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Abstract

Abstract

A new method for dating brittle deformation is presented, based on U-Pb dating of 

syndeformationally grown calcite fibres, or "tectonic carbonates", found e.g. on brittle 

slickensides and in tension fractures. Brittle structures from various areas in the Alps 

were  sampled  from outcrops  where  the  deformation  age  is  well  constrained  in  the 

literature, to be able to test the results of the new method.

Laser ablation inductively-coupled plasma mass spectrometry (LA-ICPMS) is used 

for rapid screening of samples with respect to their U, Th, Pb and other trace and major 

element concentrations and spacial distribution. For data reduction of LA-ICPMS data, 

an add-on package for the open-source "R" environment was developed that in addition 

to one-dimensional single line scans allows two-dimensional trace and major elemental 

mapping of the samples.

Based on this spatial information, regions within the samples with high, yet variable 

U/Pb ratios are chosen for mechanical subsampling. For subsequent solution-based U-

Th-Pb isotopic analysis, an optimized low-Pb blank methodology has been developed to 

facilitate work with very low-concentration (typ. ≤ 1 ppm U, as low as tens of ppb Pb) 

calcite samples.

High precision isotope-dilution U-Th-Pb isotope ratio measurements are conducted 

on  a  multi-collector  (MC-)  ICPMS.  Alternatively,  determination  of  isotopic  ratios 

directly  from LA-ICPMS analyses  are  conducted in  situ,  which yields  results  much 

faster, but with limited precision due to instrumental limitations.

Only a small fraction of screened samples yielded precise ages. The deformation 

ages fit respective published models of regional structural evolution. The ages obtained 

in situ correspond well with the data from solution chemistry, although with very large 

error margins. Where repeated measurement of the same structures was achieved, the 

respective ages lie within error of each other.

For faulting in the Swiss Jura, ages of 9.05 ± 0.94 Ma were obtained, constraining 

maximum age of later folding. Thrusting of the most external Digne Nappe (French 
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Alps) was dated to 9.59 ± 0.05` Ma, in accordance with literature. In the Austrian Gosau 

Basin, distinct deformation phases at 29  ± 2 and 23  ± 1 Ma could be observed, ages 

from the LA-ICPMS data of ~42 and ~27 Ma. confirm the first age and add an older  

observed deformation phase. This correlates with basin formation and Miocene tectonic 

overprinting  in  this  area.  Presumably  hydrothermally  grown calcite  sealing  fissures 

associated with the formation of the Miocene Fohnsdorf basin (Austria), could be dated 

to 13.44 ± 0.84 Ma.  Other samples yielded less conclusive age results, mainly due to 

geological scatter, aggravated by the extremely low Pb concentrations and U/Pb ratios 

in some samples.
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Units and abbreviations

Units and abbreviations

The following abbreviations and acronyms are used throughout the present work. 

cps ............................. counts per second

FEP ........................... Tetrafluoroethylene-Perfluoropropylene

ICPMS ...................... Inductively coupled plasma mass-spectrometry

LA-ICPMS ............... Laser ablation ICPMS

MC-ICPMS ............... Multi-collector ICPMS

PE, HDPE, LDPE ..... Polyethylene, high-density or low-density 

PFA ........................... Perfluoroalkoxy

PP .............................. Polypropylene

ppb ............................ parts per billion, factor 10-9

ppm ........................... parts per million, factor 10-6

PS .............................. Polystyrene

PTFE ......................... Polytetrafluoroethylene

RHUL ....................... Royal Holloway, University of London

Additionally, SI units and prefixes (e.g. ml, MΩ) are used. Non-Si units are avoided 

and their respective conversion to SI units used, where required.

Common derived non-SI units of time and their abbreviations are used in the text: 

min (minute), h (hour), d (day), a (year). As common in Earth Sciences, the non-SI 

symbol “a” for annum is combined with standard SI prefixes to form ka (thousands of 

years), Ma (millions of years) and Ga (“billions” of, i.e. 109 years). This work follows 

the recommendations in  Holden et al.,  2011, using “Ma” to indicate both “x million 

years before present” and “a duration of x million years” (see Christie-Blick, 2012 for a 

discussion and alternate notations).
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Units and abbreviations

Structural  geological  data  like  fault  planes,  fractures  and  slip  directions  on 

slickensides are given as azimuth of dip direction (clockwise from the north) and dip 

angle in "three digits / two digits" notation (e.g. 076/25 denotes a feature dipping down 

25º from the horizontal towards the ENE). Abbreviations fp for fault planes, l for linears 

(usually, a slickenfibre, occasionally numbered l1, l2, and so forth to denote different 

movements on the same fault plane), j for joints and fractures, fa for fold axes, ss for 

sedimentary bedding, s for cleavage and so on are used to identify features, sense of 

movement  is  given  as  sn  (sinistral),  dx  (dextral),  up  (up)  or  dn  (down).  Thus,  an 

example of a fault plane with slickenfibres and sense of movement would be:

fp 328/76 l 237/05 sn

page 12



Introduction

1.  Introduction

1.1  Project aim

In this study, we evaluate and develop U-Pb dating of tectonic carbonates as a new 

method  to  directly  determine  the  age  of  brittle  deformation  (see  chapter  2.1 for  a 

definition of "tectonic carbonates"). This method could yield unprecedented insight into 

not only tectonic processes on a plate-tectonic and regional scale, but potentially also 

into  the  faulting  process.  Applications  could  involve  studies  of  regional  tectonic 

evolution, fault zone and single fault evolution and fault kinematics (e.g. duration of 

activity and seismicity), but also commercial applications like fracture sealing ages in 

hydrocarbon reservoirs or ore deposits.

1.2  Approach

Together with local collaborators, we chose sampling areas in various regions of the 

Alps where the deformation ages are well established in the literature, to have a control 

on the results of our method (see chapters 2.2 and 6.4). All samples were screened by 

single-track  profiling  and  occasionally  2D  mapping  with  laser-ablation  inductively 

coupled mass spectrometry (LA-ICPMS) for their major and trace element contents and 

distribution, in particular for an elevated U/Pb ratio (chapters 4.7 and 4.8). Samples with 

a favourably high U/Pb ratio and high enough concentrations in these elements were 

further subsampled, dissolved, mixed with an isotopic "spike", and U (and Th) and Pb 

were  separated  with  extraction  resins  (see  chapter  4.3 and  4.4).  The  wet-chemical 

workflow involved was optimised towards small sample sizes and minimal procedure 

blanks  (see  chapters  4.4.1 and  4.12.2).  Isotopic  ratios  were  determined  with  multi-

collector  (MC-)  ICPMS (chapter  4.10).  Alternatively,  isotopic  ratios  were  measured 

directly by LA-ICPMS, albeit with much lower precision (see chapter  4.9). From the 

isotopic ratios, crystallisation ages, assumed to be deformation ages,  were calculated 

(chapters 3.2, 4.10 and 4.12.3).
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1.3  Previous work

Isotopic dating of Tectonic deformation

To unravel  the  geodynamic  evolution  of  an  area,  regional  tectonic  studies  must 

involve the timing of the movements and deformation of geological units. Whereas the 

relative sequence of deformations can usually be deduced from direct observations on 

the map- to microscopic scale (see e.g. chapters 2.2.1 and 4.2), the absolute ages of the 

individual processes involved are determined with isotopic dating methods.

Depending  on  the  specific  geological  setting,  any  dating  technique  might  yield 

information  that  is  relevant  to  the  tectonic  evolution  of  an  area.  Only  the  most 

commonly applied techniques are mentioned here in a short overview of applications to 

tectonics, without background information on the principles and methodology for each 

technique. An introduction to U-Pb dating, with focus on carbonates, is given in chapter 

3.2, further information on the other techniques can be found in the relevant literature 

(see in e.g. Faure & Mensing, 2005; Zou, 2007; Gill, 1997; Banner, 2004).

In principle,  a distinction can be made between indirect methods of determining 

deformation ages, based on reconstructing the respective movements of homogeneous 

areas/fault  blocks  (e.g.  thermobarometry  combined  with  dating  of  metamorphosis, 

thermochronology, exposure dating, paleomagnetism), and direct dating of fault activity 

as recorded in materials newly formed or geochronologically reset within fault zones 

(e.g. fault gouges, pseudotachylytes, syntectonic intrusions and the main topic of this 

study: slickenfibres and fracture fills).

Classical isotopic systems in use are based on the growth of a daughter nuclide from 

the radioactive decay of a parent (see chapter 3.2.1), e.g. K-Ar, 40Ar/39Ar, Rb-Sr Sm-Nd, 

Lu-Hf, and U-Pb. This assumes the system (mineral of interest) to behave as a closed 

system since the dated event.  Due to  diffusion of parent-,  daughter-  or intermediate 

nucleides out of (or into) the crystal  lattice,  each mineral  exhibits  a certain  closure 

temperature (Tc), below which no significant loss (or gain) occurs, and above which the 

isotopic  system  is  reset.  Thus,  isotopic  ages  for  many  isotopic  method/mineral 

combinations are not actually formation ages, but cooling ages below Tc. For different 
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isotopic systems (elements) within the same mineral, Tc differs due to different diffusion 

coefficients; so potentially, several cooling ages from different isotopic systems can be 

determined on the same mineral, allowing to reconstruct the cooling history (e.g Berger 

& Bousquet, 2008; Bousquet et al., 2008; Blanckenburg et al., 1989; Freeman et al., 

1998; see also "Thermochronology", below).

Tectonic processes can be dated if they cause the growth of minerals which these 

methods are  applicable to  on structures  associated with the deformation.  Dating the 

metamorphosis  within  fault  blocks  (combined  with  P-T  information  from 

thermobarometry) and inferring the relative movements can indirectly date fault activity 

(e.g.  Müller, 1998; Müller, 2003; Krohe, 1987; Essene, 1989; Bousquet et al.,  2008; 

Blanckenburg et al., 1989; Cliff, 1985; Fossen & Dallmeyer, 1998; Mezger et al., 1991). 

More directly, the formation of mylonites on ductile and semi-brittle faults can be dated 

(e.g. Müller et al., 2000a; Costa & Maluski, 1988; Freeman et al., 1998; Dunlap et al.,  

1991; Kralik et al., 1992; Lips et al., 1998; Müller et al., 2000a; Rolland et al., 2009; 

Shaw et al., 2001; Shibata & Takagi, 1988; Sherlock et al., 2004; Wang & Lu, 2000; 

Leloup et al., 1993), as can the rarer cases of intrusion of igneous rocks into a fault zone 

(e.g. Ring & Collins, 2005; Pomella et al., 2010; Glodny & Hetzel, 2007). Müller et al., 

2000b,  dated  growth  increments  of  micas  grown  in  the  pressure  shadow  of 

porphyroclasts in a shear zone, obtaining not only the age of deformation, but also the 

duration.  A combination  of  different  techniques  (including  those  mentioned  below) 

yields  a  more  comprehensive  picture  of  the  geodynamic  evolution  of  an  area  (e.g. 

Mancktelow et al., 2001; Müller, 1998; Müller, 2003; Cliff, 1985; Bousquet et al., 2008; 

Essene, 1989; Csontos & Voros, 2004; Freeman et al., 1998; Berger & Bousquet, 2008).

The dating of clay minerals formed in fault gouges, and of pseudotachylytes, both 

formed on brittle faults, is widely applied, see "Dating brittle faults" below.

U series  dating is  based  on  the  fact  that  due  to  the  half  lives  of  the  daughter 

nucleides in the chain of radioactive decay, it takes a certain time (~1Ma) to establish 

secular  equilibrium  (see  chapter  3.2.1)  in  a  system.  During  that  time,  isotopic 

disequilibrium allows to determine the time since formation (or reset). This technique is 

the method of choice in  age determinations for  studies  of relatively young samples 
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(younger  than  ~550  ka),  e.g.  in  Quarternary  research,  palaeoclimate  studies, 

archaeology and palaeontology.

Thermochronology is  the  combination  of  different  temperature-sensitive 

geochronometers to reconstruct the cooling history of a sample. From this, exhumation 

ages and -rates, and thus fault activities can be inferred (e.g.  Fillipone et al.,  1995). 

Common methods in use are Rb-Sr and K-Ar mentioned earlier, (U-Th)/He and fission 

track  dating.  In  fission  track  dating,  Tc is  the  temperature  above which  the  system 

contains enough energy to continuously heal the radiogenically induced defects in the 

crystal lattice (the "fissures"). For the (U-Th)/He method, Tc is the temperature below 

which the radiogenically produced He can not (significantly) escape the host mineral.

Exposure dating like the cosmogenic nucleides and OSL methods,  determine the 

time since exposure or burial of a sample (respectively), which can yield information on 

tectonic processes, depending on the local geological situation (e.g. Ritz et al., 1995).

Paleomagnetism has been used to date pseudotachylytes on fault planes, and thus 

the tectonic process causing their formation (e.g. Eide et al., 1997; Torsvik et al., 1992). 

Indirectly,  tectonic  movements  have  been  deduced  from the  relative  movements  of 

tectonic blocks, observed by palaeomagnetism of sediments or magmatic rocks in these 

blocks  (e.g.  Channell  et  al.,  1992; Csontos  & Voros,  2004; Marton & Fodor,  2003; 

Pomella et al., 2010; Thöny et al., 2006; Wortmann et al., 2001).

Direct dating brittle faults

Brittle  deformation  usually  occurs  in  the  uppermost  crust,  at  relatively  low 

temperatures. Thus, only few minerals grow syndeformationally that could record the 

faulting age. Various attempts have been made to directly date brittle deformation (see 

e.g. in van der Pluijm et al., 2001). The most common techniques are isotopic dating of 

syndeformationally grown clay minerals and micas in fault gouges by use of the K-Ar, 
40Ar/39Ar and Rb-Sr method and combinations thereof (e.g. Lyons & Snellenburg, 1971; 

Kralik et al., 1987; Shibata & Takagi, 1988; Takagi et al., 1991; Tanaka et al., 1995; 

Kosaka & Chikashige, 2002; Tanaka et al., 1992; Wang et al., 2009; Kralik et al., 1992; 

Zwingmann et al.,  2004; Choo & Chang, 2000; Kosaka & Chikashige,  2002van der 
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Pluijm et al., 2006; Och et al., 2009). Parry et al., 2001, combined 40Ar/39Ar with apatite 

fission track dating of the exhumation of the adjacent blocks. Bonhomme et al., 1987, 

dated clays from within (later) mineral-filled fractures by the K-Ar method. Different 

grain size fractions from fault gouges commonly give different ages, which is due to 

alteration and continued/new growth of clay minerals, and has to be interpreted in the 

respective geological framework (see the works listed above).

Masuda et al., 1995, studied the the behaviour of Pb isotopes in fault gouges and the 

implications for U(Th)-Pb dating of this material. Eyal et al., 1992, used U/Th dating of 

carnotite slickenfibres on brittle faults. Plan et al., 2010, use this dating technique on 

deformed  carbonate  speleothems  to  deduce  fault  activity  on  the  fault  cutting  the 

investigated cave.

Bar  et  al.,  1974,  used  fission  track  dating  of  epidotes  from  fault  planes  and 

correlated fractures to date fault activity. Thermoluminescence of fault gouges can also 

be used (Banerjee et al., 1999).

Dating  of  pseudotachylytes by  isotopic  methods  (e.g.  Kohút  &  Sherlock,  2003; 

Müller  et  al.,  2002),  fission  track  dating  (e.g  Murakami  &  Tagami,  2004) or 

palaeomagnetism (e.g. Eide et al., 1997; Torsvik et al., 1992) can very exactly determine 

the age of their formation.

Electron Spin Resonance (ESR) dating (Grün, 1989) has been used to determine the 

age of minerals grown on fault planes (e.g. Ikeya et al., 1982) and fault gouge (Buhay et 

al., 1988).

As mentioned earlier, a combination of methods will lead to a more comprehensive 

picture of tectonic evolution, as demonstrated in e.g. Zwingmann & Mancktelow, 2004, 

Siebel et al., 2010, Zwingmann et al., 2010, or Kralik et al., 1992.
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Laser ablation

Laser  ablation has  been applied  to  analyse a  wide range of  samples  for  various 

applications (see e.g. in Durrant, 1999; Günther & Hattendorf, 2005; Fryer et al., 1995). 

LA-ICPMS combines the advantages of microsampling by laser ablation (easy sample 

preparation  and  rapid  sample  throughput,  high  resolution,  in  situ  spatially  resolved 

analysis)  with  those  of  analysis  by  ICPMS  (ppb  detection  limits,  wide  elemental 

coverage and a linear dynamic range of up to 9 orders of magnitude ; Durrant, 1999; 

Fryer et al., 1995).

The  method  has  been  extensively  used  for  the  multi-elemental  microanalysis  of 

various  geological  materials  (e.g.  Günther  et  al.,  1997;  Jackson et  al.,  1992),  single 

mineral grains (e.g. Jeffries et al., 1998) and the in situ determination of isotopic ratios – 

see e.g. "In situ LA-ICPMS U-Pb dating" below, but it has also been used for many 

other isotopic systems. Because the ablation process and the ICP ion source respond 

robustly to a wide range of different analytes (Durrant, 1999; Günther & Hattendorf, 

2005), the method can also be applied to e.g. fluid inclusion studies (e.g. Günther et al., 

1998), metallurgical studies (e.g. in Günther & Hattendorf, 2005; Arrowsmith, 1987), 

melt inclusions (e.g. Halter et al., 2004), and in material sciences, biological sciences 

and forensics (see e.g. in Günther & Hattendorf, 2005). 

LA-ICPMS analysis of isotopic ratios has been used in archaeological studies, e.g. 

to classify glazings on ceramics with minimal sample damage (Resano et al., 2008). 

Sinclair  et  al.,  1998,  used  LA-ICPMS  to  reconstruct  high-resolution  seasonal 

patterns  in  the isotopic composition of  corals.  Hathorne et  al.,  2009,  analysed trace 

element variations in foraminifera tests, to reveal variations in environmental factors 

and throughout ontogeny. Teeth are of special interest for high-resolution geochemical 

and isotopic studies, because of their continuous record over time of growth and their 

good preservation potential in the fossil record (e.g. Eggins et al., 2003; Müller et al.,  

2009a).  Hoffmann  et  al.,  2008,  demonstrated  the  advantages  of  the  high  spatial 

resolution obtainable to aid in multi-method fission track, TIMS and ESR analyses of 

fossil equid teeth. Duval et al., 2011, also worked on fossil equid teeth, but used LA-

ICPMS to map U and Th isotopic ratios in high resolution. The principle of using an 
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array of spot- or single-track LA-ICPMS analyses to construct two-dimensional trace- 

and major element maps has been utilised on geological and biological materials e.g. by 

Woodhead et  al.,  2007, and Ulrich et  al.,  2009. Dedicated software for this  purpose 

greatly facilitates the data processing involved (e.g. Hellstrom et al., 2008; Rittner & 

Müller, 2012).

Current developments move towards shorter wavelengths, shorter pulse durations 

and the utilisation of alternative mass spectrometer designs (TOF, magnetic sector, ion 

trap), to further reduce problems of e.g. mass fractionation, analyse smaller samples and 

to open new areas of application.
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In situ LA-ICPMS U-Pb and U-series dating

The  benefits  of  LA-ICPMS  (see  above),  offering  potentially  high-precision 

elemental and isotopic analysis at high spatial resolution/small sample size, make this 

method of analysis very attractive for in situ isotopic studies.

Early  studies  like  Fryer  et  al.,  1993,  analysing  pitchblende  ores  and  zircons, 

established in situ U-Pb dating by LA-ICPMS.

Stirling et al., 2000, combined LA with a multi-collector magnetic sector ICPMS 

(LA-MC-ICPMS)  to  attain  high-precision  in  situ  measurements  of  238U-234U-230Th 

isotopic ratios. Eggins et al., 2003, analysed 238U and 232Th for U-series studies on fossil 

teeth, and Eggins et al., 2005, describe the possible merits of LA-MC-ICPMS U-series 

analyses in Quarternary geochronology.

Pickhardt et al., 2005, give an overview of various applications of in situ isotopic 

ratio studies on solid samples, comparing laser-ablation microsampling combined with 

quadrupole ICPMS (LA-ICP-QMS), with a double-focusing sector field ICPMS (LA-

ICP-SFMS) and multi-collector magnetic sector mass spectrometer (LA-MC-ICPMS). 

Another  overview  of  development  and  challenges  of  LA-ICPMS  in  various 

applications, especially for U(Th)-Pb dating, is given in Košler, 2007.

Woodhead  et  al.,  2009,  apply  both  LA-ICP-QMS  and  LA-MC-ICPMS  to  the 

problem of Pb-isotopic analysis of pyrite and compare strengths and limitations of the 

two approaches.  Paton et  al.,  2010,  address  the  problem of  increasing  fractionation 

effects during down-hole (single spot) analyses of zircons.

Fasset  et  al.,  2011,  present  results  from direct  LA-MC-ICPMS  U-Pb  dating  of 

Dinosaur bones and discuss possible further applications in vertebrate palaeontology.
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U-Pb dating of carbonates

Previous studies have proven the feasibility of U-Pb dating of carbonates, laying the 

base on which the present study is based. Early works involve the whole-rock analyses 

of Moorbath et al., 1987, Smith & Farquhar, 1989, and Jahn et al., 1990. More detailed 

studies  requiring  higher  resolution  sampling  followed,  e.g.  Smith  et  al.,  1991,  and 

Israelson et al., 1996.

The ongoing improvements in analytical methods aided in the further development 

of the method towards lower concentrations/smaller sample sizes, higher precision and 

new applications: Rasbury et al., 1997, and Rasbury et al., 1998, used the technique for 

dating  of  palaeosols,  Wang  et  al.,  1998,  determined  the  age  of  calcretes  and  thus 

sedimentation age. Jones et al., 1995, studied the influence of diagenesis on U-Pb dating 

of marine biogenic sediments by combining various isotopic methods including trace 

element and Sr-isotopic analysis, pointing out the importance of testing for diagenetic 

alteration,  but  also  demonstrating  the  potential  of  these  rocks  to  retain  a  pristine 

formation  composition.  Richards  et  al.,  1998,  demonstrated  the  applicability  of  the 

method to speleothems, thus opening the age range for dating of speleothems beyond 

the  limits  of  U-series  dating.  This  was  followed  up  by  several  authors,  e.g.  by 

Woodhead et al., 2006, pointing to applications in palaeoclimatology, or by Pickering et 

al.,  2010;  Pickering et  al.,  2011, to  date  archaeological  sites of importance to early 

hominid evolution. Studies of sedimentation age of carbonate sediments benefited from 

the increasing precision of the method (e.g.  Edwards et al., 2003) and applications to 

some less common sedimentary settings followed (e.g. Cole et al., 2005). 

Overviews of techniques and applications of U-Pb dating of carbonates are given in 

Jahn & Cuvellier, 1994 and Rasbury & Cole, 2009, respectively. The latter mentions the 

possible application of U-Pb dating of carbonate slickenfibres for dating fault activity, 

an idea proposed earlier in Müller, 2003, but up to date, no studies on this use of the 

technique seem to exist in the literature.
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2.  Geological background

2.1  Tectonic carbonates

In this study, the term tectonic carbonates is used

as  a  summary  term  for  fibrous  carbonate  mineral

(mainly  calcite)  aggregates  that  grow

syndeformationally  on  brittle  fractures  and  faults.

Common examples of these features are mineral fibres

growing  on  slickensides  (slickenfibres),  fibrous

fracture  fills  (veins and  tension  gashes),  fibrous

aggregates  growing  in  the  pressure  shadow of  more

competent components within a deformed matrix, and

similar features. There are gradual transitions between 

these mentioned features, and it may sometimes not be 

possible to clearly classify a sample. All of these have in common, that mineral fibres 

grow keep growing during deformation and each new growth increment records the 

deformation direction at that time (Petit, 1987, Durney & Ramsay, 1973, Phillips, 1974, 

Wickham, 1973).

The exact mechanism forming these mineral fibres is still not fully understood and 

concurrent models have been developed from observations in different environments 

and experiments (see below). The basic principles are applicable to various minerals 

commonly found on faults and in fractures (e.g. quartz, calcite, chlorite), the individual 

behaviour  of  each  of  these  minerals  under  a  certain  combination  of  pressure, 

temperature, pore fluid chemistry, host rock mineralogy and rheology, and deformation 

mechanism open a wide field of possible scenarios.
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Fig. 1:  Schematic  tension  frac-
tures
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A  widely  accepted  model  is  the  crack-seal

mechanism presented by Ramsay, 1980. To fill a fracture

with mineral fibres, fluid must be present. Ramsay, 1980

suggest that this fluid might take part  in the fracturing

itself,  by  hydraulic  fracturing.  In  each  deformation

increment, a small space would open antitaxially on one

wall of the fracture, fluid would flow in from the pore

space of the surrounding rock, and the relative drop in

fluid pressure would facilitate precipitation from the pore

fluid  supersaturated  by  pressure  solution  in  the

surrounding  host  rock.  In  this  model,  the  originally

adjacent  portions  of  the  host  rock  can  always  be

correlated  exactly  by  following  the  direction  of  the

mineral fibres.

Several  authors  (e.g.  Urai  et  al.,  1991;  Cox,  1987)  have  presented  natural  case 

studies where the mineral fibres do not exactly trace the opposite margins, and Urai et 

al., 1991 present an expanded model involving recrystallisation and competitive crystal 

growth  in  the  fracture.  Hilgers  et  al.,  2001  present  a  numerical  model  for  this 
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Fig. 2: Fibre growth in tension fracture
Multiphase mineral fibre growth in a syntaxial (top row, left to right) and an antitaxial ten-
sion fracture (bottom row, l  to r).  the same three deformation phases result  in different  
growth patterns, depending on whether growth originates at the fracture walls (antitaxial) or  
on a central crack (syntaxial).
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mechanism. The more complicated case when portions of the host rock are (repeatedly) 

incorporated into the fracture fill is presented in Hilgers & Urai, 2002.

Renard et al., 2005 use the crack-seal patterns of large sets of fractures to reconstruct 

the continuous aseismic deformation of a rock body. Koehn & Passchier, 2000 define a 

classification for striped bedding-veins and determine the shear sense based on crack-

seal pattern and inclusion tracks.

To  elucidate  the  processes  of  vein  formation  and  fibre  growth  during  brittle 

deformation, analogue models have been built, utilising NaCl, KCl (e.g. Bons & Jessell, 

1997) and other salts  (e.g.  Means & Li,  2001) to simulate naturally (slower) grown 

fibres of other minerals.

Bons  &  Jessell,  1997,  and  Means  &  Li,  2001, 

observed in their experiments antitaxial growth sustained 

by constant diffusional transport of solution from the host 

rock, not in a crack-seal mechanism. This explains much 

better  the  often  observed  perfect  symmetry  of  fibrous 

fills around a central seam (the origin of growth in this 

model).  They suggest  the  possibility  that  fibrous  veins 

might in cases form due to crystallisation pressure and 

indeed not necessarily (only)  during phases of tectonic 

deformation. Wiltschko & Morse, 2001, propose this as 

the  main  mechanism  for  fracture  initiation  in  certain 

types  of  rock  and  see  quartz-calcite  banding  as  an 

expression  of  a  fine  kinetic  interplay  of  solution 

concentration  and  pressure.  In  this  view,  fractures  would  originate  at  local 

inhomogeneities in the host rock or concentration maxima in the saturated pore fluid, 

and systematic arrangement of sets of fractures would follow a remote tectonic stress 

field, but would not entirely be caused by it. Elburg et al., 2002, support this view based 

on geochemical data from veins in an area in South Australia.
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Fig. 4:  Diffusion  growth  of 
mineral fibres
A constant supply of saturated 
solution  from  the  host  rock 
causes  the  mineral  fibres  to 
grow,  crystallisation  pressure 
widens the fracture.
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However, there can be no doubt that the direction of slickenfibres on brittle faults, 

the main type of samples analysed in this study,  records actual tectonic movements on 

this fault (Petit, 1987).  Irregularities on the fault plane will, when the two opposing 

fault blocks are offset by tectonic movement, result in the opening of space where a 

protrusion from one block moves out of its indentation in the other. The resulting space 

is in many cases filled by slickenfibres (see Fig. 5), growing syndeformationally and at 

the same rate of movement. For slickenfibre growth, a crack-seal mechanism is most 

likely,  the  fibre  growth will  be  controlled  by  the  increments  of  tectonic  movement 

(resulting in opening of cracks). Conceptually, the mineral-filled voids can be thought of 

as small pull-apart structures. Over time, protrusions on the fault plane may be broken 

off the host rock and ground into progressively finer fragments, forming fault breccias 

and  fault  gauge,  resulting  in  an  overall  smoothing  of  the  fault  plane,  but  the 

slickenfibres, filling former indentations, are unlikely to be removed.
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Fig. 5: Slickenfibre growth
Irregularities on the initial fracture will lead to opening of space (cf. pull-apart structures),  
small deformation increments will lead to fibrous mineral growth in a crack-seal mechanism 
(see above). Left: initial stage. Middle: with slickenfibres developed. Right: block diagram 
showing the faultplane.
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Fig. 6: Normal fault
Natural normal fault (left block down) with slickenfibres, fault plane super-
imposed. Near Kilve, Somerset.
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Fig. 7: Slickenfibre
Detail of the fault plane on the previous page. Chisel for scale. Near Kilve, 
Somerset.

Fig. 8: Tension gashes
Several  generations  of  en-echelon  tension  fractures  in  dark  limestone. 
Chisel for scale. Valais, Switzerland.
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2.2  Sampling areas, geological background and 
structural geology

Sampling areas were chosen along the Alpine orogen in diverse settings, so as to 

yield:

– a spectrum of various lithologies hosting the calcite samples

– different tectonic settings

– a  range  of  deformation  ages  –  ideally  known  independently  through  other 

geochronological or biostratigraphic dating methods

Together  with  local  collaborators  (Neil  Manktelow,  ETH  Zürich,  Switzerland; 

Michael  Wagreich,  University  of  Vienna,  Austria;  Hugo  Ortner,  University  of 

Innsbruck, Austria;  Franz Neubauer,  University of Salzburg,  Austria),  sampling sites 

known  to  exhibit  well  developed  tectonic  carbonates  were  determined.  Areas  of 

relatively young age of deformation (mostly Tertiary) were preferred to minimise the 

potential of later alteration of the samples. The sampling area Digne (DGN) was chosen 

because of ease of visit during the annual RHUL 3rd-year mapping course, because it 

contains highly deformed carbonate units up to very young ages of deformation, and 

because from former years, calcite fibres were known to occur. Samples from the Swiss 

Jura mountains were provided by Herfried Madritsch, NAGRA, Switzerland.

Additional  samples  were  taken  during  a  field  trip  with  Chris  Elders,  Royal 

Holloway, University of London, to the Bristol channel near Kilve, Somerset, UK.

The  aim of  sample  collection  was  to  provide  material  to  develop the  analytical 

method presented in this work. It was not intended to perform a detailed regional study 

of any of the sampling areas or the Alps as a whole. Thus, the following geological 

descriptions of the individual sampling areas were kept short and general, the overview 

maps are strongly simplified,  and local  open questions  and ongoing discussions  are 

omitted.
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2.2.1  Tectonic overview of the Alps

The Alps are a complex orogen formed in at least two orogenic phases in the closure 

and subduction of several smaller oceanic branches linked to the evolution of the Tethys 

and the North Atlantic ocean, and subsequent continent-continent collision between the 

Apulian plate and continental Europe.

In alpine orogenic evolution, typically an earlier upper Cretaceous Eoalpine phase is 

distinguished  from the  main  orogenic  phase  in  the  upper  Eocene  to  Miocene  (e.g. 

Neubauer et al., 2000; Schmid et al., 2004; Dal Piaz et al., 2003).

In the upper  Jurassic,  opening of  the North Atlantic  ocean causes divergence of 

Africa (and Apulia) and Europe, opening the Piemont-Liguria ocean (or Penninic ocean, 

also  referred  to  as  Alpine  Tethys)  north  of  Apulia  (Stampfli,  2000;  Stampfli  et  al., 

2001a;  Stampfli  et  al.,  2001b).  For  a  discussion  of  the  pre-Alpine  (Upper  Jurassic) 

palaeogeographic and plate-tectonic evolution of the Adriatic plate and its surroundings, 

see also Wortmann et al., 2001.

In the upper Cretaceous Eoalpine phase, collision east of Apulia after closure of the 

Meliata-Hallstatt (or/and Vardar) ocean, a westernmost subbasin of the Tethys (Csontos 

& Voros, 2004; Channell & Kozur, 1997; Mandl, 2000; Stampfli et al., 2001a), forms 

the Austroalpine nappe stack in a generally top to the W motion (Dal Piaz et al., 2003; 

Schmid et  al.,  1996),  possibly with locally  more N-S and E-W trends due to  strain 

partitioning  (Ortner,  2001b).  Subsequently,  the  Austroalpine  is  kinematically  to  be 

considered  part  of  Apulia.  North  of  the  Apulian  plate,  subduction  of  the  Piemont-

Liguria ocean begins, but most other units of the future Alpine orogen (especially the 

Western Alps) are unaffected by the Cretaceous orogeny (Schmid et al., 1996).
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Fig. 9: Tectonic map of the Alps
Sampling areas are marked by a star. Simplified after Schmid2004.
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During the following oblique subduction of the  Piemont-Liguria (/Penninic) ocean, 

Apulia is in an upper tectonic position. The Eastern Alpine units (as part of Apulia) 

undergo  subsidence  and  extension  in  a  sinistral  transpressional  setting  (Schmid  & 

Kissling,  2000;  Schmid  et  al.,  2004).  Pull-apart  basins  open,  and  the  widespread 

sedimentation of the upper Cretaceous to Eocene Gosau Group fills the topography on 

top  of  the  Austroalpine  wedge  (Willingshofer  et  al.,  1999;  Neubauer  et  al.,  2000; 

Wagreich & Faupl, 1994; Ortner et al., 2008). Most Gosau successions show a distinct 

division into a Lower Gosau Subgroup of terrestrial to shallow marine sediments and an 

Upper Gosau Subgroup consisting of deep water hemipelagic and turbiditic sediments 

(Wagreich & Faupl, 1994). The two Subgroups are divided by a phase of deformation 

and erosion, followed by rapid subsidence (Wagreich & Faupl, 1994).

In the Late Eocene, the Ligurian (/Penninic) ocean is closed, Apulia collides with 

continental Europe commencing the main Alpine orogeny (Schmid et al., 2004). Due to 

flexural  load  of  the  upper  plate,  foreland  basins  begin  to  form  on  the  European 

continental crust north of the orogen (Neubauer et al.,  1995). The motion of Apulia 

relative to Europe during collision results in stress partitioning, with N-S convergence 

in the northern Alpine units, while central Alpine units experience sinistral wrenching 

and block rotations (Neubauer et al., 1995). Likely, a precursor to the later Periadriatic 

Fault  (see below) formed at this  time (Neubauer et  al.,  1995). Further shortening is 

consecutively conveyed by the Southalpine Indenter (or Adriatic Indenter), a protrusion 

of the Apulian plate that is driven into the central and Eastern Alps and by its shape 

significantly influences the further tectonic structuring of the orogen (e.g. Neubauer et 

al.,  1995;  Schmid et  al.,  2004; Schmid & Kissling,  2000;  Linzer  et  al.,  2002).  The 

northern boundary of the Indenter is the Periadriatic Fault, a large-scale fault marking 

the boundary of the Northern and Central to the Southern Alps. At this line, vergence of 

structures  and  nappe  stacking  changes  from  generally  northwards  in  the  North,  to 

southwards  in  the  Southalpine  units  (Schmid  et  al.,  2004;  Neubauer  et  al.,  1995). 

Anticlockwise rotation of the Southalpine Indenter and change in the relative movement 

of Europe and Africa caused major dextral movement on the Periadriatic Fault in the 

Oligo-Miocene (Müller et al.,  2001), which at the western termination is transferred 

along the  Rhone-Simplon-Line into  contraction  and transport  in  the  Western Alpine 
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Arch, and even causes deformation in the Molasse basin and the Swiss Jura mountains 

(Schmid et al., 2004, see also below). 

At around the Early/Late Oligocene boundary, the subducted Penninic oceanic crust 

detaches from the European plate (slab break-off), resulting in rapid growth of relief, as 

evidenced by the first occurrence of large conglomerate fans in the northern Molasse 

basins (Frisch et al., 2000; Kuhlemann & Kempf, 2002; Kuhlemann, 2007). The exact 

causes for orogen uplift in the different segments of the Alps (West, Central, East) differ 

and  are  still  discussed,  especially  in  respect  of  the  relative  influence  of  climatic 

conditions  (erosion)  and  tectonic  forces  (see  e.g.  Rosenberg  &  Berger,  2009; 

Champagnac et al., 2009; Wölfler et al., 2011)  Relief increase and weakening of the 

orogenic base by increased heat supply after slap break-off, together with the localised, 

wedge-shaped contraction due to the Southalpine Indenter (causing further mountain 

build-up), resulted in the Miocene Lateral Orogenic Collapse (or Lateral Extrusion) of 

the  central  Eastern  Alps  towards  the  East  (Frisch  et  al.,  2000;  Linzer  et  al.,  2002; 

Ratschbacher  et  al.,  1991a;  Ratschbacher  et  al.,  1991b).  Lateral  orogenic  flow was 

possible because rapid subduction rollback of the Carpathians had left the Pannonian 

basin filled with weak, thin crust (Neubauer et al., 2000; Ratschbacher et al., 1991a; 

Ratschbacher et al., 1991b; Neugebauer et al., 2001; Wölfler et al., 2011).
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Lateral  orogenic  flow  was  largely  a  homogeneous,  ductile  flow  in  the  lower, 

metamorphic  Penninic  units  of  the  central  Eastern  Alps  derived from the  European 

continental  margin,  whereas  the overlying  Austroalpine units  moved in rigid blocks 

delineated  by  ENE  trending  sinistral  and  SE  trending  dextral  strike-slip  faults 

(Neubauer et al., 2000; Schmid et al., 2004; Linzer et al., 2002). The southern boundary 

of  the  extruding  Central  Alpine  units  is  the  dextral  Periadriatic  Fault,  the  northern 

boundary  was  initially  the  sinistral  Salzachtal-Ennstal-Mariazell-Puchberg  fault 

(SEMP), but ENE-NE trending sinistral faults branch off this fault and cut through the 

Northern  Calcareous  Alps  (NCA;  e.g.  Inntal  fault,  Königsee-Lammertal-Traunsee 

fault/KLT; see e.g.  Linzer et al.,  2002; Peresson & Decker, 1997). Large-scale, low-

angle extensional shear zones (Brenner shear zone in the West, Katschberg shear zone in 

the East) delineate the exhumed and unroofed European units exposed in the Tauern 

Window as a result of the Lateral Extrusion (Frisch et al., 2000; Schmid et al., 2004). 

Lammerer & Weger, 1998, assumed a tectonic duplex structure to aid in explaining the 

rapid uplift of the Tauern Window of 20-30km since the Oligocene.  Results from the 

TRANSALP deep seismic indicate a South-dipping ramp structure beneath the Tauern 

window,  indicating  an  alternative/additional  mechanism  for  the  exhumation  of  the 
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Fig. 10: Tectonic overview of the Eastern Alps. For location of sampling areas, see Error: Ref-
erence source not found (note different map extract).
After Ortner2001#587.
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Penninic units (Lüschen et al., 2006; Lüschen et al., 2004; Inntal shear zone Sub-Tauern 

ramp sensu Ortner et al., 2006).

Although  mainly  in  a  N-S  compressional  setting  on  a  plate-tectonic  scale,  the 

mentioned  changing  stresses  acting  on  the  northern  Eastern  Alps  throughout  the 

Miocene have led to a complex sequence of deformation phases, mainly recorded in 

brittle fault movements (e.g.  Decker et al., 1993; Ortner, 2003c; Peresson & Decker, 

1997; Linzer et al., 2002) and in small intramontane sedimentary basins (e.g. Ortner & 

Stingl, 2001; Ortner, 2003b).

In the Late Cretaceous, the Valais and Piemont-Ligurian ocean dividing the Adriatic 

from the European plate  were much wider  in  the West  than in  the East,  thus more 

material was subducted in the Central and Western Alps than in the Eastern Alps, and 

onset  of  the  oblique  subduction  and  consequent  tectonic  phases  resulting  from the 

convergence tends to be earlier  in the East than in the West (Bousquet et al.,  2008; 

Schmid et al., 2004; Bousquet et al., 2002). However, on a smaller scale, fragmentation 

of  units  occurred,  and  a  complex  plate  configuration  (palaeogeography)  can  be 

assumed, resulting in a more complex distribution of the timing of metamorphic events 

along individual tectonic units (Berger & Bousquet, 2008; Bousquet et al., 2008).

The  western  Alpine  arc  started  forming  after  the  sinistral  transpressional  phase 

before  35Ma (Schmid & Kissling, 2000). After 35Ma, the Adriatic plate rotated anti-

clockwise and movement of the Indenter changed to WNW, giving the western Alpine 

arc its bent shape (Schmid & Kissling, 2000). Kinematic decoupling from the Eastern 

Alps occurred along the Tonale-Simplon dextral shear zone (Schmid & Kissling, 2000). 

The Rhone-Simplon fault zone is suggested to act as a low-angle extensional shear zone 

similar to e.g. the Brenner shear zone, accommodating orogen-parallel flow similar to 

the Eastern Alps (Seward & Mancktelow, 1994; Hubbard & Mancktelow, 1992). From 

12Ma onwards,  stress  transfer  through the orogen to the foreland is  responsible  for 

deformation in the Swiss Jura mountains and in the Molasse basins (Schmid & Kissling, 

2000). Flexural orogenic foreland basins (Molasse basins) are not well developed in the 

western Alps (Schmid et al., 2004). Neogene thick skinned thrusting in the European 

foreland resulted in exhumation of the external massifs (Schmid et al., 2004). Delacou 
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et al., 2004, determine the recent stress field in the western Alpine arc from earthquake 

focal mechanisms to be mainly due to gravitational flow of the thickest (highest) parts 

of the orogen perpendicular away from the crestline, resulting in a radial stress pattern 

along the arc (see also Delacou et al., 2005; Sue, 2003; Sue & Tricart, 2002). Eva et al., 

1997, reach similar results from earthquake data of the internal and eastern parts of the 

south-western  French  Alps,  and  Champagnac  et  al.,  2004,  observe  earlier  orogen 

parallel escape and later orogen perpendicular collapse in palaeostress data from brittle 

faults. Selverstone, 2004, confirm the observation of the Western Alps being an area of 

active orogenic collapse today (the only recently active one in the Alps), and give a 

precise definition  of  gravitational  orogenic  collapse as  opposed to  other  extensional 

features or tectonic extrusion in collisional mountain belts - only to suggest further to 

abandon the  term and concept  altogether,  because  in  natural  tectonic  settings  many 

different processes will be active and interact with each other at any given time.
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2.2.2  Digne

The Digne nappe is the most external unit of the external fold-and-thrust belt (Ford 

et  al.,  2006)  of  the  south-western  Alps  in  Provence,  France.  Structural  evolution 

involves  early  to  mid-Oligocene stacking of  thin  skinned thrust  sheets  and Mio-  to 

Pliocene reactivation of the frontal thrust of the Digne nappe (Lickorish & Ford, 1998). 

This  younger  reactivation  is  driven  by  the  exhumation  of  the  Argentera  crystalline 

basement massif and associated out-of-sequence thrusts (Ford et al., 2006). Movement 

of the nappe front in the Pliocene is evidenced by thrusting over Pliocene Sections of 

the Valensole conglomerate in the foreland (Hippolyte, 2001; Hippolyte et al., 2011). 

