(optional)

ClientKeyExchange

CertificateVerify(optional)

[ChangeCipherSpec]

Finished -------->

[ChangeCipherSpec]

<-------- Finished

Application Data <-------> Application Data

Figure 3.5: Sample TLS Handshake Protocol sequence of messages. The figure shows
the messages exchanged between the TLS client and the TLS server in the scenario
discussed in Section 3.4.3. In this scenario, we assume that RSA is used for key
establishment. In this scenario, the pre master secret, which is a 48-byte key, is
generated by the client and shared, securely, with the server in the third step in the
ClientKeyExchange message. The master secret, master secret, that gets associated
with a TLS session and is used to generate the required keying material for the TLS
connection, is computed from pre master secret. The keying material that is gen-
erated will include encryption and MAC keys used by the clinet and the server for a
particular TLS connection.

message includes the following fields in sequence: a 2-byte protocol number, a 32-byte

number referred to as ServerRandom (28 bytes of which are to be randomly generated),

a session identifier assigned by the server, the 2-byte cipher suite identifier which the

server is willing to use, and the compression method (if any). The ServerRandom and

ClientRandom messages are used by the client and server in the key derivation process

described in Section 3.4.2 to make sure that the generated keying material is differ-

ent, even if the same secret input (the pre-master secret) has been chosen, protecting

TLS connections from replay attacks and making sure that keys in each connection

are different. In addition to ServerHello, the server sends a Certificate message

containing a chain of X.509 certificates, and which must at least contain the server’s

certificate. The server finally sends the ServerHelloDone message, an empty message

that indicates to the client that the server has finished sending all of its messages for

this phase of the handshake.

83



Chapter 3. TLS and DTLS 3.4. Introduction to Transport Layer Security

The client continues with the Handshake Protocol only if it is satisfied with the

server’s response. That is, if the client accepts the server’s chosen cipher suite and

successfully authenticates the server’s certificate it just received. If it does, then the

client locally generates a secret key referred to as the pre-master secret and sends it to

the server in the ClientKeyExchange message. The generation of the pre-master secret

was described in Section 3.4.2. The ClientKeyExchange message is protected using

the server’s public key contained in the server’s certificate. The ClientKeyExchange

message is followed by the 1-byte ChangeCipherSpec message. This message is actually

part of the TLS Change Cipher Spec Protocol and indicates that a TLS party, in this

case the client, is switching to sending and accepting only messages that are protected

by the selected cipher suite and the newly derived keys. The client finally sends the

ClientFinished message, the first message that is protected by the newly derived

keys used in accordance with the selected cipher suite. The ClientFinished message

contains the client’s Verify Data, a cryptographically generated message used to verify

that the current key exchange was successful. We show how to compute Verify Data

later in this section.

The server proceeds only if it successfully decrypts the ClientFinished message

and verifies the client’s Verify Data. If so, then the server sends a ChangeCipherSpec

message, followed by a ServerFinished message containing the server’s Verify Data.

The client is expected to decrypt and verify the content of ServerFinished, before

any application data is sent.

The Verify Data message is cryptographically generated. For example, in TLS

1.2 [33], Verify Data is computed by applying the ciphersuite-specified PRF (or SHA-

256 if not specified) on the following data [33]: master secret, finished label and

h(handshake messages). The finished label is set to the strings “client finished”

or “server finished”, if the Verify Data message is generated by the client or server

respectively. In TLS 1.2, the length of Verify Data, in bytes, should be explicitly

identified by the selected cipher suite, otherwise it is set to 12 bytes. In TLS 1.0

and 1.1, the length of Verify Data is fixed to 12 bytes. Here, h is the cipher-suite-

specified cryptographic hash function for the PRF and handshake messages refers to

all handshake messages sent or received, starting at client hello and up to, but not

including, the Finished message.

The above Handshake Protocol example is for the case in which RSA (TLS–RSA)

is used for key establishment. The Handshake Protocol proceeds differently when using

other key establishment and authentication algorithms. Recall that the key establish-

ment and authentication algorithms are specified in the selected cipher suite. TLS

and DTLS support cipher suites where static DH (TLS–DH) or ephemeral DH (TLS–

84



Chapter 3. TLS and DTLS 3.4. Introduction to Transport Layer Security

DHE) can be used. The DH parameters are specified by the server and may be either

ephemeral (in the case of TLS–DHE) or contained within the server’s certificate (in

the case of TLS–DH). In TLS-DH and TLS-DHE, the pre-master secret is created

from the output of the DH key exchange protocol. According to [33], the shared DH

key is used as the pre-master secret, after stripping the leading bytes of the shared

key that contain all zero bits. If needed, TLS–DHE can be used to achieve perfect

forward secrecy (PFS), a feature that cannot be guaranteed by RSA or static DH.

TLS-DHE does not provide authentication, but can be combined with an authentica-

tion method such as RSA or Digital Signature Algorithm (DSA) [33]. For example,

TLS DHE RSA WITH AES 128 CBC SHA identifies DHE as the key exchange algorithm

and RSA as the authentication algorithm. Using TLS with Anonymous DH, on the

other hand, is possible, but does not provide authentication; it is strongly recommended

not to use anonymous DH since it is vulnerable to basic MITM attacks.

3.4.4 TLS Session Renegotiation

Two TLS parties can renegotiate the parameters of their session without the need to

tear down their TLS connection. Re-negotiated parameters can include the cipher suite

and the pre-master secret, along with recomputing the master secret accordingly. The

session renegotiation capability is negotiated when two TLS parties first establish a TLS

session. Unlike most of the messages of a new handshake which are sent in plaintext,

all renegotiation messages are protected by the current cipher suite. RFC 5746 [84]

defines a secure renegotiation method, published in response to a TLS renegotiation

attack, described in [81].

3.4.5 TLS Session Resumption

To avoid the computationally expensive public key cryptography operations used to

establish the pre-master secret, a client and a server can resume a previously established

session. Successful session resumption results in updating the TLS keying material

and possibly a change in the cipher suite; the master secret associated with the TLS

session is not changed. A non-empty session identifier in an unencrypted ClientHello

indicates to the server the client’s interest to resume an existing session. The session

resumption mechanism is also referred to as “session caching”, and requires the server

to keep information about every session for a configurable amount of time. The authors

of RFC 5077 [92] introduces a new TLS extension for stateless session resumption that

does not make use of session identifiers.
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3.4.6 The TLS Record Protocol

The TLS Record Protocol transparently provide services the TLS higher-level proto-

cols. The Record Protocol accepts data from its higher-level protocols and from the

underlying reliable transport protocol layer (for example, TCP). Data received from

higher-level protocols are first fragmented into records, compressed (if selected) and

encapsulated in TLS datagrams. Application messages exceeding 214 bytes are broken

into multiple plaintext records, each not exceeding 214 bytes, before they are further

processed. The Record Protocol applies authentication, padding and encryption to each

plaintext record, as appropriate. The exact list of steps for processing TLS plaintext

records is governed by the state of the TLS connection and the cipher suite selected

during the TLS connection establishment phase. For example, some of the TLS hand-

shake messages are sent in plaintext, while others are protected by the selected cipher.

Data received from applications are always protected by the selected cipher. According

to [33], the length of a TLS ciphertext record must not exceed 214+212 bytes. The TLS

Record Protocol performs the reverse operations on data received from its underlying

reliable transport protocol. Again, the exact processing of TLS records is governed by

the state of the TLS connection and the selected cipher suite.

Let us now analyse the structure of the TLS record header. The 5-byte header,

HDR, is simple and consists of three fields: Content Type, Version and Length. The

1-byte Content Type field contains the value assigned to the higher-level protocol.

The four basic higher-level protocols are the Change Cipher Spec Protocol (0x14),

the Alert Protocol (0x15), the Handshake Protocol (0x16), and the Application Data

Protocol (0x17). The Record Protocol supports adding extensions so that new higher-

level protocols can be introduced whenever needed [33, 2]. The 2-byte Version field,

identifies the version of the protocol used, and is broken into 1-byte Major and 1-byte

Minor versions. For example, TLS 1.2 is assigned the value 0x3 0x3. The 2-byte Length

field identifies the length of the TLS record in bytes.

Sequence numbers are used by the Record Protocol to maintain the state of a TLS

connection. The value of an 8-byte sequence number, SQN, is initialised to zero whenever

a new connection is established. The 8-byte sequence number is not exchanged over

the wire, but is maintained by the two parties of a TLS connection and is protected

by the Record Protocol MAC. Two separate sequence numbers are maintained for

every TLS connection; one for outgoing records and another for incoming records.

The corresponding sequence number is incremented for each record sent or received.

Sequence numbers are also used to protect TLS against anti-replay attacks. Although

TCP provides a reliable layer that assures in-sequence delivery of datagrams, it does not

protect TLS against adversaries intentionally re-ordering TCP datagrams or injecting
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TCP datagrams of their choice. The TLS Record Protocol detects this manipulation

or injection by continuously maintaining the value SQN and including SQN in the MAC

calculation. The MAC is verified for every TLS record received and the TLS session

is destroyed immediately, along with its associated keying material, after encountering

an invalid MAC.

3.4.7 Modes of Operation

In the Record Protocol, there are three encryption options:

• HMAC followed by CBC-mode encryption using a block cipher,

• HMAC followed by encryption using the RC4 stream cipher, or

• authenticated encryption using the GCM [90] or CCM [63] mode of operation

of a block cipher. In this mode of operation, the same construction is used to

perform the expected encryption and authentication functions.

The third of these three options is only available with TLS 1.2 [90, 63], which is

yet to see widespread adoption. The second option has seen some recent cryptanalysis

work [4]. Our attacks, presented in Chapters 4 and 5, were conducted against DTLS

and TLS when CBC-mode encryption is used. Therefore, the background information

we give in the remaining of this chapter focuses on the TLS Record Protocol with this

mode of operation, which we refer to as MEE-TLS-CBC in the rest of the thesis. In

this case, MEE-TLS-CBC refers to using the MAC-then-Encode-then-Encrypt (MEE)

construction or TLS (and DTLS), under CBC-mode encryption.

CBC-Mode Encryption in TLS – MEE-TLS-CBC

An individual TLS plaintext record R (viewed as a byte sequence of length at least

zero) is processed as follows: the sender maintains the 8-byte sequence number SQN,

and forms the 5-byte header field HDR described earlier. It then calculates a MAC over

the bytes SQN || HDR || R; let T denote the resulting MAC tag. Note that exactly 13

bytes of data are prepended to the record R here before the MAC is computed. The

size of the MAC tag is 16 bytes (HMAC-MD5), 20 bytes (HMAC-SHA-1), or 32 bytes

(HMAC-SHA-256). We let t denote this size in bytes.

The record is then encoded to create the plaintext P by setting P = R || T || pad.

Here pad is a sequence of padding bytes chosen such that the length of P in bytes is a

multiple of b, where b is the block-size of the selected block cipher (so b = 8 for 3DES

and b = 16 for AES). In all versions of TLS and DTLS, the padding must consist of
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p + 1 copies of some byte value p, where 0 ≤ p ≤ 255. In particular, at least one

byte of padding must always be added. So examples of valid byte sequences for pad

are: “0x00”, “0x01 || 0x01” and “0x02 || 0x02 || 0x02”. The padding may extend over

multiple blocks, and receivers must support the removal of such extended padding. In

SSL the padding format is not so strictly specified: it is only required that the last

byte of padding must indicate the total number of additional padding bytes. However,

this opens up TLS to simple attacks as described in [68].

In the encryption step, the encoded record P is encrypted using CBC-mode of

the selected block cipher. TLS 1.1 and 1.2 mandate an explicit IV, which should be

randomly generated; TLS 1.0 and SSL use a chained IV. Thus, the ciphertext blocks

are computed as:

Cj = EKe(Pj ⊕ Cj−1), (3.1)

where Pj are the blocks of P , C0 is the IV, and Ke is the key for the block cipher E,

that was agreed-on during the TLS handshake phase.

For TLS (and SSL), the data transmitted over the wire then has the form:

HDR || C,

where C is the concatenation of the ciphertext blocks Ci (including or excluding the

IV depending on the particular SSL or TLS version). Note that the sequence number

is not transmitted as part of the message in TLS.

Simplistically, the decryption process, shown in Figure 3.6, reverses this sequence of

steps: first the ciphertext is decrypted block-by-block to recover the plaintext blocks:

Pj = DKe(Cj)⊕ Cj−1, (3.2)

where D denotes the decryption algorithm of the block cipher. Then the padding is

removed, and finally, the MAC is checked, using the header information (and, in TLS,

a version of the sequence number that is maintained at the receiver).

In reality, much more sophisticated processing than this is needed. We describe the

further steps to perform later in Section 3.9.2.

3.4.8 The TLS Alert Protocol

The TLS Alert Protocol [33] carries alert messages which identify the severity of errors

occurring at any stage of a TLS connection. For example, an alert message is sent by a

server if none of the cipher suites offered by the client, during the Handshake Protocol,

are acceptable. Alert messages are classified as either fatal or warning. Alert messages
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Cj-1

DK

Pj-1

Cj

DK

Pj

Figure 3.6: CBC-mode decryption. In this figure, C is the concatenation of the cipher-
text blocks Ci (including or excluding the IV depending on the particular SSL or TLS
version), while P is the decrypted ciphertext and K is the key used for decryption.

with a level of fatal result in the immediate termination of the TLS connection and

destruction of the session construct accordingly.

3.5 Introduction to Datagram Transport Layer Security

A datagram-based protocol implies the use of an unreliable underlying network proto-

col such as UDP. The Datagram Transport Layer Security (DTLS) protocol was first

introduced at the Network and Distributed System Security Symposium (NDSS) in

2004 [67]. Two years later, the IETF assigned RFC 4347 [82] to DTLS 1.0. The aim of

DTLS 1.0 is to provide a variant of TLS 1.1 [32] that eliminates the dependency on a

reliable underlying protocol such as TCP. Similar to TLS, DTLS is intended to provide

privacy and integrity for data exchanged between a client and a server. We explain

later in this section the main differences between DTLS and TLS. Applications that

operate over an unreliable transport protocol such as UDP can easily take advantage of

the security services offered by DTLS. Since its introduction, there has been a growing

interest in the security services offered by DTLS. Leading implementations of DTLS

can be found in OpenSSL2 and GnuTLS3. Both of these provide source toolkits that

implement TLS and DTLS as well as being general purpose cryptographic libraries

that software developers can use. The first release of OpenSSL to implement DTLS

was 0.9.8. Since its release, DTLS has become a mainstream protocol in OpenSSL.

There are also a number of commercial products that have taken advantage of DTLS.

2http://www.openssl.org
3http://www.gnu.org/software/gnutls
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For example, DTLS is used to secure Virtual Private Networks (VPNs)4,5 and wireless

traffic6. Platforms such as Microsoft Windows, Microsoft .NET and Linux can also

make use of DTLS7. In addition, the number of RFC documents that are being pub-

lished on DTLS is increasing. Recent examples include RFC 5415 [24], RFC 5953 [44]

and RFC 6012 [91]. Recently, support for DTLS was added to Google Chrome and

Firefox to protect Internet video traffic8.

By design, DTLS 1.0 [82] is very similar to TLS 1.1 [32]. In fact, RFC 4347 [82]

presents only the changes to TLS 1.1 introduced by DTLS and refers to RFC 4346 [32]

for the rest of the protocol specification. According to RFC 4347, this approach has

been chosen to minimise the amount of effort needed to implement the protocol. Thus,

to fully understand and be able to analyse and code DTLS, the reader of RFC 4347 is

expected to be familiar with TLS 1.1. The same approach was taken when developing

DTLS 1.2 [83], which aligns the DTLS protocol with TLS 1.2. It is worth noting that

there was no DTLS 1.1. The jump was to synchronise the DTLS and TLS numbering

for ease of referral, and possibly development and implementation.

A number of changes were introduced in the design of DTLS, compared to TLS, so

that the services of TLS could be delivered over an unreliable transport protocol such

as UDP. We list here a number of these changes:

• To compensate for the lack of an underlying reliable protocol, the DTLS Hand-

shake Protocol implements its own retransmission timers and datagram reorder-

ing settings. The Handshake Protocol also implements other features such as

anti-spoofing and denial of service protection. For example, to protect against

denial of service attacks, DTLS introduces a handshake verification phase in

which a challenge message, HelloVerifyRequest, in the form of a 4-byte cookie,

borrowed from [51], is generated by the server and sent to the client. The client

is expected to retransmit the ClientHello, this time with the cookie included,

making denial of service using spoofed IP addresses difficult. Figure 3.7 shows

the new handshake phases. The rest of the DTLS handshake proceeds similarly

to the TLS handshake example shown in Figure 3.5, along with the implementa-

tion of message timeouts. The Record Protocol does not offer these features and

assumes that they are handled by the upper layer protocols, if needed.

• In TLS, MAC errors must result in connection termination. In DTLS, the receiv-

4http://www.cisco.com/en/US/products/ps10884/index.html
5http://campagnol.sourceforge.net
6http://www.cisco.com/en/US/docs/wireless/controller/7.0MR1/configuration/guide/cgi_

lwap.html
7http://www.eldos.com/sbb/desc-ssl.php
8http://sites.google.com/site/webrtc/interop
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ing implementation may simply discard the offending record and continue with

the connection. According to [83, Section 4.1.2.1], DTLS implementations should

silently discard data with bad MACs. The idea is that datagrams may be lost,

duplicated, reordered, or possibly modified. Discarding these packets is based on

the fact the underlying protocol used by DTLS is unreliable. TLS, on the other

hand, would terminate the connection since it expects the underlying protocol,

for example TCP, to carry out the functions of packets re-ordering and discard-

ing packets with checksum errors. We exploit the DTLS tolerance to datagram

alteration in our attacks in Chapter 4.

• Unlike TLS, fragmentation of record messages is not permitted in DTLS. Instead,

a DTLS record must fit within a single lower layer datagram. According to

[83, Section 4.1.1], DTLS implementations are expected to determine the path

maximum transmission unit (PMTU) possible and send records smaller than

the PMTU. If an application attempts to send a record larger than the allowed

PMTU, the DTLS implementation should respond to the application with an

error message.

• Unlike TLS, the 8-byte sequence number field, SQN, in DTLS is explicit, i.e.

is included in the DTLS Record header, and is composed from a 2-byte epoch

number and a 6-byte sequence number, As with TLS, the 6-byte DTLS sequence

number is set to zero after each ChangeCipherSpec message is sent. The epoch

number is initially set to zero and incremented each time the ChangeCipherSpec

message is sent within a session (for reasons such as session renegotiation). For

simplicity, we use DTLS sequence number field, SQN, to refer to both the 2-byte

epoch and the 6-byte sequence number.

• DTLS optionally supports record replay detection. TLS support for anti-replay

is based on including the current SQN in the MAC calculation as described in

Section 3.4.6. In DTLS, the technique used for anti-replay is the same as in

IPsec’s AH protocol [53], by maintaining a bitmap window of received records.

Records that are too old to fit in the window and records that have previously

been received are silently discarded. According to [82, 83], the replay detection

feature is optional, since packet duplication is not always malicious, but can also

occur due to routing errors. In DTLS, the 8-byte sequence number field, SQN,

is included in the DTLS Record header; this value is used for calculating and

verifying the MAC.

• RC4, the only stream cipher that is supported by TLS, must not be used with
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Client Server

------ ------

ClientHello -------->

<------- HelloVerifyRequest

ClientHello -------->

Figure 3.7: Startup of DTLS Handshake Protocol.

DTLS. This is because the DTLS Record Protocol and its underlying transport

layer protocol do not provide reliability, message delivery assurance or datagram

in-order processing, and hence the state synchronisation required by stream ci-

phers like RC4 cannot be guaranteed.

3.6 Heartbeat Extension for (D)TLS

The Heartbeat extension [93] provides a new protocol for (D)TLS allowing a keep-alive

functionality. This is very useful in the case of DTLS, which runs on top of unreliable

transport protocols that have no concept of session management. The only mechanism

available at the (D)TLS layer to determine if a peer is still alive is performing a costly

renegotiation. The Heartbeat extension uses Heartbeat request and response messages

between two entities that have an established (D)TLS connection. A Heartbeat request

message can be sent by either of the entities and is protected using the same (D)TLS

cipher suite and keys used for protecting other payloads. According to [93], whenever

a Heartbeat request message is received, it has to be answered with a corresponding

Heartbeat response message. Both messages have specific lengths that can be detected

by the adversary. The use of (D)TLS’s variable length padding feature adds minimal

difficulty in identifying the Heartbeat messages. We make use of the (D)TLS Heartbeat

messages in our attacks in Chapters 4 and 5.
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3.7 Implementations of (D)TLS

TLS 1.0 is universally supported by almost all modern web browsers and web servers.

TLS 1.1 and 1.2 are not yet widely supported9,10, but TLS 1.2 is gaining further mo-

mentum, after a number of recent high-profile attacks against TLS [35, 4] and Chapter

5 of this thesis (published as [6]). Examples of widely-used open source implemen-

tations of TLS 1.2 include OpenSSL11, NSS12 (used in Google Chrome and Firefox),

GnuTLS13, PolarSSL14, JSSE15, CyaSSL16 and yaSSL17. Some vendors such as Mi-

crosoft have opted to develop their own implementations of the protocol18. The number

of DTLS 1.1 implementations is fewer and includes, for example, OpenSSL, GnuTLS

and CyaSSL.

The implementers of TLS and DTLS are expected to follow the IETF standards for

their code design and implementation. Despite their best efforts, vulnerabilities can be

introduced through developers making their own interpretation of the standards or as

a result of the usual kinds of coding error. There are also cases where vulnerabilities

are the result of incorrect protocol design decisions. We demonstrate examples of such

vulnerabilities later in Chapters 4 and 5, and introduce new techniques for exploiting

(D)TLS design decisions and attacking a number of (D)TLS implementations.

3.8 Side Channel Attacks

Physical attacks on cryptosystems take advantage of implementation-specific charac-

teristics to recover secret parameters that are involved in different computations. An

attack that exploits information leaked by a system is generally referred to as a side

channel attack; typically, exploiting unintended leakage that hardware and software

implementations of cryptosystems may produce. Sources of hardware leakage include

timing [55, 23], power consumption [54] and electromagnetic radiation [56]. Sources

of software leakage include error messages [73, 30, 102, 16] and message sizes [8]. An

9SSL Pulse (https://www.trustworthyinternet.org/ssl-pulse/) reported in August 2013 that
only 14.5% of 170,000 websites surveyed support TLS 1.1 and 17% of the of 170,000 websites support
TLS 1.2.

10As of September 2013, Firefox support for TLS 1.2 is available on selected releases (Firefox 24
Beta, Aurora and Nightly), Google Chrome support for TLS 1.2 was introduced in release 29, and
Microsoft plans to support TLS 1.2 in release 11 of its Internet Explorer.

11http://www.openssl.org
12http://developer.mozilla.org/en-US/docs/NSS
13http://www.gnutls.org
14http://polarssl.org
15http://download.java.net/jdk8/docs/technotes/guides/security/jsse/JSSERefGuide.html
16http://www.yassl.com
17http://www.yassl.com
18http://msdn.microsoft.com/en-us/library/windows/desktop/aa380123
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attacker exploiting a side channel can gain further information that may potentially

help him exploit a cryptosystem. For example, this might help an attacker recover the

encryption key or recover encrypted messages.

3.8.1 Timing Side Channel Attacks

A timing side channel attack is, essentially, a way of obtaining secret information by

measuring the time it takes for cryptographic operations to complete. The timing vari-

ance in the operations reveals enough information to the attacker for him to acquire

relevant, and possibly sensitive, information about the system. Timing side channel

attacks are typically coupled with statistical analysis. The timing side channel attack

idea was first introduced by Kocher in [55], where he showed that carefully measur-

ing the amount of time required to perform private key operations could possibly help

attackers find fixed Diffie-Hellman exponents, factor RSA keys, and break other cryp-

tosystems. The fundamental idea is taking advantage of timing variations. The idea

was then translated into a real attack against a smart card-based implementation of

RSA [54]. Boneh and Brumley later took this further and demonstrated in [23] how to

extract private keys from an OpenSSL-based web server running on a machine in the

local network. The work we present in Chapters 4 and 5 exploits timing side channels

to recover plaintext.

3.9 Padding Oracles

An oracle can be thought of as a black box that responds to queries. A padding oracle

reveals side channel information that indicates the correctness of padding. In certain

circumstances, a padding oracle can be leveraged to build a decryption oracle, that

is, enables plaintext attacks against a protocol. For it to be useful to an adversary,

a padding oracle must have a practical realisation. This realisation can be achieved

by exploiting the leakage of padding-related side channel information such as error

messages or timing.

The concept of a padding oracle was first introduced by Vaudenay [102]. In Vau-

denay’s formulation, a padding oracle is a notional algorithm which, when presented

with a CBC-mode ciphertext, returns VALID if the underlying plaintext has padding

that is correctly formatted and INVALID otherwise. Here, correctness is with respect to

some padding scheme. For example, for (D)TLS padding, correctness means that the

decryption of the ciphertext is a byte string ending in one of the valid padding pat-

terns “0x00”, “0x01 0x01”, etc. Vaudenay showed that, for certain padding schemes,

repeated access to a padding oracle can be used to decrypt arbitrary target ciphertext
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blocks (and indeed complete ciphertexts in a block-by-block manner).

Vaudenay’s techniques apply to the (D)TLS padding scheme and, for completeness,

we show in Algorithm 2 how to decrypt a complete block from a target ciphertext C,

given access to a padding oracle. Recall that in CBC-mode encryption, the ciphertext

is decrypted block-by-block using equation (3.2), demonstrated by Figure 3.6.

Let us start with the simplest scenario, in which the attacker tries to recover the

last byte of a plaintext block, Pt. We use Ct to denote the target block in ciphertext C

and use Ct−1 to denote the ciphertext block preceding Ct. Let ∆, which we refer to as

the masking block, be a block made of b bytes. Also, for any block B of plaintext or

ciphertext, we write B = [B[0]B[1] . . . B[b− 1]], where B[i] denotes the ith bytes of B.

In CBC-mode encryption, modifying the value of a byte of Ct−1 by XORing it

with ∆ has the effect of modifying Pt in the same byte by XORing it with the same

∆, as shown in Figure 3.8. In addition, modifying any byte in Ct−1 would result in

unpredictable changes to plaintext block Pt−1; this is due to the characteristics of the

block cipher used. It is worth highlighting at this point that any change in C would,

with overwhelming probability, invalidate the (D)TLS record’s MAC. In this text, we

refer to the modified versions of C and P as C∗ and P ∗ respectively. If the attacker

can place Ct−1 and Ct as the last two ciphertext blocks, then a change in Ct−1[b − 1]

(the last byte of Ct−1) would result in a change in Pt[b−1], which is treated in (D)TLS

as the padding length byte. Recall that in all versions of TLS and DTLS, the padding

must consist of p+ 1 copies of some byte value p, where 0 ≤ p ≤ 255. Here:

P ∗t [b− 1] = ∆[b− 1]⊕ Pt[b− 1]. (3.3)

The attack proceeds as follows. The attacker initialises ∆[b−1] to 0 and constructs

C∗ using:

C∗ = Ct−1[0]Ct−1[1] . . . (Ct−1[b− 1]⊕∆[b− 1]) || Ct. (3.4)

The attacker then submits C∗ to the padding oracle, PO. If PO responds with

INVALID, then the attacker increments the value of ∆[b − 1], constructs a new C∗

(using the above formula) and submits the new C∗ to PO. The attacker stops when

PO responds with VALID, indicating valid padding (“0x00” in this case – note that

the probability of encountering the other valid padding combinations than “0x00” is

considerably lower). The attacker recovers Pt[b− 1] using:

Pt[b− 1] = ∆[b− 1]⊕ 0x00

= ∆[b− 1].
(3.5)

The attack takes on average 128 and at most 256 queries to PO to recover Pt[b−1].
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So far, we described how to recover only the last byte of a block. Algorithm 2 describes

how to decrypt a complete ciphertext block using PO. The attack as presented in

Algorithm 2 uses 2-block ciphertexts, but is easily adapted to use longer ciphertexts

simply by ensuring that blocks C∗t−1, Ct are always placed at the end of the ciphertext.

The fundamental idea is that the attacker recovers a block, one byte at a time, starting

from the rightmost byte, Pt[b− 1]. When trying to recover a plaintext byte Pt[i], ∆[i]

is initialised to 0, where 0 ≤ i < b. In addition, all plaintext bytes in positions i + 1

to b− 1, if any, and which have been already recovered by now, are set to b− i− 1 by

modifying the corresponding bytes in ∆ using:

∆[j] = Pt[j]⊕ (b− i− 1), (3.6)

for i < j < b. The attacker computes C∗t−1[b− i− 1] using:

C∗t−1[b− i− 1] = Ct−1[b− i− 1]⊕∆[b− i− 1]. (3.7)

Starting with ∆[b − i − 1] = 0, the attacker computes C∗t−1[b − i − 1] and submits

C∗ = C∗t−1 || Ct to PO. A VALID response from PO for some value of ∆[b − i − 1],

indicates valid padding, i.e. P ∗t [b − i − 1] = i for 0 ≤ i < b. The attacker can now

Ct-1

DK

Pt-1

Ct

DK

Pt

1. Ct-1[b-1] ⊕ ∆[b-1]

2. Results in Pt[b-1] ⊕ ∆[b-1]

Figure 3.8: In this example, where CBC-mode encryption is used, Ct−1[b−1]⊕∆[b−1]
has the same effect of Pt[b − 1] ⊕∆[b − 1]. The other bytes of Pt are not affected. In
CBC-mode encryption, modifying the value of a byte of Ct−1 by XORing it with ∆ has
the effect of modifying Pt in the same byte by XORing it with the same ∆.
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Algorithm 2: Decrypting a block using a padding oracle, PO, with block-mode
encryption.

input : Ct−1, Ct
output: Pt

Initialise all bytes of ∆ to 0;

for i = 0 to b− 1 do
for byte = 0 to 255 do

∆[b− i− 1]← byte;
C∗ = (Ct−1 ⊕∆) || Ct;
if PO(C∗) = VALID then

Pt[b− i− 1] = ∆[b− i− 1]⊕ i;
Break;

for j = 0 to i do
∆[b− j − 1] = Pt[b− j − 1]⊕ i;

Output Pt;

compute Pt[b− i− 1] using:

Pt[b− i− 1] = ∆[b− i− 1]⊕ i. (3.8)

The attack requires on average 128 and at most 256 queries to the padding oracle

to decrypt a byte. In the case of TLS, things are not as simple; there are complica-

tions to consider when building a padding oracle realisation for PO. We discuss these

complications in the next section.

3.9.1 Using a Padding Oracle to Attack TLS

In practice, to mount a padding oracle attack, an adversary must find some way of

actually realising a padding oracle for a specific implementation. In the original pre-

sentation for TLS in [102], Vaudenay posited that such an oracle could be built by

sending a message to a TLS server and then waiting for a replay in the form of an

error message. In TLS 1.0, a decryption failed message would indicate a padding

error, while a bad record mac message would indicate that padding was correct, but

that MAC verification had failed. There are (at least) two challenges to building a TLS

padding oracle in this way:

1. The two TLS errors, decryption failed and bad record mac, are classified as

fatal, causing the immediate termination of the TLS connection after every query

to the padding oracle. Informally, we say that the padding oracle behaves as a
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bomb oracle. The adversary must wait for a new TLS connection to be established

before making another query, but each new connection will have fresh keying

material. This makes the attack impractical unless connections are re-established

quickly. Moreover, unless the same plaintext is repeated in a known ciphertext

block across many connections, the adversary can not efficiently recover plaintext.

For example the probability of recovering the last byte of a block is 1/28, while

the probability of recovering the byte before the last one in a block is 1/216.

2. The two error messages are encrypted, making it more difficult for the adversary

to distinguish them.

Based on this, the attack against TLS was flagged as impractical, until the intro-

duction of a side channel by Canvel et al.

3.9.2 Canvel et al. Timing Attack Against TLS

The work of Canvel et al. [25] addressed the second issue above, by developing a

different realisation for the padding oracle19.

The Canvel et al. realisation of the padding oracle relies on the fact that, for a

TLS implementation, the processing of a message with valid padding may take longer

than the processing of a message with invalid padding. The reason for this is that

the padding is checked for validity before the MAC verification is performed, and so

a TLS implementation that aborts processing immediately after detecting an error (of

any kind) will exhibit a timing difference in message processing for packets with valid

and invalid padding: in the former case, the MAC verification will take place, while in

the latter it will not. The timing difference would then show up as a difference in the

time at which the error messages appear on the network. As observed in [25], this is

exactly how TLS was implemented in OpenSSL.

In the attack of [25], the timing difference was amplified by working with long mes-

sages, since these take longer to pass through MAC verification. Canvel et al. reported

timing differences of as much as 2 milliseconds for these long messages. Because of noise

introduced by various sources, the padding oracle so obtained is not fully reliable, so

the server had to be queried a number of times for every message and a statistical model

used to analyse the observed timings. Moreover, the oracle is still a bomb oracle, so

only one query per TLS connection can be made. Even so, Canvel et al. [25] were able

to use this approach to extract TLS-encrypted passwords for an IMAP e-mail server

running stunnel, an application using the OpenSSL implementation of TLS. The attack

19The reader might find our description of the work of Canvel et al. to be different from the original;
this is merely for the purpose of presenting the work in the context of padding oracles.
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of Canvel et al. assumes the multi-session setting, in which the same plaintext is sent

in the same position, in multiple sessions.

Countermeasures

The attack of Canvel et al. was perceived as serious enough that the OpenSSL code

for TLS was updated from releases 0.9.6i and 0.9.7a in an attempt to ensure that the

processing time for TLS messages is essentially the same, whether or not the padding

is correct, and to send the same encrypted error message, bad record mac, in both

cases. Eventually, the same countermeasures appeared in the specification for TLS 1.1

[32], with the requirement that they must be implemented.

Other Issues to Consider

Recall our description of CBC-mode decryption for TLS in Section 3.4.7, in which we

highlighted that much more sophisticated processing is required than that discussed in

the section. Here, we expand on that issue.

The receiver of a (D)TLS record should also check that the ciphertext size is a

multiple of the block size and is large enough to contain at least a zero-length record,

a MAC tag of the required size, and at least one byte of padding to avoid underflow

conditions that could lead to denial of service or other severe attacks. After decryption,

the receiver should check that the format of the padding is one of the possible patterns

when removing it, otherwise attacks are possible [68] (SSL allows a loose padding

format, while no specific padding checks are enforced during decryption in TLS 1.0,

so both are potentially vulnerable to the attacks in [68]). Typically this is done by

examining the last byte of the plaintext, treating it as a padding length byte padlen,

and using this to dictate how many additional bytes of padding should be removed. But

care is needed here, since blindly removing bytes could result in an underflow condition:

there needs to be sufficient bytes in the plaintext to remove a total of padlen+1 bytes

and leave enough bytes for at least a zero-length record and a MAC tag.

If all this succeeds, then the MAC can be recomputed and compared to the MAC tag

in the plaintext. If the padding fails to be correctly formatted, then implementations

should continue to perform a MAC check anyway, to avoid providing the timing side-

channel of the type exploited by the attack of Canvel et al. But since the padding

format is incorrect in this case, it’s not immediately clear where the padding ends and

the MAC tag is located: in effect, the plaintext is now unparseable. The solution

recommended in TLS 1.1 and 1.2 is to assume zero-length padding, interpret the last t

bytes of the plaintext as a MAC tag, interpret the remainder as the record R and run
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MAC verification on SQN || HDR || R.

3.10 The BEAST Attack

The so-called BEAST attack [35] is a blockwise-adaptive chosen-plaintext attack

(BACPA) that can be mounted against SSL and TLS 1.0. This attack exploits the use

of chained initialisation vectors (IVs) for CBC-mode and has its roots in [88, 68, 14, 15].

The BEAST attack achieved full plaintext recovery against SSL and TLS 1.0, but

only in scenarios where an attacker can gain access to a chosen plaintext capability,

perhaps by inducing the user to first download malicious JavaScript code into his

browser. It is worth noting that the attack presented in [35] was constrained to the web

setting, i.e. where TLS communications take place between a browser and a web server.

In [35], it is assumed that the attacker has network eavesdropping, chosen-boundary

and blockwise privileges. The chosen-boundary privilege allows the attacker to control

block boundaries by prepending variable length sequences of bytes to a record, while

the blockwise privilege allows him to prepend plaintext blocks to ongoing requests

[35, 68, 15], i.e. the attacker can insert his block as the first block for encryption. The

network eavesdropping privilege provides the attacker with access to OBA, an oracle

that returns TRUE when two ciphertext blocks match and FALSE otherwise. The reader

will find that our description of the attack and the symbols we use slightly differ from

[68, 14, 15]. Our goal is to give the reader a clear description of the attack that could be

easily implemented. We first describe the attack model, list a number of assumptions

and discuss how to implement the three privileges described above. We then describe

the steps that the attack takes to recover an unknown message, one byte at a time.

The victim, in this case a user with a web browser, is somehow induced to visit a

web site that hosts the attacker’s malicious code (for example, a malicious JavaScript)

which gets downloaded to his browser. By way of example, the attacker can try to inject

an iframe tag in a website that the victim normally visits or simply send the victim

an email with an embedded link pointing to the malicious web site. For simplicity, we

refer to the malicious code as the web agent (WA). When executed, the web agent sends

an HTTPS request to a web server (for example, “www.paypal.com”). The attacker’s

goal is to recover all or part of the TLS-protected message in the victim’s HTTPS

request to the web server. Web cookies [17], contained in web requests, make a good

target for attackers to try to recover. The web agent HTTPS request would trigger the

establishment of a TLS (or SSL) connection, in case one does not already exist. We

assume that CBC-mode encryption is used.

Let us take the example in which the attacker is trying to recover an l-byte cookie.
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We assume that the attacker knows l and knows the exact position of the cookie in

the web request. For the attack to work, continuous communication between the web

agent and a network eavesdropping agent (NA) is required. The network eavesdropping

agent has access to the ciphertext blocks only and implements the blockwise-adaptive

oracle, OBA. In addition, it is important that the characters prepended by the attacker

do not cause the server to abandon the session. The web agent must also be able to

bypass the browser’s same-origin policy (SOP)20, a browser-based security mechanism

that controls which messages one origin (web site) can send to another through the

browser. Clearly, a good number of prerequisites must be satisfied for the attack to

work.

In practice, the original web request can be sent over multiple records; for simplicity,

we assume that the cookie is contained in one TLS plaintext record. The attacker tries

to recover the cookie one byte at a time. Recall that the attacker can prepend a

sequence of characters of his choice to the request, through the web agent, making

use of the chosen-boundary privilege, always positioning the targeted unknown byte at

the end of a block in which all other bytes are already known. The exact number of

bytes to prepend, m, is adjusted by the web agent during the attack. Let us assume

that the current plaintext record, which contains the attacker’s prepended bytes, is

P . P is made of blocks P1P2 . . . Pn, where n is the total number of blocks including

padding and MAC. Applying CBC-mode encryption on P generates the corresponding

ciphertext blocks, C1C2 . . . Cn.

Let us now describe how to implement the actual attack that recovers the cookie (or

any other unknown message). Once the web agent is successfully downloaded, executed

and able to communicate with the network eavesdropping agent, the attack proceeds

in two iterative steps to recover one byte of plaintext at a time:

Step 1: The web agent sends a web request that positions the current unknown byte

at the end of Pj , that is at position Pj [b − 1]. It does this by prepending the correct

number of bytes, m, to the web request (implementing the chosen-boundary privilege).

In this case, all the bytes in Pj , except Pj [b− 1], are known to the web agent. The web

agent submits P to the web browser which encrypts it to obtain C.

Step 2: Starting with i = 0, the attacker computes:

P ∗i = C
′
n ⊕ Cj−1 ⊕ (Pj [0], ..., Pj [b− 2], i), (3.9)

where 0 ≤ i ≤ 255, C
′
n is the last block in the previous record, C

′
, and Cj−1 is the

20http://www.w3.org/Security/wiki/Same_Origin_Policy
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ciphertext block preceding Cj . Recall that all the plaintext bytes of Pj , except Pj [b−1],

are known to the attacker. The attacker prepends P ∗i to the request, i.e. the attacker

positions P ∗i as the first block in the record for encryption. In SSL and TLS 1.0, the

last block of the previous ciphertext record, C
′
n, is used as the IV when processing the

current record; the ciphertext block C∗i is calculated as follows:

C∗i = EKe(C
′
n ⊕ P ∗i )

= EKe(C
′
n ⊕ C

′
n ⊕ Cj−1 ⊕ (Pj [0], ..., Pj [b− 2], i))

= EKe(Cj−1 ⊕ (Pj [0], ..., Pj [b− 2], i)).

(3.10)

C∗i and Cj are then submitted to OBA, which is implemented by the eavesdropping

agent. The network eavesdropping and the web agent continuously communicate so

that i is incremented as needed. If OBA returns TRUE, i.e. C∗i = Cj , then the attacker

concludes that i = Pj [b − 1] as per equation (3.10). Otherwise, the attacker (the web

agent in this case) increments i, computes another C∗i and queries OBA. The attack

takes on average 128 and at most 256 queries to OBA to recover a byte. Once Pj [b−1] is

recovered, the attacker then targets the next plaintext byte in the cookie by performing

step 1 and step 2 accordingly, until the whole cookie is recovered.

3.10.1 Countermeasures

Despite its strong requirements (the three privileges explained earlier and bypassing the

SOP restriction), the BEAST attack attracted significant industry and media attention

in 2011. The author of [15] suggested a number of countermeasures to defeat BACPA,

well before the BEAST attack was released:

• Upgrade to TLS 1.1 (or TLS 1.2) in which explicit IV s are used.

• Keep using TLS 1.0, but introduce a single dummy first plaintext block in every

TLS record. This dummy block can be for example an all-zero string.

• Keep using TLS 1.0, but send an empty message that has no data, but that would

still result in adding only padding and MAC, i.e. the CBC-encrypted part of such

a record will consist just of a MAC and padding.

The second and third options can be thought of as hacks to implementations of

TLS 1.0 (and SSL). OpenSSL implemented the third option since version 0.9.6d, where

a record with an empty plaintext fragment is prepended before sending the actual

payload. The countermeasure was then switched off due to incompatibility with other

implementations, mainly Microsoft Internet Explorer21.

21http://www.openssl.org/~bodo/tls-cbc.txt
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Some implementations, such as NSS opted for another hack to TLS 1.0, which relies

on splitting non-empty application data records into two; the first record has only the

first byte of plaintext, and the second has the rest.

Prioritising the RC4 algorithm over CBC-mode encryption was also proposed as

another countermeasure. However, in 2013, the authors of [4] demonstrated that the

TLS implementation of RC4 is vulnerable to other serious attacks, which we describe

in the next section.

3.11 Other Attacks Against TLS

In this section, we give a short overview of recently published attacks against TLS.

3.11.1 Distinguishing Attack Against TLS with Short MACs

The authors of [74] described a distinguishing attack against the MEE-TLS-CBC con-

struction. Their attack exploits the use of short MACs in TLS as standardised in RFC

6066 [2] and TLS’s support for variable length padding. The outline of their attack

is that if the size of the MAC is smaller than the size of the cipher block, and the

plaintext message is small enough, then a distinguishing attack against TLS, with the

MEE-TLS-CBC construction, can be mounted. The authors of [74] described how to

distinguish whether an encrypted message contains for example YES or NO by modifying

a few bits in the original ciphertext, C. The response (or lack of response) from the

receiver of the TLS record helps the attacker identify whether the original message was

YES or NO. The authors of [74] argue that the attack can be mounted in practice against

TLS; they refer to the use of 80-bit truncated MACs in extensions to TLS 1.2, defined

in RFC 6066 [2].

Countermeasures

The attack was considered to be more theoretical since no short MAC algorithms were

supported in implementations of TLS. In addition, the work in [74] was not extended

to a plaintext recovery attack. The recommended countermeasure would be not to use

truncated MACs with the MEE-TLS-CBC construction.

3.11.2 The CRIME Attack

Recall that in Section 3.4.3, we described how TLS supports optional compression.