Fournier et al., 2008, found evidence for bedding-parallel shortening due to NNE-SSW 

compression prior to folding late Miocene Valensole conglomerate at the front of the 

Digne  nappe.  Baroux  et  al.,  2001,  determined  the  recent  stress  field  (and  thus, 

potentially continuing thrust movements of the Digne nappe today) from inversion of 

earthquake focal mechanisms to be NE-SW contractional, which corresponds to GPS 

measurements by Jouanne et al., 2001, and the stress direction suggested by Hubbard & 

Mancktelow, 1992, to result from lateral orogenic extension SW of the Rhone-Simplon 

shear zone; Sanchez et al., 2010, suggest a more NNW-SSE stress field and associated 

dextral movements on the N-S oriented front of the Digne nappe.

Calcite  slickenfibres  were  sampled  from various  small-  and  medium-scale  fault 

planes  and  from  bedding  surfaces,  as  well  as  calcite  tension  gashes,  from  most 

stratigraphic  units  in  the  area  (see  Fig.  12).  In  the  young  Valensole  conglomerate, 

slickenfibres occurred between larger clasts.

Only one outcrop (outcrop 300, see Fig. 11 and Fig. 15) yielded samples suitable for 

dating (KMR-DGN55, collected by the author, or D1W, provided courtesy of Dr. W. 

Müller, respectively), see chapter 5 Results. In this outcrop, massy Tithonian limestone 

is  thrust  onto  marly  limestone,  in  the  lower  parts  of  the  outcrop  "Green  Molasse" 

(Miocene) and "Red Molasse" (Paleogene) occurs. The whole sequence is overturned, 

how  much  of  the  sedimentary  succession  between  Thithonian  and  Paleogene  was 

originally missing in a hiatus, and how much is due to tectonic processes, could not be 

determined. The  overturned sequence likely represents the lower limb of the frontal 
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fault  propagation  fold  on  a  medium-scale  out-of-sequence  thrust  within  the  Digne 

Nappe. 
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Fig. 11: Geological sketch map of the front of the Digne nappe complex
Sampling area simplified from 16 sampling sites. Outcrop 300 (see Fig. 15) for reference.
After Schmid2004, colour key see Fig. 9.
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Fig. 12: Stratigraphic column for the Digne sampling area
Most stratigraphic units pictured were visited in the field, and tectonic structures from 
many  were  sampled.  Only  sample  KMR-DGN55  proved  date-able  (see  5 Results). 
Coloured above are the stratigraphic units present at that locality (see Fig. 15, Fig. 16), 
albeit in the field the sequence is inverted. The faulted contact between Tithonian lime-
stone and its overlying units, pictured above, was sampled. The position of the fault  
contact in the column does not represent faulting age, which was calculated as ~10-8 
Ma.
Modified from Fournier2008.
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2.2.3  Leytron

Leytron is a small village in the "Valais", the upper Rhone valley. The Valais is the 

topographical expression of the contact of the Helvetic nappes in the SW to the Aar 

massif in the NE (part of the Rhone-Simplon shear zone). Although at approximately 

the same elevation today, the Helvetic units originally were in a higher tectonic position 

(thrust onto the European continental crust;  Seward & Mancktelow, 1994; Hubbard & 

Mancktelow, 1992). The thrust contact is reactivated as a normal fault related to dextral 

strike-slip movement at the Simplon and Tonale fault further to the East (Schmid & 

Kissling, 2000; Hubbard & Mancktelow, 1992; see also 2.2.1 above). 

Deformed sediments were sampled, containing harder clasts (fragmented belemnite 

fossils and pyrite crystals) in a homogeneously deformed fine-grained matrix, around 

which quartz  and calcite crystallised in the pressure shadow of the clasts  (Fig.  18). 

Other samples comprised calcite tension gashes in limestone (see Fig. 7 and Fig. 19).

Unfortunately,  no samples from the Leytron area proved suitable for dating (see 

chapter 5 Results).
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Fig. 17: Geological sketch map of the Valais sampling area
Yellow dots indicate sampling locations (simplified). After Schmid2004, key see Fig. 9.
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Fig. 18: Fractured Belemnite
Belemnite  fossil  (black),  fractured  during  homogeneous  deformation  of  the  Lower 
Jurassic host rock. The voids between fossil fragments were filled with a fibrous calcite 
and quartz matrix that shows diffuse zoning of calcite dominating the margins, quartz 
dominating the central portions of the white infills. Outcrop 253, sampling location of 
KMR-LEY16. Coin for scale. 

Fig. 19: Multiphase tension gashes
Valanginian  limestone  showing  multiphase  tension  gashes  (expected  Oligocene  or 
Miocene, pers. comm. N. Manktelow). Near outcrop 230, view down, North to the left, 
hammer for scale.
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2.2.4  Gosau Basin

The  sedimentary  basin  of  Gosau  formed  as  a  pull-apart  basin  during  upper 

Cretaceous to lowest Paleogene times (Wagreich, 1995; Wagreich & Decker, 2001). The 

Gosau  group  overlies  the  nappe  stack  of  the  Northern  Calcareous  Alps  (NCA) 

unconformably, indicating an interval of erosion in the Middle Turonian (Wagreich & 

Decker, 2001). The Lower Gosau Group in the Gosau area comprises approximately 

1000m of Upper Turonian to lower Campanian terrestrial and shallow water sediments, 

unconformably overlain by 1200m of Campanian to Paleogene deep-water sediments 

(Wagreich & Decker, 2001; Wagreich et al., 2010; Wagreich, 1988). Many faults in the 

area have been reactivated and overprinted in later (Miocene) phases of Alpine orogeny 

(see e.g.  Peresson & Decker,  1997).  Sampling comprised  mainly slickenfibres  from 

various faults in different kinematic settings within the basin.

The deformation phases established by  Peresson & Decker,  1997, for the central 

Northern Calcareous Alps were used as the framework to put observed deformation 

structures into context. Peresson & Decker, 1997, established the relative sequence of 

six deformation phases from cross-cutting criteria observed in numerous outcrops along 

the  NCA,  and  assigned  absolute  deformation  ages  from  the  stratigraphic  ages  of 

deformed units, especially in sediments of the Gosau Group and in younger (Miocene) 

sections in several sedimentary basins.

Sample KMR-GOB21 (outcrop 240, Fig. 25) yielded samples for some of the best 

age  measurements  in  this  study (see  chapter  5 Results),  two different  directions  of 

slickenfibres  could be dated to  distinct  deformation ages (see  Fig.  22 and  Fig.  24). 

Sample  KMR-GOB18  is  not  well  constrained  by  structural  field  data,  but  the 

observations and obtained ages fit well into the regional structural model (see Fig. 24 

and  Fig.  26).  At both locations deformation was expected to be associated with the 

Paleogene  and  Neogene  kinematics  on  the  Königsee-Lammertal-Traunsee  fault  line 

(pers. comm Wagreich, 2008) that passes by the Gosau Basin in a generally SW-NE 

direction to the North.
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Fig. 21: Geological sketch map of the Gosau basin
Yellow dots: sampling locations (simplified). After Wagreich2001#282.

Fig. 22: Stereonet for Outcrop 240
Plot of tectonic features observed at 
sampling location. NE-SW trending 
sinistral  strike-slip  faults  are  domi-
nant, the less steeply W-dipping dex-
tral and reverse faults are secondary 
structures,  one  of  which  yielded 
sample KMR-GOB21. 
Slickenfibres l2 were observed to be 
younger than the main calcite fibre 
package l1, although the stereonet il-
lustrates that both could have origi-
nated in the same overall stress field. 
The  observations  indicate  N-S  to 
NNE-SSW  compression,  in  accor-
dance with deformation phase "T2" 
sensu Peresson1997#203 (Fig. 24).



Geological background

page 46

 



Geological background

page 47

Fig. 24:  Deformation  phases 
of the NCA
Based on a large data set of 
brittle deformation structures, 
Peresson1997#203,  estab-
lished  six  main  deformation 
phases (five pictured) for the 
central  Northern  Calcareous 
Alps  (NCA)  throughout  the 
Eocene to Miocene. The cal-
culated  ages  for  samples 
GOB21 and GOB18 obtained 
from the Gosau basin are in 
good agreement with the age 
of  deformation  phases  that 
are consistent with the struc-
tural settings observed at the 
sampling locations.
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Fig. 25: Outcrop 240
Large, multiphase slickenfibre in Santonian, coarse, sandy marls (Hochmoos fm.); sam-
ple KMR-GOB21.  The main calcite package fp 245/40 l1 184/22 up? showed reactiva-
tion and overgrowth at the margins, fp 229/35 l2 312/04 dx; see also Fig. 22.
View ~NW, fault slip top to the right, chisel for scale. 
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2.2.5  Fohnsdorf Basin

The Fohnsdorf intramontane sedimentary basin formed in early to middle Miocene 

as  a  pull-apart  half-graben  in  the  Mur-Mürz  fault  system during  lateral  extensional 

movement  of  the  central  parts  of  the  Eastern  Alps  (Wagreich  &  Strauss,  2005; 

Sachsenhofer  et  al.,  2000).  The  basin  is  underlain  by  metamorphic  rocks  of  the 

Austroalpine tectonic unit (Wagreich & Strauss, 2005). Tectonic development started 

with the northern Seckau subbasin and the southern Fohnsdorf subbasin as separate 

pull-apart basins along the ~E-W trending sinistral Mur-Mürz fault system (Strauss et 

al.,  2001).  In  a  second  phase,  the  basin  acted  as  a  half-graben  with  the  largest 

subsidence  along normal  faults  in  the  South  (Strauss  et  al.,  2001).  In  the  first  two 

phases, the basin was filled with an up to 3400m thick sedimentary succession (see 

Wagreich & Strauss, 2005). In a third phase, the NW-SE trending dextral Pöls-Lavanttal 

fault formed a positive flower structure along the south-western basin margin (Strauss et 

al., 2001). 

Slickenfibres  from  bounding  faults  of  the  basin  and  a  layered  travertine  filling 

fissures close to the basin margin in the South (“Mariabucher Marmor”) were sampled. 

The latter yielded sample KMR-FOB28, which could be dated, see chapter  5 Results. 

The  fissures  transect  the  coarse  polymikt  conglomeratic  host  rock  (equivalent  of 

Fohnsdorf fm., ~Burdigalian/Langhian age, pers. comm. Prof. M. Wagreich, 2008) in an 

undulating,  irregular  fashion.  They probably  formed due to  quick  subsidence in  the 

basin, while or shortly after the host rock was deposited. 

The travertine was mined in older times for building and decoration. Thus, most 

samples from that locality  were loose blocks  from the old quarry,  and no structural 

geological data could be collected. 
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Fig. 27: Geological sketch map of the Fohnsdorf basin
Yellow dots: sampling locations. After Wagreich2005.
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Fig. 28: Outcrop 248
Laminated  calcitic  fissure 
fills  locally  known  and 
mined as "Mariabucher Mar-
mor"  in  polymikt  conglom-
eratic  host  rock.  Sample 
KMR-FOB28C in situ before 
recovery,  pencil  for  scale, 
view ~NW.
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2.2.6  Lower Inn Valley

The Tertiary sedimentary succession of the lower Inn valley overlies the nappe stack 

of  the  Northern  Calcareous  Alps,  and thus  represents  intramontane  Molasse  basins. 

They record the Oligocene tectonic development of the Alpine orogenic wedge in this 

area  throughout  several  phases  of  tectonic  activity  (Ortner  & Stingl,  2001;  Ortner, 

2003a;  Kuhlemann  &  Kempf,  2002).  The  Molasse  of  the  Lower  Inn  valley  was 

deposited on a small-scale block-tilt topography, rapid thickness variations and facies 

transitions over short distances are common (Ortner, 2003b).

The sampling area is intensely overprinted by sinistral strike slip and thrust faults 

related to the Inntal shear zone and/or the "sub-Tauern ramp" (Ortner et al., 2006); the 

expected  ages  of  the  tectonic  carbonates  sampled  are  constrained  by  cross-cutting 

relationships and sedimentary ages of deformed units (Ortner, pers. comm., 2008).

Sample KMR-LIV34 is from a fault plane indicating NNW-SSE compression (Fig.

34),  both  consistent  with  the  setting  during  formation  of  the  Rupelian  host  rock 

(Bergpeterl mb. of the Häring fm., deformation phase D1 sensu  Ortner, 2003b), and 

with a later deformation phase (D3, post-Chattian). See chapter 5 Results for age data 

from  this  sample  and  6 Interpretation  and  Discussion for  a  discussion  of  the 

implications.

Sample KB2 (Fig. 33), provided by courtesy of Dr. H. Ortner, is a tectonic breccia 

with an interesting genetic  history,  including several  distinct  phases  of cementation. 

These  are  discussed  in  detail  in  Ortner,  2003b,  and  briefly  described  in  chapter  5 

Results, including 2D element maps and age data. Yet, this sample could not be dated 

precisely.
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Fig. 31: Stratigraphy of the Lower Inntal Molasse
Comparison of the lithostratigraphic units of the Intramontane Molasse in the Lower Inn Val-
ley to the Molasse sequence of the Alpine Foreland of Southern Germany. Samples KB2 and 
KMR-LIV34 are placed in their respective host rocks, deformation ages were expected to be  
Middle Miocene (pers. comm. Ortner, 2008). In case of KMR-LIV34, this could not be con-
firmed, see chapter 5 Results.
Modified from Ortner2001.
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Fig. 33: Sample KB2
Scanned thick section.  Middle Miocene (pers.  comm. Ortner,  2008) tectonic breccia  
with Triassic limestone components (dark grey, left) in a Rupelian bituminous marl host 
rock (Bergpeterl mb., brownish grey, right), cemented by several distinct generations of 
calcite (beige and white, middle). Closer description of this sample in chapter  Error:
Reference source not found Error: Reference source not found. Sample width ~91 mm. 

Fig. 32: Outcrop 269
Sample KMR-LIV34A in situ before recovery: slickenfibre on a fault plane of expected 
Miocene age (fp 300/88 l 032/08 sn) in early Oligocene bituminous marl  (Bergpeterl  
mb. of the Häring fm., Ortner2003#479). View towards SE, hammer for scale.
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2.2.7  Seefeld

The middle Norian Seefeld Fm (location see on overview map  Error:  Reference

source not found) comprises of small-scale outcrops of kerogene, bituminous and to a 

variable  degree  calcareous  and  dolomitic  finely  laminated  sediments  of  restricted 

intraplatform basins in the Upper Triassic Hauptdolomit/Dachstein limestone carbonate 

platform of the Northern Calcareous Alps (Donofrio et al., 2003). Earlier interpretations 

indicated gradual large-scale facies transitions over the whole Hauptdolomit platform 

(Fruth & Scherreiks, 1982; Fruth & Scherreiks, 1984), with  euxinic basins forming 

locally  by sedimentary processes (e.g.  Schlager,  2005).  Whereas the basins are  now 

believed  to  have  been  initiated  by  tectonic  processes  compartmentalising  the 

Hauptdolomit platform (e.g. Bechtel et al., 2007), sedimentation itself is believed to be 

mainly controlled climatically and by resulting sea-level fluctuations (Hopf et al., 2001; 

Berra et al., 2010).

Slumping in the  fine-laminated  sediments  is  common,  indicating synsedimentary 

tectonic activity. Radial tension gashes from chaotic folds (slump folds,  Fig. 34) and 

slickenfibres on bedding planes caused by flexural slip during folding were sampled. 

The fold geometries and orientations indicate that the slumping and sliding must have 

occurred in a (semi-)soft-sediment state, thus deformation ages are expected to be close 

to  sedimentation  age  (Ortner,  pers.  Comm.,  2008).  The  slickenfibres  are  orientated 

unsystematically  and sometimes follow fold  geometry,  and the tension fractures  are 

filled  with  pure,  white  calcite  (not  sediment  infilled),  thus,  these  structures  are 

considered to have formed after burial, at the time of the slumping.

The Chaotic nature of slump folds does not allow easy interpretation of small data 

sets, thus structural data is not presented here. No samples from this area could be dated.
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Fig. 34: Outcrop 274
Radial tension gashes (highlighted with blue dashed lines) in intensely folded bitumi-
nous black shales of the Upper Triassic Seefeld fm. Slickenfibres caused by bedding-
parallel slip during folding also occur.
Sampling location of KMR-SEF39A-C. View ~N, hammer for scale.
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2.2.8  Swiss Jura

The Swiss  Jura Mountains  represent  an arcuate  thrust-and-fold belt  of  deformed 

sediments of European-plate origin, that has been detached from its basement as a result 

of the advancement of the Alpine orogen towards the NW, in particular the exhumation 

of  the  external  massifs  (Rosenberg  &  Berger,  2009;  Schmid  &  Kissling,  2000). 

Propagation  of  Alpine  deformation  to  the  foreland,  thus  formation  of  the  Jura 

mountains,  begins  in  the  Mid-Miocene  (Rosenberg  & Berger,  2009  and  references 

therein;  Ziegler  &  Fraefel,  2009)  and  continues  through  Pliocene  and  Pleistocene, 

presumably  to  the  present  (Madritsch  et  al.,  2010a;  Ustaszewski  &  Schmid,  2007; 

Ustaszewski & Schmid, 2006; Madritsch et al., 2010b; Ziegler & Fraefel, 2009). After 

~3 Ma, a transition occurred from the thin-skinned deformation of the main deformation 

phase to the ongoing thick-skinned deformation involving crystalline basement nappes 

(Ustaszewski & Schmid, 2007; Ustaszewski & Schmid, 2006; Ziegler & Fraefel, 2009). 

These latter movements are facilitated by and orientated along pre-existing structures of 

the European basement (Ustaszewski & Schmid, 2006; Ustaszewski & Schmid, 2007).

Dr. Herfried Madritsch (NAGRA, Switzerland) provided samples of slickenfibres 

from fault planes exposed in the North-Eastern Swiss Jura which have been deformed 

since fault slip, thus the age of the tectonic carbonates would determine the maximum 

possible age of the later folding event. Only one sample (MHH01) yielded convincing 

age information.
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Fig. 35: Tectonic sketch map of the Swiss Jura Mountains and adjacent areas.
After Schmid2004, colour key see Fig. 9.
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Fig. 36: Outcrop MHH01
Slickenside at sampling loca-
tion  for  MHH01.  Height  of 
outcrop ~3 m.
Image by courtesy of Dr. H. 
Madritsch.

Fig. 37: Outcrop MHH06
Several 10s of  metres high slickenside at sampling location for MHH06.
Image by courtesy of Dr. H. Madritsch.
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2.2.9  Kilve

Kilve lies  on the North Somerset  coast  of  the Bristol  Channel,  UK. The Bristol 

Channel traces the Triassic-Jurassic Bristol Channel half-graben basin, which extends 

further offshore to the West (McGrath & Davison, 1995; Glen et al., 2005; Peacock & 

Sanderson,  1999).  The  Carboniferous  –  Devonian  basement  is  generally  dipping 

southwards, the Southern basin margin exhibits steep normal faults and more complex 

structures (Dart et al., 1995; McGrath & Davison, 1995; Davison, 1995). The structure 

was inverted and exhumed in Early Cretaceous and Tertiary times (Dart et al., 1995; 

Glen et al., 2005). Tertiary inversion was obliquely, resulting in strike-slip faulting and 

pull-apart basins (Dart et al., 1995; Glen et al., 2005; Davison, 1995).

The exceptional exposure of the structures along the coast, exposed both in vertical 

cliffs and a large horizontal wave-cut platform exposed at low tide, has attracted studies 

on many different aspects of the rock deformation, e.g. faulting mechanism (Davison, 

1995), fault and vein macro- and microstructure (Belayneh & Cosgrove, 2010; McGrath 

& Davison, 1995), and basin inversion (Dart et al., 1995; Glen et al., 2005). During a 

RHUL field trip  with Prof.  Chris  Elders,  slickenfibres  from fault  planes  in  Jurassic 

mudstones and limestones were sampled along the coast.

For  examples  of  outcrops  near  Kilve,  see  Fig.  6 and  Fig.  8.  Unfortunately,  no 

samples from this area were suitable for dating.
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2.2.10  Other samples

Samples were also collected from deformed carbonates and metasediments near the 

Salzachtal-Ennstal-Fault,  close  to  the  northern  edge  of  the  Tauern  Window.  Strong 

tectonic deformation in proximity to the large bodies of metamorphic rock in the Tauern 

window were assumed to possibly favour higher U/Pb ratios in the circulating solutions. 

Various small accumulations of ore minerals and pure metals are known in the Tauern 

Window.

In sample screening, none of these samples proved suitable for dating.

A few additional samples have been made available for evaluation by the following 

persons: Simon Craggs, at the time PhD student at RHUL, provided a slickenfibre from 

a  fault  in  E  Canada.  Prof.  Robert  Hall  from  RHUL provided  a  massy  crystalline 

aragonite fracture fill from Turkey. Marion Campani, at the time PhD student at ETH 

Zürich, Switzerland, provided some samples from her field area in the Simplon/Valais 

area.

These samples proved not suitable for dating.`

See Appendices for a list of samples and acquired data (where applicable).
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3.  Methodology I: theory

This is the first of two methodology chapters. In this section, theoretical background 

information to  techniques  utilised in this  study is  given.  Details  on the actual  steps 

applied for sampling and analysis  are found in the next chapter (4 Methodology II:

application).

3.1  Geochemistry of Uranium and Lead in calcite

The main elements considered in this study are Uranium and Lead (and Thorium), 

see section 3.2 below. Due to the nature of the samples analysed, focus is given here on 

the behaviour of these elements in inorganically precipitated calcite, and in the solutions 

typically expected to form these samples.

Uranium and Thorium can occur in the tetravalent oxidation state (U4+, Th4+), which 

does  not  generally  form water  soluble compounds (Faure & Mensing,  2005).  Some 

solubility exists in pH ranges <6.5, but in neutral and slightly alkaline conditions, these 

ions  will  be  extracted  from the  water  column  by  particulate  sorbtion,  mainly  onto 

phyllosilicates, or colloidal and solid organic matter (e.g.  Langmuir & Herman, 1980; 

Chappaz et  al.,  2010). Complexation with organic compounds like humic acids may 

provide mobility, where these ligands are available (e.g. Langmuir & Herman, 1980).

Under oxidising conditions, Uranium occurs in the hexavalent (U6+) oxidation state, 

forming  the  uranyl  ion (UO2
2+),  which  is  water  soluble  with  naturally  abundant 

inorganic ligands such as in carbonate complex ions (e.g. as UO2(CO3)2
2-, UO2(CO3)3

4- 

and UO2CO3) and phosphate complex ions (e.g. UO2(HPO4)2
2-; Jahn & Cuvellier, 1994; 

Faure & Mensing, 2005; Rasbury & Cole, 2009; Bruno, 1990). Typical concentrations 

of dissolved U are ~3.2ppb for seawater (Chen et al., 1986), and an average of ~0.3ppb 

for  river  water  (Palmer  &  Edmond,  1993;  Dunk  et  al.,  2002).  Concentrations  in 

groundwater  are  highly  variable,  depending on local  lithology,  water  chemistry  and 

redox potential (Porcelli & Swarzenski, 2003).
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The uranyl ion also shows sorbtion onto organic solids, which can accumulate high 

concentrations of several 1000ppm U in organic sediments and soils (Zielinski & Meier, 

1988;  Regenspurg et  al.,  2010;  Arbuzov et  al.,  2011).  Coprecipitation with metallic 

hydroxides (e.g. deep-sea Fe and Mn hydroxides, also in lakes and palaeosols) is also a 

proposed mechanism binding U to the sediment (Jahn & Cuvellier, 1994; Rasbury et al., 

2000). In this environment, redox potential is believed to be a major controlling factor 

for  U binding.  However,  Chappaz  et  al.,  2010  have  found no  correlation  of  redox 

potential  with  U  concentration  in  lake  sediments  and  rather  attribute  U  input 

predominantly  to  organic  particulates.  The  presence  of  possible  organic  ligands, 

especially under acidic conditions, leads to formation of complexes with in the uranyl 

ion, which stimulates (re-)mobilisation and influences the sorbtion behaviour onto solid 

particles (Zielinski  & Meier,  1988;  Barger  & Koretsky, 2011).  Rasbury et  al.,  2000 

suggest the presence of organic material and redox potential to be major factors driving 

U incorporation into calcite of caliche palaeosols, and point out the high concentrations 

of U and Pb in microscopic haematite particles in their  samples.  Weltje et al.,  2002 

studied the fate of lanthanides (also as an analogue for the behaviour of the actinides) in 

soil,  water  and  biota  of  freshwater  ecosystems  and  found  sediment-water  partition 

coefficients between 100000 and 3000000 l·kg-1 dry matter, relative to surface water.

Kelly et al., 2003 have shown the mechanism of U incorporation into calcite to be 

the linear uranyl ion taking the position of one Ca and two adjacent CO3 groups within 

the calcite lattice. This configuration is stable in that the uranyl is incorporated at a well 

defined position within the lattice, and due to its size, can not diffuse out. The authors 

suggest  the  primary  mineral  in  their  sample  to  have  been  aragonite,  which  can 

incorporate much higher concentrations of U, and that the uranyl stayed in the crystal 

lattice during recrystallisation to calcite (Kelly et al., 2003). The study of Elzinga et al., 

2004 indicates the presence of multiple species of uranyl complexes to be present on the 

surface  of  the  calcite  crystal  during  growth  and  complicated  sorbtion/desorbtion 

processes likely to be acting,  also depending on U concentration in the surrounding 

medium. Over longer times, the locally disturbed crystal lattice around the uranyl may 

resettle back to a more stable state (Kelly et al., 2006). As many studies successfully 

dating calcite by the U-Pb method prove (e.g.  Israelson et al.,  1996; Richards et al., 
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1998; Rasbury et al., 1997; Moorbath et al., 1987; see also Jahn & Cuvellier, 1994 and 

Rasbury & Cole, 2009, and references therein), the radioactive intermediate daughter 

nuclides and final Pb isotopes seem to be equally well trapped and the U-Pb system in 

calcite can be considered closed over geological timescales.

Lead occurs as divalent Pb2+ and tetravalent Pb4+ in nature (Jahn & Cuvellier, 1994). 

Pb is generally more insoluble, with a high affinity to adsorb onto particle surfaces, 

resulting in typically very low concentrations of 0.003ppb in natural seawater (Jahn & 

Cuvellier,  1994;  Chester,  1990).  In  river  water  and  groundwater,  contents  are  very 

variable, depending on local lithology and input from anthropogenic pollution (Jahn & 

Cuvellier, 1994; Morton-Bermea et al., Komárek et al., 2008). Solubility of Pb is given 

mainly as complexes with the carbonate ion  CO3
2- and  with Cl- in seawater (Bruno, 

1990;  Chester,  1990),  reduction  of  Pb  concentration  is  by  adsorption  onto  organic 

particles  and  clay  minerals,  and  by  precipitation  as  hydroxides,  phosphates  and 

carbonates (Jahn & Cuvellier, 1994).  

Pollution from industrial sources poses a special problem, because Pb isotopic ratios 

of the pollutants (mainly from the use of leaded gasoline) are not the ratios of natural 

"common lead" (e.g. Morton-Bermea et al., Komárek et al., 2008) and can thus distort 

isotopic analyses even if contamination is very small.

Thorium behaves geochemically similar  to Pb, but it  adsorbs even stronger onto 

particulate  organic  and inorganic matter  and is  thus  quickly removed from solution 

(Jahn & Cuvellier, 1994). Concentration in seawater is typically ~0.0001ppb (Chen et 

al., 1986).
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Fig. 38: Different possible secondary disturbances of the U-Pb system in calcite-filled veins.
Top row, left to right: Diffusive fluid seepage along pore space from the host rock in a crack -
seal scenario. Fluids circulating in an open fracture. Multiple fracture generations.
Bottom row: Pervasive diffusion, and recrystallisation e.g. during diagenesis. Sediment influx 
and fluid circulation in a fissure open to the surface. Weathering.
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3.2  U-Pb dating

U-Pb dating is one of the best established methods in the Geosciences to determine 

the age of a rock or mineral. It is based on the radioactive decay of uranium (238U, 235U) 

and thorium (232Th) via various daughter elements to different stable isotopes of lead 

(206Pb, 207Pb, 208Pb, respectively; see "The U-Pb system" below). Because the halflives of 
238U, 235U and  232Th are much longer than those of their respective intermediate daughter 

nuclides, after sufficient time, a  secular equilibrium (see "Radioactive decay" below) 

establishes in the (closed) system, i.e. the production rate of the Pb isotopes equals the 

decay rate of their respective parent (after Faure & Mensing, 2005). In general, high U 

concentration of a sample is desirable for measuring, but it is variations in the U/Pb 

ratio (µ), that actually allow for dating (see chapters 3.2.2 and 3.2.3). Elevated common 

Pb concentrations,  as may be indicated by a lower U/Pb ratio,  hinder the ability  to 

measure radiogenic Pb (after Jahn & Cuvellier, 1994).

Preconditions for applicability of the methods described below are (after Cole et al., 

2005, Faure & Mensing, 2005):

– Closed-system behaviour (as is the case for other dating methods like Rb-Sr, K-

Ar, Sm-Nd, U-Pb on zircons; Jahn & Cuvellier, 1994).

– Initial homogeneity in the common (nonradiogenic) Pb isotopes.

– Establishment of secular equilibrium (after ~106 a; Richards et al., 1998).

3.2.1  Basic principles

Radioactive decay

The rate of radioactive decay of a radionuclide follows the law of radioactivity:

−
d N
d t

∝ λ N
where:
N … number of atoms
λ … decay constant (all formulas after Faure & 

Mensing, 2005).
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From that follows, that the number N of remaining radioactive parent atoms at time t 

equals:

N=N 0 e
−λt

where:
N … number of radioactive parent atoms at time t
N 0 … number of atoms at time t=0
λ … decay constant

The time required for half of the parent nuclides to decay is referred to as the halflife 

of  this radionuclide, and is calculated from the above equation as:

T 1 /2=
ln 2
λ

where:
T 1/2 … halflife
λ … decay constant

If a radionuclide decays to a daughter that is radioactive itself, a  decay chain will 

form, continuing until a stable nuclide is formed. If the parent has a longer halflife than 

an unstable daughter, after a certain time, the rate of decay of the unstable daughter is 

only controlled by the resupply of daughter nuclides, thus by the halflife of the parent. 

Common  examples  are  235U,  238U  and  232Th  decaying  to  207Pb,  206Pb  and  208Pb, 

respectively. So in a decay chain, after an initial settling of equilibria of the supply and 

decay of daughters, the rate of decay of all daughters, and the growth in the stable end 

members will depend on the decay rate of the initial parents only. This state is called 

secular equilibrium. If established, the decay chain of intermediate daughters can be 

eliminated from consideration (in a closed system), and the system is treated as though 

the parent nuclide decayed directly to the stable radiogenic daughter. The number of 

stable radiogenic daughter nuclides D* is equal to the number of parent atoms decayed:

D*
= N 0−N

where:
D* … number of stable radiogenig daughter atoms
N0 … initial number of parent atoms

N … remaining parent atoms
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Geochronometry

Substituting N0 and N for the equation given for radioactive growth yields:

D=D0+ N (eλ t
−1)

where:
D … number of daughter atoms at time t
D0 … initial number of daughter atoms
N … number of parent atoms
λ … decay constant

From this, the age t of the system can be calculated as:

t=
1
λ

ln (D−D0

N
+ 1)

where:
D … number of daughter atoms at time t
D 0 … initial number of daughter atoms
N … number of parent atoms
λ … decay constant

This forms the basis of age determinations by radioactive decay in natural samples. 

D and N are measured in the sample, the decay constant of the parent nuclide must be 

known. D0 can often be assumed, or is obtained mathematically:

If  a  suite  of  cogenetic  samples  with  the  same  D0 exhibit  different  chemical 

composition, in a graph of number of daughter atoms versus parent atoms, they will plot 

on a straight line. This line is called an  isochron. The age of the system is calculated 

from the slope of the isochron, the intercept (daughter atoms on the y-axis) equals D0 

(see chapter 3.2.2).

The U-Pb system

Measuring the concentrations of U, Th and Pb isotopes allows for calculation of the 

(closing) age of a system (e.g. the growth age of a calcite crystal). The accumulation of 

radiogenic isotopes of Pb by decay of their respective parents follows the form

Pb206

Pb204 =( Pb206

Pb204 )
i

+
U238

Pb204 (eλ238 t−1)

Pb207

Pb204 =( Pb207

Pb204 )
i

+
U235

Pb204 (eλ235 t−1)
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Pb208

Pb204 =( Pb208

Pb204 )
i

+
Th232

Pb204 (eλ232 t−1)

given as ratios respective to 204Pb, the only stable naturally occurring isotope of Pb. 

The date can then be calculated from e.g. the 238U → 206Pb system as:

t=
1

λ238
ln(

Pb206

Pb204
−( Pb206

Pb204 )
i

U238

Pb204

+ 1)
(index  i  denoting the initial isotope ratio at time of system closure; after  Faure & 

Mensing, 2005). The ages for the other decay chains are calculated similarly. If all three 

calculations  yield  the  same  date,  this  is  called  a  concordant  date (or  age).  These 

equations  require  the  determination/assumption  of  initial  Pb  isotopic  ratios  and  are 

susceptible  to  errors  by  Pb  loss  from  the  system.  The  latter  can  be  overcome  by 

calculating an age from the 206Pb/207Pb ratio, resulting from the difference in the decay 

constants of  238U and 235U (after Faure & Mensing, 2005):

Pb207

Pb204 −( Pb207

Pb204 )
i

Pb206

Pb204 −( Pb206

Pb204 )
i

=
U235

U238 ( e
λ235 t−1

e
λ238 t−1 )=( Pb207

Pb206 )
*

(the  asterisk identifies  the  radiogenic  isotopes).  This  equation  is  solved for  t  by 

iteration or interpolation in a table.
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3.2.2  Isochron diagrams

Cogenetic samples will plot on a straight line in coordinates of e.g. x=206Pb/204Pb, 

y=207Pb/204Pb, with slope m of:

m =
U235

U238 ( e
λ235 t−1
eλ238 t−1 ) = ( Pb207

Pb206 )
*

From the slope m of  this  Pb-Pb isochron the age of  a  suite  of  samples  can be 

calculated. Because of the small difference in accumulation rates of 206Pb and 207Pb, only 

samples older than approximately 1Ga exhibit measurable  206Pb/207Pb ratios (thus, the 

method is not applicable in this study).

3.2.3  Concordia diagrams

Wetherill Concordia

Using  the  calculated  ratios  of 

radiogenic  206Pb to  238U and radiogenic 
207Pb  to  235U  as  the  y-  and  x-

coordinates, respectively, in a plot over 

time  t  yields  the  so-called  Wetherill  

Concordia after  Wetherill,  1963, 

Wetherill,  1956.  Ratios  that  yield 

concordant ages plot on this curve (thus 

the name).  If conformable Pb-loss has 

occurred on a set of samples, these will 

plot on a line (called “discordia”) that 

intersects the Concordia in two points. Interpretation of the ages obtained from these 

points depends on context. Each individual sample along the discordia would yield a 

discordant age. In typical applications, the upper ("older") intersection point will give 
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the crystallisation age of the suite of samples under investigation (Faure & Mensing, 

2005). 

Tera-Wasserburg Concordia

Tera  &  Wasserburg  (Tera  & 

Wasserburg,  1972)  developed  a 

concordia  plot  that  does  not  require 

prior  knowledge  of  the  initial 
206Pb/204Pb ratios.   The  238U/  206Pb and 
207Pb/206Pb ratios are used as  x- and y-

coordinates,  respectively,  again  given 

as parametric equations for time t (Tera 

&  Wasserburg,  1972,  Ludwig,  1998). 

Intersection  of  a  discordia  with  this 

curve again will yield two ages t1 and t2.

For the samples considered in this study, this method has the great advantage of not 

being dependent on measurements of  204Pb (difficult to attain, because of a high 204Hg 

background typically inherent in ICPMS). The discordia results from mixing of two 

components of different isotopic composition in the samples at time of formation. One 

component has the isotopic composition of the intercept of the discordia, the other one 

the composition of the younger point of intersection with the concordia. The younger 

intersection age yields the age of crystallisation of the calcites under consideration, the 

older intersection has no geological significance.

Three-dimensional Concordia plots

Treating  U/Pb  data  in  a  orthogonal  three-dimensional  space  of  coordinates 

x=238U/206Pb, y=207Pb/206Pb, z=204Pb/206Pb allows for constructing “total” Pb/U-isochrons 

(Wendt,  1984;  Wendt,  1989;  Jahn  &  Cuvellier,  1994).  The  technique  was  further 

developed by Zheng, 1989; Zheng, 1990; Zheng, 1992.
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Actual ages are calculated by interception of a linear (or planar) best-fit discordia in 

3D  space  (isochrons)  with  the  Tera-Wasserburg  Concordia  (in  the  xz-plane).  The 

mathematics of data clustering, age calculation, error calculation and -propagation, as 

well  as  including error  of  decay constants  are  described in  Ludwig,  1998;  Ludwig, 

2001.  The latter  describes  the use of  the  total  U-Pb isochron for  eliminating mass-

fractionation effects without double-spiking.

The  method  requires  some basic  assumptions  to  be  fulfilled  by  all  samples  (in 

addition to the general ones mentioned before; after Jahn & Cuvellier, 1994):

– a single crystallisation age

– the same post-crystallisation disturbance of the U-Pb system

– identical common Pb isotopic composition

As  with  the  Tera-Wasserburg  Concordia  method,  the  actual  initial  Pb  isotopic 

composition needs not to be known. The advantage of this method over the (2D) Tera-

Wasserburg diagram is a higher precision, a quantitative test of U-Pb concordance and 

recovery of both 206Pb/204Pb and 207Pb/204Pb initial ratios (Ludwig, 2001).
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3.3  Mass spectrometry

3.3.1  Basic principles

Mass  spectrometry  allows  to  determine  the  proportions  or  relative  ratios  of 

constituents of a sample (molecules, elements, isotopes), based on their mass. Sample 

atoms/molecules  are  ionised  and  focussed  to  an  ion  beam,  different  masses  are 

separated  in  a  mass  analyser,  and  the  resulting  ion  beam  intensities  are  measured 

electronically. Different types of mass spectrometers are distinguished by the means in 

which the basic  steps  of sample introduction & ionisation,  mass separation and ion 

detection are performed.

page 75

Fig. 41: The basic parts of a mass spectrometer: ion source, mass analyser, collector



Methodology I: theory

3.3.2  Typical designs of the individual parts

Sample introduction

Many different strategies and designs for taking up solid, liquid or gaseous samples 

and introducing them in the ion source exist. Some common ones are:

Manual sample loading: the sample is loaded upon some sample carrier, which is 

put directly into (and forms part of) the ion source assembly (e.g. beads used in TIMS, 

see below).

The desolvating nebuliser uses a heated spray chamber and a countercurrent flow of 

Ar sweep gas along a porous heated membrane to remove solvent from the sample 

aerosol,  resulting  in  an  increased  sensitivity  (after  CETAC  Aridus  II™  product 

brochure, www.cetac.com/pdfs/Brochure_Aridus_II.pdf, accessed May 2011).

Laser  ablation (LA)  utilises  short,  intense  laser  pulses  to  break  the  bondings 

between the surface atoms of a solid sample (e.g. Gray, 1985; Günther & Hattendorf, 

2005; Fryer et al., 1995; Jeffries et al., 1998). The resulting mixture of ions, vapour, re-

condensed droplets and particulates broken off the surface is taken up from the ablation 

site by an inert gas flow (typically He) and subsequently introduced to the ion source 

(typically ICP, after mixing with an Ar carrier gas flow; Arrowsmith & Hughes, 1988; 

Hathorne et al., 2008; Eggins et al., 1998).
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Ion Source

In the  ion source,  the  analyte  is  ionised,  ideally  homogeneously for  any masses 

(elements/isotopes)  to  be  analysed  and constantly  over  time.  The  resulting  ions  are 

accelerated by an electric potential and collimated by different geometries of charged 

electrodes (ion lenses) to form a thin ion beam.

For  thermal ionisation (TI), the sample is loaded onto a thin filament of an inert 

metal with high work function and low volatility (typically W, Ta or Re), mounted on an 

isolating glass base (bead). The filament is then electrically heated (in high vacuum) to 

volatilise sample atoms, which are thermally ionised.  For elements with a high first 

ionisation potential,  additional ionisation filaments are placed alongside which can be 

heated to different (higher) temperatures than the heating filament.

An array of beads (the turret) can be prepared in advance and after introducing the 

whole turret in the vacuum chamber, samples are changed remotely.

 

through  an  differentially  pumped  interface 

consisting  of  two  small  nickel  or  platinum 
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apertures (the sampling cone and skimmer cone), which deflect a majority of uncharged 

molecules  and  atoms.  Separation  of  positive  ions  from  electrons  is  achieved  by 

diffusion of the lighter electrons from the ion beam under high vacuum, inertia keeps 

the heavier ions on track. This principle results in strong mass fractionation, favouring 

heavier  elements  relative  to  lighter  ones  (because  of  higher  inertia),  and  requires 

appropriate correction. Following lies an array of electrostatic lenses that further focus 

and accelerate the ion beam. Final focussing occurs in the high vacuum of the mass 

analyser.

ICP can ionise all elements with high efficiency, even those with high ionisation 

energies  (up  to  15.76eV,  the  ionisation  energy  of  Ar,  used  to  form  the  plasma). 

However, ion transmission from plasma to the mass spectrometer is inefficient, only 

about 2% of the sample are detected, due to the characteristics of the plasma-vacuum 

interface (the "cones", see above).

Other possible ion sources for mass spectrometry include:

• ionisation by electron bombardment of a gaseous sample

• photoionisation of sample molecules by laser

• spark source ionisation (SSMS) vaporises a (conductive) solid sample in a high-

voltage RF spark

• glow discharge (GDMS) uses the (solid, conductive) sample as one electrode in 

a low-pressure, high-voltage discharge chamber

• secondary ionisation (SIMS) utilises a primary ion beam to ionise and release 

atoms from the sample (sputtering)

• the Ion MicroProbe is an integrated system for sample introduction of a solid 

sample and sputtering with a very narrow primary ion beam

A  collision  cell may  be  fitted  between  ion  source  and  ion  beam  collimator.  It 

consists (typically) of a  hexapole,  an array of six cylindrical electrodes, on which a 

radiofrequency potential is applied. The hexapole is housed in an evacuated cell, and a 

constant small flow of collision gas (typically Ar or He) is introduced. The ions collide 
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with the gas atoms, and the radiofrequency is chosen so that only ions in a narrow 

energy  range  emerge  from the  array.  A collision  cell  can  effectively  remove  many 

interferences.

Mass analyser

The  mass  analyser  filters  the  ion  beam

based on its physical properties to let only ions

of one specific mass-to-charge (m/z) ratio pass

onto the collector. 

The  most  common  design  in  mass

spectrometers  is  the  magnetic  sector  mass

analyser (based  on  Nier,  1940).  Mass

separation  is  achieved  by  deflecting  the  ion

beam in a magnetic field applied normal to the 

track of the ion beam. The ions will follow a 

circular path according to the formula:

m
z

=
B2 r2

2U

where:
m … ionic mass
z … charge of ion
B … magnetic flux density
r … radius of path of ion
U … accelerating voltage

Thus, ions of different mass or charge will follow paths of different radius (larger 

masses  are  less  deflected  than  smaller  ones).  The ion  beam is  directed through the 

magnetic field for a certain radius of a circle (typically 60° or 90°), so ions of different 

m/z ratios will exit at different radii and with slightly different trajectory. Adjustment of 

either B or U allows for directing the beam of ions of exactly one m/z ratio onto the  

detector. 