The so-called CRIME attack was published in 2012 by the same authors of the BEAST
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attack [35]. The attack exploits the use of the DEFLATE compression method, imple-

mented by the TLS Record Protocol and negotiated during the Handshake Protocol, in

combination with a chosen plaintext capability to mount a plaintext recovery attack.

The attack exploits side-channel information in the form of message size that is leaked

when crafting web requests using a malicious web agent such as a JavaScript. All ver-

sions of TLS (and SSL) were vulnerable to the CRIME attack, regardless of their mode

of operation.

Countermeasures

The workaround that was suggested and eventually deployed by most TLS implemen-

tations was to disable the use of TLS compression, i.e. implementations of TLS must

make sure that the use of compression is not offered by the client in the Handshake

Protocol’s ClientHello message or is ignored by the server in case it was offered.

3.11.3 The BREACH Attack

The so-called BREACH attack [41] confirms the statement we made in the introduction

chapter of the thesis that the interaction of secure network protocols with their upper

and lower-layers plays a critical part in defining the system’s overall security. Although

implementations of TLS disabled the use of compression after the CRIME attack, as

discussed earlier, the authors of the BREACH attack demonstrated how to exploit

HTTP-level compression to mount a chosen plaintext attack that can recover TLS-

protected plaintext. The BREACH attack relies on exploiting side channel information

leaked in HTTP responses rather than requests. As expected, the attack applies to all

versions of TLS with all modes of operation.

Countermeasures

A number of countermeasures are suggested in [41]. Examples of countermeasures listed

in [41] include disabling HTTP compression, length hiding and limiting the number of

cookie requests.

3.11.4 RC4 Attack

The authors of [4] present ciphertext-only plaintext recovery attacks against TLS when

RC4 is selected for encryption. The authors of [4] identified new biases in the RC4

key stream output. In the multi-session setting, these biases can be used to recover

plaintext with varying probability of success, depending on the position of the byte to

recover and the amount of ciphertext captured. The authors of [4] also demonstrate
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how to exploit biases in consecutive pairs of bytes in the RC4 keystream that were first

reported by Fluhrer and McGrew [37].

Countermeasures

A number of countermeasures have been proposed in [4]. It is worth noting that the

attacks in [4] require large amounts of ciphertext and hence their practical relevance

could be questioned. Despite this, countermeasures were implemented in practice to

defeat the attacks. For example, Opera has implemented a cookie limiting counter-

measure22, while Microsoft has modified their code so that RC4 is no longer enabled

by default for TLS in Windows 8.1 Preview23.

3.12 Attacks Against DTLS

DTLS has not been put under as much scrutiny as TLS. This is largely attributable to

the protocol’s recent introduction and its limited, but growing, number of implemen-

tations, when compared to TLS. Most of the identified security issues with DTLS were

associated with the protocol’s implementation, with most of these issues resulting in a

form of denial of service24,25.

In addition to our work presented in Chapters 4 and 5, we have identified a number

of security issues in one of Cisco Systems’ DTLS implementations, which was based

on OpenSSL. We successfully conducted denial of service and cipher suite downgrade

attacks against the ASA line of products, in which DTLS is used to provide a re-

mote access VPN. In fact, during this work we identified a critical OpenSSL software

vulnerability that was independently discovered by another researcher and reported as

CVE-2010-418026. We communicated, privately, our findings to the vendor and worked

with them to implement and test appropriate fixes.

We argue that our attacks against DTLS, which we present in later chapters, are by

far the most involved and high-impact work carried out against the DTLS protocol, to

date. In fact, performing a basic Internet web search for “DTLS vulnerability” reveals

links mostly pointing to our work against DTLS.

22http://my.opera.com/securitygroup/blog/2013/03/20/on-the-precariousness-of-rc4
23http://technet.microsoft.com/en-us/library/dn303404.aspx
24http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1386
25http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4995
26http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4108

105

http://my.opera.com/securitygroup/blog/2013/03/20/on-the-precariousness-of-rc4
http://technet.microsoft.com/en-us/library/dn303404.aspx
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1386
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4995
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4108


Chapter 3. TLS and DTLS 3.13. Chapter Summary

3.13 Chapter Summary

In this chapter, we provided background information about the TLS and DTLS pro-

tocols. We discussed the structure of TLS and DTLS, their modes of operation, and

explained the similarities and differences between TLS and DTLS. The TLS and DTLS

protocols are flexible by design; new protocol extensions can be easily introduced, some-

times in an ad hoc fashion. Although this flexibility is an advantage, it could poten-

tially introduce an amount of confusion to implementor who need to be familiar with

the different versions of (D)TLS (and SSL 3.0), and their various extensions in order

to implement and maintain the protocols properly, taking into consideration that all

versions of (D)TLS (and SSL 3.0) are already in deployment.

We also covered a number of attacks against TLS that are relevant to the work

we present in the next two chapters. The attacks we described in this chapter demon-

strate the fact that not addressing what are considered at one point of time theoretical

weaknesses could eventually lead to attacks that are practical and serious against a

protocol, requiring ad hoc industry reaction (the BEAST attack being an example).

As security researchers, we believe that “attacks only get better”. Despite the number

of high-profile attacks against the TLS MAC-then-Encode-then-Encrypt construction,

and recently against RC4, we are yet to see a significant uptake of TLS 1.2 and authen-

ticated encryption algorithms. Authenticated encryption algorithms deliver the two

functions simultaneously: data encryption and authentication.
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Attacks Against DTLS

4.1 Introduction

Given the fact that the DTLS specification is based on that of TLS, implementations

of DTLS should be immune to padding oracle attacks and their variants. In this

chapter we show that this is not the case for either the OpenSSL or the GnuTLS

implementations of DTLS 1.0. More specifically, this was not the case in OpenSSL

versions 1.0.0e or 0.9.8r and earlier, and GnutLTS version 3.0.10 and earlier, the latest

versions of these libraries at the time we carried out our research. DTLS 1.2 [83] was

an RFC draft at the time when we carried out our work and was not implemented by

OpenSSL or GnuTLS.

In this chapter, we first focus on OpenSSL, showing that there is a small timing

difference in OpenSSL’s processing of DTLS packets having valid and invalid padding

fields: just like old versions of OpenSSL’s implementation of TLS, if the padding is

invalid, then the MAC is not checked, while if the padding is valid, the MAC check is

done. This results in a timing difference for processing of packets with valid and invalid

padding that is on the order of a few tens of microseconds (µs) on a modern processor.

However, one major difference between TLS and DTLS, and which we highlighted

in Chapter 3, is that DTLS provides no error messages when decryption encounters an

error. The detection of these error messages is essential to the attacks of Canvel et al.

[25] on TLS. Thus it would appear that this timing difference cannot be used to build

a padding oracle. This may explain why the OpenSSL code for DTLS had not been

patched to remove the known timing difference.

By bringing new techniques into play, we show that the lack of DTLS error messages

is not a serious impediment to the attack – we are able to exploit the DTLS extension

for Heartbeat messages [93] to ensure that the timing difference shows up in the timing
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of Heartbeat response messages rather than error messages. In fact, any upper layer

protocol which has messages that also provoke a response message with a predictable

delay can be used in place of Heartbeat messages in our attack. We demonstrate this

in our attack against GnuTLS where we use other types of message than Heartbeats.

We also introduce new techniques which amplify the identified timing difference. In

TLS, this is easily done by using long messages, since TLS supports messages up to

roughly 214 bytes in size. This approach was used by Canvel et al. [25]. But this is not

possible in DTLS, since the maximum message size is limited by the path maximum

transmission unit (PMTU). To overcome this, we build trains of DTLS packets which all

either have valid or invalid padding and hence which all contribute to an accumulated

timing difference in the same way. These trains need to be carefully injected into the

network – fast enough so as to ensure each packet arrives before the processing of the

previous one has completed, but not so fast that DTLS’s buffer for incoming packets

gets swamped. Thus the success of the attack depends on delicate, µs-level timing of

network events.

Another major difference we highlighted in Chapter 3 in between TLS and DTLS

is that, in TLS, any error arising during cryptographic processing is treated as fatal,

meaning that the TLS connection is discarded in the event of any error. TLS can afford

to do this because it is built on top of a reliable transport protocol, TCP. DTLS, on

the other hand, cannot afford to do so, since its underlying transport protocol is UDP.

This means that DTLS does not discard connections in the event of errors, but merely

discards error-generating packets. The reader may refer to Section 3.5 for a detailed de-

scription of the differences between TLS and DTLS. So, in contrast to previous attacks

on TLS, our attack on OpenSSL’s DTLS implementation can efficiently recover as much

plaintext as the adversary desires, without having to wait for the re-establishment of

DTLS connections. This also underlies the above mentioned amplification technique.

Our attack becomes even more efficient in the situation where DTLS’s anti-replay fea-

ture is disabled, which is an option within the DTLS specification.

We then switch our focus to the GnuTLS implementation, and show that, even

though it properly implements the countermeasures in TLS 1.1, it is still vulnerable

to a partial plaintext recovery attack in its default configuration. We show that a

small timing channel is introduced into the decryption process because a plaintext-

dependent sanity check is carried out at an early stage during decryption, followed

later by assigning a zero value to the plaintext message length in the case when this

sanity check fails. This introduces a detectable timing difference that, when combined

with our new techniques, allows 4 or 5 bits of plaintext to be recovered per ciphertext

block. In principal, the attack could also be applied to the GnuTLS implementation of
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TLS (but then the timing difference would be hard to amplify).

Despite the availability of easy fixes, we argue that the attacks are still interesting

and provide valuable lessons for protocol designers and implementors:

• To our knowledge, our attacks are the first of their kind against any implementa-

tions of DTLS. Our OpenSSL attack is also the first plaintext-recovering attack

against a protocol implemented by OpenSSL since the work of Canvel et al. [25].

• Our attacks exploit the fact that DTLS has to be error-tolerant, but we had to

find novel means to circumvent the resulting lack of error messages.

• The DTLS specification (for versions 1.0 and 1.2) is rather brief and refers to

the TLS specification for many details, particularly those relating to how packets

are encrypted and decrypted. This then requires an implementor to cross-refer

to other standards during implementation, which may lead to software that does

not implement the known countermeasures.

• Our attack on the GnuTLS implementation of DTLS and TLS shows that, even

if all the known countermeasures are carefully implemented, DTLS and TLS

implementations may still be vulnerable to attack via subtle timing side channels.

• Our attack on GnuTLS also points the way forward to the more general attacks

in the next chapter.

We expand on these themes later in the chapter. Section 4.2 presents our basic

attack against the OpenSSL implementation of DTLS. Section 4.3 discusses a number

of implementation issues for this attack and discusses refinements of it. Section 4.4

presents our experimental results demonstrating efficient and reliable recovery of full

DTLS plaintexts in the OpenSSL case. Section 4.5 briefly discusses how similar attacks

can recover partial plaintexts in the GnuTLS case. Section 4.7 discusses the wider

implications of our work for secure network protocol design.

4.2 Building a Padding Oracle for OpenSSL

4.2.1 Using the Heartbeat Extension

Although we exploit Heartbeat messages in our attack against OpenSSL, other type of

messages could also be used. The only constraint is that they should always predictably

generate responses that can be detected by the adversary. We demonstrate this in our

attack against GnuTLS.
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4.2.2 Assumptions on the Adversary

The objective of the attack is to recover DTLS-protected plaintext. We assume that

the adversary:

• Has access to the ciphertext. This can be achieved by the adversary gaining

access to a network device like a switch or a router and making copies of the

ciphertext exchanged by the endpoints of a DTLS connection.

• Can send arbitrary DTLS messages to the original recipient. This can be achieved

by injecting packets into the network while spoofing the IP and UDP headers.

• Is aware of the encryption algorithm’s block size, b. The adversary can infer

this by either monitoring the connection’s handshake messages, or the size of the

encrypted messages over time.

• Can detect and record a number of Heartbeat request packets.

The above assumptions apply when anti-replay is deactivated. We note that anti-

replay is enabled by default for both the OpenSSL and GnuTLS implementations of

DTLS, and we had to modify the server source code to disable it in our experiments.

When anti-replay is activated, then we also need to assume that the adversary can

stop messages of his choice from reaching their final destination. For example, the

adversary may achieve this by exploiting his control over a router or a firewall in the

data path. In presenting our attack below, we assume that anti-replay is disabled, i.e.

we assume that the targeted system does not perform sequence number checking for

incoming DTLS messages. We explain how to modify the attack to handle the case

where anti-replay is enabled in Section 4.3.6.

4.2.3 Building a Padding Oracle for the OpenSSL Implementation of

DTLS

In this section, we explain how to construct a padding oracle for the OpenSSL im-

plementation of DTLS. This oracle can then be used in the standard way to decrypt

arbitrary ciphertext blocks and hence arbitrary amounts of plaintext data, as described

in Section 3.9 of Chapter 3. The key observation we use is that, in the OpenSSL im-

plementation of DTLS (the latest the versions available at the time we carried out

our research), if the padding underlying a ciphertext is valid, then the MAC on the

message is checked, whereas if the padding is invalid, then the MAC is not checked

and the ciphertext is rejected immediately. This contravenes the requirement for equal

processing times in TLS 1.1 that is inherited by reference in the DTLS specification.
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As a consequence of this deviation, we would expect the processing time for a DTLS

packet with invalid padding to be slightly less than that of a DTLS packet with valid

padding. The actual time difference depends on a number of factors including the al-

gorithms used, the clock-speed of the target system, the size of the DTLS packet, other

processes running on the target system, and the network conditions. For example, we

measured the MAC verification time on our testing machine running OpenSSL with

HMAC-SHA-1 and found it to be in in the order of tens of µs – see Figure 4.1.

So far, this is identical to the timing side channel exploited in [25]. However, DTLS

does not have any error messages, so we cannot use existing methods to observe the

difference in processing times. This may explain why the implementors of DTLS in

OpenSSL chose not to implement the required countermeasures. Instead, we introduce

an alternative means of observing the difference, by exploiting Heartbeat messages.

The basic idea is quite simple. Suppose we send to the target system a packet train

consisting of a DTLS packet PC carrying the ciphertext C (whose padding validity we

wish to test) immediately followed by a Heartbeat request message. Then this train

will result in a detectable Heartbeat response message being sent back on the network,

and, assuming orderly processing on the target system, the total amount of time needed

to process PC and to produce the Heartbeat response message will reflect whether

or not MAC verification was carried out when processing C. From an adversary’s

perspective, only send and receive times of packets can be captured, so the adversary

will measure the time difference between sending the initial packet train and receiving

the Heartbeat response packet, which we refer to as the round trip time (RTT). If this

time difference is larger than some threshold T , the adversary will assume the padding

was valid (and so the MAC verification was carried out), while if it is lower than this

threshold, the adversary will assume the padding was invalid. The threshold can be set

by doing some initial system profiling to measure the typical timing difference between

packets carrying ciphertexts having valid and invalid padding. Notice also that DTLS

Heartbeat packets are not essential to building the oracle: any upper layer protocol

having suitably predictable and detectable response messages can be used.

In reality, the timing of packets is influenced by many factors beyond just DTLS’s

cryptographic processing. Moreover, as we noted above, the timing difference will be

rather small for normal-sized packets. So the DTLS padding oracle as presented would

be much too error-prone. To enhance the accuracy of the oracle, the adversary can:

• Choose a specific, favourable DTLS packet payload length, l.

• Send n copies of packet PC in a train followed by a Heartbeat request instead

of just one copy of PC . Here, the idea is that each copy of PC will be processed
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Algorithm 3: Padding Oracle for OpenSSL implementation of DTLS

Data: C
Result: VALID or INVALID

for q = 1 to m do
RTTq = Timer(C);

RTT=Mean(RTT1, RTT2, ..., RTTm);
if RTT ≥ T then

return VALID;
else

return INVALID;

Timer(C)
Set Ts = current time;
Send n copies of PC , a DTLS packet containing C, to the targeted system;
Send a Heartbeat request packet to the targeted system;
Set Te = time when Heartbeat response packet is seen;
return (Te − Ts)

in the same way, so the larger the accumulated time difference will become and

the easier it will become to distinguish between valid and invalid padding. This

exploits the fact that DTLS does not tear-down DTLS connections in the event of

errors (recall that when the padding oracle is used in a plaintext recovery attack,

all the ciphertexts sent in the attack will be invalid in some way – they will either

have invalid padding or invalid MACs). It also assumes that all the packets in the

train can be made to arrive at the target system in such a way that no adverse

delays are introduced during the processing of these packets.

• Send m packet trains (each containing n copies of PC), and use a suitable statis-

tical model to analyse the observed RTTs.

Algorithm 3 describes our basic DTLS padding oracle for a ciphertext C. In the

algorithm, RTTq denotes the response time in the q-th trial, T denotes the threshold

for deciding on whether C has valid or invalid padding, and simple averaging is used

to process the gathered RTTs. Other statistical measures could be used in place of

averaging here, an idea that we discuss in more detail in the next section. There,

we also explore the many practical issues that arise in building this padding oracle,

addressing issues such as packet timing, system profiling, parameter selection to tune

the attack, and dealing with anti-replay.
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4.3 Practical Considerations

In this section, we discuss a number of practical issues that arise in implementing our

attack. All of our remarks are specific to the OpenSSL implementation of DTLS.

4.3.1 Timing and OpenSSL Cryptographic Operations

Our attack relies on detecting the time difference introduced by MAC verification that is

performed for packets having valid padding but not for packets having invalid padding.

Failure to detect this time difference would result in the padding oracle providing an

incorrect answer. Figure 4.1 shows, for a variety of DTLS payload sizes, the time taken

by OpenSSL in our set-up to perform decryption with 3DES or AES-256 alongside the

time taken for MAC verification using HMAC-SHA-1. The hardware specifications of

our set-up are listed in Section 4.4. We note the following features evident from this

figure:

• In general, decryption is slower than MAC verification, especially in the case of

3DES.

• The MAC processing time for a single packet is on the order of a few tens of µs,

which is well below that reported in [25] and below the level of jitter expected in

a typical network.

• 3DES is much slower than AES-256: for a packet size of 1456 bytes, the factor

is about 4. For reasons that will be explained below, using a slower decryption

algorithm increases the effectiveness of the attack. Hence the attack parameters

(l,m, n) may need to be tuned depending on which block cipher is in use.

• With AES-256, the processing time rapidly drops from about 50 µs to about 20

µs when the DTLS payload size reaches 512 bytes. We do not know the exact

reason for this behaviour, but the adversary also needs to be aware of it when

selecting attack parameters. One possible explanation is that a switch to a more

efficient AES implementation is made once the payload is sufficiently large.

Although we have targeted HMAC-SHA-1 in our attack, the fundamentals of the

attack still apply when other MAC algorithms are in use. At the time of carrying out

this work, OpenSSL only supports HMAC-MD5 and HMAC-SHA-1. More detail about

how packets are processed and the source of the timing difference is provided in the

next section.
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(b) AES-256 and HMAC-SHA-1

Figure 4.1: Timing of cryptographic operations for DTLS payloads of sizes between 64
and 1456 bytes. With AES-256, the processing time rapidly drops from about 50 µs to
about 20 µs when the DTLS payload size reaches 512 bytes. One possible explanation
for this behaviour is that a switch to a more efficient AES implementation is made once
the payload is sufficiently large.

4.3.2 Timing and Packet Processing

Let us look in detail at how a receiver processes a packet, with a view to building a

simple model of how RTTs are affected by the attack parameters. To this end, Figure

4.2 shows a simplified time-line of how packet i, having valid padding, is processed by

the receiver.

In the time-line we have:
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Decryption and Padding Check MAC Check OSt

ti,0 ti,1 ti,2 ti,3

Figure 4.2: Packet processing time-line – valid padding: ti,0 is the time at which packet
i arrives in the OpenSSL buffer, ti,1 is the time at which the decryption and padding
check are completed for packet i, ti,2 is the time at which the MAC check is completed
for packet i, ti,3 is the time at which OpenSSL is ready to process the next DTLS
packet, packet i+ 1, and OSt is any additional time spent by the operating system in
relation to the processing of the packet (we assume this to be a constant, independent
of i).

Decryption and Padding Check OSt

ti,0 ti,1 ti,3

Figure 4.3: Packet processing time-line – invalid padding. In the case of a packet with
invalid padding, the MAC verification is not performed and hence we have ti,2 = ti,1.

• ti,0: The time at which packet i arrives in the OpenSSL buffer. The buffer holds

DTLS packets waiting to be processed.

• ti,1: The time at which the decryption and padding check are completed for

packet i.

• ti,2: The time at which the MAC check is completed for packet i.

• ti,3: The time at which OpenSSL is ready to process the next DTLS packet,

packet i+ 1.

• OSt: Any additional time spent by the operating system in relation to the pro-

cessing of the packet. We assume this to be a constant, independent of i.

In the case of a packet with invalid padding, the MAC verification is not performed

and hence we have ti,2 = ti,1. Figure 4.3 is the analogue of Figure 4.2 for the case of

invalid padding, and illustrates that, for a fixed DTLS packet length, the time taken to

process a packet with invalid padding is less than that taken to process a packet with

valid padding.

In Section 4.2, we defined RTT to be the time taken between sending the first

packet in a train to receiving a Heartbeat response packet. Next, we analyse the
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packet 1
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Figure 4.4: Time-line for a train with n = 2 (not to scale).

different contributions to RTT . As an example, the time-line in Figure 4.4 shows a

train made of two identical data packets (so n = 2), both having valid padding, followed

by a Heartbeat request packet, which then provokes a Heartbeat response packet. In

Figure 4.4 we have:

• Ts: The time at which the adversary sends the first DTLS packet, packet 1.

• Tf : The time at which the Heartbeat response packet is sent by the receiver

• Te: The time at which the Heartbeat response packet is received by the adversary.

• t1,0 − Ts: The time it takes for packet 1 to reach the receiver.

• Te−Tf : The time it takes for the Heartbeat response packet to reach the adversary

after being sent by the targeted system.

• Te − Ts: The RTT for the packet train.

Figure 4.4 shows the second data packet, packet 2, arriving after the completion

of processing of packet 1, i.e. so that t2,0 > t1,3. The same applies to the Heartbeat

request packet arriving after the completion of processing of packet 2. In this situation,

the receiver enters a wait state until the next packet arrives and the arrival time of

a packet and its processing start time are the same. In general, this situation results

in some or all of the timing difference arising because of the MAC verification being

“absorbed” into the wait state of the receiver, and hence is sub-optimal in terms of

detecting the time difference.

In the opposite situation, where packet 2 arrives before processing of packet 1 is

complete, packets are buffered. Then packet 2 is immediately available for processing
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Figure 4.5: Time-line for packet train with valid padding and packet buffering.

packet 1

t1,0 t1,1 t1,3 packet 2

t2,0 t2,1 t2,3Heartbeat Request

Heartbeat Response

Ts Tf Te

Figure 4.6: Time-line for packet train with invalid padding and packet buffering.

at the receiver as soon as processing of packet 1 is complete, and none of the MAC

verification time is absorbed. The buffer is managed by OpenSSL and its maximum

size is 100 DTLS packets. Figures 4.5 and 4.6 illustrate this situation for packet trains

having valid and invalid padding, respectively, with the white boxes representing the

amount of time spent by packets in the buffer. It is evident from these figures how

the time arising from MAC verification (in the case of valid padding) accumulates

packet-by-packet to create an amplified time difference in the RTT for the train.

The upshot of this analysis is that, from the adversary’s perspective, it is desirable

to select the attack parameters so that the receiver’s buffer always contains some (but

not too many) packets. In this way, the receiver is never waiting for a packet to arrive

and the MAC processing time accumulates across the whole packet train.

We have experimentally verified the essential basic correctness of this model for

packet processing in the following way. Let RTT1 denote the RTT for a train that uses

packets having valid padding (and for which the MAC is verified), and let RTT2 denote
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Figure 4.7: Value of δ, the difference in RTTs for valid and invalid padding, against
artificial delay. The figure confirms that injecting artificial delays in between packets
from the train as they leave the adversary’s machine, results in the value of δ steadily
decreasing and eventually reaching zero as the size of the artificial delay increases.

the RTT for a train that uses packets having invalid padding. Let δ denote the time

difference between the two RTTs, so that:

δ = RTT1 −RTT2

Then, if we artificially inject delays in between packets from the train as they leave

the adversary’s machine, we would expect to see the value of δ steadily decrease and

eventually reach zero as the size of the artificial delay increases. Figure 4.7 shows the

results of such an experiment which confirms this behaviour. Somewhat surprisingly.

This is because, as the artificial delay increases, more and more of the extra time

introduced into RTT, by MAC processing is absorbed in waiting for the next DTLS

packet in the train to arrive. Figure 4.7 also shows that adding small artificial delays

can actually increase the time difference δ, making this difference in RTTs easier for

the adversary to detect. We do not have an explanation for this effect.

4.3.3 System Profiling

System profiling refers to the process by which the adversary collects information about

the targeted system prior to carrying out an attack. This provides the adversary with

the expected values for the RTTs (for valid and invalid padding) under some conditions

such as system load, the DTLS payload length, l, and the number of packets in the

train, n. This profiling in turn allows the threshold value T for the attack to be set.

Given a captured ciphertext, it is easy to construct ciphertexts having any desired
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length l and having either invalid or valid padding, simply by manipulating the last 2

blocks of the captured ciphertext and prepending random blocks (or truncating it if a

shorter ciphertext is needed). Given such pairs of ciphertexts and a Heartbeat request

message, the adversary can then construct packet trains containing the required number

of packets n. These trains can then be repeatedly sent to the target system and the

RTTs measured, to obtain two empirical probability density functions (PDFs), one

for trains with validly padded packets and the other for trains with invalid padding.

From these PDFs, the threshold T can be set by, for example, calculating the mean of

each distribution and setting T to be the mid-point between the means. In practice,

we tend to obtain small numbers of extreme outliers in such profiling experiments,

and removing these before calculating the means by using a simple cut-off generally

improves the performance of the attack. More sophisticated statistical methods can of

course be employed, but we have found profiling followed by thresholding to be already

adequate for our attacks to be successful.

4.3.4 An Attack without System Profiling

System profiling is not even strictly necessary – for a given byte position i in the

target block, an adversary can simply measure the RTTs for a packet train (consisting

of n DTLS packets with the target ciphertext block being located at the end of each

packet, followed by a Heartbeat request packet), for each of the 256 possible byte values

in position i in the ciphertext block preceding the target ciphertext block. Then the

adversary can select as the correct byte value (i.e. the one giving valid padding) the one

that maximises the RTT across the 256 measured RTT values. Accuracy can be further

improved by repeating the trial for each byte m times, removing outliers, and using

the maximum of the average RTTs. In fact, we have observed in our experiments that

repeating the trial for each byte value m times, removing outliers, and then selecting

the byte value that maximises the minimum of the m measured RTTs for each byte

value gives substantially higher success probabilities for the attack. We will illustrate

this in Section 4.4 where we discuss our experimental results in more detail. This, then,

is the preferred version of our attack. Note that, strictly speaking, this version of the

attack does not build a padding oracle, but rather considers all possible 256 byte values

simultaneously.

Even more sophisticated statistical techniques, such as sequential estimation (as

in [25]) or likelihood estimation, can be used in place of averaging or selecting the

minimum when processing the results of the m trials per byte. However, these more

advanced approaches were not needed in order to successfully launch our attack. They

could be useful in further reducing the amount of data sent or the number of Heartbeat
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request messages consumed in an attack.

Finally, we note two further advantages of using an attack without profiling. Firstly,

the process of profiling itself will require Heartbeat request messages to be gathered.

Secondly, the attack environment may change over time during the attack itself, as

varying network or server loads are experienced, for example. The attack without

profiling described here automatically adjusts for such changes, at least if they do not

occur within the time taken to recover a single byte of plaintext.

In Section 4.4, we describe the results of our implementation of the attack, where

profiling was not conducted.

4.3.5 Measuring Success Under Budgetary Constraints

The attack is such that a byte is successfully decrypted only if all the preceding bytes

in the same block are successfully decrypted. Hence, under a reasonable independence

assumption, if the probability of successfully decrypting a byte is p, then the probability

of successfully decrypting a block of size b will be pb = pb. For AES, b = 16, so for

successful decryption of a whole block with a reasonable probability, we need p to

be rather close to 1. For example, with p = 0.99 and b = 16 we have pb = 0.85.

The adversary can tune the attack parameters (l,m, n) so as to increase the success

probability p of the attack and can try to find the optimal combination that results in

the highest success probability. However, in practice, an adversary will have a limit on,

for example, the maximum number of bytes that he wishes to send in order to recover

a byte. As discussed below, when anti-replay is enabled, Heartbeat request packets

(or their equivalents) will become a precious resource. Since each train consumes one

such packet in this situation, it may be desirable to increase l, the packet size and

n, the number of packets per train, so as to maximise the amplification effect, whilst

minimising m, the number of trains sent per byte. However, as our later experimental

results will show, simply increasing l and n does not always help, especially in the case

of AES-256.

4.3.6 Attacks with Anti-Replay Enabled

Attacking DTLS becomes slightly more complex when anti-replay is enabled. Since

the OpenSSL implementation of DTLS first checks the sequence number against the

anti-replay window before doing any cryptographic processing, the adversary has to

take care that all packets sent in trains do not have sequence numbers that are marked

as having previously arrived. Fortunately, the anti-replay window is only updated if

the MAC on a packet is successfully verified, and all the packets used in the attack will
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fail the MAC verification (with the exception of the Heartbeat packets), so the window

is not updated as a consequence of these attack packets.

With anti-replay enabled, each Heartbeat request packet can be used only once,

since its sequence number will be marked in the window as having been seen once the

packet arrives. Moreover, the adversary has to ensure that the sequence number for

each Heartbeat request packet used does fall within (or to the right of) the current

anti-replay window, otherwise the Heartbeat request will be discarded and no response

generated.

Thus Heartbeat request packets become a precious resource in the situation where

anti-replay is enabled: the attack can only proceed as quickly as they become available.

Hence decryption in this setting may be rather slow and “opportunistic” – every time

a packet is seen on the wire by the adversary, a new packet train can be launched and

a byte value tested.

Given these issues, it is apparent that the adversary should try to use as few Heart-

beat request packets as possible, which means minimising m for a given target success

probability p. A further enhancement arises by building packet trains that test multi-

ple byte values simultaneously. For example, the adversary could build two sets of m

trains, each train containing 128n packets, with half of the possible byte values being

tested in each train n times each. This would represent the first step in a binary search

for the correct byte value, requiring only 8 steps and therefore 16m Heartbeat request

packets to extract a byte. The number of Heartbeat requests consumed could be halved

again with initial system profiling. In contrast, our basic attack would consume 256m

Heartbeat request packets for the same result. We have not tested this version of the

attack, but our experience indicates that it would work well whenever using long packet

trains does not degrade performance.

Finally, we recall that packets from any suitable application layer protocol could

be used in place of Heartbeat request packets, so long as the corresponding application

always sends a detectable response packet with a predictable response time. So the

success of our attack does not depend completely on the availability of Heartbeat

request packets in the case where anti-replay is enabled.

4.4 Implementation and Results for OpenSSL

4.4.1 Implementation

In our laboratory set-up, we have a client, the adversary and the targeted system all

connected to a 100Mbps Ethernet switch on the same VLAN. The targeted system was

a machine running a single core processor operating at a speed of 1.87 GHz and having
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2 GByte of RAM.

We ran version 1.0.0a of OpenSSL on the client and the server. We used the built-in

OpenSSL utilities for the client1 and the server2, s client and s server respectively.

s client implements a generic client which connects to a remote host using DTLS,

while s server implements a generic server which listens for connections on a given

UDP port using DTLS. We implemented the Heartbeat extension feature by installing

the appropriate OpenSSL patch3. For experimental convenience, we deactivated anti-

replay, by directly modifying the OpenSSL code, i.e modifying the default behaviour

of OpenSSL.

4.4.2 Results

The results shown in this section reflect our specific set-up. Of course, the values would

change as the set-up changes – for example, the timings are heavily dependent on the

clock-speed of the processor used on the target system. However, the fundamentals of

the attack would remain the same.

Experimentally observed s:

The figures we discuss hereafter show PDFs4 observed in our experiments for different

attack parameters and encryption algorithms. In all the figures, the x-axis represents

RTTs while the y-axis represents the probability of observing these RTTs. In all figures,

outliers have been removed. Each figure shows two PDFs, PDF1 (in red) and PDF2 (in

blue), that correspond to having valid and invalid padding in the packets in the trains,

respectively. We recall that l denotes the DTLS payload size, m denotes the number of

trials per byte, and n denotes the number of DTLS packets per trial. Figures 4.8 and

4.9 show PDFs for n equal to 10 and varying the value of l, for 3DES and AES-256

respectively. We note the following:

• It is generally easier to distinguish between the two PDFs in the case of 3DES

when compared to AES-256, shown in Figures 4.8 and 4.9 respectively.

• Generally, there is an increasing overlap between the two PDFs as the value of l,

the DTLS payload size, increases. This is more evident in the case of AES-256.

1http://www.openssl.org/docs/apps/s_client.html
2http://www.openssl.org/docs/apps/s_server.html
3http://sctp.fh-muenster.de/dtls-patches.html
4The PDF figures shown in this chapter and the next chapter are mostly smooth histograms, i.e.

PDFs that are based on a smooth kernel density estimate.

122

http://www.openssl.org/docs/apps/s_client.html
http://www.openssl.org/docs/apps/s_server.html
http://sctp.fh-muenster.de/dtls-patches.html


Chapter 4. Attacks Against DTLS 4.4. Implementation and Results for OpenSSL

• In the case of AES-256, increasing l makes the PDFs much harder to distinguish.

The reason for this is that the adversary spends more time preparing and sending

packets as the packet size increases, while the targeted system may already have

finished AES decryption and MAC verification and be waiting for the next packet.

Thus long packets tend to arrive “late” at the targeted system.

Figures 4.10 and 4.11 show the PDFs for l = 1024 and varying the value of n, for

3DES and AES respectively. We note the following:

• In the case of 3DES, increasing the value of n helps in making the two PDFs

more distinguishable. This is the case with AES-256 when small DTLS payloads

are used.

• With AES, increasing the value of n when using large DTLS payloads makes the

PDFs harder to distinguish. Figures 4.12 and 4.11 show this effect when AES-256

is used for l = 256 and l = 1024 respectively.

• By appropriately choosing the attack parameters, it is possible to obtain PDFs

that are very easy to distinguish. For example, the last graph in Figure 4.12 shows

the PDFs for AES-256 when l = 256 and n = 160, where the peaks are separated

by more than 500µs while the distributions are entirely contained within 50 µs

of the peaks.

Success Probability:

Table 4.1 shows the success probability, p, of decrypting a byte under different attack

parameters (l,m, n) when AES-256 is used. We recall that the success probability for

a block is then given by pb where b is the block length in bytes.

These tables were obtained using the preferred version of our attack described in

Section 4.3.4, where no system profiling is used, outliers are removed, and, for each

byte, we use the minimum RTT value from the m values available, and then select

the correct byte as being the one that gives the maximum amongst these values. Each

entry in the tables is calculated using 100 runs of the attack.

We can clearly see that the probability of success increases as the number of trials,

m, increases. Success probabilities p equal to 0.99 or above are easily achieved for

moderate values of l, m and n, making our preferred attack both efficient and highly

reliable for these parameter choices.

Table 4.2 shows analogous success probabilities for 3DES. Note however that in

these tables, we report figures for substantially larger values of l than we did for AES-

256. This is indicative of the fact that our attacks are still quite successful for 3DES
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Figure 4.8: 3DES – PDFs for n = 10 and varying l (packet size), with outliers removed.
In this figure we show two PDFs, PDF1 (in red) and PDF2 (in blue), that correspond
to having valid and invalid padding in the packets in the trains, respectively. In the
case of 3DES, we can easily distinguish between the two PDFs.

even with long payloads, giving an additional amplification opportunity. As further

confirmation of the practicality of our attacks, Table 4.3 provides success probabilities

for AES-256 for l = 192 and various values of m and n, with the probabilities being

based on 1000 runs of the attack. For example, already for m = 10 and n = 2, the

success probability is 0.996, meaning that an entire block of plaintext can be recovered
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Figure 4.9: AES-256 – PDFs for n = 10 and varying l (packet size), with outliers
removed. In this figure we show two PDFs, PDF1 (in red) and PDF2 (in blue), that
correspond to having valid and invalid padding in the packets in the trains, respectively.
In the case of AES-256, It is harder, but possible, to distinguish between the two PDFs,
when compared to 3DES shown in Figure 4.8.

correctly with probability 0.94, at a cost of (roughly) 7000 bytes of network traffic per

byte.
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Figure 4.10: 3DES – PDFs for l = 1024 (packet size) and varying n (train size).

4.5 Attacking the GnuTLS Implementation of DTLS

We have examined the GnuTLS implementation of DTLS, with the intention of finding

similar attacks. However, the code for decryption5 is such that there is no timing differ-

ence for processing of packets with valid and invalid padding: the MAC verification is

carried out in either case, and only then is the packet dropped. However, the code does

5See http://git.savannah.gnu.org/gitweb/?p=gnutls.git;a=blob;f=lib/gnutls_cipher.c
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Figure 4.11: AES-256 – PDFs for l = 1024 (packet size) and varying n (train size).

include the lines shown in Figure 4.13 that are executed after CBC-mode decryption.

From this code, specifically line 552, it can be seen that if a certain test involving

the padding length in pad and the ciphertext size fails, then pad_failed is set to

GNUTLS_E_DECRYPTION_FAILED, which is a negative integer, and the variable length

(which would otherwise be negative) is set to 0.

The rest of the packet processing then proceeds as normal (but with a padding check

not being performed and length being set to 0. The time taken to process a packet
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Figure 4.12: AES-256 – PDFs for l = 256 (packet size) and varying n (train size).

when the test fails and length is set to 0 should be less than that taken to process a

packet when the previous value for length is maintained. This is because, when length

gets set to 0, no padding check is performed, and the MAC verification performed in

lines 582 to 593 is done on a smaller amount of data (effectively, just the 13 bytes of

sequence number and header data). Each packet that fails the padding length test or the

padding check results in GnuTLS printing a “Discarded message due to invalid

decryption” error message to the screen. Unless the debugging level is changed, no
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n
l

128 160 192 224 256 288

1 0.00 0.15 0.41 0.32 0.00 0.01

2 0.02 0.24 0.32 0.40 0.00 0.01

5 0.05 0.08 0.49 0.02 0.00 0.01

10 0.04 0.12 0.36 0.00 0.01 0.01

20 0.01 0.13 0.34 0.05 0.02 0.01

50 0.10 0.33 0.38 0.03 0.00 0.01

m = 1

n
l

128 160 192 224 256 288

1 0.99 0.99 1.00 0.99 1.00 0.99

2 0.99 1.00 0.99 1.00 1.00 0.98

5 0.99 1.00 1.00 1.00 1.00 0.98

10 0.98 1.00 0.99 1.00 1.00 0.99

20 0.99 0.99 1.00 1.00 1.00 0.99

50 0.99 0.99 1.00 1.00 0.98 0.95

m = 5

n
l

128 160 192 224 256 288

1 0.99 0.99 1.00 0.99 1.00 0.99

2 0.99 1.00 0.99 1.00 1.00 0.99

5 0.99 1.00 1.00 1.00 1.00 0.98

10 0.98 1.00 0.99 1.00 1.00 0.99

20 0.99 0.99 1.00 1.00 1.00 0.99

50 0.99 0.99 1.00 1.00 0.99 0.95

m = 10

Table 4.1: Success probabilities per byte for AES, for various attack parameters.

other error messages are produced.

Packets that pass the test have their length set in line 564, a positive value in this

case, before the padding is checked in lines 569 to 574. The length of the padding check

loop, which translates to the amount of time spent in checking the padding, depends on

the value of the padding length byte, which is set every time to R[b−1]⊕Dk(C
∗
t )[b−1],

where R is an arbitrary block and C∗t is the target ciphertext block. The value of

the padding length byte corresponds to pad in line 550. Clearly, more iterations of

the padding check loop (translating to more time) are executed as the value of pad

increases, introducing a timing side channel that could potentially be exploited in an

attack. In addition, the MAC verification performed in lines 582 to 593 is done on data
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n
l

128 256 512 1024 1280 1456

1 0.00 0.12 0.39 0.06 0.01 0.13

2 0.03 0.12 0.26 0.03 0.03 0.18

5 0.03 0.20 0.23 0.30 0.07 0.02

10 0.04 0.17 0.09 0.38 0.08 0.04

20 0.14 0.10 0.08 0.22 0.09 0.07

50 0.04 0.08 0.17 0.41 0.15 0.05

m = 1

n
l

128 256 512 1024 1280 1456

1 0.99 1.00 1.00 1.00 1.00 0.93

2 0.99 1.00 0.99 0.99 0.93 0.92

5 0.99 1.00 1.00 0.90 0.93 0.83

10 0.99 1.00 0.92 0.89 0.81 0.57

20 0.97 1.00 0.91 0.92 0.77 0.54

50 0.98 1.00 0.90 0.89 0.68 0.59

m = 5

n
l

128 256 512 1024 1280 1456

1 0.99 1.00 1.00 0.99 1.00 0.93

2 0.99 1.00 1.00 0.99 0.93 0.92

5 0.99 1.00 1.00 0.91 0.94 0.83

10 0.98 1.00 0.93 0.89 0.81 0.57

20 0.98 1.00 0.92 0.92 0.77 0.54

50 0.99 1.00 0.91 0.89 0.68 0.59

m = 10

Table 4.2: Success probabilities per byte for 3DES, for various attack parameters.

with length set in line 564. The time it takes to process packets, of the same length,

relies on the number of MAC compression function evaluations performed on the data,

after removing the padding bytes. Recall that the length of the data, length, is set

in line 564 and relies on the value of pad. Simplistically, the time taken by the MAC

verification decreases as the value of pad increases. Increasing pad has the opposite

effect on the time it takes to perform the padding check. It is worth noting that the

MAC verification takes much more time than the padding check so that the overall

effect is to decrease the decryption time as the value of pad increases. In summary, the

time it takes for the padding check and the MAC verification varies when processing

packets of the same size, even when they pass the test. This is reflected in the red
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n p

1 0.017

2 0.210

5 0.205

10 0.012

20 0.035

50 0.147

m = 1

n p

1 0.961

2 0.983

5 0.983

10 0.985

20 0.989

50 0.965

m = 5

n p

1 0.983

2 0.996

5 0.995

10 0.994

20 0.995

50 0.973

m = 10

Table 4.3: Success probabilities per byte for AES-256, for l = 192, based on 1000 trials.

PDF shown in Figure 4.14 (for packets that pass the test), where we see a flatter

distribution, when compared to the blue PDF in the same figure (for packets that fail

the test). In Chapter 5, we give more detail on the exact construction of HMACs and

describe similar timing side channels that we successfully exploited to build further

attacks against TLS and DTLS.

The timing difference that arises from packets that fail the test and packets that

pass the test allows a partial plaintext recovery attack against GnuTLS. We explain

this next. For ease of presentation, we assume that the MAC size is 32 bytes (as would

be produced by HMAC-SHA-256), but a similar attack would apply for 20-byte MACs.

Now the padding length field pad is obtained from the last byte of the decrypted

ciphertext (see line 550 in Figure 4.13). Consider an adversary who builds a DTLS

packet whose encrypted payload (excluding the IV) is 160 bytes in length and ends

with two blocks R,C∗t . Then, recalling our numbering convention for the bytes of a

block and the CBC-mode decryption procedure, the padding length test in the GnuTLS

code will fail precisely when:

R[b− 1]⊕Dk(C
∗
t )[b− 1] > 127.

Thus, if the targeted system responds quickly to the adversary’s packet, he can infer

that the most significant bit (MSB) of R[b− 1]⊕Dk(C
∗
t )[b− 1] is set to 1. From this,

the MSB of P ∗t [b−1], the rightmost byte of the plaintext corresponding to C∗t , is easily

deduced, using the standard approach involving the CBC-mode decryption equation,

C∗t−1 ⊕DK(C∗t ) = P ∗t . The attacker can then target the second-MSB of P ∗t [b − 1], by

setting R[b− 1] so that the MSB of R[b− 1]⊕Dk(C
∗
t )[b− 1] equals 0 and then using a

DTLS packet of length 96 bytes (again excluding the IV). This provides a test of the

form:

R[b− 1]⊕Dk(C
∗
t )[b− 1] > 63,
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550 pad = ciphertext.data[ciphertext.size - 1] + 1; /* pad */

551

552 if ((int) pad > (int) ciphertext.size - tag_size)

553 {

................