The  quadrupole mass analyser achieves separation of different masses by electric 

fields. It consists of an array of four parallel cylindrical electrodes. Opposing electrodes 

are connected and to each pair a electrical potential, consisting of a DC- and an AC-
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component,  is  applied.  The  AC component  is  a  radiofrequency  potential,  the  peak 

amplitude U1 and frequency ν of which determine which masses pass the filter:

m
z

=
k U 1

ν
2r 0

2

where:
m … ionic mass
z … charge of ion
k … constant
U 1 … peak amplitude of ac potential

ν … frequency of ac potential

r 0 … radius of cylinder defined by
inner surface of electrodes
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It is noteworthy, that with the above

mentioned  techniques,  only  ions  of

differing  m/z  ratios  can  be

distinguished,  the  actual  elemental

composition  can  not  be  determined.

This  leads  to  the  problem  of  mass

interference:  Ions  of  isotopes  of

different elements,  but (roughly) same

mass  and  charge  can  not  be

distinguished.  Isobaric  interference is

the interference of isotopes of the same

mass, but different elements (e.g.  204Hg

and  204Pb).  Polyatomic ions form from

gases present in the plasma (combinations of H, N, O and Ar; e.g.  44Ca+ and  14N2
16O+ 

have both m/z=44). Refractory oxide ions result either from the sample matrix or the 

plasma tail flame (e.g.  44Ca+ and 28Si16O2
+, both m/z=44). Ions of differing mass  and 

charge might have the same m/z ratio as each other, thus being evenly indistinguishable 

(e.g. 172Yb2+ and 86Sr+, both m/z=86).

To overcome this and other interfering effects, separation of ion beams can also be 

achieved by filters based on other principles than electromagnetism. Acceleration in a 

defined electric potential  will  give all  ions of same charge the same kinetic  energy, 

which results in differing velocities of ions of different mass. The following two designs 

select ions based on their kinetic energy.

• An electrostatic  energy filter  (or electrostatic  analyser,  ESA) deflects  the ion 

beam in an electrostatic field, forcing different masses into different trajectories. 

The  design  is  similar  to  the  magnetic  sector  mass  analyser,  with  the 

electromagnet (above and below the ion beam) replaced by two electrodes, in 

the form of concentric cylindrical sectors (on the inner and the outer side of the 

bending  analyser  tube),  between  which  the  ion  beam  passes  (see  double 

focussing mass spectrometer, below).
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• The  time-of-flight  mass  analyser  accelerates  a  short  ion  pulse  in  an  electric 

potential and the travel time of the ions through a zero-field  volume of known 

length is measured, thus the velocity of the ions determined.

Collector

Measuring of the ion beam intensity is typically performed with either one, or a 

combination  of  Faraday  Cup  detectors  or secondary  electron  multipliers,  a  special 

design  of  which  is  the  Daly  photomultiplier  system.  The  Faraday cup measures  the 

electric  charge  accumulated  by  the  ions  hitting  a  collector  electrode.  Electron 

multipliers  measure  the  cascading  secondary  electrons  generated  by  the  primary 

(sample) ions hitting an array of amplifier dynodes. The channeltron is another design 

of electron multiplier, using continuous semiconductor dynodes instead of an array of 

separate ones. In the Daly design, the ion beam is deflected by a high voltage cathode, 

from  which  secondary  electrons  are  emitted  upon  impact  of  the  ion  beam.  These 

electrons  hit  a  scintillator  and  the  signal  is  amplified  by  a  photomultiplier.  Daly 

detectors and Faraday cup detectors are often combined, the Daly cathode acts  as a 

switch for which detector the ion beam hits.

Detection of the ion beam(s) may also be conducted by placing a photographic plate 

in  the  focal  plane  of  the  ion  beam.  Beam  intensity  is  calculated  from  the 

(photometrically  measured)  grade  of  blackening  of  the  plate.  The  Mattauch-Herzog 

geometry of a  doubly focussing mass  spectrometer  (see below) is  especially  suited, 

because ion beams off all mass numbers (m/z) are focussed on one common focussing 

plane, so all ion beams are measured simultaneously on the same photographic plate.
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3.3.3  Data acquisition and reduction (theory)

Principles (single-collector TIMS)

Measured ion beam intensities from a single collector analysis must be corrected for 

beam instability,  baseline contribution,  isobaric interference(s), and, if isotope ratios 

are to be obtained, mass fractionation.

The ion beam should ideally have a “flat-top profile”, meaning that along a traverse 

through the beam, the intensity should be constantly high, with steep fall-offs on either 

side.  A profile  of  beam intensity  can  be measured  by slightly  increasing/decreasing 

either magnetic field strength or  acceleration potential, thus slowly sweeping the ion 

beam over the fixed detector. Acquisition parameters are then chosen so that the beam is 

centered on the detector.

Different masses are measured by setting the magnetic field to the respective values 

to  direct  the  ion  beams  of  interest  into  the  detector.  Each  mass  is  measured 

consecutively  for  an  integration  time long  enough  to  obtain  a  sufficiently  precise 

measurement, but short enough to allow for a series of repeated measurements of each 

mass  before  the  sample  on  the  filament  is  exhausted.  Precision  of  the  determined 

isotope  ratios  increases  with  the  number  of  individual  measurements  (random error 

decreases, thus precision is a function of the square root of individual measurements).

Together  with  isotopes  of  the  analyte  of  interest,  additional,  unique  masses  of 

elements  contributing  isobaric  interference  on  the  analyte,  and intensity  on  a  beam 

position in between mass peaks (to estimate baseline intensity) are acquired.

Even without altering instrument settings, ion beam intensity will change with time, 

both  as  a  systematic,  slow  increase  (growth),  and  as  short,  random  fluctuations 

(instability; Gill, 1997).

The baseline intensity consists of electronic noise in the detector, and scattered ions 

of the analyte, caused by collisions of the ion beam with residual gas molecules in the 

analyser tube. The latter leads to a tail of increased background signal close to each 

peak (tailing effect). The effect is larger, the stronger the ion beam is, which can lead to 
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difficulties  in  precisely  measuring  small  mass  peaks  close  to  large  ones.  The 

instrumental abundance sensitivity is a measure for tailing interference of adjacent mass 

peaks. It can be improved by fitting an electrostatic analyser between mass analyser and 

collector, and by maintaining a high vacuum. 

Isobaric interference is monitored by measuring an interference-free isotope of the 

(or each of the) interfering element(s) together with the analyte isotopes. Interference 

correction is achieved by the formula:

Acorr=Ameas−Bmeas×( B iBm )

where:
Acorr … corrected intensity of analyte isotope A
Ameas … measured intensity of analyte isotope A

Bmeas … measured intensity of non-interfering isotope
of element B

B i
Bm

… ratio of interfering isotope to non-interfering
isotope of element B in the sample

Interference  can  be  minimised  by  removal  of  the  interfering  isotope  from  the 

sample, e.g. by chemical separation, or by “burning off” of the interfering element prior 

to analysis, if it has a lower ionisation energy than the analyte.

Growth is corrected by an assumed linear interpolation of the measured intensities 

over time. Short-term instability of the ion beam can not be corrected and degrades 

precision of ratios obtained from the consecutive measurements.

Mass  fractionation  occurs  because  of  preferential  thermal  ionisation  of  lighter 

masses  from the  sample  on the  filament.  This  leads  to  relative  depletion  of  lighter 

masses in the residual sample and thus to changing isotopic ratios measured over the 

course of an analysis. The fractionation effect is greater for more volatile and for lighter 

elements (because of greater relative mass differences). Triple-filament loading shows 

less mass fractionation. For details, see "Mass fractionation" below.
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Multi-collector ICPMS

In this setup, ICP is the ion source, with its associated advantages and disadvantages 

(see "Ion Source" above and "Mass fractionation" below).

Multiple detectors in one instrument allow for the simultaneous measurement of the 

intensities of several ion beams. Detectors are either set fixed for a particular element 

(fixed multi-collector), or adjustable (variable multi-collector). In the latter case, each 

detector must be centered separately on the respective ion beam to be measured.

In static multi-collection, additional to the actual mass peaks, baseline is measured at 

half-mass offset either side of the peak of interest. The magnetic field stays constant 

(static) during measurement. Simultaneous measurement of monitor isotopes for mass 

interference automatically  corrects  for  beam instability.  Isotope ratios  are  calculated 

directly  from  the  ratios  of  (baseline  corrected)  measured  intensities.  Using  a 

combination  of  electron  multipliers  and  Faraday  cups  allows  for  the  simultaneous 

measurement of very large ratios.

Precision  of  static  multi-collector  measurements  is  excellent,  but  accuracy  and 

reproducibility  is  difficult  to  attain.  Individual  ion beams are measured on different 

detectors,  which  may  exhibit  differences  in  amplifier  gain  and  in  transmission 

efficiency.  To  determine  amplifier  gain  differences,  a  constant  electric  current  is 

regularly measured on each of the amplifiers. Transmission differences are determined 

by comparing the intensity of a stable ion beam measured on each of the detectors.

In  multi-dynamic  analysis,  amplifier  gain  and  transmission  of  the  individual 

detectors is calibrated by successively measuring the same sample ion beam on all the 

of the detectors. This involves varying the magnetic field of the mass analyser, thus the 

term “dynamic”. Interference monitors are measured simultaneously. Reproducibility is 

much improved in this mode. It combines high precision, compared to single-collector 

analysis, with higher accuracy, compared to static multi-collector acquisition, but it is 

slower and requires larger sample sizes (Faure & Mensing, 2005; Gill, 1997).
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Quadrupole ICPMS

This technique combines an ICP ion source with a quadrupole mass analyser (see 

above). Different masses of interest, or a whole mass spectrum, can be scanned very 

rapidly. Mass resolution on this type of analyser is relatively low; adjacent elemental 

mass numbers can easily be identified, but mass interferences from e.g. polyatomic ions 

can not be detected. A whole spectrum of blank signals, resulting from polyatomic ions 

or refractory oxides, is observed, mainly at m/z<80 (the argon dimer).

Ion beam intensity is typically measured with an electron multiplier, yielding very 

high sensitivity for most  elements,  and low detection limits.  A wide dynamic range 

allows  for  (quasi-)simultaneous  determination  of  elements  of  very  different 

concentrations.

Quantification of signal intensities is usually achieved by external calibration to a 

standard material of known composition. This is the only possibility if the method is 

used in conjunction with sample introduction by laser ablation. If sample is introduced 

in solution, isotope dilution may be applied.

Mass fractionation

Ionisation effectiveness is mass dependent, because lighter isotopes will be more 

readily freed from their molecular bonds (Zou, 2007). In TIMS, this leads to a constant 

change in measured isotopic ratios towards heavier isotopes throughout the analysis of a 

sample  (growth).  Diffusion  from the  ion  beam of  an  ICP ion  source  will  cause  a 

constant  mass bias preferring heavier masses. Mass fractionation can be constant in 

time,  or  change  systematically,  both  towards  or  away  from  heavier  masses. 

Fractionation of the different isotopes of an element will be proportional to mass.

If three or more isotopes of an analyte element can be measured, any two isotope 

ratios  plotted  against  each  other  for  the  data  of  one  analysis  will  show near-linear 

correlation (Gill, 1997). Assuming a standard value for one of the ratios fixes the value 

for the other(s). This standard value may be obtained by integrating the whole signal of 

a  sample  until  exhaustion  from  the  filament  (TIMS).  If  one  isotope  pair  is  non-

radiogenic and non-radioactive, and isotope fractionation in the sample can be excluded, 
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an established standard value for its “natural” ratio can be used (internal normalisation;  

Gill, 1997).

When only two isotopes are present, or if there is no non-radiogenic isotope pair, a 

standard  of  known  isotopic  composition  is  run  with  the  samples  (external  

normalisation). Mass fractionation is determined in the external standard and assumed 

to be equal for the samples. Thus, it is important that the samples and the standard are 

prepared and handled in a way so they behave similarly.

For  mass  bias  correction,  a  different  element  than  the  analyte,  but  with  similar 

isotopic masses, can be mixed with the sample and measured simultaneously.

For the correction, the mass fractionation relative to mass difference of the isotopes 

of interest must be known. Linear, exponential or power fractionation laws (Wasserburg 

et al., 1981) are commonly applied. The formulas are:

Linear law:

(AB )
corr

= (AB )
meas

×[1+ M A−M B

M B−M C

×((
B
C )

true

(BC )
meas

−1)]
where:
A , B , C … isotopes A, B and C of the analyte
corr … indicates corrected (assumed true) value
meas … indicates measured values
M A, B ,C … masses of isotopes A, B and C

(BC )
true

… assumed natural ratio of isotopes B and C
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Power law:

(AB )
corr

=
(AB )

meas

(M A

M B
)
β

with β =

ln [(
B
C )

meas

(BC )
true

]
ln(M B

M C
)

where:
A , B ,C … isotopes A, B and C of the analyte
corr … indicates corrected (assumed true) value
meas … indicates measured values
M A ,B , C … masses of isotopes A, B and C

(BC )
true

… assumed natural ratio of isotopes B and C

Exponential law:

[(
A
B )

meas

(AB )
true

]
ln (M B

MC )

= [(
B
C )

meas

(BC )
true

]
ln(M A

M B )

where:
A , B ,C … isotopes A, B and C of the analyte
meas ,true … indicate measured and true values, respectively
M A, B ,C … masses of isotopes A, B and C

For small corrections (measured values close to assumed natural or CRM values), 

the  differences  between  the  three  formulas  are  negligible.  For  very  high  precision 

measurements,  the  exponential  law  might  be  the  better  approximation  of  natural 

behaviour, see Thirlwall, 1991.

Quantification with internal and external standardisation

Calculating the concentrations of elements of interest in a sample from laser ablation 

data requires analysis of an external standard (a CRM, e.g. NIST SRM612, Reed, 1992) 

containing known concentrations of the elements of interest. The concentration of one 
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element in the sample must be known, either from analysis  with another method or 

stoichiometric  considerations.  This  element  is  called  the  internal  standard.  For  the 

actual calculations applied in this study, see chapters 4.6 and 4.12.3.

Isotope dilution

Isotope dilution is  based on the determination of  the isotopic composition of an 

element in a mixture of a known quantity of a “spike” with an unknown quantity of the 

normal element. The spike is a solution containing a known concentration of a particular 

element artificially enriched in one of its isotopes. The sample contains an unknown 

concentration of the element whose isotopic composition is known (measured). Mixing 

a known amount of sample with a known amount of spike, and measuring the resulting 

isotopic composition, allows for calculation of the amount of the element in the sample 

(after Faure & Mensing, 2005).

After mixing, the ratio Rm of abundances of two isotopes A and B is:

Rm=
AbN

A N+ AbS
AS

AbN
B N+ AbS

BS

where:
Rm … measured ratio of isotopes A and B
N, S … number of atoms of the normal element and the spike
AbN

A
… abundance of isotope A in the normal element (and so forth)

A is the isotope which is enriched in the spike, B is a nonradiogenic isotope of the 

same element. The number of atoms of the analyte in the sample (N) can be calculated 

by:

N w=S w(W N

W S
) [AbS

A
−Rm AbS

B

Rm AbN
B
−AbN

A ]
where:
NW , SW … no. of atoms in normal element and spike, resp.
W n , W s … atomic weight of analyte in the sample and spike, resp.

AbN
A , AbS

A
… abundance of isotope A in normal element and spike, resp.

AbN
B , AbS

B
… abundance of isotope B in normal element and spike, resp.

Rm … ratio of isotopes A and B in the mixture (measured)
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where WN and WS are the atomic weights of the analyte in the sample and in the 

spike, respectively, and N and S are in terms of numbers of atoms. Using concentrations 

rather  than  number  of  atoms,  concentration  of  the  analyte  in  the  sample  can  be 

calculated as:

C N=CS
M S

M N

W N

W S [AbS
A
−Rm AbS

B

Rm AbN
B
−AbN

A ]
where:
CN ,C S … concentration of analyte in the sample and spike, resp.
M N , M S … weight of the sample and the spike, resp.
W n , W s … atomic weight of analyte in the sample and spike, resp.

AbN
A , AbS

A
… abundance of isotope A in normal element and spike, resp.

AbN
B , AbS

B
… abundance of isotope B in normal element and spike, resp.

Rm … ratio of isotopes A and B in the mixture (measured)

where  MN and  MS are  the  weights  of  the  sample  and the  spike  in  the  mixture, 

respectively, in units of weight (after Zou, 2007).

This method allows for very low concentrations being measured with high accuracy 

on small  amounts of sample.  For spikes,  often artificial  radioisotopes are  used.  The 

accuracy  of  results  greatly  depends  on  background  contamination  minimisation, 

calibration  of  spike  solution,  correction  for  fractionation  effects  during  sample 

introduction (preferential ionisation,...),  and avoidance of other sources of error, like 

change of spike concentration by evaporation (Gill, 1997).
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3.3.4  Design combinations at RHUL

TIMS

The TIMS lab houses a VG 354 Thermal Ionisation Mass Spectrometer.  Sample 

introduction is by beads on a 16 place turret. Mass separation is achieved with a 90° 

magnetic  sector  mass  analyser.  Measurement  occurs  on  an  array  of  four  adjustable 

Faraday cups and one fixed axial Faraday cup/Daly detector combination.

IsoProbe

The GVI (MicroMass) IsoProbe uses an ICP ion source and a magnetic sector mass 

analyser.  Sample  introduction  is  achieved  by  either  a  Micromist  glass  nebuliser 

(Meinhard type) or a  CETAC Aridus II™ desolvating micronebuliser. The IsoProbe is 

fitted  with  a  hexapole  collision  cell.  Multi-collector  measurement  occurs  in  an 

(adjustable) array of 9 Faraday detectors and three ion-counting detectors (two low-

mass channeltrons; one axial Daly detector to be used alternatively to one of the nine 

Faraday cups).

LA-ICPMS

A RESOlution  M-50 laser  ablation  system (Resonetics  Inc.)  with  a  193nm ArF 

excimer laser (COMPexPro110, Coherent Inc.) allows for sample analysis of a wide 

range of  solid  samples.  The ablation cell  (Laurin Technic,  AUS) has  a  two-volume 

geometry with a small effective ablation volume and invariant gas flow at the ablation 

site, enabling constant elemental/isotopic fractionation during sample stage movement 

(for a thorough description, see Müller et al., 2009b). The sample aerosol is transported 

by He and, mixed with Ar carrier gas, gets analysed by an Agilent Inc. 7500ce ICP 

quadrupole mass spectrometer. Carrier gas flow of the ablated sample may alternatively 

be directed to the IsoProbe (see above).
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Comparison of techniques applied at RHUL

Comparison: TI vs. ICP

Thermal Ionisation (TI) Inductively Coupled Plasma (ICP)

ionisation efficiency limits sensitivity ion  transmission  from  plasma  inefficient 
(~2%) → large sample sizes

not all elements readily ionised introduction  of  elements  with  high 
ionisation energy possible (most elements 
suitable)

mass fractionation relatively small mass fractionation relatively large

preferential thermal ionisation of lighter 
masses, residuum depleted in lighter 
isotope → measured ratios change over 
time of analysis

measured  ratios  constant  (precise),  but 
inaccurate; heavy masses preferred (due to 
ion  extraction  in  the  plasma-vacuum 
interface)

mass fractionation greater for lighter 
elements (greater relative mass 
differences), and dependent on loading 
method (triple filaments showing less 
fractionation), but different elements 
behave differently

mass fractionation largely mass dependent, 
elements  of  similar  atomic  mass  show 
similar fractionation

sample  preparation  takes  long  (filament 
loading)

allows easy and rapid sample introduction 
in  different  states  (fluid,  gaseous,  to  a 
limited extend particulate)

Comparison: Faraday Cup vs. electron multiplier (and Daly multiplier)

Faraday Cup Electron  multiplier  and  Daly 
photomultiplier

electronic noise limits sensitivity very low electronic noise, high sensitivity

mass-independent, linear response → 
more precise ratios

signal  may  be  mass  and  intensity 
dependent

slow signal decay (memory effect)

Comparison: single collector vs. multi-collector

Single collector mass spectrometry Multi-Collector Mass Spectrometry (MC-
MS)

masses measured sequentially → longer 
analysis time → more sample needed

reduced analysis time, smaller sample 
sizes
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one mass measured at any given time → 
ratios only obtained consecutively, short-
term instabilities in ionisation intensity 
increase error

simultaneous acquisition of all masses of 
interest, direct measurement of ratios - 
short-term instabilities in source ionisation 
are overcome

signal  growth  →  values  need  to  be 
interpolated over time

no time interpolation required

very large ratios can be measured by 
combinations of Faraday Cups and 
electron multipliers
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3.3.5  Alternative designs

In  a  double  focussing  mass

spectrometer,  a  combination  of  an

electrostatic  energy  filter  and  a

magnetic  sector  mass  analyser  allows

for  filtering  of  ions  both  based  on

electromagnetism  and  kinetic  energy.

Very high mass resolution is  achieved

this way.

Two general geometries are in use:

in  the  Nier-Johnson  geometry,  the

electrostatic  analyser  works  energy-

selecting,  whereas  in  the  Mattauch-

Herzog  geometry,  the  electrostatic

analyser  works  energy-focussing,

cancelling out energy dispersion in the

magnetic analyser.

Secondary Ion mass spectrometry (SIMS) uses a highly focussed primary ion beam 

to sputter particles out of the surface of a solid sample. Some of these released particles 

are (mono- and multi-atomic) ions,  which can be accelerated and filtered in a mass 

filter. For an overview and comparison of this technique with SHRIMP (see below), see 

e.g. Compston, 1999; Williams, 1985.

The  Sensitive  High-Resolution  Ion  MicroProbe (SHRIMP;  e.g.  Compston  et  al., 

1984; Compston, 1996; Compston & Clement, 2006) uses secondary ionisation and a 

very  large  (high  resolution)  double  focussing  multi-collector  mass  spectrometer  to 

achieve very high mass resolution on small samples. This allows for analysis of small, 

complex solid samples, like e.g. zoned, multiphase Zircons (e.g. Froude et al., 1983; 

Compston & Pidgeon, 1986).
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In an  accelerator mass spectrometer, negative ions are produced by sputtering the 

sample with a  caesium beam. The ions  are  filtered by a  first  magnetic  sector  mass 

analyser,  the selected beam is introduced in a  linear  particle  accelerator.  Within the 

accelerator, the negative ions hit a gas filled chamber or thin foil, which strips off all 

electrons  and  breaks  any  molecular  bonds.  The  resulting  positive  ions  are  further 

accelerated  and  separated  in  a  second  magnetic  sector  mass  analyser  before 

measurement. This technique allows analysis of extremely low concentrations of e.g. 

cosmogenic nuclides (Gill, 1997).

3.4  Data quality (theory)

3.4.1  Precision and accuracy (theory)

The mean value x of a series of measurements xi is defined as

x̄=
∑

1

N

xi

N
(after Zou, 2007), where N is the number of observations.

The standard deviation of a data set is calculated as

σ x=√ 1
N−1∑1

N

( xi− x̄ )
2

.

The standard error, or standard deviation of the mean, is defined as

σ x̄=
σ x

√N .

From this follows that in contrast  to σx,  the standard error will  decrease with an 

increase in number of observations. The standard error is often denoted as se instead of 

σx.
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Precision of a set of measurements

is  a  measure  for  the  random error of

the  data  set.  Assuming  the  individual

measurements  scatter  around  a  mean

value  with  normal  distribution,  the

standard deviation σ of that distribution

can  be  used  to  quantify  precision. 

Commonly, a measured value is given 

as  the  mean  value  x ±  2s.  In  this 

notation, s stands for the calculated standard deviation of the data from their mean value 

x (after  Gill, 1997), which is only an approximation for the true standard deviation σ 

around  the  true  mean.  It  can  be  shown  that  in  a  set  of  values  obeying  a  normal 

distribution,  95%  of  values  will  fall  within  2σ  of  the  mean.  Relative  Precision is 

expressed in percent of the mean value.

 Data  accuracy is a measure for  systematic error in a set of measurements. It is 

usually calculated from comparison of measurements on a certified reference material 

(CRM;  Gill,  1997)  with  the  certified  or  preferred  values  for  that  material.  From 

measurements  of CRMs, correction factors can be calculated to be included in data 

processing, counteracting systematic bias.

Data reproducibility is a measure for the ability to obtain the same value in repeated 

measurements  of  a  sample.  It  is  normally  calculated  from  a  longer-time  series  of 

measurements of CRMs.

3.4.2  Error sources and uncertainties

Every measured value for a  natural phenomenon can only be determined with a 

certain amount of certainty. The exact reasons for uncertainty are manifold. Sources of 

statistical  error  (causing imprecision)  have to be distinguished from sources  of bias 

(causing inaccuracy).

In this study, main sources of bias are mass fractionation during sample introduction 

and analysis in the mass spectrometer, instrumental bias e.g. in the detectors of the mass 

page 96

Illustration of data precision vs. accuracy. Stars 
indicate  individual  measurements  of  the  true 
value at the centre.



Methodology I: theory

spectrometer,  and  sample  contamination  during  sample  preparation.  Generally,  a 

constant bias in measurements (systematic error) can be determined with appropriate 

tests and corrected for mathematically or in instrument tuning (see e.g. chapter  4.5.4, 

4.6.4 for mass fractionation correction and data quality assurance by measurements of 

CRMs),  or  attempted  to  be  reduced  in  the  analysis  workflow  (see  4.5,  4.6.3 for 

information  on  workflow  optimisation  to  reduce  blank).  Another  source  of  bias, 

potentially with a randomly fluctuating component to it, is isobaric interference, which 

can be minimised in instrument tuning.

Instabilities in the measurement process itself, like fluctuations in sample uptake, 

gas flows, in the plasma torch, sample ionisation, ion beam, magnetic field, detector 

response,... and electronic noise (in detectors and amplifiers) cause random error. These 

can be reduced trying to run an analysis under as stable conditions as possible, but can 

not be completely eliminated. Repeated measurements can alleviate this fact partially, 

because the standard error (se) decreases with increasing number of measurements.

There also exist  uncertainties  in  values  that  go into the  calculations  during data 

reduction (chapter  4.6), namely the assumed concentrations of elements and isotopic 

ratios in CRMs, uncertainties on the values of the isotopic abundances and masses of 

elements under consideration and on the halflives of the radioactive nuclides in each of 

the decay chains. These errors should be propagated through all calculations (see e.g. 

Ludwig, 2003; Zou, 2007).

However, the greatest source for random error in this study is geological  scatter, 

slight deviations of the isotopic compositions of analysed subsamples from one sample, 

caused  either  by  initial  sample  inhomogeneity,  or  by  (inhomogeneous)  secondary 

disturbances  of  the  sample  (multiple  deformation  generations,  weathering, 

diagenesis,...). Geological scatter results in the data points in an isochron or concordia 

plot not exactly lying on one line, and the resulting uncertainty in the linear regression 

will lead to an increased error on the calculated age. This error in most cases is much 

larger  than  the  other  error  sources  (for  a  fairly  precise  measurement),  especially 

uncertainties  in  the  values  for  atomic  weights  and  decay  constants  are  comparably 

insignificant.
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4.  Methodology II: application

4.1  Sampling and field techniques

Sample collection was by standard field geological methods, with a hammer and 

chisel. Only apparently fresh, unweathered samples, or samples big enough to contain 

an unweathered core after extensive cleaning, were collected. Outcrops with current or 

obvious past water flow were only sampled if fresh samples from a zone deeper within 

the host material  could be extracted.  Samples were collected in standard food-grade 

plastic zip bags. Structural data were measured using a CLAR-type geologist's compass. 

GPS coordinates for each outcrop were recorded.

4.2  Palaeo-Stress analysis

Palaeo-stress  analysis  from  brittle  deformation  structures  is  a  well  established 

method  for  obtaining  an  estimate  of  local  and  potentially  regional  principal  stress 

orientations during time of deformation (e.g. Angelier, 1979; Sperner & Zweigel, 2010). 

Relative  motion  of  two  blocks  separated  by  a  fault  or  fracture  is  inferred  from 

indentations, grooves and scratch marks, secondary structures, and most commonly and 

reliably,  from mineral fibres grown at the time of and in direction of movement, or 

"slickenfibres"  (see  e.g.  Petit,  1987;  Means,  1987  for  a  description  of  sense-of-

movement indicators, and chapter "2.1 Tectonic carbonates", with references therein).

The aim of this study was not to conduct new palaeostress analyses in the visited 

areas.  Where  they  could  be  acquired  during  sampling,  measurements  of  brittle 

deformation structures were recorded, to be able to place the sample in a framework of 

published deformation phases for the respective area. Where sampling sites were visited 

together with local collaborators, often this correlation with a deformation event was 

based on personal communication.
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For large enough data sets, a best fit orientation of palaeo-stress principal axes can 

be calculated (see e.g. Angelier, 1979; Will & Powell, 1991; Will & Powell, 1992; Fry, 

1992;  Mostafa,  2005;  Phan-Trong,  1993).  Because  the  deformation  and  the  forces 

leading to it can not be observed directly, certain assumptions have to be made based on 

the  resulting  structures.  For  a  discussion  of  validity  and  applicability  of  these 

assumptions that goes beyond the scope of this study, see e.g. Sperner & Zweigel, 2010 

or Kaven et al., 2011.

The method has been applied successfully in many areas worldwide, e.g. Decker et 

al., 1993; Ortner, 2003c; Peresson & Decker, 1997 define the six phases of Miocene 

deformation in the northern and central Eastern Alps that form the tectonic framework 

in which samples from the areas Lower Inn Valley (LIV), Tauernwindow Northern Fault 

(TNF), Gosau Basin (GOB) and Fohnsdorf Basin (FOB) are to be seen. See chapter "2.2 

Sampling areas, geological background and structural geology" for further references 

for the respective areas.

The program TectonicsFP (Ortner et al., 2002) was used for calculation of principal 

stress (PT-) axes.

4.3  Mechanical sample preparation

4.3.1  Thin sections, thick sections and polished blocks

Samples were cut with a rotating diamond coated rock cutting saw into slabs of few 

mm thickness. For laser ablation, one surface of the slabs was ground plain on rotating 

diamond coated grinding discs, and manually lapped with successively finer grained 

carborundum powder to P600 or P1000 grit size.

Before analysis, the slabs were ultrasonicated for 10-15 min, each: twice in acetone, 

once in isopropanol or methanol, and at least thrice in "triple red" (18.2 MΩ) deionised 

water, or until water stayed clear (see also chapter "4.12 Summary: detailed workflow

for U-Pb dating of calcite"). The slabs were then air dried in a clean air hood.
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Thin and thick sections were prepared by the thin sections lab in house at RHUL, 

using Crystalbond™ adhesive. If sections were analysed by laser ablation, cleaning was 

with methanol (shortly) and deionised water only.

Samples too small for stand-alone mounting in the laser ablation sample holder were 

embedded  in  epoxy  resin,  before  grinding  and  lapping  as  described  above.  These 

samples also were not cleaned with acetone.

4.3.2  Microsampling

From samples determined to be suitable  for  high-precision MC-ICPMS analysis, 

subsamples of ~250 mg each were cut with a diamond-coated dental cutting wheel on a 

hand-held drill. The individual subsamples were chosen based on the spatial information 

about U/Pb ratio and element concentrations gained from laser ablation single tracks 

and  maps  (see  chapters  "4.7 1D  LA-ICPMS  screening"  and  "4.8 2D  LA-ICPMS

element mapping" below). Usually, subsamples were cut from the hand specimens the 

LA slabs were cut from, to preserve the latter for potential further LA analyses. The 

rock saw removes ~2-3 mm of material between the LA slab and the remaining sample, 

and cutting direction was usually perpendicular to fibre growth. This allowed for good 

correlation  of  the  LA results  to  the  hand  specimen.  Where  more  exact  choice  was 

necessary, the subsamples were cut from the LA slab, destroying it in the process.

Each  subsample  was  mechanically  cleaned  under  the  binocular  with  a  rotating 

diamond-coated abrasive tool. Any discolourations and visible foreign minerals were 

removed from the usually plain white calcite samples.

The  resulting  subsamples  were  degreased  and  cleaned  with  acetone  and 

isopropanol/methanol as described for the laser ablation slabs above, and air dried in a 

clean air hood.
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Fig. 47: Microsampling of KMR-GOB21B_A
Top: As sampled, broken in three pieces (I, II, III). Middle, left: pieces cut, one side will be  

prepared for LA, the other remains for microsampling (middle, right). Bottom: subsamples 
cut, before mechanical cleaning.
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4.4  Chemical sample preparation

For all further chemical procedures, high-purity acids sub-boiling distilled in PTFA 

and FEP stills (abbreviated "TD." for 1  × "teflon distilled", "h.p.", standing for "high 

purity",  for twice distilled),  and high-purity  deionised H2O ("triple  red",  18.2  MΩ, 

abbreviated "h.p.") were used. Distilled HNO3 had a concentration of ~15M, distilled 

HCl ~8M. Lower concentration acids were produced by dilution with H2O h.p.

All wet-chemical work for subsequent isotopic analyses was conducted in PFA vials 

cleaned by long-time leaching in alternating baths of hot, dilute (reagent grade, not h.p.) 

HNO3 and HCl, followed by refluxing with h.p. HNO3 on a hot plate. H.p. reagents 

were stored in FEP bottles cleaned in the same manner.

As a final cleaning step before dissolution, the surface of the subsamples was etched 

off in 1M HCl h.p. for 25-30 s, before rinsing with H2O h.p. three times.

Samples  were  then  dissolved  with  an  amount  of  HNO3 h.p.  corresponding 

approximately to the stoichiometric equivalent of the amount of calcite in the sample. 

The resulting solution was diluted to 2M HNO3.

The sample solution was aliquoted in a 20:80 ratio for isotope dilution (see below) 

and natural isotopic ratio analysis, respectively.

For  a detailed step-by-step description of  the whole wet-chemical  workflow, see 

chapter "4.12.2 Detailed clean lab/column chemistry workflow".

4.4.1  Extraction chromatography

From  the  sample  aliquots,  Pb  and  U  (with  Th)  were  separated  by  extraction 

chromatography (Horwitz et al., 1992), following and adapting work by e.g. Woodhead 

et al., 2006 and Luo et al., 1997. In a first step, Pb was separated from the solution 

utilising Eichrom Sr resin. This resin, although developed for separation of Sr, has an 

even higher retention potential for Pb, as shown in Fig. 48 (from Horwitz et al., 1992).
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100 µl Sr resin were loaded onto 100 µl prefilter resin (the same inert substrate the 

extraction resin is applied on in manufacture). The dissolved samples, diluted to 2M 

HNO3 concentration, were loaded onto the cleaned and conditioned resin. The solution 

passing the columns was collected for subsequent separation of U and Th. 8M HCl h.p. 

was used for Pb elution off the resin and was collected for a second pass through the 

same columns.

The process was calibrated by collecting the passing solutions in small fractions and 

analysing these separately for their elemental concentrations, as shown in Fig. 49 and 

Fig. 50.
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Fig. 48: Acid dependency of the uptake of selected metal ions
Acid dependency of the uptake of selected metal ions by Sr resin at temperature 23-25° C 
(from Horwitz1992). In the present study, samples were loaded in 2M HNO3, to achieve maxi-
mum Pb retention.
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Fig. 49: Calibration curves for Sr resin column chemistry.
Most elements simply pass the column during sample loading, Ca and U are plotted as exam-
ples. The exponential rise followed by constantly high values for Sr might indicate that the  
loading capacity was exceeded. In this study, Sr was not considered, and the much higher 
affinity of the resin for Pb still assures an efficient separation. Pb signals remain low through-
out sample loading (full retention), and Pb is readily stripped off the resin during elution.
For calibration, a tracer solution enriched in 206Pb was used. The 208Pb/206Pb ratio curve (middle 
plot) shows values close to the natural background of ~1.6–1.7 throughout sample loading and 
Sr elution, and drops to the ratio of the artificial solution of ~1–1.1 during Pb elution. A rise in 
the ratio at the end  indicates return to background values, thus complete elution.
Elements  were measured by one  representative  m/z  ratio  each,  signals  are  plotted in  raw 
counts per second. For calibration, qualitative information was sufficient and values were not 
converted to concentrations.
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The U fraction was loaded on 100 µl Eichrom TRU resin (with 100 µl prefilter 

resin) in 2M HNO3 solution, Th was eluded with 0.2M HCl h.p., U with a 0.1M HCl / 

0.3M  HF  solution  (HF  was  reagent  grade,  not  distilled,  as  no  significant  U 

contamination occurred as a background to the process).

After column passes, the samples (both Pb and U) were dried down, 200 µl HNO3 

h.p.  were added to break down organic residue of mobilised resin,  and dried down 

again.

4.4.2  Isotope Dilution

For  isotope  dilution  measurements  (see  chapter  "3.3.3 Data  acquisition  and

reduction (theory)"), a combined solution ("spike") enriched in 208Pb, 229Th and 236U was 

mixed with the 20% aliquot of samples before column chemistry. 
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Fig. 50: Calibration curves for TRU resin column chemistry
Major elements (represented by Ca here) are rinsed off after sample loading. The last two frac-
tions, yielding Th and U respectively, were collected together for analysis.
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4.5  Error sources and avoidance strategies, quality 
assurance

Some potential problems arise from the specific nature of the samples considered in 

this study.

– A detrital clay or carbonate phase or late diagenesis processes may distort the 

isotope  ratios  (Cole  et  al.,  2005).  All  optically  visible  foreign  particles  in  the 

samples were either removed or the respective regions avoided in subsampling. LA-

ICPMS trace element data also gave a good indication of homogeneity on samples 

and best suited subsamples.

– As the samples for this study are taken at the earth's surface and fractures and 

faults  in  general  are  prone  to  weathering,  open-system  behaviour  may  lead  to 

fractionation by physical and/or chemical processes (leaching, expulsion, Rn-loss by 

diffusion). Concordance of  238U/ 206Pb and  235U/ 207Pb ages would indicate no major 

disturbances to have occurred (Cole et al., 2005).

– In very young samples, departure from initial secular equilibrium of the U-series 

decay chain at the time of precipitation may lead to an apparent offset (Wendt & 

Carl, 1985, Richards et al., 1998). This again can be argued to have had no major 

effect, if the 238U/ 206Pb and  235U/ 207Pb ages are concordant (Cole et al., 2005). The 

samples analysed in this study are all expected to be much older than the threshold 

of ~106 a given in  Richards et al., 1998 and Gascoyne, 1992 for establishment of 

secular equilibrium.

Assuming  undisturbed  samples,  and  that  a  lot  of  the  above  mentioned  natural 

disturbances  can  be  avoided  by  careful  sample  selection,  the  main  problem during 

sample preparation for analysis is Pb contamination from the (laboratory) environment. 

One  main  aspect  of  this  study  was  to  establish  a  workflow  that  allows  reliably 

reproducible low-blank analyses of Pb and U isotopic ratios on as small sample sizes as 

technically possible.

Prerequisites  for  low-blank  wet  chemistry  are  thoroughly  clean  labware  and 

reagents, careful handling in a controlled environment and constant blank monitoring, 
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as described below. Detailed step-by-step instructions for the applied lab procedures are 

given in chapter "4.12 Summary: detailed workflow for U-Pb dating of calcite".

4.5.1  Labware cleaning, reagents, handling

For all further chemical procedures, high-purity acids sub-boiling distilled in PTFA 

and FEP stills (abbreviated "TD." for 1  × "teflon distilled"; "h.p.", standing for "high 

purity",  for  twice  distilled),  and  high-purity  deionised  H2O ("triple  red",  18.2  MΩ, 

abbreviated "h.p.") were used. Distilled HNO3 had a concentration of ~15M, distilled 

HCl ~8M. Lower concentration acids were produced by dilution with H2O h.p.

All wet-chemical work for isotopic analyses was conducted in PFA vials cleaned by 

long-time (1-3 weeks) leaching in alternating baths of hot, dilute (reagent grade, not 

h.p.) HNO3 and HCl, followed by refluxing with HNO3 h.p. on a hot plate. TD and h.p. 

reagents were stored in FEP bottles cleaned in the same manner.

FEP columns for extraction chromatography were ultrasonicated in reverse position 

after  use,  to  remove  resin  particles  possibly  clinging  to  the  frit  material,  and  then 

leached in HCl h.p. on the hotplate in designated large PFA vials for several hours, 

before  storage  in  1M HCl h.p.  in  individually  allocated  and previously  leached  PS 

centrifuge tubes.

Wet  chemical  work  was  conducted  in  ISO class  10  designated  clean  air  hoods, 

providing  laminar  air  flow  of  filtered  air  with  a  slight  overpressure  towards  the 

surrounding. Most measurement and handling of reagents was conducted by pipetting 

with  PS  pipette  tips  leached  for  cleaning  (see  "4.12.2 Detailed  clean  lab/column

chemistry workflow" below), only spike solution was added from a FEP dropper bottle 

and resins were loaded with dedicated PP pipettes previously leached in dilute HNO3. 

All containers were opened only the absolute minimum time necessary, lids were 

placed back on loosely whenever possible,  all movements within the clean air  hood 

were made with great  care to not reach over any open containers or risk any other 

particulate contamination. One dedicated cleaned pipette tip was used for handling of all 

"h.p." chemicals and was rinsed at each change of reagent and before and after putting 
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into  storage  container.  This  pipette  tip  was  replaced  whenever  any  possibility  of 

contamination was suspected.

A special, antistatic hooded lab coat (SNDI Switzerland "Everest Clean 3000") with 

elastic cuffs made of a material not shedding particulates was worn for chemical work 

in clean labs. WRP Dermagrip powder-free latex examination gloves were worn and 

changed frequently.
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4.5.2  Blanks

Blanks were run with every batch of samples processed in the column chemistry 

workflow – usually  two blanks per  batch,  to  potentially  distinguish random, single-

particle contamination from  a systematic e.g. reagent contamination. Every step of the 

workflow was conducted in the same manner as with samples, and at the same time as 

samples,  each time in different columns previously used for samples.  This not  only 

allows  for  a  realistic  estimation  of  amount  and  likelihood  of  contamination,  but 

inherently also tests cleaning procedures applied between sample runs.

Reagent blanks were determined each time new distilled "h.p." acids  were used. 

Cleaning procedures were tested by refluxing cleaned vials for several hours on the 

hotplate  with  HNO3 h.p.  and  measuring  the  blank on the  leachate.  Besides  particle 

counting (see next section below), particle contamination was also tested with long-time 

exposure  blanks  collected  in  open  PFA vials.  Occasionally,  column  blanks  were 

determined by running HCl h.p. through columns with and without resin bed, without 

loading a sample.
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Fig. 51: All procedure blanks measured after the final adaptation of the presented workflow.
Most outlying values can be explained by handling errors noticed during sample processing.  
The average of the remaining values is 11.4 pg Pb. Assuming a low value is generally achiev-
able, and assuming elevated values result from particulate or other contamination not intrinsic 
to the workflow, and thus omitting all values > 20 pg, yields an average of 5.3 pg Pb assumed 
to be the lowest achievable value, calculated from 24 individual procedure blanks.
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Tab. 1 (above): Pb blanks.
Of the procedure blanks, those with 
handling issues noticed during work 
were not considered further.  Of the 
remaining blanks (green), those over 
20 pg were considered outliers, most 
likely due to particulate contamina-
tion, and were also not included in 
the final average procedure blank.

Tab. 2 (right): U blanks.
Contamination  with  U was  consid-
ered a far less likely risk, thus fewer 
blank  measurements  were  con-
ducted.
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4.5.3  Particle counting

In order to assess and monitor air quality in the clean air hoods and to optimise air 

flow, a HandiLaz® Mini 3-channel, handheld airborne particle counter was used to count 

airborne particles. A pump draws a constant air stream through the detection chamber, at 

a flow rate of 2.83 l/min, while particles are detected optically.

Usually, counting time was 10 – 20 min, the minimum time to yield statistically 

meaningful results  under the given situation according to the counter's  user manual. 