561 pad_failed = GNUTLS_E_DECRYPTION_FAILED;

562 }

563

564 length = ciphertext.size - tag_size - pad;

................

568 if (ver != GNUTLS_SSL3 && pad_failed == 0)

569 for (i = 2; i < pad; i++)

570 {

571 if (ciphertext.data[ciphertext.size - i] !=

572 ciphertext.data[ciphertext.size - 1])

573 pad_failed = GNUTLS_E_DECRYPTION_FAILED;

574 }

575

576 if (length < 0)

577 length = 0;

................

582 preamble_size =

583 make_preamble (UINT64DATA(*sequence), type,

584 length, ver, preamble);

585 _gnutls_auth_cipher_add_auth (&params->read.cipher_state, preamble,

preamble_size);

586 _gnutls_auth_cipher_add_auth (&params->read.cipher_state, ciphertext.data,

length);

................

593 ret = _gnutls_auth_cipher_tag(&params->read.cipher_state, tag, tag_size);

Figure 4.13: Snapshot from GnuTLS code (gnutls cipher.c), version 3.0.0.

with the side information that R[b−1]⊕Dk(C
∗
t )[b−1] ≤ 127, from which the adversary

learns the second-MSB of R[b− 1]⊕Dk(C
∗
t )[b− 1]. An alternative approach to this is

setting R[b− 1] so that the MSB of R[b− 1]⊕Dk(C
∗
t )[b− 1] equals 1 instead of 0 and

then using a DTLS packet of length 224 bytes (again excluding the IV). This provides

a test of the form:

R[b− 1]⊕Dk(C
∗
t )[b− 1] > 191,

which again allows the adversary to learn the second-MSB of R[b− 1]⊕Dk(C
∗
t )[b− 1].

This alternative approach gives the adversary the opportunity to use packets with sizes
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that result in better success probabilities, and hence is preferable. For both approaches,

iterating, the attacker can extract the 4 MSBs of P ∗t [b − 1] when the block cipher is

AES, and the 5 MSBs of P ∗t [b − 1] when it is 3DES. The least significant bits (LSBs)

cannot be extracted using our attack because the packet size must be a multiple of the

block size b.

This provides a theoretical description of our attack. Of course, the adversary can

use the same techniques as worked for OpenSSL to amplify his attack: using packet

trains, multiple trials, and removal of outliers. A practical issue arises because GnuTLS

does not implement the Heartbeat extension, but here we can use any application layer

protocol with predictable timing differences. In principal, the same attack would work

against the GnuTLS implementation of TLS, with the TLS connection tear-down giving

the required timing information. But, in this case, trains of packets cannot be used to

amplify the timing difference, since the connection is terminated upon the first failure.

We have conducted experiments to test whether the timing difference is sufficient to

allow the attack for DTLS, with experimental results being presented in Figure 4.14 for

HMAC-SHA-256 and AES-256. Here, we see the slight separation between the two dis-

tributions (red for packets where the inequality “pad > ciphertext.size - hash_size”

is satisfied, blue for when it is not). In this attack, the adversary needs to adjust the

payload length, l, based on the position of the bit he tries to recover. Changing the

value of l to recover a bit would change the success probability of the attack.

With the second approach, where longer packets are used, we were able to achieve

success probabilities of 0.738, 0.744, 0.737 and 0.756 for individually extracting the

first, second, third and fourth MSB, respectively, meaning that the four MSBs can

be recovered correctly with probability 0.306, using (roughly) 43000 bytes of network

traffic. These probabilities were achieved with n = 5, m = 10 and measured over 1000

attack runs. We used percentile filters, similar to the approach used in [28] to achieve

these probability values. As expected, increasing the value of m significantly increases

the success probability. For example, we were able to achieve success probabilities of

0.797 and 0.990 for recovering the four MSBs when m = 50 and m = 100 respectively.

To implement the tests, we used the same hardware set-up as the one we used for

OpenSSL. We ran version 3.0.0 of GnuTLS on the client and the server. We used the

built-in GnuTLS utilities for the client and the server, gnutls cli and gnutls serv

respectively. We again disabled anti-replay by directly modifying the source code.

We made use of the echo and echo reply messages that gnutls cli and gnutls serv

implement, in order to compensate the case of not having Heartbeat messages available.

Heartbeat requests are replaced by echo messages, while Heartbeat replies are replaced

by echo reply messages. This proves the point we made earlier in the chapter which
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Figure 4.14: PDFs for AES-256 with HMAC-SHA256, l = 176 (packet size), n = 5
(train size), based on 1000 trials, with outliers removed.

is that the adversary can exploit any messages that predictably generate detectable

responses.

4.6 Disclosure

We informed the OpenSSL development team about our attack and worked with them

to test their proposed fix6, which we found to be effective against the attack. OpenSSL

applied the fix to releases starting from 1.0.0f and 0.9.8s. Interestingly, the proposed

fix introduced a flaw7 that could be exploited in a denial of service attack; accordingly,

users were asked to upgrade to OpenSSL 1.0.0g or 0.9.8t.

We also shared our findings with the GnuTLS development team. We worked with

them to identify the root cause of the timing difference and test the proposed fixed8.

A fix to prevent our specific attack was incorporated in version 3.0.11 of GnuTLS.

The DTLS and TLS libraries of OpenSSL and GnuTLS are used in a number of

software packages (for example, the RedHat and SuSe operating systems), which had

to be updated accordingly. CVE-2011-41089 identifies a number of software packages

that implement OpenSSL or GnuTLS, and which were affected by our attacks.

6http://www.openssl.org/news/secadv_20120104.txt
7http://www.openssl.org/news/secadv_20120118.txt
8http://www.gnutls.org/security.html
9http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4108
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4.7 Chapter Conclusion

We have demonstrated plaintext recovering attacks against the OpenSSL and GnuTLS

implementations of DTLS. These are easily prevented by modifying the code so that

the receiver’s cryptographic processing time is independent of how decryption fails.

However, we contend that the attacks are still interesting for a number of reasons.

Firstly, the fix to prevent our OpenSSL attack is already mandated in the specifi-

cation for TLS 1.1, and is implemented in OpenSSL’s implementation of TLS, but not

in its implementation of DTLS. Without more insight into the software development

processes followed by the OpenSSL project, we can only speculate that the experience

about how to securely implement TLS’s MEE-TLS-CBC construction was not carried

over to the separate DTLS implementation. This, then, may also indicate of a lack

of truly expert code review in the OpenSSL project. This is concerning given the

prominence and wide application of the OpenSSL code, but also understandable given

its volunteer-led effort. By contrast, GnuTLS’s implementation has common code for

the TLS and DTLS packet decryption procedure, meaning that countermeasures im-

plemented for TLS are immediately carried over to DTLS. However, as we saw, even

this was not sufficient to fully protect the GnuTLS implementation against the type of

attack developed in this chapter.

A second reason that the obvious and mandated countermeasures were not im-

plemented in OpenSSL may stem from DTLS’s lack of error messages, which makes

the previous attacks apparently impossible against DTLS. We proved otherwise, ex-

ploiting DTLS Heartbeat request and response messages to obtain the required timing

information. This kind of approach may be more widely applicable than DTLS.

A third possible explanation is that the DTLS specification relies heavily on cross-

references to the TLS 1.1 specification, and indeed only gives specification details at

points where TLS and DTLS differ. So an implementor needs to be familiar with both

specifications in order to implement DTLS properly. We suggest that “specification

by diff” is not a good approach to specifying secure protocols, since it requires an

implementor to jump back and forth between specifications and may allow important

details to fall into the gap between.

Secondly, a comparison between our attacks on DTLS and previous attacks on TLS

is instructive. Our attacks are in some sense more challenging because of the lack

of explicit error messages, but also easier to carry out because of DTLS’s tolerance

of errors, meaning that DTLS connections are not torn-down whenever an error is

encountered as they are in TLS. Ultimately, this error-tolerance comes from DTLS’s

use of an unreliable transport protocol. For similar reasons, the anti-replay feature
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in DTLS is made optional in the specification. In this context, our work shows how

non-security features of lower layer protocols can have a major influence on security at

higher layers. This phenomenon is seemingly not that well-explored in the literature,

presenting an interesting challenge for future work.

Our work on DTLS, and in particular our findings in the GnuTL implementation

of TLS and DTLS, led us to suspect that there may be further possibilities to exploit

the manner in which TLS implementations, following the TLS specification, attempt

to achieve constant time decryption processing. Indeed, in the next chapter we present

a number of perviously unknown weaknesses in the TLS specification when using the

MEE-TLS-CBC construction. These TLS design weaknesses were carried over, as we

expected, to DTLS. We also present new techniques to attack TLS and DTLS, ex-

ploiting these new weaknesses, and report experimental results that demonstrate the

effectiveness of our attacks.
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Chapter 5

Lucky Thirteen

5.1 Introduction

In Chapter 3, we discussed the structure of TLS and the various protocols that make

it. In Chapter 4, we described a number of attacks against the OpenSSL and GnuTLS

implementations of DTLS. In this chapter, we present a family of attacks that apply to

the MAC-then-PAD-then-Encrypt construction in all TLS and DTLS implementations

that are compliant with TLS 1.1 or 1.2, or with DTLS 1.0 or 1.2. They also apply

to implementations of SSL 3.0 and TLS 1.0 that incorporate padding oracle attack

countermeasures (implementations that do not are of course already vulnerable to

known attacks). Following Chapter 3, we refer to the (D)TLS MEE construction as

MEE-TLS-CBC. The core encryption process is illustrated in Figure 5.1 and explained

in more detail in Chapter 3 and this chapter.

The attacks come in various distinguishing, partial plaintext recovery, and full plain-

text recovery flavours. For the plaintext recovery attacks, no chosen-plaintext capability

MAC 

HDR Payload 

Padding 

Encrypt 

Ciphertext 

MAC tag Payload 

SQN 

Figure 5.1: D(TLS) encryption process. The figure shows how CBC-mode encryption
is applied in TLS and which we refer to as MEE-TLS-CBC in this chapter.
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is needed, in contrast to the BEAST attack: the attacks can be mounted by a standard

man-in-the-middle (MITM) attacker who sees only ciphertext and can inject cipher-

texts of his own composition into the network. The details of which specific attacks

are possible depends on the exact size of MAC tags output by the MAC algorithm

negotiated by the Handshake Protocol, and also on the fact that exactly 13 bytes of

header data are incorporated in the MAC calculation (hence the title of the chapter).

Although the attacks we describe in this chapter make use of the padding oracle,

they differ from the ones described earlier in Chapter 4 in various ways:

• The attacks in this chapter exploit weaknesses in the design of TLS and DTLS,

as defined in the RFCs, and apply to all versions of TLS and DTLS.

• Our attacks apply to all implementations that follow the TLS and DTLS stan-

dards.

• We also developed versions of the attacks that apply to implementations that do

not follow the TLS and DTLS standards, for example GnuTLS.

• We developed a new realisation of the padding oracle, in which we exploit a

smaller timing difference, when compared to the attacks in Chapter 4.

The applicability of the attacks is also implementation-dependent, because of the

manner in which different implementations interpret the RFCs. We have investigated

several different open-source implementations of TLS and DTLS, and found all of them

to be vulnerable to our new attacks or variants of them (or even old attacks in one

case). We also found basic coding errors in the security-critical decryption function

of one popular implementation, GnuTLS. In view of the amount of variation we have

seen in open-source code and our success in devising variant attacks, we expect all

implementations – whether open or closed – to be vulnerable to our attacks to some

extent.

We have implemented a selection of the attacks in an experimental setting. As

with earlier attacks, discussed in Chapter 3, completely breaking TLS is challenging

because the attacks create “broken” TLS records and so consume many TLS sessions.

Nevertheless, our basic attack can extract full plaintext for the current OpenSSL im-

plementation of TLS assuming the attacker is located, say, in the same LAN segment

as the targeted TLS client or server, using roughly 223 TLS sessions to reliably recover

a block of plaintext in a multi-session attack scenario like that considered in [25]. Such

a scenario is applicable when, for example, an application protocol performs automatic

TLS reconnection and password retransmission.
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Given its complexity, this basic attack would seem to present only a theoretical

threat. However, variants of it are much more effective:

• The distinguishing attacks against TLS are quite practical for OpenSSL, requiring

just a handful of sessions in order to reliably tell apart the encryptions of chosen

messages. We describe the attack in Section 5.3.

• Breaking DTLS implementations is fully practical even for a remote attacker,

since we can exploit the fact that DTLS errors are non-fatal to mount the attacks

in a single session, and reuse the amplification techniques from Chapter 4 to boost

the delicate timing signals on which our attacks depend.

• We also have more efficient partial plaintext recovery attacks on TLS and DTLS.

For example, against OpenSSL TLS, an attacker who knows one byte of a block

in either of the last two byte positions can reliably recover each of the remaining

bytes in that block using 216 sessions.

• The complexity of all our attacks can be reduced using language models and se-

quential statistical techniques as in [25, 35]. As a simple example, if the plaintext

is base64 encoded [48], as is the case for HTTP basic access authentication and

cookies [17], then the number of TLS sessions needed to recover a block reduces

from roughly 223 to 219.

• In the web setting, our techniques can be combined with those used in the BEAST

attack [35], discussed in Section 3.10: a JavaScript (or similar) running in the

browser can be used to initiate all the needed TLS sessions, with an HTTP

cookie being automatically injected by the browser in a predictable location in

the plaintext stream in each session. The JavaScript can also control the location

of the cookie such that there is only one unknown byte in the target block at each

stage of the attack. The attacker then combines the “one known byte” variant

of our attack and the base64 optimisation above (assuming the sensitive part

of the cookie is base64 encoded). Putting all of these improvements together,

we estimate that HTTP cookies can be recovered using 213 sessions per byte of

cookie (with all the sessions being automatically generated by the JavaScript and

the browser). Note that the JavaScript does not need the ability to inject chosen

plaintext into an existing TLS session for our attack to work.

Our new attacks exploit the fact that, when badly formatted padding is encountered

during decryption, a MAC check must still be performed on some data to prevent the

known timing attacks discussed in Chapter 3. But what data should be used for that
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calculation? The TLS 1.1 and 1.2 RFCs recommend checking the MAC as if there was

a zero-length pad. As noted in those RFCs:

This leaves a small timing channel, since MAC performance depends to

some extent on the size of the data fragment, but it is not believed to be

large enough to be exploitable, due to the large block size of existing MACs

and the small size of the timing signal.

We confirm that there are indeed small timing differences, but, contrary to what

is written in the RFCs, they can be exploited. In short, provided there is a fortuitous

alignment of various factors such as the size of MAC tags, the block cipher’s block size,

and the number of header bytes, then there will be a time difference in the time that it

takes to process TLS records having good and bad padding, and this difference will show

up in the time at which error messages appear on the network. This timing side-channel

can then be “wrangled” into revealing plaintext data via careful statistical analysis of

multiple timing samples. As we shall show, other natural methods for handling MAC

checking in the event of bad padding also lead to exploitable timing differences.

Our new attacks demonstrate that properly implementing MAC-then-PAD-then-

Encrypt in (D)TLS so as to avoid all exploitable timing differences is in fact quite

difficult, and is not achieved by any of the implementations we examined. A compli-

cating factor, in addition to dealing with padding, is the need for careful sanity checking

of various fields during decryption. We provide a detailed prescription for dealing with

these issues. We also discuss other, more easily-implemented countermeasures.

It is worth noting that recent work on the security of TLS implementations includes

[36, 40, 8]. In particular, in independent work, Pironti et al. [8] identify effectively

the same timing channel in TLS that we exploit. However they dismiss it as being

“too small to be measured over the network” and instead focus on using it to recover

information about message lengths.

Section 5.2 provides further background on the HMAC calculation, which helps to

establish an understanding of the fundamental root cause of the timing difference we

exploit in the attacks. Section 5.3 presents the basic distinguishing attack against RFC-

compliant implementations of TLS and DTLS, while Section 5.4 describes our plaintext

recovery attacks in the context of TLS and explains how to modify them to apply to

DTLS. In Section 5.5 we report on the experimental validation of our attacks for the

OpenSSL implementation, and in Section 5.6 we describe the modifications needed

to make our attacks applicable to other implementations, including GnuTLS, CyaSSL

and PolarSSL. Section 5.7 discusses countermeasures to our attacks, giving guidance on

how to implement MEE-TLS-CBC so as to avoid the attacks. It also includes details
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of how we disclosed our attacks and how vendors reacted to them. Finally, Section 5.8

concludes with a recap of the main issues raised by our work in this chapter.

5.2 Details of HMAC

In Section 3.3.2, we discussed a number of constructions for calculating MACs. TLS

and DTLS exclusively use the HMAC algorithm [58], with HMAC-MD5, HMAC-SHA-

1, and HMAC-SHA-256 being supported in TLS 1.21. To compute the MAC tag T for

a message M with key Ka, HMAC applies the specified hash algorithm H twice, in an

iterated fashion:

T = H((Ka ⊕ opad) || H((Ka ⊕ ipad) ||M)). (5.1)

Here opad and ipad are specific 64-byte values, and the key Ka is zero-padded to bring

it up to 64 bytes before the XOR operations are performed. For all the hash functions H

used in TLS, the application of H itself uses an encoding step called Merkle-Damg̊ard

strengthening. Here, an 8-byte length field followed by padding of a specified byte

format are appended to the message M to be hashed. The padding is at least 1 byte

in length and aligns the data on a 64-byte boundary. The relevant hash functions also

have an iterated structure, processing messages in chunks of 64 bytes (512 bits) using

a compression function, with the output of each compression step being chained into

the next step. The compression function in turn involves a complex round structure,

with many basic arithmetic operations on data being involved in each round.

In combination, these features mean that HMAC implementations for MD5, SHA-1

and SHA-256 have a distinctive timing profile. Messages M of length up to 55 bytes

can be encoded into a single 64-byte block, meaning that the first, inner hash operation

in HMAC is done in 2 compression function evaluations (since its input is a 128-byte

string), with 2 more being required for the outer hash operation, for a total of 4

compression function evaluations. Messages M containing from 56 up to 64 + 55 = 119

bytes can be encoded in two 64-byte blocks, meaning that the inner hash is done in 3

compression function evaluations, with 2 more being required for the outer operation,

for a total of 5. In general, an extra compression function evaluation is needed for

each additional 64 bytes of message data, with the exact number needed being given

by the formula d `−5564 e+4, where ` is the message length in bytes. A single compression

function evaluation takes typically around 500 to 1000 hardware cycles (depending on

1TLS cipher suites using HMAC with SHA-384 are specified in RFC 5289 (ECC cipher suites for
SHA256/SHA384) and RFC 5487 (Pre-Shared Keys SHA384/AES) but we do not consider this version
of HMAC further here.
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the hash function and details of the implementation), giving a time in the sub-µs range

for modern processors.

Recall that in TLS the MAC is computed on plaintext after removing padding.

Hence, one might expect the total running time for decryption processing to reveal

some information about the size of the depadded plaintext, perhaps up to a resolution

of 64 bytes in view of the above discussion. Our distinguishing attack exploits this, but

we will show that much more is possible.

5.3 A Distinguishing Attack

In this section we describe a simple distinguishing attack against the MEE-TLS-CBC

construction as used in TLS. This is a warm-up to our plaintext recovery attacks, but

we note that even a distinguishing attack against such an important protocol would

usually be regarded as a significant weakness.

In a distinguishing attack, the attacker gets to choose pairs of messages (M0,M1).

One of these is encrypted, Md, say, and the resulting ciphertext is given to the attacker.

The attacker’s task is to decide the value of the bit d. To prevent the attacker from

winning trivially, we require that M0 and M1 have the same length.

To visualise (and simplify) the configuration, the reader can think of an attacker

submitting (M0,M1) to a web server that would return Md. The attacker can choose

a reliable method when submitting the pairs of messages to the web server. Again, the

attacker’s task is to decide the value of the bit d.

We focus on the case where b = 16, i.e. the block cipher is AES. A variant of the

attack works for b = 8. Suppose the MAC algorithm is HMAC-H where H is either

MD5, SHA-1 or SHA-256. Let M0 consist of 32 arbitrary bytes followed by 256 copies of

0xFF. Let M1 consist of 287 arbitrary bytes followed by 0x00. Note that both messages

have 288 bytes, and hence fit exactly into 18 plaintext blocks. Our attacker submits

the pair (M0,M1) for encryption and receives a MEE-TLS-CBC ciphertext HDR || C.

Now C consists of a CBC-mode encryption of an encoded version of Md, where the

encoding step adds a MAC tag T and some padding pad. Because the end of Md aligns

with a block boundary, the additional bytes T || pad are encrypted in separate blocks

from Md. The attacker now forms a new ciphertext HDR || C ′ in which C ′ keeps the

same 16-byte IV as C (if explicit IVs are being used), but truncates the non-IV part of

C to 288 bytes. This has the effect of removing those blocks of C that contain T || pad.

Now the attacker submits HDR || C ′ for decryption. If the record underlying C was

M0, then the plaintext P ′ corresponding to C ′ appears to end with the valid 256-byte

padding pattern 0xFF . . . 0xFF. In this case, all of these bytes are removed, and the
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remaining 32 bytes of plaintext are interpreted as a short message and a MAC tag.

For example, if H is SHA-1, then we have a 12-byte message and a 20-byte MAC tag.

The MAC verification fails (with overwhelming probability), and an error message is

returned to the attacker. If the underlying record was M1, then P ′ appears to end with

the valid 1-byte padding pattern 0x00. In this case, a single byte is removed, and the

remaining 287 bytes of plaintext are interpreted as a long message and a MAC tag.

Again, the MAC verification fails and an error message is returned to the attacker.