Although stated to be ISO class 10 clean air hoods by the producer, our particle counts 

would  not  justify  classification  better  than  class  100  according  to  the  strict  ISO 

guidelines. This result varies  between different locations in the air hood, the centre 

coming up to class 10 air quality, and an attempt was made to concentrate the work in 

these "good" zones. It must be stressed that the applied counting times are not sufficient 

to validate the calculated ISO clean air classes in an ISO-conform testing protocol, for 

which purpose this model of particle counter may not be suited at all. The model was 

chosen for it's ease of use and manageability, enabling quick, hand-held measurements. 

For the intent of setup optimisation, formal ISO certification was not deemed necessary 

and thus not pursued.

4.5.4  Standards

Throughout  analyses,  standard  materials  of  known  composition  were  measured 

intermittently  with  samples.  NIST  SRM  612  glass  (Reed,  1992),  USGS  MACS-3 

carbonate powder pellets were utilised, and a cross-check with MPI-DING GOR 128-G 

glass (Jochum et al., 2000; Jochum et al., 2006) was conducted (1 analysis).

In laser ablation work, the NIST SRM 612 glass standard was used for external 

standardisation, measured usually once before and after single track ablation, or several 

times throughout a mapping. The standard was mounted on the sample holder with the 

sample,  and  the  geometry  of  the  ablation  cell  (see  "LA-ICPMS"  in  chapter  "3.3.4 

Design  combinations  at  RHUL")  assures  constant  sample  aerosol  transport  at  any 

position within the cell.
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However,  because the  standard  and samples  are  not  matix-matched,  i.e.  the  one 

being a  silicate  glass,  the others  carbonate,  a  differing  ablation  efficiency might  be 

expected. With a 193nm excimer laser, the differences are insignificantly small. See also 

chapter "6 Interpretation and Discussion" for discussion.

Eggins & Shelley, 2002 point out the possibility of compositional heterogeneities in 

the  NIST glass  standards.  Some indication  for  this  could  be  observed,  but  because 

standards were measured as (short) tracks, not as point analyses, inhomogeneities could 

be easily recognised and the affected data were not used.

In solution work for MC-ICPMS, solutions of NIST SRM 981, 982 (Catanzaro et al., 

1968;  Thirlwall,  2002)  and the  NU-C standard  were used,  diluted to  concentrations 

comparable  to  the  samples.  Thallium solution for  mass  fractionation  correction  was 

based on NIST SRM 997 with an assumed natural 205Tl/203Tl ratio of 2.3889 (Dunstan et 

al., 1980; Thirlwall, 2002).
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Tab. 3 (following page): NIST SRM 612 concentration values.
GeoReM preferred concentration values as used in this study, and new values (Jochum2011). 
There are no changes for the elements most relevant in this study (U, Pb, Th, Ca).

Tab. 4: NIST SRM 981 and SRM 982
Lead isotopic ratios after (a) Catanzaro1968, (b) Thirlwall2002 and 
(c) Doucelance2001.
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Tab. 5: GOR128-G concentration 
values.
GeoReM preferred concentration 
and  isotopic  composition  values 
for  glass  standard  MPI-DING 
GOR128-G. These values follow 
Jochum2006.
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Tab. 6: Preliminary concentration values for USGS standard MACS-3.
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4.5.5  Comparison with published values
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Fig. 52: Comparison of MACS-3 analyses to preliminary standard values
Black dots denote mean values, grey crosses denote median values, error bars are 1 sd. See 
Fig. 53 for plots of Sr and U omitting the large single outliers.

Fig. 53: Detailed view at U and Sr measurements
Left: U values, omitting the large outlier in analysis MR61. Please not that the median value  
(grey cross symbol) still lies within the range of the other values – see Fig. 54.
Right: Sr analyses, omitting erroneous value for analysis MR40.
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Fig. 54: Detailed view at MACS-3 analysis MR61.
Element concentration plot of the data acquired on MACS-3 in this analysis shows a constant 
signal for all elements except U, indicating element-specific inhomogeneities, most likely as a 
result  of the manufacturing process.  The U anomaly features up to 2 orders of magnitude 
higher values than the surrounding material. The anomaly spans several data points, thus is not  
a signal "spike" (e.g. a larger particle transported with the gas flow), but is a feature in the 
standard material.
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Fig. 55: Comparison of SRM 981 and 982 measurements to reference values
Measured Pb isotopic ratios acquired on the IsoProbe. From the measured values, correction 
factors for the further data processing were calculated.



Methodology II: application

page 119

Tab. 7: Comparison of MPI-DING GOR128-G measurements to certified values
In situ acquired data, 204Pb not measurable on a quadrupole ICPMS. Lead isotopic ratios were 
estimated utilising the standard 206Pb/204Pb ratio of 18.518. Element concentrations in ppm, cal-
culated based on 4.4597% w/w Ca as internal standard.

Tab. 8: Comparison of USGS MACS-3 standard measurements to preliminary reported values
In situ acquired isotopic data, 204Pb not measurable on a quadrupole ICPMS. Lead isotopic ra-
tios were estimated utilising the standard 206Pb/204Pb ratio of 18.390. Element concentrations in 
ppm, calculated based on 37.69% w/w Ca as internal standard.
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Fig. 56: Comparison of U/Pb ratios measured on USGS MACS-3
U/Pb elemental ratios measured on MACS-3. Error bars are 2 se. In green: U/Pb ratio calcu-
lated from preliminary information values,  ± 2 sd. Most values are calculated means of data 
acquired with the standard settings for quantitative analysis, only 2 analyses were conducted  
with the settings used for in situ isotopic analyses – these lie closer to the proposed standard  
values. Analysis MR53 is erroneous and does not plot within the shown range of values. Mean 
value of analysis MR61 is too high due to an U anomaly, see Fig. 54. Error bars for this analy-
sis are too large to plot on this scale.
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4.6  ICPMS data reduction

Some basic principles are common to bot LA-(quadrupole) and MC-ICPMS. These 

are  only  shortly  mentioned  in  this  section,  details  will  be  found  in  the  following 

chapters 4.7 – 4.10 and 4.12 for the respective methods.

4.6.1  Data conversion, handling and storage

Several programs controlling laser ablation, the quadrupole ICPMS and the IsoProbe 

produce various files containing information about a particular sample. These different 

data files have to be processed independently, and the information merged, to gain the 

most comprehensive view on the context of the analyses.

Laser ablation parameters are controlled by Resonetics' GeoStar software. The set 

parameters  are  stored in an .xml file,  while  the actual  achieved ablation conditions, 

including some additional status information, gets saved in two log files during ablation 

(.csv and .log).  Additionally,  the  samples  are  scanned on a  flatbed scanner  prior  to 

analysis, and the image is reprojected to sample stage coordinates for a scaled display in 

GeoStar.  The reprojected image (.png) and a  small  xml file  containing coordination 

information (.coord) can be saved and facilitate exact scaled display of the scan and 

ablation tracks later.

The data from the Agilent 7500 quadrupole ICPMS are stored in a proprietary binary 

format (two files with extension .icp). The raw counts per second (CPS) data is exported 

as time-resolved .csv files.

The add-on package  LAICPMS for the R Language for Statistical  Computing (R 

Development Core Team, 2010), developed during this project for processing of the 

analyses data (see  Rittner & Müller, 2012 in Appendix XXX), links these individual 

files  by  means  of  parameter  files  (.xml),  which  additionally  include  processing 

parameters and information about data structure. This information is loaded into one 

combined  data  structure  containing  all  parameters,  which  is  given  to  calculation 

functions  as  a  single  parameter,  making  handling  easy.  The  data  necessary  for 
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calculations is read from the respective files automatically. In this approach, the original 

data files remain unaltered, calculations are usually performed on-the-fly as needed. The 

resulting data can be exported and plotted into various file formats.

Numerical or graphical analyses of the results from a sample are then saved as short 

script  files,  which  include  the  calculations  in  few lines  of  code,  and  usually  some 

graphical adaptations for the respective task (e.g. a figure in a publication).

Data from the GVI IsoProbe is stored in a structured text file (extension .dat), which 

in the workflow usually followed at RHUL is converted into a Microsoft Excel file, but 

saved under the same file name and extension (.dat). Main calculations are performed 

after copying the appropriate values from the source files into MS Excel masterfiles 

(.xls) previously set up for the task, which also serve as data repository for the results.

4.6.2  Quantification

In  this  study,  the  samples  were  assumed  to  be  nearly  pure  calcite,  thus  a 

stoichiometric concentration of 40.04% w/w Ca was used as internal standard. Domains 

of host rock and contaminations (most often clay minerals in fault gauge) can not be 

quantified this way, but could easily be identified by elevated Al and Si counts, and 

were not considered in further calculations.

NIST SRM 612 glass was utilised as external standard.  Concentration values for 

elements  in  NIST  SRM  612  were  obtained  from  GeoReM  (as  downloaded  from 

georem.mpch-mainz.gwdg.de on 11.12.2007) and  NIST (“Atomic Weights and Isotopic 

Compositions  for  All  Elements”,  as  downloaded  from 

physics.nist.gov/PhysRefData/Compositions/index.html on 11.12.2007).

For an explanation of the R commands called for data processing, see chapter 4.12.3 

Data reduction.

After  most  data  analysis  was  performed,  new  preferred  values  for  element 

concentrations  in  NIST  SRM  612  were  published  (Jochum  et  al.,  2011),  but  the 

expected  differences  in  results  presented  in  this  study  would  be  negligible,  thus 

calculations were not repeated.
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4.6.3  Blank correction

In  LA analyses,  background signal  was collected  before  and between individual 

ablations (standards,  sample tracks),  and usually the average raw CPS signal of the 

closest (in time) bracketing backgrounds was subtracted from the raw CPS measured for 

a sample/standard.

On the IsoProbe,  machine background signals were measured before an analysis 

session,  the blank signal  of the clean (usually  2% HNO3 h.p.)  acid the sample was 

redissolved  in  was  acquired  before  each  individual  measurement.  The  averaged 

background  values  for  each  analysis  were  subtracted  from the  individual  raw  data 

acquired.

Procedure blanks for  the wet chemical  (column) workflow were quantified from 

repeated blank runs. An average procedure blank of 5.3 pg Pb was determined. Blank 

isotopic composition was determined as the average of 10 unspiked blank column runs, 

and used in data reduction for correction of Pb concentrations and Pb isotopic ratios. 

See also chapter "4.5.2 Blanks" and individual data reduction in chapters 4.7 – 4.10 and 

4.12.

4.6.4  Mass fractionation correction

In laser ablation analysis, a linear law mass fractionation correction is calculated 

from the measured isotopic ratios in the standards and the GeoReM preferred values – 

see chapter "4.12 Summary: detailed workflow for U-Pb dating of calcite" for details.
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4.7  1D LA-ICPMS screening

For single track (1D) LA-ICPMS screening of samples, the polished and cleaned 

blocks  (see  chapter  4.3.1 Thin  sections,  thick  sections  and  polished  blocks)  were 

mounted on sample holders provided with the HelEX ablation cell. Sample holders are 

machined from anodised aluminium. Different geometries are available, specialised for 

4 × 1 inch epoxy blocks, 2 × 1 inch epoxy plus 1 × thin section, multiple thin sections 

(different widths), or free sample configurations. Standards were mounted together with 

the sample(s), to be analysed in the same analysis session. (usually acquired all together 

in one data file, including intermittent background signals). 

Prior to analysis, the sample mounted in the holder is scanned on a flatbed scanner 

and the resulting image is later calibrated in GeoStar to sample stage coordinates, to 

serve as a guide for easy navigation and ablation location selection.

All  sample  handling  was  performed  with  powder  free  latex  gloves  to  avoid 

contamination.  Standard  materials  were  occasionally  surface-wiped with  sub-boiling 

distilled  methanol  on  soft  laboratory  wipes,  to  remove  condensate  from  previous 

ablations. Loose dust particles were removed from the mounted sample array with an Ar 

hand blower connected to the ICPMS Ar supply line.

Typically, analysis laser settings were: 20 Hz pulse repetition rate, 74 µm spot size, 

67 µm/s stage speed. Laser pulses last 20 ns, energy density was set to ~4 J/cm².

Standard,  sample  and  intermittent  background  signals  were  usually  acquired 

together in one continuous data file. Occasionally, standards and sample were recorded 

in separate files (with their respective bracketing backgrounds), which only requires a 

different  setup  of  the  parameter  files  for  the  utilised  software,  all  calculations  then 

follow the same steps described below.

The software automatically recognises data ranges containing background, standard 

and sample data, or they can be set and changed manually. The following refers to the 

typical calculations conducted to yield the presented results only, the data can be used 
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very flexibly for any other numerical analysis once loaded into R. Further information 

on the software can be found in  Rittner & Müller, 2012, attached in Appendix XXX. 

The actual calculations are described in more detail in chapter "4.12.3 Data reduction" 

below.

Background was calculated as the average of background data intervals. The two 

background  intervals  recorded  closest  before  and  after  a  signal  (both  sample  or 

standard) were usually averaged to obtain the signals to be subtracted from the signals 

of  interest  for  background  correction  (bracketing  backgrounds).  Due  to  the  great 

temporal as well as spacial signal stability in the utilised setup, statistical error within 

each  background  data  interval  was  larger  than  the  difference  between  averages  of 

consecutive  background  measurements,  thus  no  further  interpolation  of  background 

signals over time was necessary.

From the background signals, the Limits of Determination (LoD) were calculated as 

average of background signals + 6 * standard deviation (after Gill, 1997), values below 

LoD are usually not shown in the final output.

Element concentrations are calculated by determining the signal response for each 

element  (in  cps/ppm) from the  standard  signal,  and from that  converting  the  signal 

intensities for the sample relative to the internal standard element (in this study Ca, 

assumed to be 40.04 % w/w) to concentrations.

To retrieve spatial  information on the calculated concentrations, both the logfiles 

from  the  laser  ablation  software  (containing  track  geometries  in  sample  stage 

coordinates) and the data files from the ICPMS software (containing timestamps) are 

necessary. The sample stage moves at a constant velocity during ablation. This allows to 

calculate the distance along the ablation path from the timestamps in the data file. At the 

beginning and end of the data signal, an empirically determined time interval is cut off, 

to allow for signal stabilisation in the beginning and to disregard the interval of signal 

fall-off at the end.

After calculation, element concentration are stored internally in a hierarchical data 

structure containing metadata (analysis parameters) and the calculated data tables. The 

data can be stored to files externally if desired, but this is usually not necessary (all 

page 125



Methodology II: application

calculations repeated from the original source data). See chapter "4.12.3 Data reduction" 

below for the function calls used in R and explanations.
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4.8  2D LA-ICPMS element mapping

Two-dimensional element mapping of a sample area expands on the single track 

screening,  by measuring an array of  single tracks  and interpolating a  raster  map of 

concentration values in between.

In this  study, all  data for a mapping, including backgrounds,  several intermittent 

standard measurements  and all  tracks were usually  recorded in  one data  file.  Initial 

processing is thus the same as for single tracks, which yields concentration data for each 

individual track.

From the geometrical information about ablation area and tracks contained in the 

GeoStar analysis file and the logfiles written during analysis, coordinates for each data 

point in each track are calculated. These data points are then combined and kriging (e.g. 

Kravchenko & Bullock, 1999; Mueller et al., 2004) is utilised to interpolate a new raster 

over the whole area of interest.

Before kriging, smoothing of the individual data tracks can optionally be applied, 

and the results can be downsampled to a lower spatial resolution than initially acquired, 

to speed up interpolation and yield less noisy maps (see  Fig. 57 for an illustration of 

terms). Downsampling into local averages does not involve a great loss of information, 

as the distance between individual tracks is usually much larger than data spacing along 

tracks,  thus,  in  the  interpolation  the  data  will  always  be  partially  smoothed  out, 

depending on the chosen cell size of the output raster.

To be able to optically distinguish the most features in the resulting element maps, a 

custom colouring algorithm based on the empirical cumulative density function (ecdf) 

was applied to give the maps the optimal colour scale.

A discussion and comparison of techniques applied to produce 2D element maps and 

further explanations can be found in Rittner & Müller, 2012 in Appendix A.
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Fig. 57: Smoothing, subsampling and downsampling.
Comparison of: a) Original signal, dashed line, and recorded data containing random noise. b) 
Smoothing (algorithm “smoothn()”, see Rittner2012) fits a continuous function to best repre-
sent the given data, and then samples this function at the original x positions. c) Subsampling  
selects a subset of the given data, e.g. every n-th data point, at its measured position. This 
might sample outliers. d) Downsampling calculates the average of values in a given data win-
dow (e.g. 5-point running median), and assigns this value to the whole window – or a new data 
point representing the respective window, which does not necessarily need to lie at an original  
x position.
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4.9  In situ isotope ratio measurements (LA-ICPMS)

The  possibility  to  measure  U  and  Pb  isotopes  in  situ  by  laser  ablation,  on  the 

quadrupole  ICPMS,  was  evaluated.  Different  ablation  geometries  and  settings  were 

tested. High mass interference of 204Hg makes direct measurement of 204Pb impossible in 

the current setup, and lead isotope ratios can only be estimated based on an assumed 
206Pb/204Pb ratio. See chapter “4.12.3 Data reduction“ for details.

To minimise the fractionation effects of more conventional spot analyses, where the 

stationary  laser  progressively  drills  into  the  sample,  and  thus  also  to  more  closely 

guarantee the ablated material is the same as analysed in previous screenings, the data 

was acquired in small tracks or small areas (arrays of tracks, see Fig. 58). Laser settings 

for these analyses were typically 20 Hz repetition rate, 0.5 mm/min stage speed and 96 

µm spot size. A preablation was run on the same geometry before actual analysis.

From the acquired signals, the most homogeneous ranges of data were selected for 

averaging.

Mass  fractionation  correction  was  calculated  based  on  the  respective  bracketing 

standards (NIST SRM 612).

For calculation of the 238U/206Pb ratio, U and Pb concentrations had to be quantified. 

Background  correction  was  calculated  as  described  for  1D and  2D screening,  from 

bracketing backgrounds. Quantification was as described for 1D and 2D screening.  For 

calculation  of  lead  isotopic  ratios  for  each  sample,  a  206Pb/204Pb  ratio  of  200  was 

estimated (assuming reasonably radiogenic samples).
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4.10  MC-ICPMS (solution samples)

Careful chemical sample preparation for multi-collector ICPMS analyses, avoiding 

(Pb) contamination, is described in chapter  4.4 Chemical sample preparation. Samples 

dried  down  after  column  chemistry  are  redissolved  in  2%  HNO3 h.p.  with  added 

thallium solution, in a known (natural)  205Tl/203Tl ratio, for Pb isotopic analyses. For 

U/Th analyses, samples were redissolved in a 2% HNO3 + 0.5% HF mixture (without 

thallium).

The sample vials are opened at the time of analysis only, the feeder probe from the 

nebuliser is put into the sample solution manually. Data acquisition is started manually. 

After  analysis,  various  cleaning  steps  are  performed,  until  signals  have  returned  to 

background. Blanks are measured on the same 2% HNO3 h.p. used for redissolution. All 

sample handling is performed with powder-free latex gloves.

The data reduction workflow for data from the GVI IsoProbe is well established at 

RHUL,  and  was  therefore  not  altered.  Data  is  stored  as  structured  text  files  with 

extension ".dat", which are converted into MS Excel files of the same file name. Some 

initial  calculations  are  performed  in  the  data  files  (by  copy-pasting  the  respective 

formulas  in),  the  obtained  summary  information  is  then  copied  into  MS  Excel 

masterfiles, which also need sample and spike solution weight as input parameters.

The  206Pb/204Pb ratio is corrected for  204Hg interference, calculated from measured 
201Hg (or 202Hg) signals.

Based on the measured  205Tl/203Tl ratio,  mass fractionation correction based on a 

power law (see chapter Mass fractionation) is applied. 

From the measured Pb isotopic ratios of spiked aliquots,  concentration,  and thus 

amount, of Pb in the sample can be calculated. The natural isotopic ratios are measured 

independently,  on  the  unspiked  aliquot.  Blank  correction  is  applied  to  the 

concentrations, and blank-corrected Pb isotopic ratios calculated.
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4.11  Other methods

4.11.1  Corg

Mobility of U in aqueous conditions is greatly affected by the presence of organic 

ligands, see chapter "3.1 Methodology II: application". To test whether the content of 

organically derived carbon (Corg) in the host rock of tectonic carbonates correlates with 

U concentrations, samples of host rock from different sampling areas were analysed for 

their Corg and U/Pb contents.

The samples were powdered, dried, and ashed in a furnace at a temperature below 

the dissociation temperature(s) of carbonates. The ashing weight loss was measured. 

See chapter "5.2 Organic Carbon (Corg)" for results.

4.11.2  Optical microscopy

A standard  optical  microscope  with  a  fitted  digital  camera  was  used  to  take 

microphotographs  of  selected  sample  sections  and  polished  blocks.  Samples  were 

examined in reflected light. Because of the small area visible, several pictures had to be 

taken  of  each  sample,  and  stitched  together.  The  freeware  program  Hugin 

(hugin.sourceforge.net) was used for reprojection and stitching of individual photos. See 

chapter  5.3 Imaging results and individual sample documentation in Appendix C for 

examples.

4.11.3  SEM

BSE and elemental  concentration  maps  of  selected  samples  were  acquired  on  a 

Hitachi  S3000 SEM with  an  associated  Link Isis  energy-dispersive  X-ray  detection 

system for chemical analysis. See chapter 5.3 Imaging results for examples. Elements of 

interest in this study typically occur in too low concentrations to be detected, whereas 

the LA-ICPMS 2D mapping technique (chapter  4.8 2D LA-ICPMS element mapping) 
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can produce  trace element  maps down to very low concentrations.  Therefore,  SEM 

imaging was not further pursued.
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4.12  Summary: detailed workflow for U-Pb dating of 
calcite

4.12.1  Summary

In  the  following  sections,  detailed  step-by  step  instructions  for  the  developed 

workflow for U-Pb isotopic analysis of tectonic carbonates are given, in theory enabling 

the  operator  to  reproduce  the  stated  data  quality.  Under  best  circumstances,  the 

individual stages of the process take about these amounts of time:

– sample preparation – 1 day

– LA-slab preparation and cleaning – 1 day

– laser ablation work – 1-2 days

– LA data reduction – 2 days

– subsampling, sample cleaning – 2-3 days

– aliquoting, column preparation – 1 day

– Pb / Sr resin column chemistry – 1-2 days × 2 (IC and ID fraction)

– TRU resin column chemistry – 1 day

– isotope ratio analysis Pb – 1 day

– isotope ratio analysis U – 1 day

– data processing – 1-2 d

This sums up to 21 days / 4 weeks per sample, assuming all labs and machines are 

available at the required time and without interruptions. This estimate excludes at least 

two to four weeks labware cleaning in between sample batches and assumes immediate 

availability of "high purity" distilled reagents.
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4.12.2  Detailed clean lab/column chemistry workflow

Listed below, are the individual steps for different preparations and main parts of the 

workflow. The main factors influencing contamination are careful cleaning of labware 

and reagents and cautious handling in every step of the workflow.

Cleaning procedure for calcite samples for LA-ICPMS and subsamples 
before dissolution

– ultrasonicate in acetone, 15 min

– rinse in H2O h.p., ultrasonicate in acetone, 15 min

– rinse in H2O h.p., ultrasonicate in isopropanol or methanol, 15 min

– rinse and ultrasonicate in H2O h.p., 15 min

– repeat H2O cleaning at least twice, until water stays clear (and no more particles 

collect at bottom)

Cleaning procedure for PS pipette tips

To be conducted in 125 ml HDPE bottles:

– wash in acetone, shake, then tap until no more air bubbles cling to pipette tips, 

let stand ~½ – 1 h

– rinse in H2O h.p., at least 4 ×

– handling pipette tips with PTFA tweezers,  transfer individually via H2O rinse 

(fill and empty) into HCl (reagent grade) mixed 1:1 with H2O, leave several days or 

longer

– transfer via H2O h.p. rinse (fill and empty) into HNO3 (reagent grade), mixed 1:1 

with H2O, leave several hours

– transfer via H2O h.p. rinse (fill and empty) into ~1M HNO3 h.p. for storage
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Cleaning procedure for new Fluoropolymer labware

– degrease with weak decon 90-solution (1 h – 1 d)

– rinse repeatedly with H2O h.p.

– wash with acetone (let stand ~1 h)

– rinse with H2O h.p.

– leach in warm HCl (conc., reagent grade) mixed 1:1 with H2O h.p., on hotplate 

in fume cupboard, 1 d – 1+ week

– rinse with H2O h.p.

– leach in warm HNO3 (conc., reagent grade) mixed 1:1 with H2O h.p., on hotplate 

in fume cupboard, 1 d – 1+ week

– rinse with H2O h.p.

– repeat HCl- and HNO3-steps at least twice

– [match numbered vials and lids, label]

– "reflux" with ~200-300 µl HNO3 h.p., tightly closed, on hotplate for 1+ h

– check for  irregularities  (wetting)  by  collecting  droplets,  use  H2O h.p.  or  5% 

HNO3 h.p. to aid in droplet collection if needed

The refluxing step can be performed (or repeated) shortly before usage of vial, to 

minimise untreated storage time of labware.

After  use  in  column chemistry,  rinse  all  (closed!)  vials  with  acetone  to  remove 

labelling,  open and empty vials,  optionally mechanically wipe each vial  with a soft 

plastic disposable pipette to remove "sticky" resin residue (very careful not to scratch 

the vial, avoid sharp protruding seam from the production process of the pipette), reflux 

vials with HNO3 conc. (reagent grade, 1 h – 1 d) on hotplate, discard leachate, rinse, and 

start long-time leaching at HCl step above.
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Cleaning Sr and prefilter resin

Mix  resin  with  H2O  h.p.  in  PFA  beaker:  close  lid,  shake  well,  potentially 

ultrasonicate. Decant any floating particles. Repeat at least 2 ×, until very few particles 

remain floating.

– load full resin bed of Sr and prefilter resin in respective dedicated FEP columns

– wash resins with 1 RV (~10 ml) 0.05M HNO3 h.p.

– wash resins with 1 RV (~10 ml) 0.1M H2SO4 (analytically clean)

– wash resins with 1 RV H2O h.p.

– repeat washing 10 ×, omitting the H2O after ~the third time

– backwash resins in storage containers (e.g. 7 ml PFA vials or dropper bottles)

Preparation for column chemistry workflow

All reagents are measured by pipetting the stated amounts.

SR-resin (Pb) workflow:

– weigh empty, clean PFA vials: 3 × 7 ml and 2 × 3 ml per sample and blank

– put samples in 7 ml vials for dissolution, weigh again (dry)

– etch sample surface for ~30 s in 1M HCl, amount roughly adapted to sample size 

(~1 ml per 250 mg calcite), pipet solution off and rinse the sample with 3  × 1 ml 

H2O h.p. (pipetted off each time), use one pipette tip dedicated to each sample

– put on hotplate shortly to dry – weigh again

– cover sample in 1500 µl H2O h.p. and dissolve by adding HNO3 h.p., roughly 

adapted to  sample size (in  250 µl  or smaller  steps,  stoichiometrically  calculated 

according to amount calcite, new acid added only after reaction has finished). Put lid 

on immediately after adding acid, to collect all droplets produced by bubbling and 

avoid contamination of workspace and other samples by droplets. Screw on, but do 
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not tighten lid, to allow gas to escape. After adding HNO3 h.p., be very careful to 

wash all droplets off the reagent (h.p.) handling pipette tip.

– after complete dissolution, dilute to 2M HNO3 with H2O h.p., weigh again, put 

on hotplate (~½ h, closed tight) and/or shake

– for ID fraction: add spike to one empty 7 ml vial per sample, weigh to obtain 

exact  spike  weight  (plus  weighing of  spike  bottle  if  using  dropper  bottle  –  use 

designated pipette tip if pipetting spike)

– pipette 20% of sample solution into vials with spike, use separate pipette tips for 

each sample

– unspiked rest (80%) of solution will be IC fraction.

– for  blanks: add spike to empty vial after simulated sample dissolution, weigh, 

add H2O, same amount of HNO3 as for samples, dilute to 2M HNO3 and put on 

hotplate and/or shake. Pipette off 20% aliquot into empty 7ml vial.

– weigh IC and ID fractions to obtain exact final aliquot amounts

– put on hotplate (closed tight) for ~1 h at 90°, shake again after cooling

page 138



Methodology II: application

Sr resin column chemistry workflow
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The  workflow,  schematically  pictured  in  Fig.  59,  follows  these  steps  see  also 

prepared workflow monitoring forms for tick-off, in Appendix C):

– clean empty columns with 1 RV HCl TD

– load prefilter and Sr resin, 100 µl each

– clean resin with 1 RV HCl TD, repeat

– clean resin with 1 RV HCl h.p.

– condition resin with 0.5 ml 2M HNO3 h.p.

– put 7 ml PFA vial under column to collect for TRU resin workflow

– load sample

– rinse resin with 0.8 ml 2M HNO3 h.p.

– close collecting vial, put away for later use in TRU workflow

– elude Sr off resin with 1 ml H2O h.p.

– place 3 ml vial (refluxed with ~0.3 ml HNO3 h.p.) under column for collection

– elude Pb off resin with 1.2 ml HCl h.p.

– dry down Pb fraction on hotplate in clean air hood

– add 200 µl HNO3 h.p., dry down

– redissolve in 0.5 ml 2M HNO3 (briefly on hotplate)

– with same columns and resin beds used before: clean resin with 1 RV HCl h.p.

– condition resin with 0.5 ml 2M HNO3 h.p.

– load sample

– add 250 µl HNO3 h.p. to sample vial, close tight, put on hotplate for refluxing

– rinse resin with 1 ml 2M HNO3 h.p.

page 140



Methodology II: application

– perform Sr elution step with 1 ml H2O h.p. (sample should contain no Sr any 

more at  this stage; if Sr analysis is required, collect Sr together with Pb in first  

column pass, and separate Sr here, additional vial required for collection) 

– place refluxed vial under column for Pb collection

– elude Pb with 1.2 ml HCl h.p.

– dry down on hotplate

– add 200 µl HNO3 h.p., dry down again

– store dried and closed tightly until redissolution for analysis

TRU resin column chemistry workflow

The TRU resin workflow to separate U and Th from the solution collected in the Pb 

workflow  is  generally  less  critical  in  terms  of  contamination,  as  no  significant  U 

pollution is expected in a typical environment. Nonetheless, the work was performed in 

the same clean air hoods, and great care has to be taken to avoid particulate and cross-

contamination of samples. Usually, no separate IC fraction was processed for U, as the 

isotopic composition of U was assumed to be the natural average. The individual steps 

(see also workflow sheets in the appendix) are as follows:

– clean empty column with 0.1M HCl – 0.3M HF mix

– load prefilter and TRU resins, 100µl each

– clean resin with ~6 ml 0.2M HCl h.p.

– clean resin with ~6 ml 0.1M HCl – 0.3M HF mix

– condition resin with 0.5 ml 2M HNO3 h.p.

– load sample

– add ~0.3 ml HNO3 h.p., to emptied sample vial, close tightly, put on hotplate for 

refluxing

– rinse resin and wash out major elements with 1.8 ml 2M HNO3 h.p.
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– elude rare earth elements with 1.4 ml 3M HCl h.p.

– put (refluxed, empty) vial under column for collection

– elude Th with 1.8 ml 0.2M HCl h.p.

– elude U with 1.8 ml  0.1M HCl – 0.3M HF mix

– dry down collected samples on hotplate

– add 200 µl HNO3 h.p., dry down again

– store dried and closed tightly until redissolution for analysis
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4.12.3  Data reduction

Single track LA-ICPMS data

Agilent  ChemStation on  the  ICPMS  computer  outputs  signal  intensities  for  the 

selected  elements  (m/z  ratios)  as  data  files  containing  one  time-stamped  entry  per 

element of counts per second (cps) in the respective sweep interval. On request, these 

data are stored as comma separated value (.csv) files. Resonetics GeoStar saves ablation 

parameters and some information about ablation track geometry in the main analysis 

files  (XML files),  but  more  detailed  geometric  information  is  contained in  the  two 

logfiles written during analysis (one being a time-stamped protocol of status messages 

with the ending .log, the other a time-resolved table of every machine status change in 

a .csv file).

The  R  add-on  package  LAICPMS (Rittner  & Müller,  2012),  developed  for  data 

processing in this study, reads all these files and combines them to calculate spatially 

resolved  element  concentration  information.  The  same  principles  apply  for  one-

dimensional single ablation tracks and for two-dimensional element maps, calculated 

from an array of tracks (see next section below).

In  the  following,  it  is  assumed  that  standard  and  sample  signals,  including 

background signals before, after and in between the former, are recorded in one data 

file. If standards and sample are recorded in separate files (with respective bracketing 

backgrounds), the setup of the parameter file for calculation changes to point to the 

respective files, all other calculation steps are then performed in the same manner. The 

R commands below are illustrating the most common workflow applied for the data 

presented in chapter "5 Results", a more exhaustive documentation of all functions and 

parameters can be found in the helpfiles for LAICPMS.

– The add-on package is loaded into the R environment with the command:

library("LAICPMS")

– The raw data file is read with the R command
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raw_data <- readDataFile(filename="path_to_datafile")

where "path_to_datafile" specifies the (relative or absolute) path to the data file, 

including filename. Data files from Agilent ChemStation and from the GVI IsoProbe 

software  are  automatically  recognised;  data  can  also  be  read  from  a  SQLite 

relational  database (adding the parameter  tabname="table_name" to  specify the 

data table to load). If the type of data file is not recognised, an attempt to read it is  

still made (if a text or Microsoft Excel file), and if a block of tabulated numerical 

values is found, these are read ignoring any leading and tailing lines not part of the 

data.

The  data  table  is  now  loaded  into  the  variable  raw_data in  the  current  R 

environment.

– The function

parameters <- suggestRanges(data=raw_data)

detects the data ranges (backgrounds, standards and samples) in the data and sets up 

default calculation parameters in the variable parameters.

Range start and end are recognised by a rise or fall, respectively, in more than 90 % 

of the measured signals, that is greater than 3 times the 45-point running average of 

the 1st derivative of the respective signal. An empirically determined time window 

around start and end of each data range is cut out to retain only stabilised signals. 

Assuming standards  and backgrounds to  be  the  most  stable  signals,  data  ranges 

which show standard deviations lesser than 2 times the minimal standard deviation 

observed amongst all data ranges (for the respective mass) and containing signals 

greater than 10000 cps for over 90 % of observed masses,  are considered to be 

standards. Ranges containing stable low signals are considered to be backgrounds, 

the remainder samples. The type of each data range, as well as start and end, can be 

changed and fine-tuned by the user, as well as ranges added or deleted.

– parameters <- fillMissingValues(parameters)
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finds the bracketing backgrounds for each data range (or the ones recorded closest 

before and after) , and the bracketing standards for each sample, and stores them in 

the parameters variable.

– parameters <- setLasingSpeed(parameters, 4, "mm/min")

sets the lasing speed to the desired value.

– The parameters variable now contains all information necessary for single track 

data processing. The function call

ppms <-  getPPM(parameters)

will calculate element concentrations from the raw data and store the results in the 

variable ppms. By default, this function will not cut out values below LoD (this can 

be done by providing the additional parameter cut=TRUE), and assumes the standard 

material to be NIST SRM 612 and the internal standard to be Ca in a concentration 

of 40.04 wt% (calcite). Without listing all internal functions called in the process, 

the calculation steps are:

First, net isotope signals are calculated by subtracting the mean of the bracketing  

backgrounds from each data range.

Dividing the measured signals by the isotopic abundance of the measured isotopes 

yields net element signals.

Sensitivities (cps/ppm) are calculated by dividing the mean signals of standards by 

the GeoReM "preferred values" for the standard material.

Sensitivity of each element divided by the sensitivity for the internal standard gives 

relative fractionation ratios.

In the final calculation step, element concentrations (ppm) are obtained by dividing 

net  element  signals  by  the  signals  of  the  internal  standard,  multiplying  by  the 

concentration of the internal standard times 1000000, and dividing by the relative 

fractionation ratios.
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By means of the "lasing speed", the movement speed of the sample stage during 

ablation, the time stamps of individual data points are converted into distance from 

the start along track in mm.

If desired (parameter cut=TRUE), concentrations below the LoD are deleted from the 

final result.

– The final result is a list of tables of element concentrations along the ablation 

tracks, stored in the variable ppms. These can be stored as plain text (e.g. ".csv") or 

Microsoft  Excel  files for further  analysis  or plotted graphically.  For example,  to 

obtain  a  single  track  plot  as  shown  in  chapter  "5 Results",  the  names  of  the 

individual  ablation  tracks  stored  in  ppms are  retrieved  with  names(ppms),  and 

assuming the track of interest is called "track1",

plotElements(data=ppms[["track1"]], filename="track1.png")

will save the track plot in a ".png" file called "track1.png".

Resonetics  GeoStar allows to save the scanned image of the sample remapped to 

sample stage coordinates (in µm), and saves track geometry in the analysis file. This 

allows to produce an exact plot of the ablation track on the sample image, which greatly 

facilitates  correlation of the calculated concentrations along track length with actual 

sample features (see e.g. Fig. 58 for an example).
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2D LA-ICPMS mapping

To create a two-dimensional element concentration map of a sample, an array of 

tracks is  analysed,  and from this data the 2D map is  interpolated.  The initial  steps, 

assuming the whole mapping, including intermittent standard measurements, is recorded 

in one data file, are the same as for single tracks to obtain the variables parameters and 

ppm containing all single tracks (see above).

– A call to

parameters2 <- getMetaDataFromGeoStar(parameters, 
GSfile="file_path")

will  read  area  and  individual  track  geometry  from the  GeoStar analysis  file  at 

"file_path"  and  store  it  in  the  variable  parameters2 together  with  the  original 

calculation parameters. The logfiles created by GeoStar during the ablation process 

must be present in the same folder (default  behaviour of GeoStar),  since not all 

geometrical information about the individual ablation tracks is stored in the main 

file (in the current version 5.8 of the software).

– ppms2 <- getPPMXY(parameters2, ppm=ppms, correlation=corr)

calculates a similar data object to ppms described before (see above), containing one 

data table per ablation track, but additionally to element concentrations and distance 

from start,  x  and y coordinates  (in  sample stage coordinates)  are  provided.  The 

variable corr is an additional table necessary to describe which track, referenced by 

their track name in ppms, corresponds to which "sequence" and "subpoint" from the 

GeoStar logfile.

– ppms2 <- smoothAndSubsample(ppms2, alg="runmed", sspace=40, 
spars=c(7))

applies some smoothing to the data tracks, and then downsamples them to points in 

the  spacing specified by  sspace (in  µm).  The default  smoothing algorithm is  a 

running median followed by running mean (chosen with parameter alg="runmed"), 

with a running window width specified in spars. This step is not strictly necessary, 

but speeds up consecutive calculations.
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– newdata <- reshapeForMapping(ppms2)

restructures  the  data  of  all  tracks  in  one  combined  table  (variable  newdata) 

necessary by the following functions.

– The function interpolateRaster() creates an R image object for one element 

from newdata, with settable resolution, cropping data outside the ablated area, and 

optionally discarding values below LoD.

The 2D raster is interpolated utilising kriging functions from the R package spatial 

(Venables  & Ripley,  2002).  Kriging  is  an distance-weighted  spatial  interpolation 

method established in many Earth- and other sciences (e.g. Kravchenko & Bullock, 

1999; Mueller et al., 2004).

– A  custom  colouring  algorithm  based  on  the  empirical  cumulative  density 

function (ecdf) is applied to give the element maps optimum colour scale.

For  a  discussion  of  smoothing  and  colouring  algorithms,  please  see  Rittner  & 

Müller, 2012 in Appendix A.
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In situ isotope data

Data acquisition and resulting files are identical to 1D and 2D screening, see above. 

Further  calculations  for  these  analyses  were  performed  in  a  spreadsheet  calculation 

program (OpenOffice Calc, later LibreOffice Calc).

– Masses (m/z) 43,  201, 202, 204, 206, 207, 208, 232 and 238 were acquired. 

From the track or area, a homogeneous data range for each targeted spot on the 

sample is selected.

– Individual  mass  ratios  208/206,  207/206  and 238/206  are  calculated.  A very 

simple despiking, filtering out outliers greater than +/- 3 sd from the mean values, is 

applied, and the remaining values averaged.

– From each acquired standard, lead mass fractionation correction values per amu 

are calculated for 208Pb and 207Pb as:

fcor = ((Rstd / Rm) - 1) / Δm

where Rstd is the ratio of the respective isotope to  206Pb in the standard, Rm is the 

average  measured  ratio,  and  Δm  is  the  mass  difference  between  the  respective 

isotope and 206Pb. The two calculated correction factors are averaged.

– Lead isotopic ratios for each measured sample spot are then corrected as:

Rcor = Rm * (1 + fcor *  Δm)

–
204Pb has  too  large  interferences  from  204Hg to  be  directly  measured  on  the 

quadrupole ICPMS. Therefore, to obtain an estimate of lead isotopic abundances in 

the  samples,  they  were  calculated  from the  measured  207Pb/206Pb and  208Pb/206Pb 

ratios and an assumed 206Pb/204Pb ratio of 200.

– Elemental concentrations of Pb and U (in ppm) are calculated from the acquired 

signals.

– The 238U/206Pb ratio is calculated as:

cU / cPb * ab238U / ab206Pb * wPb / wU, 
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where cU and cPb are the concentrations (in ppm), ab238U and ab206Pb are the natural 

abundance of 238U and the estimated 206Pb abundance for the sample, and wPb and wU 

are the estimated atomic weight of lead in the sample and the natural atomic weight 

of uranium, respectively.

– These 238U/206Pb are outlier-corrected and averaged, like the lead ratios above.

– Errors for all calculation steps are propagated.
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MC-ICPMS data

Analysis data from the GVI IsoProbe are contained in tabulated plain text files with 

data columns separated by spaces, preceded and followed by additional analysis data 

and statistical summaries, saved with the file ending ".dat". In the workflow commonly 

applied at RHUL, these files undergo some preprocessing and conversion into Microsoft 

Excel files, before results from the individual data files are copied into one master file 

(MS Excel)  set  up to  yield the  final  results  of  isotopic ratios  and Pb or  U and Th 

concentrations (separate master files for Pb and U/Th processing).

For each sample measurement, one measurement of blank solution is made and used 

for blank correction of the respective sample. For Pb isotopic analyses, the masses (m/z) 

193.5,  194.5,  198, 201, 202, 203, 204, 205, 206, 207, 208, and the signal ratios of 

208/206 and 204/206 were measured. For U/Th isotopic analyses, the masses (m/z) 229, 

232,  233,  234,  235,  236,  238  and  the  signal  ratios  of  235/238  and  234/235  were 

measured.

The calculation steps for Pb data are:

– Machine baseline signals for the set masses and ratios are measured repeatedly, 

means and 2 standard errors are calculated.

– From the  individual  data  in  the  blank  file,  means  and 2  standard  errors  are 

calculated.

– The  signals  of  the  individual  masses  measured  are  blank  corrected  with  the 

values from the blank file.

– From  these,  measured  isotope  ratios  205/203,  201/206,  204/206,  205/206, 

207/206, 208/206, 198/201 and 201/202 are calculated, as well as  201Hg corrected 
204Pb/206Pb,  202Hg-corrected  204Pb/206Pb as a control of the latter, and XXX 4/6N, 

7/6N 5/3N ??. These values and their 2se errors are copied to the master spreadsheet 

as input parameters for the further calculations.

– measured lead isotopic ratios are corrected for mass bias by a power law (see 

chapter  Mass fractionation), based on the measured  205Tl/203Tl ratio and machine- 
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and run-specific correction factors for  206Pb/204Pb and  207Pb/206Pb ("a" below). The 

following are the calculations for the 206Pb/204Pb ratio, the other ratios are calculated 

similarly:

a = 0.059033 / 0.059024 = 1.000152

b = ln(ram206 / ram204) / ln(ram205 / ram203)

c = (RTl,n / RTl,m) ^ b

R6/4N = 1 / R4/6Hg corr * a * c

where ram is the relative atomic mass of the respective isotope, RTl,n is the assumed 

real 205Tl/203Tl ratio of 2.3889, RTl,m is the measured Tl isotope ratio, and R4/6Hg corr is 

the  201Hg corrected 204Pb/206Pb ratio.