Notice that when d = 0, so C encrypts M0, a short message consisting of 13 bytes

of header plus at most 16 bytes of message (when the hash algorithm is MD5) is

passed through the MAC algorithm. To calculate the MAC requires 4 evaluations of

H’s compression function. On the other hand, when d = 1, C encrypts M1, and a

long message consisting of 13 bytes of header plus at least 255 bytes of message is

passed through the MAC algorithm. Then to calculate the MAC requires at least 8

evaluations of H’s compression function, at least 4 more than for the d = 0 case. Hence,

we expect the time it takes to produce the error message on decryption failure to be

somewhat larger if d = 1 than when d = 0, on the order of a couple of µs for a modern

processor. This timing difference then allows, in theory, a distinguishing attack on the

MEE-TLS-CBC construction used in TLS.

5.3.1 Practical Considerations

In describing the attack, we have ignored the time taken to remove padding. This is

different for the two messages being processed, and the difference is opposite to that

for MAC checking in that padding removal for M0 takes longer than for M1. Similarly,

we have ignored any other timing differences that might arise during other processing

steps. In practice, as we will see in Section 5.5, these differences turn out to be smaller

than the MAC timing difference.

The attack exploits the requirement from the (D)TLS RFCs that implementations

be able to properly decrypt records having variable length padding, but does not require

implementations to actually send records containing such padding. A variant attack

is possible in case only minimum-length padding is supported, but involves a smaller

timing signal.

In TLS, the error messages are sent over the network, and so can easily be detected

by the attacker. However, these messages are subject to network jitter, and this may

be large enough to swamp the timing difference arising from the 4 extra compression

function evaluations. On the other hand, the timing signal may be quite large when

the cryptographic processing is performed in a constrained environment, e.g. on an

8-bit or 16-bit processor, or even on a smartphone. Furthermore, the jitter may be
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significantly reduced when the adversary runs as a separate process on the machine

performing TLS decryption. This may be possible in virtualised environments, e.g. in

a cloud scenario as explored in [86]. The attack also destroys the TLS session, since in

TLS such errors are fatal. The attack can be iterated across L sessions, with Md being

encrypted in each session, and statistical processing used to extract the timing signal.

In DTLS, there are no error messages, but the techniques from Chapter 4 can be

applied to solve this problem. There, we send a packet containing a ciphertext C closely

followed by a DTLS message, with the latter always provoking a response message. Any

timing difference arising from the decryption of C then shows up as a difference in the

arrival time of the response messages. The signal amplification techniques from Chapter

4 can also be used to boost the timing difference – here, the idea is to send multiple

packets all containing C in quick succession, to create a cumulative timing difference

(since each time C is processed, it will be processed in the same way).

In the attack as described, we have used 288 byte messages. This ensured that

there were sufficient bytes left after the removal of padding to leave room for a message

(possibly of zero length) and a MAC tag. This ensures that C ′ passes any sanity

checks that might be applied during decryption. However, these sanity checks might

be exploitable in variants of our basic attack. For example, an implementation that

finds it does not have enough bytes left to contain a MAC after depadding may choose

to skip MAC verification altogether, leading to an increased timing difference. In fact,

we saw such behaviour in Chapter 4 for the GnuTLS implementation.

Note that the attack would still work as described if the truncated MACs specified

for TLS in [2] were used, since the full HMAC-H computation is still performed but

only certain bytes of the computed tag are compared to bytes of the plaintext.

We report on the successful implementation of this attack in Section 5.5.

5.4 Plaintext Recovery Attacks

5.4.1 General Approach

As we have seen in the previous section, the processing time for a (D)TLS record

(and therefore the appearance time of error messages) will depend on the amount of

padding that the receiver interprets the encoded plaintext as containing. However, by

placing a target ciphertext block at the end of the encrypted record, an attacker can

arrange that the plaintext block corresponding to this block is interpreted as padding,

and hence make the processing time depend on plaintext bytes. But, it seems that

large amounts of valid padding are needed to create a significant timing difference, and

this is difficult to arrange in a plaintext recovery attack. We show that this barrier to
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plaintext recovery can be overcome under certain circumstances.

Let C∗ be any ciphertext block whose corresponding plaintext P ∗ the attacker

wishes to recover. Let C ′ denote the ciphertext block preceding C∗. Note that C ′ may

be the IV or the last block of the preceding ciphertext if C∗ is the first block of a

ciphertext. We have:

P ∗ = DKd
(C∗)⊕ C ′.

Following Chapter 3, for any block B made of b bytes of plaintext or ciphertext, we

write B = [B[0]B[1] . . . B[b− 1]], where B[i] denote the bytes of B. In particular, we

have P ∗ = [P ∗[0]P ∗[1] . . . P ∗[b− 1]].

As usual, we assume that the attacker is capable of eavesdropping on the (D)TLS-

protected communications and of injecting messages of his choice into the network. For

TLS, or DTLS with sequence number checking disabled, we do not need the ability to

prevent messages from reaching their destination, nor do we require a chosen-plaintext

capability.

5.4.2 Full Plaintext Recovery

For simplicity of presentation, in what follows, we assume the CBC-mode IVs are

explicit (as in TLS 1.1, 1.2 and DTLS 1.0, 1.2, described in Section 3.4.7). We also

assume that b = 16 (so our block cipher is AES). It is easy to construct variants of our

attacks for implicit IVs and for b = 8. We begin by considering only TLS, with details

for DTLS to follow. We also assume that the TLS implementation follows the advice

in the TLS 1.1 and 1.2 RFCs about checking the MAC as if there was a zero-length

pad when the padding is incorrectly formatted. We will examine the security of other

implementation options in Section 5.6. Most importantly, and for reasons that will

become clear, we assume for the moment that t = 20 (so that the MAC algorithm is

HMAC-SHA-1). We consider t = 16 and t = 32 (HMAC-MD5 and HMAC-SHA-256)

shortly.

Let ∆ be a block of 16 bytes and consider the decryption of a ciphertext Catt(∆)

of the form

Catt(∆) = HDR || C0 || C1 || C2 || C ′ ⊕∆ || C∗

in which there are 4 non-IV ciphertext blocks (blocks not containing an IV), the penul-

timate block C ′ ⊕ ∆ is an XOR-masked version of C ′ and the last block is C∗. The

corresponding 64-byte plaintext is P = P1 || P2 || P3 || P4 in which

P4 = DKe(C
∗)⊕ (C ′ ⊕∆)

= P ∗ ⊕∆.
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Notice that P4 is closely related to the unknown, target plaintext block P ∗. We consider

3 distinct cases, which between them cover all possibilities for what can happen during

decryption of Catt(∆):

1. P4 ends with a 0x00 byte: in this case, a single byte of padding is removed, the

previous 20 bytes are interpreted as a MAC tag T , and the remaining 64−21 = 43

bytes of plaintext are taken as the record R. MAC verification is then performed

on a 13 + 43 = 56-byte message SQN || HDR || R. Recall, exactly 13 bytes of data

are prepended to the record R here before the MAC is computed (the 8-byte

sequence number and the 5-byte header).

2. P4 ends with a valid padding pattern of length at least 2 bytes: in this case, at

least 2 bytes of padding are removed, and the next 20 bytes are interpreted as

a MAC tag T . This leaves a record R of length at most 42 bytes, meaning that

MAC verification is then performed on a message of length at most 55 bytes.

3. P4 ends with any other byte pattern: in this case, the byte pattern does not

correspond to valid padding. Following the prescription in the TLS 1.1 and 1.2

RFCs, the plaintext is treated as if it contains no bytes of padding, so the last 20

bytes are interpreted as a MAC tag T , and the remaining 44 bytes of plaintext are

taken as the record R. MAC verification is then performed on a 57-byte message.

In all cases, the MAC verification will fail (with overwhelming probability) and an

error message produced. Notice that, in accordance with the discussion in Section 5.2,

in Cases 1 and 3, the MAC verification will involve 5 evaluations of the compression

function for SHA-1, while Case 2 only requires 4 evaluations. Therefore, we can hope

to distinguish Case 2 from Cases 1 and 3 by timing the appearance of the error message

on the network. Here the timing difference is that needed for a single SHA-1 compres-

sion function evaluation (compared to 4 such evaluations in our distinguishing attack).

Notice that the size of the header, 13 bytes, in conjunction with the MAC tag size, 20

bytes, are critical in generating this distinctive timing behaviour.

In Case 2, assuming that the plaintext has no special structure, the most likely

padding pattern to arise is the one of length 2, namely 0x01 || 0x01, with all longer

padding patterns being roughly 256 times less likely. Thus, if the attacker selects a

mask ∆ in such a way that he detects Case 2 after submitting Catt(∆) for decryption,

then he can infer that P4 ends with 0x01 || 0x01, and, using the equation P4 = P ∗⊕∆,

can now recover the last 2 bytes of P ∗. (In fact, by repeating the attack with a mask

∆′ that is modified from ∆ in the third-to-last byte, the attacker can easily separate

the case of a length 2 padding pattern from all longer patterns.)
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The question remains: how does the attacker trigger Case 2, so that he can extract

the last 2 bytes of P ∗? Recall that the attacker has the freedom to select ∆. By

injecting a sequence of ciphertexts Catt(∆) with values of ∆ that vary over all possible

values in the last 2 bytes ∆[14],∆[15], then (in the worst case) after 216 trials, the

attacker will surely select a value for ∆ such that Catt(∆) triggers Case 2.

Once the last 2 bytes of P ∗ have been extracted, the attacker can more efficiently

recover the remaining bytes of P ∗, working from right to left. This phase is essentially

identical to Vaudenay’s original padding oracle attack [102] discussed in Chapter 3.

For example, to extract the third-to-last byte, the attacker can use his new knowledge

of the last two bytes of P ∗ to now set ∆[14],∆[15] so that P4 ends with 0x02 || 0x02.

Then he generates candidates Catt(∆) as before, but modifying ∆[13] only. After at

most 28 trials, he will produce a ciphertext which falls into case 2 again, which reveals

he has managed to set a value 0x02 in the third-to-last byte of P4 = P ∗ ⊕ ∆. From

this, he can recover P ∗[13]. Recovery of each subsequent byte in P ∗ requires at most

28 trials, giving a total of 14 · 28 trials to complete the extraction of P ∗.

Practical considerations: In practice, for TLS, there are two severe complications.

Firstly, the TLS session is destroyed as soon as the attacker submits his very first

attack ciphertext. Secondly, the timing difference between the cases is very small, and

so likely to be hidden by network jitter and other sources of timing difference.

The first problem can be overcome for TLS by mounting a multi-session attack,

wherein we suppose that the same plaintext is repeated in the same position over

many sessions (as in Canvel et al. [25], for example). We have used masks ∆ in such a

way that no further modification to the attack is needed to cater for this setting – of

course blocks C ′ and C∗ change for each session.

The second problem can be overcome in the same multi-session setting by iterating

the attack many times for each ∆ value and then performing statistical processing of

the recorded times to estimate which value of ∆ is most likely to correspond to Case

2. In practice, we have found that a basic percentile test (and even averaging) works

well – see Section 5.5 for further details. Assuming that L trials are used for each ∆

value, the attack as described consumes roughly L · 216 sessions, with one ciphertext

Catt(∆) being tried in each session.

More efficient variants: The attack complexity can be significantly reduced by as-

suming that the language from which plaintexts are drawn can be modelled using a

finite-length Markov chain. This is a fair assumption for natural languages, as well as

application-layer protocol messages such as HTML, XML etc. This model can be used
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to drive the selection of candidate plaintext bytes in order of decreasing likelihood, and

from this, determine the bytes of ∆ needed to test whether a guess for the plaintext

bytes leads to valid padding or not. Similar techniques were used in [25, 35] in com-

bination with sequential statistical techniques to reduce the complexity of recovering

low-entropy plaintexts. Note that this approach does not work well if TLS’s optional

compression is used. Another possibility is that the plaintext bytes are drawn from a

reduced space of possibilities. For example, in HTTP basic access authentication, the

username and password are Base64 encoded, meaning that each byte of plaintext has

only 64 possible values. Similar restrictions often apply to the sensitive parts of HTTP

cookies.

In a related attack scenario, if the attacker already knows one of the last two bytes

of P ∗, he can recover the other byte with much lower complexity than our analysis

so far would suggest. This is then a plaintext recovery attack with partially-known-

plaintext. For example, suppose the attacker knows the value of the byte P ∗[14]. Then

he sets the starting value of ∆ such that ∆[14] = P ∗[14]⊕ 0x01, so that when Catt(∆)

is decrypted, the second-to-last byte of P4 already equals 0x01. Then he iterates over

the 28 possible values for ∆[15], eventually finding one such that P4 has its last two

bytes equal to 0x01 || 0x01, triggering Case 2. He can then proceed to recover the rest

of P ∗ with the same complexity as before. Overall, this attack, which recovers 15 bytes

of plaintext with 1-out-of-2 of the last bytes of the target block known, consumes only

15L · 28 sessions, where L is the number of trials used for each ∆ value in each byte

position. This can be further reduced by combining the two variants. For example, for

base64 encoded plaintext, only 15L · 26 sessions are needed to decrypt a block.

Combining Lucky 13 with BEAST: A significant limitation of our attacks as

described so far is their consumption of many TLS sessions. This limitation can be

overcome by combining our attacks with techniques from the BEAST attack [35], dis-

cussed in Section 3.10, to target TLS-protected HTTP cookies. The combined attack

does not require the blockwise privilege needed by the original BEAST attack (because

the attacker does not need to be able to prepend a plaintext block to ongoing HTTP

requests). Assuming the targeted part of the cookie is base64 encoded, the attack

consumes L · 26 sessions per byte of HTTP cookie. As we will discuss in more detail

in Section 5.5, we found that setting L = 27 yields reliable plaintext recovery in our

experimental set-up, giving us an attack that recovers HTTP cookies using roughly 213

sessions per unknown byte of cookie.

We effectively use the BEAST-style JavaScript means to be in the 1-out-of-2 bytes

known case, described above. It is worth noting that our attack does not require
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the BEAST-style same-origin policy (SOP) bypass. We only require to be able to

pad HTTPS requests (for example, GET or POST requests). In this case, the browser

will automatically establish the needed TLS sessions when the JavaScript makes the

HTTPS requests.

5.4.3 Plaintext Recovery for Other MAC Algorithms

A critical feature of our attack above is the relationship between the size of the header

included in the MAC calculation (fixed at h = 13 bytes), the MAC tag size t, and the

block size b. For example, if TLS happened to be designed such that h = 12, then, with

t = 20 and b = 16, a similar case analysis as before shows that our ciphertext Catt(∆)

would have the property of having faster MAC verification if P4 also ends with the

single byte 0x00 (the valid padding pattern of length 1). This would allow an improved

28 attack against TLS with CBC-mode and HMAC-SHA-1. In some sense, 13 is lucky,

but 12 would have been luckier!

Similarly, we have (less efficient) variants of our attacks for HMAC-MD5 and

HMAC-SHA-256, where the tag sizes t are 16 and 32 bytes, respectively. In fact,

because here t is a multiple of b, the analysis is largely the same in both cases, and

we consider only HMAC-MD5 in detail. This time Catt(∆) is such that we fall into

Case 2 (valid padding with a message of size at most 55 bytes, giving fast MAC ver-

ification) only if P4 = P ∗ ⊕ ∆ ends with a valid padding of length 6 or more. With

no additional information on P ∗ the attacker would need (worst case) 248 attempts to

construct the correct ∆ so as to trigger this case; detecting that he had done so would

be more difficult in view of the large number of candidate ∆ values. This is not an

attractive attack, especially in view of the practical considerations for TLS mentioned

above. On the other hand, we do have attractive partially-known-plaintext attacks for

HMAC-MD5 and HMAC-SHA-256. For example, if any 5 out of the last 6 bytes of P ∗

are known, we can recover the remaining 11 bytes using 11L · 28 sessions. The attack

can also be made more efficient if the plaintext has low entropy, by trying candidates

for the last 6 bytes of P ∗ in order of decreasing probability and then recovering the

remaining bytes of P ∗ once the right 6-byte candidate is found. This would be an good

option for password recovery, for example.

A similar analysis can be carried out for truncated MAC algorithms, as per [2]. For

example, for an 80-bit (10-byte) MAC tag, if any 11 out of the last 12 bytes of P ∗ are

known, we can recover the remaining 5 bytes using 5L · 28 sessions.

Finally, we note that the “Lucky 13 + BEAST” attacks work equally well, no matter

what the MAC tag size is.
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5.4.4 Applying the Attacks to DTLS

So far we have focussed on TLS. The changes needed to handle DTLS are the same

as for our distinguishing attack in Section 5.3: we can use the techniques discussed

in Chapter 4 to amplify the timing differences and to emulate TLS’s error messages.

The amplification capability reduces the attack complexity dramatically: essentially,

we can accurately test each ∆ value using just a few packet trains instead of requiring

L trials.

There is one further critical difference that we wish to emphasise: as already noted,

DTLS does not treat errors arising during decryption as being fatal. This means that

the entire attack against DTLS can be carried out in a single session, that is, without

requiring the same plaintext to be repeated in the same position in the plaintext across

multiple sessions, and without waiting for the Handshake Protocol to rerun for each

session.

These differences brings our attack well within the bounds of practicality for DTLS.

This is particularly so if DTLS’s optional checking of sequence numbers is disabled.

Even if this is not the case, the attacks are quite feasible in practice, provided enough

DTLS Heartbeat messages are available, or if the upper layer protocol being protected

by DTLS produces replies to sent messages in a consistent manner. These points are

discussed at greater length in Chapter 4 and the next section, where we report on the

successful implementation of our attacks for the OpenSSL implementation of TLS and

DTLS.

5.5 Experimental Results for OpenSSL

5.5.1 Experimental Setup

We ran version 1.0.1 of OpenSSL on the client and the server. In our laboratory set-up,

a client, the attacker and the targeted server are all connected to the same VLAN on a

100Mbps Ethernet switch. The targeted server was running on a single core processor

machine operating at 1.87 GHz with 2 GByte of RAM, while the attacker was running

on a dual core processor machine operating at 3.4 GHz, with 2 GByte of RAM.

To simulate the (D)TLS client, we made use of s client, a generic tool that is

available as part of the OpenSSL distribution package. We developed a basic Python

script that calls s client whenever the TLS connection is terminated, implementing

the multi-session setting discussed in Section 5.3.1 of this chapter. Our attack code is

written in C and is capable of capturing, manipulating and injecting packets of choice

into the network.
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In the case of TLS, the attacker captures the “targeted” packet, i.e. the packet

containing the plaintext that the attacker tries to recover, manipulates it and then sends

the crafted version to the targeted server causing the TLS session to terminate. This

crafted packet forces the client and the targeted server to lose TCP synchronisation,

causing delay in the TCP connection shutdown. To speed up the TCP connection tear

down, the attacker sends spoofed RST packets to the client and the targeted system

upon detecting the TLS encrypted alert message, forcing both systems to independently

destroy the underlying TCP structure associated with the terminated TLS session.

All the timing values presented in the chapter are based on hardware cycles, which

are specific to processor speed. For example, 187 hardware cycles on our targeted server

operating at speed of 1.87 GHz translate to an absolute timing of 100ns. To count the

hardware cycles, we made use of an existing C library licensed under GNU GPL v32.

5.5.2 Statistical Analysis

The network timings we collect in each experiment are from skewed distribution(s) with

long tails and many outliers. However, we found that using basic statistical techniques

(medians and, more generally, percentiles) was sufficient to analyse our data.

5.5.3 Distinguishing Attack for OpenSSL TLS

Figure 5.2 shows the experimental distribution of timing values for the TLS distinguish-

ing attack described in Section 5.3. The figure indicates that, with enough samples, it

should be possible to distinguish encryptions of message M0 (consisting of 32 arbitrary

bytes followed by 256 copies of 0xFF) from encryptions of message M1 (consisting of

287 arbitrary bytes followed by 0x00).

We used a simple threshold test to build a concrete attack: we calculate a threshold

value T based on profiling, gather L timing samples, filter outliers, calculate the median

of the remaining timing samples, and then output 1 if the median value is greater

than T and 0 if it is less. Table 5.1 shows the success probabilities for this concrete

distinguishing attack; it is evident that the attack is reliable even if only a moderate

number of samples are available. The attack already has a significant advantage over

guessing when L = 1, i.e. when only one sample is available.

5.5.4 Plaintext Recovery Attacks for OpenSSL TLS

Partial plaintext recovery: Section 5.4 describes an attack where byte P ∗[15] can

be recovered when P ∗[14] is known. This involves setting ∆[14] to force P ∗[14]⊕∆[14]

2http://code.google.com/p/fau-timer
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Figure 5.2: Distribution of timing values (outliers removed) for distinguishing attack
on OpenSSL TLS, showing faster processing time in the case of M0 (in red) compared
to M1 (in blue).

L Success Probability

1 0.756
2 0.769
4 0.858
8 0.914
16 0.951
32 0.983
64 0.992
128 1

Table 5.1: OpenSSL TLS distinguishing attack success probabilities.

to equal 0x01, and then trying all possible values of ∆[15], identifying which one forces

P ∗[15]⊕∆[15] to also equal 0x01. Figure 5.3 shows the median server-side decryption

time as a function of ∆[15] for the particular values of P ∗[14] = 0x01 (so ∆[14] =

0x00) and P ∗[15] = 0xFF. A clear reduction in processing time can be seen for the

expected value of ∆[15], namely ∆[15] = 0xFE. Also notable is the stability in the

median processing time for other byte values. These server-side times indicate that

an attack based on timing error message on the network has some prospect of success.

Figure 5.4 shows the corresponding distribution of median network timings in our

experimental setup. Clearly, the data is noisier, but the “dip” at ∆[15] = 0xFE is

clearly distinguishable.

Figure 5.5 shows success probabilities for the attack. Each data-point in the figure

is based on at least 64 experiments. Each curve in the figure represents a different

number of total sessions consumed in the attack (corresponding to different values for
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Figure 5.3: OpenSSL TLS median server timings (in hardware cycles) when P ∗[14] =
0x01 and P ∗[15] = 0xFF. As expected, ∆[15] = 0xFE leads to faster processing time.

L, the number of trials for each ∆ value). The x-axis represents the percentile used in

our statistical test3: if the percentile value is p, then we take as the correct value for

∆[15] the one for which the p-th percentile value of the timing distribution (measured

over L samples) is minimised. It is evident that a range of percentiles work well,

including the median. As expected, the success probability of the attack increases as

L increases. We already reach a success probability of 1 when L = 28, where the total

number of sessions needed is 216. Similarly, we have a success probability of 0.93 when

L = 27, where the total number of sessions is 215.

Given these results, we anticipate that the attack would extend easily to recov-

ering 15 unknown bytes from a block, given one of the last two bytes. We have not

implemented this variant.

It is worth noting that the amount of connections required for the attack would

potentially trigger alarms on network intrusion detection tools, in case they have been

deployed in the path that the attack takes.

Full plaintext recovery: The next step would be to perform the full plaintext

recovery attack from Section 5.4. In this case, the attacker would need a total of L ·216

trials to discover which mask value triggers Case 2. In the case of TLS, this takes a

considerable amount of time due to the underlying TCP and TLS connection set-up

and tear-down times. For example, with L = 27 we estimate that the 223 sessions would

take around 64 hours in our setup. However, once the last two bytes of a block have

3We used the GNU statistics package (http://www.gnu.org/software/gsl/manual/html_node/
Statistics.html) for calculating the percentiles. The algorithm for computing the percentiles in-
volves interpolation, which can over-estimate the success probability for small values of L.
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Figure 5.4: OpenSSL TLS median network timings in terms of hardware cycles when
P ∗[14] = 0x01 and P ∗[15] = 0xFF. As expected ∆[15] = 0xFE leads to faster processing
time.

been successfully recovered, then the remaining bytes in that block can be recovered in

a much shorter time. We have not implemented the full plaintext recovery attack for

TLS. Our results below for DTLS strongly indicate that the full attack would work for

TLS with L = 27, albeit slowly.

5.5.5 Plaintext Recovery Attacks for OpenSSL DTLS

As explained in Section 5.4.4, we can use the timing and amplification techniques from

Chapter 4 in combination with the previously described attacks to attack DTLS. Now

the attacker sends a number (n) of crafted packets, followed by a DTLS Heartbeat

request and waits for the corresponding Heartbeat reply. This process is repeated L

times for each mask value. The attacker selects n and L in order to trade-off the

attack success probability and the total number of packets injected. We have found

experimentally that n = 10 is a good choice for achieving stable timing values. On the

other hand, n = 1 is indicative of what might be expected to happen with TLS but

without enduring the overhead of TCP and TLS connection setups (note that the noise

levels for DTLS are generally somewhat higher since we depend on an application-layer

error message rather than a native TLS error message). Higher values of n could be

used if the attacker is remote from the server.

Figure 5.6 shows the percentile-based success probabilities for recovering P ∗[15]

assuming that P ∗[14] is known, for n = 10. It can be seen that the attack is very

effective, reliably recovering the unknown plaintext byte with only 211 trials (L = 23).

Even for 28 trials (L = 1), the success probability is 0.266.
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Figure 5.5: OpenSSL TLS partial plaintext recovery: percentile-based success proba-
bilities for recovering P ∗[15] assuming P ∗[14] is known.
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Figure 5.6: OpenSSL DTLS partial plaintext recovery: percentile-based success prob-
abilities for recovering P ∗[15] assuming P ∗[14] is known, n = 10.

We also conducted a 2-byte recovery attack against OpenSSL DTLS; this attack is

effectively the first step of the full plaintext recovery attack described in Section 5.4.

Figure 5.7 shows the success probabilities for recovering P ∗[14] and P ∗[15] when n = 10.

Again, the attack is very effective, recovering both bytes with success probability 0.93

for 219 trials (L = 23). The quality of these results is evidence that the attack should

extend easily to a full plaintext recovery attack. Figure 5.8 shows our results for n = 1,

which we recall serves as an experimental model for TLS. We see that 2-byte recovery

is reliable given 223 trials (L = 27); we already reach more than 80% success rate using

222 trials.

155



Chapter 5. Lucky Thirteen 5.6. Other Implementations of TLS

S
u
c
c
e
s
s
P
r
o
b
a
b
i
l
i
t
i
e
s

�����������

�

�
�
���������������

��

��

�
�

�
�

���
��������

�

�

�

�������������������
�

�

�

�

��

�

�
��������

�

�

�����������������������

�

�

�

�

�

�
�
��

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

� 221 Trials �L�25�� 220 Trials �L�24�� 219 Trials �L�23�

Percentiles

Figure 5.7: OpenSSL DTLS 2-byte recovery: percentile-based success probabilities for
recovering P ∗[14] and P ∗[15], n = 10.

5.5.6 More Challenging Network Environments

We have not conducted experiments where the attacker is not situated in the same

LAN as the server. Given the small timing differences involved, we would expect the

attacks to fail, in the case of TLS, when the attacker is remote, i.e. more than a couple

of hops away from the server, or that very large numbers of sessions would be needed

to get reliable results. Nevertheless, there are realistic scenarios where the proximity

requirement can be met, for example when a hostile network service provider attacks

its customers, or in cloud computing environments. For DTLS, the timing signals can

be amplified, effectively by an arbitrary amount, and so we would expect to be able to

mount the attacks remotely.

5.6 Other Implementations of TLS

5.6.1 GnuTLS

The GnuTLS implementation of MEE-TLS-CBC deals with bad padding in a different

way to that recommended in the RFCs: instead of assuming zero-length padding, it uses

the last byte of plaintext to determine how many plaintext bytes to remove (whether

or not those bytes are correctly formatted padding). More precisely, GnuTLS sets a

variable pad as:

pad = ciphertext->data[ciphertext->size - 1] + 1

and then, after doing some basic sanity checking on the value of pad, subtracts pad

bytes from the length field:
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Figure 5.8: OpenSSL DTLS 2-byte recovery: percentile-based success probabilities for
recovering P ∗[14] and P ∗[15], n = 1.

length = ciphertext->size - tag_size - pad

The GnuTLS code then proceeds to check the padding bytes, but the value of

length stays the same for the remainder of the processing whether the padding check

succeeds or fails. This variable dictates the number of record bytes involved in the

MAC verification.

Since this approach is a natural alternative to the RFCs’ advice for handling bad

padding, we analyse it in detail, first for HMAC-SHA-1 as the MAC algorithm, and

then in brief for other MAC algorithms. As before, we assume that our block cipher

is AES and that IVs are explicit, with obvious modifications for other cases. We focus

on TLS, but our attacks apply equally to DTLS. We then report experimental results.

GnuTLS + HMAC-SHA-1: Firstly, we point out that GnuTLS-style processing is

just as vulnerable to distinguishing attacks as RFC-compliant processing. Indeed, the

attack described in Section 5.3 will work just as before4. We next present an attack

that recovers the rightmost byte of plaintext in any target block for GnuTLS-style

padding processing.

Let C∗ denoting the target ciphertext block, C ′ denote the previous ciphertext block

and ∆ denote a mask block of 16 bytes. We consider the decryption of a ciphertext

Catt(∆) of the form:

Catt(∆) = HDR || C0 || C1 || C2 || . . . || C18 || C ′ ⊕∆ || C∗

4In fact, since the attack only involves plaintexts which are correctly padded, it will work for any
correct decryption algorithm, that does not implement special countermeasures.
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in which there are 20 non-IV ciphertext blocks, the penultimate block is an XOR-

masked version of C ′ and the last block is C∗, the target ciphertext block. The corre-

sponding 320-byte plaintext is P = P1 || P2 || . . . || P19 || P20 in which

P20 = DKe(C
∗)⊕ (C ′ ⊕∆)

= P ∗ ⊕∆.

Now we need consider only two distinct cases, which between them cover all possi-

bilities:

1. P20 ends with a 0x00 byte: in this case, a single byte of padding is removed, the

next 20 bytes are interpreted as a MAC tag T , and the remaining 320− 21 = 299

bytes of plaintext are taken as the record R. MAC verification is then performed

on a 13 + 299 = 312-byte message SQN || HDR || R.

2. P20 ends with any other byte value: in this case, at least two bytes of “padding”

are removed, the next 20 bytes are interpreted as a MAC tag T , and the remaining

bytes of plaintext are taken as the record R. Because the starting message length,

at 320 bytes, is long enough to allow for the removal of 256 bytes of padding and a

20-byte MAC whilst still leaving a non-null record, no length sanity tests will fail.

MAC verification is then performed on a message SQN || HDR || R that contains at

most 311 bytes.

In both cases, the MAC verification will fail (with overwhelming probability) and an

error message produced. Notice that, in accordance with the discussion in Section 5.2,

in Case 1, the MAC verification will involve 9 evaluations of the compression function

for SHA-1, while Case 2 requires at most 8 evaluations. Therefore, we can hope to

distinguish the two cases by careful timing, as previously.

Now the single-byte plaintext recovery attack is straightforward: the attacker injects

a sequence of ciphertexts Catt(∆) with values of ∆ that vary over all possible values

in the last byte ∆[15], then (in the worst case) after 28 trials, the attacker will surely

select a value for ∆ such that Catt(∆) triggers Case 1. When this is detected, he knows

that P20 ends with a 0x00 byte and can infer the value of the last byte of P ∗ via the

blockwise equation P20 = P ∗ ⊕∆.

This basic attack can be further improved. The 2 most significant bits of the last

byte of P ∗ can be extracted using 4 trials by simply examining the time taken to

produce an error message when ciphertexts Catt(∆) are injected for values ∆ which

vary in the 2 most significant bits of ∆[15]: the maximum running time is produced

when the last byte of P20 is set to have bits 00 in the most significant positions. The
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remaining 6 bits can then be extracted using a further 64 trials to find the value of

∆[15] which triggers Case 1. Thus an enhanced version of the attack only needs 68

trials to recover the last byte of the target block.

For TLS, the usual problems of fatal errors and noisy timing information can be

overcome in a multi-session attack. For DTLS, we can use the techniques from Chapter

4 to amplify the timing differences and overcome the lack of error messages.

GnuTLS + HMAC-MD5/HMAC-SHA-256: For HMAC-MD5 and HMAC-SHA-

256, a similar analysis as before shows that the ciphertext Catt(∆) triggers “slow” MAC

evaluation (9 compression function evaluations) if P20 has last byte that is any of the

5 possibilities 0x00, 0x01, 0x02, 0x03, 0x04, while all other values for the last byte of P20

result in “fast” MAC evaluation (at most 8 evaluations). These 5 byte values corre-

spond to bit patterns 000, 001, 010, 011, 100 in the 3 least significant bits. Exploiting

this, we can build an attack using even fewer trials than previously. For TLS, we will

need a multi-session attack, but note that the parameter L can be quite small since we

only need to distinguish between a few possibilities (at most 16) in each phase of the

attack. We omit the details.

Interestingly, the attacks for HMAC-MD5 and HMAC-SHA-256 are much more

efficient for GnuTLS-style processing than they are for RFC-compliant processing. This

is opposite to the situation for HMAC-SHA-1. We note that we have not found attacks

for GnuTLS-style processing that can extract more than the last byte of the target

block. This is not surprising in view of the fact that the decryption time for GnuTLS-

style processing depends only on the last byte of plaintext.

Attack implementation for GnuTLS: We worked with version 3.0.21 of GnuTLS

to implement the above attacks. In doing so, we found some subtle coding errors.

Firstly, the variable pad is defined as being of type uint8. In the code:

pad = ciphertext->data[ciphertext->size - 1] + 1

this has the unintended action of setting pad to zero when the last byte of plaintext

equals 0xFF instead of the desired value of 256, meaning that no bytes of padding

are removed in this case instead of 256 bytes. As a consequence, GnuTLS does not

properly support variable length padding during decryption, and the TLS session would

be terminated if the encrypting party ever uses 0xFF padding.

This coding error is easily patched, but means that our attacks do not quite work

as described, since now 2 byte values (0x00 and 0xFF) in the last byte of P20 lead to

slow MAC verification (in the HMAC-SHA-1 case). In fact, this does not present a
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serious barrier to our attack, and there is a variant using at most 66 trials to recover

the last byte of P ∗.

The second coding error we found relates to the implementation of the padding

check. This uses the following for loop:

for (i = 2; i < pad; i++)

{

if (ciphertext->data[ciphertext->size - i] !=

ciphertext->data[ciphertext->size - 1])

pad_failed = GNUTLS_E_DECRYPTION_FAILED;

}

It is not hard to see that this loop should also cover the edge case i=pad in order to

carry out a full padding check. This means that one byte of what should be padding

actually has a free format. This would enable, for example, a variant of the short MAC

attack of [74] even if variable length padding was not supported. This coding error does

not affect our attack. Notice also that the number of iterations in the loop depends on

pad, which is plaintext-dependent.

Experimental Results for GnuTLS: By default, GnuTLS adds random length

padding to every TLS record it sends (including alerts), subject to constraints imposed

by the TLS specification. The time required to encrypt that random padding disrupts

the timing signal that our attacks attempt to detect. For the purposes of experimental

validation, we disabled GnuTLS’s random padding. Note, however, that the attacks

would still be effective even if the random padding were to be reactivated, since the

error messages can be grouped according to their lengths, and the time difference

attributable to adding extra padding can be profiled and subtracted for each group.

We began by measuring the time (in hardware cycles) taken by the GnuTLS server

to perform the padding check, MAC verification and other associated operations as a

function of the value of ∆[15], for ciphertexts containing 20 non-IV blocks and with the

last byte of P ∗ equal to 0x00. Figure 5.9 shows the results. The expected behaviour

is observed: byte values 0x00 and 0xFF have similar, long processing times. Moreover,

there are four “blocks” of timings, corresponding to the reducing number of compression

function evaluations needed as the byte value ∆[15] ⊕ P ∗[15] increases. (Here, P ∗[15]

denotes the last byte of the target plaintext block P ∗.) Within these blocks, the trend

is upwards, and this is attributable to the increasing amount of time needed for the

padding check as the value of pad increases.

Our next step was to gather timing of error messages from the network. Figure

5.10 shows median network timings for the same ciphertext structure. It is evident
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Figure 5.9: GnuTLS TLS median server timings (in hardware cycles) for varying values
of ∆[15] and P ∗[15] = 0x00.

that there are anomalies at byte values 0x01, 0x11, ..., 0xF1 (with 16 byte increments).

In further testing, we discovered that their positions did not depend on the plaintext

byte P ∗[15]. This phenomenon was subsequently explained to us [61] as arising from the

way in which GnuTLS’s random number generator updates its state (when generating

CBC-mode IVs for TLS’s encrypted error messages). We handled this in our attack by

setting the timing values for these mask values to the average value of the neighbouring

bytes.

The data is clearly very noisy, and the distinct pattern exhibited in the server

timings in Figure 5.9 is not immediately evident in Figure 5.10. However, a zoomed

view (see Figure 5.11) shows that an overall descending pattern is evident. Further

analysis using linear regression shows that the ascending pattern within each of the

4 blocks is weakly preserved in the network timings (see Figure 5.12). We could not

reliably distinguish the values 0x00 and 0xFF needed for the attack mentioned above;

however, we are able to reliably extract the 4 most significant bits (MSBs) of P ∗[15], as

we explain briefly next. It is worth noting that after sharing our findings, the GnuTLS

development team conducted similar experiments and reached the same conclusions as

us, confirming our findings; they published their results in [60].

Extracting 4 bits of P ∗[15]: To extract the 2 MSBs of P ∗[15], the attacker focusses

on the overall downward trend in the processing time (as a function of ∆[15]⊕P ∗[15])

exhibited in Figure 5.11. Let δ7δ6 . . . δ0 denote the bits of ∆[15]. By setting δ7 = 0 and

then δ7 = 1, the attacker has 2 sets each containing 128 masks; he gathers timings for

each of these two sets; if larger timings are obtained on average when δ7 = 0, then the
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Figure 5.10: GnuTLS TLS median network timings (in hardware cycles) for varying
values of ∆[15] and P ∗[15] = 0x00.
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Figure 5.11: Zoomed view of GnuTLS TLS network timings.

attacker deduces that the MSB of P ∗[15] is a 0; otherwise he guesses that the MSB is 1.

The attacker can also use a reduced set of masks, and collect multiple timing samples

for each mask that he tries. Thus we have two parameters: the total number of masks

S that he uses across the two sets, and the number of timing samples L for each mask.

The second MSB of P ∗[15] is extracted in the same way: now we consider masks for

δ6 = 0 and then δ6 = 1. In principle, we have S as large as 256 again, by varying δ7 as

well as the other 6 bits of ∆[15]. In practice, we just set δ7 = 0 when extracting the

second MSB. The third and fourth MSBs are extracted in roughly the same way, but

now we reverse the test, setting the targeted bit to 1 if larger timings are obtained on

average when δ5 = 0 or δ4 = 0, respectively. This change reflects the ascending trend

within the 4 blocks observed in Figure 5.9.
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(a) 1st block
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(b) 2nd block
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Figure 5.12: Zoomed view of GnuTLS TLS network timings for each of the 4 blocks.
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Success probabilities for this attack are shown in Table 5.2. We tried to recover the

remaining bits, but did not obtain significant success probabilities. Whilst extracting

less plaintext than our OpenSSL attack, far fewer TLS sessions are required in this

attack on GnuTLS. This indicates that ignoring the recommendations of the RFCs can

have severe security consequences.

S
L

4 8 16 32 64 128

4 0.575 0.662 0.746 0.828 0.875 0.937
8 0.516 0.615 0.781 0.836 0.844 1
16 0.531 0.609 0.766 0.852 0.969 1
32 0.536 0.596 0.750 0.898 0.984 1
64 0.544 0.596 0.781 0.937 0.984 1
128 0.555 0.627 0.812 0.977 1 1
256 0.593 0.635 0.859 1 1 1

MSB

S
L

4 8 16 32 64 128

4 0.511 0.580 0.629 0.687 0.656 0.812
8 0.513 0.576 0.695 0.789 0.812 0.812
16 0.515 0.564 0.637 0.742 0.734 0.844
32 0.509 0.549 0.617 0.734 0.766 0.844
64 0.519 0.570 0.656 0.859 0.953 0.969
128 0.544 0.557 0.557 0.914 1 1

Second MSB

S
L

4 8 16 32 64 128

4 0.486 0.451 0.418 0.391 0.422 0.375
8 0.522 0.508 0.523 0.500 0.531 0.625
16 0.537 0.555 0.598 0.625 0.625 0.781
32 0.543 0.572 0.609 0.609 0.609 0.609
64 0.528 0.541 0.602 0.758 0.758 1

Third MSB

S
L

4 8 16 32 64 128

4 0.456 0.434 0.363 0.336 0.312 0.25
8 0.487 0.484 0.445 0.477 0.484 0.375
16 0.495 0.531 0.539 0.570 0.594 0.687
32 0.506 0.520 0.566 0.695 0.828 0.812

Fourth MSB

Table 5.2: GnuTLS success probabilities for recovering the four MSBs of P ∗[15].
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5.6.2 Further Implementations

NSS: Network Security Services (NSS)5 is an open-source set of libraries implement-

ing, amongst other things, TLS. It is widely used, including in Mozilla client products

and Google Chrome.

In the decryption code6 the variable plaintext->len is reduced by the assumed

amount of padding (padding_length + 1) before the padding is checked for correct-

ness. This is the same approach as taken in GnuTLS, potentially rendering the code

vulnerable to an attack recovering a single byte of plaintext per block. The sanity

check performed at the beginning of the decryption code is also problematic, since it

leaves plaintext->len unmodified if the check fails, meaning that MAC verification

may take longer than when the check passes.

PolarSSL: We also examined the PolarSSL7 implementation of TLS. The code8 be-

haves in much the same way as OpenSSL, setting a variable padlen to 0 if the padding

check fails, and then verifying the MAC on a record stripped of padlen bytes. This

would render it vulnerable to the attacks described in Section 5.4.

In fact, this implementation has other problems too. The code does not sanity check

padlen before running the padding check, meaning that out-of-bounds comparisons

may be made if the value of padlen exceeds the plaintext length. It does sanity

check padlen after the padding check, checking that the plaintext is big enough to

contain both the expected amount of padding and the MAC tag. However, it does not

perform any MAC check if this sanity check fails, but instead exits immediately. This

would render the implementation vulnerable to a simple timing-based distinguishing

attack as follows: M0 consists of 256 copies of 0xFF, while M1 consists of 255 arbitrary

bytes followed by 0x00; as in the attack of Section 5.3, the encrypted version C of

one of these is received; the attacker truncates C so that the underlying plaintext has

256 bytes; if the message was M0, then the padding is good, but the post-padding

sanity check fails and no MAC computation is performed; if the message was M1, then

the padding is also good, but now the post-padding sanity check passes and a MAC

computation is performed. This attack produces a larger timing difference than our

previous distinguishing attack and illustrates the role that careful sanity checking plays

in preventing attacks.

5http://www.mozilla.org/projects/security/pki/nss
6We worked with version 3.13.6 available at https://ftp.mozilla.org/pub/mozilla.org/

security/nss/releases/NSS_3_13_6_RTM/src/.
7polarssl.org/
8We worked with version 1.1.4 available at http://polarssl.org/trac/browser/trunk/library/

ssl_tls.c.
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However, none of these attacks would work in practice, since in its default config-

uration, PolarSSL does not send any TLS alert messages when decryption errors are

encountered. This means that PolarSSL is not RFC-compliant in this aspect, since

such alerts are a required part of TLS implementations.

yaSSL: The yaSSL9 embedded SSL library, CyaSSL, is targeted at embedded and

real-time operating system environments. It appears to have rather few known vulner-

abilities, with only 5 being reported in the CVE database10 since 2005. The CyaSSL

code11 does not perform proper padding checks, but instead just examines the last byte

of plaintext and uses this to determine how many bytes to remove. This can be seen

in the following CyaSSL code extract:

if (ssl->specs.cipher_type == block) {

if (ssl->options.tls1_1)

ivExtra = ssl->specs.block_size;

pad = *(input + idx + msgSz - ivExtra - 1);

padByte = 1;

}

dataSz = msgSz - ivExtra - digestSz - pad - padByte;

if (dataSz < 0) {

CYASSL_MSG("App data buffer error, malicious input?");

return BUFFER_ERROR;

}

This approach renders the code vulnerable to the old attack from [68] which recovers

one byte of plaintext per block. This was the only implementation that we found that

still contains this basic flaw. Note also that the sanity checking represented by the last 3

lines of code above would render the code vulnerable to other plaintext recovery attacks

even if the padding check was done properly, since it exits the code without performing

a MAC check if the tested condition (which depends on the byte pad extracted from

the plaintext) is violated.