– After  input  of  sample  weight  and  spike  weight  into  the  master  file,  and 

combining the measurements of natural isotopic ratios (from the unspiked sample 

aliquots)  and  isotopic  ratios  in  the  spiked  aliquots,  the  exact  concentrations  of 

measured Pb, and thus  the exact  amount  of Pb,  are  calculated (see also  Isotope

dilution for details).

d = ram204 / R6/4nat + ram206 + ram207 * R7/4nat / R6/4nat + ram208 * R8/4nat / R6/4nat

ppmPb = d * spkwt * spkcon / smplwt *
                                             (R6/4N / R8/4N -0.000895) / (1 -  R6/4N *  R8/4nat /  R8/4N *  R6/4nat)

pgPb = ppmPb * smplwt * 1000000

– Based on an assumed procedure blank (5.3 pg Pb in this study), blank-corrected 

concentration, 206Pb/204Pb and 206Pb/204Pb ratio are calculated.

– 2 se errors are propagated throughout the workflow.
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5.  Results

In this chapter, an overview of results for each methodology applied is given. Where 

a technique gave very similar results for all samples of an area, or no illustrative results, 

only few representative examples are shown. A full listing of resulting data can be found 

in the Appendices.

5.1  Sample overview

Overall, ~150 samples were collected from 56 outcrops in 8 sampling areas, another 

24 samples were provided from collaborators from five different areas (see Tab. 9).

After choosing at least one representative sample from each outcrop, a total of ~80 

single track LA-ICPMS screenings were conducted, yielding information helping in the 

selection of samples for the further methods to apply on.

2D LA-ICPMS element maps were acquired of only five samples because the 2D 

element mapping method (4.8 2D LA-ICPMS element mapping) was developed later in 

the  course  of  this  study.  Samples  that  promised  to  be  interesting  examples  for  the 

mapping  technique  were  chosen  by optical  examination.  The  presented  maps  are  a 

feasibility study and test of the acquisition and data processing approach, the technique 

was not considered a routine screening method necessarily applied to all samples in this 

study.

Similarly, the attempt to date 13 samples in situ by quadrupole-LA-ICPMS was, in 

the scope of this study, a proof of concept and test of achievable measurement precision. 

The samples were chosen taking the data acquired in 1D and 2D LA-ICPMS screening 

as  a  guideline,  especially  U/Pb  ratio,  U  and  Pb  concentrations  and  indications  for 

contamination. The observed large measurement errors were anticipated beforehand.

For  high  precision  measurements,  13  samples  were  chosen  based  on  above 

mentioned screening information and processed following the workflow for ID MC-

ICPMSdescribed in chapter 4 Methodology II: application.

The photographs on the following pages are examples of sample types encountered 

in this study. Slickenfibres and tension gashes are the prevalent features sampled.
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Tab. 9: Sample overview
Number of samples is the individual sample numbers, often several pieces of a sample were 
collected or the sample was later split during preparation. Thus, ~150 samples were processed 
in total.

Fig. 60: Typical outcrop of a slickenside with calcite slickenfibres
Pen indicates movement direction of the missing block. Outcrop 267, sample KMR-LIV32 in 
situ before recovery. View towards W.
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Fig. 62: Streched and fractured belemnite
Outcrop KMR-LEY16. The low-grade metamorphic sediment matrix has been homogeneously 
stretched, while the fossil acted as a porphyroclast and was fractured in the process. The voids  
opening between the black fossil fragments were filled by an intergrowth of calcite and quartz 
fibres (white).

Fig. 61: Typical tension gash, hand specimen
Sample KMR-GOB22. Host rock is a biogenic limestone. Tension gash ~22 mm wide.
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Fig. 63: Cracked component of a conglomerate
From outcrop KMR-DGN10, sandstone component from the Valensole conglomerate, ca 18 
cm long. Slickenfibres grown between and on components were sampled.
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5.2  Organic Carbon (Corg)

As seen in chapter 3.1 Geochemistry of Uranium and Lead in calcite, organic ligants 

play an important role in mobilising uranium in aqueous solutions. At the beginning of 

this project, the organic matter content in the host rock of a tectonic carbonate (Corg) was 

assumed  to  be  an  important  factor  influencing,  and  thus  a  proxy  for,  the  uranium 

concentration in the sampled calcites (as indicated e.g. in Shpirt et al., 2007; Israelson et 

al., 1996).

To test this assumption, Corg in the host rock of 16 samples from various sampling 

areas  and  host  rock  lithologies  was  determined  by  ashing  the  powdered  rock  in  a 

furnace  at  400-450º C,  below  the  dissociation  temperature  of  calcium  carbonate 

(significant ~800-900º C, Stern, 2000). Weight loss ranges from 0.1 to 1.4 % w/w (see 

Tab. 10). Comparison of the U (and Pb) concentration of the respective calcite samples 

to the weight loss due to ashing in their host rocks shows no clear correlation (Fig. 65). 

This corresponds to the observation that samples from areas of lithologies with high Corg 

content (e.g. Kilve, Seefeld) did not have high concentrations of U, and that the best 

suited samples do not all come from high-Corg host rocks. Overall, no clear correlation 

between any one host rock lithology and a sample's suitability for U/Pb dating could be 

observed,  and  samples  from  the  same  lithology  in  the  same  area  can  show  great 

variability in U and Pb concentrations; see e.g. the 2D element maps of sample KMR-

GOB21B  in  chapter  5.4.4 Gosau  basin,  showing  two  distinct  domains  with  U 

concentrations of ~30 and ~400 ppb, respectively.
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Fig. 64: Comparison of U and Pb concentration and ashing weight loss.
Selected samples were analysed for U and Pb concentrations and ashing weight loss of corre-
sponding host rock. See Tab. 10 for data. Note differing units of scale (ppm and %, but similar 
numerical magnitude).

sample avg U avg Pb % loss (Corg)
DGN03 0.01 0.73 0.14
DGN11 0.07 0.07 0.34
LEY15 0.17 0.10 0.19
LEY16D 0.19 0.75 0.24
GOB18A 0.61 0.01 0.41
GOB18B 0.90 0.17 1.20
GOB23B 0.10 0.05 0.13
GOB26 0.32 0.27 0.65
LIV31 0.80 0.03 0.29
LIV32 0.11 0.05 0.36
LIV33 0.07 0.03 0.68
LIV34 0.05 0.08 1.44
LIV36 0.02 0.03 1.37
SEF39A 0.64 0.03 1.27
SEF39D <LOD <LOD 1.01
UAS3 <LOD <LOD 1.04

Tab. 10: Comparison of U and Pb concentration and ashing weight loss.
U and Pb concentrations (in ppm) measured on samples by laser ablation and weight loss due 
to ashing (Corg) of corresponding host rocks. See Fig. 64 and Fig. 65.
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Fig. 65: Concentrations vs. Corg.
Host rock weight loss due to ashing plotted against U and Pb concentrations of corresponding 
tectonic carbonate samples. No correlation is observed.



Results

5.3  Imaging results

Optical microscopy

Thin  sections  of  selected  samples  were  imaged  in  transmitted  light  using  a 

petrographic  microscope  equipped  with  a  digital  camera.  Some  LA samples  were 

imaged in the same instrument under reflected light settings (see figures below in this 

section). Due to the limitations in minimal magnification, several partial pictures of one 

sample had to be stitched together later to obtain an overview of a whole LA track and 

its surrounding. Since pure calcite of the analysed samples appears largely featureless in 

optical  microscopy,  and samples  are  routinely scanned on a flatbed scanner  in high 

resolution before laser ablation, additionally yielding images aligned and coordinated to 

sample  stage  coordinates  after  analysis,  optical  microscopy  was  omitted  in  later 

analyses. Only some examples of microphotographs and scans of LA samples are given 

here. Further sample images can be found accompanying analysis results in the next 

section (chapter 5.4 Sample screening & dating) and in the Appendices.
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Fig. 67: Sample KMR-GOB19A_A.
Composite microphotograph (reflected light) of sample KMR-GOB19A_A from the Gosau 
Basin, Austria. Multiphase cementation of a tectonic fissure in the reddish-brown host rock is  
discernible, both cut by younger fractures filled with white calcite. Image width ~60 mm.

Fig. 68: Sample KMR-LEY16A_A.
Composite  microphotograph  (reflected  light)  of  sample  KMR-LEY16A_A from  Leytron, 
Switzerland.  In  a  homogeneously stretched fine-grained matrix  (grey,  top),  the  fossil  of  a 
belemnite (black portions) acted as  relatively competent clast, fractured, and the voids open-
ing between fragments as the host rock was further deformed were filled by fibrous calcite and 
quartz crystals (white). Image width ~50 mm.
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SEM

Scanning electron microscopy (SEM) was used to image major element distribution 

by  backscattered  electron  microscopy(Fig.  71),  and  to  evaluate  the  quality  of  LA 

ablation track morphology (Fig. 69 and Fig. 70). Analyses were conducted on a Hitachi 

S3000 SEM fitted with a Link Isis energy-dispersive X-ray detection system.

Where  the  boundary  of  host  rock  to  calcite  fibre  is  present  in  a  sample,  the 

differences in the two phases are clearly visible in Ca, Al, and Si maps (Fig. 71 and Fig.

72). In limestones with biogenic components, high-Mg and low-Mg calcite in the host 

rock are distinguishable in the Ca and Mg maps (Fig. 71). The detection limits on the 

instrument used do not allow for mapping of minor and trace elements of interest in this 

study. The method proved to be of little value for characterising tectonic carbonates of 

"clean" calcite, while preparation and analysis are more time-consuming than for LA-

ICPMS; thus, the method was not further utilised as a standard screening technique in 

this study.
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Fig. 69: Ablation tracks, SEM image.
SEM image of part of the sample surface of KMR-GOB21B_A. Three tracks of the array ana-
lysed for 2D mapping (see  5.4.4 Gosau basin) are visible with wider preablation trace and 
thinner, deeper, analysed ablation trace. Track spacing is ~600 µm.
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Fig. 70: SEM image of ablation track, detail.
SEM image of an ablation track on sample KMR-GOB18B_A (detail; see 5.4.4 Gosau basin). 
The wider preablation track and the narrower, deeper ablation track are visible. Note smooth 
surface and sharp margins of the ablated track. Main ablation track width is 74 µm, image 
width ~260 µm.
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5.4  Sample screening & dating

5.4.1  General remarks and data tables

In the following sections (5.4.2 -  5.4.7), data obtained by different methods, LA-

ICPMS screening data (1D and 2D) and ages obtained in situ by quadrupole LA-ICPMS 

and from solutions by MC-ICPMS, are presented together, arranged by sampling area.

One-dimensional laser ablation tracks were routinely analysed on all samples as a 

means of determining element concentrations and distribution. Approximately 80 tracks 

were analysed. The main criteria determining a sample as "suitable" for further analyses 

were  an  elevated  U/Pb  ratio,  as  high  U  concentrations  as  possible  (the  highest 

concentrations observed were almost 2 ppm, but most samples were well below 1 ppm), 

Pb  concentrations  low  but  above  detection  limit  (few  tens  of  ppb  depending  on 

background noise), and absence of mineral phases other than calcite.

In samples showing clearly defined homogeneous subdomains, this information was 

sufficient  to  establish  suitability  for  further  analysis  and  plan  microsampling  for 

chemical work. This screening also identified samples unsuitable for U-Pb dating (U/Pb 

< 1, clay minerals) with a minimum of preparation and time necessary.

Al, Ba, Ca, Eu, Fe, Mg, Mn, Pb, Rb, Si, Sr, Th, U and Yb were measured. An add-on 

package for the "R language for statistical  computing" (R Development Core Team, 

2010; Grunsky, 2002), was developed and used for data reduction of mass spectrometer 

data, see  Rittner & Müller, 2012, in Appendix A. Although this software is aimed at 

calculation of two-dimensional element distribution maps from an array of single tracks, 

the initial steps of converting raw element signals to concentrations can be applied to 

single tracks, as applied here. Concentrations are in this case plotted against distance 

from track start.

High Al and Si values indicate minerals other than calcite, like clay and host rock 

minerals, thus data are not quantifiable in these zones and only qualitative information 

about the presence of clays and/or host hock can be obtained. 
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From arrays  of  individual  tracks  analysed  on selected  samples,  two-dimensional 

element distribution maps were calculated. The before-mentioned add-on package for 

the "R language for statistical computing" was utilised for data reduction of the raw 

acquired signals, correlation of the data to the geometry of the ablated tracks, and 2D 

interpolation into maps. A detailed description of the software package can be found in 

Rittner & Müller, 2012, in Appendix A.

This data processing technique was developed throughout the course of this study, 

and although promising as a screening technique, it was not intended to be applied to all 

samples. 1D screening in combination with optical diagnosis of homogeneous domains 

was sufficient to plan further sample processing in most cases. In the following sections, 

element maps of all five mapped samples are presented.

The same 14 elements as for 1D tracks were measured for mapping (Al, Ba, Ca, Eu, 

Fe, Mg, Mn, Pb, Rb, Si, Sr, Th, U, Yb); Ce, Rb and Yb will not be shown (Ce and Yb 

maps usually show distributions very similar to Eu; Rb concentrations in the calcite are 

below detection limit in most samples). Fe measurements turned out to be inaccurate 

using  NIST  SRM  612  as  an  external  standard,  and  concentrations  shown  are  not 

reliable.

In the maps presented here, the interpolation algorithm utilised sometimes produces 

areas  of  sub-LOD  values,  additional  to  areas  where  the  actual  measurements  were 

below LOD. The maps show holes where calculated values fall below LOD. Likewise, 

sometimes higher concentration values than actually measured are calculated, especially 

around thin clay “peaks” and sharp material boundaries (e.g. calcite – host rock). These 

areas were given the maximum measured value. The (colour) scale bars on the element 

maps do not show exact LOD and maximum values, but comprise a range of closest 

rounded values that contain all data values.

As  sample  preparation  for  MC-ICPMS  is  time-consuming  and  sensitive  to 

contamination  during  the  process,  and  subsequent  analysis  requires  another  mass 

spectrometer in addition to the quadrupole ICPMS used for sample screening, direct 

measurement  of  U-Pb  isotopic  composition  on  the  LA-ICPMS  system  would  be 

desirable.  Feasibility of such analyses is  mainly limited by the signal-to-background 
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ratio of the Pb isotopes. Typical signals during screening of the examined samples were 

close to and often below LOD for 206Pb, 207Pb and 208Pb. 204Pb is the least abundant Pb 

isotope,  and  suffers  from interference  of  204Hg,  abundant  in  commercially  available 

gases  (He,  Ar)  and  gas  handling  hardware  (tubing,  valves,  mass  flow  controllers). 

Hence, 204Pb can not be measured reliably on the RHUL LA-ICPMS system (and most 

other quadrupole LA-ICPMS systems elsewhere).

To gain  the  atomic  mass  of  measured  Pb for  calculation  of  238U/206Pb,  a  typical 

radiogenic 206Pb/204Pb ratio can be assumed as a first order approximation, and the three 

measured isotopes can then be used to calculate abundance of all four Pb isotopes (see 

chapter 4.12.3 Data reduction). These data are presented here.

Data accuracy can be inferred from two isotopic measurements conducted on the 

USGS  MACS3  standard,  see  chapter  "4.5.5 Comparison  with  published  values". 
207Pb/206Pb,  208Pb/206Pb and U/Pb elemental  ratios are  within error  of  the preliminary 

values available at time of writing.
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Tab. 11: Next pages: Isotopic ratios for selected samples, acquired in situ by LA-ICPMS.
Pb isotopic abundances calculated based on an assumed elevated (radiogenic) 206Pb/204Pb ratio 
of 200. Data points assumed to be outliers (e.g. foreign minerals ablated) are highlighted in  
grey.
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Microsamples prepared from samples that seemed most promising based on the 1D 

and 2D screening methods,  and of some that  were of greatest  interest  in  a regional 

geological context, were prepared and analysed according to the methods described in 

chapter 4 Methodology II: application.

Due to the very small amounts of lead extracted from each individual subsample and 

the delicate nature of the chemical preparation, any disturbance in the wet-chemical and 

analytical  workflow  can  lead  to  contamination  or  (partial)  sample  loss,  and  thus 

erroneous results. During separation,  possible handling errors were noted for several 

subsamples, see  Tab. 12. In most cases, these data points proved to be outliers in the 

resulting concordia diagrams, and thus were omitted.

Despite high analytical precision of individual measurements on the MC-ICPMS, in 

most samples geological scatter resulted in imprecise age estimates, i.e. the data points 

do  not  lie  on  a  straight  line  in  the  Tera-Wasserburg  diagram  (see  3.2.3 Concordia

diagrams), resulting in a regression line with a large error margin. Prevalence of scatter 

over  analytical  error  is  indicated  by  very  large  MSWD  values  for  the  calculated 

regression lines. Scatter might be caused by later alterations of the samples not noticed 

during optical examination and LA-ICPMS screening, and thus the basic assumption of 

an undisturbed isotopic system might not be met.

Age calculation from  238U/206Pb –  207Pb/206Pb isotopic ratios in a Tera-Wasserburg 

diagram (Tera & Wasserburg, 1972; Woodhead et al.,  2006)  is incorporated into the 

software  package   developed  during  this  project,  although  this  functionality  is  not 

mentioned in  Rittner & Müller, 2012 (Appendix A). The regression line is calculated 

based on  York et al.,  2004, and age and age errors are constructed geometrically by 

intersection with the concordia. This method is less sophisticated, especially in terms of 

error calculation, than the MS Excel add-on "IsoPlot" (Ludwig, 1999; Ludwig, 2003) 

which  is  utilised  in  many work groups.  However,  York et  al.,  2004 points  out  that 

several  published algorithms for the calculation of regression lines  simply represent 

special cases of the general equations derived in that paper, and recommends use of 

these as a uniform method throughout geosciences.
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In  the  presented  diagrams,  correlated  errors  are  represented  by  error  ellipses 

indicating 95% confidence interval (2 sd). See Tab. 13 for numerical data. Confidence 

band on the regression line, and thus, age errors, is 95%, as is the resulting error on the 

intercept (initial 207Pb/206Pb ratio).
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Tab. 12: All U-Pb isotopic data measured in solu-
tion mode by MC-ICPMS.
This  page and previous:  Pb  isotopic  ratios  and 
Pb,  U and  Th  concentrations  measured  on  the 
GVI  IsoProbe  (MC-ICPMS).  Concentrations 
were  determined  by  isotope  dilution.  Analyses 
indicated in orange were recorded during chemi-
cal  preparation  to  involve  handling  errors  or 
other problems, proved to be outliers, and were 
not further considered.
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Tab. 13: Ages calculated with Isoplot.
238U/206Pb – 207Pb/206Pb ages calculated based on a regression following York2004 are in excel-
lent agreement with results from the program Isoplot (Ludwig1999Ludwig2003) if “Model 1” 
is utilised, which is based on York1969. Age errors in this table only take into account errors 
from the regression, errors in decay constants and isotopic weights were not considered. Un-
certainty resulting from reproducibility of standard measurements is not included in this table.  
238U – 206Pb and 235U – 207Pb isochrons calculated in Isoplot yield concordant ages within error 
for most samples. For the isochrons, use of “Model 3” was accepted if Isoplot deemed the 
probability of fit too low for “Model 1”. Samples in brackets are not considered reliable due to 
small number of data points (subsamples) or lack of spread of data points. 
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5.4.2  Fohnsdorf Basin

Sample KMR-FOB28B_A

This is a sample of the "Mariabucher Marmor" from the Fohnsdorf basin, Austria, a 

probably hydrothermal travertine grown in marginal crevasses or fissures at the basin 

margin,  tectonically  linked  to  subsidence  ongoing  throughout  basin  evolution 

(Wagreich & Strauss, 2005, see 2.2.5 Fohnsdorf Basin). The immediate host rock is a 

polymict  conglomerate  that  developed as  an  alluvial  fan  between ~15 and ~13 Ma 

("Apfelberg  Fm."  of  Wagreich  & Strauss,  2005).  Hydrothermal  activity  was  likely 

influenced by tectonic pulses, which together with the wide range of lithologies in the 

close vicinity  and host  rock,  and a  possible  interplay of  hydrothermal  and meteoric 

water, accounts for the strongly varying compositions observed.

The  sample  is  clearly  laminated  in  growth  bands  of  white  and yellowish-amber 

calcite,  with some seams between layers  possibly indicating growth interruption.  Al 

concentrations show some distinctively elevated values, e.g. at y-coordinates ~8.5 mm 

and ~10.5 mm in the element maps (Fig. 74), possibly indicating episodical influx of 

clay minerals.

Not  only vary the concentrations  of all  elements by about  one to  two orders  of 

magnitude between growth strata, but notably, so do relative concentrations, as is best 

visualised in the false colour maps (Fig. 75 & Fig. 76). This can not be explained simply 

by varying dilution of one solution source of constant composition, but indicates mixing 

of different sources.
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Fig. 73: Sample KMR-FOB28B_A, LA-ICPMS track overview and element maps.
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Fig. 74: Sample KMR-FOB28B_A, LA-ICPMS element maps.
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Fig. 75: False colour map composed of Sr, Mn and Ba concentration maps of sample KMR-
FOB28B_A.
Differences in hue, not only in colour intensity, indicate changes in solution chemistry, not  
simple periodic growth from and dilution of one constant source.
Note reversed x-axis, compared to Fig. 73 & Fig. 74.
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Fig. 76: False colour map composed of U, Ce and Mn concentration maps of sample KMR-
FOB28B_A.
Differences in hue, not only in colour intensity, indicate changes in solution chemistry, not  
simple periodic growth from and dilution of one constant source.
Note reversed x-axis, compared to Fig. 73 & Fig. 74.
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Fig. 78: MC-ICPMS isotopic ratio measurements from sample FOB28B.
Although a regression line calculated from only 4 points is inherently unreliable, the calcu-
lated age of 13.4 Ma is consistent with regional geological considerations (see chapter 6 Inter-
pretation and Discussion.
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5.4.3  Digne area

The  area  around  Digne,  Haute  Provence,  France,  is  characterised  by  structures 

associated with the Miocene-Pliocene (possibly ongoing) transport of the Digne Nappe 

onto  the  European  foreland  (see  2.2.2 Digne).  Deformation  on  any  scale  from 

microscopic to km size can be observed in a wide range of sedimentary lithologies. 

Samples  were  chosen  to  reflect  this  spectrum  of  possible  settings  of  tectonic 

carbonates. However, of the 22 samples collected, only some specimens collected from 

one outcrop (KMR-DGN55 /  D1W) proved suitable for dating, showing an elevated 

U/Pb ratio and variability.
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Fig. 79: Laser ablation track analysed on sample KMR-D1W_B.
The relatively pure calcite (x-position 0 - ~12 mm) is clearly distinguishable from the host  
rock (~13 mm to end of track). The latter shows much elevated Al values and is the only zone  
with Si concentrations greater than LoD, indicating different minerals than calcite (element 
concentrations in the host rock are not quantifiable, but qualitative information about host rock 
location can be gained). U concentrations in the calcite are ~10 × higher than Pb concentra-
tions.
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Fig. 80: Laser ablation track analysed on sample KMR-DGN55d_B.
Although not further analysed (Pb concentration > U for most of the sample), this illustrates 
organisation of a sample into zones of varying U/Pb ratios, which could be prepared as indi-
vidual subsamples under more favourable conditions.
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Fig. 82: Age estimate for in situ data of sample D1W_A.
Age estimate for the data from sampling points indicated in Fig. 81. The age of 9.7 ± 4.0 is im-
precise due to large errors and small spread, but in good agreement with MC-ICPMS data ob-
tained from samples from the same area and tectonic setting (samples DGN55c and DGN55e, 
see below).
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Fig. 83: MC-ICPMS isotopic ratio measurements from sample DGN55e.
One of the most precise ages in this study (see 5.4.6 Swiss Jura below for another example). 
Because error from reproducibility of SRM measurements was omitted in these plots, age un-
certainty is likely underestimated.
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Fig. 84: MC-ICPMS isotopic ratio measurements from sample DGN55c.
Top: all data. Below: subsample s5 omitted, which was invalidated by a handling error during  
processing. Due to the large error in s5, the regression produces the same age estimate even in 
the first case.
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5.4.4  Gosau basin

The Gosau Basin was the only sampling area yielding several convincing ages from 

outcrops  within  relative  geographical  proximity.  The  observed  deformation  ages 

represent different tectonic phases, clearly distinguishable in terms of age resolution and 

from structural considerations of the respective outcrops.

Some of the most interesting results were obtained from KMR-GOB21, different 

generations of slickenfibres yielded two different ages. A third age was found in tension 

gashes  from  KMR-GOB18.  See  2.2.4 Gosau  Basin,  and  6.4 Regional  tectonic

discussion and interpretation for a compilation of how these ages fit into the established 

framework of deformation phases.
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Fig. 85: Above: Sample KMR-GOB21B mounted for laser ablation, track overlain. Blue num-
bers indicate microsamples later prepared for chemical processing and MC-ICPMS analysis.  
Below: concentrations of selected elements along ablated track. High Al concentrations indi-
cate presence of clay minerals; these zones were avoided in subsample preparation. Pb con-
centrations are at and below LoD (for laser ablation).
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Sample KMR-GOB18B_A

Sample KMR-GOB18B_A is a thin tension gash from the Hochmoos formation of 

the Gosau Basin. Although only 3-5 mm thick, initial 1D scans revealed preferable U/Pb 

concentrations, but also impurities of host rock / clay minerals. To better understand 

element  distributions  and to  assess  the  possibility  to  obtain  microsamples  from this 

sample, element maps were created (Fig. 86 & Fig. 87).

Variable U concentrations of up to ~2 ppm and low Pb concentrations of ≤ 0.8 ppm 

for the calcite portions indicate good suitability for further MC-ICPMS work, but the 

maps confirm indications from optical examination of clay or host rock seams between 

individual calcite packages. Individual homogeneous calcite domains would be less than 

2  mm  in  thickness,  which  makes  preparation  with  a  hand-held  cutting  wheel 

challenging, and further mechanical abrasion of surfaces and subsequent acid etching 

for surface cleaning would leave unfavourably thin and platy samples.

In  the  maps,  the  host  rock  of  the  tension  gash  clearly  shows  as  regions  of 

qualitatively  high  concentrations  in  all  maps  (quantification  not  possible  due  to 

unknown Ca concentration). The dark seam in the centre of the mapped region also 

shows elevated Al and Si values, indicating clay / host rock. Thus, the elevated values in 

this region for U, Pb, Th and Ba are likely artefacts.

Of interest are well resolvable concentration differences between the domain above, 

and the domain below the clay seam, as seen in the Sr and Eu maps and less pronounced 

in the U map. Strontium concentration is about 400 ppm above, ~300 ppm below the 

seam. Europium concentration is ~200 to ~10 ppb, respectively, U concentrations are 

less homogeneous in the two domains,  but vary from ~1.8 to ~0.9 ppm. Mn shows 

variations  in  the  same  regions,  but  of  opposite  trend  (~300  –  340  ppm).  It  is 

conceivable,  but  could  not  be  tested,  that  the  different  calcite  packages  represent 

separate  tectonic  phases,  and  the  clay  seam in  between  marks  the  actual  event  of 

reactivation.
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Fig. 86: Sample KMR-GOB18B_A, LA-ICPMS track overview and element maps.
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Fig. 87: Sample KMR-GOB18B_A, LA-ICPMS element maps.
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Fig. 88: Isotopic ages measured in situ by laser ablation on samples KMR-GOB18B_A and B.
The pooled data gives an age estimate of ~42 Ma (M-Eocene), an age clearly distinct from 
ages for KMR-GOB21 (see below) from the same area (Gosau basin). See 6.4 Regional tec-
tonic discussion and interpretation for interpretation.
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Sample KMR-GOB21B_A

Sample  KMR-GOB21B_A  comes  from  an  outcrop  of  the  Upper  Santonian 

Hochmoos formation in the central  Gosau Basin,  which exhibits clear indications of 

multiphase deformation. Slickenfibres of different orientation overprint each other on 

the same fault planes (see 2.2.4 Gosau Basin for outcrop photos and structural data).

In  the  sample  maps (Fig.  89 &  Fig.  90),  several  packages  of  calcite  are 

distinguishable, with intercalated seams of clay minerals, probably ground-up host rock 

or fault gauge. Whereas optically, two packages with a crack/clay seam in between are 

visible,  the  trace  element  maps,  especially  U,  reveal  a  more  complex picture:  both 

calcite packages are further structured by narrow high-U zones, likely tracing a further 

subdivision of the slickenfibres.

The calcite to the left and to the right of the prominent seam show very different 

element  concentrations:  the left  is  lower in  U,  Sr,  Fe,  and higher  in Mn.  The right 

package shows higher concentrations in said elements (~0.3 ppm vs. few 10s of ppb U; 

~1200 vs. ~400 ppm Sr; ~560 vs. ~200 ppm Fe; but ~160 vs. ~230 ppm Mn), and a thin 

and discrete, not visually obvious, high-U zone following the main trend of seams.

High Al, Si and Fe values in the prominent clay seam indicate clay minerals, as was 

expected from optical examination, apparently high values for other elements can thus 

not be quantified.
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Fig. 89: Sample KMR-GOB21B_A, LA-ICPMS track overview and element maps.
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Fig. 90: Sample KMR-GOB21B_A, LA-ICPMS element maps.
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Outcrop GOB21 yielded calcite slickenfibres of considerable size and at least two 

distinct  deformation  directions.  The  largest  sampled  slickenfibre  (Fig.  92)  was 

microsampled at the opposite ends for MC-ICPMS analysis, in an attempt to resolve 

minimum  deformation  duration.  Due  to  scatter  of  the  data  points,  no  significantly 

different ages were obtained.
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Fig. 93: MC-ICPMS isotopic ratio measurements from sample GOB21B.
Two opposite ends (Ia, IIIb) of a long slickenfibre were analysed. For GOB21B_IIIb, two sub-
samples marked as handling errors during processing were omitted, the resulting regression is  
based on only three data points and thus unreliable.
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Fig. 94: MC-ICPMS isotopic ratio measurements from sample GOB21B.
Combined data plot of GOB21B_Ia and GOB21B_IIIb. Due to larger number of data points,  
age error decreases despite the inclusion of points with large error.

Fig. 95: MC-ICPMS isotopic ratio measurements from sample GOB21B_l1.
Isotopic data from a kinematically different slickenfibre than the main deformation observed 
in this outcrop. Bottom-left: Enlarged view of data.
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Fig. 96: MC-ICPMS isotopic ratio measurements from sample GOB21B.
Rerun of an analysis failed earlier (see Error: Reference source not found). This analysis might 
have subsampled a different fibre package and thus represent another deformation phase (this  
was not recognised during sample preparation), yet small spread amongst just 4 data points 
puts a large uncertainty on this interpretation. This analysis was not treated as indication for a 
separate deformation phase. Top: all acquired data. Below: excluding subsample s5b, which 
was marked with a handling error; bottom-left: enlarged view of data.
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Sample KMR-GOB23B_B

KMR-GOB23B_B is  a  sample  of  a  Miocene  (pers.  comm.  M.  Wagreich,  2011) 

tension  gash  in  Rhaethian  biogenic  limestone  from the  margin  of  the  Gosau basin. 

Optically, the tension gash seems homogeneous, except for some discolouration (clay 

minerals) between calcite crystals in the central zone. However, the element distribution 

maps show some zonation, towards the fracture walls occurs a zone of Mn, Fe, Mg and 

Eu concentrations 2-3  × higher than in the centre.  This zone seems not to differ  in 

concentration for other elements.

The U map,  and less  pronounced the Ba and Sr  maps,  trace  a  younger  fracture 

cutting both host rock and tension gash diagonally from ~38.5 mm on the x-axis at the 

top to ~36 mm at the bottom, which is not immediately obvious in the photograph. This 

demonstrates the strength of 2D element mapping for sample characterisation.

The apparent Si concentration difference between the left and the right of the tension 

gash is probably an artefact of data acquisition.
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Fig. 97: Sample KMR-GOB23B_B, LA-ICPMS track overview and element maps.
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Fig. 98: Sample KMR-GOB23B_B, LA-ICPMS element maps.
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5.4.5  Lower Inn valley

Most  samples  from  this  area  are  from  marly  to  sandy  sediments  with  varying 

limestone  content,  of  the  Intramontane  Molasse  of  the  Inn  Valley,  Austria  (Ortner, 

2003b). The succession is Late Eocene to Oligocene in age, see 2.2.6 Lower Inn Valley. 

Initial formation of the depositional space was due to horst-and-graben-like tectonics, 

and the area has since been deformed in conjunction with movements on the Inntal Fault 

Zone. Sample KB2 (below) is not strictly of the Molasse sediments, but a local scarp 

breccia.

Sample KB2

This sample of a fault scarp breccia from the Lower Inn Valley was contributed by 

Dr.  Hugo  Ortner,  University  of  Innsbruck,  Austria.  The  sample  is  referenced  as 

"Kalkbruch  2"  in  Ortner,  2003b.  It  exhibits  several  different  generations  of  calcite 

cements filling the voids between components of the breccia. Based on petrographic 

microscopy, trace element concentrations and O and C isotopic composition,  Ortner, 

2003b,  have distinguished cement  generations  derived from distinctly  different  fluid 

sources, the earlier cements likely being marine in origin, the later showing meteoric 

signature. These cement generations are clearly seen optically and in the 2D element 

concentration maps, but the larger range of elements analysed (as compared to Ortner, 

2003b),  allow  for  a  further  subdivision  of  growth  phases  based  on  trace  element 

concentrations (see Fig. 99 and Fig. 100):

At the top left of the mapped area, a host rock component is distinguishable in most 

maps.  The  host  rock  itself  is  inhomogeneous,  in  the  mapped  area  a  carbonate 

component (dark grey on the photo) is contained in a beige, marly carbonate matrix. 

The marly matrix shows high values in Al, Si, Fe, Pb and Th, as expected for clay 

minerals, but lower Sr, Mg and Mn values compared to the carbonate fragment. Since 

internal standardisation on Ca is only valid for calcite, the concentration data for the 

marl must be considered with caution, and only qualitative observations can be made for 

the host rock.
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The space between components is filled with several generations of calcite cement. 

Optically, an early, yellowish-beige cement is divided by a sharp grey band from the 

white, coarse-grained calcite of the youngest generation ("cement 1 and 2" of  Ortner, 

2003b). The element maps reveal several layers within the early yellowish cement, from 

the top right (oldest) towards the lower left (towards the grey layer): 

The  first  layer  shows  low  Ba  and  elevated  Mn  values  (~3  and  ~90  ppm, 

respectively). Sr and Mg are high (~600 and ~5000 ppm, respectively), U and Eu low at 

or below LOD. Maintaining the values for Sr, Mg, U and Eu, the next layer, optically 

distinguishable by a slightly darker colour, shows half the Mn and up to 7 × higher Ba 

values  of  ~50  and  up  to  ~20  ppm,  respectively.  In  the  successive,  slightly  lighter 

coloured layer, U and Eu rise to ~250 and ~25 ppb, respectively, Mg, Ba and Sr drop, 

and Mn shows the highest concentrations of ~250 ppm. This very distinct high-Mn layer 

is clearly traceable along the right and the top of the element map, in straight lines 

meeting at a sharp angle. There is indication of a narrow zone of low U, low Eu (LOD), 

with reduced Mn and slightly elevated Ba and Sr values, adjacent to the distinct grey 

band following next.

The grey layer, clearly visible optically, shows high Al, Si and Fe values, indicating 

influx of clay minerals. Thus, the seemingly high U, Pb, Th and Eu values can not be 

considered quantitatively.

The central, white, blocky cement ("cement 2" of Ortner, 2003b) consists mainly of very 

pure calcite (low Mg, Mn, Sr, Ba) with ~0.2 – 0.4 ppm U and ~10 times less Pb. Mn and 

Sr values are initially elevated, and the Ba map, and less pronounced, the Sr map, might 

indicate a younger curved fracture running from top to bottom at ~30 – 31 mm on the x-

axis (possibly "cement 3" of Ortner, 2003b).
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Fig. 99: Sample KB2, LA-ICPMS track overview and element maps.
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Fig. 100: Sample KB2, LA-ICPMS element maps.
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Sample KB2 did not yield a good age fit, due to very low concentrations of Pb and 

U causing large errors. These data are presented here only as an example of less suitable 

data.
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Fig. 101: Isotopic ratio data obtained in situ by laser ablation on sample KB2.
Low concentrations result in very large errors. Pt 9, 10 and 11 yielded negative x-values, and 
pt 15 and 16 are outliers with error ellipses stretching beyond the extends of the presented plot. 
These points were omitted in plotting and calculation of the regression line.
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Fig. 102: MC-ICPMS isotopic ratio measurements from sample KB2 (Lower Inn Valley).
Top: including all subsamples. Below: excluding subsample s7, which was marked as handling 
error during processing. Due to relatively much larger error on s7, the age calculated from the 
regression line does not shift significantly, but error increases.
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Fig. 103: MC-ICPMS isotopic ratio measurements from sample LIV34B.
Another sample from the Lower Inntal Valley. The beige calcite contained impurities (bitumi-
nous fluid inclusions, pers. comm. H. Ortner, 2011), which impaired chemical sample prepara-
tion, resulting in larger errors on the individual MC-ICPMS analyses. However, these errors  
are far outweighed by the scatter amongst data points. The calculated age fits deformation 
shortly after, or syndepositional to the Oligocene host rock (see 6.4 Regional tectonic discus-
sion and interpretation).
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5.4.6  Swiss Jura

Samples from fault planes on the edge of the Swiss Jura mountains were provided 

by Dr. H. Madritsch (NAGRA, Switzerland). One sample (MHH01) yielded a good data 

set resulting in a calculated age of 9.05 ± 0.94 Ma (see Fig. 104). Dating by MC-ICPMS 

was attempted on two additional samples (MHH02 and MHH06), yet the resulting data 

did not spread enough to allow calculation of a reliable regression line (Fig. 105).
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Fig. 104: MC-ICPMS isotopic ratio measurements from sample MHH01_A.
One of the most precise ages in this study. Unfortunately, the age could not be reproduced with 
confidence on other samples from the same area (Fig. 105).
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Fig. 105: MC-ICPMS isotopic ratio measurements from samples MHH02 and MHH06.
Insufficient spread in isotopic ratio values between subsamples results in tight clustering of the 
data points, thus a very weakly constrained regression line.
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5.4.7  Other samples

No samples from other sampling areas, including those contributed by collaborators, 

proved suitable for dating. Typical reasons to exclude samples from further processing 

where a U/Pb ratio < 1, contamination of the calcite with clay minerals or host rock, U- 

and/or Pb-concentrations below LoD, and, rarely, the lack of variability in U/Pb ratio 

despite otherwise favourable indications. In the following, a few examples for data from 

samples deemed unsuitable for further processing after screening are given.
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Fig. 106: LA-ICPMS track on Sample KMR-DGN03_A.
Calcite tension gash (host rock indicated by elevated Al values on both sides). Pb concentra-
tions are constantly high at ~1 ppm, U concentration is constantly more than 2 orders of mag-
nitude less, at or below LoD. This sample was not further processed.
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Fig. 107: Microphotograph and laser ablation track of sample s30_A.
Above: Microphotograph of sample after analysis – the ablated track is visible. Below: Data  
for ablated track. Host rock, on the sides, and a clay-enriched seam in the middle of the ten-
sion gash are clearly detectable by their elevated Al and Si values (and are therefore not quan-
tifiable). U concentrations at and below the LoD combined with Pb concentration 5x – 10x 
higher than U indicate a dominant common Pb source, rendering this sample unsuitable for 
further dating attempts. A central clay-rich seam is a common feature in tension gashes, yet 
without other evidence does not have any implications on the calcite growth mechanism. It 
may be residual host rock from initial fracture opening (implying antitaxial growth), or mate-
rial filled in in each new opening increment, concentrated in the centre by crystallisation pres-
sure of the calcite  growing to close the gap (syntaxial growth). Image width 10 mm.
Sample from Northern Canada, contributed by Simon Craggs, RHUL at that time.
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Fig. 108: LA-ICPMS track on Sample KMR-DGN09_A.
Calcite tension gash (host rock indicated by elevated Al values on both sides). The data seems 
to indicate extremely low U/Pb ratios, with Pb concentrations at ~10 ppm, and U over 4 orders 
of magnitude lower, at and below LoD. The noisy, elevated Al signal throughout the calcite 
might indicate impurities like clay minerals in the calcite, thus, real Pb concentrations might 
be much lower. This sample was not further processed.

Fig. 109: LA-ICPMS track on Sample KMR-DGN10_A.
Calcite slickenfibre from the Valensole conglomerate. This sample consists of extremely pure  
calcite, U, Pb and Ba are below LoD. This sample was not further processed.



Results

page 215

Fig. 110: LA-ICPMS track on Sample KMR-LIV31_B.
Calcite slickenfibre from a marlstone. Al- and Si-spikes indicate heavy contamination with 
clay minerals. This sample was not further processed.

Fig. 111: LA-ICPMS in situ isotope data of KMR-SEF39A_A.
Despite initial track scans showing elevated U/Pb ratios, ratio variations, and areas of rela-
tively pure calcite, isotope data obtained in situ on samples from the Seefeld area did not yield 
any meaningful results. The most likely reason is alteration of the calcite in later tectonic de-
formation.
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6.  Interpretation and Discussion

6.1  Dating calcite

Although  calcite  exhibits  lower  concentrations  in  radioactive  elements,  when 

compared to minerals  more commonly utilised in geochronology like zircon, micas, 

feldspars or hornblendes (and many others),  its  ubiquity throughout most geological 

settings makes it a valuable archive and time marker, in cases where the samples allow 

isotopic  dating.  As  shown in  chapters  1.3 Previous  work and  3.1 Geochemistry  of

Uranium and Lead in calcite, calcite records the U-Pb isotopic system and retains it in a 

stable manner over geological times (see e.g. Rasbury & Cole, 2009; Kelly et al., 2006; 

Rasbury et al., 1997; Smith et al., 1991; Wang et al., 1998).

For  the  application  described  in  this  study,  dating  of  slickenfibres  and  tension 

gashes, no other mineral would be as well suitable. Although quartz abundantly forms 

the  same  structures  in  many  geological  settings,  this  mineral  does  not  readily 

incorporate radioactive elements that would allow isotopic dating. Weis & Wasserburg, 

1987, could date cherts with the Rb-Sr method, but this material is not applicable for 

tectonic studies. Rossman et al., 1987, found Nd and Sm concentrations in quartz of 

0.127 to 2.81 ppb and 0.0159 to 0.48 ppb, respectively and Rb and Sr concentrations of 

1.17 to 177 ppb and 3.26 to 1027 ppb, respectively. Other minerals which would allow 

isotopic dating form slickenfibres only in rare occasions (e.g. Eyal et al., 1992).

To  determine  the  formation  age  of  the  calcites  studied  herein,  other 

geochronological methods would not be applicable, as detailed below:

• K-Ar dating (Wasserburg & Hayden, 1955; Wasserburg et al., 1956) was applied 

to  a  range of  lithologies,  but  usually  relies  on  micas  or  feldspars,  generally 

minerals with K concentrations between tens of ppm and over 10 % w/w.
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In  this  study,  K  concentration  was  not  measured  during  sample  screening. 

However, geochemically similar Rb was typically encountered in concentrations 

below  LOD  or  just  above,  in  ~10  to  few  tens  of  ppb.  Assuming  a  Rb 

concentration of 20 ppb, and 5 ppm K (based on an average upper crustal K/Rb 

ratio of 250, Taylor & McLennan, 1985), with an isotopic abundance for 40K of 

0.0117%, samples would contain ~5.85  × 10-10 g/g  40K. Assuming an initial 5 

ppm K (of natural isotopic composition) 20 Ma ago, radioactive decay of  40K 

would have produced about 9.95 × 1010 atoms of 40Ar per gram of calcite, or 6.5 

× 10-12 g/g. This does not take into account Ar diffusion.

• Similarly, the Rb/Sr method would not be applicable for the analysed samples, 

due to the very low Rb concentrations (see above) and due to the comparatively 

very high Sr concentrations typically found in calcites (very variable, typically 

several 100 ppm in this study).

•
147Sm decays to 143Nd with a half-life of 1.06 × 1011 years. Although not screened 

for in this study, the concentrations for these elements can be assumed to be 

similar to the other rare earth elements, in most samples below or just above 

LOD (see also below).

• Lu and Hf concentrations were not determined during sample screening, but Lu 

can be assumed to be similar to analysed Yb. Concentrations typically range 

from few ppb to  tens  of  ppb,  in  many samples  not  raising  above LOD.  Ce 

exceptionally reached ppm-level concentrations in localised domains. Hf is not 

well soluble in neutral aqueous solution and likely to be easily expelled from the 

calcite  lattice.  Lu-Hf  dating  requires  highest  precision  element  separation 

(extraction column chemistry) and measurements, and with a half-life of ~37 Ga 

for  176Lu  decaying  to  176Hf  (Scherer  et  al.,  2001;  Söderlund  et  al.,  2004), 

measurements on the young samples in question would likely not be possible.

• The siderophile elements Re and Os would not be compatible under assumed 

formation conditions of calcite slickenfibres. These elements have been shown 

to occur under reducing conditions and have been utilised to date black shales 
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and similar sediments (e.g. Cohen et al., 1999; Kendall et al., 2004; Zhu et al., 

2012).

Sr  and O stable  isotopic  ratio  methods  (isotope  stratigraphy)  are  indirect  dating 

methods based on the calcite being formed from, and in equilibrium with, a large body 

of  water  (usually,  the  global  oceans),  the  isotopic  composition  of  which  for  said 

elements  is  known  a  priori  and  varies  over  time.  An  age  is  then  assigned  from 

comparison of measured values to the known curve of isotopic composition variation. 

The  Sr  and  O  isotopic  composition  in  solutions  circulating  in  faults,  fractures  and 

throughout the rock body is usually not known, but will differ greatly from average sea 

water composition.

One  of  the  most  common  calcite  materials  dated  by  the  U-Pb  method  are 

speleothems (e.g.  Woodhead  et  al.,  2006;  Richards  et  al.,  1998;  Cliff  et  al.,  2010). 

Speleothems  often  show  clear  growth  structures  and  even  from  only  several  age 

determinations on a large sample, growth rates can often be interpolated (e.g. Scholz & 

Hoffmann, 2011). Growth conditions in caves tend to be stable over long periods of 

time and evaporation in the cave, as well as seeping of the water through the rock and 

soil above and leaching processes on the way, often result in elevated U concentrations. 

In contrast, growth rates of slickenfibres are not known, and can be assumed to be non-

continuous (phases of tectonic activity).

U-Pb dating of speleothems (and combined methods with e.g. U-series) have been 

utilised in palaeoclimate studies, tectonic studies, palaeontology and archaeology (e.g. 

Pickering et al., 2011; Meyer et al., 2009; Meyer et al., 2011; Pickering et al., 2010; 

Walker et al., 2006; Fairchild et al., 2006).

The direct U-Pb dating of calcite fossils (sometimes primary aragonite), palaeosols 

and whole rock allows to calibrate the bio- and lithostratigraphy of a region to absolute 

ages (e.g.  Getty et  al.,  2001; Cole et  al.,  2005; Becker et al.,  2004; Israelson et  al.,  

1996). Aragonite can potentially build in more U than calcite (Lazar et al., 2004; Smith 
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et  al.,  1994),  and  although  U  seems  to  be  retained  sufficiently  well  during 

recrystallisation to validate U-Pb dating of calcite samples that formed from primary 

aragonite  (Kelly  et  al.,  2006;  Kelly  et  al.,  2003),  Pb  loss  may  occur  during 

recrystallisation (Smith et al., 1994).

The  main  challenges  in  U-Pb  dating  of  calcite  are  uncertainty  on  initial  234U 

disequilibrium  and the  precise  measurement  of  the  radiogenic  Pb  isotopes.  Thus, 

suitability of a sample is mainly limited by the initial U concentration. Consequently, 

even very young samples can be dated under favourable conditions (Richards et al., 

1998;  Cliff  et  al.,  2010),  but  as  more  Pb  accumulates  over  time,  studies  on  older 

samples are more numerous (Cole et  al.,  2005; Becker et  al.,  2004; Israelson et  al., 

1996; Jahn et al., 1990; Jahn & Cuvellier, 1994; Polyak et al., 2008; Rasbury & Cole, 

2009; Rasbury et al., 1998; Rasbury et al., 1997; Wang et al., 1998). For the age range 

of samples worked on in this study, age uncertainties resulting from 234U disequilibrium 

were assumed to be insignificant compared to other error sources (mainly, compared to 

geological scatter of data).

U-Pb dating of calcite cements in sediments can give valuable information about 

secondary geological processes and diagenesis (Smith et al., 1991; Sanders et al., 2010; 

Jones et  al.,  1995).  This  study expands the range of  applications  for  the method to 

structural geology and tectonics.

Many  studies  utilise  U-series  isotopes  for  dating  calcite  speleothems,  cements, 

palaeosols, fossils and other samples (e.g.  Andersen et al., 2004; Eggins et al., 2005; 

Richards & Dorale, 2003; Plan et al., 2010; Edwards et al., 2003; Eggins et al., 2003; 

Pons-Branchu et al., 2005; Potter et al., 2005; Scholz et al., 2004 and see Bourdon et al., 

2003; Goldstein & Stirling, 2003; Richards & Dorale, 2003  with references therein). 

Due to the short half-life(s) involved, U-series dating only reaches to a maximum age of 

~500 ka (exceptionally 800 ka) and is thus not suitable for the geological time frame of 

most tectonic studies, including this study. However,  Plan et al., 2010 could apply U-

series dating in tectonics by dating damaged speleothems growing over a fault.
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Conceptionally, U-series dating faces similar uncertainties over element retention or 

expulsion during recrystallisation from aragonite to calcite and diagenesis, as mention 

above (see e.g. Pons-Branchu et al., 2005). 
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6.2  Dating brittle deformation

Brittle  deformation  of  rocks  is  the  expression  of  sudden  rupturing  processes 

releasing tension that has built up in the rock body. Much of the observed movements in 

the Earth's upper crust on a plate-tectonic to outcrop scale is in detail accommodated by 

movements along fault zones, faults and fractures (the rest in mineral deformation and 

recrystallisation). Continuous flow and deformation of the crust on a large scale and 

over geological times includes a multitude of slip and fracture events, when studied in 

closer detail. For general treatment of the topic see e.g. Twiss & Moores, 1992; Ramsay 

& Huber, 1987; Pollard & Fletcher, 2005; Gudmundsson, 2011.

These rupturing processes introduce new discontinuities into the rock body, and, if 

large  enough,  cause  seismic  tremors  and  earthquakes.  Therefore,  understanding  the 

timing of brittle deformation is not just of scientific interest, but has great relevance for 

civil  engineering and public safety.  From the timing of fault activity,  seismicity and 

earthquake recurrence for an area can be determined. From the texture and development 

of the existing fault and fracture pattern, predictions on the location, orientation and 

nature of future rock failure can be made.

Because  of  the  inhomogeneities  introduced  into  a  rock  body  by  fracturing  and 

faulting, brittle deformation and its timing are also of great interest in the exploration 

and exploitation of natural resources. For example, fracturing and faulting can generate 

porosity  in  a  rock body,  necessary to  store  water,  natural  gas  and oil.  The  fracture 

network  provides  pathways  along which  these  fluids  can  migrate  and be  extracted. 

Faulting can both open new pathways and seal existing ones, both of which may be 

advantageous or disadvantageous for the development of a reservoir at a given time. 

The opening and closing of fluid pathways also plays a crucial role in the development 

of many mineral deposits of economic importance.

Because of  this  broad interest,  a  multitude of  methods has been applied to  date 

brittle deformation, and thus better understand fracturing and faulting processes from 

the micro- to the mapscale.
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One of the methods applied most commonly is the dating of fault gauges by the K-

Ar method (treated synonymously here with "the Ar-Ar method"; for examples, see e.g. 

Lyons & Snellenburg, 1971; Vrolijk & van der Pluijm, 1999van der Pluijm et al., 2001; 

Kralik et al., 1987; Zwingmann et al., 2004; Zwingmann & Mancktelow, 2004; Wang et 

al., 2009; Och et al., 2009; Zwingmann et al., 2010). The main difficulty in this method 

is identifying syndeformationally grown minerals with a sufficient K content in the fault 

gauge, most commonly illite and muscovite, and distinguishing these from ground-up 

host rock and other older mineral generations. By definition, grain sizes of the minerals 

under consideration in a fault gauge will be very small (~0.1 – 10 µm). Such grains in 

the  often  "open"  system  of  a  brittle  fault  are  easily  susceptible  to  alteration  and 

resetting, Ar loss and gain. A large difficulty, more pronounced the smaller the grains in 

question  are,  is  39Ar  loss  by  recoil:  the  proton  emission  from  the  nucleus  during 

radioactive decay can push  39Ar atoms close to a  grain boundary out  of the crystal 

lattice.

Main disadvantages compared to the method presented herein are the applicability 

only  to  faults  with a  distinctive  offset  and in  certain  lithologies  (fault  gauge forms 

dynamically  during  fault  movement,  not  in  tension  fractures),  and  that  successive 

deformation phases and directions can not usually be distinguished as easily in fault 

gauges, as by slickenfibres.

The complex problem of time and temperature-dependent Ar loss and gain has no 

equivalent  in  U-Pb dating  of  tectonic carbonates,  as  all  elements  involved are non-

volatile (except for short-lived Rn) and calcite slickenfibres are formed under relatively 

low temperatures. U (and Pb) can be mobilised during recrystallisation, but the large 

uranyl  ion does  not readily diffuse out  of the calcite  lattice.  Because no irradiation 

activation is  necessary  for  U-Pb measurements,  problems similar  to  39Ar recoil  loss 

(Hess & Lippolt, 1986) are also avoided.

Where host rock lithologies allow it,  and fault slip was large and fast enough to 

generate enough heat, pseudotachylytes can be used for dating fault movement, e.g by 

the Ar-Ar or the Rb-Sr method (e.g. Kelley et al., 1994; Thompson et al., 1998; Müller 
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et  al.,  2001;  Müller  et  al.,  2002;  Müller  et  al.,  2000a).  Whereas  the  occurrence  of 

pseudotachylytes  is  based  on  the  assumption  of  fast  fault  movement,  the  more 

abundantly observed slickenfibres indicate at least periods of slower movement ("fault 

creep") to allow growth of mineral fibres. The exact mechanism of slickenfibre growth 

is still poorly understood (e.g. Renard et al., 2005; Cox, 1987; Means & Li, 2001 and 

chapter "2.1 Tectonic carbonates"), and probably several different mechanisms occur, 

depending on conditions (e.g. Hilgers & Urai, 2002; Urai et al., 1991), but calcite fibres 

closely following fault  movement,  including direction changes,  indicate  that  growth 

occurs during fault movement.

Similar  to  the  principles  applied  in  dating  pseudotachylytes,  the  dating  of 

syndeformational  intrusions  is  based on the  assumption  that  the injected melt  cools 

rapidly,  thus  recording  the  time  of  fault  activity  (e.g  Ring  &  Collins,  2005; 

Kanjanapayont et al., 2012; Watkinson et al., 2008; Glodny & Hetzel, 2007). Similar to 

fault gauges (and in part, pseudotachylytes), the possibility of older crystallites being 

contained  in  the  intruded  magma  or  of  recycling  host  rock  minerals  exists.  When 

considering higher temperature settings and the transition  from brittle to (semi-)ductile 

deformation,  the  thematic  complex  of  dating  deformation  structures  in  shear  zones 

becomes relevant (e.g. Shaw et al., 2001; Rolland et al., 2009; Lips et al., 1998; Müller 

et al., 2000b, and many others), which is not further considered in this study.

In  contrast  to  the  above,  the  presented  method  applies  to  low-temperature 

deformational events, likely in the very shallow crust (below 150-250° C, depending on 

pressure). Deformation direction is as well recorded by slickenfibres as e.g. in ductile 

shear  zones,  and  the  potential  to  record  several  deformation  phases  of  different 

directions in slickenfibres is high, whereas older indicators in ductile shear zones are 

easily overprinted. However, the higher temperatures in shear zones cause many more 

minerals to grow, potentially offering a wider range of dating methods.

Other minerals than calcite and quartz can form slickenfibres, some of which may 

contain higher concentrations of radioactive elements (e.g. Eyal et al., 1992), but the 

conditions for such minerals to form slickenfibres are much less common.
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Electron spin resonance (ESR) dating is based on the principle that various minerals 

will accumulate magnetic moments due to exposure to sources of radiation (e.g. natural 

radioactive  background  in  a  rock  body),  which  can  be  measured  to  determine  the 

duration of exposure (Grün, 1989). Since the magnetic moments are caused by lattice 

defects, heating events, but also strong mechanical shock, reset the system. This allows 

to date a range of fault rocks, including cataclasites (e.g. Tanaka et al., 1995).

Movement on brittle faults can lead to magnetic resetting in the components and 

matrix  of fault  breccia and/or in associated mylonites,  given favourable mineralogy, 

which has been utilised to date the faulting by palaeomagnetic methods (Torsvik et al., 

1992; Eide et al., 1997).

Dating  fault  movement  by  cosmogenic  nuclides  requires  the  fault  plane  to  be 

(progressively)  exposed  to  cosmic  rays  at  the  Earth's  surface,  and  weathering  rate 

negligible or exactly known.

Similar restrictions apply to optically stimulated luminescence (OSL) dating, which 

is  further limited by choice of minerals,  most commonly quartz or feldspar.  OSL is 

restricted to an age range of ~100 ka.

In  the  present  study,  one  of  the  basic  premisses  was  to  directly  date  calcite 

slickenfibres  and  tension  gashes.  This  excludes  methods  that  are  based  on  other 

materials (fault gauges, pseudotachylytes and syntectonic intrusions). Magnetism would 

be  carried  by microscopic inclusions  rather  than calcite  itself,  whereas  U-Pb dating 

requires  high-purity  calcite  for  analysis,  rendering  this  method  and  palaeomagnetic 

dating mutually exclusive. The samples in question were taken from as freshly exposed 

material  as  possible  and  should  in  principle  not  be  restricted  to  surface  outcrops 

(samples  from underground  outcrops  or  e.g.  drill  cores  would  be  equally  suitable), 

which excludes cosmogenic nuclides and OSL as equal alternatives.
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"Passive dating" of fault movements, e.g. inferring fault movement from exhumation 

ages of the fault blocks or from the sedimentary record on the fault blocks, is common, 

and allows a wide range of methods to be used to determine relative movements of 

blocks, but the goal of this study was to determine deformation ages directly on the fault 

planes  or  fractures.  Relative  block  exhumation  ages  also  do  not  allow  dating  of 

predominantly strike-slip faults.
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6.3  Discussion of approach and possible alternatives

Having established the reasons for choosing U-Pb dating of calcite slickenfibres for 

the present study in the previous sections of this chapter, alternative approaches to the 

actual analysis might be considered.

The present study utilised a Resonetics RESOlution M-50 with a 193 nm Coherent 

COMPexPro110 ArF excimer laser coupled to an Agilent 7500ce quadrupole ICPMS for 

LA-ICPMS sample screening.

Hathorne et al., 2008, demonstrated that a laser wavelength of 193 nm is favourable 

over widely used 213 nm or longer, in terms of particle sizes produced and fractionation 

processes during ablation and particle transport.

Femtosecond lasers, as opposed to laser pulses lasting nanoseconds on the utilised 

system, are not readily available and expensive. Possible advantages due to lower mass 

fractionation during ablation would only be advantageous for in situ dating, which was 

not the main focus of this study. For trace element screening, no improvements would 

be expected from the use of a fs laser.

Utilising a MC-ICPMS for direct in situ dating (e.g.Eggins et al., 2005; Potter et al., 

2005) would be desirable for its higher precision (mainly for the Pb isotopes), but the 

observed concentrations (Pb) would likely not yield large enough signals to utilise the 

Faraday detectors, or would require more sample over a larger area being ablated, which 

in return elevates the risk of contamination by ablating impurities and would yield a 

smaller spread of data points on the isochron diagrams due to averaging, effectively 

counteracting the desired improvements.

For dynamic measurements on a MC-ICPMS, the magnetic field needs to be altered, 

and  a  stable  ion  beam  must  be  achieved  before  each  consecutive  measurement. 

Switching masses this way on a MC-ICPMS (like the IsoProbe at RHUL) is relatively 

slow  compared  to  switching  masses  (effectively,  the  singe  mass)  on  a  quadrupole 

ICPMS, thus, for the same amount of data, much larger sample sizes would be required, 
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with the above mentioned adverse effects. Thus, in situ LA-MC-ICPMS could only use 

static mode measurements.

An instrument with an electrostatic mass filter could switch masses much faster, and 

in  combination  with  the  magnetic  mass  filter,  would allow to filter  more  unwanted 

interferences.

Instead of the MC-ICPMS, (chemically separated) samples could also have been 

measured  on  the  TIMS  at  RHUL.  Sample  preparation  would  have  introduced  an 

additional potential source of contamination, and TIMS usually does not allow for mass 

fractionation correction based on an internal, constant isotope ratio (like 203Tl and 205Tl 

added for MC-ICPMS in this study). Todt et al., 1996, have utilised a mixed 202Pb-205Pb 

double spike in TIMS Pb isotopic measurements, on an instrument with nine Faraday 

detectors as opposed to five on the TIMS in house.

Woodhead & Hergt, 1997, and Woodhead et al., 1995, describe a 204Pb-207Pb double-

spike  technique  for  determining  the  Pb-isotopic  composition,  which  would  yield  a 

higher precision than the employed technique. However, this procedure requires three 

TIMS runs per sample, and uncertainties from other error sources and scatter of data 

points  by far outweighs uncertainties from individual measurements in  the observed 

data in this study, thus no improvement in age age precision could be expected.

Many studies utilise an anion resin workflow for separation of U, Th and Pb. The 

procedure described e.g.  in Cole et  al.,  2005 (based on Wang et al.,  1998) requires 

precipitation  of  Pb  with  Fe-hydroxydes  and  consecutive  redissolution  in  HBr, 

introducing additional reagents, and thus, possible contamination sources, compared to 

the presented workflow. Cole et al., 2005, estimated procedural Pb blanks of ~200 ± 100 

pg, compared to ~5.3 pg in this study (see "4.5.2 Blanks").

Eichrom Technologies Inc., the manufacturer of the extraction resins utilised in this 

study, offers a resin specifically for Pb separation. This resin is optimised to allow for an 

easier  elusion  of  Pb  from  the  resin,  which  results  from a  slightly  lower  retention 
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potential  for  Pb  than  the  resin  used  herein,  which  is  marketed  primarily  for  Sr 

separation. However, in the column calibrations in the early stages of this study, Pb 

elusion  from  the  resin  was  shown  to  be  thorough  (see  "4.4.1 Extraction

chromatography") and no problems with this work step were encountered.

In terms of minimal sample size and procedural Pb blank, the wet chemical sample 

preparation  presented  herein  (chapter  4.12.2 Detailed  clean  lab/column  chemistry

workflow)  appears  to  be  optimised  under  the  conditions  of  current  technical 

possibilities.

In chapter  4.11.3 SEM, the use of  SEM element  mapping is  demonstrated.  This 

technique  is  widely  applied  and  very  fast,  but  detection  levels  are  several  tens  to 

hundreds of ppm, which is not given for many elements in the samples presented here.

No  clear  indicators  for  suitability  of  samples  applicable  in  the  field  could  be 

determined. Although important for the solubility of U in aqueous solution (see chapter 

3.1 Geochemistry of Uranium and Lead in calcite), the content of organic Carbon (Corg) 

in the host rock seems not to be a factor influencing the U content of tectonic carbonates 

in these rocks. The same is true for other intuitively probable sources of U in tectonic 

carbonates, like crystalline/metamorphic rocks or an outcrop known to yield suitable 

samples  in  the  vicinity.  Marly-sandy  sediments  might  be  beneficial,  but  are  not 

guaranteed to yield elevated U concentrations.

The redox potential in the water at time of sedimentation determines the oxidation 

state  of  U,  and  thus  solubility  (chapter  3.1 Geochemistry  of  Uranium and  Lead in

calcite). Yet, determination of palaeoredox potential is problematic, as it can only be 

inferred indirectly.  Wright  et  al.,  1987,  describe  a  negative Ce REE anomaly  as  an 

indicator  for  oxidising  conditions,  but  biogenic  phosphate  is  required  for  reliable 

preservation of the REE spectrum. German & Elderfield, 1990, and Algeo & Lyons, 

2006, show that proxies used for palaeoredox determination are in fact influenced by 

many further factors, mainly palaeooceanographic conditions. Tribovillard et al., 2006, 
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describes the use of trace element concentrations, uranium amongst them, as a proxy for 

palaeoredox, but this does not allow for any reverse conclusions usable in the presented 

study. All the mentioned methods for palaeoredox determination require sophisticated 

preparation of suitable samples, which would not give any advantage over the direct 

determination of U and Pb concentrations by LA-ICPMS described herein.

As  tectonic  deformation  in  most  cases  takes  place  long  after  sedimantation,  the 

determination  of  palaeoredox  of  the  host  rock  is  of  minor  value.  Determination  of 

palaeoredox  of  fissure  waters  would  be  further  complicated  by  the  lack  of  mineral 

suitable  for  recording  the  described  proxies,  and  the  unknown  and  highly  variable 

chemistry of these fluids.

Stable isotope analyses, which could give further insight into formation conditions 

of the host rock, would add an additional wet chemical preparation and high-precision 

analysis,  the  value of  which for  the present  study would be minimal,  for  the  same 

reasons mentioned.

Hand-held XRF spectrometers and gamma spectrometers are available, but element 

detection  limits  for  the  former  do  not  allow  determination  of  trace  element 

concentrations in the range observed in the samples, and the latter only allows bulk 

determination  of  radioactivity.  Both  methods  do  not  offer  the  spatial  resolution 

necessary to distinguish measurements on a slickenfibre from those on the surrounding 

host rock in most cases. Only in rare cases, advantages from the information gained 

from these instruments would justify the effort to carry these instruments on fieldwork.

An  alternative  imaging  method  to  reveal  U  (and  Th,  if  present)  concentration 

differences in rock samples in order to aid sample selection, is “phosphor imaging”, 

applied in several studies about U-Pb dating of carbonates (e.g. Pickering et al., 2010; 

Cole  et  al.,  2003;  Cole  et  al.,  2005).  The technique  utilises  a  radiographic  imaging 

medium that is put in direct contact with the flat (cut) sample surface and develops an 

image of the radioactivity ("activity") in the rock. The technique is simple, cheap (the 

medium is reusable), non-destructive and suited for large samples (a major advantage 

page 229



Interpretation and Discussion

over LA-ICPMS element mapping presented in this study), but depending on activity, 

requires  days  to  months  of  irradiation  to  yield  an  image.  Different  sources  of 

radioactivity (U, Th, K, ...) can not be distinguished.
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6.4  Regional tectonic discussion and interpretation

Gosau

The Gosau basin underwent deformation in all major phases of the evolution of the 

Northern Calcareous Alps, since the basin opened in the Upper Cretaceous (Wagreich & 

Decker, 2001; Wagreich & Faupl, 1994; Willingshofer et al., 1999; Wagreich & Faupl, 

1994). As such, faults generated during early basin opening, Eoalpine nappe stacking, 

and any of the Tertiary Alpine deformation phases might be expected (e.g. Peresson & 

Decker, 1997; Linzer et al., 2002; Schmid et al., 2004).

According  to  Peresson & Decker,  1997,  six  Tertiary  deformation  phases  can  be 

distinguished in brittle deformation data from the Northern Calcareous Alps. Not all 

deformations would be expected to be recorded at any one location. Generally, a fault 

plane,  once  created,  might  be  only  slightly  reactivated  in  a  later  phase,  effectively 

transferring tectonic stress to another location where fresh deformation will occur, or it 

may  lie  in  an  orientation  unfavourable  for  reactivation,  or  it  may  be  intensely 

reactivated, obliterating all traces of older deformation phases.

MC-ICPMS data obtained at outcrop 240 (KMR-GOB21) indicate deformation at 

~29 ± 2 and ~23 ± 1 Ma, in the N-S-compressional phase "T2" of Peresson & Decker, 

1997 (see  Fig. 112), and LA-ICPMS in situ data from a tension gash at location 236 

(KMR-GOB18)  seems  to  belong  to  an  earlier  deformation  phase  at  ~42  Ma.  The 

correlation to these deformation phases is corroborated by the geometry of the sampled 

tectonic features, being compatible with the respective tectonic stress directions in Fig.

112.
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The  structural  data 

presented  in  2.2.4 Gosau

Basin and Fig. 113 for these 

outcrops is compatible with 

the  regional  stress  fields 

proposed  in  the  literature 

(Fig. 112) at the respective 

times:  Conjugate  NNW-

SSE  and  WSW-ENE 

oriented  tension  gashes 

observed  at  outcrop  236 

(KMR-GOB18) could have 

been  formed  in  a  NW-SE 

compressional  regime  at 

~42 Ma (deformation phase 

T1  in  Fig.  112).  This 

outcrop  lies  close  to  the 

basin margin.
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proposed  stress  regime  of  this 

phase.

Most other samples from the Gosau Basin appeared not suitable for dating in initial 

screening,  either  because  of  too  low  U  concentrations,  or  too  low  U/Pb  ratios.  In 

sampling, tectonic carbonates out of various lithologies, from massy biogenic marine 

limestone to sandy terrigeneous marl and from different stratigraphic levels of the basin 

fill, were collected.

The  two  outcrops  yielding  the  dated  samples  are  both  of  the  Upper  Santonian 

Hochmoos fm., a shallow marine marly unit dominated by input of terrigeneous, sandy 

material. In this case, stratigraphic control seems likely, the terrigeneous input could 

have contained U in solution aided by humic acids,  or the terrigeneous sand might 

provide additional U. No obvious other criterion for (non-)suitability could be observed, 

some other samples were collected from different stratigraphic units in close proximity 

to KMR-GOB18, but proved not date-able.  However, in no other sampling area could 

such a clear correlation of sample quality with stratigraphic unit be established.
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Digne

The Digne nappe is the most external tectonic unit of the Alps in this part of the 

orogen. The front of the Digne nappe overthrusts the Pliocene (~12 – ~5 Ma) Valensole 

conglomerate,  as indicated by intensive deformation in these young sediments.  This 

indicates that nappe movement occurred until at least that time (Lickorish & Ford, 1998; 

Fournier et al., 2008; Hippolyte, 2001; Hippolyte et al., 2011), but GPS measurements 

indicate ongoing movement (e.g. Jouanne et al., 2001).

A wide spectrum of lithologies and stratigraphic units was sampled in this area, yet 

only one sample could be dated (KMR-DGN55). The sample location (outcrop 300) is a 

small cliff formed by a thrust fault within the frontal Digne Nappe (see  2.2.2 Digne). 

From this position, if faulting occurred in a normal outwards-progressing imbricated 

stack of thrust sheets,  a  young age,  slightly older  than the latest  nappe movements, 

would be expected.

The  fault  plane  is  a  thrust  of  deformed Tithonian  limestone  onto  an  overturned 

sequence  of  Palaeogene  to  Miocene  sediment  ("Red"  and  "Green  Molasse").  The 

structure appears to be a fault propagation fold, the sampling location being situated in 

the overturned frontal limb of the fold. This structure would indicate an out-of-sequence 

thrust within the nappe.

Both models fit  well with the measured ages of  9.59  ± 0.02 and ~8.4  ± 3.5  Ma 

measured by MC-ICPMS on slickenfibres from the fault.  An age of ~9.7  ± 4.0 Ma 

measured by LA-ICPMS in situ, on a sample from another part of the outcrop, falls in 

the same age range.

It is not clear why this outcrop yielded date-able samples, whereas all other outcrops 

in  the  area  did  not.  The same stratigraphic  units  present  in  outcrop 300 have  been 

sampled elsewhere, therefore a stratigraphic control on U/Pb is unlikely. The fault rock 

at this outcrop is finely tectonised, possibly the higher surface area allowed for more 

intense leaching of the host rock, or solutions were circulating from a deeper source.
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Swiss Jura

Samples from the Swiss Jura were contributed by Dr. Herfried Madritsch, NAGRA, 

Switzerland (see 2.2.8 Swiss Jura). The slickenfibres are sampled from fault planes that 

were folded in later deformation events (Madritsch, pers. comm.). Thus, faulting ages 

obtained in this study give maximum folding ages for the fault planes. 

The Swiss Jura mountains are a thin-skinned foreland fold-and-thrust belt made up 

of sediments of the sedimentary cover of the European plate, mobilised in a late stage of 

the Alpine orogeny (Late Miocene to Pliocene, e.g.  Schmid et al., 2004; Madritsch et 

al., 2010b). Studies of Neogene drainage patterns and fluvial sediments indicate Late 

Quaternary to ongoing deformation in the region (Ziegler & Fraefel, 2009; Madritsch et 

al.,  2010b).  It  has  been  suggested  that  the  recent,  slower  deformation  represents  a 

different phase of deformation, commencing at ~9-4 Ma, and characterised by thick-

skinned thrusting of the European basement (e.g. Becker, 2000; Ustaszewski & Schmid, 

2007).

The age of 9.05  ± 0.94 Ma obtained by MC-ICPMS fits into the model that the 

slickenfibres were formed before the youngest deformation. In the scope of this study, 

and looking at  only  one  sample,  no  further  conclusions  about  the  regional  tectonic 

history can be drawn. Other samples from the same area did not show enough spread 

between data points to construct a reliable regression line for an age estimate (see  5 

Results).
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Lower Inn valley

Various deformation structures in relation to Tertiary and younger deformation at the 

Inntal  Fault  were sampled.  Deformation is  believed to  have been substantial  during 

Miocene  Alpine  evolution  (Ortner,  2001b;  Linzer  et  al.,  2002;  Ratschbacher  et  al., 

1989), and is ongoing to the present day, as indicated by smaller earthquakes occurring 

along the Inn Valley (e.g.  Reiter et al.,  2003; Ortner et al., 2006). Most samples are 

marly to sandy sediments of the Lower Inn Valley Intramontane Molasse, Late Eocene 

to Oligocene in age. Sample KB2 is a tectonic breccia from a basal fault, the sample 

was provided by Dr. H. Ortner. Few samples proved to be datable.

An age of 27.7  ± 1.3 Ma for a fault plane in Tertiary lime marls (KMR-LIV34B) 

deposited in the Lower Inn Valley intramontane Molasse basin (Ortner & Stingl, 2001) 

is  in  line  with the expected syndepositional  to  early deformation age.  Sample  KB2 

yielded indication of a young age of ~10-15 Ma, expected for the Inntal Fault, but due 

to low concentrations in the sample, scatter and errors on the data points was too large 

to confirm that age.

Some samples from the basal bituminous marls ("Bitumenmergel") comprised beige 

slickenfibres, rich in fluid inclusions of hydrocarbons. Above mentioned KMR-LIV34B 

was amongst these, and wet chemical preparation of this material proved problematic, 

as  there  is  no  designated  step  for  dissolving  organic  compounds  in  the  developed 

workflow until after extraction chromatography. Measurements of this sample were of 

low precision and sample wash-out in the mass spectrometer took a very long time, the 

utilised PTFE labware was not easily cleaned after analysis. Samples with a significant 

content of organic compounds should be prepared differently, or be avoided.
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Fohnsdorf

In the Fohnsdorf basin, mainly the basin margins were sampled, the sediments in the 

centre  are  not  well  exposed  and  do  not  show  deformation  structures  (in  surface 

outcrops).  Slickenfibres  from  marginal  faults  within  metasedimentary  units  of  the 

surrounding or from faults  separating exterior  host  rock from basin sediments  were 

sampled, but turned out to be not suitable for dating, due to low U concentrations and 

U/Pb ratios.

It  the  polymikt  conglomerates  of  the  Apfelberg  fm.,  a  marginal  facies  of  the 

sedimentary basin fill, hydrothermal travertine filling fissures of up to several 10 cm 

width and several 10 m in extent, the so-called "Mariabucher Marmor" was sampled and 

yielded an age of 13.4 ± 0.8 Ma (see 5 Results). This age coincides with the forming age 

of the Apfelberg fm (~15-13 Ma), consistent with the depositional model, in which the 

coarse, polymikt conglomerates are thought to have been derived from the surrounding 

host rocks as a very proximal facies of debris flows and fans, deposited syntectonically 

on the steep slopes of the rapidly subsiding basin (Strauss et al.,  2001; Wagreich & 

Strauss, 2005).

These samples are different in nature from the other tectonic carbonates collected 

throughout this study. The growth strata of the travertine, filling up the opening fissures, 

are  not  strictly  coeval  in  formation.  The different  layers  might  represent  individual 

tectonic  pulses  of  fissure  widening,  or  periodic  influx  of  more  and  less  saturated 

solutions. Episodic growth and mixing of different solution sources is demonstrated by 

the changing relative concentrations of trace elements, as seen in 5 Results.

In the conducted analyses, no age differences between layers could be resolved. As 

far as can be determined with the number of data points measured, growth seems to 

have been sufficiently fast to yield a good age estimate within analytical error even from 

data measured on different growth layers of the same sample.

Older and younger deformation phases affecting the basin (see e.g. Sachsenhofer et 

al., 2000, Wagreich & Strauss, 2005) could not be verified in the collected samples.
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The other sampling areas (Seefeld, Leytron, Tauern Window North, Kilve) did not 

yield samples that appeared suitable for dating after initial LA-ICPMS screening, or the 

attempted dating of samples did not result in data allowing a linear regression through 

data points, thus, these data do not justify age interpretation. See  5 Results for some 

examples.
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7.  Conclusions and Summary

7.1  Strengths and limitations of the method

A new workflow for dating calcite samples has been presented. 

The technique provides new data on tectonic events, and in a wider view, allows 

under favourable conditions (U/Pb ratio >> 1, Pb concentrations above LoD, elevated U 

concentrations)  direct  dating  of  deformation  in  lithologies  where  no  other 

geochronometers are present.

Tectonic events from several sampling areas have been dated in this study:

• In the Gosau basin, N-S compressional tectonic movement was dated to have 

occurred at 29 ± 2 and 23 ± 1 Ma and NW-SE compression at ~42 Ma on the 

basin  margin.  These  ages  fit  within  established  deformation  phases  for  the 

region.

• ENE-WSW movement on a fault in the external Digne nappe was dated to ~9.59 

± 0.02 Ma, supported by very imprecise ages of  ~8.4  ± 3.5 and ~9.7  ± 4.0 in 

accordance to regional tectonic studies.

• A sample of the "Mariabucher Marmor" from the margin of the Fohnsdorf basin 

was dated to 13.4 ± 0.8 Ma, fitting within the previously assumed formation age 

of the host rock.

• Fault movement on a fault in the Swiss Jura was dated to 9.05 ± 0.94 Ma, setting 

a maximum age for the later folding that deformed the fault plane.

• Samples from the Lower Inn Valley yielded plausible, but very imprecise ages of 

27.3 ± 1.3 and ~10-15 Ma for samples that structurally fit these ages.
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1D LA-ICPMS screening has proven to be a valuable, quick tool to select samples 

for further analysis, and subsamples for chemical processing.

The power of 2D LA-ICPMS for imaging spatial distribution of trace elements in 

geological  samples  has  been demonstated.  These  data  can  reveal  information  about 

samples that is not available from other methods, at high spatial resolution and with 

minimal preparation.

A software package for creation of element maps was created, and the produced 

maps were utilised to aid in subsample selection for chemical preparation.

However, the presented method is only applicable under favourable conditions of 

high  U/Pb  ratio,  little  or  no  common  lead  contamination,  and  sufficiently  high  U 

concentrations. These conditions are often not met. 

So far, no clear field criteria for selection of samples meeting above requirements 

could be established. Tectonic carbonate samples should be as fresh as possible, and the 

calcite  should  optically  appear  free  of  inclusions  and  white.  Host  rock  lithology, 

stratigraphic  age  and  tectonic  setting  seem  not  to  systematically  influence  sample 

quality.

The highest  precision ages  are  obtained by MC-ICPMS analysis  involving time-

consuming  wet-chemical  sample  preparation  prone  to  contamination  and  handling 

errors.

Detailed  workflow  and  preparation  instructions  are  presented  that  allow 

reproduction of the data quality presented, depending on the samples processed.

In  the  future,  with  higher-precision  quadrupole-,  or  with  higher-sensitivity  MC-

ICPMS, a workflow completely in situ (involving only LA-ICPMS analysis), would be 
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desirable.  High  sample  throughput  with  minimal  preparation  could  outweigh  the 

disadvantages of lower-precision in individual measurements.

The technique of 2D LA-ICPMS element mapping can be further optimised if the 

data  files  produced  by  the  laser  ablation  software  (GeoStar)  are  optimised  and 

simplified, and the presented data processing software can be greatly improved both in 

speed and ease of use, e.g. by adding a graphical user interface.
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7.2  Possible future applications

The  presented  technique,  in  its  unique  application  to  tectonic  carbonates,  could 

provide  valuable  new  insights  in  geodynamic  processes,  faulting  processes  and 

individual fault evolution, and the study of tectonic carbonates themselves.

In structural geology, timing of faulting processes, and thus a detailed record of fault 

development could be obtained.

In the energy and natural resources sector, fault activity can both generate or destroy 

reservoirs  of  gas,  oil  or  water.  Dating  these  events  allows  for  more  detailed  basin 

modelling studies and risk assessment. Timing of fluid flow is also a crucial information 

to evaluate and explore natural metal and mineral resources.

In the public sector, detailed information of past fault activity can help assess natural 

hazards due to earthquakes and secondary processes like landslides and tsunamis, and 

may help predict location and magnitude of future events.

page 242



Bibliography

8.  Bibliography

ALGEO,  T.J.  & LYONS,  T.W. (2006)  Mo–total  organic  carbon  covariation  in  modern  
anoxic  marine  environments:  Implications  for  analysis  of  paleoredox  and  
paleohydrographic conditions. Paleoceanography 21. p.PA1016.

ANDERSEN, M.B., STIRLING, C.H., POTTER, E.K. & HALLIDAY, A.N. (2004) Toward epsilon 
levels  of  measurement  precision  on  U-234/U-238  by  using  MC-ICPMS. 
International Journal of Mass Spectrometry 237. p.118.

ANGELIER,  J. (1979)  Determination of the mean principal directions of stresses for a  
given fault population. Tectonophysics 56. p.T17-T26.

ARBUZOV,  S.,  VOLOSTNOV,  A.,  RIKHVANOV,  L.,  MEZHIBOR,  A.  &  ILENOK,  S. (2011) 
Geochemistry of radioactive elements (U, Th) in coal and peat of northern Asia  
(Siberia, Russian Far East, Kazakhstan, and Mongolia). International Journal of 
Coal Geology 86. pp. 318-328.

ARROWSMITH,  P. (1987)  Laser ablation of solids for elemental analysis  by inductively  
coupled plasma mass spectrometry. Analytical Chemistry 59. pp. 1437-1444.

ARROWSMITH,  P. & HUGHES,  S.K. (1988)  Entrainment and Transport of  Laser Ablated  
Plumes for Subsequent Elemental Analysis. Applied Spectroscopy 42. pp. 1231-
1239.

BANERJEE, D., SINGHVI, A.K., PANDE, K., GOGTE, V.D. & CHANDRA, B. (1999)  Towards a  
direct  dating  of  fault  gouges  using  luminescence  dating  techniques  -  
Methodological aspects. Current Science 77. pp. 256-268.

BANNER, J.L. (2004) Radiogenic isotopes: systematics and applications to earth surface  
processes and chemical stratigraphy. Earth-Science Reviews 65. pp. 141-194.

BAR,  M.,  KOLODNY,  Y. & BENTOR,  Y. (1974)  Dating faults  by fission track dating of  
epidotes -- an attempt. Earth and Planetary Science Letters 22. pp. 157-162.

BARGER, M. & KORETSKY, C.M. (2011)  The influence of citric acid, EDTA, and fulvic  
acid on U(VI) sorption onto kaolinite. Applied Geochemistry 26. p.S158-S161.

BAROUX,  E.,  BETHOUX,  N.  &  BELLIER,  O. (2001)  Analyses  of  the  stress  field  in  
southeastern France from earthquake focal mechanisms.  Geophysical Journal 
International 145. pp. 336-348.

BECHTEL, A., GAWLICK, H., GRATZER, R., TOMASELLI, M. & PÜTTMANN, W. (2007) Molecular  
indicators of palaeosalinity and depositional environment of small scale basins  
within  carbonate  platforms:  The Late  Triassic  Hauptdolomite  Wiestalstausee  
section  near  Hallein  (Northern  Calcareous  Alps,  Austria).  Organic 
Geochemistry 38. pp. 92-111.

BECKER,  A. (2000)  The  Jura  Mountains  — an  active  foreland  fold-and-thrust  belt?. 
Tectonophysics 321. pp. 381-406.

BECKER, M.L., RASBURY, E.T., MEYERS, W.J. & HANSON, G.N. (2004) "U-Pb calcite age of  
the Late Permian Castile Formation, Delaware Basin: a constraint on the age  
of  the Permian-Triassic  boundary(?)":  Reply to  a comment by Ian Metcalfe. 
Earth and Planetary Science Letters 217. pp. 469-471.

page 243



Bibliography

BELAYNEH, M. & COSGROVE, J.W. (2010)  Hybrid veins from the southern margin of the  
Bristol Channel Basin, UK. Journal of Structural Geology 32. pp. 192-201.

BERGER,  A.  &  BOUSQUET,  R. (2008)  Subduction-related  metamorphism  in  the  Alps;  
review of isotopic ages based on petrology and their geodynamic consequences. 
In Siegesmund, S., Fuegenschuh, B. & Froitzheim, N. (Eds.) (2008): Tectonic 
aspects  of  the  Alpine-Dinaride-Carpathian  system.  Geological  Society  of 
London, London. pp. 117-144.

BERRA,  F.,  JADOUL,  F.  & ANELLI,  A. (2010)  Environmental  control  on the  end of  the  
Dolomia  Principale/Hauptdolomit  depositional  system  in  the  central  Alps:  
Coupling sea-level and climate changes. Palaeogeography, Palaeoclimatology, 
Palaeoecology 290. pp. 138-150.

BLANCKENBURG,  F.,  VILLA,  I.M.,  BAUR,  H., MORTEANI,  G. & STEIGER,  R.H. (1989)  Time 
calibration of a PT-path from the Western Tauern Window, Eastern Alps: the  
problem of  closure temperatures.  Contributions  to  Mineralogy and Petrology 
101. pp. 1-11.

BONHOMME, M.G., BAUBRON, J. & JEBRAK, M. (1987) Minéralogie, géochimie, terres bares  
et  âge  K-Ar  des  argiles  associées  aux  minéralisations  filoniennes.  Chemical 
Geology: Isotope Geoscience section 65. pp. 321-339.

BONS, P.D. & JESSELL, M.W. (1997) Experimental simulation of the formation of fibrous  
veins by localised dissolution-precipitation creep. Mineralogical Magazine 61. 
pp. 53-63.

BOURDON, B., TURNER, S., HENDERSON, G.M. & LUNDSTROM, C.C. (2003) Introduction to U-
series Geochemistry. Reviews in Mineralogy and Geochemistry 52. pp. 1-21.