9http://yassl.com/yaSSL/Home.html
10http://www.cvedetails.com/vulnerability-list/vendor_id-3485/Yassl.html
11We worked with version 2.3.0 available at http://yassl.com/yaSSL/Source/output/src/

internal.c.html.
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Java: We have examined the BouncyCastle12 and OpenJDK13 Java implementations

of TLS.

The BouncyCastle code does careful sanity checking of the padding length (as

indicated by the last byte of plaintext) but treats the padding as having length 1 if

the padding format, when checked, is found to be incorrect (a variable paddingsize is

set to 0, but then the plaintext size is reduced by an amount paddingsize+minLength

where minLength is set to be 1 larger than the MAC tag size). This deviates slightly

from the recommendation of the RFCs to treat the padding as having length zero, but

still allows our attacks in Sections 5.3 and 5.4 to be applied (for Case 3 of the main

plaintext recovery attack in Section 5.4, MAC verification ends up being performed on

a 56-byte message, but this will still involve 5 evaluations of the compression function

for SHA-1).

The OpenJDK code appears follow the recommendation of the RFCs in treating

the padding as having zero length if the padding format, when checked, is found to

be incorrect. This is because this case is trapped by exception handling, during which

the variable defining the plaintext length is not changed. This potentially renders it

vulnerable to our attacks in Sections 5.3 and 5.4.

Other implementations: There are further open-source and many closed-source

implementations of (D)TLS. We have not conducted any further testing to see if these

are vulnerable to any of our attacks. However, we expect that any RFC-compliant

implementation will be vulnerable. We also expect that all implementations will be

vulnerable to simple variants of our attacks, unless the implementers have taken great

care to ensure that the decryption processing time is uniform, or nearly so. Our expe-

riences in investigating open-source implementations suggests this is unlikely.

5.7 Countermeasures

Add Random Time Delays: A natural reaction to timing-based attacks is to add

random time delays to the decryption process to frustrate statistical analysis. In fact,

this countermeasure is surprisingly ineffective, as we explain next.

Consider our distinguishing attack: this attack involves distinguishing two distri-

butions X, Y , where X has mean µ and Y has mean µ + 4, where we measure time

12http://www.bouncycastle.org/viewcvs/viewcvs.cgi/java/crypto/src/org/bouncycastle/

crypto/tls/TlsBlockCipher.java?view=markup
13http://hg.openjdk.java.net/jdk7/l10n/jdk/file/3598d6eb087c/src/share/classes/

sun/security/ssl/SSLSocketImpl.java and http://hg.openjdk.java.net/jdk7/2d/jdk/file/

85fe3cd9d6f9/src/share/classes/sun/security/ssl/CipherBox.java

167

http://www.bouncycastle.org/viewcvs/viewcvs.cgi/java/crypto/src/org/bouncycastle/crypto/tls/TlsBlockCipher.java?view=markup
http://www.bouncycastle.org/viewcvs/viewcvs.cgi/java/crypto/src/org/bouncycastle/crypto/tls/TlsBlockCipher.java?view=markup
http://hg.openjdk.java.net/jdk7/l10n/jdk/file/3598d6eb087c/src/share/classes/sun/security/ssl/SSLSocketImpl.java
http://hg.openjdk.java.net/jdk7/l10n/jdk/file/3598d6eb087c/src/share/classes/sun/security/ssl/SSLSocketImpl.java
http://hg.openjdk.java.net/jdk7/2d/jdk/file/85fe3cd9d6f9/src/share/classes/sun/security/ssl/CipherBox.java
http://hg.openjdk.java.net/jdk7/2d/jdk/file/85fe3cd9d6f9/src/share/classes/sun/security/ssl/CipherBox.java


Chapter 5. Lucky Thirteen 5.7. Countermeasures

in units of compression function evaluations. Suppose X, Y both have variance σ2.

Now suppose we add a random delay that is uniformly chosen from the interval [0, T ]

to the decryption process. Then we obtain distributions X ′, Y ′ with means µ + T/2

and µ + 4 + T/2 and variance σ2 + (T 2 − 1)/12. Now consider the random variables

VL =
∑L

i=1X
′
i/L and WL =

∑L
i=1 Y

′
i /L obtained from averaging L samples of X ′, Y ′,

respectively. Treating these samples as being independent, the Central Limit Theorem

guarantees that VL, WL are approximately Normal with means µ + T/2, µ + 4 + T/2

and equal variance τ2 = (σ2 + (T 2 − 1)/12)/L. Note that the difference between the

means of VL, WL is 4; now, using standard results about the Normal distribution, it

is easy to see that if 4τ ≤ 4, then the distributions of VL, WL are sufficiently “tight”

about their means that a simple statistical test based on taking means of L samples

will be 90% accurate. Solving for L, we see that we need

L ≥ σ2 + (T 2 − 1)/12

and it is apparent that the effect of adding the random time delay is to increase the

number of samples needed from σ2 to σ2 + (T 2 − 1)/12. From our experiments for

OpenSSL, we estimate that σ ≈ 10; then taking T = 50 only increases the number of

samples needed for a 90% success rate from 100 to about 300, at the cost of increasing

the average decryption time by 25 compression function evaluations. This does not

seem like a good trade-off between security and performance.

Use RC4: The simplest countermeasure for TLS is to switch to using the RC4 stream

cipher in place of CBC-mode encryption. However, this is not an option for DTLS.

When a stream cipher is used in TLS, no padding is required. Consequently none of

the attacks in this chapter will work. RC4 is widely supported in implementations of

TLS, the same countermeasure is effective against the BEAST attack, and was fairly

widely adopted in response to BEAST (e.g. by Google and Facebook). The use of a

stream cipher in a MEE construction is well-supported by theory [57]. There are two

potential drawbacks of making this switch. Firstly, the use of variable length padding

in CBC-mode allows for a modicum of plaintext length hiding, and this is no longer

possible when using a stream cipher. Secondly, and more importantly, the first bytes

of keystream output by the RC4 generator have certain small biases, and TLS does

not seem to discard these before starting encryption [94]. Recently, the authors of [4]

presented new biases in the RC4 keystream output, as described in Chapter 3, making

RC4 less likely to be a feasible long-term replacement of CBC-mode encryption for

TLS.
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Use Authenticated Encryption: Another possibility is to switch from MEE-TLS-

CBC to using a dedicated authenticated encryption algorithm, such as AES-GCM or

AES-CCM which were standardised for use in TLS in RFCs 5288 [90] and 6655 [63],

respectively. In theory, this should obviate all attacks based on weaknesses in the MEE

construction. However, we cannot rule out implementation errors, and we are not aware

of any detailed analysis of implementations of these algorithms in (D)TLS for potential

side-channels. A further issue is that authenticated encryption was only added in TLS

1.2, and this version of TLS is not yet widely supported in implementations. Finally,

the current authenticated encryption algorithms do not offer any length-hiding facility.

Careful implementation of MEE-TLS-CBC decryption: Our final option is to

encourage more careful implementation of MEE-TLS-CBC decryption. However, we

believe that implementers will find it difficult to do this in a way that eliminates all

significant timing channels (especially for DTLS).

The key requirement is to ensure constant processing time for all MEE-TLS-CBC

ciphertexts of a given size. That is, the total processing time should depend only on the

ciphertext size, and not on any characteristics of the underlying plaintext (including

padding). The basic principle to be followed in achieving this is quite simple: since

the major timing differences arise from MAC processing, implementations should make

sure the same amount of MAC processing is carried out no matter what the underlying

plaintext indicates the message length to be.

However, this simple principle is complicated by the need to also perform careful

sanity checking on the underlying plaintext whilst avoiding the introduction of yet more

timing side-channels, and to make sure appropriate amounts of MAC processing are

performed even when these checks fail.

A further complication arises because the number of bytes to be examined in the

padding check depends on the last byte of the last plaintext block, and so, even if

the MAC processing is made uniform, the running time of the padding check may

still leak a small amount of information about the plaintext. This can be seen for

GnuTLS in Figure 5.9: notice that the maximum difference in the running time for

the padding check is more than 1000 hardware cycles for this implementation. For

example, then, distinguishing attacks would require a timing resolution of around 1000

hardware cycles, while a timing resolution of 250 cycles would be sufficient to allow an

attack recovering 2 bits of plaintext per block for this implementation.

With these remarks in mind, we now proceed to give a detailed prescription of

how to achieve constant-time processing of MEE-TLS-CBC ciphertexts, incorporating

suitable sanity checking. In what follows, we let plen denote the length (in bytes) of
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the plaintext P obtained immediately after CBC-mode decryption of the ciphertext,

padlen denote the last byte of that plaintext interpreted as an integer between 0 and

255, and t denote the length of the MAC tags (in bytes). Also, let HDR, SQN denote the

(D)TLS record header and the expected value of the sequence number for this record.

Our recommended procedure is then as follows:

1. First sanity check the ciphertext: check that its length in bytes is a multiple of

the block-size b and is at least max{b, t+1} (for chained IVs) or b+max{b, t+1}
(for explicit IVs). If these conditions are not met, then return fatal error.

2. Decrypt the ciphertext to obtain plaintext P ; now plen will be a multiple of b

and at least max{b, t+ 1}.

3. If t + padlen + 1 > plen, then the plaintext is not long enough to contain the

padding (as indicated by the last byte of plaintext) plus a MAC tag. In this case,

run a loop as if there were 256 bytes of padding, with a dummy check in each

iteration. Then let P ′ denote the first plen − t bytes of P , compute a MAC on

SQN || HDR || P ′ and do a constant-time comparison of the computed MAC with

the last t bytes of P . Return fatal error.

4. Otherwise (when t+padlen+ 1 ≤ plen), check the last padlen+ 1 bytes of P to

ensure they are all equal (to the last byte of P ), ensuring that the loop does check

all the bytes (and does not stop as soon as the first mismatch is detected). If this

fails, then run a loop as if there were 256 − padlen − 1 bytes of padding, with

a dummy check in each iteration, and then do a MAC check as in the previous

step. Return fatal error.

5. Otherwise (the padding is now correctly formatted) run a loop as if there were

256−padlen−1 bytes of padding, doing a dummy check in each iteration. Then

let P ′ denote the first plen−padlen−1− t bytes of P , and let T denote the next

t bytes of P (the remainder of P is valid padding). Run the MAC computation

on SQN || HDR || P ′ to obtain a MAC tag T ′. Then set L1 = 13 + plen − t,

L2 = 13 + plen− padlen− 1− t, and perform an additional dL1−55
64 e − d

L2−55
64 e

MAC compression function evaluations (on dummy data). Finally, do a constant-

time comparison of T and T ′. If these are equal, then return P ′. Otherwise, return

fatal error.

When implementing the above procedure, it would be tempting to omit seemingly

unnecessary computations that are performed, for example when t + padlen + 1 >

plen. However, these are needed to prevent other timing side-channels like those

reported in Chapter 4 for the GnuTLS implementation of DTLS. Notice also that the

170



Chapter 5. Lucky Thirteen 5.7. Countermeasures

Pr
ob

ab
il

it
y

1.54�106 1.55�106 1.56�106 1.57�106 1.58�106 1.59�106 1.60�106 1.61�106
0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

Hardware Cycles �Calculated by Attacker�
Figure 5.13: Distribution of timing values (outliers removed) for distinguishing attack
on OpenSSL TLS, using our decryption procedure.

dummy computations performed in the last step are compression function evaluations

and not full MAC computations. These give a MAC computation time that is the same

irrespective of how much padding is removed (and equal to that carried out in earlier

steps). Finally, note that some adjustments to this procedure would be needed when

SHA-384 is used as the hash function in HMAC: SHA-384 operates on 128-byte blocks

and uses a 16-byte encoding for message length.

We have implemented the above procedure by modifying OpenSSL version 1.0.1,

the same version used for our attacks. We modified the code in files ssl/s3_pkt.c

and ssl/t1_enc.c to perform the required sanity checks, dummy padding checks,

and dummy MAC compression function evaluations. In ssl/s3_pkt.c, we make a

single call to OpenSSL’s SHA1_Update function using a message size that will invoke

the required number of dummy MAC compression function evaluations. Our call to

SHA1_Update happens before OpenSSL’s actual MAC calculation and comparison op-

erations.

We then ran our distinguishing attack from Section 5.3 against the modified code

of OpenSSL. Each packet in the attack passes the padding check, but fails MAC ver-

ification, causing the server to close the TLS session and send an encrypted alert

message. Figure 5.13 shows the distribution of timing values (in hardware cycles) after

implementing our procedure. This figure should be compared with Figure 5.2: visual

inspection alone shows that the timing difference is substantially reduced. In fact, the

separation between the medians of the two distributions is reduced from about 8500 to

about 1100 hardware cycles (from around 2.5µs to 0.32µs). In turn, this small separa-

tion means that 128 sessions are needed to achieve a distinguishing success probability
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of 0.68, whereas, prior to our modifications, just 1 session was enough to give a success

probability of 0.756. For the plaintext recovery attack, the adversary will have access

to timing differences roughly one quarter of this, i.e. roughly 80ns on our hardware.

Notice also that the two distributions are reversed compared to Figure 5.2, i.e. process-

ing 0xFF packets now takes longer, on average, than for 0x00 packets. We believe that

this is caused by overhead introduced by the SHA1_Update function call that occurs for

0xFF packets but not 0x00 packets.

To achieve further reductions in timing difference would require a more sophisticated

“constant time” programming approach. The OpenSSL patch addressing the attacks

in this chapter provides an exemplar of how to do this. The complexity of the OpenSSL

patch is notable, with around 500 lines of new ‘C’ code being required14.

5.7.1 Disclosure

Given the large number of affected implementations, we first notified the IETF TLS

Working Group chairs, the IETF Security Area directors and the IRTF Crypto Forum

Research Group (CFRG) chairs of our attacks in November 2012. We then began the

process of contacting individual vendors:

OpenSSL addressed the attacks in versions 1.0.1d, 1.0.0k and 0.9.8y15.

NSS addressed the attacks in version 3.14.316.

Microsoft performed an investigation and determined that the issue had been ade-

quately addressed in previous modifications to their TLS and DTLS implementations

Apple were notified of our attacks in December 2012. The status of patch development

by Apple was not communicated to us.

GnuTLS corrected the programming errors in decryption that we identified in version

3.1.6 (released 02/01/2013) and addressed the attacks in versions 2.12.23, 3.0.28 and

3.1.717.

PolarSSL addressed the attacks in version 1.2.518.

CyaSSL addressed the attacks in CyaSSL version 2.5.019.

MatrixSSL addressed the attacks in version 3.4.120.

Opera addressed the attacks in Opera version 12.1321.

14http://www.imperialviolet.org/2013/02/04/luckythirteen.html
15http://www.openssl.org/news/secadv_20130205.txt
16https://developer.mozilla.org/en-US/docs/NSS/NSS_3.14.3_release_notes
17http://www.gnutls.org/news.html
18https://polarssl.org/tech-updates/releases/polarssl-1.2.5-released
19http://www.yassl.com/yaSSL/Docs-cyassl-changelog.html
20http://matrixssl.org/news.html
21http://www.opera.com/docs/changelogs/unified/1213/
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F5 were notified of the attacks in December 2012. They have informed us that their

TLS data plane traffic is not vulnerable due to cryptographic offload, but that local

management ports and virtual editions were vulnerable and the attacks were addressed

for different F5 platforms22.

BouncyCastle addressed the attacks in version 1.48 of the Java library23. The C#

version of BouncyCastle was fixed in CVS at a similar time, and will be included in

release 1.8 at a later date.

Oracle (Java) addressed the attacks as part of a special critical patch update of

JavaSE24.

In addition, a number of other companies and organisations were given advance

notice of the attacks prior to them being made public.

5.8 Chapter Conclusion

We have demonstrated a variety of attacks against implementations of (D)TLS. We

reiterate that the attacks are ciphertext-only, and so can be carried out by the standard

MITM attacker, without a chosen-plaintext capability. The attacks that are possible

depend crucially on low-level implementation details, as well as factors such as the

relationship between the MAC tag size t and the block size b. All implementations we

examined were vulnerable to one or more attacks.

For TLS, we need a multi-session attack, with, in some cases, many sessions. This

limits the practicality of the attacks, but note that they be further improved using

standard techniques such as language models and sequential estimation. They can also

be enhanced in a BEAST-style attack to enable efficient recovery of HTTP cookies.

The timing differences we must detect are close to or below the levels of jitter one

typically finds in real networks. In particular, our attacker needs to be positioned

relatively close (in terms of network hops) to the machine being attacked. Still, the

attacks should be considered as a realistic threat to TLS, and we have described a

range of suitable countermeasures. The attacks are much more serious for DTLS,

because of this protocol’s tolerance of errors and because of the availability of timing

amplification techniques from Chapter 4. Very careful implementation of the MEE-

TLS-CBC decryption algorithm is needed to thwart these amplification techniques.

In view of this, we highly recommend the use of a suitable authenticated encryption

algorithm in preference to CBC-mode for DTLS.

22http://support.f5.com/kb/en-us/solutions/public/14000/100/sol14190.html
23http://www.bouncycastle.org/latest_releases.html
24http://www.oracle.com/technetwork/topics/security/javacpufeb2013update-1905892.html
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More generally, our attacks illustrate the difficulty of implementing MEE securely.

Similar issues were identified for MEE configurations of IPsec in [30]. We encourage

protocol designers in general, and the IETF TLS working group in particular, to move

away from using MEE. None of the attacks on TLS presented here would have been

possible with an Encrypt-then-MAC approach, for example. A more realistic solution

for TLS is to move as quickly as possible to TLS 1.2 and adopt its authenticated

encryption algorithms.
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Chapter 6

Conclusion

6.1 Themes

In this thesis, we demonstrated how weaknesses in the design and implementation of

three secure network protocols can be exploited using new techniques. For example:

The DepenDNS protocol suffers from a number operational definicies and is vulnerabe

to cache poisoning and denial of service attacks under some assumptions.

The OpenSSL implementation of DTLS did not include the padding oracle attack

countermeasure, due, most likely, to the assumption that the lack of error messages

makes DTLS irrelevant to padding oracle attacks. This is an implementation decision

that we exploited to perform a full plaintext recovery attack against the OpenSSL

implementation of DTLS, discussed in Chapter 4.

The authors of the DTLS standards [82, 83] opted to make anti-replay an optional

security feature. This is a design decision that greatly assisted us to speed up the

attack against DTLS, discussed in Chapter 4.

The padding oracle attack countermeasures introduced in TLS 1.1 and 1.2, DTLS 1.0

and 1.2, and in implementations of TLS 1.0 and SSL 3.0, did not fully implement

constant time processing. The way the countermeasures were constructed is a design

decision that we exploited to create new plaintext recovery attacks, discussed in Chapter

5.

A number of TLS and DTLS implementations had trivial coding errors in some security

checks, were not compliant with the standards, or did not implement countermeasures

against known attacks. For example, the GnuTLS implementation of (D)TLS did not

handle the padding check correctly. PolarSSL, on the other hand, did not generate

TLS Alert messages as per the standard, while yaSSL was vulnerable to old TLS
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attacks. More examples are discussed in Chapter 5, demonstrating the current state of

implementing (D)TLS in some popular open source libraries.

MEE is hard to analyse and hard to implement securely: The MAC-Encode-

Encrypt construction has proven to be hard to implement securely with long history of

attacks and fixes. In addition, despite all the effort, achieving constant time processing

is difficult. The 500-line patch to address our attacks in OpenSSL demonstrates the

amount of efforts and changes required to try to achieve constant time processing,

eliminating side channel leakages in general.

Practicality: Our work on (D)TLS demonstrates the possibility of practicality im-

plementing attacks that might seem purely theoretical in nature. We argue that our

attacks against TLS and DTLS are on the verge of being practical.

Attacks only get better: In Chapter 5, we demonstrated how to reduce the com-

plexity of all our attacks against (D)TLS, lowering the number of sessions required to

recover an unknown byte from roughly 223 to 213, by exploring the possibility of com-

bining the original attack with the use of a JavaScript and targeting base64 encoded

cookies.

Impact: The TLS community (the IETF TLS working group, open source code de-

velopers, vendors and researchers) reacted positively to our work. The impact of our

work extends from patching most of the TLS implementations to further speeding up

the deployment of TLS 1.2 and the adoption of authenticated encryption. For example,

NSS, which is used in Firefox and Google Chrome, released in July 2013 version 3.15.11

that brings TLS 1.2 support, but without AES-GCM that is planned for a future re-

lease. In fact, a patch that implements AES-GCM has already been submitted to NSS2

and is available in the beta of version 3.15.23.

Bridging a gap: During the period of discussing and implementing the countermea-

sures to our attacks in Chapter 5, we were surprised by the lack of collaboration, other

than some individual initiatives, between the IETF TLS working group, TLS open

source code developers, vendors and academic researchers. In the case of (D)TLS, we

advocate for collaboration between the IETF TLS working group and the rest of the

1https://developer.mozilla.org/en-US/docs/NSS/NSS_3.15.1_release_notes
2https://bugzilla.mozilla.org/show_bug.cgi?id=880543
3https://hg.mozilla.org/integration/mozilla-inbound/rev/096d62676298
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TLS community (researchers and software developers); we argue that our work is one

step towards achieving this.

6.2 Areas of Further Research

Enhancing our attacks against (D)TLS is one area that could be explored further. One

idea is to implement the attacks in combination with a language model as described

in Chapter 5. There is also the opportunity to examine the possibility of mounting

the attacks in a multi-hop network setup, combined with more sophisticated statistical

methods than the ones we used.

Almost all of the open source (D)TLS libraries have implemented countermeasures

for the attacks discussed in Chapter 5. An interesting question is whether the deploy-

ment of these fixes has effectively eliminated the side channels exploited in our attacks.

Further work can be carried out to test this. In addition, there is the potential of

discovering other unknown sources of side channel information in the current deploy-

ments of (D)TLS, and which could be exploited to construct new attacks against the

protocols.

Analysing the AES-GCM implementation in open source (D)TLS libraries is an-

other area of research, especially that authenticated encryption, supported in TLS 1.2,

is now generally considered the natural replacement for MEE and RC4 in (D)TLS.

We advocate for further research in understanding the interaction between secure

network protocols and their upper and lower-layer protocols, and its impact on the

overall security level of a system. We believe that this is an area where further research

is needed.
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