BOUSQUET, R., GOFFE, B., VIDAL, O., OBERHÄNSLI, R. & PATRIAT, M. (2002)  The tectono-
metamorphic history of the Valaisan domain from the Western to the Central  
Alps:  New  constraints  on  the  evolution  of  the  Alps.  Geological  Society  of 
America Bulletin 114. pp. 207-225.

BOUSQUET,  R.,  OBERHÄNSLI,  R.,  GOFFÉ,  B.,  WIEDERKEHR,  M.,  KOLLER,  F.,  SCHMID,  S.M., 
SCHUSTER, R., ENGI, M., BERGER, A. & MARTINOTTI, G. (2008)  Metamorphism of  
metasediments  at  the  scale  of  an  orogen;  a key  to  the  Tertiary  geodynamic  
evolution  of  the  Alps.  In  Siegesmund,  S.,  Fügenschuh,  B.  & Froitzheim,  N. 
(Eds.)  (2008):  Tectonic  aspects  of  the  Alpine-Dinaride-Carpathian  system. 
Geological Society of London. pp. 393-411.

BRUNO, J. (1990) The influence of dissolved carbon dioxide on trace metal speciation in  
seawater. Marine Chemistry 30. pp. 231-240.

BUHAY, W., SCHWARCZ, H. & GRÜN, R. (1988)  ESR dating of fault gouge: The effect of  
grain size. Quaternary Science Reviews 7. pp. 515-522.

CATANZARO, E.J., MURPHY, T.J., SHIELDS, W.R. & GARNER, E.L. (1968)  Absolute isotopic  
abundance  ratios  of  common,  equal-atom,  and  radiogenic  lead  isotopic  
standards. J. Res. Nat. Bur. Stand. 72A. pp. 261-267.

CHAMPAGNAC,  J.,  SCHLUNEGGER,  F.,  NORTON,  K.,  VON BLANCKENBURG,  F.,  ABBÜHL,  L.  & 
SCHWAB,  M. (2009)  Erosion-driven  uplift  of  the  modern  Central  Alps. 
Tectonophysics 474. pp. 236-249.

page 244



Bibliography

CHAMPAGNAC, J., SUE, C., DELACOU, B. & BURKHARD, M. (2004) Brittle deformation in the  
inner  NW  Alps:  from  early  orogen-parallel  extrusion  to  late  orogen-
perpendicular collapse. Terra Nova 16. pp. 232-242.

CHANNELL, J.E.T. & KOZUR, H. (1997) How many oceans? Meliata, Vardar, and Pindos  
oceans in Mesozoic Alpine paleogeography. Geology 25. pp. 183-186.

CHANNELL, J.E.T., BRANDNER, R., SPIELER, A. & STONER, J.S. (1992) Paleomagnetism and 
Paleogeography of the Northern Calcareous Alps (Austria). Tectonics Vol 11. 
pp. 792-810.

CHAPPAZ, A., GOBEIL, C. & TESSIER, A. (2010) Controls on uranium distribution in lake  
sediments. Geochimica et Cosmochimica Acta 74. pp. 203-214.

CHEN,  J.,  LAWRENCE EDWARDS,  R.  & WASSERBURG,  G. (1986)  238U,234U and232Th in  
seawater. Earth and Planetary Science Letters 80. pp. 241-251.

CHESTER, R. (1990) Marine Geochemistry, Unwin Hyman, London. p.698.

CHOO, C.O. & CHANG, T.W. (2000)  Characteristics of clay minerals in gouges of the  
Dongrae fault,  Southeastern Korea, and implications for fault  activity.  Clays 
and Clay Minerals 48. pp. 204-212.

CHRISTIE-BLICK, N. (2012)  Geological Time Conventions and Symbols. GSA Today : a 
Publication of the Geological Society of America 22. pp. 28-29.

CLIFF,  R.A. (1985)  Isotopic  dating  in  metamorphic  belts.  Journal  of  the  Geological 
Society 142. pp. 97-110.

CLIFF, R.A., SPÖTL, C. & MANGINI, A. (2010) U-Pb dating of speleothems from Spannagel  
Cave,  Austrian  Alps:  A  high  resolution  comparison  with  U-series  ages. 
Quaternary Geochronology 5. pp. 452-458.

COHEN, A.S., COE, A.L., BARTLETT, J.M. & HAWKESWORTH, C.J. (1999) Precise Re–Os ages  
of organic-rich mudrocks and the Os isotope composition of Jurassic seawater. 
Earth and Planetary Science Letters 167. pp. 159-173.

COLE,  J.M.,  NIENSTEDT,  J.,  SPATARO,  G.,  RASBURY,  E.T.,  LANZIROTTI,  A.,  CELESTIAN,  A.J., 
NILSSON,  M. & HANSON,  G.N. (2003)  Phosphor imaging as a tool for in situ  
mapping of ppm levels of uranium and thorium in rocks and minerals. Chemical 
Geology 193. pp. 127-136.

COLE, J.M., RASBURY, E.T., HANSON, G.N., MONTANEZ, I.P. & PEDONE, V.A. (2005) Using 
U-Pb ages of Miocene tufa for correlation in a terrestrial succession, Barstow  
Formation, California.  Geological Society of America Bulletin 117. pp. 276-
287.

COMPSTON, W. (1996) SHRIMP: Origins, impact and continuing evolution. Journal of the 
Royal Society of Western Australia 79. pp. 109-117.

COMPSTON,  W. (1999)  Geological  age  by  instrumental  analysis;  the  29th  Hallimond  
Lecture. Mineralogical Magazine 63. pp. 297-311.

COMPSTON, W. & CLEMENT, S. (2006)  The geological microprobe: The first 25 years of  
dating zircons. Applied Surface Science 252. pp. 7089-7095.

COMPSTON,  W. & PIDGEON,  R.T. (1986)  Jack Hills, evidence of more very old detrital  
zircons in Western Australia. Nature 321. pp. 766-769.

page 245



Bibliography

COMPSTON, W., WILLIAMS, I.S. & MEYER, C. (1984) U-Pb geochronology of zircons form 
lunar Breccia 73217 using a sensitive high mass-resolution ion microprobe, In: 
Boynton, W.V. & Schubert G (Eds.) Lunar and Planetary Science Conference 
Proceedings, Lunar and Planetary Science Conference Proceedings 14. pp. 525-
534.

COSTA,  S. & MALUSKI,  H. (1988)  Use of the 40Ar-39Ar stepwise heating method for  
dating mylonite zones: An example from the St. Barthélémy massif (Northern  
Pyrenees, France). Chemical Geology: Isotope Geoscience section 72. pp. 127-
144.

COX,  S.F. (1987)  Antitaxial crack-seal vein microstructures and their relationship to  
displacement paths. Journal of Structural Geology 9. pp. 779-787.

CSONTOS,  L.  &  VOROS,  A. (2004)  Mesozoic  plate  tectonic  reconstruction  of  the  
Carpathian region. Palaeogeography Palaeoclimatology Palaeoecology 210. pp. 
1-56.

DAL PIAZ,  G.,  BISTACCHI,  A.  & MASSIRONI,  M. (2003)  Geological  outline  of  the  Alps. 
Episodes 26. pp. 175-180.

DART, C.J., MCCLAY, K. & HOLLINGS, P.N. (1995)  3D analysis of inverted extensional  
fault systems, southern Bristol Channel basin, UK. Geological Society, London, 
Special Publications 88. pp. 393-413.

DAVISON, I. (1995) Fault slip evolution determined from crack-seal veins in pull-aparts  
and their implications for general slip models. Journal of Structural Geology 17. 
pp. 1025-1034.

DECKER, K., MESCHEDE, M. & RING,  U. (1993)  Fault slip analysis along the northern  
margin  of  the  Eastern  Alps  (Molasse,  Helvetic  nappes,  North  and  South  
Penninic flysch, and the Northern Calcareous Alps).  Tectonophysics 223. pp. 
291-312.

DELACOU, B., SUE, C., CHAMPAGNAC, J. & BURKHARD, M. (2004) Present-day geodynamics  
in  the  bend  of  the  western  and  central  Alps  as  constrained  by  earthquake  
analysis. Geophysical Journal International 158. pp. 753-774.

DELACOU,  B., SUE,  C.,  CHAMPAGNAC,  J.  & BURKHARD,  M. (2005)  Origin of the current  
stress field in the western/central Alps: Role of gravitational re-equilibration  
constrained by numerical modelling. - In : . Vol. 243. , 2005.

DONOFRIO,  D.A.,  BRANDNER,  R.  &  POLESCHINSKI,  W. (2003)  Conodonten  der  Seefeld-
Formation:  Ein  Beitrag  zur  Bio-  und  Lithostratigraphie  der  Hauptdolomit-
Plattform  (Obertrias,  Westliche  Nördliche  Kalkalpen,  Tirol).  Geologisch-
Paläontologische Mitteilungen Innsbruck 26. pp. 91-107.

DOUCELANCE,  R.  &  MANHÈS,  G. (2001)  Reevaluation  of  precise  lead  isotope  
measurements  by  thermal  ionization  mass  spectrometry:  comparison  with  
determinations by plasma source mass spectrometry.  Chemical Geology 176. 
pp. 361-377.

DUNK, R.M., MILLS, R.A. & JENKINS, W.J. (2002) A reevaluation of the oceanic uranium 
budget for the Holocene. Chemical Geology 190. pp. 45-67.

DUNLAP, W.J., TEYSSIER, C., MCDOUGALL, I. & BALDWIN, S. (1991)  Ages of deformation 
from K/Ar and 40Ar/39Ar dating of white micas. Geology 19. pp. 1213-1216.

page 246



Bibliography

DUNSTAN,  L.P., GRAMLICH,  J.W., BARNES,  I.L.  & PURDY,  W.C. (1980)  Absolute isotopic  
abundance and the atomic weight of a reference sample of thallium. J. Res. Nat. 
Bur. Stand. 85. pp. 1-10.

DURNEY,  D.W.  & RAMSAY,  J.G. (1973)  Incremental  strains  measured  by  syntectonic  
crystal growths. In De Jong, K.A. & Scholten, R. (Eds.) (1973): Gravity and 
Tectonics. John Wiley. p.67–96.

DURRANT,  S.F. (1999)  Laser ablation inductively coupled plasma mass spectrometry:  
achievements, problems, prospects. Journal of Analytical Atomic Spectrometry 
14. pp. 1385-1403.

DUVAL, M., AUBERT, M., HELLSTROM, J. & GRÜN, R. (2011) High resolution LA-ICP-MS 
mapping of U and Th isotopes in an early Pleistocene equid tooth from Fuente  
Nueva-3  (Orce,  Andalusia,  Spain).  Quaternary  Geochronology  In  Press, 
Corrected Proof. p.-.

EDWARDS,  R., GALLUP,  C. & CHENG,  H. (2003)  Uranium-series Dating of Marine and  
Lacustrine Carbonates. Reviews in Mineralogy and Geochemistry 52. pp. 363-
405.

EGGINS, S.M. & SHELLEY, J.M.G. (2002) Compositional Heterogeneity in NIST SRM 610-
617 Glasses. Geostandards and Geoanalytical Research 26. pp. 269-286.

EGGINS,  S.M.,  GRÜN,  R.,  MCCULLOCH,  M.T.,  PIKE,  A.W.G.,  CHAPPELL,  J.,  KINSLEY,  L., 
MORTIMER, G., SHELLEY, J.M.G., MURRAY-WALLACE, C.V., SPÖTL, C. & TAYLOR, L. 
(2005)  In situ U-series dating by laser-ablation multi-collector  ICPMS: new  
prospects  for  Quaternary  geochronology.  Quaternary  Science  Reviews  24. 
p.2538.

EGGINS, S.M., GRÜN, R., PIKE, A.W.G., SHELLEY, M. & TAYLOR, L. (2003)  238U, 232Th 
profiling and U-series isotope analysis of fossil teeth by laser ablation-ICPMS. 
Quaternary Science Reviews 22. pp. 1373-1382.

EGGINS,  S.M.,  KINSLEY,  L.P.J.  &  SHELLEY,  J.M.G. (1998)  Deposition  and  element  
fractionation processes during atmospheric pressure laser sampling for analysis  
by ICP-MS. Applied Surface Science 127-129. pp. 278-286.

EIDE,  E.A.,  TORSVIK,  T.H.  &  ANDERSEN,  T.B. (1997)  Absolute  dating  of  brittle  fault  
movements:  Late  Permian  and  late  Jurassic  extensional  fault  breccias  in  
western Norway. Terra Nova 9. pp. 135-139.

ELBURG,  M.A., BONS,  P.D., FODEN,  J.  & PASSCHIER,  C.W. (2002)  The origin of fibrous  
veins: constraints from geochemistry, In: de Meer, S., Drury, M.R., de Besser, 
J.H.P.  &  Pennock,  G.M.  (Eds.)  Deformation,  Mechanisms,  Rheology  and 
Tectonics:  Current  Status  and  Future  Perspectives,  Geological  Society  of 
London Special Publications 200. pp. 103-118.

ELZINGA,  E.J.,  TAIT,  C.D.,  REEDER,  R.J.,  RECTOR,  K.D.,  DONOHOE,  R.J.  & MORRIS,  D.E. 
(2004)  Spectroscopic  investigation  of  U(VI)  sorption  at  the  calcite-water  
interface. Geochimica et Cosmochimica Acta 68. pp. 2437-2448.

ESSENE,  E.J. (1989)  The current status of thermobarometry in metamorphic rocks.  In 
Daly,  J.S.,  Cliff,  R.A.  &  Yardley,  B.W.D.  (Eds.)  (1989):  Evolution  of 
metamorphic belts; proceedings of the 1987 joint meeting of the Metamorphic 
Studies Group and IGCP project 235. Geological Society of London. pp. 1-44.

page 247



Bibliography

EVA, E., SOLARINO, S., EVA, C. & NERI, G. (1997) Stress tensor orientation derived from 
fault plane solutions in the southwestern Alps. Journal of Geophysical Research 
102. pp. 8171-8185.

EYAL, Y., KAUFMAN, A. & BAR-MATTHEWS, M. (1992)  Use of 230Th/U ages of striated  
carnotites for dating fault displacements. Geology 20. pp. 829-832.

FAIRCHILD, I.J., SMITH, C.L., BAKER, A., FULLER, L., SPÖTL, C., MATTEY, D. & MCDERMOTT, 
F. (2006)  Modification  and  preservation  of  environmental  signals  in  
speleothems. Earth-Science Reviews 75. p.153.

FASSET, J.E., HEAMAN, L.M. & SIMONETTI, A. (2011)  Direct U-Pb dating of Cretaceous  
and  Paleocene  dinosaur  bones,  San  Juan  Basin,  New  Mexico
. Geology 39. pp. 159-162.

FAURE, G. & MENSING, T.M. (2005) Isotopes: principles and applications, John Wiley & 
Sons, Inc.. p.897.

FILLIPONE, J.A., YIN, A., HARRISON, T.M., GEHRELS, G., SMITH, M. & SAMPLE, J.C. (1995) 
Age and Magnitude of  Dip-Slip  Faulting Deduced from Differential  Cooling  
Histories: An Example from the Hope Fault, Northwest Montana. The Journal of 
Geology 103. pp. 199-211.

FORD, M., DUCHÊNE, S., GASQUET, D. & VANDERHAEGHE, O. (2006)  Two-phase orogenic  
convergence in the external and internal SW Alps.  Journal of the Geological 
Society 163. pp. 815-826.

FOSSEN, H. & DALLMEYER, R.D. (1998) 40Ar/39Ar muscovite dates from the nappe region  
of southwestern Norway: dating extensional deformation in the Scandinavian  
Caledonides. Tectonophysics 285. pp. 119-133.

FOURNIER, M., AGARD, P. & PETIT, C. (2008) Micro-tectonic constraints on the evolution  
of the Barles half-window (Digne nappe, southern Alps). Implications for the  
timing of folding in the Valensole foreland basin. Bull. Soc. géol. Fr. 179. pp. 
551-568.

FREEMAN,  S.R.,  BUTLER,  R.W.H.,  CLIFF,  R.A.  &  REX,  D.C. (1998)  Direct  dating  of  
mylonite evolution: a multi-disciplinary geochronological study from the Moine  
Thrust Zone, NW Scotland. Journal of the Geological Society 155. pp. 745-758.

FRISCH, W., DUNKL, I. & KUHLEMANN, J. (2000)  Post-collisional orogen-parallel large-
scale extension in the Eastern Alps. Tectonophysics 327. pp. 239-265.

FROUDE, D.O., IRELAND, T.R., KINNY, P.D., WILLIAMS, I.S., COMPSTON, W., WILLIAMS, I.R. & 
MYERS,  J.S. (1983)  Ion  Microprobe  identification  of  4,100-4,200  Myr-old  
terrestrial Zircons. Nature 304. pp. 616-618.

FRUTH,  I.  &  SCHERREIKS,  R. (1982)  Hauptdolomit  (Norian)  --  stratigraphy,  
paleogeography and diagenesis. Sedimentary Geology 32. pp. 195-205.

FRUTH, I. & SCHERREIKS, R. (1984)  Hauptdolomit - Sedimentary and Paleogeographic  
Models (Norian, Northern Calcareous Alps).  Geologische Rundschau 73. pp. 
305-319.

FRY,  N. (1992)  A robust approach to the calculation of paleostress fields from fault  
plane data: discussion. Journal of Structural Geology 14. pp. 635-637.

page 248



Bibliography

FRYER, B.J., JACKSON, S.E. & LONGERICH, H.P. (1993)  The application of laser ablation  
microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in  
situ (U)---Pb geochronology. Chemical Geology 109. pp. 1-8.

FRYER, B.J., JACKSON, S.E. & LONGERICH, H.P. (1995) The design, operation and role of  
the  laser-ablation  microprobe  coupled  with  an  inductively  coupled  plasma;  
mass spectrometer (LAM-ICP-MS) in the earth sciences. Canadian Mineralogist 
33. pp. 303-312.

GASCOYNE, M. (1992) Geochemistry of the actinides and their daughters. In Ivanovich, 
M. & Harmon, R.S. (Eds.) (1992): Uranium-series disequilibrium: Applications 
to Earth, marine and environmental sciences (2nd ed.). Clarendon Press, Oxford. 
pp. 34-61.

GERMAN, C.R. & ELDERFIELD, H. (1990) Application of the Ce Anomaly as a Paleoredox  
Indicator: The Ground Rules. Paleoceanography 5. pp. 823-833.

GETTY, S.R., ASMEROM,  Y., QUINN,  T.M. & BUDD, A.F. (2001)  Accelerated Pleistocene 
coral extinctions in the Caribbean Basin shown by uranium-lead (U-Pb) dating. 
Geology 29. pp. 639-642.

GILL, R. (1997)  Modern Analytical Geochemistry, Addison Wesley Longman Limited. 
p.329.

GLEN,  R.,  HANCOCK,  P.  &  WHITTAKER,  A. (2005)  Basin  inversion  by  distributed  
deformation:  the  southern  margin  of  the  Bristol  Channel  Basin,  England. 
Journal of Structural Geology 27. pp. 2113-2134.

GLODNY,  J.  &  HETZEL,  R. (2007)  Precise  U-Pb  ages  of  syn-extensional  Miocene  
intrusions in the central Menderes Massif, western Turkey. Geological Magazine 
144. pp. 235-246.

GOLDSTEIN,  S.J.  &  STIRLING,  C.H. (2003)  Techniques  for  Measuring  Uranium-series  
Nuclides: 1992-2002. Reviews in Mineralogy and Geochemistry 52. pp. 23-57.

GRAY, A.L. (1985) Solid sample introduction by laser ablation for inductively coupled  
plasma source mass spectrometry. The Analyst 110. pp. 551-556.

GRÜN, R. (1989) Electron spin resonance (ESR) dating. Quaternary International 1. pp. 
65-109.

GRUNSKY, E.C. (2002)  R: a data analysis and statistical programming environment-an  
emerging tool  for  the  geosciences.  Computers  & Geosciences  28.  pp.  1219-
1222.

GUDMUNDSSON, A. (2011) Rock Fractures in Geological Processes, Cambridge University 
Press. p.578.

GÜNTHER,  D.  &  HATTENDORF,  B. (2005)  Solid  sample  analysis  using  laser  ablation  
inductively coupled plasma mass spectrometry. Trends in Analytical Chemistry 
24. pp. 255-265.

GÜNTHER,  D.,  AUDÉTAT,  A.,  FRISCHKNECHT,  R.  &  HEINRICH,  C.A. (1998)  Quantitative  
analysis  of  major,  minor  and  trace  elements  in  fluid  inclusions  using  laser  
ablation–inductively coupled plasma mass spectrometry. Journal of Analytical 
Atomic Spectrometry 13. pp. 263-270.

page 249



Bibliography

GÜNTHER, D., FRISCHKNECHT, R., HEINRICH, C.A. & KAHLERT, H. (1997) Capabilities of an 
Argon Fluoride 193 nm Excimer Laser for Laser Ablation Inductively Coupled  
Plasma Mass Spectometry Microanalysis  of  Geological  Materials.  Journal  of 
Analytical Atomic Spectrometry 12. pp. 939-944.

HALTER, W.E., PETTKE, T. & HEINRICH, C.A. (2004)  Laser-ablation ICP-MS analysis of  
silicate  and  sulfide  melt  inclusions  in  an  andesitic  complex  I:  analytical  
approach  and  data  evaluation
.  Contributions  to  Mineralogy  and  Petrology.  Beitrage  zur  Mineralogie  und 
Petrologie 147. pp. 385-396.

HATHORNE,  E.C.,  JAMES,  R.H.  &  LAMPITT,  R.S. (2009)  Environmental  versus  
biomineralization  controls  on  the  intratest  variation  in  the  trace  element  
composition  of  the  planktonic  foraminifera  G.  inflata  and  G.  scitula
. Paleoceanography 24. p.PA4204.

HATHORNE,  E.C.,  JAMES,  R.H.,  SAVAGE,  P.  & ALARD,  O. (2008)  Physical  and chemical  
characteristics  of  particles  produced  by  laser  ablation  of  biogenic  calcium  
carbonate. Journal of Analytical Atomic Spectrometry 23. pp. 240-243.

HELLSTROM, J., PATON, C., WOODHEAD, J. & HERGT, J. (2008) Iolite: software for spatially  
resolved  LA-(Quad  and  MC)-ICP-MS  analysis,  In:  Sylvester,  P.  (Ed.)  Laser 
Ablation-ICP-MS  in  the  Earth  Sciences:  Current  Practices  and  Outstanding 
Issues, Mineralogical Association of Canada Short Course Series 40. pp. 343-
348.

HESS, J. & LIPPOLT, H. (1986) Kinetics of Ar isotopes during neutron irradiation: 39Ar  
loss from minerals as a source of error in 40Ar/39Ar dating. Chemical Geology: 
Isotope Geoscience section 59. pp. 223-236.

HILGERS,  C. & URAI,  J.L. (2002)  Microstructural observations on natural syntectonic  
fibrous veins: implications for the growth process. Tectonophysics 352. pp. 257-
274.

HILGERS, C., KOEHN, D., BONS, P. & URAI, J. (2001) Development of crystal morphology  
during  unitaxial  growth  in  a  progressively  widening  vein:  II.  Numerical  
simulations  of  the  evolution  of  antitaxial  fibrous  veins.  Journal  of  Structural 
Geology 23. pp. 873-885.

HIPPOLYTE, J. (2001)  Palaeostress and neotectonic analysis of sheared conglomerates:  
Southwest Alps and Southern Apennines. Journal of Structural Geology 23. pp. 
421-429.

HIPPOLYTE, J., CLAUZON, G. & SUC, J. (2011) Messinian-Zanclean canyons in the Digne  
nappe (southern Alps): tectonic implications. Bulletin de la Société Géologique 
de France 182. pp. 109-131.

HOFFMANN,  D.,  PATERSON,  B.  & JONCKHEERE,  R. (2008)  Measurements  of  the  uranium 
concentration and distribution in a fossil equid tooth using fission tracks, TIMS  
and  laser  ablation  ICPMS:  Implications  for  ESR  dating.  Radiation 
Measurements 43. pp. 5-13.

HOLDEN, N.E., BONARDI, M.L., DE BIÈVRE, P., RENNE, P.R. & VILLA, I.M. (2011) IUPAC-
IUGS common definition and convention on the use of the year as a derived unit  
of time (IUPAC Recommendations 2011). Pure and Applied Chemistry. Chimie 
Pure et Appliquee 83. pp. 1159-1162.

page 250



Bibliography

HOPF, H., THIEL, V. & REITNER, J. (2001) An example for black shale development on a  
carbonate platform (Late Triassic, Seefeld, Austria). Facies 45. pp. 203-210.

HORWITZ, E.P., CHIARIZIA, R. & DIETZ, M.L. (1992) A novel Strontium-selective extraction  
chromatographic resin. Solvent Extration & Ion Exchange 10. pp. 313-336.

HUBBARD,  M.  &  MANCKTELOW,  N.S. (1992)  Lateral  displacement  during  Neogene  
convergence in the Western and Central Alps. Geology 20. pp. 943-946.

IKEYA, M., MIKI, T. & TANAKA, K. (1982) Dating of a Fault by Electron Spin Resonance  
on Intrafault Materials. Science 215. p.pp. 1392-1393.

ISRAELSON, C., HALLIDAY, A.N. & BUCHARDT, B. (1996) U-Pb dating of calcite concretions  
from  Cambrian  black  shales  and  the  Phanerozoic  time  scale.  Earth  and 
Planetary Science Letters 141. pp. 153-159.

JACKSON, S.E., LONGERICH, H.P., DUNNING, G.R. & FRYER, B.J. (1992) The application of  
laser-ablation  microprobe -  inductively  coupled  plasma -  mass  spectrometry  
(LAM-ICP-MS)  to  in  situ  trace-element  determination  in  minerals.  Canadian 
Mineralogist 30. pp. 1049-1064.

JAHN, B. & CUVELLIER, H. (1994) Pb-Pb and U-Pb geochronology of carbonate rocks: an  
assessment. Chemical Geology 115. pp. 125-151.

JAHN,  B.,  BERTRAND-SARFATI,  J.,  MORIN,  N.  &  MACÉ,  J. (1990)  Direct  dating  of  
stromatolitic  carbonates  from  the  Schmidtsdrif  Formation  (Transvaal  
Dolomite),  South  Africa,  with  implications  on  the  age  of  the  Ventersdorp  
Supergroup. Geology 18. pp. 1211-1214.

JARVIS, I. & JARVIS, K.E. (1992) Plasma spectrometry in the earth sciences: techniques,  
applications and future trends. Chemical Geology 95. pp. 1-33.

JEFFRIES,  T.E.,  JACKSON,  S.E.  &  LONGERICH,  H.P. (1998)  Application  of  a  frequency  
quintupled Nd:YAG source (λ=213 nm) for laser ablation inductively coupled  
plasma mass spectrometric analysis of minerals. J. Anal. At. Spectrom. 13. pp. 
935-940.

JOCHUM,  K.P.,  DINGWELL,  D.B.,  ROCHOLL,  A.,  STOLL,  B.,  HOFMANN,  A.W.,  BECKER,  S., 
BESMEHN, A., BESSETTE, D., DIETZE, H., DULSKI, P., ERZINGER, J., HELLEBRAND, E., 
HOPPE, P., HORN, I., JANSSENS, K., JENNER, G., KLEIN, M., MCDONOUGH, W., MAETZ, 
M., MEZGER, K., MÃ¼KER, C., NIKOGOSIAN, I., PICKHARDT, C., RACZEK, I., RHEDE, 
D.,  SEUFERT,  H.,  SIMAKIN,  S.,  SOBOLEV,  A.,  SPETTEL,  B.,  STRAUB,  S.,  VINCZE,  L., 
WALLIANOS, A., WECKWERTH, G., WEYER, S., WOLF, D. & ZIMMER, M. (2000) The 
Preparation and Preliminary Characterisation of Eight Geological MPI-DING  
Reference Glasses for In-Situ Microanalysis. Geostandards Newsletter 24. pp. 
87-133.

page 251



Bibliography

JOCHUM, K.P., STOLL, B., HERWIG, K., WILLBOLD, M., HOFMANN, A.W., AMINI, M., AARBURG, 
S., ABOUCHAMI, W., HELLEBRAND, E., MOCEK, B., RACZEK, I., STRACKE, A., ALARD, 
O., BOUMAN, C., BECKER, S., DÜCKING, M., BRÄTZ, H., KLEMD, R.,  DE BRUIN, D., 
CANIL, D., CORNELL, D.,  DE HOOG, C., DALPÉ, C., DANYUSHEVSKY, L., EISENHAUER, 
A., GAO, Y., SNOW, J.E., GROSCHOPF, N., GÜNTHER, D., LATKOCZY, C., GUILLONG, M., 
HAURI, E.H., HÖFER, H.E., LAHAYE, Y., HORZ, K., JACOB, D.E., KASEMANN, S.A., 
KENT,  A.J.R.,  LUDWIG,  T.,  ZACK,  T.,  MASON,  P.R.D.,  MEIXNER,  A.,  ROSNER,  M., 
MISAWA,  K.,  NASH,  B.P.,  PFÄNDER,  J.,  PREMO,  W.R.,  SUN,  W.D.,  TIEPOLO,  M., 
VANNUCCI, R., VENNEMANN, T., WAYNE, D. & WOODHEAD, J.D. (2006) MPI-DING 
reference glasses for in situ microanalysis: New reference values for element  
concentrations and isotope ratios. Geochem. Geophys. Geosyst 7. p.Q02008.

JOCHUM, K.P., WEIS, U., STOLL, B., KUZMIN, D., YANG, Q., RACZEK, I., JACOB, D.E., STRACKE, 
A., BIRBAUM, K., FRICK, D.A., GÜNTHER, D. & ENZWEILER, J. (2011) Determination 
of Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines. 
Geostandards and Geoanalytical Research . p.33.

JONES, C.E., HALLIDAY, A.N. & LOHMANN, K.C. (1995) The impact of diagenesis on high-
precision  U-Pb  dating  of  ancient  carbonates:  An  example  from  the  Late  
Permian of New Mexico. Earth and Planetary Science Letters 134. pp. 409-423.

JOUANNE, F., HIPPOLYTE, J.C., GAMOND, J.F. & MARTINOD, J. (2001) Current deformation of  
the Digne Nappe (southwestern Alps) from a comparison between triangulation  
and  GPS  data
. Geophys. J Int. 144. pp. 432-440.

KANJANAPAYONT, P., KLÖTZLI, U., THÖNI, M., GRASEMANN, B. & EDWARDS, M.A. (2012) Rb–
Sr,  Sm–Nd,  and U–Pb geochronology of  the rocks  within the  Khlong Marui  
shear zone, southern Thailand. Journal of Asian Earth Sciences 56. pp. 263-275.

KAVEN, J., MAERTEN, F. & POLLARD, D. (2011)  Mechanical analysis of fault slip data:  
Implications for paleostress analysis. Journal of Structural Geology 33. pp. 78-
91.

KELLEY, S.P., REDDY, S.M. & MADDOCK, R. (1994) Laser-probe 40Ar/39Ar investigation  
of a pseudotachylyte and its  host rock from the Outer Isles thrust,  Scotland. 
Geology 22. pp. 443-446.

KELLY,  S.D.,  NEWVILLE,  M.G.,  CHENG,  L.,  KEMNER,  K.M.,  SUTTON,  S.R.,  FENTER,  P., 
STURCHIO,  N.C. & SPÖTL,  C. (2003)  Uranyl  Incorporation in  Natural  Calcite. 
Environmental Science & Technology 37. pp. 1284-1287.

KELLY,  S.D.,  RASBURY,  E.T.,  CHATTOPADHYAY,  S.,  KROPF,  A.J.  & KEMNER,  K.M. (2006) 
Evidence  of  a  Stable  Uranyl  Site  in  Ancient  Organic-Rich  Calcite. 
Environmental Science & Technology 40. pp. 2262-2268.

KENDALL, B.S., CREASER, R.A., ROSS, G.M. & SELBY, D. (2004) Constraints on the timing  
of  Marinoan  “Snowball  Earth”  glaciation  by  187Re–187Os  dating  of  a  
Neoproterozoic,  post-glacial  black  shale  in  Western  Canada.  Earth  and 
Planetary Science Letters 222. pp. 729-740.

KOEHN, D. & PASSCHIER, C.W. (2000)  Shear sense indicators in striped bedding-veins. 
Journal of Structural Geology 22. pp. 1141-1151.

page 252



Bibliography

KOHÚT,  M.  &  SHERLOCK,  S.C. (2003)  Laser  microprobe  Ar-40-Ar-39  analysis  of  
pseudotachylyte and host-rocks from the Tatra Mountains, Slovakia: evidence  
for late Palaeogene seismic/tectonic activity. TERRA NOVA 15. pp. 417-424.

KOMÁREK,  M.,  ETTLER,  V.,  CHRASTNÝ,  V.  &  MIHALJEVIC,  M. (2008)  Lead  isotopes  in  
environmental sciences: A review. Environment International 34. pp. 562-577.

KOSAKA, K. & CHIKASHIGE, S. (2002) Kinematics and age of faulting in the allochthonous  
fault  zone  between  the  Yorii  Formation  and  the  Yorii  Welded  Tuff  in  the  
northeastern Kanto Mountains. Journal of the Geological Society of Japan 108. 
pp. 385-393.

KOŠLER,  J. (2007)  Laser  ablation  ICP-MS  -  a  new  dating  tool  in  Earth  science. 
Proceedings of the Geologists' Association 118. pp. 19-24.

KRALIK,  M., CLAUER,  N., HOLNSTEINER,  R., HUEMER,  H. & KAPPEL,  F. (1992)  Recurrent  
fault activity in the Grimsel Test Site (GTS, Switzerland): revealed by Rb-Sr, K-
Ar and tritium isotope techniques. Journal of the Geological Society, London 
149. pp. 293-301.

KRALIK, M., KLIMA, K. & RIEDMÜLLER, G. (1987)  Dating fault gouges. Nature 327. pp. 
315-317.

KRAVCHENKO, A. & BULLOCK, D.G. (1999) A Comparative Study of Interpolation Methods  
for Mapping Soil Properties. Agronomy Journal 91. pp. 393-400.

KROHE,  A. (1987)  Kinematics  of  Cretaceous  nappe  tectonics  in  the  Austroalpine  
basement of the Koralpe region (eastern Austria). Tectonophysics 136. pp. 171-
196.

KUHLEMANN,  J. (2007)  Paleogeographic and paleotopographic evolution of the Swiss  
and Eastern Alps since the Oligocene. Global and Planetary Change 58. pp. 224-
236.

KUHLEMANN, J. & KEMPF, O. (2002) Post-Eocene evolution of the North Alpine Foreland  
Basin and its response to Alpine tectonics. Sedimentary Geology 152. pp. 45-78.

LAMMERER, B. & WEGER, M. (1998) Footwall uplift in an orogenic wedge: The Tauern  
Window in the Eastern Alps of Europe. Tectonophysics 285. pp. 213-230.

LANGMUIR, D. & HERMAN, J.S. (1980) The mobility of thorium in natural waters at low  
temperatures. Geochimica et Cosmochimica Acta 44. pp. 1753-1766.

LAZAR,  B.,  ENMAR,  R., SCHOSSBERGER,  M., BAR-MATTHEWS,  M.,  HALICZ,  L.  & STEIN,  M. 
(2004)  Diagenetic effects on the distribution of uranium in live and Holocene  
corals from the Gulf of Aqaba. Geochimica et Cosmochimica Acta 68. p.4593.

LELOUP, P.H., HARRISON, T.M., RYERSON, F.J., WENJI, C., QI, L., TAPPONNIER, P. & LACASSIN, 
R. (1993) Structural, Petrological and Thermal Evolution of a Tertiary Ductile  
Strike-Slip Shear Zone, Diancang Shan, Yunnan. J. Geophys. Res 98. pp. 6715-
6743.

LICKORISH, H.W. & FORD, M. (1998) Sequential restoration of the external Alpine Digne  
thrust  system,  SE  France,  constrained  by  kinematic  data  and  synorogenic  
sediments.  Geological Society of London, Special  Publications 134. pp. 189-
211.

LINZER,  H., DECKER,  K., PERESSON,  H., DELL'MOUR,  R. & FRISCH,  W. (2002)  Balancing 
lateral orogenic float of the Eastern Alps. Tectonophysics 354. pp. 211-237.

page 253



Bibliography

LIPS, A.L.W., WHITE, S.H. & WIJBRANS, J.R. (1998) 40Ar/39Ar laserprobe direct dating  
of discrete deformational events: a continuous record of early Alpine tectonics  
in the Pelagonian Zone, NW Aegean area, Greece. Tectonophysics 298. pp. 133-
153.

LUDWIG, K.R. (1998) On the Treatment of Concordant Uranium-Lead Ages. Geochimica 
et Cosmochimica Acta 62. pp. 665-676.

LUDWIG,  K.R. (1999)  Using Isoplot/Ex,  Version  2.01:  a  geochronological  toolkit  for  
Microsoft Excel, In:  Berkeley Geochronology Center Special Publication, No. 
1a,  . p.47.

LUDWIG,  K.R. (2001)  Eliminating  mass-fractionation  effects  on  U-Pb  isochron  ages  
without double spiking. Geochimica et Cosmochimica Acta 65. pp. 3139-3145.

LUDWIG,  K.R. (2003)  Mathematical-Statistical  Treatment  of  Data  and  Errors  for  
230Th/U Geochronology.  Reviews  in  Mineralogy  and  Geochemistry  52.  pp. 
631-656.

LUO, X., REHKÄMPER, M., LEE, D. & HALLIDAY, A.N. (1997) High Precision 230Th/232Th 
and  234U/238U  measurements  using  energy-filtered  ICP  magnetic  sector  
multiple  collector  mass  spectrometry.  International  Journal  of  Mass 
Spectrometry and Ion Processes 171. pp. 105-117.

LÜSCHEN,  E.,  BORRINI,  D.,  GEBRANDE,  H.,  LAMMERER,  B.,  MILLAHN,  K.,  NEUBAUER,  F.  & 
NICOLICH, R. (2006)  TRANSALP--deep crustal Vibroseis and explosive seismic  
profiling in the Eastern Alps. Tectonophysics 414. pp. 9-38.

LÜSCHEN, E., LAMMERER, B., GEBRANDE, H., MILLAHN, K., NICOLICH, R. & GRP, T.W. (2004) 
Orogenic structure of the Eastern Alps, Europe, from TRANSALP deep seismic  
reflection profiling. Tectonophysics 388. pp. 85-102.

LYONS,  J.B. & SNELLENBURG,  J. (1971)  Dating Faults.  Geological Society of America 
Bulletin 82. pp. 1749-1752.

MADRITSCH, H., FABBRI, O., HAGEDORN, E., PREUSSER, F., SCHMID, S. & ZIEGLER, P. (2010a) 
Feedback  between  erosion  and  active  deformation:  Geomorphic  constraints  
from the frontal Jura fold-and-thrust belt (eastern France). International Journal 
of Earth Sciences 99. pp. 103-122.

MADRITSCH, H., PREUSSER, F., FABBRI, O., BICHET, V., SCHLUNEGGER, F. & SCHMID, S. (2010b) 
Late Quaternary folding in the Jura Mountains: Evidence from syn-erosional  
deformation of fluvial meanders. Terra Nova 22. pp. 147-154.

MANCKTELOW, N.S., STÖCKLI, D.F., GROLLIMUND, B., MÜLLER, W., FÜGENSCHUH, B., VIOLA, 
G., SEWARD, D. & VILLA, I.M. (2001) The DAV and Periadriatic fault systems in  
the Eastern Alps south of  the Tauern window.  International  Journal  of Earth 
Sciences 90. pp. 593-622.

MANDL, G.W. (2000)  The Alpine sector of the Tethyan shelf - Examples of Triassic to  
Jurassic  sedimentation  and deformation  from the  Northern  Calcareous  Alps. 
Mitt Österr Geol Ges 92 (1999). pp. 61-77.

MARTON, E. & FODOR, L. (2003) Tertiary paleomagnetic results and structural analysis  
from  the  Transdanubian  Range  (Hungary):  rotational  disintegration  of  the  
Alcapa unit. Tectonophysics 363. pp. 201-224.

page 254



Bibliography

MASUDA, A., SUGINO, K. & TOYODA, K. (1995) Lead isotopic compositions in fault gouges  
and  their  parent  rocks:  implications  for  ancient  fault  activities.  Applied 
Geochemistry 10. pp. 437-446.

MCGRATH, A.G. & DAVISON, I. (1995) Damage zone geometry around fault tips. Journal 
of Structural Geology 17. pp. 1011-1024.

MEANS,  W.D. (1987)  A  newly  recognized  type  of  slickenside  striation.  Journal  of 
Structural Geology 9. pp. 585-590.

MEANS,  W.D.  &  LI,  T. (2001)  A laboratory  simulation  of  fibrous  veins:  some  first  
observations. Journal of Structural Geology 23. pp. 857-863.

MEINHARD, J.E. (1976) The concentric glass nebulizer. ICP Info. Newsl. 2. p.163.
MEYER, M., CLIFF, R., SPÖTL, C., KNIPPING, M. & MANGINI, A. (2009)  Speleothems from 

the earliest Quaternary: Snapshots of paleoclimate and landscape evolution at  
the northern rim of the Alps. Quaternary Science Reviews 28. pp. 1374-1391.

MEYER, M.C., CLIFF, R.A. & SPÖTL, C. (2011) Speleothems and mountain uplift. Geology 
39. pp. 447-450.

MEZGER,  K.,  RAWNSLEY,  C.,  BOHLEN,  S.  & HANSON,  G. (1991)  U-Pb  garnet,  sphene,  
monazite,  and  rutile  ages:  implications  for  the  duration  of  high-grade  
metamorphism and cooling histories,  Adirondack Mts.,  New York.  Journal  of 
Geology 99. pp. 415-428.

MOORBATH, S., TAYLOR, P.N., ORPEN, J.L., TRELOAR, P. & WILSON, J.F. (1987) First direct  
radiometric dating of Archaean stromatolitic limestone.  Nature 326. pp. 865-
867.

MORTON-BERMEA, O., RODRÍGUEZ-SALAZAR, M.T., HERNÁNDEZ-ALVAREZ, E., GARCÍA-ARREOLA, 
M.E.  & LOZANO-SANTACRUZ,  R. ()  Lead isotopes  as  tracers  of  anthropogenic  
pollution in urban topsoils of Mexico City. Chemie der Erde - Geochemistry In 
Press, Corrected Proof. p.-.

MOSTAFA, M.E. (2005)  Iterative direct inversion: An exact complementary solution for  
inverting fault-slip data to obtain palaeostresses. Computers & Geosciences 31. 
pp. 1059-1070.

MUELLER,  T.G.,  PUSULURI,  N.B.,  MATHIAS,  K.K.,  CORNELIUS,  P.L.,  BARNHISEL,  R.I.  & 
SHEARER, S.A. (2004)  Map Quality for Ordinary Kriging and Inverse Distance  
Weighted Interpolation. Soil Science Society of America Journal. Soil Science 
Society of America 68. pp. 2042-2047.

MÜLLER, W. (1998) Isotopic dating of deformation using microsampling techniques: The  
evolution of the Periadriatic fault system (Alps) (Thesis). . 1998.

MÜLLER,  W. (2003)  Strengthening  the  link  between  geochronology,  textures  and  
petrology. Earth and Planetary Science Letters 206. pp. 237-251.

MÜLLER,  W., AERDEN,  D. & HALLIDAY,  A.N. (2000b)  Isotopic Dating of Strain Fringe  
Increments: Duration and Rates of Deformation in Shear Zones. Science 288. 
pp. 2195-2198.

MÜLLER, W., KELLEY, S.P. & VILLA, I.M. (2002) Dating fault-generated pseudotachylites:  
comparison  of  40Ar/39Ar  stepwise-heating,  laser-ablation  and  Rb-Sr  
microsampling analyses.  Contributions to Mineralogy and Petrology. Beitrage 
zur Mineralogie und Petrologie 144. pp. 57-77.

page 255



Bibliography

MÜLLER,  W.,  MANCKTELOW,  N.S.  &  MEIER,  M. (2000a)  Rb-Sr  microchrons  of  
synkinematic mica in mylonites: an example from the DAV fault of the Eastern  
Alps. Earth and Planetary Science Letters 180. pp. 385-397.

MÜLLER, W., PROSSER, G., MANCKTELOW, N., VILLA, I., KELLEY, S., VIOLA, G. & OBERLI, F. 
(2001) Geochronological constraints on the evolution of the Periadriatic Fault  
System (Alps). International Journal of Earth Sciences 90. pp. 623-653.

MÜLLER, W., SHELLEY, M., MILLER, P. & BROUDE, S. (2009a) Initial performance metrics  
of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-
volume laser-ablation cell. J. Anal. At. Spectrom 24. pp. 209-214.

MÜLLER, W., SHELLEY, M., MILLER, P. & BROUDE, S. (2009b) Initial performance metrics  
of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-
volume laser-ablation cell. Journal of Analytical Atomic Spectrometry 24. pp. 
209-214.

MURAKAMI, M. & TAGAMI, T. (2004)  Dating pseudotachylyte of the Nojima fault using  
the zircon fission-track method. Geophysical Research Letters 31. .

NEUBAUER, F., EBNER, F. & WALLBRECHER, E. (1995) Geological evolution of the internal  
Alps, Carpathians and of the Pannonian basin: an introduction. Tectonophysics 
242. pp. 1-4.

NEUBAUER, F., GENSER, J. & HANDLER, J. (2000) The Eastern Alps: Result of a two-stage  
collision process. Mitt Österr Geol Ges Bd. 92. pp. 117-134.

NEUGEBAUER,  J.,  GREINER,  B.  &  APPEL,  E. (2001)  Kinematics  of  the  Alpine-West  
Carpathian  orogen  and  palaeogeographic  implications.  Journal  of  the 
Geological Society 158. pp. 97-110.

NIER, A.O. (1940) A Mass Spectrometer for Routine Isotope Abundance Measurements. 
Review of Scientific Instruments 11. pp. 212 -216.

OCH, D.J., OFFLER, R., ZWINGMANN, H., BRAYBROOKE, J. & GRAHAM, I.T. (2009) Timing of  
brittle faulting and thermal events, Sydney region: association with the early  
stages of extension of East Gondwana. Australian Journal of Earth Sciences: An 
International Geoscience Journal of the Geological Society of Australia 56. pp. 
873 - 887.

ORTNER, H. (2001a)  Growing folds and sedimentation of the Gosau Group, Muttekopf,  
Northern Calcareous Alps, Austria. INTERNATIONAL JOURNAL OF EARTH 
SCIENCES 90. pp. 727-739.

ORTNER,  H. (2001b)  Cretaceous  thrusting  in  the  western  part  of  the  Northern  
Calcareous  Alps  (Austria)  -  evidences  from  synorogenic  sedimentation  and  
structural  data
. Mitt. Österr. Geol. ges. 94. pp. 63-77.

ORTNER, H. (2003a) Cretaceous thrusting in the western part of the Northern Calcareous  
Alps (Austria) - evidences from synorogenic sedimentation and structural data. 
Mitt. Österr. Geol. Ges. 94. pp. 63-77.

ORTNER, H. (2003b) Cementation and tectonics in the Inneralpine Molasse of the Lower  
Inn Valey. Geologisch-Paläontologische Mitteilungen Innsbruck 26. pp. 71-89.

page 256



Bibliography

ORTNER,  H. (2003c)  Local and far field stress- analysis of brittle deformation in the  
western  part  of  the  Northern  Calcareous  Alps.  Geologisch-Paläontologische 
Mitteilungen Innsbruck 26. pp. 109-136.

ORTNER, H. & STINGL, V. (2001) Facies and basin development of the Oligocene in the  
Lower Inn Valley, Tyrol/Bavaria. In Piller, W. & Rasser, M.W. (Eds.) (2001): 
Paleogene of the Eastern Alps. Österr. Akad. Wiss.. pp. 153-196.

ORTNER, H., REITER, F. & ACS, P. (2002)  Easy handling of tectonic data: the programs  
TectonicVB  for  Mac  and  TectonicsFP  for  Windows(TM).  Computers  & 
Geosciences Vol.28/10. pp. 1193-1200.

ORTNER, H., REITER, F. & BRANDNER, R. (2006) Kinematics of the Inntal shear zone-sub-
Tauern  ramp  fault  system  and  the  interpretation  of  the  TRANSALP seismic  
section, Eastern Alps, Austria. Tectonophysics 414. pp. 241-258.

ORTNER, H., RITTNER, M., PATON, D., BORER, J. & TRUDGILL, B. (2008) Stratal patterns of  
clastic wedges in transpressive systems: Gosau Group of Muttekopf revisited. 
PanGeo 2008

PALMER,  M.R.  &  EDMOND,  J.M. (1993)  Uranium  in  river  water.  Geochimica  et 
Cosmochimica Acta 57. pp. 4947-4955.

PARRY, W.T., BUNDS, M.P., BRUHN, R.L., HALL, C.M. & MURPHY, J.M. (2001) Mineralogy,  
40Ar/39Ar dating  and apatite  fission track  dating  of  rocks  along the Castle  
Mountain fault, Alaska. Tectonophysics 337. pp. 149-172.

PATON, C., WOODHEAD, J.D., HELLSTROM, J.C., HERGT, J.M., GREIG, A. & MAAS, R. (2010) 
Improved laser ablation U-Pb zircon geochronology through robust downhole  
fractionation correction. Geochem. Geophys. Geosyst 11. p.Q0AA06.

PEACOCK, D. & SANDERSON, D. (1999) Deformation history and basin-controlling faults  
in the Mesozoic sedimentary rocks of the Somerset coast.  Proceedings of the 
Geologists' Association 110. pp. 41-52.

PERESSON, H. & DECKER, K. (1997) The Tertiary dynamics of the northern Eastern Alps  
(Austria):  changing  palaeostresses  in  a  collisional  plate  boundary. 
Tectonophysics 272/2-4. pp. 125-157.

PETIT, J.P. (1987) Criteria for the sense of movement on fault surfaces in brittle rocks. 
Journal of Structural Geology 9. pp. 597-608.

PHAN-TRONG, T. (1993)  An inverse problem for the determination of the stress tensor  
from polyphased fault sets and earthquake focal mechanisms.  Tectonophysics 
224. pp. 393-411.

PHILLIPS,  W.J. (1974)  The  development  of  vein  and  rock  textures  by  tensile  strain  
crystalisation. Journal of the Geological Society 130. pp. 441-448.

PICKERING,  R., KRAMERS,  J.D., HANCOX,  P.J.,  DE RUITER,  D.J. & WOODHEAD,  J.D. (2011) 
Contemporary flowstone development links early hominin bearing cave deposits  
in South Africa. Earth and Planetary Science Letters 306. pp. 23-32.

PICKERING,  R.,  KRAMERS,  J.D.,  PARTRIDGE,  T.,  KODOLANYI,  J.  & PETTKE,  T. (2010)  U-Pb 
dating of calcite-aragonite layers in speleothems from hominin sites in South  
Africa by MC-ICP-MS. Quaternary Geochronology 5. pp. 544-558.

page 257



Bibliography

PICKHARDT,  C.,  DIETZE,  H.  & BECKER,  J.S. (2005)  Laser  ablation  inductively  coupled  
plasma  mass  spectrometry  for  direct  isotope  ratio  measurements  on  solid  
samples. International Journal of Mass Spectrometry 242. pp. 273-280.

PLAN,  L.,  GRASEMANN,  B.,  SPÖTL,  C.,  DECKER,  K.,  BOCH,  R.  &  KRAMERS,  J. (2010) 
Neotectonic  extrusion  of  the  Eastern  Alps:  Constraints  from U/Th dating  of  
tectonically  damaged  speleothems
. Geology 38. pp. 483-486.

POLLARD,  D.D.  &  FLETCHER,  R.C. (2005)  Fundamentals  Of  Structural  Geology, 
Cambridge University Press. p.500.

POLYAK, V., HILL, C. & ASMEROM, Y. (2008)  Age and Evolution of the Grand Canyon  
Revealed by U-Pb Dating of Water Table-Type Speleothems. Science 319. pp. 
1377-1380.

POMELLA, H., KLÖTZLI, U., SCHOLGER, R., STIPP, M. & FÜGENSCHUH, B. (2010) The Northern 
Giudicarie and the Meran-Mauls fault (Alps, Northern Italy) in the light of new  
paleomagnetic  and  geochronological  data  from  boudinaged  Eo-/Oligocene  
tonalites. International Journal of Earth Sciences . pp. 1-24.

PONS-BRANCHU,  E.,  HILLAIRE-MARCEL,  C.,  DESCHAMPS,  P.,  GHALEB,  B.  &  SINCLAIR,  D.J. 
(2005) Early diagenesis impact on precise U-series dating of deep-sea corals:  
Example of a 100-200-year old Lophelia pertusa sample from the Northeast  
Atlantic. Geochimica et Cosmochimica Acta 69. p.4879.

PORCELLI, D. & SWARZENSKI, P.W. (2003) The Behavior of U- and Th-series Nuclides in  
Groundwater. Reviews in Mineralogy and Geochemistry 52. pp. 317-361.

POTTER, E., STIRLING, C.H., WIECHERT, U.H., HALLIDAY, A.N. & SPÖTL, C. (2005) Uranium-
series  dating of  corals  in situ  using laser-ablation MC-ICPMS.  International 
Journal of Mass Spectrometry 240. p.35.

R  DEVELOPMENT CORE TEAM (2010)  R:  A Language  and  Environment  for  Statistical  
Computing. R Foundation for Statistical Computing. http://www.R-project.org

RAMSAY, J.G. (1980)  The crack-seal mechanism of rock deformation. Nature 284. pp. 
135-139.

RAMSAY,  J.G.  & HUBER,  M.I. (1987)  The Techniques  of  Modern Structural  Geology:  
Folds and Fractures, Academic Press. p.391.

RASBURY,  E.T. & COLE,  J.M. (2009)  Directly dating geologic events:  U-Pb dating of  
carbonates. Reviews of Geophysics 47. p.RG3001.

RASBURY, E.T., HANSON, G.N., MEYERS, W.J. & SALLER, A.H. (1997) Dating of the time of  
sedimentation  using  U-Pb  ages  for  paleosol  calcite.  Geochimica  et 
Cosmochimica Acta 61. pp. 1525-1529.

RASBURY, E.T., HANSON, G.N., MEYERS, W.J., HOLT, W.E., GOLDSTEIN, R.H. & SALLER, A.H. 
(1998) U-Pb dates of Paleosols; constraints on late Paleozoic cycle durations  
and boundary ages. Geology 26. pp. 403-406.

RASBURY,  E.T.,  MEYERS,  W.J.,  HANSON,  G.N.,  GOLDSTEIN,  R.H.  & SALLER,  A.H. (2000) 
Relationship of Uranium to Petrography of Caliche Paleosols with Application  
to Precisely Dating the Time of Sedimentation. JOURNAL OF SEDIMENTARY 
RESEARCH 70. pp. 604-618.

page 258



Bibliography

RATSCHBACHER, L., FRISCH, W. & LINZER, H.G. (1991b)  Lateral extrusion in the eastern  
Alps, part II: structural analysis. Tectonics 10. pp. 257-271.

RATSCHBACHER,  L.,  FRISCH,  W.,  NEUBAUER,  F.,  SCHMID,  S.  &  NEUGEBAUER,  J. (1989) 
Extension in compressional orogenic belts: The eastern Alps. Geology 17. pp. 
404-407.

RATSCHBACHER, L., MERLE, O., DAVY, P. & COBBOLD, P. (1991a)  Lateral extrusion in the  
eastern Alps, part I: boundary conditions and experiments scaled for gravity. 
Tectonics 10. pp. 245-256.

REED, T.B. (1961) Induction-Coupled Plasma Torch. Journal of Applied Physics 32. pp. 
821 -824.

REED,  W.P. (1992)  Certificate  of  Analysis,  Standard  Reference  Materials  612,  613. 
National Institute of Standards & Technology. p.3.

REGENSPURG,  S.,  MARGOT-ROQUIER,  C.,  HARFOUCHE,  M.,  FROIDEVAUX,  P.,  STEINMANN,  P., 
JUNIER,  P.  & BERNIER-LATMANI,  R. (2010)  Speciation of  naturally-accumulated  
uranium in an organic-rich soil of an alpine region (Switzerland). Geochimica 
et Cosmochimica Acta 74. pp. 2082-2098.

REITER, F., ORTNER, H. & BRANDNER, R. (2003) Transalp deep seismic section as a key for  
understanding neotectonic activity along the Inntal fault zone.  EGS - AGU - 
EUG Joint Assembly 2003

RENARD,  F.,  ANDRÉANI,  M.,  BOULLIER,  A.  &  LABAUME,  P. (2005)  Crack-seal  patterns:  
records of uncorrelated stress release variations in crustal rocks. - In Gapais, 
D., Brun, J.P. & Cobbold, P.R. (Eds.): Geological Society of London Special 
Publications. Vol. 243. Geological Society of London, 2005.

RESANO, M., MARZO, P., PÉREZ-ARANTEGUI, J., ARAMENDÍA, M., CLOQUET, C. & VANHAECKE, 
F. (2008)  Laser  ablation-inductively  coupled  plasma-dynamic  reaction  cell-
mass spectrometry for the determination of lead isotope ratios in ancient glazed  
ceramics  for  discriminating  purposes.  Journal  of  Analytical  Atomic 
Spectrometry 23. pp. 1182-1191.

RICHARDS, D.A. & DORALE, J.A. (2003) Uranium-series Chronology and Environmental  
Applications of Speleothems. Reviews in Mineralogy and Geochemistry 52. pp. 
407-460.

RICHARDS,  D.A.,  BOTTRELL,  S.H.,  CLIFF,  R.A.,  STRÖHLE,  K.  & ROWE,  P.J. (1998)  U-Pb 
dating of a speleothem of Quaternary age. Geochimica et Cosmochimica Acta 
62. pp. 3683-3688.

RING, U. & COLLINS, A.S. (2005) U–Pb SIMS dating of synkinematic granites: timing of  
core-complex  formation  in  the  northern  Anatolide  belt  of  western  Turkey. 
Journal of the Geological Society 162. pp. 289-298.

RITTNER,  M.  &  MÜLLER,  W. (2012)  2D  mapping  of  LA-ICPMS  trace  element  
distributions using R. Computers & Geosciences 42. pp. 152-161.

RITZ, J.F., BROWN, E.T., BOURLES, D.L., PHILIP, H., SCHLUPP, A., RAISBECK, G.M., YIOU, F. & 
ENKHTUVSHIN, B. (1995) Slip rates along active faults estimated with cosmic-ray-
exposure dates: Application to the Bogd fault, Gobi-Altai, Mongolia. Geology 
23. pp. 1019-1022.

page 259



Bibliography

ROLLAND, Y., COX, S.F. & CORSINI, M. (2009) Constraining deformation stages in brittle-
ductile shear zones from combined field mapping and 40Ar/39Ar dating: The  
structural evolution of the Grimsel Pass area (Aar Massif, Swiss Alps). Journal 
of Structural Geology 31. pp. 1377-1394.

ROSENBERG, C. & BERGER, A. (2009) On the causes and modes of exhumation and lateral  
growth of the Alps. Tectonics 28. .

ROSSMAN, G.R., WEIS, D. & WASSERBURG, G. (1987) Rb, Sr, Nd and Sm concentrations in  
quartz. Geochimica et Cosmochimica Acta 51. pp. 2325-2329.

SACHSENHOFER, R.F., KOGLER, A., POLESNY, H., STRAUSS, P.E. & WAGREICH, M. (2000) The 
Neogene Fohnsdorf Basin: basin formation and basin inversion during lateral  
extrusion in the Eastern Alps (Austria). International Journal of Earth Sciences 
89. pp. 415-430.

SANCHEZ,  G.,  ROLLAND,  Y.,  SCHREIBER,  D.,  GIANNERINI,  G.,  CORSINI,  M.  & LARDEAUX,  J. 
(2010) The active fault system of SW Alps. Journal of Geodynamics 49. pp. 296-
302.

SANDERS, D., OSTERMANN, M., BRANDNER, R. & PRAGER, C. (2010) Meteoric lithification of  
catastrophic  rockslide  deposits:  Diagenesis  and  significance.  Sedimentary 
Geology 223. pp. 150-161.

SCHERER,  E.,  MÜNKER,  C.  & MEZGER,  K. (2001)  Calibration of  the Lutetium-Hafnium 
Clock. Science  293. pp.  683-687 .

SCHLAGER,  W. (2005)  Carbonate  sedimentology  and  sequence  stratigraphy,  SEPM 
(Society for Sedimentary Geology). p.200.

SCHMID,  S.M.  &  KISSLING,  E. (2000)  The  arc  of  the  western  Alps  in  the  light  of  
geophysical data on deep crustal structure. Tectonics 19. pp. 62-85.

SCHMID,  S.M., FÜGENSCHUH,  B., KISSLING,  E. & SCHUSTER,  R. (2004)  Tectonic map and 
overall architecture of the Alpine orogen. Eclogae Geologicae Helvetiae 97. pp. 
93-117.

SCHMID,  S.M.,  PFIFFNER,  O.A.,  FROITZHEIM,  N.,  SCHÖNBORN,  G.  &  KISSLING,  E. (1996) 
Geophysical-geological  transect  and  tectonic  evolution  of  the  Swiss-Italian  
Alps. Tectonics 15. pp. 1036-1064.

SCHOLZ, D. & HOFFMANN, D.L. (2011) StalAge – An algorithm designed for construction  
of speleothem age models. Quaternary Geochronology 6. pp. 369-382.

SCHOLZ,  D.,  MANGINI,  A. & FELIS,  T. (2004)  U-series dating of diagenetically altered  
fossil reef corals. Earth and Planetary Science Letters 218. p.178.

SELVERSTONE, J. (2004)  Are the Alps collapsing?. Annu. Rev. Earth Planet. Sci. 33. pp. 
113-132.

SEWARD, D. & MANCKTELOW, N.S. (1994) Neogene kinematics of the Central and Western  
Alps; evidence from fission-track dating. Geology 22. pp. 803-806.

SHAW, C.A., KARLSTROM, K.E., WILLIAMS, M.L., JERCINOVIC, M.J. & MCCOY, A.M. (2001) 
Electron-microprobe monazite dating of ca. 1.71-1.63 Ga and ca. 1.45-1.38 Ga  
deformation in the Homestake shear zone, Colorado: Origin and early evolution  
of a persistent intracontinental tectonic zone. Geology 29. pp. 739-742.

page 260



Bibliography

SHERLOCK,  S.C.,  WATTS,  L.M.,  HOLDSWORTH,  R.E.  & ROBERTS,  D. (2004)  Dating  fault  
reactivation by Ar/Ar laserprobe: an alternative view of apparently cogenetic  
mylonite-pseudotachylite assemblages.  Journal of the Geological Society 161. 
pp. 335-338.

SHIBATA, K. & TAKAGI, H. (1988) Isotopic ages of rocks and intrafault materials along  
the  Median  Tectonic  Line  -  An  example  in  the  Bungui-toge  area,  Nagano  
Prefecture. Jour. Geol. Soc. Japan 94. pp. 35-50.

SHPIRT,  M.,  PUNANOVA,  S.  & STRIZHAKOVA,  Y. (2007)  Trace elements  in  black and oil  
shales. Solid Fuel Chemistry 41. pp. 119-127.

SIEBEL, W., HANN, H.P., DANISIK, M., SHANG, C.K., BERTHOLD, C., ROHRMÜLLER, J., WEMMER, 
K. & EVANS, N.J. (2010)  Age constraints on faulting and fault reactivation: a  
multi-chronological approach.  International Journal of Earth Sciences 99. pp. 
1187-1197.

SINCLAIR, D.J., KINSLEY, L.P.J. & MCCULLOCH, M.T. (1998)  High resolution analysis of  
trace  elements  in  corals  by  laser-ablation  ICP-MS.  Geochimica  et 
Cosmochimica Acta 62. pp. 1889-1901.

SMITH, P.E. & FARQUHAR, R.M. (1989)  Direct dating of Phanerozoic sediments by the  
238U-206Pb method. Nature 341. pp. 518-521.

SMITH, P.E., BRAND, U. & FARQUHAR, R.M. (1994) U-Pb systematics and alteration trends  
of  Pennsylvanian-aged  aragonite  and  calcite.  Geochimica  et  Cosmochimica 
Acta 58:1. pp. 313-322.

SMITH,  P.E.,  FARQUHAR,  R.M.  &  HANCOCK,  R.G. (1991)  Direct  radiometric  age  
determination of carbonate diagenesis using U-Pb in secondary calcite. Earth 
and Planetary Science Letters 105. pp. 474-491.

SÖDERLUND, U., PATCHETT, P., VERVOORT, J.D. & ISACHSEN, C.E. (2004) The 176Lu decay 
constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian  
mafic intrusions. Earth and Planetary Science Letters 219. pp. 311-324.

SPERNER,  B.  &  ZWEIGEL,  P. (2010)  A  plea  for  more  caution  in  fault-slip  analysis. 
Tectonophysics 482. pp. 29-41.

STAMPFLI,  G.M. (2000)  Tethyan  oceans
. Geological Society, London, Special Publications 173. pp. 1-23.

STAMPFLI,  G.M.,  BOREL,  G.,  CAVAZZA,  W.,  MOSAR,  J.  &  ZIEGLER,  P.A. (2001a)  The 
paleotectonic atlas of the Peritethyan domain. CD ROM, European Geophysical 
Society. .

STAMPFLI,  G.M.,  BOREL,  G.D.,  CAVAZZA,  W.,  MOSAR,  J.  &  ZIEGLER,  P.A. (2001b) 
Palaeotectonic  and  palaeogeographic  evolution  of  the  western  Tethys  and  
PeriTethyan  domain  (IGCP  Project  369)
. Episodes 24. pp. 222-228.

STERN,  K.H. (2000)  High  Temperature  Properties  and  Thermal  Decomposition  of  
Inorganic Salts with Oxyanions, Taylor & Francis. p.288.

STIRLING, C.H., LEE, D.-., CHRISTENSEN, J.N. & HALLIDAY, A.N. (2000) High-precision in  
situ 238U-234U-230Th isotopic analysis using laser ablation multiple-collector  
ICPMS. Geochimica et Cosmochimica Acta 64. pp. 3737-3750.

page 261



Bibliography

STRAUSS,  P.,  WAGREICH,  M.  & DECKER,  K. (2001)  Tectonics  and sedimentation  in  the  
Fohnsdorf-Seckau Basin (Miocene, Austria): from a pull-apart basin to a half-
graben. Inernational Journal of Earth Sciences 90. pp. 549-559.

SUE, C. (2003) Neogene to ongoing normal faulting in the inner western Alps: A major  
evolution of the late alpine tectonics. Tectonics 22. p.1050.

SUE,  C. & TRICART,  P. (2002)  Widespread post-nappe normal faulting in the Internal  
Western  Alps:  a  new  constraint  on  arc  dynamics
. Journal of the Geological Society, London 159. pp. 61-70.

TAKAGI, H., SHIBATA, K. & UCHIUMI, S. (1991) K-Ar ages of fault gouges and felsite dykes  
from the Median Tectonic Line in Chubu Region, central Japan. Journal of the 
Geological Society of Japan 97. pp. 377-384.

TANAKA, H., SAKA, Y., ABE, T., KOHAMA, S. & TETSUMARU, I. (1992)  Fault gouges and 
their K-Ar ages from the Akaishi Tectonic Line, central Japan. Journal of the 
Geological Society of Japan 98. pp. 39-48.

TANAKA, H., UEHARA, N. & ITAYA, T. (1995) Timing of the cataclastic deformation along  
the  Akaishi  Tectonic  Line,  central  Japan.  Contributions  to  Mineralogy  and 
Petrology 120. pp. 150-158.

TAYLOR,  S.R.  & MCLENNAN,  S.M. (1985)  The continental  crust:  Its  composition and  
evolution, Blackwell Scientific Publications. p.328.

TERA, F. & WASSERBURG, G.J. (1972) U-Th-Pb systematics in three Apollo 14 basalts and  
the problem of initial Pb in lunar rocks. Earth and Planetary Science Letters 14. 
pp. 281-304.

THIRLWALL, M.F. (1991)  Long-term reproducibility of multicollector Sr and Nd isotope  
ratio analysis. Chemical Geology: Isotope Geoscience section 94. pp. 85-104.

THIRLWALL, M.F. (2002) Multicollector ICP-MS analysis of Pb isotopes using a 207pb-
204pb double spike demonstrates up to 400 ppm/amu systematic errors in Tl-
normalization. Chemical Geology 184. pp. 255-279.

THOMPSON,  L.M.,  SPRAY,  J.G.  & KELLEY,  S.P. (1998)  Laser  probe argon-40/argon-39 
dating of pseudotachylyte from the Sudbury Structure: Evidence for postimpact  
thermal overprinting in the North Range. Meteoritics & Planetary Science 33. 
pp. 1259-1269.

THÖNY, W., ORTNER, H. & SCHOLGER, R. (2006) Paleomagnetic evidence for large en-bloc  
rotations in the Eastern Alps during Neogene orogeny. Tectonophysics 414. pp. 
169-189.

TODT, W., CLIFF, R.A., HANSER, A. & HOFMANN, A.W. (1996)  Evaluation of a 202Pb -  
205Pb double spike for high-precision lead isotope analysis. In Basu, A. & Hart, 
S.R.  (Eds.)  (1996):  Earth  Processes:  Reading  the  Isotopic  Code.  American 
Geophysical Union. pp. 429-437.

TORSVIK,  T.H.,  STURT,  B.A.,  SWENSSON,  E.,  ANDERSEN,  T.B.  &  DEWEY,  J.F. (1992) 
Palaeomagnetic  dating  of  fault  rocks:  evidence  for  Permian  and  Mesozoic  
movements  and  brittle  deformation  along  the  extensional  Dalsfjord  Fault,  
western Norway. Geophysical Journal International 109. pp. 565-580.

page 262



Bibliography

TRIBOVILLARD,  N.,  ALGEO,  T.J.,  LYONS,  T.  &  RIBOULLEAU,  A. (2006)  Trace  metals  as  
paleoredox and paleoproductivity proxies: An update. Chemical Geology 232. 
pp. 12-32.

TWISS, R.J. & MOORES, E.M. (1992) Structural Geology, W.H. Freeman. p.532.

ULRICH,  T.,  KAMBER,  B.S.,  JUGO,  P.J.  &  TINKHAM,  D.K. (2009)  Imaging  element-
distribution  patterns  in  minerals  by  Laser  Ablation  -  Inductively  Coupled  
Plasma  -  Mass  Spectrometry  (LA-ICP-MS).  Canadian  Mineralogist  47.  pp. 
1001-1012.

URAI,  J.,  WILLIAMS,  P.  &  VAN ROERMUND,  H. (1991)  Kinematics  of  crystal  growth  in  
syntectonic fibrous veins. Journal of Structural Geology 13. pp. 823-836.

USTASZEWSKI,  K.  & SCHMID,  S. (2006)  Control  of  preexisting faults  on geometry and  
kinematics in the northernmost part of the Jura fold-and-thrust belt. Tectonics 
25. .

USTASZEWSKI, K. & SCHMID, S. (2007) Latest Pliocene to recent thick-skinned tectonics at  
the  Upper  Rhine  Graben  -  Jura  Mountains  junction.  Swiss  Journal  of 
Geosciences 100. pp. 293-312.

VAN DER PLUIJM, B.A., HALL, C.M., VROLIJK, P.J., PEVEAR, D.R. & COVEY, M.C. (2001) The 
dating of shallow faults in the Earth's crust. Nature 412. pp. 172-175.

VAN DER PLUIJM, B.A., VROLIJK, P.J., PEVEAR, D.R., HALL, C.M. & SOLUM, J. (2006) Fault  
dating in  the Canadian Rocky Mountains: Evidence for late  Cretaceous and  
early Eocene orogenic pulses. Geology 34. pp. 837-840.

VENABLES, W.N. & RIPLEY, B.D. (2002) Modern Applied Statistics with S, Springer. .
VROLIJK, P. & VAN DER PLUIJM, B.A. (1999) Clay gouge. Journal of Structural Geology 21. 

pp. 1039-1048.

WAGREICH, M. (1988)  Sedimentologie und Beckenentwicklung des tieferen Abschnittes  
(Santon-Untercampan)  der  Gosauschichtgruppe  von  Gosau  und  Rußbach  
(Oberösterreich - Salzburg). Jb. Geol. B.-A. 131. pp. 663-685.

WAGREICH,  M. (1995)  Subduction  Tectonic  Erosion and Late  Cretaceous  Subsidence  
Along  the  Northern  Austroalpine  Margin  (Eastern  Alps,  Austria). 
Tectonophysics 242. pp. 63-78.

WAGREICH, M. & DECKER, K. (2001) Sedimentary tectonics and subsidence modelling of  
the type Upper Cretaceous Gosau basin (Northern Calcareous Alps, Austria). 
International Journal of Earth Sciences 90. pp. 714-726.

WAGREICH, M. & FAUPL, P. (1994)  Palaeogeography and geodynamic evolution of the  
Gosau Group of the Northern Calcareous Alps (Late Cretaceous, Eastern Alps,  
Austria). Palaeogeography, Palaeoclimatology, Palaeoecology 110. pp. 235-254.

WAGREICH, M. & STRAUSS, P.E. (2005) Source area and tectonic control on alluvial-fan  
development in the Miocene Fohnsdorf intramontane basin, Austria. Geological 
Society, London, Special Publications 251. pp. 207-216.

WAGREICH, M., SUMMESBERGER, H. & KROH, A. (2010)  Late Santonian bioevents in the  
Schattau  section,  Gosau Group of  Austria  -  implications  for  the  Santonian-
Campanian boundary stratigraphy. Cretaceous Research 31. pp. 181-191.

WALKER,  J.,  CLIFF,  R.A.  & LATHAM,  A.G. (2006)  U-Pb Isotopic Age of  the  StW 573  
Hominid from Sterkfontein, South Africa. Science 314. pp. 1592-1594.

page 263



Bibliography

WANG,  Y.S.,  ZHU,  G.,  HU,  Z.Q.,  ZHANG,  B.L.,  XIANG,  B.W. & XIE,  C.L. (2009)  K-Ar 
dating of extensional fault gouge from the Yi-Shu segment of the Tan-Lu fault  
zone. Science in China Series D - Earth Sciences 52. pp. 489-503.

WANG,  Z.H.  &  LU,  H.F. (2000)  Ductile  deformation  and  40Ar/39Ar  dating  of  the  
Changle-Nanao ductile shear zone,  southeastern China.  Journal of Structural 
Geology 22. pp. 561-570.

WANG, Z.S., RASBURY, E.T., HANSON, G.N. & MEYERS, W.J. (1998) Using the U-Pb system 
of  calcretes  to  date  the  time  of  sedimentation  of  clastic  sedimentary  rocks. 
Geochimica et Cosmochimica Acta 62. pp. 2823-2835.

WASSERBURG, G.J. & HAYDEN, R.J. (1955) A40-K40 dating. Geochimica et Cosmochimica 
Acta 7. pp. 51-60.

WASSERBURG, G.J., HAYDEN, R.J. & JENSEN, K.J. (1956) A40-K40 dating of igneous rocks  
and sediments. Geochimica et Cosmochimica Acta 10. pp. 153-165.

WASSERBURG, G.J., JACOUSEN, S.B., DEPAOLO, D.J., MCCULLOCH, M.T. & WEN, T. (1981) 
Precise determination of  ratios, Sm and Nd isotopic abundances in standard  
solutions. Geochimica et Cosmochimica Acta 45. pp. 2311-2323.

WATKINSON, I., ELDERS, C. & HALL, R. (2008) The kinematic history of the Khlong Marui  
and Ranong Faults, southern Thailand. Journal of Structural Geology 30. pp. 
1554-1571.

WEIS,  D.  &  WASSERBURG,  G. (1987)  Rb-Sr  and  Sm-Nd  isotope  geochemistry  and  
chronology  of  cherts  from  the  Onverwacht  Group  (3.5  AE),  South  Africa. 
Geochimica et Cosmochimica Acta 51. pp. 973-984.

WELTJE, L., HEIDENREICH, H., ZHU, W., WOLTERBEEK, H.T., KORHAMMER, S., DE GOEIJ, J.J.M. 
&  MARKERT,  B. (2002)  Lanthanide  concentrations  in  freshwater  plants  and  
molluscs, related to those in surface water, pore water and sediment. A case  
study in The Netherlands. The Science of the Total Environment 286. pp. 191-
214.

WENDT, I. (1984)  A three-dimensional U-Pb discordia plane to evaluate samples with  
common lead of unknown isotopic composition. Chemical Geology 46. pp. 1-12.

WENDT,  I. (1989)  Geometric  considerations  of  the  three-dimensional  U/Pb  data  
presentation. Earth and Planetary Science Letters 94. pp. 231-235.

WENDT,  I.  &  CARL,  C. (1985)  U/Pb dating  of  discordant  0.1  Ma old  secondary  U  
minerals. Earth and Planetary Science Letters 73. pp. 278-284.

WETHERILL, G.W. (1956)  Discordant uranium-lead ages.. Trans. Am. Geophys. Union 
37. pp. 320-326.

WETHERILL,  G.W. (1963)  Discordant  uranium-lead  ages  -  Pt.  2;  discordant  ages  
resulting from diffusion of lead and uranium. Journal of Geophysical Research 
68. pp. 2957-2965.

WICKHAM,  J.S. (1973)  An  estimate  of  strain  increments  in  a  naturally  deformed  
carbonate rock. American Journal of Science 273. pp. 23-47.

WILL, T.M. & POWELL, R. (1991)  A robust approach to the calculation of paleostress  
fields from fault plane data. Journal of Structural Geology 13. pp. 813-821.

page 264



Bibliography

WILL, T.M. & POWELL, R. (1992)  A robust approach to the calculation of paleostress  
fields from fault plane data: reply. Journal of Structural Geology 14. pp. 639-
640.

WILLIAMS, P. (1985)  Secondary Ion Mass Spectrometry. Annu. Rev. Mater. Sci 15. pp. 
517-548.

WILLINGSHOFER, E., NEUBAUER, F. & CLOETINGH, S. (1999) The significance of Gosau-type  
basins for the late cretaceous tectonic history of the Alpine-Carpathian belt. 
Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 24. pp. 
687-695.

WILTSCHKO, D.V. & MORSE, J.W. (2001) Crystallization pressure versus "crack seal" as  
the mechanism for banded veins. Geology 29. p.79-a-82.

WÖLFLER, A., KURZ, W., FRITZ, H. & STÜWE, K. (2011) Lateral extrusion in the Eastern  
Alps revisited: Refining the model by thermochronological,  sedimentary,  and  
seismic data. Tectonics 30. .

WOODHEAD, J.D. & HERGT, J.M. (1997) Application of the `double spike' technique to Pb-
isotope geochronology. Chemical Geology 138. pp. 311-321.

WOODHEAD, J.D., HELLSTROM, J., HERGT, J.M., GREIG, A. & MAAS, R. (2007) Isotopic and 
Elemental  Imaging  of  Geological  Materials  by  Laser  Ablation  Inductively  
Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research 
31. pp. 331-343.

WOODHEAD,  J.D., HELLSTROM,  J.,  MAAS,  R., DRYSDALE,  R., ZANCHETTA,  G., DEVINE,  P. & 
TAYLOR,  E. (2006)  U-Pb  geochronology  of  speleothems  by  MC-ICPMS. 
Quaternary Geochronology 1. p.221.

WOODHEAD,  J.D., HERGT,  J.,  MEFFRE,  S.,  LARGE,  R.R., DANYUSHEVSKY,  L.  & GILBERT,  S. 
(2009)  In situ Pb-isotope analysis of pyrite by laser ablation (multi-collector  
and quadrupole) ICPMS. Chemical Geology 262. pp. 344-354.

WOODHEAD,  J.D.,  VOLKER,  F.  &  MCCULLOCH,  M.T. (1995)  Routine  lead  isotope  
determinations using a lead-207-lead-204 double spike: a long-term assessment  
of analytical precision and accuracy. The Analyst 120. pp. 35-39.

WORTMANN,  U.,  WEISSERT,  H.,  FUNK,  H.  & HAUCK,  J. (2001)  Alpine  plate  kinematics  
revisited: The Adria problem. Tectonics 20. pp. 134-147.

WRIGHT,  J.,  SCHRADER,  H.  &  HOLSER,  W.T. (1987)  Paleoredox  variations  in  ancient  
oceans  recorded  by  rare  earth  elements  in  fossil  apatite.  Geochimica  et 
Cosmochimica Acta 51. pp. 631-644.

YORK, D. (1969) Least squares fitting of a straight line with correlated errors. Earth and 
Planetary Science Letters 5. pp. 320-324.

YORK, D., EVENSEN, N.M., LÓPEZ MARTÍNEZ, M. & DE BASABE DELGADO, J. (2004) Unified 
equations for the slope, intercept, and standard errors of the best straight line. 
Am. J. Phys. 72. pp. 367-375.

ZHENG, Y. (1989)  On the use of a three-dimensional method in solving the U-Pb two-
stage model. Geochem. J. 23. pp. 37-43.

ZHENG, Y. (1990)  A further three-dimensional U-Pb method for solving the two-stage  
episodic model. Geochemical Journal 24. pp. 29-37.

page 265



Bibliography

ZHENG,  Y. (1992)  The  three-dimensional  U−Pb  method:  generalized  models  and  
implications for U−Pb two-stage systematics. Chemical Geology 100. pp. 3-18.

ZHU,  B.,  BECKER,  H.,  JIANG,  S.,  PI,  D.,  FISCHER-GÖDDE,  M. & YANG,  J. (2012)  Re–Os 
geochronology of black shales from the Neoproterozoic Doushantuo Formation,  
Yangtze platform, South China. Precambrian Research . p.-.

ZIEGLER, P. & FRAEFEL, M. (2009) Response of drainage systems to Neogene evolution of  
the Jura fold-thrust belt and Upper Rhine Graben. Swiss Journal of Geosciences 
102. pp. 57-75.

ZIELINSKI, R.A. & MEIER, A.L. (1988) The association of uranium with organic matter in  
Holocene peat: An experimental leaching study. Applied Geochemistry 3. pp. 
631-643.

ZOU, H. (2007) Quantitative Geochemistry, Imperial College Press. p.287.
ZWINGMANN,  H.  & MANCKTELOW,  N. (2004)  Timing of  Alpine  fault  gouges.  Earth  and 

Planetary Science Letters 223. pp. 415-425.

ZWINGMANN, H., OFFLER, R., WILSON, T. & COX, S. (2004) K-Ar dating of fault gouge in  
the  northern  Sydney  Basin,  NSW,  Australia--implications  for  the  breakup  of  
Gondwana. Journal of Structural Geology 26. pp. 2285-2295.

ZWINGMANN, H., YAMADA, K. & TAGAMI, T. (2010)  Timing of brittle deformation within  
the Nojima fault zone, Japan. Chemical Geology 275. pp. 176-185.

page 266



Appendices

9.  Appendices

9.1  Appendix A: Rittner, M. & Müller, W. (2011) 2D 
mapping of LA-ICPMS trace element distributions 
using R

Due to copyrights held by Elsevier publishing, the article can not be included as an 

appendix in this online available version of the present work. Please find the article at 

the "Computers and Geosciences" homepage:

www.elsevier.com/locate/cageo

or with this reference:

doi:10.1016/j.cageo.2011.07.016
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9.3  Appendix C: Sample localities
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outcrop GPS point longitude latitude elevation [m]
DGN02 158 6.305134 44.28578 1191.4
DGN03 157 6.304815 44.286351 1199.1
DGN04 159 6.306845 44.285543 1173.4
DGN05 160 6.273171 44.208515 801.4
DGN06 151 6.276016 44.216408 825.2
DGN07 161 6.246005 44.230237 1115.5
DGN08 162 6.246365 44.230214 1098.4
DGN09 163 6.247368 44.23003 1078.7
DGN10 164 6.167012 44.17415 943.7
DGN11 165 6.149257 44.161691 795.1
DGN30 260 6.088289 44.244647 1215.9
DGN55 300 6.23525 44.21793 1501.9
FOB27 247 14.572988 47.232295 855.2
FOB28 248 14.703477 47.152132 783.8
FOB29 249 14.844677 47.163522 923.9
GOB17 235 13.531949 47.553504 982.1
GOB18 236 13.550964 47.563012 1190.7
GOB19 237 13.535475 47.545191 1426.7
GOB20 238 13.536483 47.544404 1428.4
GOB21 240 13.514704 47.549978 787.0
GOB22 241 13.413808 47.625768 1285.6
GOB23 242 13.413568 47.625612 1285.4
GOB24 244 13.386225 47.612206 1160.4
GOB25 245 13.367385 47.603554 953.0
GOB26 246 13.461657 47.588414 801.9
GOB49, 50, 51 292 13.459896 47.567306 944.9
GOB52 293 13.513265 47.583139 1024.6
GOB53 294 13.497794 47.585596 1038.3
GOB54 295 13.490618 47.585508 1064.3
KIL40 280 -3.225128 51.192967 2.3
KIL41 281 -3.221172 51.193316 7.3
KIL42 283 -3.217348 51.194038 8.3
KIL43 284 -3.335941 51.183248 8.1
LEY12 224 7.868697 46.308876 681.5
LEY13 228 7.679341 46.313816 954.9
LEY14 229 7.679554 46.313854 956.6
LEY15 231 7.24834 46.209125 631.7
LEY16 233 7.209679 46.193124 617.3
LIV31 266 12.183326 47.586007 579.6
LIV32 267 12.177916 47.532008 638.7
LIV33 268 12.173977 47.531202 688.7
LIV34 269 12.125127 47.497929 822.8
LIV35 270 12.124192 47.496819 846.6
LIV36 271 12.12456 47.498757 829.0
LIV37 272 12.124366 47.498944 825.9
SEF38 273 11.217184 47.323683 1549.3
SEF39 274 11.218203 47.32376 1569.5
TNF44 288 12.974696 47.285424 1028.2
TNF45 289 12.973919 47.284408 900.4
TNF46, 47 290 13.193155 47.31061 858.6
TNF48 291 13.193561 47.30793 706.0
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1D LA­ICPMS tracks

Following, the 1D LA­ICPMS tracks analysed for sample screening are listed. The

2D mappings comprised of a large number of individual tracks, one representative track

per mapping is presented here.

Host rock and clay impurities, indicated by elevated Al and Si values, can not be

quantified (Ca concentration of calcite is assumed as internal standard), the information

about the presence of other minerals is of qualitative nature only.

Not all analysed elements are plotted, to make the main features of samples, mainly

U and Pb concentrations, and Al/Si peaks easier visible.
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Gosau Basin
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Lower Inn Valley

Samples KB2 and UAS3 were contributed by Hugo Ortner, University of Innsbruck,

Austria.
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Contributed samples

The following samples were contributed by collaborators.

Sample s30 from East Canada was contributed by Simon Craggs, RHUL.



CF1

Swiss Helvetic nappes: Samples CF1 ­ CF15 contributed by Daniel Egli, ETH

Zürich, Switzerland.

CF5

CF6
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CF15



MHH01_A_1

Swiss Jura samples MHH01 ­ MHH07 were contributed by Herfried Madritsch,

NAGRA, Switzerland.
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LA­ICPMS in situ isotope measurements












